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We propose an approach to noncommutative integration which 

is based on order, If p is a faithful semifinite normal trace 

on the von Neumann algebra Ol, there is a natural upper integral 

on the (unbounded) positive self-adjoint operators affiliated 

with Ol, The upper integral together with interpolation pro-

vides an easy access to the usual results in noncommutative 

integration. This note grew out of an attempt to see whether 

the approach of [L] works in the noncommutative case. 

For lack of space we only include some of the proofs, 

Complete details will be given elsewhere. 

I should like to thank Michael Cowling for discussions and 

for introducing me to interpolation spaces, 

Let H be a Hilbert space, T a linear operator on H, 

bounded or not, By D(T) we denote the domain of definition 

of T. If T is closable, T denotes its closure, Let OL be 

a von Neumann algebra on H, m• its positive part, Cl.' its 

commutant. A linear operator T is called affiliated with � 

(in symbols: T~ Ot ) , if TU = UT for all unitary U e: Ol.', 

Let p • m + � [o, ... J be a trace, i,e, a functional satisfying 

(i) Cf ().A) ).p(A) for ).� 0' A E. a.+ (with 0."' def 
0) � 

( i i) g? (A+B) p(A) + <f(B) for A,B � OL + 

( ii i) ry(A* A) g?(AA-lf ) for A € OI. • 

For Be Of.+ and a partial isometi:y u E. OL one has by (iii) 

(0,1) p(uBu*) � p(B 1 /2u"uB 1 /2).,;;;. cp(B)

s i n c e B 1 / 2 u* u B 1 / 2 � 1\ u * u l\ B "- B ,
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We suppose the trace p tobe faithful, i.e, p(A) • O im

plies A • O, semifinite, i.e, p(A) • sup{<f(B) \Be. OL ... , B� A, 

p(B)<.,}, and normal, i.e, for any increasing net {T} in Ot+ with 

T )'I T e: Cl.+ in the weak operator topology, one has p(T
µ

) l' p(T), The

normality condition may be restated as follows: 

(0,2) For TE a.+ and any increasing net {T } in et+ with 
\l 

1 im ( T 
\l 

X IX) � ( T X I X) fo r a 11 X "' H • 0 n e h a s 1 im p( T 
)J
) � rp ( T)

(the limits being possibly infinite). 

This condition clearly implies normality, lt is equivalent to nor

mality, because for every normal trace p there is a family of 
vectors 

p. 85),

in H such that p(A) • }: (Ax. \x.) (see [n2], 
iEl 1 1 

The word "projection" always means ''orthogonal projection", 

For A,p E Ol. .. p a projection, letting p J. • 1-p we have by (ii) 

and (iii) 

{O, 3) 
1/2 1/2 1/2 .1 1/2 .L J. p{A) • p(A pA ) + p(A p A ) • p{pAp) + p(p Ap ).

If T is a closed densely defined linear operator, it has a 

polar decomposition T • ulTI where u is a partial isometry 

vanishing on KerT, and \Tl • (T�T) 112 is positive self-adjoint, 

If T ,.,_, ot, then u ec 0.. and the spectral projections of \T \ 

a re in Ol • 

An equality A • ulAI will usually mean that the right-hand 

side is the polar decomposition of A, 

side 

An equality A • rAdeA will usually mean that the right-hand

is the spectral representation of the positive self-adjoint 
b 

operator A, An integral S will mean the integral over the half

open interval [a, b). 

1, The upper integral qi 

Let N be the set of all densely defined closed linear opera

tors affiliated to (l. On N
+ 

• {Te: N \T positive self-adjoint} 

we define an upper integral p by 

p{T) • inf {}: g, (A ) \A E
1 n n 

where }: An� T means
1 

l (A x\x) � (Tx\x) 
1 n for all x e. D{T), the left 
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side of this inequality being allowed to take the value 

If p(T)<m, one can show that D(T) is "big with respect to 

g," or shorter " <p -dense" in the sense of the following definition: 

