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ON INTEGRATION WITH RESPECT TO A TRACE
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We propose an approach to noncommutative integration which
is based on order. If 9 is a faithful semifinite normal trace
on the von Neumann algebra O, there is a natural upper integral
on the (unbounded) positive self-adjoint operators affiliated
with (L, The upper integral together with interpolation pro-
vides an easy access to the usual results in noncommutative
integration, This note grew out of an attempt to see whether
the approach of [L] works in the noncommutative case.

For lack of space we only include some of the proofs.

Complete details will be given elsewhere.

I should like to thank Michael Cowling for discussions and

for introducing me to interpolation spaces.

Let H be a Hilbert space, T a linear operator on H,
bounded or not. By D(T) we denote the domain of definition
of T. If T 1is closable, T denotes its closure. Let (I be
a von Neumann algebra on H, (' its positive part, @® its
commutant. A linear operator T 1is called affiliated with @
(in symbols: T~ @& ), if TU = UT for all unitary Ue &',

Let ¢ = at — [O,m] be a trace, i.e. a functional satisfying

(i) ?(XA) = 2¢(A) for M0, Ae A* (with Ose def

0)
(ii) @(A+B) = ¢(A) + P(B) for A,Be Qu*
(iii) $(A"A) = @(AA¥) for Ae L.
For Be * and a partial isometry ue O one has by (iii)
(0.1) ¢ (uBu*) = 8"/ Zyrup!’
/2 1/2

2Ye ¢ (B)

since B u*uB € Ju*ulB <B.
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We suppose the trace ¢ to be faithful, i.e. ?(A) =0 im-
plies A = 0, semifinite, i.e. @(A) = sup{y(B)]B € &*, BgA,
?(B)<w), and normal, i.e. for any increasing net {Tu) in Q% with
Tu/'l‘e a* in the weak operator topology, one has gJ(Tu)ng(T). The

normality condition may be restated as follows:

(0.2) For TEe€ A* and any increasing net {Tu} in Q@* with
lim(Tuxlx) > (Tx|x) for all xeH, one has limy(Tu); p(T)

(the limits being possibly infinite).

This condition clearly implies normality, It is equivalent to nor-
mality, because for every normal trace @ there is a family of

in H such that ¢@(A) = 2 (Axi\xi) {see [DZ],
iel

vectors
p. 85).

The word "projection" always means "orthogonal projection",

(x;}ier

For A,pe ®*, p a projection, letting pl = 1-p we have by (ii)
and (iii)

/ZPAI/ 1/2P1Al/2

(0,3) @A) = g:(Al ) » (A ) = @(pAp) + gv(pJ‘Apl)-

If T 1is a closed densely defined linear operator, it has a
polar decomposition T = u|T| where u is a partial isometry

vanishing on KerT, and |T| = (T"'l‘)”2

is positive self-adjoint,

If T~ @, then ue O and the spectral projections of |T]
are in @,

An equality A = ulA| will usually mean that the right-hand
side 1is the polar decomposition of A,

An equality A = _:fn)\dex will usually mean that the right-hand
side is the spectral repre%entation of the positive self-adjoint
operator A, An integral 5 will mean the integral over the half-

. a
open interval [a,b).

I, The upper integral @

Let N be the set of all densely defined closed linear opera-
tors affiliated to (. on N' = {Te N|T positive self-adjoint)

we define an upper integral @ by

P(T) = inf {g eA )]s e a, § A, >T)

where 2 An} T means 2 (Anx\x) ;(Txlx) for all xeD(T), the left
1 1
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side of this inequality being allowed to take the value =,

If ©(T)<w, one can show that D(T) 1is "big with respect to

or shorter "@ ~dense" in the sense of the following definition:

?

(1.1) Definition: A subspace S of H is called @ -dense, if for
every €>0 there is a projection pe Ot with pHcS and
?(pl)<c. We say that a property holds almost everywhere

(a.e.) on H, if it holds on a g-dense subspace.

Since P is faithful, a ¢-dense subspace is automatically norm
dense in H,
The intersection of countably many ¢-dense subspaces is ¢g-dense,
because @((N pi)L) < Z?(p;') which follows from (N pi)l = U pi <
< zpi and (0.2).
The fact that ?(T)<ub implies that D(T) is ¢@-dense has two

consequences:

(A) All operators we shall deal with will automatically belong to

M = {(Te N|D(T) is ¢@-dense}, in particular they will be meas-
urable in the sense of I. Segal [S]. It seems reasonable to call M
the set of strongly measurable operators., One can show that for
$,Te M the operators S+T, ST, S* are @ -densely defined and
closable and that M 1is a x-algebra when equipped with the "strong
sum" S5+T, the "strong product"” ST, and the adjoint operation *

(this is no problem and takes less than a page in print).
(B) ? can be written differently:
P(T) = inf(] 9 (A)) IZAi; T a.e.}
where EAiz T a.e. means Z(Aixlx); (Txlx) for all x in a

@ -dense subspace of D(T).

Taking the above as motivation we now use (B) as the definition

of the upper integral ?.

