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Zusammenfassung
Stoßwellen von Supernovaüberresten werden als die besten Orte für die Produk-
tion von galaktischer kosmischer Strahlung betrachtet. Aus der Wechselwirkung
von dort produzierter kosmischer Strahlung mit Photonenfeldern und mit dem in-
terstellaren Medium entsteht ein Multiwellenlängenspektrum vom Radio bis zur
Gammastrahlung. Insbesondere die TeV Gammastrahlung könnte aus beiden,
hadronischen und leptonischen, Wechselwirkungen hervorgehen. Neue Ergebnisse
aus kinetischen Simulationen schlagen vor, dass die Beschleunigung von Ionen der
kosmischen Strahlungen stark vom relativen Winkel zwischen der Stoßrichtung
und dem lokalen Magnetfeld abhängt. Dies bedeutet, dass die zugrundeliegende
Topologie des interstellaren Magentfelds, in das sich die Supernovaüberrest aus-
breitet, die Morphologie der Strahlungsemission bestimmt.

Durch das Verwenden von dreidimensionalen, magnetohydrodynamischen Sim-
ulationen mit dem arepo code, studiere ich die Effekte der winkelabhängigen
Beschleunigung an anhand der Emissionsmorphologie von hellen Supernovaüberresten.
Wir wenden die Ergebnisse der idealisierten Tests auf wohl bekannte, helle Super-
novaüberreste unter der Annahme eines hadronisches Modells an, um verschiedene
Emissionsmorphologien zu reproduzieren. Anhand der TeV Morphologie sagen wir
die Zusammensetzung des interstellaren Mediums und die Kohärenzlänge des inter-
stellaren Magnetfelds voraus. Darüberhinaus untersuchen wir den Einfluss von ver-
schiedenen interstellaren Umgebungen, unter anderem für den Fall eines klumpigen
Mediums bei Kernkollapssupernovaüberresten. Wir zeigen, dass das hadronische
Modell eine gute Übereinstimmung sowohl mit den beobachteten Morphologien als
auch mit den Spektren aufweist.

Summary
Supernova remnants shocks are considered the best sites for the production of
Galactic cosmic rays. The interactions of cosmic rays produced at supernova shocks
with photon fields and the interstellar medium generate a multi-wavelength spec-
trum from radio to gamma rays. In particular, TeV gamma-ray emission may
originate from both hadronic and leptonic interactions. Recent results from ki-
netic simulations suggest that the acceleration of cosmic ray ions strongly depends
on the relative angle between the shock normal and the local magnetic field orien-
tation. This means that the underlying topology of the interstellar magnetic field
in which the supernova remnant expands determines the emission morphology.

Using 3D magneto-hydrodynamical simulation with the code arepo, we study
the effect of the obliquity dependent shock acceleration on the emission morphol-
ogy of bright supernova remnants. We apply the results of idealized cases to
well-known bright supernova remnants assuming a hadronic model to reproduce
different emission morphologies. From the TeV gamma-ray morphology we predict
the local composition of the interstellar medium and the coherence scale of the in-
terstellar magnetic field. Furthermore we study the impact of different interstellar



environments, such as the case of a clumpy medium for core-collapse supernova
remnants. We show that the hadronic model provides a good match for both the
observed morphologies and the spectra.
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1. Cosmic Rays

Abstract
In this chapter the physics of cosmic rays is discussed with a focus on both on
the theoretical and observational aspects. In Sect. 1.1 the theory on the origin
of galactic cosmic rays is exposed. The theory of the transport of cosmic rays
and its implications are discussed in Sect. 1.2. I introduce the fluid description
of cosmic rays in Sect. 1.3. Non-thermal emission processes originating from the
interaction of cosmic rays with matter, magnetic and photon fields are discussed
in Sect. 1.4 with a particular focus on their hadronic and leptonic origin. Finally,
a consequence of plasma interactions and catastrophic losses of cosmic rays are
discussed in Sect. 1.5.

1.1. Origin of cosmic rays

1.1.1. Observations - Galactic population
Cosmic rays (CRs) are charged particles with an the energy density in the Galaxy
of ∼ 1 eV cm−3. Early observation conducted by the Austrian physicist Victor Hess
via atmospheric balloons in 1912 (Hess, 1912) confirmed the existence of a type
radiation of great penetrating power entering in the atmosphere and originating
from outside the Earth.

Most of CRs are hydrogen nuclei (protons) with a relevant fraction (∼ 10%) of
helium nuclei and a negligible presence of heavy elements ( ∼ 1%). The chemical
composition of CRs provides important information about their origin and their
transport through the Galactic magnetic field.

The CRs spectrum spans for several decades in energy and intensity of flux.
Charged particles experience gyration around the magnetic field lines with a ra-
dius, called Larmor radius or gyroradius, proportional to the particle momentum
perpendicular to the magnetic field:

rL = p⊥c

ZeB
= 2
Z

(
E

10 GeV

)(
B

µG

)−1
AU (1.1)

CRs with energies . 30 GeV are modulated by the magnetized solar wind. Because
their Larmor radius is smaller than the characteristic dimension of the magnetic
field in the interplanetary medium, CRs are scattered by the magnetic field irregu-
larities and eventually swept out of the Solar System reducing their observed flux
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1. Cosmic Rays

Figure 1.1.: All-particle spectrum of CRs at the Earth measured by different experiments in the
course of years (Evoli, 2018). The observed slope transitions are highlighted: the
knee is located at 3PeV and the ankle at 5EeV.

on Earth (Parker, 1965). Above 30 GeV the CR spectrum of all nuclear compo-
nents is well described by a power law spanning up to 1011 GeV in energy (Fig. 1.1).
The spectrum exhibits a steepening around Ek = 3 PeV known as the knee passing
from a slope of −2.7 to −3.1. There is evidence that the chemical composition of
CRs depends on the energy and remarkably changes across the knee region with
a dominance of heavy nuclei at very high energies. A possible explanation is the
superposition of cutoffs from different chemical species (Hörandel, 2004).

A second, less pronounced, knee possibly associated with the steepening of the
Galactic Fe component is present at 1017 eV (Candia et al., 2002). At energies
around 5×1018 eV the spectrum exhibits a ankle-like structure and its logarithmic
slope flattens again to around −2.75 (Fisk & Gloeckler, 2012). Some authors
suggest as this feature may be a sign of the transition from Galactic to extragalactic
CRs (Blasi, 2014). In fact, assuming a standard galactic magnetic field strength
of about 10µG, these particles can not gyrate in the galactic disk because their
Larmor radius is larger than the thickness of the galactic disk (500 pc).

At energies around 1020 eV CR protons are able to interact with the cosmic
microwave background radiation (CMB) via producing both neutral and positive
pions and lose energy on scales of about ' 10 Mpc. This corresponds to the

12



1.1. Origin of cosmic rays

suppression of the observed spectrum at these energies and is named GZK-cutoff
(Greisen, 1966; Zatsepin & Kuzmin, 1966).

1.1.2. SNR paradigm
The presence of a knee and the simultaneous change in chemical composition at
those energies suggests that the bulk of CRs with energies . 1015 eV originates
from the Milky Way. The main accelerator candidates for CRs are galactic super-
nova remnants (SNRs) as first proposed by Baade & Zwicky (1934) and Ginzburg
& Syrovatsky (1961). Our observational evidence is corroborated by several in-
dependent phenomena such as the detection of gamma rays associated with the
production of neutral pions in SNRs close to molecular clouds (Ackermann, 2013;
Sano et al., 2015; Fukui et al., 2017) and the bright X-ray filaments detected in
many young SNRs that prove an amplification of the magnetic field in the shock
region (Vink, 2012).

The Hillas criterion provides an estimate of the maximum energy Emax achievable
in an accelerator and is derived by a confinement argument. Given the accelerator
size L, the upstream magnetic field strength B0 and the charge q it reads

Emax = qB0L (1.2)
For typical SNR parameters L = 1 pc and B0 = 10µG an energy of Emax = 1 PeV
is reachable in such objects.

The process of diffusive shock acceleration (DSA) provides a way to acceler-
ate charged particles at supernova shocks (Krymskii (1977); Axford et al. (1977);
Blandford & Ostriker (1978); Bell (1978a)). In order to match the CR flux ob-
served in the Galaxy an efficiency of ∼ 10 per cent is required (Hillas, 2005). The
theory naturally predicts an energy spectrum of the accelerated particles that is
proportional to a power law E−α whose spectral index α depends only on the shock
compression ratio R experienced by the particles and reads:

α = R+ 2
R− 1 (1.3)

which tends to 2 for strong shocks (R = 4). It needs to be pointed out that
a dynamical backreaction of the charged accelerated particles is likely to occur
modifying the shock structure and affecting the slope of the CR spectrum (Malkov
& Drury (2001); Caprioli (2012) for a review). This non linear theory is also
likely to predict the generation of the magnetic field amplification by CR-driven
instabilities (Bell (2004); Amato & Blasi (2006); Caprioli et al. (2010) for a semi-
analytic solution of the problem).

The CR flux observed at Earth (∝ E−2.75) is steeper than the injected spectrum
in the test particle approximation (∝ E−2). CRs accelerated at SNR shocks reach
our planet after experiencing a propagation with energy dependent diffusion in the
Galaxy. Because the CR flux at Earth has to be proportional to the injection
spectrum and the spectrum scales as 1/D(E) ∝ E−δ, where D(E) is the energy-
dependent diffusion coefficient, this implies that that the observed slope needs a
diffusion coefficient that scales as D(E) ∝ E0.7.

13



1. Cosmic Rays

The combination of acceleration of charged particles via DSA at SN shocks
and the diffusive propagation of CRs in the Galaxy are the basis of the so-called
supernova remnant paradigm which represents one of the best studied models to
explain the bulk of CRs we detect at Earth.

1.2. Theory - Transport of Cosmic Rays
The acceleration and transport of CRs is essential to understand several high energy
astrophysical problems. CRs generally propagate in a collisionless, magnetized and
tenuous background plasma consisting of protons and electrons. The CR energy
density is approximately in equipartition with the thermal and turbulent density
of the background medium and the magnetic field.

Measurements of the ratio of boron to carbon fluxes and the associated grammage
traversed by CRs allow to estimate the residency time of CRs within the galaxy to
about 2×107 yrs (Kulsrud, 2005; Blasi, 2013). This time scale exceeds the ballistic
propagation time scale of CRs by at least three orders of magnitude. The CRs
arising from plasma processes arriving at the Earth have a remarkably high level
of isotropy with anisotropies of the order of 10−4 (Kulsrud, 2005). This isotropy
is a consequence of the interaction of the fast scattering of CR particles by the
magneto-hydrodynamic (MHD) turbulence. It is concluded that the propagation
of CR is dominated by interactions with the magnetic fields.

For a stationary one-dimensional shock, in which the normal to the shock is
parallel with respect to the orientation of the magnetic field, the transport of
particles moving in a fluid with bulk velocity v � c is described by a Fokker-
Planck type equation that includes diffusion and advection, namely the transport
equation in the absence of CR streaming (Skilling, 1975; Schlickeiser, 2002) that
reads
∂f

∂t
+v∂f

∂x
= − 1

p2
∂

∂p
[p2A1(x, p)f ]︸ ︷︷ ︸

Fermi I acc.

+ 1
p2

∂

∂p

[
p2A2(x, p) ∂

∂p
f

]
︸ ︷︷ ︸

Fermi II acc.

+ ∂

∂x

[
κ
∂f

∂x

]
︸ ︷︷ ︸
spatial diff.

+ 1
3

dv
dxp

∂f

∂p︸ ︷︷ ︸
adiab. changes

+Q

(1.4)
where f = f(x, p, t) is the CR distribution function normalized such that the
number density is ncr = ∫ 4πp2fdp, the third term on the right-hand side represents
the spatial diffusion, κ(x, p) is the diffusion coefficient, the fourth term on the right-
hand side represents the adiabatic changes of CRs, Q(x, p) is the injection rate. The
terms A1(x, p) and A2(x, p) are related to the acceleration of CRs via respectively
the first (Fermi, 1954) and second (Fermi, 1949) order Fermi processes. Both
processes are based on the idea of CRs colliding against moving magnetic fields
with a certain pitch angle (i.e. the angle between the direction of motion of the
particle and the magnetic field vector):
• First order Fermi acceleration. It occurs when the charged particle is

trapped between two approaching clouds on the same magnetic field, result-
ing in an extremely efficient acceleration. An ideal environment is repre-
sented by shocks. We can consider a particle crossing the shock from the
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1.2. Theory - Transport of Cosmic Rays

upstream (pre-shock regime) to the downstream (post-shock regime) with en-
ergy E. If the particle scatters on the downstream magnetic irregularities
and returns to the shock and can cross is surface again with a different pitch
angle. Assuming that the velocity of the particles is isotropized by scatter-
ings both upstream and downstream the mean value of the energy change per
upstream-downstream-upstream cycle is ∝ v/c, which is first order in velocity
(Bell, 1978a). The advantage is that there are no configurations that lead to
energy losses and the energy gain is independent of the scattering process.

• Second order Fermi acceleration. It describes stochastic acceleration
(〈E2〉 6= 0) in which an injected particle with energy E scatters on the mag-
netic irregularities of a cloud and experiences a net gain of energy transferred
from the cloud to the particle. At each interaction the particle experiences a
gain or loss in energy depending whether the particle-cloud collision occurred
head-on or tail-on. Assuming the isotropization of the pitch angle the net en-
ergy gain is a second order quantity in velocity and reads 〈∆E/E〉 ∝ v2/c2.
This process is thus less efficient than the previously discussed one.

Along with energy gaining processes CRs experience also a loss of energy by
several mechanisms. Some of the most important ones are the following:

• Synchrotron losses. Particles accelerated by magnetic fields radiate energy.
In particular, for a relativistic particle with a given Lorentz factor γ the energy
loss by gyration in a magnetic field is given by:

dE
dt = −4

3σT cβ
2γ2εB (1.5)

where εB = B2/8π is the magnetic field energy density, β = v/c, γ = (1 −
β2)−1/2 is the Lorentz factor, σT = 8πr2

0/3 is the Thomson cross section and
r0 = e2/(mec

2) is the classical electron radius;

• Inverse Compton losses. Relativistic charged particles can scatter with a
photon field. If the particle energy is greater than the energy of the photon,
a part of the particle energy is transferred to the incident photon resulting
in a loss of energy for the particle. The total power emitted by Compton
scattering off of a single electron reads

dE
dt = −4

3σT cβ
2γ2εph (1.6)

where εph is the photon energy density;

• Coulomb and ionization losses. Dominant for low energy CR nuclei and
relevant for electrons the particles experience both energy losses via the loss
of electron in ionization processes and via Coulomb interaction in an ionized
medium.
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1. Cosmic Rays

• Hadronic interactions. Dominant for α high energy nuclei when a kine-
matic energy threshold of 0.78 GeV is reached the collision processes can open
a channel production for light mesons such charged and neutral pions that
consequently decay into high-energy photons, muons and neutrinos;

• Spallation. The interaction of primary CR nuclei (protons and alpha parti-
cles) with the ISM is responsible of the production of light (Li, Be, B) and
sub-iron elements (Sc, Ti, V, Cr, and Mn) which are over-abundant in CRs
with respect to the solar system abundances.

1.2.1. Diffusive Shock Acceleration
The equations of motion for an ideal fluid (with no viscosity, thermal conductivity
and electric resistance) admit the presence of discontinuous flows. Astrophysical
shock waves are at the basis of highly energetic phenomena.

Once a shock forms it moves through the fluid supersonically and the material
behind the shock is hotter, denser and has a higher pressure. Given the reference
frame of the shock, an incoming supersonic material with velocity v1, density ρ1
and pressure P1 crossing the shock becomes subsonic with velocity v2, density ρ2
and pressure P2, where the subscripts 1 and 2 denote the upstream (pre-shock)
and downstream (post-shock) regimes, respectively.

In the approximation of an indefinitely thin shock surface is possible to write
conservation relation for mass, momentum, and pressure flux across the discontinu-
ity. These conditions are named Rankine-Hugoniot equations or jump conditions
and read:

ρ1v1 = ρ2v2 (1.7)

P1 + ρ1v
2
1 = P2 + ρ2

2 (1.8)

(ε1 + P1) + ρ1
v2

1
2 = (ε2 + P2) + ρ2

v2
2
2 (1.9)

where ρi is the density, Pi is the pressure and εi is the internal energy density or
region i (pre- and post-shock). These conservation laws admit both trivial solutions
(i.e. ρi = const., Pi = const., εi = const.) and the following discontinuous solutions:

R = ρ2

ρ1
= u1

u2
= γ + 1

(γ − 1) + 2/M2
1

(1.10)

P2

P1
= 2γM2

1
γ + 1 −

γ − 1
γ + 1 (1.11)

T2

T1
= [2γ − γ(γ − 1)/M2

1][(γ − 1) + 2/M2
1]

(γ + 1)2 M2
1 (1.12)

whereM1 = v1/c1 is the upstream Mach number, which denotes the shock strength.
From Eq. (1.10) we notice that in the limit of strong shocks (M1 � 1) for a ther-
mal fluid with adiabatic index γ = 5/3 it is limited by R = 4 while a relativistic
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1.2. Theory - Transport of Cosmic Rays

fluid (γ = 4/3) allows R = 7, meaning that the shock is more compressed. From
Eq. (1.12) we also notice that a shock is efficient in transforming the kinetic energy
of the upstream particles to downstream internal energy.

In the case of magnetized shocks additional jump conditions involving the com-
ponents of the magnetic field are present. For a magnetic field with components
B = (Bx, By, 0), a velocity flow with components v = (vx, vy, 0) and a shock nor-
mal n = (1, 0, 0) the magnetic field experiences continuity of the normal magnetic
field component and the Maxwell stress tensor component which expresses the con-
tinuity of the normal-momentum flux and of the transverse-momentum flux. These
conditions read (Schlickeiser, 2002):

Bx,1 = Bx,2 (1.13)

P1 + ρ1v
2
x,1 +

B2
y,1

8π = P2 + ρ2v
2
x,2 +

B2
y,2

8π (1.14)

ρ1vx,1vy,1 −
1

4πBx,1By,1 = ρ2vx,2vy,2 −
1

4πBx,2By,2 (1.15)

The shocks involving magnetic fields can be classified as:

• Parallel or quasi-parallel shocks. Shocks where the vector normal to
the shock surface is parallel or quasi-parallel to the direction of the local
magnetic field. The angle between the shock normal and the magnetic field
is 0◦ ≤ θ < 45◦;

• Perpendicular or quasi perpendicular shocks. Shocks where the shock
normal is oriented perpendicularly or quasi-perpendicularly to the direction
of the local magnetic field vector with angles 45◦ < θ ≤ 90◦.

In the microscopic picture, collisionless shocks, namely shocks mediated by elec-
tromagnetic forces between charged particles, form because of the excitation of
electromagnetic instabilities present in the flow. An exhaustive review of colli-
sionless shocks and the associated microphysics can be found in Marcowith et al.
(2016).

In diffusive shock acceleration (DSA) particles gain energy by scattering off of
magnetic disturbances present in the upstream and downstream media. The differ-
ence of velocity propagation of the scattering centers induces a systematic energy
gain at each shock crossing.

However the injection of new particles participating at the acceleration process
is still a problematic aspect of particle acceleration at shocks. Before the onset
of numerical plasma-kinetic simulations, the properties of injection were related
to the microphysics of the particles moving in the plasma behind the shock via
models of thermal leakage (Malkov, 1998). The introduction of particle-in-cell
(PIC) simulations helped to cast light on the formation of collisionless shocks with
promising results (Spitkovsky, 2008a,b; Caprioli & Spitkovsky, 2014a).
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1. Cosmic Rays

Using the same procedure described in Blandford & Ostriker (1978), for a station-
ary parallel shock a simple treatment of DSA can be carried out using a simplified
version of Eq. (1.4) that reads

v
∂f

∂x
= ∂

∂x

[
κ
∂f

∂x

]
+ 1

3
∂f

∂x
p
∂f

∂p
+Q(x, p) (1.16)

The shock is supposed to be indefinitely thin and located at x = 0. The injection
term Q can be approximated supposing that the particles in the Maxwellian tail
are injected immediately downstream of the shock if their momentum is larger than
a critical value pinj (Blasi et al., 2005):

pinj = ξinjpth,2 = ξinj
√

2mpkBT2 , (1.17)

where ξinj is the injection efficiency, kB is the Boltzmann constant, mp is the proton
mass and T2 the downstream temperature. This value in momentum corresponds
to a Larmor radius large enough to allow the particles to cross the shock and return
upstream. This leads to the following expression for the injection term Q:

Q(p, x) = ηn1v1

4πp2
inj
δ(p− pinj)δ(x) = q0(p, pinj)δ(x) , (1.18)

where n1 is the number density upstream and η = η(ξ) represents the fraction of the
particle flux across the shock surface participating to the acceleration process. A
more recent formulation of the theory of ion injection at non-relativistic collisionless
shocks based on kinetic hybrid simulation is given by Caprioli et al. (2015).

The integration of the transport equation across the shock surface between 0+

and 0− leads to the continuity equation:[
κ
∂f

∂x

]
2
−
[
κ
∂f

∂x

]
1

+ 1
3(v2 − v1)p∂f0

∂p
+ q0(p) = 0 (1.19)

with f0(p) representing the distribution function of the CR at the shock. The scat-
tering downstream leads to a homogeneous distribution of particles, thus [∂f/∂x]2 =
0, while in the upstream [∂v/∂x]1 = 0. The last condition translates in[

κ
∂f

∂x

]
1

= v1f0 . (1.20)

This leads to the equation

v1f0 = 1
3(v2 − v1)p∂f0

∂p
+ ζn1v1

4πp2
inj
δ(p− pinj) (1.21)

The solution of this equation takes the form of a power-law in momenta with a
lower cutoff:

f0 = A

(
p

pinj

)−α
Θ(p− pinj) (1.22)
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where α is the spectral index and A is a normalization constant. Substituting the
latter into Eq. (1.21) and equating similar terms, we find a relation that links the
spectral index α to the compression ratio R and the expression for the normaliza-
tion:

f0 = 3R
R− 1

ηn1

4πp3
inj

(
p

pinj

)− 3R
R−1

Θ(p− pinj) (1.23)

where α = 3R/(R − 1). We notice that for strong shocks R = 4 so α = 4. The
advantage of this models is its independence on the diffusion coefficient and the
complicated underlying physics. On the other hand this power law extends up
to infinite energy and does not predict a cutoff which emerges from the diffusion
coefficient. Furthermore the presence of CR pressure modifies the shock itself and
the predicted spectral index. Recent studies show how the spectral slope increases
with the increase of the injection efficiency up to α = 2.6 (Caprioli, 2011).

1.2.2. The microscopic picture - Pitch angle scattering
Because CRs are composed of charged particles, in the presence of a magnetic field
B0 they gyrate along magnetic field lines with characteristic gyration frequency
Ω = qB0/(γmc). For a pitch angle of µ = cos θ between the magnetic field direction
and the particle velocity the equation of motion is

vx(t) = v⊥ cos(Ωt+φ) , vy(t) = −v⊥ sin(Ωt+φ) , vz(t) = v‖ = µv , (1.24)

where v‖ = µv, v⊥ = v
√

1− µ2 and v is the absolute value of the particle velocity.
However, CRs also scatter on magnetic fluctuations. Second-order Fermi accel-

eration models a random walk of particles and the role of the scattering centers is
played by the moving magnetized clouds. In DSA the role of magnetized clouds is
played by plasma waves, namely Alfvén waves, which move with Alfvén velocity
vA = B/

√
4πρi = 2BµGni,cm−3 km s−1, where ni = ρiµwmp with µw is the mean

molecular weight.
A wave packet consisting of a superposition of Alfvén waves that are polarized

along the x−axis and with amplitude δB superposed on the background magnetic
field B0 exerts a Lorentz force on the CR’s motion. The individual Fourier modes
of the perturbations have the wave form:

δB = δBx̂ sin(k‖z − ωt) , (1.25)

with z = v‖t = vµt. The motion along z is modified according to the Lorentz force:

(v × δB)z = −evyδBxẑ = −v⊥δB0ẑ sin(Ωt+ φ) sin(kz − ωt)

= −1
2v⊥δB0{cos[(Ω − k‖vµ+ ω)t+ φ]− cos[(Ω + k‖vµ− ω)t+ φ]} .

(1.26)
In the case of Ω + kvµ − ω ' 0 the second cosine averages to 0 while the first

term disappears only if the resonant conditions Ω − kvµ + ω = 0 is met. The
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associated change in momentum along z is

∆pz = e

c
(v × δB)z∆t = p⊥

δB

B0
δ
(
k‖µv −Ω − ω

)
(1.27)

where ∆t = Ω−1 and p⊥ = γmv⊥. The Dirac δ function expresses the resonance
condition for a right moving CR particle. Because pz = pµ then ∆pz = p∆µ =
−p sin θδθ which translates in a condition for the pitch angle,

δθ ∝ −δB
B0

, (1.28)

which increases or decreases according to the relative phase of the interaction.

Figure 1.2.: Motion of a particle in a magnetic field. The red spiral represents the motion of
he particle in a homogeneous magnetic field B0 while the green spiral represents
the motion of the same particle in a perturbed magnetic field with perturbations
perpendicular to the direction of the motion (Morlino, 2017).

The resulting averaged scattering rate for the pitch angle over a period is then

ν =
〈
∆θ∆θ

∆t

〉
∼ Ω

〈(
δB

B0

)2〉
, (1.29)

which has the form of a pitch-angle diffusion of CRs in the wave frame. Introducing
the wave energy density E(k) at the wave number k such that (δB)2/8π ∼ kE(k),
Eq. (1.29) becomes

ν ∼ Ω
kE(k)
B2

0/8π
= ΩF(k) , (1.30)

where F(k) is the gyrofactor. The scale of magnetic fluctuations is of extreme
importance in this process. Small fluctuations (below the gyroradius of the particle)
are averaged out, which results in a null net force on the particle motion. On the
other hand, fluctuations on large scale adiabatically change the equations of motion
of an orbit. If the scale of the magnetic fluctuations is of the same order of the
gyroradius of the particle the effect is maximized. This leads to two resonance
conditions:
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1.2. Theory - Transport of Cosmic Rays

• Landau resonance for the condition ω − k‖v‖ = 0

• Gyroresonances for the condition ω − k‖v‖ = NΩ with N ∈ N.

The Alfvén wave has a velocity of ±vA = ω/k where the positive sign stands for
co-propagating waves, and the negative sign stands for counter-propagating waves.
If the particle velocity is v ∼ c a Landau resonance translates in the condition
k‖/k = vA/v‖ � 1.

The condition in the case of gyroresonances similarly reads ±k‖vA− k‖v‖ = NΩ
which means that (Thomas & Pfrommer, 2019)

k‖ = Ω

µv ∓ vA
∼ 1
µrg

, (1.31)

for a right-hand polarized wave with N = 1 and Ω = v/rg, meaning that the
fluctuations are dynamically important when the wavelength associated to the
Alfvén waves is of the same order of magnitude of the gyroradius of the particles.
The time required for a particle to change its direction (i.e. δθ ∼ 1) and isotropise
the CR distribution can be calculated using Eq. (1.29) and roughly corresponds to
τ ∼ 1/ν.

For an escape time of CRs of the order of tesc = 3 × 107 yrs, as measured by
Boron to Carbon ratio, and an estimate of the Galactic halo scale of H ∼ 3 kpc the
galactic diffusion coefficient is estimated to be κ ∼ H2/tesc ∼ (1−3)×1028 cm2 s−1.
If the diffusion coefficient for CRs is estimated as 1/3v2τ where τ is the scattering
time then at the resonant wave number this corresponds to magnetic fluctuations
of the order of δB/B0 ∼ 10−4. This means that a small amplitude of Alfvén waves
can account for the level of diffusion needed to confine the CRs in the Galaxy (see
also Sect. 1.2.4)

The perturbative nature of this treatment is valid until the condition δB/B0 �
1 holds. Magnetic field amplification led by a net current of CRs may lead to
instabilities (i.e. when δB/B � 1) in the plasma (Bell, 2004).

1.2.3. Maximum energy
In order to estimate the maximum energy achievable by a particle we need to cal-
culate how much time it spends in the acceleration process. If CRs are accelerated
at SNR shocks, the acceleration time tacc has to be less than the age of the rem-
nant tage. The repeated shock crossing of the particle in the acceleration process
of DSA illustrates the process through which a particle gains energy in each cy-
cle via a pitch-angle scattering by Alfvén waves (Skilling, 1975). The scattering
process confines the particles to the region around the shock allowing a first-order
Fermi acceleration process (Bell, 1978a). A particle after scattering with magnetic
inhomogeneities in the upstream with energy E1 crosses the shock with pitch angle
µ1 = cos θ1. In the reference frame of the downstream it has an energy of:

E2 = γE1(1 + βµ1) (1.32)
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where β = u2−u1 and γ = (1−β2)−1/2. If the particle returns from the downstream
and crosses the shock again with a pitch angle µ2 = cos θ2 then in the upstream
reference frame its energy is:

E ′1 = γE2(1− βµ2) = γ2E1(1 + βµ1)(1− βµ2) ' γ2E1[1 + β(µ1 − µ2)] (1.33)

We notice that after a cycle E′1 > E1. If we assume isotropization of the particle
distribution by scattering both upstream and downstream we can substitute the
average values of the pitch angles, namely 〈µ1〉 = 2/3 and 〈µ2〉 = −2/3, such that
the average fractional energy change per cycle is then

〈E ′1〉 ' γ2E1

(
1 + 4

3β
)

(1.34)

For a non-relativistic shock with γ = 1 the average fractional energy change per
cycle is then 〈

E′1 − E1

E1

〉
= 4

3β (1.35)

After k cycles the net energy gain (E ′1)k/E1 diverges geometrically. Assuming
isotropy the flux of particles crossing a surface Σ is given by Φ2 = nv2 and isotrop-
ically half of them will return upstream with an average velocity of c/2. The flux
coming upstream is Φr = nc/4. The ratio between the downstream flux and the
return flux gives the escape probability of CRs from the acceleration process

Pesc = Φ2

Φr
= 4v2

c
= v1

c
(1.36)

which means that the number of original particles n after a shock crossing will be
1−Pesc. After k cycles the CR population will be reduced by a factor (1−Pesc)k.

The total number of particles crossing the shock from the downstream to the
upstream for a surface Σ and a time τdiff,1, namely nc/4Στdiff,1, must be equal to
the number of particles crossing the same surface and within a diffusion length
upstream L1 = κ1/v1:

nc

4 Στdiff,1 = nΣ
κ1

v1
=⇒ τdiff,1 = 4κ1

cv1
(1.37)

A similar estimate is valid downstream so that the total amount of time the parti-
cles spend to diffuse in a cycle is simply τdiff = τdiff,1 +τdiff,2. This helps to estimate
the acceleration time as

τacc '
τdiff

∆E/E
= 3
v1 − v2

[
κ1

v1
+ κ2

v2

]
(1.38)

which is qualitatively similar to the more general expression calculated by Lagage
& Cesarsky (1983). The acceleration time is dominated by diffusion in the region
with less scattering (i.e. the larger diffusion coefficient). The first criterion we
need to impose is that the acceleration time is equal or smaller than the age of the
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1.2. Theory - Transport of Cosmic Rays

remnant τSNR ∼ rs/vs where rs and vs are the shock radius and the shock velocity,
respectively. Recalling the pitch-angle scattering of CRs on magnetic irregularities,
the diffusion coefficient takes the form

κ = 1
3
rLc

F(k) . (1.39)

Imposing the condition of maximum momentum pmax, imposing τSNR = τacc the
gyrofactor F(k) calculated at the maximum energy pmax = 1/kmin ∼ 1PeV is

F(kmin) ' rL

rs

c

vs
. (1.40)

Since c/vs ∼ 100 for reference parameters of SNRs (vs ∼ 3000 km s−1, r(pmax) ∼
0.1 pc from Eq. (1.1) and rs = 2 pc) then F(kmin)� 1 which means that to achieve
such energies the random component of the magnetic field at the resonant scale
must be much larger than the background field (δB/B � 1). This demonstrates
that a significant magnetic field amplification is needed to reach PeV energies
implying a non linear regime at the shock.

1.2.4. Self confinement of Cosmic Rays
The source of Alfvén waves responsible for the scattering of CRs are another im-
portant aspect of this treatment. Cascade of large MHD turbulence in the ISM
is a natural source responsible for the magnetic fluctuations δB. However there
is a separation of scales of several orders of magnitude between the driving scale
for MHD turbulence from (SNR) shocks interacting with density inhomogeneities
and the gyroresonant scale of GeV CRs. As the scale decreases below the driving
scale of the turbulence, the effect of the Galactic magnetic field is expected to
dramatically increase the anisotropy of the turbulence (i.e. k⊥/k‖ � 1).

The interstellar Alfvén wave cascade alone in an anisotropic regime is not the
only source of cosmic ray scattering. Detailed kinetic calculations involving the
Vlasov equation for CRs show that if the CR distribution is sufficiently anisotropic
they will destabilize the Alfvén present in the ISM. If the source of this anisotropy
is due to a bulk drift velocity vD > vA then the waves are unstable (Kulsrud, 2005).

A candidate to drive the turbulence is represented by the gyroresonant instability
(Kulsrud & Pearce, 1969) which transfers energy from the CRs to the waves. The
instability and the particle-wave interaction, as well as the procedure of how waves
are damped, form the basis of the self-confinement picture of CRs and of how CRs
interact in a collisionless way with the thermal background. Another condition
required for the self-confinement is that vD is not too large.

