
Dissertation

submitted to the Combined Faculty of Natural Sciences and Mathematics

of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Andreas Baumbach
born in: Hünfeld, Deutschland

Oral examination: 2020 November 11th

From microscopic dynamics to ensemble

behavior in spiking neural networks

Referees:
Dr. Johannes Schemmel (Heidelberg University)

Prof. Dr. Thomas Gasenzer (Heidelberg University)

From microscopic dynamics to ensemble behavior in spiking neural
networks

Dynamical oddities and their functional implications

As the end of Moore’s law nears and the energy demand for computing increases the
search for alternative means of computation becomes more and more relevant. One
natural paragon is the animal brain as one of the only known naturally occurring
general-purpose computing systems. While its computing model is largely unexplained,
it has been shown that biologically inspired artificial neurons – subject to high-frequency
noise – can approximately implement Boltzmann machines. In the first part of this the-
sis we explore such a spike-based Bayesian computing framework, compare its observed
dynamics to simpler stochastic samplers and develop an improved Markovian model for
single LIF neurons. The second part of the thesis then focuses on ensemble phenomena,
where we show that a nearest-neighbor connected lattice shows a qualitatively different
phase diagrams for different microscopic neuron models. Nevertheless, we can recover
the correct critical exponent γ in all cases. Finally, we show two functional demon-
strations, including a representation of quantum states, on the accelerated mixed-signal
neuromorphic system BrainScaleS. This paves the way for a better understanding of the
capabilities of this computational model.

Von mikroskopischer Dynamik zu Ensembleverhalten von spikenden
neuronalen Netzwerken

Dynamische Besonderheiten und ihre funktionalen Implikationen

Durch das sich abzeichnende Ende der Gültigkeit des Moorschen Gesetzes und des kon-
tinuierlich steigenden Energiebedarfs der weltweiten Computerinfrastruktur steigt die
Relevanz der Suche nach alternativen Berechnungskonzepten. Als eines der wenigen in
der Natur auftretenden Berechnungsobjekte stellt das biologische Gehirn ein nahelie-
gendes Vorbild da. Es ist gezeigt worden, dass biologisch inspirierte LIF Neuronen, un-
ter hochfrequentem Poisson Stimulus, näherungsweise klassische Boltzmannmaschinen
implementieren können. In der ersten Hälfte dieser Dissertation untersuchen wir die-
sen spike-basierte Bayesschen Ansatz, vergleichen dessen zu beobachtende Dynamik mit
einfacheren statistischen Samplern und entwickeln schlußendlich ein verbessertes Mar-
kov’sches Modell. Im zweiten Teil dieser Dissertation untersuchen wir dann Ensemble-
phänomene, wo wir zeigen, dass die Phasendiagramme von nächsten-Nachbarn verbun-
dener Gittern je nach Neuronmodell qualitative Unterschiede aufzeigen. Nichtsdestotrotz
finden wir in allen Fällen den korrekten kritischen Exponenenten γ. Schlußendlich prä-
sentieren wir noch zwei funktionale Anwendungen, unter anderem die Repräsentation
quantenmechanischer Zustände, auf dem beschleunigten mixed-signal System BrainSca-
leS.

5

Contents

1. Introduction 9

2. Background: Biology & Probabilistic computing 13
2.1. Biological neurons in computational neuroscience 14

2.1.1. Leaky-integrate and fire (LIF) neuron model 17
2.2. Probabilistic computing . 24

2.2.1. Boltzmann distributions over binary random variables 25
2.2.2. Gibbs sampling and Kullback-Leibler divergence 27
2.2.3. Neuronal sampling following Buesing et al. [2011] 33
2.2.4. Sampling with LIF neurons . 37

3. Dynamical aspects of LIF sampling 45
3.1. Issues originating in the interaction shapes 46

3.1.1. Bursting neurons and short-term plasticity 46
3.1.2. Long-term influences of synaptic input 49
3.1.3. Autocorrelation or when is a new state a new state? 51

3.2. Where does the noise come from? . 55
3.2.1. Poisson sources . 56
3.2.2. On-chip sources . 60
3.2.3. Random network . 62

3.3. A Markovian description of LIF sampling 65
3.3.1. LIF activation function - revisited 65
3.3.2. Response to a single synaptic input spike 73
3.3.3. Response to multiple input spikes 79

3.4. Comparison of the models . 84

4. Ensemble phenomena in Ising-like networks of spiking neurons 89
4.1. Temperature in LIF networks - spike based tempering 90

4.1.1. Temperature and sampling . 90
4.1.2. Influence of background variations 93
4.1.3. Effects on the imprinted distribution 97

4.2. A simple network: The Ising model . 101
4.2.1. Setup . 101
4.2.2. Critical temperature Tcrit . 102
4.2.3. Curie law and hysteresis . 104
4.2.4. Connection to Boltzmann machines 106

7

4.3. Phase diagram of Ising-like networks with Buesing neurons 108
4.3.1. Rectangular interaction . 108
4.3.2. Exponential interactions . 112
4.3.3. Origin of the differences . 116

4.4. Phase diagram of Ising-like LIF networks 119

5. Applications of LIF sampling on Accelerated Analog Hardware 121
5.1. Discriminative and generative tasks on BrainScaleS-1 123

5.1.1. The BrainScaleS-1 system . 123
5.1.2. Experimental setup and training 128
5.1.3. Results . 132

5.2. Representing quantum states with BrainScaleS-2 137
5.2.1. The BrainScaleS-2 system . 137
5.2.2. A spiking implementation of POVMs 144
5.2.3. Results . 149

6. Discussion and Outlook 155

7. Acknowledgments 159

A. Calculations 161
A.1. Conditional Probability . 161
A.2. Spin to Neural relations . 162
A.3. Energy of Two State Systems . 162
A.4. Wake-Sleep derivation . 164

B. Simulation Parameters 167

C. Software and Tooling 175
C.1. Experiment Control on bwNEMO . 175
C.2. HXSampling . 178
C.3. Neuralsampling . 182

D. Publications and contributions 187

Acronyms 189

List of Figures 205

List of Tables 207

8

1. Introduction

When we think about computers, we tend to think about these boxes under our desks
or the laptops in our bags and recently the phones in our pockets. Computers have
become truly ubiquitous to a point where modern human life could not exists without
them. At least not without dramatic changes, from how supply chains and logistics in
our society work to how we communicate in our personal lives. This ubiquity is largely
rooted in the amount of additional compute power that became available. The number
of transistors – the building blocks of processors – per unit area roughly doubled every
one to two years [Moore et al., 1965]. This, so-called Moore’s law, yielded similarly
increased performance over time. In combination with our improved understanding of
general computing concepts this allowed us to build compiler technology that permit very
abstract problem description. For problems which are sufficiently precisely understood
there exists an enormous amount of support infrastructure – reducing the required level
of understanding for the end user – which admit the ubiquitous application of raw
compute power.

This ability comes at price in terms of required energy consumption. While the tran-
sistor sizes shrank to a few nanometers [Yeap et al., 2019], the energy density increased.
Due to the currently reached feature sizes, which are only two orders of magnitude larger
than the size of a single atom ≈ 0.1 nm, the end of Moore’s law is near or already reached1

[Khan et al., 2018]. Due to the exponential growth of the general-purpose computing
systems, specialized solutions tended to provide limited, at least time-wise, value (for ex-
ample the GRAPE boards [Ebisuzaki et al., 1993] for astrophysical N-body simulations
were superseded by standard graphics cards). Nowadays, as the natural improvements
from Moore’s law diminish, there is an emergence of a more diverse set of (co-)pro-
cessors with different performance characteristics. These are the spiritual successors of
dedicated on-chip compute circuits (e.g. floating point executors) and optimize highly
specific workloads, be that BitCoin mining or artificial network evaluations [Jouppi et al.,
2017]. These efforts are partially driven by the desire for accelerated computations, but
also through the increased energy efficiency and thus economical cost2. By 2030, it is
expected that between 8 % and 50 % of the global energy consumption will be expended
for computing [Andrae and Edler, 2015]. It is this latter point that makes the search
for new compute paradigms and platforms, if not desperately needed, then at least very
valuable.

Besides the obvious elephant in the room of quantum computing3, it is the human
1At least if we continue to build transistors from atoms.
2We save the discussion about the ecological impact for a different day.
3Which will always be well-financed as it promises to efficiently solve the problem of integer factorization

[Shor, 1994]. As this underpins all of our modern cryptography, there is an obvious incentive there.

9

1. Introduction

brain that is a ”computer” which occurs in nature. There are two ways to motivate
the research of the function of the human brain: On the one hand, we would like to
understand it as part of the medical research, i.e., the alleviation of physical trauma
and cognitive diseases. Here, we would ideally want to understand its mechanics in a
way that we can ”repair” it, i.e., we want to understand the specific functionality of the
brain. However, if we are simply interested in the computational properties, we look at
the general properties that make it the only truly intelligent4 object in nature. While
state-of-the-art implementations of a Go player, which only selects the moves and does
not actually places the stones, or a StarCraft-II bot can outclass their human opponents,
these implementations require multiple kilowatts of power [Silver et al., 2017, Vinyals
et al., 2019]. The human brain can accomplish these tasks within its power budget of
20 W [Drubach, 2000]. Even though this represents a fifth of the power consumption of
the human body [Rigden, 1996] – thereby generating a significant amount of evolutionary
pressure – most of it is base load and not dependent on the specific higher cognitive task
like the selection of the next Go move.

In a way it is the flexibility of the general-purpose von-Neumann architecture with
its fundamental separation between memory and computation, that dictates its energy
requirements. Data has to move from memory to the processing unit and the result
is then written back to memory. It is this transfer that generates most of the energy
cost. Unlike von-Neumann computers, the brain does not distinguish between compute
components and memory components. Rather it is a collection of billions of neurons
that form a directed and weighted compute graph through which the sensory input
propagates in order to generate the action. It is in this connection structure that our
memory has to be embedded.

Modern, neural-network-based machine learning uses this kind of ”brain-inspired”
computational graph in order to mimic the implementation of the human brain. To
understand why and how the brain works – and why typical neural networks are fun-
damentally different – it is instructive to think about what traditional algorithmic com-
puting does well and where it struggles. Taking the example of image recognition: Two,
at least superficially, near-identical tasks of a) deciding whether two copies of an image
are identical or b) whether two images show the same object, require vastly different
algorithmic implementations. For the first task it is sufficient to compare the two im-
ages pixel-by-pixel. The problem here is solely that comparing all 8 million pixel of a
4K-image is tedious. The second task, on the other hand, requires an understanding of
what is depicted in the image. It requires context and, up to a point, personal judgment
of what we still consider to be the same object. This second-to-last sentence is a fasci-
nating example of human language. Neither requires nor understanding nor depicted has
a readily available – in the form of a precise mathematical statement – definition of their
meaning. It is this kind of fuzzy task description – where we humans can all agree on the
meaning, but where we are unable to generate a precise definition which can be written
down as an algorithmic solution – for which we are looking for ”intelligent” solutions.

Traditional neural networks ”solve” this by using vast amounts of pre-labeled examples

4There is an argument to be made that we humans just delude ourselves, but we will ignore that option.

10

on which they train a regression model. These models can, depending on the training
data, become exceptionally good classifiers of the training set and therefore, at least
ideally, solve exactly the problem they were trained on (cf. AlphaGo, StarCraft-II).
In contrast, we humans, at least typically, do not solve such tasks in isolation5, but
rather they naturally emerge throughout our life. We humans have a sense of what feels
natural, that essentially represents consistency with prior experience6. The Bayesian
brain hypothesis [Doya et al., 2007] describes how the brain forms a (stochastic) model as
a prior for the world and updates it based on the incorporation of new evidence generated
by the sensory organs. In particular, it explains how we deal so well with ambiguous
input such as language. This also gives rise to an enormous amount of redundancy within
human-to-human communication: You are able to raed this snetence, even thgouh mnay
of the wdros are mieepsllsd and yuor biarn has to dcdiee which wrod was maent to be
wtreitn by the author7. This biological implementation of error correction allows for a
nuanced level of coherence.

In order to reproduce the brain’s ability we need to answer the question: How does
the brain implement its computation mechanistically? In the spirit of

R. Feynman: What I cannot create, I do not understand.

we would ultimately like to be able to construct a (physical) model that reproduces the
essential features of the brain’s computation. This is both in order to prove that we un-
derstand it but also in order to have a model to test hypothesis on, without potentially
harming humans and thereby alleviating some ethical concerns. As these models are
an awkward fit for traditional von-Neumann hardware, this results in expensive simula-
tions. The field of neuromorphic engineering – going back to Caver Mead [Mead, 1990] –
tries to implement a physical model that mimics the brain. The hallmark of the neural
communication is its spiking nature. While we assume at least some computational rel-
evance, i.e., whether spikes are incidental or fundamental, this is still an openly debated
question in neuroscience. On the other hand there seems to be a wide consensus of
potential benefits from energetic and temporal reasons. While the term ”neuromorphic”
system expanded its meaning over time, we use it only to refer to spike-based neural
network implementations. Without knowing the complete connectome we are in need
for a compute model that incorporates the information of the spike times and the sparse
connectivity and activity of the brain.

One spiking model of Bayesian computing is based on networks of Leaky-integrate
and fire (LIF) neurons. Mimicking the diverse stimulus of cortical neurons by high-
frequency Poisson noise sources, Petrovici et al. have shown that the dynamics of such
networks can be linked to binary Boltzmann distributions [Petrovici et al., 2016]. It has

5There is an argument that academic tests are such isolated tasks.
6This goes so far that in case of inconsistent sensory input the natural reaction of the human body is

to vomit as it assumes that we took something unbecoming. For example, this requires a bird flight
simulator to blow air into your face rather than your neck [Pinotti, 2020].

7In fact this sentence is harder than the original psychological experiment. It simply shuffles the letters
and as such has a notable effect on the understandability. If we had only exchange letters with the
same height structure the effort would be significantly reduced.

11

1. Introduction

been shown that this kind of Bayesian model can implement both generative as well as
discriminative networks [Petrovici et al., 2016, Leng et al., 2018, Dold et al., 2019, Kungl
et al., 2019]. However, these results have also shown that the description as Boltzmann
machines is limited.

In this thesis we further the understanding of this link between a purely statistical de-
scription on the one hand and the complex LIF dynamics on the other hand. We start in
Chapter 2 by introducing the necessary background information both regarding models
for biological neurons as well as the theory of probabilistic computing. We will end this
first chapter with the introduction of the LIF sampling framework by [Petrovici et al.,
2016] before investigating the single neuron behavior in more detail in Chapter 3. Here,
we will first take a look at the complications that the LIF dynamics introduce before
developing the more detailed LMM. In Chapter 4 we then turn to the dynamics of ensem-
bles of such neurons. We begin by introducing a dynamical notion of temperature. Thus
equipped, we establish a link between the classical Ising model for ferromagnetism and
Boltzmann machines, before investigating the differences between the phase diagrams
for Ising-like networks of the different neuron models we introduced so far. Finally, in
Chapter 5, we present two functional applications of this Bayesian computing framework
on neuromorphic hardware, before ending the monograph in Chapter 6 with a discussion
and outlook for future work.

12

2. Background: Biology & Probabilistic
computing

13

2. Background: Biology & Probabilistic computing

Figure 2.1.: A biological neuron: Stylistic representation of a biological neuron cell.
Besides the common cell features like the nucleus, mitochondria, (poly)ri-
bosomes, Golgi apparatus and the endoplasmatic reticulum (ER), neurons
have characteristic features like the axon (myelin sheath surrounded ”cable”
going to the background) and the dendritic trees (tree like structures in red
on the left). Together with the main cell body, also called soma, the last
two form the computational resources of the neuron. The axon acts as the
output and connects via synapses to the dendritic trees or directly the soma
of other neurons. Figure taken from [Wikipedia, contributors, 2020].

2.1. Biological neurons in computational neuroscience

Before we discuss the interpretative models [Dayan and Abbott, 2001] used to describe
biological neurons, let’s briefly discuss biological neurons themselves. The human brain
has approximately 50 × 109 to 100 × 109 neurons [von Bartheld et al., 2016] and in total
around 15 × 1014 synaptic connections between them [Pakkenberg et al., 2003]. Later we
will model these neural network as a series of point-neurons with instantaneous connec-
tions between them, however, we need to remember that this is a drastic simplification.

Biological neurons are extended cells, a schematic representation is shown in Fig. 2.1.
We will ignore all of the inner cell structure, the cell organelles like the nucleus where

14

2.1. Biological neurons in computational neuroscience

the DNA is located, the mitochondria which are the local power stations, the ribosomes
and the endoplasmatic reticulum (ER) that synthesize new proteins and other molecules
for both inside and outside the neuron and the Golgi apparatus which packs proteins
for the outside into vesicles and collect received vesicles. The microtubules are the main
skeleton of the cell and give it its characteristic shape [Welsch and Deller, 2016]. These
are all common features of biological cells and, since they are not specific to neurons, we
will not return to discuss them.

For neurons in particular, most of the information processing happens via the (chemi-
cal and electrical) potential difference across the cell membrane (red surface in Fig. 2.1).
A neuron has three distinct parts: The dendritic trees, the main cell body (soma) and
the axon.

The dendritic trees act as the collection site for input to the neuron. Here synap-
tic input is collected and injected into the soma. The typical neuron in the cortex is
estimated to receive input from 1 × 104 other neurons [Pakkenberg et al., 2003]. This
connectivity number or fan-in depends on the brain area and should be taken as an order
of magnitude approximation, rather than a precise measurement.

The main cell body, the soma, acts as a capacitance and integrates the inputs that
are injected from the dendritic trees. This input is implemented in form of different
ion-channels spanning through the cell membrane. The main ion types are sodium
Na+, potassium K+, calcium Ca2+ and chloride Cl– . There are two large classes of
pathways through which the cell may exchange ions with its surrounding: The passive
ion-channels and the active ion-pumps. The passive channels are driven by the chemical
and/or electrical imbalance and allow specific ion types to diffusively pass through the
membrane. The pumps can move ions against the chemical/electrical gradient under
usage of energy (ATP). The resting potential of neurons, i.e., the electric potential at
which the neuron is in equilibrium with the intra-cellar medium, largely corresponds to
the diffusion potential of the K+-ions at about −70 mV with respect to the intercellular
medium.

The ion channels have a peculiar eigendynamik, namely once the membrane potential
exceeds a threshold value1, runaway dynamics of the voltage-gated ion channels are trig-
gered. After stimulus-triggered injections of Na+ or Ca2+ have increased the membrane
voltage beyond the threshold (≈ −55 mV), the increased potential blocks the standard
K+ channels which prevents an outflux of K+ ions and hence increases the potential.
For a sufficiently high voltage voltage-gated Na+ channels get triggered and enter a
positive feedback loop which triggers the action potential (AP) or spike (cf. Fig. 2.2a).
This spike, over the timescale of less than 1 ms, pulls the membrane voltage upwards
above 0 mV and depolarizes the membrane. As the sodium channels close over time the
slower potassium channels open. This allows the cell membrane to restore the electrical
equilibrium again by releasing the excess K+ ions (repolarization), which takes again
less than 1 ms. Due to voltage-gated Ca2+-channels there is now a Ca2+ excess in the
neuron cell which triggers additional calcium-gated potassium channels which further
reduce the membrane potential below its normal resting value (hyperpolarization). At

1In practice, the crossing of the threshold also needs to be sharp enough to trigger an action potential.

15

2. Background: Biology & Probabilistic computing

V
ol

ta
ge

 (
m

V
)

D
ep

ol
ar

iz
at

io
n R

epolarization

Threshold

Stimulus

Action
potential

Failed
initiations

Refractory
period

Resting state

+40

0

-55

-70

0 1 2 3 4 5
Time (ms)

a b

Figure 2.2.: Spike-based communication between biological neurons: a The ac-
tion potential (AP), also called spike, is triggered for sufficient excitatory
input, such that the membrane potential crosses a threshold. This trig-
gers the characteristic eigendynamik, resulting in the prototypical voltage
spike (depolarization), followed by an hyperpolarization period in which
the neuron’s activity is suppressed (refractory period). This voltage spike
travels along the axon (see Fig. 2.1) and triggers synaptic connections to-
wards the dendritic trees of the post-synaptic neurons. Figure adapted from
[Chris73, 2007]. b Sketch of a chemical synapse. The voltage increase on the
axon side triggers the release of neurotransmitters into the synaptic cleft.
On the post-synaptic side these bind to receptor proteins and open ion-
channels, thereby eliciting a post-synaptic potential (PSP). Figure adapted
from [Splettstoesser, 2015].

the same time the Na+ channels, responsible for the runaway dynamics from before, are
suppressed and the neuron therefore unable to elicit a new spike. This phase is called
the refractory period and is typically a few ms long. Hodgkin and Huxley first intro-
duced a functional model that accurately represents this prototypical action potential
generation [Hodgkin and Huxley, 1952]. In particular, the form of the voltage spike is
independent of the input2 and does not contain additional information beyond its spike
time [Hodgkin and Huxley, 1952].

So far we have discussed the voltage evolution at the soma. Its membrane spike
transfers to the axon at the axon hillock and propagates along it. For our purposes here
the signal forms a characteristic action potential that does not (significantly) decay. The
axon splits up into multiple axon terminal which themselves connect to the dendritic
trees or directly the soma of other neurons [Welsch and Deller, 2016]. These connections
are called synapses. The neuron that triggered the spike along the axon is called the
pre-synaptic neuron. The neuron which receives the input is called the post-synaptic
neuron. Whenever a voltage spike from the pre-synaptic neuron reaches the synapse it

2But not necessarily of the neuron type [Bean, 2007].

16

2.1. Biological neurons in computational neuroscience

triggers a release of neurotransmitters into the synaptic cleft (cf. Fig. 2.2b).
There are two classes of neurons, excitatory and inhibitory ones. On the post-synaptic

side of the synaptic cleft these bind to ion channels. This binding results in an effective
post-synaptic current (PSC) to or from the cell, which in turn triggers a shift in the
membrane potential of the post-synaptic neuron. For excitatory connections this shift
is positive, i.e., towards the threshold value and the resulting potential change is an
excitatory post-synaptic potential (EPSP). For inhibitory connections this shift is neg-
ative, i.e., away from the threshold and the resulting potential change is an inhibitory
post-synaptic potential (IPSP). The soma has a finite capacitance and thereby acts as
a low-pass filter on the synaptic input, be it mediated via the dendritic tree or directly
attached to the soma.

A biological neuron has either exclusively inhibitory or exclusively excitatory effect
on all its post-synaptic partners. This is called Dale’s law [Dale, 1953]. Even though
exceptions have been reported [Sulzer and Rayport, 2000], it is widely accepted that
models should work with neurons that are either purely excitatory or purely inhibitory
[Dayan and Abbott, 2001]. We will violate this ”law” in most of our experiments. The
assumption is that in larger networks we could find solutions of equivalent performance
which do obey Dale’s law. Our description of biological neurons is by no means complete
and the interested reader is referred to e.g. [Kandel et al., 2000]. For us this high-level
understanding of neurons as point objects which integrate synaptic input and emit spikes
is sufficient.

2.1.1. Leaky-integrate and fire (LIF) neuron model
If we accept that neurons are essentially capacitors and their main method of communi-
cation are spikes then the arguably simplest model for them is the Leaky-integrate and
fire (LIF) model [Brunel and Van Rossum, 2007]. It is used extensively in the computa-
tional neuroscience community, both in neuromorphic hardware platforms (see [Thakur
et al., 2018] for a review) and simulations of spiking networks [Tavanaei et al., 2019].
In particular, the BrainScaleS neuromorphic platforms can implement LIF neurons (cf.
Chapter 5). While it is the simplest model it is by far not the only one, the interested
reader is referred to [Gerstner and Kistler, 2002b] for an extensive collection of spiking
neuron models.

The LIF model is arguably what happens when you leave electrical engineers alone
to build a neuron: The soma is represented by a capacitor Cm, which is connected to
a leakage potential Vl via a leak conductance gl. The dendritic trees are represented
by synaptic input circuits (see Fig. 2.3 for a conductance-based model) implementing a
time-dependent input current Isyn(t). The form of Isyn is discussed below (cf. Eqs. (2.8)
and (2.12)). The differential equation governing the evolution of the membrane potential
u (voltage over Cm) can then be constructed via Kirchhoff’s rules

Cm
du

dt
= gl (Vl − u) + Isyn(t) (2.1)

As the form of the action potential or spike does not contain any information, the spike
mechanism is implemented via a simple threshold comparison. Whenever the neuron

17

2. Background: Biology & Probabilistic computing

Figure 2.3.: LIF equivalent circuit: Modeling the neuron as a capacitance Cm the
membrane potential u is generated by the conductances to the leak Vl, ex-
citatory reversal V rev

exc and inhibitory reversal V rev
inh potentials. The spiking

mechanism is modeled by the comparator with the threshold Vthresh volt-
age. If u > Vthresh a digital spike is generated and the membrane capacitance
short circuited to the reset potential Vreset for the refractory period τref. For
a current-based LIF neuron the synaptic input is modeled by a time depen-
dent current source, rather than the shown conductances (in reality they
would be time dependent). Figure taken from [Stöckel, 2015].

crosses the threshold value Vthresh its membrane potential u is short-circuited to a reset
value Vreset for a refractory period τref:

u = Vreset for t ∈ (tspk, tspk + τref) if u(tspk) = Vthresh (2.2)

Together with Eq. (2.1) this generates a list of output spike times for each neuron, its
so-called spike-train:

S(t) =
∑

tspk for neuron
δ (t− tspk) (2.3)

This spike train contains all the information post-synaptic neurons can use and therefore
this is all we need to communicate within the model.

Current-based synaptic connections

Spike-based input is modeled via kernels κ(t). In the current-based (CUBA) model this
kernel directly represents the post-synaptic current (PSC), which gives the input current

18

2.1. Biological neurons in computational neuroscience

100 110 120 130 140 150 160
time [ms]

PS
P

[re
sc

al
ed

]
CUBA
COBA

Figure 2.4.: Isolated PSP: Normalized time course of the PSP for a single spike input
to a neuron with current (blue) or conductance (orange) synaptic input with
τm = 2 ms and τsyn = 10 ms. The conductance-based PSP rises faster due to
the input-induced conductance reducing the effective membrane time con-
stant τm, which results in the decaying slope of the COBA PSP. Simulation
parameters can be found in Appendix B.1.1.

from one particular pre-synaptic partner i as

Isyn
i (t) =

∑
tispk

Wiκ(t− tispk) (2.4)

with the strength of the synaptic connection Wi and the kernel κ(t). Due to causality
we require κ(t < 0) = 0. The sum goes over all spike times of the pre-synaptic neuron
i. In the simplest model, which is used throughout this thesis, the currents of multiple
synapses add up linearly, such that the total synaptic input becomes:

Isyn(t) =
∑
syn i

Isyn
i (t) =

∑
syn i

∑
tispk

Wiκ(t− tspk). (2.5)

We mainly use an exponentially decaying synaptic kernel

κ(t) = Θ(t) exp
(
− t

τsyn

)
, (2.6)

which is one of the more popular choices, with Θ(t) being the Heaviside step function.
Other popular choices include the delta peak kernel κ(t) = δ(t) and alpha-shaped kernel

19

2. Background: Biology & Probabilistic computing

κ(t) = Θ(t) t
τsyn

exp
(
− t

τsyn

)
. We choose the exponential decay as it simulates an im-

mediate release of available neurotransmitters (δ-function) on passing of the spike, with
exponential decay of the efficacy of the ion channels afterwards on the time scale of the
synaptic time constant τsyn:

dIsyn

dt
= −I

syn

τsyn
+Wδ (t− tspk) . (2.7)

It lends itself to a rather simple implementation in electronic circuits which we will be
using in Chapter 5. We can find the instantaneous input current Isyn

i (t) from the synapse
i by integrating Eq. (2.7) for a given spike train Si, resulting in:

Isyn
i =

∑
tispk∈Si

WiΘ(t− tispk) exp

(
t− tispk
τsyn

)
(2.8)

Current-based synapses are used to represent synapses that are located far away from
the soma. The synaptic interaction triggers additional pathways, i.e., conductances, far
away from the soma and therefore does not contribute to the leak conductance of the
main body. As such a current source is an appropriate model.

The resulting membrane time course u(t) can be calculated analytically [Petrovici,
2015] to be:

u(t) = Vl+
Iext
gl

+
∑
syn k

∑
spk s

τksynWk

gl
(
τksyn − τm

)Θ(t− tspk)

[
exp

(
−
t− tspk
τksyn

)
− exp

(
−
t− tspk
τm

)]
(2.9)

with the membrane time constant
τm =

Cm

gl
. (2.10)

The difference of Eq. (2.9) to the baseline level Vl +
Iext
gl

is the sum of all PSP each of
which follows a difference of exponentials (cf. blue curve in Fig. 2.4).

Conductance-based synaptic connections

The other large class of synapse models is conductance-based. Here the effect of incom-
ing synaptic activity mediates the (ion-specific) permeability between the cell and its
surrounding. A spike elicits a PSC (this time representing the post-synaptic conduc-
tance) that, depending on the ion type, increases the neuron’s coupling to an excitatory
V rev

exc or an inhibitory reversal potential V rev
inh . Conductance-based neurons are used to

model synaptic connections at or close to the soma, where they also contribute to the
effective leak conductance gl and hence influence the membrane time constant τm.

The PSC obeys a similar ODE than the synaptic current Eq. (2.7):

dg

dt
= − g

τsyn
+Wδ (t− tspk) (2.11)

20

2.1. Biological neurons in computational neuroscience

Note thatW now has the unit of a conductance (siemens) rather than a current (ampere).
Integrating this over an input spike train S gives the time course of the conductance of
a particular synaptic connection i:

gi =
∑

tispk∈Si

WiΘ(t− tispk) exp

(
t− tispk
τsyn

)
. (2.12)

The total synaptic input is again the sum over the current generated by all incoming
synapses, with all excitatory connections contributing to the coupling to V rev

exc and all
inhibitory ones to V rev

inh :

Isyn(t) =
∑

exc syn i

gi(t) (V
rev

exc − u(t)) +
∑

inh syn j

gj(t) (V
rev

inh − u(t)) (2.13)

The resulting membrane time course u(t), at least in general, cannot be calculated
analytically as the effective membrane time constant is now also time dependent. We
will later use a high-conductance state (HCS) [Kumar et al., 2008] generated by high-
frequency Poisson input such that we can make the assumption:

gsyn,tot(t) =
∑

exc syn i

gi(t) +
∑

inh syn j

gj(t) ≈ 〈gtot〉 (2.14)

yielding a quasi-constant effective membrane time constant

τ eff =
Cm

gl + gsyn,tot
≈
〈
τ eff
〉

(2.15)

and hence we can calculate the PSP of a single additional synaptic input to be [Petrovici,
2015]

u(t)−〈u〉 =
τsyn

〈
τ eff〉W (V rev − 〈u〉)
Cm (τsyn − 〈τ eff〉)

Θ (t− tspk)

[
exp

(
−
t− tspk
τsyn

)
− exp

(
−
t− tspk
〈τ eff〉

)]
(2.16)

where the reversal potential V rev depends on the type of the synapse. The PSP is now
the difference to the average membrane potential ū = 〈u〉 evaluated in an ensemble
sense. I.e., the mean of the membrane potential of a collection of neurons with identical
parameters and subject to the same noise configuration. The value of ū depends on both
the neuron parameters, and the noise configuration (cf. Section 4.1).

Without the simplifying assumptions the PSP shape is more complicated, see orange
curve in Fig. 2.4 for an isolated PSP. It rises faster due to the decreased effective mem-
brane time constant3 τm. The slower decay is due to the voltage-dependent current
strength, which increases for a fixed g(t) for a decreased membrane potential u.

3The rising flank of the PSP corresponds to the lower of the two relevant time constants τm and τsyn,
the falling flank to the higher. We will only use configurations in which τm � τsyn.

21

2. Background: Biology & Probabilistic computing

Effective formulation

We can make the dynamical difference between COBA and CUBA neurons more obvious
when we rewrite Eq. (2.1) as a low pass filter with a time constant τ and effective target
potential ueff(t):

du

dt
τ = ueff − u (2.17)

For current-based neurons (cf. Eq. (2.9)) we can read off the parameters directly as

τ = τm =
Cm

gl
(2.18)

and
ueff(t) =

Isyn(t)

gl
+ Vl. (2.19)

Hence, a CUBA neuron acts simply as a low-pass filter on its synaptic input with an
attached threshold mechanism for spike generation.

The COBA dynamics are slightly more complicated. The synaptic input also adds
conductance and therefore the membrane time constant τm becomes time-dependent

τm(t) =
Cm

gl + gsyn
exc (t) + gsyn

inh (t)
(2.20)

where gsyn
exc (t) and gsyn

inh (t) are the sum of all excitatory and all inhibitory synaptic con-
ductances respectively (cf. Eq. (2.15)). The target potential can then be written as

ueff(t) =
glVl + gsyn

exc (t)V
rev

exc + gsyn
inh (t)V

rev
inh

gl + gsyn
exc (t) + gsyn

inh (t)
. (2.21)

As such we can see that the membrane potential u of the COBA model is bounded by

min(Vl, V
rev

inh) < u < max(Vl, V
rev

exc). (2.22)

Typically we choose V rev
inh < Vl < V rev

exc . These bounds exist completely independent of
the input, unlike in the CUBA model which can, at least in principle, reach arbitrarily
high (low) membrane voltage values. From a perspective of biological plausibility the
conductance-based model has one less potential pitfall.

However, this boundedness also affects the amplitude of single PSPs. These are now –
rather strongly – history dependent, as it scales with the difference between the reversal
potential and the current membrane voltage V rev − u. At first glance this implies a
strong variance between the information transmitted by different PSPs through their
dynamical effect. However, the information of an input is actually encoded at the level
of the synaptic input. Here, both the current-based as well as the conductance-based
case simply act with a δ jump in the respective state variables g(t) and Isyn(t). It is only
the effect on the membrane potential that differs. In fact, we do not even care about the
precise membrane potential evolution as only the times of the threshold crossings (spike
times) are relevant for the dynamics of post-synaptic neurons.

22

2.1. Biological neurons in computational neuroscience

This means – at least for the particular parameter choices we will later make – that all
information about the input history is stored in the state of the synaptic input, which
holds for both the current-based as well as the conductance-based models. The reset
after a spike does not erase information. It is the dynamics of u that are short-circuited
and thereby artificially suppressed. At the level of ueff, which is completely defined by the
state of the synaptic input, the dynamics continue uninhibited. The neuron is therefore
still able to integrate additional input, even though it can only act on said input after
the end of the refractory period with some additional delay due to the finite distance
between Vthresh − Vreset > 0. This is a consequence of our choice of τm � τsyn ≈ τref,
which we will motivate in Section 2.2.4.

23

2. Background: Biology & Probabilistic computing

Figure 2.5: Ambiguous input: The figure
is the prototypical example of an
ambiguous image. It could both
be a duck looking to the left or a
rabbit looking to the right. The
2D still image is not sufficient
to allow for a unique identifica-
tion. Image taken from [Wiki-
media, 2016a].

2.2. Probabilistic computing

Before we can introduce the particular implementation using spiking neurons that we
are interested in, we need to introduce a general problem that we, as humans, are faced
with every day: Probabilistic computing

While this statement may sound ambitious or contentious at first glance it really is
not once we understand how we interact with the world. The world is an enormously
complex thing that we cannot have complete information about. Here we do not mean to
make some fundamental statement like the Heisenberg uncertainty relations, but rather
a practical one. The input we receive through our senses (vision, hearing, touch, smell
and taste) is extremely limited. One well-known example is an illusionary image (e.g.
Fig. 2.5), where a two dimensional photograph of an object simply does not contain
enough information about the object to allow a unique identification.

At this point we can either give up, or we can find a way to live with and incorporate
this uncertainty. While we may not be able to know whether the image was taken of a
rabbit or a duck (or whether the artist wanted to draw a rabbit or a duck, if one prefers
the fictional discussion), we do know that it is definitely not a car or an airplane. As
such we do have information on which we can act.

The Bayesian brain hypothesis [Doya et al., 2007] promotes the following idea: The
human brain constantly tries to build a model of the world that explains all the input
it receives. As a consequence we need to infer things about the world that we do not
explicitly know, e.g. it is likely that someone tapped on the light switch if all I know
is that the light went out. In most situations in the real world there is one exceedingly
good explanation. Nevertheless, it is straightforward to construct edge cases where
two options are similarly likely. In Fig. 2.5 one such example is shown. The image
is compatible with both a rabbit looking to the right and slightly upwards or a duck
looking to the left.

Most or all humans switch between all or some compatible interpretations. I.e. I
will see, at any given point in time, either a duck or a rabbit in Fig. 2.5. But I will
always know it must be either the one or the other and not both at once. In a way our
brain seems to sample from the evidence-compatible interpretations and only ever offer
a single explanation. This is a strong evidence that the brain implements probabilistic

24

2.2. Probabilistic computing

computation in a sample-based fashion [Sundareswara and Schrater, 2008, Gershman
et al., 2009].

In the following section we will describe, in a mechanistic way, how we can model
probability distributions over distinct event outcomes and where – if not fundamental,
then at least practical – problems of this kind of descriptions lie. After the introduction
to the traditional handling of Boltzmann distributions over binary random variables in
Section 2.2.1, we describe the Gibbs sampling method and how to evaluate the quality
of a generated sample in Section 2.2.2. We then move to a more biologically inspired
sampling implementation by recapping the neuron model from [Buesing et al., 2011]
in Section 2.2.3 and finally introducing the Leaky-integrate and fire (LIF) sampling
framework from [Petrovici et al., 2016] in Section 2.2.4. The latter is the main model
we will be investigating throughout this thesis.

2.2.1. Boltzmann distributions over binary random variables
Definition 2.2.1. Probability distribution

A probability distribution p is a mapping from the discrete set of events X to real
numbers p(x) ∈ [0, 1] such that the p(x) corresponds to the probability of finding the
element x ∈ X in a random draw.

In the introductory example the possible events of the probability distribution for the
example shown in Fig. 2.5 would be

• ”The image represents a rabbit.”

• ”The image represents a duck.”

Without any further information we would probably use a flat prior and assign to both
states equal probability:

p(duck) = 0.5 , p(rabbit) = 0.5. (2.23)

Here we assumed already a number of things: We are absolutely sure that it has to
be either a duck or rabbit and not anything else (completeness of the state space) and
that there is no bias between the two outcomes (flat prior). The former is inherent to
the definition of probability distributions, i.e., we assume that we will always have to
get an answer. The mathematical formulation of this is that the sum of all probabilities
adds up to unity:

Corollary 1. Property
The sum over all probabilities of all events x ∈ X must add up to 1,

1 =
∑
x∈X

p(x). (2.24)

We will not discuss the problem of choosing priors further, as we deal with the imple-
mentation and not the interpretation or generation of probability distributions. For us

25

2. Background: Biology & Probabilistic computing

Figure 2.6.: Neural Network: Stylistic representation of a neural network. Here neu-
rons are objects with a binary state z ∈ {0, 1}. They form a fully-connected
bi-directional graph with connection weights wij between neuron i and neu-
ron j without self-connections. Later we will distinguish between visible v
and hidden h neurons and restrict the connectivity matrix to only v − h
connections to form a restricted Boltzmann machine (RBM). Figure taken
form [Wikimedia, 2020].

it suffices to give the warning, that none of this is easy, even though choosing priors is
a non-avoidable complication of a Bayesian world view [Bailer-Jones, 2017].

In practice, we will be dealing with probability distributions over n binary random
variables z. In other words, each state x will be represented by the state of a n-unit
network where each unit is either in state z = 0 or state z = 1. The state space is
therefore X = {0, 1}n and each event x corresponds to a particular vector ~z ∈ {0, 1}n.
The arguably simplest probability distribution over this kind of system is a so-called
binary Boltzmann distribution which allows only for non-trivial correlations at the one-
and two-point level (cf. Eq. (2.26)).

Definition 2.2.2. Binary Boltzmann distribution
A binary Boltzmann distribution is a probability distribution over a set ~z of n binary

random variables z ∈ {0, 1} defined by

p(~z) =
1

Z
exp (−E(~z)) , (2.25)

with the partition sum Z =
∑

{~y∈Ω} exp (−E(~y)). The partition sum over the complete
state space Ω = {0, 1}n ensures normalization.

26

2.2. Probabilistic computing

We will only use Boltzmann distributions, whose energy function

E(~z) =
1

2
~z Tw~z +~bT~z (2.26)

only depends on the state of single neurons (via the bias ~b ∈ Rn) and the combination of
two neurons (via the weight w ∈ Rn×n). We use weight matrices w that are symmetric
and have a zero diagonal. While this does not change the value E(~z) it does influence
the sampling implementation (cf. Eq. (2.35) below).

In general, we are interested in expectation values over some variable or combinations
thereof:

〈f(~z)〉p =
∑
~z∈Ω

f(~z)p(~z). (2.27)

If we were for example to ask whether the object in Fig. 2.5 likes carrots we would end
up with:

〈love for carrots〉 = a lot × p(rabbit) + a lot less × p(duck). (2.28)

Going back to the definition of p(~z) we see that the normalization constant Z is
calculated as a sum over the complete state space Ω. For even moderately large number
of binary neurons, this becomes unfeasible. The available compute power nowadays
allows for evaluations of up to n = 40, i.e., a billion terms, without too much of a
problem. Beyond that the curse of dimensionality supersedes technological advantages4.

It is the pure number of possible states that is the problem here, not the calculation
of any single term of the sum. On the other hand most of these states will not have
a significant chance of appearing at all. Taking these two things in combination the
sampling approach is an intuitive approach. Monte-Carlo sampling [Metropolis and
Ulam, 1949] relies on the fact that we can easily calculate the relative probabilities of
two states ~z1 and ~z2,

p(~z1)

p(~z2)
= exp (−E(~z1) + E(~z2)) , (2.29)

as in this calculation the normalization constant Z drops out completely.
We can therefore side step the one-time calculation of Z with its 2n terms by proposing

new samples and accepting them in such a way that the original probability distribution
p(~z) is the fixed point of this update scheme.

2.2.2. Gibbs sampling and Kullback-Leibler divergence
The arguably simplest sampling scheme was introduced by [Geman and Geman, 1984]
and is named after Josiah Willard Gibbs (†1903). It is a special case of the standard

4The increase in terms of the sum is the main reason why we consider n ≈ 50 q-bits to be the minimum
number above which quantum supremacy comes to effect, with recent work claiming to demonstrate
said supremacy [Arute et al., 2019] and others counterclaiming that the case of n = 53 q-bits can
still be simulated on a classical computer [Pednault et al., 2019]. Independent of the specific claim of
demonstrated quantum supremacy, distributions of n > 60 neurons are already far beyond the brute
force tractability of the largest supercomputers.

27

2. Background: Biology & Probabilistic computing

Metropolis-Hastings sampling algorithm [Metropolis et al., 1953]. It suggests to update
each of the n binary units in turn to the state z = 1 while keeping the rest of the network
fixed. This suggestion is then accepted with the conditional probability:

p(zkt+1 = 1|z\k) =
p(zkt+1 = 1)

p(zkt+1 = 1) + p(zkt+1 = 0)
(2.30)

=
1

1 +
p(zkt+1=0)

p(zkt+1=1)

(2.31)

which only depends on the relative probabilities for the configurations (z1, . . . , zk−1, zk =
1, zk+1, . . . , zn) and (z1, . . . , zk−1, zk = 0, zk+1, . . . , zn). For these we use the shorthand
notation of zkt+1 = 0 and zkt+1 = 1 respectively. This fraction can then be calculated from
Eq. (2.25) with energy function Eq. (2.26) as the problematic normalization factor Z
drops out:

p(zkt+1 = 0)

p(zkt+1 = 1)
=

1
Z exp

(
−E(zkt+1 = 0)

)
1
Z exp

(
−E(zkt+1 = 1)

) (2.32)

=

exp

[
−
∑
i 6=k

zi(bi +
1
2

∑
j 6=i

wijzj)

]

exp

[
−
∑
i 6=k

zi(bi +
1
2

∑
j 6=i

wijzj)− bk − 1
2

∑
j 6=k

(zjwjk + wkjzj)

] (2.33)

= exp

−bk − 1

2

∑
j 6=k

(zjwjk + wkjzj)

 (2.34)

= exp

−bk − n∑
j=0

wkjzj

 , (2.35)

where we used the assumptions wij = wji and wii = 0 in the last step. These assumptions
do not matter at the level of the Boltzmann distribution itself, but they do matter at
the level of the sampling dynamics5. Plugging Eq. (2.35) back into Eq. (2.31) gives the
gain function of the Gibbs sampler:

p(zkt+1 = 1) =
1

1 + exp
(
−bk −

∑
i 6=k wikzi

) =
1

1 + exp (−uk)
= σ(uk). (2.36)

where we introduced the short hand

uk = bk +
∑
i 6=k

wkizi (2.37)

at the second equality sign. [Buesing et al., 2011] call this the neural computability
condition that the post-synaptic unit has to fulfill in order to work as a sampling unit.

5The assumed symmetry reflects the third Newtonian law at a statistical level. Mathematically it is
always possible to write the sum as

∑
i<j rather than 1

2

∑
i,j .

28

2.2. Probabilistic computing

Note 1. This is a sufficient rather than a necessary condition:
It corresponds to balanced influx and outflux of probability mass at the level of each

state pair ~y, ~z for the steady-state distribution p. However, in order for p to be a fixed
point of the sampling mechanism it would suffice if the net influx to every state was
0. In other words, it is only necessary that the sum of the flux from one state ~z to all
other states {~y} equals the flux from all other states {~y 6= ~z} to the state ~z. This is a
significantly weaker constraint than the balance at the level of each individual state pair
~z, ~y.

For reasons that will become obvious in Section 2.2.4 we call σ(u) the activation or
gain function of the sampler. However, we can already now see the similarity between
Eq. (2.37) and the instantaneous target potential ueff(t) from Section 2.1.1.

Performing this update scheme in sequence for all neurons results in a new sample
from the target probability distribution p(z). The pseudo-code implementation of Gibbs
sampling looks like:

Algorithm 2.1: Gibbs sampling: A simple realization of Gibbs sampling. The
selection of the next variable for updates can vary for different implementations.
Data: Vector ~z of length N , probability distribution p(~z) specified by w, b
Result: Chain of samples ~z distributed according to p(~z)
start from given ~z(0);
while required number of samples not reached do

choose a z(n)k from ~z(n);
calculate neural computability condition: uk = bk +

∑
i 6=k wkizi;

calculate conditional probability p(z(n)k = 1|~z\i) = σ(uk) ;
accept sample with σ(uk) > r ∼ U [0, 1] ;
obtain ~z(n+1) = (z

(n)
1 , . . . , z

(n)
k−1, z

(n+1)
k , z

(n)
k+1, . . . , z

(n)
N)

end

At this point we have reduced the problem of calculating expectation values with
respect to p(~z) from a one-time calculation of 2n terms (each with a sum over n2 terms)
for the partition sum Z to the calculation of n2 terms per new sample6. One can prove
that the sampled set converges towards the target distribution. However, it is not known
in advance how many samples will be required before the approximation is good enough.
We will discuss this further when we talk about how to implement a tempering scheme in
LIF networks in Section 4.1. For even moderately large numbers of units the sampling-
based alternative will be beneficial as it will be faster to calculate near arbitrary numbers
of samples than to calculate Z once.

6n neurons have to be updated with the potential each being a sum over n− 1 terms.

29

2. Background: Biology & Probabilistic computing

Performance evaluation

Having now a methodology of generating samples and having already remarked on the
lack of a priori knowledge of the necessary number of samples, the next question becomes:
How does one evaluate the quality of the generated set? Finding a good measure is always
also dependent on the particular problem, but one standard measure for the distance
between two probability distributions p and q is the Kullback-Leibler divergence (DKL)
[Kullback and Leibler, 1951]:

Definition 2.2.3. Kullback-Leibler divergence (DKL)
The DKL is defined as

DKL (p||q) =
∑
x

p(x) log p(x)
q(x)

(2.38)

It measures the relative entropy difference from the distribution p to the distribution
q. Where the entropy of a distribution is defined as:

Definition 2.2.4. Entropy (information theory)
The entropy of a probability distribution is defined as the expectation of the log proba-

bility
S(p) = −

∑
x

p(x) log p(x) (2.39)

Each alphabet has a space-optimal encoding that uses on average S(p) bits per charac-
ter (with p being the average frequency of the characters in texts). Intuitively speaking
this means: If one encodes an alphabet distributed according to p with the (space-)opti-
mal encoding according to q this encoding wastes on average DKL (p||q) many bits per
character.

Property 1. Positivity and equality
The DKL is positive for all p and q over the same support. Proof:

DKL (p||q) =
∑
x

p(x) log p(x)
q(x)

(2.40)

= −
∑
x

p(x) log q(x)
p(x)

(2.41)

(∗)
≤ −

∑
x

p(x)

(
q(x)

p(x)
− 1

)
(2.42)

= −
∑
x

q(x) +
∑
x

p(x) = 0 (2.43)

where we use the well known inequality log a ≤ a− 1 in (∗). Equality holds if and only
if p(x) = q(x) ∀x such that

log q(x)
p(x)

=
q(x)

p(x)
− 1 (2.44)

holds for all x.

30

2.2. Probabilistic computing

There are two special cases we need to be aware of: In principle both p and q can
assign events the probability 0, which is a problem for the logarithm in Eq. (2.38). As

lim
x→0

x logx = 0 (2.45)

only q(x) = 0 results in a divergence. This means that we want to measure the distance
in the opposite direction as typically defined in the literature. For us p is the arbitrary
target distribution which is externally supplied and we want to approximate it with the
model (Boltzmann) distribution q. Since p is externally supplied we may not impose
any restrictions onto it, in particular, it is okay to have degenerate states x such that
p(x) = 0.

While there is no state with q(x) = 0 within a Boltzmann machine (BM), in practice
it may happen, that we also do not sample every single state x. In this case we need to
be careful of how to implement the DKL calculation. In general there are two ways:

1. add a small offset number of samples to all states

2. discard all states x that were not sampled at all

The latter option requires a renormalization of both probability distributions, otherwise
the DKL could become negative. The former introduces a (hopefully small) bias towards
a uniform distribution. In practice, these ad hoc workarounds serve as an illustration on
the limit of the DKL as a useful measure: If the state space is sufficiently large – such
that we cannot sample all states at least once – then a distance measure that is based
on the correctness on the frequency of all states is most likely not going to be useful.
For small scale demonstrations we will be using sufficient sample numbers to ensure that
all states are sampled. For larger systems a more effective measure, like a classification
error, will be chosen.

It can be shown that an ideal sampling framework implements an estimator for the
true DKL that converges with 1

N with N being the number of independent samples [Cai
et al., 2006, Paninski, 2003]. In Gibbs sampling the notion of an independent sample
is reached after an update for each neuron, for the sampling methods that follow below
this notion is no longer as simple (see Fig. 2.7b and Fig. 3.4b).

restricted Boltzmann machine (RBM) and wake-sleep training

So far we have made no topological restrictions to the network of the BM, i.e., we allowed
for arbitrary connection matrices wij as long as they are symmetric (cf. Eq. (2.35)). The
price for this is that the update of every neuron depends on the state of all other neurons.
If we restrict the allowed connectivity to block off-diagonal matrices, we restrict us to the
so-called RBM [Smolensky, 1986]. It is a layered network structure where each neuron
only connects to neurons of other layers. This makes the update probabilities of neurons
within the same layer independent of each other. It is this independence that allows
us to a) parallelize the updates and b) eases the trainability of the system. The latter
is a non-obvious statement, as a fully connected Boltzmann machine can always also

31

2. Background: Biology & Probabilistic computing

implement a restricted one. However, the reduced number of available parameters eases
the formation of the distribution by reducing the number of local minima within the
parameter space [Hinton, 2012].

The RBM formulation also introduces a clear separation of concerns: One layer is
designated to be a representation of the received input from the world, this is typically
called the visible layer (consisting of the visible neurons v), and the rest of the network
(i.e., the other layers) are used to form and interpret this model7, these are the so-called
hidden neurons h. These layers differ on a very fundamental level. The visible layer
is a representation of the world, that means it is externally defined and we may not
impose restrictions on it. In biology, this would correspond to the external stimulus
that our senses transfer to the brain and conditions our world model. This also imposes
the coding scheme to be compatible with the sensory output. In practice, our visible
layer will correspond to some image data set or a target probability distribution that we
want to reconstruct. The other layers we are in principle free to choose, as they ”only”
represent the inner workings of our model. It is always possible to describe an RBM as
a fully-connected BM where the state z is the concatenation of the states of the single
layers v and h and the connection matrix only has block-off-diagonal entries8.

When trying to produce a good generative network the task is to make a model
distribution p match an arbitrary target distribution q. The model distribution p is
formed by the network parameters wij and bi (cf. Eq. (2.26)). We already introduced
the DKL as a difference measure between two probability distributions p and q. While it
is not a distance measure (it lacks the symmetry property) minimizing it still improves
the match of p and q. Hence we can derive a learning scheme for arbitrary distributions
by calculating the gradient of the DKL with respect to the network parameters wij and
bi.

After some tedious calculations (see Appendix A.4) we find that the learning rule for
the weights takes the form:

∆wij ∝ 〈vihj〉q(v)p(h|v) − 〈vihj〉p(v,h) (2.46)

= 〈vihj〉data − 〈vihj〉model (2.47)
∆bi =∝ 〈zi〉data − 〈zi〉model (2.48)

This is a standard Hebbian learning rule and known as the wake-sleep algorithm [Hin-
ton et al., 1995, Gerstner and Kistler, 2002a]. Intuitively we subtract the correlations
under the free model distribution p from the correlations under the desired target dis-
tribution q. In the latter case we acquire the hidden-visible correlations through the
conditional probability p(h|v) imposed by the model distribution p as the data distribu-
tion q, by construction, does not provide us with information about the hidden layer.
Note that Eq. (2.48) requires accurate samples of the complete distribution p(v, h) as

7This can also be implemented in a fully-connected network graph, cf. Fig. 2.6. In this case we designate
a subset of the neurons to correspond to the external distribution.

8We silently dropped the vector sign when referring to the state z and mark the individual states zi by
the neuron index i from now on.

32

2.2. Probabilistic computing

well as q(v)p(h|v) and as such they are computationally intensive, at least for traditional
Monte-Carlo methods.

