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We propose an approach to noncommutative integration which 

is based on order, If p is a faithful semifinite normal trace 

on the von Neumann algebra Ol, there is a natural upper integral 

on the (unbounded) positive self-adjoint operators affiliated 

with Ol, The upper integral together with interpolation pro-

vides an easy access to the usual results in noncommutative 

integration. This note grew out of an attempt to see whether 

the approach of [L] works in the noncommutative case. 

For lack of space we only include some of the proofs, 

Complete details will be given elsewhere. 

I should like to thank Michael Cowling for discussions and 

for introducing me to interpolation spaces, 

Let H be a Hilbert space, T a linear operator on H, 

bounded or not, By D(T) we denote the domain of definition 

of T. If T is closable, T denotes its closure, Let OL be 

a von Neumann algebra on H, m• its positive part, Cl.' its 

commutant. A linear operator T is called affiliated with � 

(in symbols: T~ Ot ) , if TU = UT for all unitary U e: Ol.', 

Let p • m + � [o, ... J be a trace, i,e, a functional satisfying 

(i) Cf ().A) ).p(A) for ).� 0' A E. a.+ (with 0."' def 
0) � 

( i i) g? (A+B) p(A) + <f(B) for A,B � OL + 

( ii i) ry(A* A) g?(AA-lf ) for A € OI. • 

For Be Of.+ and a partial isometi:y u E. OL one has by (iii) 

(0,1) p(uBu*) � p(B 1 /2u"uB 1 /2).,;;;. cp(B)

s i n c e B 1 / 2 u* u B 1 / 2 � 1\ u * u l\ B "- B ,
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We suppose the trace p tobe faithful, i.e, p(A) • O im­

plies A • O, semifinite, i.e, p(A) • sup{<f(B) \Be. OL ... , B� A, 

p(B)<.,}, and normal, i.e, for any increasing net {T} in Ot+ with 

T )'I T e: Cl.+ in the weak operator topology, one has p(T
µ

) l' p(T), The

normality condition may be restated as follows: 

(0,2) For TE a.+ and any increasing net {T } in et+ with 
\l 

1 im ( T 
\l 

X IX) � ( T X I X) fo r a 11 X "' H • 0 n e h a s 1 im p( T 
)J
) � rp ( T)

(the limits being possibly infinite). 

This condition clearly implies normality, lt is equivalent to nor­

mality, because for every normal trace p there is a family of 
vectors 

p. 85),

in H such that p(A) • }: (Ax. \x.) (see [n2], 
iEl 1 1 

The word "projection" always means ''orthogonal projection", 

For A,p E Ol. .. p a projection, letting p J. • 1-p we have by (ii) 

and (iii) 

{O, 3) 
1/2 1/2 1/2 .1 1/2 .L J. p{A) • p(A pA ) + p(A p A ) • p{pAp) + p(p Ap ).

If T is a closed densely defined linear operator, it has a 

polar decomposition T • ulTI where u is a partial isometry 

vanishing on KerT, and \Tl • (T�T) 112 is positive self-adjoint, 

If T ,.,_, ot, then u ec 0.. and the spectral projections of \T \ 

a re in Ol • 

An equality A • ulAI will usually mean that the right-hand 

side is the polar decomposition of A, 

side 

An equality A • rAdeA will usually mean that the right-hand

is the spectral representation of the positive self-adjoint 
b 

operator A, An integral S will mean the integral over the half­

open interval [a, b). 

1, The upper integral qi 

Let N be the set of all densely defined closed linear opera­

tors affiliated to (l. On N
+ 

• {Te: N \T positive self-adjoint} 

we define an upper integral p by 

p{T) • inf {}: g, (A ) \A E
1 n n 

where }: An� T means
1 

l (A x\x) � (Tx\x) 
1 n for all x e. D{T), the left 
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side of this inequality being allowed to take the value 

If p(T)<m, one can show that D(T) is "big with respect to 

g," or shorter " <p -dense" in the sense of the following definition: 