To calculate the growth rate of the waves a perturbative approach to the Vlasov
equation is applied. In case of low CR density the real part of the dispersion
relation is negligible and the analysis of the imaginary part gives the necessary
information for the growth (or damping) rate (Zweibel, 2017):

Γcr = π2

2
q2v2

A
c2

∫
v(1− µ2)δ (ω − kvµ±Ω)

[
∂f

∂p
+
(
kv

ω
− µ

) 1
p

∂f

∂µ

]
p2dpdµ (1.41)
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The Dirac’s δ function encapsulate the resonant conditions for gyroresonances (i.e.
ω−kvµ ' −kvµ = NΩ, with ω ≡ k‖vA). The formula shows that only CRs above
a minimum momentum pmin = mγΩ/k can resonate with the wave. Furthermore
only waves with an anisotropy propagating in the same direction as the CRs can
grow. For positive waves this translates in imposing ∂f/∂µ > 0. If the distribution
is isotropic then µ = p/p‖ = 1 and Γcr ≡ 0. Assuming a power law distribution for
CRs (f ∝ p−α) the growth rate for linearly polarized waves propagating parallel
to the background magnetic field reads (Kulsrud & Cesarsky, 1971):

Γcr = π

4
α− 1
α

Ω0
ncr(p > pmin)

ni

(
vD

vA
− 1

)
, (1.42)

where ni is the ion number density of the ambient medium and Ω0 = γΩ is the
non-relativistic gyrofrequency. For CRs of few GeV, (vD

vA
− 1) ∼ 1 and standard

ISM densities the growth time is ∼ 300 yrs, long compared to the wave periods
(∼yrs) but short in comparison to galactic scales. This suggests that CRs adjust
quicky to these local conditions (Zweibel, 2013). From Eq. (1.42) is also evident
that for particles drifting with bulk velocity vD ' vA there is no wave growth and
for vD < vA wave damping applies (Wiener et al., 2013).

In the presence of strong shocks responsible for CR acceleration, the CR flux
∝ ncrvD is several orders of magnitude larger corresponding to a fast wave growth.
Because ncr(p > pmin) ∝ p1−α

min the growth rate Γcr is expected to decrease with
increasing particle energy. This means that CR above a certain energy are not
expected to generate enough waves to confine themselves.

Another instability arising from the DSA picture is connected to a strong CR
current which results in a non-resonant streaming instability that amplifies the
fluctuations on scales smaller than the CR particle gyroradius. Using a perturbative
approach in the MHD limit the dispersion relation for this instability reads (Bell,
2004):

ω2 − k2v2
A = ±ξ2

k

rg
=
kB0j‖,cr

ρc
(1.43)

where the different signs refers to growing or decaying modes, j‖,cr is the CR current
density and ξ is a parameter connected to the maximum CR momentum pmax and
the fraction of CR energy density. These parameters are themselves connected
to the net CR current component parallel to the shock direction. The maximum
growth rate associated with this instability is given by (Schure et al., 2012):

ΓNR,max = 1
2

√√√√4π
ρ

j‖,cr

c
(1.44)

Numerical and analytical works demonstrated how this instability grows much
faster than its resonant counterpart (Bell, 2005; Bykov et al., 2012). The combined
processes of fast amplification at small scales ( k−1 < rg) and long wave-length
fluctuations would allow an effective confinement and acceleration of high-energy
particles.
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1.2.5. Wave damping
The energy transfer from CRs to turbulent waves is affected by damping processes
that impede the growth of the waves. A typical damping mechanism working
for fully ionized gases is non-linear Landau damping (NL) occurring when two
superimposing CR-generated Alfvèn waves form a beat wave and thermal ions are
in Landau resonance with it (Lee & Völk, 1973). The corresponding damping rate
for a plasma with ion velocity vi is (Kulsrud, 2005):

ΓNL =
√
π

8 ' 0.3Ω
µ

vi
c
E(k) (1.45)

where the resonance condition k = Ω/µc is applied.
Another type of wave damping is represented by the turbulent damping. In this

context waves are damped by shearing caused by the small scale perpendicular
magnetic field structure from the MHD turbulente cascade. The minimum damping
rate associated with the turbulent damping is (Zweibel, 2013):

Γturb = kvA√
kL

(1.46)

where L is the driving scale of the turbulence.
When both damping processes are acting CR above 100 GeV appear not to be

self-confined by intrinsic turbulence anywhere in the ISM but confined by externally
driven turbulence. Since the bulk of the CR energy is below this threshold the
overall energy flow contained in CRs should obey the self-confinement picture.
However the determination of this threshold depends on the details of the ISM and
the nature of the interstellar turbulence.

1.2.6. Non linear diffusive shock acceleration
The previous sections exposed the generalities of the DSA process and its ability to
derive some of the fundamental results that explain the CR spectrum. At the same
time many non-linear processes concur in this picture limiting the applicability of
a first-order test particle theory:

• CR pressure. The shocks accelerating CRs are subject to the dynamical
reaction of the accelerated particles. To explain the level of CRs observed
at Earth the average acceleration efficiency (i.e. the quantity of explosion
energy channeled into CRs) must be of the order of ∼ 10% (Gabici & Aha-
ronian, 2016). This non-negligible fraction of accelerated particles exerts an
effective pressure Pcr on the plasma affecting the shock dynamics and thus
the acceleration process, resulting in a higher compression factor felt by the
plasma at the shock and creating a precursor (Blasi, 2013).

• Instabilities at the shock. In order to reduce the acceleration time of the
particles, the magnetic field needs to be substantially amplified at the shock
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with a process that is likely driven by the accelerated particles themselves.
The diffusion coefficient describing the motion of the particles is therefore
determined by the distribution function of the same accelerated particles in
a specific region (Bell, 2004). The magnetic field amplification may be also
proven by the presence of numerous bright X-ray rims and filaments in young
SNRs (Uchiyama et al., 2007; Vink, 2012).

A full treatment of all these effects combined requires semi-analytic approaches
or the use of PIC simulations (Caprioli (2012) for a review).

1.2.7. Cosmic Ray injection and PIC simulations

The treatment of the injection of charged particles to the acceleration process is
a crucial problem in understanding the CR physics. A method to investigate how
efficiently the particles participate in the process for a given set of shock conditions
and the growth of instabilities in the acceleration process is the use of particle-in-
cell (PIC) simulations of collision-less shocks.

In these simulations, the astrophysical plasma and the interplay between parti-
cles and fields is calculated from first principles. The charged particles are moved
by the Lorentz force and the currents deposited by the particles on the computa-
tional grid are subsequently used to compute the electromagnetic fields via Maxwell
equations.

In order to consistently quantify the injection the fraction of particles injected
into DSA is regulated by the quasi-periodic reformation of the shock barrier and
by gyro-scale phenomena (Caprioli et al., 2018).

The problem of resolving ion and electron scales at the same time is a computa-
tionally expensive problem. For this reason hybrid-PIC simulations are generally
used: these treat the ions as particles and the electrons as a massless fluid where
the physics is not resolved at the grid size.

Hybrid simulations have recently been used to investigate the role of shock obliq-
uity relative to the magnetic field in the acceleration of particles. In particular
Caprioli & Spitkovsky (2014b) tested consistently the validity of the efficient ac-
celeration at quasi-parallel shocks in contrast to other scenarios where efficient
perpendicular acceleration of CR is thought to be efficient (Jokipii, 1987). In this
scenario the particles can cross the shock several times during Larmor gyration
while moving along the magnetic field. The particles are accelerated by drifts as-
sociated to the electric fields that the particles experience because of the different
plasma velocity upstream and downstream. However the particles spend consider-
ably less time in the shock region because they are advected at the plasma speed
with the magnetic field line that they are trapped on (Blasi, 2013). This shortcom-
ing can be solved introducing a random walk of the magnetic field lines, however
implying pre-existing turbulence (Giacalone, 2005).
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1.3. Fluid description of Cosmic Rays
In the self-confinement picture and because of the continuous pitch angle scattering
of CRs, a fluid description of the problem is possible. In this picture the pitch angle
scattering that CRs experience translates into an effective pressure Pcr affecting
the thermal gas. Given a CR distribution in momenta expressed by f(p) we define
the following quantities as moments of the CR distribution:

ncr = 4π
∫ ∞

0
f(p)p2dp , (1.47)

Pcr = 1
34πmc2

∫ ∞
0
f(p)βp3dp , (1.48)

εcr = 4π
∫ ∞

0
p2Ep(p)f(p)dp , (1.49)

where ncr is the CR number density, Pcr is the CR pressure, εcr is the CR energy
density and Ep(p) is the CR kinetic energy

Ep(p) = (
√

1 + p2 − 1)mc2 . (1.50)

Pressure and energy density are related via

Pcr = (γcr − 1)εcr , (1.51)

where γcr = 4/3 is the CR adiabatic index. The transport equation Eq. (1.4) can
be re-written in terms of the CR energy density (Pfrommer et al., 2017a):

∂εcr

∂t
+∇· [εcr(v + vst)−Db(b ·∇εcr)] = (v + vst) ·∇Pcr +Γcr +Λcr +Qcr (1.52)

where b = B/
√

B2, Qcr is the CR source term (containing both gains and losses
Λcr) and Γcr is the CR acceleration term. A term represented the streaming velocity
vst of CRs is added in the equation. Because only CRs with that stream down their
gradient are propagating it results that in the limit vD → vA the streaming velocity
can be written as

vst = −sgn(b · ∇Pcr)vA (1.53)

The average spatial diffusion coefficient κ is defined as:

κ(x) =
∫∞
0 dp4πp2T (p)κ(p)b · ∇f∫∞

0 dp4πp2T (p)b · ∇f , (1.54)

while
Qcr = 4π

∫ ∞
0
Q(x, p)p2Ep(p)dp , (1.55)

and
Γacc = −4πmc2

∫ ∞
0
βp2Γp

∂f

∂p
dp . (1.56)
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Finally, the equilibrium condition for Alfvén waves requires that Γgrowth = Γdamp.
In this condition it can be demonstrated that the volumetric heating rate associated
with the CRs is (Wentzel, 1971; Wiener et al., 2013)

H = −vA · ∇Pcr (1.57)

This heat loss indicates that the CRs loose a net amount of energy for a positive
gradient and this energy is transferred to the Alfvén waves as required in the
self-confining picture.

1.4. Non-thermal emission of Cosmic Rays
As seen in the previous sections, CRs accelerated at supernova shocks suffer of
different loss processes that affect their energy budget during their propagation in
the Galaxy. The different loss mechanism that cause the emergence of an electro-
magnetic spectrum from radio to γ-rays. In the following paragraphs losses from
the hadronic and leptonic populations of CR particles are introduced. We only
consider synchrotron, inverse Compton (IC) and pion-decay related losses, while
losses originated from non-thermal bremsstrahlung are not discussed because of
the lack of conclusive evidence at SNRs. The processes described hereafter are
based on Rybicki & Lightman (1986) and Schlickeiser (2002).

1.4.1. Synchrotron radiation
According to electrodynamics, a relativistic charged particle with momentum γmv
in a magnetic field B of strength B that is uniform on scales much larger than the
gyroradius of the particle is subject to a Lorentz force (Rybicki & Lightman, 1986)

dγmv

dt = γm
dv⊥
dt = q

c
v×B , (1.58)

where the last passage is justified by the fact that the Lorentz force does no work
and affects only the direction of the motion, so |v| = const. and dv‖/dt = 0.
This particle gyrates with gyrofrequency of Ω = eB/γmv and the centripetal
acceleration associated to the perpendicular component of the velocity with respect
to the magnetic field direction is v̇⊥ = γΩv⊥. According to the Larmor formula
an accelerated electron emits a power of

Pw = 2e2v̇′2

3c3 = 2q4

3c3 γ
2 B2

m2c2v
2
⊥ , (1.59)

where v̇′ = γ2v̇ is the acceleration of the particle in its instantaneous rest frame.
Introducing the Thompson cross section σT = 8πe4/(3m2c4) and the magnetic field
energy density εB, Eq. (1.59) becomes

Pw = 2
c
σTγ

2εBv
2
⊥ = 2cσTβ

2γ2εB sin2 φ , (1.60)
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where φ is the pitch angle between the magnetic field and the momentum of the
particle.

The angular distribution of the emitted power is worthy of discussion. Because
of the beaming effects the emitted radiation will appear with respect to an exter-
nal observer to be concentrated. The pitch angle between the line of sight of the
observer and the direction of the motion of the emitting particle is proportional to
1/γ. From the arrival times of the radiation from two different points at the ob-
server the width of the pulse is derived with a critical frequency νcrit corresponding
to the cutoff of the continuous spectrum. It reads

νcrit(E) = 3
4πγ

3Ω sinφ = 3eB
4πmec

(
E

mec2

)2
sinφ , (1.61)

where γ = E/(mec
2) is used to make the dependency of the critical frequency on

the energy of the electron explicit. For typical SNR parameters and accounting for
magnetic field amplification at the shock, the corresponding critical photon energy
for a very high energy electron is:

Eγ,crit = hνcrit ' 0.6 keV
(

B⊥
100 µG

)(
Ee

10 TeV

)2
. (1.62)

Because the emitting power spectrum is proportional to the Fourier transform of
the square of the electric field E(ν), the emitted power of the synchrotron radiation
per solid angle as a function of the frequency reads

Pw(ν, E) =
√

3e3B sinα
mec2 F

(
ν

νcrit

)
(1.63)

with
F (x) = x

∫ ∞
x
K5/3(x′)dx′ , (1.64)

where K5/3(x′) is the modified Bessel function of the second kind. Assuming a
power-law distribution of the relativistic particles such that n(E)dE = CE−αedE
the emitted power of the synchrotron radiation for an interval of energies [E1, E2]
is

Pw(ν) =
∫ E2

E1
P (E, ν)n(E)dE =

√
3e3B sinα
mec2

( 3e
4πm3

ec
5

)αν
C(B sinφ)αν+1ν−αν

×
∫ E2

E1
dEEαν−1F

(
ν

νcrit(E)

)
(1.65)

where αν = (αe − 1)/2. If the energy range is sufficiently wide the extreme of
integration can be takes as E1 = 0 and E2 = ∞ the previous equation reduces to
a simple power law (Rybicki & Lightman, 1986)

Pw(ν) ∝ ν−ανBαν+1
⊥ , (1.66)

where B⊥ is the projection of the magnetic field on the plane of the sky.
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1.4.2. Inverse Compton Scattering
The inverse Compton (IC) scattering originates when a photon with an energy
less than the energy of an electron is scattered inelastically by a highly energetic
electron gaining energy in the process and redirecting its direction of motion along
the electron. In astrophysical environments, these electrons can originate from an
interstellar radiation field as well as the CMB. A photon of energy E1 = hν in the
rest frame of the electron is scattered off and gains an energy E1 = hν1 equal to
(Rybicki & Lightman, 1986)

E1 = E

1 + E/(mec2)(1− cos θ) , (1.67)

where θ is the angle between the incident and the scattered direction. So far the
scattering is described by the classical Thomson cross section σT

dσT

dΩs
= 3σT

16π
(
1 + cos2 θ

)
. (1.68)

As long as the energy of the photon is below the rest energy of the electron the non-
relativistic approximation applies. Above this threshold relativistic corrections due
to the photon recoil modify the cross section of the process and the Klein-Nishina
(KN) formula applies (Klein & Nishina, 1929). In this case electrodynamical cal-
culation give the following cross section per solid angle

dσKN

dΩs
= 3σT

16π

(
E1

E

)2 ( E
E1

+ E1

E
− sin2 θ

)
(1.69)

In the non-relativistic limit Eq. (1.69) reduces to Eq. (1.68). Integrating Eq. (1.69)
over the solid angle it yields the following expression at high energies E � hν for
the scattering cross section:

σKN = 3
8σT

1
x

[1
2 + ln(2x)

]
, (1.70)

where x = hν/(mec
2). The formula indicates how the relativistic effects heavily

suppress the energy gain of photon on the electrons at very high energies. Consid-
ering the electron rest frame with respect to the observer’s rest frame, the energy of
the incoming photon E ′ with an incident angle θ and the energy of the outcoming
photon E ′1 with angle θ′1 are

E′ = Eγ(1− β cos θ) , and E′1 = E1

γ(1 + β cos θ′1) . (1.71)

In the Thomson limit E′1 = E ′ and the scattering happens typically for θ = π/2
so that the previous equation yields E1 = γ2E. Integrating the spectral emissivity
over the incident photon energy distribution gives the total emitted power by IC
scattering

Pw,IC = 4
3σTcβ

2γ2uph , (1.72)
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1.4. Non-thermal emission of Cosmic Rays

where uph is the total photon energy density. Following the derivation of Blumen-
thal & Gould (1970) the total emitting power is given by

dN(E, γ)
dtdE1

= 3
4σT

c

γ2E
f

(
E1

4Eγ2

)
n(E)dE (1.73)

with n(E) the number density of photons and f(x) = 2x ln x + x + 1 − 2x2. The
function f(x) has a minimum for x = 1, which corresponds to the maximum energy
that can be produced in the scattering process. Equivalently if the electron spec-
trum has a cutoff Emax, the IC spectrum will cut off at a corresponding frequency
hνmax = 4γ2〈E〉, where 〈E〉 is the average energy of the incident photon field. In
case the photon field is the CMB the photon spectrum dnγ(Eγ)/dV is a black body
at a temperature of T = 2.34 K:

dnγ(E)
dV = 8π

h3c3
E2

exp(E/kBT )− 1 . (1.74)

The average energy from a CMB photon is then 〈E〉 = 7.7×10−4eV. If the incident
radiation is x times the CMB energy and the cutoff energy of the electrons is 10 TeV,
then the cutoff energy for the IC spectrum is

EIC,max = 1.2 TeV
(x

1

)( Ee
10 TeV

)2
. (1.75)

Assuming a power law distribution for the energy of the electrons, namely n(γ) =
Cγ−αe, and integrating over all the photon energies from 0 to ∞ the total power
emitted by the IC scattering per unit volume is (Rybicki & Lightman, 1986)

Pw,IC(E1) = 3σTcC

8
2αe+3(α2

e + 4αe + 11)
(αe + 3)2(αe + 1)(αe + 5)E

−αν
1

∫ ∞
0
Eανn(E)dE

= 3πσTcC

(hc)3
2αe+3(α2

e + 4αe + 11)
(αe + 3)2(αe + 1)(αe + 5)Γ (αν + 3)ζ(αν + 3)E−αν1 (kT )αν+3 ,

(1.76)
where the last passage is valid for a black body distribution of photons. Γ (x) rep-
resents the Euler Γ function and ζ(x) the Riemann ζ function. From the formula,
it is evident that below the cutoff the spectrum will follow the same slope of the
synchrotron spectrum ν−αν .

1.4.3. Hadronic interactions
Inelastic collisions of CR nuclei with atoms and molecules of the ISM are another
important set of reactions. In these proton−proton, α−nuclei − proton, proton −
α−nuclei collisions a considerable amount of light mesons are produced. In partic-
ular the kinematic production of charged and neutral pions and their subsequent
decay in other particles are regarded as the most important source of secondary cos-
mic electrons, positrons and neutrinos. Of particular interest is the decay of neutral
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pions (π0) with mass equal to 135 MeV/c2 after a mean lifetime of ∼ 8.4× 10−17 s
(Tanabashi, 2018) in two high-energy gamma-rays. The ensemble of these decays
is summarized as follows:

π± → µ± + νµ/ν̄µ → e± + νe/ν̄e + νµ + ν̄µ ,

π0 → γγ .
(1.77)

In relativistic kinematics the collision of two massive particles a and b with 4-
momenta piac = (Ea,pac) and pibc = (Eb,pbc) respectively may lead to the creation
of new particles

a+ b −→ c+ d+ e+ f + . . . (1.78)

To open the production channel of these particles the requirement of a minimum
energy in the center-of-momentum of the system (CMS, denoted by the super-
script ′) equal to the rest mass of the outgoing particles needs to be satisfied. This
requires that p′a + p′b = 0. For the relativistic invariance of the 4-momentum
(pipi ≡ p′

i
p′i) the total energy E ′ in the CMS reads (Schlickeiser, 2002)

E ′2 = (E ′a +E′b)2 = c2(pia + pib)(pi,a + pi,b) = m2
ac

4 +m2
bc

4 + 2EaEb− 2papbc2 cos(θ) .
(1.79)

In a pion production process the collision of two protons is responsible for the
creation of a pion according to the process p+ p→ p+ p+π. Following Eq. (1.79)

2γ′mpc
2 = 2mpc

2 +mπc
2 , γ′ = 1 + mπ

2mp
= 1.072 . (1.80)

Applying a Lorentz transformation such that one of the incoming protons is at
rest the threshold energy for the pion production can be calculated and is equal to
γthr = γ′

2(1 + β′
2
p) = 2γ′2− 1 = 2[1 +mπ/(2mp)]2− 1 = 1.22 GeV/(mpc

2) meaning
that the minimum kinetic energy requested for a proton is ∼ 280 MeV (Mannheim
& Schlickeiser, 1994).

Assuming an isotropic decay of the particle in their rest frame the energy spec-
trum of the decay products per unit time and unit volume integrated over the
whole solid angle is (Mannheim & Schlickeiser, 1994)

qγ(Eγ, r) = 2
∫ ∞
Eγ+m2

πc
4

4Eγ

dEπ
qπ(Eπ, r)√
E2
π −m2

πc
4

(1.81)

where qπ(Eπ,x) denotes the source function of pions.
To obtain the source function of the neutral pions the pion power of a single

relativistic proton with energy Ep = γmpc
2 reads

P (Ep, Eπ) = cEπnH · ξπ(Ep)σπppδ[Eπ − 〈Eπ〉]Θ(Ep − Ethr) (1.82)

where nH denotes the target hydrogen number density, ξπ(Ep) is the multiplic-
ity of pions and Ethr = 1.22 GeV the threshold energy. 〈Eπ〉 is the average
energy of a single produced pion. If the Dermer’s model is adopted the multi-
plicity of pions remains constant (ξπ = 2) in contrast to the previously adopted
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1.5. Cosmic Ray cooling

Fireball model (Pfrommer & Enßlin, 2004) based on Fermi’s original idea of pion
production (Fermi, 1950). The energy dependence of the mean proton energy is
〈Eπ〉 ' KpTp/ξ ' Tp/4.

For a differential distribution of CR protons fp(Ep) the source function of pions
reads

qπ±(Eπ) = 2
3qπ(Eπ) = 2

3

∫ +∞

−∞
dEpfp(Ep)P (Ep, Eπ) . (1.83)

For a generic power-law distribution of CR protons with slope αp, namely fp(Ep) =
Cp (Ep/GeV)−αp, the resulting pion source function reads:

qπ±(Eπ) = 2qπ0(Eπ) = 4
3σppcnNξ

2−αγ
( 2Eπ

GeV

)−αp

(1.84)

The resulting analytical formula for the total gamma-ray source function is given
by (Pfrommer & Enßlin, 2004):

qγ ' σppcnN22−αγCp
4

3αγ

(
mπ

mp

)−αγ ( 2Eγ
mπc2

)δγ
+
( 2Eγ
mπc2

)−δγ (1.85)

where δγ = 0.14α−1.6
γ + 0.44 and σpp = 32 mbarn[0.96 + exp(4.4 − 2.4αγ)]. If the

proton spectrum has a cutoff Ep,max, because 〈Eπ〉 ' Tp/4 ' Ep/4 and because
each neutral pion decay produces two photons the resulting cutoff in the gamma-ray
spectrum from pion decay is:

Eγ,max = Ep,max

8 = 12.5 TeV
(
Ep,max

100 TeV

)
. (1.86)

1.5. Cosmic Ray cooling
A net amount of energy is lost by CRs in the emitting processes described in the
previous paragraphs. Electrons scattering in the Coulomb field of CR particles
propagating in a plasma cause CRs to lose their energy. This effect combined
to momentum transfer via quantised plasma oscillations constitute the Coulomb
losses of CRs. Additionally catastrophic energy losses from the production of pions
affect the CR energy budget. While the first ones affect the low-momentum part
of the energy spectrum the hadronic losses are more effective at high energies.

Following Gould (1972) kinetic energy losses for a non-relativistic proton via
Coulomb interaction in the plasma are expressed by

−
(dEp(p)

dt

)
Coulomb

= 4πe4ne

meβc

[
ln
(2mec

2βp

}ωpl

)
− β2

2

]
(1.87)

where ωpl =
√

4πe2ne/me is the plasma frequency. The associated timescale to
this process is τCoulomb = εcr/ε̇cr,Coulomb. The energy losses caused by hadronic
interactions are (Pfrommer et al., 2017a)

−
(dEp(p)

dt

)
hadronic

= nNσppKpmpc
3(γ − 1)Θ(p− pthr) (1.88)
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where pthr = 0.78 GeV/(mpc
2) is the dimensionless momentum associated to the

kinematic threshold for the pion production, σpp ' 44 mbarn is the pion cross
section, Kp ' 1/2 is a factor associated to the inelasticity of the hadronic reactions,
nN = ne/(1−XHe/2) ' 1.14ne is the nucleon target density assuming an primordial
element composition of XHe = 0.24. The associated hadronic loss timescale is
τhadronic = εcr/ε̇cr,hadronic.

In a condition of equilibrium where the energy losses are balanced with a contin-
uous energy injection, the equilibrium loss rates for Coulomb losses reads (Enßlin
et al., 2007):

ΛCoulomb =
∫ ∞

0
f (1)

p

(dEp

dt

)
Coulomb

dp = −2.78× 10−16
( n

cm−3

)
erg s−1 cm−3 ,

(1.89)
while for hadronic losses reads:

Λhadronic =
∫ ∞

0
f (1)

p

(dEp

dt

)
hadr

dp = −7.44× 10−16
( n

cm−3

)
erg s−1 cm−3 , (1.90)

where f (1) represents the 1D power law distribution of CRs. The total loss rate
for the system is given by Λcr = Λhadronic + ΛCoulomb = −λcrneεcr, where λcr =
λhadronic + λCoulomb ' 10−15cm3 s−1. The CR energy evolves following the solution
(Pfrommer et al., 2017a)

Ecr(t) = Ecr(0)e−λcrnet . (1.91)

The associated timescales, assuming an electron number density of ne = 1 cm−3,
are

τCoulomb = 1
neλCoulomb

= 1.14× 108 yr
( ne

1 cm−3

)−1
,

τhadronic = 1
neλhadronic

= 4.26× 107 yr
( ne

1 cm−3

)−1
.

(1.92)

A portion of the energy lost through these processes is assumed to heat the sur-
rounding gas. A fraction of 1/6 of the dissipated luminosity produced via hadronic
interactions goes in secondary electrons/positrons. The most energetic electron
lose their energy via synchrotron and IC scattering while the mildly-energetic ones
are able to thermalize their energy via other Coulomb collisions. The thermal
energy gain by these processes is summarized in the following expression:

∆Eth = Ecr(1− e−λthnet) (1.93)

with λth = 4 × 10−16 cm3 s−1. From Eq. (1.92) is evident how these timescales
exceed by many orders of magnitude the timescale for efficient acceleration of CRs
in SNR, making this effect negligible.
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2. Supernova remnants
In this chapter the main characteristics of supernova remnants (SNR) are pre-
sented. In Sect. 2.1 a general discussion of the theory of SNR progenitors is pre-
sented. In Sect. 2.2 the general properties of SNR are exposed with a particular
focus on the mathematical formulation of the self-similar solutions describing its
evolution. Finally, in Sect. 2.3 a short description of the MHD code arepo used
in this thesis is presented.

2.1. Supernova explosions
A supernova originates from a powerful stellar explosion. This transient event is
the result of the last evolutionary stages of a massive star or the thermonuclear
explosion of a white dwarf pushed over the Chandrasekhar limit.

Multiple supernovae events can have a strong influence on local galactic regions,
the entire parent Galaxy, and the intergalactic medium (Reynolds, 2017).

The outcome of this explosion, a supernova remnant (SNR) expands in the sur-
rounding circumstellar and interstellar medium depositing a considerable amount
of mechanical momentum and energy. The collective effect of supernova events in
the Galaxy have a strong influence driving outflows and sourcing one of the major
feedback mechanisms in galaxy formation. Furthermore SNe play an essential role
in the synthesis of many elements apart from the lightest (H, He and traces of Be,
B and Li, produced in the Big Bang).

Supernova events are quite rare and generally occur at a rate of ∼ 2 per cen-
tury per galaxy. Historical records suggest that SN events have been observed
for centuries (Alsabti & Murdin, 2017). Historical evidence has been provided by
the discovery of actively expanding SNRs related to the SN explosions. Famous
examples of SNRs associated to historical SN events are SN1006, SN 1054 (Crab
nebula), SN 1181, Tycho’s SN 1572 and Kepler’s SN 1604.

The first classification of SN explosion, based on spectroscopic observations, was
introduced by Minkowski (1941). Of the fourteen events observed nine presented
strong similarities and the lack of hydrogen (Type I) while the remaining five had
different spectral features and were hydrogen-rich (Type II). Sub-classes of Type I
and Type II, nominally (Ia, Ib, Ic, IIa, IIb etc...) are summarized in Fig. 2.1.

The progenitor of the SN determines the energy budget and the peculiarities of
the event as well as the local properties of the ISM in which the explosion happens.
A chemical analysis helps to define a taxonomy for different type of SN events
and associated to each specific physical characteristics. Currently a classification
scheme for SNe is present and includes many types and subtypes, some of which
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Figure 2.1.: Taxonomy of the various SN classifications and their interrelationships (Alsabti &
Murdin, 2017).

not universally recognized.
An SN explosion releases about 1051 erg of kinetic energy. In Type Ia SN the

energy of the explosion is determined by the energy released in the nuclear burning
(Woosley et al., 2007). A single core-collapse SN event deposits in the ISM an
energy in form of neutrinos of the order of ∼ 1053 erg and a kinetic energy of
∼ 1051 erg, resulting from the release of the gravitational binding energy of the
core of the original star (Alsabti & Murdin, 2017). These events happen at the end
of the evolved stage of a star under particular conditions and there is no visible
sign in the outer layers of the progenitor that the explosion is imminent. Thus the
totality of these events is unannounced.

The main characteristics of Type I and Type II SNe are exposed in the following
paragraphs.

2.1.1. Thermonuclear supernovae
Type Ia SNe are commonly observed and they account for roughly 60 per cent of
the spectroscopically confirmed SNe by the large public ESO survey PESSTO.

The explosion mechanism producing Type Ia Supernova is still matter of con-
troversy. Two main models compete: single- and double- degenerate. In a single-
degenerate scenario the mass transfer from a main-sequence sub-giant or giant star
to a carbon-oxygen white dwarf triggers a thermonuclear explosion reached when
the object approaches the Chandrasekhar mass (1.37 M�) (Mazzali et al., 2007).
The accretion is expected to happen via a stellar wind or via Roche-lobe overflow
where the material of the companion star lies outside the Loche lobe and becomes
gravitationally unbound from its source.
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In a double-degenerate scenario both binary stars are carbon-oxygen white dwarfs.
Again the accretion of the second white dwarf onto the primary triggers an explo-
sion when the latter reaches a Chandrasekhar mass. Other hypothesis includes the
detonation of both dwarfes or their violent merger, as showed by recent hydrody-
namical simulations (Pakmor et al., 2012).

Type Ia SN have a fundamental importance as cosmological distance indicators
and represent the class of most efficient probes to verify the expansion history of
the Universe.

2.1.2. Core collapse supernovae

Originally labeled as Type II SNe by Minkowski (1941), core collapse SNe are char-
acterized by a very massive progenitor. During the evolution of the most massive
stars various heavy elements are produced in the core. In such environments the
production of oxygen, neon, iron, magnesium and silicon is not rare. The mass
required to produce such elements ranges between 8 and 140 solar masses and the
ultimate explosion of the star produces a core-collapse supernova.

The core of these SN collapses in a time of the order of seconds into a compact
object (i.e., a neutron star or a black hole if the mass exceeds 40 solar masses). An
exception is represented by pair-instability SNe, where collisions between nuclei
and gamma rays in the core result in a pair production, which reduces the ther-
mal pressure in the oxygen core, which collapses dramatically, leaving no stellar
remnant behind.

A core collapse supernova is powerful enough to release a considerable amount
of energy in the galaxy in form of neutrinos, gravitational waves, kinetic energy
and radiation stretching for decades in frequencies.

In core collapse SNe most of the collapse energy is released in form of neutrinos
which heat and drive the ejection of the star envelope. In case the central compact
object is a black hole there is no surface on which the infalling material can bounce
thus reducing the energy deposited on the envelope. In the extreme case no outer
shock wave is formed and all the material of the star falls in the rapidly degenerating
core resulting in the absence of a SNR.

Another possible interesting effect is given by the companion star of the SN. If the
companion star survives to the catastrophic explosion, the left compact object can
accrete material from the companion star and producing an additional polluting
source of radiation (i.e. X-rays).

From a spectroscopic point of view, this type of SNe is dominated by broad and
strong lines of hydrogen (in particular Balmer Hα). However the subclasses Ib, Ic,
and IIb are hydrogen-poor and probably they are associated with more massive
progenitors or even Wolf-Rayet stars (Crowther, 2007).
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2.2. Supernova remnants
The outcome of an SN explosion is the formation of a SNR. During their dynam-
ical evolution the SN ejecta drive a blast wave that starts to interact with the
circumstellar material. As the blast wave keeps expanding it will merge at a cer-
tain point with the interstellar medium. (Reynolds, 2017). Three main stages can
be identified in the evolution of a SNR:

• Ejecta dominated stage (ED). Shortly after the explosion, the stellar
ejecta are accelerated by a shock wave reaching a velocity of the order of
10000 km s−1. In this stage the material may be quite anistropic and may
expand in an anisotropic circumstellar environment due to the previous pres-
ence of stellar winds. Almost immediately the blast wave decelerates and
heats the CSM to X-ray emitting temperatures. A contact discontinuity sep-
arates the shocked CSM/ISM from the ejecta. The rapid expansion cools the
ejecta adiabatically to very low temperatures. This causes that a deceleration
of the blast waves results in velocity difference greater than the sound speed
in the cold unshocked ejecta thus triggering a reverse shock moving inwards
which reheats the ejecta. The duration of the ED stage lasts for some hundred
years.