Traditional performance optimizations such as Contrastive Divergence replace the
complete distribution sample with a single point estimate and generates the appropri-
ate averages over multiple training steps via smaller learning rates [Carreira-Perpinan,
Miguel A and Hinton, 2005, Taylor and Hinton, 2009, Sutskever and Hinton, 2007]. Later
(cf. Chapter 5) we will deal with neuromorphic systems, where the actual number of
samples drawn is of limited importance as the run time is dominated by communication
overhead and thereby number of configurations (weight updates). Therefore we would
profit from generating both data and model terms from a single sampling run, but not
so much from reducing the number of samples required. We can, in fact, infer the data
term from the model sample set, and thereby reduce the required number of sampling
runs by two:

∆Wij = 〈zizj〉data − 〈zizj〉model (2.49)
= 〈vihj〉q(v)p(h|v) − 〈vihj〉p(v)p(h|v) (2.50)

=
∑
{v,h}

vihjq(v)p(h|v)− vihjp(v)p(h|v) (2.51)

=
∑
{v,h}

vihjp(h|v) (q(v)− p(v)) (2.52)

=
∑
{v,h}

vihjp(h|v)p(v)
(
q(v)

p(v)
− 1

)
(2.53)

=

〈
vihj

(
q(v)

p(v)
− 1

)〉
p(h|v)p(v)

(2.54)

=

〈
vihj

(
q(v)

p(v)
− 1

)〉
model

. (2.55)

Essentially, we measure the correlations from the model and reconstruct the data corre-
lations by reweighting the samples according to their target frequency9.

2.2.3. Neuronal sampling following Buesing et al. [2011]

The first major obstacle between using Gibbs sampling as a model for Bayesian compu-
tation with biological neurons is the lack of an explicit notion of time. Buesing et al.
added the notion of a refractory time τref after a flip to z = 1 [Buesing et al., 2011]. In
other words the neuron is not allowed to leave the state z = 1 for τref updates. Here, we
sketch the sampling method and refer the interested reader to the original publication
for the proof of correctness and further information.

9This is how demographic adjustment in polling works. There, the tricky part is to define, or select, the
correct target frequencies, but luckily for us this is trivial as we know the exact target distribution
q(~v).

33

2. Background: Biology & Probabilistic computing

102 103 104 105

number of samples [1]

10 6

10 4

10 2

100

DK
L

[1
]

ref = 1
ref = 10
ref = 100
ref = 1000

a b

Figure 2.7.: Buesing neuron model: a State machine: The internal state of the neuron
ζ (number in the circles) in our implementation. In contrast to the original
implementation [Buesing et al., 2011], it counts the time since the last emit-
ted spike. In each time step ζ → ζ+1 is updated. Dark-blue states are inter-
preted as z = 1 and light-blue ones as z = 0 according to the binary decision
z = 1ζ<τref . The spiking probability is given by p = σ(u, τref)Θ (ζ − τref).
For τref = 1 this implements Gibbs sampling exactly. b Sampling conver-
gence for different refractory times as a function of the number of update
steps. Longer refractory times τref correspond to higher number of required
updates. The points show the median DKL and the error bars show the
minimal and maximal observed value over 11 independent sampling runs.

In order to implement a finite refractory time τ the sampling unit’s state needs to be
augmented with information about the time since the last spike. For reasons that will
become obvious we deviate from the original formulation and define the internal state
variable ζ to count the number of update steps (or time steps) since the last spike10. It’s
update procedure is hence defined as:

ζ(t+ 1) =

{
= 0 if spike
= ζ(t) + 1 else (2.56)

The binary state z can be recovered from this via:

z = 1ζ<τref (2.57)

where 1 is the indicator function. As long as ζ < τref − 1 the neuron is not allowed to
spike again. Fig. 2.7a presents this evolution schematically. Dark-blue ζ’s are considered
10The original formulation counted down from ζ = τref immediately after a spike to 0, staying there till

the next spike.

34

2.2. Probabilistic computing

as z = 1 states and light-blue ζ’s as z = 0 states. Outside of this refractory period the
probability of the reset (or spike) is given by [Buesing et al., 2011]:

σ (u, τref) = σ (u− log τref) =
1

1 + exp(−u+ log τref)
=

1

1 + τref exp(−u)
. (2.58)

We call this function the activation function of the neuron, as it represents the firing
probability of the neuron. Eq. (2.58) corresponds to the gain function of the Gibbs
sampler σ(u) Eq. (2.36) with the argument shifted by − log τref. This lowers the spiking
probability in order to compensate for the stickiness of the z = 1 state. The intuition is
that the new normalization factor is given by 1 = p(zk = 0) + τp(zk = 1)11.

This stochastic neuron model is completely equivalent to the Gibbs sampling model in
the sense that it can be proven that the stationary distribution of this sampling method
is the same Boltzmann distribution [Buesing et al., 2011]. Their convergence behavior
(cf. Fig. 2.7b) differs slightly due to the introduced autocorrelation by the stickiness of
the z = 1 state, which explicitly breaks the symmetry between the z = 0 and the z = 1
state.

Comparing this model to what we learned in Section 2.1.1 about biological neurons
and their interactions we note that the Buesing neuron gets us only a part of the way.
It allows us to reduce the communication over the state of the neuron to the spike times
(if the refractory time τref is known or some global constant), but it still calculates the
membrane potential based on

uk = bk +
∑
i

wkizi (2.59)

using the binary state zi of all other neurons.
We already made the remark that this looks eerily similar to the form of the synaptic

input when we named this as the potential of the neuron in Eq. (2.37). Here we need
to take a bit of a closer look in order to find the differences that remain with the direct
interaction. Effectively the formulation from [Buesing et al., 2011] uses rectangular PSPs
that onset at the flip from z = 0 to z = 1 and end τ time steps later. In Section 2.1 we
calculated the form of the PSP between for COBA and CUBA neurons, Eq. (2.16) and
Eq. (2.9) respectively. For τm → 0 these reduce to exponential PSPs on the membrane
potential. Since the Buesing neurons do not implement the leaky integration this should
be the relevant limit. As such the proposition would be that the shape of the PSP is the
most obvious deviations that [Buesing et al., 2011] does not yet account for12.

If we are willing to give up on the mathematical proofs, changing the interaction shape
becomes trivial. We can rewrite the membrane calculation in terms of interaction kernels
as

uk = bk +
∑
i

wkiκ (ζi, τsyn) , (2.60)

11The rest, as they say, is just math. We refer the interested reader to the original publication for the
explicit proof [Buesing et al., 2011].

12We will see in Section 3.3 that this is not necessarily correct.

35

2. Background: Biology & Probabilistic computing

where we allow the interaction kernel to be parametrized by a single time constant τsyn,
which we will later link to the synaptic time constant from Section 2.1.1.

In the original formulation from [Buesing et al., 2011] the interaction only depended
on the binary state z = 1ζ<τref . Restating this as an interaction kernel this results in a
rectangular interaction (cf. Fig. 2.8a):

κrect(ζ, τsyn) = Θ (ζ)Θ (τsyn − t) = 1ζ<τsyn = z (2.61)

Where the length of the rectangular kernel τsyn is chosen to correspond to the refractory
time constant of the sampler τref. This description might seem a bit clumsy, but it will
fall into place once we get to finally discuss the sampling with LIF neurons in the next
section (Section 2.2.4).

For now let us introduce the additional interaction kernels we want to use: With the
PSPs being approximated by an exponential function (cf. Fig. 2.8d), this is the next
interaction kernel that we are interested in:

κexp(t, τsyn) =
Θ(t)∑

t̂≤τref
exp

(
− t̂

τsyn

) exp
(
− t

τsyn

)
. (2.62)

The normalization ensures that the integral of the elicited PSP is a fixed number inde-
pendent of the time scale of the exponential kernel τsyn. At this point it becomes obvious
why we had to switch our definition of ζ in contrast to the original model [Buesing et al.,
2011]. They used ζ to count down until the neuron can fire again, at which point the
internal state is stuck at ζ = 0, effectively erasing the information of the spike time.
However, for the exponential interaction we do require this knowledge, even after the
neuron is no longer considered to be in state z = 1, in order to calculate the non-zero
PSP contribution at times t − tspk ≥ τref. The original publication could ignore those
for a slightly simpler notation in their proofs [Buesing et al., 2011].

At this point we took into account both the asymmetry between the has just fired
z = 1 and the can fire z = 0 state and also added an option to take the PSP form
of a single input spike into account. Since we only track the time since the last spike
we also drop all but the newest term from Eq. (2.8) and prevent stacked PSPs from
the same source. We will discuss the reasoning, beyond mathematical and modeling
simplicity, behind this later in Section 3.1.2 after we introduce how to do sampling with
LIF neurons in the next section (cf. Fig. 3.1).

For reasons that we will discuss in Section 4.3 we define two additional kernels: An
exponential kernel without the tail contribution at t ≥ τref (cf. Fig. 2.8b):

κcuto(t, τsyn) =

{
= κexp(t, τsyn) if t ≤ τref
= 0 else (2.63)

and a rectangular kernel with an additional tail contribution for t ≥ τref (cf. Fig. 2.8c)

κtail(t, τsyn) =

{
= κrect(t, τsyn) if t ≤ τref
= κexp(t, τsyn) else (2.64)

36

2.2. Probabilistic computing

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [ref]

0

1

2

PS
P

[a
u]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [ref]

1

2

PS
P

[a
u]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [ref]

0

1

2

PS
P

[a
u]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [ref]

1

2

PS
P

[a
u]

a b

c d

Figure 2.8.: Different shapes of the PSP: We discriminate the parts of the PSP within
the refractory period t− tspk < τref and after the refractory period t− tspk >
τref and choose in both parts between a rectangular and an exponentially
decaying function. a-d show κrect, κtail, κcuto and κexp respectively for
τsyn = τref. The exponential function is always scaled such that the integral
(evaluated only at the simulation time steps) over the refractory period is
equal to τref.

These two allow us to separate out the contributions of the additional tail versus the
contributions of the initial overshoot of the interaction on the dynamical evolution.

We, silently, introduced the normalization as the total interaction mass U within the
refractory period by our choice of the denominator in Eq. (2.62). This is based on
the translation scheme for LIF networks that we will discuss in Section 2.2.4 [Petrovici
et al., 2016]. So far we choose τref = τsyn. In principle we could loosen this restriction,
at which point the interaction kernels Eqs. (2.61) to (2.64) need to be normalized again.
For consistency with the initial motivation of linking parameters between networks of
LIF neurons and Boltzmann distributions we choose to keep the integral within the
refractory period τref constant:∑
ζ<τref

κrect(ζ, τsyn) =
∑
ζ<τref

κexp(ζ, τsyn) =
∑
ζ<τref

κcuto(ζ, τsyn) =
∑
ζ<τref

κtail(ζ, τsyn) = τref

(2.65)
and the weight w directly scales the, thus normalized, kernels.

2.2.4. Sampling with LIF neurons

Over the last few sections we presented stochastic neuron models and how they im-
plement sampling from binary Boltzmann distributions. Now, we need to implement
such a scheme with biologically-inspired neurons. In Section 2.1.1 we introduce a simple

37

2. Background: Biology & Probabilistic computing

mechanistic description of a spiking neuron, the LIF model.
The most glaring difference to the stochastic models we discussed before is the de-

terminism of the LIF model. It is known since the works of Habenschuss et al. that
recurrent networks of LIF neurons sample from a static probability distribution [Haben-
schuss et al., 2012]. But it is the work of Petrovici et al., that showed that LIF neurons
of a particular parameterization and subject to high-frequency Poisson spike input ap-
proximately sample from Boltzmann distributions [Petrovici et al., 2016].

In this subsection we briefly recap the setup and motivate its relation to the Buesing
model from the previous subsection (Section 2.2.3). Later in Chapter 3 we will perform
a more detailed discussion of the dynamical aspects of these LIF networks, going further
than what was already developed in [Petrovici et al., 2016, 2015], which will be the focus
here. As the following line of argument for COBA and CUBA neurons nearly agree and
CUBA neurons are slightly less involved, we will restrict our explanation here to the
latter case and only remark on the equivalent results for the COBA case. For the exact
derivation and more details the interested reader is referred to [Petrovici, 2015].

Each sampling LIF neuron is subject to stochastic input form two sources, one excita-
tory and one inhibitory one, of random spikes (cf. Fig. 5.3A). In practice, these will be
Poisson-distributed with rates rexc and rinh and connected with synaptic strengths Wexc
and Winh, respectively. The neuron’s membrane potential time course u(t) can then be
shown to implement an Ornstein-Uhlenbeck (OU) process.

Definition 2.2.5. Ornstein-Uhlenbeck (OU) process
The OU [Bibbona et al., 2008, Wikipedia, 2016] process xt is defined by the following

stochastic differential equation:

dxt = θ(µ− xt) dt+ σ dWt (2.66)

where θ, σ and µ are parameters for the autocorrelation time, the mean of the drift and
the scale of the noise, respectively. Wt denotes the Wiener process.

In terms of probability density functions P (x, t) which describes the probability of the
value of xt over time, this process obeys the Fokker-Planck equation:

∂P

∂t
= θ

∂

∂x
((x− µ)P) +

σ2

2

∂2P

∂x2
. (2.67)

For this process the transition probability between two values x and x′ at times t and t′
is given by:

P (x, t | x′, t′) =
√

θ

2π σ2

2 (1− e−2θ(t−t′))
exp

[
− θ

σ2
(x− x′e−θ(t−t′))2

1− e−2θ(t−t′)

]
. (2.68)

Mathematically speaking this is the solution to the Fokker-Planck equation Eq. (2.67)
for the initial condition P (x, t′) = δ(x− x′).

For the membrane potential evolution of our LIF neuron we make the following iden-
tifications:

38

2.2. Probabilistic computing

1. x is the membrane potential value u

2. θ = 1
τsyn

is given by the synaptic time constant

3. σ is given by the a combination of the noise parameters rexc, rinh,Wexc,Winh and
the neuron parameters, in particular, the leak conductance gl and the membrane
capacitance Cm.

The time constant of the OU process actually refers to the larger of the two timescales
that influence the membrane evolution, namely the time constant of the synaptic input
τsyn and membrane time constant τm. Since it is the synaptic input that we are interested
in, we want the membrane potential to follow the input quickly. This requires a small
membrane time constant:

τm =
Cm

gl
� τsyn. (2.69)

As the capacitance Cm is fixed by the neuron’s physiological properties the natural way
to achieve this small τm is via a large conductance. In the CUBA model case this
means that we have to choose a large leak conductance gl. For COBA neurons there are
multiple conductances that all contribute the the effective membrane time constant (cf.
Eq. (2.20)):

τm =
Cm

gl + gsyn
exc (t) + gsyn

inh (t)
(2.70)

and therefore the membrane time constant of a COBA neuron becomes small automat-
ically for a significant level of synaptic input. In other words, when we are requiring a
small membrane time constant τm we only require the neuron to be in a high-conductance
state (HCS) [Destexhe et al., 2003, Kumar et al., 2008].

Ignoring the threshold and spike-behavior we can calculate the mean ū and variance
Var[u] of the membrane potential time course u(t) implementing the OU process [Petro-
vici et al., 2016]:

ū = Vl +
Iext
gl

+

∑
kWkνkτ

k
syn

gl
(2.71)

Var[u] =
∑
k

[
τmτ

k
syn

Cm

(
τm − τksyn

)]2W 2
k νk

(
τm
2

+
τksyn
2

− 2
τmτ

k
syn

τm + τsyn

)
(2.72)

In Fig. 2.9 we show an exemplary time evolution of u(t) in blue with a smaller-than-
threshold mean ū < Vthresh. The neuron stochastically fires and enters the refractory
period (gray shaded periods in Fig. 2.9), see [Petrovici, 2015] for the derivation. Within
this refractory time frame the neuron is considered to be in state zk = 1. Otherwise
we identify it as zk = 0. This association is chosen due to the fact that the spike time
corresponds to the onset of the interaction, which gives a non-zero contribution (which
in turn corresponds to the multiplication with zk = 1 rather than zk = 0). The task now
becomes to calculate the relative fraction of time the neuron spends in the z = 1 state.
This is related to the neural computability condition for Gibbs and Buesing neurons in
Eq. (2.35).

39

2. Background: Biology & Probabilistic computing

Figure 2.9.: LIF sampling and state association: A Membrane potential time course
of a single sampling neuron under high frequency Poisson noise input. B
Actual (blue) and effective (red) membrane potential. Whenever the mem-
brane potential u crosses the threshold Vthresh the neuron enters its refractory
period by being clamped to the reset potential Vreset < Vthresh (gray shade).
Within this time frame the neuron is considered to be in state z = 1, other-
wise it is assigned the state z = 0. At the end of the refractory period the
membrane potential decays towards the effective membrane potential value
(distribution shown in pink). At the end of each burst period the neuron
remains in z = 1 longer than the spiking condition u > Vthresh is fulfilled.
Figure adapted from [Petrovici et al., 2016].

Activation function

Let us now look at a single LIF neuron under Poisson input and let us assume that
we can only observe the output spikes. In Eq. (2.19) we introduced the concept of
the instantaneous target membrane potential ueff. For a sufficiently low mean potential
ū =

〈
ueff〉 we will not observe any output spikes as a supra-threshold potential u > Vthresh

will never occur. At this point we know the membrane potential distribution ρ(u) is the
steady-state distribution of the OU process. It is a Gaussian with mean ū (cf. Eq. (2.71))
and variance Var[u] (cf. Eq. (2.72)).

Shifting now ū, typically implemented by changing Vl
13, the frequency with which u

crosses the threshold steadily increases. The mean time between the end of a sequence
of consecutive spikes, also called a burst, and a next first spike T1 can be calculated
from the moments of the first passage time distribution of an OU process (see [Petrovici,
2015]). However, this covers only the spikes that happen after a long time. I.e., where we
do not have any additional information and we therefore know the membrane potential
distribution. The longness of this time is given by the timescale parameter of the OU
13Changing Iext would be equivalent up to the factor gl.

40

2.2. Probabilistic computing

process Θ which corresponds to the inverse of the synaptic time constant τsyn. This gives
the autocorrelation time scale of the membrane potential. Therefore, a couple of τsyn
are required to pass before the neuron forgot its old state completely (cf. Section 3.1.3
and Fig. 3.3).

We chose
τref = τsyn. (2.73)

in order to relate the time scale on which the post-synaptic neuron experiences the
interaction triggered by the spike (i.e., the z = 0 → z = 1 transition) of the pre-synaptic
neuron τsyn to the time scale on which the pre-synaptic neuron experiences the same
transition, i.e. where its dynamics are suppressed, τref. We equate the two in order to
force some consistency between the experiences of the two neurons. However, this choice
also means that the distribution of ueff at the end of the refractory time of a single spike
is significantly different from the free distribution (cf. Section 3.3 for more details).

We call second and following spikes, which happen closely after the end of the re-
fractory period following the initial spike, part of a burst. The probability of having a
spike immediately after the end of the refractory period is significantly larger than at
a random later point. This is because we do have the knowledge about the membrane
potential u(tspk) = Vthresh at the first spike time tspk to take into account. At this point
of a first spike we know (at least for τm → 0) that the membrane potential is cross-
ing the threshold, i.e., ueff = Vthresh. From this [Petrovici et al., 2016] calculated the
supra-threshold probability mass

P2 =

∫ ∞

Vthresh

dueffρ(ueff(tspk + τref)) (2.74)

and thereby estimated the probability of a burst with at least 2 spikes. At this point we
do not know the exact target voltage ueff at the time of the second spike anymore which
makes the calculation of P3 more involved. We will elaborate on this in more detail
in Section 3.3, the interested reader should also read the original publication [Petrovici
et al., 2016].

In analogy to the neural computability condition, we are interested in the probability
to find the neuron in state z = 1 as a function of constant input, i.e., for fixed ū. Petrovici
et al. [2016] has calculated this to be

p(z = 1)(ū) =

∑∞
n=1 Pn(ū)nτref∑∞

n=1 Pn(ū)(nτref +
∑n−1

k=1 τ
b
k + Tn(ū))

(2.75)

where Pn is the probability of a burst consisting of n spikes, Tn is the mean first passage
time of the OU process starting after the end of a burst of length n and τb

k is the sum
of the drift times between the spikes within the burst. The latter tends to 0 as τm → 0,
Pn is close to exponentially decreasing and Tn can be calculated from the moments of
the first passage time distribution of the OU process [Petrovici, 2015]. The resulting
activation function is shown in Fig. 2.10a and b for current- and conductance-based
neurons respectively. We will discuss this function in more detail when we discuss the
peculiarities of LIF sampling in Section 3.3. For now, we remark on the functional

41

2. Background: Biology & Probabilistic computing

4 3 2 1 0 1 2 3 4

bias [1]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y
 [

1
]

4 3 2 1 0 1 2 3 4

bias [1]

0.0

0.2

0.4

0.6

0.8

1.0

a
ct

iv
it

y
 [

1
]

sample

logistic

error function

4 3 2 1 0 1 2 3 4

bias [1]

0.015

0.010

0.005

0.000

0.005

0.010

0.015

a
ct

iv
it

y
 d

if
fe

re
n
ce

 [
1

]

4 3 2 1 0 1 2 3 4

bias [1]

0.015

0.010

0.005

0.000

0.005

0.010

0.015

a
ct

iv
it

y
 d

if
fe

re
n
ce

 [
1

]

CUBA COBA
a b

c d

Figure 2.10.: Activation function: a(b) Mean activity, p(z = 1), of a current-based
(conductance-based) neuron for different bias configurations, see main text
for the implementation via Vl. c(d) Residuals to a logistic σ(x) and er-
ror function erf(x) respectively. Both functions describe the form of the
activation function well, with the error function exhibiting slightly smaller
residuals. Figure taken from [Baumbach, 2016].

42

2.2. Probabilistic computing

similarity to the activation function from the Buesing and Gibbs neurons Eq. (2.58) and
Eq. (2.36), which leads us to fit a sigmoid

p(z = 1)(ū) = σ

(
ū− up05

α

)
(2.76)

where the two free parameters up05 and α are (complicated) functions of the noise and
neuron parameters. We will discuss their meaning and functional implications in Sec-
tion 4.1.

We also fit the error function erf
(
x−x0
α

)
as it is the cumulative function of the under-

lying Gaussian distribution. The resulting residuals are slightly smaller (cf. Fig. 2.10c
and d) but still significant variations are observable.

Parameter translation

In order to use such a network of LIF neurons to implement sampling from Boltzmann
distributions we need to establish a relationship between the parameters of said dis-
tribution w, b and their LIF counterparts W,Vl. We already alluded to our choice of
implementing a bias for a stochastic LIF neuron via its leak potential Vl via which we
used to manipulate the mean of its membrane potential distribution Eq. (2.71). In other
words for an arbitrary bias Boltzmann parameter b, we can look up the target activation
A from the Gibbs gain function Eq. (2.36) as

A = 〈z〉 = σ(b) (2.77)

from this, together with the parameters of the activation function of the LIF neuron
Eq. (2.76) we can find the leak potential Vl that is required to achieve the same mean
activation (cf. Fig. 2.10):

Vl = αb+ up05 (2.78)
where both parameters α and up05 depend on the neuron parameters as well as the noise
configuration which gave rise to this particular activation function. This gives us the
first part of our parameter translation. Here, we made the choice to implement the bias
of the LIF neuron Vl via the leak potential Vl, in Section 4.1 we will use an external
current and in Section 5.1 we will also see an implementation via a synaptic connection.

For the connection weights w the argument is a bit more involved: We already iden-
tified the strength of the synaptic connection to implement the two-point Boltzmann
parameter w and we fixed the synaptic time constant τsyn to correspond to the length
of the refractory period τref. Therefore, the remaining question is how we should scale
the amplitude W such that the resulting stochastic behavior approximates the effect of
the weight parameter in a Boltzmann distribution w.

For the Buesing neuron model we did scale the rectangular interaction kernel κrect(t)
with the Boltzmann weight parameter wij . For LIF neurons Petrovici et al. [2016] fixes
the integral of the PSP within the refractory period of the pre-synaptic neuron to the
integral of the Buesing interaction (cf. Fig. 3.1a):

τrefwij =

∫ τref

0

Wij

α
PSP (t)dt (2.79)

43

2. Background: Biology & Probabilistic computing

with the PSP (t) from Eq. (2.9) or Eq. (2.16). In order to make these two comparable
(think dimension of the variable) we needed to normalize the PSP height by the width
parameter of the activation function α. In other words the COBA-LIF weight parameter
is given by:

Wij = wij
1

αCm

V rev − ū

1− τsyn
τm

[
τsyn(e

−1 − 1)− τm

(
e−

τsyn
τm − 1

)]
(2.80)

the formula for CUBA can be derived analogously.
Both the translation of the biases as well as the weights depend on the parameters

of the activation function. In particular, it is the width α that defines which neuron
parameters W and Vl correspond to the meaning of the Boltzmann parameters w = 1
and b = 1 respectively.

Our choice of the leak potential Vl as the implementation basis for the bias is not
biologically plausible. We learned in Section 2.1 that the leak potential is essentially
given by the diffusion potential of the K+-ions. However, as we are only interested in
neurons under significant Poisson stimulus this resting potential does not correspond
to the mean of the membrane potential ū. The latter is rather a function of the leak
potential Vl and the excitatory and inhibitory noise input. We will discuss how the noise
input influences the activation function in Section 4.1 and how we would implement a
bias in a biology-compatible way. In practice we will still just adjust the value of the
leak potential Vl in our simulations.

We stress that this translation scheme is a first-order approximation which requires the
correspondence of τsyn = τref at least up to a factor of 2 before the sampling performance
degrades [Probst et al., 2015]. But even so this relation completely ignores the different
dynamics between LIF and Buesing neurons which we will discuss in Section 3.3 and
drops the effect of the lingering PSP after the end of the refractory period. This leads
to interesting behavior in Ising-like networks which we will discuss in Section 4.3.

Even without the direct training, we can implement sampling with LIF neurons from
only observing their activation function (cf. Fig. 2.10). The typical toy-examples of small
Boltzmann distributions with n ≈ 5 neurons result in DKLs on the order of 1 × 10−2 to
1 × 10−3, depending a bit on the neuron and noise configuration as well as the distribu-
tion [Petrovici et al., 2016, Bytschok et al., 2017]. Larger networks, with post-training,
have been demonstrated to implement generative models for binary images [Petrovici
et al., 2017b, Leng et al., 2018, Kungl et al., 2019, Dold et al., 2019] and recently also a
representation of quantum states has been shown to be possible Section 5.2.

44

3. Dynamical aspects of LIF sampling

At the end of the last chapter we introduced a model for spike-based probabilistic com-
puting, in this chapter we will now discuss the dynamics of single such neurons. We start
this discussion by having a look at the effect of the temporally extended interactions in
Section 3.1. In Section 3.2 we present the biological and modeling motivation of the
background noise sources, discuss different implementations and their resulting corre-
lation structure. Finally, we present a more involved Markovian model in Section 3.3
and show that it significantly outperforms the stochastic neuron model developed in
[Buesing et al., 2011] in predicting the spike response of stochastic LIF neurons. In the
last section, Section 3.4 we give a brief overview of the different models presented. In
particular, we will compare which components they attempt to cover and discuss where
the fundamental limits of the applicability of the models lie.

45

3. Dynamical aspects of LIF sampling

3.1. Issues originating in the interaction shapes

In Section 2.2.4 we introduced the general idea of LIF sampling originally developed by
[Petrovici et al., 2016]. There, we discussed the relationship to other, more abstract,
sampling schemes and motivated the parameter translation formulas Eq. (2.78) and
Eq. (2.80). At that point we already mentioned that, in particular, the translation of
the weights Eq. (2.80) is based on a number of assumptions. The biggest of which is that
all spikes are going to have identical dynamical impact – independent of the history of
the synapse. In this section we will discuss in how far this assumption is true and which
biological mechanisms exist to improve its validity.

3.1.1. Bursting neurons and short-term plasticity

In the following these boxes will preface sections of the manuscript
that contain work done in close collaboration with other people. If
applicable they refer to the relevant publications or if non is available
reference the relevant master thesis. This Section 3.1.1 repeats re-
sults already contained in [Petrovici, 2015] but which forms necessary
background information.

At the end of Section 2.2.4 we remarked that the parameter choice of τsyn = τref is
made in order to have the interaction act on the same time scale on which the state
z = 1 is fixed. Due to the exponential decay of the synaptic interaction1 the effect on
the membrane potential is not restricted to this time frame. There is still a significant
contribution due to the exponential tail (cf. Fig. 3.1a).

In the bare (static) synapse model from Section 2.1.1 an additional spike always adds
a fixed amount of additional current2 proportional to the strength of the synapse W .
This means that the assumptions underlying the weight translation (cf. Eq. (2.80)) are
fundamentally flawed as we postulated that only the current spike influences the effect
on the post-synaptic neuron. However, with the potential remains of the exponential
tail, it is also the history of the pre-synaptic activity that determines the height of the
current PSP.

To make it explicit why this is a problem: Suppose that we have a model distribution
p(~z) and we want to calculate the distribution conditional to z0 = 1. In order to
implement this we would clamp the neuron 0 to the state z0 = 1 by e.g. setting its leak
potential Vl to be very large. At this point neuron 0 would be forced to be continuously

1Remember: This is also true for the effect on the membrane potential, the PSP, as we operate in the
limit of τm → 0, cf. Section 2.2.4.

2We will restrict the discussion to the current-based case.

46

3.1. Issues originating in the interaction shapes

110 120 130 140 150 160
time [ms]

PS
P

[re
sc

al
ed

]

m = 0.1
m = 1.0
m = 5.0

assumed

120 140 160 180 200 220 240
time [ms]

0.00

0.05

0.10

0.15

PS
P

[a
u]

= 0.333 kHz
= 0.167 kHz
= 0.083 kHz
= 0.017 kHz

120 140 160 180 200 220 240
time [ms]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

PS
P

[a
u]

f = 10 ms
f = 20 ms

w/o

a b c

Figure 3.1.: Stacking PSPs: a Shape of a single current-based post-synaptic potential
(PSP) on a resting neuron for different membrane time constants τm. The
weight translation from Eq. (2.80) matches the integral within τref with the
red rectangular PSP. Shorter membrane time constants τm leads to earlier
and higher peaks with a reduced tail amplitudes. b The height of PSP for
consecutive spikes also depends on the remaining amplitude of the previous
PSP. Higher input frequencies lead to higher steady-state PSP heights and
at the end of a high stimulus phase (at 180 ms) the effect remains for multiple
τref. c Effect of the depressing configuration of the Tsodyks-Markram short-
term plasticity mechanism. With a recovering time constant τrec = τsyn
(blue) the maximum of the elicited PSPs is constant. Simulation parameters
for these figures can be found in Appendix B.1.2.

active (burst) and produce a regular spike train with frequency3:

ν =
1

τref
. (3.1)

The first PSP would make the membrane potential u rise to a significantly lower level
than the second PSP and so on (see Fig. 3.1b). A higher membrane potential u leads to
an increased leak current:

Il = gl (u− Vl) (3.2)

as it is proportional to the distance to the leak potential u − Vl. At some point the
additional leak compensates the added post-synaptic current (PSC) and therefore the
membrane potential u approaches a steady-state level. This happens within a few τref
depending on the frequency of the regular spike stimulus (see Fig. 3.1b). From a modeling
perspective we would like all spikes from the spike source to have the same effect on
the neuron, as the spike source represents a pre-synaptic neuron which we interpret as
a binary unit.

Luckily for our probabilistic interpretation this is also a problem for the biological in-
terpretation of the LIF model. As is, static synapses allow for arbitrarily strong synaptic

3We again neglect the drift after the end of the refractory time for this argument. In practice, the
frequency would have to be slightly lower.

47

3. Dynamical aspects of LIF sampling

currents generated by ion pumps. In practice, the amount of current available to change
the membrane potential u is limited by the availability of neurotransmitters. The stan-
dard model for these effects – essentially modeling resource availability – is the so called
Tsodyks-Markram model [Tsodyks and Markram, 1997] for short-term plasticity (STP).

This model separates the neurotransmitters into three partitions: The recovered par-
tition R, the active partition A and the inactive partition I. The recovered neurotrans-
mitters are available to be activated by a spike traveling along the axon, the active
partition corresponds to the active synaptic input current and the inactive partition is
in a hold-off state, where they no longer contribute to the synaptic input Isyn but are
also not yet available again.

For the moment we assume that the total amount of neurotransmitters (roughly: the
strength W) at a synapse is constant and hence we know:

1 = R+A+ I. (3.3)

Whenever the synapse registers an action potential from its pre-synaptic neuron it moves
a fraction U (utilization factor) from the recovered partition R into the active partition
A. The utilization factor describes the efficiency of the synapse, where a higher U
results in the first spike being more influential, but also depletes more of the resources
that require recovery afterwards. In the original version the active partition A is what
gives rise to the synaptic input current

Isyn(t) =WA(t) (3.4)

These active neurotransmitters then exponentially decay into the inactive state I with
some time constant τrec. The inactive neuron transmitters I recover into the available
partition R with some (potentially) different facilitating time constant τfacil. Putting
this description into formulas results in the system of coupled ODEs that form the
Tsodyks-Markram (TSO) model:

dA

dt
= −A(t)

τrec
+ UR(t)δ (t− tspk) (3.5)

dI

dt
= − I(t)

τfacil
+
A(t)

τrec
(3.6)

dR

dt
=
I(t)

τfacil
− UR(t)δ (t− tspk) . (3.7)

The assumption of static synapse strength (in terms of total number of neurotransmit-
ters) is justified as retained changes of synapse strength occur on longer timescales than
the ones involved here (minutes to hours vs milliseconds to seconds [Markram et al.,
2011a]).

Different settings for the facilitation τfacil and recovery time constant τrec lead to
different behavior of the membrane potential of a single neuron. With the choice of

U = 1 , τfacil = 0 ms and τrec = τsyn = 10 ms (3.8)

48

3.1. Issues originating in the interaction shapes

the height of the PSP envelop is constant as the recovered partition R contains exactly
enough neurotransmitters to compensate for the already lost PSP height (see Fig. 3.1c
for examples). Petrovici et al. [2016] introduced the term renewing synapses for this
configuration of synapses and has shown that it is beneficial for the sampling accuracy.
Higher values of τrec (as compared to the synaptic time constant τsyn) lead to a de-
pressed reaction while lower values lead to an increased PSP height, with τrec = 0 ms
corresponding to the original static case (cf. Fig. 3.1c).

There is also a way to implement facilitating synapses, where the first few inputs act
as a primer for the synapse to get started. For these the synaptic current is proportional
to the third of three partitions I, rather than the second A as in our case. We will use
renewing synapses and refer the interested reader to [Tsodyks and Markram, 1997] for
a general discussion of the TSO mechanism and to [Leng et al., 2018] for a functional
application of TSO as a mixing facilitator within the LIF sampling framework. We
should also note that the hardware implementations within the BrainScaleS system only
allows for one of the two parameters to be non-zero, albeit we will not be using TSO in
Chapter 5.

3.1.2. Long-term influences of synaptic input
In the previous section we have seen how we can avoid a variation in the PSP height
between different spikes within a burst and thereby prevent the most egregious violation
of the assumption that all z = 1 states and thereby all spike effects are equal. However,
even with TSO being perfectly trimmed for our use case, it only alleviates with the
variation of the membrane potential within the refractory period of the pre-synaptic
neuron. The membrane potential after the pre-synaptic neuron becomes available again
can still vary depending of it continuing to burst or the previous spike being the last
spike of the burst. The latter always produces excess PSP mass U in the tail that we
did not take into account in the translation Eq. (2.80). In contrast this excess PSP mass
U is absorbed into the next PSP if the pre-synaptic neuron spikes again.

In order to quantify this we need to define the PSP mass that we used colloquially so
far:

Definition 3.1.1. PSP mass
For an isolated neuron exposed to only a single spike source we define the mass of the

PSP of an input spike at time t0 as the integral over the displacement of the membrane
potential time course u(t)− Vl of the neuron up to the next input spike at time t1

U =

∫ t1

t0

dt u(t)− Vl =

∫ t1

t0

dt PSP (t). (3.9)

We separate this combined effect into the tail contribution for times t > t0+τref (white
area in Fig. 3.2a and b) and the refractory contribution for times t0 < t < t0+τref (orange
shaded area in Fig. 3.2a and b).

The amount of the PSP tail that is visible depends on the activity level of the pre-
synaptic neuron: For low activity neurons most of the tail is visible (Fig. 3.2a for 〈z〉 =

49

3. Dynamical aspects of LIF sampling

125 150 175 200
time [ms]

0.00

0.05

0.10

m
em

. p
ot

. [
au

] z = 0.3

125 150 175 200
time [ms]

0.00

0.05

0.10

m
em

. p
ot

. [
au

] z = 0.8

0.0 0.2 0.4 0.6 0.8 1.0
Mean activity z of the presynaptic neuron

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 P

SP
 m

as
s [

1]

To
ta

l P
SP

 m
as

s [
au

]

Total
Tail
Refractory

a

b

c

Figure 3.2.: Relative contributions to the membrane potential: a (b) Membrane
potential time course due to a single regularly firing neuron with low (high)
activity and excitatory synaptic weight. Inhibitory connections work anal-
ogously. The synaptic connection is configured renewingly and the time
frame in which the pre-synaptic neuron is considered to be in state z = 1 is
marked in orange. c Relative fraction of tail (orange) and refractory (green)
PSP mass U (left y-axis, solid lines) and absolute PSP mass U (right y-
axis, dashed lines) for different activities 〈z〉. Total (blue) and refractory
PSP mass increase monotonously, with the latter a, by construction, linear
growth. The relative fraction of the tail decreases roughly linearly above
a mean activity of 〈z〉 = 0.4. Simulation parameters can be found Ap-
pendix B.1.3.

50

3.1. Issues originating in the interaction shapes

0.3) and thereby the (unaccounted) fraction of the tail mass is large. In contrast, for
high activity neurons, most of the tail mass is absorbed into the next PSP (see Fig. 3.2b
for 〈z〉 = 0.8).

In Fig. 3.2c we see the dependence of both the fractions (solid lines) as well as the
integrals (dashed lines) as a function of the activity of a regularly firing pre-synaptic
neuron for a fixed simulation time T = 1000 ms. The total PSP mass U (green) increases
monotonously with increased pre-synaptic activity, but only the refractory mass (orange)
does so linearly as we would expect if the PSP mass U were a good proxy for the expected
contribution 〈wz〉. The tail mass (green), at least for our parametrization, is always
smaller than the refractory mass, albeit for very low activity levels it contributes more
than 40 % of the total. It is only for activities 〈z〉 > 0.4 that this fraction starts to
decrease notably, with it reaching 0 at 〈z〉 = 1. This behavior does not significantly
change when we use a stochastically firing pre-synaptic neuron (data not shown).

While we will see in Section 3.3 that the dynamical effect on the firing rate of the
post-synaptic neuron is much more involved, here, we can already see that different pre-
synaptic activity levels change the meaning of a connection parameter W . We will come
back to this as a part of the explanation of what we observe for the phase space of Ising
like networks in Chapter 4.

3.1.3. Autocorrelation or when is a new state a new state?
So far we have looked at the effect of a single neuron’s output on an otherwise isolated
neuron. This is a rather unusual and therefore uninteresting situation. Typically we
are interested in the effect of a single neuron’s output on a neuron under heavy noise
input. As discussed in Section 2.2.4 this noise exposure makes the membrane potential u
implement an Ornstein-Uhlenbeck (OU) process [Uhlenbeck and Ornstein, 1930, Bibbona
et al., 2008] with time constant

1

Θ
= τ = τsyn, (3.10)

target mean (cf. Eq. (2.71)):

µ = ū = Vl +
Iext
gl

+

∑
kWkνkτ

k
syn

gl
(3.11)

and variance (cf. Eq. (2.72))

σ2 = Var[u] =
∑
k

[
τmτ

k
syn

Cm

(
τm − τksyn

)]2W 2
k νk

(
τm
2

+
τksyn
2

− 2
τmτ

k
syn

τm + τsyn

)
(3.12)

. We expect the autocorrelation of the time course of the membrane potential

ACF (u;∆t) =

〈
(u(t)− ū) (u(t+∆t)− ū)

Var[u]

〉
(3.13)

to be exponentially decaying with the OU time constant τsyn = 10 ms as we have chosen
the membrane time constant τm to be small (mimicking the high-conductance state

51

3. Dynamical aspects of LIF sampling

0 5 10 15 20 25 30
lag t [ms]

0.0

0.2

0.4

0.6

0.8

1.0

au
to

co
rre

la
tio

n
[n

or
m

al
ise

d] observed
= 9.9954 ± 0.0003 ms

10 5 0 5 10
membrane potential u [mV]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

fre
qu

en
cy

fit
measured

0 5 10 15 20 25 30
lag t [ms]

0.0

0.2

0.4

0.6

0.8

1.0

au
to

co
rre

la
tio

n
[n

or
m

al
ise

d] observed
= 0.5674 ± 0.0000 ms

2 1 0 1 2
membrane potential u [mV]

0.0

0.5

1.0

1.5

2.0

2.5

fre
qu

en
cy

st
at

ic
re

ne
w

in
g

a b

c d

Figure 3.3.: Autocorrelation of the membrane potential: a Autocorrelation func-
tion of the (free) membrane potential evolution under Poisson noise with
static synaptic connections. Observed values (blue crosses) and the fitted
exponential, resulting in the expected decay time constant τ = 10 ms = τsyn
(orange). b Observed (free) membrane potential distribution from a. c
Same as a but with renewing synapses. d Same as b but with renewing
synapses.

(HCS) found in cortical neurons). In the general case the autocorrelation time scale
would be formed by the larger of the two time constants τ = max(τm, τsyn).

Without the short-term plasticity mechanism introduced in Section 3.1.1 we can see
that the simulation results agree nearly perfectly with these predictions (Fig. 3.3a and b).
If we employ TSO both the autocorrelation function as well as the membrane potential
distribution change significantly (Fig. 3.3c and d). It is now significantly more peaked
and decidedly non-Gaussian. In order to reach the tail values, i.e., larger deviations from
ū, multiple PSPs need to add up. The TSO mechanism makes multiple input spikes
from the same synapse sub-additive and therefore more extreme values of u− ū are less
likely to be reached. This has the effect of significantly reducing the autocorrelation
time constant to 0.56 ms, which remains significantly higher than the membrane time
constant τm = 0.1 ms.

We use static synapses for the noise input as, from a modeling perspective, we want the
Gaussian shape of the distribution. This also makes sense from a biological perspective,

52

3.1. Issues originating in the interaction shapes

t [a.u.]

u2

u1

u0

10
1

10
0

z

102 104 106 108

number of samples [1]

10 2

10 1

100

DK
L

[1
]

dt = 3.00 ref
dt = 2.00 ref
dt = 1.00 ref
dt = 0.70 ref
dt = 0.50 ref
dt = 0.30 ref
dt = 0.10 ref
dt = 0.01 ref
integrate

0 10 20 30 40 50
lag [ms]

0.0

0.2

0.4

0.6

0.8

1.0

AC
F(

z)
 [1

]

a cb

Figure 3.4.: Different state generation dts: a Exemplary membrane traces and state
assignments. The choice of state assignment time deltas dt is bounded from
below by the simulation time step. In a continuous system this corresponds
to an integral over indicator functions for the different states over the ex-
periment time. Figure adapted from [Dold et al., 2019]. b Sampling perfor-
mance, as measured by the DKL, for different state assignment time deltas.
For small dt the same performance requires significantly more samples due to
their correlated nature. Above 2 samples per refractory time this degrada-
tion is observable, this limit corresponds to the Nyquist condition [Nyquist,
1928], with the correlation length being given by τref = τsyn. c Autocorrela-
tion function of the state variable z(t). The kinks at multiples of τref = 10 ms
are due to a connected neuron firing regularly (〈z2〉 ≈ 1). Aside from these
the decay corresponds to the autocorrelation of the membrane time course
u(t) (cf. Fig. 3.3a).

as we use the high-frequency Poisson sources as a stand-in for a plethora of pre-synaptic
partner neurons with low activity and low connectivity strength. As these all arrive
at different biological synapses each input spike finds a ”fresh” synapse. It is only the
sum of all the pre-synaptic input that leads to the high-frequency Poisson stimulus.
As such the implementation via a static synapse is appropriate. We will discuss the
characteristics of the noise sources in more detail in Section 3.2.

State assignment

So far we have continued to poke holes into the assumption of the state definition in-
troduced in Section 2.2.4. From experimental evidence we know that the assignment
is valid, in the sense that we can use this model to actually train a sampling network
towards a given target distribution [Petrovici et al., 2015, 2016, 2017a, Leng et al., 2018,
Kungl et al., 2019, Dold et al., 2019]. Now we turn towards the question: How does our
translation of the observed dynamical behavior of the neurons, i.e., their spike trains,
into our interpretation of their states z ∈ {0, 1} affect the resulting distribution.

In Fig. 3.4a we see exemplary membrane traces with the associated state assignments
at two points in time. It is the collection of these states that forms our sampled dis-
tribution. Formally we choose a discrete set of times ti (red vertical lines) within the

53

3. Dynamical aspects of LIF sampling

simulation time Tsim at which we want to assign a state z ∈ {0, 1} to all neurons accord-
ing to their refractory state. How we choose this temporal lattice is a free parameter.
It only affects our interpretation but not the underlying dynamics of the system. In the
extreme case we do this assignment at each possible spike time tspk, which in numerical
simulations corresponds to the simulator time step. Without this numerical complica-
tion it would also be possible to take the integral limit where we assign a new state the
moment a new spike occurs and integrate the time the system stays within each possible
state in order to determine the distribution.

The question that we should now ask is: Does our choice of the time spacing dt
matter? Fig. 3.4b gives an affirmative answer. There, we show the DKL of the sampled
distribution after a given number of samples for different time spacings dt. The left-most
cross on each line corresponds to the same simulation time T = 30 ms, the second cross
to T = 100 ms and so forth. We see that the number of samples required to achieve a
given DKL value increases for short dt < τref

2 . Conversely the required simulation time
increases (number of points from the left) for large dt.

Neither effect is surprising once we think about it for a moment: On the large-dt side it
is obvious: If we wait too long we waste simulation time as we already have a new sample
which we refuse to count. Once the autocorrelation between the states becomes negligible
further waiting does not increase the independence. The autocorrelation function of the
state variable z is shown in Fig. 3.4c. The kinks around multiples of the refractory period
τref = 10 ms are due to a high-bias neuron in the network which is bursting for most of
the simulation and thereby induces a significant autocorrelation. Aside from this oddity
the autocorrelation is similar to the one on the level of the membrane potential time
course u(t) (cf. Fig. 3.3).

The more interesting question is the low-dt side, which (at least in the physical system,
cf. Chapter 5 or in biology) does not increase runtime. Why do we need more samples
here? The answer lies in the Nyquist (or Shannon-Nyquist) theorem [Nyquist, 1928],
which states that in order to not loose any information in an optical system one is
required to perform two measurements per wavelength. The wavelength essentially gives
the correlation scale of the system, below which one cannot distinguish point sources
due to their overlapping effects. In our case this correlation scale is given by the time
constants τsyn, τref and τm. The former two are chosen to be equal and much larger than
the membrane time constant. Therefore a state assignment for time spacing dt = τref

2 is
advantageous4.

One should note here that, at least for simulations of LIF neurons, the dealing with
the binary states is not a significant cost factor in terms of computational requirements.
In other words, for software simulations the choice of dt is rather unimportant, as the
simulation time scales with the length of the simulation and not the number of samples.
However, with the accelerated hardware used in Chapter 5 the handling of the states
becomes a significant cost (and if the hardware access is optimized, the dominant one).
At this point choosing a factor of 2 larger dt actually saves this factor in wall clock time.

4This parameter is taken for all simulations done sufficiently late in the course of this thesis.

54

3.2. Where does the noise come from?

3.2. Where does the noise come from?

In Section 2.2.4 we discussed how the exposure to noise, in the form of Poisson-
distributed spike trains, transforms a deterministic LIF neuron into a probabilistic sam-
pler. At that point we did not discuss the origin and thereby the characteristics (corre-
lation structure, frequency, etc.) of these spike trains. We already briefly hinted at the
nature of the Poisson sources in the previous section, where we discussed that the noise
synapses are static rather than renewing (cf. Section 3.1.3). Here, we will discuss the
biological origin of such stochastic spike sources in our models. Afterwards, we present
several ways of realizing sources that are compatible with the neuromorphic hardware
we will later use in Chapter 5. We will also, briefly, go into the dynamical consequences
of choosing different implementations.

The aim of the LIF sampling framework is to model and explain the brain’s ability of
performing Bayesian computations on a neuronal level. As we will see, the activity of
most of these neurons can be modeled as noise. A typical neuron in the cortex has on
the order of 10 000 pre-synaptic partners [Pakkenberg et al., 2003], i.e., a spike from each
of these 10 000 neurons affects the post-synaptic neuron’s membrane potential [Sporns
et al., 2005]. From a modeling perspective this large fan-in represents a significant chal-
lenge: Not only would it require the simulation of several thousand neurons, we also
need to choose a parameterization of all the neurons and all connections according to
their biological values. Even though it is possible to simulate networks with connec-
tion densities approaching biologically observed values, these simulations take enormous
resources and do not lend themselves to systematic study (see e.g. [Markram et al.,
2015, van Albada et al., 2018, Einevoll et al., 2019]). While biological data is not precise
enough to adequately constrain more than the mean and variance of neuron parameters,
recently, such simulations have been shown to exhibit strong scaling, i.e., the simulation
time does not scale with network size, as long as one scales the number of utilized com-
pute nodes appropriately [Jordan et al., 2018]. As such, one is, at least in principle, not
limited by compute time5.

On the other hand, the distribution of observed synaptic connection strength is dom-
inated by many, very weak synapses [Barbour et al., 2007]. It is unlikely that the indi-
vidual contribution of those meaningfully impacts the spiking behavior of the neuron.
Even if there is no clear separation between a meaningful and a meaningless synaptic
input, when ordering the synaptic connections by strength, there should be at least some
cut-off beyond which the individual contribution becomes irrelevant to model. In order
to not loose the aggregate contribution of these small-weight connections we can replace
the individual neurons with their individual firing history by a random spike source with
a compatible weight and the correct total firing rate.

If we accept the argument that most meaningful information is concentrated in few
(comparatively strong or weaker, but synchronized) inputs, then the vast majority of
the remaining inputs act essentially as a ”heat bath” that introduces noise on the mem-

5However, the number of supercomputers available to simulate networks of several million spiking
neurons is limited.

55

3. Dynamical aspects of LIF sampling

brane voltage (see also discussion in Section 2.2.4 and Section 4.1). At this point we can
describe these two parts of the network separately: With one part we model the informa-
tion processing network in detail, using as few neurons and synapses as possible, thereby
limiting the required computational resources. In the other part we represent all the
other, weakly connected, neurons as stochastic background spike sources. In this section
we discuss (efficient) implementations both in software as well as under the constraints
of the BrainScaleS hardware platforms (cf. Chapter 5) and the resulting characteristics
of the noise in terms of the autocorrelation function of the membrane potential of the
receiving neuron.

3.2.1. Poisson sources

The canonical way to represent abstracted-away neurons is via Poisson sources [Gerstner
and Kistler, 2002b]. In our specific sampling network we utilize two per sampling neuron:
One for all excitatory and one for all inhibitory pre-synaptic partners.

Definition 3.2.1. Poisson source
A Poisson source of rate r is a pre-synaptic partner in a network of spiking neurons

that generates a spike train where the spike times are distributed such that the probability
of having n spikes in an arbitrary time interval ∆t follows a Poisson distribution

P (n spikes in ∆t) = e−r∆t (r∆t)
n

n!
(3.14)

with the mean firing rate r.

This distribution has the property that the variance of the spike count equals the
mean of the spike count

〈n〉 = Var[n] = r∆t (3.15)

leading to a Fano factor6

F =
Var[n]
〈n〉

= 1. (3.16)

This kind of distribution is typically implemented via its waiting time between two
successive spikes which follows an exponential distribution

P (next spike after ∆t) = exp(−r∆t) (3.17)

leading to the cumulative probability of having a spike within ∆t of

P (next spike before ∆t) = 1− exp(−r∆t) (3.18)

which is zero for ∆t = 0 and converges to one for ∆t→ ∞. This is essentially a Hazard
process [Miller Jr, 2011] where the elicitation of a spike is the end of the process.

6Side remark: Comparing variances and means is in general problematic as they have different units. It
works out here as we are comparing mean and variances of numbers, which are themselves unit-less.

56

3.2. Where does the noise come from?

We can calculate the probability density of a second spike occurring at precisely tspk+
∆t as:

p(tspk +∆t) =
d

dt
(1− exp(−r∆t)) = re−r∆t (3.19)

from which we can calculate the mean of the inter-spike interval (ISI), the time between
two consecutive spikes, as:

〈ISI〉 =
∫ ∞

0
∆t p(∆t)dt =

1

r
(3.20)

and the variance of the ISI distribution as

Var[ISI] =
∫ ∞

0
(∆t)2p(∆t)dt =

1

r
, (3.21)

resulting in a coefficient of variance7 of

CV =

√
Var ISI
〈ISI〉

= 1. (3.22)

These characteristic numbers, the Fano factor F = 1 and the coefficient of variance
CV = 1, are not unique to Poisson distributed spike trains – although they are sometimes
used as a quick check for irregular spiking activity [Grübl and Baumbach, 2017].

Technical implementation and pitfalls

We can generate a Poisson spike train by deciding for each sufficiently small δt (e.g., the
simulation time step) whether the source should generate a spike according to

P (spike in δt) ≈ rδt. (3.23)

In practice, a Poisson spike source is an object already provided by the simulation
backend (NEST [Peyser et al., 2017]). While this prevents us from introducing bugs
ourselves we still need to be aware of its limitations:

1. Spikes can only be produced at multiples of the simulation time step dt.
For rates r � 1

dt this does not introduce any limitations8, as there will almost never
be a spike and all properties discussed above hold, although the underlying time
is discretized. However, for higher rates, definitely for r > 1

dt but also approaching
this value, the stochastic process changes. There will almost always be a spike in
each time bin and, depending on the implementation, we either get a regular spike
train – if the implementation allows at most one spike per simulation step – or the
noise process changes from ”Is there a single spike in the time bin ∆t” to ”How
many spikes are there in the time bin ∆t?”.

7This is a much more natural comparison (as compared to the Fano factor) as standard deviations and
means always have the same units.

8Or, more precisely, no additional limitations besides standard numerics.

57

3. Dynamical aspects of LIF sampling

0 100 200 300
Frequency [Hz]

102

104

106

108

Po
we

rs
pe

ct
ru

m

0 2 4 6 8 10
lag t[ref]

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

[n
or

m
ed

]

a b

Figure 3.5.: Poisson noise: a Power spectrum of a Poisson spike train with a binning
of 2 ms = 0.2τref for the time series. For visibility reasons we plot the max
filtered signal with a width of 200. b Same as Fig. 3.3a. The autocorre-
lation function of the membrane potential is a delta peak convolved with
the PSP kernel. All variations beyond 4τref are due to finite time statistics.
Simulation description can be found in Appendix B.2.1.

