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Zusammenfassung

Ich befasse mich mit der Verteilung von Satellitengalaxien-Überresten in
der Milchstraßen-Umgebung mit Hilfe von N-body-Simulationen durch die
Kombinierung vollständiger N-body-Milchstraßen-Modelle mit realistischen,
hochauflösendenN-body-Satelliten undkosmologischmotiviertenAnfangsbe-
dingungen. Für dieWahl des Codes führe ich einen Benchmark-Test für frühere
N-body-Simulationen der Milchstraßen-Umgebung durch, um zu beweisen,
dass Gadget-2 mit moderneren Codes vergleichbar ist, sowie, dass Gadget-4
eine verbesserte Impulserhaltung gegenüber Gadget-2 bietet. Anschließend
simuliere ich mit Gadget-4 die Verteilung von Satelliten-Überresten in der
Milchstraßen-Umgebung. Sterne werden weniger effizient aus den Satelliten
herausgerissen als Dunkle Materie (DM), und es finden sich größere Anteile
stellarer Überreste in den Milchstraßen-Zentralregionen, wo stellare und DM-
Überreste unterschiedliche Ausrichtungen haben und sie nicht signifikant än-
dern, wenn die Scheibe derMilchstraße anfänglich gekippt ist. Daraus schließe
ich, dass die Anfangsbedingungen für die Satelliten mehr Einfluss auf die Aus-
richtung der lokalen Überreste haben als die Scheibe, und dass die DM- und
stellaren Überreste räumlich nicht korreliert sind. Zum Schluss präsentiere
ich eine Untersuchung des Balkens in einem N-body-Milchstraßen-Model, das
den Beobachtungsbedingungen unserer Galaxie entspricht. Der in dieser Si-
mulation gebildete starke Balken ist ein langsamer Rotator, der die Kinematik
und Dynamik der lokalen Scheibe beeinflusst und keine signifikante Wölbung
aufweist.

Summary

I address the satellite debris distribution in the MilkyWay (MW) environment
by means of N-body simulations, combining full N-bodyMW models with re-
alistic high-resolution N-body satellites and cosmologically motivated initial
conditions. For the choice of the code, I perform a benchmark on previous
N-body simulations of the MW environment, proving that Gadget-2 performs
similar to more modern codes, and that Gadget-4 offers an improved momen-
tum conservation compared to Gadget-2. Then, with Gadget-4 I simulate the
satellite debris distribution in theMWenvironment. Stars are stripped less effi-
ciently than dark matter (DM) from the satellites and larger fractions of stellar
debris are found in the MW central regions, where the stellar and DM debris
have different orientations and do not change them significantly if theMWdisc
is initially tilted. I conclude that the satellite initial conditions have more im-
pact than the disc on the local debris orientation, and that the DM and stellar
debris are spatially uncorrelated. Finally, I present a study of the bar in an N-
bodyMWmodel that matches the observational constraints of the Galaxy. The
strong bar formed in this simulation is a slow rotator that influences the local
disc kinematics and dynamics and does not present significant buckling.
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Chapter 1

Introduction: the Milky Way and
the satellite streams in a
cosmological context

1.1 Milky Way Galaxy: history of observations

The Milky Way Galaxy (hereafter MW), also referred to as the Galaxy, is the
large system of stars and gas that hosts the Solar system and our planet, the
Earth.

Observations of the MW and discussions around its nature are dated old in
our history. Already in the IV century B.C., in his work Meteorologica, Aristo-
tle (384 B.C. - 323 B.C.) reported the theory of Democritus (c.a. 460 B.C. - c.a.
370 B.C.) and Anaxagoras (c.a. 500 B.C. - c.a. 428 B.C.): they interpreted the
MW as a collection of stars, visible from the Earth in the night sky. Aristotle
himself was against this theory. Based on geometrical considerations about the
shadow of the Earth projected on these stars, he claimed that they would not
be otherwise always visible at the same position as they were, because of the
Earth shadowing different regions of the sky from the Sun, during the orbital
revolution of the Sun in a year. Let us remember that at that time the Earth
was thought to be at the centre of the Universe, and the Sun was thought to
revolve around it. In the Middle Ages, the position of many Middle Eastern
astronomers and scientists, like Ibn Qayyim Al-Jawziyya (1292 - 1350), took
distance from the theory of Aristotle. They stated in fact that the MW is com-
posed of stars.

A huge conceptual step forward regarding the understanding of the local Uni-
verse (and of the MW) has been done in the XVI-XVII centuries with some
milestone works in modern astronomy and physics. The works De Revolution-
ibus Orbium Coelestium by Nicolaus Copernicus (1473 - 1543), Astronomia Nova
andHarmonices Mundi by Johannes Kepler (1571 - 1630) and Philosophiae Natu-
ralis Principia Mathematica by Isaac Newton (1643 - 1727) were fundamental to
1) falsify the previous Aristotelian geocentric view of the Universe, in favour
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CHAPTER 1. MILKY WAY AND SATELLITE STREAMS

of a model with the Sun at the centre; 2) provide geometrical evidence for the
orbital empirical laws of the planets around the Sun; 3) provide a Universal law
of gravitation by which we can describe the mutual attraction of astronomical
objects in the Universe.