• Adiabatic stage. The energy radiated away from the SN is a small fraction
compared to the kinetic energy. The progressive deceleration of the blast
wave during the adiabatic expansion stage can be conveniently described by
a constant expansion parameter n such that rs ∝ tn. This stage was studied
and mathematically modeled for idealized case independently by Sedov (1959)
and Taylor (1950) supposing that the pressure of the medium where the blast
wave expands is negligible. For this reason, we refer to this evolutionary stage
of the remnant as Sedov-Taylor stage.

• Radiative stage. As the blast wave further decelerates the radiative cooling
of the shocked material becomes relevant. The hot gas in the SNR interior
continues to operate in a so called pressure-driven snowplow phase. At this
stage the SNR has interacted with a quite inhomogeneous ISM and thus its
shape is quite irregular, followed by a momentum-driven snowplow phase.
When the shock speed is of the same order of the local ISM sound speed the
shock dissipates and the remnant merges with the ISM.

The past decades saw a surge of both space-based and ground-based instruments
to capture different aspects of SNR’s spectra. For example, the ground-based
instruments VERITAS, MAGIC, and H.E.S.S. helped to study SNRs at gamma-
ray energies. These imaging atmospheric Čerenkov telescopes are able to detect
Čerenkov light emitted by charged particles in an electromagnetic extensive air
shower initiated when a primary photon (gamma-ray) of sufficient energy enters
Earth’s atmosphere.

Many radiative processes happen in SNRs: the passage of a supersonic shock
heats the material producing emission in the X-ray waveband while, at higher
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energies, scattering of energetic electrons on photon fields produce inverse Compton
emission and collision of high energy protons and nuclei with the ISM material
produces neutral pions that eventually decay in high-energy photons. Detailed
reviews on how a SNR evolves both in homogeneous and inhomogeneous media
are reported in Chevalier (1982), Ostriker & McKee (1988) and Truelove & McKee
(1999).

2.2.1. Evolution of a non-radiative supernova remnant
A peculiarity of the Euler equations is the lack of dimensional constant which
defines a characteristic scale of the problem. A SNR can be characterized from
a mathematical point of view by a sequence of self-similar solutions (Cioffi et al.,
1988). More specifically the remnant transits through different stages which are
described by self-similar solutions under certain limits.

The introduction of a characteristic scale for a SNR is possible considering three
main quantities: the initially ejected mass Mej, the explosion energy ESN and the
ambient density ρ. The blast wave is characterized by a spatial and a time scale.
From a simple dimensional analysis the characteristic scales are:

rch ≡M
1/3
ej ρ−1/3 = 3.07 pc

(
M

M�

)1/3 ( n

1 cm−3

)−1/3
(2.1)

tch ≡ E
−1/2
SN M

5/6
ej ρ−1/3 = 423 yr

(
E

1051 erg

)−1/2 ( M

M�

)5/6 ( n

1 cm−3

)−1/3
, (2.2)

where n = ρ/µwmp is the number density assuming a molecular weight of µw = 1.4.
The ratio of these two scales yields the characteristic scale for the velocity,

Vch ≡
Rch

tch
≡ E

1/2
SN M

−1/2
ej = 7090 km s−1

(
E

1051 erg

)1/2 ( M

M�

)−1/2
. (2.3)

All the quantities involved in a SNR can be normalized to these scales and indicated
as r∗ = rs/rch, t∗ = t/tch, v∗ = vs/vch. The set up of the initial conditions generally
requires an assumption on the distribution of the ejecta. A common assumption
is to impose that the ejecta are distributed according to a power law in distance,
namely ρej ∝ r−n. The simplest case is represented by n = 0 and solving the Euler
problem yields the corresponding numerical solutions are (Truelove & McKee, 1999)

r∗ ' 2t∗[1 + 1.72(t∗)3/2]−2/3 , v∗ ' 2[1 + 1.72(t∗)3/2]−5/3 . (2.4)
A coarse approximation is to consider the ejecta-dominated stage as a free expan-
sion phase with vs = const. = vej and rs = vst. The velocity of the ejecta is simply
given by the formula

vej =
√√√√2ESN

Mej
= 10000 km s−1

(
E

1051 erg

)1/2 ( M

M�

)−1/2
' 0.7vch . (2.5)
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At this stage the blast wave is characterized by a very high Mach number. For a
ISM sound speed of

cs =
√√√√ γkBT

µwmp
' 10km s−1

(
T

104 K

)1/2
, (2.6)

the corresponding Mach number in the ED stage is

Ms = vej

cs
' 1000

(
E

1051 erg

)1/2 ( M

M�

)−1/2 ( T

104 K

)−1/2
. (2.7)

For a cold ISM this number is even higher suggesting that the shocks produced by
a supernova explosion can be treated as strong for the majority of the evolutionary
history of the object.

The transition from an ejecta dominated phase to an adiabatic expansion (Sedov-
Taylor stage) happens when the swept up mass by the blast wave equals the initial
ejected mass. Equating these quantities enables to approximately calculate the
transition time between these two phases:

4
3πr

3(t)ρ = 4
3π(vstst)3ρ = Mej , (2.8)

tST = 0.44tch = 186 yr
(

E

1051 erg

)−1/2 ( M

M�

)5/6 ( n

1 cm−3

)−1/3
(2.9)

A more precise calculation gives tST = 0.495tch. The free expansion radius cor-
responding to this free expansion time is rST = 0.726rch (∼ 2.2 pc) for standard
parameters.

These values are generally taken as order of magnitude estimates. For core
collapse SNe the material ejected during the pre-supernova stage may dominate
the density in the initial phases. The presence of winds, such as in the case of
Wolf-Rayet SNe, blows a cavity characterized by a hot dilute gas meaning that the
initial stage may last longer because very little resistance is encountered by the
powerful shock wave. At the same time this hot phase implies that the shock’s
Mach number is sensibly lower (Eq (2.7)).

For core-collapse SNR the inhomongeous initial distribution surrounding the
explosion may lead to a modified version of the classical self-similar solution. On
the contrary, for Type Ia SNe it is not rare to find an almost spherically symmetric
blast wave.

The simplest solution for an adiabatically expanding SNR is obtained by assum-
ing a point-like explosion in a homogeneous medium:

rs(t) =
(
E

αρ

)1/5
t2/5 , r∗(t∗) = α−1/5(t∗)2/5 , (2.10)

vs(t) = 2
5

(
E

αρ

)1/5
t−3/5 , (2.11)
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with α ' 0.5 a dimensionless constant. To describe the full range of non-radiative
remnant evolution, the velocity expressed by Eq. (2.11) can be rewritten as:

r3/2
s drs = 2

5

(
E

αρ

)1/2
dt . (2.12)

Integrating the previous equation a modified solution, valid for t > tST, is obtained
in the form of an offset power-law (Truelove & McKee, 1999) and reads

rs =
r5/2

ST +
(
E

αρ

)1/2
(t− tst)

2/5

, r∗(t∗) ' (1.42t∗ − 0.254)2/5 . (2.13)

The Sedov-Taylor regime ends when the age of the remnant is comparable to the
characteristic cooling time for the ISM gas (which depends on its composition).
The pressure of the hot gas behind the shock drives the further expansion of the
remnant. The first portion of the shock material cools at a specific critical cooling
time when a thin shell forms. The resulting radiative remnant consists of a thin,
dense shell of cooled material and a radiative shock. The cooling time can be
estimates as Blondin et al. (1998)

tcool '
0.69kBT

nΛ
, (2.14)

where Λ(T ) ' 10−16T−1 erg cm3 s−1 is the temperature-dependent volume cooling
function and T ≡ T2 the post-shock temperature. From the Rankine-Hugoniot
jump conditions for a strong shock and a thermal gas γ = 5/3 the downstream
temperature reads

T2 = 5
16M

2
1T1 = 3

16
µwmp

kB
v2

sh = 3× 107K
( vsh

103 km s−1

)2
. (2.15)

Using this relation and setting tage = tcool for the velocity in the Sedov-Taylor
regime, the critical time is

tcrit ' 2.9× 104 yr
(

ESN

1051 erg

)4/17 ( n

1 cm−3

)−9/17
. (2.16)

For standard parameters of an SNR (n ∼ 1 cm−3, ESN = 1051 erg) the correspond-
ing radius is rs = 19 pc, the swept-up mass is Mswept = 103 M�, the blastwave
velocity is vsh ' 200 km s−1 and the critical temperature is T2 = 106 K. In this
scenario the shock radius of the remnant evolves as r ∝ t2/7 (McKee & Ostriker,
1977). However a unified solution consisting of an offset power-law suggests that
r ∝ t3/10 and better represents the behavior (Cioffi et al., 1988).

The SNR merges with the ISM whenM1 ' 1 (i.e vsh ' cs). Adopting r ∝ t3/10,
the merging time is between few 105 yr to 106 yrs (Cioffi et al., 1988). For a
remnant in an ISM of n ∼ 1 cm−3 the merging happens at 200 kyr after the initial
explosion as shown by hydrodynamical simulations of Blondin et al. (1998). The
momentum conserving phase (r ∝ t1/4) in most cases is delayed beyond the merger
of the remnant with the ISM(Cioffi et al., 1988).
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2. Supernova remnants

Figure 2.2.: Emission features of the SNR G327.6+14.6 (SN 1006) showing radio emission (left)
(Dyer et al., 2009) and bright filamentous X-ray emission (right) (Cassam-Chenäı
et al., 2008).

2.2.2. Cosmic Ray population in supernova remnants
There are several proofs of the acceleration of CRs at SNR shocks. The acceleration
of electrons at SNR shocks has been confirmed by the observation of synchrotron
emission at radio and X-ray energies in several young SNRs. A clear hint is given
by the detection of small emitting filaments in the shock region of these objects,
suggesting a strong amplification of the magnetic field up to 100µG (a factor 20 of
amplification with respect to the galactic magnetic field strength) (Uchiyama et al.
(2003); Uchiyama & Aharonian (2008)).

At the present time, there are 294 firmly classified SNRs in our Galaxy, of
which 280 are radio sources. The ratio between synchrotron emission and inverse
Compton emission can be used to estimate the strength of the magnetic field.
Under this assumption Aharonian et al. (2005) calculated the lower limit for the
post shock magnetic field for SN1006 to be around 25µG assuming that magnetic
fields are volume filling.

The acceleration of protons is harder to detect since they do not radiate as
readily as the electrons. Evidence of CR proton acceleration in SNRs emerges
more clearly from the interaction of the shock with molecular clouds. Independent
surveys confirmed the detection of gamma rays related to the decay of neutral
pions in the spectrum of these objects (Giuliani et al. (2011); Abdo et al. (2010b)).

SNR RXJ1713.7-3986 proved for the first time a clear detection of TeV gamma
rays from a SNR (Aharonian et al., 2004) followed by the GeV detection in the
same remnant by the Fermi-LAT telescope (Abdo et al., 2011).

The TeV gamma-ray emission from these objects proves that there is an effective
acceleration of CRs to energies above 10 TeV, however the nature of the emitting
particles (protons or electrons) remains controversial. Relatively young SNRs are
the dominant population that exhibit TeV energies. Of particular interest are the
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shell type SNRs RX J1713 and Vela Jr. whose spectra show remarkable similarities.
The spectral shapes and the very low level of thermal X-ray emission emitted by
the shock-heated gas that works as a target material for the accelerated nuclei,
suggest in principle a leptonic origin (Ellison & Vladimirov, 2008). However core
collapse SNRs show a rather complex composition of the ISM. Non uniformity in
form of clumps can accommodate the upper limits on the thermal X-ray emission
and a hadronic scenario (Zirakashvili & Aharonian, 2010).

Another well-known example is represented by Tycho SNR whose multifrequency
spectrum extends from the radio to the high-energy gamma rays. A thin X-ray rim
is observed all around the remnant implying efficient amplification of the magnetic
field. The morphology of the X-ray emission from the synchrotron radiation of
the electrons is consistent with a magnetic field of 300 µG, implying a maximum
energy for the protons of around 500 TeV. As argued by Morlino & Caprioli (2012)
the spectrum observed at GeV and TeV energies for this remnant and the magnetic
field amplification are compatible with a hadronic scenario.

2.3. Numerical modeling of supernova remnants
In this thesis we used the magneto-hydrodynamical code arepo (Springel, 2010),
The code is based on a moving unstructured mesh defined by the Voronoi tessel-
lation of a set of discrete points. The mesh is used to solve the hyperbolic con-
servation laws of ideal hydrodynamics with a finite-volume approach. The moving
points yield a Lagrangian formulation of continuum fluid dynamics that does not
suffer of mesh distortion typical of other mesh-based Lagrangian schemes. Another
advantage of the code is that it shows second order numerical convergence (Pakmor
et al., 2016a) and keeps at the same time a low level of numerical truncation errors.

Ideal MHD in arepo is computed by solving a system of hyberbolic conservation
laws derived from Euler’s equations (Pakmor et al., 2011; Pakmor & Springel,
2013). The general form of these conservation laws has the form

∂U

∂t
+∇ · F = 0 (2.17)

where U and F (U) are given by

U =


ρ
ρv
ρe
B

 F (U) =


ρv

ρvvT + PI −BBT

ρev + ρv −B(v ·B)
BvT − vBT

 (2.18)

where P = Pgas + B2/2 is the total gas pressure and e = u+ B2/(2ρ) is the total
energy per unit mass. The magnetic field is expressed using the Heaviside-Lorentz
unit system. The closure relation is given by the equation of state P = ρe(γ − 1).

For clarity no source terms are explicitly shown on the right hand-side. The code
accounts for various physics source terms, including radiative cooling, gravity for
example. Additionally MHD equations have to satisfy the divergence free constrain
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2. Supernova remnants

∇ ·B = 0. A divergence-free initial magnetic field should maintain this property
in its evolution, however the discretization errors preclude this. To avoid the
accumulation of errors, a Powell-type scheme is adopted (Powell et al., 1999). The
term describing the passive advection of the magnetic fields with the flow is added
to the momentum, energy and induction equations prohibiting the growth of the
magnetic field divergences.

CRs are added as a second fluid next to the thermal gas and evolved according to
the advection-diffusion approximation described in the previous chapter (Pfrom-
mer et al., 2017a). Because CRs with GeV energies dominate the CR pressure,
the code arepo focuses on them because of their maximized dynamical impact.
Adiabatic changes Pcr∇·v are calculated by employing Gauss’ divergence theorem
in every Voronoi cell and exchanging the corresponding fluxes across the interfaces
to the neighboring cells. CR energy sources (i.e. acceleration) are accounted for
at resolved shock or via subgrid-scale model of injection at supernova remnants
(Schaal & Springel, 2015). The formulation is equivalent to the standard MHD
with the addition of a source term S:

∂U ′

∂t
+∇ · F ′ = S (2.19)

where U ′ and F ′(U ′) are given by

U ′ =



ρ
ρv
ε
εcr
B

 , F ′(U ′) =



ρv
ρvvT + PI −BBT

(ε+ p)v −B(v ·B)
εcrv + (εcr + Pcr)vst −Db(b · ∇εcr)

BvT − vBT

 ,

S =



0
0

Pcr∇ · v − vst · ∇Pcr + Λth + Γth
−Pcr∇ · v + vst · ∇Pcr + Λth + Γth

0

 ,

(2.20)

where Γcr is the CR source term and Λcr is the CR sink term. The total pressure
and the energy density become:

P = Pth + Pcr + B2

2 , ε = εth + ρ

2v2 + B2

2 . (2.21)

The CR streaming velocity is given by vst = −vAsgn(B · ∇Pcr) meaning that
is always along the magnetic field lines and down the CR gradient. The second
closure relation is given by the equation of state for CRs Pcr = εcr(γcr − 1) with
γcr = 4/3.
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3. The effect of cosmic-ray
acceleration on supernova blast
wave dynamics

This chapter is an adapted version of the paper The effect of cosmic-ray acceler-
ation on supernova blast wave dynamics published on Monthly Notices of Royal
Astronomical Society (Pais et al., 2018).

Abstract
Non-relativistic shocks accelerate ions to highly relativistic energies provided that
the orientation of the magnetic field is closely aligned with the shock normal (quasi-
parallel shock configuration). In contrast, quasi-perpendicular shocks do not ef-
ficiently accelerate ions. We model this obliquity-dependent acceleration process
in a spherically expanding blast wave setup with the moving-mesh code arepo for
different magnetic field morphologies, ranging from homogeneous to turbulent con-
figurations. A Sedov-Taylor explosion in a homogeneous magnetic field generates
an oblate ellipsoidal shock surface due to the slower propagating blast wave in the
direction of the magnetic field. This is because of the efficient cosmic ray (CR)
production in the quasi-parallel polar cap regions, which softens the equation of
state and increases the compressibility of the post-shock gas. We find that the
solution remains self-similar because the ellipticity of the propagating blast wave
stays constant in time. This enables us to derive an effective ratio of specific heats
for a composite of thermal gas and CRs as a function of the maximum acceleration
efficiency. We finally discuss the behavior of supernova remnants expanding into
a turbulent magnetic field with varying coherence lengths. For a maximum CR
acceleration efficiency of about 15 per cent at quasi-parallel shocks (as suggested
by kinetic plasma simulations), we find an average efficiency of about 5 per cent,
independent of the assumed magnetic coherence length.

3.1. Introduction
Diffusive shock acceleration (DSA) is a universal process that operates at strong,
non-relativistic collisionless shocks and enables a small fraction of particles imping-
ing on the shock to gain more energy than the average particle through multiple
shock crossings (Axford et al., 1977; Krymskii, 1977; Bell, 1978a; Blandford & Os-
triker, 1978). The blast waves of supernova remnants (SNRs) are the most likely
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3. The effect of cosmic-ray acceleration on supernova blast wave dynamics

sources of Galactic CRs (Neronov 2017; for extensive reviews, see Reynolds 2008;
Marcowith et al. 2016). There are other potential sources that might contribute,
including shocks associated with young star forming regions (Yang et al., 2018a),
high-energy processes at the Galactic center (HESS Collaboration et al., 2016), or
shocks associated with a large-scale Galactic wind that are driven by thermal or
CR pressure gradients (Sarkar et al., 2015; Pfrommer et al., 2017b).

CR acceleration modifies the expansion history of a SNR shock due to the ad-
ditional CR pressure. While the most energetic CRs escape the SNR upstream
and propagate into the interstellar medium (ISM), most of the CRs, by energy
content and by particle number, are swept downstream and end up in the interior
of the SNR (Bell et al., 2013) until they are eventually released to the ISM when
the SNR shell breaks into individual pieces as a result of Rayleigh-Taylor instabil-
ities that develop once the shock wave has sufficiently slowed down. A self-similar
Sedov-Taylor blast wave solution that accounts for CR pressure was developed by
Chevalier (1983) and generalized to include a CR spectrum and the maximum CR
energy (Bell, 2015). Those works demonstrate that the CR pressure inevitably
dominates the thermal pressure in the SNR interior even if only a small fraction of
the shock kinetic energy is converted to CRs. This is because of the smaller ratio
of specific heats of CRs (γcr = 4/3) in comparison to a thermal fluid (γth = 5/3),
which cause the thermal pressure to decrease at a faster rate in comparison to
CRs upon adiabatic expansion. Simulations of DSA at Sedov-Taylor blast waves
confirmed that the increased compressibility of the post-shock plasma due to the
produced CRs decreases the shock speed (Castro et al., 2011; Pfrommer et al.,
2017a, for one- and three-dimensional simulations, respectively).

However, these approaches missed one important plasma physics aspect of the ac-
celeration process: the orientation of the upstream magnetic field. Hybrid particle-
in-cell (PIC) simulations (with kinetic ions and fluid electrons) of non-relativistic,
large Mach number shocks demonstrated that DSA of ions operates for quasi-
parallel configurations (i.e., when the upstream magnetic field is closely aligned
with the shock normal), and becomes ineffective for quasi-perpendicular shocks
(Caprioli & Spitkovsky, 2014a). Ions that enter the shock when the discontinuity
is the steepest are specularly reflected by the electrostatic shock potential and are
injected into DSA (Caprioli et al., 2015). Scattering of protons and electrons is
mediated by right-handed circularly polarized Alfvén waves excited by the cur-
rent of energetic protons via non-resonant hybrid instability (Bell, 2004). After
protons gained energy through a few gyrocycles of shock drift acceleration (SDA),
they participate in the DSA process. On the contrary, after preheated via SDA,
electrons are first accelerated via a hybrid process that involves both SDA and
Fermi-like acceleration mediated by Bell waves, before they get injected into DSA
(Park et al., 2015).

While quasi-perpendicular shocks are unable to accelerate protons, these config-
urations can energize thermal electrons at the shock front via SDA. The acceler-
ated electrons are then reflected back upstream where their interaction with the
incoming flow generates oblique magnetic waves that are excited via the firehose
instability (Guo et al., 2014a,b). The efficiency of electron injection is strongly
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modulated with the phase of the shock reformation. Ion reflection off of the shock
leads to electrostatic Buneman modes in the shock foot, which provide first-stage
electron energisation through the shock-surfing acceleration mechanism (Bohdan
et al., 2017).

In this work, we are studying magnetic obliquity-dependent acceleration of pro-
tons at a strong, total energy conserving shock that is driven by a point explosion
(similar in spirit to the analytic model by Beshley & Petruk, 2012). Hence, our
setup models the Sedov-Taylor phase of an expanding SNR and we examine how
CR acceleration modifies its propagation depending on the upstream properties
of the magnetic field. We emphasize that we do not consider the pressure-driven
snowplow phase of SNRs that begins ∼ 2 × 104 years after the explosion and is
characterized by radiative losses of the shocked medium. The snowplough effect
adiabatically compresses ambient magnetic fields, which modifies the morphologi-
cal appearance of the remnant considerably (van Marle et al., 2015).

This chapter is organized as follows. In Section 3.2 we present our methodology,
explain how we model magnetic obliquity-dependent CR shock acceleration, and
demonstrate the accuracy of our algorithm. In Section 3.3 we present our Sedov-
Taylor simulations with CR acceleration: after deriving an analytical model on
how the effective ratio of specific heats depends on the CR acceleration efficiency,
we show our blast wave simulations with obliquity-dependent CR acceleration at
homogeneous and turbulent magnetic field geometries with varying correlation
lengths. In Section 3.4 we summarize our main findings and conclude. In Ap-
pendix A.1 we assess numerical convergence of our algorithm. In Appendix A.2,
we numerically solve the system of equations of a spherically symmetric gas flow
to determine a relation between the effective adiabatic index of the gas interior
to the blast wave and the self-similarity constant in the Sedov-Taylor solution. In
Appendix A.3 we define the ellipsoidal reference frame that we adopt for our oblate
explosions and in Appendix A.4 we show our results for obliquity dependent CR
acceleration of a Sedov-Taylor explosion into a dipole magnetic field configuration.

3.2. Methodology
Here we present our methodology and explain the numerical algorithms to imple-
ment magnetic obliquity dependent CR acceleration. We then validate our imple-
mentation with shock tube simulations that exhibit homogeneous magnetic fields.
Finally, we lay down our procedure of setting up a turbulent magnetic field that
finds application in Sedov-Taylor explosions in Sect. 3.3.

3.2.1. Simulation method
All simulations in this chapter are carried out with the massively parallel code
arepo (Springel, 2010) in which the gas physics is calculated on a moving Voronoi
mesh, using an improved second-order hydrodynamic scheme with the least-squares-
fit gradient estimates and a Runge-Kutta time integration (Pakmor et al., 2016a).
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Figure 3.1.: Functional dependence of the CR acceleration efficiency on the magnetic obliquity
angle from hybrid PIC simulations of non-relativistic shocks (Caprioli & Spitkovsky,
2014a). The blue points and dashed curves represent the results for different Mach
numbers ranging from M = 5 to 50, normalized to the maximum efficiency, respec-
tively. The red curve represents our analytical model (equation 3.7). All hybrid PIC
simulations exhibit a sharp drop of the acceleration efficiency at the critical angle
for shock acceleration, θcrit = 45◦. The coloured red region around our analytical
model shows the accuracy of recovering this functional form in our 3D shock tube
simulations (see Fig. 3.2).

θ
√

B2 ρl ρr Pl Pr Xcr
l Xcr

r rc M1 γeff
0◦ 10−6 1 0.125 51.516 0.1 2 1 4.78 9.56 1.50
45◦ 10−6 1 0.125 51.516 0.1 2 1 4.28 9.78 1.58
90◦ 10−6 1 0.125 51.516 0.1 2 1 3.90 10.00 1.66

Table 3.1.: Initial setup for the shock tubes shown in Fig. 3.2. The columns show magnetic
obliquity θ, magnetic field strength

√
B2, initial mass density on the left- and right-

hand sides, ρl and ρr, total pressure on the left- and right-hand sides, Pl and Pr,
CR-to-thermal pressure ratio on the left- and right-hand sides, Xcr

l and Xcr
r . The

resulting shock has a compression ratio, rc, Mach numberM1, and effective adiabatic
index in the post-shock regime γeff (see equation 3.12).
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We calculate the fluxes across the moving interface from the reconstructed prim-
itive variables using the HLLD Riemann solver (Miyoshi & Kusano, 2005). We
follow the equations of ideal MHD coupled to a second, CR fluid using cell-centred
magnetic fields and the Powell et al. (1999) scheme for divergence control (Pakmor
et al., 2011; Pakmor & Springel, 2013).

We model the relativistic CR fluid with an adiabatic index γ = 4/3 and account
for diffusive shock acceleration of CRs at resolved shocks in the computational do-
main, following a novel scheme (Pfrommer et al., 2017a). In our subgrid model for
CR acceleration, we assume that diffusive shock acceleration operates efficiently
provided there are favorable conditions (e.g., Sect. 3.2.2). This can be realized in
the physical scenario, in which the current associated with the forward streaming
CRs excites the non-resonant hybrid instability (Bell, 2004). This leads to exponen-
tial growth of magnetic fluctuations until the instability saturates at equipartition
with the kinetic energy flux. This also implies efficient pitch angle scattering of
CRs so that they approach the Bohm limit of diffusion. In such a situation, we
can calculate the CR precursor length for the pressure-carrying protons between 1
to 10 GeV,

Lprec ∼
√
κBohmt (3.1)

∼ 0.001 pc
( pc

10 GeV

)1/2 ( B

100µG

)−1/2 ( t

103 yr

)1/2
.

The CR precursor length only raises to 0.1 pc for TeV CRs gyrating in µG fields,
which is still smaller than the numerical resolution∆x = 0.125 pc of our simulations
and thus unresolved (assuming a typical box size of 25 pc and 2003 grid cells for
SNR simulations). Hence, in the interest of a transparent setup, we only model
the dominant advective CR transport and neglect CR diffusion and streaming.

Similarly, we only account for adiabatic CR losses and neglect non-adiabatic CR
losses such as Coulomb, hadronic and Alfvén-wave losses. In particular, we neglect
the small effect of energy loss from the blast wave due to CRs escaping upstream.
This effect softens the Sedov-Taylor solution from rs ∝ t0.4 to rs ∝ t0.39 (Bell, 2015).
That calculation assumed a momentum spectrum of p−4, which provides an upper
limit to the energy contribution of escaping high-energy CRs. For observationally
inspired softer spectra, the softening of the Sedov-Taylor solution becomes even
smaller, thus justifying our neglect.

To localize shocks and their up- and downstream properties during the run time
of the simulation, we adopt the method by Schaal & Springel (2015) that is solely
based on local cell-based criteria. The method identifies the direction of shock
propagation in Voronoi cells that exhibit a converging flow with the negative gra-
dient of the pseudo-temperature that is defined as

kT ∗ = P

n
= µmp(Pth + Pcr)

ρ
, (3.2)

where n is the number density, mp is the proton rest mass, and µ is the mean
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molecular weight. Hence, the shock normal is given by

n̂s = − ∇T
∗

|∇T ∗| . (3.3)

Voronoi cells with shocks are identified with (i) a maximally converging flow
along the direction of shock propagation, while (ii) spurious shocks such as tan-
gential discontinuities and contacts are filtered out, and (iii) the method provides
a safeguard against labelling numerical noise as physical shocks. In particular, in
our study the magnetic field is dynamically irrelevant at the shock, such that the
non-MHD jump conditions are valid. Typically, shocks in arepo are numerically
broadened to a width of two to three cells. By extending the stencil of the shock
cell into the true pre- and post-shock regime, we determine the Mach number and
dissipated energy of the shock. This enables us to inject a pre-determined energy
fraction into our CR fluid into those Voronoi cells that exhibit a shock and into
the adjacent post-shock cells (see Pfrommer et al., 2017a, for more details).

3.2.2. Obliquity-dependent CR acceleration
We adopt the following relation between the injected CR energy, ∆Ecr and the
dissipated energy at the shock, Ediss,

∆Ecr = ζ(M1, θ)Ediss. (3.4)

The injection efficiency ζ(M1, θ) depends on the shock Mach number,M1 = vs/c1
(i.e., the shock speed in units of the pre-shock sound speed, c1) and the upstream
magnetic obliquity, θ, defined as the angle between the normal to the shock front,
ns, and the direction of the magnetic field, b̂ = B/|B|:

cos θ = n̂s · b̂. (3.5)

Since the physics does not depend on the actual direction of the unit vectors n̂s
and b̂ (i.e., whether the vectors point in the same quadrant or not), we re-define
the magnetic obliquity via

θ = arccos(| cos θ|) (3.6)

In practice, for every shocked cell we collect the magnetic obliquity in the corre-
sponding pre-shock region and communicate it to the shocked cell.

We calibrate ζ(M1, θ) with hybrid PIC simulations performed by Caprioli &
Spitkovsky (2014a). The authors find that DSA of ions is very efficient at quasi-
parallel shocks, producing non-thermal ion spectra with the expected universal
power-law distribution in momenta equal to p−4. At very oblique shocks, ions can
be accelerated via shock drift acceleration, but they only gain a factor of a few
in momentum, and their maximum energy does not increase with time. In this
chapter, we only consider strong shocks (i.e., M1 � 1) for which the injection
efficiency saturates to a maximum value, ζ0. The saturation happens for shocks
with M & 30, according to Kang & Ryu (2013).
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Figure 3.2.: Shock-tube tests for different magnetic field orientations that account for pre-existing
and freshly accelerated CRs (solid lines show the analytic solution of Pfrommer et al.
(2017a), data points show mean simulation values, each averaged over 250 Voronoi
cells). Shown are 3D simulations at time t = 0.35. For each simulation we show
density ρ, pressure P and Mach number (top to bottom). The left panels show the
simulation with a parallel magnetic shock configuration (θ = 0), where the accelera-
tion efficiency ζ is maximized. The middle panels adopt an oblique configuration with
θ = 45◦. We notice that the post-shock gas is less dense in comparison to the parallel
case due to the smaller CR pressure as a result of a lower acceleration efficiency.
In the right column, we show a perpendicular magnetic configuration (θ = 90◦), for
which CR acceleration is completely inefficient. In this case, the shock propagates
fastest (i.e., with the largest Mach numberM) of all three cases for otherwise identi-
cal initial conditions because of the absence of freshly injected CRs in the post-shock
gas, which results in the hardest adiabatic index of γ = 5/3 in the post-shock regime.
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Figure 3.3.: Left: probability distribution function (PDF) of the magnetic obliquity for a shock-
tube simulation with initial obliquity of 45◦. To increase the statistics, we use obliq-
uity values of all shocked cells for 40 equally-spaced snapshots of that simulation and
fit the mean and variance of a Gaussian distribution (red dashed) to the PDF (blue
histogram). Right: comparison between the intrinsic (θin) and recovered magnetic
obliquity (θout) for different shock-tube simulations. We recover the initial obliquity
with an accuracy of σθ = 3.4◦ for all simulations except for the case θ = 0 (which
is however of little practical relevance due to the very similar shock acceleration
efficiencies in this regime).

Hence, we only need to model the scaling of the injection efficiency with magnetic
obliquity, which is shown in Fig. 3.1 for different shock strengths. All simulated
curves of the injection efficiency (light blue curves in Fig. 3.1) show a similar
qualitative behavior: saturation at quasi-parallel shocks, a steep decline at the
threshold obliquity of θcrit ' 45◦, and leveling off at zero for quasi-perpendicular
shocks. However, at a given magnetic obliquity, the function ζ(θ,M) is not always
monotonically rising with Mach number and shows substantial scatter (see Fig. 3
of Caprioli & Spitkovsky, 2014a). Hence, we decided to capture the qualitative
behavior of all four curves of the normalized injection efficiency, ζ(θ,M)/ζ0, for
different shock strengths with the following functional form:

ζ(θ) ' ζ0

2

[
tanh

(
θcrit − θ

δ

)
+ 1

]
. (3.7)

We adopted a threshold obliquity of θcrit = π/4 and a shape parameter of δ =
π/18 (red curve in Fig. 3.1). Hybrid PIC simulations by Caprioli & Spitkovsky
(2014a) demonstrate that the CR ion acceleration efficiency saturates for large
Mach numbers at a value of ζ0 ' 0.15. In our simulations however, we adopt a
maximum acceleration efficiency of ζ0 = 0.5 to amplify the (dynamical) effects of
CR acceleration. We checked that reducing the acceleration efficiency to realistic
values results in qualitatively similar effects, albeit with a smaller amplitude.

3.2.3. Code validation with shock tubes
To validate our implementation and to test the correctness of our obliquity de-
pendent shock acceleration algorithm, we performed several Riemann shock-tube
simulations with different orientations of the magnetic field. A solution to the
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shock-tube problem with accelerated CRs is derived analytically in Pfrommer et al.
(2017a) for a purely thermal gas and for a composite of thermal gas and pre-existing
CRs. In the limit of weak background magnetic fields the solutions proposed in
Pfrommer et al. (2017a) are still applicable. We simulate three-dimensional (3D)
shock tubes with initially 104 cells in a box of dimension 10 × 1 × 1. The initial
Voronoi mesh is generated by randomly distributing mesh-generating points in the
simulation box and relaxing the mesh via Lloyd’s algorithm (1982) to obtain a
glass-like configuration. All other initial parameters are laid down in Table 3.1.