+

(1.2) Proposition: _g_) = @ on O,

Proof: Clearly §<(p on G.+, so we have to show Py P. Let Aeﬂl*
and Ai € df with ZAi» A a.e. Then there is a projection pe @
with EAi) A on pH and @(pt)<e. By (0.3) we have

@A) = @(pAp) + @ (P Ap1)C p(pAp) + I Al @ (ph)

and by (0.2) since IpAip)»pAp:
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< Lotpa;p) +HAl - ¢

S L9+ 1Al -« by (0.1).
So @(A) < {y(Ai), hence @(A) < P (A).

(1.3) Remark: If S,T,T € M’. P clearly satisfies

(i) S < T a.e. implies @(S) € p(T) (Isotony)
(ii) P(AT) = AP(T) for 1 > O (Positive homogeneity)
(iiid) If T = ?Tn weakly a.e. (i.e. (Tx]y) = Z(Tnx[i) for
all x,y in a y—dense subspace) then ?(T) < §¢(Tn)
(Countable subadditivity)
In particular, ?(5:?) S Ps) + ?(T) for S,Te M.

(1.4) Proposition: Let T & M*  and T € &’ with T = XTn
weakly a.e. Then &(T) = Jo(T ).

—— R
=]

k
Proof. Clearly (T) & ngT ). But T zZTn a.e., so P(T)» ?Y T )
k co 1

- 9({r ) = Z?(r ). Hence F(T) > 2?(Tn)-

(1.5) Corollary: For T = Sxde e vt and p>» 1 we have
o

?(Tp) - Xpd?(el).

o >

n
Proof: Taking Tn - S kpdex we obtain from the last Proposition
n L]
() = Tg(ty) = [ § 2Pdete,) = (aPapce)).
n=1 o

(1.6) Corollary: ? is positive linear on ut.

Proof: Let S,Te¢ M* and choose Sn,TnE Gf such that S = isn a.e.
T = ZTn a.e, Then S+T = 2(sn+Tn) a.e, and by Proposition (1.4)

we have

P(S+T) = J@(Sp+Ty) = J@(Sp) + [ @(Tp) = F(S) + J(T).

By the way, the argument of the above proof shows that ? is

even countably additive on Mt

(.7) 1f T,T e M* with T = [T wveakly a.e., then P(T) =
- {@(rn).
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The following is a noncommutative Beppo Levi theorem:

(1.8) Theorem: Let Tie,M+ with § @(Ti)<-. There is TeM' gsuch
that zTi converges weakly a.e. to T, and we have @(T) -
= }:§(Ti)'
Proof: Let Aik € at with Ti - zAik weakly on D(Ti). Let Do =
- {x€ Hlizk(Aikx|x) - 2"A;£2XH2<~}. Clearly, D, is a linear sub-
,

space and UDOC Do for unitary Ue ', so the projection p of H
onto 30 is in @ . Since Z(Aikxlx) = » outside D, we have

for ne N
an. € XAik
hence n?(p*)sz ?(Aik)<“ ’

so ?(p*) = 0, that is: Do is dense. The form ZAik on D° is
closed (easy to check), so there is a self-adjoint positive opera-
tor T on DC Do with T = zAik weakly on D (see e.g. [RS],

p. 278). We have T~ R, so Te N, and assuming for the moment that
D = D(T) 1is @ -dense, we have by (1.4) 9 (T) = zg)(Aik) - 2§(Ti).
Clearly, T = ZTi weakly on the ¢-dense space (Q D(Ti))f\D.

That D is @ ~dense follows from the fact that the two seem-
ingly different definitions of § given at the beginning coincide.
But we can also use a direct argument similar to the one just used
above: If T = fxdeA and ¢t 0, we have etHc D =D(T) and tet &T

on D. Since D 1is a core for the form IAik on D° we have

1 . . . .
tet £ ZAik on Do' OQutside Do this last inequality holds, too,
the form on the right being « there. So tets zAik a.e. (in fact:

everywhere on H) which implies
i
teley) < LgCa; ) < =,

Thus we have ?(et)<e for t sufficiently large. Hence D 1is

@-dense.

(1.9) Proposition: For Te M* and ued a partial isometry we
have &(u"Tu)< P(T),

Proof: Let A € A" with JA, >T a.e. We have Ju™A,u)u*Tu a.e.,
hence ?(u*Tu)‘ z?(u“Aiu)é ZT(Ai) by (0.1). So ?(u*Tu)$ ?(T).
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2. The Banach space L| and the normed sets LP

For 1| ¢ p<» we define L? -« (re H!?(ITIP)<G} and || T) =
-3 pyl/p P - P \/p
glT? for TelLP, 1f |T| j'.\dex. then ||1:|1p =(fx dgle,))
by (1.5), Using the properties of -@ and classical arguments we ob-

tain that LP is % -invariant and “T*np = ﬂT"p, that L' is a

normed (l-module and ? extends to a linear functional on Ll

satisfying

[T, = sup{F(sT)|se a, [s|¢1}

for Te€ Ll, and that (S|T) - ?(T*S) defines an inner product on L2.

We have @(ST) = P(TS) for S,Te L2 or Se @, Telj.

(2.1) Theorem: L‘ is complete.