(l, I) Definition: A subspace S of H is called p-dense, if for 

every E>O there is a projection p ec OL with pH c S and 

p(p.L )<E, We say that a property holds almost everywhere 

(a,e,) on H, if it holds on a r-dense subspace, 

Since p is faithful, a f-dense subspace is automatically norm 

dense in H, 

The intersection of countably many p-dense subspaces is p-dense, 

because <p(( () p. ).1 ) � }:p(p . .L) which fol lows from ( () p. ).L • U p� � 
l l l l 

� }:p� and (0,2), 

The fact that p(T)<m implies that D(T) 

consequences: 

is cp -dense has two 

(A) All operators we shall deal with will automatically belang to

M • {TE N\D(T) is p-dense}, in particular they will be meas­

urable in the sense of I, Segal [s], lt seems reasonable to call M 

the set of strongly measurable operators, One can show that for 

S,Te: M the operators S+T, ST, S* are g>-densely defined and 

closable and that M is a * -algebra when equipped with the "strong 

sum" S+T, the "strong product" ST, and the adjoint operation " 

(this is no problem and takes less than a page in print). 

(ß) iji can be written differently: 

p(T) • inf{}: g,(Ai) J }:Ai� T a.e.}

where }:Ai:). T a.e. means }:(Aix Jx) � (Tx Jx) for all x in a

� -dense subspace of D(T), 

Taking the above as motivation we now use (ß) as the definition 

of the upper integral g,. 

(1,2) Proposition: 

Proof: Clearly pq> 
and A. e: ex,

+ 
with 

with }:A. PA on pH 

']) (A) • g>(pAp) 

and by (0,2) since 

g, • p on Cl
+

. 

on Ol + 
• so we have to show p� p. Let

}:A. � A a,e. Then 
l 

and g' ( p.1 ) < C • By 

+ 'f (p.l. ApJ.) \ p(pAp)

tpA.p�pAp:l 

there is a projection 

(O, 3) we have 

+ 11 An cp < PJ. >

Ae.Ol
+ 

P e. Ol 
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,t; lc_f(pAip) + I\A\I • E

� L P( Ai) + ft A II • E by (O. l) , 

So p(A) � }:p(Ai)' hence cp(A) � �(A),

(1,3) Remark: If 
♦ - • s,r,rn E M , cp clearly satisf1es

(i) S < r a.e. implies ip(S) � p(r) (Isotony)
(ii) p().r) • H<r) for l. l} O
( ii i) If r • }) we a k 1 y a. e. ( i. e , 

1 n 

(Positive homogeneity) 

(rxjy) • }:(r xjy) forn "' 
all x,y in a gi-dense subspace) then p(r) � }:p(r )

1 
n 

(Countable subadditivity)
In particular, p (S+T) � p(S) + p(T) for 

+ 
s,re:'i,

(1,4) Proposition: Let 

weakly a,e, rhen 
with 

Proof: Clearly f(r), }:p<r ) • But r � }:r a,e,, so
k k I n eo t n 

• S,(}:T ) • }: cp(r ) , Hence � (T) i lf(r ) •
1 n I n I n 

r • }:r 

(l,S) Corollary: For T • 5l.de
l. 

€ 'i
+ 

and p > 1 we have 
0 

�(rP) • 5l. p dp(e
l.
), 

n 

Proof: Taking Tn • S l. pde
l. 

we obtain from the last Proposition 
n-1 

n •

p(TP) • }:p<rn) •}: S l. P df(e
l.
) • �l. Pdf(e

l.
). 

n-1 o 

(1 ,6) Corollary: p is positive linear on M + , 

Proof: Let S,Te:M + and choose sn,Tne: ex-♦ such that S • }:sn a.e„

r • 'T a,e. Then S+T • }:(S +T) a,e, and by Proposition (1,4)l n n n 
we have 

even 

By the way, the argument of the above proof shows that 

countably additive on M + : 

(1 ,7) If r,Tn e: M + with T • }:r
n 

weakly a,e. , then p(r) •

• !f(Tn)'

is 
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The following is a noncommutative Beppo Levi theorem: 