Regarding the MW, the work of Galileo Galilei (1564 - 1642), the Sidereus
Nuncius, inlcudes one of the first modern scientific, observational evidences for
stars composing theMW.Galileimade observations of these stars using the first
lenses and telescopes available at his epoch. In prosecutionwith this, Frederick
William Herschel (1738 - 1822) made a significant step forward: by means of
stellar counts in theMWhe reconstructed the shape of the Galaxy as a disc-like
or flattened structure made of stars. He assumed however the Sun to be at the
centre of the MW disc (see the Figure 4 in the original work of Herschel 1785).

Later, Kapteyn (1922)measured the positions of the stars in theMWand re-
defined the location of the Sunwith respect to theGalactic Centre (GC), placing
it not anymore in the GC itself, but with some offset. However, the estimated
distance, orGalactocentric distance (GCd), was stillmuch lower (∼ 2 kpc) than
the currently estimated one (see Section 1.2.1 below).

Until the early 1900s it was commonly assumed that the MW was enclos-
ing all the stars of the once though-to-be Universe. The measurements of the
redshifts of astronomical objects by Slipher (1913), the better definition of the
distance of objects like the once called “Andromeda nebula” (today known to
be another, nearby galaxy, the Andromeda galaxy, or M31 according toMessier
Catalogue, see Hubble 1929b; Curtis 1917) and the discovery of the expansion
of the Universe (Friedmann 1922; Lemaître 1927; Hubble 1929a) helped under-
standing that the MW is a separate galaxy among many others in the whole
Universe.

1.1.1 Goal of the thesis and structure of this chapter

The main goal of this thesis is to describe, by means of numerical simulations,
the distribution of the tidal debris of the satellite galaxies of the MW in its en-
vironment. Therefore, in this introductory chapter, I present a review of what
is understood about our Galaxy and its satellite galaxies, also in the light of
modern cosmology.

First, I review the current understanding of the MW stellar disc, of its stellar
bulge, its dark matter (DM) halo and its satellite galaxies. In fact, these are
all the MW components and objects that I employed in the N-body simulations
presented in this thesis.

After that, I review the cosmological theoretical framework by means of
which theMW and its satellite galaxies can be understood. Specifically, I give a
summary of themain equations that describe the evolution of the Universe and
I focus additionally on the formation of structures like theMWand its satellites.

Subsequently, I adapt the introductory section of my first author publica-
tion, in which I describe the state-of-the-art knowledge of the tidal streams of
theMW satellites. I then introduce the main research goal of this thesis, i.e. the
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CHAPTER 1. MILKY WAY AND SATELLITE STREAMS

numerical study on the distribution of the satellite debris in our Galaxy.
Last, I present the current understanding of the MW bar, as the starting

point for an additional collaborative research on bar formation and evolution in
aMWhigh-resolutionN-body simulation. This additional research is intended
to give more details about some aspects of the dynamics of our Galaxy (in this
case, the formation and evolution of a strong bar in its centre), and to provide
a new N-bodyMW set-up, that is competitive both in terms of faithfulness to
the observations of the Galaxy and in terms of numerical resolution.

1.2 Milky Way: current understanding

The current picture of theMWdescribes it as a disc-like structure made of stars
that rotate around the GC. Other components of the MW include a central con-
centration of stars, called classically stellar bulge due to its spheroidal shape, and
a halo made of stars and of an additional component, the cold DM (CDM). To
date, the DM component has not been observed. As I will show later in this
section, its dynamical effects on the other MW components are proved by ex-
tended literature. However, we have not detected any DM particle candidate
yet. A recent, detailed review on the observational properties of the MW is
given in Bland-Hawthorn & Gerhard (2016, hereafter BHG16). Additionally,
the MW is surrounded by a number of satellite galaxies.

For the sake of simplification, the three main MW components that I am
going to describe are its disc (made of stars, gas and dust), its stellar bulge,
and its DM halo. This simplification matches the N-body realisations of the
MWmodels that I employed in this thesis 1.

1.2.1 Galactic disc

Observationally speaking, the MW disc is a peculiar case of galactic disc, since
we can observe it from inside it and we can study in detail its gaseous compo-
nents, such as the neutral hydrogen HI (Kalberla & Kerp 2009, for a review),
a large multitude of its stars - for instance Rix & Bovy (2013), but also the re-
cent large catalogue of stellar positions, proper motions and radial velocities
from the Gaia Data Release 2 (hereafter DR2), as in Gaia Collaboration et al.
(2018) - and the interstellar dust (Draine 2003, for a review). The release of
the Gaia DR2 has provided positional and projected kinematic information for
more than 1 billion stars of the MW and radial velocity spectroscopic informa-
tion for ∼ 7 million stars, allowing a larger understanding of our Galaxy.

