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Abstract 

The genetic information of all life is encoded within DNA molecules that are translated into 

functional entities, so-called proteins. They are responsible for operating and controlling a 

vast array of molecular mechanisms in any biological system and ubiquitous in 

(patho)physiology as a result. Besides, proteins are the primary target of drugs and can 

have a central role as biomarkers for diagnostic, prognostic, or predictive purposes. Here, 

many regulatory mechanisms and spatiotemporal influences prevent an accurate 

prediction of a proteins’ abundance and its associated functionality based on the genome 

information alone. Nowadays, it has become possible to measure and quantify thousands 

of proteins simultaneously, however, involving comprehensive sample preparation 

procedures. Currently, no universally standardized method enables a routine application of 

proteome profiling in a clinical environment. 

In this thesis, an automated workflow for the efficient processing of the most common and 

quantity-limited specimens is described. In order to demonstrate the usefulness of the end-

to-end pipeline, which was termed autoSP3, it was applied to the proteome profiling of 

histologically defined and WHO recognized growth patterns of pulmonary adenocarcinoma 

(ADC) that currently have a limited clinical implication. Secondly, we investigated the 

proteome composition of a molecularly well-defined cohort of Ependymoma (EPN) 

pediatric brain tumors. Despite the availability of substantial NGS data and their ability to 

differentiate nine distinct subgroups, the majority of tumors remained without a functional 

insight. Here, the proteome profiling could provide a missing link and emphasize several 

subgroup-specific protein targets. 

In summary, this thesis describes the optimization of SP3 and its automation into a robust 

and cost-efficient pipeline for quantity-limited sample preparation and biological insight 

into the proteome composition of ADC growth patterns and EPN tumor subgroups. 
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Zusammenfassung 

Die genetische Information, welche in der DNS eines jeden Lebewesen’s codiert ist, wird 

übertragen in funktionellen Einheiten, so genannte Proteine. Diese sind verantwortlich fuer 

den Betrieb und die Kontrolle zahlreicher molekularer Mechanismen in jedem biologischen 

System. Dadurch sind Proteine allgegenwärtig in der (Patho)-physiologie. Zusätzlich sind 

Proteine der Hauptangriffspunkt der meisten klinischen Arzneimittel und sie können eine 

zentrale Rolle als Biomarker fuer diagnostische, prognostische oder prädiktive Zwecke 

einnehmen. Da die Abundanz eines jeden Proteins und die damit zusammenhängende 

Funktion von zahlreichen regulatorischen Mechanisms sowie räumlichen und zeitlichen 

Faktoren abhängt, ist es kaum möglich diese allein anhand der genetischen Information 

vorherzusagen. Heutzutage ist es möglich tausende von Proteinen gleichzeitig zu messen 

und zu quantifizieren. Bisher gibt es allerdings keine universelle und standardisierte 

Methode, welche eine routinierte Anwendung in einem klinischen Umfeld ermöglichen 

würde. 

In dieser Doktorarbeit wird eine automatisierte Methode zur effizienten Prozessierung der 

am häufigsten verwendeten und mengenlimitierten Probentypen beschrieben. Um die 

allgemeine Nützlichkeit dieser Methode zu demonstrieren, welche autoSP3 genannt 

wurde, wurde sie in zwei realistischen Szenarios angewendet. Zunächst wurde sie 

verwendet um Unterschiede in der Proteinzusammensetzung von Lungenkarzinomen mit 

verschiedenen Wachstumsmustern zu untersuchen, welche nach WHO Richtlinien 

histologisch klassifiziert wurden. Darüber hinaus wurde eine Kohorte von Ependymoma 

(EPN) Gehirntumoren, welche bei Kindern und Jugendlichen vorkommen, auf Ihre 

Proteinzusammensetzung untersucht. Bisher konnten diese basierend auf NGS Daten in 

neun individuelle Untergruppen klassifiziert werden, aber für die Mehrheit exisitiert bisher 

keine funktionelle Erklärung. Die tumorspezifischen Proteinprofile bieten die Möglichkeit 

potentielle Ursachen, Mechanismen oder Angriffspunkte für Therapien aufzudecken. 

Zusammenfassend beschreibt diese Doktorarbeit die Optimierung und Automatisierung 

von SP3 zu einem robusten und kosteneffizienten Prozess sowie dessen Anwendung und 

daraus folgende biologische Erkenntnisse zu Lungenkarzinom-Wachstumsmustern und 

EPN-Gehirntumoren. 
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1. Introduction 

1.1. Systems Medicine 

1.1.1. Definition and emergence 

The interdisciplinary field of systems medicine emanates from the translation of systems 

biology to medical research and routine clinical practice1,2. It is a systems-oriented 

approach that aims to combine the multifaceted network of factors (e.g., genes, transcripts, 

proteins, metabolites, family history, and environmental factors) that define and influence 

the function and development of the human body to improve disease diagnostics, 

prognostics, and to develop innovative therapies3,4. 

Early phases of most scientific fields were coined mainly by the concept of reductionism, in 

which one attempts to reduce every instance of a system to its individual, constituent 

parts5,6. It hypothesizes that understanding the simple parts suffices to draw upward 

causation to explain all overarching phenomena or mechanisms that are crucial for 

understanding the whole system itself5,6. This method has been successful in physics and 

chemistry because physicochemical properties and resulting physical laws down to the 

atomic level can explain most problems or questions. Then and now, reductionism models 

were also used to explain many fundamentals in biology to understand living processes, 

and it remains to be the predominant concept in classical medicine approaches7–9. Here, 

clinicians aim to break down a problem or disease phenotype to its single-cause, which has 

proven utility in cases were an individual factor, such as a bacterial infection, is responsible 

for the disease. However, this concept quickly becomes challenged by I) the heterogeneity 

of most diseases10, such as cancer, with a complex patho-phenotype and without a single 

causative factor, II) the sheer complexity of biological systems, organisms or patients, being 

comprised of several networks of factors, signaling pathways, multi-layer interaction, and 

dynamic spatiotemporal features, and III) the variable influence of environmental 

factors7,11. Taken together, this complex and dynamic interaction of multi-layer factors 

within a system and with its environment leads to a yet non-predictable behavior that 

cannot be explained by the individual parts of a system7,12. 

The foresight about the importance of a systems-oriented approach dates back to Aristotle, 

one of the first inquiring minds in philosophical and scientific history, who wrote: “The 
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totality is not, as it were, a mere heap, but the whole is something besides the parts.” 

(Aristotle’s Metaphysics: Book VIII, 1045a.8–10)13. His primal understanding of the essential 

complexity of biological systems can be seen as the philosophical foundation of modern 

systems biology as it emerged throughout the 20th century9. In 1926, Jan Christian Smuts, 

a South African statesman and philosopher, introduced the concept of holism antithetic to 

reductionism, which in a broader sense of Aristotle’s words states that a system is more 

than the sum of its parts14,15. The theory was further extended at the end of the 1960s by 

Ludwig von Bertalanffy, who is thought to have created the term of systems biology by 

introducing his general systems theory (GST)9,16. In its essence, he describes that every 

system is composed of the sum of its structure and functional purpose, the environmental 

and temporal influences, and its spacial boundaries9,16. This steady change to a systems-

oriented mindset was manifested and driven by numerous breakthrough discoveries 

throughout the 20th century, including the discovery that DNA makes up the genetic 

material of the chromosome in 1944 (Oswald Avery)17, the finding of the structure of DNA 

in 1953 (James Watson, Francis Crick, and Rosalind Franklin)18–20, and the Sanger 

sequencing technology providing the first DNA genome of an entire organism in 1977 

(Frederick Sanger)21. 

Nowadays, systems biology has matured into its own independent, inter-disciplinary 

field22–24. It involves not only modern analytical technologies to generate comprehensive 

data but also gained momentum through the rapid development of computational 

hardware and software, providing the performance capacity and mathematical models to 

store, handle, and analyze the data24. This advanced technological toolbox of systems 

biology approaches enables the study of (patho)physiological processes on a complex 

molecular level beyond single, linear parameters22. Thus, the complexity of biological 

systems and the sheer amount of qualitative and quantitative data became impossible to 

handle without a systems biology-based approach22–24. In a clinical context, the integration 

of systems biology marks the beginning of systems medicine as a new discipline10. Since 

then, it is rapidly evolving and growing to an integration of all fields of expertise from 

bioinformatics- and statistics to basic biology research, mathematics, and classical medicine 

to generate, collect, and interpret data comprising molecular, behavioral (lifestyle), 

environmental, as well as family data. 
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Systems medicine, first introduced by B.Z. Zeng25 and T. Kamada26 in 1992, promises to 

surpass the limits of reductionism and leverages our understanding of (patho)physiological 

processes to positively impact therapy development and decision making, diagnostics, and 

prognostics7,27. It was Hippocrates of Kos (460-377 B.C.) who said: “It is more important to 

know what sort of person has a disease than to know what sort of disease a person has”28. 

Thus, he recognized early on the importance of the individual and the necessity of a 

personalized medicine approach, including tailored diagnostics and treatment29. To achieve 

this, the translation of modern technologies towards clinics and tackling remaining 

bottlenecks are gaining momentum since the beginning of the new century27,30. Systems 

medicine promises to not only measurably improve patients’ health and treatment 

outcomes but also offers aid in improving the efficacy of drug discovery and development 

through better disease and patient characterization27,30,31. The future of medicine is at a 

tipping point. 

1.1.2. Next-generation sequencing (NGS): status quo in the clinic 

After the discovery of the DNA structure in 195318–20, it took more than two decades, until 

1977, for the development of first sequencing methods, namely the Maxam & Gilbert 

sequencing32 and the Sanger sequencing21. The latter of the two became the predominant 

method for the following years up until today, because of less handling requirements of 

toxic chemicals and radioisotopes33. Since then, Sanger sequencing technologies have 

rapidly evolved at an unprecedent speed with the immense support of the Human Genome 

Project, which initiated in 199033. As the largest collaborative biological project, it resulted 

in the completion of the first human genome sequence in 2004, a significant milestone for 

the field of systems biology34,35. However, the sequencing of an entire genome required 

extensive amounts of time and resources, which lead to a new funding initiative by the 

National Human Genome Research Institute (NHGRI) aiming to reduce the human genome 

sequencing cost to about 1000 US-Dollar within the next ten years36. This call has led to an 

explosion of “next-generation” sequencing (NGS) methods, including faster instruments, 

chemicals, tools, bioinformatics data analysis, and protocols within the last 15 years that 

enable scientists to address all sorts of basic genetics or clinically relevant questions37–44. 

NGS has become the mainstream acronym for essentially every very-high-throughput 

sequencing technique or methods involving sequencing, that allow millions of observations 
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in a single run at significantly reduced costs as compared to 200433. In more recent years, 

third-generation instruments and methods (also considered NGS) were commercialized 

that are even faster and more accurate, that require less DNA or RNA input material, 

generate lower error rates and fewer artifacts, at lower costs45–47. A higher standardization 

and automated sample handling, as well as improved bioinformatic tools and pipelines, 

continuously support these developments33,45. Taken together, scientists nowadays have a 

vast toolbox of NGS applications that enable the study of entire genomes (DNA-seq)34,35, 

the transcriptome (RNA-seq)48, and targeted fractions of both beyond the determination 

of a nucleotide sequence40,47,49,50. 

In 2010, the first large-scale study of human genetic variation was published, providing 

evolutionary insights at a population scale to understand the impact of genetic differences 

on our (patho)physiology51. This massive sequencing effort extends our knowledge of the 

functional consequences of mutations, providing a link between genotype and phenotype 

concerning health and disease. This type of study has the potential to improve the precision 

of diagnosis, the classification of a disease state or subtype, and to provide accurate 

prognosis or even identify potentially druggable mutations for individual patients51. In a 

study by Ashley, E.A. et al. in 2010, for example, the genome of a patient with a family 

history of vascular disease and sudden early death was assessed52. The whole-genome 

sequencing (WGS) analysis and integration with clinical features pointed to an increased 

genetic risk for myocardial infarction and discovered three rare gene variants that are 

clinically associated with sudden cardiac death. Thus, relevant and personalized 

information could be retrieved using WGS analysis52. 

In practice, genetic disease diagnostics is focused on panels of genes that are sequenced, 

which are associated with a clinical phenotype53,54. This approach is limited to well-

characterized monogenic illnesses in which a single mutation can explain the disease55–58. 

For less straight-forward applications, the WGS52–54 or targeted approach55–58 is neither 

necessary nor beneficial and replaced by whole-exome sequencing (WES)59,60, in which 

solely the coding regions of the genome are sequenced. The human exome represents a 

small fraction of the entire genome but comprises >85% of disease-causing gene 

variants61,62. In 2011, Worthey E.A. et al. used WES to identify a causative mutation in a 

male child with Crohn disease-like illness were comprehensive clinical evaluation did not 
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yield in a definitive diagnosis63. The sequencing analysis identified a novel missense 

mutation in the X-linked inhibitor of apoptosis gene, which was previously not correlated 

to Crohn disease. That followed, the child was diagnosed with an X-linked inhibitor of 

apoptosis deficiency and treated in concordance with the respective recommendation 

guidelines63. Thus, the exome sequencing led to a valuable, life-saving therapeutic decision, 

highlighting the potential of NGS approaches in a clinical setup beyond standard 

diagnostics. 

Furthermore, NGS enables the identification of single nucleotide variants64, for example, 

somatic or germline mutations and structural variants65–68, such as inversions, 

translocations, or gene copy number alterations. Other sequencing-based gene expression 

analysis (RNA-seq) enable the identification and quantification of rare transcripts, 

alternative splicing variants, or newly synthesized (nascent) transcripts48,69. Techniques to 

profile protein-DNA interactions, using chromatin immunoprecipitation followed by 

sequencing (ChIP-seq)70,71, and epigenetic marks72,73, have been developed driven by the 

continuous evolution of the NGS field33. The latter, epigenetics, defines functionally 

relevant changes to the genome without an alteration in the nucleotide sequence74. In 

particular, the epigenome of DNA methylation, a mark for silencing of transcription, has 

been extensively studied using methods such as bisulfite sequencing73,75. Here, the DNA is 

treated with bisulfite before routine sequencing, which leads to a conversion of the base 

cytosine to uracil. The majority of DNA methylation events occur at cytosine and remain 

unaffected during the bisulfite treatment, leading to methylation status dependent 

alterations of the nucleotide sequence that can be readout50,76. 

The impressive developments in NGS technologies and the ever-increasing number of 

applications and molecular profiling studies highlight the potential impact in improving a 

patient’s health38,40,42. The analysis of cell-free, circulating DNA isolated from liquid 

biopsies, for example, offers an attractive, low-invasive approach for the discovery of 

disease biomarkers77,78. The genetic information contained in circulating tumor DNA 

(ctDNA) might be relevant for cancer diagnostics, progression or relapse monitoring, and 

guiding therapy decisions78. Altogether, NGS promises improvements in patient 

stratification, risk assessment for genetic diseases, and the capability to identify multiple 

mutations in a variety of cases, such as oncology38,42. This holds for the broad field of 
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oncology79, but also other diseases, such as Parkinson’s disease80, Alzheimer’s disease81, 

and cardiovascular diseases82. 

Nevertheless, neither WGS nor WES or RNA-seq is currently established in routine 

diagnostics, and the implementation is only slowly progressing with a few examples of 

clinical translation83,84. Known obstacles for clinical translation are false positive and false 

negative results as well as low sensitivity in the detection of early-stage cancer84. Other 

limitations are practical demands, such as fast turn-around times from receiving patient 

samples to providing analyzed data, the establishment of necessary infrastructure, and the 

overall costs84. Besides, the sheer amount of data, the requirements to ensure high data 

quality and reproducibility, the associated bioinformatic analysis, the handling and storing 

of data, the medically relevant interpretation, and the clarification of ethical concerns are 

significant challenges for a successful implementation of any systems medicine approach 

that need systematic problem-solving85,86. Other obvious bottlenecks of NGS profiling are 

I) the challenges in distinguishing between a driver and a passenger mutation (explained in 

chapter 1.3.2.)87, or II) the low correlation of gene expression and protein expression and 

the consequential phenotype88–90. This is because proteins are dynamically regulated by 

numerous post-transcriptional mechanisms and post-translational modifications (PTMs), 

such as phosphorylation88–90. The function of a protein additionally depends on its 

subcellular localization91, the interaction of proteins in complexes92, or their half-life’s93, 

which explains why transcript abundance does not need to correlate with a protein’s 

abundance and activity90. Knowing that proteins are responsible for a vast number of 

biological functions, this makes them an essential factor for understanding a biological 

system and its phenotype94,95. The function of proteins and their behavior, however, 

remain invisible for the NGS technology, leading to an incomplete molecular picture 

without the proteome96. 

1.2. Mass spectrometry-based proteome profiling 

1.2.1. Definition and emergence 

The field of proteomics, termed by Marc Wilkins in 1996, describes the large-scale study of 

proteins, the functional workhorses of any living system, cells or whole organisms97. In 

particular, proteins are the molecular entities or biomolecules encoded in the genome that 

operate and control a vast array of processes from replication of DNA and cell cycle, to 
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signaling tasks, immune response, and cell differentiation94,95. In the form of the 

cytoskeleton, proteins provide the mechanical stability of cells, support the information 

and molecule transport, lead responses to internal and external stimuli, and catalyze 

biochemical reactions94,95. 

The existence of proteins as distinct biomolecules is recognized since the mid-18th century, 

described by the Dutch chemist Gerardus Johannes Mulder and named by the Swedish 

chemist Jöns Jacob Berzelius98. Since then, it took years of research to understand the 

structure, function, and complexity of proteins. In 1951, Linus Pauling et al., for example, 

described the helices structure with indirect evidence in particular proteins99, whereas in 

1956, Walter Kauzmann significantly contributed to the understanding of protein folding 

with his work about structural factors in protein denaturation100. Just before, in 1949, it 

was Frederick Sanger, who sequenced the first protein, namely insulin, and established the 

link of proteins being amino acid sequences101,102. The first complete structure was 

unraveled for the myoglobin protein molecule by Sir John Cowdery Kendrew in 1958103. 

These and numerous other discoveries throughout the 20th century have significantly 

enhanced our knowledge about proteins, the 3rd downstream layer of the genetically 

encoded information following DNA and RNA, as explained within the central dogma of 

biological systems. Studying the entire set of proteins, however, remains a challenging task 

owing to technical difficulties to measure proteins and the highly variable and complex 

environment of protein expression, its regulation, and their interaction94,95,104. 

The framework for large-scale protein measurements, as we know it today, was set by 

crucial developments in the field of mass spectrometry, a technique to determine the mass-

to-charge ratio of ions105. Besides others, this includes the development of quadrupole ions 

traps, so-called Paul traps, in the 1950s by Wolfgang Paul and Hans Georg Dehmelt to trap 

charged particles in electric fields106. Therefore, they were later recognized with the Nobel 

Prize in Physics in 1989 (shared with Norman Foster Ramsey, Jr. for the invention of the 

separated oscillatory field method to precisely measure time and frequency)106. In the same 

year, Prestage J.D. et al. described the linear ion trap providing higher ion storage capacity 

and faster scan rates107. Another significant milestone was the employment of electrospray 

as a soft ionization method to produce ions from large molecules, such as proteins or 

peptides, with minimal fragmentation or degradation during the liquid-to-gas-phase 
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transition108. Electrospray ionization (ESI)108 was developed in 1984 by John Bennett Fenn. 

He was awarded the Nobel Prize in Chemistry in 2002 (shared with Koichi Tanaka for the 

development of MALDI - matrix-assisted laser desorption ionization109, another soft 

ionization technique, and Kurt Wüthrich for the development of NMR - nuclear magnetic 

resonance spectroscopy to identify 3D structures of biological macromolecules110). In 1999, 

Alexander Makarov presented his proof-of-principle for the first orbital ion trap mass 

analyzer, the Orbitrap, a derivative of the earlier Kingdon trap (1923) or the modified Knight 

configuration (1981)111. The Orbitrap provided unprecedented, sensitive, and robust mass 

accuracy and high resolution. Then and nowadays, this marks a kick-off for continuous 

technological improvements that pave the way for modern analytical mass-spectrometry 

(MS)-based proteomics. The first Orbitrap mass spectrometer became commercially 

available in 2005 and has since remained the chief MS technology in proteomics112. 

In the last 15 years, MS-based proteomic technologies have matured into a powerful tool 

allowing robust, reliable, and comprehensive proteome profiling in cells and tissues94,95. 

This is the result of parallel developments in mass spectrometric instrumentation that 

continues to gain speed and sensitivity113–116, in liquid chromatographic technology to 

separate proteins and peptides directly interfaced with MS117,118, and in data analysis 

pipelines for reliable protein identification and quantification119,120. Various workflows have 

been developed for comparative analyses across many samples using, for example, isobaric 

labels allowing sample multiplexing, or label-free approaches and short liquid 

chromatography (LC) gradients118,121,122. Collectively this has propelled proteomic studies 

in multiple areas of basic, mechanistic, and systems biology, using in-depth and 

quantitative proteomic profiles to understand spatial and temporal aspects of proteome 

organization and dynamics in a wide variety of conditions123. In 2014, Mathias Wilhelm et 

al. and Min-Sik Kim et al., released the first drafts of the human proteome124,125. 

1.2.2. Status quo: proteomics in systems medicine 

The speed, sensitivity, robustness, and general accessibility of present-day proteomic 

technologies have an increasing appeal for clinical applications, for various reasons: I) 

underlying mechanisms of many diseases are still unclear, where proteome-level 

information will increase the mechanistic insight of (patho)physiological processes94,126,127; 

II) proteins are the primary targets of almost all current drugs, and insight in their function 
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will help to understand how drugs impact on cellular processes. Many drugs act 

unspecifically on multiple rather than a single protein target, thus making it a crucial factor 

to deconvolute the mechanism of action to gain confidence and improve drug discovery128; 

III) for many diseases there is a persistent lack of robust protein biomarkers for diagnostic, 

prognostic, or predictive purposes1,3. Liquid biopsies, such as blood or urine, are again 

particularly promising for protein-based biomarker discovery due to their non-invasiveness 

as compared to tissue biopsies obtained through surgery77,78. The proteome provides a 

unique insight that can also complement NGS-derived data, and with the current state of 

development, it is the consequential next step in studying biological systems, animal or cell 

models, and patient specimens126,129. 

Despite the demand for in-depth proteome-level information, its value, and promise to 

bridge the blind spot between DNA/RNA and phenotype126,127, most recent applications in 

a clinical context have been limited to highly specialized workflows or individual 

proteins130,131. Many routine laboratory tests for diagnostics and therapy decision-making 

are based on proteins132,133. Immunohistochemistry, for example, is the main procedure in 

pathology for disease entity classification through staining of individual proteins, which in 

turn highlights their role in clinical practice133,134. In contrast, MS-based proteomics enables 

the global identification and quantification of thousands of proteins simultaneously94. Here, 

the proteomic field benefits from the head start of NGS technologies, in which it has already 

become clear that complex biological disease entities cannot be explained simply by their 

genetic alterations and transcriptional response alone1,33,127. Instead, an integration of 

multiple “omics” layers, including clinical data and proteomics, holds promise to extend our 

understanding of (patho)physiological processes and to gain insight into its clinical 

utility1,33,127,135. Latest systems medicine programs, such as the “Obama Precision 

Medicine” initiative, clearly propose an incentive to establish MS-based profiling of 

proteins and other biomolecules and to integrate with NGS-based and clinical data136. 

Several promising case studies utilizing global proteome or phosphoproteome profiling and 

data integration in a clinical context are available137, which guided a therapy decision or 

helped subclassify a specific disease entity. In 2018, for example, Doll S. et al. have applied 

proteomic profiling to a chemorefractory patient with a rare urachal carcinoma for whom 

all previous treatment options failed130. Comparing the protein profiles in tumor tissue to 



Introduction 

10 

its surrounding, they identified differentially expressed candidates, of which one, namely 

lysine-specific histone demethylase 1 (LSD1), an epigenetic regulator, was in focus as a 

potential target in ongoing drug development attempts. Backed up with NGS and clinical 

data, their finding sufficiently convinced the tumor board to propose a personalized 

treatment with an LSD1 targeting drug. In another example, in 2018, Archer T.C. et al. 

applied quantitative proteome and phosphoproteome profiling to a cohort of 45 primary 

medulloblastoma specimens, a common pediatric brain tumor, to identify potential 

therapeutic targets131. Despite the low mutation rates in pediatric tumors and highly similar 

RNA expression, they identified extensive heterogeneity in molecular mechanisms, 

representing the functional state of the cancer cells, within the World Health Organization 

(WHO)-accepted subgroups for medulloblastoma. The membrane protein CD47, for 

example, was significantly enriched, suggesting that anti-CD47 therapies might be 

particularly successful within the respective subgroup. Furthermore, the PTM readout of 

phosphorylation status in MYC revealed its distinct activity in certain tumors irrespective of 

the expression level. The activity of MYC upregulates many genes, some of which are 

involved in cancer formation and cell proliferation. The utility for a clinical implication 

remains to be shown, but the integrative data promise a new perspective for understanding 

tumor biology and guiding therapy. 

MS-based proteomics in clinical systems medicine is a promising trend, yet remains 

challenging to implement as a routine application126–129. Considering recent pioneering 

measures and technological maturation, it seems to be a question of time until robust 

instrumentation, broad training, computational efforts, and standardization will facilitate 

the day-to-day molecular proteome profiling of individual patients. 

1.2.3. Clinical translation: bottlenecks and requirements 

The field of proteomics is faced with significant analytical challenges due to the sheer 

complexity of protein expression, their interaction, and regulation94. They can be highly 

variable in their spatiotemporal expression across different tissue or cell types and an 

organism's lifetime138–140. The expression of proteins varies tremendously during cell 

differentiation141, early development142, during cell cycle phases143,144, or in a disease, such 

as cancer145. Unlike the proteome, the nucleotide sequence of the genome stays constant 

and static over time, whereas individual genes or genomic regions can be more actively 
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transcribed or repressed146. Proteins can differ in their abundance by several orders of 

magnitude, complicating the identification and quantification of low abundant proteins in 

the presence of high abundant proteins104. The broad dynamic range constitutes a 

sensitivity issue for sample preparation as well as MS instrumentation, lacking a 

methodology to amplify protein samples similar to the polymerase chain reaction (1983 by 

Kary Mullis) for nucleotide sequences104,147. The transcription of a gene to mRNA does not 

allow a sufficient prediction of protein expression and the underlying phenotype90. 

Transcripts might be inefficiently translated or quickly degraded by other post-

transcriptional regulatory mechanisms. On top of differential synthesis rates of individual 

transcripts, proteins vary significantly in their half-life or become stabilized through 

functional interaction in protein complexes. As previously mentioned, some proteins can 

be post-translationally modified by, for example, phosphorylation, which determines their 

activity and might be crucial for oncogenic drivers. All of the above contribute to the 

technical and functional complexity of proteomics, presenting both challenges and 

promises for systematic proteome profiling. 

The successful implementation of MS-based proteomics in a clinical environment has not 

materialized yet, primarily because of additional requirements that need to be met on top 

of those in a research environment alluded to above (e.g., proteome coverage, 

sensitivity)126–129. This mostly pertains to I) the ability to analyze many (possibly hundreds) 

samples uninterruptedly and robustly in order to achieve sufficient statistical power in 

patient cohorts117,118, II) simplify the workflow, thereby removing the need for personnel 

with cutting-edge expertise and technical skills in proteomics148,149, III) achieving an 

adequate turn-around time from receiving samples to the generation of a complete 

proteome profile analysis126,129, and IV) cost-effectiveness of the workflow128. Most of these 

bottlenecks can be resolved simultaneously by automation, avoiding manual handling and 

thereby eliminating the risk of error and variability, while at the same time enabling 

longitudinal standardization irrespective of the number of samples. Although liquid 

chromatography coupled to mass spectrometry (LC-MS) has nowadays been sufficiently 

standardized to achieve excellent performance across hundreds of samples150, preceding 

sample preparation is often still highly cumbersome, involving multiple steps to extract, 

purify, and digest proteins before subsequent LC-MS94,104. In an ideal scenario, this 
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procedure should be streamlined into an automated pipeline that accepts processing 

conditions for any sample type, thereby facilitating universal applicability. Despite the 

range of existing sample preparation methods151–158, very few satisfy these demands to 

universally accommodate the different requirements imposed by various clinical tissue 

types. For instance, blood cells can be lysed under more mild conditions than fresh frozen 

tissue, while formalin-fixed and paraffin-embedded (FFPE) tissue requires harsh detergent-

based methods to extract proteins efficiently159. Many currently available sample 

preparation methods have demonstrated their great utility in many application areas of 

proteomics92,139,160–167. However, they also come with some drawbacks. For instance, stage 

tips154, and its derivative iST156, do not tolerate detergents commonly used in proteomics, 

thereby restricting their generic use. Other approaches involve extensive handling 

procedures such as filtration151,156,158, centrifugation151,156,158, precipitation153, and 

electrophoresis152 that are difficult to standardize or scale-up, or that lead to undesirable 

sample losses. The latter is especially important because the majority of realistic clinical 

scenarios are limited to minute amounts of an available specimen, highlighting the demand 

for universal and sensitive methods149,168. 

With large-scale, multi-omics molecular profiling comes a considerable time and resource 

investment in computational data handling, storing, and integration135,169,170. Clinicians 

need to be aware and willing to utilize comprehensive data for therapeutic decision making. 

This, however, requires bioinformatic analysis due to the immense amount of data, which 

practically cannot easily be interpreted by a single person169. Therefore, clinical 

implementation of a systems medicine approach, including proteomics, needs to be an 

inter-disciplinary coordination between scientists, medical doctors, bioinformaticians, and 

others. Logistical challenges for dedicated instruments, working space, personnel, and 

others add up to the list of requirements128,129. Ethical issues concerning the collection and 

interpretation of ‘big data’ are another critical aspect that needs to be discussed to find 

binding agreements1,171,172. Insurance companies and health care providers need to be 

involved in order to ease the translation of clinical decisions and tumor boards to approved 

cost reimbursements. 

We are still far from decoding the full complexity of biological systems, and many diseases, 

such as cancer, remain poorly understood. Each tumor is unique, and most exhibit a diverse 
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cellular and molecular heterogeneity, illustrating the need for systematic profiling. Here, 

MS-based proteomics will provide a crucial, thus far missing, bridge between genome, 

transcriptome, and phenotype. 

1.3. Oncology 

In this thesis, two specific cancer entities, namely lung cancer and ependymoma (EPN) 

pediatric brain cancer, were used to showcase the applicability of our workflow and to 

illustrate the added value of proteome profiling. Both are introduced in the following 

chapters among a general framework of cancer, its epidemiology and emergence. 

1.3.1. Cancer: definition and epidemiology 

Neoplasia defines the uncontrolled and excessive growth of cells and tissue. The abnormal 

proliferation of cells typically leads to the formation of a tumor173. Neoplasms can be 

described in four main classes that are defined and recognized by the WHO international 

classification of diseases (ICD-11), namely: benign, in-situ, malignant, and of unknown 

behavior174,175. Malignant neoplasms are more commonly known as cancer and the focus 

of oncology (ICD-O), the medical branch dealing with its prevention, diagnosis, and 

treatment176. Cancer cells can invade surrounding tissue or organs and spread to distant 

parts of the body via the blood and lymph system177,178. This process is called metastasis 

and denotes a significant cause of cancer-related death. Several main types of cancer can 

be distinguished based on their cells of origin; for example, I) carcinomas emerge from 

epithelial cells in the skin or within tissue covering internal organs; II) sarcoma describes 

cancer beginning in the bone, fat, muscle, blood vessels, or connective tissue; III) multiple 

myeloma and lymphoma define cancer types beginning in cells of the immune system, and 

IV) leukemia originates from bone marrow and causes abnormal blood cells173,175,176. 

Besides cardiovascular diseases, cancer is the second most prevalent cause of death 

worldwide, with approximately 9.6 million cases of deaths and a total burden of 18.1 million 

new cases in 2018 (according to the WHO)179,180. It is estimated that 38.4% of men and 

women will be diagnosed with cancer during their lifetime, while the prevalence 

significantly increases with age181. Children and young adults under 14 years of age account 

for roughly 1% of cancer deaths worldwide181,182. Men have a 20% higher chance than 

women to develop cancer179. The 5-year relative survival across all cancer types in adults 
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has increased from 50.3% between 1970 and 1977 to 67% between 2007 and 2013183–185. 

Improved early diagnosis and better treatment options are positively contributing factors 

to this development. 

The most common types of cancer in both males and females are lung cancer and breast 

cancer, with approximately 2.09 million cases in 2018, respectively. That followed are 

colorectal cancer and prostate cancer with 1.8 million and 1.28 million annual cases in 2018 

(according to the WHO). Lung cancer was the leading cause of cancer-related death, with 

approximately 1.76 million cases in 2018, followed by colorectal cancer (~862.000 cases), 

stomach cancer (~783.000 cases), liver cancer (~782.00 cases), and breast cancer (~627.000 

cases). The highest mortality rate for either male or female prevails from lung cancer (22%) 

and breast cancer (15%), respectively173,179. In children, brain tumors, lymphomas, and 

leukemia are the most commonly diagnosed types of cancer. Brain tumors remain the 

leading cause of cancer-related death in children186. 

1.3.2. Carcinogenesis 

Carcinogenesis describes the transition from a normal cell into a cancer cell177,178. This 

process is characterized by cellular, genetic, and epigenetic changes and consequential 

abnormal cell proliferation and division. Homeostatic cells exhibit a fine regulation of 

growth and programmed cell death (apoptosis). During carcinogenesis, this order is 

disrupted in a stepwise process during which a cell acquires distinct traits enabling a 

continuous, abnormal proliferation. Initially proposed by Douglas Hanahan and Robert A. 

Weinberg in 2000, these traits are widely accepted as the “hallmarks of cancer”177,178. They 

encompass the following eight essential alterations to a cell's physiology that are necessary 

to breach the anti-cancer defense mechanisms and shared among all types of cancer: I) 

self-sufficient in growth signals, II) insensitive to growth-inhibitory signals, III) ability to 

evade apoptosis, IV) limitless replicative potential, V) sustained angiogenesis, the process 

of blood vessel formation, VI) metastasizing capabilities, VII) the reprogramming of a cell’s 

energy metabolism, and VIII) the ability to avoid immune destruction. Hanahan and 

Weinberg suggest that these hallmarks are individually acquired during tumor 

development and only collectively cause cancer. Further, they define genomic instability, 

tumor-promoting inflammation, and the tumor microenvironment as “enabling 

characteristics” that contribute to genetic diversity and the acquisition of all hallmark traits. 
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This framework illustrates that carcinogenesis is a multi-step transition of distinct cellular 

mechanisms and pathways from their physiological conditions to deregulation, upsetting 

the integrity between proliferation and cell death177,178. 

The accumulation of mutations in the genome is an evolutionary process that likely leads 

to carcinogenesis187. Several types of mutations exist ranging from single nucleotide 

variations (SNVs), large structural variations (SVs), such as copy-number variations (CNVs), 

and small insertions and deletions of nucleotide sequences (InDels)188,189. Most of them 

occurring in human cancer are so-called “passenger mutations” because they do not trigger 

a disease phenotype190. The role of these uninvolved mutations remains poorly 

understood, whereas an increasing body of scientists suspect that they might have a crucial 

involvement in pathophysiology. In contrast, mutations that cause a selective growth 

advantage or increased survival for the cell are called “driver mutation”190. Genes that carry 

a driver mutation are grouped into two classes, namely oncogenes and tumor suppressor 

genes191. Both play a crucial role in carcinogenesis. 

Oncogenes typically upregulate cell proliferation and survival191. They are characterized by 

a dominant gain-of-function mutation that leads to its constant activation or 

overexpression192,193. In some cases, mutations in oncogenes result in altered proteins with 

a novel, tumor-promoting property194–196. A prominent example is an amplifying point 

mutation in the gene coding for the AKT protein, a serine/threonine-protein kinase (AKT1, 

AKT2, and AKT3)197. Under physiological conditions, it is involved in an array of different 

processes from metabolism, proliferation, to angiogenesis. It contributes to the regulation 

of cell survival via the phosphorylation of MAP3K5, an apoptosis signal-related kinase, 

which is activated upon oxidative stress. Its decreasing activity triggered by the AKT 

overexpression prevents apoptosis, one of the acquired hallmark traits. On the other hand, 

tumor suppressor genes are characterized by a repressive loss-of-function mutation191. 

They are often involved in maintaining the integrity of cell proliferation or protection 

against genomic instability. During carcinogenesis, they are often disabled by cancer-

promoting genetic alterations leading to an inactivation of their regulatory impact. The 

cellular tumor antigen p53 (TP53), for example, acts as a tumor suppressor in many cancer 

types as it is involved in growth arrest, apoptosis, or cell cycle regulation191. Its inactivation 

causes insensitivity to anti-growth signals and the ability to evade apoptosis. 
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Despite the theoretical understanding of carcinogenesis, the coherence between a 

genotype, its influencing environmental factors, and corresponding cancer or disease states 

often remain unclear177,178. Here, the proteome composition has the potential to provide 

the missing link to understand the impact of mutations, the mechanisms of hallmark trait 

acquisition, and the breaching of anti-cancer defenses as a result. 

1.3.3. Lung cancer 

Primary lung cancer arises from respiratory epithelial cells and thereby classifies as 

carcinoma with uncontrolled growth in the lung175,198. Metastasis that spread to the lung 

from other parts of the body are considered as secondary lung cancer. The most common 

age of diagnosis is 65 years or older, with an average of around 70 years181,199,200. A small 

number of cases are diagnosed per year at an age younger than 45 years. About 85%, the 

vast majority of cases of lung cancer are caused by long-term tobacco smoking181,200. The 

number of diagnosed cases per year is continuously declining, together with the increasing 

trend of non-smokers. Other causes are frequent exposure to dust, asbestos, paint, or 

general air pollution. On average, lung cancer has a 5-year survival rate of approximately 

18.6% (>55% at early detection). The occurrence of lung cancer is categorized based on the 

size and appearance of the tumor mass and the malignant cells’ morphology. The WHO 

classification of lung cancer comprises two main types, namely small-cell lung carcinoma 

(SCLC) and non-small-cell lung carcinoma (NSCLC), based on the cell type of cancer 

origin175,176. In comparison, SCLC comprises significantly smaller cells and features the 

ability to metastasize, making it a highly malignant tumor rapidly. SCLC is rarely seen in non-

smokers and accounts for roughly 13% of lung cancer cases worldwide181,200. On the other 

hand, NSCLC represents roughly 87% of all cases201. 

NSCLC can be sub-divided into three major pathologic subtypes: I) squamous cell 

carcinoma, II) large cell carcinoma, and III) adenocarcinoma (ADCs)175. The latter is the most 

common histological lung cancer subtype accounting for roughly 60% of all NSCLC (~38% of 

all lung cancer cases). They are known for their heterogeneous clinical, radiologic162, 

molecular202–204, and morphological205 features. Thus far, five distinct histological growth 

patterns have been recognized by the 2015 WHO Classification of Lung Tumors206. These 

growth patterns, which are reported in any pathology report, have been proposed for 

tumor grading according to the predominant pattern of a tumor: lepidic (low grade; group 
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1), acinar and papillary (intermediate grade; group 2), and solid and micropapillary (high 

grade; group 3)198,201. Applying this grading system led to the observation of significant 

differences regarding prognosis207 and prediction of benefit from adjuvant 

chemotherapy208, where patients with lepidic ADC or micropapillary ADC were associated 

with the most favorable or worst prognosis, respectively. 