Proof: It suffices to show that z“Tnhl < » implies convergence of
ETn in Ll. Decomposing into positive parts and applying Theorem
{(1.8) we obtain the desired resulrc.

(2.2) Monotone Convergence;;heorem: Let {Tn} be a sequence in Ll

with T > T on {1 D(T,) and suppose supd(T_)<=. Then
n 1 k o n

n+l
there is Te€ Ll such that Tn-> T weakly a.e. and Tn" T

in LI.

Proof: We have Sn = T Tnz»O a.e, and this readily implies

n+l_
Sne (L‘)*. By Theorem (1.8) the series 'ZSn converges weakly a.e.
n=
and in Ll, hence so does T = T + Z S..
n | 1 i

(2.3) Egoroff's Theorem: Let T,Tne M with Tn + T strongly a.e.

and let qe Q@ be a projection with ?(q)<w. Then there is

a subsequence {Tn } which converges to T "almost uniformly

on qH", i.e. for every >0 there is a projection p ¢ (l

- T

‘ in the
i|pH

with »p¢aq, ?(q-p)<£ and such that Tn

uniform norm, pH

The reader should be warned that (unlike the classical Egoroff Theo-
rem for functions) in the above theorem the conclusion does not

hold for the full sequence (Tn}. even gn the commuta:ive case!

This is due to the fact that for H = L°(X,u), A =L (X,u),

@(f) = ffdy for £ € a* "a,e. on H" is almost but not precisely

the same as "a.e. on X",
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(2.4) Dominated Convergence Theorem: Let T.'I‘n € M with Tn—* T

strongly a.e. and suppose there is A € (Ll)’ with lT-TnlgA

a.e. Then Tn + T in Ll.

Proof: In the case of functions on a measure space X, to estimate
“T-Tnn‘, one would for instance choose a set Q of finite measure
such that the integral of A over X\Q 1is less than € and A

is bounded on Q, choose a slightly smaller set P € Q according

to Egoroff's Theorem (for €' = ¢ divided by the bound of A on
Q), split the integral flT—Tn\ into three integrals (over P, Q\P,
and X\Q) and estimate, ending up with HT—Tnﬂ1 < 3¢ for n> n_,

o
This proof carries over to the noncommutative case. Because of (2.3)

we obtain the assertion for a subsequence {Tn }, but this suffices,
i
(2.5) Theorem: For B € L‘ let fB e q* be the functional
A ? (AB). The map BB fB is an isometric isomorphism of

1

L onto the predual (1 the space of ultraweakly continuous

*’
linear functionals on ( .

Proof: by standard arguments.

3. Identification of LP as interpolation space

M is a Hausdorff topological linear space when equipped with
the topology of convergence in measure which has the following sets

N(e) as a neighbourhood basis at O:

N(e) = {TeM| there is a projection pe® with pHecD(T), }Tp]<e¢,
and @(pl)<c}. The inclusions QR c M and Llc M are continuous.
For O0<8<! let (m,,Li)s be the interpolation space constructed

by the complex method.

(3.1) Theorem: LP = ( m‘Ll)l/p with equal norms, In particular,
L? is a linear space, i1 is a norm, and L? is complete

d .
under | 'p

Sketch of proof: With a bit of care we may follow the classical

proof for functions ([BLJ, p. 106).

a) For A = uIAle L? with IA| - S AdeA (0<a<b<=) the function
a

f(z) = u\A|pz (with a factor exp(czz-cp-z) depending on which
definitions one uses) is in the function space F wused for the

construction of ( a,L'),/P, and this together with a simple
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approximation argument shows that ch (OL.LI) (norm-decreas-

1/p
ing inclusion).

b) The classical proof of (L".L’)l/pc L? seems to use duality
between LP and Lq, but really uses much less, so we can easily

imitate it, Let A €((1,Ll)'/p. Then in particular Ae M, We can

approximate JAl (be it finite or infinite) by expressions
@(B\A\) where B has ﬂBIq = ] and is a linear combination of
pairwise orthogonal projections commuting with J|A].

I1f feF with £(1/p) = A = ulAl, consider the function h(z) =
= ?(BQ(l-z)u’f(z)). Applying the three lines theorem to h, we
get |h(1/p)]| = @(BlA]) < lfl, hence ﬂAﬂpg l£ which proves the
norm-decreasing inclusion (a.,L])l/p(:Lp.

The rest is an easy consequence of well-known facts from complex

interpolation:

(3.2) Corollary: (i) L2 is a Hilbert space.
(ii) L? is reflexive for l<¢pem,
(iii)  (LP)* = 1?7 where 1+ 1.y,
P q
Proof: (i) Being an interpolation space, Lz is a Banach space and
we have already seen that its norm comes from an inner product.

(ii) This is obtained by interpolation between L! and Lz. and

between Lz and (R, using that L2 is reflexive (see_[C], 2.12).

def L

(iii) is true for 1 ¢p 2 by interpolation since (LI)* = (R
and (Lz)* - L2 (see [BL], Corollary 4.5.2). Since L?

flexive by (ii), the result holds for 2 <p <=, too.

is re-
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