In Fig. 3.2, we show three simulations with characteristically different magnetic
obliquities, θ = 0◦, 45◦, and 90◦. Our choice of a larger total pressure on the left-
hand side (with the tube initially at rest), implies a rightwards moving shock, which
is followed by a contact discontinuity, as well as a leftwards moving rarefaction
wave. We show mean simulation values of density, pressure and Mach number,
each averaged over 250 Voronoi cells to ensure an identical Poisson error per bin
and to demonstrate the change of volume at the shock and over the rarefaction
wave as a result of the moving-mesh nature of arepo.

Changing the orientation of the magnetic field from quasi-parallel (θ & 0◦) to
quasi-perpendicular geometries (θ . 90◦), the acceleration process becomes less
and less efficient (as manifested from the fractions of post-shock CR pressure, see
second row in Fig. 3.2). In the case of θ = 90◦, CR acceleration is absent and the
purely thermal case is restored with a compression ratio of r = 3.9 (for the adopted
initial conditions). In the first column of Fig. 3.2 (θ = 0◦), we see an increased
compressibility of the post-shock gas over the thermal case due to the abundantly
produced CRs, which yields a shock compression ratio of r = 4.78. Because of
mass conservation, the shock cannot advance as fast in comparison to the purely
thermal case and the Mach number is accordingly lower.

Our implementation records the magnetic obliquity in the upstream of the shocked
Voronoi cells. In the left panel of Figure 3.3, we present the probability distribution
function for θ for the intermediate case θ = 45◦. To improve our statistics, we used
40 different snapshots. We find normally distributed obliquity values around the
expected value, with a standard deviation of 3.4◦. We repeated the experiment for
18 simulations with an input obliquity that differed by 5◦ from the preceding sim-
ulation. The correspondence between injected angles θin and simulated angles θout
of shocked Voronoi cells becomes apparent in the right panel of Figure 3.3, with
a 1-sigma accuracy of 3.4◦. This accuracy is numerically converged as we show in
Appendix A.1. We only observe a small numerical deviation at small obliquities
θin < 3◦. However, the resulting acceleration efficiency is not affected due to the
constant efficiency at quasi-parallel shocks.

3.2.4. Turbulent magnetic fields
In order to generate turbulent magnetic fields with an average value 〈B〉 = 0 but
〈
√

B2〉 6= 0, we adopt a magnetic power spectrum of Kolmogorov type and scale
the field strength to an average plasma beta factor of unity. The three components
of the magnetic field Bi (i ∈ {1, 2, 3}) are treated independently to ensure that the
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3. The effect of cosmic-ray acceleration on supernova blast wave dynamics

final distribution of B(x) has a random phase. To proceed, we assume Gaussian-
distributed field components that follow a one-dimensional power spectrum Pi(k),
defined as Pi(k) ∝ k2|B̃i(k)|2, of the form

|B̃i(k)|2 =


A, k < kinj,

A

(
k

kinj

)−11/3
, kinj ≤ k,

(3.8)

where A is normalization constant, k = |k|, and kinj is the injection scale of the field.
Modes on larger scales (k < kinj) follow a white noise distribution and modes with
k > kinj obey a Kolmogorov power spectrum. For each magnetic field component,
we set up a complex field such that

[<(B̃i(k)),=(B̃i(k))] = [G1(X1, X2)σk, G2(X1, X2)σk], (3.9)

where Gi (i ∈ {1, 2}) is a distribution of uniform random deviates X1 and X2 that
returns Gaussian-distributed values. We set the corresponding standard deviation
σk to B̃i for every value of k. We normalize the spectrum to the desired variance
of the magnetic field components in real space, σB using Parseval’s theorem,

σ2
B = 1

N2

N∑
k

|B̃i(k)|2. (3.10)

We then subtract the radial field component in k space to fulfill the constraint
divB = 0, via

B̃k → B̃k − k̂(k̂ · B̃k). (3.11)

Applying an inverse fast Fourier transform to B̃k and re-scaling the magnetic
field to the desired average magnetic-to-thermal pressure ratio yields a turbulent
magnetic field distribution. To ensure pressure equilibrium in the initial conditions,
we adopt temperature fluctuations of the form nkBδT = −δB2/(8π). This setup
does not balance the magnetic tension force. The resulting turbulent motions have
a small amplitude in comparison to the velocity of the expanding blast wave so
that to good approximation, the ambient gas can be considered frozen and does
not contribute to the dynamics.

3.3. Sedov-Taylor explosions
In order to understand the non-thermal properties of supernova remnants, we
model the explosion as an expanding Sedov-Taylor blast wave in the magnetised
interstellar medium. After deriving an analytical solution for the Sedov-Taylor
problem in the presence of CR acceleration with an arbitrary shock acceleration
efficiency, we study magnetic obliquity dependent CR acceleration in homogeneous
and turbulent fields with varying coherence scales and formulate an analytic theory
that enables us to obtain the average CR efficiency.
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Figure 3.4.: Effective ratio of specific heats γ as a function of CR acceleration efficiency ζ for the
Sedov-Taylor blast wave (ignoring the obliquity dependence of CR acceleration). The
simulations (dots) and analytical fit (solid, equation 3.15) interconnect the thermal
gas case without CR acceleration (ζ = 0) and the opposite extreme of a (hypothetical)
100% efficient acceleration process, which yields a fully relativistic gas in the post-
shock region (γ = 4/3). The simulations do not reproduce the limit γ → 4/3 for
ζ → 1 due to residual thermalization.

Parameter Value Approximation
a 1.185 32/27

b = 20/3− 9a+ 3a2 0.214 52/243
c = 4− 3a 0.445 4/9

Table 3.2.: Best-fit parameters of the effective ratio of specific heats as a function of CR accel-
eration efficiency, γ(ζ), of equation (3.15) for the Sedov-Taylor blast-wave problem.
The fit and the simulated points are shown in Fig. 3.4
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3. The effect of cosmic-ray acceleration on supernova blast wave dynamics

3.3.1. Analytical solution with CR acceleration
First, we derive analytical exact solutions of the Sedov-Taylor blast-wave problem
with CR acceleration without an obliquity dependent efficiency. If a substantial
fraction of the dissipated energy is converted into CRs, this alters the effective
adiabatic index γeff that is defined as the logarithmic derivative of the total pressure
with respect to density at constant entropy s:

γeff ≡
d ln(Pcr + Pth)

d ln ρ

∣∣∣∣∣
s

= γcrPcr + γthPth

Pcr + Pth
, (3.12)

Subsequently the radius of the explosion is modified as it depends on the compress-
ibility of the post-shock gas in the interior of the blast wave.

In the case of a single polytropic fluid, the shock radius of the blast wave evolves
self similarly according to

rs(t) =
(
E1

αρ1

)1/5
t2/5, (3.13)

where t is the time since explosion and α is a self-similarity parameter that depends
on the effective adiabatic index, which itself is a function of CR shock acceleration
efficiency ζ. To determine this relation, we run a set of simulations, varying ζ ∈
[0, 1] in steps of 0.05. In each simulation, we determine the average shock radii at
different times and obtain α(ζ) via equation (3.13).

In Appendix A.2, we numerically solve the self-similar, spherically symmetric
conservation equations of mass, momentum and energy to determine the behavior
of α(γ). We find an analytical fit to the solution of the form

α(γ) ≈ 16
75

[
π(3γ − 1)

(γ − 1)(γ + 1)2 −
3
8

]
, (3.14)

which has an accuracy of approximately 0.8%. Combining α(ζ) (obtained with our
simulations with CR acceleration and via equation 3.13) and α(γ) (equation 3.14),
we arrive at an expression of the effective adiabatic index as a function shock
acceleration efficiency, γ(ζ), as shown in Fig. 3.4. In particular, an efficiency of
ζ = 0.5 corresponds to an effective ratio of specific heats of γ ' 1.408. As seen
in Fig. 3.4, the simulations do not reproduce the limit γ → 4/3 for ζ → 1 due
to residual thermalization. Note that this case is purely academic and likely not
realised in Nature. Hence, we fit our simulation values for ζ ≤ 0.65 with an
equation of the form

γ(ζ) = a+ b

c+ ζ
, (3.15)

subject to the boundary condition of γ = 5/3 for ζ = 0 and 4/3 for ζ = 1.
This allows to express the parameters b and c solely as a function of a. The
corresponding parameters satisfying these requirements are shown in Table 3.2.
Adopting the rational approximation of these fitting parameters (Table 3.2) we
obtain

γ(ζ) = 4
3

(8ζ + 5
9ζ + 4

)
. (3.16)
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3.3. Sedov-Taylor explosions

Combining this result with equation (3.14), we get a comprehensive formula for
the self-similarity parameter in equation (3.13) as a function of the acceleration
efficiency ζ:

α(ζ) = 2
25

[72π(9ζ + 4)2(23ζ + 16)
(5ζ + 8)(59ζ + 32)2 − 1

]
. (3.17)

3.3.2. CR acceleration in a homogeneous field
Our initial Voronoi mesh is generated by randomly distributing mesh-generating
points in the unit box and relaxing the mesh via Lloyd’s algorithm (1982). The
self-similarity of the problem, which is not broken by CR acceleration (Pfrommer
et al., 2017a), allows us to use scale free units. We use a box of 2003 cells to
ensure convergence also at early times. Throughout the simulation box, we adopt
a uniform density of ρ1 = 1, a negligible pressure of P1 = 10−4, a zero initial
velocity, and a thermal adiabatic index of γ = 5/3. At time t = 0, we inject
thermal energy of E1 = 1 into the central mesh cell. We follow ideal MHD without
self-gravity and adopt a maximum acceleration efficiency of ζ0 = 0.5 to amplify
the (dynamical) effects of CR acceleration.

First, we adopt a homogeneous magnetic field in the box that is oriented along
the x axis and a plasma beta of β = 1. In Fig. 3.5 we show maps of different
quantities in the equatorial plane at t = 0.1, namely the mass density ρ (with
the shock normal as measured in situ in the simulations and shown in white),
the specific CR energy ucr, the magnetic field strength

√
B2 (with the magnetic

orientations at the shock colour coded by upstream magnetic obliquity), and the
CR-to-thermal pressure ratio Xcr = Pcr/Pth.

The unit vectors of the shock normal in the top left panel of Fig. 3.5 show a
deviation from spherical symmetry with a smaller shock radius and an enhanced
density in the direction parallel and anti-parallel to the magnetic field. This is
the immediate consequence of obliquity-dependent shock acceleration with copious
CR production at quasi-parallel shocks, which is accompanied by an increased
compressibility due to the softer equation of state of the composite fluid of CRs
and thermal gas. This is manifested in the quadrupolar morphology of ucr with
the axis of symmetry aligned with the magnetic field orientation (top right of
Fig. 3.5). The morphology of ucr is echoed by Xcr (bottom right of Fig. 3.5).
Adiabatic expansion of a composite of CRs and thermal gas eventually yields a
dominating CR pressure in the interior of the explosion for quasi-parallel shock
geometries, at |θ| . π/4.

An oblique shock only amplifies the perpendicular field component and leaves the
parallel component invariant. This re-orients the oblique magnetic field towards
the shock surface and increases the field strength at quasi-perpendicular shocks
(bottom left of Fig. 3.5). Our strongly magnetised background plasma with β =
1 becomes very weakly magnetised at the shock since the adiabatic increase of
magnetic pressure falls orders of magnitudes short in comparison to the shock-
dissipated thermal pressure at our strong Sedov-Taylor shock. Hence, the magnetic
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Figure 3.5.: Sedov-Taylor blast wave with obliquity dependent CR acceleration expanding into a
homogeneous magnetic field at t = 0.1. Initially, the field is aligned with the hori-
zontal direction. We show a 2D cross section of the density ρ (top left) overplotted
with normal vectors of the shock (as determined by our shock-finding algorithm);
the specific CR energy ucr (top right); the magnetic field strength

√
B2 (bottom

left) overplotted with the outwards directed orientations of the magnetic field at the
shocked cells (colour coded by magnetic obliquity θ) and the CR-to-thermal pres-
sure ratio Xcr (bottom right). We can see that the specific CR energy exhibits a
quadrupolar anisotropy, with the maximum in the direction of the magnetic field
(quasi-parallel shock configuration). The increased density in this quasi-parallel di-
rection (due to the higher compressibility of the CR-enriched post-shock plasma)
implies a slower shock expansion velocity and hence a slightly oblate shock surface
with the two long axis aligned perpendicular to the ambient field direction. Note that
the shock compression only amplifies the perpendicular magnetic field component,
which re-aligns field vectors for oblique shocks.
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Figure 3.6.: Radial profiles of characteristic quantities of the Sedov-Taylor explosion with obliq-
uity dependent CR acceleration. The top left panel shows the radial profile of the
effective adiabatic index. The adiabatic index in the direction perpendicular to the
magnetic field (light blue) raises quickly to values comparable with the thermal adi-
abatic index 5/3 (green) whereas the adiabatic index in the direction parallel to B
(yellow) deviates only at larger radii from the relativistic value of 4/3 (violet). The
red line represents the effective adiabatic index averaged over all directions. The
bottom left panel shows the corresponding radial profiles of the CR pressure in the
different directions. The thermal pressure dominates at larger radii while the CR
pressure drops significantly outside the center. The top right panel represents the
time evolution of the shock radius in the direction of the magnetic field (yellow)
and perpendicular to it (light blue). Effective CR acceleration for quasi-parallel
shock configurations yields an increased compressibility and hence a slower propa-
gating shock. This is quantified in the time evolution of the shock eccentricity in
the bottom right panel. The constant eccentricity of the oblate shock (within the
uncertainties) demonstrates self-similar evolution of the blast wave also in this case.
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3. The effect of cosmic-ray acceleration on supernova blast wave dynamics

field merely impacts the dynamics of the blast wave through the magnetic obliquity-
dependent shock acceleration of CRs and not through its pressure.

This analysis is quantified in Fig. 3.6, where we show radial profiles of different
volume-weighted quantities, such as the effective ratio of heat capacities γeff , the
pressure, and the time evolution of the shock radius and eccentricity of the oblate
blast wave. The effective ratio of heat capacities γeff is computed from volume-
averaged partial pressures of the CR and thermal gas components via equation 3.12.
The top and bottom left panels of Fig. 3.6 show the radial variation of the effective
adiabatic index γ‖,⊥ and the partial pressures P‖,⊥ for two regions: parallel and
perpendicular. γ‖ and Pcr,‖ are computed from cells that belong to the hourglass-
shaped region inside the blast wave that was overrun by a quasi-parallel shock.
Here, we define this quasi-parallel shocked region as a narrow double cone oriented
along the original magnetic field with an opening angle of 20◦. Similarly, we define
the region overrun by quasi-perpendicular shocks as the complement of a wide
double cone that is bounded by an equatorial band with latitude 20◦. The copious
CR production at a quasi-parallel shock with the subsequent adiabatic expansion
softens the adiabatic index to values close to that of a fully relativistic gas of 4/3.
Since the region overrun by a quasi-perpendicular shock is characterized by a ratio
of heat capacities close to a purely thermal gas, the effective adiabatic index γeff
(shown in red) as well as the spherically averaged CR pressure (shown in purple)
levels off at values in between.

The top-right panel of Fig. 3.6 shows the time evolution of the simulated shock
radius (filled circles) and the self-similar analytic solution (continuous lines). In
line with the previous discussion, the shock radius in the direction perpendicular
to the ambient magnetic field moves faster than the shock in the (anti-)parallel
direction owing to the increased compressibility of the latter due to efficient CR
acceleration. The continuous lines are obtained by fitting the shock radius evolution
(equation 3.13) in double-logarithmic space for α(γ). Inverting equation 3.14 yields
the corresponding effective adiabatic factor shown in the figure. In between those
two curves, we show the solution for the effective adiabatic index (crosses).

The increased compressibility of CR-enriched quasi-parallel shocks implies an
oblate shock surface that is characterised by an eccentricity, defined as

ε(t) =

√√√√1−
[
r‖(t)
r⊥(t)

]2

. (3.18)

Due to the volumetric distribution of CRs with respect to the thermal gas, the
influence of CR production affects the entire explosion. This renders it impossible
to separate the cases of purely thermal and maximally efficient CR acceleration
for the perpendicular and parallel shock radii, respectively. This means that a
direct measurement of the eccentricity assuming a pure thermal ζ = 0 in the
perpendicular direction and a CR-modulated ζ = ζ0 in the parallel direction yields
an incorrect result. Instead, an average efficiency 〈ζ〉 is required to determine
the average radius of the explosion, representing an intermediate case between
the parallel and perpendicular shock radius. In the lower right panel of Fig. 3.6,
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Figure 3.7.: Cross-sections through the centre of 3D simulations of Sedov-Taylor explosions with
obliquity-dependent CR acceleration. We show a simulation with a homogeneous,
horizontally oriented magnetic field (first row), a turbulent magnetic field with a
large correlation length of λB = L/2 (second row) and with a very small correlation
length, λB = L/100, in comparison to the radius of the blast wave (third row). We
depict magnetic field strength (left column) and CR pressure (right column). In the
homogeneous field case we notice a quadrupolar CR distribution that is maximized
for quasi-parallel shocks (visualized with red arrows in the left-hand panels) while
the magnetic field is only adiabatically amplified at quasi-perpendicular shocks (blue
arrows). In the second row we observe a patchy CR distribution with maxima at
regions that were over-run with quasi-parallel shocks. The CR distribution in the
case of small-scale turbulence (last row) is completely isotropic and the compression
of the magnetic field is uniformly distributed across the shock.
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3. The effect of cosmic-ray acceleration on supernova blast wave dynamics

we show the eccentricity of the oblate shock surface along with the uncertainty
intervals assuming Gaussian statistics,

∆ε =
(1− ε2

ε

)√√√√√σ‖
r‖

2

+
(
σ⊥
r⊥

)2
(3.19)

where σ‖ and σ⊥ are the standard deviations of the shock radius in the direction
of the magnetic field and perpendicular to it, respectively. We obtain the theoret-
ical estimate for the eccentricity from our measured self-similar solutions for the
parallel and perpendicular shock radii of the top-right panel in Fig. 3.6. There are
two strategies to measure the eccentricity: first, determining the distance to the
cells of the shock surface inside narrow cones or bands of equal latitude that are
centered on the explosion and oriented along the magnetic field direction; second:
measuring the momenta of inertia of the entire oblate shock surface, diagonalis-
ing the resulting tensor, determining the resulting eigenvalues and extracting the
length of the three semi-axes. We decided in favor of the first method because it
generates less numerical fluctuations.

We find a constant eccentricity of ε = 0.25±0.02 during the adiabatic expansion.
Note that ε depends on the average efficiency 〈ζ〉 and is expected to be smaller for
realistic maximum acceleration efficiencies of order 0.15. The constant eccentricity
with time demonstrates that the Sedov-Taylor explosion remains self similar also
in the presence of obliquity-dependent CR acceleration. In Appendix A.1 we show
that the measured eccentricity in our simulations is numerically converged for 1003

grid cells.

3.3.3. CR acceleration in a turbulent field
After studying magnetic obliquity-dependent CR acceleration at a Sedov-Taylor
blast wave that propagates in a homogeneous magnetic field, we now turn to tur-
bulent magnetic fields with different magnetic correlation lengths λB = 2π/kinj.
As initial conditions for the magnetic field, we adopt a Gaussian random field with
a Kolmogorov power spectrum on scales smaller than the coherence length and a
white-noise power spectrum on larger scales, as described in Sect. 3.2.4. The larger
λB in comparison to the shock radius, the fewer statistically independent regions
of correlated magnetic fields there are inside the blast wave. Hence we introduce
the magnetic coherence length in units of the shock radius, ΛB = λB/rs(t) as a
new parameter. Blast waves with the same ΛB are statistically self similar.

We perform several simulations with different correlation lengths ranging from
λB = L to λB = L/200 for 2003-cell runs. In Fig. 3.7 we show different realizations
of the CR pressure for varying the correlation lengths of the magnetic field and
compare the results to our previous simulation with a homogeneous field. Cor-
related magnetic patches imply a similarly patchy CR distribution: regions that
are overrun by quasi-parallel shocks are CR enriched whereas regions that have
experienced quasi-perpendicular shocks result in voids without CRs. As the scaled
correlation length ΛB becomes smaller, the magnetic obliquity also changes on
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smaller scales and the number of CR islands becomes more frequent to the point
that they merge into a single (noisy) CR distribution. This case is similar to uni-
form CR acceleration (which is independent of magnetic obliquity), but exhibits a
lower overall CR acceleration efficiency.

3.3.4. Average CR acceleration efficiency and field realignment
In order to understand the blast wave-averaged CR acceleration efficiency, we con-
sider the two limiting cases of a homogeneous field and a fully turbulent field with
a coherence scale of the initial grid resolution (λB = ∆L) analytically. In the
small-scale turbulent case, we consider a fixed shock normal pointing along ẑ with-
out loss of generality. The magnetic field vector can then assume any direction
on the upper half-sphere because CR acceleration does not depend on the sign of
the magnetic field and is symmetric with respect to θ = 0. Hence, the probability
distribution of the magnetic obliquity is given by f(θ) = sin θ with θ ∈ [0, π/2].

Integrating the efficiency over this probability distribution results in the average
efficiency according to

〈ζ〉 =
∫ π/2

0
ζ(θ) sin θ dθ =


ζ0

(
1− 1√

2

)
, for ζ = ζtoy,

0.302 ζ0, with Equ. (3.7).
(3.20)

Here, we introduced a toy example for the obliquity dependent acceleration that
is represented by a discontinuous jump of the efficiency at θcrit from ζ0 to zero:

ζtoy(θ) = ζ0Θ(θcrit − θ), (3.21)

where Θ(x) is the Heaviside function, representing the limiting case of δ → ∞ in
equation (3.7). This gives us a lower limit for the efficiency.

In the case of a homogeneous field, we fix the magnetic field vector in space and
point it into the z direction without loss of generality. Again, the shock normal
can assume any direction on the upper half-sphere so that we obtain the same
probability distribution function as in the small-scale turbulent case, f(θ) = sin θ.
The average CR shock acceleration efficiency is thus also given by equation (3.20).

We find that eccentricity plays an important role in shaping the probability
distribution of the obliquity. To take this into account we define an ellipsoidal
reference frame via

x =
(
h+ a√

1− ε2 cos2 ϕ

)
sinϕ cosλ, (3.22)

y =
(
h+ a√

1− ε2 cos2 ϕ

)
sinϕ sin λ, (3.23)

z =
[
h+ (1− ε2)a√

1− ε2 cos2 ϕ

]
cosϕ, (3.24)
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Figure 3.8.: Probability distribution functions (PDFs) of the magnetic obliquity (left) and CR
acceleration efficiency ζ (right) in the case of a homogeneous magnetic field in the
upstream regime (top panels) and after accounting for magnetic re-orientation in
the immediate downstream regime (bottom panels). Here, we adopt an artificially
small value for the maximum CR acceleration efficiency of ζ0 = 0.02, which implies
an almost spherical shock due to the negligible CR backreaction in this case. The
obliquity distribution follows the theoretical expectation of f(θ) = sin(θ). Account-
ing for magnetic re-orientation at oblique shocks skews this distribution towards
quasi-perpendicular geometries (bottom left), which can be analytically described by
equation (3.31) for ε = 0 (dashed line). Note that ζ follows a bimodal distribution as
a result of the flatness of the efficiency function (equation 3.7) at quasi-perpendicular
and -parallel shocks with a sharp transition in between.
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Figure 3.9.: PDF of the magnetic obliquity (left) and CR acceleration efficiency ζ (right) in the
case of a homogeneous magnetic field in the upstream regime (top panels) and after
accounting for magnetic re-orientation (bottom panels) with a maximum efficiency of
ζ0 = 0.5. The obliquity distribution in the top left panel follows our theoretical pre-
diction f(θ, ε) (purple, equation 3.26) of an oblate expanding shock. For comparison,
we also show the spherical PDF (red dashed, see Fig. 3.8). Accounting for magnetic
re-orientation at oblique shocks skews this distribution towards quasi-perpendicular
geometries (bottom left), which can be analytically described by equation (3.31).
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where λ and ϕ are the longitude and pseudo-latitude from the ellipsoid, respec-
tively, h is the height above the surface of the ellipsoid, a the semi-major axis, and
ε the eccentricity.

As shown in Appendix A.3, for a homogeneous magnetic field that points into the
positive z direction (short axis of the oblate ellipsoid) the angle ϕ is by construction
equal to the definition of the magnetic obliquity θ. Using the fact that ϕ ≡ θ, the
Jacobian of this coordinate transformation on the oblate surface (h = 0) is given
by

S(θ, ε) = sin θ 1− ε2

(1− ε2 cos2 θ)2 . (3.25)

Hence, the normalized distribution function for the obliquity θ reads

f(θ, ε) = S(θ, ε)
[∫ π/2

0
S(θ, ε)dθ

]−1
, (3.26)

which reduces to sin θ for ε = 0.
For our simulations with ζ0 = 0.5, we obtain an eccentricity of ε̃ = 0.25, and

hence an average efficiency of

〈ζ(ε̃)〉 =
∫ π/2

0
ζ(θ)f(θ, ε̃)dθ = 0.316ζ0. (3.27)

The error ∆ζ on this quantity derives from the uncertainty on the eccentricity:

∆ζ̃ = ∂〈ζ(ε)〉
∂ε

∣∣∣∣∣
ε̃

∆ε̃ =
[∫ π

0
ζ(θ)∂f(θ, ε)

∂ε

∣∣∣∣∣
ε̃

dθ
]
∆ε̃ = 0.002ζ0, (3.28)

such that the efficiency for this oblate reads

ζ̃ = (0.316± 0.002)ζ0. (3.29)

Because we propagate the upstream value of the magnetic obliquity to the shock
surface, the resulting obliquity distribution at the shock is expected to follow f(θ) =
sin(θ) in the case of a sphere and equation (3.26) for ellipsoids.

In the next step, we assess the distribution of downstream magnetic obliquity as
a result of realignment of the tangential component of the magnetic field due to
the shock. We can estimate the obliquity after magnetic realignment with the aid
of the Rankine-Hugoniot jump conditions:

cos θ2(rc) = cos θ1√
cos2 θ1 + r−2

c sin2 θ1
(3.30)

where rc is the compression ratio at the shock. We can then insert this formula into
equation (3.25) to obtain the expected distribution of realigned angles for oblates:

f [θ(rc), ε] = S[θ(rc), ε]
[∫ π/2

0
S[θ(rc), ε]dθ

]−1
(3.31)
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Figure 3.10.: Average acceleration efficiency as a function of the eccentricity ε of the oblate ac-
cording to the distribution shown in equation (3.25) and equation (3.27) in a homo-
geneous magnetic field configuration. For ε = 0 the original value of equation (3.20)
is restored while for an eccentricity of unity the oblate degenerates into a circle,
yielding everywhere a maximum efficiency.
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which reduces to sin[θ(rc)] for ε = 0. We find good agreement of these theoretical
distributions and our simulations in Figs. 3.8 and 3.9 for a maximum efficiency of
ζ0 = 0.02 and of ζ0 = 0.5, respectively. Note that the low CR acceleration efficiency
in Fig. 3.8 allows to neglect the geometrical anisotropy of the shock surface that
results from copious CR production in the direction of the magnetic field. In all
cases, we find a bimodal distribution of ζ as a result of the flat efficiencies at quasi-
perpendicular and -parallel shocks with a sharp transition in between. We also
find a good agreement of the realigned obliquity distributions, which are skewed
towards quasi-perpendicular geometries.

The effect of an oblate geometry becomes evident in Fig. 3.9 (upper left panel),
which shows an improved fit of the elliptical distribution in comparison to the
spherical sinusoidal distribution. However, the resulting shape of the efficiency
distribution is only little affected. Thus, its average value is only slightly increased
over the spherical case as can be inferred from Figs. 3.8 and 3.9. The full evolution
of 〈ζ〉 as a function of ε is shown in Fig. 3.10. The academic case of ε = 1
represents an unphysical limit where the oblate degenerates into a circle. This
orients the shock surface in such a way so that it is always parallel to the direction
of the magnetic field and yields the maximum possible acceleration efficiency.

In Fig. 3.11 we summarize results for different simulations with varying correla-
tion lengths of λ−1

B = [2, 4, 10, 20, 50, 100, 150, 200] each at times t = [5, 6, 7, 8, 9, 10]×
0.01 in simulation units. The expanding shock front starts to embrace more and
more coherent magnetic patches whose number scales as N ∝ Λ−3

B . For compar-
ison, we also show the theoretically expected eccentricities for the homogeneous
field case with coloured diamonds. There is no trend in the evolution of the av-
erage acceleration efficiency as a function of Λ−1

B . Instead, the simulation values
scatter between an eccentricity of ε = 0.10 (orange diamond) and ε = 0.3 (violet
diamond), yielding a value of 〈ζ〉 = (0.311 ± 0.05)ζ0. For λB � ∆L, CR-rich
patches give rise to corrugations of the shock surface causing local small deviations
from spherical symmetry. If the correlation length becomes comparable to the ini-
tial grid resolution then the blast wave becomes spherical, albeit with a slightly
higher efficiency.

3.4. Conclusions
In this chapter we perform MHD simulations of the evolution of supernova rem-
nants in the Sedov-Taylor phase. For the first time, we model magnetic obliquity
dependent CR acceleration and study i) its dynamical effects on the overall evolu-
tion of the blast wave and ii) how different magnetic geometries affect the resulting
CR distribution. To this end, we use results from hybrid PIC simulations (with ki-
netic ions and fluid electrons) of non-relativistic, large Mach number shocks. Those
demonstrate that only quasi-parallel magnetic shock configurations can accelerate
ions while quasi-perpendicular shocks are ineffective.

Using idealized shock tube experiments, we show that our algorithm is able
to recover the input direction of the magnetic field with a Gaussian scatter of
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around 3◦. When we change the magnetic orientation from quasi-perpendicular to
quasi-parallel configurations, the efficiency of CR acceleration and the associated
post-shock compressibility increase. This leads to density jumps that exceed the
theoretical limit ρ2/ρ1 = 4 (valid for a thermal gas), slows down the shock and
decreases the Mach number.

We derive analytical exact solutions of the Sedov-Taylor blast-wave problem with
CR acceleration (neglecting obliquity dependent effects). We numerically solve the
self-similar, spherically symmetric conservation equations of mass, momentum and
energy to determine the behavior of the shock radius. This enables us to derive
analytical fitting functions for the effective ratio of specific heats for a composite
of thermal gas and CRs as a function of the maximum acceleration efficiency.

Our simulations of the Sedov-Taylor blast wave problem with obliquity depen-
dent CR acceleration in a homogeneous magnetic field geometry show the emer-
gence of an oblate ellipsoidal shock surface. Its short axis is aligned with the
ambient magnetic field orientation due to the efficient CR acceleration at quasi-
parallel shocks. The ellipsoidal shock surface has an eccentricity of ε = 0.25± 0.02
for a maximum CR acceleration efficiency of ζ0 = 0.5 (which decreases for more
realistic maximum efficiencies). The shock eccentricity does not change with time,
demonstrating that the Sedov-Taylor explosion also remains self similar in the
presence of obliquity-dependent CR acceleration. Because an oblique shock only
amplifies the perpendicular field component, this re-orients an oblique magnetic
field towards the shock surface. We find that this re-orientation effect has no prac-
tical influence on the average CR acceleration efficiency because the acceleration
efficiency exhibits two flat plateaus at quasi-parallel and -perpendicular shocks and
a fast transition in between.

Sedov-Taylor explosions in a turbulent magnetic field yield a patchy CR dis-
tribution with tangential, filamentary overdensities delineating regions that were
over-run by quasi-parallel shocks and filamentary patches devoid of CRs, which
were swept by quasi-perpendicular shocks. The CR distribution becomes com-
pletely isotropic if the magnetic turbulence exhibits a very small coherence scale in
comparison to the shock radius. We derive the averaged CR acceleration efficiency
to ≈ 0.3 of the maximum CR acceleration efficiency for our adopted CR efficiency
function, independent of coherence scale.

In particular, the peculiar morphology of the CR pressure distribution that result
from obliquity-dependent CR acceleration in a turbulent magnetic field could be
the origin of the observed tangential filamentary morphology of some shell-type
middle-aged supernova remnants at TeV gamma rays. We will study this effects
in a separate publication. We finally note that the fluctuating TeV gamma-ray
morphology would be a direct consequence of the obliquity dependent acceleration
in this picture and does not require large upstream CR fluctuations or strong
gradients in the ambient density; thereby opening the possibility of realistically
modelling supernova remnants at gamma rays in the future.
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4. The coherence scale of the ISM
magnetic field via TeV γ-ray
observations of SNRs

This chapter is an adapted version of the paper Constraining the coherence scale
of the interstellar magnetic field using TeV gamma-ray observations of supernova
remnants published on Monthly Notices of Royal Astronomical Society (Pais et al.,
2020).

Abstract

Galactic cosmic rays (CRs) are believed to be accelerated at supernova remnant
(SNR) shocks. In the hadronic scenario the TeV gamma-ray emission from SNRs
originates from decaying pions that are produced in collisions of the interstellar
gas and CRs. Using CR-magnetohydrodynamic simulations, we show that mag-
netic obliquity dependent shock acceleration is able to reproduce the observed TeV
gamma-ray morphology of SNRs such as Vela Jr. and SN1006 solely by varying
the magnetic morphology. This implies that gamma-ray bright regions result from
quasi-parallel shocks (i.e., when the shock propagates at a narrow angle to the
upstream magnetic field), which are known to efficiently accelerate CR protons,
and that gamma-ray dark regions point to quasi-perpendicular shock configura-
tions. Comparison of the simulated gamma-ray morphology to observations allows
us to constrain the magnetic coherence scale λB around Vela Jr. and SN1006 to
λB ' 13+13

−4.3 pc and λB > 200+50
−40 pc, respectively, where the ambient magnetic

field of SN1006 is consistent with being largely homogeneous. We find consis-
tent pure hadronic and mixed hadronic-leptonic models that both reproduce the
multi-frequency spectra from the radio to TeV gamma rays and match the ob-
served gamma-ray morphology. Finally, to capture the propagation of a SNR
shock in a clumpy interstellar medium, we study the interaction of a shock with a
dense cloud with numerical simulations and analytics. We construct an analytical
gamma-ray model for a core collapse SNR propagating through a structured inter-
stellar medium, and show that the gamma-ray luminosity is only biased by 30%
for realistic parameters.
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4.1. Introduction

SNR shocks energize Galactic CRs via diffusive shock acceleration. This converts
about 5 − 10% of the kinetic energy into a non-thermal, power-law momentum
distribution of CRs (Bell, 1978a; Blandford & Ostriker, 1978). The most direct
observational evidence for this is the GeV and TeV gamma-ray emission from
SNRs. There are two competing models: in the leptonic model, CR electrons
Compton upscatter (interstellar) radiation fields whereas in the hadronic model
inelastic collisions between the interstellar medium (ISM) and CRs produce neu-
tral pions that decay into gamma rays (Hinton & Hofmann, 2009; Zirakashvili &
Aharonian, 2010). The latter process produces a kinematic spectral feature below
GeV energies, as recently observed by the Fermi gamma-ray telescope (Ackermann,
2013). However, the steep high-energy spectral slope raises questions whether this
represents an unambiguous proof of CR hadron acceleration at this SNR (Cardillo
et al., 2016).