(l, I) Definition: A subspace S of H is called p-dense, if for 

every E>O there is a projection p ec OL with pH c S and 

p(p.L )<E, We say that a property holds almost everywhere 

(a,e,) on H, if it holds on a r-dense subspace, 

Since p is faithful, a f-dense subspace is automatically norm 

dense in H, 

The intersection of countably many p-dense subspaces is p-dense, 

because <p(( () p. ).1 ) � }:p(p . .L) which fol lows from ( () p. ).L • U p� � 
l l l l 

� }:p� and (0,2), 

The fact that p(T)<m implies that D(T) 

consequences: 

is cp -dense has two 

(A) All operators we shall deal with will automatically belang to

M • {TE N\D(T) is p-dense}, in particular they will be meas

urable in the sense of I, Segal [s], lt seems reasonable to call M 

the set of strongly measurable operators, One can show that for 

S,Te: M the operators S+T, ST, S* are g>-densely defined and 

closable and that M is a * -algebra when equipped with the "strong 

sum" S+T, the "strong product" ST, and the adjoint operation " 

(this is no problem and takes less than a page in print). 

(ß) iji can be written differently: 

p(T) • inf{}: g,(Ai) J }:Ai� T a.e.}

where }:Ai:). T a.e. means }:(Aix Jx) � (Tx Jx) for all x in a

� -dense subspace of D(T), 

Taking the above as motivation we now use (ß) as the definition 

of the upper integral g,. 

(1,2) Proposition: 

Proof: Clearly pq> 
and A. e: ex,

+ 
with 

with }:A. PA on pH 

']) (A) • g>(pAp) 

and by (0,2) since 

g, • p on Cl
+

. 

on Ol + 
• so we have to show p� p. Let

}:A. � A a,e. Then 
l 

and g' ( p.1 ) < C • By 

+ 'f (p.l. ApJ.) \ p(pAp)

tpA.p�pAp:l 

there is a projection 

(O, 3) we have 

+ 11 An cp < PJ. >

Ae.Ol
+ 

P e. Ol 
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,t; lc_f(pAip) + I\A\I • E

� L P( Ai) + ft A II • E by (O. l) , 

So p(A) � }:p(Ai)' hence cp(A) � �(A),

(1,3) Remark: If 
♦ - • s,r,rn E M , cp clearly satisf1es

(i) S < r a.e. implies ip(S) � p(r) (Isotony)
(ii) p().r) • H<r) for l. l} O
( ii i) If r • }) we a k 1 y a. e. ( i. e , 

1 n 

(Positive homogeneity) 

(rxjy) • }:(r xjy) forn "' 
all x,y in a gi-dense subspace) then p(r) � }:p(r )

1 
n 

(Countable subadditivity)
In particular, p (S+T) � p(S) + p(T) for 

+ 
s,re:'i,

(1,4) Proposition: Let 

weakly a,e, rhen 
with 

Proof: Clearly f(r), }:p<r ) • But r � }:r a,e,, so
k k I n eo t n 

• S,(}:T ) • }: cp(r ) , Hence � (T) i lf(r ) •
1 n I n I n 

r • }:r 

(l,S) Corollary: For T • 5l.de
l. 

€ 'i
+ 

and p > 1 we have 
0 

�(rP) • 5l. p dp(e
l.
), 

n 

Proof: Taking Tn • S l. pde
l. 

we obtain from the last Proposition 
n-1 

n •

p(TP) • }:p<rn) •}: S l. P df(e
l.
) • �l. Pdf(e

l.
). 

n-1 o 

(1 ,6) Corollary: p is positive linear on M + , 

Proof: Let S,Te:M + and choose sn,Tne: ex-♦ such that S • }:sn a.e„

r • 'T a,e. Then S+T • }:(S +T) a,e, and by Proposition (1,4)l n n n 
we have 

even 

By the way, the argument of the above proof shows that 

countably additive on M + : 

(1 ,7) If r,Tn e: M + with T • }:r
n 

weakly a,e. , then p(r) •

• !f(Tn)'

is 
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The following is a noncommutative Beppo Levi theorem: 