2. Ornstein-Uhlenbeck process assumes adiabatic changes.

The OU process assumes an infinitely fast sampling of the Wiener process W (cf.
Eq. (2.66)) with infinitely small contributions of each sample. In practice we are
unable to reach this as we use finite time steps in the numerical simulation. This
limits the self-similarity of the Wiener process on short time scales. For the most
part, as the membrane time constant acts as a filter on the input and thereby
remove the high-frequency components of W , this does not impact the observable
behavior. However, for very small noise frequencies r � 1

τsyn
, the membrane

potential u of the neuron ”forgets” its input faster than new spikes arrive. In our
modeling we expect a stochastic walk of u such that it implements an OU process.
For this to happen, superpositions of single inputs must be observable on the
membrane potential. In practice, this requires a Poisson rate of r > 3

τsyn
. Below

this noise level the membrane potential evolution shows deterministic behavior
after a single input spike. Only the times of the deflection generate a non-zero
variance.

For our discussion it is only important to be aware that these limitations exist and that
we will stay far away from those limits. We are not interested in the properties of the
Poisson process itself but rather in the effect of the generated spikes on the target neuron.
In order to gain an understanding of this effect we take a look at the autocorrelation
function of the membrane potential of the receiving neuron (cf. Eq. (3.13)). We already
hinted at this in Section 2.2.4 and in Section 3.1.3, where we noted that the exponential
decay of the synaptic input triggered by the noise spikes implements an OU process on
the membrane potential.

The autocorrelation function of the membrane potential is generated by the auto-

58

3.2. Where does the noise come from?

correlation of the stochastic process that generates the noise spikes convolved with the
PSP kernel of the neuron [Petrovici, 2015]. In Fig. 3.5a we see the power spectrum of a
Poisson spike train with r = 1 kHz with a binning of tbin = 2 ms = 0.2τref. The binning
is necessary as spike trains are a series of delta functions for which an autocorrelation
function is not well-defined. The choice of the binning influences the absolute level of the
power spectrum but not the frequency distribution (aside from cutting off high-frequency
parts due to their finite size). As expected, the power spectrum essentially consists of
a δ-function, showing that the spike times are completely independent from each other.
The noise level of the surrounding parts is only due to the finite simulation time and the
contrast increases for longer simulations.

The autocorrelation function of a membrane potential under two (one excitatory,
one inhibitory) such Poisson sources is shown in Fig. 3.5b (showing the same data as
Fig. 3.3a). We see that the autocorrelation time scale is τsyn = τref and all long-term
variations with a lag of δt > 4τref are, again, only due to the finite simulation time. For
such a configuration the theoretical treatment from Section 2.2.4 is possible. However,
the simplifications we made there do have significant effects which we will discuss in
Section 3.3.

This implementation requires us to feed each neuron with its (two) private spike
train(s) of rate r. Remember: The noise sources represent the majority of the fan-in and
therefore r is typically chosen between 1 kHz to 10 kHz. In software simulations this is
a manageable challenge. We can generate the noise spikes on the fly and with relatively
little compute power9. At most, we run into the problem of providing consistent random
numbers to multiple compute nodes at which point seeding the processes becomes a
non-trivial task. For the hardware platforms that we will discuss in Chapter 5 providing
sufficient external stimulus is a tougher problem. In the naive implementation we would
need to generate the spike trains on the host computer (either before the experiment or
on the fly) and we then have to transfer these spikes in time to the emulating system.
In practice this quickly overwhelms the available bandwidth to the accelerated systems
we are using, forcing us to look for other options. Here we will only discuss alternative
solutions and defer the concrete hardware limitations to the respective later sections in
Chapter 5.

We should, however, make a fundamental point explicit: If the single neurons were to
depend on external noise sources only, every compute substrate implementing this kind
of computation would be limited in scope. The amount of external input that can be
provided to the system necessarily is constrained by the surface it shares with its sur-
rounding10. As such the noise generation has to happen locally (i.e. within the system)
and most neuromorphic platforms provide some form of on-chip noise generation in order
to not be constrained by external bandwidth. For us here the practical workarounds are
more interesting:

9Random number generation takes only about one clock cycle. The majority of the cost comes from
the unpredictability and as such potential branch mis-predictions in the CPU.

10This holds for any kind of external dependency, i.e., also the power consumption. As long as it has to
be provided from the outside.

59

3. Dynamical aspects of LIF sampling

3.2.2. On-chip sources

For the HICANNv4 chips of BrainScaleS-1 (cf. Section 5.1) – with its speed-up of 1 × 104

over biological real-time – the limit is roughly enough noise for 2 neurons per single chip
(cf. Section 5.1 and [Kungl, 2016, Kungl et al., 2019]). For the HICANN-Xv1 chips of
the BrainScaleS-2 system the effective external bandwidth is higher due to its reduced
selected speed-up of 1 × 103. Both systems feature on-chip spike generators that can
be configured to generate Poisson-like spike trains. As we will only use the ones on
BrainScaleS-2 in Section 5.2, we will restrict the discussion to their implementation.

The dynamical time scales on BrainScaleS-2 are such that they provide a speedup of
1 × 103 resulting in:

τref ≈ τsyn ≈ 10 µs. (3.24)

The results in Fig. 3.6 are therefore rescaled by this factor such that the resulting fre-
quency scale of the power spectrum (cf. Fig. 3.6b) is given in kHz. For the autocorre-
lation of the membrane potential in Fig. 3.6c this change of time scale is absorbed into
the definition of τref.

The on-chip source is a 32-bit pseudo random number generator (PRNG) (cf. Fig-
ure 3.6a, [Schemmel et al., 2020]). It consists of a series of coupled linear-feedback shift
register (LSFR) which produce a total of 16-bit entropy per cycle [Schemmel, 2020].
Starting from some initial configuration (also called the seed) an LSFR deterministically
updates its internal state by shifting all bits by one and generating the now unassigned
bit via some function of the other bits. A typical implementation is a sequence of XOR
operations on the output bit (the one that got shifted out of the LSFR state) and some
arbitrary, but fixed, bits. These are called the taps of the LSFR and they define the
properties of the resulting pseudo random number (PRN).

Any PRNG with n bits of internal state can at most generate 2n − 1 independent
samples before the internal state recurs and the sequence of output bits repeats. This
gives us a sequence length of a bit more than a million ”random” bits11.

In practice, we only require a random number to decide whether a spike should occur
in a time bin or not and we can choose these time bins to be more coarse grained than
the clock frequency. We will choose a noise period of about 50 clock cycles12. This means
the PRNG generates an 16-bit random number with a frequency of 5 MHz or once every
0.2 µs ≈ 0.02τref, which is comparable to the chosen resolution of the software simulators
of dt = 0.1 ms. It generates a spike by comparing an 8-bit random number with an 8-bit
user-defined rate and only creates a spike packet if the PRN is larger than the rate value
[Schemmel et al., 2020].

The other 8-bit of pseudo-randomness provide an additional source of randomness:
The spike packets on the BrainScaleS platforms contain a tuple of source ID and time.
11This is a simplification, as an LSFR is not cryptographically secure and one can reconstruct the

internal state from parts of the output sequence. The coupling between multiple LSFR implements a
cryptographically secure PRNG [Schemmel, 2020]. On our level of interest this distinction does not
matter.

12We choose 53 in order to avoid potentially hitting a bug when using non-prime numbers that shortens
the cycle length.

60

3.2. Where does the noise come from?

0 100 200
Frequency [kHz]

103

105

107

Po
we

rs
pe

ct
ru

m

0 5 10
lag t[ref]

0.0

0.5

1.0

AC
F

[n
or

m
ed

]

a b c

Figure 3.6.: LSFR noise: a Schematic of an 8-bit LSFR with taps at the 3rd and 5th
position. For each update the new bit (left) is generated from the final
bit (right) sequentially xor’d with the two taps and all bits are shifted by
one. The PRNG sources on BrainScaleS-2 use multiple coupled LSFRs to
provide 16-bit entropy per update cycle. Figure taken from [Wikimedia,
2016b]. b Power spectrum of the ISI distribution of the spike train resulting
from k = 5 IDs of the PRNG source of BrainScaleS-2. Each ID provides a
spike frequency of r = 80 kHz. For visibility reasons we show the maximum
filter over 200 points of the power spectrum with a binning of 2 µs. c Auto-
correlation function of the membrane of a neuron under LSFR input from
b.

While the time is purely for bookkeeping purposes (and not used on-chip, cf. Section 5.2)
the source ID is important for the routing. We set 5 bits of this ID randomly and use
this feature to generate 32 sources from a single PRNG circuit. These sources are not
independent, i.e., if we choose the rate to be close to the maximum and the PRNG
generates a spike every time it gets updated, then each spike train will still look random.
However, taking the sum of all 32 ones would result in a periodic spike train13 with
frequency ν = 5 MHz. In practice, each neuron will be connected to a random subset of
5 of the 32 generated spike trains from the used two noise generators. Each ID generates
80 kHz of noise, resulting in a total of 400 kHz ≈ 4

τref
input per neuron. As this noise is

now correlated between different neurons, we implicitly use that shared noise correlations
can be trained away [Bytschok et al., 2017, Bytschok, 2017]. We use one of the noise
generators exclusively for excitatory sources and one exclusively for inhibitory sources.

We acquired the noise spike trains by a single execution of the sampling framework
for the new BrainScaleS-2 platform (cf. Appendix C.2) where we additionally read out
the on-chip generated spike times. The thus-acquired spike trains we then injected in a
simulated neuron in NEST [Peyser et al., 2017]. This separates the effect of the on-chip
spike sources from effects originating in the, potentially imprecise, parametrization of
the analog neuron circuit. The power spectrum (Fig. 3.6b) looks as expected, i.e. we
observe a delta distribution, where the surrounding noise level is consistent with being
generated by the limited experiment duration. For visibility reasons we again show the

13This is not a unique feature of the on-chip generators, but rather inherent to the finite time resolution.
See also the discussion for pitfalls in the high-frequency limit in Section 3.2.1.

61

3. Dynamical aspects of LIF sampling

maximum filter over 200 bins. The autocorrelation function of the membrane potential
(Fig. 3.6c) shows qualitatively the same behavior as expected but does saturate at about
0.1 between 3− 4τref. This excess correlations diminishes after ≈ 7τref. The most likely
reason for this is the finite experiment duration.

3.2.3. Random network

In case of BrainScaleS-1, the on-chip sources were not available and feeding in external
noise not feasible for larger networks due to bandwidth constraints (cf. Section 5.1).
As discussed previously, the noise is actually an abstraction for a sparsely connected
network. The size of BrainScaleS-1 allows us to implement such a network and use their
output spikes in lieu of a noise source. The question becomes: What is a network that
is a) simple to implement and b) produces sufficiently Poisson-like spike trains?

Generating self-sustaining network dynamics in a recurrent neural network is, at least
in general, a non-trivial task [Destexhe, 2009]. Especially networks with both excitatory
and inhibitory connections between leak-lower-than-threshold Vl < Vthresh neurons tend
to either an epileptic state, where the activity diverges or to a quiescent state where
there is no activity at all [Brunel, 2000]. Neither of those states produces the stochastic
behavior we require for a noise reservoir. If we allow for Vl > Vthresh neurons, we can
find that a simple network of inhibitorily connected neurons produces adequate behav-
ior. While the leak-over-threshold parametrization ensures non-zero network activity the
inhibitory connections prevent the neurons from firing completely regularly. In combi-
nation with the inhomogeneous parametrization, due to the circuit-to-circuit variations
on the various BrainScaleS chips (cf. Chapter 5), this leads to variations in the ISI
distributions.

There are two degrees of freedom in a network of n such LIF neurons (cf. Fig. 3.7a):
We can choose the number of pre-synaptically connected neurons k and we can choose
the strength of the connection Winh. In the power spectrum of the noise spike trains
(Fig. 3.7b, again with binning of dt = 2 ms = 0.2τref) we can still see the peaks introduced
by the eigenfrequency of the leak-over-threshold neurons, which is only slightly above 1

τref
.

The side peaks of the power spectrum show up in the ACF of the membrane potential
(cf. Fig. 3.7c) which also corresponds to the autocorrelation function of the state of the
neuron. Different values of k and W influence the frequency and amplitudes of the side
peaks (different colors in Fig. 3.7c). Higher k and stronger inhibition are associated with
lower peak amplitudes. The frequency of the side peaks stays at intervals of τref, which
is due to the potential burst of single neurons (cf. Section 3.3).

This idea of using inhibitory random networks as noise sources was first demonstrated
on the Spikey-chip, however, without functionally using the generated noise14 [Pfeil et al.,
2016]. In [Kungl et al., 2019] such a setup is used on the BrainScaleS-1 system in order
to implement LIF sampling (cf. Section 5.1). Jordan et al. [2019] showed that also more
biologically plausible random networks can be used as sources of stochasticity [Jordan
et al., 2019]. As we will see in Chapter 5 it turns out that the noise provisioning is not a

14This is now part of the current FP lab course F09/10 [Grübl and Baumbach, 2017].

62

3.2. Where does the noise come from?

0 200
Frequency [Hz]

103

106

109

Po
we

rs
pe

ct
ru

m
0 5 10

lag t[ref]

0

1

AC
F

[n
or

m
ed

] k=50 W=-2.0
k=25 W=-4.0
k= 5 W=-1.0
k=50 W=-8.0

a b c

Figure 3.7.: RN noise: a Schematic representation of a random network (RN) noise
source. Figure taken from [Kungl et al., 2019]. b Power spectrum of the
spike train from 20 neurons of a simulated random network with a total
of n = 400 neurons, each of which has k = 50 pre-synaptic partners and
an inhibitory synaptic weight Winh = 2.0 nA. We see a clear structure in
the power spectrum with peaks around the firing rate of a free neuron.
These would further wash out when we would use some variation in the
neuron parameters instead of simply using inhomogeneous initial conditions.
c Autocorrelation function of a neuron with an excitatory and an inhibitory
source from b. The peaks in the power spectrum translate to the side peaks
of the autocorrelation function and we again see the PSP shape with the
exponential decay of τsyn = 10 ms. Simulation descriptions can be found in
Appendix B.2.2.

significant limitation of the sampling setup as we reach similar performance to software
simulations15.

Other BMs and shared sources

Ultimately there is no evidence that the human body sustains parts of the brain that do
not themselves also have some functional implications. As such it is unlikely that there
exist neurons whose sole purpose it is to provide uncorrelated input to the functional
neurons. Therefore, the objective is to have a model which uses the output of other
functional networks as stochastic input to sustain its stochastic computations. This idea
was developed and reported in [Dold et al., 2019]. It forms a network of spiking sampling
networks, where each single network samples from one particular Boltzmann distribution
and a sparse connectivity between these networks sustains the stochastic computation
within these. At this point we necessarily use the equivalence between correlated noise
sources and synaptic connections [Bytschok et al., 2017] in order to compensate for the,
now necessarily, correlated spike trains from the ”noise” neurons.

In a way this closes the circle which we opened when we replaced all the neurons we
could not simulate explicitly into Poisson sources. There we removed neurons in favor
15Which says more about the other limitations of our understanding of LIF sampling, than about the

applicability of colored noise in general.

63

3. Dynamical aspects of LIF sampling

for a) a better performance and b) a simpler mathematical description. Dold et al.
[2019] allows us to utilize a network of functional networks. As we will not be returning
to these noise implementations we leave it by this very brief introduction and refer the
interested reader to the original publications [Dold et al., 2019, Bytschok et al., 2017]
and associated PhD theses [Dold, 2020, Bytschok, 2017].

64

3.3. A Markovian description of LIF sampling

3.3. A Markovian description of LIF sampling

This section presents work done in close collaboration with Nico
Gürtler as part of his master thesis [Gürtler, 2018] which I had the
privilege to supervise.

In this section we will sketch the LIF Markov model (LMM), a stochastic model for
the spike response of LIF neurons under Poisson stimulus, that Nico Gürtler developed
as part of his master thesis [Gürtler, 2018]. For most of the mathematical derivation
and proofs we refer the interested reader to the original manuscript as we will focus on
giving a high-level description of the dynamics of single neurons within the LIF sampling
framework. In Section 2.2.4 we showed that the activation function of an LIF neuron,
under noise input, resembles a sigmoid and we took that as a motivation to the LIF
dynamics to sampling from a Boltzmann distribution. Here, we will first, in Section 3.3.1,
go into more detail on the behavior of LIF neurons in the absence of network input
and how this depends on the mean of the membrane potential distribution. We then
describe the spike response to a single synaptic input, both excitatory and inhibitory,
in Section 3.3.2 before showing that this framework is also able to deal with multiple
inputs (Section 3.3.3).

3.3.1. LIF activation function - revisited

Before we come to the description of the actual network interactions we need to derive
a stochastic formulation of the LIF neuron under noise stimulus. The transition from
an, in principle deterministic, system to a stochastic one is always based on information
that is not taken into account. In our case we generate the LMM by restricting us
to use only a priori available information (e.g. neuron and noise parameters) and the
output spike times of the neurons. In particular, we hide the precise spike times of the
noise sources16 or the resulting membrane potential u. The two latter statements are
equivalent as one can reconstruct the membrane potential time course from the input
spike train and vice versa. Nevertheless, it is illustrative to explicitly enumerate the
non-accessible information.

Over the rest of this section we will first derive a formulation of the membrane potential
density f(u; t)17 that is informed only by the network spike times {tspk} (and the neuron
parameters). This corresponds to the distribution of an ensemble of neurons which share
the same network input but are subject to different incarnations of the noise spike trains.
We will then see how network input shifts this distribution f(u) around and, in turn,
elicits changes in the spike response rate ρ. In the end we will find that this density-

16Taking the precise spike times out of consideration is appropriate, as we postulated that these are not
relevant and serve as an abstraction for functionally unimportant inputs.

17This is the ρ from Section 2.2.4 which we will later use for the spike response function in order to be
consistent with [Gürtler, 2018].

65

3. Dynamical aspects of LIF sampling

m
em

br
an

e
po

te
nt

ia
l

time

bursting ueff

u

Figure 3.8.: Evolution of membrane potential: The orange line shows the realized
membrane potential u of an LIF neuron under Poisson noise. u is a low-pass
filtered version of the effective potential ueff (blue), the instantaneous target
value imprinted by the synaptic input. Image taken from [Gürtler, 2018].

based description models the dynamics of LIF neurons much more faithfully than the
description by [Buesing et al., 2011].

Fig. 3.8 depicts a situation were there is no network input to the neuron. Similar
to Fig. 2.9, we again see the actual realized membrane potential u in orange and the
instantaneous target voltage ueff in blue. This is again for a single current-based LIF
neuron under Poissonian noise input. In this section the input frequency is increased to
30 kHz and the synaptic time constant of the noise input reduced to τnoise

syn = 3 ms. By
choosing a shorter synaptic time constant τsyn, we effectively reduce the autocorrelation
of the instantaneous target for the membrane ueff (cf. Sections 3.1.3 and 3.2). In
particular, the reduced correlation between the initial spike time tspk and the end of the
first refractory period tspk + τref will be helpful for the stochastic modeling.

The membrane potential u (orange) is a low-pass filtered (with time constant τm �
τsyn) version of the effective membrane potential ueff as long as ueff � Vthresh. Note,
due to this filtering it can happen that the effective membrane potential rises above
the threshold ueff > Vthresh without the actual membrane potential u following to supra-
threshold values. This happens only if ueff quickly returns to sub-threshold levels. In this
case no spike will be elicited (cf. slightly left of the first spike in Fig. 3.8). All following
arguments assume a quasi-instantaneous following of u to ueff, this would imply τm

τsyn
→ 0

in our current-based LIF neuron.
We reduced our available information to the scope that also the post-synaptic partner

neurons have access to: Namely the set of output spike times tspk of the original neu-
ron. The question now becomes: What do we still know about the effective membrane
potential ueff? As we are only allowed to describe its evolution stochastically, we will

66

3.3. A Markovian description of LIF sampling
eff

ec
ti
ve

 m
em

br
an

e
po

te
nt

ia
l

time
ts ts+τ ref

threshold

ts+τ ref+τ syn
noise

p(u)

u�

J (�)

J (�)J(Vthresh)

J(Vthresh)

Vthresh

a b

Figure 3.9.: Evolution of membrane potential distribution: a Schematic repre-
sentation of the time evolution of the membrane potential distribution af-
ter a spike. At spike time tspk the membrane potential u is known to be
Vthresh. During the refractory time the u-dynamic is overridden by the reset
mechanism. Due to the continued noise input the state of the synaptic in-
put continues to evolve the effective membrane potential ueff. Its evolution
follows an Ornstein-Uhlenbeck (OU) process with the initial condition of
f(u) = δ(u − Vthresh). At the end of the refractory period only the OU-
generated distribution is known. The part above the threshold value Vthresh
(orange) leads to an immediate spike and generates the bursting. Beyond
the end of the refractory time, only the sub-threshold distribution remains.
b Illustration of the probability flow in the stationary distribution of non-
refractory neurons. The flux J(Vthresh) over the threshold corresponds to
the spiking neurons. The source term (distribution above) models neurons
at the end of their last refractory period. As the mass in the stationary dis-
tribution is conserved, the integral of the source term has to be J(Vthresh).
The source distribution is not exactly the final below-threshold distribution
from a as it also contains the final ueff distribution of neurons with more
than one consecutive spike (see main text). Images taken from [Gürtler,
2018].

67

3. Dynamical aspects of LIF sampling

only talk about it in terms of its membrane potential distribution function f(ueff). The
moment in which we can still have certainty of the membrane potential is when there is
a (first) spike elicited by the neuron. For every spike time tspk we do know

u = Vthresh. (3.25)

The special thing about a first spike is that we know:

u ≈ ueff (3.26)

since the real membrane potential u is the τm-filtered version of ueff whenever the neuron
is not refractory and τm → 0 in our parameterization. In the following we will drop the
distinction between u and ueff for notational simplicity, in the understanding that we
are almost always talking about the effective one.

Formulating the last statement again in terms of membrane potential distributions
gives the following for a first spike time tspk:

f(u; t = tspk) = δ(u− Vthresh) (3.27)

Together with the Fokker-Planck equation of the Ornstein-Uhlenbeck (OU) process
Eq. (2.67) and the resulting the transition probability (restating Eq. (2.68)):

P (u, t | u′, t′) =

√
θ

πσ2 (1− e−2θτref)
exp

[
− θ

σ2
(u− u′e−θ(t−t′))2

1− e−2θ(t−t′)

]
, (3.28)

this allows us to calculate the time evolution of f(u; t) for an arbitrary initial condition
f(u; t0) as:

f(u; t) =

∫ ∞

−∞
du′P (u, t | u′, t0)f(u′; t0). (3.29)

In Fig. 3.9a this evolution is shown stylistically.
An accurate prediction becomes more challenging for high-activity LIF neurons (cf.

Section 2.2.4). This indicates that the membrane potential distribution f(u; tspk + τref)
around the end of the refractory period is of particular interest. Plugging t = tspk + τref
into Eq. (3.29) together with Eq. (3.27) gives:

f(u; tspk + τref) =

∫ ∞

−∞
du′P (u, tspk + τref | u′, tspk)δ(u

′ − Vthresh) (3.30)

=

√
θ

πσ2 (1− e−2θτref)
exp

[
− θ

σ2

(
u− u′e−θτref

)2
1− e−2θτref

]
. (3.31)

At this point we do not know the precise value of ueff anymore.
If and only if ueff > Vthresh the neuron will immediately fire again and enter a burst.

The probability of such an immediate spike occurring is given by the supra-threshold
part of Eq. (3.31) (cf. orange part of Fig. 3.9a at tspk + τref):

P (refire) = P1 = f(u > Vthresh; tspk + τref) =

∫ ∞

Vthresh

f(u; tspk + τref)du (3.32)

68

3.3. A Markovian description of LIF sampling

There is no closed-form solution for f(u > Vthresh; t) such that we are limited to this
integral of integrals18 formulation without further approximations. As we can see in
Eq. (3.32), we do not know the exact value of the effective membrane potential ueff.
Therefore the initial distribution in Eq. (3.29) is no longer a simple δ-function and the
equivalent of Eq. (3.32) for higher burst lengths becomes more involved.

The sub-threshold part of said distribution belongs to the neurons that do not fire
immediately again. Before we continue with the sub-threshold neurons, let us trace the
probability of having a third (or more spikes) in a burst further. We can calculate it in
analogy to Eq. (3.32) by plugging the supra-threshold part of the probability distribution
at the end of the first refractory period f(u > Vthresh; tspk + τref) into Eq. (3.29):

f(u; tspk + 2τref) =

∫ ∞

Vthresh

du′P (u, tspk + 2τref | u′, tspk + τref)f(u
′; tspk + τref), (3.33)

and again take the supra-threshold part of the resulting membrane potential distribution
to result at the probability of a burst of length 3 or more:

P3 = f(tspk + 2τref;u > Vthresh) =

∫ ∞

Vthresh

f(u; tspk + 2τref)du. (3.34)

In the same manner we can iteratively calculate the probability of all higher burst
lengths19.

While we lack a closed-form formulation of these later f(u; t) we can still gain some
intuition from the picture in Fig. 3.9a: The choice of τsyn � τref allows us to make
the simplifying assumption that the shape of the membrane potential distribution at
the end of the refractory time is essentially the Gaussian steady-state distribution (with
mean and variances given by Eq. (2.71) and Eq. (2.72) respectively). This distribution
f(u; tspk + 2τref) is slightly different from the one at the end of the first refractory time
f(u; tspk + τref) as the former is generated from a delta source, which is farther away
from the final Gaussian. This additional simplification means that the relative fraction
of supra-threshold mass and thereby the probability to spike again:

pk = f(u > Vthresh; tspk + kτref) (3.35)

is constant for all k > 2. As such the burst length distribution will be well approximated
by an exponential decay with

Pn = P1p
n−1 (3.36)

with P1 being the fraction of the supra-threshold membrane distribution at the end of
the first refractory time f(u; tspk + τref) and p the supra-threshold fraction at the end
of the following distributions, with each f(u; tspk + nτref) being normalized individually.
Both of these constants are strongly dependent on the mean Eq. (2.71) and the variance
Eq. (2.72) of the membrane potential distribution function. For larger τsyn, and the
18f(u) is, in general, also only known in integral form.
19We leave the exercise of writing down the equations to the interested reader and refer to Gürtler [2018]

for inspiration.

69

3. Dynamical aspects of LIF sampling

ensuring larger autocorrelation time scales, we would have to treat more than just the
membrane potential distribution at the end of the refractory period after the first spike
explicitly.

So far we have only talked about the supra-threshold part of the distributions, which
lead to immediate refiring and therefore bursts. Let us now turn to the opposite case of
a non-firing neuron. In case of a very high threshold Vthresh this is the normal case and
therefore corresponds to the steady-state distribution of the underlying OU process:

f(u) =
1√

2πVar[u]
exp

−1

2

(
u− ū√
Var[u]

)2
, (3.37)

where the variance Var[u] and mean ū are given by Eq. (2.72) and Eq. (2.71), respectively.
This distribution always describes the probability density for neurons that have not
spiked for a long time (more than a few OU time constants τsyn). We largely eliminated
the transition period closely after a spike by having the refractory time be long with
respect to the synaptic time constant.

Let’s recap what we did so far:

1. We calculated the probability of a neuron to keep a burst active as the integral
over the supra-threshold distribution.

2. We calculated the steady-state distribution of the underlying OU process.

What we actually want to know is the steady-state distribution function f(u) integrated
over the neuron’s temporal evolution. Alternatively, we can perform this analysis in
an ensemble formulation (Ergodic theorem): A schematic representation is shown as
the blue distribution in Fig. 3.9b, where the flux of probability mass over the threshold
Vthresh is given by J(Vthresh). As the neuron number is conserved, we know that the
flux leaving the sub-threshold part of the distribution is also the flux returning to the
population at the end of the refractory periods. This generates a source distribution
J(u) that is a weighted sum of

1. the sub-threshold part of the end-of-refractory time distribution of the first spikes
f(u; tspk + τref),

2. the sub-threshold part of the later membrane potential distributions
f(u; tspk + nτref),

the relative fraction of which we can estimate from the burst probabilities Pn, cf. the
discussion above.

Gürtler [2018] empirically uses a fit to the following prototypical probability density
function:

f(u) = Ce−
1
2

(u−µ)

σ2

(
1− ae

α(1−a)(u−Vthresh)

σ

)(
1− ce

u−Vthresh
A

)
, (3.38)

where A corresponds to the amplitude of a noise PSP, α is an appropriately chosen
constant for the exponential cut-off at the threshold value Vthresh, C is a normalization

70

3.3. A Markovian description of LIF sampling

10 15 20 25 30 35 40 45 50
t [ms]

10 2

10 1

pr
ob

ab
ili

ty
 d

en
si

ty

exponential fit
LIF simulation

70 65 60 55 50 45 40
ueff [mV]

10 4

10 3

10 2

10 1

100

sp
ik

in
g

pr
ob

. d
en

s.
 [

(m
s)

1
]

Jstat()
Jasym()

from sim.

asym from sim.

75 70 65 60 55 50 45 40 35

0.0

0.2

0.4

0.6

0.8

1.0

p(
z

=
1|
u f

re
e
)

LIF
logistic fit
LMM

75 70 65 60 55 50 45 40 35
ufree [mV]

0.01

0.00

0.01

de
vi

at
io

n
in
p(
z

=
1|
u f

re
e
)

a

b

c

d

Figure 3.10.: Single neuron statistics: a The ISI distribution of a single neuron for
constant ū for large ∆t’s follows an exponential distribution, as expected
by the assumed Poisson process. For the times shortly after the end of
the refractory period excess activity is observed due to burst firing. The
asymptotic spiking probability density ρasym is given by the exponential
decay constant. b Total (blue) and asymptotic (orange) spiking proba-
bility density of a single neuron as a function of ū. For smaller ū hardly
any bursting occurs. For larger ū the burst activity starts to dominate
and deviations between model (lines) and simulation (crosses) behavior in-
creases. c Resulting activation function for the LIF Markov model (LMM)
and LIF simulations. The remaining deviations (d) are due to neuron pa-
rameters being at the edge of the diffusion approximation. Images taken
from [Gürtler, 2018].

constant and a and c are the actual fit parameters. These have to be measured once
in order to be able to evaluate the values for Pn(u) and thereby inform the stochastic
model.

However, we are not interested in the probability density of the membrane potential
distribution, but rather the resulting instantaneous firing rate ρ(u). It is again necessary
to split the two sources up: On the one hand we have neurons that have not spiked
for a long time. These fire due to the diffusion above the threshold potential Vthresh
from the asymptotic distribution f(u). This we can calculate via the Fokker-Planck
equation Eq. (2.67) at the threshold value Vthresh. Gürtler [2018] calls this the asymptotic
instantaneous firing rate ρasym. On the other hand, neurons spike immediately after the
end of their refractory period τref if their effective membrane potential is above the

71

3. Dynamical aspects of LIF sampling

threshold ueff > Vthresh. This we calculated as Pn in Eq. (3.36) from the stationary
distribution and we call this ρstat.

When we related the LIF sampling framework to sampling from Boltzmann distri-
butions in Section 2.2.4 we essentially postulated that the ISI distribution of an LIF
neuron under constant ū follows an exponential distribution. The actual observed ISI
distribution in Fig. 3.10a shows deviations for small inter spike intervals ∆t ≈ τref. These
are spikes from bursting neurons and the excess contribution shortly after τref = 10 ms
corresponds to ρstat. For large ∆t the frequency distribution follows the expected power
law, giving us a Poisson process with fixed mean firing rate ν = ρasym.

From earlier discussions we would expect the burst spikes to form a δ-peak at
t = τref = 10 ms. The exponential decay that we actually observe is rooted in the fi-
nite membrane time constant τm that gives rise to the drift times τ b’s in Eq. (2.75),
which we ignored here20.

In Fig. 3.10b the total spiking probability density ρ̂ (blue) and the fraction due to
non-bursting spikes ρasym (orange) is shown as a function of mean membrane potential
ū. We show both simulations (crosses) and pure model predictions (solid lines). The sim-
ulation numbers are derived from the ISI distribution (i.e., the histogram in Fig. 3.10a),
where the non-bursting spiking probability density ρasym is integrated over the long-tail
fitted exponential decay and the total spiking probability density is integrated over all
spikes. The deviations between the simulated and the analytical numbers are due to a
combination of

1. finite membrane time constant τm, limiting the instantaneousness of the bursts,

2. finite noise frequencies rexc and rinh and thereby finite Wexc and Winh, limiting the
diffusion approximation underlying the stochastic model,

3. finite τsyn
τref

> 0, limiting the validity of the approximation via f(u; tspk + kτref) =

ckf(u; tspk + 2τref).

Nevertheless, the model qualitatively predicts the correct behavior and we also note the
logarithmic scale of Fig. 3.10b, meaning that for higher mean membrane potentials ū
almost all spikes are from bursts. Whereas for lower mean membrane potentials ū almost
all spikes are first spikes, i.e. there is an ISI ∆t � τref between the previous and the
current spike.

Even though the spiking probability density ρ differs between model and simulation the
resulting activation function (cf. Fig. 3.10c) of the LIF Markov model (LMM) developed
here fits significantly better the observed activity in simulations, when compared to to
the logistic function Eq. (2.58) of the Buesing model. The deviations are reduced by a
factor of about 3 (Fig. 3.10d). We still did not take into account the finite membrane
time constant τm (which is a step backwards compared to the original treatment in
[Petrovici et al., 2016]) and reduced the synaptic time constant τsyn as compared to the

20An exact treatment of these is of course possible, but would only serve to complicate the explanation
for little gain. See e.g. [Petrovici et al., 2016, Gürtler, 2018] for detailed derivations.

72

3.3. A Markovian description of LIF sampling

refractory time τref. In exchange, we gained a better intuition about the short-term
dynamics of our stochastic LIF neurons.

While our LMM-derived activation function is a marked improvement, we should note
here that predicting the steady-state activation function correctly is a necessary, but
not sufficient condition for a good dynamical model of LIF sampling networks. We also
point out that nothing in this section is strictly limited to LIF neurons as the argument
is rooted in the effective membrane potential ueff which is a function of the synaptic
input only. As such it is much more bound by the choice of synapse model than neuron
model. The only characteristics used are the hard refractoriness and the existence of
spikes. The principles of the LMM should therefore be transferable to any kind of fixed
threshold or quasi-fixed threshold spiking neuron.

3.3.2. Response to a single synaptic input spike

So far we have discussed the case of a single neuron without any meaningful – non-noise
– input. While we already had to make assumptions21 to get this far, being only able
to describe such a neuron would not be particularly useful. What we are after is a
description of the neuron’s response to synaptic input from other network neurons. In
the discussion above, spikes were either generated via diffusion of the membrane potential
above the threshold value Vthresh or via the supra-threshold part of a neuron that was
becoming available-to-fire again at the end of a refractory period. In this picture the
effect of a synaptic input is a shift of the membrane potential distribution of the receiving
neuron.

This is in stark contrast to the Buesing model we discussed in Section 2.2.3. There
a synaptic input simply shifts the firing probability of the neuron according to the
connecting weight wij . Here we will shift parts of the membrane potential distribution
above or away from the threshold, which will lead to a significantly faster reaction of the
system. We will start by looking at a single excitatory synaptic input:

Excitatory input

Fig. 3.11a shows a schematic representation of the reaction of a single excitatory PSP
(green) on the membrane potential distribution (blue). By construction the initial dis-
tribution corresponds to the steady-state distribution f(u). For now we assume that to
be the steady-state distribution at an activity level of 〈z〉 = 0.5, in practice it will be
a complicated distribution depending on the previous time course of the input. At the
onset of the PSP this distribution f(u) gets shifted upwards by the amplitude of the
PSP. This shift moves a significant fraction of the available – non-refractory – neurons
above the threshold Vthresh (orange part in Fig. 3.11a) and triggers an immediate spike
response. Within the rising part of the PSP the spiking probability density is massively
increased. This has two reasons: First, the rising mean of the distribution which shifts
mass above the threshold, and secondly, the higher mean ū itself, which is associated

21Which do not completely hold in our simulations.

73

3. Dynamical aspects of LIF sampling

Figure 3.11: Excitatory input:
a Illustration of the
time evolution of the
membrane potential
distribution f(u) of
non-refractory LIF
neurons. An excitatory
PSP shifts it upwards,
pushing a fraction
above the threshold
leading to immediate
spikes (orange). Spike
(b) and activity (c)
responses of LIF (blue
bars), Buesing (blue
line) and LMM (orange
line) neurons after an
excitatory PSP. d ū
evolution due to the
excitatory PSP. The
Buesing neuron model
is unable to cover the
immediacy of the LIF
reaction. Images taken
from [Gürtler, 2018].

m
em

br
an

e
po

te
nt

ia
l

timetspike

threshold

10 15 20 25 30 35 40 45 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r
[(

m
s)

1
]

neural sampling
LMM
LIF simulation

10 15 20 25 30 35 40 45 50
0.45

0.50

0.55

0.60

0.65

0.70

0.75

p(
z

=
1)

10 15 20 25 30 35 40 45 50
t [ms]

55

50

u f
re

e
[m

V
]

a

b

c

d

with stronger fluxes over the threshold J(Vthresh) (cf. Fig. 3.10b). While the former ef-
fect is by far the dominant one, the second one leads to the counterintuitive case that at
the beginning of the decay of the PSP, the spiking probability density is still increasing
because of the higher ū even though the decay of ū is already reducing f .

In Fig. 3.11b the firing probability densities of the available part of an ensemble of
neurons for the LMM (orange line), LIF neurons (blue bars) and Buesing neurons (blue
line) in response to the PSP in Fig. 3.11d is shown. For the Buesing model we use the
rectangular PSPs with equivalent integral within the refractory period (i.e., under the
same assumption that we used to motivate the translation in Section 2.2.4). We see a
difference in the reaction of the two neuron models, both in scale and in form. For a
Buesing neuron the spiking probability density within the refractory period is always
increased as long as there is a positive PSP contribution. At the end of the refractory
period the spike activity drops below the steady-state level the pool of available neurons

74

3.3. A Markovian description of LIF sampling

was depleted by the excess activity.
In contrast, the LMM model correctly captures the extremely bursty nature of the LIF

neuron, where most of the response is generated within the rising flank of the PSP. While
this spike response is more than an order of magnitude stronger than the response of the
Buesing neuron, it is also short-lived. The increasing ū sustains a larger than average
spike response for only about 2 ms, before the response drops below the steady-state
value again. Here the PSP still retains nearly half its maximum height (cf. Fig. 3.11d
around 17 ms), but the thus induced excess flux gets counteracted by the downward
drift of the membrane potential distribution, due to the receding PSP. This diminishes
the flux above Vthresh until the end of the refractory period. The spike response is also
subdued as the pool of non-refractory neurons depletes. At the end of the refractory
period we see a smaller echo of the initial response, which is generated by the supra-
threshold part of the effective membrane potential distribution of the neurons from the
initial spike response. Effectively this is the burst excess that caused the complication
in the activation function (cf. Fig. 3.10).

These response differences lead to deviations in the mean state of the ensemble (cf.
Fig. 3.11c). For the LIF/LMM neuron, p(z = 1) increases in the beginning. Here, even
the LMM struggles to capture the immediate rise correctly. This is largely because of
the non-adiabatic nature of the shift due to the PSP. The maximum ensemble reaction
is reached at the point where the spike response falls below the steady-state value (2 ms
see above), after which more neurons exit their refractory state than enter it by spiking.
For the latter two thirds of the refractory period the mean activity of the post-synaptic
neuron is decaying. At the end of the refractory time the mean activity of the ensemble
drops sharply as most of the neurons from the first response become inactive again.

In contrast, the Buesing neuron shows an increased spike response over the whole
refractory period. This is expected as the neuron’s response function only depends on
the input. The shift by w increases the instantaneous firing probability by a factor of
exp(w) for all of the pre-synaptic neuron’s refractory period. The mean response rate
(cf. Fig. 3.11c) decays immediately as the pool of available neurons starts to deplete,
but for our choice of w stays elevated while the PSP contribution is non-zero.

On the level of the mean state of the ensemble (Fig. 3.11c) it exhibits a slowing increase
over the complete refractory period. Effectively the mean activity decays with some time
constant towards its new steady-state activation level of

p(z = 1) = σ(w). (3.39)

In particular, p(z = 1) reaches its maximum at the end of the refractory period. At this
point the LIF ensemble already lost 0.12 activity as compared to its maximum.

For both Buesing and LMM model, the mean activity oscillates visibly for (2−3)τref ≈
(6 − 10)τsyn. These oscillations originate in the uneven distribution of the refractory
states of the neurons. In the steady-state case, the distribution of ”ζs” for refractory
neurons is flat as the number of spiking neurons and the number of neurons leaving the
refractory period is constant. This uniformity is broken by the synaptic input and only
gets restored via a diffusive process after the end of the refractory period. The anti-cyclic

75

3. Dynamical aspects of LIF sampling

Figure 3.12: Inhibitory input:
Figure similar to
Fig. 3.11 only with an
inhibitory PSP. An in-
hibitory PSP shifts the
distribution downward,
resulting in a reduced
firing immediately after
the onset of the PSP.
Within the PSP de-
cay the firing rate is
increased due to the
diffused distribution
being shifted upwards
again. Images taken
from [Gürtler, 2018].

m
em

br
an

e
po

te
nt

ia
l

timetspike

threshold

10 15 20 25 30 35 40 45 50
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

r
[(

m
s)

1
]

neural sampling
LMM
LIF simulation

10 15 20 25 30 35 40 45 50

0.30

0.35

0.40

0.45

0.50

0.55
p(
z

=
1)

10 15 20 25 30 35 40 45 50
t [ms]

62.5
60.0
57.5

u f
re

e
[m

V
]

a

b

c

d

nature of the LIF reaction (early response) and the Buesing reaction (late response) is
echoed throughout the oscillations.

Inhibitory input

Let us now turn to take a look at a single inhibitory PSP. For the Buesing neuron
(blue line) the situation is still symmetric to the excitatory input (Fig. 3.12a). Rather
than an upwards shift of f(u) by W it is now a downwards shift by −W . Due to the
reduced number of spiking neurons, the number of non-refractory – and hence available
– neurons increases. This leads to a moderate recovering of the ensemble spike response
rate r(t) already during the refractory period. At the end of the refractory period the
spiking probability returns to its original value and the ensemble spike response rate r(t)
is thereby increased beyond its steady-state value.

In contrast to this, during the falling flank of the PSP the spike response of the LIF

76

3.3. A Markovian description of LIF sampling

neurons drops to zero (cf. Fig. 3.12b around 15 ms). Similar to the excitatory input case,
the LMM model struggles to correctly model the scale of the initial response exactly,
but the principal shape is captured correctly. Here, we can observe the inverse effect to
the excitatory case as the spike response starts to recover already before the crest of the
PSP is reached. This happens since the diffusion can compensate the slowing downwards
pull of the distribution due to the PSP. Within the rising slope of the recovering mean
ū of the membrane potential distribution the spike rate recovers due to the two effects
already discussed in the excitatory case:

1. The reversion of ū to its steady-state value, i.e., the parts of the distribution f(u)
just below the threshold value Vthresh are shifted upwards eliciting spikes.

2. The higher ū (even without the active upwards shift) also leads to an increased
flux over the threshold J (Vthresh).

Unlike the excitatory case these two effects work in unison and both increase the spike
response. It surpasses the steady-state response level at roughly half of the refractory
period22. The ensemble response r(t) drops sharply at the end of the refractory period
(25 ms in Fig. 3.12b). This is due to the lack of burst spikes from neurons that were
supposed to spike at 15 ms, but were prevented from doing so by the inhibitory PSP.
In this particular situation the effect of the increased pool of available neurons, which
would increase r(t), and the decrease due to the lack of burst spikes roughly cancel each
other out.

Compared to the excitatory case there are some more prominent variations between
the LMM prediction and the LIF simulations. The LMM model underestimates the
suppression in the immediate aftermath of the synaptic input and compensates for this
by suppressing the recovery a bit. In particular, it is the transition from the downwards
shift (with r(t) ≈ 0) to the diffusive recovery that is not perfectly described by the
LMM. This is not too surprising as we lack a from-first-principles description in the
non-steady-state situations. Here this is apparent in the ”jump” in the LMM prediction
for r(t) immediately after the onset of the PSP (orange line in Fig. 3.12b).

In addition to this special limitation, we also note that the assumption of LIF sim-
ulations being in the diffusion limit is constrained by the finite simulator time step of
0.1 ms, the finite weight of the noise input and the finite rate of the noise input. While
these limitations are of a technical nature, and hence, not fundamental to the model
but rather rooted in our limited computing capabilities, there is another fundamental
limitation of which we cannot judge the importance due to these technical restrictions:
The ad hoc measure of modeling the exponential cutoff of the sub-threshold part of the
steady-state distribution of the OU process is unclear (cf. Eq. (3.38)).

Regardless of these limitations, the LMM reproduces the LIF dynamics significantly
better than the Buesing model. The spike response of the latter is largely symmetric
to the excitatory case (note that Fig. 3.11b and Fig. 3.12b have different scales on the
y-axis). This is not surprising as the Buesing neuron model only explicitly breaks the
22Remember that we use τsyn

τref
= 0.3 in this section and it is not completely obvious how this would

extend to the case of τsyn ≈ τref.

77

3. Dynamical aspects of LIF sampling

symmetry between the z = 0 and z = 1 state, whereas the LMM and LIF neurons also
have an asymmetric spike response function due to the forced threshold crossing via
shifts of f(u).

On the level of mean activity p(z = 1) = 〈z〉 (cf. Fig. 3.12c) the inhibitory case leads
to less dramatic effects. This holds also for the LMM and LIF models, as the spike
response is bounded from below by r = 0. This leads to a limit of how quickly the
mean activity can decay23, unlike in the excitatory case where the initial response can,
in principle, force all available neurons to spike immediately. Nevertheless, there is a
more pronounced decrease for the LIF/LMM case when compared to the Buesing model.
This is due to the immediate drop of the spike response to r = 0 of the LIF neurons,
while the Buesing spike response only drops by about 50 %.

A side effect of this bound of r = 0 is an, at least initially, reduced variation between
Buesing and LIF response on the mean activity level. While the spike response of the
LIF/LMM model is still below its steady-state value (roughly for the first half of the
refractory period τref), the mean activities differ by less than 0.04. It is only in the later
parts of the refractory period, where the LIF activity already starts recovering, that
the Buesing network still predicts a reduced activity. After this the activity level of the
LIF neuron is approximately constant as the firing rate recovers close to its steady-state
value. The final activity difference at the end of the refractory period is significantly
larger than in the excitatory case (0.1 vs 0.05).

For the following oscillating behavior similar arguments as in the excitatory case hold,
and again, these are amplified as we are looking at the ensemble response rate rather
than the individual neuron’s firing probability.

Asymmetric reaction

We found that there is an inherent asymmetry in the dynamical response of LIF neu-
rons with respect to the sign of their synaptic input. Unlike their Boltzmann-proven
Buesing counterparts, where the activity is shifted by about ±0.22 at the end of the
refractory period, the corresponding activity level is +0.18 in the excitatory and −0.1
in the inhibitory case for LIF/LMM. These differ by nearly a factor of 2 with respect
to the values for the Buesing model. This does not even account for the fundamentally
different shape of the response dynamics, where not even the point at which the maxi-
mum response is observed is the same. The peak position of the response is different,
while for LIF neurons it (roughly) corresponds to the peak of the PSP, for the Buesing
neuron it reaches its peak response always at the end of the refractory period.

Again we stress that the inputs were supposed to be equivalent under our translation
assumptions (see Section 2.2.4). While we only showed this for a single mean activity
level of 〈z〉 = 0.5, we note that this is also the most symmetric case. Even though
extrapolating this onto arbitrary situations and input spike trains would be ill-advised,

23The speed of the decay depends on the relative distribution of the neurons throughout their refractory
periods. Assuming this is the only input, this distribution is uniform and the decay in mean activity
would be linear over the refractory time (for sustained suppression of spiking activity).

78

3.3. A Markovian description of LIF sampling

10 15 20 25 30 35 40 45 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

r
[(

m
s)

1
]

neural sampling
LMM
LIF simulation

10 15 20 25 30 35 40 45 50
0.475

0.500

0.525

0.550

0.575

0.600

0.625

p(
z

=
1)

10 15 20 25 30 35 40 45 50
t [ms]

56

54

u f
re

e
[m

V
]

a

b

c

Figure 3.13: Response to regular synaptic
input: a-c Similar to Fig. 3.11b-d
spike, activity response and ū evo-
lution for multiple consecutive exci-
tatory PSPs for Buesing, LMM and
LIF neurons. The general form of
the spike response is captured well
by the LMM model. There is a sig-
nificant deviation between the final
steady-state activity levels induced
by a clamped (bursting) neuron of
nearly 0.04. A significant part of
this would be compensated for a
learned system. Image taken from
[Gürtler, 2018].

it is at least indicative that the scales of excitatory and inhibitory synaptic plasticity
(weight updates) are different for LIF neurons.

3.3.3. Response to multiple input spikes

After having discussed the dynamical response to single inputs in Section 3.3.2 we now
turn to the slightly more involved setting with three successive input spikes of an ex-
citatory pre-synaptic neuron. This roughly emulates the calculation of the probability
conditioned on the state z = 1 of the pre-synaptic neuron.

The neuron is subject to three spikes with synaptic time constant τsyn = 3 ms but
with a spacing (ISI) of τref = 10 ms. For the discussion of the dynamics within the first
refractory time we refer to the previous section. The second and third input trigger
spike response peaks that are about 20 % and 25 % stronger than the initial one. This
is not a plotting artifact, but rather a reflection of the echoes that we saw in Fig. 3.11b.
In combination with the upwards shift of the membrane potential distribution elicited
by the onset of the second (third) PSP the total ensemble response is increased.

Again the Buesing model has a significantly subdued response pattern, as its firing
probability is only modulated by the exp (w) over the whole three refractory periods
3τref. The observable variation in the ensemble spike response rate r(t) is caused by the
variations of the size of the pool of non-refractory neurons. Only after being roughly
half-way through the second refractory period (30 ms in Fig. 3.13a) this stabilizes enough
that variations of r(t) become non-obvious.

For LIF neurons we do not observe the usual sharp drop in the activity level p(z =
1) as the first wave of neurons becomes inactive again (cf. Fig. 3.11b). Due to the

79

3. Dynamical aspects of LIF sampling

upwards shift of the membrane potential distribution induced by the second PSP most
of these neurons will also be forced to spike again and thereby sustain the excess activity.
The form of the dynamics within the second refractory period (cf. 25 ms to 35 ms in
Fig. 3.13b) resembles the form within the first refractory time, only on a higher absolute
activity level with a less pronounced rising flank. Interestingly enough, already in the
third refractory period the mean activity of the LIF ensemble is nearly constant, even
though the input is sharply peaked (cf. Fig. 3.13c). A comparison with the equilibrium
state should be treated with caution though. In the equilibrium state the distribution
of internal states with in the refractory time ζ < τref is necessarily flat. This is not the
case here as the spikes which perform the reset to ζ = 0 are mostly synchronous to the
external input.

Buesing dynamics again show a vastly different response function. The most impor-
tant point here is that the steady-state activity level differs significantly at 〈z〉 = 0.58 and
〈z〉 = 0.61 when compared to the LIF/LMM response, even though we are using suppos-
edly equivalent synaptic weights. Even in the ”steady-state” case, where the short-term
plasticity mechanism hides all of the tail contributions of the PSP (cf. Section 3.1.1)
we do not see the convergence to the same values24. This is less of a problem in case
of a learned system as these variations only correspond to a different scaling of the two
weight regimes w (Boltzmann) and W (LIF). Nevertheless, the two ensemble responses
only start to become comparable after more than 2τref = 20 ms (cf. Fig. 3.13b at 35 ms).
This corresponds to approximately 6τsyn in our parametrization here. Before this point
the dynamics differ in a principled manner. In other words: Expecting those two models
to be allowed to be used interchangeably is a significant gamble.

Random input

Finally let us take a look at a series of random input spikes with varying amplitudes. We
choose a series of different weights wi, translate these using Eq. (2.80) and send spikes
in at different spike times tispk. This situation resembles the typical state of a sampling
neuron. We still limit the number of concurrent synaptic inputs in order to distinguish
effects of single inputs.

We see that both the general form of the LIF spiking probability density (Fig. 3.14a) as
well as the resulting mean activity 〈z〉 = p(z) (Fig. 3.14b) are well tracked by the LMM.
It is mainly the crossover points between the initial spike reaction and the mid-term
diffusive changes where we observe errors. These integrate up and lead to observable
deviations on the order of a few percentage points of the mean activity 〈z〉 (around 28 ms
in Fig. 3.14b). While these deviations are clearly observable and systematic, they are tiny
when compared to the deviations to an ensemble of Buesing neurons. As already found
in Section 3.3.2, the Buesing dynamics for excitatory spikes tend to be more subdued
and on longer time scales than the LIF neurons actually elicit. In other words the LMM
behaves qualitatively like LIF neurons, whereas Buesing neurons show fundamentally
different behavior.
24We did not investigate whether a better TSO parameter set exists.

80

3.3. A Markovian description of LIF sampling

10 15 20 25 30 35 40 45 50
0.0

0.1

0.2

0.3

0.4

0.5

r
[(

m
s)

1
]

neural sampling
LMM
LIF simulation

10 15 20 25 30 35 40 45 50
0.40

0.45

0.50

0.55

0.60

0.65

0.70

p(
z

=
1)

10 15 20 25 30 35 40 45 50
t [ms]

60

55

u f
re

e
[m

V
]

a

b

c

Figure 3.14: Response to diverse
synaptic input: a-c
Similar to Fig. 3.11b-
d Spike and activity re-
sponse as well as ū evolu-
tion for multiple and over-
lapping PSPs for Buesing,
LMM and LIF neurons.
The LMM model is able
to closely track the be-
havior of the LIF neuron,
whereas the Buesing neu-
ron shows significant devi-
ations. Images taken from
[Gürtler, 2018].

One particular example is the reaction to the second spike at 17 ms in Fig. 3.14b,
which is an inhibitory spike with less synaptic weight than the first excitatory spike at
15 ms. The weight was chosen such that the second PSP eliminates the remaining effect
of the first PSP exactly. That is, the ū ends up back at its resting value. At the onset
of the inhibitory PSP the activity of the LIF ensemble already started to decay, as the
generating excitatory PSP is already on its falling slope. This dramatically reduces the
firing probability of the LIF neurons and actively decreases the mean activity 〈z〉. In
contrast, Buesing dynamics still show an increasing 〈z〉 as the firing probability is still
elevated due to the net input at this point still being positive. The Buesing neuron, at
this point in time, sees the sum of the first excitatory input w1 and the second smaller
inhibitory weight w2:

∆uk = w1 − w2 > 0. (3.40)

Due to the less bursty nature, the Buesing network shows significantly reduced activity
up to the second input (0.55 vs 0.64 at 17 ms). Therefore the continued increase over
the inhibitory input actually ends up decreasing the variation (0.6 vs 0.56), while still
showing an inverted behavior as compared to LIF neurons.

