ON INTEGRATION WITH RESPECT TO A TRACE

Michael Leinert

Institut für Angewandte Mathematik Universität Heidelberg D-6900 Heidelberg West Germany

We propose an approach to noncommutative integration which is based on order. If φ is a faithful semifinite normal trace on the von Neumann algebra \mathcal{A} , there is a natural upper integral on the (unbounded) positive self-adjoint operators affiliated with \mathcal{A} . The upper integral together with interpolation provides an easy access to the usual results in noncommutative integration. This note grew out of an attempt to see whether the approach of [L] works in the noncommutative case.

For lack of space we only include some of the proofs. Complete details will be given elsewhere.

I should like to thank Michael Cowling for discussions and for introducing me to interpolation spaces.

Let H be a Hilbert space, T a linear operator on H, bounded or not. By D(T) we denote the domain of definition T. If T is closable, \overline{T} denotes its closure. Let α of bе a von Neumann algebra on H, ${\mathfrak A}^{\star}$ its positive part, ${\mathfrak A}^{\prime}$ its commutant. A linear operator T is called affiliated with a(in symbols: $T \sim \alpha$), if TU = UT for all unitary $U \in \alpha'$. $\varphi = \Omega^+ \longrightarrow [0,\infty]$ be a trace, i.e. a functional satisfying Let $\varphi(\lambda A) = \lambda \varphi(A)$ for $\lambda \ge 0$, $A \in \mathcal{A}^+$ (with $0 \cdot \infty \stackrel{\text{def}}{=} 0$) (i) (ii) $\varphi(A+B) = \varphi(A) + \varphi(B)$ for $A, B \in O^+$ (iii) $\varphi(A^*A) = \varphi(AA^*)$ for $A \in OL$. B $\in \mathcal{Q}^+$ and a partial isometry $u \in \mathcal{Q}$ one has by (iii) For $\varphi(\mathbf{u}\mathbf{B}\mathbf{u}^*) = \varphi(\mathbf{B}^{1/2}\mathbf{u}^*\mathbf{u}\mathbf{B}^{1/2}) \leq \varphi(\mathbf{B})$ (0.1)

since $B^{1/2}u^*uB^{1/2} \le ||u^*u||B \le B$.

We suppose the trace φ to be faithful, i.e. $\varphi(A) = 0$ implies A = 0, semifinite, i.e. $\varphi(A) = \sup\{\varphi(B) \mid B \in \alpha^+, B \leq A, \varphi(B) < \omega\}$, and normal, i.e. for any increasing net $\{T_{\mu}\}$ in α^+ with $T_{\mu} \land T \in \alpha^+$ in the weak operator topology, one has $\varphi(T_{\mu}) \land \varphi(T)$. The normality condition may be restated as follows:

(0.2) For $T \in a^+$ and any increasing net $\{T_{\mu}\}$ in a^+ with $\lim(T_{\mu} \times | \mathbf{x}) \ge (T \times | \mathbf{x})$ for all $\mathbf{x} \in \mathbf{H}$, one has $\lim \varphi(T_{\mu}) \ge \varphi(T)$ (the limits being possibly infinite).

This condition clearly implies normality. It is equivalent to normality, because for every normal trace φ there is a family of vectors $\{x_i\}_{i \in I}$ in H such that $\varphi(A) = \sum_{i \in I} (Ax_i | x_i)$ (see [D2], p. 85).

The word "projection" always means "orthogonal projection". For $A, p \in \Omega^+$, p a projection, letting $p^{\perp} = 1 - p$ we have by (ii) and (iii)

(0.3)
$$\varphi(A) = \varphi(A^{1/2}pA^{1/2}) + \varphi(A^{1/2}p^{\perp}A^{1/2}) = \varphi(pAp) + \varphi(p^{\perp}Ap^{\perp}).$$

If T is a closed densely defined linear operator, it has a polar decomposition T = u|T| where u is a partial isometry vanishing on KerT, and $|T| = (T^*T)^{1/2}$ is positive self-adjoint.

If $T \sim \alpha$, then $u \in \alpha$ and the spectral projections of |T| are in α .