The current standard of care for lung cancer is highly dependent on the stage of diagnosis, 

the type of mutation, and the potential spread of metastasis198,201. In an early stage, for 

example, a maximal-safe surgical resection can be facilitated by a still confined area of 

cancerous cells (a localized disease has a 5-year survival rate of approximately 52%). In 

severe cases that do not allow surgery, cancerous cells might be targeted by radiotherapy 

if it is tolerable considering the patients’ health201,209. Platinum-based chemotherapy is 

likely the next stage of treatment in cases that already developed metastasis. The spreading 

and growth of cancer cells might be slowed down by drug therapies that target specific 

changes in the cancer cell microenvironment210. Unfortunately, lung cancer frequently does 

not cause symptoms until cancerous cells have spread to other parts of the body, leading 

to an overall bad prognosis. 

A vast number of studies aimed to bring genetic factors associated with lung cancer to light. 

These efforts have led to several different discoveries. In 2006, for example, Lu Y. et al. 

performed a meta-analysis of seven microarray studies and identified a 64-gene signature, 

which is predictive for lung cancer reoccurrence in stage I NSCLC patients211. In other 

genomic studies, a tumors’ responsiveness to chemotherapies could be predicted, or the 

association between genomic alterations and distinct growth advantages was 

elucidated189. Further, the risk of developing lung cancer correlates to frequently observed 

polymorphisms on chromosome 5, 6, and 15212–214. Increasing mutations rates in epidermal 

growth factor receptor (EGFR) were linked to NSCLC ADC of patients215. Supported by 

molecular characterization, treatment plans using EGFR tyrosine kinase inhibitors (gefitinib 

and erlotinib) have demonstrated improved clinical outcomes by slowing down disease 

progression215. In another study in 2009, Boutros PC. et al. identified a six-gene expression 

signature (STX1A, HIF1A, CCT3, HLA-DPB1, RNF5, and MAFK) with prognostic value for 

NSCLC patients, which could be validated in four distinct testing datasets216. They propose 

that a clinical implementation using RT-PCR analysis of the six genes can provide a quick 
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readout about good or poor prognosis. However, they observed that many proposed gene 

signatures from immense efforts in lung cancer research appear to have a lack of overlap, 

illustrating the need for an improved molecular characterization. Additional proteome 

profiling efforts may achieve a complementary or improved insight. 

To this end, there were no efforts to perform a molecular classification and characterization 

of growth patterns of ADCs (NSCLC), the most common lung cancer type, on the proteome 

level. In most invasive ADCs, more than one of the previously mentioned growth patterns 

can coincide204,217, which further highlights the need to understand functional differences 

and clinical implications of histological heterogeneity better. In this thesis, proteome 

profiling of ADC growth patterns was performed for the first time. 

1.3.4. Pediatric brain tumor: ependymoma 

1.3.4.1. Definition and epidemiology 

The majority of pediatric brain tumors are classified as gliomas accounting for roughly 

52.9% of all cases218. Brain tumors are the second most common type of tumor occurring 

in children219. Other types of pediatric brain tumors are medulloblastomas (15-20%), 

originating from immature or embryonal cells, choroid plexus tumors (10-20%), germ cell 

brain tumors (4%) or atypical teratoid rhabdoid tumors (ATRTs; 1-2%)218. Gliomas are 

primary tumors that arise from glial cells220,221. Oligodendrocytes, astrocytes, ependymal 

cells, and microglia comprise the four types of glial cells in the central nervous system (CNS). 

The majority of gliomas are typically named corresponding to the glial cell type that is 

histologically most similar but which not necessarily reflect the tumor origin. The main 

types include astrocytomas, ependymomas, oligodendrogliomas, brainstem gliomas, and 

mixed gliomas that are comprised of several types of glial cells. They are further categorized 

by four different tumor grades, from least severe (low-grade: grade I and II) to highly 

malignant (high-grade gliomas: grade III and IV), and by their anatomical location within the 

CNS175,176. Astrocytomas are the most common glioma tumor in children, accounting for 

33.2% of all pediatric cases218. 

Ependymomas are the third most common type of glioma tumor in the CNS in children222. 

They account for 10.4% of all pediatric glioma cases and arise from ependymal cells or so-

called radial glial cells. They constitute a specialized type of epithelium to line the 

ventricular system of the brain and the spinal cords’ central canal, allowing a continuous 
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flow of cerebrospinal fluid (CSF)223,224. Ependymal cells are further involved in CSF 

production and secretion. Ependymomas most frequently occur at an average age of 5 

years and 35 years, in children and adults, respectively225. In adults, they are rarely 

diagnosed and only account for 1.9% of all primary brain tumors226. While the majority of 

incidences in children occur intracranially (90% within the brain), most ependymal tumors 

in adults arise in the spine227,228. The clinical outcome for ependymoma patients also varies 

between children and adults with a 10-year survival of 64% and >80%229. Despite the ability 

of ependymomas to spread, they are rarely observed to metastasize beyond the CNS230. 

Following the glioma-related grading system, the most recent WHO classification 

distinguishes ependymomas into main categories of subependymoma (grade I), 

myxopapillary ependymoma (grade II), anaplastic ependymoma (grade III), and 

ependymoma, RELA-fusion positive (grade II and III)231,232. The tumor cells can be well 

separated from the surrounding healthy cells by histological examination and exhibit 

features of true ependymal rosettes and perivascular pseudorosettes233. Most tumors are 

low-grade (grade II), while anaplastic ependymoma (grade III) are often additionally 

characterized by an increased cellular density, necrosis, and microvascular proliferation, 

without compromising the typical tissue pattern233. Myxopapillary ependymomas are 

further characterized by papillary formation with a mucinous core and most commonly 

arise in the spine. Low-grade subependymomas have a spherical phenotype and consist of 

uniform cells in a fibrillary stroma with cystic degeneration226. 

The standard of care for ependymal tumors is a gross total resection (GTR) via surgery 

followed by optional chemotherapy and focal radiotherapy234–238. The latter has been 

linked to reduced tumor mass, increased overall survival rates, and benefits in the 

prevention of ependymoma recurrence235,239. The complete removal of the tumor mass is 

typically confirmed using postoperative magnetic resonance imaging (MRI)240. In many 

cases, GRT surgery in the brain or spine of children remains challenging, with a high risk of 

side effects or damaging healthy tissue241–243. This may be due to the tumor location, or a 

not well-differentiated growth and infiltration into healthy parenchyma. Some highly 

malignant ependymoma types may spread through the CSF to other parts of the CNS and 

typically require radiation therapy. Here, the surgeon aims for a maximal safe surgical 

resection (subtotal resection, STR), which can still significantly reduce the tumor mass to 
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increase the efficacy of the subsequent radiotherapy241,242. The degree of tumor resection 

via GTR or STR has been shown as the main prognostic factor in children and adults234–

236,238. 

Not every incidence of ependymoma can be treated easily, especially children younger than 

three years of age have shown severe side-effects upon focal radiotherapy, resulting in 

neurocognitive deficiencies, surrounding tissue abnormalities, or increased likelihood of 

secondary cancer development244–246. For highly malignant, anaplastic ependymomas, the 

overall recurrence rate remains high, showing a median progression-free survival (PFS) of 

only 2.3 years247. This further highlights an obvious need for novel treatment strategies and 

a better understanding of the ependymoma-related pathophysiology. Both are addressed 

by molecular characterization, including insight into the proteome composition. 

1.3.4.2. Molecular classification 

The molecular characterization of brain tumors248,249 has an increasing appeal to improve 

diagnosis and the WHO classification, which conventionally relies mostly on 

histopathological examination and staging into grade I to IV175,231,232. While routinely 

applied for many diseases, this histological grading presents a common problem for many 

brain tumors250–252. Low inter-observer reproducibility and ambiguous results are frequent 

in ependymomas, due to their diverse clinical behavior and highly challenging 

histopathological features250–252. Increasing numbers of studies additionally rely on 

molecular characterization, such as gene expression profiling or DNA methylation profiling 

(e.g., CNS-PNET)253,254. The latter has been established to enable robust and reproducible 

evaluation of brain tumors beyond the hitherto existing classification. Capper D. et al. 

recently implemented a DNA methylation-based classifier with which a brain tumor can be 

assigned to a distinct methylation class by comparison to a reference cohort of 2801 brain 

tumors255. In their validation cohort of 1104 tumors, the initial histopathological diagnosis 

was changed in 12% of all cases based on the assigned methylation class, thereby improving 

the diagnostic accuracy. Despite a few examples in which the WHO accredited the 

incorporation of molecular features to extend the conventional classification, 

histopathology remains the established standard of diagnostics231,232. In 2015, Kristian 

Pajtler et al. revealed that ependymal tumors are comprised of at least nine molecular 

subgroups utilizing DNA methylation profiling and additional gene expression data73. The 
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subgroups are equally distributed among the compartments of the CNS (ST: supratentorial, 

PF: posterior fossa, and SP: Spine) and named accordingly: SP-EPN, SP-MPE, SP-SE, PF-EPN-

A, PF-EPN-B, PF-SE, as well as ST-EPN-RELA, ST-EPN-YAP1, and ST-SE. Despite these 

immense efforts, the subgroup-specific oncogenic driver and functional background remain 

largely unknown and only few or no recurrent genetic events were observed72,73,227,256–259. 

This highlights the potential for complementary proteome profiling to shed light on 

currently unknown EPN subgroup-specific biology. 

The SP-SE group predominantly encompasses low-grade I subependymomas (SE) with most 

incidences in adults226,260. They exhibit a characteristic deletion of chromosome arm 6q 

with an otherwise stable genome73. Nevertheless, they usually have an excellent prognosis 

and outcome, even in highly malignant grade III anaplastic EPNs. SP-MPE ependymal 

tumors are mostly grade I myxopapillary ependymomas, which also primarily occur in 

adults. Despite a vast number of chromosomal instabilities, including gains and losses of 

entire arms, they instead display a favorable clinical outcome. Most grade II and III 

ependymal tumors in the spine are classified as SP-EPN. They typically feature a deletion of 

chromosome arm 22q, harboring the tumor suppressor gene NF2 that is frequently 

mutated or lost in spine ependymal tumors261. NF2 codes for the Merlin protein and is 

involved in tumor suppression by restricting proliferation and promoting apoptosis. 

The second anatomical region with the occurrence of ependymomas is the posterior fossa. 

It is part of the intracranial space and contains the brainstem (medulla oblongata, pons, 

mid- and hindbrain) and cerebellum262. Subependymomas within the posterior fossa (PF-

SE) again have a distinctive methylation pattern, showcasing similar prevalence and clinical 

characteristics as SP-SE tumors without the deletion of chromosome arm 6q73. PF-EPN-A 

and PF-EPN-B subgroups are comprised of grade II and III tumors with vast molecular and 

clinical differences263–265. PF-EPN-A tumors predominantly occur in children with high 

reoccurrence and invasive growth patterns. On the other hand, PF-EPN-B tumors display a 

more benign phenotype with antithetic characteristics occurring mostly in adults, low rate 

of recurrence, non-invasive growth, and a resulting reasonable 10-year survival rate of 

88%73,260,263. Molecularly, PF-EPN-A tumors present a balanced genome besides a 

prominent gain of chromosome arm 1q260,266. This gain has been linked to poor prognosis 

in some independent studies266–269. Another unique characteristic of PF-EPN-A tumors is 
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the lack of the repressive histone mark H3K27me3265,270–272. Correspondingly, these tumors 

show increased expression of several genes involved in various carcinogenic processes, 

such as angiogenesis, growth-factor pathways, and receptor tyrosine kinase signaling. In 

comparison, PF-EPN-B tumors neither lack the H3K27me3 mark nor do they show the 

associated genes upregulated265,270,272. Further, PF-EPN-A tumors display an increased CpG 

methylation pattern (CpG island methylator phenotype: CIMP-positive) of promoter 

regions of polycomb repressive complex 2 (PRC2) target genes. CIMP-positive cancer types 

are often associated with worst disease-free survival after primary treatment and worse 

overall survival273. The PRC2 complex has histone methyltransferase activity and primarily 

functions to trimethylate the H3K27 for the silencing of genomic regions274,275. 

The remaining site of ependymal tumor occurrence is the supratentorial region of the brain. 

The reasonably large area contains the cerebrum, which consists of both hemispheres of 

the cerebral cortex, the hippocampus, basal ganglia, and the olfactory bulb262. The cerebral 

cortex is the most prominent site of neural integration in the CNS and has a pivotal role in 

consciousness, awareness, memory, language, and other crucial functions262. The ST 

regions again present a grade I subependymoma (ST-SE) molecular subgroup with an 

overall good outcome, the highest prevalence in adults, and otherwise similar 

characteristics to the SP- and PF-SE tumors73. A similar good outcome is observed in ST-

EPN-YAP1 tumors that are predominantly comprised of grade II and III tumors73. They are 

characterized by focal aberrations on chromosome 11, resulting in the dominating and the 

less recurrent fusion genes, YAP1-MAMLD1 and YAP1-FAM118873,276. YAP1 is a 

transcriptional regulator taking part in proliferation and suppression of apoptotic genes. 

The Hippo signaling pathway is known to inhibit YAP1 to allow cellular control of organ size 

and tumor suppression277,278. ST-EPN-RELA tumors are driven by other distinct gene fusions 

involving C11orf95 and RELA, an effector of the NF-kappa-B transcription factor 

complex73,259. The complex is involved in a vast number of cellular processes and 

metabolism279. The NF-kappa-B/RELA activation has been associated with carcinogenesis 

and a negative correlation with patient survival in a series of different tumor entities279–282, 

such as breast cancer283, prostate cancer284, and leukemia285. The fusion is thought to result 

from a local chromothripsis on chromosome 11, a single, massive mutational 

rearrangement in a confined genomic region259,265. ST-EPN-RELA tumors encompass grade 
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II and III ependymomas and mostly occur in children. Together with PF-EPN-A, they show 

the worst overall prognosis with a 10-year survival rate of 50%, while accounting for the 

majority of ST ependymal tumors (70%)73,260,286. Importantly, ST-EPN-RELA constitutes the 

only molecular subgroup that is already accredited and included in the latest WHO 

classification of tumors in the CNS231,232. 

Although, in the past and present, extensive efforts are undertaken to elucidate the biology 

of EPNs and to find potential therapeutic implications, the majority of subgroups are still 

poorly understood and without a specific treatment possibility73,260. Here, proteomic 

profiling has the potential to enhance our insight into unknown biological functions on the 

level of molecular mechanisms that drive pathophysiologic conditions. Ensuing, the 

proteome composition may facilitate the discovery of new drug targets, subgroup-specific 

biomarkers, or provide an extension of the current classification system for EPNs. 

Collectively, the proteome holds promise to complement the yet incomplete molecular 

picture along with previous molecular characterization efforts. 
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1.4. Aim of this study 

Mass spectrometry (MS)-based proteomic technologies have evolved to allow global 

profiling across thousands of proteins. Due to previously mentioned bottlenecks in 

proteomics workflows, the routine application of proteome profiling has not yet been 

implemented in a clinical context complementary to other next-generation sequencing 

techniques. The aim of this study was 2-fold: 

I) the technical establishment and implementation of an automated, universal workflow for 

routine protein sample preparation from a wide range of clinically relevant input material. 

Specifically, we aimed to include challenging to handle sample types, such as FFPE tissue, 

or quantity-limited samples. The workflow’s performance was demonstrated by assessing 

the precision, longitudinal robustness, and sensitivity. We further aimed to evaluated and 

optimized all relevant parameters to allow a deep proteome profiling with optimal 

quantification and rapid turn-around times. 

II) the applicability of our workflow to a clinical question: we used our automated workflow 

to process a pulmonary ADC (FFPE) cohort, comprising all histologically defined growth 

patterns that are accredited by the WHO. Currently, these growth patterns have a limited 

clinical implication. To the best of our knowledge, a proteomic characterization, including 

the functional assessment of molecular mechanisms between different ADC growth 

patterns, did not exist until now. Simultaneously, we aimed to illustrate the potential of 

proteome profiling in another realistic scenario. Specifically, we utilized a cohort of EPN 

pediatric brain tumors, an entity of primary tumors within the CNS of children and young 

adults. Recently, the existence of nine distinct molecular subgroups has been shown, 

whereas, for the majority of subgroups, a functional explanation is still lacking. In this study, 

we used a subset of an EPN cohort (Pajtler et al., 2015)73 to investigate the proteome 

composition across all nine molecular subgroups. Altogether, this provides a rich molecular 

dataset to explore the utility of proteomic data in combination with other NGS data to 

enhance our understanding of EPN biology and potential clinical implications. 
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2. Materials 

2.1. Chemicals and other materials 

Here, all used chemicals, reagents, equipment, and consumables are listed in alphabetically 

ordered groups. The materials used solely by collaborators are not explicitly listed: 

Reagent/Resource RReference or Source Identifier or Catalog Number 

Experimental Models    

HeLa cells (H. sapiens) ATCC (Wesel, Germany) ATCC CCL-2 

MCF7 cells (H. sapiens) ATCC (Wesel, Germany) ATCC 

HEK-293 (H. sapiens) ATCC (Wesel, Germany) ATCC 

ISTMEL-1 (H. sapiens) Obtained from colleagues for protein 
quantification 

N/A 

UACC-62 (H. sapiens) Obtained from colleagues for protein 
quantification 

N/A 

RPMI-7951 (H. sapiens) Obtained from colleagues for protein 
quantification 

N/A 

A375 (H. sapiens) Obtained from colleagues for protein 
quantification 

N/A 

Patient-derived EPN cell lines (H. 
sapiens) 

Obtained from collaborator N/A 

Pulmonary adenocarcinoma (ADC) FFPE 
specimens (H. sapiens) 

Thoraxklinik at Heidelberg University 
(NCT; project: # 1746; # 2818) 

N/A 

Ependymoma patient fresh-frozen 
tissue (H. sapiens) 

N/A N/A 

Chemicals, Enzymes and other 

reagents  

  

1,2- Cyclohexanedione Sigma-Aldrich (Steinheim, Germany) Ref: C101400; Lot: STBF6948V 

100 x glutamine stock solution 
Life Technologies (Darmstadt, 
Germany) 

25030081 

2-Chloroacetamide (CAA) Sigma-Aldrich (Steinheim, Germany) 22790; Lot: BCBN8771V 

4x Laemmli Buffer 
Bio-Rad Laboratories GmbH 
(Feldkirchen, Germany) 

Ref: 1610747; Lot: 64261673 

6x DNA loading dye 
Thermo Scientific (Schwerte, 
Germany) 

Ref: R0611; Lot: 00652028 

Acetic acid glacial Biosolve Chemicals (Dieuze, France) 000107413185; Lot: 1061651 

Acetic acid glacial Fisher Scientific (Schwerte, Germany) UN2789; Lot: 1679445 

Acetonitrile (ACN) Biosolve Chemicals (Dieuze, France) 0001204101BS; Lot: 1274241 

Agarose Sigma-Aldrich (Steinheim, Germany) Ref: A9539; Lot: SLBT5972 

Ammonium bicarbonate (ABC) Fluka Analytical (Munich, Germany) Ref: 40867; Lot: I1620 

Ammonium formate Sigma-Aldrich (Steinheim, Germany) 
Ref: 70221-25G, Lot: 
BCBV1667 

Ammonium formate Biosolve Chemicals (Dieuze, France) 
Ref: 0001904153BS; Lot: 
1323041 

Ammonium hydroxide solution Fluka Analytical (Munich, Germany) 
Ref: 44273-100ML-F, Lot: 
BCBQ0888V 

Aniline Sigma-Aldrich (Steinheim, Germany) Ref: 242284; Lot: STBH5612 
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Benzonase Merck (Darmstadt, Germany) 71206-3; Lot: 3271105 

Bovine Serium Albumin (BSA) Fisher Scientific (Schwerte, Germany) BP9702; Lot: 190211-0662 

cOmplete, EDTA-free Protease Inhibitor 
Cocktail 

Roche Diagnostics (Mannheim, 
Germany) 

40694200; Lot: 05056489001 

Dithiothreitol (DTT) Biomol GmbH (Hamburg, Germany) 04010.25; Lot: 4001 

Dulbecco’s Modified Eagle Medium 
(DMEM) with high glucose and no 
glutamine 

Life Technologies (Darmstadt, 
Germany) 

11960085 

E. coli standard 
Bio-Rad Laboratories GmbH 
(Feldkirchen, Germany) 

1632110 

Ethanol (EtOH) Merck (Darmstadt, Germany) 34852 

Ethanol (EtOH) absolute 
VWR International GmbH (Darmstadt, 
Germany) 

20821.310; Lot: 18K144019 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich (Steinheim, Germany) Ref: E9884; Lot: BCBZ8264 

EZ-Link Alkoxyamine-PEG4-Biotin 
Thermo Scientific (Schwerte, 
Germany) 

Ref: 26137 

Fetal Bovine Serum (FBS) 
Life Technologies (Darmstadt, 
Germany) 

10270106 

Formaldehyde solution (37%) Merck (Darmstadt, Germany) K46701403519; 1.04003.1000 

Formaldehyde solution (w/v) (16%) 
Methanol-free 

Thermo Scientific (Schwerte, 
Germany) 

Ref: 28908; Lot: TL2688131 

Formic acid (FA) Biosolve Chemicals (Dieuze, France) 0006914143BS; Lot: 1297891 

Gene Ruler 1kb DNA Ladder 
Thermo Scientific (Schwerte, 
Germany) 

Ref: SM1331; Lot: 00663462 

GeneRuler 100 bp Plus DNA Ladder 
Thermo Scientific (Schwerte, 
Germany) 

Ref: SN0321; Lot: 00303113 

GlutaMAX HEPES supplement 
Thermo Fisher Scientific 
(Braunschweig, Germany) 

10564011 

High Capacity Neutravidin Agarose 
Resin 

Thermo Scientific (Schwerte, 
Germany) 

Ref: 29204; Lot: TE269779 

Hydrochloric acid (37%) Merck (Darmstadt, Germany) K51884217943; 1.00317.1011 

LCMS-grade water Biosolve Chemicals (Dieuze, France) 00232141B1BS 

MagReSyn Amine Beads 
ReSyn Biosciences (Edenvale, South 
Africa) 

NA 

MagReSyn HILIC Beads 
ReSyn Biosciences (Edenvale, South 
Africa) 

NA  

Methanol (MeOH) Biosolve Chemicals (Dieuze, France) 0013684101BS; Lot: 1277161 

Paramagnetic beads for SP3 (Sera-Mag 
Speed Beads A and B) 

Fisher Scientific (Schwerte, Germany) 
24152105050250 & 
44152105050250 

Penicillin-Streptomycin (P&S) mix 
Life Technologies (Darmstadt, 
Germany) 

15140122 

Phosphate buffered saline (PBS) 
Life Technologies (Darmstadt, 
Germany) 

70011051 

Pierce HeLa standard 
Thermo Fisher Scientific 
(Braunschweig, Germany) 

88328 

Pierce LTQ Velos ESI Positive Ion 
Calibration Solution 

Thermo Scientific (Schwerte, 
Germany) 

Ref: 88323; Lot: UE283806 

Precision Plus Protein Dual Color 
Standard 

Bio-Rad Laboratories GmbH 
(Feldkirchen, Germany) 

Ref: 61-0374; Lot: 004030A 

Precision Plus Protein standard 
Bio-Rad Laboratories GmbH 
(Feldkirchen, Germany) 

161-0374 

Protease inhibitor cocktail (PIC) Sigma-Aldrich (Steinheim, Germany) 5056489001 
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ProteaseMax Surfactant, Trypsin 
Enhancer 

Promega (Madison, WI, USA) Ref: V2072; Lot: 000340968 

Proteinase K 
Thermo Scientific (Schwerte, 
Germany) 

Ref: EO0491, Lot: 00521266 

RapiGest SF Surfactant Waters Corporation (Milford, USA) Ref:186001861; Lot: 190231 

Sequencing grade modified trypsin Promega (Madison, WI, USA) V5111; Lot: 0000379610 

Silver nitrate Sigma-Aldrich (Steinheim, Germany) S8157; Lot: MKBZ5510V 

Sodium carbonate Sigma-Aldrich (Steinheim, Germany) Ref: S7795; Lot: BCBT4969 

Sodium Chloride Sigma-Aldrich (Steinheim, Germany) Ref: S1679; Lot: SLBN3273V 

Sodium Cyanoborohybride Sigma-Aldrich (Steinheim, Germany) Ref: 156159; Lot: SHBH1335V 

Sodium meta-Periodate 
Thermo Scientific (Schwerte, 
Germany) 

Ref: 20504, Lot: TI273898 

Sodium pyruvate 
Thermo Fisher Scientific 
(Braunschweig, Germany) 

11360070 

Sodium thiosulfate anhydrous Merck (Darmstadt, Germany) K48623312707; 1.06512.0250 

Sodium-dodecylsulfate (SDS) Applichem (Darmstadt, Germany) A0675 

Sodium-dodecylsulfate (SDS) 20% 
Bio-Rad Laboratories GmbH 
(Feldkirchen, Germany) 

Ref: 1610418; Lot: 64245485 

SYBR Safe DNA Gel Stain Invitrogen (Carlsbad, USA) Ref: S33102; Lot: 2053914 

TAE buffer (50 mM EDTA, 2 M Tris, 1 M 
glacial acetic acid) 

Self-made (chemicals listed 
separately) 

  

Tartrazine Sigma-Aldrich (Steinheim, Germany) T0388; Lot: MKCB1542V 

Tissue Lysis Buffer Covaris, Inc. (Woburn, USA) Lot: R001595 

Triethylammonium bicarbonate Sigma-Aldrich (Steinheim, Germany) T7408; Lot: BCBX6381 

Trifluoroacetic acid (TFA) Biosolve Chemicals (Dieuze, France) 0020234131BS; Lot: 1273961 

Tris(2-carboxyethyl)phosphine (TCEP) Sigma-Aldrich (Steinheim, Germany) C4706 

Triton X-100 Sigma-Aldrich (Steinheim, Germany) 
Ref: T8787-250ML, Lot: 
SLBW7103 

Trypsin/Lys-C Mix, Mass Spec grade Promega (Madison, WI, USA) V5073; Lot: 0000351191 

Trypsin-EDTA (0.25%) 
Life Technologies (Darmstadt, 
Germany) 

25200056 

TWEEN20 Sigma-Aldrich (Steinheim, Germany) 
Ref: P9416-100ML, Lot: 
SLBS9921 

UltraPure Tris Invitrogen (Carlsbad, USA) Ref: 15504-020; Lot:8309093 

Urea 
Bio-Rad Laboratories GmbH 
(Feldkirchen, Germany) 

161-0731 

Software    

Limma moderated t-statistics (R 
package version 3.36.3) 

https://support.bioconductor.org/p/6
124/ 

 

MaxQuant (version 1.5.1.2) https://www.maxquant.org/  

MOFA 
https://rdrr.io/bioc/MOFA/man/MOF
A.html 

 

Perseus (version 1.6.1.3) https://maxquant.net/perseus/  

R (version 3.5.1) https://www.r-project.org/  

R package fgsea (version 1.6.0 

Sergushichev, A. A. An algorithm for 
fast pre-ranked gene set enrichment 
analysis using cumulative statistic 
calculation. bioRxiv 60012 (2016). 
doi:10.1101/060012 
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REACTOME pathway database Gene 
sets using ReactomePA R package 
(version 1.24.0) 

Yu, G. & He, Q. Y. ReactomePA: An 
R/Bioconductor package for reactome 
pathway analysis and visualization. 
Mol. Biosyst. 12, 477–479 (2016). 

 

t-SNE analyses were performed using R 
package tsne (version 0.1-3) 

van der Maaten, Laurens, Hinton E., G. 
Visualizing Data using t-SNE. J. Mach. 

Learn. Res. 164, 10 (2008). 

 

vworks automation control software 

https://www.agilent.com/en/product
s/software-informatics/automation-
solutions/vworks-automation-
control-software 

 

Instrumentation/ Equipment   

1 mL tissue dounce homogenizer Wheaton (DWK Life Science Inc.) N/A 

-80°C Freezer 
Eppendorf - New Brunswick (Edison, 
USA) 

U725-G Innova 

Agarose-Gel running chamber 
Biostep GmbH (Burkhardtsdorf, 
Germany) 

GH140318005 

Aspiration System Integra Bioscience GmbH Integra Vacusafe 

Automated Cell Counter 
Bio-Rad Laboratories GmbH 
(Feldkirchen, Germany) 

TC20 

Bioruptor Pico Diagenode SA (Seraing, Belgium) SN:P-152703 

Branson Digital Sonifier Branson Ultrasonic Corporation (USA) NA 

Bravo liquid handling system 
Agilent Technologies (Santa Clara, 
USA) 

https://www.agilent.com/en/
products/automated-liquid-
handling/automated-liquid-
handling-platforms/bravo-
automated-liquid-handling-
platform 

Cell Culture Centrifuge 
Thermo Scientific (Schwerte, 
Germany) 

Heraeus MegaFuge 40 

Cell Culture Laminar Flow Hood 
Thermo Scientific (Schwerte, 
Germany) 

MaxiSafe 2020 

Centrifuge Eppendorf (Hamburg, Germany) Centrifuge 5424 

Centrifuge 5424 Rotor Eppendorf (Hamburg, Germany) F-45-32-5-PCR 

Centrifuge 5424 Rotor Eppendorf (Hamburg, Germany) FA-45-24-11 (Eppi’s) 

Centrifuge 5430R Rotor Eppendorf (Hamburg, Germany) FA-45-48-11 (Eppi’s) 

Centrifuge 5430R Rotor Eppendorf (Hamburg, Germany) A-2-MTP (Plates) 

CO2 Incubator 
Thermo Scientific (Schwerte, 
Germany) 

HeraCell Vios 160i 

Cooling Centrifuge Eppendorf (Hamburg, Germany) Centrifuge 5430R 

Covaris Cap Strip Seal holder Covaris, Inc. (Woburn, USA) 500608 (Strip Caps) 

Covaris Foil Seal holder Covaris, Inc. (Woburn, USA) 500608 (Foil) 

Custom-made SP3 magnet EMBL, Heidelberg N/A 

DynaMag-2 magnetic stand 
Life Technologies (Darmstadt, 
Germany) 

N/A 

Easy NanoLC 1200 
Thermo Fisher Scientific 
(Braunschweig, Germany) 

NA 

Heraeus MegaFuge 40 Rotor 
Thermo Scientific (Schwerte, 
Germany) 

75003180 

High pH HPLC System (Infinity 1260) 
Agilent Technologies (Santa Clara, 
USA) 

1260/1290 Infinity 
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HotSleeve 25 cm Smart Column Heater 
Analytical Sales & Services, Inc. 
(Flanders, USA) 

Ref: HSI-25L 

Ice machine 
Ziegra Eismaschinen GmbH 
(Isernhagen, Germany) 

SN:151759 

Incubator 
Thermo Scientific (Schwerte, 
Germany) 

HeraTherm 

LE220R-plus Focused-ultrasonicator Covaris, Inc. (Woburn, USA) 500578 

MAGNUM FLX enhanced universal 
magnet 

ALPAQUA (Beverly, USA) 
https://www.alpaqua.com/Pr
oducts/Magnet-
Plates/Magnum-FLX 

Mastercylcer Eppendorf (Hamburg, Germany) Epgradient S 

Microscale 
Sartorius Lab Instruments (Göttingen, 
German) 

MSA125P-000-DA 

Minicentrifuge neoLab (Heidelberg, Germany) 3-1810 

MiniChiller (Picoruptor) 
Diagenode SA / Huber (Seraing, 
Belgium) 

NA 

MonoSleeve Column Heater 
Analytical Sales & Services, Inc. 
(Flanders, USA) 

NA 

Multi-image Light Cabinet 
Alpha Innotech Corporation (San 
Leandrio, USA) 

NA 

Multi-Rotator Grant-bio Instruments (Royston, UK) PTR-35 

Nanodrop 1000 Spectrophotometer 
Thermo Scientific (Schwerte, 
Germany) 

N/A 

NanoQuant Plate Reader Tecan (Männedorf, Switzerland) Infinite M200pro 

Orbital shaking station 
Agilent Technologies (Santa Clara, 
USA) 

Variomag Teleshake 

PCR cycler with lid heating (CHB-T2-D 
ThermoQ) 

Hangzhou BIOER Technologies 
(Binjiang, China) 

CHB-T2-D ThermoQ 

Polymax 2040 Platform shaker 
Heidolph Instruments GmbH & Co. KG 
(Schwabach, Germany) 

Polymax 2040 

Power Supply 
Bio-Rad Laboratories GmbH 
(Feldkirchen, Germany) 

PowerPac Universal 

Pressure Bomb 
Nanobaume-Western fluids 
(Wildomar, USA) 

N/A 

Primovert Microscope 
Carl Zeiss Microscopy GmbH 
(Oberkochen, Germany= 

N/A 

Probe Sonicator horn Branson Ultrasonic Corporation (USA) 102C, SN: OBU15091229G 

Q-Exactive HF Orbitrap mass 
spectrometer 

Thermo Fisher Scientific 
(Braunschweig, Germany) 

NA 

Scale 
Sartorius Lab Instruments (Göttingen, 
German) 

MSE2202S-000-D0 

SDS-Gel running chamber 
Bio-Rad Laboratories GmbH 
(Feldkirchen, Germany) 

Mini-Protean Tetra System 

Solid-state cooling systems, Thermo 
Cube 

Covaris, Inc. (Woburn, USA) SN005576 

SPD111V Rotor 
Thermo Scientific (Schwerte, 
Germany) 

RH40-11 (Eppi’s) 

SPD111V Rotor 
Thermo Scientific (Schwerte, 
Germany) 

(Plates) 

SpeedVac Concentrator 
Thermo Scientific (Schwerte, 
Germany) 

Savant SPD111V 

Stemi 305 Microscope 
Carl Zeiss Microscopy GmbH 
(Oberkochen, Germany= 

SN: 3943000950 
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ThermoMixer C Eppendorf (Hamburg, Germany) 5382000015 

Ultrapure Water System 
Thermo Scientific (Schwerte, 
Germany) 

SN:41801405 

Ultrasonic Cleaner 
VWR International GmbH (Darmstadt, 
Germany) 

USC-T 

Universal Vacuum System 
Thermo Scientific (Schwerte, 
Germany) 

UVS400A 

Vacuum manifold Waters Corporation (Milford, USA) S/N 2327 

Vortex Scientific Industries (Bohemia, USA) Vortex-Genie 2 

Water bath  
Thermo Scientific (Schwerte, 
Germany) 

SWB25 

WCS 2.0 Water Pump Covaris, Inc. (Woburn, USA) SN005516 

Kits   

Pierce BCA Protein assay Thermo Fisher (Karlsruhe, Germany) Ref: 23225; Lot: SL258365 

Pierce Quantitative Colorimetric 
Peptide assay 

Thermo Fisher (Karlsruhe, Germany) Ref: 23275; Lot: TK273137B 

Pierce Albumin Depletion Kit Thermo Fisher (Karlsruhe, Germany) Ref: 85160;Lot: TH269851 

Consumption material   

10 μL tips Gilson (Limburg, Germany) Ref: F171100 

1000 mL tips Neptune Scientific (San Diego, USA) Ref: BT1250 

200 μL tips Gilson (Limburg, Germany) Ref: F171300 

250 microliter tips 
Agilent Technologies (Santa Clara, 
USA) 

19477-002 

8-row reservoir 32 mL/row 
Agilent Technologies (Santa Clara, 
USA) 

201260-100 

96 AFA-TUBE TPX Plate Covaris, Inc. (Woburn, USA) 520272 

96-well SuperPlates, skirted 
Thermo Scientific (Schwerte, 
Germany) 

AB-2800 

Acclaim PepMap C18, 5 μm, 100 Å, 100 
μm x 2 cm)  

Thermo Fisher Scientific 
(Braunschweig, Germany) 

164564-CMD 

Acclaim PepMap RSLC C18, 2 μm, 100 Å, 
75 μm x 50 cm 

Thermo Fisher Scientific 
(Braunschweig, Germany) 

11342103 

AFA-tube TPX Strip Caps Covaris, Inc. (Woburn, USA) 500639 

BioPureSPE Midi 96-well plate Proto 
300 C18 

The Nest Group, Inc. (Southborough, 
USA) 

Part #: HNS S18V-M; Lot: 
BN1176-2E697 

Drain Caps Porvair Sciences Ltd. (Wrexham, UK) ML42115C M5 

Drain Caps Fisherbrand (Schwerte, Germany) 219005; Lot: 030961 

Gemini 3 μm C18 110 Å, LC Column 100 
x 1 mm 

Phenomenex (Aschaffenburg, 
Germany) 

SN: H15-233964 

HyperSep C18 unendcapped 96-well 
plate 

Thermo Scientific (Schwerte, 
Germany) 

60300-425, Lot: 517021-BE 

MicroLute Combinatorial 96-deep well 
plate 

Porvair Sciences Ltd. (Wrexham, UK) Lot: 031043 

Micro-pillar array columns (μPAC) 50 
cm 

Pharmafluidics (Ghent, Belgium) N/A 

Microplate 96-well (e.g., BCA) 
Greiner Bio-one GmbH 
(Frickenhausen, Germany) 

Ref: 655101 

Microplate 96-well conical bottom 
(High pH) 

Thermo Scientific (Schwerte, 
Germany) 

Ref: 249946; Lot: 1253565 

Millex-GS 0.22 μm filter Merck (Darmstadt, Germany) SLGS033SB 
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Mini-Protean TGX Gels (10-well comb) 
Bio-Rad Laboratories GmbH 
(Feldkirchen, Germany) 

Ref: 456-1084; Lot: L006936A 

Mini-Protean TGX Gels (15-well comb) 
Bio-Rad Laboratories GmbH 
(Feldkirchen, Germany) 

Ref: 456-1086; Lot: L006940A 

nanoEase MZ Peptide BEH C18 130 Å, 
1.7 μm, 75 μm x 250 mm 

Waters Corporation (Milford, USA) Ref: 186008795 

Oasis Prime HLB μElution Plate Waters Corporation (Milford, USA) 
Part #: 186008052; Lot: 
010737089A 

oneTUBE-10 AFA Strip Covaris, Inc. (Woburn, USA) 520225 

PCR Foil Seal 4titude Ltd. (Berlin, Germany) 4ti-0550 

PCR-8 stripes Ratiolab GmbH (Dreieich, Germany) 
Ref: 8610040; Lot: 8610040-
463668 

PicoTip Emitter New Objective, Inc. (Woburn, USA) FS360-20-10-D-20 

Reprosil-Pur Basic C18 for analytical 
columns 

Dr. Maisch GmbH (Ammerbuch, 
Germany) 

NA 

Sealing Mats 
Thermo Scientific (Schwerte, 
Germany) 

AB-0675 

Spin-X 0.45 μm filter 
Corning Incorporated (Salt Lake City, 
USA) 

Lot: 17418000 

X-Pierce film Sigma-Aldrich (Steinheim, Germany) Z721646-50EA 
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3. Experimental Methods 

3.1. Mass spectrometry methods 

The following mass spectrometry methods have been used throughout the study. However, 

several parameters and instrumental settings were evaluated and modified during this 

project to achieve optimal performance. Here, most method details are described while 

varying parameters between experiments are specified within individual paragraphs, if 

applicable: 

3.1.1. Liquid chromatography column setup 

Peptides were separated using an Easy NanoLC 1200 fitted with a two-column setup up 

comprised of a trap column and an analytical column. While the trapping column (Acclaim 

PepMap C18, 5 μm, 100 Å, 100 μm x 2 cm) (Thermo Fisher Scientific) remained mostly 

constant over time, several analytical columns (Figure 4E) were used within this work: 

initially Acclaim PepMap RSLC C18, 2 μm, 100 Å, 75 μm x 50 cm (Thermo Fisher Scientific) 

was used. Subsequently, we used self-packed analytical columns with Reprosil-Pur Basic 

C18, 1.9 μm, 100 Å, 75 μm x 40 cm material, which was packed into fused silica with an 

uncoated Pico-Tip Emitter with a 10 μm tip (New Objective) using a pressure bomb 

(Nanobaum). Here, the spray voltage was set to 2.5 kV to compensate for electrification at 

the T-piece connection between the trap column, the waste line, and the analytical column. 