The hadronic model requires efficient CR hadrons acceleration, which must be ac-
companied by substantial magnetic field amplification via the hybrid non-resonant
instability (Bell, 2004). This finding received strong observational support with the
detection of thin X-ray synchrotron filaments at several SNR shocks. Those fila-
ments exhibit fast (year-scale) variability and likely result from cooling of freshly
accelerated electrons in magnetic fields of ≈ 1 mG (Uchiyama et al., 2007). Spatial
correlations between gamma-ray brightness and gas column density are another
consequence of the hadronic model and are expected for core-collapse supernovae,
which explode inside molecular clouds due to the fast evolution of their massive
progenitor stars. Combining synchrotron and inverse Compton emission in the
leptonic model yields volume-filling magnetic field strengths of ≈ 10µG (Gabici
& Aharonian, 2016), which are compatible with mG-field strengths inferred from
X-ray synchrotron filaments only when assuming a clumpy medium. It has also
been argued that a rising gamma-ray energy spectrum with increasing photon en-
ergy provides evidence for leptonic models. However, such a spectrum can also be
obtained in the hadronic model when considering a clumpy ISM because of pro-
ton propagation effects that substantially harden the proton spectrum inside dense
clumps in comparison to the acceleration spectrum in the diffuse ISM (Gabici &
Aharonian (2014); Celli et al. (2019)). The absence of thermal X-rays from the
remnant provides additional support for this scenario because the shock will con-
siderably slow down while penetrating into dense clumps and thus cannot heat
them up to X-ray emitting temperatures (Inoue et al., 2012).

Alternatively, leptonic scenarios have been proposed to explain the gamma-ray
emission from young SNRs in an ISM model with homogeneous density (e.g., Pohl,
1996) in order to overcome the lack of thermal X-ray emission. This results in a
low upper limit on the ISM density. Leptonic models evoke inverse Compton (IC)
scattering of CR electrons with a photon field that is provided by the ubiquitous
cosmic microwave background in combination with (dust-processed) stellar light.
For example, Xing et al. (2016) uses leptonic models to explain the emission from
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the South-Western limb of SN1006 while this explanation is extended to the en-
tire remnant (Petruk et al., 2011; Araya & Frutos, 2012). The leptonic scenario
naturally explains the correlation between X-ray synchrotron and IC gamma-ray
emitting regions such as in Vela Jr. (Aharonian et al., 2007) and matches the ob-
served broadband spectrum. On the other hand, this model implies low magnetic
field strengths, which are in contradiction to the narrow filamentary structures
detected in X-rays. Hence, we need to understand the detailed spatial structure of
SNRs across different wave lengths to unambiguously identify emission and particle
acceleration processes.

The high angular resolution (< 0.1◦) of imaging air Čerenkov telescopes H.E.S.S.,
VERITAS, and MAGIC enables detailed morphological gamma-ray studies of SNRs
and to separate or exclude contributions by compact sources such as pulsars. In
particular, TeV gamma-ray observations have delivered a rich morphology of shell-
type SNRs, ranging from the bi-lobed emission of SN1006 (H.E.S.S. Collaboration,
2010) to the filamentous, patchy appearances of Vela Jr. (H.E.S.S. Collaboration,
2018b) and RX-J1713 (H.E.S.S. Collaboration, 2018a), to the young, type Ia SNR
Tycho G120.1+01.4 (Archambault et al., 2017). In principle, the patchy gamma-
ray morphology could result from density inhomogeneities (Berezhko & Völk, 2008;
Atoyan et al., 2000) of the ambient ISM. It yet remains to be seen whether the
fluctuation amplitude necessary for the observed gamma-ray patchiness does not
introduce a corrugated shock surface (Ji et al., 2016) that is inconsistent with the
observed spherical blast wave.

Here, we propose a different model in which the acceleration process imprints a
rich gamma-ray morphology due to the global magnetic morphology (Pais et al.,
2018). Hybrid particle-in-cell simulations of non-relativistic, strong shocks show
that diffusive shock acceleration of hadrons efficiently operates for quasi-parallel
configurations (i.e., when the shock propagates along the upstream magnetic field
or moves at a narrow angle to it) and converts around 15% of the available energy
to CRs (Caprioli & Spitkovsky, 2014a). In contrast, a shock that propagates per-
pendicular to the magnetic field (or at a large angle to it, i.e., a quasi-perpendicular
configuration) is an inefficient accelerator without strong pre-existing turbulence
at the CR gyroscale (Giacalone et al., 1992) because charged particles are bound
to gyrate around the flux-frozen magnetic field. As the magnetized plasma sweeps
past the shock, so are the gyrating particles, which cannot return back upstream.

We aim to explain the apparently disparate TeV morphologies of SNR 1006 and
Vela Jr. within a single physical model assuming a hadronic model linking gamma-
ray morphology and local orientation of the magnetic field. To this end, we run a
suite of simulations modeling a point explosion that encounters a range in magnetic
field morphologies, from a homogeneous field to a mixture of homogeneous and tur-
bulent fields to fully turbulent fields with varying coherence lengths in Section 4.2.
We rescale our simulation parameters within observational limits to reproduce
the observed gamma-ray spectra and flux (Section 4.3). Comparing simulated to
observed morphologies in Section 4.4 allows to constrain the magnetic coherence
length that the unperturbed ISM had before it encountered the SNR blast wave.
Assuming statistical homogeneity, we thus constrain the magnetic coherence scale
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in the immediate vicinity of the SNR. We explore how the gamma-ray signal is
modified by launching the SNR into stellar wind profiles instead of a homogeneous
ISM environment in Section 4.6 and conclude in Section 4.7. In Sec. 4.5, we study
the interaction of a shock with a dense cloud with numerical simuations and an-
alytics and construct an analytical model for the gamma-ray luminosity from a
core collapse SNR that interacts with a structured ISM with a large population of
dense, cold clouds.

4.2. Simulation setup

4.2.1. Rationale
We aim to produce realistically looking TeV gamma-ray maps with the least amount
of necessary physical complexity but including all the required processes for draw-
ing transparent and robust conclusions from our three-dimensional MHD simula-
tions. To this end we follow the following rationale:

• The general numerical setup consists of simulating the Sedov-Taylor phase
of SNRs by injecting energy at the initial time into our simulation domain
that is filled with magnetized plasma with different correlation lengths. We
identify the shock during the run-time of the simulations, inject CR energy
at the shock with an efficiency that is in agreement with the results of ab
initio particle-in-cell plasma simulations, and advect the CR energy density
with the thermal plasma.

• In order to explain the TeV gamma-ray morphology for two famous shell-
type SNR, SN1006 and Vela Jr., we have to realistically model the external
medium that the remnant shocks are propagating into. Because the ther-
monuclear supernova SN1006 (of type Ia) is located at a Galactic height of
0.4 kpc, the shock propagates into low-density medium and encounters mostly
homogeneous magnetic field that was potentially stretched due to a galactic
outflow or the Parker instability.

• In contrast, the Vela Jr. SNR is thought to be associated with a core-collapse
supernova explosion (Wang & Chevalier, 2002), which results from the col-
lapse of a massive star. Hence, in the post-processing, we account for the
free expansion phase preceeding the Sedov-Taylor phase and rescale the final
radii accordingly. The Vela Jr. SNR encounters a highly structured, multi-
phase ISM that is typical of star forming regions. This is modelled with a
population of dense gaseous clumps embedded in a nearly homogeneous back-
ground medium, which simultaneously explains the absence of thermal X-ray
emission and hard TeV gamma-ray spectra in the hadronic model (Celli et al.,
2019). Finally, we additionally simulate the expansion of the SNR into two
different stellar wind profiles that bracket the uncertainty in the progenitor
model and study its impact on the TeV gamma-ray morphology.
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4.2.2. Simulation setup
We perform our simulations with the second-order accurate, adaptive moving-mesh
code arepo (Springel, 2010; Pakmor et al., 2016a), using standard parameters for
mesh regularization. Magnetic fields are treated with ideal magnetohydrodynamics
(Pakmor & Springel, 2013), using the Powell scheme for divergence control (Powell
et al., 1999). CRs are modelled as a relativistic fluid with adiabatic index 4/3 in a
two-fluid approximation (Pfrommer et al., 2017a).

We localize and characterize shocks during the simulation (Schaal & Springel,
2015) to inject CRs into the downstream (Pfrommer et al., 2017a) with an efficiency
that depends on the upstream magnetic obliquity (Pais et al., 2018). We adopt
a maximum acceleration efficiency for CRs at quasi-parallel shocks of 15% that
approaches zero for quasi-perpendicular shocks (Caprioli & Spitkovsky, 2014a).
We only model the dominant advective CR transport and neglect CR diffusion
and streaming. This is justified since diffusively shock accelerated CRs experience
efficient Bohm diffusion with a coefficient κBohm at the shock (Stage et al., 2006),
which implies a CR precursor (Lprec) that is smaller than our grid cells, Lprec ∼√
κBohmt ∼ 0.1 pc × (pc/10 TeV)1/2 (B/100µG)−1/2 (t/103 yr)1/2. We neglect slow

non-adiabatic CR cooling processes in comparison to the fast Sedov expansion.
Each simulation follows a point explosion that results from depositing ESN =

1051 erg in a homogeneous periodic box (Pfrommer et al., 2017a). This leads to
an energy-driven, spherically-symmetric strong shock expanding in a low-pressure
ISM with mean molecular weight µ = 1.4. Our initial conditions are constructed by
first generating a Voronoi mesh with randomly distributed mesh-generating points
in our three-dimensional simulation box with 2003 cells that we then relax via
Lloyd’s algorithm (Lloyd, 1982) to obtain a glass-like configuration.

To simulate a realistic star forming environment for Vela Jr. we inserted 7× 103

uniformly distributed small, dense clumps with a number density of nc = 103 cm−3

and a diameter of 0.1 pc (McKee & Ostriker, 1977). More details about the clumps
can be found in Sec. 4.5.

Our turbulent magnetic fields exhibit magnetic power spectra of Kolmogorov
type with different coherence lengths. The three magnetic field components are
treated independently so that the resulting field has a random phase. To fulfill the
constraint ∇ ·B = 0 we project out the radial field component in Fourier space.
We assume a low ISM pressure of 0.44 eV cm−3 and scale the field strength to an
average plasma beta factor of unity. To ensure pressure equilibrium in the initial
conditions, we adopt temperature fluctuations of the form nkBδT = −δB2/(8π)
(for details, see Pais et al. 2018).

In our physical set-up, there are two different processes driving turbulence. The
process of diffusive shock acceleration excites non-linear (turbulent) Bell modes
on scales below the CRs’ gyroradii (Bell, 2004). Because we adopt the obliquity-
dependent CR acceleration efficiency from self-consistent plasma simulations (Capri-
oli & Spitkovsky, 2014a) in our sub-grid model, we implicitly account for the full
kinetic physics.

On the contrary, the magnetic turbulence that we explicitly model in our simu-
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lations reflects the supernovae-driven ISM turbulence with varying injection scales
from 4 to 200 pc. The magnetic fluctuations cascade down to levels of δB/B ≈ 10−3

at resonant length scales of TeV CRs so that they do not interfere with the large-
scale field topology at the shock. To derive this result, we assumed Alfvénic tur-
bulence for parallelly propagating Alfvén waves according to theory of magneto-
hydrodynamical turbulence Goldreich & Sridhar (1995) in a mean magnetic field
of 10µG. Hence, the small fluctuation amplitude and the enormous scale separa-
tion of injection-to-gyroscale of ≈ 105 justifies our separate treatment of these two
processes.

4.2.3. Observational modeling
In order to connect our simulations to gamma-ray observations, we need to take
into account all observational constraints on ISM properties. For practical reasons,
here we derive approximate scaling laws of the gamma-ray flux in the Sedov-Taylor
regime and adopt the simplified assumption of a CR spectrum with index αp = 2,
which yields an equal contribution to the total CR energy for each decade in CR
momentum. These scaling relations enable us to find parameter combinations of
the SNR and surrounding ISM, which match observed gamma-ray fluxes in the
hadronic model. We will vary those parameter combinations in a detailed multi-
frequency analysis in Section 4.3 study how they vary if the SNR shock propagates
in a stellar wind profile in Section 4.6.

SN1006

SN1006 represents a good case study of a SNR with a unique gamma-ray morphol-
ogy. Moreover, its exactly known age allows to tightly constrain other environ-
mental ISM parameters. Low-resolution HI measurements of the density around
SN1006 suggest a diffuse density of n = 0.3 cm−3 and an interaction of the SNR
with a dense cloud of n = 0.5 cm−3 (Dubner et al., 2002). Studies based on X-
ray spectroscopy estimate the density of the North-Western rim of the SNR to be
n = (0.15− 0.25) cm−3 (Long et al., 2003) which is consistent with hydrodynamic
simulations of an explosion energy of 1051 erg in a homogeneous medium (Wang &
Chevalier, 2001). More recent papers suggest an even lower ambient density for the
North-Western rim of n = 0.085 cm−3, which is estimated based on X-ray proper
motion measurements (Katsuda et al., 2009), down to a density of n = 0.05 cm−3

for the South-Eastern rim, which is based on X-ray observations in combination
with a shock-plasma model (Acero et al., 2007). Such low densities, however, would
require an uncomfortably high explosion energy in order to explain the gamma-ray
emission of SN1006 in the hadronic model. Assuming a CR proton acceleration
efficiency of 10% yields ESN = 3× 1051 erg (H.E.S.S. Collaboration, 2010).

Integrating the differential gamma-ray flux (equation (1) of Gabici & Aharonian,
2016) yields an estimate of the TeV gamma-ray flux, Fγ, of a SNR in the hadronic
model:

Fγ '
∫ 100 TeV

1 TeV
FγdEγ =

∫ 100 TeV

1 TeV

4Wp E
−2
γ dEγ

ln(Emax/Emin)τπ04πD2 (4.1)
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where τπ0 ' 1.6×109
(
n/0.1 cm−3

)−1 yr is the energy loss time due to neutral pion
production, n is the ISM number density assuming cosmic abundances (µ = 1.4),
D is the distance to the SNR, Wp is the total proton energy and Eγ is the gamma-
ray energy. Here, we assume that the CR spectrum extends from Emin = 1 GeV
to Emax = 4 PeV, which corresponds to the energy of the knee. The factor of 4
accounts for the compression of the density at the shock. The integration yields

Fγ ' 2.7× 10−12
(

Wp

1050 erg

)( n

0.1 cm−3

)( D

1 kpc

)−2 ph
cm2 s . (4.2)

The self-similar solution for a strong shock in the Sedov-Taylor regime (Sedov,
1959) states that the shock radius rST evolves as

rST(t) =
(
ESN

αρ

)1/5
t2/5age, (4.3)

where ρ is the ISM mass density, tage is the age of the remnant and α a dimensionless
factor depending on the adiabatic index of the fluid. For a mixture of thermal gas
and freshly accelerated CRs with a maximum efficiency of 15% we find α = 0.52
(Pais et al., 2018). The resulting shock radius for typical ISM parameters is

rST = 7.82 pc
(

ESN

1051 erg

)1/5 ( n

0.1 cm−3

)−1/5 ( tage

1000 yr

)2/5
. (4.4)

The shock radius can be expressed by the angle it subtends on the sky (assuming
the small-angle approximation)

rST = D sin
(
θ

2

)
' 8.7 pc

(
D

1 kpc

)(
θ

deg

)
. (4.5)

Combining Eq. (4.4) with Eq. (4.5) we derive the following formula for the density
of SN1006:

n = 0.1 cm−3
(
tage

1 kyr

)2 ( D

1.79 kpc

)−5 ( θ

0.5 deg

)−5
. (4.6)

Substituting Eq. (5.3) for n in Eq. (4.2) and solving for Wp yields

Wp = 4.5× 1049 erg
(
tage

1 kyr

)−2 ( Fγ
3.9× 10−13 ph cm−2s−1

)

×
(

D

1.79 kpc

)7 ( θ

0.5 deg

)5
.

(4.7)

Here, we use the observed gamma-ray flux of SN1006, Fγ(> 1 TeV) ≈ 3.9 ×
10−13 ph cm−2s−1, the angle it subtends over the sky, θ ≈ 0.5, and the canonical
energy of a SNR, ESN = 1051 erg. Estimates for the distance range from 1.45 kpc,
calculated using the SNR peak brightness, to 2.2 kpc, based on the comparison
of the optical proper motion with the shock velocity derived from optical thermal
line broadening (Winkler et al., 2003). More recently, Katsuda (2017) derived a
distance of 1.57±0.07 kpc combining the shock speed with the proper motion of the
North-Western filament. We chose to adopt an intermediate distance of 1.79 kpc
for our model.
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Vela Junior

The unknown age of Vela Junior increases the uncertainty for the parameter esti-
mates of Vela Junior in comparison to SN1006. Estimates on the age vary from a
very young remnant of ∼ 700 yrs (Aschenbach et al., 1999) to an older object of
more than 4000 yrs (Katsuda et al., 2008). Distance estimates are also uncertain.
The SNR can be a nearby object at D = 0.2 kpc, as inferred from studies of the
decay of 44Ti nuclei (Iyudin et al., 1998), or a more distant one at D = 0.75 kpc,
as inferred from the slow expansion of X-ray filaments (Katsuda et al., 2008).

Regarding the density estimates, the lack of thermal X-ray emission places a very
low limit at n = 0.03 cm−3 while assuming a homogeneous environmental density
(Slane et al., 2001). However the interaction with dense clumps lowers the result-
ing thermal X-ray emission and allows a higher average density. A conventional
approach in the hadronic model is to use a density of the order of n ∼ 1 cm−3

(Aharonian et al., 2006), while hydrodynamic models suggest values of less than
0.4 cm−3 (Allen et al., 2015). More recently HI and CO measurements even suggest
an extremely high average ISM density of the order of n ∼ 100 cm−3 (Fukui et al.,
2017).

Adopting the observed flux above 1 TeV for Vela Jr. of 2.3× 10−11ph cm−2 s−1

(H.E.S.S. Collaboration, 2018b), we obtain for Wp (using Eqs. (4.2) and (4.7),
respectively):

Wp = 4.5× 1049 erg
( n

0.5 cm−3

)−1 ( D

500 pc

)2

= 4.5× 1049 erg
(

tage

2.9 kyr

)−2 ( D

500 pc

)7 ( θ

2 deg

)5
. (4.8)

For an explosion energy of 1051 erg, the efficiency adopted by Fukui et al. (2017)
only amounts to ∼ 0.1% (i.e. Wp = 1048 erg) at D = 750 pc. Although this low
efficiency is compensated by an extremely high ISM density, in order to maintain
a fixed angular size in the sky at 750 pc, from Eq. (4.8) we notice that the age
of the remnant would exceed 100 kyr, far beyond the observational estimates,
even for the extreme case discussed in Telezhinsky (2009). The choice for the
distance is determined by the constraints on the age. An SNR age in the range
(680− 5100) yr corresponds to distance ranging between 0.3 kpc and 0.6 kpc and
a density ranging from 0.2 cm−3 to 0.66 cm−3. Following the recent estimates on
the distance reported in Allen et al. (2015) we decided to place the remnant at
D = 0.5 kpc, which would correspond to an age of 2900 yrs, assuming that the
expansion is solely in the Sedov-Taylor stage and in a uniform medium.

However, a more accurate modeling of the evolution of a core collapse SNR
includes an initial phase in which the SNR is freely expanding with constant ve-
locity in a wind-blown environment driven only by the initial kinetic energy and
the ejected mass Mej. Consequently the resulting radius is larger than the value
obtained via Eq. (4.4). Following Truelove & McKee (1999), the expanding shock
radius that combines the radii in the free expansion (rfree) and Sedov-Taylor phases
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reads:
rs(t) = [(r∗ST)5/2 + r

5/2
free]2/5

=
(ESN

αρ

)1/2
(tage − tST) +

(3Mej

4πρ

)5/62/5

,
(4.9)

where r∗ST is the modified Sedov radius starting at the end of the free expansion
phase, and

tST = 1
2

( 9
2π2

)1/6
M

5/6
ej E

−1/2
SN ρ−1/3 (4.10)

is the transition time between the free expansion and the Sedov-Taylor regime
corresponding to the moment when the mass swept up by the explosion equals
the ejected mass (Truelove & McKee, 1999). Combining Eqs. (4.5) and (4.9) and
solving for tage we find a more precise estimate for the age of Vela Jr.

In order to reliably model the circum-stellar medium of Vela Jr., we include a
population of dense gaseous clumps (Maxted et al., 2018) with a typical size of
0.1 pc and a number density of ∼ 103cm−3 (Inoue et al., 2012). The detection of
these molecular clouds is linked to the rotational CO lines often observed in these
systems (Fukui, 2013). However, it is questionable whether future telescopes will
have enough resolution to resolve the emission from a single clump. To include the
effect of the clumpy ISM, we redefine Eq. (4.2) as:

Fγ ' 2.7× 10−12(1 + χ)

×
(

Wp

1050 erg

)( n

0.1 cm−3

)( D

1 kpc

)−2 ph
cm2 s ,

(4.11)

where χ is the ratio between the swept-up mass of the clumps within the SNR
volume VSNR and the diffuse ISM mass swept up by the shock. It reads:

χ = η̄
M swept

c
M swept

ISM
= η̄
〈ρc〉VSNR

ρISMVSNR

= 0.2
(
η̄(t)
30%

)(
〈ρc〉

1.6× 10−2 M�pc−3

)( n

0.42 cm−3

)−1
,

(4.12)

where η̄(t) = 30% is the average percentage of clumped mass penetrated and
accelerated by the shock and 〈ρc〉 is the average density of dense gas contained
in the clumps. More details about the behavior of η̄(t) can be found in Sec. 4.5.
Inserting Eq. (4.12) into Eq. (4.11) and solving for the ISM density n, we find:

n = 0.42 cm−3
[
1.2

(
Fγ

2.3× 10−11 ph cm−2 s−1

)

×
(

Wp

4.5× 1049 erg

)−1 ( D

0.5 kpc

)2

− 0.2
(
η̄(t)
30%

)(
〈ρc〉

1.6× 10−2 M�pc−3

) ]
.

(4.13)
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In our setup for Vela Jr. we set 〈ρc〉 = 1.6 × 10−2 M�pc−3 and we assume a
distance of D = 0.5 kpc so that the dense-cloud mass in within the supernova
remnant volume is similar to the value assumed by Celli et al. (2019) for the cloud
mass in RX-J1713,

M swept
c = 4

3πr
3
s〈ρc〉 =45M�

(
D

0.5 kpc

)3 ( θ

2 deg

)3

×
(

〈ρc〉
1.6× 10−2 M�pc−3

) (4.14)

where we expressed rs by Eq. (4.5).
Thus, the corresponding diffuse inter-clump density for the ISM is lowered to

n = 0.42 cm−3 (see Eq. (4.13)) and the corresponding age as a function of the
ejected mass is

tage = 2.68 kyr + 0.12 kyr
(
Mej

M�

)5/6
. (4.15)

If we assume an ejected mass of 3 M�, the resulting age for Vela Jr. is 3000 yrs,
slightly higher than that inferred from considering a Sedov-Taylor phase only in a
non-clumpy medium. We adopt this more accurate estimate in our analysis re-scale
the distances of our Sedov-Taylor simulations according to Eq. (4.9). We defer a
detailed simulation of this combined free expansion and Sedov-Taylor phases to
future work, since the dominating CR pressure inside the remnant should also
cause the Rayleigh-Taylor instabilities at the contact discontinuity of shocked ISM
and shocked ejecta to develop differently.

4.3. Multi-frequency spectral modelling
In order to improve the order of magnitude limits as presented in Sect. 4.2.3, we
derive multi-wavelength spectra from radio to TeV gamma-rays. This enables us
to carefully investigate the nature of the gamma-ray emission from both SNRs.
The data are then compared to a one-zone model in which the integrated particle
populations (electrons and protons, denoted by subscripts i = {e, p}) are described
by a power law with exponential cutoff of the form:

f1D(pi) = d2Ni

dpidV
∝ p−αii exp

−( pi
pi,cut

)βi (4.16)

where f1D(pi) = 4π p2
i f

3D(pi), αi is the spectral index, pi,cut is the cutoff momentum
and βi describes the sharpness of the cutoff; with values reported in Table 5.1.

Radio synchrotron and inverse Compton emission (including the Klein-Nishina
cross section) are calculated following Blumenthal & Gould (1970). The hadronic
gamma-ray emission is calculated from parametrisations of the cross-section of
neutral pion production at low and high proton energies, respectively (Yang et al.,
2018b; Kelner et al., 2006). Because our simulations only follow CR protons, we
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Figure 4.1.: Multi-frequency spectra of SN1006 (left-hand panels) and Vela Jr. (right-hand pan-
els). The top panels show a hadronic scenario for both remnants assuming an
electron-to-proton ratio of Kep = 10−3. The bottom panels show a mixed hadronic-
leptonic scenario with Kep = 10−2. For SN1006, we use data in the radio (Reynolds,
1996), X-rays (Bamba et al., 2008), from FERMI (Abdo et al., 2010a) and H.E.S.S.
(H.E.S.S. Collaboration, 2010) (sum of the two regions). For Vela Jr., we adopt data
in the radio (Duncan & Green, 2000), X-rays (Aharonian et al., 2007), from FERMI
(Tanaka et al., 2011) and H.E.S.S. (H.E.S.S. Collaboration, 2018b). We account for
the following processes: synchrotron radiation from primary electrons (green lines),
IC scattering on the CMB for SN1006 and additionally on starlight for Vela Jr. (red
lines) and hadronic interactions (blue lines).
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Figure 4.2.: Two-dimensional cross-sections of our SNR simulations. Top row: slices of the mag-
netic field strengths of SN1006 and Vela Jr.Ḃottom row: 2D slices of the number
density n normalized to the background density n0. The outwards pointing arrows
in the top panels show the orientation of the magnetic field at the shock, color-coded
by the magnetic obliquity (red/blue for quasi-parallel/-perpendicular shocks). Both
simulation models adopt a constant-density ISM and differ only in the assumed mag-
netic morphology: SN1006 has a homogeneous magnetic field pointing to the top-left
augmented with a mildly turbulent field while Vela Jr. adopts a fully turbulent mag-
netic field with correlation length λB = L/2 = 13 pc.
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Figure 4.3.: Two-dimensional projected gamma-ray maps of our SNR simulations. Top row, fea-
turing SN1006: CR pressure (left), simulated pion-decay gamma-ray surface bright-
ness resulting from hadronic CR interactions convolved to the observational reso-
lution (middle) and acceptance-corrected excess map for SN1006 with a Gaussian
PSF of width R68 = 0.064◦, corresponding to σ = R68/1.515 = 0.042◦ (H.E.S.S. Col-
laboration, 2010). Bottom row, featuring the same quantities for Vela Jr. with an
acceptance-corrected excess map that was convolved with a Gaussian PSF of width
σ = 0.08◦ (H.E.S.S. Collaboration, 2018b). We add Gaussian noise at the observed
level and power spectrum and convolve both simulated gamma-ray maps to the ob-
servational angular resolution.
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assume an electron-to-proton ratio Kep at 10 GeV for the normalization of the
electron population. For our hadronic model we set Kep = 10−3. Since there are
parameter degeneracies, we also show a mixed hadronic/leptonic model for the
gamma-ray emission with Kep = 10−2.

Results for the pure hadronic and the mixed hadronic-leptonic models are shown
in Fig. 4.1 for both SNRs. The model parameters are reported in the lower section
of Tab. 5.1. Note that the magnetic field entering here is the radio synchrotron
emission-weighted magnetic field, which is situated in the post-shock region, in-
terior to the SNR shell. In the case of SN1006, because of its position above the
galactic plane, we assume an inverse-Compton (IC) scattering mainly on CMB
photons. The location of Vela Jr. in a star forming region suggests that a com-
bination of IC scattering on starlight with an energy density of 5uCMB and CMB
photons is more appropriate. In particular, we assume that the starlight is repro-
cessed by warm dust with a temperature of 100 K, which is typical for conditions
in star forming regions (Morlino & Caprioli, 2012). Note that we adopt hard CR
proton spectral indices of αp < 2 in all models, which naturally emerge as a result
of streaming CRs inside dense clumps of a clumpy ISM (Celli et al., 2019).

4.4. Morphological gamma-ray modelling
Our simulation models for the two SNRs are described by the energy-conserving
Sedov-Taylor solution (Ostriker & McKee, 1988). The solution also remains self
similar for obliquity-dependent CR acceleration (Pais et al., 2018). We assume
a power-law CR momentum distribution for calculating the pion-decay gamma-
ray emissivity (Pfrommer & Enßlin, 2004; Pfrommer et al., 2008). After line-of-
sight integrating the gamma-ray emissivity and adding Gaussian noise (so that
the synthetic map matches the observational noise properties in amplitude and
scale, see Pais & Pfrommer in prep.), we convolve the maps with the observational
point-spread function.

First, we perform exploratory simulations with parameter choices guided by the
self-similar scaling of the Sedov-Taylor solution. We find parameter combinations
that approximately reproduce all observational characteristics (with box size L =
20 pc for SN1006 and L = 26 pc for Vela Jr.). Fixing angular size, explosion energy,
and employing the self-similar solution, we then re-scale the solution by varying
the ambient density within observational bounds to match the observed gamma-
ray fluxes. In case of the core collapse supernova remnant Vela Jr. we must take
into account the free expansion phase, while assuming an ejected mass of 3 M�.
Thus, we evolve the simulation of the Sedov explosion so that the combination
of free expansion and Sedov phase matches its angular size at a given distance
following Eq. (4.9), and we re-scale the shock radius accordingly to account for the
free expansion phase. The final set of parameters is reported in Table 5.1.

To model SN1006 we assume a dominant homogeneous magnetic field that points
to the top-left as supported by studies of radio polarization signatures (Reynoso
et al., 2013). We superpose a turbulent magnetic field with a correlation length
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Figure 4.4.: Synthetic gamma-ray maps of SN1006 (first row) and Vela Jr. (second row) for a
purely turbulent magnetic field with different coherence lengths (see panels). The
sequence towards larger correlation lengths starts to approach more homogeneous
magnetic field geometries with the characteristic bi-lobed shell morphology (top right
for SN1006) whereas smaller coherence lengths approach the isotropic limit (lower
left for Vela Jr.). Clearly, the observed gamma-ray map of Vela Jr. falls in between
the cases λB = 8.7 and 26 pc (bottom left and middle panels), justifying our choice
of λB = 13 pc.
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λB = L = 20 pc (≈ 0.74◦ at D = 1.53 kpc) that contains 1/9 of the energy density
of the homogeneous field. For Vela Jr. we perform a range of fully turbulent
simulations with magnetic coherence lengths λB = L/f (f ∈ {1, 2, 3, 4, 5}). We
find that our simulation model with λB = L/2 = 13 pc (≈ 2.3◦ at 0.5 kpc)
statistically matches the gamma-ray maps best.

We present different physical properties of our simulation models for SN1006
and Vela Jr. in Fig. 4.2 and 4.3. While both simulation models adopt a constant
background density, their magnetic structure differs (Fig. 4.2). This results in a
significantly different CR pressure distribution owing to the obliquity-dependent
shock acceleration (left column of Fig. 4.3).

The hadronically induced gamma-ray maps echo this difference as they depend
on the CR pressure distribution multiplied with the target gas density, which peaks
at the shock surface (middle column of Fig. 4.3). The bi-lobed gamma-ray mor-
phology of SN1006 is a direct consequence of quasi-parallel shock configuration
at the polar caps. This contrasts with the patchy filamentary, limb-brightened
gamma-ray morphology of our model for Vela Jr., which results from the small-
scale coherent magnetic patches with a quasi-parallel shock geometry.

A direct comparison with observational images is shown in the right column of
Fig. 4.3. In the case of SN1006, we convolve the simulated map with a Gaussian
of width σ = 0.042◦ (equal to σ = R68/1.515 where R68 = 0.064◦), in the case
of Vela Jr. we use σ = 0.08◦ (the observational point spread function, PSF). The
obliquity-dependent shock acceleration model is able to accurately match the TeV
gamma-ray morphologies of SN1006 and Vela Jr. solely by changing the magnetic
coherence scale (with a homogeneous field representing the limit of an infinite
coherence scale). Clearly, in the case of Vela Jr. this match is on a statistical basis
as the phases of turbulent fields are random. We emphasize that all our simulations
assumed a constant-density ISM that the SNR has expanded into. Note that
we also obtain filamentary gamma-ray morphologies due to obliquity dependent
shock acceleration in SNRs that are expanding into a stellar wind environment
(see Sec. 4.6).