A similar discrepancy appears at 25 ms, the end of the refractory period τref of spikes
triggered by the first input spike at 15 ms. At this point the Buesing model’s activity
decreases due to the accumulated excess activity. Even the increased membrane potential
(by the fifth synaptic input at 25 ms, which is excitatory again) does not increase the
firing probability enough in order to sustain this activity level with 〈z〉 = 0.65. On the
other hand the upwards shift of the membrane potential distribution induces a further
increase the activity both for the LIF ensemble as well as for the LMM model. Here, we

81

3. Dynamical aspects of LIF sampling

also see the limitations of the LMM as the amplitude and even the form of that particular
increase is not accurately predicted. It is only with the large inhibitory PSP at 29 ms
that the mean activity comes back down to around 〈z〉 ≈ 0.5. At this point we see again
the better (or less bad) performance of the Buesing model for inhibitory spikes. While
it still is not able to follow the drop (from 〈z〉 = 0.65 down to 〈z〉 ≈ 0.5) completely
the variations stay below 0.05. In contrast, for the excitatory phases the deviations are
consistently above 0.1. The neuron also does not have the time to show the constant
activity in the second half of the refractory period that we observed in Fig. 3.12c. This
is an indication that having multiple input PSPs superimposed may actually be better
for the dynamical ”correctness” of the Buesing model.

Summary

Given all these dynamical variations that Gürtler [2018] uncovered, it is somewhat sur-
prising that the translation scheme from [Petrovici et al., 2016] (cf. Section 2.2.4) works
as well as we observe it to do. While we do not have a conclusive proof that these
variations are the origin of the finite sampling accuracy observed in past experiments
[Petrovici et al., 2016, 2017b, Leng et al., 2018, Kungl et al., 2019, Dold et al., 2019], it
is very likely at least part of the reason.

The LMM model clearly describes LIF dynamics significantly better then the assump-
tion of a Buesing neuron does. However, its performance is still somewhat limited.
In particular, the initial response is tricky to be captured correctly. This is rooted in
our failure to accurately calculate the burst probability and steady-state spike distribu-
tion as well as the resulting need for empirically measured and fitted values ρasym (cf.
Fig. 3.10). Especially for the dynamic situation in the beginning, an adiabatic approxi-
mation of the shift over the threshold is bound to fail to be precise. More interesting is
the failure in the ”middle” where we transition from the shifting phase in the beginning
to the diffusion phase on the (comparatively) slowly decaying flank. Here we are still in
a non-equilibrium situation where we have little in terms of formal derivations to use as
a guide. The resulting LMM is a surprisingly well fit, especially when compared to the
Buesing dynamics, however, it is also not a universal solution when we want to actually
calculate expectation values from first principles. The main problem is that we do not
know whether there exists a closed-form solution of the steady state energy function.
Whereas the dynamics of Gibbs or Buesing neurons are derived from the full Boltz-
mann distribution, here we search for an integrated description of specific microscopic
dynamics.

The final experiment we discussed used a diverse set of weights and associated spike
times. As such, it more closely resembles the situation of a typical LIF neuron in a
sampling network. We reduced the number and thereby frequency of the stand-ins for
pre-synaptic partner neurons to make Fig. 3.14 more amenable to discussion, but we
would not expect qualitative differences for larger input sizes. There is however the
limitation that we did not include any kind of recurrent connections, i.e., the input
spike train S(t) is independent of the neurons’ response. This is not true for the typical
sampling network, where we require even direct feedback connections. As such we are

82

3.3. A Markovian description of LIF sampling

not able to make a strong statement regarding the quality of the LMM approximation
under such highly non-linear interactions. However, there is still reason to expect it to
outperform the Buesing model.

In particular, we have seen a dynamical asymmetry between excitatory and inhibitory
connections which is known in biology, where this asymmetry is observed at the neuron
level (cf. the discussion of Dale’s law in Section 2.1). One would assume that this also
generates functional implications, which we do not honor by assuming a Boltzmann-like
distribution. However, maybe the most important improvement is that the LMM can
describe the dynamics of arbitrary connectivity graphs and is not restricted to symmetric
pre-post and post-pre connections (wT = w). The latter comes with the price of not
having access to a closed-form global energy function E(~z). Unfortunately, we do not
know whether we can derive different (and improved) learning schemes from the LMM,
which is one of the most interesting further research questions. Gürtler [2018] made
progress towards this as he found an implicit description of the target distribution as a
set of constraint equations, which can be solved numerically. This improved the DKL of
a translated system with parameters W and Vl by an order of magnitude.

83

3. Dynamical aspects of LIF sampling

3.4. Comparison of the models
After having discussed different neuron models it is instructive to briefly summarize
their function and also the level of description at which the models are located. In this
section we will take a quick overview over the relationships between Gibbs (Section 2.2.2),
Buesing (Section 2.2.3), LMM (Section 3.3), LIF (Section 2.2.4) and biological neuron
models. Table 3.1 gives a quick one-page overview.

Biological neurons

We started in Section 2.1 with a brief and rather superficial description of biological
neurons and their peculiar eigendynamik which gives rise to the characteristic action
potential or spike. Our comparison starts with cell-level models, where a significant
fraction of the neuron’s inner cell is already abstracted away. There are, of course, mod-
els that take this level of detail into account (i.e. they explicitly model the 3D nature
of biological neurons e.g. [Stuart and Spruston, 2015, Stuart et al., 2016, Poirazi and
Papoutsi, 2020]. For our purposes we summarize everything from the most detailed
model of parts of the cell membrane up to the Hodgkin-Huxley model with its three
coupled ODEs [Hodgkin and Huxley, 1952] as biological models. These can form near-
arbitrarily complex systems of (ordinary or partial) differential equations. They share
the excitability feature, i.e., they produce an action potential in response to excitatory
stimuli crossing a quasi-hard threshold. These mechanistic models tend to be determin-
istic and if they introduce stochasticity it is typically to model their environment, be it
the connected network activity or the intercellular medium. Simulating these models is
typically very compute intensive and therefore prohibits large-scale simulations.

LIF model

The LIF model (cf. Section 2.1.1) is the arguably simplest of the biologically-plausible
point neuron models. It still mechanistically describes the behavior of a single cell, but
already simplifies the internal state of the neuron to its membrane and the synaptic
inputs. In our sampling framework (cf. Section 2.2.4) we choose the membrane time
constant to be low τm → 0. Therefore its effective internal state ueff is directly dictated
by the state of the synaptic input and the reset mechanism does not additionally erase
information. We explicitly introduce stochasticity via the noise input. This is not a
necessary course of action as we could also use the output of other networks, even ones
performing a computational task, rather than dedicated noise sources (cf. Section 3.2.3
[Dold et al., 2019]). This ”random” input effectively implements an Ornstein-Uhlenbeck
(OU) process on the effective membrane potential ueff (and thereby also on u as long as
the neuron is not in the reset state). Within a network of LIF neurons all communication
is encoded in the precise spike times. Due to the exponential decay of the synaptic
activity there is also no additional memory required. We choose to interpret the LIF
neuron as ”on” or z = 1 whenever it is refractory and ”off” or z = 0 otherwise. This
interpretation is required for our mapping to distributions over binary random variables,
but does not affect the dynamics of the network.

84

3.4. Comparison of the models

The LIF Markov model (LMM)

In Section 3.3 we introduced the LMM where we absorbed the explicit injection of noise
spikes into the transfer function. The idea behind it is to model the spike response of an
ensemble of LIF neurons under (differently seeded) Poisson stimulus for a given network
input. As such the ensemble follows the OU description and the network stimuli shift
the resulting distribution f(u) around. From this idea we derived the spike response ρ
(the fraction of neurons whose ueff gets shifted above the threshold). Due to the bursting
behavior of LIF neurons it has not only a dependence on the membrane voltage u but
rather also depends on the time since the last spike ζ in its transfer function ρ(u, ζ).
The communicated information is still completely covered by the spike times and for
the choice of exponentially decaying synapses again no additional memory is required.
For more general interaction shapes κ(t− tspk) either the current state of the interaction
κ(ζ) needs to be communicated in each time step or the post-synaptic neuron needs to
remember the spike times of all its partners and their interaction form. This is the same
for all neuron models. Our binary interpretation of the neuron’s state is again dependent
on whether it is refractory or not. However, the LMM aims to reproduce the spiking
probability distribution exactly, thereby a change of the interpretation would apply in
the same manner as for the LIF model.

The (extended) Buesing model

The Buesing model (cf. Section 2.2.3) was originally derived by breaking the symmetry
between the z = 1 and z = 0 state of the Gibbs neuron by introducing extended refrac-
tory times, i.e., allowing the z = 1 → z = 0 transition only after a number of time steps
τ . It calculates the local membrane potential as a simple weighted sum over the states
of the other neurons uk =

∑
kiWkizi. In order to be able to investigate the influence

of different PSP shapes we extended this model with an interaction kernel κ(ζ) which
depends on the time ζ since the last spike. For this the membrane potential calculation
changes to uk =

∑
kiWkiκ(ζi), where a rectangular κrect corresponds to the original

Buesing model. We inverted the meaning of ζ which for us counts the time since the last
spike and in the original formulation counted down the time till the next possible spike
[Buesing et al., 2011]. This allows us to represent post-refractory interactions which
was not possible in the original formulation. The transfer function is the same sigmoid
derived for Gibbs sampling, but needs to be corrected for the extended refractory time τ ,
i.e., στ (x) = σ (x− log(τ)). This transfer function gives the spiking probability, which
is then evaluated for a spike by comparison with a uniform pseudo random number.
Here, the association between the refractory state and the binary interpretation is more
fundamental: It was used to derive the activation function.

The Gibbs model

In the original Gibbs sampling there is no notion of a division between the internal and
external state as the unit does not require any memory of its past or the past of its
partners. The probability of its own state being flipped to z = 1 depends only on the

85

3. Dynamical aspects of LIF sampling

current state of all other neurons. This corresponds to τ = 1 in the Buesing model
discussed below.

Mechanistic implementations

There are essentially two components to separate: On the one hand there is the de-
pendence of the input on the output of other neurons and on the other hand there is
the translation of said input into the output of the neuron itself. On the abstract side
(Gibbs sampling) these two points are identical, i.e., each neuron directly depends on
the state z of the other neurons and forms its own state based on a weighted sum. The
more we go towards biological neurons the more complicated this sum becomes. For the
original Buesing neuron this is only a simple check for its refractory state, while with
our general kernel κ(ζ) we require the precise time since the last spike. On the other
hand the more biological models implement the synaptic input as dedicated differential
equations. Here, the input spikes define the points in time where additional interaction
strength is deposited in the synapse. In principle these all can be reduced to the transfer
of the information at the z = 0 → z = 1 transition times which we associate with spikes.

Stochasticity and relevance

The spike generation on the other hand shows stronger deviations between the different
models. Starting again with the abstract Gibbs model, we can analytically calculate
the conditional probabilities p(z = 1) and p(z = 0) (cf. Eq. (2.31)) which directly
gives us the activation function σ(x) (cf. Eq. (2.36)). This probability is transfered to
the actual state assignment via the comparison with uniform pseudo random numbers.
The introduction of finite refractory times τ requires an appropriate correction of the
transition probability στ (x), but otherwise the output generation stays the same. It is
only for the LMM where we start to take the more involved LIF dynamics into account.
Here, we used the ensemble formulation to derive an approximation of the probability
density of the membrane potential f(u; ζ). This allows us to derive its spike response
function ρ(u) as the shift of f(u) that is induced by the synaptic input. The spikes
are still generated by comparing ρ(u) with a uniform random number. In contrast the
original LIF model implements the noise directly on the membrane potential u rather
than in the transfer function. This allows the LIF model to fire stochastically without
ever having to use an explicit random number at the neuron level.

The other large question is the one of relevance: Here the answer is more complicated
as it depends on the question what the relevance is supposed to be for? From an infor-
mation processing point of view it is Gibbs sampling that is the most effective way (at
least from the ones discussed here) to sample Boltzmann distributions. All other models
we use here are complications, starting with the Buesing model, which is essentially a
slowed-down Gibbs sampler, to the LIF sampling framework where the sampling is only
approximately correct. On the other hand there is evidence that the human brain is
performing sampling-based Bayesian inference [Doya et al., 2007]. LIF neurons under
Poisson stimulus are a very good, mechanistic, model of how spiking neurons can im-

86

3.4. Comparison of the models
B

io
.

ne
ur

on
s

LI
F

LM
M

ex
t.

B
ue

sin
g

B
ue

sin
g

G
ib

bs

PD
Es

/O
D

Es
O

D
E

su
m

su
m

su
m

su
m

In
pu

t
sp

ik
e-

tr
ig

.
io

n
ch

an
ne

la
ct

iv
ity

sp
ik

e-
tr

ig
.

PS
C

s
sp

ik
e-

tr
ig

.
PS

Ps
;

no
ex

pl
ic

it
no

ise

∑ w
ij
κ
(ζ

j
)

∑ w
ij
z j

∑ w
ij
z j

O
ut

pu
t

A
P/

sp
ik

e
sp

ik
e

tim
e
t s

pk
sp

ik
e

tim
e
t s

pk
κ
(ζ
)

or
t s

pk
z
∈
{0
,1
}

z
∈
{0
,1
}

”1
-b

it”
+

tim
-

in
g

1-
bi

t
+

tim
in

g
1-

bi
t

+
tim

in
g

1-
bi

t
+

tim
in

g
1-

bi
t

1-
bi

t

Tr
an

sf
er

fu
nc

tio
n

qu
as

i-h
ar

d
th

re
sh

ol
d

ha
rd

th
re

sh
ol

d
ρ
(u
,ζ
)

σ
τ r

ef
(u
)

σ
τ r

ef
(u
)

σ
(u
)

St
oc

ha
st

ic
pr

oc
es

s
em

er
ge

nt
fr

om
co

m
pl

ex
ne

t-
w

or
k

dy
na

m
ic

s

de
di

ca
te

d
no

ise
sp

ik
es

,
eff

ec
tiv

el
y

O
U

in
te

gr
at

io
n

of
an

O
U

pr
oc

es
s

PR
N

co
m

p
PR

N
co

m
p

PR
N

co
m

p

In
te

rn
al

st
at

e
st

at
e

of
al

l
io

n
ch

an
ne

ls
st

at
e

of
sy

na
p-

tic
in

pu
t

tim
e

sin
ce

la
st

sp
ik

e
ζ

tim
e

sin
ce

la
st

sp
ik

e
ζ

tim
e

sin
ce

la
st

sp
ik

e
ζ

z

Ex
te

rn
al

st
at

e
ex

ci
ta

bi
lit

y/
re

-
fr

ac
to

rin
es

s
(n

on
-)

re
fr

ac
-

to
rin

es
s

(n
on

-)
re

fr
ac

-
to

rin
es

s
(n

on
-)

re
fr

ac
-

to
rin

es
s

(n
on

-)
re

fr
ac

-
to

rin
es

s
{0
,1
}

C
om

m
un

i-
ca

tio
n

t s
pk

t s
pk

t s
pk

t s
pk
/
κ
(ζ
)

t s
pk
/z

z

In
te

rp
re

-
ta

tio
n/

C
od

in
g

un
cl

ea
r

(n
on

-)
re

-
fr

ac
to

rin
es

s
(z

=
0
)z

=
1

z
=
1
ζ
<
τ r

ef
z
=
1
ζ
<
τ r

ef
z
=
1
ζ
<
τ r

ef
z

Ta
bl

e
3.

1.
:M

od
el

co
m

pa
ri

so
n:

B
ul

le
t-

po
in

t
co

m
pa

ris
on

be
tw

ee
n

th
e

di
ffe

re
nt

m
od

el
s

ra
ng

in
g

fr
om

bi
ol

og
ic

al
ne

ur
on

s
to

bi
na

ry
G

ib
bs

ne
ur

on
s

al
on

g
di

ffe
re

nt
ax

es
.

87

3. Dynamical aspects of LIF sampling

plement this. The specific requirements are either given by default in the hippocampus
(τm → 0 due to the high-conductance state (HCS) [Kumar et al., 2008] or a simplification
to come closer to abstract Boltzmann machines (τsyn = τref, symmetric weight matrix
Wij breaking Dale’s law). It is by no means clear that asymmetric connectivity matrices
do not generate a stationary distribution. It is simply that we do not have access to a
suitably simple high-level description for these. Here, the LIF sampling framework offers
a way to show that such an implementation works and, in particular, allows us to use
spiking neuromorphic hardware platforms (cf. Chapter 5).

88

4. Ensemble phenomena in Ising-like
networks of spiking neurons

After having discussed the intricate dynamics of single Leaky-integrate and fire (LIF)
neurons under high-frequency Poisson stimulus and, in particular, the differences to the
Buesing neuron model in Chapter 3, we now turn to the network-level dynamics of such
spiking neurons. As a significant part of this work was done prior to the development
of the LMM (cf. Section 3.3), most of later parts of this chapter still focus on the
extended Buesing model. The overarching theme will be the notion of temperature and
its meaning within a stochastic system.

Temperature – in the sense of statistical mechanics – is always associated with un-
ordered motion. Within the LIF sampling framework this motion is generated by the
background Poisson sources. In Section 4.1 we will formalize the relationship between the
noise parameters and the resulting activation function. It is the width of said function
that we will then associate with the dynamical temperature of the system. Equipped
with this notion of temperature we turn to the arguably simplest and yet widely utilized
network structure, the nearest neighbor connected Ising model. We describe this model,
its notion of the critical temperature, its temperature and external field dependence and
relationship to Boltzmann distributions in Section 4.2. Finally, we will take a look at
and explain the phase diagram of Ising-like networks consisting of Buesing neurons, with
both rectangular and exponential interaction shapes, (cf. Section 4.3) and LIF neurons
(cf. Section 4.4).

89

4. Ensemble phenomena in Ising-like networks of spiking neurons

4.1. Temperature in LIF networks - spike based tempering

This section presents work done in collaboration with Agnes Korcsak-
Gorzo for which a publication is in preparation [Korcsak-Gorzo et al.,
in prep.].

We, off-handedly, used the concept of a heat bath to describe the dynamical effects
of the noise input both when we introduced sampling as a concept in Section 2.2 and
when we discussed the nature of the noise sources and their correlation structure in
Section 3.2. Before we establish that connection more concretely let us first remember
what the dynamic effect of the noise is supposed to be: A way to have the deterministic
LIF neuron model perform stochastic computation.

The noise input serves to implement an OU-like random walk on the membrane po-
tential u. This is a valid description only if the noise is of sufficiently high frequency,
such that the membrane is always under the influence of noise (cf. Section 3.2). Imagine
if there would only be a ”noise” input spike every minute. Even with our choice of the
synaptic time constant τsyn = 10 ms being already on the upper end of biological values
(cf. Section 2.1), for the vast majority of the time we would see u ≈ Vl. It would only be
for the few synaptic time constants after the random noise spike time where the mem-
brane potential is excited. We therefore require noise frequencies of at least a couple of
noise spikes per synaptic time constant. In our parameterization (τsyn = τref = 10 ms)
this means that we require at least 300 Hz of Poisson noise per synapse type (excitatory
and inhibitory). Below this our stochastic description is simply not applicable.

4.1.1. Temperature and sampling

Before we go to the LIF-specific incarnation of temperature it is illustrative to think back
to the textbook introduction to temperature as one of the state variables for a system
of classical point particles in a box. Here, temperature represents information about the
variance of the movement of the single (gas) particles. Together with the other state
variables pressure P and volume V , it is used to compress the description of the particles
from 6N numbers representing all the position and all the velocity vectors (the so-called
micro state) to just three numbers (the so-called macro state). The macro state retains
an effective description of what a test particle would experience if it was to be inserted
into the box. Or what we would experience if we were to change e.g. the volume of the
box. It turns out that almost all of the information in the micro state of the system is
unnecessary to answer this kind of question.

Of course we do loose information: It is not possible to reconstruct the exact micro
state with only the macro state information. In other words, we would need to generate
the missing 6N − 3 numbers which we did not retain explicitly but rather only in a sta-
tistical sense. I.e., we only have a probability distribution pT (~x,~v) that is parameterized
by the state variables.

90

4.1. Temperature in LIF networks - spike based tempering

At this level the similarity to our description of our noise sources their treatment in
Section 3.2 becomes obvious. There is one fundamental issue though: In a box of gas
particles the number of particles is enormous with Na = 1 × 1026 being a typical number.
The number of neurons in the brain (50 × 109 [von Bartheld et al., 2016]) on the other
hand – while still being far too many for us to handle modeling- or simulation-wise –
is significantly smaller. In addition, the variation between different neuron types, and
even more in their local connectivity structure, is qualitatively different from the ho-
mogeneous nature of gaseous particles. As such, large-scale averages are not necessarily
as meaningful for each test particle. Which of course does not stop people from trying
mean-field approaches, often because it is the only accessible avenue.

We ignored all these fundamental questions of applicability when we abstracted most
of the connected neurons away and replaced them by Poisson sources. This input,
similarly to the gas particles in a box, randomly interact with our neuron (which would
correspond to a test particle in the box) and makes the membrane voltage u perform
its random walk. We can interpret this random walk as sampling from some probability
distribution.

In the ”test particle in a box” example, without any kind of externally provided scale,
all we would be able to see is that it randomly walks around. When we increase the
temperature, and by that the force that single collisions exert on the particle, we would
see that it walks around farther and faster. But it is only in comparison to the behavior
before that we can say ”farther and faster”. If we now introduce an external scale, e.g.
by introducing an additional collision of known force1, only then can we measure the
scale in an absolute (rather than a relative) manner and thereby define an absolute
temperature. In a way we need to define what the temperature T = 1 means. Here,
we assume that no motion at all corresponds to T = 0, which for practical reasons we
cannot reach (see discussion above).

In general, the probability distribution of a micro state pT (~x,~v) from above it takes
the form

pT (~x,~v) =
1

Z
exp

(
−E(~x,~v)

T

)
(4.1)

where the partition sum Z again ensures the correct normalization and integrates over
all possible values for ~x and ~v. The energy function E is given by the physical properties
of the components of the system (e.g. charge, size of the particles, mass of the particles,
etc.) and does not depend on the temperature or other effective state variables. It also
has the physical unit of an energy and as such needs to be divided by another number
with the unit energy. This is what the temperature in a physical system is: Its typical
energy scale2.

How does this now relate to our network of LIF neurons? The Poisson sources cor-
respond to the unordered movement of gas particles inducing the random walk. In
our incarnation, it is the variation of the membrane potential that spans the activation
function, which in turn provides the relevant scale against which the network input is

1Or using a calibrated meter.
2We happily ignore kB, which is only a unit conversion factor.

91

4. Ensemble phenomena in Ising-like networks of spiking neurons

compared to and therefore defines the dynamical temperature. However, the width of
the activation function α also goes into our parameter translation scheme, Eqs. (2.78)
and (2.80). This translation is essentially how we define the external measurement scale,
or in other words, we generate the T = 1 association via the translation scheme. In some
way this assumes that the translation works perfectly and the deviations we saw in Sec-
tion 3.3 do not exist. Nevertheless the principal argument still holds in the general
case.

Changing the temperature can be implemented via a change of the width α of the
activation function:

T =
α

α0
(4.2)

where α0 is the width of the activation function we use in the translation scheme and α
is the width of the activation function of the configuration we actually use to generate
the sample with.

In traditional sampling methods the change of the sampling temperature is used to
improve mixing for distribution with very deep modes3. We can construct a pathological
example by implementing the probability distribution p = {a

2 ,
2−a
2 , 2−a

2 , a2}. For a → 2
this leads to a preference of the 11 and 00 states, such that we do not see the two
cross states 01 and 10. This requires a parameterization of b1 = b2 = b → −∞ and
W12 = W21 = −2b → 2∞ of our network4. If we now start in the 00 state, the network
will be stuck there as the large negative bias make a spontaneous activation very unlikely.
If we were to start in the 11 state, on the other hand, we would be stuck there as both
neurons now are under an effectively large positive bias b+W = ∞ and cannot move to
the z = 0 state. In such a configuration we would only ever see a part of the distribution.

This problem is general to all sampling systems. On the one hand, at least in general,
we do not know the target distribution and therefore cannot use distance measures to it
(like the DKL, cf. Section 2.2.2) as a means to judge the sampling quality. On the other
hand, even if we do see a diverse set of modes, we still do not know whether there do not
exist additional modes the sampler did not yet reach. One of the standard workaround
methods is tempering, i.e., reducing the impact of the connectivity structure, by either
reducing the weights or increasing the width of the activation function [Nadler and
Hansmann, 2007]. An activation function does not exist in general, as this is an artifact
of our probability distributions being defined on a hypercube and updating the neurons
sequentially. Effectively, this means the relevant part of our probability distribution only
ever has 2 states. In the general case one generates a new proposed sample, typically
selected a Gaussian around the current state and accepts or rejects the new sample
according to their relative probabilities. Within this framework the mixing can also
be improved by increasing the radius from which new samples are proposed [Han and
Carlin, 2001]. Increasing the temperature squeezes the energy landscape and by that
also reduces the rejection chance due to the flatter probability distribution. This makes

3A mode refers to a cluster of related micro states {z}, e.g. all hand written depictions of the digit 1.
We call it deep if the switch into a different mode is hard and does not happen spontaneously.

4The precise values for a and b are irrelevant.

92

4.1. Temperature in LIF networks - spike based tempering

the flip from 11 → 00 or vice versa more likely5. Lowering the temperature reduces the
flip probability and thereby deepens the mode.

Here we will argue that the well-known phenomena of cortical oscillations [Berger,
1929, Varela et al., 2001, Engel and Singer, 2001, Izhikevich, 2007] could function as
a modulation of the dynamical temperature of the Bayesian brain. The term cortical
oscillation typically refers to oscillations in the electroencephalogram (EEG) which have
been known since the beginning of the 20th century [Berger, 1929]. They show distinct
peaks in the power spectrum [Jung and Berger, 1979], whose amplitude and position also
depend on the current state of the brain, for example whether the human is awake or
sleeping [Buzsaki, 2006]. The EEG measures changes in the local electric field potential
generated by the spikes that neurons elicit. On a microscopic level these oscillations
therefore correspond to changes in the activity level of large areas of the brain. There
is a significant body of literature that ascribes some functional use to these observed
behavior [Diekelmann and Born, 2010, D’Angelo et al., 2011, Obien et al., 2015, Clayton
et al., 2015], even though relatively simple networks (in particular, also ones without
function of their own) can be shown to exhibit similar oscillations [Brunel, 2000, Chialvo,
2010]. Here we postulate a functional use case for periodic oscillations of the background
activity.

4.1.2. Influence of background variations
In Section 2.2.4 we calculated the mean and the variance of the free membrane potential
distribution function as

ū = Vl +
Iext
gl

+

∑
kWkνkτ

k
syn

gl
(4.3)

and

Var[u] =
∑
k

[
τmτ

k
syn

Cm

(
τm − τksyn

)]2W 2
k νk

(
τm
2

+
τksyn
2

− 2
τmτ

k
syn

τm + τsyn

)
(4.4)

respectively. Since we model the temperature change as a consequence of the oscillating
activity course of the brain, we use static noise weights Wexc,Winh and only change
the rates rexc, rinh of the sources dynamically. As such the variance of the membrane
potential scales with

Var[u] ∝ (rexc + rinh) (4.5)

and hence the standard deviation scales with

σu =
√

Var[u] ∝
√
rexc + rinh. (4.6)

On the other hand the mean scales with

ū ∝ (rexc − rinh) . (4.7)

In case of an asymmetric choice of |Wexc| 6= |Winh| there is an additional factor Wexc
Winh

between the rexc and rinh scaling. For the ease of argument in the following discussion
5It also makes 01 and 10 more likely, thereby distorting the distribution.

93

4. Ensemble phenomena in Ising-like networks of spiking neurons

3 2 1 0 1 2 3 4
Iext [nA]

0.00

0.25

0.50

0.75

1.00

ro
ut
[H
z]

100 101

rexc [kHz]

100

101

rin
h
[k
H
z]

100 101

rexc [kHz]

100

101
rin
h
[k
H
z]

1.3
2.0

2.8

4.5

[1
/n
A
]

15.0
7.5
0.0
7.5
15.0

I0
[n
A
]

a

b c

Figure 4.1.: Membrane potential distributions and activation functions: a Acti-
vation functions for the noise configurations from the marked parameter sets
in b/c. The crosses show the measured data and the lines the best fit which
gives the slope β = 1

α and offset current I0 parameters. b/c Slope β and
central position I0 of the activation function of a CUBA neuron. Dashed
lines represent lines of constant slope and shift. Lines of constant slope β in
b correspond to approximately constant rexc + rinh, which would be directly
visible with linear axis. The orange cross and line in c correspond to the
parameter set used as reference configuration (defining T = 1) and a bias-
free temperature change, respectively. Image adapted from the upcoming
publication [Korcsak-Gorzo et al., in prep.].

94

4.1. Temperature in LIF networks - spike based tempering

we assume this scaling factor to be unity, i.e. Wexc = −Winh. This does not restrict the
generality of the argument but simplifies the mathematical formulation.

While we do not have a simple relation between the distribution of the membrane
potential f(u) and the generated activation function σ(u) (cf. Sections 2.2.4 and 3.3.1),
we can see from empirical evidence that there is a close correspondence. The width of
the activation function α is proportional to the standard deviation of the distribution σu.
The relationship between the mean of f(u) and the inflection point I0 is slightly more
complicated. It scales linearly with the difference between the excitatory and inhibitory
noise rates but there is some offset, which is a complicated function of the reset and
burst behavior.

Here, we use external currents I rather than shifting the leak potential Vl to implement
the bias to be consistent with [Korcsak-Gorzo et al., in prep.]. Both formulations are
mathematically equivalent. Fig. 4.1b shows the slope β rather than the width α (β = 1

α)
of the activation function for the same reason. As α corresponds (up to the T = 1
definition) to the temperature scaling, we find that the temperature of the system scales
with

T ∝ σu ∝
√
rexc + rinh (4.8)

In other words changing the input frequency of both noise sources by a factor of 4
should change the temperature of the sampling system by a factor of 2. Unfortunately
the argument becomes a bit more involved due to the dependence of the central point
of the activation function ū on the noise parameters rexc, rinh mentioned above. In
Fig. 4.1c we can see that a naive rescaling of both noise rates rexc and rinh (parallels to
the diagonal) would, in general, shift the inflection point of the activation function I0.

We can use any arbitrary noise configuration (and the thus implied activation func-
tion) as the basis of the definition of our T = 1 point. From this we are fixed to a
particular relation between the two noise rates rinh = r(rexc), such that the offset pa-
rameter I0 is constant by interpolating the measured data from Fig. 4.1c. Once we have
this relationship r we can change the temperature of our system near arbitrarily6.

In Fig. 4.1a we see the activation function parameters as a function of some val-
ues rexc, rinh. We choose the arbitrary point rexc = rinh = 2 kHz (orange cross in Fig. 4.1b
and c) as our definition of unit temperature T = 1. This is the activation function which
informs the translation from the abstract Boltzmann parameters w, b to the LIF net-
work parameters W, I0 (cf. Eqs. (2.78) and (2.80)). In order to change the temperature
we need to adjust rexc, rinh according to rinh = r(rexc) (orange line in Fig. 4.1c) which
leaves the I0 constant. For example T = 2 and T = 0.5 are marked with red and blue
crosses and the resulting activation functions are unshifted (cf. Fig. 4.1a). If we were to
increase the rates arbitrarily we would end up at different width and mean levels (purple
and green lines in Fig. 4.1a) which would introduce a bias to all neurons in the system
simultaneously. Avoiding this bias creates a fine-tuning problem as the adaptation of
the excitatory and inhibitory rates are now tightly coupled via rinh = r(rexc). For our

6We need stay within the applicable parameter range of the model, i.e., the noise input is sufficiently
high to have the membrane implement an OU process.

95

4. Ensemble phenomena in Ising-like networks of spiking neurons

particular choice of T = 1 with

Wexc = −Winh = 0.01 nA (4.9)

and
rexc = rinh = 2 kHz (4.10)

together with the rest of the neuron parameters (cf. Appendix B.3), this line ends up very
close to rexc = rinh. This near-linear relation is a pure artifact of our choice of parameters.
We optimized for ease of reasoning rather than biological plausibility. While this may
seem pedantic, we feel the need to stress that rexc

rinh
≈ 1 is not a requirement for the

discussed effects to be observable. In particular, the fine-tuning problem always exists
and a bias-free modulation of the dynamical temperature of the neurons will require
some form of active stabilization mechanism. Simply rescaling the two frequencies in
lock-step is not necessarily more plausible than having any other relation.

However, there is another biologically-challenged point in LIF sampling that we can
clean up here: Back in Fig. 2.9 we implemented the bias parameter of the Boltzmann
distribution b via the leak potential Vl and here we use an artificial external current I
to achieve the same goal. These are, from a modeling perspective, convenient choices,
but from a biological standpoint they are also implausible, as we (at least in principle)
require arbitrary values for Vl. Remember that Vl was actually thought to implement the
ion concentration in the intracellular medium7. The state of the intracellular medium
will have to be a) rather static, in order of the cells to survive, and b) shared between all
neurons, which would make the bias shared, or at least correlated between all neurons.
Eq. (4.7) allows us to sidestep this, as we can now implement the bias, i.e., the shift
of the activation function, via either, a change of rexc and rinh that moves us away
from the iso-up05 configuration, or an adaptation of the noise weights Wexc,Winh. The
latter feels more natural, as the connection strength is where plasticity – and therefore
learning – typically operates. It also fits into the biological interpretation, that there
is no fundamental difference between noise and network connections. That distinction
must be only a modeling artifact as there is no large class divide between synaptic input
evident in biological data.

Conductance-based neurons

For conductance-based neurons the arguments become a bit more involved as the synap-
tic effect happens on the level of Isyn rather than directly on the membrane potential u.
For current-based neurons the relation between the synaptic current Isyn and the result-
ing effect on the membrane u is a simple scaling factor depending on the capacitance Cm

and leak conductance gl. Therefore, we can equivalently discuss effects on the Isyn or
on the u level. For conductance-based neurons on the other hand, the membrane time
constant τm becomes variable and as such also the heights of the elicited PSP changes.

7Again we are skipping over the fact that different ions have different permeabilities through the
membrane, and therefore it is a bit more complicated than having one leak potential, but the analogy
holds well enough.

96

4.1. Temperature in LIF networks - spike based tempering

For a fixed synaptic weight W the PSP is reduced by the larger total conductance gtot
achieved at larger noise levels (cf. Section 2.1.1). As such the width of the membrane po-
tential distribution becomes nearly independent of the noise frequency for a sufficiently
high-conductance state (HCS) [Petrovici et al., 2016]. However, this reduction in PSP
height also affects the network PSPs. For the spike behavior it is the relative height of
a network PSP and a noise PSP that is relevant. This fraction PSP

σu
behaves the same

for conductance-based neurons as we have discussed here for the current-based neurons.
Here also our implementation of the bias b via the leak potential Vl becomes implau-

sible. For higher noise rates, the relative contribution of the fixed leak conductance gl
shrinks. In order to generate enough input current I to move the mean activity of the
neuron significantly we need to set the leak potential Vl to extreme values (±V. This
is a purely technical issue and can be absorbed into the configuration of the two noise
rates rexc and rinh.

4.1.3. Effects on the imprinted distribution
For our experiments we choose a sinusoidal time course of the excitatory noise rate

rexc(t) = A sin
(

t

2πP
+ φ

)
+ b rinh(t) = r(rexc(t)) (4.11)

with some irrelevant initial phase φ and a fixed period length P = 1 s to 100τref. We
choose the amplitude A and offset b such that the lowest excitatory frequency is rmin

exc =
500 Hz and the maximum is rmax

exc = 10 kHz:

A = 4.75 kHz ; b = 5.25 kHz (4.12)

We select the inhibitory noise frequency time course for excitatory and inhibitory sources,
such that the inflection point of the activation functions up05 coincides with up05(rexc =
2 kHz, rinh = 2 kHz). This choice corresponds to the orange line in Fig. 4.1.

Fig. 4.2A shows the two time courses rexc(t), rinh(t) (black and gray lines) as well as
the corresponding temperature course (blue line, right axis). The points of lowest (blue),
hottest (red) and reference rates at the cold-to-hot transition (yellow) are marked by the
vertical lines. The variance of the membrane potential Eq. (2.72) varies in a sinusoidal
fashion as it is proportional to rexc + rinh ≈ 2rexc. The temperature, therefore, shows
a
√

sin(t) time course, as the width of the activation function is proportional to the
standard deviation of the membrane potential distribution (cf. Eq. (4.8)).

We implement a network of n = 4 neurons with all-to-all connections and draw Boltz-
mann parameters w, b from a standard normal distribution with width σ = 1 and mean
µ = 0. We then translate these parameters according to Eq. (2.80) and Eq. (2.78)
into LIF parameters W and offset currents I. The choice of σ = 1 leads to strong
weights which in turn lead to significant contrast between the probabilities of the differ-
ent states z (cf. orange bars inFig. 4.2B for the reference distribution). In total we run
the experiment for 10 000 periods P and for technical reasons we adapt the implemented
rate every 5 ms. For each of the resulting 200 configurations over a period we collect the
10 000 sampled states individually.

97

4. Ensemble phenomena in Ising-like networks of spiking neurons

1.2 1.4 1.6 1.8 2.0
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

rno
ise

[k
Hz

]
exc
inh
temp

0.5

1.0

1.5

2.0

2.5

Te
m

pe
ra

tu
re

 [1
]

00
00

00
11

01
11

10
11

11
11

State z

10 4

10 3

10 2

10 1

100

101

pr
ob

. p
(z

)

cold
hot
ref

1.2 1.4 1.6 1.8 2.0
Time [s]

1.00

1.25

1.50

1.75

2.00

2.25

2.50

En
tro

py
 S

 [1
]

measured
expected

1.2 1.4 1.6 1.8 2.0
55.0

52.5

50.0

M
em

. u
 [m

V]

1.2 1.4 1.6 1.8 2.0
Time [s]

55.0

52.5

50.0

M
em

. u
 [m

V]

1.0

1.5

2.0

2.5

S
[1

]

A B

C D

Figure 4.2.: Imprinted distribution under tempering: A Frequency time course of
excitatory (black) and inhibitory (gray) noise sources within the experiment.
The relevant low, high and cold-to-hot reference points are marked in blue,
red and yellow respectively. B Observed probability distribution at the three
points from A. The cold (hot) distribution is closer (farther away) from the
uniform distribution (dashed line) than the reference. C Entropy S of the
observed distributions. Measured data (green line) and expected entropy
via rescaling (blue crosses, see main text). Distributions are sampled for
10 000 periods. D Membrane potential evolution with entropy time course
in the background. More extreme membrane potential oscillations for higher
temperature levels (around 1.8 s) are due to the higher noise level. The spike
activity (|) does not only depend on the temperature but also the bias. High
bias neurons (upper panel) fire more often for the low temperatures around
1.4 s, low bias neurons (lower panel) less often. Figure taken from [Korcsak-
Gorzo et al., in prep.].

98

4.1. Temperature in LIF networks - spike based tempering

Within the distributions at the three distinguished configuration (lowest tempera-
ture blue, highest temperature red and reference temperature orange) the behavior is
as expected: In general higher temperatures lead to a closer-to-uniform distribution
(horizontal line in Fig. 4.2B), whereas lower temperatures are associated with more ex-
treme probabilities. These extremes can either be lower (e.g. 1011) or higher (e.g. 0101
with nearly 80 %) depending on whether the original probability pref(z) is above or be-
low the uniform level 1

2n = 1
16 . This latter statement does not completely hold as the

normalization leads to additional non-linear effects.
We can now measure the entropy S of these resulting probability distributions (cf.

Eq. (2.39)):
S[p] =

∑
x

−p(x) log (p(x)) (4.13)

The entropy measures the disorder of the distribution. It reaches its maximum log(|Ω|) =
log(2n) = log

(
24
)

≈ 2.77 for the uniform distribution and is zero for a degenerate
distribution with p (x̂) = 1 with x̂ being the certain outcome.

Using now the 200 measured distributions we can take a look at the time course of
the entropy (cf. Fig. 4.2C). We see that higher entropy states are associated with higher
temperatures and vice versa. We can calculate the expected entropy change from the
observed reference distribution by defining the energy for all states as

E(z) = − log (p(z)) . (4.14)

These energies can then be rescaled by the temperature T and we calculate the associated
probability distribution via Eq. (2.25):

pT (z) =
1

ZT
exp

(
−E(z)

T

)
(4.15)

with the normalization constant ZT =
∑

y exp
(
−E(y)

T

)
being different for each temper-

atures T and unity for the reference configuration at T = 1.
The observed entropy change tracks the expected variations well. In the cooling-down

period the measured entropy drops slightly earlier than the calculation predicts. This
likely originates in the fact that the distribution which we observe at the reference rate
rexc = 2 kHz is formed by the state of the synaptic inputs at this point in time. However,
these are the result of the previous ≈ 3τsyn = 30 ms. As such it is slightly ”colder” than
the actual target distribution, which also explains the different point of lowest entropy
S ≈ 1. Longer periods P would suppress this effect.

On the level of the membrane voltages we see the effect of the different noise levels in
the width of the membrane potential. We show the actual membrane potentials (rather
than the effective ones without the spike mechanism) in Fig. 4.2D. The reset behavior of
the spike mechanism makes the observation a bit more involved. For lower-bias neurons
(lower pane) the effect is more easily identified. Here, for cold temperatures (around 1.4 s)
the neuron’s membrane potential is rather stable and significantly below the threshold
Vthresh = −50 mV and the neuron does not fire at all. For higher temperatures (around

99

4. Ensemble phenomena in Ising-like networks of spiking neurons

1.8 s) the variance increases, which leads to sporadic activity depending on the state of
the random walk. For high-bias neurons (upper pane in Fig. 4.2D) the low-temperature
phase results in higher activity, as the noise levels are not sufficient to suppress the leak-
over-threshold bias and the neuron is near-constantly active. Here, higher temperatures
are associated with less spike activity.

Discussion

We should point out that none of the arguments presented here, except for the calcu-
lations, depends on the noise being Poisson distributed or the time course being a sine.
Both of these are choices made to make the model and simulations more accessible.
However, any kind of stochastic input and associated change in its intensity will have a
qualitatively similar effect. In practice, the assumption of Poissonian distributed ”back-
ground” is justified as the sources are a stand-in for a diverse population of pre-synaptic
neurons. Even though there will be some correlation the law of large numbers is going
to apply.

The assumption of a sine-like modulation of the network activity directly contradicts
the available data. Brain waves can of course be decomposed into sine modes, but their
superposition forms a much different time course [Buzsaki, 2006]. However, this does
not invalidate our model here as all it really requires is that the reference condition is
sufficiently long observable, such that the network can adequately adapt to it. In our
model this requires time periods on the order of the synaptic time constant τsyn in which
the network is exposed to adequate noise input. As we do not use the shape of the time
course (except to determine the temperature) the same principles also hold for arbitrary
time courses and the sine choice only eases implementation.

One potential application is the mixing problem that we briefly introduced in the
beginning of this section. Here lower activity levels of the background would correspond
to phases where we more clearly ”see” a particular realization and higher levels help us
switch between the available compatible interpretations of the world. E.g. whether the
example in Section 2.2 (Fig. 2.5) did indeed show a rabbit or a duck. In the statistical
literature there has been a lot of work done to precisely tune the tempering schedule
for optimal sampling and how to ensure that the sampled distribution is an unbiased
estimate of the underlying one [Nadler and Hansmann, 2007]. We did not investigate
effects of such optimizations so far, and it is unlikely that we will achieve the necessary
precision to benefit from those optimizations. However, it has been shown that tempering
can help mixing in spike-based generative models of both handwritten digits and more
complex data sets in a setup similar to what we will use in Section 5.1 [Korcsak-Gorzo,
2017].

100

4.2. A simple network: The Ising model

4.2. A simple network: The Ising model

In Chapter 3 and, in particular, in Section 3.3 we discussed the dynamical response of
a single neuron with respect to synaptic inputs extensively. What we, intentionally, de-
layed was a discussion about network level effects and discrepancies between the different
models. For functionally relevant networks – of which we will discuss two incarnations
on neuromorphic hardware in the next chapter (Chapter 5) – we are immediately faced
with a huge variability both between networks of similar performance, but also between
different neurons within said networks. This makes the identification and isolation of
effects of different components a very subtle task. Rather than facing this challenge
directly, we use the arguably simplest possible network topology, the nearest neighbor
connected 2D-Ising network. The hope behind this was that it will be easy to isolate
effects and explain their variations8.

We will first introduce the classical Ising model in Section 4.2.1. In Section 4.2.2 we
then present the concept of the critical temperature and in Section 4.2.3 we discuss the
Curie law and hysteresis effect that we will look at throughout the rest of this chapter.
Finally in Section 4.2.4 we relate the Ising model to the BM formulation and give the
translation of the phenomena from Section 4.2.3 in this formulation. Much of this work
was done before [Gürtler, 2018], therefore most of the remaining chapter will be focused
on investigations of the Buesing neuron model (Section 2.2.3 albeit with exponential
interaction shapes), rather than the LIF model. There is also a computational reason
for this, as LIF simulations are significantly more expensive and, in particular, setting
up different initial states is not easily possible within the simulation framework SBS
[Breitwieser et al., 2020].

4.2.1. Setup

The d-dimensional classical (as opposed to the quantum) Ising model consists of a
d-dimensional lattice of mini-magnets or spins9. Each lattice site i consists of one spin
σi that can either point upwards or downwards. We model these as

σi ∈ {−1, 1} . (4.16)

Nearest neighbor sites are connected via a coupling parameter J , which represents the
interaction between the mini-magnets. For J > 0 it is energetically preferable for neigh-
boring spins to be aligned and the model represent ferromagnetic material, for J < 0 it
is vice versa and it represents anti-ferromagnetic material [Nolting, 2013]. Additionally
each spin also couples to an, at least in principle, site-local external field hi. This can
be used to represent a lattice-external magnetic field, e.g. the earth magnetic field.

8This is how the author started his investigation nearly five years ago. With the expectation of ”just”
finding obvious results and be done within half a year, before moving on to implementations on
hardware. As it turns out: ”It’s never just” - Thomas Robitaille, ca. 2013.

9In contrast to Section 5.2 here we only discuss classical spins.

101

4. Ensemble phenomena in Ising-like networks of spiking neurons

A d-dimensional lattice of length l has n = ld spins in total. Each micro state σ ∈
{−1, 1}n of the lattice is assigned an energy

E(σ) = −J
∑
〈i,j〉

σiσj −
∑
i

hiσi, (4.17)

where the first sum only runs over the set of nearest neighbors i and j. In a thermal
bath each σ occurs with a temperature-dependent probability

pT (σ) =
1

Z
exp

(
−E(σ)

T

)
, (4.18)

with Z =
∑

{σ} exp
(
−E(σ)

T

)
being the temperature-dependent normalization constant,

or partition sum. All the arguments from Section 2.2.1, why this sum quickly becomes
intractable and (efficient) sampling methods are required, apply.

The global magnetization of our model system is then given by

M =
1

N

∑
i

σi = 〈σ〉 , (4.19)

which in an ensemble average sense is given by

〈M〉 = 〈σi〉pT . (4.20)

We will stick largely to the 2-dimensional ferromagnetic variant as this can be solved
analytically [Onsager, 1944] and forms a robust comparison point. The choice of di-
mensionality is solely encoded in the set of index pairs i, j contained in 〈i, j〉 and, as
such, easy to change. In the language of connectivity matrices from before the nearest
neighbor connections correspond to a very sparse matrix Jij with non-zero entries only
for i, j that are nearest neighbors. Finally, we choose periodic boundary conditions, i.e.
we treat the right-most and the left-most as well as the top-most and the bottom-most
lattice sites as neighbors throughout the rest of this chapter. These choices of periodic
boundary conditions and the 2D network are taken in order to minimize the finite-size
effects.

4.2.2. Critical temperature Tcrit

The Ising model gained fame through its ability to reproduce the phenomena of spon-
taneous magnetization. A piece of ferromagnetic material acts as a magnet only if all
(or at least most) of its constituent mini-magnets align into one direction. At this point
the whole block can interact with other magnetic material. Taking such a magnet and
heating it up will lead the single spins to misalign and the magnet to no longer being
magnetic at a macroscopic level (see Fig. 4.3a for a sketch).

Interestingly enough the opposite is also working: Instead of realigning all spins by
some external field one can also cool down the magnet below its Curie or critical temper-
ature Tcrit and the spins realign spontaneously. The Ising model was the first to explain

102

4.2. A simple network: The Ising model

this already observed phenomena [Ising, 1925]. Onsager then calculated the critical
temperature in terms of the coupling strength J for the 2D model [Onsager, 1944]:

kTcrit
J

=
2

ln
(
1 +

√
2
) ≈ 2.269. (4.21)

The critical point itself is for the external field hi = 0 ∀i. We see already here that this
is a scale-free system, as there is one free parameter between J , h and T , with only the
ratio of Tcrit

J being special.
The point (J = 1, T = Tcrit, h = 0) of the 2D-Ising model is probably the single

most well understood parameter point in any model in statistical physics and we will
not be able to do a satisfactory treatment of it and refer to the textbook literature (cf.
[Nolting, 2013]). Of particular interest are the divergences of the state variables around
this critical point, which are characterized by the critical exponents. We will only treat
the critical exponent γ, which describes the divergence of the susceptibility

χ =
∂M

∂h
. (4.22)

χ diverges at (J = 1, T = Tcrit, h = 0) when approached from higher temperatures
T > Tcrit as

χ ∝
(
T − Tcrit
Tcrit

)−γ

(4.23)

with γ = 7
4 for d = 2, which can be derived analytically [Onsager, 1944].

While we can calculate these expectation values for the traditional Ising model as
derivatives from the partition sum Z, it would require us to use the knowledge that
Eq. (4.18) is exact. Since we want to extrapolate to Buesing and LIF neurons we do
not have this knowledge and, in fact, do have to assume that there will be significant
deviations. Therefore, we need to do these calculations in a more manual way and
approximate the gradient by a finite difference:

χ(T) = lim
∆h→0

〈M(T, h = ∆h)〉 − 〈M(T, h = −∆h)〉
2∆h

(4.24)

where we need to choose the finite difference 2∆h to be a small external field change.
In Fig. 4.3b we see the temporal evolution of the magnetization of such an Ising system,

initialized at high temperature T = 4 and slowly (adiabatically) cooling down. Fig. 4.3c-
e presents the iconic 2D images of typical states along this evolution, with the down-state
being shown in yellow and the up-state in purple. For a hot system (T � Tcrit, Fig. 4.3e)
the spins effectively do not see each other and the resulting activity pattern resembles
white noise with a flat power spectrum. At the critical temperature (Fig. 4.3d) we see a
completely scale-free system. This means that the size distribution of iso-magnetization
patches follows a power law, which prevents us from making a statement about the
system size, as the figure would look the same for all possible ”zoom” levels. Finally,
for a cold system (Fig. 4.3c) all spins are aligned and the total absolute magnetization
is close to its maximum (Fig. 4.3b).

103

4. Ensemble phenomena in Ising-like networks of spiking neurons

4.2.3. Curie law and hysteresis
There are essentially two degrees of freedom in the Ising model: One is the external
field h and the other is a combination of the temperature T and the coupling parameter
J . Of the latter two we can set one arbitrarily to unity, typically one chooses the
coupling parameter J = 1 as this is a material dependent quantity and should not be
subject to changes in either external fields h or temperature T , which are experimentally
accessible. The dependence of the magnetization on both of these parameters, in a linear
approximation, is described in the original Curie law (named after Pierre Curie (1859-
1906))

M ∝ h

T
(4.25)

Essentially this expansion is valid for small values of |M | � 1, which are generated for
small magnetic fields and not too low temperatures. In its general form it reads

M =M0 tanh
(
C
h

T

)
(4.26)

with M0 being the maximally achievable magnetization of the system (essentially scaling
with system size) and C being some constant depending on the coupling strength J . We
will only be looking at magnetization per site and therefore M0 = 1 for us.

There are now two dynamical experiments that one can look at:
1. Cooling-down

We can fix the external field hi = h for the system, initialize it at a high tempera-
ture T � Tcrit and cool it down adiabatically. In Fig. 4.3b this is shown for h = 0
and we expect the system to fluctuate around M = 0 for T > Tcrit, with fluctu-
ations increasing when the temperature approaches Tcrit. When crossing into the
sub-critical temperature regime T ≤ Tcrit the system transitions into either M ≈ 1
or M ≈ −1 with a characteristic decay. For different values of the external field
h we expect to see a continuous decay towards M = sign(h) with reaching the
extreme value M = ±1 for T = Tcrit.

2. Oscillating external field
On the other hand we can fix T to some value and change the external field h
adiabatically in an oscillating manner. For T > Tcrit this simply traces the Curie
law Eq. (4.26) and reproduces the activation function of a single unit up to some
scaling factor. For T < Tcrit only M = ±1 are states that can be sustained. If
the system happens to be in an M = 1 state, then we need to tune the external
field to a significantly negative value h < 0 in order to overcome the internal
bias generated by all the aligned states before the whole system switches into the
M = −1 state. In order to switch back again a significantly positive external field
h > 0 is required. This effect is called hysteresis and does not depend on the
oscillation frequency which, if chosen too high also induces a dynamical lag. We
need to be especially careful due to the finite time constants used in the Buesing
and LIF sampling frameworks (τref, τsyn).

104

4.2. A simple network: The Ising model

Curie Temperature

2 3 4
Temperture T

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ac
tiv

ity
 z

a b

c d e

Figure 4.3.: Ising model: a Schematic representation of a physical magnet. Spins
(small indivisible magnets, represented by arrows) are arranged on a regular
lattice (here 3D, later 2D). Above the Curie temperature Tcrit the single
spins are randomly oriented resulting in a zero net magnetization. Below the
Curie temperature the coupling between the spins dominates and all spins
orient in the same direction, resulting in a macroscopic net-magnetization.
b Mean activity 〈z〉 of the 2D system cooling down from T = 4 > Tcrit to
T = 1.2 < Tcrit. The increased fluctuations shortly above Tcrit ≈ 2.27 as
well as the divergence shortly below it are characteristic for the system. c-e
Exemplary states of the single spins (up in blue, down in yellow) of a 80x80
2D-system for different temperatures T < Tcrit, T ≈ Tcrit and T > Tcrit.
Far above the Curie temperature the orientation of the spins is random,
far below the spin coupling dominates and essentially all spins are aligned.
Around the Curie temperature (d) scale-free behavior can be observed and
iso-magnetization areas of all sizes appear. For simulation parameters see
Appendix B.4.

105

4. Ensemble phenomena in Ising-like networks of spiking neurons

4.2.4. Connection to Boltzmann machines

So far the formulas for the Ising model are exactly identical to the ones we used to
describe Boltzmann machines (cf. Section 2.2.1), except that we are now using σ ∈
{−1, 1} instead of z ∈ {0, 1} to describe the state of the single unit. This changes
the achievable energy band of the states in Eq. (2.26) and Eq. (4.17) as well as their
achievable mean activities. Since both these systems are classical two-state systems,
which can all be related via a linear transformation, we can find an equivalent BM
parameter set (w, b) for each set of Ising parameters (J, h) via:

wij = 4Jij (4.27)

bi = 2hi − 2
N∑
j=0

Jij (4.28)

and vice versa

Jij =
1

4
wij (4.29)

hi =
1

2
bi +

1

4

N∑
j=0

Wij (4.30)

For states related by

zi =
1

2
(1 + σi) (4.31)

this results in energies differing only by a global constant C = 1
2

∑N
i,j Jij −

∑N
i=0 hi,

which does not change the state-probabilities due to the normalization constant Z. For
the proof of correctness of these calculation see Appendix A.