An equality A = u|A| will usually mean that the right-hand side is the polar decomposition of A.

An equality $A = \int_{\lambda} \lambda de_{\lambda}$ will usually mean that the right-hand side is the spectral representation of the positive self-adjoint operator A. An integral \int_{a}^{b} will mean the integral over the halfopen interval [a,b].

1. The upper integral $\overline{\phi}$

Let N be the set of all densely defined closed linear operators affiliated to OI. On $N^* = \{T \in N \mid T \text{ positive self-adjoint}\}$ we define an upper integral $\overline{\varphi}$ by

$$\overline{\varphi}(T) = \inf \{ \sum_{1}^{\infty} \varphi(A_n) | A_n \in \mathcal{A}^+, \sum_{1}^{\infty} A_n \ge T \}$$

where $\sum_{1}^{\infty} A_n \ge T$ means $\sum_{1}^{\infty} (A_n x | x) \ge (Tx | x)$ for all $x \in D(T)$, the left

232

side of this inequality being allowed to take the value ∞ . If $\overline{\varphi}(T) < \infty$, one can show that D(T) is "big with respect to φ " or shorter " φ -dense" in the sense of the following definition:

(1.1) <u>Definition</u>: A subspace S of H is called φ -dense, if for every $\varepsilon > 0$ there is a projection $p \in \Omega$ with $pH \subset S$ and $\varphi(p^{\perp}) \leq \varepsilon$. We say that a property holds almost everywhere (a.e.) on H, if it holds on a φ -dense subspace.

Since φ is faithful, a φ -dense subspace is automatically norm dense in H.

The intersection of countably many φ -dense subspaces is φ -dense, because $\varphi((\cap p_i)^{\perp}) \leq \sum \varphi(p_i^{\perp})$ which follows from $(\cap p_i)^{\perp} = \bigcup p_i^{\perp} \leq \sum \sum p_i^{\perp}$ and (0.2).

The fact that $\overline{\varphi}(T) < \infty$ implies that D(T) is φ -dense has two consequences:

(A) All operators we shall deal with will automatically belong to

 $M = \{T \in N | D(T) \text{ is } \varphi \text{-dense}\}$, in particular they will be measurable in the sense of I. Segal [S]. It seems reasonable to call M the set of strongly measurable operators. One can show that for S,T $\in M$ the operators S+T, ST, S* are φ -densely defined and closable and that M is a *-algebra when equipped with the "strong sum" $\overline{S+T}$, the "strong product" \overline{ST} , and the adjoint operation * (this is no problem and takes less than a page in print).

(B) $\overline{\phi}$ can be written differently:

 $\tilde{\varphi}(T) = \inf\{ \sum \varphi(A_i) \mid \sum A_i \ge T \text{ a.e.} \}$

where $\sum A_i \ge T$ a.e. means $\sum (A_i \times | x) \ge (T \times | x)$ for all x in a φ -dense subspace of D(T).

Taking the above as motivation we now use (B) as the definition of the upper integral \overline{arphi} .

(1.2) <u>Proposition:</u> $\overline{\varphi} = \varphi$ on α^+ .

Proof: Clearly $\overline{\varphi} \leqslant \varphi$ on \mathcal{A}^+ , so we have to show $\overline{\varphi} \geqslant \varphi$. Let $A \in \mathcal{A}^+$ and $A_i \in \mathcal{A}^+$ with $\sum A_i \gg A$ a.e. Then there is a projection $p \in \mathcal{A}$ with $\sum A_i \gg A$ on pH and $\varphi(p^{\perp}) < \varepsilon$. By (0.3) we have

$$\varphi(\mathbf{A}) = \varphi(\mathbf{p}\mathbf{A}\mathbf{p}) + \varphi(\mathbf{p}^{\perp}\mathbf{A}\mathbf{p}^{\perp}) \leqslant \varphi(\mathbf{p}\mathbf{A}\mathbf{p}) + \|\mathbf{A}\|\varphi(\mathbf{p}^{\perp})$$

and by (0.2) since $\sum pA_i p \ge pAp_i$:

≤ [φ(pA;p) + ||A|| • ε $\leq \left[\varphi(\mathbf{A}_{i}) + \|\mathbf{A}\| \cdot \epsilon \quad \text{by (0.1).} \right]$ So $\varphi(A) \leq [\varphi(A_i), \text{ hence } \varphi(A) \leq \overline{\varphi}(A).$ (1.3) <u>Remark</u>: If S,T,T_n $\in M^+$, $\overline{\varphi}$ clearly satisfies (i) S \leq T a.e. implies $\overline{\varphi}(S) \leq \overline{\varphi}(T)$ (Isotony) (ii) $\overline{\varphi}(\lambda T) = \lambda \overline{\varphi}(T)$ for $\lambda \ge 0$ (Positive homogeneity) (iii) If $T = \sum_{i=1}^{n} T_{n}$ weakly a.e. (i.e. $(Tx|y) = \sum_{i=1}^{n} (T_{n}x|y)$ for all x,y in a g-dense subspace) then $\overline{\varphi}(T) \leqslant \sum \overline{\varphi}(T_n)$ (Countable subadditivity) In particular, $\overline{\varphi}(\overline{S+T}) \leq \overline{\varphi}(S) + \overline{\varphi}(T)$ for $S,T \in M^+$. (1.4) <u>Proposition</u>: Let $T \in M^+$ and $T_n \in \mathcal{A}^+$ with $T = \sum_n T_n$ weakly a.e. Then $\overline{\varphi}(T) = \sum_n \varphi(T_n)$. Proof: Clearly $\overline{\varphi}(T) \leq \sum_{i=1}^{\infty} \varphi(T_n)$. But $T \geq \sum_{i=1}^{k} T_n$ a.e., so $\overline{\varphi}(T) \geq \overline{\varphi}(\sum_{i=1}^{k} T_n) = \varphi(\sum_{i=1}^{k} T_n) = \sum_{i=1}^{k} \varphi(T_n)$. Hence $\overline{\varphi}(T) \geq \sum_{i=1}^{\infty} \varphi(T_n)$. (1.5) <u>Corollary</u>: For $T = \int_{\lambda}^{\infty} \lambda de_{\lambda} \in M^+$ and p > 1 we have $\overline{\varphi}(\mathbf{T}^{\mathbf{p}}) = \int_{0}^{\infty} \lambda^{\mathbf{p}} \mathrm{d}\varphi(\mathbf{e}_{\lambda}).$ Proof: Taking $T_n = \int_{-1}^{n} \lambda^p de_{\lambda}$ we obtain from the last Proposition $\widehat{\varphi}(\mathbf{T}^{\mathbf{P}}) = [\varphi(\mathbf{T}_{\mathbf{n}}) = [\sum_{i=1}^{n} \lambda^{\mathbf{P}} d\varphi(\mathbf{e}_{\lambda}) = \int_{i=1}^{n} \lambda^{\mathbf{P}} d\varphi(\mathbf{e}_{\lambda}).$ (1.6) <u>Corollary:</u> $\overline{\varphi}$ is positive linear on M⁺. Proof: Let $S, T \in M^+$ and choose $S_n, T_n \in A^+$ such that $S = \sum_n s_n a.e.$, $T = \sum_n a.e.$ Then $S+T = \sum_n (S_n+T_n) a.e.$ and by Proposition (1.4) we have $\overline{\varphi}(\overline{S+T}) = \overline{\varphi}(S_n + T_n) = \overline{\varphi}(S_n) + \overline{\varphi}(\varphi(T_n)) = \overline{\varphi}(S) + \overline{\varphi}(T).$ even countably additive on M⁺:

(1.7) If
$$T, T_n \in M^+$$
 with $T = \sum_n T_n$ weakly a.e., then $\overline{\varphi}(T) = \sum_n \overline{\varphi}(T_n)$.

The following is a noncommutative Beppo Levi theorem:

(1.8) <u>Theorem</u>: Let $T_i \in M^+$ with $\sum \overline{\varphi}(T_i) < \infty$. There is $T \in M^+$ such that $\sum T_i$ converges weakly a.e. to T, and we have $\overline{\varphi}(T) = -\sum \overline{\varphi}(T_i)$.