(1 ,8) Theorem: Let l Cf (T.)o, There isl such 
that }:Ti converge1 weakly a.e. to T, and we have �(T) • 

- l � (Ti) •

Proof: Let Aik e: OL
+ 

• {xcHI}: (A.kx!x)
i 'k l 

space and UD c D 
0 0 

sub-

for unitary U E Ol', so the projection p of 
onto D is in 01.0 Since }:(Aikxlx) • 00 outside D0, we have

for ne:IN 

hence 

so m(p�) • O, that is: D is dense. The form rA on D is" o l ik o 
closed (easy to check), so there is a self-adjoint positive opera-

tor T on De D0 with T • }:Aik weakly on D (see e.g. [Rs],

235 

H 

p. 278). We have T ~ Ot, so TE N, and assuming for the moment that 

D • D ( T) i s gi -den s e , we h a v e b y ( 1 • 4 ) g> ( T) • }: <f (Ai k) • LP (Ti) ,

Clearly, T • }:Ti weakly on the cp-dense space (� D (Ti)) n D.

That D is p -dense follows from the fact that the two seem

ingly different definitions of p given at the beginning coincide. 
But we can also use a direct argument similar to the one just used 

above: If T • JAdeA and

on D. Since D is a core 

te� � }:A
ik 

on D0• Outside

the form on the right being 

t>O, we have etHc D •D(T)

for the form LAik on D0
D0 this last inequality
00 there. So te; � })ik

and te� � T 

we have 

holds, too, 

a,e, (in fact: 

everywhere on H) which implies 

Thus we have p(e�)<c for t sufficiently large, Hence D is 

g,-dense. 

(1,9) Proposition: For and 

Proof: Let A. E a.+ with LA, ;,:.T 
l l 

hence p(u*Tu) � }:
cp

(u*Aiu) � }:p(Ai)

u e: Ol a partial isometry we

a.e. We have }:u*A.u) u*Tu a,e.,l 
by (0,1), So g>(u"TuH<p(T),
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2. The Banach space L I and the normed sets L P 

For 1, p o, we define Lp • {Te: MJp( JT !p)<00} and 1\ T\\ • 
„ gi(ITJ p) l /p for TEL P , lf JTJ • f>.deA, then JJT!p • (J :i. P : 9' (e

).
)1/p

by (1.5). Using the properties of •p and classical arguments we ob
tain that L P is * -invariant and \IT"jp • J\TIJ

P
, that L 1 is a

normed a-module and cp extends to a linear functional on L 1 

satisfying 

1\T\J1 • sup{ip(ST) Js e: m, js II� t} 

for TEL 1 , and that (SIT) •p(T�S) 

We have cp(ST) • cji(TS) for S, TE L 2 
defines an inner product on L 2 •

or S e: et , T e: L I • 

(2.1) Theorem: L I is complete, 

Proof: lt suffices to show that I!Tnjl < • implies convergence of 

IT in L 1 • Decomposing into positive parts and applying Theorem

(1,8) we obtain the desired result, 

( 2. 2) Monotone Convergence 

on 

Theorem: 
.. 

Let {T } n 
and suppose 

be a sequence in 

supip{Tn)<•, Then
n 

with Tn+I � Tn 

there is Te:L 1 

in L I . 

such that T ➔ T n weakly a,e. and T ---> T n 

Proof: We have S • T 1-T �O 
1 + n n+ n a,e. and this readily implies

S E (L ) • By Theorem ( 1 .8) the n 1 
series Is converges weakly a,e,

n-1 n 
and in L , hence so does Tn - T, + I s .• 

1 l 

(2. 3) Egoroff's Theorem: Let T,Tne:M with Tn+T stronglya.e. 

and let q e: a. be a projection with g:,{q)<co, Then there is 

which converges to T "almost uniformlya subsequence {T ni 
on 

with 

qH", i, e. for every there is a projection 

T
ni \pH-+ TI pH 

p €. Ot 
in theand such that 

uniform norm. 