1As pointed out by BHG16, it is unlikely that bulge, disc and stellar halo are completely
separated components, in the sense that it is not possible to clearly distinguish where a compo-
nent begins and another ends. Also, well-defined, individual components can strongly overlap,
because of the common underlying gravitational potential and of stellar mixing mechanisms,
posing questions to their distinction (see BHG16 and references therein). However, the sim-
plification adopted here eases the study of the MW via numerical simulations.
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CHAPTER 1. MILKY WAY AND SATELLITE STREAMS

General properties of the thick disc and of the thin disc

The MW disc consists of two components, the thick disc and the thin disc, with
a thick disc mass Mthick = (6 ± 3) × 109 M� and a thin disc mass Mthin =
(3.5 ± 1) × 1010 M�, therefore the thick disc mass is one fifth of the thin disc
mass (BHG16). The thin and the thick disc are typically modelled as density
exponential profiles, as in Gilmore & Reid (1983). Combining the results of
Gilmore & Reid (1983) with the ones of Freeman (1970), the density profile
that describes the mass distribution of the thin and thick disc can be written in
the form

ρ(R, z) = ρ(z = 0, R = 0)× exp
(
− R

h

)
× sech2P

( z
z0

)
, (1.1)

where h is the disc scale length, z0 is the disc scale height, and where P is the
ratio between the mean square velocity dispersion values of the disc and of
the sampled populations (Gilmore & Reid 1983). For a sampled population
uniquely identified with the thin or thick disc, then P = 1. An application of
this is shown for instance in Moetazedian & Just (2016, hereafterMJ16), where
they adopted P = 1 for the thin disc in their MW N-bodymodels.

The best values of the thin and thick disc scale height and scale length are
set to z0,thin = 0.3 kpc and hthin = 2.6 kpc for the thin disc scale height and
scale length, respectively, and z0,thick = 0.9 kpc and hthick = 3.6 kpc for the thick
disc scale height and scale length, respectively (Jurić et al. 2008, BHG16). As a
matter of simplification, in the simulations that I am going to discuss and study
in this thesis the less massive thick disc is ignored, and all themodels start with
an initially thin and cold disc only (i.e. a disc where the stars are distributed
with an initially small vertical scale height and with an initially small vertical
velocity dispersion).

Rotation curve

That galactic discs have rotational properties in other galaxies than the MW is
a fact known since many decades ago (Rubin & Ford 1970; Rubin et al. 1980).
For the specific case of our Galaxy, already Oort (1927) could determine the
constants describing the rotational properties of the MWdisc in the Sun neigh-
bourhood (a more recent determination of the Oort’s constants can be found
in Bovy 2017).

The rotation of the disc can be physically interpreted in terms of dynamical
support by the mass enclosed within each (projected or physical) radius R, at
which the circular velocity curve Vcirc(R) is reconstructed from the observed
redshifts. For a given galaxy, the total matter that contributes to the rotation of
any test particle in the disc is the sum of all the components enclosed within
the GCd R of the particle, as

Vcirc(R) =

√
G
M(< R)

R
, (1.2)
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CHAPTER 1. MILKY WAY AND SATELLITE STREAMS

under the simplifying assumption of spherical distribution of the mass M en-
closed within radius R. Here, G = 6.678 × 10−11 m3 s−2 kg−1 is the universal
constant of gravitation.

The contribution of Rubin et al. (1980) was discovering that the rotation
curve of the disc galaxies is flat at large GCds. This is not expected if only the
visible matter (stars and gas inside the disc and the bulge) were dynamically
sustaining the rotation curve. This means that there is an additional term of
mass sustaining the rotation of gas and stars in the disc, since the disc, bulge,
bar and stellar halo alone would not be enough to interpret the observed rota-
tion in terms of Equation (1.2).

Regarding the estimates of the circular velocity, using information collected
from literature, BHG16 reported a circular velocity Vcirc = (238 ± 15) km s−1

at the GC distance R0 of the Sun. This is compatible with other results from
previous and subsequent literature.

By applying the tangent point method on observed sources of HI (Burton &
Gordon 1978) and COmolecules in the MW, one can fit a rotation curve model
to these data anddetermine the rotation curve close to the Sun (Mróz et al. 2019,
and references therein). Using data from 773 classical cepheids, Mróz et al.
(2019) found that, at their assumed distance of the Sun R0 = (8.122 ± 0.031)
kpc from the GC (being this the result of GRAVITY Collaboration et al. 2018),
the rotation curve has a value Vcirc = (233.6 ± 2.8) km s−1. From the phase-
space data of more than 23000 luminous red giant stars, Eilers et al. (2019)
could fit a rotational model to the MW disc where the circular velocity at the
Sun’s position is Vcirc = (229.0 ± 0.2) km s−1. They reported however a sys-
tematic uncertainty at ∼ 2 − 5% level, that they mostly attributed to the lack
of knowledge of the density profile related to the distribution of the sampled
population of stars.