Proof: Let $A_{ik} \in a^+$ with $T_i = \sum_{k} A_{ik}$ weakly on $D(T_i)$. Let $D_o = \{x \in H | \sum_{i,k} (A_{ik} x | x) = \sum_{k} \|A_{ik}^{1/2} x\|^2 < \infty \}$. Clearly, D_o is a linear subspace and $UD_o \subset D_o$ for unitary $U \in a^+$, so the projection p of H onto \overline{D}_o is in a. Since $\sum_{i,k} (A_{ik} x | x) = \infty$ outside D_o , we have for $n \in \mathbb{N}$

np[⊥] ≤ ∑A; ⊾

hence $n\varphi(p^{\perp}) \leq \sum \varphi(A_{ik}) < \infty$,

so $\varphi(p^{\perp}) = 0$, that is: D_0 is dense. The form $[A_{ik} \quad on \quad D_0$ is closed (easy to check), so there is a self-adjoint positive operator T on $D \subset D_0$ with $T = [A_{ik}]$ weakly on D (see e.g. [RS], p. 278). We have $T \sim \Omega$, so $T \in N$, and assuming for the moment that D = D(T) is φ -dense, we have by (1.4) $\overline{\varphi}(T) = [\varphi(A_{ik})] = [\overline{\varphi}(T_i)]$. Clearly, $T = [T_i]$ weakly on the φ -dense space $(\bigcap_i D(T_i)) \cap D$.

That D is \mathcal{G} -dense follows from the fact that the two seemingly different definitions of $\overline{\mathcal{G}}$ given at the beginning coincide. But we can also use a direct argument similar to the one just used above: If $T = \int \lambda de_{\lambda}$ and t>0, we have $e_{t}H \subset D = D(T)$ and $te_{t}^{\perp} \leq T$ on D. Since D is a core for the form \sum_{ik} on D_o we have $te_{t}^{\perp} \leq \sum_{ik}$ on D_o. Outside D_o this last inequality holds, too, the form on the right being ∞ there. So $te_{t}^{\perp} \leq \sum_{ik} A_{ik}$ a.e. (in fact: everywhere on H) which implies

$$t\varphi(e_{t}^{\perp}) \leqslant \sum \varphi(A_{ik}) < \infty$$

Thus we have $\varphi(e_t^{\perp}) < \varepsilon$ for t sufficiently large. Hence D is φ -dense.

(1.9) <u>Proposition</u>: For $T \in M^+$ and $u \in \mathcal{A}$ a partial isometry we have $\overline{\varphi}(u^*Tu) \leq \overline{\varphi}(T)$.

Proof: Let $A_i \in a^+$ with $\sum A_i \ge T$ a.e. We have $\sum u^* A_i u \ge u^* T u$ a.e., hence $\overline{\varphi}(u^* T u) \le \sum \varphi(u^* A_i u) \le \sum \varphi(A_i)$ by (0.1). So $\overline{\varphi}(u^* T u) \le \overline{\varphi}(T)$.

2. The Banach space L^{1} and the normed sets L^{p}

For $1 \le p \le \infty$ we define $L^p = \{T \in M | \overline{\varphi}(|T|^p) \le \}$ and $||T|| = \overline{\varphi}(|T|^p)^{1/p}$ for $T \in L^p$. If $|T| = \int \lambda de_{\lambda}$, then $||T||_p = (\int \lambda^p d\varphi(e_{\lambda}))^{1/p}$ by (1.5). Using the properties of $\overline{\varphi}$ and classical arguments we obtain that L^p is *-invariant and $||T^*||_p = ||T||_p$, that L^1 is a normed Ω -module and $\overline{\varphi}$ extends to a linear functional on L^1 satisfying

 $\|\mathbf{T}\|_{1} = \sup\{\overline{\varphi}(S\mathbf{T}) | S \in \mathcal{O}, \|S\| \leq 1\}$

for $T \in L^1$, and that $(S|T) = \tilde{\varphi}(T^*S)$ defines an inner product on L^2 . We have $\tilde{\varphi}(ST) = \tilde{\varphi}(TS)$ for $S, T \in L^2$ or $S \in \mathcal{A}$, $T \in L^1$.