Eq. (4.28) and Eq. (4.30) give us that the h = 0 configuration requires, on the Boltz-
mann side, a fine-tuned configuration10 between the coupling weight w and the bias
b:

bi = 2hi − 2
N∑
j=0

Jij = 0− 2× 4J = −2× 4× 1

4
w = −2w (4.32)

to compensate for the offset of the center of the activity scale with 〈A〉 = 0.5. This
compensation is trivial for standard Buesing neurons, but becomes tricky for different
interaction kernels and LIF neurons. If it is only the scale of the interaction shape that
we misjudged we would expect a constant offset from the predicted bias parameter b.
Throughout the rest of this chapter we will use the bias offset ∆b = b+2w as the stand
in for the external field h. The scaling relation between these two is:

∆b = 2h (4.33)
10Technically speaking, h = 0 is also a fine-tuning problem, but we can just not model h. Here, the

additional practical problem is, that we do not know the ”correct” value.

106

4.2. A simple network: The Ising model

The movement to w = 1 also rescales the critical temperature by the weight-rescale
factor of 4 from Eq. (4.28) with the resulting critical temperature being:

TBM
crit ≈ 0.567 (4.34)

Lastly we need to find equivalents of the magnetization:

M = 〈σ〉pT ∈ [−1, 1] (4.35)

with the exceptional point of vanishing external field h = 0 corresponding to M = 0.
On the Boltzmann side this is the mean activity

A = 〈z〉p ∈ [0, 1] (4.36)

where the bias-free configuration implies A = 0.5. In order to more closely align with
the magnetization from the original magnet formulation, we introduce the offset activity

∆A = A− 0.5. (4.37)

There is one additional problem we side-stepped so far: Starting with the Buesing
neuron all our models have some form of explicit temporal dynamics that the original
Ising model and Gibbs sampling11 do not have. These increase the effect of the finite
system size. In the original formulation, where the spins where allowed to flip in each
update step, the most a single flip could affect was the neighboring (directly connected)
site. With the introduction of refractory periods τref a flip into the z = 1 state keeps
influencing its surrounding spins for the next τref update steps. If the neighbor also
spikes, than this original spike can propagate throughout the complete system if the
interaction strength w is sufficiently strong before the original unit is released. At least
for systems that are smaller than τref along one dimension we use l = 80 and τ = 100
for most of our simulations here. In practice, at least for the functional networks in
Chapter 5, this is not our biggest concern as we do not need to go to very strong
interactions or equivalently very low temperatures. The two statements are equivalent
as it is only the ratio w

T that defines the dynamical effect.

11Which is the equivalent to Glauber dynamics for spins.

107

4. Ensemble phenomena in Ising-like networks of spiking neurons

4.3. Phase diagram of Ising-like networks with Buesing neurons

In the translation from the parameter set of the Ising model into our Boltzmann param-
eters (cf. Section 4.2.4) we established that we need to introduce a coupling between w
and b in order to compensate for the asymmetry of the Boltzmann definition z ∈ {0, 1}
(cf. Eq. (4.32)). And in Section 2.2.4 and Section 3.3 we showed that the translation
from the Boltzmann regime into the LIF regime is not overly reliable. In other words,
we do not know the correct scaling between biases and weights, even at a single input
level. While learned in Section 4.1 that temperature scaling seems to work as expected
(in the high-temperature limit), here we will find unexpected behavior for this particular
network configuration. We will just check the complete 2D parameter space of ∆b, T (cf.
Eqs. (4.18) and (4.33)) in order to compensate for our lack of a priori knowledge about
the parameterization.

In this section, we will first introduce the phase diagram by reproducing it for the orig-
inal Buesing model. At this point we will learn that while Buesing is able to reproduce
the high-temperature part of the phase diagram as expected, for the low-temperature
part the initialization – and therefore the internal state ζ – becomes important. We
demonstrate how to recover the critical exponent γ from the 2D phase diagram and how
to relate said diagram to the dynamical experiments demonstrating the Curie law and
hysteresis effect. From this point we transition to exponentially shaped interactions and
learn that the phase diagram looks significantly different, yet still allows to recover the
correct critical exponent (Section 4.3.2). Finally we distinguish the effects added by
the overshoot of the interaction versus the additional tail, where we find that the most
significant contribution comes from the tail part (Section 4.3.3).

4.3.1. Rectangular interaction

As Buesing et al. [2011] have proven that rectangular PSPs sample Boltzmann distri-
butions faithfully, we can use it to explore the ”correct” behavior with respect to the
2D scan of the external field proxy ∆b and the temperature T . For each data point in
Fig. 4.4d we initialize the network in a single micro state, randomly chosen with each
single site having 0.5 probability to be z = 1 independent of the other sites. In a way
we quench from an artificial state to the target parameter set. After quenching to the
target we let the network run for a sufficient amount of time to measure the mean of the
activity level (see Appendix B.5 for parameters).

For positive biases b > 0 the mean activity of the network is increased. The amplitude
of this increase decreases with higher temperatures T . For negative biases the same
holds with inverted sign. The two dashed lines in Fig. 4.4d) mark the activity levels of
A = 0.49 and A = 0.51 which we use to calculate the susceptibility χ Eq. (4.24).

Moving along an iso-∆b line (horizontally in Fig. 4.4d) corresponds to the cooling-down
of the experiment we used for measuring the Curie law. However, the data in Fig. 4.4b is
not simply the data from a horizontal line but rather from additional experiments where
the network is initialized again at high temperature and then cooled down adiabatically.
For zero bias offset ∆b, which corresponds to h = 0, we recover the expected behavior

108

4.3. Phase diagram of Ising-like networks with Buesing neurons

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [ref]

0

1

2

PS
P

[a
u]

1 2
temperature T

0.00

0.25

0.50

0.75

1.00

ac
tiv

ity
 z

b = 0.1
b = + 0.0
b = + 0.1

0.5 0.0 0.5
external field b

0.00

0.25

0.50

0.75

1.00

ac
tiv

ity
 z T = 0.29

T = 0.48
T = 0.86

0.4 0.5 0.6 0.7 0.8
temperature T

0.10

0.05

0.00

0.05

0.10

bi
as

 o
ffs

et

b

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ea

n
ac

tiv
ity

 <
z>

a

b

c

d e

f

g

Figure 4.4.: Rectangular interactions: a Shape of the interaction of a standard
Buesing neuron with refractory period τ = 100. Curie law b and hystere-
sis c experiments with an 80x80 2D-Ising network. d Full phase diagram,
comprising the temperature T and the external field h, here represented by
the bias offset ∆b (for the relation see the main text Eq. (4.33)) e-g Typical
states along the h = 0 line for the network. These are in good agreement
with Fig. 4.3. Simulation details can be found in Appendix B.5.1.

from Fig. 4.3b, with the spontaneous symmetry breaking at T = Tcrit. This corresponds
to the cooling of a ferromagnetic metal to generate a magnet experiment.

For higher and lower bias offsets ∆b = ±0.1 we find the expected divergence according
to the Curie law Eq. (4.26). Note also that the plotted ranges in the Curie plot are
significantly larger than the range shown in the phase diagram. For visibility reasons we
clip the color coding at 0.2 and 0.8 for the phase diagram.

Finally, we show three typical states from the A = 0.5-line which we will use to define
h = 0 in the later configurations. For sub-critical temperatures T < Tcrit we define
the A = 0.5-line as the line at which the A = 1 and A = 0 phases meet. For high
temperatures T > Tcrit we see the quasi white-noise behavior (Fig. 4.3e). Since we do
not use as high temperatures T as in Fig. 4.3 some correlations are still observable.
At the critical point (Fig. 4.3f) we again see the quasi scale-free behavior and at low
temperatures (Fig. 4.3g) we again see the total magnetization of the system.

The origin of the quench matters

Fig. 4.5a-c show the same phase diagram as Fig. 4.4d, except for the initial condition.
We can think about this as a quenching experiment. The initial state of the system is

109

4. Ensemble phenomena in Ising-like networks of spiking neurons

0.4 0.5 0.6 0.7 0.8
temperature T

0.10

0.05

0.00

0.05

0.10

bi
as

 o
ffs

et

b

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ea

n
ac

tiv
ity

 <
z>

0.4 0.5 0.6 0.7 0.8
temperature T

0.10

0.05

0.00

0.05

0.10

bi
as

 o
ffs

et

b

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ea

n
ac

tiv
ity

 <
z>

0.4 0.5 0.6 0.7 0.8
temperature T

0.10

0.05

0.00

0.05

0.10

bi
as

 o
ffs

et

b

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ea

n
ac

tiv
ity

 <
z>

a b c

Figure 4.5.: Initial conditions - Quench origins: Phase diagrams for two different
initializations as compared to Fig. 4.4d: a Initial conditions chosen as ζ ∝
U(0, 2τ). b Initial conditions from T = Tcrit;h = 0 from Fig. 4.4d. c Initial
conditions from T = 0.5;h = −0.1 from Fig. 4.4d. We see some dependence
on the initial conditions for the sub-critical regime T < Tcrit where initial
conditions cannot be never forgotten. Simulation parameters can be found
in Appendix B.5.2.

the result of some preparation and at the beginning of the simulation the parameters
are changed instantaneously, or quenched, to the target values for T and ∆b. Depending
on the initial condition this introduces a different set of biases. For Fig. 4.5a all z = 1
neurons are initialized with ζ ∼ U [0, τ) and all z = 0 neurons with ζ ∼ U [τ, 2τ). The
initial condition for Fig. 4.5b is a micro state at the critical point (cf. Fig. 4.4f) with the
correct ζ-distribution. To show that for small temperatures T < Tcrit the initial bias can
be sustained we show the initial condition for a low temperature and negative external
field 〈A〉 ≈ 0 in Fig. 4.5c.

The observed variations only happen for sub-critical temperatures T < Tcrit. This is a
consequence of the diverged autocorrelation time scale. Intuitively speaking this means,
that the system is unable to forget its history, which in this case is completely encoded
in its initial condition of the simulation or in experimental terms: The quench origin.
Effectively a non-natural state introduces a local bias. For high temperatures this bias
is short lived and gets forgotten on the autocorrelation time scale of the system, which
in this case corresponds to the autocorrelation time scale of the single units. For lower
temperatures (approaching Tcrit) the autocorrelation time on the system level starts to
increase and diverges at T = Tcrit. We choose our simulation times long enough to not
be bothered by these initial offsets for T > Tcrit. In other words, we do not resolve
the critical point clearly enough to see significantly increased, but not yet diverged
autocorrelation times.

For T < Tcrit this time scale has already diverged and hence the system cannot forget
the bias of its initial condition which now competes with the external field. If the external
field is strong enough to overcome the initial bias, the system will fall into the same final
configuration (class) than the original Glauber dynamics [Glauber, 1963] would produce.
However, for (comparatively) small external fields h (or bias offsets ∆b) we find the

110

4.3. Phase diagram of Ising-like networks with Buesing neurons

0.4 0.5 0.6 0.7 0.8
temperature T

0.10

0.05

0.00

0.05

0.10

bi
as

 o
ffs

et

b

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ea

n
ac

tiv
ity

 <
z>

0.4 0.5 0.6 0.7 0.8
temperature T

0.10

0.05

0.00

0.05

0.10

bi
as

 o
ffs

et

b

0.1

0.2

0.3

0.4

of
fs

et
 a

ct
iv

ity
 |<

z>
-0

.5
|

0.5 0.6 0.7 0.8 0.9
temperature T

100

101

102

su
ce

pt
ib

ilit
y

= 7
4 ; Tc = 0.55

a b c

Figure 4.6.: Recovering the critical exponent γ: a phase diagram from Fig. 4.4d.
b Activity difference to ∆A = A − 0.5 (corresponding to h = 0) for the
simulations from a. Dashed lines mark the ∆A = ±0.01. c Upper (blue)
and lower (orange) estimate for the susceptibility ∆z

∆b as defined by the finite
difference measurements from b. The divergence at Tcrit ≈ 0.55 happens
with the expected critical exponent γ = 7

4 .

situation that the local bias of the initial condition is stronger than the influence of the
external field. In these cases we find A = 0 for positive external fields h > 0 (Fig. 4.5d)
and vice versa A = 1 for negative external fields h < 0 (Fig. 4.5b) depending on the bias
in the initial conditions. The expected behavior would be a random drop into either
A = 1 or A = 0 for the exact case of h = 0. This we only recover when we use a state at
the critical point as the initial condition (Fig. 4.5b). In a way this seems to be the most
”natural” initial condition that obeys A = 0.5 for sub-critical temperatures T < Tcrit.

Recovering the exponent

In order to determine the critical exponent γ first we need to find the A = 0.5 (cor-
responding to h = 0) line. For the rectangular interactions this seems like a pointless
exercise (and it is), as we know the correspondence of bias offset ∆b to h exactly. But
we will treat this as a test run for the other interaction shapes later on and find the
A = 0.5 line empirically in Fig. 4.6a. For ease of visualization we also plot the activity
offset ∆A which acts as the direct proxy to the absolute magnetization |M | in Fig. 4.6b.
The purple ∆A = 0 valley here lies at constant bias offset b = 0 as expected.

In order to now calculate the susceptibility, we need to find the bias offsets b(T) such
that the mean activity difference is a fixed small number |∆A| = δA. When choosing
this small offset we need to trade between two different goals: On the one hand we
require a strong enough signal to actually measure the resulting bias difference, on the
other hand we need to stay small enough that the linear approximation in Eq. (4.24)
still holds.

Having done this we can plot the susceptibility estimators from above (blue) and
below(orange) for δA = ±0.01 in Fig. 4.6c. The measured results are in good agreement

111

4. Ensemble phenomena in Ising-like networks of spiking neurons

with the expected divergence with the critical exponent γ:

χ ∝
(
T − Tcrit
Tcrit

)−γ

(4.38)

with a critical temperature Tcrit ≈ 0.55, which is in good correspondence with the value
calculated in Section 4.2.2 after we translate between the spin and the neuron domain (cf.
Section 4.2.4; Tcrit = 0.567). The remaining variations are most likely due to finite-size
effects, which are somewhat exasperated by the long refractory period of τ = 100.

So, to summarize what we learned so far, except for the slight hick-up with the ad-
ditional complexity of the differently value z = 1 states, the proof from [Buesing et al.,
2011] (unsurprisingly) turned out to hold also in practice. But we also learned in Sec-
tion 3.3 that, even for single units, standard Buesing neurons with rectangular PSPs
show markedly different behavior from LIF neurons. Let us now see what happens if we
change the shape of the interaction between the neurons:

4.3.2. Exponential interactions
The closest we can get12 should be by augmenting the Buesing neuron with exponential-
shape PSPs (cf. Eq. (2.62), Fig. 4.7a).

This leads to massive changes in the phase diagram as shown in Fig. 4.7d. Not only do
both the temperature scale (x-axis) as well as the bias offset (y-axis) change significantly,
it is also the general form that is completely different from the |∆A| = 0 for non-constant
bias offsets ∆b.

The easiest thing to explain is the rescaled x-axis or temperature. This effect goes
back to our translation scheme between LIF parameters W and Boltzmann parameters
w (cf. Eq. (2.80)). We did essentially postulate that all of the interaction happens
within the refractory period τref and ignored the contributions of the tail. Therefore it is
not surprising that we underestimate the effectively implemented w for a given utilized
parameter W . As the temperature T is only meaningful in reference to the scale of the
weights w and biases b (cf. Eq. (4.21) and Eq. (4.32)) a shift in the absolute value of the
temperature T is to be expected. In fact, we can even use this as an empirical measure
of what the factor of mismatch is, as the critical temperature is characteristic for the
system on a fundamental level.

We also find that the critical point is shifted towards more negative bias offsets
(b ≈ −0.4). This shift has the same origin, i.e., the non-refractory contribution of the
interaction. As the Ising network consists of solely excitatory connections, all the ex-
tra PSP mass (cf. Section 3.1.2) is excitatory, which we need to compensate for (if we
want to keep the mean activity constant) via an additional negative bias offset ∆b < 0.
Therefore the tail of the PSP – which we did not account for in the translation (cf.
Section 2.2.4) – offers a complete explanation of the shift of the critical point.

However, we see more complicated changes, as also the h = 0 line for higher tempera-
tures does not correspond to a horizontal line (constant bias offset ∆b). This is surprising
12Without doing the whole LMM treatment of adding a shadow membrane potential distribution that

continues evolving within the refractory period, cf. ueff Section 2.2.4.

112

4.3. Phase diagram of Ising-like networks with Buesing neurons

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [ref]

1

2

PS
P

[a
u]

1 2
temperature T

0.00

0.25

0.50

0.75

1.00

ac
tiv

ity
 z

b = 0.3
b = 0.4
b = 0.5

0.5 0.0 0.5
external field b

0.00

0.25

0.50

0.75

1.00

ac
tiv

ity
 z T = 0.4

T = 0.6
T = 0.8

0.6 0.7 0.8 0.9 1.0
temperature T

0.6

0.5

0.4

0.3

bi
as

 o
ffs

et

b

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ea

n
ac

tiv
ity

 <
z>

a

b

c

d e

f

g

Figure 4.7.: Exponential interactions: a Shape of the exponential interaction used
for a Buesing neuron with refractory period τ = 100. Curie law b and
hysteresis c experiments with an 80x80 2D-Ising network. The hysteresis
simulations have an external field offset of ∆b = −0.4. d Full phase diagram,
comprising the temperature T and the external field h, here represented by
the bias offset ∆b (for the relation see the main text Eq. (4.33)) e-g Typical
states along the h = 0 line for the network. These are in good agreement
with Fig. 4.3. Simulation details can be found in Appendix B.5.3.

as we only change the width of the activation function, and not the scaling between the
weight parameter w and the bias parameter b. As such we would not expect a shift in
activity (beyond the Curie law as discussed in Section 4.2.3). There is, however, the
point of the different fractions of PSP mass U that is contained in the tail and within
the refractory period that we discussed around Fig. 3.2. As we shift the activity level13

A we also change the meaning of the weight parameter w (cf. Section 3.1.2). This latter
effect allows us observe more interesting phenomena when changing the ”temperature”
of the system.

In the cooling-down experiment (cf. Fig. 4.7b) we find asymmetric behavior for pos-
itive and negative bias offsets (with respect to the critical point). For more negative

13In fact the activity level alone is not enough, as for hysteresis experiments we would have phases of
A = 1 and A = 0 respectively. In neither case there is a significant fraction of tails visible. It is only
the stochastic firing that generates significant tail contributions. However, for the configurations with
a single initial quench and then static parameters, the mean activity level over time is representative
for the complete simulation. There is a slight deviation in the immediate vicinity of the critical point
where the activation levels do also fluctuate over time.

113

4. Ensemble phenomena in Ising-like networks of spiking neurons

offsets we find a sharper transition at higher values T than predicted by the Curie law
Eq. (4.26). For higher values we fine a smoother transition, with the rise in A at de-
tectable levels for significantly higher temperature values T > 1.5Tcrit. Taking the offset
value ∆b of the critical point we see a completely unexpected cooling-down behavior.
Namely we see that the activity A is always increasing for values of T > Tcrit, which for
the original Ising model would indicate the presence of a positive external field h > 0.
Therefore, one would expect the system to end up in the A = 1 state. However, the
system deterministically ends up in the A = 0 state. This behavior is rooted in the in-
creased tail contributions, which increases the input that is required to keep the network
active. This is similar to the pathological case of failure to mix that we discussed at the
end of Section 4.1.1. As such momentary activity interruptions are a much more volatile
process when compared to the original Ising formulation.

For sub-critical temperatures T < Tcrit we can again introduce different phase dia-
grams depending on the initial conditions. Following the discussion around Fig. 4.5 we
initialized the system with a state close to the critical point (cf. Fig. 4.7f). Finding
the exact critical point becomes somewhat trickier here as the system again tends to
be a bit more bursty (cf. Section 3.3), making the behavior in the immediate vicinity
more unstable and requiring increased simulation times. For typical states for higher
and lower temperatures the question now becomes non-obvious what it means to ”only
change the temperature”.

Note 2. This is not the same biasing that we discussed Section 4.1.2. At that point
we discussed a bias that was generated by an offset of the activation function, which
was caused by changes in the background activity. Here the temperature T directly
manipulates the width – and only the width – of the activation function.

There are two ways to ”define” temperature change:

1. Neuron level: Change the width parameter of the activation function
This results in the cooling-down experiments from Fig. 4.7b, where we get the
modified behavior due to the differently prominent tail contributions.

2. Network level: Follow the ∆A = 0 line
This results in nearly the same results as the original Ising formulation (cf.
Fig. 4.3b). There are variations due to our finite parameter resolution but these are
technical in nature and with sufficient compute power and interpolation to select
an appropriate b− T line one would be able to reproduce the intended behavior.

If we choose the latter definition the meaning of ”cooling” down becomes more compli-
cated: We now need to scale T and b co-dependently. But we can recover the original
behavior.

Before we recover the critical exponents let us quickly mention the hysteresis experi-
ment as well: Here we do not see fundamental differences in the form. We can already
expect this from the phase diagram, along a vertical line (constant T) the resulting ac-
tivities look just like in Fig. 4.4. It is only the relative position of neighboring ”columns”

114

4.3. Phase diagram of Ising-like networks with Buesing neurons

0.6 0.7 0.8 0.9 1.0
temperature T

0.6

0.5

0.4

0.3

bi
as

 o
ffs

et

b

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ea

n
ac

tiv
ity

 <
z>

0.6 0.7 0.8 0.9 1.0
temperature T

0.6

0.5

0.4

0.3

bi
as

 o
ffs

et

b

0.1

0.2

0.3

0.4

of
fs

et
 a

ct
iv

ity
 |<

z>
-0

.5
|

0.6 0.7 0.8 0.9 1.0
temperature T

100

101

102

su
ce

pt
ib

ilit
y

= 7
4 ; Tc = 0.65

a b c

Figure 4.8.: Recovering the critical exponent γ: a Phase diagram from Fig. 4.7d. b
Activity difference to 〈z〉 = 0.5 (corresponding to h = 0) for the simulations
from a. Lines mark the 〈z〉 = 0.49, 〈z〉 = 0.5 and 〈z〉 = 0.51 levels. The
〈z〉 = 0.5 line corresponds to an involved relation between the bias Vl and
temperature T . c Susceptibility ∆z

∆b as defined by the measurements from b.

that is shifted. As such the precise values of offset biases required to flip from A = 1
to A = 0 and vice versa are changed and for different temperatures a different offset is
needed, but the principal form stays the same (cf. Fig. 4.7c) .

Critical exponent

In Fig. 4.8b we again show the absolute activity difference to the balanced state ∆A =
|A− 0.5|. While the ∆A = 0 line is now a more complex function of ∆b(T) rather than
simply a horizontal line, we can still find it empirically. For sub-critical temperatures,
this does not work, as we do not actually know the bias we are inducing by choosing a
particular initial state (cf. Fig. 4.5). While one could in principle overcome this by doing
an average over many initializations, we need to point out that the space of possible states
is now {0, 1, 2, 3, . . . }N rather than {0, 1}N as our neurons retain information about their
past, which has actual meaning beyond the refractory period and therefore their state
variable z. This is the main reason why we limit ourselves to the discussion of the
critical exponent γ. Following the argument from Eq. (4.24) and Fig. 4.6 we again mark
the ∆A = ±0.01 activity levels in Fig. 4.8b and estimate the susceptibility χ from the
bias difference between these levels as a function of temperature. The resulting data
shows the same kind of divergence as in the rectangular case (cf. Fig. 4.8c), with the
exponent γ = −7

4 and a critical temperature Tcrit ≈ 0.65. The saturation is an artifact
due to the finite resolution of both the bias b and the activity difference δA.

Changing the effective temperature of this Ising-like connected network requires a
different coordination between the width of the activation function, which is the actual
adjusted parameter T and the offset bias ∆b. Remembering the discussion for an LIF
based implementation in Section 4.1.2 this would not introduce additional complexity
as the excitatory and inhibitory noise inputs need to be fine tuned with respect to
each other anyways. Nevertheless, we need to stress again, that these kind of Ising-
like networks are not really our primary concern, as we typically are interested in the
information processing capability of the brain. However, in order to be able to make

115

4. Ensemble phenomena in Ising-like networks of spiking neurons

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [ref]

1

2

PS
P

[a
u]

1 2
temperature T

0.00

0.25

0.50

0.75

1.00
ac

tiv
ity

 z

b = 0.5
b = 0.4
b = 0.3

0.5 0.0 0.5
external field b

0.00

0.25

0.50

0.75

1.00

ac
tiv

ity
 z

T = 0.5
T = 0.7
T = 0.9

0.6 0.7 0.8 0.9 1.0
temperature T

0.6

0.5

0.4

0.3

bi
as

 o
ffs

et

b
0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ea

n
ac

tiv
ity

 <
z>

da

b

c

e

f

g

Figure 4.9.: Tail interactions: a Shape of the exponential interaction used for a
Buesing neuron with refractory period τ = 100. Curie law b and hysteresis
c experiments with an 80x80 2D-Ising network. The hysteresis experiments
have an external field offset of ∆b = −0.4. d Full phase diagram, compris-
ing the temperature T and the external field h, here represented by the bias
offset ∆b (for the relation see the main text Eq. (4.33)) e-g Typical states
along the h = 0 line for the network. These are in good agreement with
Fig. 4.3. Simulation details can be found in Appendix B.5.4.

confident statements about more complex systems we should be able to deal with these,
at least conceptually, simple systems first.

4.3.3. Origin of the differences

There are two different possible possible origins for the observed deviations. On the one
hand there is the different form of the interaction shape within the refractory period, on
the other hand there is the additional tail. It turns out that the tail contribution is the
more significant source of variations and we will therefore start with it.

Tail contributions

Simply adding the exponential tail of the interaction to the standard rectangular in-
teraction results in the κtail from Eq. (2.64) (cf. Fig. 4.9a). The resulting phase
diagram (Fig. 4.9d), at least qualitatively, shows the same features observed for the
complete exponential interactions (cf. Fig. 4.7). The critical point lies at roughly
(Tcrit ≈ 0.73, bcrit ≈ −0.52). This is a slightly higher temperature indicating, that

116

4.3. Phase diagram of Ising-like networks with Buesing neurons

the interaction strength transferred via κtail is slightly stronger than the one transferred
by κexp. The ∆A = 0 line shows the same qualitative behavior as for the full exponential
kernel, with again only minor quantitative deviations due to the different normalization
of the interaction kernels.

For the cooling-down experiments (Fig. 4.9b) for constant bias offset b we see the same,
and even slightly more pronounced, asymmetry between offsets above and below the
critical point that we already observed for κexp. The transitions below are again much
sharper than the transitions for positive external fields ∆b > ∆bcrit. The transition
through the critical point shows similar behavior as the one shown in orange, with a
slight up tick above Tcrit and a sharp drop at the T = Tcrit point to A = 0.

Letting the external field oscillate for a fixed temperature again show the expected
hysteresis time course. There is one special case observable in Fig. 4.9c that we have
not seen so far and that is the transient drop in activity A on one of the downward
slopes of the oscillation for the cold temperature T = 0.5: In this particular case a large
proto-Weiss domain14 of z = 0 neurons forms and only breaks down after some time to
rejoin the z = 1 region. This is a transient effect that we would be less likely to observe
for slower cooling schedules and more likely for significantly larger systems. In the latter
case the effects would, however, not be that prominent as it would be only a smaller
fraction of neurons that form the ”other” iso-magnetization domain.

For parameters along the ∆A = 0 line we can again find typical states that show
the same behavior as expected. For low temperatures the system forms a single iso-
magnetization domain with only single neurons spontaneously switching into the wrong
state but quickly returning to join the their neighbors (cf. Fig. 4.9e). For higher tem-
peratures we again see a close-to-white-noise state, which is only limited by a) the finite
size and b) the relatively low temperature T > Tcrit that we use here (cf. Fig. 4.9g).
Around the critical point the typical quasi scale-free behavior is observable, where again
size and parameter precision limit the model (cf. Fig. 4.9f).

Recovering the critical exponent would work similarly to the one shown in Fig. 4.8,
where we again find the divergence in good agreement with γ = 7

4 (data not shown).

Restricted exponential interaction

The other component of the interaction that changes is the form within the refractory
period. Eliminating the tail of the exponential interaction results in κcuto from Eq. (2.63)
(cf. Fig. 4.10a). Since we identified the difference in tail mass as the reason for the
additional temperature dependence of the bias and therefore the non-horizontal A = 0.5
line, we expect this not to occur for such a restricted interaction. The zero-external field
line (dashed line in Fig. 4.10d) however is still not at constant bias b. This is due to the
non-linearity of the transfer function σ(u) (cf. Eq. (2.58)) which we implicitly assumed
when we made the original translation in Section 2.2.4. This here is not LIF but the same
argument holds. Nevertheless the variations are significantly smaller and, in particular,
non-monotonous such that the claim that the lion share of the variation originates in the
14It is not really a Weiss domain, as these are stable iso-magnetization regions and our simulated systems

are far too small to sustain this kind of stability for multiple regions.

117

4. Ensemble phenomena in Ising-like networks of spiking neurons

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [ref]

0

1

2

PS
P

[a
u]

1 2
temperature T

0.00

0.25

0.50

0.75

1.00
ac

tiv
ity

 z

b = 0.1
b = 0.1
b = 0.2

0.5 0.0 0.5
external field b

0.00

0.25

0.50

0.75

1.00

ac
tiv

ity
 z

T = 0.1
T = 0.3
T = 0.5

0.3 0.4 0.5 0.6 0.7
temperature T

0.0

0.1

0.2

0.3

bi
as

 o
ffs

et

b
0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ea

n
ac

tiv
ity

 <
z>

a

b

c

d e

f

g

Figure 4.10.: Restricted interactions: a Shape of the exponential interaction used
for a Buesing neuron with refractory period τ = 100. Curie law b and
hysteresis c experiments with an 80x80 2D-Ising network. The hysteresis
experiments have an external field offset of ∆b = 0.1. d Full phase diagram,
comprising the temperature T and the external field h, here represented by
the bias offset ∆b (for the relation see the main text Eq. (4.33)) e-g Typical
states along the h = 0 line for the network. These are in good agreement
with Fig. 4.3. Simulation details can be found in Appendix B.5.5.

tail is still valid. There are other variations such as the general vicinity of the critical
point being shifted upwards to positive bias offsets b > 0 and lower temperatures T . This
is again expected as neurons now exhibit less interaction as compared to the complete
exponential trace κexp (cf. Fig. 4.7a).

There is a problem with locating the critical point for this interaction. Before we
always had the situation that, for low enough temperatures T the bias delta required to
shift from the final state A = 0 to the final state A = 1 would converge to zero. This
is not the case here. The reason for this can be seen in the hysteresis experiment (cf.
Fig. 4.10c), where, even for the coldest experiment (T = 0.1) there are early transitions
from A = 1 to A = 0. This is due to the active state being much more fragile than the
inactive state as the system cannot generate a ”buffer” of excitatory interaction (via the
tails) and is at its weakest point at the end of the refractory period. As the overshoot in
the beginning induces some clustering of the spike times, it is more likely for neighbors to
spike at similar times. For rectangular PSPs κrect this is not a problem as the interaction
strength does not depend on the time since the last spike ζ but only on the state z. Here,
similar original spike times, mean weaker excitatory interaction when the first neuron

118

4.4. Phase diagram of Ising-like LIF networks

0.4 0.6 0.8 1.0 1.2 1.4
temperature T

0.4

0.2

0.0

0.2

0.4

bi
as

 o
ffs

et

b

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ea

n
ac

tiv
ity

 <
z>

0.4 0.6 0.8 1.0 1.2 1.4
temperature T

0.4

0.2

0.0

0.2

0.4

bi
as

 o
ffs

et

b

0.1

0.2

0.3

0.4

of
fs

et
 a

ct
iv

ity
 |<

z>
-0

.5
|

0.4 0.6 0.8 1.0 1.2 1.4
temperature T

10 1

100

101

102

su
ce

pt
ib

ilit
y

= 7
4 ; Tc = 0.54

a b c

Figure 4.11.: Critical exponent γ for LIF networks: a Full phase diagram of an
Ising-like network with CUBA LIF neurons. Temperature change is im-
plemented similar to Fig. 4.1 for slightly different parameters (cf. Ap-
pendix B.5.6). Parameter translations according to Eqs. (2.78) and (2.80)
and Eq. (4.28). b Activity difference to A = 〈z〉 = 0.5 (corresponding to
h = 0) for the simulations from a. Lines mark the 〈z〉 = 0.49, 〈z〉 = 0.5
and 〈z〉 = 0.51. c Susceptibility χ = ∆A

∆b as defined by the measurements
from b. The divergence is in good agreement with the expectations.

becomes available again. Therefore, it is more likely to not fire again and switch to
the A = 0 case. Since the initial overshoot will tend to synchronize the network, the
weakness of the interaction becomes stronger over the course of the simulation time and
as such the likelihood of falling out of A = 1 into A = 0 increases. As such we will
always find some values of the bias offset b such that this happened somewhere in the
middle of the simulation and therefore have a mean activity of A ≈ 0.5. This is not the
same as being at the critical point! But unfortunately it costs us the easy identification
Tcrit.

For a cooling-down experiment we now are able to find bias levels b for which the
activity first decreases even though the network ends up in the A = 1 state (orange in
Fig. 4.7b). The asymmetry for the transition though is still somewhat sharper on the
negative bias offset side. However, recovering the critical exponent here is not straight-
forward.

4.4. Phase diagram of Ising-like LIF networks
Finally we discuss the phase diagram of networks of LIF neurons. We use the same
parametrization as originally proposed by [Petrovici et al., 2016] and discussed in Sec-
tion 2.2.4, with τsyn = τref = 10 ms. In order to reduce the drift times τ b at the end of a
refractory period, and thereby improve the symmetry of the activation function, we re-
duce the difference between the reset Vreset and the threshold potentials Vthresh. However,
the exact choice of the neuron parameters is of little importance as long as an effective
high-conductance state (HCS), as measured by the (effective) membrane time constant
τm, is achieved. The complete set of parameters can be found in Appendix B.5.6.

In order to implement the temperature change, we need to choose the rates of the
Poisson spike sources such that the mean of the activation function stays fixed (cf.

119

4. Ensemble phenomena in Ising-like networks of spiking neurons

Section 4.1). We measure activation functions for excitatory and inhibitory rates in a
range from 100 Hz up to 25 kHz. On the lower end of this range the membrane potential
does not implement an Ornstein-Uhlenbeck process anymore. We choose our translation
point, which fixes T = 1 at rexc = 5.13 kHz and rinh = 5.50 kHz. As the width of the
activation function α scales as:

α ∝
√
rexc + rinh (4.39)

this gives us an effective temperature range of 0.25 < T < 2.1, which is about an order of
magnitude and enough for the comparison to the phase diagrams of the Buesing neurons
with exponential interactions (cf. Section 4.3.2). We translate the parameters from the
Boltzmann regime (w, b) into the LIF neuron parameters (Vl,W) according to Eqs. (2.78)
and (2.80) and the activation function for our T = 1 configuration. In order to adjust
for offsets we again use the bias offset ∆b to implement an effective external field h.

If we choose this bias offset such that the mean activity is 〈A〉 = 0.5 and thereby
effectively implementing h = 0 we can again recover the correct critical exponent γ = 7

4
around the critical point at Tcrit ≈ 0.54 and bias offset ∆b ≈ −0.17 (cf. Fig. 4.11). Unlike
the Buesing neurons with exponential PSPs (cf. Fig. 4.7d) there is a continuous line of
〈A〉 = 0.5 simulations throughout the sub-critical temperature region (cf. Fig. 4.11b).
This is due to the network switching from the initial 〈A〉 ≈ 1-state into the 〈A〉 ≈ 0-state
throughout the simulation (similar to Buesing with κcuto). As such the shape of the sub-
critical phase boundary changes with the length of the simulation and is therefore not a
model specific result. Our network retains the ability to forget its initial conditions for
a positive initialization at 〈A〉 > 0.5.

The unevenness of the lines of constant activities for supra-critical temperatures in
Fig. 4.11a are an artifact of the reduced simulation time and network scale. We only
use a 40-by-40 grid of neurons and fewer parameter configurations in order to constrain
the required computation time. The temperature course of the bias offset ∆b(T) such
that 〈A〉 = 0 shows less dramatic variations when compared to Buesing neurons with
exponential interaction kernels κ(ζ). It is close to a constant offset starting at about
∆b ≈ −0.175 at the critical temperature Tcrit ≈ 0.54 and reducing to ∆b ≈ −0.1 for
T = 1.5 > Tcrit.

120

5. Applications of LIF sampling on
Accelerated Analog Hardware

For the parameter studies shown in Section 4.3 alone we ran nearly 40 000 simulations
and while their runtime varies depending on the model and backend, the average stands
at several minutes1. Especially the simulations of LIF networks take a long time. These
simulations are only possible due to our access to the bwHPC system NEMO [von Su-
chodoletz et al., 2016] for which we gratefully acknowledge the support. However, all
our simulations are still limited to about 60 s of equivalent biological time. Since, our
networks are structurally simple and, at least for the most part, we only take interest in
steady-state simulations, such short simulations are sufficient for us.

On the other hand, there are a lot of areas of research that do not parallelize as
efficiently as our investigation of the phase diagrams in Section 4.3 or the activation
function in Section 4.1. Anytime we require knowledge of the past iterations before
we can perform the next step of the simulation only serially. This is, in particular,
true for any kind of learning task. Any kind of learning can be formulated as an op-
timization of some cost function L. The update (or learning) is then some function of
an approximation of some function of this cost function f(L). Typically this is some
kind of gradient estimator [Hinton et al., 1995, LeCun et al., 1989, Carreira-Perpinan,
Miguel A and Hinton, 2005] or at least some kind of performance-gated sampled search
[Whiteson and Stone, 2006, Roelfsema and Ooyen, 2005]. We can, of course, parallelize
within the gradient estimation, but still have to apply the updates sequentially. In all
these approaches one can speed up the computation by parallelization for the price of
additional communication of the results of the parallel processes.

Simulations are the scientific short cut to lab experiments. This might seem like
a controversial statement as it can be construed to both denigrate the computational
sciences and the experimental sciences, but it is a simple trade off: On the one hand,
we have the ultimate arbiter, the physical experiment. There is no point in arguing
with measured data, this is what nature’s answer was to the question we asked with
the experiment2. But experiments tend to be expensive, both in man power and in lab
equipment. Doing simulations can be very clean in the sense that we can understand
the model completely that is executed. This is an obvious disadvantage if the model is
wrong, but extremely helpful to separate data from noise if the model is at least useful3.

1The number of simulations run in total is lost in the ether and the author is very glad not to have
payed the electrical bill himself.

2It may very well be that we do not understand the question, i.e., the experimental setup well enough
to correctly interpret the results. But as long as data is not fabricated it is the ultimate true answer
to some question.

3All models are wrong, but some are useful - [Box, 1976]

121

5. Applications of LIF sampling on Accelerated Analog Hardware

In the introduction we argued for neuromorphic hardware as a pathway to understand
and harness the brain’s computational power. In Chapter 4 we would have liked to have
it just to accelerate our parameter studies. But in order to simulate lifelong learning,
which takes years in biology and would take decades in simulations, the accelerated
platforms are absolutely necessary [Schemmel et al., 2010, Furber et al., 2014, Akopyan
et al., 2015, Jouppi et al., 2017, Davies et al., 2018]. In this chapter we will discuss
two implementations of LIF-based probabilistic computations that where done on the
BrainScaleS systems. The first one in Section 5.1 was done in close collaboration with
Akos F. Kungl and implements a generative model for hand-written digits (MNIST) as
well as the fashion MNIST dataset on the wafer-scale BrainScaleS-1 system. The second
one in Section 5.2 was implemented in close collaboration with Stefanie Czischek and
uses BrainScaleS-2 to represent entangled quantum many body states via a spike-based
implementation of a positive operator-valued measure (POVM).

122

5.1. Discriminative and generative tasks on BrainScaleS-1

5.1. Discriminative and generative tasks on BrainScaleS-1

This section presents work done in collaboration with Akos F. Kungl
and reported in [Kungl et al., 2019].

In this section we present the implementation of a Bayesian inference model on the
BrainScaleS-1 platform [Schemmel et al., 2010]. We begin this section with a very brief
description of the BrainScaleS-1 system in Section 5.1.1. In Section 5.1.2 we then discuss
the experimental setup, both the noise generation and the network layout. Finally, we
report the results on the MNIST and fMNIST datasets in Section 5.1.3.

5.1.1. The BrainScaleS-1 system

BrainScaleS-1 is the first generation of large-scale accelerated emulation platforms for
spiking neural networks [Schemmel et al., 2008, 2010]. It is the successor of the Spikey
chip [Pfeil et al., 2013], was initially developed in the BrainScaleS Project [BrainScaleS,
2011] and is now continued in the Human Brain Project (HBP) [Markram et al., 2011b].
The system aims to provide a platform enabling accelerated large-scale emulations of
spiking neuronal networks. Accelerated here means that the required emulation time is
lower than the biological real time that is emulated. This constant runtime is achieved
by designing and manufacturing electronic circuits which implement dynamics equiva-
lent to the ODE description of the LIF model (cf. Section 2.1.1). As the typical time
constants of these circuits are smaller than their biological counterparts one ends up
with an acceleration factor. Since the neurons are physical circuits their temporal evo-
lution is inherently parallel and, in particular, the network size does not influence the
emulation speed. For BrainScaleS-1 with its HICANNv4 chips the acceleration factor
can be configured within the range of 1000 to 100 000 [Schemmel et al., 2008, 2010].
Without this speedup simulations of life-long learning or even evolutionary changes will
hardly be possible4.

The complete BrainScaleS-1 system consists of 20 modules, each housing one wafer
of High Input Count Analog Neural Network (HICANN) chips (cf. Fig. 5.1cA). These
HICANN chips (cf. Fig. 5.1b) form the heart of the BrainScaleS systems. Each chip
features 512 adaptive exponential leaky-integrate-and-fire (AdEx, [Brette and Gerst-
ner, 2005]) neuron circuits and up to 112 640 conductance-based synaptic connections.
Fig. 5.1a shows the schematic of the analog circuits that implement the different com-
ponents of the emulated ODE (cf. Eq. (2.1)). LIF is a subset of the AdEx model. As we
only use the LIF part we do not discuss AdEx further. The 512 circuits are also call den-
dritic membranes (denmems) and their capacitances can be connected (short-circuited)
to form larger neurons thereby trading more input per neuron for fewer individual neu-
rons. The denmems are located in the middle of the chip in an upper and a lower row

4Emulating a biological year would take about a day, making lifelong learning a viable research subject,
even on a mechanistic model.

123

5. Applications of LIF sampling on Accelerated Analog Hardware

CMembrane

Membrane

Exp

Adapt

In/Out

Leak

SynIn

SynIn

Reset

Input

Input

Spiking/
Connection

Neighbour-Neurons

Current-Input Membrane-Output

STDP/
Network

Spikes
VReset

R
ep

ea
te

r

Repeater

Neurons
Floating-gates

Sy
na

ps
e

dr
iv

er
s

Synapses

Sy
na

ps
e

dr
iv

er
s

Sy
na

ps
e

dr
iv

er
s

Synapses

Sy
na

ps
e

dr
iv

er
s

Floating-gates
Neurons

R
ep

ea
te

r

Repeater

L1

L1L1

L1

F

GE

I

C
A B

G

D

H

H
H

a

b c
d

Figure 5.1.: The BrainScaleS-1 system: a, Schematic of the implemented AdEx cir-
cuit. Due to the modular design single components of the chip can be
configured (and turned-off) independently. We only use the LIF part and
ignore the Adapt and Exp terms/circuits. Image taken from [Millner, 2012]
b, one of 384 High Input-Count Analog Neural Network (HICANNv4) chips
of a BrainScaleS-1 wafer scale system. It features 512 AdEx neurons (mid-
dle row) with a total of 112 640 synapses in two blocks (upper and lower
block). The synapse array takes most of the available chip space. Inter-
chip communication is done via a packet-based nearest neighbor connected
scheme (L1). Image taken from [Millner, 2012] c, Schematics of a complete
BrainScaleS 1 module. (A) The wafer module with its 384 HICANN chips.
(B) The positioning mask and (C) the elastomer connectors to the (D) main
PCB board. (E-G) Further PCB boards for the power supply and analog
readout capabilities. (H) Inter-wafer and host connectivity is provided via
a custom-made USB form factor and Gigabit-Ethernet slots, respectively.
(I) An aluminum frame for mechanical stability. Image taken from [Schmitt
et al., 2017]. d, Photograph of an assembled wafer module, taken from
[Schmitt et al., 2017].

124

5.1. Discriminative and generative tasks on BrainScaleS-1

(cf. Fig. 5.1b). They are flanked on the inner side by their parameter storage, which are
implemented by so-called floating-gates [Lande et al., 1996], and the synapse arrays on
the outside. The latter implement a total of 112 640 possible connections and take the
largest part of the chip area.

Whenever the membrane voltage u at the capacitance exceeds the threshold value
Vthresh the comparator circuit triggers the spiking behavior. This consists of a) short-
circuiting the membrane to the reset potential Vreset and b) generating a digital spike
package. The short circuiting is released after the refractory period τref and the timing
is controlled via one of the floating-gate values and is subject to significant variations
for the large values of τref that we desire5 for a (relatively speaking) shorter effective
membrane time constant. The spike event consist of a tuple of an ID and a time stamp.
The latter is only for bookkeeping purposes (i.e., only evaluated off-chip and does not
influence the actual on-chip dynamics). The package is generated at the neuron (white
� in Fig. 5.1b) and routed along a predefined route (black lines). This route is near-
arbitrarily configurable at chip initialization, but requires compute-intensive mapping.
As such we map our desired network once at the beginning of the experiment and
therefore treat the routes as predefined and static.

The spike package is injected onto a horizontal line which, due to the wafer-scale
integration, is also connected to neighboring HICANNs (L1 in Fig. 5.1b). The horizontal
lines can be connected to the vertical lines through a configurable, but sparse switch
matrix. At an enabled switch (black dot), the signal is transfered to a vertical line in
order to either reach HICANNs above or below (L1 on the top or bottom) the current
one or to be injected into the synapse array. This injection happens via a synapse driver
which drives two lines of synaptic input. Each of the 440 synapse lines has 256 single
synapses. These connect to vertical lines above the synaptic input of each denmem
circuit. The synapses check the source ID of the spike package and apply a 4-bit weight
modifying the strength of the interaction. There exist 2 synaptic input circuits per
denmem, one is configured to be excitatory, the other is configured to be inhibitory.
Each synapse line can only exclusively connect to either of those (Dale’s law [Dale,
1953], cf. Section 2.1).

For communication with the outside, each HICANN has so-called L2 connections (not
shown). Per reticle, which consists of 8 HICANNs, there is one field-programmable gate
array (FPGA) (Fig. 5.1cH). This grouping is an artifact of the production process where
only groups of 8 can be printed at once. In total, there are 48 Kintex7-FPGAs, each
having a 1-Gigabit connection to its associated reticle. In total 384 there are HICANNv4
chips per wafer. To put this bandwidth into perspective: With a single spike package
requiring 27 bit data [Brüderle et al., 2011], this means we can transport at most:

fevent =
48 Gbit
27 bit

≈ 1 × 109 s−1 (5.1)

events per second to and from the complete wafer. In other words on the biological time
scale and with using all 512 possible neurons HICANN, this would correspond to a peak

5Effectively, the reset timer is implemented as a charging capacitance, where one needs to control a
tiny current in order to generate long refractory periods.

125

5. Applications of LIF sampling on Accelerated Analog Hardware

lossless activity of

νlossless
bio =

fevent
10000× 512× 384

≈ 0.5 Hz (5.2)

per neuron [Brüderle et al., 2011]6.
The rest of the assembled wafer module (cf. Fig. 5.1d) consists of auxiliary compo-

nents, that provide for example power and analog readout capabilities. The connection
to the controlling host system is implemented via Gigabit-Ethernet ports. In practice,
this is all (relatively) nicely encapsulated, such that the end-user only thinks about the
logical network [Jeltsch, 2014, HBP-SP9, 2020]. For the large scale system the mapping
still requires significant hand-holding. This encapsulation is the result of significant soft-
ware work7 which handles all of the low-level parameter setting and also the translation
from the biological domain onto the hardware domain [Brüderle et al., 2011].

While AdEx behavior has been shown to work and reproduce diverse firing patterns
observed in biology [Tran, 2013] we will only use the LIF part and as such we refer the
interested reader to [Kleider, 2017, Koke, 2017, Schmitt et al., 2017].

Even though the acceleration factor is a blessing for the execution time, it can become
a liability when a lot of spikes need to be communicated between the host and the chip.
Remembering the discussion of the origin and the implementation of the noise spikes
from Section 3.2 and our requirement of at least 300 Hz of excitatory and inhibitory
noise per sampling neuron8, we find that the available input bandwidth per HICANNv4
reticle (consisting of 8 HICANNs) is

freticle = νlossless
bio × 512× 8 ≈ 2 kHz. (5.3)

This is sufficient to sustain about 2 sampling neurons [Kungl, 2020]. We can circumvent
this limitation by using additional reticles to feed in the input.

For chip-to-chip communication the direct L1 connections offer near-infinite, at least
when compared to the off-system L2 connections, bandwidth (one spike per chip clock
tick on each of the eight lanes in all directions). As such we implement the noise sources
through output spikes from an inhibitorily-connected random network (cf. Section 3.2.3).
Note: even though we can refrain from having to send spikes in, it is still possible
that we loose spikes on the way out. In other words, there is the possibility of the
network on the hardware generating more spikes than are observable from the host.
Distributing the network sparsely, and thereby spreading the bandwidth requirement
over multiple connections, helps. However, we still need to take care distributing the
neurons adequately, such that all routes can be instantiated without loss. In practice,
this mapping is what limits our implementable network sizes and force us to only solve
restricted problems [Schmitt et al., 2017, Kungl et al., 2019]. We aid the mapping by

6Since the communication stages all have small buffers a very short spike above this rate does not
necessarily lead to loss. The typical case is that one is either significantly above, or significantly
below this threshold.

7To quote Steve Furber: A hardware project always also ends up being a software project.
8We follow [Kungl, 2020] and denote times and frequencies in the biological ranges throughout this

chapter. The corresponding hardware values differ by the speed-up factor of 1 × 104.

126

5.1. Discriminative and generative tasks on BrainScaleS-1

100 101

synaptic time constant [ms]

0

10

20

30

40

50

60

70

80

90

#

a b c

Figure 5.2.: Parameter variations: a Exemplary: synaptic time constants of all neu-
rons on a HICANN chip. For homogeneous configuration variations arise
due to circuit-to-circuit mismatch of the hardware circuits (white). After
using the configurability of the circuits to compensate (”calibrating the cir-
cuits”) the variation is reduced (blue). Figure take from [Schmitt et al.,
2017]. Resulting PSP on chip before (b) and after (c) calibration. Both
the amplitude and the time constants of the membrane shape vary signif-
icantly. For ease of comparison of the time constants the insets show the
PSPs normalized to the maximum. Figure taken from [Kungl et al., 2019].

using neurons consisting of 4 denmems, which was also the supported standard at the
time.

The use of 4-denmem neurons has the added benefit of, at least somewhat, averaging
out circuit-to-circuit variations. There are multiple sources of these: First, all these
analog circuits are subject to manufacturing variances. As such, setting the same con-
figuration on two different circuits leads to different, but correlated, realizations of the
dynamical parameters. This can be compensated for via a calibration, i.e., we measure
the circuit and construct a map between the digital parameters we choose on the host
computer and the actual realized configuration in hardware [Kleider, 2017, Koke, 2017].
In practice, this approach reaches its limit due to, on the one hand, the non-orthogonality
of the parameters (e.g. the settings for the leak conductance gl also influences the leak
potential Vl, or multiple hardware parameters influencing the same dynamical param-
eter) and, on the one hand, the massive scale of the system. A single configuration
of a complete wafer system has 44 MB of configuration data [Brüderle et al., 2011],
storing each cross combination in a look-up table for arbitrary calibration is not feasi-
ble. In practice, we only calibrate the neuron parameters, as the synapse array exhibits
comparatively low variation.

Second, while the floating-gates are energy efficient [Lande et al., 1996], at least
their wafer-scale implementation comes with drawbacks. Their writing process is noisy
[Kononov, 2011, Koke, 2017, Kleider, 2017, Müller, 2017, Schmitt et al., 2017, Kungl
et al., 2019] and results in trial-to-trial variations that cannot be compensated for with
calibration, but rather represent a fundamental uncertainty of the realized configuration.
We work around this by only writing the analog configuration of the whole system (in-

127

5. Applications of LIF sampling on Accelerated Analog Hardware

cluding the routing configuration) once at the beginning of the experiment. During the
learning experiment we only rewrite the 4-bit synaptic weights which are implemented
digitally and do not exhibit these variations9. This improves the consistency within the
training process. This does not alleviate the variations in the configuration for model
storage and re-usage. The floating-gates also exhibit some drift over time [Koke, 2017],
but this is not yet a problem for experiments on our timescales.

In Fig. 5.2a we see the distribution of the synaptic time constants τsyn for different
neurons before (white) and after (blue) the calibration. The spread before the calibration
represents both the circuit-to-circuit variations as well as the trial-to-trial variations
from rewriting the floating-gates. The latter forms the bulk of the spread of the post-
calibration distribution, where the remaining offset due to the limited configurability
(parameters are only 10-bit digital values) is negligible. Fig. 5.2b shows the PSPs for all
neurons before the calibration. Each line is an average over many single PSPs (inset) in
order to reduce noise of the readout. After the calibration (cf. Fig. 5.2c) both the spread
of the time constants (better observable in the inset, where the maximum is normed) is
significantly reduced and the average amplitude significantly increased. The amplitude
varies still by nearly an order of magnitude.

5.1.2. Experimental setup and training
Due to the floating-gate variations, we want to avoid reconfiguration of the analog pa-
rameters of the neurons. Unfortunately, this includes the leak potential Vl. Therefore we
introduce a periodically firing leak-over-threshold Vl > Vthresh neuron b as a constant
spike source. It allows us to implement the bias as another synaptic connection originat-
ing from b (cf. Fig. 5.3A and B). As BrainScaleS-1 was designed with Dale’s law in mind
each synapse driver can only connect to one type of synaptic input. Since we require
both excitatory and inhibitory inputs, each neuron’s output needs to be routed to two
synapse drivers in order to have both connection types available. This also allows for a
(fast) digital-only reconfiguration in case of a sign-flip of a logical connection throughout
the training for the price of doubling the required number of synapses needed for the
network connections.