The success of our models enables us to estimate λB of the ISM surrounding
SN1006 and Vela Jr. by comparing the observed gamma-ray maps to simulations
with different values of λB. While the morphology of SN1006 is best matched
by a homogeneous ambient field (possibly with the addition of a small-amplitude
turbulent field), we need to perform an analysis similar to Vela Jr. in order to
formally place a lower limit on the magnetic coherence length. To this end, we
perform three different simulations that have a purely turbulent field with coher-
ence scales of λB = 50, 100 and 200 pc. Figure 4.4 shows gamma-ray maps of
three different magnetic coherence scales for both SNRs, respectively. For SN1006,
the number of gamma-ray patches decreases with increasing coherence scale (left
to right) to the point where there are two patches visible (λB = 200 pc). Since
the alignment of these two patches is not symmetric with respect to the centre,
we conclude that the true coherence scale must be larger and in fact is consis-
tent with a nearly homogeneous field across the SNR. For Vela Jr., the sequence of
gamma-ray maps with decreasing coherence scale leads to smaller-scale gamma-ray
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patches that asymptotically approach an isotropic distribution. We find that the
correlation length of Vela Jr. ranges in between the box size L and L/3, suggesting
λB ≈ L/2 = 13+13

−4.3 pc, allowing for uncertainties in distance and λB.

4.5. An analytical model for the gamma-ray
luminosity in a clumped medium

Here, we study the interaction of a shock with a dense cloud with numerical simua-
tions and analytics and construct an analytical model for the gamma-ray luminosity
from a core collapse SNR. We assume that the shock propagates through a highly
structured ISM with a large population of dense clouds, which plays an important
role for the resulting multi-frequency emission (Wang & Chevalier, 2002).

4.5.1. Numerical setup
To capture the clumpy structure of the ISM in these regions we generated 7× 103

dense gaseous clumps with a radius of Rc = 0.05 pc each and uniformly distributed
in a box of size L = 25 pc, subset of the simulation box of size L = 26 pc. We used
a margin of 0.5 pc for each side of the cube to avoid any incidental misplacement
of the clumps. We deposit a total mass of dense clumps of M tot

c = 255 M�
within the selected box so that each clump has a mass of Mc = 0.036 M� and
the volume-averaged H2 density is 〈ρc〉 = 1.6 × 10−2 M�pc−3. Following a setup
similar to Celli et al. (2019), we assume spherical clumps with a number density
nc = 1.4×103 cm−3 and a molecular weight µ = 2 (associated to the clumps) so that
the density contrast with respect to the background is δ = nc/n0 ∼ 3× 103. Note
that we neglect radiative cooling in these simulations, which is negligible over the
propagation time of the SNR shocks considered while it is crucial for understanding
the (thermo-)dynamics of the system on longer time scales (McCourt et al., 2018;
Gronke & Oh, 2018; Sparre et al., 2019).

We use the code arepo, which employs an unstructured mesh that is defined
as the Voronoi tessellation of a set of mesh-generating points. If they move with
the local fluid speed, the scheme inherits the advantages of Lagrangian fluid meth-
ods that keep the mass per cell approximately fixed. arepo allows for super-
Lagrangian resolution capabilities by inserting new mesh points. Hence, in order
to accurately describe the dynamics of the dense clouds, each small clump is re-
solved with 103 cells that are uniformly distributed within a spherical volume. To
ensure a smooth transition between the larger cell size in the low-density diffuse
ISM and the well-resolved clumps, we initially place a buffer shell of thickness
0.01 pc with the density of the diffuse ISM and the high resolution of the clump
cells. Despite the high post-shock vorticity caused by the impact of shock front
on the clumps, the volume fraction occupied by the dense bullets is small enough
to maintain the shock front practically self similar throughout its evolution in the
medium.
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Figure 4.5.: Snapshots of the shock-cloud interaction at t = 10, 100 and 200 yrs after the collision
for a density contrast of δ = 103. For each time we show slices of the gas density
(top row), CR energy density (second row), magnetic field strength (third row) and
magnitude of the vorticity (fourth row).

4.5.2. Interaction of a shock with a dense clump
Because of momentum conservation, the SNR shock penetrates much slower in the
dense clump in comparison to the shock velocity in the dilute medium outside the
clump and thus, only a fraction of dense gas inside these objects is accelerated at
a given time. To investigate the mass fraction η that is processed by the shock, we
conduct simulations with clumps of different density (nc = {102, 103, 104} cm−3).
To accurately describe the dynamics, we resolve the cloud with 1.5× 105 particles
within a radius of 0.05 pc. We place the cloud in a shock-tube of length 2 pc and
density of n0 = 1 cm−3. The shock is set to propagate in the x direction with initial
density and pressure jumps so that the initial shock velocity is vs = 5000 km s−1.
Different snapshots of the shock-cloud interaction for a density contrast of δ = 103

are reported in Fig. 4.5.
When the supernova blast wave impacts a dense structure at some constant

(oblique) angle, it experiences the same ”shock deflection” and amount of entropy
injection along the shock front because only the parallel velocity component is re-
duced by the compression ratio while the perpendicular component is conserved.
If the blast wave encounters a dense, curved structure, the incoming velocity expe-
riences a different amount of deflection along the shock surface (perpendicular to
the shock normal), which injects vorticity according to Crocco’s theorem (1937).
This vorticity is injected at the length scale of the clump and cascades to smaller
scales with increasing distance from the shock. The shock in the dilute phase
closes in after passing the clump and eventually straightens up as it closes the dip
at the location of the clump after about 100 years (see Fig. 4.5). While the shock
front propagates seemingly undisturbed at larger distances from the clump, it has
dramatically slowed down inside the clump as a result of momentum conservation.
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The relic of such a complex history of the shock evolution is a highly turbulent
tail in the downstream of the clump, which is able to drive a small-scale turbulent
dynamo that amplifies the magnetic field there. This behavior is consistent with
the lower resolution simulation of the entire SNR presented in top right panel of
Fig. 4.2, where a system of uniformly distributed clumps leave several magnetized
finger-like structures after the collision with the blast wave.

The interaction of a shock with a spherical object has been previously studied
by Pfrommer & Jones (2011) for a low-density bubble, the results of which can
also be applied to the case of a dense clump by exchanging the rarefaction wave
with a reverse shock characteristics that propagates in the opposite direction of the
original shock. Solving the Riemann problem in this case, we can relate the initial
shock speed vs0 in the dilute phase to the shock speed vsc propagating inside the
clump. The dilute and the clump phases have the same initial pressure P0 while the
sound speeds of the dense and dilute media are related by cc =

√
γP0/ρc = c0/

√
δ.

The equation for a left reverse shock condition (Toro, 2009) reads:

v∗ = vL + (PL − P∗)
√√√√ 2
γL + 1

[
ρL

(
P∗ + γL − 1

γL + 1PL

)]−1/2
(4.17)

where the subscript ”∗” denotes the state behind the reverse shock while the sub-
script L represents the state ahead of the reverse shock. Introducing the Mach
number ratio µ =Mc/M0 =

√
δ vsc/vs0, assuming γ0 = γc = 5/3, and combining

the various jump conditions (see eq. (B1) in Appendix B of Pfrommer & Jones
2011 with subscript L = 3) we find an equation for µ as a function of the Mach
number M0 in the dilute phase and the density contrast δ:

1 =
√
δµ− µM2

0
(√

δ − µ
)

+ µ
(
µ2 − 1

)
M2

0

√√√√ δ (M2
0 + 3)

(4µ2 + 1)M2
0 − 1 ,

(4.18)

which has a numerical solution for µ given M0 and δ. In the regime of strong
shocks (i.e., M0 � 1) Eq. (4.18) is reduced to the simpler form:

µ = (1− µ2)
√√√√ δ

4µ2 + 1 +
√
δ (4.19)

For δ � 1 Eq. (4.19) can be easily solved and has the positive root µ =
√

6. In order
to account for multi-dimensional effects of order unity, we introduce a factor fd that
we calibrate on our three-dimensional (3D) simulations and write the solutions as
µ = fd

√
6. Because µ =

√
δ vsc/vs0 we conclude that vsc ∝ δ−1/2vs0. We confirm the

applicability of this scaling behavior in 3D simulations by fitting the appropriate
power law to the shock tube simulation of the three different density contrasts (see
Fig. 4.6). The theoretically expected scaling matches the simulations within the
variance of the shock velocity, however the pre-factor found in our 3D simulations
is closer to 1.2 rather than 2, which means that fd ' 1/2. A comparison between
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Figure 4.6.: Simulated shock velocity vsc inside a dense clump as a function of the density contrast
for the cases δ = [102, 103, 104]. The point for δ = 1 represents the shock velocity
in the dilute phase. Within the uncertainty, the simulation points follow the δ−1/2

scaling behaviour derived in Eq. (4.19).

1D runs and 3D runs for density contrasts of 102, 103 and 104 is shown in Fig. 4.7.
In the following formulas to construct the analytical model for the gamma-ray
luminosity we will apply the 3D pre-factor rather than the 1D prediction.

4.5.3. Constructing the analytical model
To calculate the mass fraction of the clump that is processed by the shock, we
proceed as follows. We follow the shock-wave propagation inside the clump and
calculate the amount of shocked gas inside the clump as a function of time. We de-
fine the shock-processed clump mass fraction η(t) as the ratio between the shocked
gas mass of the dense clump and its total mass as a function of time.

A shock propagates in a shock-tube with the velocity ∝ t−1/3 as predicted by
the 1D Sedov problem while a 3D blast wave evolves according to t−3/5. In the
latter case we integrate the velocity to obtain the shock propagation length inside
the clump as a function of time:

r(t, t0) = fd

√
6
δ

∫ t

t0
vs0(t′)dt′

= fd

√
6
δ

(
ESN

αρ0

)1/5
[t2/5 − t2/50 ]

(4.20)

which is valid for t0 < t < tc(t0), where t0 is the time of the supernova shock
impacting the clump and tc is the crossing time of the shock inside the clump,
which can be obtained from the requirement that the shock propagation length
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has to be smaller than the size of the clump,

tc(t0) =
 2Rc

fd
√

6
δ1/2

(
ESN

αρ0

)−1/5
+ t

2/5
0

5/2

. (4.21)

This means that for typical values, the shock propagation length in the clump is

r(t, t0) = 0.064 pc
(
δ

103

)−1/2 ( n

0.1 cm−3

)−1/5
(4.22)

for t = 1 kyr and t0 = 500 yr. We can determine the volume of the shocked material
inside the clump using Eq. (4.20) as the height of a polar cap as a function of time,
while neglecting the curvature of the shock inside the clump. The ratio between
the shocked polar cap volume of the clump and its total volume reads

η(t, t0) = Vcap

Vtot
= π/3× r2(3Rc − r)

4π/3×R3
c

= r2(3Rc − r)
4R3

c
, (4.23)

where r = r(t, t0) and we used the fact that the clump density is constant.
Eq. (4.23) represents the mass fraction accelerated by the shock as a function
of time. For r(t, t0) = 2Rc we set η(t, t0) = 0 to indicate that the clump is either
destroyed by MHD instabilities or emptied of CRs.

Assuming that a uniform spatial distribution of clumps is overrun by a self-
similar quasi-spherical blast wave, it is clear that the shock interacts at different
times with individual clumps. This implies that the innermost clumps close to the
explosion site have a higher fraction of shocked mass in comparison to clumps at
the periphery. For this reason we have to weight Eq. (4.23) with a distribution
of clumps that interact with the shock per unit time. Assuming that the number
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of clumps is large so that the continuum limit applies, the number of clumps that
start to interact with the SNR shock is given by

Ṅ(t) = dN(t)
dt = 〈ρc〉

Mc

dVs(t)
dt = 4

3π
〈ρc〉
Mc

d[r3
s(t)]
dt

= 1.7
yr

(
t

1 kyr

)1/5 ( 〈ρc〉
M�pc−3

)(
Mc

M�

)−1 (4.24)

In the last step, we assume the Sedov-Taylor regime for the SNR because the
fraction of volume swept-up in the free expansion phase is only about 0.3% of
the final volume and it encompasses only less than 20 clumps for our setup. Us-
ing Eqs. (4.23) and (4.24) the average efficiency η(t) weighted by the number of
interacting clumps per unit time for a SNR reads

η̄(t) =

∫ t

0
Ṅ(t′)η(t, t′)dt′∫ t

0
Ṅ(t′)dt′

'
{ 1

52r̃9/4(t, δ, n) + 7r̃2/3(t, δ, n)
}−1

,

(4.25)

where

r̃(t, δ, n) = 0.25
(
δ

103

)−1/2 ( n

0.1 cm−3

)−1/5 ( t

1 kyr

)2/5
. (4.26)

Results for different values of δ are plotted in Fig. 4.8. For δ = 3 × 103 and
t = 2.5 kyr we find η(t) ' 32%, which is slightly higher than the value found in
the simulation (around 30%). To obtain the gamma-ray luminosity Lγ = 4πD2Fγ
due to hadronic CR proton interactions, we separately calculate the contributions
from the dilute phase and the clouds and then add them together:

Lγ =
∫
sπ0→γdV = Lγ,d + Lγ,c, (4.27)

where sπ0→γ is the neutral pion-decay source function (Pfrommer & Enßlin, 2004).
The contribution from the dilute phase is given by

Lγ,d = 5.3× 1032
(

Wp

1050 erg

)(
〈n〉

0.1 cm−3

) ph
s , (4.28)

where Wp the total proton energy integrated over the whole SNR volume and 〈n〉
is the volume averaged number density, which approximately coincides with the
number density on the dilute phase due to the negligible volume filling factor of
the dense clumps, fV = Vc/V = 2.4 × 10−4 for our parameters. The gamma-ray
luminosity associated to the clumped gas is:

Lγ,c =
∫
sπ0→γdVc =

∫
sπ0→γfV dV

= 1.6× 1032
(
η̄(t)
30%

)(
fV

10−4

)( nc

103 cm−3

)( Wp

1050 erg

) ph
s

(4.29)
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Figure 4.8.: Evolution of η̄(t) for different values of δ = 3× [102, 103, 104] for n = 0.42 cm−3. The
lines represent the theoretical values calculated via Eq. (4.25). Although an increas-
ing number of clumps are hit by the shock the slowdown of the blast wave transfers a
decreasing amount of momentum to the clumps leading to an ideal asymptotic value
for η̄(t). The dashed lines represent the case where the clumps are not destroyed and
continue to be active sources of CRs.

where Vc is the volume occupied by the clumps and η̄(t) is the average fraction of
the shocked clump volume fraction inside the remnant volume. In our setup we
set nc = 1.4× 103cm−3. Combining Eqs. (4.28) and (4.29) we get

Lγ = Lγ,s + Lγ,c

= 5.3× 1032(1 + χ)
(

Wp

1050 erg

)( n

0.1 cm−3

) ph
s

(4.30)

where
χ = 0.3

(
η̄(t)
30%

)(
fV

10−4

)( nc

103 cm−3

)( n

0.1 cm−3

)−1
. (4.31)

It is easy to verify that Eq. (4.12) is equivalent to Eq. (4.31) because of the following
identity:

fV nc = fV ρc

µHmp
= 〈ρc〉
µHmp

(4.32)

In terms of normalized quantities the previous equation becomes:(
fV

2.4× 10−4

)( nc

1.4× 103 cm−3

)
=
(

〈ρc〉
1.6× 10−2M�pc−3

)
. (4.33)

4.6. SNR expanding into a stellar wind
Here, we study how different assumptions of the circumstellar medium (CSM)
affect the evolution of a SNR and its morphological appearance at gamma-ray
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Figure 4.9.: Synthetic γ-ray maps of Vela Jr., which result from simulations of a blast wave
expanding into a stellar wind profile. To account for the uncertainties, we adopt
different wind density profiles and a purely turbulent magnetic field of coherence
scale λB = 13 pc. The panels show SNRs that propagate in a constant density
medium (left), in a density profile ρ ∝ r−1 (middle) and ρ ∝ r−2 (right) at the same
age and same mean density. As expected, the higher central density slows down
the expanding shock, modifies the morphology into a more compact emission region,
which however maintains the shell-type morphology.

energies. Studies of SNR evolution into stellar-wind-blown environments range
from the initial free-expansion phase (Soderberg et al., 2010; Kamble et al., 2014;
Fransson et al., 2015) to the self-similar Sedov phase (Landecker et al., 1999).

The Vela Jr. SNR is thought to be associated with a core-collapse supernova
explosion (Wang & Chevalier, 2002), which results from the collapse of a massive
star of mass M ≥ 8M�. The particularities of the progenitor are responsible for
the evolution of the SNR in a highly modified wind-blown CSM shell, causing
a substantially different evolution from the classical sequence of free expansion
followed by a Sedov and a radiative stage (Dwarkadas, 2005). As pointed out by
Chevalier (1982) and Ostriker & McKee (1988), a SNR that interacts with a CSM
density profile ρ(r) ∝ r−q has a self-similar analytical solution for the evolution of
shock radius and velocity:

rs(t) = A
1

5−q t
2

5−q , (4.34)

vs(t) = 2
5− qA

1
5−q t

q−3
5−q , (4.35)

where A is a constant depending on the ambient average density, the SN energy
and the adiabatic index. Here, q = 2 corresponds to the case of constant mass loss
from the progenitor star.

We simulate supernova explosions in three different power-law wind profiles with
q ∈ {0, 1, 2}. To ease comparison we adopt the same average number density for
all simulations as reported in Table 5.1. All other initial simulation parameters for
the energy and the turbulent magnetic field remain unchanged. We evaluate the
SNR simulations at the same age, which emphasizes the effect of a denser central
CSM for steeper power-law indices. In order to avoid a non-vanishing magnetic
divergence during the generation of the initial density profile, we cap the density
in the central cells with a Plummer-type softening length of rc = 0.3 pc.
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The wind speed vw ranges from values of order (1000 − 3000) km s−1 for very
young SNRs (Abbott, 1978) to 100 km s−1 or less for red-giant stars. Hence, we
can neglect vw in comparison to the shock velocity during the early Sedov phase
(Ostriker & McKee, 1988), which means that the approximation of assuming a
point explosion in the various density profiles is fully justified and does not affect
the final simulation result. This causes the remnant to directly enter the Sedov
stage and to bypass the earlier phase of a swept-up wind-blown shell.

In Fig. 4.9 we show simulated gamma-ray maps of Vela Jr. for the three different
CSM environments. The primary effect of a stratified wind density profile consists
of slowing down the propagating blast wave. This results in a more compact and
brighter gamma-ray morphology. Many of the general morphological features of
the patchy gamma-ray map previously found for the constant density solution
carry over to the stratified density profiles. However, the higher central number
density in comparison to the flat profile increases the gamma-ray brightness, with
a flux enhancement by a factor of six for the q = 2 profile, as expected for the
evolution of these profiles at early times (Kirk et al., 1995). Thus, comparing our
simulated maps to the observed shell-type morphologies at these ages, this argues
for more shallow density profiles |q| < 1, with slight preferences for a constant
density medium for the SNRs studied here.

4.7. Discussion and Conclusions
We have presented the first global simulations and gamma-ray maps of SNRs in
the hadronic model, which account for magnetic obliquity-dependent CR accel-
eration. We show that the multi-frequency spectrum in the hadronic and mixed
hadronic/leptonic models match observational data for our simulation parameters
of the ISM, which are motivated by observations.1 Our synthetic gamma-ray maps
match the apparently disparate TeV morphologies and total gamma-ray fluxes of
SNR 1006 and Vela Jr. within a single physical model extremely well: SN1006
expands into a homogeneous magnetic field that is reminiscent of conditions for a
galactic outflow or a large-scale Parker loop as supported by its Galactic height of
z = 0.6 kpc (at D ' 1.8 kpc) above the midplane (Stephenson & Green, 2002).
On the contrary, Vela Jr. is embedded in a small-scale turbulent field typical of
spiral arms. This suggests that the diversity of shell-type TeV SNRs originates in
the obliquity dependence of the acceleration process rather than in density inho-
mogeneities.

Comparing our simulations of different λB to observed TeV maps of shell-type
SNRs enables us to estimate λB of the unperturbed ISM before it encountered the
SNR blast wave. Assuming statistical homogeneity, we constrain λB in the vicinity

1We note that the purely leptonic scenario can also match the multi-frequency data of our
SNRs (SN1006, H.E.S.S. Collaboration 2010; Vela Jr., H.E.S.S. Collaboration 2018b). We will
address the interesting question whether three-dimensional MHD simulations with obliquity
dependent electron acceleration can produce radio, X-ray and gamma-ray maps in the leptonic
model that match observational data in future work.
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of SN1006 and Vela Jr. to > 200+50
−40 pc and 13+13

−4.3 pc, respectively. Simulating
the SN explosion that expands into a stratified density profile caused by a stellar
wind produces similarly patchy gamma-ray maps and hence does not alter our
conclusions that magnetic obliquity-dependent CR acceleration is responsible for
this patchy morphology. However, at the same mean density, the blast wave will
encounter a denser CSM at small radii, which slows down the propagating blast
wave and results in a more compact and brighter gamma-ray map at the same age.

If obliquity-dependent diffusive shock acceleration also applies to electrons, we
could produce similar synthetic TeV maps in the leptonic model to constrain the
magnetic coherence length. If electron acceleration were independent of magnetic
obliquity then this work would provide strong evidence for the hadronic scenario
in shell-type SNRs as the necessary element to explain the patchy TeV emission.
In any case, we conclude that the inferred coherence scales are robust to specific
assumptions of the gamma-ray emission scenario (hadronic vs. leptonic models).

Moreover, here we show that the hadronic model is able to explain shell-type
SNR morphologies, which naturally emerge in our simulations due to the peaked
density at the shock in combination with the slowly decreasing CR pressure profile
(Pais et al., 2018). In the leptonic model, fast electron cooling would have to confine
the emission regions close to the shock. However, this would imply strong spectral
softening towards the SNR interior, which is not observed in Vela Jr., seriously
questioning the leptonic model for this SNR (H.E.S.S. Collaboration, 2018b). Our
work opens up the possibility of mapping out the magnetic coherence scale across
the Milky Way and other nearby galaxies at the locations of TeV shell-type SNRs,
and to study how it varies depending on its vertical height or its location with
respect to a spiral arm. Thus, our work represents an exciting new science case for
gamma-ray astronomy, in particular for the Cherenkov Telescope Array.
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5. Simulating TeV gamma-ray
morphologies of shell-type
supernova remnants

This chapter is an adapted version of the paper Simulating TeV gamma-ray mor-
phologies of shell-type supernova remnants submitted on Monthly Notices of Royal
Astronomical Society.

Abstract
Supernova remnant (SNR) shocks provide favourable sites of cosmic ray (CR) pro-
ton acceleration if the local magnetic field direction is quasi-parallel to the shock
normal. Using the moving-mesh code arepo we present a suite of SNR simulations
with CR acceleration in the Sedov-Taylor phase that combine different magnetic
field topologies, density distributions with gradients and large-scale fluctuations,
and – for our core-collapse SNRs – a multi-phase interstellar medium with dense
clumps with a contrast of 104. Assuming the hadronic gamma-ray emission model
for the TeV gamma-ray emission, we find that large-amplitude density fluctuations
of δρ/ρ0 & 75 per cent are required to strongly modulate the gamma-ray emissiv-
ity in a straw man’s model in which the acceleration efficiency is independent of
magnetic obliquity. However, this causes strong corrugations of the shock surface
that are ruled out by gamma-ray observations. By contrast, magnetic obliquity-
dependent acceleration can easily explain the observed variance in gamma-ray mor-
phologies ranging from SN1006 (with a homogeneous magnetic field) to Vela Junior
and RX J1713 (with a turbulent field) in a single model that derives from plasma
particle-in-cell simulations. Our best-fit model for SN1006 has a large-scale density
gradient of ∇n ' 0.0034 cm−3 pc−1 pointing from south-west to north-east and
a magnetic inclination with the plane of the sky of . 10◦. Our best-fit model for
Vela Junior and RX J1713 adopts a combination of turbulent magnetic field and
dense clumps to explain their TeV gamma-ray morphologies and moderate shock
corrugations.

5.1. Introduction
Ions are believed to be accelerated to relativistic energies at astrophysical shocks,
which gives rise to the observed CR population in the Galaxy (Hillas 2005, Blasi
2013 for a review). In particular, the process of diffusive shock acceleration (Axford

97



5. Simulating TeV gamma-ray morphologies of shell-type supernova remnants

et al., 1977; Krymskii, 1977; Blandford & Ostriker, 1978; Bell, 1978a,b) enables par-
ticles to gain energy through multiple shock crossings as they scatter back and forth
on magnetic field irregularities. The emerging non-thermal spectrum follows a uni-
versal power-law momentum spectrum (Bell, 1978a; Blandford & Ostriker, 1978).
Supernova explosions and subsequently formed remnant shocks are considered to
be ideal environments for acceleration because of the large spatial extent and life-
time that provides sufficient confinement to reaching high energies (Ghavamian
et al., 2013; Neronov, 2017). The most energetic CRs are able to escape upstream
the shock and propagate to larger distances in the interstellar medium (ISM) while
less energetic CRs are advected downstream and only released at a later time (Bell
et al., 2013).

Evidence for efficient acceleration of CR electrons is provided by the observa-
tion of elongated but narrow X-ray synchrotron filaments that are aligned with the
shock surface such as in Tycho (Hwang et al., 2002; Warren et al., 2005; Cassam-
Chenäı et al., 2007), Vela Jr. (Bamba et al., 2005), or SN1006 (Bamba et al., 2003;
Katsuda et al., 2010), see also Parizot et al. (2006) for an overview. Modelling
the emission requires fast electron synchrotron losses in a strongly amplified mag-
netic field in the upstream (Morlino et al., 2010, for the case of SN1006), which
is likely realised through the non-resonant hybrid instability (Bell, 2004; Caprioli
& Spitkovsky, 2014b), providing indirect evidence for efficient proton acceleration.
This evidence is further strengthened by multi-wavelength analyses that take into
account the SNR evolution, hydrodynamics of the shock (assuming spherical sym-
metry), magnetic field amplification and the dynamical backreaction of CRs and
self-generated magnetic turbulence on the shock (Berezhko et al., 2003; Zirakashvili
& Aharonian, 2010; Morlino & Caprioli, 2012). The total density jump as mea-
sured from far upstream to the downstream exceeds the canonical limit of four (for
an ideal gas with adiabatic index 5/3) due to the increased compressibility of the
additional relativistic pressure of CRs (Chevalier, 1983; Castro et al., 2011; Capri-
oli & Spitkovsky, 2014a; Pfrommer et al., 2017a). This implies a smaller distance
between the contact discontinuity (CD) and the forward shock (FS) as observed
in Tycho (Warren et al., 2005) as well as in SN1006 (Cassam-Chenäı et al., 2008),
where this CD-FS distance shows a distinctive azimuthal variation such that it is
shorter in the polar cap regions, which show efficient amplification of the magnetic
field due to efficient CR proton acceleration (in part, the CD-FS distance is reduced
by the Rayleigh-Taylor instability of the CD).

Of particular interest is the very high energy (VHE) gamma-ray emission from
SNRs in the GeV and TeV regimes (Hillas, 2005), which directly probes the CR
component without the need to model the magnetic field. Exceptional examples
are shell-type SNRs, such as SN1006, Vela Jr. and RX J1713-3948.5 (RX J1713
for short). Gamma-ray emission associated with these objects can be produced in
two different models (Gabici & Aharonian, 2016; Marcowith et al., 2016). In the
hadronic model π0 mesons are produced in inelastic CR-gas interactions and decay
into pairs of gamma rays (Caprioli, 2011). In the leptonic model the gamma-ray
radiation arises from a combination of inverse Compton scattering of the cosmic
microwave background (CMB) and starlight photons off of the accelerated CR
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electrons and non-thermal bremsstrahlung. Following the CR electron spectrum
in three-dimensional MHD simulations of SNRs and modelling the multi-frequency
spectrum and emission maps from the radio to gamma-rays suggests that the GeV
gamma-ray regime has a significant leptonic contribution while the TeV range is
dominated by hadronic gamma rays (Winner et al., 2020).

The leptonic model naturally produces hard gamma-ray spectra while such a
spectrum can also be obtained in the hadronic model when considering a clumpy
ISM. Magnetic insulation of these dense clumps only allows high-energy CR pro-
tons to penetrate into the dense regions, which implies a substantial hardening
of the proton spectrum in comparison to the acceleration spectrum in the diffuse
ISM (Gabici & Aharonian, 2014; Celli et al., 2019). Combining synchrotron and
inverse Compton fluxes in the leptonic model produces volume-filling magnetic
field strengths of ≈ (10− 35)µG (Gabici & Aharonian, 2016; Winner et al., 2020).
These are only in agreement with mG-field strengths inferred from X-ray syn-
chrotron filaments when assuming a clumpy medium, arguing for a detailed study
of SNR emission maps. By contrast, many previous studies focused on matching
the multi-frequency spectra with spherically symmetric models of the SNR evo-
lution and neglecting the diversity of morphological appearances of the observed
shell-type SNRs.

In fact, the orientation of the upstream magnetic field plays an important role
in the acceleration process. Self consistent hybrid particle-in-cell (PIC) simula-
tions show that a quasi-parallel configuration is much more efficient in accelerating
CR protons in comparison to a quasi-perpendicular shock geometry (Caprioli &
Spitkovsky, 2014a). These PIC simulations also show that the maximum accelera-
tion efficiency of CR protons is limited to ≈ 15 per cent. The idea that the resulting
emission could depend on the direction of the magnetic field in the X-ray band has
also been discussed (Rothenflug et al., 2004). In our previous papers (Pais et al.,
2018, 2020; Winner et al., 2020), we find that the global topology of the magnetic
field is fundamental in reproducing the diversity of observed gamma-ray emission
that ranges from a bi-lobed to a patchy morphology. While an approximately ho-
mogeneous magnetic field produces a bi-lobed gamma-ray emission, a turbulent
field manifests itself in a patchy emission characteristics. In this scenario, gamma-
ray bright regions result from quasi-parallel shocks which are known to efficiently
accelerate CR protons, and gamma-ray dark regions point to quasi-perpendicular
shock configurations. In the case of an extremely small magnetic correlation length
the emission approaches an isotropic emission, albeit with a reduced effective ac-
celeration efficiency (Pais et al., 2018).

The interaction of a supernova explosion with a gas cloud has been explored in
various works (Chevalier, 1974; Korolev et al., 2015) and more recently with highly-
evolved individual explosions (Zhang & Chevalier, 2019). In particular, interstellar
turbulence and its effect on CR acceleration (Scalo & Elmegreen, 2004) has been
the subject of various studies in the past years (Elmegreen & Scalo 2004 for a
review). Simulations of single SNe have been performed in an inhomogeneous ISM
(Walch & Naab, 2015) as well as in the presence of a clumpy circumstellar medium
(Obergaulinger et al., 2014; Pais et al., 2020). The clumpiness of the medium is
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often assumed to be the sole source of irregularity of the emission morphology,
especially for strongly asymmetric distributions of heavy elements like Si and Fe in
the surroundings of SNRs as confirmed by XMM-Newton measurements (Li et al.,
2015).

Following the spirit of this work, we simulate how an inhomogeneous medium
affects and regulates the TeV gamma-ray morphology of SNRs in the Sedov-Taylor
phase. We perform our simulations with various magnetic field configurations
combined with magnetic obliquity-dependent shock acceleration. In order to infer
morphological properties of the ambient medium of observed SNRs, we compare
the resulting emission maps, radial and azimuthal profiles with three well-known
examples of shell-type SNRs such as SN1006, Vela Jr. and RX J1713. For simplic-
ity we use an initial setup of a point explosion that evolves into the Sedov-Taylor
solution. The gamma-ray emission from the resulting SNR is then computed using
a hadronic model of decaying pions. Our goal is to find a consistent model that
simultaneously explains the detailed gamma-ray spectrum as well as the morpho-
logical variance of the TeV gamma-ray emission maps.

This chapter is organised as follows. In Section 5.2 we present the methodology
used to prepare our initial conditions for the various models with particular focus
on the generation of an initial turbulent density and magnetic field. In Section 5.3
we present our suite of SNR simulations with different combinations of magnetic
fields (homogeneous and turbulent) and density distributions (homogeneous, with
a gradient, turbulent and a combination of a gradient and turbulence), yielding a
wide range of different morphologies. For comparison, we also test a straw man’s
model of an isotropic acceleration scenario (i.e., independent of magnetic obliquity).
In Section 5.4 we compare the observed gamma-ray map, radial and azimuthal
profiles of SN1006 with our simulations for different degrees of turbulence and
inclinations of the field of view and infer properties on the local ISM. In Section 5.5
we compare radial and azimuthal profiles of turbulent SNRs Vela Jr. and RX
J1713 to the models with a turbulent magnetic field and a non-obliquity dependent
acceleration for various density setups. In Section 5.6, we study the effect of strong
density fluctuations on the gamma-ray morphology of a core-collapse SNR in its
early Sedov stage. In Section 5.7, we show that we can match the gamma-ray
spectra of all three SNRs for our adopted parameters and summarise the main
findings and conclude in Section 5.8.

5.2. Methodology

Here we present our methodology and briefly explain the procedure used to imple-
ment obliquity dependent CR acceleration, the turbulence in the ISM and in the
initial magnetic field. Results of this setup are shown in Section 5.3.

100



5.2. Methodology

5.2.1. Simulation method
The simulations presented in this chapter are performed with the massively parallel,
adaptive moving mesh-code arepo (Springel, 2010). We use an improved second-
order hydrodynamic scheme with the least squares-fit gradient estimate and a
Runge-Kutta time integration (Pakmor et al., 2016b). Ideal MHD is used to model
the magnetic fields (Pakmor & Springel, 2013) while zero-divergence is enforced
through the implementation of a Powell scheme (Powell et al., 1999). CRs are
modelled as a relativistic fluid with a constant relativistic adiabatic index of 4/3
in a two-fluid approximation (Pfrommer et al., 2017a).

Shocks are localised and characterised using the method developed by Schaal &
Springel (2015), where Voronoi cells that exhibit a maximally converging velocity
field along the direction of propagation of the shock are selected, while spurious
shocks and numerical noise are filtered out. We inject CR energy into the Voronoi
cells in the immediate post-shock regime of shock above a critical Mach number of
M > 3 (Pfrommer et al., 2017a).