Regarding the shape of the curve, always Eilers et al. (2019) found that the
MW rotation curve external to the Sun and until 25 kpc of GCd decreases very
slowly, with a corresponding gradient (−1.7 ± 0.1) km s−1 kpc−1, and even if
there is a systematic uncertainty of 0.46 km s−1 kpc−1 in their result, they stated
that this uncertainty is not enough to eliminate the measured decrease of the
rotation curve. The presence of a negative gradient in Vcirc was found also in
Mróz et al. (2019), that quantified it to be (−1.34 ± 0.21) km s−1 kpc−1 in the
GCd range 4 kpc < R < 20 kpc.

From the analysis of the rotation curve it is possible to gain more informa-
tion about the structures that compose the Galactic disc. Sofue et al. (2009)
collected data from previous, extended literature on the rotation of different
tracers in the disc. They rescaled these values to the solar values (R0, V0) = (8
kpc, 200 km s−1). They fitted the obtained velocity data with a rotation curve
model coming from the contribution of an exponential disc (included ring-like
structures, spiral arms and bar), a bulge and a semi-isothermal DM halo (Kent
1986). They reported a dip in the curve at 3 kpc GCd and a dip at 9 kpc GCd,
slightly outside the GCd of the Sun. Since they took into consideration the con-
tribution of the mass distribution of the Galactic bar, the spiral arms and the
rings, they were able to explain the dip at 3 kpc as due to the inner Galactic bar,
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and the dip at 9 kpc as due to an external ring at 11 kpc, that they suggested
may be associated with the Perseus spiral arm.

Therefore, the emerging picture is that the rotation curve of the MW is al-
most flat for a wide range of GCds enclosing the position of the Sun, and that
the dips present in it at different GCds reveal the disc substructure and the lo-
cal inhomogeneities in the disc density distribution, like for instance the spiral
arms. The almost flat profile of the rotation curve, combined with its value at
the GCd of the Sun of ∼ 230 km s−1, reinforces the evidence of an underlying
DM halo, with a virial massM200 = (1.1± 0.3)× 1012 M� (BHG16), sustaining
the rotation of the disc. For the definition of virial mass, see Section 1.2.3.

Distance of the Sun from the Galactic centre

The current knowledge of the distance of the Sun from the GC comes from a
number of observational approaches (Gillessen et al. 2013). The value adopted
by BHG16 in their review of the MW is R0 = (8.2± 0.1) kpc. More recent stud-
ies set it to R0 = (8.0± 0.3) kpc (Camarillo et al. 2018), or R0 = (8.1± 0.2) kpc
(Griv et al. 2019). The current best estimate of R0 is given by The GRAVITY
Collaboration et al. (2019). They combined astrometric techniques (recently
supported by the implementation of the interferometric instrument GRAVITY)
with spectroscopic techniques, to follow the star S2, that orbits around the su-
permassive black hole Sgr A∗ placed at the centre of the MW. They estimated
that R0 = (8.178 ± 0.013stat. ± 0.022sys.) kpc, a very high precision measure-
ment, considering the corresponding low errors. Here, the subscripts “stat.”
and “sys.” indicate the statistical and systematic uncertainty, respectively.

In the context of this thesis, the simulations discussed in Chapter 2 and
in Chapter 3 are performed with MW models where MJ16 assumed R0 = 8.0
kpc. In Chapter 4 the value assumed in theMWmodel by D’Onghia & Aguerri
(2020) is R0 = 8.1 kpc. Both values are generally aligned with the recent esti-
mates ofR0. However, the value of D’Onghia & Aguerri (2020) is the closest of
the two to the best estimate of The GRAVITY Collaboration et al. (2019), and
in this sense it is an improvement from the value ofMJ16.

1.2.2 Galactic bulge
The bulge is usually described as a spheroid made of stars, that occupies the
central region of a disc galaxy. As for the kinematics, from surveys like BRAVA
(Bulge Radial Velocity Assay, Rich et al. 2007), Kunder et al. (2012) found that
the bulge is centrally dominated by random motions, with a corresponding
velocity dispersion of up to ∼ 120 km s−1, but it shows also a residual mean
rotational velocity profile that goes up to ∼ 75 km s−1 at a Galactic longitude
l ∼ 4o.

There are two ways of describing the MW bulge (and the bulges in disc
galaxies). The first way is the classical bulge picture and the second way is the
pseudo-bulge picture.

According to the classical bulge picture, the Galactic bulge is formed in the
centre of the MW, as a result of the merger of the MW with its satellite galax-
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ies (BHG16). Since stellar populations in the bulge are much older (10 − 12
Gyr) than the ones of the disc, then according to the classical bulge picture, the
bulge, together with the thick disc, should have been formed by the contribu-
tion of one of the last minor mergers experienced by the MW, unless the disc
contains old stellar populations in its very inner regions (Wyse 2009). Among
the other factors that may have contributed to the subsequent bulge build-up
there can be gas-inflows to the centre of the MW after a merger with a smaller
galaxy, when gas can lose angular momentum and end in the central regions of
the host Galactic disc (Mihos & Hernquist 1996). A summary of the definition
of classical bulges is provided by Kormendy & Ho (2013), according to which
classical bulges reproduce the observational features of the elliptical galaxies,
and particularly have half-light radius re, surface brightness at re, µe, and loga-
rithm of the central velocity dispersion log(σ) that lie in the fundamental plane
of elliptical galaxies (for the fundamental plane, see Djorgovski & Davis 1987).