(2.1) <u>Theorem</u>: L¹ is complete.

Proof: It suffices to show that $\sum_{n} \|T_n\|_1 < \infty$ implies convergence of \sum_{n}^{T} in L^1 . Decomposing into positive parts and applying Theorem (1.8) we obtain the desired result.

(2.2) <u>Monotone Convergence Theorem</u>: Let $\{T_n\}$ be a sequence in L^1 with $T_{n+1} \ge T_n$ on $\bigcap_{k} D(T_k)$ and suppose $\sup \overline{\phi}(T_n) < \infty$. Then there is $T \in L^1$ such that $T_n \rightarrow T$ weakly a.e. and $T_n \rightarrow T$ in L^1 .

Proof: We have $S_n = T_{n+1} - T_n \ge 0$ a.e. and this readily implies $S_n \in (L^1)^+$. By Theorem (1.8) the series $\sum_{n=1}^{n} S_n$ converges weakly a.e. and in L^1 , hence so does $T_n = T_1 + \sum_{i=1}^{n} S_i$.

(2.3) <u>Egoroff's Theorem</u>: Let $T, T_n \in M$ with $T_n + T$ strongly a.e. and let $q \in \mathcal{Q}$ be a projection with $\varphi(q) < \infty$. Then there is a subsequence $\{T_n\}$ which converges to T "almost uniformly on qH", i.e. for every $\varepsilon > 0$ there is a projection $p \in \mathcal{Q}$ with $p \leqslant q$, $\varphi(q-p) < \varepsilon$ and such that $T_n \mid A \to T \mid D$ in the uniform norm.

The reader should be warned that (unlike the classical Egoroff Theorem for functions) in the above theorem the conclusion does not hold for the full sequence $\{T_n\}$, even in the commutative case! This is due to the fact that for $H = L^2(X,\mu)$, $\Omega = L^{\infty}(X,\mu)$, $\varphi(f) = \int f d\mu$ for $f \in \Omega^+$ "a.e. on H" is almost but not precisely the same as "a.e. on X". (2.4) <u>Dominated Convergence Theorem</u>: Let $T, T_n \in M$ with $T_n \rightarrow T$ strongly a.e. and suppose there is $A \in (L^1)^+$ with $|T-T_n| \leq A$ a.e. Then $T \rightarrow T$ in L^1 .

Proof: In the case of functions on a measure space X, to estimate T-T, ,, one would for instance choose a set Q of finite measure such that the integral of A over $X \setminus Q$ is less than ε and A is bounded on Q, choose a slightly smaller set $P \subset Q$ according to Egoroff's Theorem (for $\epsilon' = \epsilon$ divided by the bound of A on Q), split the integral $\int |T-T_n|$ into three integrals (over P, Q\P, and X\Q) and estimate, ending up with $\|T-T_n\|_1 < 3\varepsilon$ for $n > n_0$. This proof carries over to the noncommutative case. Because of (2.3) we obtain the assertion for a subsequence $\{T_{n_2}\}$, but this suffices.

(2.5) <u>Theorem</u>: For $B \in L^1$ let $f_B \in \mathbb{R}^*$ be the functional $A \mapsto \tilde{\varphi}(AB)$. The map $B \mapsto f_B$ is an isometric isomorphism of L^1 onto the predual \mathcal{A}_{*} , the space of ultraweakly continuous linear functionals on ${\mathbb A}$.

Proof: by standard arguments.

3. Identification of L^P as interpolation space

M is a Hausdorff topological linear space when equipped with the topology of convergence in measure which has the following sets $N(\varepsilon)$ as a neighbourhood basis at 0:

 $N(\varepsilon) = \{T \in M \mid \text{ there is a projection } p \in \Omega \text{ with } pH \subset D(T), \|Tp\| < \varepsilon$, and $\varphi(p^{\perp}) < \epsilon$ }. The inclusions $\Omega \subset M$ and $L^{1} \subset M$ are continuous. For $0 < \theta < 1$ let $(\alpha, L^{1})_{\theta}$ be the interpolation space constructed by the complex method.