A 50 cm micro pillar-array column (μPAC, Pharmafluidics) was used in a single-column setup 

at flow rates between 300 nL/min and 750 nL/min. Finally, we achieved the best 

performance using a nanoEase MZ Peptide BEH C18 Column, 130 Å, 1.7 µm, 75 µm x 250 

mm (Waters Corporation). The outlet of the analytical column was directly coupled to an 

Orbitrap Fusion (Thermo Fisher Scientific) or an Orbitrap Q-Exactive HF (Thermo Fisher 

Scientific) mass spectrometer via a Pico-Tip Emitter 360 μm OD x 20 μm ID; 10 μm tip (New 

Objective) and a spray voltage of 2 kV. 

3.1.2. Liquid chromatography gradients and data-dependent acquisition (DDA) 

The samples were loaded with a constant flow of solvent A at a maximum pressure of 800 

bar, onto the trapping column. The maximum pressure was set to 600 bar for the nanoEase 

MZ Peptide BEH C18 columns. (Waters Corporation). The μPAC column was limited to a 

maximal pressure of 200 bar. Solvent A was ddH2O, 0.1% (v/v) formic acid (FA) and solvent 
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B was 80% acetonitrile (ACN) in ddH2O, 0.1% (v/v) FA. Peptides were eluted via the 

analytical column at a constant flow of 300 nL/minute, at 55°C (between 300 nL/min and 

750 nL/min for the μPAC). The ion transfer capillary temperature was set to 275°C. 

Throughout this study, several different gradient lengths were used, in which all settings 

remained as described for the one hour and 10 minutes method unless otherwise stated in 

the corresponding paragraphs: 

1 hour 10 minutes: During elution, the percentage of solvent B was increased linearly from 

3 to 8% in 4 minutes, then from 8% to 10% in 2 minutes, then from 10% to 32% in 17 

minutes, and then from 32% to 50% in a further 3 minutes. Finally, the gradient was finished 

with 8 minutes at 100% solvent B, followed by 11 minutes at 96% solvent A. Full scan MS 

spectra with a mass range of m/z 350 to 1500 were acquired in the Orbitrap with a 

resolution of 60.000 full width half maximum (FWHM). The ion filling time was set to a 

maximum of 32 ms with an automatic gain control target of 3 x 106 ions. The top 2 or 20 

most abundant ions per full scan were selected for a tandem MS (MS2) acquisition. For MS2 

scans, the resolution was set to 15.000 FWHM with automatic gain control of 1 x 105 ions 

and a maximum fill time of 50 ms. The isolation window was set to m/z 2.0, with a fixed 

first mass of m/z 110, and stepped collision energy (n)ce of 26. The intensity threshold was 

set to 2 x 104 and isotopes, unassigned charges, charge 1, charge 5 to 8, and >8 were 

excluded. The dynamic exclusion list was set with a maximum retention period of 15 

seconds. 

1 hour 25 minutes: During elution, the percentage of solvent B was increased linearly from 

4 to 5% in 1 minute, then from 5% to 27% in 30 minutes, and then from 27% to 44% in a 

further 5 minutes. Finally, the gradient was finished with 10.1 minutes at 95% solvent B, 

followed by 13.5 minutes at 96% solvent A. Full scan MS spectra with a mass range of m/z 

300 to 1500 were acquired. The ion filling time was set to a maximum of 50 ms with an 

automatic gain control target of 3 x 106 ions. The top 10 most abundant ions per full scan 

were selected for an MS2 acquisition. For MS2 scans, the resolution was set to 15.000 

FWHM with automatic gain control of 5 x 104 ions and a maximum fill time of 50 ms. The 

isolation window was set to m/z 1.6, with a fixed first mass of m/z 120, and stepped collision 

energy (n)ce of 28. The intensity threshold was set to 1 x 105 and isotopes, unassigned 
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charges, and charges of 1 and >8 were excluded. The dynamic exclusion list was set with a 

maximum retention period of 60 seconds. 

2-hours: During the elution, the percentage of solvent B was increased linearly from 3 to 

8% in 4 minutes, then from 8% to 10% in 2 minutes, then from 10% to 32% in a further 68 

minutes, and then to 50% B in 12 minutes. Finally, the gradient was finished with 8 minutes 

at 100% solvent B, followed by 11 minutes 97% solvent A. The dynamic exclusion was set 

to 25 seconds. 

3-hours: During the elution, the percentage of solvent B was increased linearly from 3 to 

8% in 4 minutes, then from 8% to 10% in 2 minutes, then from 10% to 32% in a further 118 

minutes, and then to 50% B in 22 minutes. Finally, the gradient was finished with 8 minutes 

at 100% solvent B, followed by 11 minutes 97% solvent A. The dynamic exclusion was set 

to 35 seconds. 

4-hours: During the elution, the percentage of solvent B was increased linearly from 3 to 

8% in 4 minutes, then from 8% to 10% in 2 minutes, then from 10% to 32% in a further 175 

minutes, and then to 50% B in 25 minutes. Finally, the gradient was finished with 8 minutes 

at 100% solvent B, followed by 11 minutes 97% solvent A. The dynamic exclusion was set 

to 80 seconds. 

3.1.3. Proteomics data processing 

Raw files were processed using MaxQuant (version 1.5.1.2)287,288. The search was 

performed against the human Uniprot database (20170801_Uniprot_homo-

sapiens_canonical_reviewed; 20.214 entries) using the Andromeda search engine289 with 

the following search criteria: enzyme was set to trypsin/P with up to 2 missed cleavages. 

Carbamidomethylation (C) and oxidation (M) / acetylation (protein N-term) were selected 

as a fixed and variable modifications, respectively. First and second search peptide 

tolerances were set to 20 and 4.5 ppm, respectively. Protein quantification was performed 

using the label-free quantification (LFQ) algorithm of MaxQuant. LFQ intensities were 

calculated separately for different parameter groups using a minimum ratio count of 1, and 

the minimum and the average number of neighbors of 3 and 6, respectively. MS2 spectra 

were not required for the LFQ comparison. On top, intensity-based absolute quantification 

(iBAQ) intensities were calculated with a log fit enabled. Identification transfer between 
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runs via the matching between runs algorithm was allowed with a match time window of 

0.3 minutes. Peptide and protein hits were filtered at a false discovery rate of 1%, with a 

minimum peptide length of 7 amino acids. The reversed sequences of the target database 

were used as a decoy database. All remaining settings were set as default in MaxQuant. 

LFQ values were extracted from the protein groups table and log2-transformed for further 

analysis. No additional normalization steps were performed, as the resulting LFQ intensities 

are normalized by the MaxLFQ procedure287. Proteins that were only identified by a 

modification site, the contaminants, as well as the reversed sequences, were removed from 

the data set. All consecutive steps were performed in Microsoft Excel, Perseus (version 

1.6.1.3)290, and the software environment R (version 3.5.1). 

3.2. Methods taken from joint publications 

The following methods have been taken partially or in their entirety from joint publications, 

as listed below. Every section that was not written entirely by me is indicated with 

quotation marks: 

 

Hughes, C. S., Moggridge, S., Mueller, Torsten, Sorensen, P. H., Morin, G. B., Krijgsveld, J. 

(2019). „Single-pot, solid-phase-enhanced sample preparation for proteomics 

experiments.” Nature Protocols 14: 68-85. 

 

Mueller, Torsten, Kalxdorf, M., Longuespeé, R., Kazdal, D., Stenzinger, A., Krijgsveld, J. 

(2020). “Automated sample preparation with SP3 for low-input clinical proteomics”. 

Molecular Systems Biology 16(1): e9111. 

 

Hübner, J. M., Mueller, Torsten, Papageorgiou, D. N., Mauermann, M., Krijgsveld, J., 

Russell, R. B., Ellison, D. W., Pfister, S. M., Pajtler, K. W., Kool, M. (2019). „EZHIP/CXorf67 

mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 

function in aggressive posterior fossa ependymoma.” Neuro Oncology 21(7): 878-889. 
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3.2.1. Methods taken from “Single-pot, solid-phase-enhanced sample preparation for 

proteomics experiments.” 

The evaluation and optimization of the original single-pot, solid-phase-enhance sample 

preparation (SP3) method (Hughes et al. 2014)149 have led to an improved protocol version 

as comprehensively described for different protein input and working volume scenarios in 

Hughes et al., 2019291. In this study, the majority of applications were carried out with 10 

μg or less in a working volume smaller than 50 μL. 

3.2.1.1. Single-pot, solid-phase-enhanced sample preparation (SP3) bead preparation 

Magnetic beads were prepared by combining 20 μL of both, Sera-Mag Speed Beads A and 

B (Fisher Scientific, Germany), and washing them one time with 160 μL ddH2O and two 

times with 200 μL ddH2O, and re-suspending them in 20 μL ddH2O for a final working 

concentration of 100 μg/μL. The washing steps were carried out using an in-house designed 

and built magnetic rack for two PCR 8-stripes or in the case of larger volumes in a DynaMag 

2 magnet rack (Life technologies). For higher numbers of samples, the preparation of 

magnetic beads was carried out multiple times to provide at least 2 μL per sample. The pre-

washed magnetic beads were combined to a single-tube and vortexed before proceeding 

with the protein clean-up protocol. 

3.2.1.2. SP3 protein clean-up 

In brief, 10 μg or less of extracted protein were added to PCR tubes in a total volume of 10 

μL lysis buffer (1% sodium dodecylsulfate (SDS), 100 mM ammonium bicarbonate (ABC), 

pH 8.5). 2 μL of pre-washed magnetic beads, as well as 12 μL 100% ACN, were added to 

each sample to reach a final concentration of 50% ACN. Protein binding to the beads was 

allowed for 18 minutes, followed by 2 minutes incubation on a magnetic rack to immobilize 

beads. The supernatant was removed, and beads were washed two times, with 200 μL of 

80% ethanol (EtOH) and one time with 180 μL of 100% ACN. Beads were resuspended in 15 

μL of 100 mM ABC and sonicated for 5 minutes in a water bath. Finally, sequencing-grade 

trypsin was added in an enzyme:protein ratio of 1:20 (e.g., 5 μL of 0.1 μg/μL trypsin in 

ddH2O), and beads were pushed from the tube walls into the solution to ensure efficient 

digestion. Upon overnight or 4 hours incubation at 37°C and 1000 rpm in a table-top 

thermomixer, samples were acidified by adding 5 μL of 5% trifluoracetic acid (TFA) and brief 

vortexing. Beads were immobilized on a magnetic rack, and peptides were recovered by 
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transferring the supernatant to new PCR tubes. If necessary, samples were diluted by 

adding 0.1% FA to reach a suitable peptide concentration of approximately 1 μg/10 μL. At 

lower peptide concentrations, the entire sample volume was injected. MS injection-ready 

samples were stored at -20 C. 

3.2.1.3. SP3 peptide clean-up 

In brief, 10 μL of pre-washed beads and 100% ACN were added to each sample to a final 

concentration of 95% ACN. Peptides were allowed to bind to the beads for 18 minutes in a 

thermocycler at 750 rpm, followed by 2 minutes incubation on a magnetic rack (Life 

technologies, DynaMag 2) to immobilize the beads. The supernatant was removed, and 

beads were washed 2x with 800 μL of 100% ACN. Beads were air-dried for 2 minutes at 

37°C, resuspended in 17 μL of 0.1% FA, and sonicated in a VWR Ultrasonic Cleaner USC-T 

water bath for 5 minutes. Finally, samples were vortexed, quick-centrifuged, and placed 

into a magnetic rack to allow a clean transfer of the peptide-containing supernatant to a 

new reaction tube. MS injection-ready samples were stored at -20°C. 

3.2.2. Methods taken from “Automated sample preparation with SP3 for low-input 

clinical proteomics.” 

3.2.2.1. Cell culture of HeLa cells 

HeLa cells were cultured in regular DMEM medium (Gibco, Life Technologies) 

supplemented with 10% fetal bovine serum (Gibco, Life Technologies), 1% of a 100 x 

penicillin and streptomycin mix (Gibco, Life Technologies), and 1% of 100 x glutamine stock 

solution (Gibco, Life Technologies). Upon establishment of a stable culture, cells were 

harvested using trypsin and counted using Bio-Rad TC20 automated cell counter. Cell 

pellets were stored at -80°C until further use. 

For showing the use of the Bravo application starting from limited, small numbers of cells, 

HeLa cells were harvested, counted, resuspended in lysis buffer (1% SDS, 100 mM ABC pH 

8.5), and directly transferred to a 96-well plate. The total volume for different numbers of 

cells was adjusted using lysis buffer (1% SDS, 100 mM ABC pH 8.5). The entire 96-well plate 

was sonicated in a water bath for 10 minutes, followed by Benzonase (~40 Units) enzymatic 

cleavage of DNA and RNA for 15 minutes at 37°C. Subsequently, the buffer was adapted to 

a final concentration of 1% SDS, 100 mM ABC, 10 mM tris(2-carboxyethyl)phosphine 
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(TCEP), and 40 mM chloroacetamide (CAA) including protease inhibitor cocktail (PIC) before 

incubation for 5 minutes at 95°C. The plate was allowed to cool to 23°C before it was 

transferred to the Bravo deck for the SP3 processing, as described in the “automated SP3 

protocol” section. 

3.2.2.2. HeLa protein standard preparation 

Cell pellets of ~11.9 million cells were resuspended in 1 mL of lysis buffer (1% SDS, 100 mM 

ABC pH 8.5, and 50 μL 25x PIC) and probe sonicated for 5 times 20 seconds at a frequency 

of 10% using a Branson Sonifier. Cell lysates were kept on ice in-between cycles to avoid 

overheating. DNA or RNA contaminants were cleaved using 250 Units of Benzonase for 15 

minutes at 37°C and 750 rpm. Subsequently, the buffer was adapted to a final 

concentration of 1% SDS, 100 mM ABC, 10 mM TCEP, and 40 mM CAA, including PIC, before 

incubation for 5 minutes at 95°C in a CHB-T2-D ThermoQ heating device (Hangzhou BIOER 

Technologies). Reduced and alkylated proteins were quantified using a bicinchoninic acid 

assay (BCA) assay and stored at -20°C until further use in manual and automated SP3 

processing. 

3.2.2.3. Pulmonary adenocarcinoma (ADC) sample collection 

All pulmonary ADC specimens used for this study were obtained from the Thoraxklinik at 

Heidelberg University and diagnosed according to the criteria of the 2015 WHO 

Classification of lung tumors at the Institute of Pathology at Heidelberg University206. Tissue 

procession to formalin-fixed and paraffin-embedded (FFPE) tissue sections was carried out 

by the tissue bank of the National Center for Tumor Diseases (NCT; project: # 1746; # 2818) 

in accordance with its ethical regulations approved by the local ethics committee. 

A multiregional sample set consisting of 2-4 samples of eight tumors was constructed as 

described previously292. In short, a formalin-fixed central section of each tumor was 

segmented into multiple 5 x 5 mm regions according to a Cartesian grid. Ink marks ensured 

the retention of the original orientation of each segment during sample processing. Tumor 

regions considered for analysis were selected in accordance with the tumor size (larger 

tumor corresponds to more regions), different histological growth patterns as well as 

sufficient tumor cell content (≥ 10%). An experienced pathologist determined the 

histological growth pattern with the predominant portion in each segment. For each tumor, 
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two to four different growth patterns were excised. Samples were analyzed in replicates 

using one 5 µm section after deparaffinization as input, respectively. For deparaffinization, 

the sections were incubated for 20 minutes at 80°C, followed by three times 8 minutes 

incubation in Xylol and EtOH, consecutively. Finally, the sections were incubated in ddH2O 

for 30 minutes before the tissue was scratched off and collected in a well. Replicates were 

excised as consecutive cuts of the same region having the highest possible similarity. 

3.2.2.4. Automated SP3 protocol (autoSP3) 

As a reference, the SP3 protocol was carried out manually, as described in the 

corresponding paragraph 4.2.1.2 (Hughes 2019)291. In the automated version of the SP3 

protocol, the Bravo system is programmed to process 96 samples simultaneously, carrying 

out all handling steps including reduction and alkylation of proteins, aliquoting of magnetic 

beads, protein clean-up by SP3, protein digestion, and peptide recovery. The core SP3 

protocol is available in combination with reduction and alkylation either as a single-step 

using a TCEP/ CAA mix for 5 minutes at 95°C (Figure 6D) or as a two-step protocol using, for 

example, dithiothreitol (DTT)/ CAA consecutively with 30 minutes incubation for each 

reaction at 60°C and 23°C, respectively (Figure 6D). A shortened version is available that 

consists of the core SP3 protocol while omitting on-deck reduction and alkylation (Figure 

6D), saving time due to slow heating of the heating block (altogether taking one hour for 

heating and cooling), instead performing this off-deck (taking 5 minutes and 30 seconds to 

reach working temperature and 5 minutes for incubation) in a PCR thermocycler (CHB-T2-

D ThermoQ, Hangzhou BIOER Technologies) prior to initiation of the automated protocol. 

In addition, the PCR thermocycler provides lid heating, which prevents any unwanted 

evaporation or variation in the sample volume. This latter protocol (Protocol C, Figure 6D) 

was used in the work presented here. Each protocol is designed for a starting sample 

volume of 10 μL, which can easily be varied in the protocol files to add respective amounts 

of organic solvent to reach higher than 50% and to remove the resulting volume after 

protein binding. Next, either protocol A, B, or C (Figure 6D) aliquot 5 μL of a suspension of 

washed magnetic beads to protein samples previously collected in a 96-well plate. Different 

to the manual protocol (bead working concentration 100 μg/μL), the suspension of washed 

beads is prepared to have a working concentration of 50 μg/μL to allow more robust 

pipetting. Next, the respective volume of 100% ACN (20 μL in A; 25 μL in B, 15 μL in C) is 
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added to each sample followed by 18 minutes incubation off the magnetic rack with cycles 

of agitation at 1500 rpm and 100 rpm for 30 seconds and 90 seconds, respectively. Upon 

binding of the proteins to the beads, the sample plate is incubated on the magnetic rack 

for further 5 minutes to allow magnetic trapping of beads inside each well. Here, the beads 

will form a ring at the wall of each well, slightly above the bottom. The removal of any 

supernatant in the protocol is performed using well-specific tips in two consecutive steps 

to ensure complete liquid removal. Next, beads are washed two times with 200 μL of 80% 

EtOH and one time with 171.5 μL of 100% ACN. Due to the limited 200 μL pipetting volume 

of the Bravo and the limited reagent space, the respective washing volumes of 80% EtOH 

and 100% ACN were added in 4 and 7 consecutive steps of 50 μL and 24.5 μL, respectively, 

with in-between shaking at 500 rpm or 250 rpm for 30 seconds. Upon removal of residual 

washing solvents, the beads are resuspended in 35 μL of 100 mM ABC and 5 μL of 0.05 μg/ 

μL pre-prepared trypsin in 50 mM acetic acid to avoid autolysis. Of note, in the dilution 

series experiments, the trypsin amount was reduced to avoid abundant peptide features 

resulting from its autolysis. In a final shaking step at 1500 rpm for 60 seconds, the trypsin 

solution is mixed with the sample, and the plate is transferred to the heating deck position 

for incubation at 37°C. Subsequently, the plate was manually sealed and transferred to a 

PCR cycler to avoid lid condensation during a 4-hour incubation at 37°C. Next, after 

completion of either protocol A, B, or C and exchange of used pipette tips, a short protocol 

is provided for peptide acidification and recovery of LC-MS injection-ready samples to a 

new 96-well plate (Figure 6D). Alternatively, as used in this study, peptide acidification and 

recovery can be performed manually. Therefore, each sample was acidified by adding 5 μL 

of 5% TFA solution, sonicated in a water bath for 5 minutes to swirl the settled beads, and 

incubated on a magnetic rack for further 2 minutes. Finally, the peptide-containing 

supernatant was recovered into a new 96-well plate without transferring the beads. If 

necessary, samples were either diluted or directly frozen at -20°C until MS acquisition. 

Optionally peptide quantification assays (colorimetric assay kit, Thermo Scientific) were 

carried out using the Bravo liquid handling system. 

3.2.2.5. Quantitative proteomics analysis of FFPE tissue 

For proteomic analysis, 5 μm FFPE tissue sections were collected in stripes of 8 PCR tubes, 

centrifuged at 15.000 x g for 10 minutes to ensure that FFPE slices are at the bottom of the 
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tube, and stored at 4°C until further processing. Next, each tissue section was carefully 

reconstituted in 20 μL lysis buffer (4% SDS, 100 mM ABC, pH 8.5), sonicated at 4°C for 25 

cycles of 30 seconds on and 30 seconds off in a Pico Bioruptor, and heated for one hour at 

95°C. Samples were spun down and subjected to a second round of sonication and heating. 

The Pico Bioruptor (Diagenode SA) was equipped with a house-made tube holder, which 

allows the simultaneous processing of 28 samples. Subsequently, PCR tubes were 

centrifuged at 15.000 x g for 3 minutes, and the buffer was adjusted to a final concentration 

of 1% SDS, 100 mM ABC, 10 mM TCEP, and 40 mM CAA, including PIC. Samples were heated 

for 5 minutes at 95°C to denature proteins and to reduce and alkylate cysteine residues. 

Cooled to RT and again centrifuged at 15.000 x g for 3 minutes, 10 μL of each sample was 

further processed by our automated SP3 sample clean-up procedure, as described above. 

Here, protein digestion was allowed for 16 hours overnight before stopping the reaction by 

acidification to 0.5% with TFA. The peptide-containing supernatant was recovered to a new 

96-well plate without transferring the beads. MS injection-ready samples were stored at -

20°C, and about 25% of each sample was later used for data acquisition. 

3.2.2.6. Proteomics data acquisition 

For HeLa standard measurements, samples were diluted with solvent A (0.1% FA in ddH2O) 

to enable the injection of 1 μg in 10 μL volume. Peptides were separated using the Easy 

NanoLC 1200 fitted with a trapping (Acclaim PepMap C18, 5 μm, 100 Å, 100 μm x 2 cm) and 

an analytical column (Acclaim PepMap RSLC C18, 2 μm, 100 Å, 75 μm x 50 cm). The outlet 

of the analytical column was coupled directly to a Q-Exactive HF Orbitrap mass 

spectrometer (Thermo Fisher Scientific). Data were acquired using the one hour 25 minutes 

method as described in chapter 3.1.2. 

For FFPE lung ADC measurements, about 25% of each sample was used for direct injection. 

Peptides were separated using the Easy NanoLC 1200 fitted with a trapping (Acclaim 

PepMap C18, 5 μm, 100 Å, 100 μm x 2 cm) and a self-packed analytical column (Reprosil-

Pur Basic C18, 1.9 μm, 100 Å, 75 μm x 40 cm). The outlet of the analytical column was 

coupled directly to a Q-Exactive HF Orbitrap (Thermo Fisher Scientific) mass spectrometer. 

Data were acquired using the 2-hours methods, as described in chapter 3.1.2. 
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3.2.2.7. Proteomics data processing 

The data processing was carried out as comprehensively described in paragraph 4.1.3. 

Additional analyses were performed as follows: the differential expression analysis of the 

ADC samples was performed using Limma moderated t-statistics (R package version 

3.36.3)293. Here, the technical replicates and the patient-dependent batch effect were 

taken into account within the applied model. Proteins with a Benjamini-Hochberg-adjusted 

p-value lower than 0.05 and an absolute log2-fold change higher than 1 were considered as 

significantly changing. The resulting lists of significantly regulated proteins were subjected 

to a gene ontology (GO)-term enrichment analyses using the STRING: functional protein 

association network database294. The gene set enrichment analyses (GSEA) were 

performed using R package fgsea295 (version 1.6.0) with a p-value ranking of proteins, gene 

sets defined by the REACTOME pathway database (R package ReactomePA version 

1.24.0)296, the minimum size of gene sets set to 15, the maximum size of gene sets set to 

500, and the number of permutations set to 10.000. The t-distributed stochastic neighbor 

embedding (t-SNE) analyses were performed using R package tsne297 (version 0.1-3) with a 

perplexity set to 2 and the number of iterations set to 5000. 

3.2.2.8. Intra-day and inter-day precision 

To test the precision of SP3 sample handling, we followed guidelines of the European 

Pharmacopoeia and the European Medicines Agency for the number of replicates 

necessary to validate our method298,299. Specifically, we validated automated SP3 by an 

intra-day and inter-day component by processing a total of six 96-well plates with 10 μg 

protein of a HeLa batch lysate in each well in the morning and the afternoon of three 

different days, over roughly one month, resulting in a total of 575 individual samples. Five 

randomly picked samples per plate (10 samples per day) were selected for direct LC-MS 

analysis on the day of sample generation and a second technical-repeat injection of all 30 

samples in a single batch acquisition. The number of samples per plate to be analyzed was 

chosen as a fair compromise to determine the precision of our sample processing with a 

reasonable amount of data acquisition time. The selected samples allowed the evaluation 

of the inter-day precision and intra-day precision while taking different processing times, 

plates, and buffers into account (robustness). The second technical injection in one batch 

allowed us to evaluate the influence of longitudinal MS performance. Lastly, for the 
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comparison of manual SP3 sixteen times, 10 μg protein of a HeLa batch lysate were 

processed manually at the bench. 

3.2.2.9. Sensitivity of autoSP3 

To evaluate the lower limit of processing capabilities of the Bravo SP3 setup, we generated 

starting material dilution series as follows: A) a dilution series of our standard HeLa protein 

stock, ranging from 10 μg to ~5 ng in 1:2 dilution steps (10 μg, 5 μg, 2.5 μg, 1.25 μg, ~625 

ng, ~312 ng, ~156 ng, ~78 ng, ~39 ng, ~19 ng, ~10 ng, and ~5 ng). The dilution series was 

generated and processed in four replicates on the same 96-well plate (12 concentrations 

and n=4). B) a dilution series starting from small numbers of counted cells that were directly 

transferred to a 96-well plate, ranging from 10.000 down to 10 cells. The dilution series was 

generated and processed in two plates à four replicate series (7 concentrations and n=8). 

Here, the European Pharmacopoeia recommends a minimum of three concentrations à 

three replicates298. In addition, two empty control injections were performed upfront of 

the data acquisition of each dilution series. The dilution series were measured in blank-

interspaced blocks from lowest to highest concentrated samples to avoid potential carry 

over between injections. 

3.2.2.10. Assessment of cross-contamination  

To assess potential cross-contamination between samples, we processed 24 wells of 10 μg 

standard HeLa protein stock interspaced with 24 empty controls. Seven peptide-containing 

samples and eleven empty controls were randomly selected for direct LC-MS analysis. The 

number of samples to be analyzed was chosen as a fair compromise to determine potential 

carry over between wells during our sample processing with a reasonable amount of data 

acquisition time. 

3.2.3. Methods taken from „EZHIP/CXorf67 mimics K27M mutated oncohistones and 

functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa 

ependymoma.” 

3.2.3.1. Cell Culture of HEK293T cells 

“HEK293T cells were cultured in regular DMEM medium (Gibco, Life Technologies) 

supplemented with 10% fetal calf serum. The medium was exchanged every second day, 

and cells were split at least once per week.” 
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3.2.3.2. Production of Lentiviral particles and generation of stable cell lines 

“Lentiviral constructs were generated by replacing the Ngn2 gene of the FUW-TetO-Ngn2-

T2A-puromycin construct published by Zhang et al. with DNA sequences encoding for the 

CXorf67 full-length protein or CXorf67 truncates carrying a C-terminal FLAG-HA-tag. 

Lentiviruses were produced by co-transfecting lentiviral constructs with psPAX2 and 

pMD2.G into low-passage HEK293T cells using FugeneHD (Promega). The medium was 

replaced 24 hours after transfection. On the next day, lentivirus-containing supernatant 

was harvested and passed through a 0.45 µm filter before being directly added to the target 

cells. To allow induction of gene expression by administration of Doxycycline, cells were 

additionally co-transduced with a rtTA carrying lentivirus. 24 hours after infection, protein 

expression was induced by addition of 1 µg/mL of Doxycycline followed by selection with 

Puromycin. HEK293 cells were selected with 1 µg/mL of Puromycin. For continuous protein 

expression, Doxycycline was replenished every two to three days.” 

3.2.3.3. Co-Immunoprecipitation for mass spectrometry and western blot 

“For co-immunoprecipitation (Co-IP) followed by mass spectrometry (MS) analysis, cells 

were resuspended in lysis buffer (20 mM Tris-HCl pH 8, 200 mM NaCl, 1 mM EGTA, 1 mM 

ethylenediaminetetraacetic acid (EDTA), 1% Triton X-100), vortexed and incubated on ice 

for 30 minutes. Subsequently, cellular debris was pelleted by centrifugation and the 

supernatant was transferred to a new tube. The supernatant was then pre-cleared for one 

hour at 4°C using mouse IgG agarose beads. Afterwards, beads were pelleted by 

centrifugation and the supernatant was again transferred to a separate tube. The 

supernatant was then incubated with FLAG-M2 affinity gel overnight at 4°C. Mouse IgG 

agarose beads used for pre-clearing were washed twice with lysis buffer and then twice 

with PBS. Next, the beads were resuspended in 30 μL of elution buffer (50 mM NH4HCO3, 

15 mM DTT, 0.1% SDS) and boiled at 95°C for 5 minutes. Eluted proteins were saved for MS 

analysis to determine the protein background. The next day, proteins were eluted from the 

FLAG-M2 affinity gel using the same procedure as for the mouse IgG agarose beads 

followed by MS analysis. For Co-IP followed by western blot analysis, proteins were only 

eluted from the FLAG-M2 affinity gel using 40 μL of western blot elution buffer (10 μL of 4x 

NuPAGE™ LDS Sample Buffer, 4 μL of 10x NuPAGE™ Sample Reducing Agent and 26 μL of 

lysis buffer).” 
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3.2.3.4. Nuclear extraction and western blot analysis 

“For the separation of nuclear and cytoplasmic fractions, cells were harvested, washed 

once with ice-cold PBS, and incubated in 2ml of swelling buffer (10 mM Tris-HCl pH 6.8, 5 

mM KCl, 1 mM MgCl2) on ice for 20 minutes. Next, cell membranes were ruptured using a 

douncer. Nuclei were spun down at 1000 x g for 10 minutes at 4°C, and the supernatant 

was saved as the cytoplasmic fraction. The nuclei were washed once with swelling buffer 

and pelleted again via centrifugation. Then, nuclei were resuspended in Laemmli buffer 

(62.5 mM Tris-HCl pH 6.8, 10% Glycerol, 3% SDS, 150 mM DTT, 250 Units Benzonase) and 

cooked at 95°C for 10 minutes. Finally, insoluble debris was removed by centrifugation, and 

the supernatant was saved as the nuclear fraction. 

Whole-cell lysates, nuclear, and cytoplasmic extracts or eluted fractions from Co-

immunoprecipitation experiments were separated on a 4-12% Bis-Tris gradient gel 

(Invitrogen) followed by transfer onto a 0.2 µm PVDF membrane. The membrane was then 

blocked for 30 minutes, with 5% milk in Tris-buffered saline-Tween 0.05% (TBS-T). Primary 

antibody incubation was performed overnight at 4°C. The next day, the membrane was 

washed three times with TBS-T, followed by incubation with a secondary HRP-conjugated 

antibody for one hour at 23°C. Finally, the membrane was washed three times with TBS-T 

and covered in ECL Western Blotting Detection Reagent (GE Healthcare Life Sciences) 

followed by detection of chemiluminescence using the Intas Chemostar ECL Imager device 

(Intas Science Imaging). Primary antibodies used for western blot analysis were targeted 

against H3K27me3 (ab6002, abcam, 1:1000), histone H3 (ab1791, abcam, 1:5000), FLAG-

tag (F1804, Sigma-Aldrich, 1:1000), EZH2 (D2C9, Cell Signaling Technology, 1:1000), SUZ12 

(D39F6, Cell Signaling Technology, 1:1000), EED (09-774, Merck, 1:1000), β-tubulin (#2146, 

Cell Signaling Technology, 1:1000), or Lamin B1 (ab16048, abcam, 1:1000). Secondary 

antibodies used were goat anti-mouse-HRP (ab6789, abcam, 1:5000) and goat 

anti-rabbit-HRP (ab6721, abcam, 1:3000).” 

3.2.3.5. Protein digestion and SP3 peptide clean-up of Co-IP samples 

Samples obtained from the Co-Immunoprecipitation (stored at -20°C) were reduced with 

DTT (10 mM final concentration) at 45°C for 30 minutes. Subsequently, proteins were 

alkylated using 40 mM final concentration of CAA at 23°C for 30 minutes. Reduced and 

alkylated proteins were digested overnight at 37°C using 0.65 μg sequencing-grade 
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modified trypsin in 100 mM ABC. Next, samples were further processed by the SP3 peptide 

clean-up procedure (Hughes et al., 2014; Hughes et al., 2019)149,291 as briefly described in 

paragraph 3.2.1.3. MS injection-ready samples were stored at -20°C. 

3.2.3.6. Mass spectrometry data acquisition 

Peptides were separated using an Easy NanoLC 1200 fitted with a trapping (Acclaim 

PepMap C18, 5 μm, 100 Å, 100 μm x 2 cm) and a self-packed analytical column (Reprosil-

Pur Basic C18, 1.9 μm, 100 Å, 75 μm x 40 cm). The C18 material was packed into fused silica 

with an uncoated Pico-Tip Emitter with a 10 μm tip (New Objective) using a Nanobaum 

pressure bomb. The outlet of the analytical column was coupled directly to an Orbitrap 

Fusion (Thermo Fisher Scientific) mass spectrometer. Solvent A was ddH2O, 0.1% (v/v) FA 

and solvent B was 80% ACN in ddH2O, 0.1% (v/v) FA. The samples were loaded with a 

constant flow of solvent A at a maximum pressure of 800 bar, onto the trapping column. 

Peptides were eluted via the analytical column at a constant flow of 0.3 μL/minute, at 55°C, 

using the 2-hours gradient described in chapter 3.1.2. Peptides were introduced into the 

mass spectrometer at a positive spray voltage of 2.5 kV. The ion transfer tube temperature 

was set at 275°C. Full scan MS spectra with a mass range of m/z 375 to 1500 were acquired 

in the Orbitrap with a resolution of 120.000 FWHM. The filling time was set to a maximum 

of 50 ms with an automatic gain control target of 1 x 106 ions. Intensities were filtered at a 

threshold of 5 x 103.  The dynamic exclusion list was set with a maximum retention period 

of 40 seconds and a mass tolerance of 10 ppm, high and low, respectively. Isotopes, 

unassigned charges, and charges of 1, 5 to 8, and >8 were excluded. MS2 scan properties 

were set to use the quadrupole isolation mode with a window of m/z 1.6. Higher-energy 

collision-activated dissociation (HCD) was selected as an activation type at a percentage 

collision energy of 33%. MS2 scans were performed in the ion trap at a rapid scan rate with 

a first mass at m/z 120 and an automatic gain control target of 1 x 104 ions. The maximum 

injection time was set to 50 ms with ion injection for all available parallelizable time. MS2 

spectra were acquired in a centroid data type.  

3.2.3.7. Mass spectrometry data processing 

Raw files were processed using MaxQuant (version 1.5.1.2)287,288. The search was 

performed against the human Uniprot database (201708_Uniprot_homo-

sapiens_canonical_reviewed; 20214 entries) using the Andromeda search engine289 with 
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the following search criteria: enzyme specificity was set to trypsin/P with up to 2 missed 

cleavages. Carbamidomethylation (C) was selected as a fixed modification; oxidation (M) 

and acetylation (protein N-term) were set as variable modifications. The first and second 

search peptide tolerances were set to 20 and 4.5 ppm, respectively. The protein 

quantification was performed using the label-free quantification algorithm of MaxQuant. 

LFQ intensities were calculated using a minimum ratio count of 1, and a minimum and an 

average number of neighbors of 3 and 6, respectively. MS/MS were required for the LFQ 

comparison, and the stabilization of large LFQ ratios was enabled. iBAQ intensities were 

calculated with a log fit. Peptide and protein hits were filtered at a false discovery rate of 

1%, with a minimum peptide length of 7 amino acids. The reversed sequences of the target 

database were used as a decoy database. The remaining parameters of MaxQuant were 

left at the default settings. LFQ values were extracted from the protein Groups table and 

log2-transformed for further analysis. iBAQ values were extracted from the protein Groups 

table and log10-transformed for further analysis. The MaxQuant protein groups’ output 

table was filtered for contaminants, reverse hits, and hits only identified by site. No 

additional normalization steps were performed, as the resulting LFQ intensities are 

normalized by the MaxLFQ procedure287.LFQ intensities were log2-transformed, and ratios 

were calculated for each construct over its respective IgG control counterpart. Proteins 

without a positive ratio in the full-length experiment and those without a positive ratio in 

all three construct experiments were filtered from the protein list. Subsequently, LFQ ratios 

were uploaded in Perseus (v. 1.5.3.0)290, and hierarchical clustering was performed using 

Euclidean distances with an average linkage for both row and column tree clustering, 

respectively. 

3.3. Additional experimental methods 

3.3.1. Cell culture of stable cell lines  

The culturing of A375, RPMI-7951, UACC-62, and ISTMEL-1 cell lines was carried out by Dr. 

Gertjan Kramer. 

HeLa, HEK-293, and MCF7 were cultured in regular DMEM medium (Gibco, Life 

Technologies) supplemented with 10% fetal bovine serum (Gibco, Life Technologies), 1% of 

a 100 x penicillin & streptomycin mix (Gibco, Life Technologies), and 1% of 100 x glutamine 

stock solution (Gibco, Life Technologies). A375, RPMI-7951, UACC-62, and ISTMEL-1 cells 
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were cultured in DMEM medium (Gibco, Life Technologies) supplemented with 10% fetal 

calf serum (Gibco, Life Technologies), 1 mM sodium pyruvate (Thermo Fisher Scientific), 25 

mM HEPES (Thermo Fisher Scientific), 2 mM GlutaMAX (Gibco, Life Technologies), and 1% 

of a 100 x penicillin & streptomycin mix (Gibco, Life Technologies). Upon establishment of 

a stable culture, cells were harvested using trypsin and counted using Bio-Rad TC20 

automated cell counter. Cell pellets were stored at -80°C until further use. 

3.3.2. Cell culture of patient-derived EPN tumor cell lines 

The culturing of patient-derived EPN tumor cell lines was carried out by either Dr. Jens 

Huebner (Global EPN and CXorf67 related experiments), Dr. Kendra Maaß, or Mieke Roosen 

(Extracellular vesicle related experiments) from the collaborating groups of Prof. Marcel 

Kool and Prof Kristian Pajtler at the DKFZ. 