In the pseudo-bulge picture, instead, it is by means of slow, secular pro-
cesses internal to the MW (and to disc galaxies in general) that matter redis-
tributes forming the bulge in the centre of the disc (Kormendy & Ho 2013). A
distinctive feature of the pseudo-bulge is the bimodal distribution of its tracers,
such as the red-clump giant stars, which gives it the configuration of an X-shape
or a boxy/peanut (B/P) shape (Portail et al. 2015a, hereafter P15). As pointed
out in BHG16, recent works from McWilliam & Zoccali (2010), Nataf et al.
(2010) andWegg&Gerhard (2013b) showed that theMWbulgemaybe consid-
eredmore like a component of theMWbar. In this sense, the pseudo-bulgemay
be connected somehow to the formation of the Galactic bar. BHG16 concluded
that in the MW the evidence points towards most of its bulge being built-up
as a pseudo-bulge via disc instabilities and secular evolution, while the classi-
cal bulge component must have been very small (originally less than 8% of the
current bulge mass), if ever built.

From the density distribution of red clump giants and from the stellar kine-
matic data of Kunder et al. (2012), P15 applied different MW N-bodymodels
inclusive of a DM halo and of a barred disc, to infer the value of the B/P bulge
dynamical mass (stars plus DM) sustaining the observed kinematics. They
found a valueMb,dyn = (1.84 ± 0.07) × 1010 M�. Calculating the mass-to-light
andmass-to-clump ratios in theirmodels and comparing them against different
stellar population synthesis models, they found a total stellar B/P bulge mass
Mb,star = (1.25− 1.6)× 1010 M�.

Therefore, considering all these recent advancements in the study of the
Galactic bulge, this one appears to be a structure formed for most part as a con-
sequence of the secular evolution of the Galactic bar, and with a characteristic
B/P shape. The classic component of the bulge is currently expected to be sub-
dominant in terms of mass, and the total bulge mass (pseudo-bulge together
with classical bulge) is around∼ 1.7−1.8×1010 M�, smaller than the disc mass
reported in Section 1.2.1.

9
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1.2.3 Galactic halo
WithMWhalowe can refer to twopossible components: the stellar halo and the
DM halo. Since in our simulations only the DM halo is included, and since the
stellar halo represents a small fraction of the total stellar mass, with Mhalo,∗ =
(1.4 ± 0.4) × 109 M� (Deason et al. 2019), I am going to introduce the DM
halo only, because of its employment in building and setting up stable MW
N-bodymodels.

Dark matter halo

Current modelling of the MW includes a spheroidal halo, made of DM and
spatially distributed with a triaxial shape (MJ16, Allgood et al. 2006, for in-
stance)2. Assuming the presence of a DM halo in our Galaxy is important for
several reasons.

First, as explained later in Section 1.3, according to the current standard
cosmological model 84% of matter in our Universe is in the form of DM, while
baryonicmatter (the same formofmatter that stars, planets, gas and interstellar
dust aremade of) represents only its 16%, with a ratio betweenDM content and
baryonic matter content of ∼ 5.38 in favour of DM. Therefore, if this is true, it
is highly expected that DM is present as the dominant mass component of the
MW, in the form of a spheroidal halo according to the current galaxy formation
models.

Second, DM is required for dynamical equilibrium reasons, in order to ex-
plain the rotation curve of the MW disc. As I showed in Section 1.2.1, the MW
disc has a flat rotation curve on GCds larger than few kpc. The disc stellar and
gaseous components alone are not massive enough to sustain such flat rotation,
that is otherwise expected to decay at large GCds R on the disc with a Keple-
rian fashion R−1/2. The presence of a DM halo dynamically sustaining the disc
would allow it to rotate at larger radii with support from the DMmass. In fact,
following and expanding Equation (1.2), the circular velocity at GCdR on the
disc can be described in terms of the underlying disc, bulge, and halo integrated
masses as

Vcirc(R) =

√
G(Mb(< R) +Md(< R) +Mh(< R))

R
(1.3)

where Mb(R), Md(R) and Mh(R) are the bulge, disc and halo mass enclosed
within GC distance R, respectively.

Third, always within the predictions of the standard cosmological model,
the formation of galaxies like the MW happens via a first gravitational collapse
of DM into spheroidal, triaxial haloes, followed by the subsequent collapse of
gas into the gravitational wells created by these DM haloes. If DM in the MW
exists, it should be in the form of a spheroidal structure that surrounds our
Galaxy. For the formation of structures in the Universe, see Section 1.3.2.

2For the sake of simplicity, the MW models described in this thesis adopt a spherical DM
halo. See again MJ16, for example.
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Currently, the missing piece of information about DM is the discovery of a
fundamental particle for DM. Since addressing the properties of DM at funda-
mental physics level goes far beyond the scope and topic of this thesis, I refer
the reader to Feng (2010) for a review on DM particle candidates.