Therefore each logical sampling neuron, consists of:
1. The actual sampling neuron s

These are 4 denmems which are short circuited and calibrated to roughly match
the requirements for sampling. I.e., the membrane time constant τm is small and
the synaptic τsyn and refractory τref time constants are long and equal.

2. Two bias connections
Two connections from a leak-over-threshold bias neuron b , with at least one of
the two synapses being zero. The sign of the bias weight Wb determines which is
the active (i.e., non-zero) synapse.

9This does not mean that the resulting PSPs form a 4-bit system as there also the configuration of
the synaptic input is relevant. There are also variations in the linearity of the weight scaling [Koke,
2017], but again, this does not concern us on our level of discussion here.

128

5.1. Discriminative and generative tasks on BrainScaleS-1

s νePoisson
νiPoisson

wnetwork

b νb

wb

s RN

wnetwork

b νb

wb

RN

1 5 1 0 5 0 5 1 0 1 5
w b [H W. u .]

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

m
e

a
n

 f
re

q
u

e
n

c
y

[H

z]

P o is son

RN

C

0 2 4 6
s [H W. u .]

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

d
e

n
si

ty
 [

1
]

P o is son

RN

E

5 0 5 1 0 1 5

w 0
b [H W. u .]

0 .0 0

0 .0 5

0 .1 0

0 .1 5

0 .2 0

d
e

n
si

ty
 [

1
]

P o is son

RN

D

A B

2 0 0 0 2 0 2 0
t [m s]

5 0

4 0

u
b

[m
V

]

b ia s n e u r on

Figure 5.3.: Experimental setup: Each sampling unit is instantiated by a pair of neu-
rons on the hardware. The bias neuron is configured with a supra-threshold
leak potential such that it fires regularly, thereby acting as a bias to the sam-
pling neuron. The stochastic noise can be provided via per-neuron-private
Poisson-distributed spike trains from the host A or via random connections
from a recurrently connected network of leak-over-threshold neurons B. C
Activation function of single sampling neuron for Poisson (blue) and recur-
rent network (orange). The inset shows the membrane time course of the
bias neuron with its regular spiking. D (E) Distribution of fitted offset
(width) parameters of the activation function for Poisson (blue) and recur-
rent network (orange) provided noise. Figure adapted from [Kungl et al.,
2019].

3. Noise input

Either one excitatory and one inhibitory connection from externally fed in spikes
(small demo example, Fig. 5.4, cf. Fig. 5.3A) or n excitatory and n inhibitory
connections to 2n randomly selected neurons from the random network that forms
the noise pool (cf. Fig. 5.3B). In both cases the weight of the noise connections is
fixed.

4. Network connections

Each logical connection wij is implemented via 2 synaptic connections, with the
sign determining which of the two synapses that implement Wij is active.

At the software level this is implemented on top of the automatically implemented
routing. In other words, we need to manually take care of selecting the correct synaptic
connection according to the sign and explicitly requesting the double connections. The
bias neurons are implemented as a single leak-over-threshold neuron b which projects
onto all sampling neurons s via double synapses.

129

5. Applications of LIF sampling on Accelerated Analog Hardware

This network is then mapped once in the beginning and the input-output relation (ac-
tivation function σ, cf. Section 2.2.4) for all sampling neurons s are recorded. For this
we sweep the bias weight wb over all available settings from −15 to +15. The resulting
output firing rate ν is shown for one neuron in Fig. 5.3C. Whether we provide noise
externally (blue) or from the random network (orange) does not change the behavior
significantly. However, we observe that the activation functions are much rougher than
the ones we encountered in Section 4.1 and they do not saturate on the high-bias side.
The former is mostly due to the rough weight resolution of 4-bit and the non-monotonic
behavior for some weight configurations, both of which limit the tuneability of the noise
strength. In principle, we could change the scale of the x-axis by decreasing the noise
strength and make the dynamic behavior more visible (cf. Section 4.1).

The slow upwards drift on the high-bias-weight side is due to the significant time
spend in the drift after the actual reset is already released. In principle, we could reduce
this by reducing the distance between the reset Vreset and threshold Vthresh potentials.
In practice, this again is limited by the floating-gate variations as a Vthresh < Vreset
configuration leads to misbehaving circuits. The resulting asymmetry is one of the
factors limiting the overall sampling quality.

In contrast, the difference in scale is only due to different neuron parameters due to the
floating-gate reconfiguration. The resulting parameters of the activation function vary
significantly between the different neurons (cf. Fig. 5.3D for the offset and Fig. 5.3E for
the width parameter). The data shown in Fig. 5.3D and E is obtained from a single
configuration for Poisson and a single configuration for the random network case. The
offset is correlated as the neurons share the configuration for some parameters.

In principle it is possible that we find logical neurons, i.e., groups of 4 denmems, that
are not well behaved. Either their excitability is too low, resulting in too low output
rates ν or one of the synaptic input circuits has no effect. In this case we blacklist
the resulting neuron circuits, rerun the mapping and repeat until we have a network of
sufficiently well-behaved neurons. In practice, we found enough wafer real estate that
a manual post-blacklisting beyond the one provided from the calibration database was
not necessary [Kungl et al., 2019].

In order to later assign a state z = 1 to a neuron we need to know its refractory
period τref, while we can set this in principle using that information has two problems:
The parameter variations introduces significant discrepancies between the requested and
the implemented value. More importantly we do not really care for the time the neuron
is in its actual reset state, but rather for the time it requires before it is able to spike
again. As we can see from the inset in Fig. 5.3C the drift time after the end of the
refractory period can be significant10. If we assign the state z = 1 for t < min[ISI] we
introduce a minimal p(z = 0) which limits the probability distributions that we could
represent. Therefore we empirically measure the average ISI and use this value for the
convolution of the spike train that results in the state vector ~z(t).

10The drift in Fig. 5.3C appears worse than it is as for the bias neuron the refractory time was not
chosen to be particularly large. Nevertheless the drift of 7 ms is significant.

130

5.1. Discriminative and generative tasks on BrainScaleS-1

Training

In Eq. (2.48) we derived the update rule for general BM as

∆bi ∝ 〈vi〉data − 〈vi〉model (5.4)
∆wij ∝ 〈vihj〉data − 〈vihj〉model (5.5)

where the data term corresponds to the target distribution and the model term corre-
sponds to the currently implemented model. For small distributions we can calculate
the data-correlations directly from the full distribution and thereby only require sam-
ples for the model terms. For larger distributions, or distributions that we only know
partially, we need to sample both terms. In practice, we use this for RBM-like spiking
neural networks. There the visible and label layer represent an image and a class label
respectively with the hidden layer being responsible for forming the probability distri-
bution over visible and hidden layer appropriately. Here we are required to enforce the
correct distribution on the visible and label layer, while sampling the hidden layer. This
enforcement in the language of statistics means that we need to condition the model
distribution onto some sample from the training set.

For our binarized images this conditioning means forcing the respective neuron to
continuously spike (for z = 1) or to never spike (for z = 0). In software simulations
we implement this by setting the leak potential Vl to arbitrarily high (low) values. On
hardware this is not an option, as there are fundamental limits on the dynamical range
of the system, and for BrainScaleS-1, in particular, the floating-gate variations are again
a problem. Furthermore, changing Vl would require a reconfiguration between each
sample, which on BrainScaleS-1 requires a new experiment run11. Therefore we opted to
feed in clamping spike-trains in form of additional excitatory and inhibitory connections
to the neurons of the visible layer. These spike trains can be constructed on the host
and – as long as we stay within the available communication bandwidth – allow us to
clamp an arbitrary sequence of images in the visible layer. With the thus-conditioned
system we can sample the data phase analogous to the model phase.

A single weight update thus consists of

1. Updating the (digital) synaptic configuration of the network

2. The sampling run

In order to ensure proper clamping we needed to deactivate the connections orig-
inating in the hidden layer during the date phase. This forced us to use two
experiments in order to collect the correlations in the two phases. During the data
phase external spikes clamp the corresponding neurons, during the model phase
no additional external spikes are provided. The achieved experiment repeat rate
on BrainScaleS-1 was roughly one per 2 s.

3. Translation to states
11At least from the python interface we utilized.

131

5. Applications of LIF sampling on Accelerated Analog Hardware

For both phases the spikes to states translation is made separately based on the
measured τref.

4. Parameter update calculation

While the realized synaptic configuration is a set of 4-bit weights, we perform the cal-
culations on full 64-bit floating point numbers (so called shadow weights [Courbariaux
et al., 2015]). This does not provide additional overhead as we need to perform these
calculations on the host anyways, but allows us to sidestep the discrete nature of the
synaptic weights12. Without this quasi-continuous formulation multiple updates in dif-
ferent learning iterations could not add up to a bit-flip of a hardware weight. Only the
latter has an observable impact on the dynamics. At this point we would need some
other method to allow a series of small updates to influence the parameterization in
order to avoid making each parameterization to a local minimum for sufficiently small
learning rates [Maxfield, 2006].

In all cases involving larger networks we start by training in software simulations
completely on the host, before transferring the pre-trained network to the hardware
system via the measured activation functions (cf. Fig. 5.3C-E). We have to expect severe
limitations of the performance as we are only capable of using 4-bit weights, variations
between synaptic time constants τsyn alone are on the order of a factor of 2 and the
general effective parameter variations due to the floating-gates. In the post-training,
where we iteratively reconfigure the hardware, we correct for these mismatches.

5.1.3. Results

In order to characterize the behavior of a sampling system it is always advantageous to
start with a small network such that we can treat it a) analytically and b) can provide
sufficient Poisson distributed external spike trains for all neurons. Using multiple HI-
CANNs for the input routing it is possible to provide ample noise for an n = 5 neuron
spiking sampling network. Fig. 5.4A shows the median final DKL for a single sampling
run as a function of the training iteration. The shaded region corresponds to the in-
terquartile range over 150 different initializations for Poisson (blue) and RN (orange)
noise. The Poisson noise case converges slightly faster and shows larger variations be-
tween different initializations. The dashed lines give the minimal DKL observed for the
respective noise configurations.

The evolution within the last sampling run at the end of the training is shown in
Fig. 5.4B. The DKL averages down as expected as 1

N [Cai et al., 2006, Paninski, 2003]
up to the point where the implemented precision is reached. At this point the DKL
saturates. Fig. 5.4C and D show the joint and marginal distribution of the target (green),
Poisson (blue) and RN (orange). We see that most probabilities vary within the error
bars over the different initializations. Note the different scale of the y-axis between c
and d. The error bars again show the interquartile range around the median.
12Technically 64-bit floats are still discrete values. Compared to the 4-bit discretization this is a largely

philosophical point.

132

5.1. Discriminative and generative tasks on BrainScaleS-1

n e u r on id
0 .0

0 .2

0 .4

0 .6

0 .8

p
m
ar
gi
na
l(

z i
=

1
)

z, s t a t e s0 .0 0

0 .0 5

0 .1 0

0 .1 5

0 .2 0

0 .2 5

p
jo
in
t(
z)

t a r g e t

Pois son

RN

0 2 0 0 4 0 0
it e r a t ion [1]

1 0 2

1 0 1

1 0 0

D
K

L
[p

(z
)|

|p
*

(z
)]

1 0 1 1 0 3 1 0 5

t [m s]

1 0 2

1 0 1

1 0 0

D
K

L
[p

(z
)|

|p
*

(z
)]

Dis t r ib u t ion ID
1 0 3

1 0 2

1 0 1

1 0 0
D

K
L

[p
(z

)|
|p

*
(z

)]
RN , jo in t

Dis t r ib u t ion ID
1 0 3

1 0 2

1 0 1

1 0 0

D
K

L
[p

(z
)|

|p
*

(z
)]

P o is s o n , jo in t

A B C D

E F

Figure 5.4.: Sampling from arbitrary distributions: A Sampling quality on
BrainScaleS-1 for Poisson noise (blue) and recurrent networks (orange) as
a function of training iteration. Poisson noise converges slightly faster and
overall performance is largely limited by the available weight resolution.
Here and in the other sub panels the mean and interquartile ranges for
150 different initializations of the network are shown. Dashed lines are the
overall minimal achieved DKL values. B Convergence of the sampled distri-
bution during a single run at the end of learning. C Final joint distribution.
D Final marginal distribution. Final achieved DKL for 20 different target
distributions with 10 repetitions per sample for Poisson noise (E) and re-
current network noise (F). The orange line represents the mean value, the
box the interquartile range, the whiskers represent the full data range and
the x represent the far outliers. The left most distribution corresponds to
the distribution in A. Figure adapted from [Kungl et al., 2019].

133

5. Applications of LIF sampling on Accelerated Analog Hardware

In order to demonstrate that this kind of learning works for near-arbitrary distri-
butions, we repeat the experiment for 20 different distributions. The different distri-
butions are generated by sampling the parameters from a beta distribution wij , bi ∝
2 [Beta(0.5, 0.5)− 0.5]. The Beta distribution is motivated by previous studies [Petro-
vici et al., 2016, Jordan et al., 2019]. In Fig. 5.4E and F the resulting DKLs at the
end of the training for joint and marginal distributions are shown in a box-and-whisker
scheme, where the extra symbols give outliers, the boxes represent to the interquartile
range and the whiskers the full distribution minus the outliers. The number of repeti-
tions per distribution was reduced to 10, except for the first distribution which is the
one from Fig. 5.4A-D. In all these experiments we only reconfigured the digital part of
BrainScaleS-1 and only did an analog configuration once per distribution. Poisson noise
(Fig. 5.4E) shows significantly better results for all distributions and is less sensitive to
different distribution parameters. When using the random network as the noise provider
(Fig. 5.4F) the DKL for the typical distribution is higher, but also there is more varia-
tion between different distributions. Some distributions achieve near on-par quality and
repeatability (e.g. number 6, directly above the #-sign), others show significant shifts
or at least huge variations within the repetition for different initial network parame-
ters bi, wij . The different sensitivity can be explained by the induced correlations due
to the shared noise pool between the neurons, which would favor distributions with a
similar correlation structure.

External dataset (f)MNIST

We demonstrate that BrainScaleS-1 is able to implement a general model with the
MNIST and fMNIST datasets [LeCun et al., 1998, Xiao et al., 2017]. The (f)MNIST
data set consists of 28 × 28 pixel gray-scale images. We were limited to network of
208 (207 for fMNIST) network neurons and 400 neurons in the random network [Kungl
et al., 2019]. As such we resized the dataset to 12 × 12 pixel and binarized the images
around the median gray value of each image (see Fig. 5.5A and e for an impression of
the resulting pixelation). Due to the harsh size reduction the discriminability of the
data set is greatly reduced. Therefore and, in particular, based on the rough activation
functions (see Fig. 5.4A) we expect the performance to suffer. In order to compensate
we limit the model to 4 classes (3 for fMNIST).

We first train an abstract RBM13 with the same number of neurons with standard
wake-sleep learning in software (final performance as dashed lines in Fig. 5.5B and F).
We then map this network in the spirit of Section 2.2.4 to the hardware parameters by
using an heuristic scaling factor c ≈ αhw

αsw
:

whw = c(wsw − w0
sw) + w0

hw (5.6)

The scaling factor is chosen heuristically as the measurement of the complete activation
function is time intensive (due to the required reconfigurations). It turns out, that the
precise choice has comparatively little impact. This translation leads to a significant
13not a spiking network

134

5.1. Discriminative and generative tasks on BrainScaleS-1
F
-M
N
IS
T

o
ri

g
in

a
l

re
d

u
c

e
d

R

S

Tr

T

O

0 5 0 1 0 0

t [m s]

0 .0

0 .2

0 .4

0 .6

0 .8

e
rr

o
r

ra
ti

o
 [

1
]

P a t ch H W

S &P H W

Pa tch S W

S &P S W

H W r e f

v
is

ib
le

R O

0 5 0 1 0 0

t [m s]

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

m
e

a
n

 s
q

u
e

a
re

d
 e

rr
o

r
[1

] P a t ch H W

S &P H W

Pa tch S W

S &P S W

o
ri

g
in

a
l

re
d

u
c

e
dM
N
IS
T

0 2 0 4 0
n u m b e r of it e r a t ion s [1]

0 .0 0

0 .0 5

0 .1 0

0 .1 5

0 .2 0

0 .2 5

e
rr

o
r

ra
ti

o
 [

1
]

h a r d w a r e

softw a r e

L

7

4

1

0

0 5 0 1 0 0

t [m s]

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

e
rr

o
r

ra
ti

o
 [

1
]

P a t ch H W

S &P H W

Pa tch S W

S &P S W

H W r e f

5 0 0 5 0 1 0 0 1 5 0 2 0 0
t [m s]

0

1

4

7

la
b

e
l

C
L

S

Tr

T

0 2 0 4 0
n u m b e r of it e r a t ion s [1]

0 .0 0

0 .0 5

0 .1 0

0 .1 5

0 .2 0

0 .2 5

e
rr

o
r

ra
ti

o
 [

1
]

h a r d w a r e

softw a r e

7

4

1

0

0 5 0 1 0 0

t [m s]

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

m
e

a
n

 s
q

u
e

a
re

d
 e

rr
o

r
[1

] P a t ch H W

S &P H W

Pa tch S W

S &P S W

C

T Tr S

p r e d ic t e d la b e l

T

Tr

Str
u

e
 l

a
b

e
l

0 .0

0 .1

0 .2

0 .3

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

0 1 4 7

p r e d ic t e d la b e l

0

1

4

7

tr
u

e
 l

a
b

e
l

0 .0

0 .1

0 .2

A B C D

E F G H

I J

Figure 5.5.: Generating (fashion) MNIST: A/E Exemplary reduced (top row) and
original (bottom row) images from the MNIST and fMNIST datasets used
for training. B (F) Error ratio for the in-the-loop post-training after trans-
lation of pre-trained parameters (black) with software performance (red
dashed line). Insets show the confusion matrix between the 4 (3) trained
classes at the end of the training. C (G) Mean error of a partially obscured
and reconstructed image of MNIST (fMNIST) as a function of time after
a new image is clamped on hardware (solid lines) and achieved results in
software (dashed lines). The performance is similar for patch (blue) and
salt and pepper (red) masking. D (H) Likelihood of the network wrongly
identifying the obscured image as a function of time since image change.
The black dashed line shows the behavior for an completely shown image.
I Snapshots of the pattern completion experiments: O - original image, C -
clamped image (red and blue pixels are occluded), R - reconstructed image,
L - response of the label layer. J Exemplary time evolution of the visible
layer with patch occlusion. For better visualization of the activity in the
visible layer, its discrete response is smoothed out by convolving its state
vector with a box filter of 10 ms width. Image taken from [Kungl et al.,
2019].

135

5. Applications of LIF sampling on Accelerated Analog Hardware

degradation of the classification error (0.04 to 0.21 for MNIST). This regression is ex-
pected, as we make both the step from abstract RBM to LIF sampling with its associated
inaccuracies (cf. Section 3.3) and the translation to the hardware with its variations (cf.
Fig. 5.2) at once.

However, most of the performance of the network on hardware is restored in only a few
training iterations (solid lines in Fig. 5.5B and F). For the post-training phase the target
images are clamped via externally provided spike-trains in order to measure the data
terms (cf. Section 5.1.2). The confusion matrices (insets in Fig. 5.5B and F) show that
the classification of the network is limited but not degenerately so, i.e., there is no single
class where we fail. It is rather the total network quality that limits our performance
than a particular use case. With the network size strongly limited by the mapping
software (and the at that time patchy availability of the wafer area) compensating for
the 4-bit weight resolution with larger hidden layer sizes was not possible.

In order to demonstrate the generative behavior we demonstrate the network’s ability
to perform pattern completion. We show only a part

(
3
4

)
of the image by clamping that

part of the visible layer. Unlike in the post-training phase we do not cut the connections
from the hidden layer. This leaves the rest of the visible layer free to evolve under the
(incomplete) clamping. In other words we ask the network to sample from the model
distribution conditioned on the clamped (non-occluded) part of the image.

Starting from a random state the network quickly settles into a compatible mode to
the non-occulted parts (cf. Fig. 5.5J). We filter the state of the visible layer neurons
with a box-kernel of length 10 ms for visualization. The resulting mean squared distance
of the visible layer to its original takes about 50 ms to converge to the steady-state
value of 0.15 (Fig. 5.5C and G). The time constants of the system are chosen to be
τref = τsyn = 10 ms. It is surprising that the network takes on the order of 5 dynamical
time scales to completely adjust to the new input.

The probability of misclassifying the image also drops over the same time frame
(Fig. 5.5D and H). The latter reach similar classification performance as the non-occluded
image, which suggests that there is still enough information to recover from a three-
quarter digit/fashion piece. It turns out that the fMNIST data requires a smaller mean-
squared distance to achieve good classification rates when compared to the original
MNIST dataset. The completion and classification performance does not change under
different occluding schemes. This is not surprising, as the network does not rely on topo-
logical information (such as which pixel are neighbors, as it only operates on a cloud of
pixels) and we left a significant part of the image available.

136

5.2. Representing quantum states with BrainScaleS-2

5.2. Representing quantum states with BrainScaleS-2

This section presents work done in collaboration with Stefanie Czis-
chek and reported in [Czischek et al., 2020] which is currently under
review. The model was developed in consultation with Thomas Gasen-
zer, Martin Gärtner and Stefanie Czischek, the routing scheme and ba-
sic hardware configuration was provided by Sebastian Billaudelle and
Benjamin Cramer.

In this section we learn to represent quantum states with the BrainScaleS-2 spiking
neuromorphic hardware system. We use a similar setup to the pattern recognition and
generation from the previous section on BrainScaleS-1. Here we will use the visible layer
to implement a probability distribution that can be translated into the density matrix
of a quantum state. The hidden layer is used to appropriately shape this part of the
distribution. Unlike the pattern classification tasks in Section 5.1 we now a) know the
exact target distribution and b) require a much higher precision in its reproduction in
order to reproduce all expectation values and not only some marginalization precisely.
This precision is achievable on the HICANN0Xv1 chip of the BrainScaleS-2 platform.

We will first (briefly) describe BrainScaleS-2 and discuss the improvements over its
predecessor from Section 5.2.1, before sketching the positive operator-valued measure
(POVM) that allow us to map density matrices ρ to probability distributions p in Sec-
tion 5.2.2. Finally, we discuss the results of the experiments in Section 5.2.3. Most of
this section is similar to the content of the publication [Czischek et al., 2020], though
we give slightly more details regarding the hardware implementation and are a bit more
explicit in the POVM derivation here.

5.2.1. The BrainScaleS-2 system

BrainScaleS-2 is a single-chip system featuring 512 current-based adaptive exponential
LIF neuron circuits with 256 synapses per circuit [Friedmann et al., 2017, Aamir et al.,
2018, Schemmel et al., 2020, Billaudelle, in preparation]. The HICANN-X application-
specific integrate circuit (ASIC) is supposed to replace the HICANNv4 chip of the
BrainScaleS-1 system, with a wafer-scale integration planned for the future. There are
two major improvements between BrainScaleS-1 and BrainScaleS-2: First, the neuron
parameter storage was redesigned replacing the noisy floating-gates (see Section 5.1.1)
with a digital storage resulting in massively reduced trial-to-trial variations (data not
shown, for further information see e.g. [Hock et al., 2013, Friedmann et al., 2017, Bil-
laudelle et al., 2019b, Schemmel et al., 2020, Billaudelle, in preparation]). Second, there
is an on-board general-purpose compute unit, the so-called plasticity processing unit
(PPU). It is a PowerPC-based processor with vector extensions that can read and set
all parameter storages on the chip, has access to most hardware observables (correlation
sensors, membrane voltages or spike counters) and is intended to be used to implement

137

5. Applications of LIF sampling on Accelerated Analog Hardware

near-arbitrary learning rules. Implementing the learning rule directly on-chip removes
the expensive outer loop between host and chip [Kungl et al., 2019] and significantly
speeds up the training [Wunderlich et al., 2019, Billaudelle et al., 2019b,a, Cramer et al.,
2020b,a].

Such an on-chip implementation of training sampling-based networks is currently un-
der development (cf. Chapter 6), but requires the use of the correlation sensors and
the data phase (cf. Eq. (2.48)) to be implemented via clamped neurons. While we will
mention the former in Chapter 6, the achieved precision of the latter so far has proven
to be insufficient for the task at hand here. Instead of investing time to improve this
precision it was decided to use our improved learning scheme from Eq. (2.55). It only
depends on the model term and therefore never requires us to actually enforce the target
distribution on the visible layer during the training. The price for this is that we need
to stick with the host-based training. As such, our implementation profits mainly from
the improved reproducibility of HICANN-Xv1 as compared to HICANNv2 and not from
its inherent learning capability. Even though we find that we only loose about a factor
of 7 with respect to the theoretical speed up.

Routing

Since a general mapping framework was not yet available we were provided14 with a
blackbox-implementation of a network of 128 spike sources. Within this constraint we
can connect the neurons or the on-chip spike generators – which are our two types of
spike sources – arbitrarily with signed synapses. We use 2 of the 8 on-chip PRNGs to
create 64 logical random spike sources, leaving us with at most 64 sampling neurons.

We divide the noise sources into exclusively excitatory and exclusively inhibitory
sources, as this will, in the future, allow us to reduce the required number of synapse
lines. In order to understand why, we need to look a bit closer at the synaptic array
of BrainScaleS-2: Each block has 128 synapse drivers for 256 synaptic lines, with each
driver being able to drive two lines (cf. Fig. 5.6b). Each line has to have an exclusive
sign, i.e., if on any line there is to be one excitatory connection, then all other connec-
tions also have to be excitatory. This constraint is rooted in the circuit implementation
and cannot be circumvented. Each neuron sits below a column of the synapse array
and has two input circuits that each sum over the different synapse lines. One of those
input circuits is excitatory and the other one is inhibitory. Each horizontal synapse line
can only be wired up to either the vertical line that connects to the excitatory or to the
inhibitory input circuits of the associated neurons15.

As such we currently use two hardware synapse lines and one driver per logical synapse,
i.e., spike source (cf. Fig. 5.6b), to implement the sign of the connection. This means
for each of the signed synapses at least one is set to zero (with both synapses being

14For now Sebastian Billaudelle and Benjamin Cramer are the relevant high-priests of routing on
BrainScaleS-2.

15This is less flexible than the implementation in early versions of BrainScaleS-1, where the two input
circuits were able to switch their sign. This, in principle, allowed for a more flexible network setup,
but came at the price of higher variations.

138

5.2. Representing quantum states with BrainScaleS-2

zero meaning that the synapse is not used at all). This allows for a flexible change of
the connection matrix (no rerouting necessary) for the price of doubling the usage of
hardware resources. For the noise synapses, however, we know the sign in advance and
hence we know which of the two lines to use. The synapse drivers can receive spikes
from multiple sources and the synapses themselves filter the received spikes.

In order to understand how this filtering works, we again need to take a closer look at
what a spike actually is on the system. Whenever the membrane of the circuit crosses the
threshold value Vthresh

16 it is supposed to spike. In the actual implementation (modulo
some inertia of the circuit17) this means that the threshold comparator sets a bit ”spiked”
and triggers the reset circuitry. The digital part of the HICANN polls these ”spiked” bits
of the neurons and, if one is set, generates an appropriate spike package. This is a tuple
of a 6-bit ID and an 8-bit time stamp [Schemmel, 2020]. The on-chip routing is only
affected by the ID and completely ignores the time stamp, which gets augmented to a 43-
bit time in the FPGA to be analyzed on the host. The routing up to the synapse driver
is done independent of the ID and only depends on the a priori set routing configuration.
The synapse driver now sends the package to either or both of its synaptic lines and
each synapse checks if the source is relevant for it via a part of the spike ID [Schemmel,
2020]. In our routing implementation all synapses of the two lines are configured to
listen to the same ID. Each synapse also holds a 6-bit unsigned weight w which scales
the influence the synapse exerts on the input circuitry of the neuron. It is this 6-bit
weight, in combination with the 10-bit leak potential, which we use to implement the
bias, that form our network parameter that we want to optimize.

For the noise sources we enforce weights of the same sign (in the language of Fig. 5.6b
either all synapses are zero on the upper or the lower row). Therefore, it is possible in
some future implementation to route the output of one excitatory and one inhibitory
source each to one driver. This would increase the possible number of network neurons to
96 without fundamentally changing the routing scheme. Even this is not the achievable
limit, as we choose to have a fixed number k of noise source we listen to, since the
synapses themselves can filter the sources and 6-bit is sufficient to distinguish between
the 64 IDs we would be able to work with just k synapse driver lines. With this we can go
up to 128−k sampling neurons. In principle, another factor of two would be possible by
using double circuit neurons (as were used for BrainScaleS-1, cf. Section 5.1), however,
this would require significant effort for the routing. More neurons than these 256 − k
are then only possible if we restrict the architecture of the network, both in its fan-in
size and in its topology.

16Note that while circuit-to-circuit variations are significantly reduced for BrainScaleS-2, they still re-
main significant. Therefore setting the same digital configuration value to two different circuits still
results in different realized threshold values. This does not matter in our particular setup, as it is
just a movement of the b = 0 configuration. As such we did not bother to calibrate these circuits.

17This caveat is actually important as the circuitry does not play well with supra-threshold to sub-
threshold to supra-threshold transitions.

139

5. Applications of LIF sampling on Accelerated Analog Hardware

SynapsesSynapse drivers

Neurons

0 1 2 3

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Spike source
(LSFR)

Signed synapse

0 1 2 3

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Spike source
(LSFR)

Signed synapse

0 50

Target ID

0

20

40

60

80

100

120

S
o

u
rc

e
ID

Network

Exc. Noise

Inh. Noise

−6
0

0
6
0

H
W

w
ei

g
h

t
[l

sb
]

Ti
m

e
[s]

0

5

10

Ch
ip

in
it.

Ep
oc

h
1

Ep
oc

h
2

0

1

2

3

4

Ca
lcu

la
te

∆
W

26
×

H
W

-ru
n

0.00

0.01

0.02

0.03

In
Ch

ip
O

ut

220 230 240 250 260 270 280

Time [µs]

200

400

M
em

.
vo

lt
.

[l
sb

]

τ eff
ref

10.4 10.6 10.8

τeff
ref [µs]

F
re

q
u

en
cy

[a
u

]

200 400 600 800 1000

HW bias [lsb]

0

500

1000

O
u

tp
u

t
ra

te
[k

H
z]

a b

c d

e

f

g

Figure 5.6.: BrainScaleS-2 network implementation: a Photograph of the
BrainScaleS-2 chip with 4x128 AdEx-LIF neuron circuits (green), 2x2x128
synapse drivers (white) and 4 synapse arrays with 256x128 synapses (yel-
low). b Routing scheme used to implement the sampling spiking network.
Each synapse driver projects onto two synapse rows in order to allow signed
synapses. Besides the network sources, on-chip spike generators generate
random spikes which are used as noise. c Utilized logical connectivity matrix
projecting onto the 64 neurons used. Network (neuron-to-neuron) connec-
tions are truncated at index 24 (4 visible + 20 hidden) and hidden-hidden
connections are not used. Each neuron receives noise input from 5 excitatory
(64-95) and 5 inhibitory (96-127) sources, generated by one on-chip PRNG
each. The appropriate synapse row is selected depending on the sign of the
connection (cf. b). d Time usage across a training experiment: The initial
configuration (blue) of the chip is comparable to a single weight update,
here called epoch (orange). Each epoch consists of a parameter configu-
ration (green), 26 sampling runs (red) and the update calculation (purple).
Each hardware run consist of the construction of the playback program (dark
red), the input buffering (light brown), the actual chip runtime (tile) and
the readout to the host (gray). e Membrane trace of an exemplary neuron
for a high-bias configuration. τeff

ref is the inter spike interval. f Histogram of
measured τeff

ref . Variations are due to the analog nature of the system. g Ac-
tivation functions as a function of the leak potential under noise input of the
64 neurons used. Figure adapted from [Czischek et al., 2020] Supplemental
material.

140

5.2. Representing quantum states with BrainScaleS-2

Noise sources and neuron calibration

Each logical spike source is configured to provide about 80 kHz of stochastic input (for
noise characteristics see Section 3.2.2) and each neuron is randomly connected to 5
excitatory and 5 inhibitory sources (cf. lower part of Fig. 5.6c). The neuron circuits are
calibrated in a limited fashion. In particular, we calibrate the synaptic time constants
τsyn to correspond to the refractory period τref = 10 µs. The membrane time constant,
on the other hand, is just chosen to be small. The calibration we used was provided by
Sebastian Billaudelle and Benjamin Cramer18.

The other somewhat critical parameter is the refractory time τref. Its implementation
has been changed since BrainScaleS-1 to a digital one, i.e., the actual reset time is a
fixed number of chip-clock cycles and as such not subject to circuit variations. However,
the drift time in between (see Fig. 5.6e) still is (see Fig. 5.6f). As these are fundamental
to the state association we measure these at the far right side of the activation function
measurements, i.e., for Vl � Vthresh. We then use the thus-obtained values τ eff

ref (cf.
Figure 5.6f for the resulting variations, which are on the order of some percent19). In
principle shorter ISIs are possible as, in this setup, we only saturate the input current
that can be provided by the leak potential circuit and ignore additional synaptic input.
In practice, this works out fine and we do not observe spikes with a time difference
smaller than τref too often20. If we do, we consider the neuron to be continuously in
state z = 1.

The resulting activation functions can be seen in Fig. 5.6g. There is a significant
variation in the offset between different activation functions. This is expected as we
do not calibrate all neuron parameters and, in particular, do not exactly calibrate the
threshold value Vthresh. For technical reasons only a limited number of parameters may be
set to the same digital configuration value. In order to prevent this for the non-calibrated
parameters we add a small amount of noise to these configuration values. Since we are
training the parameters anyways, rather than trying to reproduce a specified network
directly, this should not affect performance. However, it does make reproduction more
complicated (essentially it requires care when seeding the random offsets).

For a more detailed discussion of available functionality and a technical documentation
of the HXSampling class see Appendix C.2.

Timing and speedup

Each learning experiment starts with a single chip initialization (cf. Fig. 5.6d blue)
which has to be performed once in the beginning. We subsume the actual chip ini-
tialization (setting of technical parameters, power supply, communications, etc.), our
specific routing configuration and the measurement of the activation functions and ef-
fective refractory times under this point. These are all things that are required to setup
18A general calibration framework for end users is under development, but not yet available for end

users.
19As compared to factors of 2 in BrainScaleS-1.
20While not in principle a problem, the initial implementation of the state assignment assumed that all

ISI are smaller than the measured τ eff
ref resulting in a buggy spikes-to-states translation.

141

5. Applications of LIF sampling on Accelerated Analog Hardware

a sampling network on the chip and do not scale with either the emulation time or the
number of training epochs. This part took about 4 s. There is a lot of optimization
potential here, but as it is a one-time cost, of at most a couple of seconds, we did not
bother.

From that on we only ever update the weight-part of the synapse array and the leak
potential values. The rest of the configuration is static and not touched. Each iteration
(or epoch) of the training consists of three phases:

1. Network parameter update (green)
We first rewrite the synapse array and leak potential configurations (cf. Fig. 5.6d
green), which takes about 49 ms. Further improvements here are possible but
somewhat involved, i.e., one could only rewrite changed parameters and ignore
the unchanged configuration or combine the weight and bias updates, which are
currently two different hardware executions.

2. The network emulation (red)
For (not completely understood) technical reasons the single emulation time was
limited to about 10 ms. Therefore in order to achieve adequate sampling sizes we
perform 26 HW-runs and combine the samples. Each hardware run consist of

a) the construction of the playback program on the host (about 3.8 ms Fig. 5.6d
dark red),

b) an initial buffering of 10 ms to ensure that the execution does not stall due
to network latency (light brown Fig. 5.6d),

c) the actual run of 10 ms (tile Fig. 5.6d) and
d) the data collection until the generated spike trains are available in the host’s

memory 11.6 ms (gray Fig. 5.6d).

3. The parameter update calculation (purple)
Which contains the translation of spikes to states (cf. Fig. 3.4a) as well as the corre-
lation calculation and the reconstruction of the target distribution (cf. Eq. (2.55)).
With 975 ms this takes nearly half of the 1.991 s per training epoch.

There are a number of things that beg for a more detailed explanation: First, the
initial buffering is used to guard against network stalls. The communication between
host and FPGA runs over a 10-Gigabit switch which is shared between all BrainScaleS-2
setups. Each setup can, in principle, generate a total of 8 Gbit of bandwidth. Depending
on the state of the other systems one might get a network stall. This is guarded against,
as the host-FPGA communication can resend lost packages [Karasenko, 2020]. However,
since we have a real-time system the chip execution will no longer fit in with the FPGA
state. The initial buffering ensures that the complete program is at the FPGA in the
beginning. We could drop this if the network bandwidth were guaranteed to be sufficient
(and no operating system level complication arises) or reduce the impact by a larger
single emulation duration. Second, the data collection time should, in principle, be the

142

5.2. Representing quantum states with BrainScaleS-2

constant offset between the end of the experiment on the chip and the last generated data
arriving at the host, i.e., for longer emulation times its significance should diminish. This
is currently not the case as we only start to analyze the results after the hardware run
ends and all data is collected on the host. Third, the parameter calculation is somewhat
optimized Python code (cf. Appendix C.2). There is room to speed up this calculation.

In total we simulate T = 26 × 10 s = 260 s of biological real time21 per epoch in 2 s
wall clock time. This gives us an effective speedup over biological real time of about
130. The remaining factor of 7 versus the nominal hardware acceleration is roughly half
in the communication with the system and half in the weight update calculation. Both
can still be optimized, but were deemed sufficient for the time being.

A comparison with software simulations is non-trivial, as the speed of most simulators
depends on both the network size and activity. Using a comparable network setup as in
Section 5.2.3 with 24, 44, 64 and 128 neurons a simulation of T = 260 sbio takes about
13 s, 20 s, 25 s and 51 s respectively in SBS with the NEST 2.14 backend [Breitwieser
et al., 2020, Peyser et al., 2017]. In order to be conservative in our comparison, we
only took the pure simulation time and ignored the setup and tear down of the NEST
simulation as well as the calculation of the parameter updates (network construction by
SBS). Complicating the comparison further is that our version of NEST [Peyser et al.,
2017] is nearly three years old and SBS is still Python3 incompatible. If we were to
dedicate effort to optimize the software comparison we would most likely end up with
significantly smaller wall clock times. Nevertheless, even if we are being as unfair as
possible to our hardware setup, i.e., we compare the smallest network and ignore the
actual learning on the software side: We still find a speed up of at least a factor of 5.

Note 3. Performance characteristics
While this effective speedup, at such small network sizes and with the factor of 7 that

we loose due to inefficiencies, is surprising (at least for the author) we need to stress
that the performance characteristics are qualitatively different. BrainScaleS-2 will always
operate with its fixed speedup of 1 × 103 completely independent of the network size. I.e.,
for larger scale networks, while the communication bandwidth challenges increase (cf.
Section 3.2), the execution time does not. With a wafer-scale setup like BrainScaleS-1
(cf. Section 5.1) a larger effective speed up factor over software simulations should be
achievable.

However, the real comparison, at least in the scope of this section should be with
respect to an abstract sampling machine. Here generating a new sample takes on the
order of one floating point operation (FLOP) per connection. We have 4 visible neurons
times 60 hidden neurons times 125000 samples, which results in about

nFLOP = 2× 4× 60× 125000 = 60 × 106 (5.7)

FLOPs required for a complete new epoch22. Ignoring special circumstances23 and with
2110 ms actual hardware runtime with the speedup due to the different time scales of 1 × 103.
22We neglected the random number generation and the bias calculation, which only scale with the

number of neurons and not the number of connections.
23Vector instructions, cache sizes, etc.

143

5. Applications of LIF sampling on Accelerated Analog Hardware

a clock frequency of r = 2 GHz this requires about

t =
nFLOP
r

= 30 ms. (5.8)

While these estimates should be taken in the spirit of a Fermi estimate and not as
a specific performance prediction24, the speed-up of nearly 5 orders of magnitude is
far beyond errors on the rule of thumb. Again this comparison would change to the
advantage of the neuromorphic system for larger and especially more densely connected
networks.

5.2.2. A spiking implementation of POVMs

While we have already discussed the performance characteristics of the emulated net-
work, we did not yet introduce the distribution we require to sample. The ultimate aim
is to describe a quantum state with the BrainScaleS-2 platform. In this section we will
introduce the means by which we are translating the general description of a quantum
state, the density matrix ρ, into a probability distribution P . We will follow the writeup
in [Czischek, 2020] which itself rehashes [Carrasquilla et al., 2019, Tabia, 2012, Nielsen
and Chuang, 2002].

For any quantum state |Ψ〉, any operator O and a possible outcome of the measurement
a we can write the probability P (a) of the measurement Oa giving result a as:

P (a) =
〈
Ψ
∣∣∣O†

aOa

∣∣∣Ψ〉 = Tr
[
ρO†

aOa

]
, (5.9)

where the latter expression uses the trace formalism over the density matrix

ρ = |Ψ〉 〈Ψ| , (5.10)

which is a generalization of the state formalism.

M (a) = O†
aOa (5.11)

defines a positive semi-definite operator M (a) whose expectation value gives the proba-
bility of getting the measurement outcome a:

P (a) =
〈
M (a)

〉
(5.12)

We can find a set of measurements {ai} that form a set of
{
M (ai)

}
, which add up to the

identity when summing over all possible measurements∑
{a}

M (a) = 1 (5.13)

24I.e., these should be accurate to within an order of magnitude, assuming the program is efficiently
programmed.

144

5.2. Representing quantum states with BrainScaleS-2

so that they form a general quantum measurement. It can be shown that the probability
distribution P (a) for such a system of {M (a)} fully characterizes the density matrix ρ.
Furthermore the M (a) can be chosen such that they yield an invertible overlap matrix
and hence Eq. (5.9) becomes invertible [Carrasquilla et al., 2019]. Note: This does not
mean that every probability distribution maps to a physical density matrix ρ. In practice
a general probability distribution P will result in a ρ that is not semi-positive definite.

The density matrix ρ and thereby a general quantum state of dimension d is charac-
terized by d2− 1 real numbers. While ρ is a complex d2× d2 matrix, it is also hermitian
and has trace Tr[ρ] = 1, thus resulting in d2 − 1 independent real degrees of freedom.
As such, an informationally complete measurement [Tabia, 2012] description requires d2
linearly independent measurements. The last one is to ensure proper normalization. A
set of d2 such operators is then called a positive operator-valued measure (POVM), with
each M (a) being a POVM element. Here we follow [Czischek, 2020] and only consider
projections as individual operators, which correspond to rank-1 POVMs [Czischek, 2020,
Tabia, 2012, Nielsen and Chuang, 2002].

The Hilbert-Space dimension of a spin-12 particle is d = 2 as it can be either in the up
|↑〉 or the down |↓〉 state. We therefore need d2 = 4 linearly independent measurement
outcomes

{
M (ai)

}
. Since the single measurements of a system of N spin-12 particles

factorize, the general measurement on the complete system is given by the tensor product

M (~a) =M (a1) ⊗M (a2) ⊗ . . .⊗M (aN) (5.14)

and due to the informational completeness we can expand any operator in the spin basis
as

O =
∑
{~a}

QO(~a)M
(~a). (5.15)

The QO(~a) are yet-unknown coefficients which sum over all possible index combinations
~a ∈ {0, 1, 2, 3}N .

As the density matrix ρ is also an operator we can expand it as:

ρ =
∑
{~a}

Qρ(~a)M
(~a) (5.16)

and with T~a,~a′ = Tr
[
M (~a)M (~a′)

]
write the probability of the measurement outcome ~a

as:
P (~a) =

∑
{~a′}

QρT~a,~a′ (5.17)

The POVM can be chosen such that T~a,~a′ is invertible. As such we can write the coeffi-
cients Qρ(~a

′) as:

Qρ(~a
′) =

∑
{~a}

P (~a)T−1
~a,~a′ (5.18)

145

5. Applications of LIF sampling on Accelerated Analog Hardware

0 50 100
Time [µs]

12

10

8

6

4

3

2

1

N
eu

ro
n

ID

240

340

V
ol

ta
ge

1

c Spiking neurons

...

v1

v2

v3

v4

h1

h2

hM−1

hM

Wi,j

bj
di

Hidden layer

Visible layer

a Network structure

b Neuromorphic chip

↓↓ ↓↑ ↑↓ ↑↑ ↓↓
↓↑↑↓
↑↑
−0.1

0.0
0.1
0.2
0.3

↓↓ ↓↑ ↑↓ ↑↑ ↓↓
↓↑↑↓
↑↑
−0.1

0.0
0.1
0.2
0.3

Im (ρ)Re (ρ)

|Ψi 〉 = c↑↑i |↑↑ 〉+ c↓↓i |↓↓ 〉

+ c↑↓i |↑↓ 〉+ c↓↑i |↓↑ 〉

ρ =
∑

i qi |Ψi 〉〈Ψi |

=
∑
{a1 ,a2}

P (a1, a2)Qa1 ,a2

e Quantum spin state

(0,
0)

(0,
3)

(3,
3)(

a1 , a2
)0.00

0.05

0.10

0.15

P
(a 1,

a
2
)

a1 = 0

a2 = 3

0

0

1

1

d POVM representation

a = 3

a = 2

a = 0

a = 1

POVM basis

Figure 5.7.: Neuromorphic representation of quantum states: a Hierarchical spik-
ing network with connections between visible (orange) and hidden (green)
neurons. b Photograph of the HICANN-Xv1 ASIC which forms the core in
the BrainScaleS-2 system. c Dynamical evolution of the network. Upper
panel membrane voltage of the first LIF neuron integrating the synaptic
input. Whenever the membrane crosses the threshold a reset is performed
and the neuron is held there for a refractory period. Lower panels: Spikes
(solid lines) for the visible (orange) and hidden (green) neurons as well as
z = 1 time frames (shaded region). The network state is read out peri-
odically (gray lines) and the resulting binary vectors form the sample set.
d The 4-state POVM representation of a quantum spin-1/2 state (Bloch
sphere) can be represented by two combined visible neurons. A combina-
tion of N 2-neuron pairs can thus represent a quantum N-body system. The
observed frequencies of the states of the spiking neurons form the sampled
approximation of the distribution (histogram). e Any quantum state can
be represented as a density matrix ρ, which can be a statistical mixture of
states |ψ〉. The complex-valued entries of the density matrix ρ can be re-
constructed linearly from the sampled probabilities P (a1, a2). Figure taken
from [Czischek et al., 2020].

This allows us to write expectation values for arbitrary operators O as:

〈Ψ| O |Ψ〉 = Tr[Oρ] =
∑
~a,~a′

P (a)T−1
~a,~a′ Tr

[
OM (~a′)

]
(5.19)

=
∑

~a,~a′,~a′′

P (a)T−1
~a,~a′QO(~a)T~a′,~a′′ (5.20)

=
∑
~a

P (~a)QO(~a) (5.21)

where we used
∑

~a′ T
−1
~a,~a′T~a′,~a′′ = δ~a,~a′′ in the last step and otherwise the definitions from

before. This expression allows for the efficient evaluation of arbitrary operators without
having to reconstruct the complete density matrix ρ in between [Czischek, 2020].

146

5.2. Representing quantum states with BrainScaleS-2

The last piece missing is the calculation of the coefficients, which needs to happen for
each operator O individually as:

QO(~a) =
∑
~a′

Tr
[
OM (~a′)

]
T−1
~a′,~a (5.22)

Specific choice of POVM

In practice we choose the tetrahedral representation (cf. Fig. 5.7d), where each mea-
surement projects a single qubit onto one corner of a tetrahedron in the Bloch sphere
[Carrasquilla et al., 2019]. The POVM elements Mai for each qubit i are expressed in
the form

Mai =
1+ ~sai~σ

4
(5.23)

with the Pauli operators ~σ = (σx, σy, σz) and

sa0 = (0, 0, 1) (5.24)

sa1 =
1

3
(2
√
2, 0,−1) (5.25)

sa2 =
1

3
(−

√
2,
√
6,−1) (5.26)

sa3 =
1

3
(−

√
2,−

√
6,−1) (5.27)

The POVM elements then take the form:

Mai=0 =
1

2

[
1 0
0 0

]
, (5.28)

Mai=1 =
1

6

[
1

√
2√

2 2

]
, (5.29)

Mai=2 =
1

12

[
2 −

√
2− i

√
6

−
√
2 + i

√
6 4

]
, (5.30)

Mai=3 =
1

12

[
2 −

√
2 + i

√
6

−
√
2− i

√
6 4

]
. (5.31)

This is a choice, in particular, we could have rotated the same tetrahedron arbitrarily
within the Bloch sphere.

Quantum states and resulting probability distributions

We will first demonstrate the implementability for the prototypical quantum state, the
Bell state [Nielsen and Chuang, 2002]:

∣∣ΨBP〉 = 1√
2
(|↑↑〉+ |↓↓〉) (5.32)

147

5. Applications of LIF sampling on Accelerated Analog Hardware

and then, for slightly larger systems, by its higher-dimensional extension the GHZ state
[Greenberger et al., 1989]∣∣∣ΨGHZ

〉
=

1√
2
(|↑↑ . . . ↑〉+ |↓↓ . . . ↓〉) (5.33)

In order to show that this approach also works for non-pure states we additionally
represent Werner states [Cabello et al., 2005]

ρW = rρB + (1− r)
1

4
= r |ΨB〉 〈ΨB|+ (1− r)

1

4
(5.34)

where r is the ratio of the pure state as compared to the purely mixed state, which is
represented by the term 1 which adds white noise.

Starting from the quantum state formulation in Eq. (5.32) we first need to derive the
corresponding density matrix:

ρBP =
∣∣ΨBP〉 〈ΨBP∣∣ (5.35)

=
1

2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 (5.36)

where we choose the indexing from left to right (or top to bottom) ↑↑, ↑↓, ↓↑, ↓↓. From
this we can now find the target probability distribution:

P (a1, a2) = Tr[ρBPM~a1 ⊗ ~a2] (5.37)

=
1

8

1 1/3 1/3 1/3
1/3 1 1/3 1/3
1/3 1/3 1/3 1
1/3 1/3 1 1/3

 (5.38)

where the columns correspond to the index a1 and rows to the index a2.

Transfer to spiking neurons

We specified the probability distribution in Eq. (5.38) as a 4 × 4 real matrix to make
the association with the outcomes a{0,1,2,3}1 and a{0,1,2,3}2 more obvious. But of course it
is only the 16 numbers in that matrix that form the probability distribution. We can
represent such a 16-state random variable as a distribution over n = 4 binary random
variables. From Section 2.2 we know that a RBM with n = 4 visible units vi and a
sufficient number of hidden units hj forms a probability distribution

p(~v,~h) = exp

∑
i,j

bivi + djhj +Wijvihj

 (5.39)

148

5.2. Representing quantum states with BrainScaleS-2

Using the improved wake-sleep algorithm from Section 2.2.2 we can train the parameters
Wij , bi and dj

25 such that the marginal distribution of the visible layer corresponds to
the desired one from Eq. (5.38).

For ease of association we use two visible neurons to represent the POVM of a single
spin (gray shade in Fig. 5.7a) according to:

a1 = 2v1 + v2 (5.40)

This is a practical choice as our probability distribution in Eq. (5.38) is already non-
degenerate (P (~a) > 0 for all ~a) and as such representable within the Boltzmann frame-
work. In principle it might be worthwhile to analyze the desired probability distribution
to reduce the difference to a factorizing distribution by reordering the elements when
reinterpreting them as a binary distribution.

On chip the network is then realized with a single LIF circuit per logical binary neuron.
We read out the spike times from the chip (cf. Fig. 5.7c). From this we generate the
state assignments by convolving with a rectangular kernel of the measured refractory
time τ eff

ref (cf. Section 5.2.1 and Fig. 5.6e and f). These are then collected at regular
time intervals (gray vertical lines in Fig. 5.7c) and the frequency of the states for the
estimator of the probability distribution (cf. Fig. 5.7d).

5.2.3. Results
In Fig. 5.8a the typical measurement setup for a Bell experiment is shown. We produce
a pair of entangled spins from some source and distribute them to two parties Alice and
Bob. The two spins constitute the Bell pair. Prior to the experiment Alice and Bob
each select two measurements a1, a2, b1, b2 that they can perform. For each spin pair
they independently decide which of their two measurements they will actually perform.
We choose a single angle Θ to parameterize all 4 measurements26 according to

a1 = 0 a2 = 2Θ b1 = Θ b2 = −Θ. (5.41)

We choose exemplarily the Bell witness:

B(Θ) = Ea1,b1 + Ea1,b2 + Ea2,b1 − Ea2,b2 (5.42)

to demonstrate the evolution of the observability for the entanglement in Fig. 5.8b. The
expectation values Ex,y are the mean adjusted covariances:

Ex,y = 〈SxSy〉 − 〈Sx〉 〈Sy〉 (5.43)

As all the absolute values of the expectation values are bounded by unity |Ex,y| ≤ 1, the
Bell witnesses are constrained to |B| ≤ 2 for classical systems [Bell, 2004]. Therefore the
observation of |B| ≥ 2 is a proof of quantum entanglement. Conversely the adherence
25Note: This Wij is only the intra-layer connection matrix, i.e., the block off-diagonals of the full matrix

we discussed before.
26This does not describe all possible measurements but allows us to produce Fig. 5.8b.

149

5. Applications of LIF sampling on Accelerated Analog Hardware

0.0 0.2 0.4 0.6 0.8 1.0
1− r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
(π
/

4
)

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π
Θ

−3

−2

−1

0

1

2

3

B
(Θ

) 0 1000 2000
Training epochs

0

2

B
(π
/

4
)

Entangled Separable

Classical limitPure Bell state

Noisy Bell state
1− r = 0.7

Classical regime

Quantum regime

a b cViolation of the classical bound Effects of white noiseMeasurement setup

Source oror

Comparison

Eα,β = 〈Sα
1
S
β
2
〉 − 〈Sα

1
〉〈Sβ

2
〉

Sα = cos (α)σz + sin (α)σx

B (Θ) = E0,Θ + E0,−Θ + E2Θ,Θ − E2Θ,−Θ

Basis choice
β = Θ

β′ = −Θ

Detection

Basis choice
α = 0

α′ = 2Θ

Detection

Party 1 Party 2

Figure 5.8.: Measuring a Bell witness: a Illustration of a typical Bell test scenario.
One entangled spin pair is distributed to two parties, which then perform
independent measurements. The comparison between the outcomes reveals
correlations that cannot be captured by classical local hidden variable the-
ories if the Bell witness |B(Θ)| exceeds the classical limit of 2. b Bell wit-
ness evaluated on the final results of the density matrix of the Bell state
ρB = |Ψ+〉 〈Ψ+| on BrainScaleS-2 with M = 20 hidden neurons. The inset
shows the evolution of the Bell witness at Θ = π

4 as a function of the train-
ing epoch. In the main frame the marker and bars depict the mean and
standard deviation over the last 200 training epochs for all angles Θ. Note
that all evaluations are performed on the same network state. Adding white
noise to the pure Bell state results in the Werner state ρW = rρB + 1−r

4 1.
The green points correspond to r = 0.3. c Bell witness at Θ = π

4 for a
Werner state as a function of noise strength. The exact solution (black)
is well captured for both entangled and separable states, with fluctuations
(error bars) decreasing with increasing noise. Figure taken from [Czischek
et al., 2020].

to the classical bound does not provide information as entanglement is not observed
when considering the spin in a single basis. For our choice of target Bell state

∣∣ΨBP〉
(Eq. (5.32)) and our choice of Bell witness B (Eq. (5.42)) the violation is at its maximum
for Θ = π

4 .
Fig. 5.8b shows the observed B(Θ) for the pure Bell state (red) and a Werner state

with a noise component of r = 0.3 (green) for all considered angles Θ. The shown values
are the mean and variances of the last 200 training iterations. Each line corresponds to
one particular state corresponding to a single network configuration. In other words all
red (green) dots originate from the same sample27 and only the evaluation changes. We
find good agreement for all choices of Θ.