In total, four different patient-derived EPN tumor cell lines were available corresponding 

to two out of nine EPN subgroups: namely BT214 and EPD210 from PF-EPN-A, as well as 

BT165 and EP1NS from ST-EPN-RELA. The PF-EPN-A cell lines were cultured in 1:100 

Laminin-coated (Sigma-Aldrich) flasks in NeuroCult NS-A basal medium (Stem Cell 

Technologies) supplemented with 2 mM L-Glutamine (Gibco, Life Technologies), 75 μL/mL 

Bovine serum albumin (BSA), 10% NeuroCult NS-A proliferation supplement (Stem Cell 

Technologies), and 1x antibiotic/antimycotic reagent (Life Technologies). Growth factors 

were added to 50 mL aliquots of medium: 20 ng/mL recombinant human EGF and FGF (both 

from Peprotech). The ST-EPN-RELA cell lines were cultured in Geltrex-coated (Life 

Technologies) flasks in Neurobasal medium A (Life Technologies) supplemented with 1 

μg/mL Heparin (Sigma-Aldrich), 2 mM L-Glutamine (Gibco, Life Technologies), and 1% 

penicillin & streptomycin mix (Gibco, Life Technologies). Growth factors were added to 50 

mL aliquots of medium: 1 mL of B-27 supplement minus vitamin A (Life Technologies), 20 

ng/mL recombinant human EGF, and FGF (both from Peprotech). 

For splitting, the ST-EPN-RELA BT165 cell line and both PF-EPN-A cell lines were detached 

using Accutase (Sigma-Aldrich) for 5 minutes at 23°C. Only the ST-EPN-RELA EP1NS cell line 

was detached using Accumax (Thermo Fisher Scientific) for 5 minutes at 37°C. All cell lines 

were cultured at 37°C at 5% CO2. All cell lines were regularly tested for mycoplasma. Cell 

pellets were stored at -80°C until further use. 
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3.3.3. Additional methods for lysis of cells and tissue for protein extraction 

3.3.3.1. RapiGest SF Surfactant protein extraction 

Each vial of 1 mg RapiGest SF Surfactant was dissolved in 1 mL of 50 mM triethylammonium 

bicarbonate (TEAB) and mixed thoroughly to achieve a 0.1% solution. For large sample 

batches, multiple vials of RapiGest SF Surfactant were dissolved and combined. PIC (Roche 

Diagnostics) was added to 1x final concentration before adding 100 μL to each tissue 

sample. Samples were kept on-ice and probe sonicated for 2 times 15 seconds at 10% 

frequency using a probe sonicator (Branson). The sample viscosity was used as quality 

control for sufficient DNA shearing. Subsequently, lysates were centrifuged at 15.000 x g 

for 30 minutes at 4°C (Eppendorf 5430R centrifuge) to pellet residual cell- or tissue debris. 

The protein content was determined using a BCA protein assay (Pierce) according to the 

manufacturer's instructions. Based on the BCA results across all samples, the smallest 

possible volume for a certain amount of protein, e.g., 10 to 20 μg, was selected for further 

processing. The same amount of protein per sample was transferred to PCR 8-stripes and 

balanced to the same volume with 50 mM TEAB. Next, samples were incubated for 5 

minutes at 95°C, cooled to 23°C, and reduced with a final concentration of 5 mM DTT for 

30 minutes at 60°C. Upon incubation, samples were quickly vortexed and spun down prior 

to alkylation with a final concentration of 15 mM CAA for 30 minutes at 23°C. Proteins were 

digested overnight using a 1:50 ratio of trypsin (in 50 mM TEAB) to protein at 37°C and 500 

rpm. On the next morning, the digestion reaction was stopped by acidification to 0.5% TFA, 

followed by 30 minutes incubation at 37°C. Subsequently, samples were centrifuged at 

15.000 x g for 30 minutes to pellet the precipitated RapiGest SF Surfactant. The peptide-

containing supernatant was transferred to new tubes for storage at -20°C until data 

acquisition. 

3.3.3.2. Urea-based protein extraction 

For Urea-based protein extraction, a 10 M Urea stock solution was prepared as follows. In 

total, 24 g of Urea was mixed with 4 mL of 1 M ABC and topped up to 40 mL volume with 

ddh2O. The mixture was fully dissolved by additional vortexing and heating with warm tap 

water. One complete PIC tablet was added, and the solution was subsequently filtered 

through a 0.22 μm syringe filter (Millex-GS). The filtered stock solution was aliquoted in 2 

mL tubes and stored at -80°C. 
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Cell or tissue samples were resuspended in 100 μL 10 M Urea and mixed at 800 rpm for 10 

minutes at 23°C. Subsequently, samples were either sonicated in a water bath or using a 

probe sonicator (Branson) for 2 times 15 seconds at 10% frequency. Here, samples were 

kept on-ice to avoid overheating and carbamylation of cysteines as a result. Samples were 

centrifuged at 18.214 x g (Eppendorf 5430R centrifuge) for one hour at 10°C, and the 

resulting supernatant was transferred to a new 2 mL tube. Precaution was taken to not 

transfer any of the residual sticky DNA at the tube bottom. The protein content was 

determined using a BCA protein assay (Pierce) according to the manufacturer's instructions. 

On the basis of the BCA results across all samples, the smallest possible volume for a certain 

amount of protein, e.g., 10 to 20 μg, was selected for further processing. Samples were 

further reduced with a final concentration of 5 mM DTT for 30 minutes at 40°C. Upon 

incubation, samples were quickly vortexed and spun down prior to alkylation with a final 

concentration of 15 mM CAA for 30 minutes at 23°C. Before protein digestion, samples 

were diluted to a final Urea concentration below 1.6 M for enzyme compatibility. Proteins 

were digested overnight using a 1:50 ratio of trypsin (in 50 mM TEAB) to protein at 37°C 

and 500 rpm. On the next morning, the digestion reaction was stopped by acidification to 

0.5% TFA, followed by 30 minutes incubation at 37°C. The resulting peptide samples were 

further cleaned up and desalted using the Oasis protocol described in chapter 3.3.9. 

3.3.4. DNA extraction 

DNA was extracted from mouse kidney tissue (~ 2 mg wet weight). The tissue pieces were 

cut in a glass Petri dish on dry-ice using a commercial razor blade. The cut tissue parts were 

transferred within 600 μL TNES buffer (10 mM Tris-HCL pH 7.5, 400 mM NaCl, 100 mM 

EDTA, and 0.6% SDS) and 35 μL Proteinase K (Thermo Scientific) to a 1 mL Dounce 

homogenizer. Samples were digested overnight in a 2 mL tube at 50°C after 20 pestle 

strokes for complete tissue solubilization. Next, 166.7 μL 6 M NaCl was added, and samples 

were vigorously vortexed for 20 seconds and centrifuged at 20.238 x g for 10 minutes at 

23°C. The resulting supernatant was transferred and mixed with 800 μL ice-cold 100% EtOH. 

The tube was inverted several times to ensure sufficient gentle mixing and starting of DNA 

precipitation. The samples were further centrifuged at 15147 x g for 20 minutes at 4°C. The 

supernatant was discarded, and the DNA pellet was washed with 500 μL 100% EtOH and 

several times inversion of the sample tube. The washing step was performed for a second 
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time with 70% EtOH before the remaining EtOH was entirely removed by spinning down 

and discarding the supernatant and air-drying the DNA pellet for 5 minutes. The pellet was 

resuspended in ddh2O, and the amount of extracted DNA [ng/μL] was measured using a 

Nanodrop 1000 spectrophotometer device to read the absorbance at 260/280 nm and 

260/230 nm. (Thermo Fisher Scientific). Besides, samples were checked by loading different 

amounts on agarose gels, as described previously. 

3.3.5. E. coli spike-in sample preparation 

E. coli lyophilized sample (Bio-Rad) was resuspended in ddH2O to achieve a stock 

concentration of 2 μg/μL. 100 μL (200 μg) were incubated at 95°C for 5 minutes, followed 

by reduction and alkylation using DTT (10 mM final concentration) at 37°C for one hour and 

CAA (40 mM final concentration) at 23°C for 45 minutes at 500 rpm. Reduced and alkylated 

proteins were digested overnight at 37°C in a table-top thermomixer at 700 rpm using 

sequencing-grade modified trypsin (Promega) in ddH2O. Upon overnight protein digestion, 

each sample was acidified to a final concentration of 1% TFA (Biosolve Chimie). 

Subsequently, stocks of spike-in samples were prepared with a constant amount of HeLa 

peptides and increasing spike-ins of 0%, 3%, 4.5%, 6%, 7.5%, and 9% E. coli peptides (n= 3). 

MS injection-ready samples were stored at -20°C. 

3.3.6. Agarose Gels for DNA visualization 

Agarose gels were prepared by dissolving 1.2 g of agarose (Sigma) in 100 mL TAE buffer (50 

mM EDTA, 2 M Tris, and 1 M glacial acetic acid) in an Erlenmeyer flask. The solution is 

heated for 2 minutes in a commercial microwave and cooled to room temperature. 

Immediately upon reaching near 23°C SYBR safe DNA stain mix (Invitrogen) was added to 

the gel solution. Eight-well combs were inserted, and gels were poured in a gel running 

device (Biostep GmbH) to polymerize. 

Samples were mixed in a 1:6 ratio with loading dye (Thermo Scientific). Combs were 

removed, and samples were loaded. Gels typically ran for about 30 minutes at 140 V. DNA 

marker (Thermo Scientific) was used in each gel. 

3.3.7. SDS-Gels for protein visualization 

Samples were incubated for 10 minutes at 95°C with a 1x final concentration of Laemmli 

buffer stock solution (Bio-Rad Laboratories, Inc.) supplemented with 50 mM DTT. 
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Subsequently, samples were cooled to room temperature before loading into SDS-gels 

(either a 10-comb or a 16-comb commercial solutions). Precision plus protein standard (Bio-

Rad Laboratories, Inc.) was used in each gel. Gels were either run at 120 or 160 V for a time 

range of 45 to one hour and 45 minutes until the running front almost reached the gel 

bottom. Gels were run in Mini-Protean Tetra system chambers (Bio-Rad Laboratories, Inc.) 

using a Power PAC universal power supply (Bio-Rad Laboratories, Inc.). Gels were removed 

from the running chamber and washed once with ddH2O and fixed for one hour at room 

temperature in 50% EtOH, 10% acetic acid, and 40% ddH2O. Three consecutive ddh2O 

washes removed the fixation solution before leaving the gel in ddh2O overnight for 

rehydration. 

That followed, SDS-gels were washed twice with ddh2O and sensitized using 0.02% sodium 

thiosulfate for 1 minute at room temperature and three ddh2O washes. The silver staining 

was performed for 20 minutes at 4°C using a 0.1% silver nitrate solution with 0.02% 

formaldehyde added right before use. After an additional three consecutive ddh2O washes, 

gels were developed using 3% sodium carbonate with freshly added 0.05% formaldehyde. 

The development was terminated quickly at sufficient signal intensity by a single ddh2O 

wash, followed by 5 minutes incubation in 5% acetic acid. Gels were stored for a short term 

in 1% acetic acid. Gels were digitalized using a scanner. 

3.3.8. Cell-surface labeling and protein enrichment 

The cell-surface labeling and protein enrichment was performed using an adapted version 

of Kalxdorf et al., 2017300. In brief, frozen ST-EPN-RELA ependymoma tissue samples with 

an average wet weight of 9.16 mg were transferred in 500 μL 1x PBS to a Dounce 

homogenizer for six gentle pestle strokes. The resulting homogenate and residual solid 

structures were transferred to a 1.5 mL tube and centrifuged at 1000 x g for 1 minute at 

23°C to remove the supernatant. The remaining pellet was washed once with 1 mL of 1x 

PBS before performing a second round of centrifugation at 1000 x g for 1 minute at 23°C. 

The supernatant was again discarded, and the cell-debris pellet was resuspended in 1 mL 

of ice-cold 1x PBS with 1 mM sodium metaperiodate to oxidize carbohydrates for ten 

minutes with occasional gentle mixing on-ice and in the dark. Each sample was washed 

once with ice-cold 1x PBS and centrifugation at 1000 x g for 1 minute at 23°C to remove the 

supernatant. Next, biotinylation was performed with 400 μL of 1x PBS, 1 mM EZ-Link 
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Alkoxyamine-PEG4-Biotin, and 10 mM Aniline for ten minutes and occasional gentle mixing 

on-ice and in the dark. Subsequently, the supernatant was removed, and samples were 

washed once more with ice-cold 1x PBS. Upon centrifugation at 1000 x g for 1 minute at 

23°C and discarding of the supernatant, the labeled cell-surface protein samples were 

frozen at -80°C until further processing. 

In the meanwhile, the high capacity neutravidin-agarose resin was blocked to achieve 

trypsin-resistance by an in-house developed protocol. In brief, 210 μL of neutravidin-

agarose bead slurry was transferred to a 2 mL tube. Subsequently, the slurry was washed 

three consecutive times with 1 mL of 1x PBS, 0.1% Tween, and centrifugation at ~100 x g 

for 1 minute to remove the supernatant. Unless otherwise stated, all following washing 

steps were performed in the same way (three times, 1 mL of 1x PBS, 0.1% Tween, and 

centrifugation at ~100 x g for 1 minute). The beads were resuspended in 800 μL 1x PBS, 

0.1% Tween plus additional 200 μL 1 M NaOH (final pH > 12). The solution was further 

transferred to a new 2 mL tube containing 8.6 mg of 1,2-cyclohexadione (CDH), inverted 

several times to dissolve the CDH completely, and incubated with constant stirring in a PTR-

35 multi-rotator (Grant-bio Instruments) for 5 hours at 25°C. Upon incubation, the bead 

slurry was centrifuged at ~100 x g for 1 minute, and the supernatant was discarded. The 

beads were further washed three times and resuspended in 500 μL of 200 mM sodium 

cyanoborohydride in 1x PBS and 500 μL 4% formaldehyde in 1x PBS, followed by two hours 

of incubation at 23°C with occasional vortexing. The reaction was stopped by adding 500 

μL of 1 M Tris-HCl, pH 7.6, and three consecutive washes. Finally, the washed beads were 

resuspended in 210 μL 1x PBS, 0.1% Tween. Protease-resistant neutravidin-agarose beads 

were stored at 4°C until further processing. 

Previously labeled cell-surface proteins were thawed, resuspended in 100 μL 4% SDS, 100 

mM ABC pH 8.5, and heated for 5 minutes at 95°C. Samples were further probe sonicated 

(Branson) for 10 seconds at 10% frequency, kept on-ice, and topped with 900 μL 1x PBS. 

Next, 30 μL of prepared protease-resistant neutravidin-agarose bead slurry was added to a 

Microlute combinatorial 96 deep-well filter plate (Porvair Sciences Ltd.), sucked through 

using a vacuum manifold (Waters Corporation), and washed with 1 mL of 1x PBS. The 

diluted samples were added to the conditioned 96 deep-well plate with the bottom closed 

using a sealing mat (Porvair Science Ltd.). The top of the plate was closed using a sealing 
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mat (Thermo Scientific) for incubation with overhead rotation in a PTR-35 multi-rotator 

(Grant-bio Instruments) for two hours at 23°C. That followed, the liquid was sucked through 

using a vacuum manifold, and the plate was centrifuged at 314 x g for 1 minute (Heraeus 

Megafuge 40, Thermo Scientific) to remove the residual liquid. The neutravidin-agarose 

beads were washed successively with 300 μL steps and sucking through with the vacuum 

manifold as follows: three times with 400 mM NaCl, 0.4% SDS, 20 mM ABC; eight times with 

400 mM NaCl, 20 mM ABC; and eight times with 2 M Urea, 50 mM ABC. Proteins were 

consecutively reduced and alkylated for 30 minutes at 23°C using 30 μL of 45 mM DTT, 100 

mM ABC and 30 μL 100 mM CAA, 100 mM ABC, respectively. The residual liquid was 

removed by centrifugation at 314 x g for 2 minutes before and after five additional washes 

with 300 μL 2 M Urea, 50 mM ABC. Proteins were digested on-bead in 60 μL of 1.5 M Urea, 

60 mM ABC, and 0.42 μg of trypsin. For overnight digestion at 23°C and 500 rpm on top of 

a ThermoMixer C (Eppendorf), the top and bottom of the 96 deep-well plate were closed. 

Peptides were eluted into a new 96-well plate by centrifugation at 314 x g for 2 minutes, 

followed by a second elution with 50 μL 100 mM ABC. The peptide samples were dried in a 

vacuum centrifuge at 45°C, resuspended in 100 μL 0.1% FA, and cleaned using a HyperSep 

C18 plate as described in chapter 3.3.9. The resulting samples were stored at -20°C until 

data acquisition. 

3.3.9. Desalting and clean-up of peptide samples 

For the desalting and clean-up of peptide samples, either Oasis PRiME HLB μElution plates 

(Waters Corporation) or HyperSep C18 (Thermo Scientific) were used as indicated in the 

individual paragraphs. For both, the packed material was activated through consecutive 

washes of 100 μL as follows: 100% ACN, then 80% ACN, 0.1% FA, and then 0.1% FA. In each 

step, the liquid was sucked through using a vacuum manifold. Subsequently, samples were 

loaded in 0.1% FA and sucked through twice. The bound peptide samples were washed 

three times with 200 μL 0.1% FA and finally eluted with two times 50 μL 80% ACN, 0.1% FA. 

Eluted peptides were dried in a vacuum centrifuge at 45°C, resuspended in 50 to 100 μL 

0.1% FA depending on the sample amount, and stored at -20°C until data acquisition. 

3.3.10. High pH reversed-phase fractionation of proteomic samples 

The high pH fractionation of peptide samples was performed using an Agilent Infinity 1260 

HPLC system (Agilent) equipped with a Phenomenex Gemini 3 μM, 110 Å, C18, 100 x 1 mm 
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column (Phenomenex). Solvent A was changed from 20 mM ammonium hydroxide to 20 

mM ammonium formate during the course of this project. Unless otherwise stated, all data 

within this work were generated using ammonium formate. Solvent B was 100% ACN due 

to its low absorbance at 206 nm, among other organic solvents. Peptides were eluted from 

the Phenomenex column at a constant flow of 0.1 mL/minute. During the elution, the 

percentage of solvent B was constant at 0% for 2 minutes, then increased linearly from 0% 

to 65% in 58 minutes, and then from 65% to 85% in 2 minutes. Finally, the gradient was 

finished with 5 minutes at 85% solvent B, followed by 8 minutes at 0% solvent B. Fractions 

were collected during the first 60 minutes of the gradient for every 1.5 minutes, resulting 

in a total of 40 fractions per sample. Sample pick-up and fraction collection were performed 

at a constant 4°C. Each sample’s peptide map was monitored through the absorbance at 

206 nm. The resulting peptide fractions were dried in a vacuum centrifuge at 50°C, further 

concatenated to either 8, 16, 24, or 32 individual fractions, and resuspended in 0.1% FA. 

The actual number of concatenated fractions is indicated in the individual paragraphs. 

Peptide fractions were stored at -20°C until data acquisition. 
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3.3.11. Extracellular vesicle sample preparation 

Every section that was not written entirely by me is indicated with quotation marks. Besides 

the proteomic sample preparation, the majority of the EV-related work was performed by 

Dr. Kendra Maaß or Mieke Roosen. 

3.3.11.1. Patient-derived EPN cell culture 

“Patient-derived EPN tumor cell lines were used as an experimental model. The ST-EPN-

RELA cell lines, BT165 and EP1NS, were cultured in Geltrex-coated (Life Technologies) flasks 

in Neurobasal medium A (NBA, Life Technologies) supplemented with 1 μg/mL Heparin 

(Sigma), 2 mM L-Glutamine (Gibco, Life Technologies), 1% penicillin & streptomycin (Gibco, 

Life Technologies), and growth factors added to aliquots. The growth factors were added 

to 50 mL aliquots of the above-mentioned supplemented medium in the following 

concentrations: 1 mL B-27 supplement minus vitamin A (50x, Life Technologies) and 20 

ng/mL recombinant human EGF (Peprotech) and 20 ng/mL recombinant human FGF 

(Peprotech). The PF-EPN-A cell lines, BT214 and EPD210, were cultured in 1:100 Laminin- 

(Sigma, in PBS) coated flasks in NeuroCult NS-A Basal Medium (Human, Stem Cell 

Technologies) supplemented with 2 mM L-Glutamine, 75 μg/mL Bovine Serum Albumin 

(BSA), 10% NeuroCult NS-A proliferation supplement (Human, Stem Cell Technologies), and 

growth factors added to aliquots. The growth factors were added in the following 

concentrations to 50 mL aliquots: 20 ng/mL recombinant human EGF and FGF. Human fetal 

astrocytes were cultured in 1:150 matrix-gel (Corning, in DMEM) coated flasks in DMEM 

high glucose medium supplemented with 10% fetal calf serum depleted of exosomes, 1% 

glutamax (Gibco, Life Technologies), 1% sodium pyruvate (Gibco, Life Technologies), and 

1% N2 supplement (Gibco, Life Technologies). For splitting, BT165 and the PF-EPN-A cell 

lines were detached by 5 minutes incubation with Accutase (Sigma) at 23°C. The cell line 

EP1NS was detached by a 5 minutes incubation with Accumax (Thermo Fisher Scientific) at 

37°C. The astrocytes were detached with a 5 minutes incubation with trypsin (Sigma 

Aldrich) at 37°C. All cell lines were cultured at 37°C with 5% CO2. The cells were regularly 

tested for mycoplasm.” 

3.3.11.2. Exosome and microvesicle isolation 

“Exosomes and microvesicles were isolated from cell culture supernatant of four cell lines: 

namely BT214 and EPD210 from PF-EPN-A, as well as BT165 and EP1NS from ST-EPN-RELA. 
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80 mL of supernatant was collected from confluent flasks. The supernatant was centrifuged 

at 2000 x g for 20 minutes at 4°C to remove cell debris and apoptotic cells (2k pellet). 

Afterwards, the supernatant was transferred to ultra-centrifugation tubes (Beckman 

Coulter) coated with 70% EtOH for ultra-centrifugation in a Becket Optima L-70 ultra-

centrifuge with a SW28 rotor. The supernatant was centrifuged at 10.000 x g for 20 minutes 

at 4°C (10k pellet). The supernatant was further transferred to new EtOH-coated ultra-

centrifugation tubes and centrifuged at 100.000 x g for two hours at 4°C (100k pellet). 

Afterwards, the supernatant was discarded. The microvesicles (10k pellet) and the 

exosomes (100k pellet) were vortexed for 1 minute and frozen at -20°C or -80°C depending 

on the further processing steps. When the vesicles were stained with BODIPY TR ceramide 

dye (Invitrogen, D7540), 2 μL of dye was added to 100 μL PBS and incubated for 20 minutes 

at 37°C. The BODIPY TR ceramide dye has absorption and emission maxima of ~589 nm and 

617 nm, respectively. 

After the initial centrifugation steps, the purity of the pellets was enhanced by loading the 

samples on an IZON 35 nm qEV single size exclusion column. The first fraction was collected 

after 1 mL, and the subsequent fractions of 0.2 mL were collected according to the 

manufacturer protocol. The protein amounts in the different fractions were measured with 

the Qubit protein assay (Molecular Probes, Life Technologies, Q33211). The vesicles were 

permeabilized with 0.2% SDS and vortexed for 30 seconds. The remaining steps were 

carried out according to the manufacturer protocol. The fractions with the peak protein 

amount were used for further analysis.” 

3.3.11.3. Immunogold electron microscopy 

“After a glow-discharge in a Baltec SCD005 Sputter Coater, 300 Mesh Formvar-carbon 

coated Copper grids (Plano) were floated on 10 μL drops of isolated vesicles solution, for 

20 minutes at 23°C. After 3x washes with 15 μL PBS drops, the vesicles were blocked with 

Aurion blocking solution for Au-conjugates (PB) 1:10 in PBS for 20 minutes at 23°C, 

incubated with primary antibody (Ab) (Mouse-α-CD63, Santa Cruz, diluted 1:50 in PB) 

solution for 30 minutes at 23°C, washed 6x with PB, incubated with linker-IgG (Rabbit-α-

mouse, Dako Denmark, 1:150 in PB) for 40 minutes at 23°C, washed 6x with PB, incubated 

with Protein-A-Gold 5 nm (UMC Utrecht, PAG 5 nm/S, 1:50 in PB) for 50 minutes, and 

washed again 6x with PB. After 2x washes with PBS, the samples were fixed in 1% 
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Glutaraldehyde in PBS for 7 minutes at 23°C, washed again with PBS, and 4x with ddH2O. 

Finally, a negative stain of 1% aqueous uranyl acetate was applied for 2 minutes, and after 

a ddH2O wash, the grids were air-dried. In negative controls, the primary antibody was 

omitted. All samples were investigated with a Zeiss EM900 transmission electron 

microscopy (TEM), at an 85.000x magnification. Images taken were further processed with 

ImageJ (version 1.52a)301.” 

3.3.11.4. Nanoparticle tracking analysis (NTA) 

“Two μL of exosomes or MVs were diluted in sterile-filtered PBS and visualized using the 

LM10 NTA device (Malvern Instruments). Each sample was measured 5 times for 60 

seconds (Screen Gain 1.0, camera level 11) to obtain particle concentration and size 

distribution.” 

3.3.11.5. Qubit protein quantification assay 

“The approximate protein content of exosomes and MVs in the isolation solutions was 

determined using a Qubit Protein Assay (Molecular Probes, Life Technologies). For this, the 

vesicles were lysed with 3x Laemmli buffer, and its protein content was later dissolved in 

0.2% SDS and vortexed for 30 seconds. For the rest of the assay, the manufacturer’s 

guidelines were followed.” 

3.3.11.6. Protein digestion and SP3 protein clean-up of EV samples 

The extracellular vesicle fractions described in chapter 3.3.11.2 were further processed 

using SP3. Therefore, equal protein amounts per sample (previously determined by Qubit 

assay) were transferred to PCR stripes, and the volume reduced in a vacuum centrifuge at 

55°C. Subsequently, samples are resuspended in a small volume (between ~10 μL and 20 

μL) of 4% SDS and 100 mM ABC. Samples were sonicated in a Pico Bioruptor (Diagenode 

SA) using 25 cycles of 30 seconds on and off at 4°C. Subsequently, the buffer was adapted 

to a final concentration of 1% SDS, 100 mM ABC, 10 mM TCEP, and 40 mM CAA, including 

PIC, before incubation for 5 minutes at 95°C in a CHB-T2-D ThermoQ heating device. That 

followed, samples were rested to reach 23°C for subsequent SP3 processing. The SP3 

protocol was carried out as previously described in chapter 3.2.1.2. Samples are stored at -

20°C and data acquired using the 2-hours method. 
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3.4. Additional data analysis 

3.4.1. Differential expression 

The differential expression analysis of all samples (unless otherwise indicated) were 

performed using Limma moderated t-statistics (R package version 3.36.3)293. If applicable, 

the technical replicates and the patient-dependent batch effect were taken into account 

within the applied model. Proteins with a Benjamini-Hochberg-adjusted p-value lower than 

0.05 and an absolute log2-fold change higher than 1 were considered as significantly 

changing unless otherwise indicated in the corresponding chapter. The resulting lists of 

significantly regulated proteins were used for further analysis. 

3.4.2. Gene set enrichment analysis (GSEA) and gene ontology (GO) 

Lists of proteins or significantly regulated proteins were subjected to GO-term enrichment 

analyses using the STRING: functional protein association network database294. The GSEA 

were performed using R package fgsea295 (version 1.6.0) with a p-value ranking of proteins, 

gene sets defined by the REACTOME pathway database (R package ReactomePA version 

1.24.0)296 or the Broad Institute gene sets302, the minimum size of gene sets set to 15, the 

maximum size of gene sets set to 500, and the number of permutations set to 10.000. 

3.4.3. t-SNE and umap 

The t-SNE analyses were performed using R package tsne297 (version 0.1-3) with a perplexity 

set to 2 and the number of iterations set to 5000. The uniform manifold approximation and 

projection (umap) analyses were performed using the R package umap303 (version 0.2.3) 

with neighbors (equivalent to perplexity) were set to 3 and the number of iterations set to 

5000. 

3.4.4. Gene- and protein expression correlation 

The gene expression data were used from Pajtler et al., 201573. To see gene/protein-specific 

correlation differences, we calculated the median gene and protein intensities. Next, we 

plot the mean intensity correlations between both transcriptome and proteome data and 

determine a mean linear regression model. Subsequently, the linear model is used to 

determine the deviation for every gene/protein from this general model. Based on the 

residuals, we could define which genes/proteins are significantly deviating from the model. 

The residuals are calculated by predicting gene expression from protein expression using 
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the linear model and subtracting the gene expression from predicted intensities for every 

gene and every sample. The residuals were normally distributed. Next, proteins were 

determined that show a significant deviation between the proteome and transcriptome by 

comparing residuals per gene/protein that deviate from zero. The significance was 

determined using Limma moderated t-statistics (R package version 3.36.3)293.  The 

threshold was set to a Benjamini-Hochberg-adjusted p-value lower than 0.05, and an 

absolute log2-fold change higher than 1 were considered. 

3.4.5. Copy number variation (CNV) correlation to gene- and protein expression 

The CNV and gene expression data were used from Pajtler et al., 201573. Data were batch 

corrected using the Limma moderated t-statistics (R package version 3.36.3)293. The gender 

for each sample was predicted from the X- and Y-Chromosome intensities. This was utilized 

to correct for gender-specific expression changes across all samples. To visualize whether 

CNVs per EPN subgroup result in changes of gene or protein expression, we calculated the 

intensities as CNV-varied (CNV > +/- 0.2) and CNV-stable (-0.2 < CNV < 0.2) samples per 

tumor subtype. Next, we calculate for both gene and protein expression intensities, the 

ratios between each sample, and the median intensity of the CNV-stable samples. This was 

ordered by the chromosomal position per gene and their observed intensity relative to the 

CNV-stable samples. CNV segments were plotted with a line for every sample and 

chromosomal region, highlighted in colors corresponding to the CNV status: blue= neutral, 

red= deletion (CNV < -0.15), or green= amplification (CNV > 0.15). Individual dots indicate 

the mean gene expression at a corresponding genomic locus for each sample (color-coded 

for its CNV status) relative to the gene expression in the CNV neutral samples. 

3.4.6. Multi-omics factor analysis (MOFA) 

Proteome data were median normalized. Transcriptome and DNA-Methylation data were 

batch- and gender-corrected. The top 20% variable proteins (1745 proteins), top 20% 

variable genes (3890 genes), and the top 1% variable CpG sites (4260 CpGs) were selected 

for MOFA135. The multi-omics factor analysis (MOFA)+ framework was used with default 

settings and the number of factors set to 15. 
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4. Results 

Copyright Disclaimer 

The work presented in this thesis was carried out by me, Torsten Müller, and under the 

supervision of Prof. Jeroen Krijgsveld. Throughout this thesis, the pronoun “we” is used to 

refer to myself, my supervisor, if applicable the helping hand of co-workers, and in some 

cases, collaborators. Collaborations and their contribution are specifically highlighted in the 

main text as well as in the method sections. As a general rule, all mass spectrometry-based 

“proteomics” experiments within this work were performed by me. Dr. Mathias Kalxdorf 

supported the bioinformatic analysis. Results and experiences outlined in the first chapter, 

“4.1.2”, involving the optimization of SP3, have contributed to an updated version of the 

protocol in Hughes et al., Single-pot, solid-phase-enhanced sample preparation for 

proteomics experiments, Nature Protocols, 2019291. The second chapter of this thesis, “4.2”, 

summarizes the automation of SP3 that has been published in Müller et al., Automated 

sample preparation with SP3 for low-input clinical proteomics, MSB, 2020304. Also, a 

preprint of this publication is accessible on bioRxiv under the same title305. The collaborative 

project about CXorf67, outlined within chapter, “4.3.2.1”, has been published in Hübner et 

al., EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic 

inhibitor of PRC2 function in aggressive posterior fossa ependymoma, Neuro Oncology, 

2019257. The second collaborative project about extracellular vesicle cargo in ependymoma, 

outlined within the last chapter, “4.3.4”, has not been published yet. In this thesis, we solely 

focus on the comparison to our global EPN proteome data. Our collaborators plan to publish 

this work with a significant contribution of our proteomics data. The remaining results 

outlined throughout the last chapter, “4.3”, have not been published and are originally 

presented in this thesis. We note that plans exist to publish these results, irrespective of the 

embargo period on this thesis, and with significant input from our collaborators with regard 

to the provision of previously acquired sequencing data as well as clinical context. 
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4.1. Proteomic profiling in systems medicine 

In the first chapter of this thesis, we systematically evaluated and optimized all relevant 

steps that are crucial for proteomic sample preparation workflows in light of clinical 

integration. During this step-wise development of a scalable workflow, we specifically 

focused on the extraction of proteins from a wide range of sample material and low 

quantities, the subsequent protein processing to generate peptides, their chromatographic 

separation, and LC-MS data acquisition. Due to distinct advantages of the in-house 

developed single-pot, solid-phase-enhanced sample preparation (SP3) method (Hughes et 

al., 2014; Hughes et al., 2019)149,291, we specifically tailored the optimization of preceding 

steps for SP3 compatibility and its subsequent automation (Chapter 4.2). 

Parts of the following chapters, including Figures and Tables, were taken in part or their 

entirety from the joint publications listed below. 

Hughes, C. S., Moggridge, S., Mueller, Torsten, Sorensen, P. H., Morin, G. B., Krijgsveld, J. 

(2019). „Single-pot, solid-phase-enhanced sample preparation for proteomics 

experiments.” Nature Protocols 14: 68-85. 

Mueller, Torsten, Kalxdorf, M., Longuespeé, R., Kazdal, D., Stenzinger, A., Krijgsveld, J. 

(2020). “Automated sample preparation with SP3 for low-input clinical proteomics.” 

Molecular Systems Biology 16(1): e9111. 

4.1.1. Cell- or tissue lysis and protein extraction 

The efficient extraction of proteins is the first critical step in any proteomics methodology. 

Dependent on the type and quantity of a specimen, different approaches are commonly 

used in a research environment151,155,156,158,291,306–308. They are typically comprised of 

different lysis buffer combinations and mechanical disruption strategies to facilitate the 

efficient breakup of cell- or tissue structures and to release proteins. Here, different 

proteins, such as transmembrane proteins, can significantly differ in their physicochemical 

properties, requiring different solubilization strategies to avoid any selectivity. In this 

process, the majority of lysis buffers are comprised of chemicals, such as chaotropes, salts, 

or detergents, to ensure the disruption of the phospholipid bilayer and that proteins remain 

in-solution for subsequent proteolytic digestion. For the integration of a method into 
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clinical practice, a vast number of requirements need to be fulfilled beyond high 

performance, reproducibility, and cost-efficiency. 

 

Figure 1: Evaluation of cell- and tissue lysis, followed by protein extraction. A) Cell lysis facilitated by four 
different lysis buffers (2% SDS, 4% SDS, RIPA, and 8 M Urea) and quantification of extracted protein mass. B) 
Fresh-frozen tissue (mouse kidney and liver) lysis facilitated by four different lysis buffers, as in panel A, and 
quantification of extracted protein mass. C) Lysis of different cell quantities in 4% SDS with additional 
mechanical disruption using a probe sonicator (blue) or Bioruptor Pico (red), and quantification of extracted 
protein mass. D) Lysis of different tissue quantities (mouse liver (blue) and kidney (red)) in 4% SDS with 
additional mechanical disruption using a probe sonicator, and quantification of extracted protein mass. 

In an initial attempt, we aimed to avoid any mechanical disruption of cell- or tissue samples 

to achieve broad applicability without the need for specialized equipment and well-trained 

personnel, aiming for a lossless integration with SP3 in a single tube. Four commonly used 

lysis buffers (2% SDS, 4% SDS, radioimmunoprecipitation assay (RIPA) buffer, and 8 M Urea) 

were used for sample solubilization and protein extraction from 500.000 HeLa cells (Figure 

1A) and mouse kidney and liver tissue (Figure 1B). Consistent protein yields could be 

extracted from cells irrespective of the lysis buffer and within the expected range of ~0.1 

ng protein per cell. This was verified in four randomly selected cell lines, in three varying 

quantities (5000, 50.000, and 500.000 cells), and using 2% and 4% SDS (Supplementary 

Figure 1A). The amount of protein that could be extracted from fresh-frozen tissue did not 
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scale linearly with the input material and conform with yield expectations (~ 10% of tissue 

weight corresponds to proteins) (Figure 1B)309. The highest and lowest quantities of protein 

were extracted using 4% SDS and 8 M Urea, respectively. 

Despite the overall reasonable protein yields, the mechanical-free sample lysis appeared to 

be incompatible with the following SP3 protocol (Supplementary Figure 1B). The 

processing of different protein quantities resulted in >50% sample losses for most 

conditions. The highest consistency in relative and absolute peptide recoveries were 

achieved using 4% SDS. During SP3, proteins and nucleic acids compete for the binding 

capacity of the beads and omitting a proper mechanical DNA and RNA shearing could 

account for the weak recovery of peptides (Supplementary Figure 1C; further discussed in 

chapter 4.1.2). Indeed, we could show that enzymatic cleavage of nucleic acids can be 

achieved by using Benzonase (Supplementary Figure 1C) and that SP3 recoveries can be 

improved as a result (further discussed in chapter 4.1.2). This required the adaption of 

detergent concentrations in the lysis buffer, now including RapiGest SF surfactant, to allow 

the enzymatic activity of Benzonase. The lower detergent concentrations reduced the 

protein yield by more than 50% in most conditions and thereby did not qualify for minute 

amounts of sample (Supplementary Figure 1D). 

We further assessed mechanical disruption to achieve efficient lysis and protein extraction 

with sufficient DNA and RNA shearing. Therefore, a classical probe sonicator (Branson) and 

a Bioruptor Pico (Diagenode SA) were utilized to process varying numbers of HeLa cells 

(5000, 10.000, 50.000, 100.000, and 500.00 cells) (Figure 1C) and different amounts (sub-

mg to >7 mg) of fresh-frozen mouse kidney and liver tissue (Figure 1D). The quantities of 

extracted proteins were reproducible and in line with our expectations, while additionally 

exhibiting a linear correlation between protein yield and tissue input in comparison to 

mechanical-free lysis. The one-by-one processing using the probe sonicator remains 

insufficient, taking the anticipated goal of a scalable workflow into account. 

Next, we compared the processing efficiency of all methods accessible to us, which can 

process several samples at a time, namely a LE220R-plus focused-ultrasonicator (Covaris 

Ltd, UK), a standard water bath (Thermo Scientific), and the Bioruptor Pico (Diagenode SA). 