Hernquist and Navarro-Frenk-White density and mass profiles

Among the density profiles employed in modelling the MW DM halo, I will
mention the two types that have been employed to build the numerical MW
models that I used in my simulations. These are the Hernquist and Navarro-
Frenk-White (NFW) halo models.

The Hernquist halo (Hernquist 1990) has a density profile in the form

ρH(r) =
M

2πa3

(r
a

)−1(
1 +

r

a

)−3

, (1.4)

and has a finite total mass represented by M . The density profile is cuspy in
the centre, with an r−1 dependence on the radius. This profile was introduced
to approximate the density profiles of elliptical galaxies, but can be applied to
bulges as well and has the advantage of allowing a halo distribution function
(DF) that is dependent only on energy and is independent on direction (Yurin
& Springel 2014). The corresponding, cumulative mass profile is

MH(r) = M
(r
a

)2(
1 +

r

a

)−2

. (1.5)

For large r, the cumulative mass tends toM .

TheNFW(Navarro et al. 1995b) density profile comes empirically fromdensity
fits to DM haloes in DM-only cosmological simulations of structure formation
and evolution. It has the form

ρNFW(r) = ρ0

( r
rs

)−1(
1 +

r

rs

)−2

, (1.6)

where rs is the scale radius. The advantage of the NFW model is, as said, the
goodfit of its density profile toDMhaloes in cosmological simulations at awide
range of scales (Navarro et al. 1996). The mass density has the same inner cusp
as in the Hernquist profile, proportional to r−1. The cumulative mass of this
model is obtained as

MNFW(r) = 4πρsr
3
s

[
ln (1 + r/rs)−

r/rs

1 + r/rs

]
, (1.7)

and it diverges logarithmically to infinite. A way to avoid this divergence is to
truncate the integratedmass to the value of virialmassM200, i.e. the cumulative
mass within the virial radius r200, which is the radius at which the enclosed
averagemass density is∼ 200 times above the critical cosmological density (for
the critical cosmological density, see Section 1.3.1), as defined in Navarro et al.
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(1995a). The simplification here is again that the halo is treated as spherical and
not triaxial, and therefore the value of M200 represents an underestimation of
the actual virial massMvir, i.e. the mass of the virialised host galactic halo, and
this underestimation is around 16% its value (BHG16 and references therein).
However, for the case of the MW BHG16 reported an actual virial massMvir =
(1.3 ± 0.3) × 1012 M�, that, considering the uncertainties, is compatible with
the valueM200 = (1.1± 0.3× 1012) M�, and the approximation of usingM200 is
anyway consistent with the usage of spherical haloes truncated at r200 for the
MWmodels presented in this thesis.

It is possible to obtain aHernquist profile that approximates the correspond-
ingNFWprofile reasonablywell. In fact, by imposingM = M200 from Equation
(1.4), and defining the NFW halo concentration parameter c ≡ r200/rs, then for
the best-matching Hernquist profile the scale radius a is given by

a = rs
√

2(ln(1 + c)− c/(1 + c)) . (1.8)

More details on this procedure can be found in (Springel et al. 2005a).

1.2.4 Milky Way satellites
TheMW is surrounded by a number of satellite galaxies. As I will recall in Sec-
tion 1.3.2, these satellites are explained as the observable remnants of smaller
mass (dwarf) galaxies that have been continuously falling, orbiting and merg-
ing into the MW environment after its buildup (Newton et al. 2018). Nowa-
days, there is a vast literature of observations of these galaxies, and the im-
provement of the observational techniques helps unveil even fainter satellites
of the MW.

Census of the Milky Way satellites

Two of the most notorious and closest satellites are the Small Magellanic Cloud
and the Large Magellanic Cloud (hereafter SMC and LMC, respectively), dis-
tant ∼ 62 kpc and ∼ 50 kpc from the Sun, respectively (Pietrzyński et al. 2013;
Graczyk et al. 2014). The first documented observation of the LMC is dated X
Century, when the Persian astronomer ’Abd al-Rahman al-Sufi (903 - 986) re-
ported the observations done on this object in his work, the Book of Fixed Stars.

In the last century, the understanding of the nature of the MW and of the
other “nebulae” as individual galaxies has helped understanding the satellite
galaxies of the MW as well. McConnachie (2012) counted up to ∼ 30 satel-
lite galaxies in the MW environment. Extending the count to the entire Local
Group (LG), including the field dwarf galaxies and the satellite galaxies ofM31,
then the total count reached ∼ 100 objects. For the MW, the census has been
increased further by subsequent discoveries of faint substructures like the pair
Carina II and III in the proximity of the Magellanic Clouds (Torrealba et al.
2018), with inferred DM masses as small as ∼ 106 M� (Li et al. 2018), or also
the discovery of the more massive, diffuse dwarf galaxy Crater 2 (Torrealba
et al. 2016). Torrealba et al. found that Crater 2 has a half-light radius of 1.1
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kpc, and therefore it is the fourth largest MW satellite after the LMC, the SMC
and the Sagittarius (Sgr) dwarf.