(1 ,8) Theorem: Let l Cf (T.)o, There isl such 
that }:Ti converge1 weakly a.e. to T, and we have �(T) • 

- l � (Ti) •

Proof: Let Aik e: OL
+ 

• {xcHI}: (A.kx!x)
i 'k l 

space and UD c D 
0 0 

sub-

for unitary U E Ol', so the projection p of 
onto D is in 01.0 Since }:(Aikxlx) • 00 outside D0, we have

for ne:IN 

hence 

so m(p�) • O, that is: D is dense. The form rA on D is" o l ik o 
closed (easy to check), so there is a self-adjoint positive opera-

tor T on De D0 with T • }:Aik weakly on D (see e.g. [Rs],

235 

H 

p. 278). We have T ~ Ot, so TE N, and assuming for the moment that 

D • D ( T) i s gi -den s e , we h a v e b y ( 1 • 4 ) g> ( T) • }: <f (Ai k) • LP (Ti) ,

Clearly, T • }:Ti weakly on the cp-dense space (� D (Ti)) n D.

That D is p -dense follows from the fact that the two seem­

ingly different definitions of p given at the beginning coincide. 
But we can also use a direct argument similar to the one just used 

above: If T • JAdeA and

on D. Since D is a core 

te� � }:A
ik 

on D0• Outside

the form on the right being 

t>O, we have etHc D •D(T)

for the form LAik on D0
D0 this last inequality
00 there. So te; � })ik

and te� � T 

we have 

holds, too, 

a,e, (in fact: 

everywhere on H) which implies 

Thus we have p(e�)<c for t sufficiently large, Hence D is 

g,-dense. 

(1,9) Proposition: For and 

Proof: Let A. E a.+ with LA, ;,:.T 
l l 

hence p(u*Tu) � }:
cp

(u*Aiu) � }:p(Ai)

u e: Ol a partial isometry we

a.e. We have }:u*A.u) u*Tu a,e.,l 
by (0,1), So g>(u"TuH<p(T),
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2. The Banach space L I and the normed sets L P 

For 1, p o, we define Lp • {Te: MJp( JT !p)<00} and 1\ T\\ • 
„ gi(ITJ p) l /p for TEL P , lf JTJ • f>.deA, then JJT!p • (J :i. P : 9' (e

).
)1/p

by (1.5). Using the properties of •p and classical arguments we ob­
tain that L P is * -invariant and \IT"jp • J\TIJ

P
, that L 1 is a

normed a-module and cp extends to a linear functional on L 1 

satisfying 

1\T\J1 • sup{ip(ST) Js e: m, js II� t} 

for TEL 1 , and that (SIT) •p(T�S) 

We have cp(ST) • cji(TS) for S, TE L 2 
defines an inner product on L 2 •

or S e: et , T e: L I • 

(2.1) Theorem: L I is complete, 

Proof: lt suffices to show that I!Tnjl < • implies convergence of 

IT in L 1 • Decomposing into positive parts and applying Theorem

(1,8) we obtain the desired result, 

( 2. 2) Monotone Convergence 

on 

Theorem: 
.. 

Let {T } n 
and suppose 

be a sequence in 

supip{Tn)<•, Then
n 

with Tn+I � Tn 

there is Te:L 1 

in L I . 

such that T ➔ T n weakly a,e. and T ---> T n 

Proof: We have S • T 1-T �O 
1 + n n+ n a,e. and this readily implies

S E (L ) • By Theorem ( 1 .8) the n 1 
series Is converges weakly a,e,

n-1 n 
and in L , hence so does Tn - T, + I s .• 

1 l 

(2. 3) Egoroff's Theorem: Let T,Tne:M with Tn+T stronglya.e. 

and let q e: a. be a projection with g:,{q)<co, Then there is 

which converges to T "almost uniformlya subsequence {T ni 
on 

with 

qH", i, e. for every there is a projection 

T
ni \pH-+ TI pH 

p €. Ot 
in theand such that 

uniform norm. 