Following the results of hybrid PIC simulations performed in Caprioli & Spitkovsky
(2014a) we assume a maximum CR energy efficiency of 15 per cent for quasi-parallel
shocks. On the contrary quasi-perpendicular shocks are found to be extremely in-
efficient accelerators. The efficiency of the injected CRs is computed using the
orientation of the pre-shock upstream magnetic field (Pais et al., 2018).

The presence of a strong current associated with streaming CRs into the up-
stream region causes an exponential growth of the magnetic fluctuations via the
non-resonant hybrid instability (Bell, 2004). These amplified fluctuations saturate
at wave amplitudes corresponding to the strength of the mean magnetic field and
cause the CR scattering mean free path to decrease to values comparable with
the fluctuating gyroradius. This regime approaches the Bohm limit of diffusion.
On scales resolved by our simulations, we neglect CR diffusion and streaming. To
justify this approach we assume Bohm diffusion and calculate the CR precursor
length for SNRs considered in this work and find

Lprec ∼
√
κBohmtage '

' 0.3 pc
(
〈pc〉

10 TeV

)1/2 (
B

10µG

)−1/2 ( tage

103yr

)1/2
,

(5.1)

where 〈pc〉 is the average energy associated with the protons that emit TeV gamma
rays through the inelastic proton-proton reaction, B is the root-mean-square of the
upstream magnetic field and tage is the age of the remnant. The resulting precursor
length is below the size of our numerical resolution ∆x = 0.4 pc, assuming a
simulation box size of 40 pc that is filled with 1003 cells. Energy losses of accelerated
CRs escaping upstream from the blast wave do not affect the validity of the self-
similar solution of the problem, causing only a negligible softening of the Sedov-
Taylor solution (Bell, 2015). On the SNR timescales simulated, the hadronic and
Coulomb loss time scales are negligibly small so that we only account for adiabatic
CR losses.
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5.2.2. Initial conditions
By analogy with Pais et al. (2018), we start with a random Voronoi mesh that is
regularised into a glass-like configuration via Lloyd’s algorithm (Lloyd, 1982). We
inject the equivalent of ESN = 1051erg of thermal energy in the central cell of a
1003-cell periodic box with a side length of L = 40 pc. The resulting explosion
forms an energy-driven strong shock expanding in an ISM characterised by a low
pressure of 0.44 eV cm−3, and a mean molecular weight of µ = 1.4.

Magnetic field setup

To generate a turbulent magnetic field we follow the procedure by Ruszkowski et al.
(2017) and Pais et al. (2018). We adopt a Kolmogorov-like power spectrum for the
magnetic field and generate the three magnetic vector components independently
in Fourier space such that the resulting field exhibits a random phase. We ensure
that B is divergence-free by projecting out the radial field component in Fourier
space. The degree of turbulence is determined through the fraction fB of magnetic
energy which goes into turbulent modes, yielding

B2
tot(x) = B2

0 +B2
turb(x) = B2

0
[
1− fB + fBδb

2(x)
]
, (5.2)

where B0 =
√

B2
0 represents the strength of the mean field, δb = δB/B0 is a Gaus-

sian random field, the turbulent energy fraction obeys 0 ≤ fB ≤ 1 and x = (x, y, z)
is the spatial vector. We adopt a plasma beta factor of β = 1 such that the mag-
netic and thermal pressures are insignificant in comparison to the kinetic energy
of the propagating shock front. To maintain hydrostatic equilibrium in the initial
conditions, magnetic fluctuations δB(x) are compensated by adopting tempera-
ture fluctuations of the form nkBδT (x) = −δB2(x)/(8π). The small magnetic
field strength implies a small Alfvén speed so that the tension force is only slowly
mediated and does not affect the dynamics of our powerful shock wave.

ISM density setup

We model the multiphase structure of the ISM and adopt a combination of (i)
a large-scale linear density gradient, (ii) large-scale turbulent density fluctuations
that follow a Kolmogorov spectrum, and (iii) a population of small, dense gaseous
clumps with a typical overdensity of 104 in comparison to the ambient ISM.

The large-scale density gradient ρgrad is determined by the constant density ρ0
and the slope parameter ∆. Similarly to the magnetic field, we generate turbulent
density fluctuations in Fourier space and vary the initial seed, the correlation length
and the amplitude of fluctuations ρturb(x) = ρ0δρ(x). To avoid negative values for
the density we adopt a density floor of 10−2ρ0. All these elements are combined as
follows:

ρ(x) =ρ0 + ρturb(x) + ρgrad(x) = ρ0 [1 + δρ(x)]

+ ρ2

[(
x

L
− 1

2

)
cosψ +

(
y

L
− 1

2

)
sinψ

]
, (5.3)
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where L is the side length of our simulation box, ψ represents the angle between the
direction of the density gradient and the x−axis, δρ(x) is the generating functional
of the turbulent field, ρ2 =

√
2∆ρ0/(1 + ∆) is the amplitude of the gradient such

that ρ = ρ0(1 + ρ0δρ) for ∆ = 0 in case of a vanishing gradient. The function
ρgrad(x) is constructed such that there are no negative values for the density in the
simulation box for any x, y ∈ [0, L] and ∆ ∈ [0,∞). To avoid low-density cavities
in the surroundings of the central explosion, we shield the region with a constant
homogeneous density of ρ = ρ0 extending for a radius of 2 pc.

In order to reliably model the circum-stellar medium of our core-collapse SNRs,
we include a population of dense gaseous clumps with a typical size of 0.1 pc and a
number density of ∼ 103cm−3 (Inoue et al., 2012). Following the same setup as in
Pais et al. (2020) and Celli et al. (2019), we include 7× 103 uniformly distributed
small, dense clumps with a number density of nc = 103 cm−3 and a diameter of
0.1 pc of a total target mass of Mc = 45M� engulfed by the shock.

This flexible setup allows us to study a wide range of different situations and en-
vironments by modifying the amplitude of the density fluctuations, their coherence
scale and steepness of the gradient as well as their multi-phase nature of thermally
unstable dense clumps in the star-forming surroundings of core-collapse SNRs.

5.2.3. Modelling gamma-ray emission and noise
To model the gamma-ray emission in post-processing we assume that the CR pop-
ulation follows a universal power law momentum spectrum. A pion-decay hadronic
model is used to calculate the omni-directional gamma-ray emissivity (Pfrommer
& Enßlin, 2004; Pfrommer et al., 2008) which depends on the local ISM density,
the local CR population, the very-high energy (i.e. > 1 TeV) photon spectral index
αγ, and the energy range.

To compute the emission spectra of our simulations we integrate a particle popu-
lation described by a power law in momenta with cutoff. The hadronic gamma-ray
emission spectrum is calculated from parametrizations of the cross section of neu-
tral pion production at low and high proton energies, respectively (Yang et al.,
2018b; Kelner et al., 2006).

In order to match the morphological properties of the observed gamma-ray emis-
sion maps we proceed with an analysis of the power spectrum of the noise. We fit
the power spectrum with a specific function, convert it into a noise map. This noise
map is then superposed on the mock gamma-ray emission map that was convolved
with the observational point spread function (PSF). We will detail the method to
generate the noise properties in Section 5.4.

5.3. Exploring fluctuations in density and the
magnetic field

Using the previously described setup here we present a suite of twelve SNR simula-
tions (each with 1003 cells) and combine different topologies of the magnetic field
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ρ = const.

obliquity dep. B0 obliquity dep. Bturb isotropic

∇ρ

ρturb

ρturb +∇ρ

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Sπ0−γ [ph cm−2 arcmin−2 s−1] ×10−15

Figure 5.1.: Impact of inhomogeneities density and magnetic field on the gamma-ray maps of
SNRs in the Sedov-Taylor phase at tage = 103yr with side length L = 40 pc. The im-
ages are ordered according to their different initial conditions: the columns represent
different magnetic field configurations and acceleration models, the rows represent
different density distributions. The first two columns assume magnetic obliquity de-
pendent CR acceleration at a homogeneous magnetic field (left) and a fully turbulent
fluctuations of relative amplitude fB = 1 and coherence length λB = 20 pc (middle)
while the third column shows simulations with a turbulent field (λρ = 20 pc) but
with an isotropic CR acceleration model. We adopt a different density distribution
in each row: constant density (first row), an increasing gradient pointing from SW
to NE (second row), turbulent density fluctuation (third row) and a combination of
turbulence and a gradient (fourth row).
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and different density distributions. We also compare models of obliquity-dependent
CR acceleration to isotropic CR acceleration. The gamma-ray emission maps in
the energy range 1− 80 TeV with a spectral index of α = 2.1 are shown in Fig. 5.1
at a SNR age of t = 1000 yrs. The images are not convolved with a PSF and we do
not add noise in order to maintain the underlying setup as transparent as possible.

For these theoretical models we chose a simple setup both for the density and
the magnetic field. We start by separately considering the components of the
density distribution of Eqn. (5.3). For the background density we select a value of
n = 0.1 cm−3. The density gradient has an inclination of ψ = 135◦ with respect
to the x-axis, i.e., it is pointing from south-west (SW) to north-east (NE) and
exhibits a moderate gradient intensity of ∆ = 1 to avoid a strong contrast between
the upper-left quadrant and the bottom-right one. For the turbulence we chose
turbulent fluctuations of fρ = δρ/ρ0 = 0.5 and a coherence scale of λρ = L/2 for
our box size L = 40 pc. To avoid any correlation between magnetic and density
fluctuations in our turbulent simulations, we used two distinct but fixed random
seeds, respectively.

5.3.1. Density fluctuations
In the first column of Fig. 5.1 we show the models for a constant magnetic field
oriented with an angle of θ = 135◦ with respect to the positive x-axis. The effect
of the obliquity-dependent shock acceleration in presence of an ordered magnetic
field is manifested in the bi-lobed morphology of the gamma-ray emission. The
presence of a moderate gradient in the second and fourth row results in NE lobe
brighter than the SW lobe as expected in the presence of more ISM material on
which the shock impinges so that the freshly accelerated CR protons find more
target gas in a hadronic scenario.

5.3.2. Magnetic turbulence
In the central column of Fig. 5.1 we show the effect of a fully turbulent magnetic
field (fB = 1) that is superposed on different density distributions. As expected,
the obliquity-dependent shock acceleration allows the creation of a patchy distribu-
tion of the brightness echoing the distribution of the underlying locally accelerated
CR population (Pais et al., 2020). In particular, the combination with a turbu-
lent density distribution (Fig. 5.1, third row, centre) is responsible for a noticeable
modulation of the gamma-ray intensity and explains the bright spot in the lower
right corner close to the remnant shell, an absent feature in the constant density
map (Fig. 5.1, first row, centre).

As expected in an isotropic acceleration scenario (Fig. 5.1, right column) the
gamma-ray emissivity shines along the entire SNR shell and is only mildly modu-
lated by local or large-scale variations related to the particular density distribution
used in the simulation. Contrarily to the obliquity-dependent case for turbulent
fields depicted in the central column, a considerable amount of emission is still
present in the centre of the remnant.
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For isotropic models the emission in the centre is at least twice as strong as
the turbulent case. This is caused by the efficient CR acceleration in the isotropic
model so that the emission is projected onto the central parts of the SNR. By
contrast, in the obliquity-dependent scenario for the turbulent magnetic case we
obtain a patchy structured emission with bright spots in regions with a quasi-
parallel shock geometry and dark regions in locally quasi-parallel shocks geometries.
On average the acceleration process for medium to large scale turbulence is 70 per
cent less efficient with respect to the non obliquity dependent case (Pais et al.,
2018). This results in a stronger dispersion of the brightness and a lower average
absolute emissivity in the centre. Note that observational noise and the presence
of a population of cold-dense clumps in a multi-phase ISM may play an important
role and needs to be taken in consideration for the morphological modelling of
observed shell-type SNRs.

It is clear that the isotropic acceleration model fails to reproduce both the emis-
sion morphologies (lobes and filaments) and the strong azimuthal variation in the
emission of SN1006. Despite a significantly varying amplitude of density fluctua-
tions of 50 per cent, the azimuthal variation in the isotropic-acceleration runs does
not drop sufficiently to create clearly defined filamentous structures in the shell.
High-amplitude turbulence in the ISM on scales comparable to the size of the rem-
nant might be a solution and could potentially mimic a bi-lobed structure. We will
come back to this point in Section 5.6 and will show that the almost spherically
symmetric blast waves of the SNRs studied here put a strong constraint on the
level of large-scale inhomogeneity of the surrounding ISM.

5.4. Morphological modelling of SN 1006
In the following two sections, we use our intuition developed in our parameter study
in Fig. 5.1 to find the most promising combination of magnetic and density inho-
mogeneities in the obliquity-dependent acceleration scenario to mock the observed
gamma-ray emission morphology of shell-type SNRs. To this end, we analyse the
bi-lobed morphology of Type Ia SN1006 in this section and present our analysis of
the two shell-type core-collapse SNRs Vela Jr. and RX J1713 in Section 5.5.

The gamma-ray excess map of SN1006 reported by the H.E.S.S. Collaboration
(2010) strongly correlates with the synchrotron X-ray emission map and suggests
an emitting region compatible with a thin shell. The peculiar polar cap geometry in
the emission is also observed in other wavelengths such synchrotron X-ray emission,
indicating an acceleration process compatible with efficient quasi-parallel shock
acceleration (Winner et al., 2020). Polarimetric radio observations of the limbs
strongly suggests that the ambient field is aligned along the SE−NW direction
(Reynoso et al., 2013), as later confirmed by recent theoretical models (Schneiter
et al., 2015). Moreover in Pais et al. (2020) is shown that the correlation length of
the magnetic field in case of pure turbulence is at least 15 times the angular size
of the SNR and consistent with a homogeneous field across the SNR.

All these models used a setup involving a homogeneous ISM. However, if the
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5. Simulating TeV gamma-ray morphologies of shell-type supernova remnants
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Figure 5.2.: Left: Comparison of the noise power spectra of the observed emission map of SN1006
(H.E.S.S. Collaboration, 2010) with the signal regions masked and of the simulated
gamma-ray map of SN1006 with a turbulent density fraction of δρ/ρ0 = 0. This
shows that our modelled noise nicely corresponds to the observed noise properties.
Right: Sketch of the area used for calculating the azimuthal and the radial profiles
of the simulated models. We average the gamma-ray emission in the radial range
2/3 < r/〈rs〉 < 4/3 to obtain the azimuthal profile while the lobe regions are used to
compute the radial profiles for SN1006.
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Figure 5.3.: Two-dimensional projected gamma-ray maps for SNR SN1006 and for three simula-
tion models with a fixed density gradient and different amplitudes of turbulent density
fluctuations. The second and third panels show the simulated maps for fρ = 5 pc
and δρ/ρ = 0 and 0.5, respectively, while the rightmost panel shows the map for
fB = 0.3, λB = 5 pc and δρ/ρ = 0. The emission in the simulated maps is smoothed
with a Gaussian PSF of width σ = 0.045◦. On the top of it, we add Gaussian noise
with the power spectrum inferred from HESS data, as shown in Fig. 5.2, at fixed
random seed.

108



5.4. Morphological modelling of SN 1006
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Figure 5.4.: Top left: emission map of SN1006 (H.E.S.S. Collaboration, 2010). Top right: our
best match for SN1006 without density fluctuations and a rotation angle θ = 10◦.
Bottom left: radial profiles of the surface brightness. Profiles of the best match
for θ = [0◦, 10◦, 20◦, 30◦] are reported for comparison with the observed one (black
dashed line). The grey-filled areas represent the standard deviations of the observed
radial profiles, respectively. The more strongly inclined cases (θ = 20◦ and θ = 30◦)
fail to reproduce the declining emission inside and outside the maximum. Bottom
right: Comparison of simulated azimuthal profiles of SN1006 and observed data
(black dashed line) with standard deviation (grey). While there is broad agreement
between the models and observation, the NE cap (at around 90◦) is narrower in the
HESS observation.
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5. Simulating TeV gamma-ray morphologies of shell-type supernova remnants

TeV gamma-ray emission is mainly from hadronic sources, the brighter NE lobe
suggests the presence of a large scale density gradient pointing from SW to NE.
Furthermore, the small-scale brightness variations at the outer shock radius could
either be caused by (i) density inhomogeneities in the ISM that would corrugate
the shock upon colliding with these inhomogeneous structures or (ii) by obliquity-
dependent shock acceleration in combination with small-scale turbulent magnetic
field superposed on a homogeneous magnetic field. We will study the impact of
both effects on the gamma-ray surface brightness maps in the presence of a large-
scale density gradient.

5.4.1. Simulation model
We proceed with a suite of simulations with the same large-scale density gradient
but with different setups for the density and magnetic field topology. We conducted
a number of exploratory simulations to test the steepness of the gradient in order
to faithfully reproduce the different TeV gamma-ray brightness of the two lobes
and match the measured fluxes reported in H.E.S.S. Collaboration (2010). For the
average value of the density and SNR distance we used the same values reported
by the Pais et al. (2020). With reference to Eq. (5.3) we used ψ = 135◦ for the
orientation and ∆ = 0.9 for the density slope. In physical units this corresponds
to a density gradient of ∇n ' 0.0034 cm−3 pc−1 pointing from SW to NE, which
means that in the NE region the average ISM density is 〈n〉 ∼ 0.12 cm−3 while in
the SW rim we find 〈n〉 ∼ 0.08 cm−3. Initially, we adopt a homogeneous magnetic
field 5 µG throughout the simulation domain.

Our baseline model does not adopt turbulent density and magnetic fluctuations.
Our second model assumes turbulent density fluctuations with a amplitude δρ/ρ ∼
0.5 and coherence scale λρ = 5 pc. Finally, our third model has no turbulent density
fluctuations, but adopts magnetic turbulence with fB ∼ 0.3 and coherence scale
λB = 5 pc. We simulated and evolved our SN1006 model for 1010 yrs, constructed
the pion-decay gamma-ray surface brightness map resulting from hadronic CR
interactions and convolved it to the observational PSF of width σ = R68/1.515 =
0.042◦, with R68 = 0.064◦ (H.E.S.S. Collaboration, 2010). All other parameters
used for the simulations are reported in Table 5.1.

5.4.2. Noise modelling
In order to disentangle physical effects that generate small-scale brightness fluctu-
ations from spurious instrumental effects, we need to accurately model the instru-
mental noise. Here, we explain our procedure of generating such a noise map for
our synthetic gamma-ray emission maps. To this end, we calculate the noise power
spectrum of the excess map of SN1006 and exclude the emission of the NE and SW
lobes. This is done by masking the original excess map from the H.E.S.S. Collab-
oration (2010) with a sharp cutoff equal to ccut = |cmin| where cmin = −20 is the
minimum value of the excess counts. The power spectrum of SN 1006 is obtained
via a 2D Fourier transform of the masked data set. The noise power spectrum
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5.4. Morphological modelling of SN 1006

presents two features: (i) a large scale Gaussian-like noise as expected from the
PSF convolution of the instrument, and (ii) a small scale power law ∝ k−2 extend-
ing to higher modes. We fit the power spectrum with the following function in
k-space:

P (k) = A exp
(
− k2

2σ2
k

)
+Bk−2 (5.4)

where, σk represents the standard deviation in k-space and the variables A and
B determine the relative strength of the Gaussian and the power-law tail. The
black dashed line in Fig. 5.2 shows the measured noise power spectrum of the
SN1006 excess map in comparison to the simulated noise (blue line). We assume
that the noise is fully characterised by two-point correlations and obtain a random
realisation of the noise via 2D inverse Fourier transform. This noise map is then
superposed on the mock gamma-ray emission map that was convolved with the
observational point spread function (PSF).

5.4.3. Simulated TeV emission
We show the resulting synthetic maps of SN 1006 in comparison to the original
excess map in Fig. 5.3. We report three gradient models with the following assump-
tions (from left to right): (i) no density fluctuations, (ii) density fluctuations with
δρ/ρ = 0.5 and no magnetic field fluctuations, and (iii) magnetic field fluctuations
with δB/B = 0.3 and no density inhomogeneities. This enables us to separately
analyse the effect of these configurations on the morphology of SN1006.

While our noise modelling is responsible for emission in regions where the accel-
eration is supposed to be extremely inefficient or absent, the density perturbations
are able to corrugate and smooth the boundaries of the lobes, in particular of the
SW lobe for the chosen seed. The resulting picture appears with a defined bi-lobed
structure and an increasing level of turbulence in the medium causes the emer-
gence of secondary morphological details. We notice that density perturbation of
δρ/ρ = 0.5 (third picture of Fig. 5.3) affect the morphology of the SW lobe re-
sulting in a fainter surface brightness and a broader shape. This suggests that our
preferred model for SN 1006 in the TeV gamma-ray band is given by a model with
homogeneous density.

Similarly, we observe the emergence of secondary morphological details from a
moderate level of turbulence in the magnetic field (fourth picture of Fig. 5.3) in
our obliquity dependent CR acceleration scenario. We compare this model with a
coherence scale at ∼ 1/3 the size of the remnant to our other two models with a
homogeneous density and a moderate level of density inhomogeneities. In spite of
the low level of magnetic fluctuations (δB/B = 0.3) the morphology significantly
deviates from the observed bi-lobed shell-type morphology of SN1006 and shows
significant substructures. In addition, this model is also ruled out by the excess
of the emission in the central region of the remnant which contrasts to the clean
separation of the two lobes as observed by the H.E.S.S. collaboration. This sets an
approximate upper limit for the local turbulence of the magnetic field in a obliquity
dependent scenario.
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5. Simulating TeV gamma-ray morphologies of shell-type supernova remnants

Another degree of freedom is the orientation of the homogeneous magnetic field
B0 with respect to the line of sight. To study its influence on the emission map
and (radial and azimuthal) profiles, we perform a three-dimensional (3D) rotation
of the SNR around the axis perpendicular to the orientation of B0 into the line
of sight. We show different inclinations (θ = [0◦, 10◦, 20◦, 30◦]) of B0 with respect
to the plane of the sky, similarly to Bocchino et al. (2011) for the X-ray emission
to constrain the 3D orientation of the magnetic field of SN 1006. Note that this
is somewhat degenerate with the assumed 3D orientation of the density gradient
that we also assume to lie in the plane of the sky.

An increasing inclination results in a less pronounced peak and a broader distri-
bution of gamma rays as the hadronic emission from the efficiently accelerated CRs
at the quasi-parallel shocks changes from being limb-brightened to contributing to
a broader solid angle on the sky. The top right panel in Fig. 5.4 shows our best
match for SN1006 after the aforementioned rotation of the SNR. Indeed, the lobes
appear slightly more diffuse, predominantly in the internal regions.

To quantify the effect of magnetic inclination we compute the radial and az-
imuthal profiles of our synthetic maps according to the sketch shown on the right-
hand side of Fig. 5.2. The radial profiles are computed within the quadrants where
quasi-parallel shock acceleration takes place while the azimuthal profiles show an
average in the radial range 2/3 < r/〈rs〉 < 4/3, where rs is the average shock radius
of the SNR.

The comparison of the post-rotation radial profiles to the observed radial profile
of SN 1006 provides an important constraint for the maximum magnetic inclination.
These profiles are show in the bottom panels of Fig. 5.4. We include a 1σ standard
deviation grey-filled area to the observed SN1006 profiles. While larger inclinations
(θ > 10◦, orange and red lines) result in emission profiles that are too extended,
an inclination of θ ≤ 10◦ is in better agreement with the observed radial profile.
Barring our remark about the orientation of the density gradient, we conclude that
the magnetic inclination does not exceed 10◦ with respect to the plane of the sky.

A minor element of discordance can be also found in the azimuthal profiles
(Fig. 5.4, bottom right) for different rotation angles. While the simulated SW lobes
coincide with the observed one in relative brightness and extension, the simulated
NE lobe is slightly broader in comparison to the observed lobe. This suggests that
the critical angle for the magnetic obliquity may be smaller than 45◦ inferred by
recent PIC simulations. Regardless the spatial rotation all the models reproduce
the observed modulation of the two lobes within the 1-σ uncertainty.

5.5. Morphological modelling of core collapse SNRs
We now turn to two other well-known SNRs with a clear shell-type morphology:
Vela Jr. and RX J1713. Both SNRs are of core-collapse origin which means
that the ambient ISM is a star-forming region of multi-phase, turbulent gas. We
account for this by simulating the supernova explosion in a multiphase ISM with a
large population of small, dense gaseous clumps with a typical overdensity of 104
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5.5. Morphological modelling of core collapse SNRs

in comparison to the ambient ISM and adopt a purely turbulent magnetic field
without a mean field, B0 = 0.

5.5.1. Observational constraints on Vela Jr.
The H.E.S.S. Collaboration (2018b) has observed TeV gamma-ray emission from
the SNR Vela Jr. (RX-J0852.0-4622) with a resolved gamma-ray spectrum. Esti-
mates on the SNR age vary from a very young remnant of ∼ 700 yrs (Aschenbach
et al., 1999) to an older object of more than 5000 yrs (Katsuda et al., 2008). The
SNR can be a nearby object at D = 0.2 kpc, as inferred from studies of the decay
of 44Ti nuclei (Iyudin et al., 1998), or a more distant one at D = 0.75 kpc, as
inferred from the slow expansion of X-ray filaments (Katsuda et al., 2008). The
presence of interstellar molecular clouds suggests that the origin of TeV-gamma
rays from these objects is mainly hadronic (Fukui, 2013).

The lack of thermal X-ray emission places a very low limit at n = 0.03 cm−3 while
assuming a homogeneous environmental density (Slane et al., 2001). However, if the
ISM is composed of dense clumps that are embedded in a lower-density hot ambient
phase, the resulting thermal X-ray emission (of the hot phase) is lower while the
presence of the dense clumps implies a higher average density. A conventional
approach in the hadronic model is to use a density of the order of n ∼ 1 cm−3

(Aharonian et al., 2006), while hydrodynamic models suggest values of less than
0.4 cm−3 (Allen et al., 2015). More recently HI and CO measurements and partial
morphological correspondence withe the TeV-gamma ray morphology indirectly
suggest an extremely high average ISM density of the order of n ∼ 100 cm−3

(Fukui et al., 2017). However there is no direct observational evidence that the
clumped gas is in direct physical contact with the shock-accelerated cosmic rays.
In fact the passage of the shock dissipates kinetic energy, heats the ions to particle
energies of several keV and is directly responsible of dissociation of CO and H2 and
the ionisation of the neutral part of the clouds on a time-scale of the order of a few
years (Celli et al., 2019).

As the shock overruns the magnetised ISM, magnetic fields are draped around the
dense clouds, precluding the diffusion of cosmic rays deep into the cloud so that the
TeV cosmic rays can only probe a narrow skin of the cloud. The penetration depth
of this skin can be estimated by realising that the draped magnetic field reaches
strength of order B ≈

√
8παρv2 ≈ 1mG (Dursi & Pfrommer, 2008; Pfrommer &

Jonathan Dursi, 2010) for typical parameters α = 2, n = 0.1 cm−3, and vs =
3000 km s−1. If the average ISM density were indeed 100 cm−3 (Fukui et al.,
2017), this should yield draped magnetic field strengths of 32 mG, which should be
observable via Zeeman splitting of which there is no evidence which argues against
such a high average density. The skin depth of the dense cloud reachable by TeV
CRs, assuming Bohm diffusion, varies from a few to several gyro radii:

rg = p⊥c

eB
≈ 10−6 pc

( pc

TeV

)( B

mG

)−1
(5.5)

which is negligible in comparison of the cloud size (0.1 pc). Even if the magnetic
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5. Simulating TeV gamma-ray morphologies of shell-type supernova remnants

wrap is not perfect and CRs can penetrate 100 gyro radii inside the cloud, then the
fraction of the cloud volume seen by the TeV CRs is∆V ∼ 1−(1−10−3)3 ∼ 3×10−3.
Our assumed total dense cloud mass of 45 M� that is physically associated with
the SNR is a fraction of 2× 10−3 of the available gas mass of 2.5× 104 M� (Fukui
et al., 2017) towards the Vela Jr. region, some of which may be projected onto the
SNR but is not physically associated to it and only a tiny fraction of the molecular
and neutral gas inside the Vela Jr. SNR is seen by cosmic rays due to magnetic
draping, suppressing cosmic ray propagation into the cloud before the cold gas
gets ionised and dissociated. These considerations justify our assumption of only
accounting for CR advection in our simulations.

In addition, not all the mass of the clumps engulfed by the shock has been
processed by the shock because of the strong deceleration of the blast wave inside
the clumps (see Appendix of Pais et al. 2020). Combining these arguments suggests
that only a tiny fraction of the dense (neutral/molecular) phase of the ISM is in
physical contact with the shock. For the magnetic field we decided to follow the
same prescription used in Pais et al. (2020) setting the coherence scale of the
turbulent magnetic field to λB = 13 pc and adopt fB = 1. The entire set of
parameters used in the simulation is summarised in Table 5.1.

5.5.2. Observational constraints on RX J1713
RX J1713 represents another bright TeV-emitter with a distinct shell-like emis-
sion morphology. This SNR is subject to intense studies thanks to its strong
non-thermal X-ray emission and the detection of high-energy and very-high-energy
gamma-rays. Wang et al. (1997) suggested that RX J1713 is linked to an AD393
guest star which, according to historical records, appeared in the tail of constella-
tion Scorpius, close to the actual position of the remnant. This would put the age
of the remnant close to 1.6 kyr. More recent estimates based on X-ray emission
combined with hydro models in homogeneous media suggest an older remnant age
of 6.8+1.1

−2 kyr (Leahy et al., 2020).
The distance of the object is estimated to be around 1 kpc (Fukui et al., 2003)

while Tanaka et al. (2008) suggests a distance interval between 0.5 kpc and 1 kpc.
Assuming a free expansion model this translates into an upper limit of the average
shock speed of about 〈vs〉 = 6300 km s−1. Proper motions of bright X-ray filaments
instead place the shock velocity between ∼ 1000 km s−1 and ∼ 4000 km s−1 (Fukui
et al., 2003).

A hadronic origin of the TeV gamma-ray emission in RX J1713 was suggested
in several papers (Zirakashvili & Aharonian (2010) ; Gabici & Aharonian (2014)).
The distribution of gas in RX J1713 is crucial to establish the origin of the observed
gamma-rays. An upper limit for the diffuse density of < 2 cm−3 is derived from
non thermal X-rays measurements (Takahashi et al., 2008). To explain the lack
of thermal X-ray emission Cassam-Chenäı et al. (2004) sets an even lower upper
limit for the ambient density of n ∼ 0.02 cm−3. However, this argumentation can
be circumvented by introducing a densely clumped environment.

Studies of non-thermal X-ray emission, TeV gamma-ray emission and their par-
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5.5. Morphological modelling of core collapse SNRs

tial spatial correlation with HI ans H2 suggest the presence of numerous dense
clumps in the ISM (Fukui et al., 2003; Sano et al., 2015; Rowell et al., 2009). How-
ever the same argument used for Vela Jr. applies: the lack of direct evidence of
physical contact between the gas distribution and the shock and the subsequent
ionisation of HI casts doubts on its physical association with the SNR. The inter-
action of a blast wave with interstellar clouds and its application to RX J1713 has
been studied in Inoue et al. (2012) and applied in Celli et al. (2019) for a shock
wave with constant velocity interacting with a target mass of 45 M�.

Recently, Tsuji & Uchiyama (2016) calculated the evolution of RX J1713 in
various scenarios such as the case of an expansion in a wind-blown cavity with
a typical density profile ρ ∝ r−2 and a free expansion dominated by the ejecta
(ρej ∝ r−n with n = 7). Here we consider simple Sedov-Taylor expansion models
which represent the upper limit for the expansion of a SNR in homogeneous media
(Truelove & McKee, 1999).

To reproduce the saturated NW rim of the remnant we applied a homogeneous
positive large-scale gradient to the initial conditions pointing from SE to NW with
∆ = 1.6, corresponding to a density gradient of ∇n = 0.02 cm−3 pc−1. Superposed
on this density gradient we insert a population of dense clumps of size 0.1 pc using
exactly the same setup as for Vela Jr. For the magnetic field we selected a fully
turbulent setup (fB = 1) with a coherence length of λB = 13 pc, not too dissimilar
from the size of the remnant (∼ 17.4 pc). The entire set of parameters used in the
simulation is summarised in Table 5.1.

5.5.3. Simulations
Figure 5.5 shows the comparison between the observed excess brightness maps of
Vela Jr. and RX J1713 (left-hand side) and our PSF-convolved synthetic maps
derived from turbulent models with density inhomogeneities and dense clumps
(right-hand side). To model the noise in the post-processing we applied the same
method used for SN1006. In the final step we rotate the surface brightness maps
in order to approximately match the low and high emissivity outer shell regions of
the observed maps. Our simulation models provide an astonishing agreement with
the data.

The presence of high-density molecular clumps provides an important contribu-
tion to the global emission morphology. The effect of the clumps on RX J1713 is
shown in Fig. 5.6. While we notice that the orientation of the magnetic field is
mainly responsible of the patchy morphology of the outer shell the clumps add sev-
eral bright spots to the map without modifying the expansion history of the SNR
due to their negligible volume filling factor. A comparison with the left-hand side
figure in the bottom row shows that the strong smoothing applied to the synthetic
maps makes it impossible to resolve the emission originating from a single isolated
clump and that clusters of bright clumps are similar to large magnetic field patches
oriented quasi-parallel to the shock normal, thus enabling efficient CR acceleration.