To date, a total of ∼ 60 satellite galaxies of the MW have been discovered
and confirmed, and a boost to their discovery has come from digital surveys
(Simon 2019). Using the combined census of satellites from the SDSS (Sloan
Digital Sky Survey, with the Data Release 9, Ahn et al. 2012) and the DES (Dark
Energy Survey, Bechtol et al. 2015; Drlica-Wagner et al. 2015) surveys, Newton
et al. (2018) applied a Bayesian inference method starting from the Aquarius
(Aq) cosmological simulations of Springel et al. (2008) and extrapolated the
luminosity function (LF) of theMW satellites within 300 kpc from theMWGC,
reaching a total estimated number of 124+40

−27 satellites, with the higher absolute
magnitude in V band being MV = −9, and with a lower magnitude cut at
MV = 0, this corresponding to the faintest dwarf galaxies.

Missing satellites problem

One of the most important challenges of the ΛCDMmodel was to explain why
DM-only cosmological simulations predict a number of substructures (i.e. the
underlying haloes of the MW satellites counterparts) higher than the actual
number of satellites observed around the MW (Klypin et al. 1999). The prob-
lem is called missing satellites problem. Specifically, the prediction that many
massive DM subhaloes do not have massive observed satellite counterparts
(with stellar luminosity L > 105 L�) is known as the too big to fail problem
(Boylan-Kolchin et al. 2011).

These problems are claimed to be solvable if one takes baryonic physics and
baryons-involving processes (e.g. photoionisation, tidal stripping and disrup-
tion, supernova feedback) into account in the numerical recipes used to sim-
ulate the formation of structures in the Universe (Bullock et al. 2000; Macciò
et al. 2010; Tomozeiu et al. 2016). The presence of baryonic physics redistributes
baryons in the galactic environment, having an effect on the gravitational po-
tential and on the distribution of the DM, with consequences on the entire evo-
lution of the satellite galaxies. As an example of this, following the approach
of Zolotov et al. (2012), Brooks et al. (2013) found that supernova feedback
and tidal stripping in dwarf galaxies have the effect of reducing the number of
star forming massive satellite galaxies to a number compatible with the ones
observed around the MW.

1.3 Lambda cold dark matter cosmology as a frame-
work for theMilkyWay and its satellite galaxies

1.3.1 Lambda cold dark matter model
The main goal of this thesis is addressing the distribution of the satellite tidal
debris in the MW environment by means of numerical simulations. This re-
quires a cosmological framework in which to extract the information about the
MW halo properties and the distribution of the MW satellites around it (MJ16,
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Springel et al. 2008), as well as recipes to describe the dwarf galaxies employed
to study their debris (Macciò et al. 2017, hereafter M17): the context of this
study is an extension of the modern standard cosmology to the local MW envi-
ronment. Therefore, I am going to review the main concepts of cosmology that
represent the context in which I carried my study.

The general cosmological framework in which we describe the formation of
galaxies like the MW and its satellites is the Lambda cold dark matter model,
or ΛCDMmodel (Hinshaw et al. 2013; Planck Collaboration et al. 2018). Ac-
cording to the ΛCDMmodel, the space-time metrics of the Universe obeys to
Einstein’s general relativity by means of the field equations (Einstein 1915). In
this context, the Universe has expanded from an initial time t0, corresponding
to the Big Bang singularity (Penzias & Wilson 1965; Dicke et al. 1965). The
expansion is currently accelerated because of the so-called dark energy (DE),
with acceleration measurable on scales larger than 1000 Mpc (Riess et al. 1998;
Perlmutter et al. 1999; Cervantes-Cota & Smoot 2011).

The classic Big Bang model has been modified by means of an inflationary
model. In fact, there is need for an inflation process after the Big Bang, in or-
der to expand the Universe from a microscopic scale to its current scale, and
in order to the explain the currently measured values of the cosmological pa-
rameters, the isotropy of the Cosmic Microwave Background (CMB) radiation
(see below) and the flatness of the Universe (for an overview of the Modern
Cosmology, including the inflationary theory, see for instance Liddle 2003).

The field equations are expressed for a four-dimensional space-time (three
space coordinates and one time coordinate). They are a system of differential
tensorial equations in the form

Rµν −
1

2
Rgµν − Λgµν =

8πG

c4
Tµν , (1.9)

where µ and ν are tensorial indexes, Rµν is the Riemann tensor, R is the Ricci
scalar, gµν is the metric tensor, Λ = 1.09 × 10−56 cm−2 3 is the cosmological
constant (associated with a negative energy density term, and therefore con-
nected with the DE), and Tµν is the energy-impulse tensor. As a note, the sign
in front ofΛ is subject to the different sign conventions employedwhen describ-
ing Equation (1.9) (see the Table of sign conventions of Misner et al. 1973).
The field equations connect the derivatives of the metrics to the energy-matter
content of the Universe.