The reader should be warned that (unlike the classical Egoroff Theo­

rem for functions) in the above theorem the conclusion does not 

hold for the full sequence {T }, even in the commutative casel n 
2 • 

This is due to the fact that for H • L (X,u), m • L (X,u), 

cp(f) • Jfd11 for f e: a.• "a.e. on H" is almost but not precisely 

the same as ''a.e. on X'', 



Integration with Respect to a Trace 

(2.4) Dominated Convergence Theorem: Let 

strongly a.e. and suppose there is 

a. e. Then T -+ T in L 1 •

T,TnE: M with

A E (L I )
+ 

with 

Proof: In the case of functions on a measure space X, to estimate 

�T-Tn�I' one would for instance choose a set Q of finite measure

such that the integral of A over X\Q is less than c and A 

is bounded on Q, choose a slightly smaller set PC Q according 

to Egoroff's Theorem (for c' • E divided by the bound of A on 
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Q), split the integral Slt-T 1 n 
into three integrals (over P, Q\.P, 

and X\Q) and estimate, ending up with �T-Tnll < 3e for n >

This proof carries over to the noncommutative case. Because of 

n • 
0 

(2.3) 

we obtain the assertion for a subsequence {Tn. }, but this suffices.
1 

(2.5) Theorem: For B E  L I 

Ai+ f (AB). The map 

L I onto the predual 

let f Be: rn.><- be the functional

BH- f8 is an isometric isomorphism of

a�, the space of ultraweakly continuous 

linear functionals on � 

Proof: by standard arguments. 

3. Identification of L p as interpolation space

M is a Hausdorff topological linear space when equipped with 

the topology of convergence in measure which has the following sets 

N(c} as a neighbourhood basis at 0: 

N(c) • {TEMI there is a projection p E (t 

and and (l c. M are continuous. 

For 0<8<1 let be the interpolation space constructed 

by the complex method. 

(3. 1) 
p 1 Theorem: L • ( Ot ,L ) 1 /p

L P is a linear space, 1

under I • p 

with equal norms. In particular, 
1 is a norm, and L p is complete 
'P 

Sketch of proof: With a bit of care we may follow the classical 

proof for functions { [BL], p. 106) .
b

a) For A • u \AI e: L p with \AI • S AdeA (0<a<b<•) the function
a 2 -2 f(z) • ulAl pz {with a factor exp(cz -cp ) depending on which

definitions one uses) is in the function space F used for the 

construction of ( ffi,L )l/p
' and this together with a simple
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approximation argument shows that L P c ( OL ,L 1) 1 /p (norm-decreas­

ing inclusion), 
• - 1 p b) The class1cal proof of (L ,L )l/pc L seems to use duality 

between L p and Lq, but really uses much less, so we can easily 
1 imitate it, Let Ae:(Ql.,L )l/p" Then in particular AE.M, We can

approximate IAU (be it finite or infinite) by expressionsp 
f(BIAI) where B has IIBI • 1 and is a linear combination of

q 
pairwise orthogonal projections commuting with IAI,

lf fE. F with f{l/p) • A • ulAI, consider the function h(z) • 
- q( 1-z) • p(B u*f(z)). A p plying the three lines theorem to h, we

get !h( 1 /p) l • gj(B !Al) � II f ff, hence IIA ! � 1 f I which proves the 
1 p p norm-decreasing inclusion ((l,L )l/pcL • 

The rest is an easy consequence of well-known facts from complex 

interpolation: 

(3.2) Corollary: (i) 

(i i) 

{iii) 

L 2 is a Hilbert space, 

L p is reflexive for l<p< 00, 

{LP )* • L q where 1 + l • l.p q 

Proof: (i) Being an interpolation space, L 2 is a Banach space and 

we have already seen that its norm comes from an inner product. 

(ii) This is obtained by interpolation between L 1 and L 2, and

between L 2 and �. using that L2 is reflexive (see �], 2.12).

(ii i) is true for 1 „ p !,, 2 by interp olation since {L 1 ) "" 
- � def

and (L 2 )._ • L 2 (see [BL), Corollary 4. 5. 2). Since LP is re-

flexive by ( ii). the result holds for 2 �p <. ... too. 
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