The inset of Fig. 5.8b shows the evolution of B
(
π
4

)
over the course of the training.

27We could repeat the sampling run once per Θ choice, but this would not yield significantly different
results.

150

5.2. Representing quantum states with BrainScaleS-2

Most of the learning happens within the first 400 epochs, with only a slight drift hap-
pening beyond 1000 epochs. This depends slightly on the choice of hidden layer size
and quantum state (cf. Fig. 5.9a and c). We find that we are able to approximate all
possible states of a 2-spin system within the variations. In order to show this we mix in
thermal noise resulting in a Werner state with density matrix

ρW = rρB +
1− r

4
1 (5.44)

In Fig. 5.8c we show different Werner states and thereby different training runs. We find
that the variations and deviations decrease for higher noise contributions r.

For higher values of r the system becomes more unordered and the resulting probability
distribution becomes more uniform. For a purely thermal state, the resulting probability
distribution P is the uniform distribution. It is not surprising that we can approximate
this kind of probability distribution P better. While we found in Section 3.3 that even
the single-neuron activation function is not entirely trivial to predict, we can choose
(at least in theory) the mean target activation with arbitrary precision. Given this we
are still able to produce arbitrary factorizing distributions up to the resolution limit of
our calibration. The uniform distribution also factorizes and as such it requires little
in terms of synaptic connections, which we learned in Section 3.3.2 are the dominating
sources of deviations.

Performance and scaling

For the pure Bell state – arguably the most challenging of the states we looked at – we
investigate the performance scaling in Fig. 5.9a. We measure the performance both on
the quantum side via the quantum fidelity (main plot of Fig. 5.9a):

F(ρB, ρN) = Tr
[√√

ρBρN
√
ρB

]
(5.45)

as well as on the probability distribution side via the Kullback-Leibler divergence DKL
(inset of Fig. 5.9a, cf. Eq. (2.38)). The quantum fidelity measures the overlap of the
achieved state with the target state.

For increasing hidden layer size (number of neurons M) the performance increases.
It saturates for M = 30 near a fidelity F ≈ 98 % with a corresponding DKL of
DKL . 1 × 10−2. Comparative implementations with traditional RBMs require signifi-
cantly less hidden neurons (order 5 [Carrasquilla et al., 2019]) to form the distribution
appropriately. This performance regression is most likely due to synaptic connections
on BrainScaleS-2 being implemented as 6-bit weights28. From the discussion of Sec-
tion 4.1.2 and Section 2.2.4 we know that the actual influence of the synaptic weight
W is dependent on both the neuron as well as the noise configuration. As such we can
shift the meaning of the synaptic weights from a lower maximum and finer resolution
28One could argue for 7-bit, as it really is two unsigned 6-bit circuits. But when compared to 64-

bit floating point numbers that distinction is academic. In addition, we could further optimize the
absolute scale of the weights further by choosing different noise parameters, cf. Section 4.1.

151

5. Applications of LIF sampling on Accelerated Analog Hardware

103 104 105

Samples S

10−2

10−1

D
K
L
` p∗ ‖

p
´

20 40 60
Hidden Neurons M

0.6

0.8

1.0

F
id

el
ity

0 1000 2000
Training epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
id

el
ity

0 2000
Training epochs

10−1

10−2

10−3

D
K
L

Hidden neurons M
5

10
15
20
25
30

N = 2

N = 3

N = 4

a Training process b Sampling behavior

c Multiple spins 5 10 15 20 25 30
Hidden neurons M

0.7

0.8

0.9

1.0

F
id

el
ity

5 10 15 20 25 30
Hidden neurons M

0.6

0.8

1.0

F
id

el
ity

a Partially-layered network

b Deep network structure

··· ···

······

M2 M N

M2 = 0

M2 = 5

M2 = 10

a b

c

d

e

Figure 5.9.: Performance of the neuromorphic implementation: a Training per-
formance for the pure Bell state ρB in a 2-layer network. Quality is measured
by the quantum fidelity (main frame) and DKL (inset) for different num-
bers of hidden neurons (color coded). b DKL evolution as a function of
samples for the last training epoch. The final flattening is the limit achieved
learning quality at the end. c Final quantum fidelity for the considered
Bell and GHZ states |ψ〉 = |↑〉⊗N + |↓〉⊗N for N = 2, 3, 4 and for different
hidden layer sizes. The numbers reported here are averages over the last
200 training steps (gray shade in a). d Quantum fidelity as a function of
hidden neurons for the strictly layered network (blue) and with additional
visible-visible connections (orange). e Quantum fidelity for a deeper net-
work architecture where the second hidden layer has M2 = 5 (orange) and
M2 = 10 (green) neurons. Figure taken from [Czischek et al., 2020].

to a higher maximum interaction with a more coarse-grained resolution. We did some
optimization here, but stopped at global changes to the number and weights of the noise
connections of the neurons. In principle changing the number of connections per neuron
could allow for more strongly excitable and less strongly excitable neurons and thereby
somewhat alleviate this restriction29.

We (somewhat) compensate for the lack of resolution in each synaptic weight by in-
creased number of hidden units. However, this workaround comes at the price of an
enlarged state space, which in turn increases the number of samples required to accu-
rately recover the correlations. At least for M < 40 an increase in the number of hidden
neurons both increases overall performance as well as training speed (cf. Fig. 5.9d).
Again, we see most of the performance is gained in the first 500 epochs. There are some
variations observable (e.g. around epoch 1000 for M = 10), that are due to underlying
(and largely not understood) changes of BrainScaleS-2 system. We are aware of some
temperature dependency, but this should not affect the performance on these time scales.
At the time of writing this thesis the most likely explanation is network interference of
29This is not entirely straightforward, as we up to a point rely on the symmetry of the interaction

(wij = wji in the full-matrix formulation), which would then be explicitly broken. See also Chapter 6.

152

5.2. Representing quantum states with BrainScaleS-2

other experiments.
In general, the sampling behavior within a run is as expected in Fig. 5.9b, with

the DKL decreasing roughly as 1
N until it reaches saturation. A single run of 10 ms

corresponds to roughly 2000 independent samples. As such we would be limited to
about DKL ≈ 5 × 10−2 if we could not combine multiple runs. This accuracy would not
be sufficient for reproduction of the desired quantum states.

In Fig. 5.9c we see the scaling behavior for both different hidden layer sizes (x-axis)
as well as different quantum system sizes (colors). For the 2-spin system we see that
the performance does not degrade for the available system size (M < 60) and reaches
maximum fidelity around M = 30. For 3- and 4-spin states we take pure GHZ states
[Greenberger et al., 1989] which are the large system analogs for the Bell state. For the
3-spin state we see an increased performance within the available system size, indicat-
ing that F = 1 could be achieved with a larger system. For the 4-spin state we see
some marginal improvement up to M = 30 before the performance stagnates. There
are multiple possible explanations for this lack of convergence: First, the probability
distribution corresponding to the 4-spin state already consists of 64 states, it may be
that our sampling time is simply insufficient to accurately represent both the original
distribution as well as all correlations which form the relevant marginal over the visible
layer we care about30. Second, the limitation from the 6-bit weights do not allow the
target probability distribution to be accurately formed. Or third, the fundamental de-
viations from the LIF sampling networks (cf. Section 3.3) do not allow the formation of
these distributions. It is likely that the reason is a combination of the former two, which
are mostly technical in nature and subject to improvement, either by better control over
the system or improved routing allowing for larger networks and multiple synaptic con-
nections between two neurons. We should also point out that it is the pure state that
offers the biggest challenge. Adding even some thermal noise to the state ρ improves the
achievable quantum fidelity F significantly (data not shown).

Different architectures

Finally we investigated the effects of adding additional visible-visible connections (cf.
Fig. 5.9d) as well as a second layer (making the network deep, cf. Fig. 5.9e):

Additional visible-visible connections, at least for the 2-spin Bell state, do not offer a
significant advantage. At least not with a good activation function, i.e., the activation
function is largely symmetric and covers a significant dynamical range (cf. Fig. 5.6g) and
the drift at the end of the refractory period is short (cf. Fig. 5.6e). In a prior setup we,
mistakenly, used a setup with a significantly larger membrane capacitance Cm, resulting
in a significantly increased τm. Within this setup – being far from a good sampling setup
– the activation function becomes asymmetric, as there is a slow31 decrease of the ISI
for higher biases. Under these conditions additional visible-visible connections improved
30The pure sampling error of a 64 state probability distribution even with the increased 225 000 samples

is on the order of DKL = 1 × 10−4. It is unclear how this translates to limiting the achievable
accuracy through training.

31Proportional to log Vthresh−Vreset
τm

plus some constants, [Petrovici, 2015].

153

5. Applications of LIF sampling on Accelerated Analog Hardware

performance significantly, while still staying below the here presented quality (data not
shown).

Deeper architectures did not provide additional capabilities and under certain circum-
stances (e.g. M < M2) actively degraded performance. In case of a smaller first hidden
layer an additional hidden layer is not expected to be helpful, as all the effect on the vis-
ible layer is constrained by the first hidden layer. In all cases we degraded performance
when comparing with a single hidden layer with the same number of neurons as the deep
network had in all hidden layers. This is not particularly surprising, as a 16 state prob-
ability distribution has only limited complexity that the hidden layer needs to mediate.
Hence, the richer distributions of p(h1|h2)p(h2), as compared to the single factorizing
distribution p(h)32, does not provide noticeable benefit. Our lack of observed improve-
ment here, however, does not mean that it might not be useful for more complicated
setups. Here, we focused on demonstrating the flexibility of the network configuration
rather than doing a systematic search of all possible hidden-layer configurations.

32This is somewhat simplistic, as the hidden layer distribution is also formed by the visible layer and
hence does not factorize completely. However, we are not free to choose p(v) arbitrarily and hence
the freedom in p(h) is the same as in a factorizing distribution.

154

6. Discussion and Outlook

If we had to summarize what we learned throughout this thesis in only one sentence then
it would have to be: The dynamics of single Leaky-integrate and fire (LIF) neurons, and
even more so the dynamics of ensembles of those, are complicated and a description
as a Boltzmann distribution is incomplete. Even the extended Buesing model does not
adequately capture the nature of the LIF dynamics. In particular, we have seen that the
dynamics of Buesing neurons are far less reactive to a change in input (less ”bursty”).
For large-scale ensembles we identified the influence of the exponential PSP shape as the
main origin of changes in the phase diagram of the Buesing neurons.

We started our discussion with the introduction of the necessary background in Chap-
ter 2. Here, we introduced the notion of LIF neurons as an abstraction of biological
neurons and established the framework of probabilistic computing with binary neurons
that we uses throughout this thesis. After sketching the LIF sampling framework [Petro-
vici et al., 2016] at the end of Chapter 2, we turned to take a look at the complications
arising through the autocorrelation introduced by the exponentially shaped synaptic
interactions (Sections 3.1.2 and 3.2). In Section 3.3 we then explained in detail the
spike response function ρ(u) of LIF neurons under high-frequency noise stimulus. We
generated the LIF Markov model (LMM) by looking at an ensemble of LIF neurons
under the same noise stimulus. This allowed us to formulate the membrane potential
distribution function f(u; t) which allows the deduction of the spike response ρ(u). To
simplify the mathematical treatment we reduced the synaptic time constant of, and thus
the autocorrelation generated by, the noise input. This allowed us to keep the internal
state of the LMM to one internal variable ζ and having its spike response function ρ(u)
only additionally depend on the membrane potential u. While we did show that the
LMM describes the dynamics of a network of LIF sampling neurons significantly better
than a Boltzmann distribution, it came at the price of the closed-form description. At
the same time, the LMM only relies on the synaptic input integration and the hard
refractory time. The precise form of both the neuron and the synapse should not make
a significant difference and as such the LIF neuron model should be seen as an example
rather than an essential precondition.

In Chapter 4 we then shifted our focus to the dynamics of ensembles of spiking neurons.
We started by introducing the notion of temperature of binary Boltzmann distributions
in Section 4.1 as the width of the activation function. This width is generated by
the stochastic noise input and depends on both its frequency and weight as well as
the neuron parameters. We found that a bias-free – meaning an unshifted activation
function – modulation of the temperature can be implemented by a change of the noise
rates rexc and rinh. This bias-free modulation requires a tight and precise coupling
between the two noise rates rexc, rinh as otherwise a shift fulfills the role of a bias change

155

6. Discussion and Outlook

in the Boltzmann distribution. This offers a biologically plausible replacement of the bias
implementation via the leak potential Vl as it moves its training process also to long-term
synaptic plasticity, similar to the training of the weight. Finally, we showed that the
functional implication of large-scale activity fluctuations, like the cortical oscillations,
can implement tempering by showing the entropy evolution of the resulting distributions.

With the ability to control both temperature T and bias b of an LIF sampling neuron,
we turned to the highly regular network structure of the classical Ising model in Sec-
tions 4.3 and 4.4. By our description as Boltzmann machines – which is mathematically
equivalent to that of spin glasses – we expect all features from the classical Ising model
to transfer to our spiking networks. However, we found that the phase diagram of such
2D nearest-neighbor-connected networks, strongly depends on the microscopic neuron
model. For the extended Buesing model, both the shape within the refractory period
and the lingering interaction after the end of the refractory period qualitatively modify
the phase diagram. In particular, we can find cooling schedules (i.e., only changes in the
width of the activation function) that exhibit neutral-on-off or neutral-off-on transitions
of the activity when cooling from hot-to-cold temperatures at static external fields h.
This is even after we correct for a possible bias due to the incorrect assumption on the
scaling between weight and bias parameters. Nevertheless, we could recover the critical
exponent γ = 7

4 that describes the divergence of the susceptibility χ = ∂A
∂b around the

critical point (T = Tcrit, h = 0) [Onsager, 1944]. In order to do this, we needed to – a
posteriorily – define the external field-free (h = 0) configurations, as the neutral activity
configuration ∆A = 0.5. These form a non-trivial curve ∆b(T) in the phase diagram.
This recovery procedure works for every neuron model we tried. For networks of LIF
neurons the phase diagram looks again completely different. This further underlines the
result from Section 3.3 and [Gürtler, 2018] that even Buesing neurons with exponential
interactions are an incomplete model for networks of leaky neurons. While not explic-
itly shown in this thesis, the choice of the two-, rather than a higher dimensional, Ising
network was only to reduce simulation time, and we can recover the expected behavior
in higher dimensions equivalently.

After this check of our theoretical understanding we turned to functional implemen-
tations of this Bayesian compute model on neuromorphic hardware in Chapter 5. As
expected from Section 3.2 the precise nature of the spike sources was shown to not be a
major impairment for the sampling process. The precision of the imprinted distribution
on both BrainScaleS-1 and BrainScaleS-21 was mainly constrained by the achievable
strength and resolution of the single synaptic inputs. Nevertheless, we were able to im-
plement a high-level classification task ((f-)MNIST, cf. Section 5.1) on BrainScaleS-1,
with all its analog trial-to-trial variations and 4-bit synaptic connections. This repre-
sents the (semi-)large-scale end of the spectrum of Bayesian networks, where the true
underlying distribution p(~v) is unknown and only a set of samples from it is available for
training. On the other end of this spectrum lies the representation of quantum states in
Section 5.2. Here we know, and are required to reproduce, the complete target distribu-
tion p(~v) in order to be able to reconstruct the associated density matrix ρ and thereby

1The used chips where HICANNv4 and HICANN-Xv1, respectively.

156

calculate all desired expectation values. While the larger weight resolution (6-bit instead
of 4-bit) of BrainScaleS-2 was certainly helpful we traded this for stricter size constrains
of the single chip system.

In summary we found that the understanding of LIF sampling as Boltzmann machines
is sufficient for the implementation of high-level tasks and the description of parts of the
distribution. For a full description on the other hand a more detailed model is required.

Outlook

Throughout this thesis, we learned a lot about the intricate dynamics of networks of
LIF sampling networks and all the fine complications that arise. We learned about deep
connections between various micro and macro effects. This furthers us along the path
of connecting brain science to statistical physics, unlocking the ability to use many of
the tools developed by the latter. With our current state of understanding there are a
number of enticing research angles:

1. Can we improve the training of these spiking sampling networks by using our
improved understanding?
Here we mean, can we improve the training in principle? The LMM offers a
better description of the underlying dynamics of the LIF neurons, can we use this
description to derive improved learning rules than the assumption of Boltzmann
distributions allows?

2. Is the binary coding enough?
Closely related to the derivation of a better learning rule is the question whether
a binary state z ∈ {0, 1} has sufficient representative power to describe an LIF
neuron adequately2. The LMM suggests that there is a significant difference in
the dynamical state between times shortly after the end of the refractory period
and long after the end of the refractory period and it may be that we require more
than 1-bit of information to encode this dynamical state.

3. Can we improve the training on neuromorphic hardware?
For both hardware implementations in Chapter 5 only a fraction of the total time
was actually spent on emulating the network. BrainScaleS-2 features the plasticity
processing unit (PPU), which can update the connectivity matrix based on on-chip
observables. In particular, we could use spike-timing-dependent plasticity (STDP)
to implement the idea of event-driven contrastive divergence [Neftci et al., 2014]3
if we use the on-chip correlation sensors.

2As the author’s theoretical physics I tutor put it: ”You are free to choose any coordinate system you
want, but some make your problem easier.”

3It really is an event-driven wake-sleep algorithm but the original author used the terminology ”con-
trastive divergence” in the paper title, so we honor his decision. This is currently work in progress
by a master student of mine, Timo Gierlich [Gierlich, 2020], and would remove the expensive host-
chip-loop from the training procedure.

157

6. Discussion and Outlook

There is always the aim for larger systems, both on hardware and in software. On
hardware, we would like to implement large image datasets on the one hand, and large
(enough) scale Ising networks on the other. Both would allow us to make stronger state-
ments regarding both the applicability of our parameter relation schemes on imprecise
substrates and actual performance comparisons with respect to other platforms.

Regarding the quantum state representation there are also more ”out there” questions:
Each quantum state ρ is associated with a probability distribution p and continuous
changes in ρ lead to continuous changes in p. The latter we associate with the changes
of the network parameters w, b, i.e., plasticity or learning. This begs the question: Can
we find a learning rule such that it implements changes on p that correspond to the
(time)evolution of the quantum state ρ?

The other large and inconcrete question is whether we can assign a meaning to the
intrinsic dynamics of the sampling course. So far, we assume that it is only the steady-
state distribution of the network that is relevant. However, the reaction time of humans
are on the order of 50 ms to 500 ms which corresponds to only a few dynamical time
scales of the single neurons. As such, it is unlikely that the steady-state distribution
is meaningfully captured in reactions to external inputs. This implies that either, the
conditional distributions that are created due to sensory input collapse to very small
modes or the brain has two fundamentally different modes of operation. This links up
with other ongoing projects on BrainScaleS-2, where for example image classification
with feed-forward networks shows results in less than two dynamical time scales [Göltz
et al., 2019, Cramer et al., 2020a] for the price of not implementing generative or Bayesian
properties. These systems tend to use a different coding scheme, which assign meaning
directly based on single spike times, rather than the complex correlation between multiple
spike trains we use in the sampling framework.

As such, the adequate summary may be: Even though we started with less knowledge
than we have now, we also generated more questions than we have answered. This seems
to be the nature of science. Our results here cast doubt upon the recently repeated
claim that Hopfield networks are all you need [Ramsauer et al., 2020] – which essentially
corresponds to the restriction to two-point correlations in Boltzmann distributions – as
the dynamics of the neurons are not adequately captured by binary states. As we are
standing on the shoulders of giants, we hope that the knowledge developed throughout
this thesis is some small contribution to the understanding of spiking networks, and
ultimately the brain.

158

7. Acknowledgments

Bones mend. Regrets stay with you
forever.

Kvothe, Kingkiller
Name of the Wind by P. Rothfuss

This part is the, woefully inadequate, attempt to form a list of all the people that
supported me throughout the journey of my PhD, shared the burden we all experienced
and made this work possible. I’m eternally indebted:

To Doro, my girlfriend, for always being there for me and all her love. Without you
my life would be a significantly sadder affair. I know I’m not an easy person and there
are enough points where I annoy you. While I may never understand why I’m good
enough for you, I love you and the last 4 years would not have been the same without
you.

To the late Prof. Karlheinz Meier, for forming a unique research environment with
the Electronic Vision(s) group and tirelessly championing the BrainScaleS neuromorphic
platforms.

To Dr. Mihai Petrovici, for never accepting half thought through statements and tire-
lessly continuing all our discussions. While the reason I joined the Electronic Vision(s)
group was Prof. Meier, Mihai is the reason I stayed.

To Dr. Johannes Schemmel, for stepping into the shoes of Prof. Meier. Both as a
group leader for the Vision(s) and as the referee of my thesis.

To Prof. Dr. Thomas Gasenzer for agreeing to be my second referee and the patience in
all our discussion regarding the relationship between quantum states and neuromorphic
systems over the last years.

To Prof. Dr. Manfred Salmhofer and Prof. Dr. Selim Jochim, for agreeing to take
part in my defense.

To Dominik Dold and Akos Kungl, for being the best office mates around, for all the –
at times exhausting, but always memorable – discussions. It was a pleasure working with
you in the past and I can only hope that the future holds opportunities for collaboration.
I wish you all the best.

To Nico Gürtler, Julian Göltz, Madison Cotteret and Timo Gierlich, for being excep-
tional master students which had the misfortune to have been supervised by me.

To Agnes Korcsak-Gorzo, for the collaboration regarding the implementation of tem-
pering in spiking neural networks.

To all the former members of the TMA group, for all the interesting discussions and
critical thinking I got taught here. You definitely left your mark.

159

7. Acknowledgments

To Dr. Eric Müller and his softies, for providing the operational support for the
Electron Vision(s). It is in larger part to his credit that there was nearly no effect of the
Covid-19 restrictions onto our work. While this is simple for the software simulation,
it takes significant effort for the hardware parts. And also for introducing me to spack.
The work for it taught me more about software development than I ever wanted to know,
but it was also very rewarding.

To Sebastian Billaudelle and Benjamin Cramer, for being the high-priests of the
BrainScaleS-2 system. Without you and your willingness to answer all our questions
the work in [Czischek et al., 2020] would not have been possible.

To the rest of the Electronic Vision(s) group, for providing a, while at times opinion-
ated and certainly unique, research environment with singular opportunities. And even
after 5 years, I still cannot keep up with you at lunch.

To Dr. Martin Gärtner and Dr. Stefanie Czischek, for, together with Prof. Dr.
Thomas Gasenzer, investing the time to have the countless discussions that lead to
[Czischek et al., 2020].

To the research lab of Prof. Dr. Walter Senn in Bern, for hosting me for a very nice
semester and introducing me to a clean river, even though it is quite cold. While you
haven’t broken my love for Heidelberg, I thoroughly enjoyed my time with you.

To my family, for all the support. While, at times, it is stressful that you have such
unwavering faith in me, it does make my own doubts easier to bear.

To my friends back home, here in Heidelberg, Karlsruhe, Jena, Greifswald, Oxford,
Tübingen and where you all move to, for being there for me, for sharing many nice
barbecues and enduring my endless need for discussions.

Finally, this work would not have been possible without the financial support from
the Manfred Stärk foundation. He acted as the incredibly generous mecenas of the
TMA group enabling not only our research but also the visit to several workshops and
conferences by me and my colleagues. The yearly symposiums we conduct with him as
an interested visitor and also speaker are always very rewarding.

It would have also not been possible without access to the supercomputing facilities
of the state of Baden-Württemberg. I acknowledge the support by the state of Baden-
Württemberg through bwHPC and the German Research Foundation (DFG) through
grant no INST 39/963-1 FUGG (bwForCluster NEMO).

160

A. Calculations

A.1. Conditional Probability

Calculating the conditional probability from the normalization

p(zk = 1|pz\k) + p(zk = 0|z\k) = 1 (A.1)

and the definition of the membrane potential

uk = log
p(zk = 1|pz\k)
p(zk = 0|z\k)

(A.2)

⇒ euk =
p(zk = 1|pz\k)
p(zk = 0|z\k)

(A.3)

yields

p(zk = 1|pz\k) = eukp(zk = 0|z\k) (A.4)
= euk

(
1− p(zk = 1|z\k)

)
(A.5)

=
euk

1 + euk
(A.6)

=
1

1 + e−uk
= σ (uk) (A.7)

We also attach a general calculation of the membrane potential of a sampler from the
BM:

uk = log e
−E(zk=1)

e−E(zk=0)
(A.8)

= log e
1
2

∑
i,j 6=k Wijzizj+

∑
i 6=k bizi+

1
2

∑
i Wkizi+

1
2

∑
i Wikzi+bk

e
1
2

∑
i,j 6=k Wijzizj+

∑
i6=k bizi+0

(A.9)

= log e
1
2

∑
i(Wki+Wik)zi+bk (A.10)

=
∑
i

Wkizi + bk (A.11)

For the last equality we use the fact that connectivity matrix of the BM are symmetric,
i.e., Wki = Wik ∀i, k. This is a reminder of the symmetric nature of interactions in
physics (“actio = reactio”).

161

A. Calculations

A.2. Spin to Neural relations

A.2.1. Logistic function and hyperbolic tangent

Explicit calculation of the relationship between the hyperbolic tangent function to the
activation function of the neural network description:

1

2
(1 + tanh(x)) =

1 + sinh(x)
cosh(x)

2
(A.12)

=

1 +
ex−e−x

2
ex+e−x

2

2
(A.13)

=
ex + e−x + ex − e−x

2 (ex − e−x)
(A.14)

=
ex

ex + e−x
(A.15)

=
1

1 + e−2x
= σ(2x) (A.16)

A.3. Energy of Two State Systems

A.3.1. Total Energy

We need to check that the update rules from [Petrovici et al., 2016] (Eq. (4.28)) are
actually conserving the probability landscape. In order to do this we will explicitly
calculate the translated total energy and show that its value (under this translation)

162

A.3. Energy of Two State Systems

does only change by a constant value due to the description we choose.

E =

n∑
i,j=0

1

2
Wijzizj +

n∑
i=0

bizi + C (A.17)

=
∑

zi=1,zj=1

1

2
Wij +

∑
zi=1

bi + C (A.18)

=
∑

zi=1,zj=1

2Ŵij +
∑
zi=1

2b̂i − 2
n∑

j=0

Ŵij

+
1

2

n∑
i,j=0

Ŵij −
n∑

i=0

b̂i (A.19)

=
∑

zi=1,zj=1

(
2Ŵij − 2Ŵij +

1

2
Ŵij

)
+

∑
zi=−1,zj=−1

1

2
Ŵij (A.20)

+
∑

zi=1,zj=−1

(
−2Ŵij +

1

2
Ŵij

)
+

∑
zi=−1,zj=1

1

2
Ŵij (A.21)

+
∑
zi=1

(
2b̂i − b̂i

)
−
∑

zi=−1

b̂i (A.22)

=
∑

zi=1,zj=1

1

2
Ŵijẑiẑj +

∑
zi=−1,zj=−1

1

2
Ŵijẑiẑj +

∑
zi=1,zj=−1

3

2
Ŵijẑiẑj (A.23)

−
∑

zi=−1,zj=1

1

2
Ŵijẑiẑj +

∑
zi=1

b̂iẑi +
∑

zi=−1

b̂iẑi (A.24)

=
∑
i,j

1

2
Ŵijẑiẑj +

∑
i

b̂iẑi (A.25)

(A.26)

Where we have used the abbreviations
∑

i,j =
∑n

i=1

∑n
j=1 and

∑
zi=1 =

∑
i∈{k|zk=1}.

A.3.2. Transition Probability

The transition probability (spike probability) for a neuron is given by its activation
function:

p(zk = 1) =
eE(zk=1)

eE(zk=1) + eE(zk=0)
=

1

1 + e−uk
=: σ(−uk) (A.27)

With its ”membrane potential” given by

uk =
∑
i=0

Wkizi + bi (A.28)

Translating this into the Ising domain we get:

163

A. Calculations

uk =
∑
i=0

Wkizi + bk (A.29)

=
∑
zi=1

Wki + bk (A.30)

=
∑
zi=1

4Ŵki + 2b̂k − 2

n∑
i=0

Ŵki (A.31)

=
n∑

i=0

2Ŵkiẑi + 2b̂k (A.32)

= 2ûk (A.33)

The factor of 2 is the reminder of the change in description and reflects the fact that
the spacing between the energy levels is stretched by a factor of 2 when going from the
neural description to the Ising description.

In other words

p(ẑi = 1) =
eE(ẑi=1)

eE(ẑi=1) + eE(ẑi=−1)
= σ(−2ûk) (A.34)

as opposed to Eq. (A.27).
Which guarantees us identical behavior of both descriptions, as long as we pay atten-

tion whether we have to use the membrane potential (as calculated in Eq. (A.28)) or
twice its value for the neurons/spins activation function.

However, it is worth again to point out, that this kind of treatment is not limited to
our specific two descriptions, but rather a natural effect of the freedom in choosing our
own descriptions of systems. Nature does (should) not care about how we label a two
state system! And in this sense the whole calculation here is only necessary to translate
the numerical predictions of Ising to our systems and not for their existence.

A.4. Wake-Sleep derivation

We start by rewriting the DKL as:

DKL (q||p;W) =
∑
z

q(~z) log p(~z,W)

q(~z)
=
∑
~z

(q(~z) log p(~z,W)− q(~z) log q(~z)) (A.35)

and note that the latter term is independent of the network parameters W = (Wij , bi)
and therefore drops out when taking the gradient with respect to the parameters:

∂DKL (q||p;W)

∂wij
=
∑
{~z}

q(~z)
∂ log p(~z;W)

wij
(A.36)

164

A.4. Wake-Sleep derivation

For ease of notation we first calculate:

∂ log p(~z;W)

wij
=

1

p(~z;W)

∂p(~z;W)

∂wij
(A.37)

=
1

p(~z;W)

∂

∂wij

[
exp (−E(~z;W))∑
~y exp (−E(~y;W))

]
(A.38)

=
1

p(~z)

∂wij exp (−E(~z;W))∑
~y exp (−E(~y;W))

−
exp (−E(~z;W)) ∂wij

∑
~y exp (−E(~y;W))[∑

~y exp (−E(~y;W))
]2

(A.39)

Using the energy definition Eq. (2.26) and using the restricted connectivity with wij 6= 0
only for intralayer connections between hidden neuron j with state hj and visible neuron
i with state vi, we find:

∂p(~v,~h;W)

∂wij
=

vihj exp
(
−E(~v,~h;W)

)
∑

~y exp (−E(~y;W))
−

exp
(
−E(~v,~h;W)

)∑
~y v̂iĥj∑

~y exp (−E(~y))

 (A.40)

(A.41)

∂DKL (p||q)
∂wij

=
∑
{~v}

q (~v)

[
− 1

p̃ (~v;W)

∂p̃ (~v;W)

∂wij
+

1

Z (W)

∂Z (W)

∂wij

]
(A.42)

=
∑
{~v}

q (~v)

− 1

p (~v;W)

∑{
~h
} vihje−E

(
~v,~h;W

) (A.43)

+
1

Z (W)

 ∑
{
~v′,~h

} v′ihje−E
(
~v′,~h;W

)

=
∑
{~v}

= 〈vihj〉data − 〈vihj〉model

(A.44)

165

B. Simulation Parameters

All LIF sampling simulations were performed using the SBS library [Breitwieser et al.,
2020] which internally uses PyNN [Davison et al., 2009]. The actual compute task
were done with an older version of the NEST simulator [Peyser et al., 2017]. Sim-
ulations using the neuralsampler framework (cf. Appendix C.3) used the commit
6210746c2db61eb0804566d772a937781aa23b76.

Here, we will give the parameters used for each simulation, hopefully in a complete
enough fashion to allow easy reproduction. Whenever not explicitly noted otherwise the
simulator time step is set to 0.1 ms.

B.1. Single PSP

B.1.1. Isolated PSP

For this simulation we directly use the PyNN interface and we use pyNN.IF_cond_exp
and pyNN.IF_curr_exp neurons with parameters:

Cm 0.2 nF
V rev

exc 50 mV
V rev

inh −50 mV
Vl 0 mV
Vreset −0.01 mV
Vthresh 0 mV
τm 2.0 ms
τ inh

syn 10 ms
τ exc

syn 10 ms
τref 10 ms

Table B.1.: Single PSP simulation:For the CUBA case the V rev
exc and V rev

inh parameters
need to be omitted.

A single input spike was generated at 120 ms and the weight was set to 0.1 using
sim.SpikeSourceArray connect via sim.connect.

B.1.2. TSO Simulations

For this simulation we directly use the PyNN interface and we use pyNN.IF_curr_exp
neurons with parameters:

167

B. Simulation Parameters

Cm 0.2 nF
Vl 0 mV
Vreset −0.01 mV
Vthresh 0 mV
τm 0.1 ms
τ inh

syn 10 ms
τ exc

syn 10 ms
τref 10 ms

Table B.2.: TSO simulations:Same neuron parameters as above.

For the PSP traces in Fig. 3.1a we used the same setup as Appendix B.1.1 only
exchanging the membrane time constant τm to the respective values.

For Fig. 3.1b we set τm = 0.1 ms and varied the ISI of the stimulating spike source
using ∆t ∈ {3, 6, 12, 60}ms in the time frame 120 msto180 ms.

For Fig. 3.1c we exchanged the synapse type to tsodyks2_synapse of the NEST
simulator and used τfacil ∈ {10, 20}ms and the ISI setting of 12 ms.

B.1.3. Tail Contribution Simulations
For this simulation we directly use the PyNN interface and we use pyNN.IF_curr_exp
neurons with parameters:

Cm 0.2 nF
Vl 0 mV
Vreset −0.01 mV
Vthresh 0 mV
τm 0.1 ms
τ inh

syn 10 ms
τ exc

syn 10 ms
τref 10 ms

Table B.3.: Tail contributions:Same neuron parameters as above.

We explicitly measure the membrane traces for activities 〈A〉 ∈ {0.0, 0.1, . . . 0.9, 1.0}
and interpolate in between. The stimulating spike train is generated with ISI ∆t = τref

〈A〉
and the same script as for Appendices B.1.1 and B.1.2.

The script for everything up to here can be found in the thesis repository under
scripts/stackedpsps/stackedpsps.py.

B.2. Noise simulations
The neuron parameters are shared between the different noise simulations and the script
can be found in the thesis repository under scripts/noise/randomnetwork.py.

168

B.2. Noise simulations

Cm 0.2 nF
Vl 0.01 mV
Vreset −5 mV
Vthresh 0 mV
τm 1.0 ms
τ inh

syn 10 ms
τ exc

syn 10 ms
τref 10 ms

Table B.4.: Noise simulations:Increased Vthresh − Vreset.

B.2.1. Poison Simulations

Neuron parameters from Table B.4 and the synapse is either sim.StaticSynapse with
a weight of 1 or a tsodyks2_synapse with parameters:

U 1.0
τrec 10 ms
τfacil 0 ms
weight 1

Table B.5.: TSO parameters for Poisson noise:Corresponds to renewing synapses.

The rate of the two Poisson source (sim.SpikeSourcePoisson) is set to r = 1000 Hz
and the simulation duration is T = 10 s. The binning of spiketrain for the power spec-
trum happens in 2 ms bins.

B.2.2. Random Network Simulations

We randomly initialize the neuron’s membrane potentials according to a normal dis-
tribution with mean ū = −1 mV and standard deviation

√
Var[u] = 0.3 mV. The

inhibitory connections are made via a sim.FixedNumberPreConnector(n=k) and the
connections the initialized with sim.StaticSynapse(weight=wi). The used combina-
tions were (k,w) ∈ {(50,−2.), (25,−4.), (5,−1.), (50,−8.)}. We feed the superposition
of 20 of the thus generated spiketrains to a single neuron with Vthresh = 100 mV which
deactivates its spike mechanism. The binning for the power spectrum is again in 2 ms
bins.

B.2.3. On Chip

Same as Appendix B.2.2 only that the spiketrains come from a single run of the
hxsampler (cf. Appendix C.2) with the target rate being set to 80 kHz and a
noisemultiplier=4 was used.

169

B. Simulation Parameters

B.3. Tempering Simulations

The simulations were performed by Agnes Korcsak-Gorzo.

Cm 0.2 nF
Vl −50.0 mV
Vreset −55.1 mV
Vthresh −50.0 mV
τm 0.1 ms
τ inh

syn 10 ms
τ exc

syn 10 ms
τref 10 ms

Table B.6.: Noise simulations:Increased Vthresh − Vreset.

B.4. Ising Simulations

The Ising simulations Fig. 4.3 were the only ones performed on a local laptop with-
out using the experiment setup Appendix C.1 and the neuralsampling backend Ap-
pendix C.3. It shares most of the parameters with the experiments for Appendix B.5.

The parameters in addition to Table B.7 were augmented by skripts/Ising/run.py.
Here and in Appendix B.5 we use a temperature setting of T = 1 and a default weight of
the nearest neighbor connections to w = 1. The cooling-down experiment was initialized
at T = 1 and cooled down to T = 0.3 (which in the Ising domain corresponds to T = 4
and T = 1.2).

delay 1
networkUpdateScheme InOrder
neuronType log
nupdates 1000
outputEnv true
outputScheme MeanActivity
randomSeed 42 424 243
randomSkip 1 000 000
subsampling 1
synapseType rect
tauref 1
tausyn 1

Table B.7.: Ising simulations:Translation to the {−1, 1} domain is done artificially, all
calculations happen artificially according to Eq. (4.30).

170

B.5. Phase diagrams

B.5. Phase diagrams

The phase space diagrams measurements are orchestrated via the experiment li-
brary Appendix C.1, we give the shared parameters here once and then the over-
rides in each subsection below. For completeness the generation files are checked
into the git repository that contains this thesis and are available e.g. at commit
51518d6ff9bbebfc77d4bbbd8383cf6e07dca93f in the parameterfiles directory.

NeuronType log
delay 1
networkUpdateScheme InOrder
nupdates 2200000
subsampling 10
outputEnv True
outputScheme MeanActivity
randomSeed 42424243
randomSkip 1000000
synapseType rect
tauref 100
tausyn 100

Table B.8.: Base parameters phase space:Shared parameters for all phase space sim-
ulations with the (augmented) Buesing neuron model.

B.5.1. Rect

Here we scan the offset bias ∆b and the temperature T (parameterfiles/ThesisRect).

∆b np.linspace(-0.1, 0.1, 41)
T np.linspace(0.2, 2.0, 10) + np.linspace(0.5, 0.7, 21)

Table B.9.: Phase space rect:

B.5.2. Quench origins

The simulations differ by their initialization only. We use the final (inter-
nal) states from (∆b, T) = (0.0, 0.59) as a stand-in for the critical point
(parameterfiles/ThesisRectCrit) and from (∆b, T) = (−0.1, 0.5) for the off-
state initialization (parameterfiles/ThesisRectOff). Similar effects are ob-
servable for different choices of the ζ-distribution for identical z-distributions
(parameterfiles/ThesisRectFlat).

171

B. Simulation Parameters

B.5.3. Exp

Here we scan the offset bias ∆b and the temperature T (parameterfiles/ThesisExp).

∆b np.linspace(-0.2, -0.7, 11) + np.linspace(-0.3, -0.5, 41)
T np.linspace(0.1, 1.0, 10) + np.linspace(0.65, 0.8, 31 + np.linspace(0.8, 0.9, 6

Table B.10.: Phase space exp:

B.5.4. Tail

Here we scan the offset bias ∆b and the temperature T (parameterfiles/ThesisTail).

∆b np.linspace(-0.2, -0.7, 11) + np.linspace(-0.35, -0.55, 41)
T np.linspace(0.1, 1.0, 10) + np.linspace(0.65, 0.8, 31 + np.linspace(0.8, 0.9, 6

Table B.11.: Phase space tail:

B.5.5. Cuto

Here we scan the offset bias ∆b and the temperature T (parameterfiles/ThesisTail).

∆b np.linspace(-0.1, 0.4, 6) + np.linspace(0.05, 0.25, 41)
T np.linspace(0.1, 1.0, 19) + np.linspace(0.25, 0.55, 31

Table B.12.: Phase space cuto:

B.5.6. LIF

We use the LIF parameters:

Cm 0.002 nF
Vl 0.0 mV
Vreset −0.001 mV
Vthresh 0.0 mV
τm 0.1 ms
τ inh

syn 10 ms
τ exc

syn 10 ms
τref 10 ms

Table B.13.: Phase space LIF parameters:Increased Vthresh − Vreset.

172

B.5. Phase diagrams

The simulation for LIF neurons are more involved as we first need to select the the
appropriate noise parameters for a bias-free temperature modulation (cf. Section 4.1).
We did this by measuring the whole 2D space for excitatory and inhibitory rates (similar
to Fig. 4.1) and selecting a line of constant activation function position. The resulting
noise rates are:

rexc rinh T
183.3 Hz 147.9 Hz 0.178
248.2 Hz 229.1 Hz 0.214
336.0 Hz 336.1 Hz 0.254
454.9 Hz 477.7 Hz 0.299
615.8 Hz 664.3 Hz 0.350
833.8 Hz 911.9 Hz 0.409
1128.8 Hz 1240.7 Hz 0.476
1528.3 Hz 1679.6 Hz 0.554
2069.1 Hz 2264.6 Hz 0.644
2801.4 Hz 3047.1 Hz 0.748
3792.7 Hz 4096.2 Hz 0.869
5134.8 Hz 5503.5 Hz 1.009
6951.9 Hz 7397.1 Hz 1.172
9412.0 Hz 9947.3 Hz 1.361
12 742.7 Hz 13 382.5 Hz 1.582
17 252.1 Hz 18 009.4 Hz 1.837
23 357.2 Hz 24 253.3 Hz 2.135

Table B.14.: Phase space LIF temperature:Increased Vthresh − Vreset.

Imprinting a correct initial state (i.e. setting all internal parameters) turned out to
be surprisingly difficult (the state of the synaptic input is not easily exposed through
the PyNN and SBS interaces). As such no attempt was madde to write the past here.

We scan the offset bias ∆b and the temperature T (parameterfiles/ThesisTail).

∆b np.linspace(-0.5, 0.5, 11) + np.linspace(-0.2, 0.0, 21)
T np.linspace(0.3, 1.5, 13) + np.linspace(0.5, 0.8, 31

Table B.15.: Phase space LIF scan:

173

C. Software and Tooling

C.1. Experiment Control on bwNEMO
Most of the results presented in this thesis (e.g. Section 4.1, Section 4.3, parts of Sec-
tion 5.2) come from large scale parameter studies on the bwHPC supercomputer NEMO.
A typical phase diagram in Section 4.3 contains the results of O(1000) simulations with
additional ones required for selecting these. Each simulation requires, depending on
network size and duration, anywhere between few minutes and multiple hours of CPU
time. Due to the parameterstudylike nature of the simulations no attempt to parallize a
single simulation was taken, rather single thread performance was somewhat optimized
and a tool put in place to rapidly start, modify and collect results from massive numbers
of single simulations.

NEMO is a fairly typical, if well administered, HPC system, i.e., it provides a SLURM-
based scheduler with the user-facing interface MOAB. The user submits a single bash
script that controls the job and annotates it with the resources (mainly number of CPUs,
nodes, amount of memory and walltime) requested. SLURM than takes care to allocate
a suitable node, submit the job there, monitor the execution (in particular, that memory
and walltime requirements are not exceeded) and collects the job exit codes. Since our
simulations can be quite short-lived the delay between job submission and earliest start-
up (which is O(min)) can become significant.

In this appendix we describe the implementation of the experiment controller, that

• Generates the single parameter finds from a higher level description of the study

• Groups these simulations such that each job fills a complete node (20 cores) and
runs reasonably long (hours) in order not to tax the scheduling system

• Checks the experiment results

• Collects the simulation results and provides a single report file to analyse further

C.1.1. High level interface and experimentfile layout

The python tool experiment.py is always called on a YAML file that contains the high
level description of the experiment. This file contains at least the following parts:

• executionParams: high level information for the scheduler.
Which cluster does this run on (only NEMO is actually implemented) and with
which parameters to schedule the jobs (number of cpus, nodes, walltime etc) as

175

C. Software and Tooling

well as an estimate for the duration of a single job. The latter is used to group
multiple simulations in order to keep the runtimes reasonably long.

• experimentName: the name of the experiment. Mostly for the user to identify the
experiment, used to backup the experiment YAML and as a parent directory name
for the simulation folders.

• executable: The executable that consumes the simulation file and performs the
actual simulation, including the analysis. This differs between the different parts
of the thesis, but are generally python scripts that manage the simulation setup
(e.g. the SBS network construction), execution (e.g. the generation of the spike
trains and state series) and the analysis (e.g. the mean activity of the network)
which results in a JSON-file called ‘analysis‘.

• envscript: A sourceable bash script that sets required environment variables.
Mostly needed before the container setup was there, but allows for a fully modifi-
able and reproducible environment.

• stub: The simulation file that will be consumed by ‘executable‘. It can still con-
tain replacement keys, from which the parameter study will be generated. See
replacements below.

• replacements: a list of key-value pairs to generate the parameter study. The key
is a value of the stub dictionary above and its value is a list of all values that should
be in the parameter study. A simulation will be generated for each element in the
Cartesian product of all replacement values. For convenience access to numpy’s
linspace and logspace functions is available via setting the value to a list with the
first value being ‘func‘ and the second one being ‘linspace‘ or ‘logspace‘ with the
following three arguments being the numbers to be passed to the respective numpy
function. A combination of multiple of these ‘[func, linspace, value, value, value]‘
is possible via the ‘[func, multiple, linspacelist, linspacelist]‘ syntax.

The first step in the experiment execution is the setup of the single simulation parameter
files which happens via the ‘generate-sims‘ flag. It produces a new simulation directory
with subdirectories for each element in the Cartesian product of the lists in ‘replace-
ments‘. The name of the subdirectories is derived from the parameters that are being
varied and a ‘folder_template‘ with the order is placed in each resulting ‘sim.json‘.

Additionally a bash script named ‘job‘ is placed in each of the subdirectories, it con-
tains the correct path to the subdirectory, the requested environment modifications, the
(modified) content of the simulation stub as well as checkpoints for simulation start, end
and analysis end. The latter are marked by creating empty files for each checkpoint,
which allows for fast checking of the completeness and error state of the experiment
(independent from the submitted jobs). In order for ‘executable‘ to be correctly work
with the collection and distribution scheme it needs to adhere to the naming conventions
required by ‘experiment.py‘. De facto that means that we wrote a short python script
handling the interfacing which in turn generates a ‘run.yaml‘ that is handed to the actual

176

C.1. Experiment Control on bwNEMO

simulator (neuralsampling based simulations in Section 4.3) or the NEST frontend (SBS
based simulations). This script is called by ‘job‘ and does the analysis and run in two
separate steps consuming different parts of the parameter dictionary in ‘stub‘.

The generation step also submits the jobs (together with their estimated time require-
ment) to the PENDING queue of experiment.py. This allows for multiple experiments
to be setup and collected into a common job. The actual job submission happens via
the ‘execute-sims‘ flag, which consumes the ‘walltime‘ and ‘cpus‘ part of the ‘execution-
Params‘ part of the last experiment YAML file. According to these (which in practice are
always 20 cores and 10-24 hours) it collects a group of pending simulations and collects
a list of their directories in a ‘taskfile‘. For each ‘taskfile‘ a bash script is generated that
uses a python multiprocessing-Pool with the requested number of CPUs as the number
of workers and calls job in each of these directories. This script is then submitted to the
scheduler and also takes care of redirecting the stdout and stderr streams into files in
the respective simulation’s directory.

The execution itself is of relatively little interest here as this is completely handled by
SLURM and the multiprocessing pool takes care of using all allocated cores. In practice
we achieve more than 99 % efficiency with this, so the convoluted way of running the
simulations does not actually const runtime. The job behaves exactly as it would when
manually executing ‘bash path/to/simulation/job‘, which is nice for debugging purposes.

Result collection happens via the ‘summarize-sims‘ flag. This collects ‘analysis‘ JSON
files that are generated by the single simulations in a single JSON for the whole exper-
iment. In order for these not to become prohibitively large care needs to be taken to
limit the amount of raw data put into the ‘analysis‘ file. The collected JSON additionally
contains a copy of the ‘sim.json‘ file in order to ease analysis.

C.1.2. Possible extensions

This is largely a collection of this would be nice to have, but I never got around to
implement it and actually also didn’t really need it.

• Monte-Carlo parameter selection. In most cases we are not really interested in a
Cartesian grid of simulation parameters, but rather want to test a certain part of
the parameter space. The multiple linspaces things is a very poor mans version of
this, it allows for a denser testing of a certain hypercube over all others.

• Learned ETAs. In principle the ETA of a job is a relatively simple function of the
input parameters and, in particular, need not be the same for all simulations. As
such it would be nice to have the tool assign a likely time requirement on a single
parameter set level.

• Only add missing simulations. In case of some simulations timing out the simplest
way to redo the simulations is to requeue all and then returning early on checking
that a successful simulation was already done. This is an unnecessary burden on
both the scheduler as well as our resource requirement. In principle the information
of whether a requeue is necessary is available at experiment execution.

177

C. Software and Tooling

• Timout notification emails. By default the user is notified via email when a job is
killed due to a timeout. Currently this email does not contain any information on
which simulations were part of this job running into the timeout.

C.2. HXSampling

This section describes the HXSampler object which encapsulates the sampling framework
implement for the BrainScaleS-2 system. It uses a black-boxed implementation of a
recurrently connected network of up to 128 spike sources which is provided by Sebastian
Billaudelle and Benjamin Cramer and is based directly on the haldls library. When
a pyNN-based frontend to the BrainScaleS-2 system becomes available, the internal
implementation will be switched, but the externally visible API should be retained.
This section will serve as a high-level description of the aims and thoughts behind the
implementation. While the particular implementation should be checked in the source
code as it will most likely have changed, the idea behind the object will stay the same.

C.2.1. Idea

On a very high-level a sampler needs to expose a method to reconfigure the target
distribution – in our case specified by the weights and biases – and a method to generate
a new sample set.

The HXSampler class holds two members for the logical_weight and logical_bias
numpy arrays. These do not automatically apply to the hardware configuration but
an update has to be manually triggered by manually calling the update_parameters
method. The arrays can contain normal 64-bit floating point numbers which will be
casted to by rounding down to the next smaller integer and clipped to the available
range on hardware (i.e. ±64 for the weights and [0, 1022] for the biases). This covers
the reconfiguration interface.

The sampling interface is get_samples which optionally includes the parameter write
and returns a list of sampled states. For this to work this method needs to be provided
with the effective refractory times – which are used in the state assignment from the
spike trains. These can either be explicitly provided or the HXSampler implementation
can measure them directly.

There is an underlying run_network function that does the actual spikes-in-spikes-out
experiment run, which is internally used. But the user-visible interface is mostly covered
by get_samples and logical_weight/logical_bias. In Appendix C.2.3 we present a
list of the currently exposed methods of the HXSampler class.

C.2.2. Utilized methods from blackbox

These are the methods that we rely on to have exposed by the library that exposes the
hardware handling to us. We give their current names here, but stress that these may
change as it is pre-release software state.

178

C.2. HXSampling

1. set_readout Takes the neuron ID as an integer and does not return anything.
It configures the routing such that the correct neuron is connected to the MADC,
in the next call from stimulate this neuron’s membrane potential will be read out.

2. set_weights Takes the weight matrix and does not return anything.
It takes the logical weight matrix, i.e. the matrix of 128x128 signed 6-bit integers
representing the connectivity matrix and configures the synapse array appropri-
ately for the next call of stimulate.

3. set_bias Takes the bias vector and does not return anything.
It takes the logical bias vector, i.e. the vector of 128 unsigned 10-bit integers that
represent the leak potential configurations of the network and configures the leak
potentials for the next call of stimulate.

4. stimulate Takes a duration and optionally input spike trains, a boolean record
and a pre and post hook function, returns tuple (spikes, samples).
The duration is a float representing the total experiment duration in seconds of
hardware time.
Optional, input spikes can be a list of tuples of (time, ID) of spikes to be injected
by the FPGA, must be sorted.
Optional, boolean record. Defaults to false. Whether to read out the MADC
samples, see also set_readout
Optional, post and pre hook functions. Used to set up the on-chip noise generators.

C.2.3. Methods of HXSampler
1. setup_onchip_noise Takes optionally an integer seed, an integer noisemultiplier

and a matrix noise_matrix.
Configures the on-chip noise generators by setting up appropriate pre_hook and
post_hook functions. We generate 64 logical sources in total and use two PRNG.
Optional, seed is an 32-bit integer that determines the internal state of the 32-bit
on-chip PRNG. It is unclear how the remaining 12-bit affect the system.
Optional, noisemultiplier. If noise_matrix is not explicitly provided populate the
connectivity matrix with noisemultiplier-many ones per logical neuron. I.e., every
network neuron receives input from noisemultiplier many sources. Be aware that
a higher noisemultiplier leads to stronger correlations, both auto- and cross-.
Optional, noise_matrix. If provided supersedes the random matrix generated from
noisemultiplier. Must be of shape (64, number_of_neurons).

2. random_noise_matrix Takes optionally noisemultiplier.
Used in setup_onchip_noise. Randomly generates noisemultiplier many ids to be
set to one in a (32, number_of_neurons) zero-matrix.

179

C. Software and Tooling

3. update_parameters Writes the parameters held in self.weights and self.logical_-
weight and self.logical_bias to the chip.

4. get_noise_spikes Takes a duration, returns a list of tuples (time, ID).
Generates the noise spike trains, if noisetype ”Poisson” is used.

5. measure_activation_function Takes optionally int stepsize, float duration and
tuple bias_range, returns nothing.
Measures the activation function by sweeping the leak potential configuration.
Optional, stepsize. Default 200, sets the increment of the leak potential value
between two measurement points.
Optional, duration. Default 1 × 10−3 s, sets the duration per measurement point.
Optional, bias_range. Default [200, 1000], sets the range of the parameters that
are being tested.
Writes the measured activations and fit into the self.activation dictionary. Keys
”bias”, ”spikes”, ”fit”, values are all lists. Writes minimal observed ISI to self.mea-
sured_taurefs.