The latter is limited to the simultaneous processing of 32 samples, utilizing a custom-made 

PCR-tube adapter, while both others can run in 96-well formats. The LE220R-plus focused-
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ultrasonicator utilizes adaptive focused acoustics (AFA) to dis-integrate tissue, extract 

proteins, and enhance the efficiency of DNA shearing by the delivery of highly-controlled 

and reproducible energy. Hereinafter they are referred to as Covaris, water bath, and 

Bioruptor. The Covaris achieved the highest protein extraction efficiency and 

reproducibility from 100.000 HEK-293 cells or MCF7 cells using 4% SDS, irrespective of the 

processing volume (20 μL Figure 2A, 50 μL Figure 2B, and 100 μL Figure 2C). Overall 

minimized volumes are desirable to reduce the plastic surface and the associated loss of 

proteins. The Bioruptor performed equally well at low volumes with comparable standard 

deviation, for example, σ= 3.11% (1.03%) and 3.21% (1.7%) for processing of HEK-293 

(MCF7) cells using the Covaris or Bioruptor. The water bath processing resulted in the 

lowest protein yield and largest variability (σ= 7.2% [HEK-293] and 3.54% [MCF7]). This is 

because the water bath sonication suffers from an incomplete shearing of DNA, as opposed 

to the Covaris (data not shown). Only for minute amounts of cells (1 to 10.000) in small 

processing volumes (<20 μL) this is not evident and results in an average of 4.5% and 13.7% 

more quantified proteins for HEK-293 and MCF7 cells, respectively, using the water bath 

and SP3 (Figure 2D). All other sample types (fresh-frozen or FFPE tissue, and higher cell 

numbers) require processing with the Covaris to achieve sufficient lysis. The amount of 

protein that could be extracted from fresh-frozen tissue (pig heart (n=16), mouse liver 

(n=16), and mouse kidney (n=8)) scaled linearly with the mass of wet tissue input material, 

liberating ~100 μg protein per mg heart tissue, and ~130 μg per mg liver and kidney tissue, 

as expected from the literature (Figure 2E)309. 

In summary, both mechanical-free and mechanical cell disruption methods achieve 

effective cell lysis, irrespective of the buffer composition. This does not hold for the 

extraction of proteins from fresh-frozen tissue where 4% SDS outcompetes all other buffers 

in terms of protein yield and its linearity. However, the mechanical-free sample lysis is not 

sufficient to shear nucleic acids and thus remains incompatible with downstream SP3 

processing or minute amounts of sample. In contrast, probe sonication or Bioruptor 

processing, result in reproducible, high and linear protein yields, but remain limited in the 

sample throughput. The most efficient and high-throughput processing of all sample types 

and quantities could be achieved using the Covaris, which seamlessly integrates with 
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downstream SP3. Altogether, SDS detergent shows the best extraction efficiencies and 

remains the most frequently used component of common lysis buffers. 

 

Figure 2: Evaluation of high-throughput cell- and tissue lysis methods followed by protein extraction. A-C) 
Lysis of 100.000 HEK-293 and MCF7 cells in 20 μL (A), 50 μL (B), or 100 μL (C) of 4% SDS with additional 
mechanical disruption using a Covaris LE220R-plus (green), a sonication water bath (red), or a Bioruptor Pico 
(blue), and quantification of extracted protein mass. D) Lysis of different HEK-293 or MCF7 cell quantities 
(10.000 to 1 cell) in 4% SDS with additional mechanical disruption using a Covaris LE220R-plus (green) or a 
sonication water bath (red), followed by SP3 processing and LC-MS. E) Lysis of different tissue quantities 
(mouse liver (green) and kidney (blue), and pig heart (red)) in 4% SDS with additional mechanical disruption 
using a Covaris LE220R-plus, and quantification of extracted protein mass. Panel E modified from Mueller et 
al., Mol. Syst. Biol., 2020. 

4.1.2. Single-pot, solid-phase-enhanced sample preparation (SP3) 

The next step after the extraction of proteins from a specimen, most commonly facilitated 

by SDS, comprises the proteolytic digestion to peptides95,104. In practice, this is limited by 

the incompatibility of SDS with protease activity and protein digestion as a result. It 

additionally has an ion suppression feature310,311, further highlighting the necessity of a 

compatible workflow to remove SDS. The SP3 method is a fast and straightforward clean-

up procedure for unbiased retrieval and purification of proteins and peptides to remove all 
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kinds of contaminants, including SDS (Hughes et al., 2014; Hughes et al., 2019)149,291. Its 

broad range of features renders it an attractive solution to tackle common sample 

preparation bottlenecks and ease the emergence of an automated, routine pipeline for 

clinical proteomics. For the subsequent automation of the SP3 protocol, we firstly went 

through a series of evaluation and optimization steps to achieve maximal performance. 

The method utilizes paramagnetic beads in the presence of an organic solvent (>50% ACN 

or EtOH) to promote protein binding to the beads, allowing extensive washing to eliminate 

contaminants. Beyond SDS, this can include other detergents such as Triton X-100 and NP-

40, which are commonly used in proteomics experiments or chaotropes and salts. 

Subsequently, proteins can be digested on the beads without hindrance, and the resulting 

peptides are thereby released into the aqueous digestion buffer, which is directly 

compatible with LC-MS analysis (Figure 3A). Another distinctive feature of SP3 is its 

efficiency in protein capture and release, facilitating low- and high-input applications while 

consistently maintaining in-depth proteome coverage. The combined characteristics of 

tolerance to detergents, speed and ease of operation, and scalability qualify SP3 as a 

universal methodology that enables a wide variety of applications. In practice, this includes 

cases that involve challenging sample types, as diverse as FFPE tissue168,312 and historical 

bones313. SP3 performs particularly well for low-input applications307, for example, allowing 

the analysis of single human oocytes314, and micro-dissected tissue315,316. 

4.1.2.1. Optimization of protein binding 

The principle of SP3 is explained by a mechanism similar to hydrophilic interaction 

chromatography (HILIC) and aggregation. Increasing the organic proportion of the protein-

containing mobile phase induces the formation of a water-rich (aqueous) layer around the 

hydrophilic surface of the stationary phase, namely carboxylate-modified paramagnetic 

beads. This phase separation causes the concentration of polar (hydrophilic) side chains of 

amino acids to the aqueous surrounding of the beads. While in the original protocol, the 

capture of proteins was performed under acidic conditions, resulting in the protonation of 

R-COO- to neutral R-COOH, we observed that the binding capacity is increased and more 

reproducibility in a neutral pH environment. In the latter scenario, polar interactions occur 

between positively charged amine groups of proteins and, for example, arginine and lysine 

side chains, and the negatively charged carboxylate ions (R-COO-) on the bead surface 
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(Figure 3B and Supplementary Figure 2A). Together with prolonged incubation times of up 

to 18 minutes, this adaption of pH increased the efficiency of SP3 as compared to in-

solution digestion of 2 μg and 10 μg HeLa protein, resulting in reproducible numbers of 

peptide spectrum matches and quantified proteins (Figure 3B). 

On the other hand, DNA and RNA are also attracted to the aqueous solvation layer due to 

their overall hydrophilic character. We reasoned that the mere proximity of nucleic acids 

to the bead surface has the potential to influence the protein binding capacity, irrespective 

of the negatively charged DNA backbone. To show this, we utilized isolated DNA from 

mouse kidney tissue (Supplementary Figure 2B) in different amounts (0.5 μg, 1 μg, 2 μg, 

and 5 μg DNA) and fragment sizes (fully digested, partially digested, and undigested DNA), 

generated by both probe sonication and Bioruptor Pico treatment (Supplementary Figure 

2C). In fact, we demonstrated an increased loss of unbound proteins in the SP3 supernatant 

with increasing DNA background (Supplementary Figure 2D) in a size-dependent manner, 

where small fragment sizes significantly minimize the interference. Upon change to the 

aqueous digestion buffer, nucleic acids are released from the beads due to their negative 

charge repulsion, while the polar protein-bead interaction is only reversed by proteolytic 

digestion during our protocol. The highest binding efficiency of proteins and its 

reproducibility can be achieved in the absence of large nucleic acid fragments. 

Concerning the planned automation of the SP3 workflow, we further tested two additional 

types of beads (ReSyn Biosciences, RSA), namely MagReSyn HILIC and MagReSyn Amine. 

These beads have several potential advantages: I) they are comprised of a hyper-porous 

polymer matrix, providing an exceptionally high surface area and binding capacity, II) a 

higher magnetite content to support fast and efficient immobilization on the magnetic rack, 

and III) the increased sensitivity and correspondingly reduced material consumption to 

cope with the financial burden in a clinical environment. While the surface chemistry of the 

HILIC beads is proprietary, the Amine beads are characterized by an amine group (NH2). 

They can capture biomolecules, such as proteins or peptides, through polar interaction 

similar to the carboxylate-modified beads used in the classical SP3 method. Despite the 

potential advantages, a comparison of all three bead types (Carboxylate-, Amine-, and HILIC 

beads) and amounts (50 μg, 100 μg, 200 μg, and 250 μg) for the capture and release of 10 

μg protein yielded no significant differences on the level of quantified proteins 
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(Supplementary Figure 2E). However, at the peptide level, we found at least 10% more 

identifications using the classical SP3 beads (Supplementary Figure 2F). This could point to 

incomplete digestion of proteins on the hyper-porous polymer matrix of the MagReSyn 

beads or a biased recovery and release of peptides into the digestion buffer. We continued 

with the carboxylate-beads that are used in the classical SP3 method. 

 

Figure 3: Evaluation and optimization of single-pot, solid-phase-enhanced sample preparation (SP3). A) 
Schematic illustration of the SP3 protocol, including sample lysis, reduction & alkylation, protein clean-up, 
proteolytic digestion, and acidification & peptide recovery. B) Comparison of acidic and neutral pH conditions 
for the SP3 protein binding step. C) Assessing the protein binding capacity of varying amounts of paramagnetic 
SP3 beads (50 to 400 μg) by monitoring peptide spectrum matches (PSMs) and the number of quantified 
proteins. D) Assessing the protein binding scalability for varying amounts of protein inputs (2 to 100 μg) by 
monitoring peptide spectrum matches (PSMs) and the number of quantified proteins. Panel A modified from 
Mueller et al., Mol. Syst. Biol., 2020. 

4.1.2.2. Capacity and reproducibility of SP3 

Upon the optimization of effective protein binding and recovery conditions, we further 

assessed the capacity of beads (50 μg, 100 μg, 200 μg, 300 μg, and 400 μg) at a fixed protein 

concentration of 10 μg (Figure 3C). In all conditions, we observed almost no loss of unbound 
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proteins (Supplementary Figure 2G). The lowest variation in numbers of quantified 

proteins was observed at a bead to protein ratio of 20:1 (200 μg beads). Further increasing 

the ratio did not yield more protein quantifications and only added an average of ~4% 

peptide spectrum matches. In contrast, lowering to a 5:1 ratio of beads to proteins caused 

a loss of roughly 25% of quantified proteins. Unless otherwise indicated, we have chosen 

to use 200 μg beads for most of the following experiments. 

In parallel, we evaluated the scalability of the method using varying amounts of protein (2 

μg, 10 μg, 25 μg, 50 μg, and 100 μg) at a fixed concentration of beads (Figure 3D). Again, in 

all conditions, we observed almost no loss of unbound proteins (Supplementary Figure 2H). 

Upon SP3 processing, an equivalent of 500 ng peptides were measured per sample, 

resulting in consistent numbers of quantified proteins (μ= 1998 and σ= 90.2). This indicates 

a high reproducibility (CV= 4.5%), a nearly complete sample recovery across all LC-MS runs 

(average peptide intensities CV= 4.84%), and high sensitivity of the method for low protein 

quantities (2 μg) with an average peptide intensity of 93.7% compared to the highest 

observed average (25 μg) (see also Figure 2D for sub-μg protein input). For both, low and 

high protein input, the number of peptide spectrum matches (PSMs) was slightly decreased 

(CV= 6.67%), illustrating the importance of optimized ratios between beads, proteins, and 

the working volume (Figure 3D). 

We further compared our optimized SP3 method to a standard in-solution digest (without 

detergents) and the commonly used filter-aided sample preparation (FASP) 

method155,158,307. The aim was not to repeat all proof-of-concept experiments for SP3 but 

to understand whether our optimization could cause undesired effects. This could manifest 

itself as a bias towards specific peptides or proteins. The overlap of identified HeLa peptides 

between all three methods was high (~49% shared) (Supplementary Figure 3A). Between 

5% (FASP) and 8% (In-solution) of peptides were uniquely identified using one method. This 

is well within the expected range of overlap due to the stochastic nature of LC-MS, in which 

also technical replicates show similar values. We did not find any significant difference in 

the distribution of molecular weights (Supplementary Figure 3B), compared to the whole 

proteome (Uniprot), and the average hydrophobicity (GRAVY score)317 (Supplementary 

Figure 3C). A GO annotation for cellular compartments illustrated a highly similar 



Results 

71 

distribution of identified proteins between the HeLa in-solution digest and SP3 

(Supplementary Figure 3D). 

All in all, SP3 has room for minor optimization in different conditions in order to achieve 

optimal performance according to the starting amount of protein and the working volume. 

However, it is a highly sensitive method that allows the reproducible processing of a variety 

of sample types and minute amounts without a selective enrichment of specific proteins or 

peptides. It qualifies as a universal building block for an end-to-end proteomics workflow, 

resulting in peptides samples compatible with downstream applications, such as tandem 

mass tag (TMT) labeling and high-pH fractionation, or direct LC-MS. 

4.1.3. LC-MS data acquisition 

During each LC-MS measurement for global proteome profiling, the objective is to analyze 

the entire set of peptides that are present within a sample. In practice, this is limited by the 

complexity of samples and the sensitivity and scan rate of the mass spectrometer94. One 

way to improve the depth and coverage of peptide identifications is the increase of 

measurement time to disperse the analyte over time and provide the instrument with more 

scanning time. This can be achieved by either longer gradients for every LC-MS run318 

(Figure 4A and Figure 4B) or, for example, by additional offline high-pH fractionation using 

a reversed-phase C18 column to further separate peptides into multiple fractions319. Each 

fraction or concatenated fractions of the same sample are measured in consecutive LC-MS 

runs and compiled using a computer. The analysis time is significantly increased per sample 

leading to higher peptide coverage. On the other hand, both approaches require a higher 

sample input (Figure 4A and Figure 4B), which in practice is often a limiting factor in a 

clinical environment. Especially here, the balance between data depth and measurement 

time is a pivotal aspect to generate useful data in acceptable turn-around times. 

In proteomic profiling, we are not only interested in consistent and maximized numbers of 

identifications of peptides or proteins across many samples, but further aim for accurate 

quantification94. Here, a compromise is necessary with the number of samples, their 

analysis depth, and accurate quantification on the one hand, and the data acquisition time 

and overall turn-around time on the other hand. To achieve this, we evaluated a hybrid 

approach to uncouple identification and quantification by I) firstly generating a library of 

protein and peptide identifications through extensive high-pH fractionation of a 
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representative pool of all available samples, and II) secondly, focusing on quantification in 

short LC-MS runs of individual samples. Here, we modified our standard MS methods to 

collect more data points for every peptide feature and achieve better quantification as a 

result. The associated loss of peptide identifications in individual short runs was 

subsequently recovered by the integration of the sample-specific peptide library. This is 

achieved by matching of identified peptides to unidentified features based on retention 

time and mass-to-charge ratios287,288. This hybrid approach allows fast data acquisition per 

sample while conserving a good proteome coverage at optimal quantification. 

 

Figure 4: Optimization of liquid chromatography (LC)-setup for increased peak capacity. A) Comparison of 
peptide injection amount (1 μg, 2 μg, 5 μg, 10 μg, 15 μg, and 20 μg) and LC-MS gradient lengths (45, 60, 90, 
120, 160, and 220 minutes) for the highest number of unique identified peptides. B) Illustration of panel A to 
show the identified unique peptides per minute for the different peptide injection amounts and LC-MS 
gradient lengths. C) Assessment of LC-MS time consumption and proteome depth using three peptide 
injection amounts (1 μg, 2 μg, 5 μg) and different gradient lengths (45, 60, 90, 120, 160, and 220 minutes). D) 
Assessment of full width half maximum (FWHM) average peak width for the different peptide injection 
amounts and LC-MS gradient lengths in panel C. Additional comparison to published datasets from similar LC-
MS setups. E) Evaluation of different commercial and self-packed analytical columns for improving the peak 
width. 

4.1.3.1. Library generation and LC optimization 

Initially, we evaluated and optimized the performance of our Infinity 1260 HPLC system 

(Agilent) for high-pH fractionation. Sample losses during fractionation were negligible when 

comparing the number of quantified proteins from concatenated samples to omitted 
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fractionation with an average (n=4) of 1910 and 2085, respectively. (Supplementary Figure 

4A). This is particularly beneficial in light of quantity-limited material. The high-pH 

ammonium hydroxide buffer was exchanged for high-pH ammonium formate because it 

eliminates the need for another clean-up step of the concatenated fractions. Additionally, 

it was previously demonstrated that low concentrations of ammonium formate could 

enhance the ionization efficiency during ESI-MS320, depicted by increased numbers of 

peptide spectrum matches (average: 5151 versus 4364) and quantified proteins (average: 

2393 versus 2220) per fraction (Supplementary Figure 4B). The chromatographic 

performance remained unaffected by the buffer exchange, as highlighted by the number 

of peptide sequences solely identified in one or two fractions (Supplementary Figure 4C). 

In an ideal scenario, a sample- or cohort-specific peptide library is generated once, whereas 

individual patient samples can be matched continuously. We determined the feasible scope 

of a library by generating multiple examples comparing different numbers of concatenated 

fractions (8, 16, 24, and 32) and different gradient length (1-hour and 2-hours) 

(Supplementary Figure 4D). The library sizes correlate positively with the instrument time 

for LC-MS. While it is indisputable that the largest library depth is desired, the optimum 

balance depends on the overall number of samples and corresponding relative time 

investment of library generation compared to the acquisition of each sample. In the 

remaining part of this thesis, the number of fractions and utilized gradient length is 

indicated for individual experiments. 

Following the generation of a deep-proteome library, we first evaluated different gradient 

lengths and peptide loadings (1 μg, 2 μg, 5 μg, 10 μg, 15 μg, and 20 μg) to determine the 

best balance of time consumption and proteome depth in individual runs (Figure 4A, Figure 

4B, and Figure 4C). The data illustrate that a high sample input (>10 μg) is necessary to 

benefit from longer gradients (Figure 4A). The absolute numbers of unique peptides and 

their relative identification per minute have guided us to step away from the originally 

planned 4-hours gradients and further focus on either 1-hour or 2-hours per sample (Figure 

4A and Figure 4B). Consequently, more patient samples can be measured in a shorter time 

to generate higher statistical power with less sample consumption. As another by-product 

of the evaluation, we noticed that our average peak width at FWHM was significantly higher 

(~4 to 6 seconds) compared to published data (Figure 4D), irrespective of the gradient 
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length. We extensively tested and evaluated different packing materials for self-packaged 

columns, as well as commercially available columns from different vendors (Figure 4E). The 

transition to a 25 cm BEH-C18 1.7 μm analytical column (Waters Corporation) improved the 

peak width and peak capacity per minute as a result. In a 1.5-hours method, we could 

increase the number of quantified proteins and identified peptides by 9.6% and 13.9%, 

respectively. The LC column setups that were used are described in detail within the 

corresponding method sections. 

At a later stage of this study, we additionally evaluated a recently released technology, 

namely μPAC (PharmaFluidics)321. It is a novel type of column comprised of highly 

structured micro-pillars covered with C18 and produced by lithographic etching. The nearly 

perfect order of the stationary separation bed leads to a uniform flow distribution and low 

analyte dispersion, resulting in high sensitivity. The μPAC runs at very low back pressure 

(<50 bar compared to >650 bar for packed columns) and potentially offers a long lifetime 

for itself and the LC, which would be superior for clinical applications. Going through a 

series of trials to evaluate and optimize the LC-MS setup, we were not able to achieve 

results comparable to our initial setup (data not shown), which is even outperformed after 

the latest testing of different columns. However, the technology is still in its infancy, and 

by its continuous development might become a great tool when robustness and lifetime is 

a key demand. 

4.1.3.2. Match-between-runs and optimal quantification 

Next, we measured replicates of a HeLa digest (n=3) with a 2-hours gradient utilizing a 

standard ‘Top-20’ or ‘Top-2’ method. Hereinafter they are referred to as T20 and T2. The 

latter was designed to generate MS2 scans for the two most abundant precursor ions per 

MS1 scan, resulting in a substantially reduced cycle time and more data points (MS1 scans) 

per peptide feature to increase the quantification accuracy. As a consequence, less time 

remains available for the acquisition of MS2 spectra that are used for peptide identification. 

The T2 method recorded an average of 1.6 MS2 scans per MS1 scan (7.4 in T20). This sacrifice 

of MS2 scans for peptide identification was conserved by using the sample-specific 

proteome library paired with the MaxQuant matching-between-runs algorithm. In both 

methods, similar numbers of proteins (Supplementary Figure 4E) and peptides 

(Supplementary Figure 4F) were identified with the library approach. Nearly half of the 
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peptide identifications (49.5% in T2) originate from matching to the library (19.07% in T20). 

The T2-library approach identified an average of 5555 (22%) additional peptides compared 

to the T20 approach without a library. A comparison of average CV [%] values for identified 

peptides (T20= 24.6% and T2= 23.7%) and quantified proteins (T20= 13.3% and T2= 12.7%), 

however, did not reveal a significant difference in quantification accuracy between both 

methods (Supplementary Figure 4G). Outliers were removed for visualization, resulting in 

marginally reduced average CV [%] values for quantified proteins (T20= 10.7% and T2= 

9.6%). Low abundance peptides and proteins are the main effectors that contribute to the 

minor, negligible difference (Supplementary Figure 4G). The increased number of data 

points per peptide feature in T2 over T20 cannot improve the description of the area under 

the curve (AUC). 

During the early phases of this project, we had access to fresh-frozen tumor samples to 

establish our sample preparation workflows. This set of 17x pilot samples was subsequently 

used to compare the T20 and T2 method in a realistic scenario. The data were acquired 

using a 1-hour and a 2-hours gradient with and without library support. For the 1-hour 

method, we utilized a peptide library composed of either 16 or extended 32 fractions. On 

average, we identified and quantified 22% (T20) and 42.8% (T2) more proteins using the 2-

hours method. The proportion of peptides identified by matching decreased from roughly 

50% (1-hour T20 & T2) to 30% (2-hours T20) and 36% (2-hours T2). Stepping from 1-hour 

T2 to 2-hours T2 (T20), we observed a decrease in the relative number of missing values by 

4.76% (peptide-level) (0.6%) and 8.04% (protein-level) (4.5%). The library-matching 

approach reduced the percentage of missing values by 10 to 15% on peptide- and protein 

level. The effect was more pronounced using the library based on 32 fractions. More 

instrument time and lower sample complexity improve the library depth and only require 

a one-time higher expenditure of time. In line with our previous observation, the accuracy 

of quantification, assessed by calculating the CV [%] on peptide- and protein-level, did not 

reveal any advantage using the T2 method. We identified 4268 additional peptides using 2-

hours for data acquisition and 5956 peptides by employing the library-matching. Therefore, 

the majority of clinical samples within this work have been acquired using the classical T20 

method in combination with a sample-specific library, unless otherwise indicated. 
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Despite the implementation of the matching-between-runs algorithm in the MaxQuant 

software and its established usage in the proteomic community, the degree of false 

transfers and its associated credibility has only recently been investigated by Lim MY. et al., 

2019322. Similar to their two-proteome model, we had preliminary results from acquiring a 

constant amount of HeLa peptides with increasing spike-ins of 0%, 3%, 4.5%, 6%, 7.5%, and 

9% E. coli peptides (n= 3). Here, the transfer of identifications between samples resulted in 

an average of additional 33.5% human peptides compared to without the matching 

algorithm. For the E. coli spike-ins, the identification transfer rate increased with decreasing 

E. coli peptide concentration from 24% (3% E. coli) to 63.9% (9% E. coli) (Figure 5A). This 

leveraged the total number of E. coli peptides to an average of 1160 (n= 3), which could be 

identified from as little as 3% spike-in compared to the constant HeLa background (Figure 

5B). In the pure HeLa measurement (0% E. coli), we falsely identified an average of 179 E. 

coli peptides via the matching-between-runs (Figure 5C). This corresponds to an average of 

0.97% false peptide identification transfers. The majority of these peptide features were 

identified with a low intensity or a low posterior error probability (PEP) score (Figure 5D). 

Another 42 E. coli peptides were identified by MS2 spectra (Figure 5C). Roughly 25% of the 

unexpected E. coli peptides in the pure HeLa measurement, either identified via MS2 or per 

matching, could also match to a human protein sequence (Figure 5E). This indicates that 

peptides were likely assigned to the wrong database. In the recent study by Lim MY. et al. 

(2019)322, the authors reported similar percentages of false peptide transfers. However, 

also in accordance with our observations, the vast majority of these matches did not pass 

thresholds set within the LFQ calculation in the MaxQuant software. As a result, the number 

of falsely annotated and quantified E. coli proteins (0% E. coli: Figure 5F) only represent 

1.6% of all quantified proteins (0% E. coli: Figure 5F and Figure 5G). We further reduced the 

allowed time window for matching from default 0.7 minutes to 0.3 minutes (data not 

shown), which reduced the false transfers by one-third. This gave us sufficient confidence 

to employ the matching-between-runs functionality and benefit from higher peptide 

numbers that contribute to protein quantification and less missing values across samples. 

Recapitulating, we have evaluated and optimized several parameters and data acquisition 

strategies to achieve the highest proteome coverage with optimal quantification in the 

least amount of time. We could improve the performance of high-pH fractionation and 
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evaluated the relation between peptide library depth and time expenditure for its 

generation. Emerging from a series of experiments and evaluations, we finally settled for 

the classical data-dependent acquisition strategy with 2-hours per sample and a Top20 

spacing. The sample-specific peptide library (32 fractions) approach paired with matching-

between-runs (0.3 minutes match time window) was employed, despite that, we could not 

improve the quantification accuracy by focusing on MS1 scans. The increased number of 

peptide identifications, low numbers of missing values across multiple samples, and the low 

false transfer rate were persuasive. This setup was used for all clinical sample cohorts 

unless otherwise indicated. 

 

Figure 5: Two-proteome model for the evaluation of matching-between-runs in MaxQuant. A-B) The 
numbers of identified E. coli (A) or HeLa (B) peptides by matching-between-runs or per MS2 in our two-
proteome (HeLa, E. coli) spike-in series, comprising different amounts of E. coli (3%, 4.5%, 6%, 7.5%, 9%, and 
0%) with a constant HeLa background. C) The numbers of identified E. coli peptides by matching-between-
runs or per MS2in the pure HeLa samples (0% E. coli). D) Global comparison of the posterior error probability 
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(PEP) score for all E. coli, all human, and all unexpected E. coli (IDs in the pure HeLa sample) peptide 
identifications. E) Distinguishing between true and false identifications via matching-between-runs or per MS2 

based on peptide features that are likely false annotated as they also match to a human protein sequence. F-
G) The numbers of identified and quantified E. coli (F) or HeLa (G) proteins by matching-between-runs or per 
MS2 in our two-proteome (HeLa, E. coli) spike-in series, comprising different amounts of E. coli (3%, 4.5%, 6%, 
7.5%, 9%, and 0%) with a constant HeLa background. 

4.2. Automated SP3 (autoSP3) 

In the first phase of this project, we established and optimized a manual pipeline for 

proteomic sample preparation and LC-MS data acquisition. Following the 96-well format 

lysis of all types of specimens for protein extraction and DNA shearing, the core of our 

workflow comprises the SP3 method to facilitate the handling of detergents and to utilize 

its unique sensitivity for low-input applications. In the second chapter of this thesis, we 

focused on exploiting the amenability of protein clean-up and digestion using SP3 to 

establish a fully automated pipeline that seamlessly integrates with preceding sample lysis 

and protein extraction using the Covaris ultrasonicator. This potential of SP3 originates 

from the paramagnetic nature of the employed beads, rendering the possibility to perform 

the entire procedure on a robotic liquid handling platform. The resulting advantages of 

hands-free processing can solve several remaining bottlenecks that are important for 

clinical integration of proteome profiling: I) robustness and reproducibility; II) throughput 

and turn-around times; III) low costs and simplicity, and IV) a one-for-all method for 

universal sample preparation. 

In other systems biology disciplines, such as genomics, automated sample preparation was 

introduced almost a decade ago323 and is now widely used through commercial kits from 

different vendors. In the field of proteomics, it remains far less common and limited to 

specific purposes, for example, sub-proteome enrichment (e.g., AssayMap to purify 

phosphorylated peptides324), protein digestion and peptide clean-up161, or detergent-free 

applications, such as plasma proteomics (iST, on an automated system to process plasma 

and cell lysates325). 

Parts of the following chapter, including Figures and Tables, were taken in part or their 

entirety from the joint publication listed below. 

Mueller, Torsten, Kalxdorf, M., Longuespeé, R., Kazdal, D., Stenzinger, A., Krijgsveld, J. 

(2020). “Automated sample preparation with SP3 for low-input clinical proteomics”. 

Molecular Systems Biology 16(1): e9111. 
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4.2.1. Establishment of autoSP3: generic sample preparation 

Many different liquid handling systems are available on the market with their pros and 

cons. Here, we selected a Bravo liquid handling system (Agilent Technologies) for 

establishing our method because it offers a small bench-top footprint, and it is widely 

available to many laboratories. The automation of SP3 (autoSP3) required the 

establishment, optimization, and subsequent validation of a vast number of tasks and 

associated parameters. This included the positioning of required consumables, the 

reservoir capacity for reagent and waste volumes, as well as the Bravo accessories, such as 

a 96-well magnet, an orbital shaker, and a heating block. We had to ensure the accessibility 

of each consumable, reagent, or respective deck position to allow uninterrupted running 

of the entire procedure. The full capacity and functionality of the Bravo were utilized to 

automate the processing of 96 samples simultaneously. As a result, autoSP3 smoothly 

connects with the preceding extraction of proteins, facilitated by the Covaris (96-well 

format) or other methods that provide sufficient DNA shearing (Figure 6A). The resulting 

peptides are directly compatible with LC-MS or other downstream applications. 

For the development of autoSP3, a HeLa cell lysate was used as an input to evaluate and 

execute each task from reduction and alkylation of proteins, their clean-up, and proteolytic 

digestion, to the final recovery of peptides (Figure 6B and Figure 6C). Initially, we 

implemented the reduction and alkylation of proteins using DTT and CAA (“Protocol A”, 

Figure 6D). However, to minimize the number of protocol tasks and simultaneously 

decrease the number of reagents, we adapted the procedure for a combined reaction with 

TCEP and CAA for 5 minutes at 95°C (“Protocol B”, Figure 6D). The core SP3 protocol 

(“Protocol C”, Figure 6D) was programmed with the ability to be executed independently 

to allow the processing of samples that were reduced and alkylated otherwise. This was 

also of interest because the Bravo heating accessory is rather inefficient in heating and 

cooling, taking more than one hour to reach 95°C. Altogether, we provide three protocol 

options to either integrate reduction and alkylation with SP3 processing in a continuous 

procedure or to perform this off-deck in any preferred way to enhance speed and flexibility 

before transferring samples to the Bravo deck. While the latter is favorable in an academic 

research environment covering all eventualities, the complete workflow is attractive for a 

clinical setting. 
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During the autoSP3 protocol, both the paramagnetic bead stock as well as the enzyme 

solution (for example, trypsin) and optionally reducing and alkylating reagents, are 

deposited in a second 96-well plate to ease pipetting of small volumes and to avoid 

uneconomical dead volumes of expensive reagents (Figure 6B). The autolysis of trypsin is 

prevented during the execution of the protocol by its storage in 50 mM acetic acid, and 

dilution with an adequate volume of 100 mM ABC at the time of mixing with the protein 

samples to achieve a digestion-compatible pH range. The addition of reagents or solvents 

to the samples is performed by successively dispensing row-by-row across the entire 96-

well plate. All liquid dispensing heights were adjusted such that the pipette tips never 

contact the sample surface. In more detail, this alludes to variable dispensing heights along 

with the entire protocol, corresponding to the sample volume in every step. This eliminates 

the risk of cross-contamination. The removal of any liquid is carried out with well-specific 

pipette tips throughout the protocol. In pipetting tasks, additional air plugs are used to 

prevent spilling of hanging droplets from the tips. The aspirating and dispensing velocities 

for each step are defined specifically for different liquid classes. Combining row-by-row 

adding and well-specific removal of solvents and reagents, we were able to establish the 

SP3 protocol for 96-samples using only two pipette tip boxes, contributing to the overall 

low costs. 

After manual or automated reduction and alkylation of proteins, the autoSP3 protocol 

either begins or continues with the aliquoting of the paramagnetic bead suspension to each 

sample (Figure 6B). This is achieved by spotting 5 μL beads (50 μg/μL in ddH2O) as a droplet 

to the wall of each well and gently moving them into the sample solution by agitation in 

the orbital shaking accessory. The bead concentration was optimized as compared to the 

manual SP3 method (100 μg/μL in ddH2O) to improve the pipetting precision. In the next 

step, protein binding to the beads is induced by the addition of ACN to a final concentration 

of 50% organic (see also chapter 4.1.2.) (Figure 6B). While we could achieve ~8% and ~6% 

more identified peptides and quantified proteins using EtOH to promote polar interactions 

with the beads, the pipetting properties of ACN exhibit a better reproducibility (data not 

shown). The homogenous distribution of beads for the efficient formation of protein-bead 

aggregates is achieved by continuous alternating between fast and slow agitation rather 
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than pipette mixing. The latter resulted in a severe sample loss due to the tendency of 

beads sticking to the pipette tips under the >50% organic condition. 

 

Figure 6: A schematic overview of the automated single-pot, solid-phase-enhanced sample preparation 

(autoSP3) workflows. A) Illustration of the end-to-end workflow from fresh-frozen tissue or cells to injection-
ready peptides and LC-MS. B) The overview shows the different steps of the autoSP3 protocol from protein 
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input to enzymatic digestion. The setup of the Bravo deck is shown for the core clean-up protocol. C) The 
overview shows the steps and Bravo deck setup of the autoSP3 peptide acidification and recovery protocol. 
The protocol ends with MS injection-ready peptide samples. D) A schematic overview of all available autoSP3 
protocol versions. The autoSP3 procedure is provided with three options for reduction and alkylation and 
with post-digestion peptide recovery. Protocol A: one-step reduction and alkylation using a TCEP/CAA mixture 
for 5 minutes at 95°C, followed by autoSP3. Protocol B: two-step reduction and alkylation using DTT and CAA 
consecutively with 30 minutes incubation at 60°C and 23°C, respectively, followed by autoSP3. Protocol C: 
the core autoSP3 protocol is omitting reduction and alkylation such that the user can flexibly pre-treat 
manually prepared samples. Protocol D: post-digestion acidification and recovery, delivering MS injection-
ready peptides to a new sample plate. Modified from Mueller et al., Mol. Syst. Biol., 2020. 

The protein-bead aggregates are rinsed with two times 80% EtOH and one time 100% 

ACN291 (Figure 6B). The potency of each cleansing task is increased by orbital shaking. For 

the disposal of the washing solvents, sample plates are stalled on the magnetic rack to allow 

the beads to settle in a ring shape above the well-bottom. The removal of the wash solvent 

was split into two consecutive aspiration tasks to minimize the residual liquid volume 

effectively. Here, EtOH was observed to drain from the sidewall in each well due to its 

viscosity. Neglecting the second aspiration step reduced the clearance of contaminants and 

potentially interfered with the subsequent digestion. A low residual concentration of less 

than 5% ACN (~2 μL) might enhance the protein digestion by assisting in protein unfolding 

and maximizing the accessibility of amino acid sequence cleavage sites as a result. However, 

this was not experimentally tested, and we tried to avoid exceedingly high residual ACN 

concentrations not to affect the protease activity. After the last washing step, proteins 

trapped on the paramagnetic beads are covered in digestion buffer, plates are manually 

sealed, and transferred to a PCR thermocycler incubation. We chose a thermocycler with 

lid heating to avoid evaporation during the process. Following enzymatic digestion, 

resultant peptides were automatically acidified and recovered to a new sample plate. The 

acidification and peptide recovery tasks were programmed as an independent protocol 

(Figure 6C) because supplying a new set of tips was required. 

Initially, we benchmarked the performance of autoSP3 compared to the manual procedure 

by processing replicates of the same sample. Between both methods, we observed similar 

ion intensities (base peak and total ion chromatograms) and CV [%] values for numbers of 

identified peptides (1%) and quantified proteins (1%) (Figure 7A). The lack of cross-

contamination was demonstrated by running a 96-well plate of HeLa lysate alternating with 

empty controls. In comparison to sample-containing injections, most control samples had 

a residual MS intensity of less than 0.03% (Figure 7B). The residual intensities were 
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primarily attributed to autolytic peptides of trypsin (added to each sample, including empty 

controls), and to (non-peptidic) contaminants with a +1-charge state (Figure 7C). This was 

sharply contrasting with rich chromatograms from protein-containing samples (Figure 7C). 

 

Figure 7: autoSP3 reproducibility and proof of absent cross-contamination. A) A comparison of three versus 
three individually processed samples using the manual SP3 protocol or autoSP3. The upper panel (red) shows 
the base peak and total ion chromatogram (TIC) of three autoSP3 HeLa samples, while the lower panel (black) 
shows base peak and TIC of three manual SP3 HeLa samples. The number of proteins and peptides identified 
by either workflow is indicated per replicate. B) Schematic representation of the experimental design to 
demonstrate the absence of cross-contamination between wells. Half a plate (48 wells) was processed with 
10 μg protein of a HeLa batch lysate in every second well (highlighted in blue) interspaced with empty wells 
as a control (highlighted in red). Randomly selected wells (highlighted in solid) were selected for direct LC-
MS. Bar plots of the summed intensities of protein groups across selected samples. A total of seven sample-
containing injections were performed, and a total of twelve empty controls. Asterisks indicate intensities 
<0.03%. C) Exemplary base peak MS1 spectrum for an empty control injection (top) and a sample-containing 
injection (bottom). Modified from Mueller et al., Mol. Syst. Biol., 2020. 

We established, optimized, and benchmarked the SP3 protocol on a Bravo liquid handling 

system, taking care of all sample handling steps304. AutoSP3 directly interfaces with 96-well 

format lysis, protein extraction, and DNA shearing facilitated by the Covaris. Alternatively, 

the protocol can start from 96 cell- or tissue lysates from any source that provides a 
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sufficient sample quality. A complete run of the Bravo SP3 protocol takes one hour and 23 

minutes for 96 samples (“Protocol C”, Figure 6D) with an additional 45 or 65 min for 

optional reduction and alkylation with DTT/ CAA (“Protocol A”, Figure 6D) or TCEP/ CAA 

(“Protocol B”, Figure 6D), respectively. The peptide-containing supernatant can be 

recovered without further clean-up for direct LC-MS data acquisition or any compatible 

downstream protocol, such as high-pH fractionation (e.g., for library generation) or TMT 

labeling. The recovery of samples can be performed using a separate acidification and 

peptide recovery protocol, which takes about 7.5 minutes to complete (“Protocol D”, Figure 

6D). 

4.2.2. Evaluation of autoSP3 precision 

Reproducibility and precision are the main focus of any automated procedure. The latter is 

defined, for example, by the European medicines agency (EMEA) as the variability observed 

within a laboratory299. For autoSP3, we assessed both by determining the intra-day 

precision and the longitudinal inter-day precision throughout one month326. Therefore, we 

utilized reduced and alkylated proteins extracted from HeLa cells with sufficient DNA and 

RNA shearing. A total of six 96-well plates, corresponding to 576 individual samples, were 

processed in the morning and in the afternoon of three different days (3 times intra-day) 

(Figure 8A). Choosing “Day-1” and following “Day-13” and “Day-27” for the sample plate 

processing covered a period of roughly one month and allowed to infer the inter-day 

precision by correlating data obtained across all six plates. In more detail, the LC-MS 

analysis was performed for five randomly selected samples per 96-well plate immediately 

after autoSP3 sample processing on the same day. In the end, the same set of selected 

samples was re-measured as a coherent batch, resulting in a total of 60 LC-MS runs. This 

allowed us to determine the potential influence of autoSP3 processing or longitudinal MS 

performance fluctuations. Taken together, the acquired data allowed us to assess the 

variability within a single plate, within a single day (two 96-well plates), across three days, 

as well as including and excluding the variance imposed by the MS performance. As the first 

indication of reproducibility, the observed intensities of all identified peptides were 

consistent within and across days (Pearson correlation R= 0.9) (Figure 8B). 