(3.1) <u>Theorem</u>: $L^{p} = (\Omega, L^{l})_{l/p}$ with equal norms. In particular, L^{p} is a linear space, $\| \|_{p}$ is a norm, and L^{p} is complete under |.

Sketch of proof: With a bit of care we may follow the classical

proof for functions ([BL], p. 106). a) For $A = u|A| \in L^{p}$ with $|A| = \int_{a}^{b} \lambda de_{\lambda}$ (0<a<b<**) the function $f(z) = u |A|^{pz}$ (with a factor $exp(\epsilon z^2 - \epsilon p^{-2})$ depending on which definitions one uses) is in the function space F used for the construction of $(\Omega, L^1)_{1/n}$, and this together with a simple

approximation argument shows that $L^p \subset (\mathcal{A}, L^1)_{1/p}$ (norm-decreasing inclusion).

b) The classical proof of $(L^{\infty}, L^{1})_{1/p} \subset L^{p}$ seems to use duality between L^{p} and L^{q} , but really uses much less, so we can easily imitate it. Let $A \in (\mathfrak{A}, L^{1})_{1/p}$. Then in particular $A \in M$. We can approximate $\|A\|_{p}$ (be it finite or infinite) by expressions $\overline{\varphi}(B|A|)$ where B has $\|B\|_{q} = 1$ and is a linear combination of pairwise orthogonal projections commuting with |A|. If $f \in F$ with f(1/p) = A = u|A|, consider the function h(z) = $= \overline{\varphi}(B^{q(1-z)}u^{*}f(z))$. Applying the three lines theorem to h, we get $|h(1/p)| = \overline{\varphi}(B|A|) \leq ||f||$, hence $||A||_{p} \leq ||f||$ which proves the norm-decreasing inclusion $(\mathfrak{A}, L^{1})_{1/p} \subset L^{p}$.

The rest is an easy consequence of well-known facts from complex interpolation:

(3.2) <u>Corollary:</u> (i) L^2 is a Hilbert space. (ii) L^p is reflexive for 1 . $(iii) <math>(L^p)^* = L^q$ where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof: (i) Being an interpolation space, L^2 is a Banach space and we have already seen that its norm comes from an inner product.

(ii) This is obtained by interpolation between L^1 and L^2 , and between L^2 and Ω , using that L^2 is reflexive (see [C], 2.12). (iii) is true for $1 \le p \le 2$ by interpolation since $(L^1)^* = \Omega \frac{\det}{L} L^{\infty}$ and $(L^2)^* = L^2$ (see [BL], Corollary 4.5.2). Since L^p is reflexive by (ii), the result holds for $2 \le p < \infty$, too.

REFERENCES:

- BL J. Bergh and J. Löfström, Interpolation spaces, Springer Berlin-Heidelberg.New York, 1976.
- C A.P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24(1964), 113-190.
- D! J. Dixmier, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France 81(1953), 9-39.
- D2 J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars Paris, 1969.

H P.R. Halmos, Measure Theory, van Nostrand, 1950.

- K T. Kato, Perturbation Theory for Linear Operators, Springer Berlin.Heidelberg.New York, 1976.
- Ko H. Kosaki, Applications of the Complex Interpolation Method to a von Neumann Algebra: Non-commutative LP spaces, J. Funct. Anal. 56(1984), 29-78.
- Ku R.A. Kunze, L^P Fourier transforms on locally compact unimodular groups, Trans. Amer. Math. Soc. 89(1958), 519-540.
- L M. Leinert, Daniell-Stone integration without the lattice condition, Arch. Math. 38(1982), 258-265.
- N E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15(1974), 103-116.
- RS M. Reed and B. Simon, Methods of Modern Mathematical Physics I, Academic Press New York London, 1972.
- S I. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57(1953), 401-457.
- ST W.F. Stinespring, Integration theorems for gages and duality for unimodular groups, Trans. Amer. Math. Soc. 90(1959), 15-56.
- T M. Takesaki, Theory of Operator Algebras I, Springer New York. Heidelberg.Berlin, 1979.