The reader should be warned that (unlike the classical Egoroff Theo

rem for functions) in the above theorem the conclusion does not 

hold for the full sequence {T }, even in the commutative casel n 
2 • 

This is due to the fact that for H • L (X,u), m • L (X,u), 

cp(f) • Jfd11 for f e: a.• "a.e. on H" is almost but not precisely 

the same as ''a.e. on X'', 
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(2.4) Dominated Convergence Theorem: Let 

strongly a.e. and suppose there is 

a. e. Then T -+ T in L 1 •

T,TnE: M with

A E (L I )
+ 

with 

Proof: In the case of functions on a measure space X, to estimate 

�T-Tn�I' one would for instance choose a set Q of finite measure

such that the integral of A over X\Q is less than c and A 

is bounded on Q, choose a slightly smaller set PC Q according 

to Egoroff's Theorem (for c' • E divided by the bound of A on 
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Q), split the integral Slt-T 1 n 
into three integrals (over P, Q\.P, 

and X\Q) and estimate, ending up with �T-Tnll < 3e for n >

This proof carries over to the noncommutative case. Because of 

n • 
0 

(2.3) 

we obtain the assertion for a subsequence {Tn. }, but this suffices.
1 

(2.5) Theorem: For B E  L I 

Ai+ f (AB). The map 

L I onto the predual 

let f Be: rn.><- be the functional

BH- f8 is an isometric isomorphism of

a�, the space of ultraweakly continuous 

linear functionals on � 

Proof: by standard arguments. 

3. Identification of L p as interpolation space

M is a Hausdorff topological linear space when equipped with 

the topology of convergence in measure which has the following sets 

N(c} as a neighbourhood basis at 0: 

N(c) • {TEMI there is a projection p E (t 

and and (l c. M are continuous. 

For 0<8<1 let be the interpolation space constructed 

by the complex method. 

(3. 1) 
p 1 Theorem: L • ( Ot ,L ) 1 /p

L P is a linear space, 1

under I • p 

with equal norms. In particular, 
1 is a norm, and L p is complete 
'P 

Sketch of proof: With a bit of care we may follow the classical 

proof for functions { [BL], p. 106) .
b

a) For A • u \AI e: L p with \AI • S AdeA (0<a<b<•) the function
a 2 -2 f(z) • ulAl pz {with a factor exp(cz -cp ) depending on which

definitions one uses) is in the function space F used for the 

construction of ( ffi,L )l/p
' and this together with a simple
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approximation argument shows that L P c ( OL ,L 1) 1 /p (norm-decreas

ing inclusion), 
• - 1 p b) The class1cal proof of (L ,L )l/pc L seems to use duality 

between L p and Lq, but really uses much less, so we can easily 
1 imitate it, Let Ae:(Ql.,L )l/p" Then in particular AE.M, We can

approximate IAU (be it finite or infinite) by expressionsp 
f(BIAI) where B has IIBI • 1 and is a linear combination of

q 
pairwise orthogonal projections commuting with IAI,

lf fE. F with f{l/p) • A • ulAI, consider the function h(z) • 
- q( 1-z) • p(B u*f(z)). A p plying the three lines theorem to h, we

get !h( 1 /p) l • gj(B !Al) � II f ff, hence IIA ! � 1 f I which proves the 
1 p p norm-decreasing inclusion ((l,L )l/pcL • 

The rest is an easy consequence of well-known facts from complex 

interpolation: 

(3.2) Corollary: (i) 

(i i) 

{iii) 

L 2 is a Hilbert space, 

L p is reflexive for l<p< 00, 

{LP )* • L q where 1 + l • l.p q 

Proof: (i) Being an interpolation space, L 2 is a Banach space and 

we have already seen that its norm comes from an inner product. 

(ii) This is obtained by interpolation between L 1 and L 2, and

between L 2 and �. using that L2 is reflexive (see �], 2.12).

(ii i) is true for 1 „ p !,, 2 by interp olation since {L 1 ) "" 
- � def

and (L 2 )._ • L 2 (see [BL), Corollary 4. 5. 2). Since LP is re-

flexive by ( ii). the result holds for 2 �p <. ... too. 
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