To evaluate the data more deeply and assess the intra-day precision at the level of proteins, 

we initially filtered the list of observations obtained from a single day (10 samples) for at 
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least three quantified values (3 out of 10). This filtering resulted in 2672, 2537, and 2663 

quantified proteins for “Day-1”, “Day-13”, and “Day-27”, respectively (Figure 8C). More 

than 91% of quantified proteins exhibited a CV [%] within each day of less than 30%. The 

median CV’s [%] per day ranged from 10.9% to 12.9%. This highlights an overall consistent 

quantification of proteins across sequentially processed replicates originating from 

different plates within a day (intra-day). 

 

Figure 8: Longitudinal assessment of autoSP3 performance and reproducibility. A) A schematic 
representation of the experimental design. 96 times 10 μg protein of a HeLa batch lysate were processed in 
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the morning (Plate A) and the afternoon (Plate B) at three different days (Day-1, Day-13, and Day-27) over a 
month. From each plate, five randomly selected samples were subjected to direct LC-MS analysis (red dots). 
In addition, all 30 samples (ten per day) were measured in a single combined batch to judge the influence of 
MS variability B) Box-whisker plots of log2-transformed peptide intensities across all 60 raw files. The color-
coding highlights the plate in which each sample was processed. C) Cumulative frequency curve [%] of the 
observed coefficient of variation (CV) of proteins that were identified and quantified with a minimum of three 
valid values within each day. Here, the ten raw files of each day are evaluated individually. The resulting 
median and average CV [%] for each day are shown. D) Bar plot summarizing the number of quantified LFQ 
protein groups across 60 HeLa samples. Samples originating from different days and the consecutive 
injections of the same samples are highlighted in grey scales. E) A line chart is showing the proportion of 
quantified proteinGroups across all 60 autoSP3 HeLa samples. The data are shown with and without the use 
of match-between-runs. F) Histogram showing CV’s [%] of quantified proteins across all 60 automatically 
prepared HeLa samples, proportional to CV’s [%] of sixteen manually prepared samples. The median and 
average CV [%] is shown for both automatically and manually prepared samples. A dotted line highlights the 
ratio of 1. G) Histogram showing CV’s [%] of quantified proteins from sixteen randomly selected out of 60 
samples, proportional to sixteen manually prepared samples. The median and average CV [%] is shown for 
both automatically and manually prepared samples. A dotted line highlights the ratio of 1. H) Pearson 
correlation heatmap of all 60 raw files and an additional sixteen manually prepared HeLa SP3 samples. The 
displayed data are filtered for 75% data completeness (Table 1). Please note the narrow scaling (1-0.94). 
Modified from Mueller et al., Mol. Syst. Biol., 2020. 

We further determined the inter-day precision of the autoSP3 performance by considering 

the entire dataset (all 60 LC-MS runs). On top, we manually prepared 16 replicates of the 

same sample using SP3. The average number of identified peptides and quantified proteins 

was 14.140 and 3191, respectively (Figure 8D). By applying the MaxQuant matching-

between-runs feature, we could increase the proportion of consistently (non-missing 

values) quantified proteins from 33.62% to 58.37%. This increased the number of proteins 

that are considered for our assessment to n=3750, with a median and average CV [%] of 

18.1% and 20.5%. Hereinafter, we additionally calculated the CV’s [%] of quantified 

proteins with either a minimum of three valid values (3 out of 60; n=3688 proteins) or ¾ 

valid values (45 out of 60; n=2964 proteins). The latter requirement is equivalent to the 

minimum data completeness of 75% and covers 78.04% of the entire list of observed and 

quantified proteins (Figure 8E). CV’s [%] were calculated for within each day, across days, 

without the LC-MS performance variability as one batch, and overall 60 measurements 

(Table 1). The comparison of CV’s [%] of samples that were analyzed on the day of sample 

preparation (median 13.3%, Table 1) to the acquisition of the same samples as a single 

batch (median 14.3%, Table 1) did not reveal a negative influence driven by the longitudinal 

LC-MS performance. We obtained excellent CV [%] values irrespective of the time of sample 

preparation or data acquisition over extended time periods (here four weeks). Across all 60 

(+16) LC-MS runs we could see a marginal improvement of median and average CV’s [%] 

between autoSP3 (14.6% and 17.2%; n=60 runs) and manual SP3 (16.3% and 18.6%; n=16 
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runs). Yet, these numbers compare favorably to what is generally observed for label-free 

quantitation (20-30%). The frequency distribution of CV [%] ratios between autoSP3 and 

manual SP3 position towards consistent lower variation using the automated workflow on 

a per-protein basis (Figure 8F and Figure 8G). 

 

Table 1: Summary of the observed coefficient of variation (CV’s) Corresponding to Figure 8, the table 
summarizes median and average coefficient of variation (CV) [%] values for individual days, across days, with 
and without the MS-imposed variability, and manual SP3. CV [%] values were calculated with either 75% data 
completeness requirement (~80% of all available quantified proteins) or with a minimum of three valid values 
across 60 samples. Modified from Mueller et al., Mol. Syst. Biol., 2020. 

Both autoSP3 and manual SP3 yielded robust protein quantification with a Pearson 

coefficient of higher than 0.97 across all 60 LC-MS runs and an additional 16 manually 

processed samples (Figure 8H). We could not observe a considerable difference between 

quantified proteins from “Day-1”, “Day-13”, and “Day-27”, respectively. This is a good 

indication for excellent inter-day precision. The correlation between autoSP3 and manual 

SP3 data was marginally reduced at >0.94, which is likely reflecting minor differences in 

both procedures, for example, processing volumes. 

High abundant proteins are more reproducibly quantified across the entire autoSP3 

dataset. This is highlighted by varying CV [%] value distributions based on protein 

abundance (Supplementary Figure 5A). Intensity bins were defined from highest to lowest 

as follows: ‘A’: 1-500; ‘B:’ 501-1251; ‘C’: 1252-2001; and ‘D’:2002-2964. The CV [%] values 

were calculated within each bin range. More than >97.5% of proteins in groups ‘A’ and ‘B’ 

exhibited a CV [%] of less than 30% (median <10%), contrasting to 39.1% (CV<30%) of 

proteins in group ‘D’. The lowest abundant proteins in group ‘D’ are comprised of the ~1000 

proteins recovered by the matching-between-runs feature in MaxQuant. Disabling 
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matching-between-runs reduces the number of quantified proteins from n=2964 to 

n=2019, while increasing the percentage of proteins with a CV [%] value below 30% to 

76.2% in group ‘D’ (Supplementary Figure 5B). A selection of previously described 

housekeeping proteins327 and two randomly selected low abundant proteins showed CV 

[%] values below 5% and 25% for the highest abundant and low abundance proteins for 

both, within and across all days (Supplementary Figure 5C). 

Taken together, we could demonstrate the robustness and high performance of SP3 for 

automated and manual handling. The autoSP3 procedure slightly improved the median CV 

[%] values, while adding a large sample processing throughput and minimizing hands-on 

time as a result. The longitudinal performance was highly reproducible for four weeks and 

irrespective of the LC-MS. 

4.2.3. Assessment of autoSP3 sensitivity 

A permanent challenge in the field of proteomics is the handling and analysis of low-input 

material149,307,313,314,328,329. This originates either from inefficient sample preparation and 

associated losses of material or from suboptimal liquid chromatography interfaces and 

confined mass spectrometer performances. In this chapter, we harnessed the unique 

sensitivity of autoSP3 to handle sub-microgram amounts of protein input. As a key asset of 

SP3, this was previously demonstrated for manual handling in a number of scenarios149,314. 

Here, we demonstrated the ability of autoSP3 to handle minute amounts of a sample by 

processing a 2-fold serial dilution of our HeLa protein stock (10 μg to ~5 ng; n=4 per 

concentration) (Figure 9A). The potential of carry-over between samples was eliminated by 

injecting from the lowest to the highest amount of proteins in blocks with blanks in-

between. For the four highest input amounts (10 μg to 1.25 μg), an estimated equivalent 

of 1 μg was measured to avoid the overloading of the analytical column. As a result, the 

number of absolute quantified proteins and their summed intensities reached a plateau, 

indicative for overall good recovery of peptides from the autoSP3 beads. The remaining 

samples (< 1 μg) were sufficient for a single-shot injection. Across the whole range of 

protein input amounts, we observed narrow error distributions. This illustrated a high 

degree of reproducibility across all sample amounts. The injection of sub-microgram 

amounts of the sample was sufficient to quantify, for example, 403 and 681 proteins from 
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~39 ng and ~80 ng material, respectively. The data illustrate the efficiency of autoSP3 (SP3) 

to capture and rinse proteins, and to release peptides ready for LC-MS. 

 

Figure 9: Evaluation of autoSP3 sensitivity. A) Schematic representation of the experimental design with a 
1:2 dilution series of a HeLa batch lysate starting from 10 μg down to 5 ng. The distribution of samples across 
the 96-well plate is shown. The dilution series was prepared in four replicates, and samples were injected 
from the lowest to the highest concentration. For the four highest concentrated samples, 1 μg material was 
injected, whereas, for sub-microgram samples, the entire sample was used. The average number of quantified 
proteins per sample, as well as the corresponding sum iBAQ intensities, are shown with error bars from the 
4 replicates. B) Schematic representation of the experimental design of processing small numbers of HeLa 
cells. Series of decreasing cell numbers were prepared from 10.000 to 10 cells in 8 replicates. The average 
number of quantified proteins per sample, as well as the corresponding sum iBAQ intensities, are shown with 
error bars from the eight replicates. Modified from Mueller et al., Mol. Syst. Biol., 2020. 

Taking this one step further, we started a similar experiment with counted numbers of cells 

to replace the HeLa batch lysate. This represents a more realistic scenario of limited input 

material, such as applications with patient-derived or FACS-sorted cells. In more detail, we 

counted a single-cell suspension of HeLa cells and directly transferred equivalents of 10.000 

to 10 cells into a 96-well plate, corresponding to a range of 1 μg to 1 ng protein (assuming 

0.1 ng protein per cell). To increase the reliability of the experiment, we processed a total 

of eight replicates per cell number in two independent 96-well plates (Figure 9B; see also 

Figure 2D). The entire sample processing, including cell lysis, DNA shearing, and autoSP3, 
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were performed without changing the sample plate. For each sample, the entire volume 

was subjected to LC-MS. Both numbers of absolute quantified proteins, as well as their 

intensities, scaled with the protein input. For the 1 μg-sample (10.000 cells), we quantified 

almost 2000 proteins, which is in range with our expectations (compared to Figure 9A and 

Figure 2D) and considering the utilized LC-MS setup and gradient length. A great end-to-

end reproducibility was further highlighted by the overall narrow error distributions across 

all replicates and two independent sample plates. This was also seen in a similar experiment 

using the Covaris for cell lysis and DNA shearing (Figure 2D). As little as 100 cells of starting 

material was sufficient to quantify 459 proteins on average. 

In summary, our autoSP3 workflow is capable of reproducibly processing minute amounts 

of starting material and providing sufficient sample quality. This allows the quantification 

of several hundreds of proteins from as few as 100 to 1000 cells or below 100 ng protein. 

Beyond the scope of this work, this opens the path for exciting new applications for which 

no reliable sample processing was available. This can be part of particular interest in a 

clinical context, in which sample availability is scarce, but demands in data depth and 

quality are high. Providing the ability to process these samples in an automated fashion 

eliminates the inflated issue of reproducibility when handling low amounts of material. 

4.2.4. autoSP3 and challenging specimens 

An important requirement to establish a broad involvement of proteome profiling is the 

intrinsic ability to convert difficult-to-handle samples to high-quality data. FFPE samples 

comprise the most obvious source of challenging input material159,168,330–332. They are the 

specimen of choice for histopathological diagnosis and routinely collected for cancer 

patients or other diseases, making it an invaluable resource in translational research. 

Formalin induces cross-linking between proteins to conserve and stabilize the integrity of 

the tissue and enables long-term storage. Both linked proteins (linked peptides) and 

paraffin interfere with global proteome profiling and require a suitable sample preparation 

strategy. The de-crosslinking of peptides and proteins is commonly achieved by treatment 

with SDS, which can be efficiently removed before the tryptic digestion by autoSP3 (SP3). 

Its robustness, sensitivity, and flexibility are additional assets that uniquely qualify autoSP3 

(SP3) for the processing of FFPE specimens. Here, we combined the ability to process low 

amounts of material with a clinical real-world FFPE tissue cohort of pulmonary ADC. 
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4.2.4.1. End-to-end sample preparation 

Thus far, the complete workflow from a raw specimen to injection-ready peptides for LC-

MS is fully established for cells and fresh-frozen tissue using the Covaris interfaced with 

autoSP3. To demonstrate the efficient end-to-end processing, we lysed 100.000 HeLa cells 

(n=15) and varying amounts (1.5 to 7.5 mg wet weight) of different fresh-frozen tissue 

types, as previously mentioned (Figure 2E). Upon extraction of proteins in the Covaris 96-

well AFA-tube TPX plates, they were transferred directly to the Bravo liquid handling robot 

for autoSP3 using the established protocols. From each processed sample type (HeLa cells, 

pig heart tissue, mouse kidney, and mouse liver tissue), we randomly selected five 

replicates and continued to acquire LC-MS data, resulting in highly consistent numbers of 

identified peptides with an average Pearson correlation of higher than 0.94 (Figure 10A). 

 

Figure 10: End-to-end proteome profiling using ultrasonication interfaced with autoSP3. A) Pearson 
correlation heatmap of peptide intensities across five replicates of each sample type (heart, liver, kidney, 
HeLa cells) with the corresponding average. B) The relative number of identified and quantified proteins 
across the five replicates of each sample type. The average number of identified proteins and the standard 
deviation across five replicates is shown on top. C) Cumulative frequency curve [%] of the observed coefficient 
of variation (CV) [%] of proteins that were identified and quantified in at least three out of five replicates in 
each sample type. The resulting median and average CV [%] for each sample type are shown. Modified from 
Mueller et al., Mol. Syst. Biol., 2020. 

HeLa cells exhibited a marginally lower average at 0.87, which likely reflects variation in 

manual cell counting and aliquoting of small cell numbers. Similarly, the number of 
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quantified proteins per sample type was highly reproducible (Figure 10B). The CV [%] 

distribution within each sample type revealed that more than 84% of all proteins could be 

quantified with a CV [%] lower than 30% (Figure 10C). Median CV’s [%] between 10.4% 

(liver) and 15.5% (HeLa cells) demonstrated the processing precision spanning the entire 

procedure from tissue lysis to data acquisition using LC-MS. The end-to-end workflow takes 

about 3.5 hours for 96 samples, including one hour for ultrasonication for tissue lysis, 

protein extraction, and DNA shearing. For FFPE tissue, we are currently still working on the 

full integration of the AFA-based de-paraffinization (Covaris) and the subsequent 

interfacing with the autoSP3 setup. Therefore, the ADC FFPE cohort was collected in PCR 8-

strips and lysed in two batches using the Bioruptor Pico with a customized tube holder. 

Upon protein extraction with sufficient DNA shearing, we manually transferred all samples 

in a random order to a 96-well plate to perform autoSP3. 

4.2.4.2. Pulmonary adenocarcinoma (ADC) FFPE 

Five different growth patterns of ADC are recognized by the WHO but yet remain without 

a comprehensive clinical implication. Gene expression differences have only been identified 

between lepidic ADCs and all other histologic patterns217. The remaining growth patterns 

(acinar, papillary, solid, and micropapillary) have not been characterized, despite their 

known higher invasiveness. Here, we aimed to perform proteomic profiling to potentially 

identify functional differences, a causality for the different growth patterns, or biomarkers 

and therapeutic targets. 

We collected consecutive 5 mm x 5 mm x 5 μm sections of tumors blocks that originated 

from eight different lung cancer patients. Every section was histologically classified 

(Hematoxylin and Eosin (H&E) staining) to locate and distinguish the multi-regional 

composition of growth patterns. Subsequently, two to four growth patterns could be 

selected per tumor, resulting in a total of 51 samples that were processed using our pipeline 

(Figure 11A). All samples were randomized during sample preparation and LC-MS 

acquisition. On average, we quantified 3576 proteins across the entire cohort (Figure 11B) 

using ¼ of the available sample material. Consecutive sections (biological replicates) 

exhibited a nearly perfect similarity (Figure 11C and Figure 11D) despite their 2-fold 

randomization during the process. This particularly highlights the reproducibility of our 

workflow. The grouping was mainly driven by the patient of origin (Figure 11C) rather than 
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the respective growth patterns (Figure 11D). Taking this into account as a batch-effect, we 

applied a linear regression model and achieved a rudimental separation of the three 

superordinate groups as a result (Figure 11E). The superordinate groups are defined as: I) 

lepidic (low grade; group 1), acinar and papillary (intermediate grade; group 2), and solid 

and micropapillary (high grade; group 3). Both lepidic and papillary growth patterns could 

now be separated from all other samples. At the same time, consecutive sections with the 

highest likelihood to be similar were still grouped. The dissimilarity within papillary 

samples, split into two distinct subclusters and separated from group 2 (acinar), was 

somewhat unexpected. While the tumor cell content (TCC) might explain this observation, 

it was rather randomly distributed over all samples (Figure 11F). 
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Figure 11: Proteome profiling of tumor growth patterns of pulmonary Adenocarcinoma (ADC) FFPE tissue. 

A) Schematic illustration of the sample collection. Samples were collected from eight different patient tumors. 
For each tumor, sections were processed with hematoxylin & eosin (H&E) staining to locate different growth 
patterns of lepidic (low-grade; group 1), acinar and papillary (intermediate grade; group 3), and solid and 
micropapillary (high-grade; group 3). Two to four growth patterns per tumor were selected and sectioned in 
two consecutive 5 μm iterations to provide replicates with the highest possible similarity, resulting in a total 
of 51 samples (one iteration was missing). B) Bar plot summarizing the number of quantified LFQ protein 
groups per sample. C) t-distributed stochastic neighbor embedding (t-SNE) analysis of the uncorrected 
proteome data. The samples are color-coded according to their patient origin. D) Same as in C, now color-
coded according to their tumor growth pattern. E) t-distributed stochastic neighbor embedding (t-SNE) 
analysis of the proteome data corrected via a linear regression model. The different growth patterns are 
color-coded as in panel A. F) Same as in E, now color-coded for the tumor cell content (TCC) [%] of each 
sample. G) Volcano plot showing differential expression analysis using Limma moderated t-statistics for the 
comparison of lepidic samples against all other samples. Proteins passing significance thresholds of -log10 p-
value < 0.05 (Benjamini-Hochberg adjusted) and an absolute log2 fold change of >1 are highlighted in orange. 
H) Summary of significantly expressed proteins in the comparison of each growth pattern against all others. 
Modified from Mueller et al., Mol. Syst. Biol., 2020. 

A comparison between both subclusters of papillary samples (Supplementary Figure 6A) 

revealed 73 differentially expressed proteins (Supplementary Figure 6B and 

Supplementary Figure 6C). Collagen- and extracellular matrix-related gene sets were found 

to be enriched within papillary_2 (Supplementary Figure 6D), using a gene-set enrichment 

analysis, which might hint to differing tumor microenvironments. In papillary_1, we found 

an overrepresentation of mRNA nonsense-mediated decay and translation. The elimination 

of dysfunctional mRNAs might show a selective impairment in one of both subclusters. 

More analyses, beyond the scope of this project, are needed to unravel these phenomena 

in more detail. 

Next, we used a Limma moderated t-statistics differential expression analysis to identify 

growth pattern-specific proteins (Figure 11G and Figure 11H). This was done by comparing 

the expression profiles of each group against all other groups. The highest number of 

differentially abundant proteins (167) was found in lepidic tissue (Figure 11G). We further 

subjected these proteins to a gene ontology (GO)-term enrichment analysis 

(Supplementary Figure 6E). Again, collagens were among the high abundant proteins, 

possibly reflecting a different composition of the extracellular matrix. Lung cancer growth, 

invasion, and metastasis have previously been linked to collagens333,334. Mitochondrial 

ribosomal proteins (MRPs), previously reported as a predictor of survival and progression 

with potential prognostic value in NSCLC335, were found among the significant proteins. 

Gene sets were enriched for metabolism of polyamines and glucose metabolism in all 

groups compared to lepidic samples (Supplementary Figure 6F). The increased capability 

of polyamine synthesis is linked to accelerated tumor spreading and invasiveness336. 
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Another key characteristic of the majority of NSCLC tumors is the absorption of glucose and 

metabolism towards anaerobic pathways, which is strongly associated with higher 

aggressiveness337. All of the mentioned observations are in line with the already known 

high aggressiveness and unfavorable prognosis of intermediate and high grade (group 2 

and group 3) growth patterns as compared to low-grade lepidic samples206. 

We further identified 24 proteins that were significantly different between papillary and all 

remaining samples. Among them, a subunit of the glycosylphosphatidylinositol 

transamidase complex, namely PIGT, was overexpressed. This deregulation has been 

associated with NSCLC in comparison to small cell lung carcinoma and healthy lung tissue. 

The potential implication for disease diagnostics, prognostics, and therapeutic intervention 

has been proposed338. Golgi-associated vesicle budding, intra-Golgi, and Golgi-to-ER 

trafficking, as well as retrograde transport at the trans-Golgi network, were identified 

among the top 10 most significantly enriched gene sets (Supplementary Figure 6G). This 

might implicate the involvement of the secretory pathway. Taken together, our data 

suggest that papillary-specific pathology extensively interacts with its environment. A 

coherence between NSCLC and secreted proteins has been postulated previously339. A 

differentiation between individual ADC growth patterns on the molecular level did not exist 

up until now. Here, we could identify regulated proteins for lepidic and papillary growth 

patterns. For the remaining three growth patterns, we could not identify differentially 

abundant proteins. 

The primary purpose of the generated dataset was to demonstrate the applicability of our 

autoSP3 workflow and showcase the processing of a realistic, clinically-relevant FFPE cohort 

with quantity-limited material. Despite the randomization of samples during the sample 

preparation and during the LC-MS analysis, we found a tight grouping of the consecutive 

FFPE sections. This illustrates a high precision of the autoSP3 protocol. Further, the end-to-

end processing virtually eliminates most manual sample handling steps, where an active 

user is only required for the plate transfer from the Covaris to the Bravo to the PCR cycler 

for proteolytic digestion, and back to the Bravo. In the end, injection-ready peptides can be 

recovered into a new sample plate, which is directly compatible with the LC autosampler. 

The overall hands-on time is reduced to less than 5 minutes. In addition to the technical 

aspects, our other interest was the molecular characterization of the histologic ADC growth 
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patterns. Due to the wide range of different tumor cell contents per sample, we refrain 

from drawing any conclusion besides confirming previous knowledge. However, we 

anticipate further experiments with firstly, microdissection of FFPE slides to achieve 

maximal TCC, and secondly with a fully established end-to-end processing for FFPE, 

including the de-paraffinization (Covaris) in combination with autoSP3. Both will add to the 

biological data quality and enable an improved interpretation of functional differences 

between ADC growth patterns and their potential clinical implications. 

4.3. Ependymoma (EPN) brain tumors 

In the last chapter of this thesis, we aimed to demonstrate the added value of large-scale 

protein expression profiling, complementary to other NGS-layers, for translational 

research. For this purpose, we utilized a cohort of EPN pediatric brain tumors, which have 

been extensively characterized by our collaborators on various levels, including genetic, 

epigenetic, transcriptional, demographical, and clinical data73. Nine distinct molecular 

subgroups were classified based on the DNA methylome, expanding histopathological 

grading that suffers from a limited clinical utility, poor interobserver reproducibility, and 

lack of predictive potential for a patients’ outcome. Despite the superiority of molecular 

classification to histological grading, the majority of subgroups still lack a functional 

explanation, and genetic drivers remain unknown. In many cases, the correlation between 

cancer entities or states and their corresponding proteome composition is unclear. This 

also applies to ependymoma and its nine molecular subgroups. Here, the proteome 

profiling has the prospect to elevate our current understanding of EPN biology and identify 

actionable, subgroup-specific pathways, and targets. 

For proteomic profiling, we utilized fresh-frozen tissue in the range of 3.5 to 6.6 mg wet 

weight and the following numbers of samples per subgroup: SP-EPN (n= 5), SP-MPE (n= 7), 

SP-SE (n= 3), PF-EPN-A (n= 24), PF-EPN-B (n= 12), PF-SE (n= 7), as well as ST-EPN-RELA (n= 

20), ST-EPN-YAP1 (n= 4), ST-SE (n= 5), and healthy (n= 5). The sample preparation was 

carried out simultaneously to the evaluation and optimization of the SP3 protocol (Chapter 

4.1) and before its automation (Chapter 4.2). The acquisition of the final dataset was 

performed using the parameters described in the method section. In total, we identified 

and quantified 8248 proteins in the EPN cohort. 



Results 

97 

Parts of the following chapter, including Figures and Tables, were taken in part or their 

entirety from the joint publication listed below. 

Hübner, J. M., Mueller, Torsten, Papageorgiou, D. N., Mauermann, M., Krijgsveld, J., 

Russell, R. B., Ellison, D. W., Pfister, S. M., Pajtler, K. W., Kool, M. (2019). „EZHIP/CXorf67 

mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 

function in aggressive posterior fossa ependymoma.” Neuro Oncology 21(7): 878-889. 

4.3.1. Proteome profiles of molecular subgroups 

Protein expression is dynamically regulated in a spatiotemporal manner and exhibits a high 

complexity as a consequence90. Hence, we firstly investigated whether the global proteome 

information suffices to discriminate between the molecular subgroups as defined based on 

DNA methylation patterns (n= 515; Figure 12A). Affymetrix gene expression profiles (n= 

135; Figure 12B), as well as proteome profiles (n= 103; Figure 12C), result in a fine 

recapitulation of the classification across all tumor types and CNS compartments. This is 

further indicated by the observed silhouette scores per omics layer (methylome s= 0.57, 

transcriptome s= 0.59, and proteome s= 0.43). The clearest separation is observed from the 

transcriptome data and the methylome data. For the latter, the top 5% of CpG probes with 

the highest standard deviation were used (~21.000 CpG probes). 

Both methylome and transcriptome data exhibit an additional sub-subgroup within PF-EPN-

A tumors. Although less obvious, this observation holds for the proteome level when 

focusing on the individual subgroup (Figure 12D). The proteome additionally revealed a 

subgrouping within ST-EPN-RELA tumors (Figure 12E). To demonstrate this, we utilized an 

unsupervised hierarchical clustering of the top 1000 most variable proteins (Figure 12F). 

The vast majority of samples were clustered according to their molecular subgroup. The 

separation of subgroups based on their anatomical location (PF, ST, and SP) was less 

pronounced as compared to the methylome data73. For example, SP-EPN samples were 

clustered close to ST-EPN-YAP1 rather than the remaining SP subgroups. Using the 

proteome data, we identified 2 and 3 sub-subgroups for ST-EPN-RELA and PF-EPN-A, 

respectively. A more detailed analysis of underlying differences is provided in chapter 

4.3.3.4. 
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Altogether, the generated proteome profiles of the EPN cohort seem to recapitulate the 

previous molecular classification. The differences between anatomical regions are less 

prominent as compared to the methylome data. Still, it is interesting that all omics-layer 

lead to a similar subgrouping. This might be expected following the basic principle of 

silenced or active chromatin regulating the expression of genes and proteins as a result. 

However, the driving features per omics-layer (underlying genes of driving CpGs, driving 

transcripts, and driving proteins) are different. Hence, we continue with an in-depth 

analysis of gene- and protein expression to further investigate subgroup-specific functional 

implications. 
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Figure 12: Molecular classification of ependymoma (EPN) tumors and sub-subclassification. A-C) t-
distributed stochastic neighbor embedding (t-SNE) analysis of EPN methylation patterns (n= 515, top 5% of 
CpG probes with the highest standard deviation) (A), the transcriptome gene expression (n= 135), and the 
proteome profiles (n= 103). D-E) umap and t-SNE analysis of PF-EPN-A (D) and ST-EPN-RELA (E) tumors, 
revealing sub-subgroups in the proteome composition. F) Hierarchical clustering of the top 1000 most 
variable proteins. Methylome and transcriptome data were provided by our collaborators from Pajtler et al., 
2015. 

4.3.2. Subgroup-specific putative marker proteins 

The comprehensive dataset provides a unique opportunity to identify molecular features, 

such as genes or proteins, that can be utilized as indicative biomarkers for a (patho)-

physiological state or an EPN subgroup. The extraction of biomarkers or functional 

signatures can be increasingly challenging as a result of more complex datasets. Here, 

proteins that are exclusively expressed within a single EPN subgroup represent easily 

accessible candidates. We could identify several uniquely expressed proteins for each 

subgroup, some of which are additionally found within the healthy reference tissue (Figure 

13A). The vast majority of the latter group of proteins do not exhibit a significantly changing 

expression compared to the healthy control group. Other proteins, such as SLC38A1 (in PF-

SE), an amino acid transporter, are solely found within a respective subgroup and not in the 

healthy tissue. SLC38A1 has been associated with proliferation, migration, and tumor 

progression in other cancer entities but not EPN. 

The highest number of unique proteins was identified within ST-EPN-RELA. Among them, 

we consistently observed ARAP3 (in 15/ 20 samples; Figure 13B), a GTPase-activating 

protein for ARF and RHO family members. It is known as a genuine effector of the 

phosphoinositide 3-kinase (PI3K) signaling pathway and involved in downstream regulation 

of angiogenesis340. Interestingly, a previous supervised gene expression analysis has 

suggested ARAP3 as a signature gene for ST-EPN-RELA tumors and a significant enrichment 

of angiogenesis in a pathway analysis in Pajtler et al., 201573. 

4.3.2.1. CXorf67 (EZHIP): an intrinsic inhibitor of PRC2 in PF-EPN-A 

The overexpression of chromosome X open reading frame 67 (CXorf67) was previously 

discovered as a hallmark of PF-EPN-A tumors by our collaborators265. Matching to their 

observation, CXorf67 was solely identified and quantified in PF-EPN-A tumors (in 22/ 24 

samples, Figure 13C) and overexpressed compared to the healthy control in our proteome 

data. Statistically, we could not determine a fold change because it was only observed in a 
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single healthy sample. Its expression has recently been proposed as a mechanism for the 

downregulation of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark, 

another characteristic feature of these tumors. The negative regulation stems from the 

interaction of CXorf67 with the enhancer of zeste homolog 2 (EZH2) methyltransferase, a 

constituent of the polycomb repressive complex 2 (PRC2). The PRC2 histone 

methyltransferase primarily functions to trimethylate H3K27 to promote the silencing of 

genomic regions341. Its inhibition drives the H3K27 hypomethylation and de-repression of 

target genes as a result. 

 

Figure 13: Ependymoma (EPN) subgroup-specific protein expression and CXorf67, an intrinsic inhibitor of 

PRC2 in PF-EPN-A. A) The numbers of uniquely expressed proteins for each subgroup (dark grey) and with 
additional expression in the healthy reference samples (light grey). B-C) Boxplot illustration of ARAP3 (B) and 
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CXorf67 (C) protein expression across all EPN subgroups. D) PRC2 core component interaction heatmap with 
the CXorf67 deletion mutants (CX-C, CX-M, and CX-N) and the full length (CX-Full) protein, generated by co-
immunoprecipitation. E) Western blot analysis for PRC2 components (EZH2, SUZ12, and EED) against all three 
deletion mutants and the full-length CXorf67 protein. F) Western blot analysis showing the absence of the 
H3K27-trimethylation (me3) mark in CX-Full and CX-C. G-H) Differential expression analysis using Limma 
moderated t-statistics for the comparison of PRC2 target gene expression (G) and protein expression (H) in 
PF-EPN-A tumors against all others. Genes (G) or proteins (H) passing significance thresholds of -log10 p-value 
< 0.05 (Benjamini-Hochberg adjusted) and an absolute log2 fold change of >1 are highlighted. I) Correlation 
analysis of significantly changing PRC2 targets on gene and protein-level to identify specific or common 
effects. The co-IP and western blot experiments were performed by Dr. Jens Huebner (Huebner et al., 2019). 
The transcriptome data were provided by our collaborators from Pajtler et al., 2015. Panel D-F were modified 
from Huebner et al., Neurooncology., 2019. 

Here, we continued to unravel the precise mechanism of action of CXorf67-mediated 

inhibition of PRC2. This was done in collaboration with Dr. Jens Hübner, Dr. Marcel Kool, 

and Dr. Kristian Pajtler257. In brief, HEK293T cell lines were transfected with a doxycycline-

inducible expression system for the full-length CXorf67 protein and three different CXorf67 

deletion mutant constructs as follows: I) amino acids 1 to 150 (N-terminal region), II) amino 

acids 151 to 300 (Middle region), and III) amino acids 301 to 503 (C-terminal region) 

(Supplementary Figure 7A). Hereinafter they are referred to as CX-Full, CX-N, CX-M, and 

CX-C. Their selective expression and additional localization to the nucleus was confirmed 

using western blot analysis (Supplementary Figure 7B and Supplementary Figure 7C). 

Subsequently, we performed a co-immunoprecipitation (co-IP) using an anti-FLAG antibody 

followed by LC-MS analysis to identify putative interaction partners for each construct 

compared to the CX-Full. The vast majority of identified PRC2 components exclusively 

interacted with CX-Full and CX-C, indicating a functional domain in the C-terminal region of 

CXorf67 (Figure 13D). The MS results were cross-validated using western blot analysis 

(Figure 13E), which showed an additional marginal interaction of EZH2 and SUZ12 with CX-

M. The pull-down of EED could not be validated using western blot analysis. 

Next, the MS results were further validated by staining all transduced cell lines for the 

presence of Flag-tagged proteins (CXorf67, CX-N, CX-M, and CX-C) and H3K27me3. This 

indeed revealed a hypomethylation of H3K27 in cell lines expressing CX-Full or CX-C, 

indicating that the C-terminal region of CXorf67 is sufficient for the inhibitory effect on 

PRC2 (Supplementary Figure 7D). The results were cross-validated using western blot 

analysis showing the absence of the H3K27me3 mark in CX-Full and CX-C (Figure 13F). 

Highly similar transcriptional changes, including enrichment of PRC2 target genes, were 

observed in CX-Full and CX-C cell lines as a result of the hypomethylation257. 
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Finally, we utilized the available global gene expression profiles and our proteome profiling 

data to investigate the effect of CXorf67-mediated inhibition of PRC2 and the de-repression 

of its target genes compared between molecular subgroups. The list of relevant targets was 

extracted from MsigDB342. Neither on the level of gene expression nor in the proteome 

profiles, we could observe a statistically significant difference between PF-EPN-A tumors 

and all others (Supplementary Figure 8E and Supplementary Figure 8F). For the gene 

expression data, we did not have access to any healthy reference data or the SP-SE 

subgroup. Using a Limma moderated t-statistics differential expression analysis, we could 

find a subset of PRC2 target genes that are regulated in PF-EPN-A tumors compared to all 

others on the transcriptome (196/585) (Figure 13G) and proteome (27/125 identified) 

(Figure 13H) level. The vast majority of transcriptional changes were not identified on the 

proteome-level (Figure 13I). Very few protein targets show a regulation in both omics-

layers (n= 12) or exclusively in the protein data (n= 15) (Figure 13I). The fact that we see a 

significant regulation of PRC2 targets in the CX-Full and CX-C might be the artificial 

overexpression of CXorf67, which is generally low abundant in the PF-EPN-A proteome 

data. Also, we do not have any global proteome data for the CX-Full and CX-C transduced 

cell lines. 

Recapitulating, we could identify a number of proteins that exhibit subgroup-specific 

expression. Among them, ARAP3 in ST-EPN-RELA and CXorf67 in PF-EPN-A are interesting 

examples. The exclusive expression of CXorf67 was already known in part, but the precise 

mechanism was unraveled in a collaborative project. Here, we identified the putative 

interaction partners for the N-terminal region, the middle region, and the C-terminal region 

of CXorf67 (Supplementary Figure 7A). Most importantly, the PRC2 core components 

exclusively interacted with either the full-length protein (CX-Full) or the C-terminal region 

(CX-C). Using our tumor proteome profiles, we could further investigate the influence of 

PRC2 inhibition on its targets compared to other EPN subgroups. Other exclusively 

expressed candidates are under further investigation. 

4.3.3. Protein- and gene expression 

The identification of proteins that are exclusively expressed within a single subgroup 

presents the ideal scenario for the discovery of biomarkers or functional differences. In 

practice, exclusively expressed proteins only present the surface of the several hundreds of 
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identified and quantified observations. In the following chapter, we systematically 

examined our proteome data with and without the available gene expression data. Initially, 

we performed a correlation analysis between the previously generated gene expression 

and our newly generated proteome profiles. The coefficient of determination (R2= 0.1) 

illustrates a weak overall correlation between intensity data of gene- and protein 

expression (Figure 14A). This observation is expected due to various regulatory 

mechanisms during protein biosynthesis that lead to a non-linearity from genes to 

proteins90. On the other hand, the additional value of proteome profiles immediately 

becomes evident by I) proteins that are either non-correlating but significant or II) 

correlating with their gene expression. 

In order to identify both groups of proteins, we utilized the mean intensity correlation 

between gene and protein expression and calculated a corresponding linear regression 

model. This allowed us to determine the deviation of each protein from this general model 

(residuals of true observed and expected intensities) and to perform a gene/protein-wise 

comparison whether the normally-distributed values are significantly deviating from zero. 

A detailed description of the process is provided in the respective method section. Using 

this analysis, we could identify a large number of proteins that deviate in their intensities 

in one of the two ways: I) higher gene expression as expected from the proteome data 

(red), or II) higher protein expression as expected from gene expression data (blue) (Figure 

14A). The remaining set of genes/proteins are statistically not significantly (p-value > 0.05) 

varying between both expression layers and were thus classified as correlating. 

Interestingly, the correlating group of proteins showed enrichment of mitochondrial matrix 

proteins in a cellular component GO analysis (Figure 14B). This might reflect a tight 

regulation of the energy household as an essential mechanism for a cell’s functional 

integrity. Other vital mechanisms are among the non-significant gene sets, for example, 

centrosome, Golgi stack, proteasome accessory complex, or the replication fork. The non-

correlating proteins, on the other hand, exhibited a significant enrichment for structural 

constituents of ribosomes (GO-molecular function) (Figure 14C) and correspondingly the 

cytosolic large and small ribosomal subunits (GO-CC) (Figure 14B). In addition, we found 

proteins enriched that are localized in extracellular exosomes, secretory granule, cell 
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surface, and the collagen-containing extracellular matrix. Some of these observations will 

be picked up again throughout the thesis. 