The effect of obliquity-dependent shock acceleration is better shown in Fig. 5.7,
where we compare radial and azimuthal profiles of our simulated gamma-ray maps
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Figure 5.5.: Comparison between observed gamma-ray emission maps (left) of Vela Jr.
(H.E.S.S. Collaboration, 2018b) and RX J1713 (H.E.S.S. Collaboration, 2018a)
and simulated gamma-ray maps (right) of the SNRs for our model with obliquity-
dependent CR acceleration, a turbulent magnetic field with fB = 1 and λB = 13 and
additionally a gradient for RX J1713 with ∆ = 1.6. In our simulated maps we add
Gaussian noise with the observed power spectrum and use the PSFs appropriate to
each observation (0.08◦ and 0.036◦ for Vela Jr. and RX J1713, respectively). We
also rotated mock emission maps of the SNRs to match the azimuthal position of the
faintest region in the shell.
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5.5. Morphological modelling of core collapse SNRs
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Figure 5.6.: Comparison between the simulated surface brightness maps of RX J1713 without
clumps (top row) and with clumps (bottom row). The comparison between the maps
without (left) and with PSF smoothing (right) shows the contribution of the clumps
in specific portions of the outer shell and in the central region. While most of the
gamma-ray substructure is due to obliquity-dependent CR acceleration, individual
bright patches in the map can be due to the hadronic emission of dense clumps.
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Figure 5.7.: Normalised radial (left-hand side) and angular (right-hand side) profiles of the models
(blue lines) shown in Fig. 5.5 compared to SNRs Vela Jr. (dashed dotted lines in
the top row, H.E.S.S. Collaboration 2018b) and RX J1713 (dashed dotted lines in
the bottom row, H.E.S.S. Collaboration 2018a). The grey-filled area represents the
1σ uncertainty for both SNRs. The column labelled with “obliquity dep. Bturb”
shows our obliquity-dependent acceleration models for a turbulent magnetic field
while the label “isotropic” refers to our isotropic acceleration model. While both
models reproduce the radial emission profiles well, the isotropic model clearly fails
to capture the azimuthal brightness variations seen in the data which is statistically
consistent with our obliquity-dependent acceleration model.

to those of the excess maps of Vela Jr. and RX J1713. We consider the two
cases of (i) obliquity-dependent shock acceleration in a turbulent magnetic field
and (ii) isotropic CR acceleration, both for a constant ambient density and and
global density gradient. While the pure isotropic models (without clumps and PSF
smoothing) show and enhance level of surface brightness in the central region com-
pared to the obliquity dependent acceleration models (see Fig. 5.1), the inclusion
of dense clumps and convolution with the observational PSF fills in the central
parts to similar emission levels.

Most notably, the isotropic acceleration models cannot reproduce the observed
azimuthal small-scale variations in the surface brightness as shown in the right-
hand panels of Fig. 5.7. Interestingly, obliquity-dependent acceleration models are
able to modulate the emissivity peaks on a relatively small scale, in a statistically
similar fashion. This is a clear prediction of an obliquity-dependent CR acceleration
in a turbulently magnetised ISM, in which the morphology of the magnetic field, in
tandem with emission from dense clumps, is responsible for the VHE emission mor-
phology observed by imaging air Cerenkov telescope such as H.E.S.S. and enables
us to infer the magnetic coherence scale of the ISM surrounding the SNR (Pais
et al., 2020). We will address the interesting question whether large-amplitude
density perturbations or extreme density gradients alone are able to modulate the
surface brightness in a similar way to mimic the VHE observations in Section 5.6.
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Figure 5.8.: Gamma-ray emissivity from SNRs in the Sedov-Taylor phase with large-amplitude
density fluctuations in our isotropic acceleration scenario that does not depend on
magnetic obliquity. From left to right the fluctuation strength increases from 0.25
to 1 with respect to the average density in steps of 0.25. From top to bottom the
correlation length for the density fluctuations are, in decreasing order: 40 pc (top
row), 20 pc (middle row) and 10 pc (bottom row). The maps are taken at tage = 103

yrs after the explosion and all exhibit the same average number density of 0.1 cm−3.
The maps have a side length of L = 20 pc and are smoothed with the PSF of RX
J1713 with σ = 0.036◦.

5.6. The case of a highly turbulent medium

Here we study the effect of strong density fluctuations on a supernova explosion
in its early Sedov stage at tage = 1 kyr. We aim at answering two questions: (i)
Can high-amplitude turbulence in the ISM on scales comparable to or smaller than
the size of the remnant mimic a bi-lobed or patchy VHE gamma-ray emission with
strong, small-scale brightness variations observed in the three SNRs studied here
and (ii) can localised strong variations of the density be responsible for an extreme
corrugation of the shock front and its eventual disruption into smaller clumps,
speeding up the end of the Sedov phase, thus anticipating the beginning of the
snowplough phase and the eventual merging of the fragments with the ISM? This
dynamical effect may feedback on the acceleration mechanism of CRs.

In order to test whether our core-collapse SNRs necessarily require an obliquity-
dependent acceleration model, we adopt our isotropic CR acceleration model and
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Figure 5.9.: Left and centre: Distribution of the shock radius as measured in the gamma-ray
brightness map for three selected models in our isotropic acceleration scenario that
does not depend on magnetic obliquity. Increasing fluctuation amplitude and corre-
lation length implies a larger dispersion of the radial distribution and a significant
departure from spherical symmetry. For comparison we show the radial distribution
of the SNRs Vela Jr.(left) and RX J1713 (centre). Right: Gamma-ray flux of the
models pictured in Fig. 5.8 as a function of the amplitude of density fluctuations.
The flux is normalised to the flux F0 of the model without density turbulence. The
plot shows an excess emission associated with the coherence length λρ = 40 pc which
grows with increasing degree of turbulence.

systematically vary density fluctuations. To this end, we present a set of 12 simula-
tions with varying amplitude of turbulence from δρ/ρ = 0.25 to δρ/ρ = 1 at steps
of 0.25, and varying coherence scale of the fluctuations at steps of L/n with box
size L = 40 pc and n = [1, 2, 4]. We use the same setup as in our previous models,
which is described in Section 5.2, and show results for the exact same random seed
in Fig. 5.8. From left to right we present an increasing turbulent amplitude while
the coherence scale of turbulence decreases from 40 to 10 pc from top to bottom.

We can clearly see that the shock becomes more corrugated for decreasing coher-
ence scale while increasing the fluctuation amplitude at constant coherence scale
has a comparably smaller impact on the azimuthal dependence of the shock prop-
agation speed. We notice that a coherence length of about the size of the remnant
or smaller has a strong impact on the corrugation of the outer shell. In particular,
the cases of λρ = 10 pc and δρ/ρ ≥ 0.75 (two bottom right panels of Fig. 5.8)
show a disruption of the shock front at two locations corresponding to extremely
under-dense regions. The breaking of the shell corresponds also to a lower global
gamma-ray surface brightness, signalling that less material is accelerated and that
eventually the shock escapes detection in that region.

Hence the appearance of a bi-lobed structure as in SN1006 would require extreme
fine-tuning of the density distribution which clearly rules out this isotropic CR
acceleration scenario in this case. Our parameter study presented in Fig. 5.8 shows
that in order to obtain significant surface brightness variations as is observed in the
core-collapse SNRs RX J1713 and Vela Jr., the level of density fluctuations needs
to be significant, with δρ/ρ & 0.75. However, this implies a heavily corrugated
shock surface which appears to be in conflict with the overall spherical appearance
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5.7. Spectra

of SNRs RX J1713 and Vela Jr. This observation is separately quantified for both
SNRs in Fig. 5.9, where we compute the radial TeV gamma-ray emission profiles
by identifying the centroid of the SNRs and determining the radial distributions of
excess counts. After excluding the background noise we chose the external emission
contour in order to mask the emission for both remnants and identified an average
radius 〈rs〉 for both remnants.

We compare those observed radial emission profiles to the profiles of our simu-
lation model (assuming isotropic CR acceleration) for λρ = 40 pc with δρ/ρ = 0.5
(blue line), for λρ = 20 pc with δρ/ρ = 0.75 (orange line), and for λρ = 10 pc
with δρ/ρ = 1 (red line). While large scale fluctuations with λρ = 40 pc show a
moderate dispersion despite the high level of density fluctuations, the models with
λρ ≤ 20 pc are not compatible with the well defined radial dispersion of Vela Jr.
and RX J1713. This allows to constrain the level of large-scale density fluctuations
to be less than 75 per cent and λρ > 20 pc. The resulting gamma-ray patchiness
is thus not any more strong enough to explain the small-scale gamma-ray bright-
ness variations observed in the SNRs RX J1713 and Vela Jr., which thus rules
out this isotropic CR acceleration scenario in these SNRs as well and favours the
obliquity-dependent CR acceleration scenario in all shell-type SNRs studied.

The maps with a high level of turbulence and a small coherence scale have a
fainter surface brightness. To quantify the lower gamma-ray efficiency of small-
scale highly turbulent SNRs, we show the fluxes of our 16 models as a function
of the degree of turbulence and of the coherence scale in the right-hand panel of
Fig. 5.9. We find a striking increase in flux with increase turbulent amplitude for
our model with λρ = 40 pc. On the contrary for λρ ≤ 20 pc the opposite is true.
In order to check whether this is due to a particular random realisation of our
turbulent density field or a systematic effect, we simulate the case of λρ = 40 pc
with δρ/ρ = [0.5, 0.75, 1] with three different random realisation of turbulence
and show the results in Fig. 5.10. The different monotonic and non-monotonic
behaviour of the gamma-ray flux for each random realisation indicates that this
behaviour is not systematic and due to random variance.

5.7. Spectra
Recent observations of the ambient density around Vela Jr. and RX J1713 suggest
the presence of clumps and thus a hadronic origin of the GeV-TeV gamma-ray
emission (Fukui et al., 2003, 2012; Maxted et al., 2012, 2018). On the other hand,
the low density of the dilute phase of ISM and X-ray measurements for SN1006
suggest mixed leptonic-hadronic models to explain both the GeV and the TeV flux
in a unified picture as shown by recent simulations (Winner et al., 2020): while the
GeV gamma-ray regime has a significant leptonic contribution, in this model the
TeV range is dominated by hadronic gamma rays (H.E.S.S. Collaboration, 2010).

We can reproduce the observed VHE gamma-ray spectra of all three SNRs for
our adopted parameters. To demonstrate this, we compare the observational data
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Figure 5.10.: Gamma-ray flux for our turbulent density distribution with λρ = 40 pc for different
random realisations of turbulence as function of the turbulent amplitude. The seed
labelled with 0 represents the one used for the realisations in Fig. 5.8. The plot
shows no clear trend associated with the turbulent amplitude. Random seed 0
causes a larger gamma-ray intensity because of the specifics of the overdensities
which lead to the formation of a bright shell while this effect is not significant for
the other tested random seeds.
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Figure 5.11.: High energy spectra spectra of SN1006 (left), Vela Jr. (centre) and RX J1713 (right).
The models assume a hadronic pion-decay emission scenario for the three SNRs. For
SN1006, we use data from FERMI (Abdo et al., 2010a) and H.E.S.S. (H.E.S.S. Col-
laboration, 2010) (sum of the two regions). For Vela Jr., we adopt gamma-ray data
from FERMI (Tanaka et al., 2011) and H.E.S.S. (H.E.S.S. Collaboration, 2018b).
For RX J1713, the gamma-ray data are taken from FERMI (Abdo et al., 2011) and
H.E.S.S. (H.E.S.S. Collaboration, 2018a).
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from FERMI and H.E.S.S. to a one-zone model in which the CR proton spectrum
is described by a power law with exponential cutoff of the form:

f1D(p) = d2N

dpdV ∝ p−α exp
−( p

pcut

)β (5.6)

where f1D(p) = 4π p2f3D(p), α is the spectral index, pcut is the cutoff momentum
and β describes the sharpness of the cutoff; with values reported in Table 5.1.

The resulting spectra of our hadronic models are shown in Fig. 5.11 and match
the observed spectra. We further notice that in SN1006 the gamma-ray spectrum
extends to higher energies, arguing for a larger maximum CR proton energy in
comparison to the turbulent cases of Vela Jr. and RX J1713. This difference
depends on a range of different factors such the progenitor (SNIa for SN1006 and
core-collapse for Vela Jr. and RX J1713), the ISM density, the local magnetic
field amplification in the upstream and the time the particles spent in favourable
conditions (e.g., quasi-parallel shock geometries) at the shock. However, the limited
angular resolution of H.E.S.S. precludes a more in-depth analysis of the acceleration
mechanism leaving this task to the next generation of ground-based arrays such
the Cherenkov Telescope.

5.8. Conclusions
In this chapter we use MHD simulations with CR physics to explore the effect
of density inhomogeneities on the TeV gamma-ray morphology from SNRs during
their Sedov-Taylor stage. Our setup allow us to explore several combinations of
homogeneous and turbulent magnetic fields and ambient density distributions. We
find that a single physical model, namely obliquity-dependent shock acceleration of
CRs, is capable of explaining the apparently disparate TeV gamma-ray morpholo-
gies of well-known shell-type SNRs. In this hadronic emission scenario, gamma-ray
bright regions result from quasi-parallel shocks which are known to efficiently ac-
celerate CR protons, and gamma-ray dark regions point to quasi-perpendicular
shock configurations.

The main characteristics of the emission of SN1006 (a type Ia SN) can be ex-
plained by a homogeneous magnetic field superposed on a density gradient that
explains the different integrated gamma-ray flux of both polar caps. By contrast,
the irregular gamma-ray morphologies of the core collapse SNRs Vela Jr. and RX
J1713 is owing to a turbulent magnetic field with B0 ≈ 0 that is supplemented
with a population of multiphase dense molecular clumps that are characteristic for
star formation regions (and complemented with a weak density gradient in the case
of RX J1713). Adapting a straw man’s model of isotropic CR acceleration (that
does not depend on magnetic pre-shock orientation) we conclude that this model
is not able to reproduce the sharp bi-lobed morphology observed for SN1006 even
the presence of moderately strong density fluctuations. Moreover, the simulated
azimuthal profiles of this isotropic acceleration model with strong density varia-
tions cannot reproduce the observed rapid variations of the gamma-ray emissivity
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5. Simulating TeV gamma-ray morphologies of shell-type supernova remnants

of Vela Jr. and RX J1713 without significantly corrugating the shock surface, which
is then ruled out by the spherical morphologies of these SNRs.

Our main findings are summarised here:

• Moderate density fluctuations can be responsible for a local modulation of
the gamma-ray emissivity irrespective of the magnetic morphology both in
a constructive and destructive way. We show that density fluctuations on
a scale comparable to the size of the remnant and with an amplitude that
is stronger than 75 per cent with respect to the mean ISM density causes
a corrugated shock front that generates strong local variations in the shock
acceleration efficiency and eventually a very asymmetrical appearance of the
gamma-ray SNR.

• For SN1006, using the relative brightness of the NE and SW lobes, we con-
strain the intensity of the density gradient to be no more than 0.0035 cm−3/pc
and directed from SW to NE. We predict that local density fluctuations with
λρ ' 4 pc and δρ/ρ = 0.5 are secondary in shaping the morphology of the
remnant if compared to a moderate level of turbulence of the local magnetic
field with a coherence scale at 1/3 of the size of the remnant. However, we
note that the presence of density fluctuations can explain the strong asym-
metry of the distribution of Fe and other heavy elements for this remnant.

• The strong noise level surrounding the SN1006 SNR does not allow more
precise constraints on the properties of the surrounding ISM. We conclude
that for such level of noise a model with negligible density fluctuations bet-
ter represents the morphology of SN1006. Performing a 3D rotation of the
SNR around the axis perpendicular to the orientation of B0 into the line of
sight, the emerging radial emission profiles constrain the inclination of the
magnetic field to be . 10◦. Our azimuthal emission profiles for different mag-
netic inclinations are rather robust and show an excellent agreement with the
observational profile except for the NE lobe, which is somewhat broader in
our simulations. While this could signal a different functional form of the
obliquity dependence of CR acceleration, this conclusion is unfortunately de-
generate with density fluctuations that could also cause a sharper gamma-ray
peak.

• Our generated gamma-ray mock maps with obliquity-dependent acceleration
are capable of reproducing most of the properties observed for Vela Jr. and
RX J1713 such the length of the shell filaments, the internal patchy emis-
sion, the large-scale gamma-ray bright rims and moderate (small-scale) cor-
rugations at the shock front. The fainter emission at the centre of the rem-
nants expanding in a turbulent magnetic field is compensated by the addition
of molecular clumps and superposing noise to the images. By contrast an
isotropic CR acceleration scenario fails to reproduce the azimuthal profiles.

• In addition, by considering an isotropic CR acceleration scenario for Vela
Jr. and RX J1713 with a varying level of density fluctuations and coherence
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scales, we exclude strong density fluctuations with a coherence scale compa-
rable to the size of the remnant are responsible for the observed emission mor-
phology. This is because sufficiently strong density fluctuations (that would
be needed to explain the significant gamma-ray brightness fluctuations) cause
a heavily corrugated shock surface which is in direct conflict with the almost
spherical shape of SNRs RX J1713 and Vela Jr. The comparison between the
radial dispersions of our simulated mock maps and the excess maps of the
SNRs RX J1713 and Vela Jr. enables us to limit the density fluctuations to
δρ/ρ0 . 75 per cent of the average ISM density.

For the first time, our models are able to match morphological and spectral prop-
erties of all known shell-type TeV gamma-ray SNRs. Remarkable improvements in
the angular resolution in future surveys (beyond what is achievable by CTA) are
needed to resolve the TeV emission from individual molecular clumps which would
yield a deeper insight in the structure of the circumstellar ISM.
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6. Conclusions and outlook
In this thesis I explored the effect of the obliquity dependent shock accelera-
tion on the injection and evolution of CRs in SNR shocks via full 3D magneto-
hydrodynamical simulations with arepo. The code follows the evolution of CRs
and their advective transport with the magnetized plasma.

Starting from the results of non relativistic hybrid PIC simulations on the ac-
celeration of ions in the approximation of large Mach-number shocks, I modeled
obliquity dependent CR acceleration and studied its dynamical effects on the blast
wave of a SNR and how the topology of the magnetic field affects the resulting CR
distribution. In this picture only quasi-parallel magnetic shock configurations can
accelerate ions while quasi-perpendicular shocks are ineffective.

I successfully derived analytic exact solutions of the Sedov-Taylor blast wave
problem with CR acceleration for different values of the maximum acceleration ef-
ficiency in a scenario with isotropic injection. Furthermore I run simulations with
obliquity-dependent CR acceleration in a homogeneous magnetic field geometry
showing the emergence of an oblate ellipsoidal shock surface that emerges from
efficient acceleration of CRs. I simulated a Sedov-Taylor explosion in a turbu-
lent magnetic field with different coherence scales and showed how this creates a
patchy CR distribution with bright filaments corresponding to a parallel alignment
between the local magnetic field and the shock and regions devoid of CRs corre-
sponding to local perpendicularity between the local magnetic field and the shock.
I derived the averaged CR acceleration efficiency to ' 0.3 of the maximum CR
acceleration efficiency for both homogeneous and turbulent background magnetic
fields and independently of the coherence scale.

Accounting for efficient acceleration at quasi-parallel shocks and a maximum
efficiency for protons of 15 per cent of the kinetic energy, as suggested by the
findings of recent PIC simulations, I applied the previous scale-free results to two
well-known cases of bright TeV SNRs with resolved morphology: SN 1006 and
Vela Jr. I present the first global simulations and gamma-ray maps of SNRs in
the hadronic model accounting for magnetic obliquity-dependent CR acceleration
and show that both the hadronic and mixed model can match the observed multi-
wavelength spectra. Comparing the simulations for different coherence scale of
the magnetic field to the observed TeV gamma-ray maps of these two SNRs, I am
able to estimate the coherence scale of the unperturbed ISM before it encounters
the SNR blast wave. For SN 1006 this results in a uniform magnetic field whose
coherence scale is much larger than the size of the SNR while for Vela Jr. the
coherence scale is about the size of the remnant. In particular I demonstrated how
obliquity-dependent shock acceleration as a function of the coherence scale of the
magnetic field can reproduce in a unified picture for the disparate morphologies of
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TeV supernova remnants.
I extended these findings to the case of inhomogeneous configurations of the ISM.

In particular I focused on the effect of density inhomogeneities on the TeV gamma-
ray morphology from SNRs during their Sedov-Taylor stage. With a flexible setup
I put constrains on the ISM properties of three SNRs: the Type Ia SN 1006 and
the core-collapse SNRs Vela Jr and RX J1713.

I demonstrated that the relative modulation of the TeV gamma-ray brightness
of the two polar caps of SN1006 can be attributed to a large scale gradient in the
density assuming a homogeneous profile for the density. By contrast, the irregular
gamma-ray morphologies of the core collapse SNRs Vela Jr. and RX J1713 is
owing to a turbulent magnetic field that is supplemented with a population of
multiphase dense molecular clumps. In particular, I showed how these molecular
clumps, which are characteristic of star-forming environments, are fundamental in
outlining the morphology of the TeV emission, lower the density of the diffuse phase
of the interstellar medium and drive considerable magnetic field amplification in
the interaction with the SNR shock wave.

For completeness, adapting a straw man’s model of isotropic CR acceleration
(that does not depend on magnetic pre-shock orientation) I demonstrate that this
model is not able to reproduce the sharp bi-lobed morphology observed for SN1006
even the presence of moderately strong density fluctuations. Moreover, the sim-
ulated azimuthal profiles of this isotropic acceleration model with strong density
variations cannot reproduce the observed rapid variations of the gamma-ray emis-
sivity of Vela Jr. and RX J1713 without significantly corrugating the shock surface,
which is then ruled out by the observed spherical morphologies of these SNRs.

With these models I am able to predict from morphological properties of the
TeV gamma-ray emission within a certain level of accuracy the general properties
of the interstellar environment surrounding the SNR and match both resolved
observations and spectral measurements.

The work presented here can be further expanded and refined. Here I offer some
possible prospects to extend this research.

An extension of the present work can be applied for instance to other astrophys-
ical problems such the creation of superbubbles from the merging of various SN
explosions. In particular, superbubbles are objects sufficiently spatially and tem-
porally extended to be resolved in galaxy simulations and they carry momentum
and radiation to be considered fundamental in feedback models. The superposition
of different shock fronts especially leads to the re-acceleration of the propagated
CR population possibly increasing the higher average acceleration efficiency with
respect to the case of isolated SNRs.

Another front that I am willing to explore is an improvement of what has been
carried in Chapter 4. The modeling of clumpy media is rather interesting and
complex and accounts for different chemical species as well as for a wide range
of densities and scales. The simulations presented in Chapter 4 are sufficient to
estimate efficient acceleration of CRs in dense clumps but they are rather simplified
and did not include effects such as cooling and diffusion of CRs. My aim is to
dramatically improve the resolution and run a highly detailed simulation for a
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clumpy medium including all these effects.
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A. Appendix
This appendix is an adapted version of the appendices from the paper The effect of
cosmic-ray acceleration on supernova blast wave dynamics published on Monthly
Notices of Royal Astronomical Society (Pais et al., 2018).

A.1. Convergence tests
Here, we perform numerical convergence tests of our shock-tube and the Sedov-
Taylor setups with a homogeneous magnetic field (see Sections 3.2 and 3.3, re-
spectively). First, we asses the convergence of the accuracy with which we recover
the magnetic obliquity in our simulations. We use several simulation outputs to
measure the obliquity distribution, which follows a Gaussian, independent of res-
olution. Figure A.1 shows the Gaussian standard deviation of the obliquity as a
function of grid resolution, featuring 1200, 104, 8 × 104 and 64 × 104 cells in our
elongated shock tube setup (10 × 1 × 1). We notice that the standard deviation
σθ decreases from 1200 to 104 cells and levels off for better resolved simulations,
indicating convergence for measuring the magnetic obliquity for at least 104 cells or
equivalently 103 cells per individual three-dimensional unit. To assess the numeri-
cal convergence of our ellipsoidal Sedov-Taylor problems with obliquity dependent
CR acceleration, we perform simulations with 503, 1003 and 2003 grid cells. The
results are reported in Fig. A.2. The time evolution of the average shock radius
(shown in the left panel) already converges for a 503 simulation except for the first
two points. We derive the radius of our self-similar solution with equation (3.17)
using an average efficiency value taken from the 2003 simulation. Contrarily, the
time evolution of the eccentricity of the oblate explosion (shown in the right panel)
converges much slower and converges on our theoretical eccentricity at a resolution
of 2003 cells. The self-similar solution of the eccentricity is constructed by fitting
a Sedov-Taylor solution of the shock evolution to the data of the 2003 simulation
in the parallel and perpendicular regions (as defined in Sect. 3.3.2).

A.2. Details of the Sedov-Taylor solution
The Sedov-Taylor similarity solution makes two fundamental assumptions: (i) it
assumes that the explosion was sufficiently long ago so that the initial conditions
do not impact the solution and (ii) that the explosion expands into a medium of
negligible pressure (or temperature). For these assumptions, the solution describes
a strong spherical shock wave whose position only depends on the injected energy
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Figure A.1.: Convergence test of the shock-tube simulation for four different resolutions (1200,
104, 8×104 and 64×104 cells) in a 10×1×1 simulation box for a magnetic obliquity
of 45◦. The plot shows the standard deviation σθ of the magnetic obliquity vs. the
number of cells N used in the initial setup.
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Figure A.2.: Convergence test for the Sedov-Taylor blast wave in the case of a homogeneous
magnetic field and obliquity dependent CR acceleration with three different grid
resolutions: 503, 1003 and 2003. The left panel shows the time evolution of the
average shock radius while the right panel shows the time evolution of the eccentricity
of the oblate explosion. Except for early times (t < 0.02) the radius already converges
for a simulation with 503 cells. In contrast, the eccentricity converges only at a
resolution of 2003 grid cells.

131



A. Appendix

and the density of the ambient medium (Sedov, 1959; Taylor, 1950). These as-
sumptions still hold when including a magnetic field that is flux-frozen into the
gas. We follow the derivation by Landau & Lifshitz (1966) and only state the
starting point and relevant definitions that are necessary to understand our final
novel analytical expression of the self-similar parameter α in equation (3.13).

The velocity of the shock wave relative to the background gas at rest is given by
(equation 3.13)

u1 = drs(t)
dt = 2rs(t)

5t = 2
5

(
E1

αρ1t3

)1/5
. (A.1)

Using the Rankine-Hugoniot expressions in the limit of strong shocks, the gas
pressure P2, mass density ρ2 and velocity v2 = u1−u2 in the post-shock rest frame
can be expressed in terms of the shock velocity u1:

v2 = 2u1

γ + 1 , (A.2)

ρ2 = γ + 1
γ − 1ρ1, (A.3)

P2 = 2ρ1u
2
1

γ + 1 . (A.4)

To determine the gas flow in the region behind the shock, we introduce dimen-
sionless variables V,G, Z for the gas velocity v, density ρ and the squared sound
velocity c2, respectively:

v = 2r
5t V, (A.5)

ρ = ρ1G, (A.6)

c2 = 4r2

25t2 Z. (A.7)

These parameters are functions of the dimensionless variable

ξ = r

rs(t)
= r

(
αρ1

E1t2

)1/5
. (A.8)

Using these dimensionless quantities the conservation of energy can be expressed
in terms of Z and as an implicit function of ξ through V (ξ) (Landau & Lifshitz,
1966):

Z = γ(γ − 1)(1− V )V 2

2(γV − 1) . (A.9)

Following Landau & Lifshitz (1966), we arrive at the following set of equations:

ξ5 =
[1
2(γ + 1)V

]−2 {γ + 1
7− γ [5− (3γ − 1)V ]

}ν1

×
[
γ + 1
γ − 1(γV − 1)

]ν2

,

(A.10)

132



A.2. Details of the Sedov-Taylor solution

1.35 1.40 1.45 1.50 1.55 1.60 1.65
γ

0.5

0.6

0.7

0.8

0.9

1.0

α
(γ

)

Figure A.3.: We show the self-similarity factor α of the Sedov-Taylor solution as a function of the
ratio of specific heats γ.

G = γ + 1
γ − 1

[
γ + 1
γ − 1(γV − 1)

]ν3 {γ + 1
7− γ [5− (3γ − 1)V ]

}ν4

×
[
γ + 1
γ − 1(1− V )

]ν5 (A.11)

with

ν1 = − 13γ2 − 7γ + 12
(3γ − 1)(2γ + 1) , (A.12)

ν2 = 5(γ − 1)
2γ + 1 , (A.13)

ν3 = 3
2γ + 1 , (A.14)

ν4 = − ν1

2− γ , (A.15)

ν5 = − 2
2− γ . (A.16)

The variable α as a function of the independent variable ξ is determined by the
condition

E1 =
∫ rs

0
ρ

(1
2v

2 + 1
γ − 1

P

ρ

)
4πr2dr, (A.17)

which states that the total energy of the gas is equal to the released energy of the
original explosion. In terms of dimensionless quantities, this equation reads

α = 16
25π

∫ 1

0
G(ξ)

[1
2V

2(ξ) + Z(ξ)
γ(γ − 1)

]
ξ4dξ = α(γ). (A.18)
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As γ = cP/cV (where cP and cV are the specific heats at constant volume and
pressure, respectively) we have 1 < γ < 2. In our simulations we adopt values of
γ in the range [4/3, 5/3], such that α(γ) can be approximated with high precision,
slightly modifying the formula used by Mihalas & Mihalas (1984):

α(γ) ≈ 16
75

[
π(3γ − 1)

(γ − 1)(γ + 1)2 −
3
8

]
, (A.19)

which is accurate to within 0.8% and is shown in Fig. A.3.
The dimensionless quantities defined via equations (A.5), (A.6) and (A.7) yield

the implicit expressions for v(r), ρ(r) and P (r):

v(r) = 1
2(γ + 1)rV (r),

ρ(r) = G(r)ρ1,

P (r) = 2ρ1u
2
1

γ + 1

[1
2(γ + 1)V

]−6/5 [γ + 1
γ − 1 (1− V )

]−ν5+1

×
{
γ + 1
7− γ [5− (3γ − 1)V ]

}− ν4+2ν1
5

.

(A.20)

A.3. Ellipsoidal reference frame
The radial unit vector of a spherical coordinate system is not perpendicular to an
oblate surface except for the poles at z = ±b, which would complicate the relation
to the magnetic obliquity for a homogeneous magnetic field aligned with the z axis.
To simplify our computation of the magnetic obliquity on an oblate surface, we
adopt the ellipsoid coordinate system. Here, the bisector of a tangent to point P
intersects the z axis in Q, which varies according to the position of the point P
on the oblate surface (see Fig. A.4). It assumes values from 0 (for a point on the
semi-major axis) to −∞ (for a point on the semi-minor axis).

A point P on the ellipse has the property that the sum of distances from the
two focal points F1 and F2 to P is constant. A tangent to the ellipse in that point
forms equal angles α with the two focal segments F1P and F2P . Dropping the
perpendicular to the tangent in P , by construction bisects the angle and intersects
the z axis in Q. The angle between this bisector and the z axis defines the angle
ϕ. Assuming a homogeneous magnetic field that is aligned with the z axis, implies
that the pseudo-azimuthal angle coincides with the magnetic obliquity, ϕ = θ.

The point P can be vertically projected onto a circumference in the point PC ,
which forms an azimuthal angle ψ with respect to the semi-minor axis b. The angle
ϕ is related to this angle via the following formula:

tanϕ = b

a
tanψ. (A.21)
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Figure A.4.: Elliptical section of an oblate that defines the ellipsoidal reference frame with the
pseudo-azimuthal angle ϕ. The two focal points F1 and F2 determine a point P on
the surface of the ellipse. The tangent to that point (blue dash-dotted line) forms
two equal angles α with the lines to the focii PF1 and PF2. Thus, the perpendicular
to the tangent in P (red dash-dotted line) intersects the z axis in point Q, which
varies with the position of P and forms the desired angle ϕ.

A.4. Sedov-Taylor solution of a dipole field

As a last application, we study CR shock acceleration in the case of a magnetic
dipole field with the dipole moment pointing in the positive x direction. We chose
the dipole configuration because it is expected to be the dominant magnetic con-
figuration emerging from a non-rotating star at large distances and because of its
self-similarity. While the magnitude of the magnetic field strength decreases as
r−3, where r is distance from the source, the dipole field shows a constant mag-
netic obliquity at fixed latitude. This implies that the explosion encounters exactly
the same replica of the magnetic field at different radii. We perform a 1003-cell
simulation with an extremely low ζ0 = 0.02 to reduce the effect of CR pressure
on the explosion shape and apply a Plummer-type softening length for r → 0 to
avoid magnetic divergence at the origin. The magnetic field in the polar regions is
oriented mostly parallel to the shock normal, which results in efficient CR accelera-
tion as the blast wave sweeps across it. The resulting quadrupolar CR morphology
is shown in Fig. A.5, resembling qualitative similarities to the homogeneous field
case.

To analytically calculate the average efficiency we proceeded as follows. The
normalised radial component of the magnetic dipole field is given by

b̂ · r̂ = 2 cosϑ√
1 + 3 cos2 ϑ

, (A.22)

where r̂ denotes a radial unit vector and ϑ is the azimuthal angle. Thus, the
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the different magnetic field morphology in comparison to the homogeneous case, the
specific CR energy still exhibits a quadrupolar anisotropy, but with a broader region
of CR production.
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magnetic obliquity reads as

θ(ϑ) = arccos(b̂ · r̂) = arccos
( 2 cosϑ√

1 + 3 cos2 ϑ

)
. (A.23)

Capitalizing on the symmetry of both hemispheres, we calculate the average effi-
ciency,

〈ζ〉 =
∫ π/2

0
ζ[θ(ϑ)] sinϑ dϑ = 0.55ζ0. (A.24)

Note that the result is considerably larger in comparison to our previously discussed
case of CR acceleration in a turbulent field.

In Fig. A.6 we show the obliquity distribution for a dipole field. To analytically
predict this distribution, we invert equation (A.23) and obtain

ϑ(θ) = arccos
( cos θ√

4− 3 cos2 θ

)
, with θ ∈ [0, π/2]. (A.25)

The distribution of magnetic obliquity in the case of a dipole field is obtained
through a change of variables:

sinϑ dϑ = sin[ϑ(θ)]
(dϑ

dθ

)
dθ = f(θ)dθ, (A.26)

where
f(θ) = 4 sin θ

(4− 3 cos θ)3/2 . (A.27)

This analytical result compares favorably to the simulations (see left-hand panel of
Fig. A.6). The simulated and theoretically expected average acceleration efficien-
cies agree within 2% (for our 1003 cell simulation), demonstrating the accuracy of
our numerical algorithms.
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