6. measure_weight_activation Takes sourceneuron, targetneuron and optionally
int stepsize, float duration and float dt, returns nothing.
Similar to measure_activation_function, but measures activation as a function of
connection strength to a permanently firing neuron.
sourceneuron is the ID of the leak-over-threshold neuron that is used as the source
of the connection.
targetneuron is the ID or list of IDs of the neurons whose activation function is
being measured.
dt, default 1 × 10−7 s is the time step on which the states are being evaluated.
Writes measured data to self.weight_activation dictionary. Keys weight, prob_-
source, prob_target, fit.

7. get_samples Main user facing function. Takes float duration and optionally float
dt, tauref, clamped_states, clamp_type, statedt, number_of_spikes, readout_-
neuron, set_parameters and returns a list of binary states.
duration is the time in hardware seconds that the experiment is running.
Optional dt, default 5 × 10−6 s. Time step where the network state is evaluated
and added to the states list.
Optional tauref, list of the refractory times to be used for the state evaluation. If
not explicitly provided it tries to use the measured refractory times, see measure_-
activation_function.
Optional clamped_states, clamp_type, statedt, number_of_spikes. Abandoned
interface for the implementation of clamping for the data phase of wake sleep

180

C.2. HXSampling

learning. The intention was to provide a series of states and a time per state
statedt and the rest is done by the software. Currently not usable.
Optional readout_neuron. If provided, read out this neuron’s membrane trace,
will be written to self.voltages by run_network.

8. run_network Takes float duration and optionally list input_spikes, bool return_-
inputs, integer readout_neuron, bool plot_raster, bool save_parameters, bool
set_parameters and returns the list of observed spike tuples (time, ID).
Intended to be called by get_samples and measure_activation_function.
duration is the time in hardware seconds that the experiment is running.
Optional input_spikes. List of (time, ID) of externally provided spikes. Must be
sorted
Optional return_inputs, default false. Whether to return the provided input spikes
or not.
Optional integer readout_neuron. If provided, call set_readout and write the
returned data to self.voltages
Optional plot_raster, default false. Whether to dump a raster plot of all observed
spikes to plots/raster_<time>.pdf
Optional save_parameters, default false. Whether to dump the current parameters
to plots/biases_<time>.npy and plots/weights_<time>.npy
Optional set_parameters, default false. Whether to update the parameter config-
uration on hardware. Useful for speeding up repeated experiments.

C.2.4. Auxiliary functions in hxsampling.py

1. sigmoid Takes x, x0, alpha, rmax. Returns rmaxσ
(
x−x0
α

)
.

2. poissonspiketimes Takes float frequency, float duration and returns a list of
Poisson-distributed spike times.

3. get_noise_spikes Takes float duration, int number_of_neurons, float noiserate,
optionally int minoutid and returns a list of spike time tuples (time, ID)
duration is the time in hardware seconds that the experiment is running.
number_of_neurons is the number of spike trains to be generated.
noiserate is the rate of the Poisson process of the generated spike train, see also
poissonspiketimes.
Optional minoutid is the offset ID to be added to the generated spike trains. Must
be large enough not to interfere with the network neurons and small enough that
the largest generated ID is below 128.
Largely deprecated as on-chip sources are typically used.

181

C. Software and Tooling

4. get_clamping_spikes Never really implemented see also get_samples

5. get_states_from_spikes Takes int number_of_neurons, spikes, taurefs, float dt,
optional float duration and returns list of states.

number_of_neurons number of binary units to be assigned.

spikes list of spike tuples (time, ID) of the experiment.

taurefs list of the refractory times of the neurons. Gives the time frame for which
the unit is to be considered in state z = 1 after a spike.

dt time in hardware seconds after which a new state is produced. Must be smaller
than the refractory time due to a performance improvement. For arbitrary large
dt the function must be rewritten.

Optional duration, default 0 s. If non-zero used as the explicit end of the experi-
ment. Otherwise the end is inferred from the last spike time.

6. get_isis Takes list of spikes, int number_of_neurons and returns list of lists of
ISIs.

spikes list of spike tuples of the experiment

number_of_neurons total number of neurons for which the lists of ISIs should be
generated.

C.3. Neuralsampling

This section aims to give a high-level description of the neuralsampler simulator used
throughout Section 4.3. It implements the augmented version of the Buesing neuron
model described in Section 2.2.3 and was developed by the author.

Neuron

The center of it is the neuron object. There are two levels of parameterization. On
the one hand there is the neuron type, which means the form of its interaction as well
as its transfer function, and on the other hand there are the dynamical parameters, in
particular, the time constants. On the other hand the object implements functions to
query the internal and external state, as well as generating spikes (updating the state)
and returning the current state of the interaction. The latter is implemented on the
neuron level, rather than the network level, in order to limit the amount of storage
required.

Implemented as interaction types are:

1. Rect

Rectangular interaction of length τsyn after a spike

182

C.3. Neuralsampling

2. Exp
Exponentially decaying interaction with time constant τsyn, reset after a spike and
normalized such that the sum of the interaction equals the rectangular case

3. Cuto
Like Exp only that the interaction is set to 0 for time delays larger than τsyn.

4. Tail
Within the refractory period the interaction shape is given by Rect, afterwards by
Exp.

Implemented as transfer functions are:

1. Log
z = 1 happens with probability σ(bi

∑
iWkiκ(ζi) − log τ), corresponding to the

original activation function derived in [Buesing et al., 2011].

2. Erf
z = 1 happens with probability erf (c u), where c = 0.416 311 18 is chosen to
minimize the L2 difference between σ(u) and erf (c u).

3. Step
z = 1 is chosen by comparison with a threshold value. Experimental feature, with
explicit provisioning of time-correlated noise to implement an Ornstein-Uhlenbeck
(OU) noise process.

The dynamical parameters of the neuron object are

1. tauref
τref − 1 gives the number of time steps after a spike (or equivalent the minimal
internal state ζ) in which the spike mechanism is artificially suppressed to imple-
ment the refractoriness. The offset by 1 is required to make a continuous z = 1
configuration possible.

2. tausyn
τsyn gives the timescale of the interaction shape as discussed above.

3. delay
The delay d gives the size of a ring buffer that caches the interaction strength.
Updating the neuron writes the new interaction shape into the slot nt + 1%d.
Whenever the neuron is interogated regarding its interaction strength the entry at
slot position nt is returned. This implements a delay of d− 1 time steps until the
update is visible to other neurons in the network. Note: This currently implements
a global delay per neuron rather than a connection specific one.

183

C. Software and Tooling

Additional state variables of the neuron object are

1. nspikes
counts the total number of spikes the neuron has had over the simulation. Allows
for efficient evaluation of mean activities.

2. state
internal state ζ of the neuron. It represents the time since the last spike and
informs the interaction strength calculated within update_neuron.

3. membrane_potential
the current value of the membrane potential of the neuron. Required for the
experimental autocorrelated input.

In addition there are cached values for τref
τsyn

and exp τref
τsyn

. These values are repeat-
edly calculated throughout the determination of the current interaction strength, but
are constant. It makes a noticeable difference to manually cache these results as the
parametrization is constant throughout a simulation. This is, however, only a runtime
constant and not a compile-time one, which prevents the compiler from making this
optimization automatically.

Network

The publicly visible object is the network. It takes a bias vector as a std::vector<dou-
ble>, a connectivity matrix std::vector<std::vector<double> > and an initial state vec-
tor std::vector<int64> together with a configuration object holding the information for
the neuron parameters. For a sufficiently sparse connection matrix the network auto-
matically stores a list of connected ids with associated weight rather than the full matrix
(sparse matrix representation). The config object also contains information regarding
the update and the output schemes

As update schemes are implemented

1. InOrder
update the neurons in order according to their id

2. Random
randomly select one of the neurons to update in the next step

3. BatchRandom
randomly select the next neuron to update, but ensure that in n update steps all
neurons are updated exactly once.

It turns out that the choice of update scheme does not influence the behavior significantly
as long as there are n neuron updates in one network update.

For the choice of output there are the following implementations available

184

C.3. Neuralsampling

1. SummarySpikes
Only output the number of spikes per neuron at the end of the simulation

2. SummaryStates
Only output the number of times each network state was hit. This will break for
larger number of neurons n as the summary_states std::vector<int> will have 2n

many entries.

3. MeanActivityOutput
Prints the sum of the (external) state over all neurons 〈z〉 =

∑
i zi for each network

update

4. MeanActivityEnergyOutput
Prints both the mean activity 〈z〉 =

∑
i zi and the energy of the associated state

E =
∑

i zibi +
∑

ij zizjWij for each network update

5. BinaryState
Prints the binary state for each network update

6. InternalStateOutput
Prints a space-separated list of the internal states ζi for each network update

7. SpikesOutput
Prints the ids of all neurons that emitted a spike (and then have ζi = 0) for each
network update

Internally the network object iterates over all neurons (in a potentially randomly
drawn order) and calculates the membrane potential u (get_potential_for_neuronid)
in each update step. It exhibits the following methods

1. produce_header
Prints a header for the output containing the type of neuron and the update and
output scheme

2. produce_output
Prints the current state of the network according to the selected output scheme
(see above)

3. get_{binary_,internal}state
Sets the std::vector<int> states member to the external z (internal ζ) state for
readout

4. update_state
Updates the network according to the update scheme. Takes optionally a tem-
perature T and external field Iext which rescale and shift the activation function
respectively.

185

D. Publications and contributions

Peer-reviewed publications
Akos F. Kungl, Sebastian Schmitt, Johann Klähn, Paul Müller, Andreas Baum-
bach, Dominik Dold, Alexander Kugele, Eric Müller, Christoph Koke, Mitja Klei-
der, Christian Mauch, Oliver Breitwieser, Luziwei Leng, Nico Gürtler, Maurice
Güttler, Dan Husmann, Kai Husmann, Andreas Hartel, Vitali Karasenko, Andreas
Grübl, Johannes Schemmel, Karlheinz Meier and Mihai A. Petrovici, Accelerated
Physical Emulation of Bayesian Inference in Spiking Neural Networks, Frontiers
in Neuroscience — Neuromorphic Engineering, doi: 10.3389/fnins.2019.01201; 14
November 2019 Volume 13 pages 1201
Contribution: discussions on the study design and the evaluation
This study is discussed in Section 5.1.

Dominik Dold, Ilja Bytschok, Akos F. Kungl, Andreas Baumbach, Oliver Bre-
itwieser, Walter Senn, Johannes Schemmel, Karlheinz Meier and Mihai A. Petro-
vici, Stochasticity from function Why the Bayesian brain may need no noise, Neural
Networks, doi: 10.1016/j.neunet.2019.08.002; November 2019, Volume 119, Pages
200-213
Contribution: discussions on study design
This study is mentioned in Section 3.2.

Preprints
Sebastian Billaudelle, Yannik Stradmann, Korbinian Schreiber, Benjamin Cramer,
Andreas Baumbach, Dominik Dold, Julian Göltz, Akos F. Kungl, Timo C.
Wunderlich, Andreas Hartel, Eric Müller, Oliver Breitwieser, Christian Mauch,
Mitja Kleider, Andreas Grübl, David Stöckel, Christian Pehle, Arthur Heimbrecht,
Philipp Spilger, Gerd Kiene, Vitali Karasenko, Walter Senn, Mihai A. Petrovici, Jo-
hannes Schemmel, Karlheinz Meier, Versatile emulation of spiking neural networks
on an accelerated neuromorphic substrate, arXiv preprint, 2019, arXiv:1912.12980
Contribution: implementing spike-based Bayesian inference on the BrainScaleS-2
neuromorphic system, contribution to the manuscript
Submitted and accepted to the proceedings of the IEEE International Symposium
on Circuits and Systems (ISCAS), but at the time of writing not yet published.
The work here is a precursor of the work in Czischek et al. see below.

187

D. Publications and contributions

Julian Göltz, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser, Do-
minik Dold, Laura Kriener, Akos F. Kungl, Walter Senn, Johannes Schemmel,
Karlheinz Meier, Mihai A. Petrovici, Fast and deep neuromorphic learning with
time-to-first-spike coding, arXiv preprint, 2019, arXiv:1912.11443
Contribution: discussion on study design, contribution to the manuscript
This study is mentioned in Chapter 6 but uses a different compute paradigm – it
encodes information in the time of the first spike of each neuron – and would not
have fit well into the narrative of this dissertation. My involvement was similar to
the work of Nico Gürtler in that I supervised Julian Göltz throughout his master
thesis.

Stefanie Czischek, Andreas Baumbach, Sebastian Billaudelle, Benjamin Cramer,
Lukas Kades, Jan M Pawlowski, Markus K Oberthaler, Johannes Schemmel, Mihai
A Petrovici, Thomas Gasenzer, Martin Gärttner, Spiking neuromophic chip learns
entangled quantum states, arXiv preprint, 2020, arXiv:2008.01039
Contribution: study design, implementation of the neuromorphic framework,
manuscript
This study is discussed in Section 5.2. My contributions focused on the utiliza-
tion of BrainScaleS-2 providing Stefanie with the sampling framework (cf. Ap-
pendix C.2) on top of which we could then implement the POVM formulation of
the quantum states.

Sections with contributions from other people
Section 3.1.1 The simulations were performed by me, but all ideas were already established by

M. Petrovici and L. Leng [Petrovici, 2015, Leng et al., 2018]. While I was involved
in some discussions during my early attendances of the TMA meeting (the meeting
of the theory part of the Electronic Vision(s)), my contributions were mostly in
critical questioning.

Section 3.3 The LMM was developed in the master thesis of N. Gürtler. He performed all
the simulations and software development. Besides the contributions through the
normal TMA meetings I was involved in the day-to-day discussions with Nico and
in particular was his direct supervisor throughout his thesis.

Section 4.1 I took over the supervision of Agnes from Luziwei Leng when he graduated shortly
after his handing in of his PhD thesis. From thereon Agnes and me collaborated
in performing the simulations for [Korcsak-Gorzo et al., in prep.].

Section 5.1 See the discussion of the corresponding paper.

Section 5.2 See the discussion of the corresponding paper.

188

Acronyms

BM Boltzmann machine 30, 63, 104, 129, 155

COBA conductance-based 21, 22, 34, 36, 38

CUBA current-based 21, 22, 34, 36, 38, 92, 117

EPSP excitatory post-synaptic potential 17

FPGA field-programmable gate array 124

HCS high-conductance state 21, 38, 52, 84, 95, 117

HICANN High Input Count Analog Neural Network 122

IPSP inhibitory post-synaptic potential 17

LIF Leaky-integrate and fire 17, 18, 24, 28, 34–37, 41–43, 45–50, 52, 54–56, 58–84, 86–89,
91, 93–95, 97–99, 102, 104, 106, 110, 113, 116–120, 122–126, 128, 130, 132–134,
136, 138, 140, 142, 144, 146, 148, 150, 152, 153, 185

LMM LIF Markov model 64, 71–76, 78–84, 87, 110

LSFR linear-feedback shift register 60

ODE ordinary differential equation 20, 122

PRN pseudo random number 60

PSC post-synaptic current 16, 85

PSP post-synaptic potential 16, 19–22, 34–36, 42, 46–50, 52, 58, 62, 69, 72–80, 83, 85,
94, 95, 106, 110, 111, 117, 118, 126, 185

RBM restricted Boltzmann machine 25, 30, 129, 133, 147, 151

189

Bibliography

Syed Ahmed Aamir, Yannik Stradmann, Paul Müller, Christian Pehle, Andreas Hartel,
Andreas Grübl, Johannes Schemmel, and Karlheinz Meier. An accelerated lif neu-
ronal network array for a large-scale mixed-signal neuromorphic architecture. IEEE
Transactions on Circuits and Systems I: Regular Papers, 65(12):4299–4312, 2018.

Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur,
Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al.
Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosy-
naptic chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 34(10):1537–1557, 2015.

Anders SG Andrae and Tomas Edler. On global electricity usage of communication
technology: trends to 2030. Challenges, 6(1):117–157, 2015.

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends,
Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quan-
tum supremacy using a programmable superconducting processor. Nature, 574(7779):
505–510, 2019.

Coryn AL Bailer-Jones. Practical Bayesian Inference. Cambridge University Press, 2017.

Boris Barbour, Nicolas Brunel, Vincent Hakim, and Jean-Pierre Nadal. What can we
learn from synaptic weight distributions? TRENDS in Neurosciences, 30(12):622–629,
2007.

Andreas Baumbach. Magnetic phenomena in spiking neural networks. MSc thesis,
Heidelberg University — Kirchhoff Institute for Physics, 2016.

Bruce P Bean. The action potential in mammalian central neurons. Nature Reviews
Neuroscience, 8(6):451–465, 2007.

John S Bell. Speakable and unspeakable in quantum mechanics: Collected papers on
quantum philosophy. Cambridge University Press, 2004.

Hans Berger. Über das elektroenkephalogramm des menschen. Archiv für Psychiatrie
und Nervenkrankheiten, 87(1):527–570, 1929.

Enrico Bibbona, Gianna Panfilo, and Patrizia Tavella. The ornstein–uhlenbeck process
as a model of a low pass filtered white noise. Metrologia, 45(6):S117, 2008.

191

Bibliography

Sebastian Billaudelle. No title yet. PhD thesis, Ruprecht-Karls-Universität Heidelberg,
in preparation.

Sebastian Billaudelle, Benjamin Cramer, Petrovici Mihai A, Korbinian Schreiber, David
Kappel, Johannes Schemmel, and Karlheinz Meier. Structural plasticity on an ac-
celerated analog neuromorphic hardware system. arXiv preprint; arXiv:1912.12047,
2019a.

Sebastian Billaudelle, Yannik Stradmann, Korbinian Schreiber, Benjamin Cramer, An-
dreas Baumbach, Dominik Dold, Julian Göltz, Akos F Kungl, Timo C Wunderlich,
Andreas Hartel, Eric Müller, Oliver Breitwieser, Christian Mauch, Mitja Kleider, An-
dreas Grübl, David Stöckel, Christian Pehle, Arthur Heimbrecht, Philipp Spilger, Gerd
Kiene, Vitali Karasenko, Walter Senn, Mihai A Petrovici, Johannes Schemmel, and
Karlheinz Meier. Versatile emulation of spiking neural networks on an accelerated
neuromorphic substrate. arXiv preprint; arXiv:1912.12980, 2019b.

George EP Box. Science and statistics. Journal of the American Statistical Association,
71(356):791–799, 1976.

BrainScaleS. Brainscales - brain-inspired multiscale computation in neuromorphic hy-
brid systems, 2011. URL http://brainscales.kip.uni-heidelberg.de/. Accessed:
2019-07-30.

Oliver Breitwieser, Andreas Baumbach, Agnes Korcsak-Gorzo, Johann Klähn, Max
Brixner, and Mihai Petrovici. sbs: Spike-based sampling (v1.8.2), February 2020.
URL https://doi.org/10.5281/zenodo.3686015. This open source software code
was developed in part in the Human Brain Project, funded from the European Union’s
Horizon 2020 Framework Programme for Research and Innovation under the Specific
Grant Agreement No. 720270 (HBP SGA1) and 785907 (HBP SGA2).

Romain Brette and Wulfram Gerstner. Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. Journal of Neurophysiology, 94(5):
3637–3642, 2005.

Daniel Brüderle, Mihai A Petrovici, Bernhard Vogginger, Matthias Ehrlich, Thomas
Pfeil, Sebastian Millner, Andreas Grübl, Karsten Wendt, Eric Müller, Marc-Olivier
Schwartz, et al. A comprehensive workflow for general-purpose neural modeling with
highly configurable neuromorphic hardware systems. Biological cybernetics, 104(4-5):
263–296, 2011.

Nicolas Brunel. Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. Journal of Computational Neuroscience, 8(3):183–208, 2000.

Nicolas Brunel and Mark CW Van Rossum. Lapicque’s 1907 paper: from frogs to
integrate-and-fire. Biological cybernetics, 97(5-6):337–339, 2007.

192

http://brainscales.kip.uni-heidelberg.de/
https://doi.org/10.5281/zenodo.3686015

Bibliography

Lars Buesing, Johannes Bill, Bernhard Nessler, and Wolfgang Maass. Neural dynamics
as sampling: A model for stochastic computation in recurrent networks of spiking
neurons. PLoS Comput Biol, 7(11):1–22, 11 2011. doi: 10.1371/journal.pcbi.1002211.
URL http://dx.doi.org/10.1371%2Fjournal.pcbi.1002211.

Gyorgy Buzsaki. Rhythms of the Brain. Oxford University Press, 2006.

Ilja Bytschok. Computing with noise in spiking neural networks. PhD thesis, Heidelberg
University — Kirchhoff Institute for Physics, 2017.

Ilja Bytschok, Dominik Dold, Johannes Schemmel, Karlheinz Meier, and Mihai A Petro-
vici. Spike-based probabilistic inference with correlated noise. In BMC Neuroscience
2017, volume 18, page P200. Organization for Computational Neurosciences, 2017.

Adán Cabello, Álvaro Feito, and Antia Lamas-Linares. Bell’s inequalities with realistic
noise for polarization-entangled photons. Physical Review A, 72(5):052112, 2005.

Haixiao Cai, Sanjeev R Kulkarni, and Sergio Verdú. Universal divergence estimation for
finite-alphabet sources. IEEE Transactions on Information Theory, 52(8):3456–3475,
2006.

Juan Carrasquilla, Giacomo Torlai, Roger G Melko, and Leandro Aolita. Reconstructing
quantum states with generative models. Nature Machine Intelligence, 1(3):155–161,
2019.

Geoffrey E Carreira-Perpinan, Miguel A and Hinton. On contrastive divergence learning.
Aistats, 10:33–40, 2005.

Dante R Chialvo. Emergent complex neural dynamics. Nature physics, 6(10):744–750,
2010.

Chris73. Sketch of an action potential, 2007. URL FileURL:https://upload.
wikimedia.org/wikipedia/commons/4/4a/Action_potential.svg. accessed 2020-
01-31, Licence: CC BY-SA at https://creativecommons.org/licenses/by-sa/3.0/, Orig-
inal by en:User:Chris 73, updated by en:User:Diberri, converted to SVG by tiZom.

Michael S Clayton, Nick Yeung, and Roi Cohen Kadosh. The roles of cortical oscillations
in sustained attention. Trends in cognitive sciences, 19(4):188–195, 2015.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training
deep neural networks with binary weights during propagations. In Advances in neural
information processing systems, pages 3123–3131, 2015.

Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl,
Vitali Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes
Weis, et al. Training spiking multi-layer networks with surrogate gradients on an
analog neuromorphic substrate. arXiv preprint arXiv:2006.07239, 2020a.

193

http://dx.doi.org/10.1371%2Fjournal.pcbi.1002211
File URL: https://upload.wikimedia.org/wikipedia/commons/4/4a/Action_potential.svg
File URL: https://upload.wikimedia.org/wikipedia/commons/4/4a/Action_potential.svg

Bibliography

Benjamin Cramer, David Stöckel, Markus Kreft, Michael Wibral, Johannes Schemmel,
Karlheinz Meier, and Viola Priesemann. Control of criticality and computation in
spiking neuromorphic networks with plasticity. Nature Communications, 11(1):1–11,
2020b.

Stefanie Czischek. Neural-Network Simulation of Strongly Correlated Quantum Systems.
Springer Theses. Springer International Publishing, 2020. ISBN 9783030527143. URL
https://books.google.de/books?id=Gk6TzQEACAAJ.

Stefanie Czischek, Andreas Baumbach, Sebastian Billaudelle, Benjamin Cramer, Lukas
Kades, Jan M. Pawlowski, Markus K. Oberthaler, Johannes Schemmel, Mihai A.
Petrovici, Thomas Gasenzer, and Martin Gärttner. Spiking neuromorphic chip learns
entangled quantum states, 2020.

Henry Hallett Dale. Adventures in Physiology: with excursions into autopharmacology.
Pergamon Press, 1953.

E D’Angelo, P Mazzarello, F Prestori, Jonathan Mapelli, S Solinas, P Lombardo, E Ce-
sana, D Gandolfi, and L Congi. The cerebellar network: from structure to function
and dynamics. Brain research reviews, 66(1-2):5–15, 2011.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao,
Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al.
Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro, 38
(1):82–99, 2018.

Andrew Davison, Daniel Brüderle, Jens Kremkow, Eilif Muller, Dejan Pecevski, Laurent
Perrinet, and Pierre Yger. Pynn: a common interface for neuronal network simulators.
2009.

Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational and
mathematical modeling of neural systems. MIT press, 2001.

Alain Destexhe. Self-sustained asynchronous irregular states and up–down states in tha-
lamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons.
Journal of computational neuroscience, 27(3):493, 2009.

Alain Destexhe, Michael Rudolph, and Denis Paré. The high-conductance state of neo-
cortical neurons in vivo. Nature reviews neuroscience, 4(9):739, 2003.

Susanne Diekelmann and Jan Born. The memory function of sleep. Nature Reviews
Neuroscience, 11(2):114–126, 2010.

Dominik Dold. Harnessing function from form: towards bio-inspired artificial intelli-
gence in neuronal substrates. PhD thesis, Kirchhoff Institute for Physics, Heidelberg
University, 2020. at the time of writing, this thesis has been submitted but not yet
published.

194

https://books.google.de/books?id=Gk6TzQEACAAJ

Bibliography

Dominik Dold, Ilja Bytschok, Akos F Kungl, Andreas Baumbach, Oliver Breitwieser,
Walter Senn, Johannes Schemmel, Karlheinz Meier, and Mihai A Petrovici. Stochas-
ticity from functionwhy the bayesian brain may need no noise. Neural Networks, 119:
200–213, 2019.

Kenji Doya, Shin Ishii, Alexandre Pouget, and Rajesh PN Rao. Bayesian brain: Proba-
bilistic approaches to neural coding. MIT press, 2007.

Daniel Drubach. The brain explained. Prentice Hall, 2000.

Toshikazu Ebisuzaki, Junichiro Makino, Toshiyuki Fukushige, Makoto Taiji, Daiichiro
Sugimoto, Tomoyoshi Ito, and Sachiko K Okumura. Grape project: an overview.
Publications of the Astronomical Society of Japan, 45:269–278, 1993.

Gaute T Einevoll, Alain Destexhe, Markus Diesmann, Sonja Grün, Viktor Jirsa, Marc
de Kamps, Michele Migliore, Torbjørn V Ness, Hans E Plesser, and Felix Schürmann.
The scientific case for brain simulations. Neuron, 102(4):735–744, 2019.

Andreas K Engel and Wolf Singer. Temporal binding and the neural correlates of sensory
awareness. Trends in cognitive sciences, 5(1):16–25, 2001.

Simon Friedmann, Johannes Schemmel, Andreas Grübl, Andreas Hartel, Matthias Hock,
and Karlheinz Meier. Demonstrating hybrid learning in a flexible neuromorphic hard-
ware system. IEEE transactions on biomedical circuits and systems, 11(1):128–142,
2017.

Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. The spinnaker
project. Proceedings of the IEEE, 102(5):652–665, 2014.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on pattern analysis and machine
intelligence, 6:721–741, 1984.

Samuel Gershman, Ed Vul, and Joshua B Tenenbaum. Perceptual multistability as
markov chain monte carlo inference. In Advances in neural information processing
systems, pages 611–619, 2009.

Wulfram Gerstner and Werner M Kistler. Mathematical formulations of hebbian learn-
ing. Biological Cybernetics, 87(5-6):404–415, 2002a.

Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, pop-
ulations, plasticity. Cambridge university press, 2002b.

Timo Gierlich. Tbd. Master thesis, Universität Heidelberg, December 2020.

Roy J Glauber. Time-dependent statistics of the ising model. Journal of mathematical
physics, 4(2):294–307, 1963.

195

Bibliography

Julian Göltz, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser, Dominik
Dold, Laura Kriener, Akos F. Kungl, Walter Senn, Johannes Schemmel, Karlheinz
Meier, and Mihai A Petrovici. Fast and deep neuromorphic learning with time-to-
first-spike coding. arXiv preprint; arXiv:1912.11443, 2019.

Daniel M Greenberger, Michael A Horne, and Anton Zeilinger. Going beyond bell’s
theorem. In Bell’s theorem, quantum theory and conceptions of the universe, pages
69–72. Springer, 1989.

Andreas Grübl and Andreas Baumbach. F09/f10 neuromorphic computing. University
of Heidelberg, 2017.

Nico Gürtler. A markovian model of lif networks. Masterarbeit, Universität Heidelberg,
2018.

Stefan Habenschuss, Johannes Bill, and Bernhard Nessler. Homeostatic plasticity in
bayesian spiking networks as expectation maximization with posterior constraints. In
Advances in Neural Information Processing Systems, pages 773–781, 2012.

Cong Han and Bradley P Carlin. Markov chain monte carlo methods for computing
bayes factors: A comparative review. Journal of the American Statistical Association,
96(455):1122–1132, 2001.

HBP-SP9. The hbp neuromorphic computing platform. https://electronicvi-
sions.github.io/hbp-sp9-guidebook/, 2020. Accessed: 2020-08-21.

Geoffrey E Hinton. A practical guide to training restricted boltzmann machines. In
Neural networks: Tricks of the trade, pages 599–619. Springer, 2012.

Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The” wake-sleep”
algorithm for unsupervised neural networks. Science, 268(5214):1158–1161, 1995.

Matthias Hock, Andreas Hartel, Johannes Schemmel, and Karlheinz Meier. An analog
dynamic memory array for neuromorphic hardware. In 2013 European Conference on
Circuit Theory and Design (ECCTD), pages 1–4. IEEE, 2013.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. The Journal of physiology,
117(4):500–544, 1952.

E. Ising. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift fur Physik, 31:253–258,
February 1925. doi: 10.1007/BF02980577.

Eugene M Izhikevich. Dynamical systems in neuroscience. MIT press, 2007.

Sebastian Jeltsch. A scalable workflow for a configurable neuromorphic platform. PhD
thesis, Ruprecht-Karls-Universität Heidelberg, 2014.

196

Bibliography

Jakob Jordan, Tammo Ippen, Moritz Helias, Itaru Kitayama, Mitsuhisa Sato, Jun
Igarashi, Markus Diesmann, and Susanne Kunkel. Extremely Scalable Spiking Neu-
ronal Network Simulation Code: From Laptops to Exascale Computers. Frontiers in
Neuroinformatics, 12:2, 2 2018. ISSN 1662-5196. doi: 10.3389/fninf.2018.00002.

Jakob Jordan, Mihai A Petrovici, Oliver Breitwieser, Johannes Schemmel, Karlheinz
Meier, Markus Diesmann, and Tom Tetzlaff. Deterministic networks for probabilistic
computing. Scientific reports, 9(1):1–17, 2019.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Ramin-
der Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter
performance analysis of a tensor processing unit. In Proceedings of the 44th Annual
International Symposium on Computer Architecture, pages 1–12, 2017.

R Jung and W Berger. Fiftieth anniversary of hans berger’s publication of the electroen-
cephalogram. his first records in 1924–1931 (author’s transl). Archiv fur Psychiatrie
und Nervenkrankheiten, 227(4):279, 1979.

Eric R Kandel, James H Schwartz, Thomas M Jessell, Department of Biochemistry,
Molecular Biophysics Thomas Jessell, Steven Siegelbaum, and AJ Hudspeth. Princi-
ples of neural science, volume 4. McGraw-hill New York, 2000.

Vitali Karasenko. Von Neumann bottlenecks in non-von Neumann computing architec-
tures. PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2020.

Hassan N Khan, David A Hounshell, and Erica RH Fuchs. Science and research policy
at the end of moore’s law. Nature Electronics, 1(1):14–21, 2018.

Mitja Kleider. Neuron Circuit Characterization in a Neuromorphic System. PhD thesis,
Ruprecht-Karls-Universität Heidelberg, 2017.

Christoph Koke. Device variability in synapses of neuromorphic circuits. PhD thesis,
Ruprecht-Karls-Universität Heidelberg, 2017.

Alexander Kononov. Testing of an analog neuromorphic network chip. PhD thesis,
Diploma thesis, Ruprecht-Karls-Universität Heidelberg, 2011. HD-KIP-11-83, 2011.

A. Korcsak-Gorzo, L. Leng, A. Baumbach, J. Breitwieser, S. van Albada, W. Senn,
K. Meier, and M. A. Petrovici. Spike-based tempering in neural networks. in prep.

Agnes Korcsak-Gorzo. Simulated tempering in spiking neural networks. Masterarbeit.
Universität Heidelberg, 2017.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals
of mathematical statistics, 22(1):79–86, 1951.

Arvind Kumar, Sven Schrader, Ad Aertsen, and Stefan Rotter. The high-conductance
state of cortical networks. Neural computation, 20(1):1–43, 2008.

197

Bibliography

Akos Kungl. Sampling with leaky integrate-and-fire neurons on the hicannv4 neuromor-
phic chip. Masterarbeit, Universität Heidelberg, 2016.

Ákos Ferenc Kungl. Robust learning algorithms for spiking and rate-based neural net-
works. PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2020.

Akos Ferenc Kungl, Sebastian Schmitt, Johann Klähn, Paul Müller, Andreas Baum-
bach, Dominik Dold, Alexander Kugele, Eric Müller, Christoph Koke, Mitja Kleider,
et al. Accelerated physical emulation of bayesian inference in spiking neural networks.
Frontiers in Neuroscience, 13:1201, 2019.

Tor Sverre Lande, Hassan Ranjbar, Mohammed Ismail, and Yngvar Berg. An analog
floating-gate memory in a standard digital technology. In Proceedings of fifth inter-
national conference on microelectronics for neural networks, pages 271–276. IEEE,
1996.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten
zip code recognition. Neural computation, 1(4):541–551, 1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition, 1998.

Luziwei Leng, Roman Martel, Oliver Breitwieser, Ilja Bytschok, Walter Senn, Johannes
Schemmel, Karlheinz Meier, and Mihai A Petrovici. Spiking neurons with short-term
synaptic plasticity form superior generative networks. Scientific reports, 8(1):10651,
2018.

Henry Markram, Wulfram Gerstner, and Per Jesper Sjöström. A history of spike-timing-
dependent plasticity. Frontiers in synaptic neuroscience, 3:4, 2011a.

Henry Markram, Karlheinz Meier, Thomas Lippert, Sten Grillner, Richard Frackowiak,
Stanislas Dehaene, Alois Knoll, Haim Sompolinsky, Kris Verstreken, Javier DeFelipe,
et al. Introducing the human brain project. Procedia Computer Science, 7:39–42,
2011b.

Henry Markram, Eilif Muller, Srikanth Ramaswamy, Michael W Reimann, Marwan Ab-
dellah, Carlos Aguado Sanchez, Anastasia Ailamaki, Lidia Alonso-Nanclares, Nicolas
Antille, Selim Arsever, et al. Reconstruction and simulation of neocortical microcir-
cuitry. Cell, 163(2):456–492, 2015.

Clive Maxfield. An introduction to different rounding algorithms. Programmable Logic
Design Line, pages 1–15, 2006.

Carver Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):
1629–1636, 1990.

Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal of the
American statistical association, 44(247):335–341, 1949.

198

Bibliography

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller,
and Edward Teller. Equation of state calculations by fast computing machines. The
journal of chemical physics, 21(6):1087–1092, 1953.

Rupert G Miller Jr. Survival analysis, volume 66. John Wiley & Sons, 2011.

Sebastian Millner. Development of a multi-compartment neuron model emulation. PhD
thesis, Heidelberg University — Kirchhoff Institute for Physics, 2012.

Gordon E Moore et al. Cramming more components onto integrated circuits, 1965.

Paul Müller. Modeling and verification for a scalable neuromorphic substrate. PhD
thesis, Ruprecht-Karls-Universität Heidelberg, 2017.

Walter Nadler and Ulrich HE Hansmann. Generalized ensemble and tempering simula-
tions: A unified view. Physical Review E, 75(2):026109, 2007.

Emre Neftci, Srinjoy Das, Bruno Pedroni, Kenneth Kreutz-Delgado, and Gert Cauwen-
berghs. Event-driven contrastive divergence for spiking neuromorphic systems. Fron-
tiers in neuroscience, 7:272, 2014.

Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information,
2002.

Wolfgang Nolting. Quantentheorie des Magnetismus: Teil 2: Modelle. Springer-Verlag,
2013.

Harry Nyquist. Certain topics in telegraph transmission theory. Transactions of the
American Institute of Electrical Engineers, 47(2):617–644, 1928.

Marie Engelene J Obien, Kosmas Deligkaris, Torsten Bullmann, Douglas J Bakkum,
and Urs Frey. Revealing neuronal function through microelectrode array recordings.
Frontiers in neuroscience, 8:423, 2015.

Lars Onsager. Crystal statistics. i. a two-dimensional model with an order-disorder
transition. Phys. Rev., 65:117–149, Feb 1944. doi: 10.1103/PhysRev.65.117. URL
http://link.aps.org/doi/10.1103/PhysRev.65.117.

Bente Pakkenberg, Dorte Pelvig, Lisbeth Marner, Mads J Bundgaard, Hans Jørgen G
Gundersen, Jens R Nyengaard, and Lisbeth Regeur. Aging and the human neocortex.
Experimental gerontology, 38(1-2):95–99, 2003.

Liam Paninski. Estimation of entropy and mutual information. Neural computation, 15
(6):1191–1253, 2003.

Edwin Pednault, John A Gunnels, Giacomo Nannicini, Lior Horesh, and Robert Wisnieff.
Leveraging secondary storage to simulate deep 54-qubit sycamore circuits. arXiv
preprint arXiv:1910.09534, 2019.

199

http://link.aps.org/doi/10.1103/PhysRev.65.117

Bibliography

Mihai A. Petrovici. Form vs. Function: Theory and Models for Neuronal Substrates.
PhD thesis, Heidelberg University — Kirchhoff Institute for Physics, 2015.

Mihai A. Petrovici, David Stöckel, Ilja Bytschok, Johannes Bill, Thomas Pfeil, Johannes
Schemmel, and Karlheinz Meier. Fast sampling with neuromorphic hardware. In
Advances in Neural Information Processing Systems (NIPS), volume 28, 2015.

Mihai A Petrovici, Johannes Bill, Ilja Bytschok, Johannes Schemmel, and Karlheinz
Meier. Stochastic inference with spiking neurons in the high-conductance state. Phys-
ical Review E, 94(4):042312, 2016.

Mihai A Petrovici, Sebastian Schmitt, Johann Klähn, David Stöckel, Anna Schroeder,
Guillaume Bellec, Johannes Bill, Oliver Breitwieser, Ilja Bytschok, Andreas Grübl,
et al. Pattern representation and recognition with accelerated analog neuromorphic
systems. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–4. IEEE, 2017a.

Mihai A Petrovici, Anna Schroeder, Oliver Breitwieser, Andreas Grübl, Johannes Schem-
mel, and Karlheinz Meier. Robustness from structure: Inference with hierarchical
spiking networks on analog neuromorphic hardware. In Neural Networks (IJCNN),
2017 International Joint Conference on, pages 2209–2216. IEEE, 2017b.

Alexander Peyser, Ankur Sinha, Stine Brekke Vennemo, Tammo Ippen, Jakob Jor-
dan, Steffen Graber, Abigail Morrison, Guido Trensch, Tanguy Fardet, Håkon Mørk,
Jan Hahne, Jannis Schuecker, Maximilian Schmidt, Susanne Kunkel, David Dahmen,
Jochen Martin Eppler, Sandra Diaz, Dennis Terhorst, Rajalekshmi Deepu, Philipp
Weidel, Itaru Kitayama, Sepehr Mahmoudian, David Kappel, Martin Schulze, Shailesh
Appukuttan, Till Schumann, Hünkar Can Tunç, Jessica Mitchell, Michael Hoff, Eric
Müller, Milena Menezes Carvalho, Barna Zajzon, and Hans Ekkehard Plesser. NEST
2.14.0. Zenodo, 10 2017. doi: 10.5281/ZENODO.882971.

Thomas Pfeil, Andreas Grübl, Sebastian Jeltsch, Eric Müller, Paul Müller, Mihai A
Petrovici, Michael Schmuker, Daniel Brüderle, Johannes Schemmel, and Karlheinz
Meier. Six networks on a universal neuromorphic computing substrate. Frontiers in
neuroscience, 7:11, 2013.

Thomas Pfeil, Jakob Jordan, Tom Tetzlaff, Andreas Grübl, Johannes Schemmel, Markus
Diesmann, and Karlheinz Meier. Effect of heterogeneity on decorrelation mechanisms
in spiking neural networks: A neuromorphic-hardware study. Physical Review X, 6
(2):021023, 2016.

Andrea Pinotti. Der Schnabel des Adlers und die Nase des Menschen. Können wir uns
in einen Vogel einfühlen?, volume 81. Walter de Gruyter GmbH & Co KG, 2020.

Panayiota Poirazi and Athanasia Papoutsi. Illuminating dendritic function with com-
putational models. Nature Reviews Neuroscience, pages 1–19, 2020.

200

Bibliography

Dimitri Probst, Mihai A Petrovici, Ilja Bytschok, Johannes Bill, Dejan Pecevski, Jo-
hannes Schemmel, and Karlheinz Meier. Probabilistic inference in discrete spaces can
be implemented into networks of lif neurons. Frontiers in computational neuroscience,
9:13, 2015.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich,
Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, Victor Greiff,
et al. Hopfield networks is all you need. arXiv preprint arXiv:2008.02217, 2020.

J Rigden. Body, physics of, 1996.

Pieter R Roelfsema and Arjen van Ooyen. Attention-gated reinforcement learning of in-
ternal representations for classification. Neural computation, 17(10):2176–2214, 2005.

Johannes Schemmel. Private communication, 2020-09-24, 2020.

Johannes Schemmel, Johannes Fieres, and Karlheinz Meier. Wafer-scale integration of
analog neural networks. In 2008 IEEE International Joint Conference on Neural Net-
works (IEEE World Congress on Computational Intelligence), pages 431–438. IEEE,
2008.

Johannes Schemmel, Daniel Brüderle, Andreas Grübl, Matthias Hock, Karlheinz Meier,
and Sebastian Millner. A wafer-scale neuromorphic hardware system for large-scale
neural modeling. In Proceedings of 2010 IEEE International Symposium on Circuits
and Systems, pages 1947–1950. IEEE, 2010.

Johannes Schemmel, Sebastian Billaudelle, Phillip Dauer, and Johannes Weis. Acceler-
ated analog neuromorphic computing. arXiv preprint; arXiv:2003.11996, 2020.

Sebastian Schmitt, Johann Klähn, Guillaume Bellec, Andreas Grübl, Maurice Guettler,
Andreas Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Sebastian Jeltsch,
et al. Neuromorphic hardware in the loop: Training a deep spiking network on the
brainscales wafer-scale system. In 2017 International Joint Conference on Neural
Networks (IJCNN), pages 2227–2234. IEEE, 2017.

Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring.
In Proceedings 35th annual symposium on foundations of computer science, pages
124–134. Ieee, 1994.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-
tering the game of go without human knowledge. Nature, 550(7676):354, 2017.

Paul Smolensky. Information processing in dynamical systems: Foundations of harmony
theory. Technical report, Colorado Univ at Boulder Dept of Computer Science, 1986.

Thomas Splettstoesser. Sketch of a chemical synapse, 2015. URL FileURL:
https://upload.wikimedia.org/wikipedia/commons/7/70/SynapseSchematic_

201

File URL: https://upload.wikimedia.org/wikipedia/commons/7/70/SynapseSchematic_unlabeled.svg
File URL: https://upload.wikimedia.org/wikipedia/commons/7/70/SynapseSchematic_unlabeled.svg
File URL: https://upload.wikimedia.org/wikipedia/commons/7/70/SynapseSchematic_unlabeled.svg

Bibliography

unlabeled.svg. accessed 2020-01-31, Licence: CC BY-SA (https://creativecom-
mons.org/licenses/by-sa/4.0).

Olaf Sporns, Giulio Tononi, and Rolf Kötter. The human connectome: a structural
description of the human brain. PLoS Comput Biol, 1(4):e42, 2005.

David Stöckel. Boltzmann sampling with neuromorphic hardware. Bachelorarbeit, Uni-
versität Heidelberg, January 2015.

Greg Stuart, Nelson Spruston, and Michael Häusser. Dendrites. Oxford University Press,
2016.

Greg J Stuart and Nelson Spruston. Dendritic integration: 60 years of progress. Nature
neuroscience, 18(12):1713–1721, 2015.

D Sulzer and S Rayport. Dale’s principle and glutamate corelease from ventral midbrain
dopamine neurons. Amino acids, 19(1):45–52, 2000.

Rashmi Sundareswara and Paul R Schrater. Perceptual multistability predicted by search
model for bayesian decisions. Journal of vision, 8(5):12–12, 2008.

Ilya Sutskever and Geoffrey Hinton. Learning multilevel distributed representations for
high-dimensional sequences. In Artificial intelligence and statistics, pages 548–555,
2007.

Gelo Noel M Tabia. Experimental scheme for qubit and qutrit symmetric informationally
complete positive operator-valued measurements using multiport devices. Physical
Review A, 86(6):062107, 2012.

Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothee Masque-
lier, and Anthony Maida. Deep learning in spiking neural networks. Neural Networks,
111:47–63, 2019.

Graham W Taylor and Geoffrey E Hinton. Factored conditional restricted boltzmann
machines for modeling motion style. In Proceedings of the 26th annual international
conference on machine learning, pages 1025–1032. ACM, 2009.

Chetan Singh Thakur Thakur, Jamal Molin, Gert Cauwenberghs, Giacomo Indiveri,
Kundan Kumar, Ning Qiao, Johannes Schemmel, Runchun Mark Wang, Elisabetta
Chicca, Jennifer Olson Hasler, et al. Large-scale neuromorphic spiking array proces-
sors: A quest to mimic the brain. Frontiers in neuroscience, 12:891, 2018.

Binh Tran. Demonstrationsexperimente auf neuromorpher Hardware. Bachelor thesis
(german), Universität Heidelberg, 2013.

Misha V Tsodyks and Henry Markram. The neural code between neocortical pyramidal
neurons depends on neurotransmitter release probability. Proceedings of the National
Academy of Sciences, 94(2):719–723, 1997.

202

File URL: https://upload.wikimedia.org/wikipedia/commons/7/70/SynapseSchematic_unlabeled.svg
File URL: https://upload.wikimedia.org/wikipedia/commons/7/70/SynapseSchematic_unlabeled.svg

Bibliography

George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion.
Physical review, 36(5):823, 1930.

Sacha J van Albada, Andrew G Rowley, Johanna Senk, Michael Hopkins, Maximilian
Schmidt, Alan B Stokes, David R Lester, Markus Diesmann, and Steve B Furber. Per-
formance comparison of the digital neuromorphic hardware spinnaker and the neural
network simulation software nest for a full-scale cortical microcircuit model. Frontiers
in neuroscience, 12:291, 2018.

Francisco Varela, Jean-Philippe Lachaux, Eugenio Rodriguez, and Jacques Martinerie.
The brainweb: phase synchronization and large-scale integration. Nature reviews
neuroscience, 2(4):229–239, 2001.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, pages 1–5, 2019.

Christopher S von Bartheld, Jami Bahney, and Suzana Herculano-Houzel. The search
for true numbers of neurons and glial cells in the human brain: A review of 150 years
of cell counting. Journal of Comparative Neurology, 524(18):3865–3895, 2016.

D von Suchodoletz, B Wiebelt, K Meier, and M Janczyk. Flexible hpc: bwforcluster
nemo. Proceedings of the 3rd bwHPCSymposium: Heidelberg, 2016.

Ulrich Welsch and Thomas Deller. Lehrbuch Histologie: Unter Mitarbeit von Thomas
Deller. Elsevier Health Sciences, 2016.

Shimon Whiteson and Peter Stone. Evolutionary function approximation for reinforce-
ment learning. Journal of Machine Learning Research, 7(May):877–917, 2006.

Commons Wikimedia. File:duck-rabbit illusion.jpg — wikimedia commons, the free
media repository, 2016a. URL https://commons.wikimedia.org/w/index.php?
title=File:Duck-Rabbit_illusion.jpg&oldid=206363593. [Online; accessed 22-
July-2020].

Commons Wikimedia. File:lfsr fibonacci 8 bits.png — wikimedia commons, the free me-
dia repository, 2016b. URL https://commons.wikimedia.org/w/index.php?title=
File:LFSR_Fibonacci_8_bits.png&oldid=216904514. [Online; accessed 5-August-
2020].

Commons Wikimedia. File:boltzmannexamplev1.png — wikimedia commons, the
free media repository, 2020. URL https://commons.wikimedia.org/w/index.php?
title=File:Boltzmannexamplev1.png. [Online; accessed 4-August-2020].

Wikipedia. Ornstein–uhlenbeck process — wikipedia, the free encyclopedia,
2016. URL https://en.wikipedia.org/w/index.php?title=Ornstein%E2%80%
93Uhlenbeck_process&oldid=719546703. [Online; accessed 3-July-2016].

203

https://commons.wikimedia.org/w/index.php?title=File:Duck-Rabbit_illusion.jpg&oldid=206363593
https://commons.wikimedia.org/w/index.php?title=File:Duck-Rabbit_illusion.jpg&oldid=206363593
https://commons.wikimedia.org/w/index.php?title=File:LFSR_Fibonacci_8_bits.png&oldid=216904514
https://commons.wikimedia.org/w/index.php?title=File:LFSR_Fibonacci_8_bits.png&oldid=216904514
https://commons.wikimedia.org/w/index.php?title=File:Boltzmannexamplev1.png
https://commons.wikimedia.org/w/index.php?title=File:Boltzmannexamplev1.png
https://en.wikipedia.org/w/index.php?title=Ornstein%E2%80%93Uhlenbeck_process&oldid=719546703
https://en.wikipedia.org/w/index.php?title=Ornstein%E2%80%93Uhlenbeck_process&oldid=719546703

Bibliography

Wikipedia, contributors. Neuron — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=Neuron&oldid=960428815, 2020. [Online; ac-
cessed 8-June-2020].

Timo Wunderlich, Akos Ferenc Kungl, Eric Müller, Andreas Hartel, Yannik Stradmann,
Syed Ahmed Aamir, Andreas Grübl, Arthur Heimbrecht, Korbinian Schreiber, David
Stöckel, et al. Demonstrating advantages of neuromorphic computation: a pilot study.
Frontiers in Neuroscience, 13:260, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

Geoffrey Yeap, SS Lin, YM Chen, HL Shang, PW Wang, HC Lin, YC Peng, JY Sheu,
M Wang, X Chen, et al. 5nm cmos production technology platform featuring full-
fledged euv, and high mobility channel finfets with densest 0.021 µm 2 sram cells for
mobile soc and high performance computing applications. In 2019 IEEE International
Electron Devices Meeting (IEDM), pages 36–7. IEEE, 2019.

204

https://en.wikipedia.org/w/index.php?title=Neuron&oldid=960428815
https://en.wikipedia.org/w/index.php?title=Neuron&oldid=960428815

List of Figures

2.1. A biological neuron . 14
2.2. Spike-based communication between biological neurons 16
2.3. LIF equivalent circuit . 18
2.4. Isolated PSP . 19
2.5. Ambiguous input . 24
2.6. Neural Network . 26
2.7. Buesing neuron model . 34
2.8. Different shapes of the PSP . 37
2.9. LIF sampling and state association . 40
2.10. Activation function . 42

3.1. Stacking PSPs . 47
3.2. Relative contributions to the membrane potential 50
3.3. Autocorrelation of the membrane potential 52
3.4. Different state generation dts . 53
3.5. Poisson noise . 58
3.6. LSFR noise . 61
3.7. RN noise . 63
3.8. Evolution of membrane potential . 66
3.9. Evolution of membrane potential distribution 67
3.10. Single neuron statistics . 71
3.11. Excitatory input . 74
3.12. Inhibitory input . 76
3.13. Response to regular synaptic input . 79
3.14. Response to diverse synaptic input . 81

4.1. Membrane potential distributions and activation functions 94
4.2. Imprinted distribution under tempering 98
4.3. Ising model . 105
4.4. Rectangular interactions . 109
4.5. Initial conditions - Quench origins . 110
4.6. Recovering the critical exponent γ . 111
4.7. Exponential interactions . 113
4.8. Recovering the critical exponent γ . 115
4.9. Tail interactions . 116
4.10. Restricted interactions . 118
4.11. Critical exponent γ for LIF networks . 119

205

List of Figures

5.1. The BrainScaleS-1 system . 124
5.2. Parameter variations . 127
5.3. Experimental setup . 129
5.4. Sampling from arbitrary distributions . 133
5.5. Generating (fashion) MNIST . 135
5.6. BrainScaleS-2 network implementation . 140
5.7. Neuromorphic representation of quantum states 146
5.8. Measuring a Bell witness . 150
5.9. Performance of the neuromorphic implementation 152

206

List of Tables

3.1. Model comparison . 87

B.1. Single PSP simulation . 167
B.2. TSO simulations . 168
B.3. Tail contributions . 168
B.4. Noise simulations . 169
B.5. TSO parameters for Poisson noise . 169
B.6. Noise simulations . 170
B.7. Ising simulations . 170
B.8. Base parameters phase space . 171
B.9. Phase space rect . 171
B.10.Phase space exp . 172
B.11.Phase space tail . 172
B.12.Phase space cuto . 172
B.13.Phase space LIF parameters . 172
B.14.Phase space LIF temperature . 173
B.15.Phase space LIF scan . 173

207

Statement of Originality (Erklärung):

I certify that this thesis, and the research to which it refers, are the product of my own
work. Any ideas or quotations from the work of other people, published or otherwise,
are fully acknowledged in accordance with the standard referencing practices of the
discipline.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die ange-
gebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, September 24, 2020
.......................................

(signature)

	Introduction
	Background: Biology & Probabilistic computing
	Biological neurons in computational neuroscience
	Probabilistic computing

	Dynamical aspects of LIF sampling
	Issues originating in the interaction shapes
	Where does the noise come from?
	A Markovian description of LIF sampling
	Comparison of the models

	Ensemble phenomena in Ising-like networks of spiking neurons
	Temperature in LIF networks - spike based tempering
	A simple network: The Ising model
	Phase diagram of Ising-like networks with Buesing neurons
	Phase diagram of Ising-like LIF networks

	Applications of lif sampling on Accelerated Analog Hardware
	Discriminative and generative tasks on BrainScaleS-1
	Representing quantum states with BrainScaleS-2

	Discussion and Outlook
	Acknowledgments
	Calculations
	Conditional Probability
	Spin to Neural relations
	Energy of Two State Systems
	Wake-Sleep derivation

	Simulation Parameters
	Single PSP
	Noise simulations
	Tempering Simulations
	Ising Simulations
	Phase diagrams

	Software and Tooling
	Experiment Control on bwNEMO
	HXSampling
	Neuralsampling

	Publications and contributions
	Acronyms
	List of Figures
	List of Tables