 

Figure 14: Global gene- and protein expression correlation. A) Global correlation of transcriptome and 
proteome intensities showcasing an overall weak correlation. B-C) Gene ontology analysis of cellular 
components (B) or molecular function (C) for correlating and non-correlating genes/proteins. Significance 
(brown) is defined with a log10 p-value < 0.01 (Benjamini-Hochberg adjusted). D) Boxplot illustration of CD44 
protein expression across all ependymoma (EPN) subgroups. E-F) Gene ontology analysis of cellular 
components (E) or molecular function (F) for genes/proteins that are either higher in the transcriptome or 
proteome. Significance (brown) is defined with a log10 p-value < 0.01 (Benjamini-Hochberg adjusted). The 
transcriptome data were provided by our collaborators from Pajtler et al., 2015. 
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Among the deviating genes/proteins, we also found a significant enrichment of focal 

adhesion proteins. The cell-surface receptor CD44, a non-kinase transmembrane 

glycoprotein that mediates focal adhesion343–346, has previously been linked to PF-EPN 

tumors as an independent predictor of survival347. While the gene expression is reduced for 

PF-EPN-B and SP-EPN tumors, the protein-level intensities of CD44 are highly upregulated 

for all tumors compared to the healthy reference (logFC μ= 6.2 across all subgroups) (Figure 

14D). PF-EPN-B tumors show a more variable CD44 protein expression, while the vast 

majority of samples still exhibit a significant upregulation. The physiological role of CD44 

comprises the maintenance of organ and tissue structure, but it also plays various roles in 

tumor initiation, invasion, and metastasis343,348. Its functional role in tumorigenesis is very 

much in the focus of ongoing research efforts. For example, its expression has been linked 

to a high expression of the signal transducer and activator of transcription (STAT3) protein 

and increased cell proliferation as a result. This is in line with the protein expression data 

for STAT3 in all tumors but SP-MPE (data not shown). The inhibition of CD44-STAT3 complex 

formation has been reported as a target in breast cancer349. In several other cancer entities, 

CD44 was reported as a potential molecular target for therapy against its tumorigenesis 

promoting role. Several preclinical and clinical trials are on their way, targeting CD44 

expression348,350,351. 

Next, we evaluated whether we can observe an enrichment of gene sets for genes/proteins, 

which are either higher or lower expressed in the proteome than expected from the 

transcriptome. The majority of previously found GO annotations were identified to have a 

higher expression in the gene expression data and correspondingly did not translate equally 

to the protein-level (Figure 14E and Figure 14F). The majority of proteins with an 

unexpected high expression were localized to the extracellular matrix or extracellular 

exosomes. Extracellular matrix (ECM)-related proteins are often enriched in cancer entities 

and can be associated with differences in the tumor microenvironment. The potential role 

of ECM-related proteins is further discussed throughout the thesis and particularly in 

chapter 4.3.3.4. Extracellular exosomes are discussed in more detail in chapter 4.3.4. 

Beyond the global correlation of gene- and protein expression, we wanted to come back to 

the evaluation of differences between the molecular subgroups. This was achieved by 

performing the differential expression and GO-enrichment analysis for each subgroup 
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against all others. Very few subgroup-specific changes were identified (data not shown). 

This alludes to, for example, the increased intensities of ECM organization proteins in PF-

EPN-B or cilium, sodium transport, and axonemal dynein complex in ST-EPN-RELA. ECM 

proteins were higher on the transcript level for PF-EPN-A and ST-EPN-RELA, which might be 

associated with their higher aggressiveness and worst prognosis. Since the overall outcome 

of this analysis was limited, with only a few significant observations, we decided to proceed 

with a more targeted approach, as outlined below. 

4.3.3.1. Signature gene translation to proteins 

Next, we directed our attention to a shortlist of characteristic genes per subgroup. These 

were previously determined by our collaborators based on their exclusive gene expression 

or significant overexpression compared to all other subgroups73. Here, we reviewed 

whether these signature genes translate to the proteome-level, emphasizing their role 

within a respective subgroup. 
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Figure 15: Translation of signature genes to signature proteins. A) Heatmap visualization of protein 
expression of subgroup-specific signature genes (Pajtler et al., 2015). B) Heatmap visualization of proteins 
that additionally show differential expression (DE) on the proteome-level, as determined by a Limma 
moderated t-statistics DE analysis. The significance threshold was set at a threshold of Benjamini-Hochberg 
adjusted p-value < 0.01 and an absolute abundance change of 2-fold. C-E) Boxplot illustration of NQO1 (C), 
ALDH1L1 (D), and FAM129A (E) protein expression across all EPN subgroups. 

Therefore, we extracted the intensities for all identified and quantified proteins 

corresponding to the subgroup-specific signature genes. In total, 122 of 241 signature 

genes could be recovered on the proteome-level. The separation of subgroups based on 

protein intensities of these signature genes is notably less pronounced and suffers from a 

large proportion of missing values (Figure 15A). Here, imputation was used to allow 

visualization of the data. A large number of proteins do not differ in abundance compared 

to either the healthy reference or other subgroups. Using a Limma moderated t-statistics 

differential expression analysis, we could pinpoint those signature genes that translated to 

statistically significant signature proteins for the individual subgroups (Figure 15B). Here, 

the differential expression analyses were performed between each subgroup and all others 

without including the healthy reference for which we did not have gene expression data. 

This reduced the list to 49 signature proteins across eight out of nine subgroups, with no 

signature proteins for SP-EPN tumors (Figure 15B). 

The majority of these signature proteins also varied in their expression compared to the 

healthy reference and showed implications in other cancer entities. For example, quinone 

oxidoreductase 1 (NQO1) was overexpressed in PF-SE (logFC= 3.11) and linked to 

reprogramming of glycolysis, proliferation, and metastasis (Figure 15C). The downstream 

effectors and NQO1 itself were suggested as promising therapeutic targets to prevent 

tumor progression352. Another interesting observation was ALDH1L1, a cytosolic 

dehydrogenase, that was highly overexpressed in PF-EPN-A tumors (logFC= 5.34 compared 

to all other tumors and logFC= 9.55 compared to healthy tissue) (Figure 15D). It is involved 

in folic acid metabolism and ATP production353. A knockdown of ALDH1L1 has previously 

been shown to reduce the production of ATP by 60% in NSCLC. The PF-EPN-A cell line also 

exhibits the overexpression of ALDH1L1 and could be utilized for a follow-up experiment 

using an ALDH inhibitor (e.g., gossypol) to reduce ATP production. In ST-EPN-YAP tumors, 

the expression of ABLIM1 (logFC= 3.25), FAM84B (logFC= 3.88), SNTB1 (logFC= 5.76), 

LMCD1 (logFC= 2.36), and FAM129A (logFC= 3.11) were clearly distinguishing from all other 



Results 

108 

tumors and healthy. Among them, FAM129A is involved in inhibition of apoptosis and 

promotion of migration and proliferation in human cancers (Figure 15E)354. 

 

Figure 16: Characteristic fusion protein involving C11orf95 and RELA drive oncogenic activation of NF-kB 

signaling. A-B) Boxplot illustration of C11orf95 (A) and RELA (B) protein expression across all EPN subgroups. 
C-D) Global expression of NF-kB target genes per subgroup on the transcriptome-level (C) and proteome-level 
(D). E-F) Differential expression analysis using Limma moderated t-statistics for the comparison of NF-kB 
target gene expression (E) and protein expression (F) in ST-EPN-RELA tumors against all others. Genes (E) or 
proteins (F) passing significance thresholds of -log10 p-value < 0.05 (Benjamini-Hochberg adjusted) and an 
absolute 2-fold change are highlighted. I) Correlation analysis of significantly changing NF-kB targets on gene 
and protein-level to identify specific or common effects. The transcriptome data were provided by our 
collaborators from Pajtler et al., 2015. 
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ST-EPN-RELA tumors are characterized by a recurrent fusion protein involving the 

uncharacterized C11orf95 and the signature protein RELA (logFC= 1.87) (Figure 16A and 

Figure 16B)259. The fusion has been linked to driving oncogenic activation of NF-kB-signaling 

in these tumors. RELA is the principle effector of this signaling pathway and was found 

among the list of signature proteins in our dataset. Similar to the analysis of PRC2 target 

genes in PF-EPN-A tumors, we investigated the expression levels for a list of NF-kB-

signaling-related target genes355. Neither gene nor proteome profiles revealed statistically 

significant differences between ST-EPN-RELA and all other tumors (Figure 16C and Figure 

16D). For the gene expression data, we did not have access to healthy reference data or 

the SP-SE subgroup. Interestingly, it seemed that NF-kB target genes are marginally 

upregulated on the proteome level as compared to healthy (Figure 16D). Using a Limma 

moderated t-statistics differential expression analysis, we could find a subset of NF-kB 

target genes that are regulated in ST-EPN-RELA tumors compared to all others on the 

transcriptome (20/83) (Figure 16E) and proteome (11/31 identified) (Figure 16F) level. A 

subset of NF-kB targets showed a significant regulation exclusively in the protein data (n= 

5) or in both omics-layers (n= 6) or (Figure 16G). For example, a known regulator of 

apoptosis (BCL2) was identified among them. Another protein with strong cancer-related 

implications is S100A6, which is involved in the regulation of proliferation, invasion, 

migration, and angiogenesis356. The NF-kB complex subunit - NFKB1 was exclusively 

regulated on the protein level. 

From the preceding analysis, we could identify several proteins (n =49) that indeed follow 

their subgroup-specific signature gene expression profiles. They are capable of delineating 

the different tumor subgroups and deserve a closer investigation in the following chapter. 

A large proportion of signature genes was either not identified on the proteome level 

(~50%) or did not translate to a signature protein (~40%). In addition, we could show the 

impact of abnormal NF-kB activation between different tumor subgroups on the proteome 

level. We continued with a protein-centric analysis to include all of the above and to 

additionally identify previously unknown protein signatures. 

4.3.3.2. Differential expression determines signature proteins 

Hitherto assessment of our data was primarily coined by attempting to learn from the gene 

expression profiles. In the following section, we solely focused on a proteome-centric 
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approach, whereas the subgroup annotation is based on the DNA methylome. We 

performed Limma moderated t-statistics differential expression analysis to compare the 

proteome profiles of each subgroup, firstly against all other subgroups (exemplary Figure 

17A), and secondly against the healthy reference samples (exemplary Figure 17B). The 

significance threshold was defined at a 2-fold change in absolute abundance and a BH-

adjusted p-value lower than 0.01. Besides, we required each protein to be quantified at 

least twice within the compared groups. A correlation analysis revealed whether proteins 

were only significantly regulated against other tumors, healthy, or both (exemplary Figure 

17C). 
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Figure 17: Subgroup-specific differential expression (DE) analysis reveals signature proteins. A-B) 
Exemplary, DE analysis using Limma moderated t-statistics for the comparison of protein expression in each 
ependymoma (EPN) subgroup against all other subgroups (A) and against the healthy reference (B). Significant 
proteins, at a threshold of Benjamini-Hochberg adjusted p-value < 0.01, and an absolute abundance change 
of 2-fold, are highlighted (red). C) Exemplary, correlation analysis of significantly changing proteins against 
the healthy reference and/or against all other tumor subgroups. D) Summary of DE analysis results for each 
EPN subgroup. E) Hierarchical clustering analysis using signature protein intensities relative to the mean 
expression in all other tumors. 

Following from this, we identified several novel signature proteins for each tumor subgroup 

(Figure 17D) additionally to those that correlate with signature gene expression (Figure 

15B). Using signature protein intensities relative to the mean expression in all other tumors 

for a hierarchical clustering analysis (Figure 17E), we could nearly perfectly recapitulate the 

different EPN subgroups. It follows that we have identified a large number of signature 

proteins based on our proteome profiling that previously remained undetected. They 

provide an expansive view of the underlying EPN biology, pathway activation, and potential 

subgroup-specific therapeutic targets. In order to get a better insight into subgroup-specific 

differences, we performed GO annotation and GSEA for each comparison. For example, 

extracellular matrix structural constituents were enriched in ST-EPN-RELA tumors. This is 

outlined in more detail in chapter 4.3.3.4. Further, the localization of proteins to the plasma 

membrane or as integral components of the plasma membrane was identified in PF-EPN-

A. In both tumors, this might be a common theme towards their higher aggressiveness 

compared to all others (see also chapter 4.3.3.4). The most stable genomes are observed 

in SE tumors across all anatomical regions. Interestingly, mRNA splicing via the spliceosome 

was observed as the only significant term in both PF-SE and ST-SE tumors, compared to all 

others. 

Next, we investigated the top 10 differentially regulated markers per tumor subgroup 

(Table 2), as determined by a differential expression analysis (exemplary Figure 17A). The 

significance threshold was set to an absolute fold change higher than 2-fold and an adjusted 

p-value <0.01. Importantly, the top 10 markers were still sufficient to separate the majority 

of subgroups (Supplementary Figure 8A and Supplementary Figure 8B). We outline a few 

interesting hits with potential therapeutic implications. Quinolinic acid 

phosphoribosyltransferase (QPRT) shows a high expression in human malignant gliomas as 

well as in PF-EPN-A and PF-SE tumors in our global proteome data (Supplementary Figure 

8C)357. It is involved in utilizing quinolinic acid, which is produced by microglia cells, for 

NAD(+) synthesis, and its high levels have been linked to increased resistance to oxidative 
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stress upon radio-chemotherapy and overall malignancy. QPRT, alkylating agents, or direct 

NAD(+) synthesis inhibitors have been proposed as therapeutic approaches for gliomas357. 

 

Table 2: Summary of top 10 significantly differential abundant proteins per Ependymoma molecular 

subgroup The top 10 signature proteins per EPN subgroup were determined using a differential expression 
analysis facilitated by Limma moderated t-statistics. The significance threshold was set to Benjamini-
Hochberg adjusted p-value < 0.01 and an absolute abundance change of 2-fold. The subset of proteins 
corresponds to Figure 17 and Supplementary Figure 8. 

Furthermore, we identify an almost exclusive expression of the GPR50 receptor, a member 

of G protein-coupled receptors (GPCRs), in PF-EPN-A and PF-EPN-B tumors (Supplementary 

Figure 8D)358. Of note is that the expression levels are significantly different between both 

with an average of ~21 [log2] and ~29 [log2] in PF-EPN-A and PF-EPN-B, respectively. While 

GPR50 has previously been associated with ERK signaling, it might also serve as a potential 

biomarker to differentiate between both EPN subgroups359. Another protein, CYB5R1, a 

NADH-cytochrome b5 reductase that is involved in desaturation and elongation of fatty 

acids, is upregulated in all tumors except SP-MPE (Supplementary Figure 8E). Its highest 

expression is observed in PF-EPN-B tumors. In a previous study, it was identified as a 

potential therapeutic target against the development of glioblastoma by systematic 

genome-wide expression analysis. Using real-time PCR, the authors confirmed CYB5R1 as 

targetable by the demethylation drug 5’aza-desoxycytidin360. A potential implication in EPN 

tumors could be investigated further. Furthermore, we found an exclusive upregulation of 

the exto-5’-nucleotidase (NT5E) in SP-EPN tumors. It has been shown that its blockage can 

facilitate the suppression of self-renewal, tumor growth, and progression in gliomas. This 

can be achieved via microRNA-30a treatment, which may present an interesting 

therapeutic strategy. 

Altogether, we could identify novel signature proteins per tumor subgroup that were 

previously unknown by using our proteome-centric differential expression analysis. Among 

the top 10 markers per subgroup, we find a number of potentially actionable targets, 
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partially with implications related to gliomas or other cancer entities. Here, we highlighted 

a few representative examples to illustrate the added value of proteome profiling on top 

of or complementary to preceding -omics strategies. 

4.3.3.3. Genetic structural aberrations (CNVs) to phenotype 

The paucity of recurrent mutations is a common characteristic of many childhood 

malignancies361, such as medulloblastoma362, retinoblastoma363, glioblastoma364, ATRTs365, 

neuroblastoma366, and also ependymoma367. A limited number of recurrently mutated 

genes are known for EPNs259,260,277,367. This includes a common deletion of CDKN2A in ST-

EPN-RELA or a mutation of the NF2 gene in spinal tumors, for example368. The latter shows 

implications in restricting proliferation and promoting angiogenesis, while CDKN2A might 

play a role in the ST-EPN-RELA characteristic chromothripsis of chromosome 11. In our 

proteome data, we rarely quantified CDKN2A and found no differential expression of NF2. 

The majority of EPNs instead suffer from recurrent structural aberrations, including copy 

number variations (CNVs)367. Gains and losses of entire chromosomal arms are frequently 

observed, but their role and impact remain largely unknown. Here, we utilized our 

collaborators DNA methylation array-based CNV data to investigate the impact of recurrent 

structural aberrations on the proteome level. A detailed description of the following 

analysis is provided in the respective method section. Briefly, we compared the gene and 

protein expression for every available sample in relation to the observed CNV per sample 

and chromosomal region. For each sample and all its chromosomes, a line represents its 

CNV status as neutral (blue), deletion (red), or amplification (green) (exemplary Figure 18A 

to 18F). The mean relative expression values for genes or proteins are highlighted as dots 

at their genomic locus compared to the expression in CNV neutral samples. This illustration 

allowed us to obtain a global view of CNV impact on both expression levels for each tumor 

subgroup. 

The gain of chromosome arm (chr) 1q is the most frequently observed CNV in PF-EPN-A. It 

has shown implications as an important prognostic factor within this tumor subgroup as it 

correlates with differences in overall survival. The same observation did not hold for PF-

EPN-B and ST-EPN-RELA tumors, albeit they have the chr 1q gain in 18% and 24% of all 

cases, respectively73. The effect was restricted to an increased expression for a few genes, 

whereas the proteome seemed mostly unaffected (Figure 18A to 18F). The most 
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substantial genomic instability is observed in PF-EPN-B (Figure 18C and Figure 18D) and ST-

EPN-RELA tumors (Figure 18E and Figure 18F). Especially PF-EPN-B are characterized by a 

number of aneuploidy events, including monosomy of chr 6 (61%), chr 10 (38.7%), and chr 

17 (33.5%), as well as trisomy of chr 5 (31%), chr 8 (23.5%), and chr 18 (51.9%)73,260. 

 

Figure 18: Gene- and protein expression following recurrent structural aberrations. A-F) Exemplary, an 
illustration of ependymoma (EPN) copy number variation (CNV) and the corresponding gene- and protein-
expression for PF-EPN-A (A-B), PF-EPN-B (C-D), and ST-EPN-RELA (E-F). The CNV status per chromosome and 
subgroup is indicated as neutral (blue), deletion (red), or amplification (green). The mean relative expression 
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values to the expression in CNV neutral samples are highlighted for genes or proteins as dots at their 
corresponding genomic locus. The CNV and transcriptome data were provided by our collaborators from 
Pajtler et al., 2015. Dr. Mathias Kalxdorf generated the CNV plots. 

Besides the amplification of chr 8, the majority of these changes seem to translate to the 

gene expression level. The proteome is less affected with the vast majority of proteins not 

showing a significantly different abundance. However, few trends can be observed on the 

proteome level, including a decrease in chr 6 and chr 10, or amplification in chr 5. Further 

common loss of chr 6 and chr 13q in PF-EPN-B can be more or less observed on both 

expression levels. The latter has been proposed as a novel marker for PF-EPN-B tumors. 

Based on our global proteome profiles, we identified two signature proteins, MIPEP and 

NBEA, located on chromosome 13. 

Across all three anatomical regions, the SE tumors exhibit the most stable genomes (data 

not shown). Neither CNVs nor the expression of genes or proteins seemed to show 

apparent global trends. For SP-SE tumors, we did not have access to gene expression data. 

Similarly, ST-EPN-YAP1 tumors are characterized by no obvious changes and they exhibit a 

mostly stable genome. The most obvious effect on the proteome level of ST-EPN-RELA 

tumors was the frequent deletion of chr 9 and chr 3 (Figure 18E and Figure 18F). About 90% 

of spinal tumors are characterized by loss of chr 22q, which carries the NF2 gene that is 

frequently mutated in these. This is obvious on the gene expression level for SP-EPNs but 

does not translate significantly to the protein level, including the NF2 expression. In SP-MPE 

tumors, chr 9 and chr 18 have a marginal trend following the CNV status. However, as for 

all other tumors, the vast majority of proteins did not seem to reflect the CNV state in the 

corresponding subgroup. 

Despite that we see a few examples of genes and proteins that follow the global direction 

of the recurrent structural aberrations, the majority do not. This alludes to the fact that the 

recurrent structural aberrations do not drive the tumor phenotype alone. Therefore, we 

continued by matching our subgroup-specific signature proteins, which by definition 

includes all significantly over- or underexpressed proteins, to their corresponding chr locus 

to evaluate whether a proportion of them might be explained by CNV patterns (Figure 19). 

The majority of signature proteins seemed rather randomly distributed across the genome. 

The SE tumors in all compartments were characterized mostly by negative protein fold 

changes compared to all other tumors. Overall, these findings support the hypothesis that 
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no recurrent structural event (for example, SNPs) is the oncogenic driver but rather 

epigenetic mechanisms because chromosome gains and losses do not translate significantly 

to the proteome. 

 

Figure 19: Distribution of signature proteins per subgroup on chromosomes. Illustration of signature 
proteins, as determined by a differential expression (DE) analysis, at their genomic locus per subgroup. 
Proteins with a higher (blue) or lower (red) fold change compared to all other subgroups are highlighted. The 
blue or red bars are relative to the total number of signature proteins per respective subgroup, as indicated 
in brackets below subgroup titles. 

The main characteristic of EPNs are recurrent structural aberrations. However, genome 

sequencing efforts have largely failed to identify significantly recurrent mutated genes and 

oncogenic drivers as a result. Here, we could show that the majority of these structural 

gains or losses have a limited impact on the global proteome phenotype. This might be 

explained by buffering mechanisms that could manifest as alterations in the protein 

synthesis rate or turnover to compensate for the structural gains or losses. 

4.3.3.4. ST-EPN-RELA cell surface-proteome sub-classification 

Plasma membrane and secreted proteins have a crucial role in a vast number of 

physiological processes300. This includes growth factor receptors and G-protein-coupled 

receptors (GPCRs) for signal transfer from external stimuli or adhesion proteins defining 

cell shape and motility. Other proteins are involved in the transport of nutrients, salts, or 

other molecules. They are involved in cell-cell communication and segregation of different 

tissues, for example. On the other hand, malfunctions in these protein classes are often 

involved in the acquisition of cancer hallmark traits during tumorigenesis. This can manifest 

as surface proteome changes that allow a cell to invade surrounding tissue, evade the 
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immune system response, or gain independence of survival signals. However, 

transmembrane proteins, especially GPCRs (>25%) and ion channels (>10%), represent the 

group of proteins that is most frequently targeted by drugs. Simultaneously, about 60% of 

all FDA-approved drugs target transmembrane proteins demonstrating their importance as 

potential therapeutic targets369,370. Here, we followed up on our previous observation of 

sub-subgroups in ST-EPN-RELA (2) and PF-EPN-A (3) tumors on the proteome level (see also 

chapter 4.3.1). Based on preliminary results, we hypothesized that ECM-related proteins 

might account for the sub-subgrouping, potentially resulting in different levels of 

aggressiveness and overall outcome. Therefore, we continued by performing a surface 

proteome enrichment for ST-EPN-RELA tumor samples (n= 16). Briefly, this was achieved 

by oxidizing carbohydrates of the resuspended cell-debris pellet, comprising plasma 

membrane fragments, and subsequent biotinylation of the cell-surface proteins. The 

labeled cell-surface proteins were captured using protease-resistant neutravidin-agarose 

beads. Reduction, alkylation, and digestion of proteins were performed on-beads, followed 

by peptide elution in an aqueous buffer and C18-based desalting to achieve LC-MS 

injection-ready samples. 

Upon enrichment, we identified an average of 800 to 1000 plasma membrane proteins per 

sample. An average of about 80% of the total intensities per sample were attributed to 

plasma membrane or secreted proteins (Figure 20A). Focusing solely on surface proteins, 

we could identify two different clusters corresponding to our previous observation (Figure 

20B). Two samples were manually assigned as a third cluster and disregarded in the 

following analysis, as they were not clearly associated with either cluster. Next, we firstly 

performed a differential expression analysis (Figure 20C) and secondly, a GSEA of the 

significantly regulated proteins (Figure 20D). In cluster one we found an increased 

expression of collagen degradation & synthesis, ECM degradation, ECM organization, 

complement cascade regulation proteins, MET activating PTK2 signaling, and promoting 

cell motility. The second cluster exhibited an enrichment of proteins involved in 

transmission across chemical synapses, cellular response to stress, the VEGFA pathway, 

Rho GTPase signaling, and cell-cell communication. This shows a broad involvement of 

ECM-related proteins and processes, as well as signaling processes in the sub-subgrouping 

of ST-EPN-RELA. 
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Figure 20: ST-EPN-RELA cell surface-proteome sub-classification. A) Illustration of surface-proteome 
enrichment results. Differentially colored bars represent the fraction of the total intensities originating from 
the different cellular regions. B) umap analysis showing at least two sub-subgroups of ST-EPN-RELA tumors 
based on the surface-proteome profiles. C) Differential expression (DE) analysis using Limma moderated t-
statistics for the comparison of the surface proteome in ST-EPN-RELA cluster 1 against ST-EPN-RELA cluster 
2. Proteins are significant at a threshold of -log10 p-value < 0.05 (Benjamini-Hochberg adjusted), and an 
absolute log2 fold change of >1 are highlighted. D) Gene set enrichment analysis (GSEA) of differentially 
regulated proteins comparing cluster 1 and cluster 2. E-G) Boxplot illustration of ANXA1 (E), FPR1 (F), and 
EMILIN1 (G) protein expression across all EPN subgroups. 

Next, we investigated the up- and downregulated proteins in the comparison of both sub-

clusters. Since the majority of these proteins were not identified in the global tumor 

proteome, we could not always compare to the protein’s overall expression. We highlight 



Results 

119 

a few interesting candidates per sub-cluster. For example, SPP1 (Osteopontin) was 

significantly enriched in cluster 2, and its mRNA expression levels in glioma have previously 

been reported to rank among the top 10 of all cancer cell lines371. Its increased expression 

in lower-grade gliomas was associated with poor survival. This is in line with the aggressive 

phenotype of ST-EPN-RELA and PF-EPN-A, which both show a higher expression of SPP1 

compared to any other subgroup in our global proteome data. Other proteins enriched in 

cluster 2 similarly link to poor survival (EZR, ezrin)372 or cancer cell invasion and 

aggressiveness (ANXA1, a Ca(2+)-binding protein)373 (Figure 20E). The latter correlates to 

hypoxia conditions and is highly expressed in various types of malignant tumors, including 

all EPN subgroups besides PF-SE and healthy tissue. It likely acts via secretion and autocrine 

signaling to promote aggressiveness and survival. The knockdown of ANXA1 has been 

shown to mitigate this aggressive phenotype in NSCLC cells373. While ANXA1 cannot be 

directly addressed as a potential therapeutic target, the inhibition of its receptor, FPR1, has 

been demonstrated to decrease tumor growth and metastasis formation in breast 

cancer374. This is particularly interesting as we see FPR1 exclusively expressed in ST-EPN-

RELA and PF-EPN-A tumors in our global proteome data (Figure 20F). The inhibition of FPR1 

can be efficiently achieved by the immunosuppressive drug Cyclosporin A (CsA), presenting 

an interesting follow-up experiment. 

On the other hand, we also found several potentially interesting proteins enriched in cluster 

1. This is, for example, the choline-specific glycerophosphodiesterase (ENPP6) that is often 

highly expressed in developing oligodendrocytes375, or the elastic microfibril interface 

located protein (EMILIN1)376 with a crucial role in the tissue microenvironment. It has been 

shown that lower levels of EMILIN1 facilitate tumor cell trafficking and metastasis, thus 

implicating its protective role in tumor growth and spread (Figure 20G). Here, we observed 

that it is expressed through most tumors, but exhibits a significantly high variability in PF-

EPN-A, PF-EPN-B, and ST-EPN-RELA. Interestingly, the highest expression occurred in some 

of the ST-EPN-RELA tumors. Lastly, we also found an enrichment of OLFML3 (not detected 

in global proteome), a secreted scaffold protein with an essential role in early development. 

It has previously been proposed as a novel therapeutic target for glioblastoma377, and its 

depletion can reduce the intratumoral microglia density with overall survival benefits378. 
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In summary, utilizing a surface proteome enrichment in ST-EPN-RELA tumors confirmed a 

sub-subgroup driving impact of ECM-related proteins. We found a number of potentially 

interesting proteins that vary within ST-EPN-RELA tumors and show implications with 

aggressive phenotypes. Most interesting among them is ANXA1 and its receptor FPR1, 

which can be targeted with selective inhibitors to diminish the poor prognosis for ST-EPN-

RELA and PF-EPN-A tumors. 

4.3.4. Exosome cargo characterization in ST-EPN-RELA 

Vesicular trafficking has previously been associated with overall EPN biology379. Their cargo 

is typically a mixture of proteins, lipids, metabolites, and nucleic acids. Importantly, 

extracellular vesicles (EVs) can cross the blood-brain-barrier (BBB) and are reported in all 

biological fluids, such as blood or cerebrospinal fluid (CSF)167,380. Thus, they present an 

easily accessible and non-invasive source for biomarker identification to advance 

diagnostics and prognostics or provide insight into the tumor-specific biology. This could be 

especially relevant for ST-EPN-RELA and PF-EPN-A tumors that exhibit the worst prognosis 

and overall survival while lacking a promising therapeutic target. Here, we continued with 

the optimization of EV isolation from ST-EPN-RELA and PF-EPN-A cell culture supernatant 

and subsequent characterization of the EPN-related EV protein cargo. This was done in 

collaboration with Dr. Kendra Maaß, Mieke Roosen, Dr. Marcel Kool, and Dr. Kristian 

Pajtler. 

Briefly, extracellular vesicles are comprised of two main classes, namely exosomes and 

ectosomes380. The latter are generated directly by pinching off a part of the plasma 

membrane and constitute microvesicles, for example. They have an average diameter of 

500 nm. On the other hand, exosomes derive from the endosomal pathway and have an 

average diameter of 100 nm. Through the formation of early- and late endosomes, they 

eventually generate so-called, multivesicular bodies (MVPs). They are able to either fuse 

with the lysosome or autophagosome for degradation or with the plasma membrane to 

release the contained exosomes into the extracellular space. Almost all cells in a biological 

system release EVs as part of their physiological behavior. The removal of unnecessary 

constituents from a cell to maintain and regulate homeostasis was thought to be their 

primary function. However, context-dependent and mechanism-driven accumulation of EV 

cargo, especially in exosomes, adds to the growing evidence that they are involved in 
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intercellular communication381,382. Numerous studies have linked EVs and exosomes in 

particular to CNS-related diseases, repression of the immune response, cancer progression 

(proliferation, angiogenesis, and tumor spreading), and other implications383–387. Further, it 

has been shown that the cargo of exosomes can alter the biological response of a target 

cell in both the close surrounding (paracrine) or distantly located areas (endocrine)381. 

Here, we utilized all available EPN patient-derived cell lines, representing ST-EPN-RELA and 

PF-EPN-A tumors. Hereinafter they are referred to as BT165 & EP1NS for ST-EPN-RELA and 

BT214 & EPD210 for PF-EPN-A. We performed a global proteome profiling of each cell line 

together with a characterization of the proteomic cargo of isolated microvesicles and 

exosomes. The data obtained from different cell lines per tumor were combined for the 

majority of analyses. The isolation was performed from cells supernatant by successive 

ultracentrifugation and retrieval of fractions for microvesicles (10.000 x g pellet) and 

exosomes (100.000 x g pellet). The initial optimizations steps, including serum depletion, 

different coatings for the ultracentrifugation tubes, alternative precipitation methods, and 

additional purification using a size exclusion column, are not outlined in detail. The final 

procedure is explained in the corresponding method section. The isolation quality control 

was performed by our collaborators using immunogold electron microscopy, Qubit protein 

quantification, and nanoparticle tracking analysis (NTA). The latter showed a peak 

concentration of particle diameter in range with exosomes, whereas the microvesicle 

fraction likely presents a rather mixed population of vesicles (data not shown). 

Furthermore, EVs were specifically gold-labeled using α-CD63 antibodies to allow their 

visualization in a transmission electron microscope (TEM) using CD63 as a selective 

exosome marker (data not shown). 

CD63 and CD81 are considered hallmarks of exosomes and significantly enriched compared 

to microvesicles and global cell line profiles in our proteome data (Figure 21A)380. Another 

common marker for exosomes, namely CD24, could not be identified despite its known high 

expression in EPN tumors. This was due to its overall short sequence with only a single 

tryptic peptide and our two peptide per protein filter threshold during data analysis. The 

proportion of identified protein intensities that were annotated according to the GO: 

cellular component term for extracellular exosomes (ID: GO:0070062) did not show 

enrichment for the exosome fractions (Figure 21B). This was even the case compared to 
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the full cell lysates. The loose specificity of exosome annotation databases is a known 

problem in the field and highlights the necessity of accurate vesicle isolation and quality 

control workflows. Besides the enrichment of CD63 and CD81, several endoplasmic 

reticulum (ER)-resident (luminal) proteins were found in the dataset, resulting from the 

trans-Golgi network and ER contribution in the biogenesis of exosomes and their cargo382. 

On top of our optimized sample preparation, the above results indicate a reliable 

enrichment of the exosome fraction according to current guidelines of the international 

society of extracellular vesicles388. Using our proteome data, we found an excellent 

separation of both vesicle types, all cell lines, and the respective tumor subtype (Figure 

21C). 

 

Figure 21: Ependymoma (EPN) extracellular vesicle (EV) cargo characterization in ST-EPN-RELA and PF-EPN-

A cell lines. A) Intensity-based absolute quantification (iBAQ) rank distribution for ST-EPN-RELA (EP1NS and 
BT165) and PF-EPN-A (EPD210 and BT214) cell lines, and isolated exosomes and microvesicle fractions of 
both. Exosome markers CD63 and CD81, ST-EPN-RELA markers NES and L1CAM, as well as some interesting 
candidates (STEAP3, ACOT7, and LAMA2), are highlighted in the panel. B) Illustration of the proportion of 
identified protein intensities (brown) that correspond to the gene ontology (GO)- cellular component (CC) of 
extracellular exosomes. C) t-distributed stochastic neighbor embedding (t-SNE) analysis of EPN isolated 
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extracellular vesicles (exosomes and microvesicle) and cell lines (ST-EPN-RELA and PF-EPN-A). Dr. Kendra 
Maaß and Mieke Roosen performed the isolation and quality control of extracellular vesicles. 

Next, we systematically compared vesicle and cell line data to our extended annotation 

(based on gene expression and extended by proteomics) of subgroup-specific signature 

proteins. We chose this targeted strategy to circumvent a lacking control cell line, such as 

astrocytes, which will be added in future experiments to allow a more comprehensive 

analysis of differentially regulated proteins and pathway enrichment analysis (e.g., GO and 

GSEA). Until then, we utilized our global proteome data as a guideline. In total, we could 

identify and quantify 53 out of 69 (PF-EPN-A) and 166 out of 224 (ST-EPN-RELA) signature 

proteins. Among them, 6 (1) (PF-EPN-A) and 24 (12) (ST-EPN-RELA) were also significantly 

enriched in exosomes (microvesicles) compared to their cell line of origin (Supplementary 

Figure 9A to 9G). Only by comparing vesicle fractions across tumor subgroups we identified 

ACOT7, NES, and L1CAM to be enriched in ST-EPN-RELA exosomes (Figure 21A and 

Supplementary Figure 10A to 10C). Especially L1CAM and NES represent the tumor biology 

in the vesicle cargo as they were previously identified as ST-EPN-RELA biomarkers 

(Supplementary Figure 10B to 10C). The potential role of ACOT7, a cytosolic acyl coenzyme 

A thioester hydrolase, is less evident in an EPN-related context, but it has been suggested 

as crucial for the physiological brain function389. 

Another observation was the metalloreductase (STEAP3) upregulation in ST-EPN-RELA 

exosomes compared to both, its cell line of origin and PF-EPN-A exosomes (Figure 21A and 

Supplementary Figure 11A). It is known as a potential effector of the p53 pathway 

interfacing apoptosis and cell cycle progression390. Further, it is indirectly involved in 

facilitating the secretion of proteins. Interestingly, high expression levels of STEAP3 were 

previously shown in malignant gliomas, inversely correlating with prognosis and overall 

poor survival rates391,392. In glioma cells, a knockdown of STEAP3 (RNA knockdown) could 

attenuate aggressive phenotypes, such as cell proliferation and invasion391. This was in line 

with the expression levels of STEAP3 in ST-EPN-RELA exosomes, but neither in the 

corresponding cell lines nor in the tumor proteome profiles, showing a minus 3.5-fold 

change compared to all other subgroups (Figure 21A and Supplementary Figure 11A). This 

observation might qualify for future follow-up experiments. 

Similarly, we identified significant enrichment of LAMA2 and FARP1 (Figure 21A and 

Supplementary Figure 11B and 11C) in PF-EPN-A exosomes by comparing the respective 
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vesicle fractions across tumors or against its cell line of origin (Supplementary Figure 9A to 

9G)393. FARP1 shows localization to the plasma membrane and implications in cell 

proliferation through MAPK signaling394, which was enriched in the tumor GSEA of PF-EPN-

A compared to all other subgroups. Glioma initiating cell- (GIC) and oligodendrocyte 

progenitor cell differentiation were associated with laminin subunit alpha-2 (LAMA2), 

which has a role in mediating the attachment, migration, and organization of cells into 

tissues during development395. 

In summary, together with our collaborators, we established and optimized an efficient 

exosome isolation protocol. Using our global proteome data as a guideline, we could 

pinpoint several interesting proteins that exhibit selective enrichment in tumor-specific 

exosomes. Some of which reflect the known tumor biology, for example, L1CAM. Others, 

such as STEAP3 or ACOT7, might be of interest for further follow-up studies. In functional 

assays, our collaborators already generated preliminary results (not part of this thesis) that 

indicate increased proliferation and migration in ST-EPN-RELA cell lines, endothelial cells, 

and microglial cells upon exposure to ST-EPN-RELA vesicles. Finally, we are anticipating to 

extend the current experimental setup to include astrocytes as a control cell line, 

supernatant from tumor tissue, and exosomes from patient-derived serum samples. This 

will enable a more comprehensive analysis independent of previous signature proteins. 

4.3.5. Perspective view on multi-omics data integration 

In the previous chapters, we utilized each -omics layer separately or performed two-

dimensional correlation analyses in order to pinpoint common or different features. This 

approach becomes increasingly challenging with the number and depth of complementary 

data layers. Identifying complex relations within and across multiple levels and several 

thousands of data points will require computational methods for the unsupervised 

integration and examination of these heterogeneous datasets. In this rapidly growing field, 

only a few approaches are currently available and still require a specialist for its realization 

in practice. One of these methods, namely MOFA, was developed by a collaborating group 

for the detection of technical and biological variation in comprehensive multi-omics 

data135. Here, we provide a preliminary perspective of this type of data analysis using the 

top 1% of most variable CpG probes (4260 CpGs) in the methylome data and the 20% most 
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variable features in the transcriptome (3890 transcripts) and proteome data (1745 

proteins) (Figure 22A to 22C). 

 

Figure 22: Multi-omics factor analysis (MOFA) achieves higher resolved subgrouping. A-C) t-distributed 
stochastic neighbor embedding (t-SNE) analysis of ependymoma (EPN) methylation patterns (n= 515, top 1% 
of CpG probes with the highest standard deviation) (A), the transcriptome gene expression (n= 135, top 20% 
of most variable features), and the proteome profiles (n= 103, top 20% of most variable features). D) Multi-
omics factor analysis (MOFA) reveals low dimensional factors and their relevance per omics-layer. E) 
Exemplary, an illustration of genes/proteins that load onto factor 1 and 11 per EPN subgroup, highlighting the 
separation of PF-EPN-A from all others and in additional two sub-subgroups. F) t-SNE analysis of combined 
MOFA results, as factors 1 to 15, reveals a more detailed separation. The methylome and transcriptome data 
were provided by our collaborators from Pajtler et al., 2015. Dr. Mathias Kalxdorf performed the MOFA 
analysis. 

In brief, similar to a principal component analysis (PCA), MOFA performs a dimensionality 

reduction to infer interpretable factors that describe sources of variation across all data 

layers. These factors may capture discrete or shared variation within and across the 

different multi-omics datasets (Figure 22D). The MOFA model explains ~60% of the 

variation in the methylome data and ~50% in both transcriptome and proteome data. Next, 

we can highlight whether a specific subgroup of tumors is described by one or multiple of 
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these factors, which can be further annotated using GSEA. For example, genes and proteins 

loading on factor 1 are contributing to the separation of PF-EPN-A and ST-EPN-RELA tumors 

from all others (Figure 22E). Furthermore, the sub-subgrouping of PF-EPN-A tumors is 

driven by genes and proteins that contribute to factor 11 (Figure 22E). The unsupervised 

identification and integration of all fifteen MOFA-determined factors results in a more 

detailed separation of the EPN tumors (Figure 22F). Neither of the individual -omics layers 

could identify all substructures independently. The methylome data were insufficient to 

separate PF-EPN-B and PF-SE, for example. Further subgrouping of SP-MPE, SP-EPN-RELA, 

PF-EPN-A, and SP-EPN tumors could only be detected in the integrated MOFA approach 

(Figure 22F). GSEA and GO annotation analysis for individual factors or between tumor 

subgroups (data not shown) recapitulate, for example, that PF-EPN-A and ST-EPN-RELA sub-

subgroups are largely driven by ECM degradation, ECM organization, and ECM structural 

constituents. The heterogeneity of PF-EPN-B has been described previously264. For the 

majority of other EPN subgroups we had insufficient numbers of samples on either the 

transcriptome or proteome level. 

In general, the MOFA analyses perfectly recapitulates and extends the molecular 

classification of EPNs in an unsupervised fashion. This type of analysis will be especially 

useful in disease entities with unknown substructures or for the identification of sub-

subgroups that were previously not evident from the individual layers. 
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5. Discussion 

The large-scale study of protein expression has not yet been implemented into clinical 

routine129,137. Reasons for this are comprised of logistical, ethical, and technical challenges, 

as outlined in chapter 1.2.3. In this thesis, we approached the technical aspect to ease the 

introduction of an automated and thus reproducible sample preparation pipeline for a 

variety of different and quantity-limited, clinical specimen. This was achieved by optimizing 

and transferring the single-pot, solid-phase-enhanced sample preparation (SP3) protocol 

onto a liquid handling platform for generic, reproducible, and parallelized proteomic 

sample preparation, while propagating all its benefits into the workflow. The pipeline 

resolves several bottlenecks that previously hindered the implementation of proteomics to 

complement other NGS profiling methods, which are likewise not yet fully integrated into 

routine clinical application1,27. The resulting end-to-end automated workflow (autoSP3) 

enables systematic proteome profiling for such routine applications, constituting an 

important step towards its implementation in a clinical or research environment. 

5.1. Large-scale proteome profiling enabled by autoSP3 

Proteomic sample preparation still largely depends on a number of consecutive manual 

handling and pipetting steps. This includes the lysis of a specimen, the reduction and 

alkylation of extracted proteins, the subsequent removal of contaminating buffers or salts, 

and the proteolytic digestion of proteins to peptides. Initially, we evaluated and optimized 

a series of steps and parameters of the manual SP3 protocol to achieve its maximal 

performance while aiming for high scalability for subsequent automation of the procedure. 

The sample lysis and protein extraction comprise the first essential step that is required for 

almost all types of samples (e.g., fresh-frozen tissue or FFPE tissue). Here, we tried to 

achieve a one-for-all solution to handle any type of sample, which has not been achieved 

by any other method. In addition, we aimed for a scalable solution that seamlessly 

integrates with a 96-well format to avoid a limiting factor early on within our workflow. 

Here, we failed to omit a mechanical sample disruption to aid the extraction of proteins for 

two reasons: I) the amount of extracted protein from tissue material was neither linear nor 

reproducible (Figure 1B), and II) the lack of a proper DNA and RNA shearing turned out to 

be incompatible with the subsequent SP3 procedure. This manifested as protein binding 
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interferences and reduced peptide recoveries as a result (Supplementary Figure 1B). At the 

same time, enzymatic cleavage of nucleic acids led to reduced protein extraction 

efficiencies, because of the accompanying reduction of detergent concentrations to allow 

enzyme activity. This would result in a reduced sensitivity of the workflow, which is a 

significant drawback, especially for quantity-limited samples, and could dramatically 

increase the overall costs of the workflow. 

The highest protein yield and nucleic acid sheering efficiency was achieved using 4% SDS, 

as the main buffer constituent, in combination with AFA-based ultrasonication (Figure 1C 

and 1D). Thus far, we demonstrated proof-of-concept for the multiplexed (Figure 2D and 

2E) and highly efficient lysis of cells, fresh-frozen tissue, and a manually de-paraffinized 

cohort of 51 lung ADC FFPE tissue samples in the presence of 1 or 4% SDS. Despite the good 

performance, we see the additional potential to improve the current processing settings 

further. For example, we aim to optimize sonication frequencies and amplitudes in 

combination with cycle times, cycle length, and lower sample volumes in order to minimize 

the time needed per sample and maximize the sensitivity for low-input applications. While 

it currently takes about one hour to process 96 cell- or tissue samples, we can likely reduce 

this to about 20 minutes. This will enhance the overall throughput and improve the 

accompanying turn-around times per sample, which will be important when performing 

this in a clinical environment. Further, we collected preliminary data to show a full 

integration of AFA-based processing of FFPE tissue without requiring the manual de-

paraffinization. Interestingly, this was recently demonstrated in combination with SP3 in an 

application note by Lisa Schweizer et al., 2020, in collaboration with Covaris330. This is an 

essential step because the WHO classification of tumors and histology primarily rely on 

FFPE tissue, which is therefore routinely collected in biobanks over decades 

already159,168,396. Thus, this presents an immense resource of samples for retrospective 

proteome profiling, requiring a suitable method to enhance their accessibility. In addition, 

we aim to process body fluids (e.g., CSF and blood plasma/serum) to showcase that autoSP3 

presents the first method for the preparation of all sample types and low-quantities 

Undoubtfully, this marks a significant step towards standardized and routine proteomics 

applications. 
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In this thesis, the seamless integration of all steps into an end-to-end automated workflow, 

comprising multiplexed AFA-based ultrasonication and automated SP3 (autoSP3), was 

achieved. Peptides resulting from cells, fresh-frozen tissue, or FFPE material could be 

subjected to LC-MS without any further clean-up. Importantly, the SP3 method does not 

exhibit a bias towards hydrophobic peptides as the binding happens on the protein level, 

and digested peptides are released into the aqueous buffer irrelevant of their 

hydrophobicity (Figure 3C). Recently, Tanveer Batth et al., 2019, has proposed protein 

aggregation as an alternative binding mechanism of SP3397. The authors claim that insoluble 

proteins preferentially precipitate on microparticles (e.g., SP3 beads) irrespective of their 

surface chemistry. While this is already extensively discussed within the original SP3 

publications and its patent application, we could observe apparent differences in the 

numbers of identified peptides when using different bead types and surface chemistries 

(Supplementary Figure 2F). At the same time, the authors claim that unmodified beads 

show similar performance, but do not show their data. Further, we find it highly unlikely 

that polar interactions can be easily reversed by changing to an aqueous buffer 

composition. We aim to show this in additional experiments. However, most importantly, 

SP3 (autoSP3) is capable of removing the most frequently used buffer components during 

sample lysis and protein extraction, adding to the high flexibility and efficiency of protein 

extraction from a variety of sample types (e.g., SDS facilitates FFPE processing159,168). This 

generally includes SDS or other non-ionic detergents, such as Triton X-100 or NP-40, and 

the anionic detergent sodium deoxycholate, which aid in extraction and solubilization of 

proteins including transmembrane proteins. Further, Urea-based buffers can be processed, 

and they recently gained popularity by leading to an increase in protein yields in specific 

applications398–400. Other acid-labile surfactants, such as RapiGest SF401 or ProteaseMax 

SF402, are typically less potent for protein extraction and require, for example, precipitation 

and centrifugation or spin filter columns (e.g., FASP) for sample clean-up after its hydrolysis. 

The automation of such processes is less straightforward, requiring more sophisticated and 

expensive equipment on top of a liquid handler. Altogether, the procedure could alleviate 

many shortcomings that are associated with classical sample preparation protocols and 

manual handling, by benefiting from all the valuable features of SP3 and the nature of 

automation. Altogether, uniquely positioning autoSP3 as a building block for routine 

(clinical) proteomics. 
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Next, we demonstrated the excellent protein quantification reproducibility achieved with 

the autoSP3 procedure with a series of 60 HeLa samples, resulting in a median CV [%] of 

16.3% over a period of one month. In addition, we achieved a median CV [%] values below 

15% when including the entire sample preparation process from sample lysis and protein 

extraction to LC-MS injection-ready peptides (Figure 15C). The resulting advantage is that 

samples can be processed and measured over extended periods, for example, during 

longitudinal sample collection or time series, without introducing sample preparation 

variability. This is particularly important in a realistic clinical environment with ongoing 

patient enrolment and sample collection in irregular intervals. Indeed, the ADC cohort 

could showcase an almost perfect grouping of replicate tissue slices, based on their 

proteome composition and despite randomization, demonstrating consistency and 

robustness of the procedure. Furthermore, we demonstrated the high sensitivity of 

autoSP3, a key attribute for clinical workflows, by processing minute amounts of sample 

and quantifying consistent numbers of proteins, such as roughly 500 proteins from as little 

as 100 HeLa cells (Figure 9B). Especially here, a robust and reproducible sample processing 

is important to avoid any unnecessary technical variability that has the potential to mask 

the biological differences of interest. This asset will open up great opportunities for new 

applications in the routine analysis of rare cell types or overall quantity-limited sample 

material. For example, the sensitivity of autoSP3 might enable the analysis of small biopsies 

that were previously inaccessible for proteomics applications. On the other hand, the size 

of a biopsy could potentially be reduced to improve the tumor cell content or resolution 

and specificity of the analysis as a result. Here, we also see the potential to further improve 

the sensitivity of our workflow by reducing overall processing volumes. So far, this was 

hindered by the available 96-well magnet, which requires a certain digestion volume in 

order to cover the protein-binding SP3 beads. This could be combined with an upgrade of 

our current Bravo system to a Bravo 96ST pipetting head that allows reproducible transfer 

of 0.3 to 70 volumes μL (as compared to ~ 5 μL minimal volume). 

The final autoSP3 workflow takes about 3.5 hours for the processing of 96 samples 

simultaneously. This includes all steps from cell- or tissue lysis (~one hour for 

ultrasonication prior to anticipated optimization) to proteolytic digestion (2.5 hours for 

autoSP3), and peptide recovery (~7 minutes). The continuous and parallel operation of the 
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Covaris LE220R-plus ultrasonicator and the Bravo platform for autoSP3 permits the 

processing of up to three plates, corresponding to ~300 samples, by a single operator and 

within a working day. The hands-on time is kept minimal at the same time. High-throughput 

sample processing contributes to rapid turn-around times that are required for clinical 

decision making. For example, the NSCLC international guidelines for genetic analysis 

recommend a turn-around of less than ten days403. In other disease entities or clinical 

scenarios more or even less turn-around may be required or tolerable. The capacity of our 

autoSP3 setup could already comfortably accommodate very large-scale proteomic studies, 

and resulting peptide samples may feed into several mass spectrometers, which are 

currently the remaining limiting factor. On top, we see the additional potential to improve 

our current setup. The protein reduction and alkylation, for example, is performed at 95°C, 

which requires one hour (out of 2.5 hours) of autoSP3 for heating and cooling. Here, an 

increased throughput can be easily achieved by either optimizing the reduction and 

alkylation conditions at lower temperatures or using a more efficient temperature device. 

The use of a plate hotel or larger deck-space has the additional potential to increase the 

workflow capacity to further minimize the hands-on time between individual runs, for 

example. AutoSP3 could be further improved by preventing evaporation (remains unsolved 

so far) during the proteolytic digestion to integrate this step on-deck and avoid manual 

interference. Lastly, the LE220R-plus ultrasonicator is fully compatible with a robotic arm 

that could facilitate the sample plate transfer between platforms to minimize the need for 

operator intervention. The implementation of the steps mentioned above has the potential 

to transform the current protocol in a complete hands-free pipeline that could continuously 

process many hundreds of samples per day in a robust and reproducible manner. 

AutoSP3 has been implemented on a Bravo liquid handling system, which is widely available 

to many genomics or biochemistry laboratories. The established workflows (Protocol A, B, 

C, and D described in chapter 4.2.1.) are provided in an online repository for the facile 

adoption of the method. In addition, we have recently generated methods that allow 

different starting volumes for samples (up to 25 μL) or additional clean-up of peptides. The 

latter is achieved by binding peptides to the beads at a higher than 95% organic buffer 

composition. This part of the initial SP3 protocol for peptide purification149 has recently 

been established by others on an Eppendorf liquid handling system404. While this is not 
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needed for global protein expression profiling, it can be useful for clean-up of PTM-

modified peptides, for example. To further improve the ease of implementation and usage 

of autoSP3, we are currently working on a user-interface integrated into the Bravo Vworks 

software. This is done in collaboration with Dr. Mauro Cremonini (Agilent Technologies). 

Another potential extension of autoSP3 for top-down proteomics, comprises its use for 

intact protein purification and subsequent MS analysis, as recently shown329. 

Because of the benefits over previous methods, the SP3 protocol has broad appeal in the 

field of proteomics. This includes efforts in automation, as recently shown on various 

platforms, such as a KingFisher liquid handling system with subsequent phosphopeptides 

enrichment405. Furthermore, a recent pre-print study shows the application of autoSP3 on 

a Hamilton Robotics Microlab STARlet liquid handling system for the fast and low-cost 

detection of SARS-CoV-2 peptides from clinical samples406. The study showcases a short 

turn-around time, high sample throughput, and cost-efficiency. In this case, the automation 

additionally reduced the risk of infection during sample preparation and marks an 

informative example for a clinical application of autoSP3. 

5.2. The added value of proteome profiling 

The proteome composition is a fundamental part of any biological system and crucial for 

understanding (patho)physiological conditions or functions. Nevertheless, it remains 

mostly unused in a clinical routine, as outlined throughout this thesis. Therefore, after 

technically establishing the autoSP3 workflow304, we applied it to process two different 

clinical cohorts, namely FFPE lung ADC slices and fresh-frozen ependymoma (EPN) brain 

tumor tissue, in order to demonstrate the added value of global proteome profiling. 

Further, we highlight the novelty of a number of observations that other NGS methods are 

inherently blind to or that cannot be predicted from gene expression alone. The profiling 

of the proteome composition of a disease cohort has the potential to unravel unknown 

functional consequences or clinically relevant targets or biomarkers. 

5.2.1. Molecular characterization of lung adenocarcinoma (ADC) growth patterns 

In this thesis, we showcase the application of autoSP3 to a cohort of 51 ADC FFPE samples 

for the molecular characterization of tumor growth patterns. In particular, we could 

demonstrate the ability of FFPE processing with quantity-limited material. In addition, as 
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expected from pathology, we observed that lepidic samples show a decreased expression 

of proteins associated with cellular invasion. In comparison to previous microarray gene 

expression profiling217, we identified 167 proteins (compared to 13 genes) with statistically 

significant differential abundance in lepidic samples compared to all other growth patterns. 

This shows that the differential proteome composition cannot be predicted from mere 

gene expression changes alone. A follow-up for a potential implication of any of the 167 

differentially regulated proteins (lepidic vs. all others), for their use as a therapeutic target 

or as a biomarker, might be of interest for further follow-up studies. 

However, the high variability in tumor cellularity of the provided ADC samples restricts a 

more detailed analysis. In the future, we aim to first extend our current workflow to allow 

the automated de-paraffinization and protein extraction of FFPE samples in combination 

with sample processing in overall smaller volumes. This will aid the handling of even less 

starting material. Here, we aim to reach the level of microdissection to collect and process 

highly concise tumor areas with maximal tumor cell content. This will enable us to perform 

a more comprehensive analysis of the proteome composition of the different growth 

patterns and at a higher spatial resolution across the obtained specimen. 

5.2.2. Proteome profiles extent ependymoma (EPN) molecular classification 

Furthermore, we utilized a cohort of EPN brain tumors with extensive molecular 

characterization available on various levels73. While this built the basis for classification into 

nine distinct molecular subgroups, the majority of them still lack insight into their functional 

differences, and the oncogenic driving mechanisms remain unknown (see also chapter 1 

and chapter 4.3). Here, we aimed to illustrate the potential of proteome profiling on top of 

or complementary to other molecular layers. 

Starting from small fresh-frozen tissue (<6 mg wet weight), we could quantitatively profile 

8248 proteins from 103 tumors that were unevenly distributed over all nine molecular 

subgroups and the healthy reference tissue. Interestingly, we could achieve a similar 

separation of the known molecular subgroups based on the tumors’ proteome composition 

(Figure 12A-C and Figure 12F). However, this annotation is still based on the prior 

knowledge of the anatomical region and DNA-methylome profiles. Relying on the proteome 

composition alone would be insufficient to achieve the same grouping without previous 

knowledge of subgroup-specific protein expression patterns or individual biomarkers. The 
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methylome and transcriptome result in a clearer separation (average silhouette score= 

0.58) compared to the proteome (silhouette score= 0.43). On the other hand, the proteome 

composition revealed a sub-subgrouping for ST-EPN-RELA and PF-EPN-A, showing a first 

hint of its added value. In addition, we performed an unsupervised MOFA as a perspective 

view for scenarios in which molecular subgroups are not yet defined. Methylome, 

transcriptome, and proteome data together result in a perfect recapitulation of the 

expected subgroups and further achieve a more detailed sub-subgrouping on top (Figure 

22F). This specifically highlights the advantage of complementary -omics profiling rather 

than focusing on individual layers. Multi-omics analysis has been a challenging task due to 

technical and especially bioinformatical reasons135,169. In recent years, however, various 

groups have invested massive efforts in multi-omics data analysis169. While this is still 

limited to skilled data scientists, the trend is going towards user-friendly solutions that will 

find rapid adoption in the field. 

In this thesis, EPN subgroups were known already and the primary purpose was the 

supervised identification of functional differences, biomarkers, or even potential 

therapeutic targets. The uneven distribution of samples per subgroup presented a distinct 

challenge for the subsequent bioinformatic analysis, including differential expression 

comparisons. However, this characteristic is a realistic scenario of a disease cohort, in which 

the sample collection itself can be a limiting factor for rare subtypes. Additionally, in a 

routine clinical application for molecular profiling analysis, the underlying subtype would 

be unknown at the time of sample collection. Thus, we inevitably have to deal with 

inhomogeneous numbers of samples per subgroup. The highest number of samples was 

available for PF-EPN-A (n= 24) and the lowest for SP-SE (n= 3). Here, we handled this uneven 

representation of distinct subgroups by utilizing the Limma R/Bioconductor software 

package for statistical analysis. Benefitting from the large number of samples, Limma 

performs an analysis of protein quantification value distribution across the entire dataset 

as an integrated whole rather than focusing on individual comparisons between sample- or 

group pairs. This allows a more accurate comparison for even small numbers of samples 

within a subgroup (e.g., SP-SE) against the remaining dataset as a whole (all others). At this 

stage, the subgroup annotation remains a prerequisite before performing any comparison. 
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Next, we focused on subgroup-specific proteins that could serve as a biomarker when no 

prior knowledge on sub-grouping is available. On top, these proteins have the potential to 

elucidate oncogenic driving mechanisms within a specific tumor subgroup. Here, CXorf67 

marks a perfect example, showing exclusive expression in PF-EPN-A tumors265,272. While its 

expression already marks a hallmark for PF-EPN-A tumors, the precise mechanism of 

CXorf67-mediated inhibition of the PRC2 function was previously unknown. The functional 

domain of CXorf67 was pinpointed to the C-terminal region, being responsible for binding 

to the majority of PRC2 components and the inhibition of its methyltransferase activity. We 

could additionally show the influence of PRC2 inhibition and the associated 

hypomethylation and de-repression of its targets at the transcriptome and proteome level 

compared to all other EPN subgroups. Surprisingly, we only found 12 and 15 PRC2 targets 

that were significantly regulated either on transcriptome and proteome level or solely on 

the proteome level (Figure 13I). Among them, several proteins, such as NCAM1407 or 

GPM6B408, have previously been associated with brain tumors. Further functional 

implications of the de-regulation of PRC2 targets remain to be elucidated. 

Interestingly, we found that both ST-EPN-RELA and PF-EPN-A show differential expression 

of ECM proteins between transcriptome and proteome level and all other subgroups while 

also being associated with higher disease aggressiveness and exhibiting the worst overall 

prognosis73. Furthermore, the proteome composition of both revealed an additional sub-

subgrouping that is driven by ECM-related proteins (supported by DE analysis and MOFA). 

To follow-up on this observation, we performed a cell-surface proteome enrichment of ST-

EPN-RELA tumors. Here, we could find several interesting proteins, with FPR1 linked to 

ANXA1 being the most promising potential target373,374. The inhibition of FPR1 has 

previously resulted in a decrease of tumor growth and metastasis formation374. This is 

particularly interesting as we observed an almost exclusive expression of FPR1 in both 

subgroups, which urgently call for new treatment plans due to their worst prognosis and 

poor outcome. Using cell culture experiments, a relevant implication remains to be 

elucidated, such as IC50 experiments upon treatment with an FPR1 inhibitor (e.g., 

Cyclosporin A374 or Cyclosporin H409). 

Unfortunately, patient-derived cell lines for follow-up experiments are only available for 

ST-EPN-RELA (2x) and PF-EPN-A (2x). They are rather difficult to handle (e.g., long cell 
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doubling times) and require specialized, expensive cell culture media. Thus, following up 

on several observations made throughout this thesis takes rather long and is limited to 

targets identified in ST-EPN-RELA and PF-EPN-A. Therefore, other subgroup-specific 

findings cannot be validated yet. However, a more in-depth analysis of the subgroup-

specific proteins is still ongoing to derive functional insight into their specific biology. Many 

of these proteins have previously not been annotated as an EPN subgroup signature on the 

basis of other -omics layers. Importantly, we could showcase a few examples of signature 

proteins, such as L1CAM and NES (Figure 21A), that are enriched within isolated 

extracellular vesicles, reflecting the tumor-specific biology367. This marks the possibility of 

subgroup-specific biomarker profiling in a low-invasive manner through blood or CSF 

sampling. In a clinical environment, this profiling approach could find facile adoption. 

Altogether, profiling of the EPN cohorts’ proteome composition helped to unravel many 

previously unknown signature proteins, which were not evident based on the other NGS 

approaches. Further, as expected, many previously annotated signature genes did not 

translate to signature proteins and its resulting phenotype. This might influence their 

importance for the biological interpretation and their functional consequences between 

different subgroups. A more thorough analysis of the entire dataset is needed and currently 

ongoing. This already highlights the importance of advanced bioinformatic tools and 

workflows to support these complex analyses in a systematic approach. Currently, this a 

limiting factor for a clinical routine as the sheer amount of data and its complexity make it 

increasingly challenging to find meaningful interpretation. This becomes especially 

important when turn-around times need to be achieved. 

5.3. Re-evaluation of the status quo: clinical proteomics 

The quantitative profiling of thousands of proteins across hundreds of samples remains 

challenging. Yet, massive efforts in the proteomic field towards standardization, 

simplification, and automation, such as the autoSP3 workflow, are rapidly moving towards 

its feasibility148,151,161,304,330,410. In combination with new-generation mass spectrometers, 

their sequencing speed, sensitivity, and robustness, and cost-effectiveness of workflows, it 

is already possible to perform such large-scale profiling experiments in acceptable turn-

around times113,116. Complementary to other -omics levels, this ability of molecular 

(proteome) profiling and characterization will build the path to patient-oriented systems 
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medicine (precision medicine), as described in chapter 1. The anticipated aim of molecular 

profiling could be a disease (sub)classification, the identification or screening of (predictive) 

biomarkers, or the functional insight into the (patho)physiology, such as disease 

progression or relapse1,2,27. However, many limitations yet remain to be solved for 

successful clinical integration. This relates to ethical, legal, logistical, but most importantly, 

bioinformatic bottlenecks. 

Nowadays, the generation of comprehensive data, such as in-depth proteome profiles or 

even multi-omics data, for the molecular characterization of an individual is becoming 

feasible from minute amounts of available sample material and at affordable costs117. 

While this can obviously provide a deeper understanding of an individual’s molecular make-

up and disease phenotype, it is not trivial to extract and interpret the biological and/or 

clinically relevant results. In the literature, several great examples have emerged that 

illustrate the utility of proteomics and/or multi-omics data to generate new medical 

knowledge or identify clinically actionable targets131,137,139,144,406. However, these types of 

analyses typically require a significant expenditure of time spent by a specialist to 

understand and interpret the data. This becomes even more challenging with multiple -

omics layers and additional clinical or health record information about an individual. Here, 

an increasing number of tools and integrative solutions, such as MOFA, RGCCA, MCIA, 

iCLUSTER, and others, are becoming available to support the interpretation of complex 

multi-level data169. In an ideal scenario, easy-to-use or automated software tools are key 

to rapidly extract useful information, allowing fast and straightforward interpretation for a 

patient’s benefit. In foresight, sophisticated software solutions utilizing machine learning 

algorithms might be useful to identify traits or trends in complex datasets that are not easily 

observed by manual investigation. Other accompanying bottlenecks are the logistics of data 

handling and storage. It is not surprising that research groups and especially companies 

(e.g., Biognosys, Roche Diagnostics, OmicEra Diagnostic) recognize this gap between 

immense amounts of data and their meaningful interpretation for a clinical utility. Several 

initiatives (SMART-CARE, CLINSPECT-M, DIASyM, and MSTARS) that were recently funded 

by the federal ministry of education and research (BMBF, Germany), are envisaging to 

tackle such remaining bottlenecks. 
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Another crucial factor for a routine application of personalized molecular profiling is the 

ethical point of view. Of course, this has been and is extensively discussed in the field and 

will need the development of clear regulatory systems1,26. For example, what and how are 

the results presented to an individual. What if risk genes or protein expression for specific 

diseases are detected pre-symptomatically. Individual genes or proteins might reveal an 

increased predisposition of developing a specific disease. How does a physician deal with 

incidental observations? In some commercially available genetic testing, for example, 

offered by Dante Labs (L'Aquila, Italy)411 genetic counseling with a specialist is already 

recommended (e.g., by DNAfeed Inc. (San Diego, USA))412, but not mandatory in order to 

provide proper education about potential findings and their implications. For a routine 

integration of molecular profiling, this individualized counseling will require financing and 

time of specialists, such as physicians and potentially even psychologists. Consensus 

agreements need to be established in order to protect the patient’s rights and molecular 

data while simultaneously maintaining the benefits of molecular profiling. Here, the health 

insurance and portability and accountability act (HIPAA)413 or the general data protection 

regulations (GDPR)414 in the United States or European Union, respectively, define such 

standard measures for the protection of physical, network, and process security (e.g., data 

protection= HIPAA or GDPR compliant). On the other hand, this compliance often 

introduces additional bottlenecks, such as the high maintenance costs and paperwork, and 

the limited ability for physicians or researchers to perform retrospective (e.g., biobanked 

tissue) or prospective evaluation of patient samples and resulting data415. Informed 

consent with strict regulations but potentially also the possibility for individualized 

considerations are key for routine implementation. This can only be achieved by joint 

agreements between all participating parties ranging from insurance companies and health 

care providers to scientists, bioinformaticians, and medical doctors, to the individual 

patient. 

Altogether, the advantages of complementary -omics profiling, including proteomics, 

clearly position it as the key to personalized medicine. Unambiguously, the sheer 

complexity of such data requires a systems medicine approach for the extraction and 

interpretation of meaningful results and decision-making guidance in a clinical 

environment. Beyond a better understanding of biological systems and (patho)physiology 
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itself, an improved patient stratification and classification, the identification of biomarkers, 

or new therapeutic targets are among the anticipated aims. In addition, molecular 

characterization might lead to better therapy decisions, such as avoiding or de-escalating a 

specific therapy approach for individuals. In 2013 and 2015, the interest in systems 

medicine has triggered the foundation of the “e:Med” consortium416 as well as the 

“European Association of Systems Medicine e.V.” (EASyM)417. Both essentially aim to make 

personalized and systems medicine available to everyone by tackling the major questions 

and bottlenecks: I) getting together all responsible and relevant fields of expertise, 

including clinicians, researchers, medical and patient organization, funders, ethic and 

privacy authorities, and patients. II) Establishing a hands-on training and education 

framework. III) Developing guidelines for data handling, from storage to analysis and 

interpretation. IV) Promoting and supporting the implementation of systems medicine “big 

data” in routine applications. V) Evolving sophisticated computer-based solutions (e.g., 

machine learning and artificial intelligence) for the analysis of complex (multi-omics) data. 

Since its inception, the e:Med research and funding concept has resulted in 1410 systems 

medicine oriented publications (as of 03.06.2020)416. With this, we think that the technical 

framework for large-scale systems medicine data generation can already be actionable. The 

logistical, ethical, and mainly bioinformatic solutions for a routine implementation are 

lagging behind. However, these limitations will be tackled and solved in the coming years, 

while standardization and performance of multi-omics and especially proteomics pipelines 

will continue to become more sensitive, more reproducible, and easy-to-use. 

The future of medicine with personalized -omics profiling and decision-making is at a 

tipping point from bench to bedside. 
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9. Supplementary Figures 

 

Supplementary Figure 1: Optimization of cell lysis and protein extraction conditions tailored for single-pot 

solid-phase-enhancer sample preparation (SP3). A) Lysis of 5000, 50.000, and 500.000 cells facilitated by 2% 
SDS (blue) and 4% SDS (red), and quantification of extracted protein mass. Five randomly selected cell lines 
were used (A375, RPMI-7951, UACC-62, ISTMEL-1, and HeLa). B) Mechanical disruption-free lysis using 2% 
SDS (blue), 4% SDS (red), or RIPA (green) in combination with SP3 to process varying amounts of protein input 
(25 μg, 50 μg, 100 μg, 150 μg, and 200 μg). The relative [%] recovery and the absolute [μg] recovery after SP3 
processing are shown for each condition. C) Agarose gels to highlight nucleic acid content of a HeLa lysate 
after mechanical disruption-free processing in different buffer compositions and with and without Benzonase 
treatment. For the Benzonase treatment, buffer compositions were adapted for enzyme compatibility. D) A) 
Lysis of 5000, 50.000, and 500.000 cells facilitated by 0.1% RapiGest (RG) (blue), 0.1% SDS (red), 0.1% SDS 
with 1% Triton X-100 (red), and quantification of extracted protein mass. Five randomly selected cell lines 
were used (A375, RPMI-7951, UACC-62, ISTMEL-1, and HeLa). A375, RPMI-7951, UACC-62, and ISTMEL-1 cells 
were cultured, counted, and pelleted by Dr. Gertjan Kramer.  
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Supplementary Figure 2: Optimization of protein binding conditions in single-pot solid-phase-enhancer 

sample preparation (SP3). A) SDS-page of HeLa input and the SP3 unbound (red) and bead-bound (blue) 
fraction of proteins using three different acidification concentrations with TFA (1%, 0.5%, and 0.2%). B) 
Agarose gels to confirm DNA extraction from mouse kidney tissue. C) Agarose gels to illustrate the DNA 
(mouse kidney) sonication efficiency for the Bioruptor Pico and a probe sonication using different numbers 
of cycles or sonication times. D) SDS-page of HeLa input and the SP3 unbound (red) and bead-bound (blue) 
fraction of proteins using four different concentrations of spike-in DNA (mouse kidney) (0.5 μg, 1 μg, 2 μg, 
and 5 μg). E-F) Number of identified and quantified proteins (E) and peptides (F) with different protein input 
amounts (50 μg (light blue) to 250 μg (dark blue)) and different paramagnetic bead types (ReSyn Amine, 
classic carboxyl SP3 beads, ReSyn HILIC). G) SDS-page of constant HeLa input and the SP3 unbound (red) and 
bead-bound (blue) fraction of proteins using five different concentrations of SP3 beads (400 μg, 300 μg, 200 
μg, 100 μg, 50 μg). H) SDS-page of varying HeLa input (30 μg, 20 μg, 10 μg, 5 μg, 2 μg) and the SP3 unbound 
(red) and bead-bound (blue) fraction of proteins using a constant amount of 200 μg SP3 beads.  



Supplementary Figures 

161 

 

Supplementary Figure 3: Comparison of single-pot solid-phase-enhancer sample preparation (SP3) to in-

solution digest and filter-aided sample preparation (FASP). A) Venn-diagram of identified HeLa peptides in 
all three methods. B) Boxplot of molecular weight distribution obtained from all three methods compared to 
the whole Uniprot human proteome. C) Boxplot of hydrophobicity GRAVY score distribution obtained from 
all three methods compared to the whole Uniprot human proteome. D) Gene ontology enrichment of cellular 
compartments for the in-solution digest (blue) and SP3 processed samples (orange), showing an almost 
identical distribution of protein origins. 
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Supplementary Figure 4: Peptide library generation and matching-between-runs. A) Comparison of HeLa 
runs with and without prior high-pH fractionation and concatenation. B) Comparison of high-pH performance 
with eight fractions per run and with ammonium formate (dark blue) or ammonium hydroxide (light blue) 
buffer. The number of peptide spectrum matches (upper panel) and identified and quantified proteins (lower 
panel) are illustrated. C) Separation performance of high-pH runs for ammonium formate (dark blue) or 
ammonium hydroxide (light blue), shown by the number of fractions in which a peptide sequence can be 
found. D) Peptide and protein numbers achieved within different libraries using either 1-hour or 2-hours 
gradients and with different numbers of high-pH fractions (8, 16, 24, 32). E) Comparison of identified and 
quantified proteins with either matching-between runs (black) or by MS2 (grey) using a Top-2 or Top-20 
method. F) Comparison of numbers of identified peptides with either matching-between runs (black) or by 
MS2 (grey) using a Top-2 or Top-20 method. G) Comparison of the coefficient of variation (CV) [%] distribution 
using a Top-2 or Top-20 method and binned according to the average protein abundance (A (lowest), B, C, 
and D (highest)). 
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Supplementary Figure 5: Correlation of protein abundance and reproducible quantification. A) Four protein 
abundance bins (A, B, C, and D) were defined and cumulative frequency distributions [%] of the calculated 
CVs of quantified proteins (including match-between-runs) within each bin are plotted. The corresponding 
average CV values per group are shown. The table summarizes the percentage of quantified proteins 
observed with a CV higher or lower than 10%, 30%, and 50% for each abundance bin. B) Same as in A, the 
data are plotted without the use of match-between-runs. C) log2 LFQ intensities of selected individual 
proteins and the sum of all proteins within a sample are plotted across all 60 measurements. C) Illustration 
of variation of manually selected housekeeping proteins across the entire protein abundance range and 
across all 60 raw files. Modified from Mueller et al., Mol. Syst. Biol., 2020.  



Supplementary Figures 

164 

 

Supplementary Figure 6: Differential expression analysis and gene-set enrichment of papillary sub-

subgroups and lepidic or papillary against all others. A) t-distributed stochastic neighbor embedding (t-SNE) 
analysis of the proteome data corrected via a linear regression model. B) Differential expression analysis 
between subclusters papillary_1 and papillary_2 (see A) using Limma moderated t-statistics. Proteins passing 
significance thresholds of -log10 p-value < 0.05 (Benjamini-Hochberg adjusted) and an absolute log2 fold 
change >1 are highlighted in orange. C) The number of differentially expressed proteins in the papillary 
subcluster comparison. D) Gene set enrichment analysis of p-value ranked proteins for papillary_1 versus 
papillary_2. Gene sets with an adjusted -log10 p-value < 0.05 were considered significant and are highlighted 
in dark color. E) STRING network analysis of the 167 significant proteins (-log10 p-value < 0.05 and an absolute 
log2 fold change >1) in lepidic versus all other samples. F) Gene set enrichment analysis of p-value ranked 
proteins for lepidic versus all other samples. G) Gene set enrichment analysis of p-value ranked proteins for 
papillary versus all other samples. In both GSEA analyses, gene sets with an adjusted -log10 p-value < 0.05 
were considered significant and are highlighted in dark color. Modified from Mueller et al., Mol. Syst. Biol., 
2020.  
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Supplementary Figure 7: CXorf67-mediated inhibition of PRC2 complex. A) Schematic illustration of full-
length CXorf67 and the three deletion mutants: amino acids 1 to 150 (CX-N), II) amino acids 151 to 300 (CX-
M), and III) amino acids 301 to 503 (CX-X). B) Western blot confirming the selective expression of deletion 
mutants or full-length CXorf67. C) Western blot confirming the additional localization to the nucleus. D) 
Staining of transduced cell lines for the presence of Flag-tagged proteins (CXorf67, CX-N, CX-M, and CX-C) as 
well as H3K27me3 mark. E-F) Global expression of PRC2 target genes per subgroup on the transcriptome-
level (E) and proteome-level (F). The experiments illustrated in panel A to D were performed by Dr. Jens 
Huebner. The transcriptome data were provided by our collaborators from Pajtler et al., 2015. Panel A-D were 
modified from Huebner et al., Neurooncology., 2019. 

  



Supplementary Figures 

166 

 

Supplementary Figure 8: Determination of top 10 signature proteins per ependymoma (EPN) subgroup. A) 
t-distributed stochastic neighbor embedding (t-SNE) analysis of the top 10 signature proteins determined by 
a differential (DE) expression analysis. B) Heatmap illustration of the top 10 signature proteins per EPN 
subgroup. LFQ expression values [log2] are shown as a ratio to the mean expression in all other tumors. C-E) 
Boxplot illustration of QPRT (C), GPR50 (D), and CYB5R1 (E) protein expression across all EPN subgroups in 
the global tumor proteome. 
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Supplementary Figure 9: Determining differentially abundant proteins between ST-EPN-RELA and PF-EPN-

A cell lines and their extracellular vesicle isolates. A-G) Differential expression (DE) analysis using Limma 
moderated t-statistics for the comparison of ST-EPN-RELA and PF-EPN-A cell lines, their extracellular vesicles 
(exosomes and microvesicles), and between the subgroup-specific vesicle fractions. Proteins are significant 
at a threshold of -log10 p-value < 0.05 (Benjamini-Hochberg adjusted), and an absolute log2 fold change of >1 
are highlighted. 
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Supplementary Figure 10: Candidate proteins and their expression in extracellular vesicles and the global 

tumor proteome. A-C) Boxplot illustration of ACOT7 (A), NES (B), and L1CAM (C) protein expression across 
their cell lines (blue) and extracellular vesicles (exosomes (red) and microvesicle (green)), and across all EPN 
subgroups in the global tumor proteome. 
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Supplementary Figure 11: Candidate proteins and their expression in extracellular vesicles and the global 

tumor proteome. A-C) Boxplot illustration of STEAP3 (A), LAMA2 (B), and FAPR1 (C) protein expression across 
their cell lines (blue) and extracellular vesicles (exosomes (red) and microvesicle (green)), and across all EPN 
subgroups in the global tumor proteome. 

 