The Universe is observed to be homogeneous and isotropic on large scales
(Yadav et al. 2010; Saadeh et al. 2016; Planck Collaboration et al. 2018). In this
perspective, one can adopt the Robertson-Walker metrics with space-time in-
terval

ds2 = −c2dt2 + a(t)2
[ dr2

1− kr2
+ r2dω2

]
, (1.10)

where c = 2.997×105 km s−1 is the light speed for vacuum, dω2 = dθ2+sin2 θdφ2

3For the values of the cosmological constants and parameters employed in this chapter, see
http://pdg.lbl.gov/2019/reviews/rpp2018-rev-astrophysical-constants.pdf.
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is the solid angle in polar coordinates (θ, φ), and k is the curvature of the Uni-
verse (Robertson 1927; Liddle 2003). a(t) is the scale factor of the Universe,
and it is a function of the cosmic time. At our epoch, which corresponds to the
current age of the Universe, t0 = 13.799 Gyr and a(t0) = 14. The dynamical
evolution of the Universe is then obtained by combining Equations (1.9) and
(1.10) into the Friedmann equations (Friedmann 1922; Liddle 2003),{

ȧ2+kc2

a2
= 8πGρ+Λc2

3
ä
a

= −4πG
3

(
ρ+ 3p

c2

)
+ Λc2

3
.

(1.11)

In these last equations, ρ expresses the matter density, while p is the pressure
term associated with radiation (and hence 3p/c2 is the corresponding density
term). Another fundamental quantity is H ≡ ȧ/a and it is called Hubble ex-
pansion rate.

The redshift z is related to a(t) by

z = 1/a(t)− 1 ≡ z(t) . (1.12)

For t approaching the epoch of the Big Bang (tBB = 0), then z → ∞ and a →
0. In our epoch (t = t0), z = 0 and a = 1. I also introduce two different
types of coordinate frames adopted in Cosmology: the first is the comoving
coordinate frame, the second is the physical coordinate frame. The relation
between physical coordinates ~r and comoving coordinates ~x is

~r = a(t)~x . (1.13)

The relative position of two points will remain the same in comoving coordi-
nates, not depending on the Universe expansion. The scale factor provides the
conversion to physical coordinates at any time t.

The Universe consists of different components. For each j-th component, the
corresponding density parameter Ωj is given by

Ωj = ρj/ρcrit , (1.14)

with ρj being the volume density of the j-th component. Here,

ρcrit = 3H0/8πG = 2.78× 1011h2 M� kpc−3 (1.15)

is the critical density of the Universe, i.e. the minimum density that the Uni-
verse should have in order to stop its expansion at infinite time. H0 = 100hkm
s−1 Mpc−1 is the present-date Hubble expansion rate, and h = 0.674 is the scal-
ing factor of the Hubble expansion rate. The Universe total density parameter
at a given time t is

Ωtot(t) = Ωb(t) + ΩCDM(t) + ΩΛ + Ωγ(t) , (1.16)
4The online tool used for the calculation of the transition epochs and of the age of the Uni-

verse in this section can be found at http://www.astro.ucla.edu/~wright/CosmoCalc.html.
See also Wright (2006).
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where Ωb is the density parameter of baryonic matter (at present time, Ωb,0 =
0.0493), ΩCDM is the density parameter of CDM (ΩCDM,0 = 0.265), ΩΛ is the
density parameter of the DE, and it is constant in time (ΩΛ ≡ ΩΛ,0 = 0.685), and
Ωγ is the density of the relativistic components (where neutrinos contribute
with a term Ων,0 = 0.0012 − 0.003, and the CMB contributes with ΩCMB,0 =
5.38 × 10−5, for a total Ωγ,0 = ΩCMB,0 + Ων,0 ∼ 0.00125 − 0.00305). Ωtot = 1
corresponds to a flat Universe, i.e. a Universe with infinite curvature radius, or
with curvature density parameterΩk = Ωtot−1 = 0. This happens to be also the
case of our Universe, with a curvature density parameter Ωk = 0.0004± 0.0018
(Efstathiou & Gratton 2020).

The CMB radiation is an important measurable in the Universe. This was
discovered first by Penzias & Wilson (1965) as a background signal in the mi-
crowave frequencies, and later investigations via different missions (Boggess
et al. 1992; De Bernardis et al. 2000; Bennett et al. 2003a,b; Planck Collaboration
et al. 2018) helped understanding its nature.

The CMB is a radiation component with a Planckian spectrum, peaked at
the wavelengths of 1 − 2 mm. This component is the fossil of the once hot-
ter radiation that was interacting via Thompson scattering with electrons in
the ionised baryonic plasma until the epoch of decoupling (Binney & Tremaine
2008, hereafter BT08). As the Universe was expanding, the equilibrium tem-
perature of the CMB decreased, and at z ∼ 1300 this radiationwas not anymore
energetic enough to keep baryons ionised. Thus, baryons started to recom-
bine with electrons into neutral hydrogen atoms, and the epoch at z ∼ 1300
is called recombination epoch. This epoch marked the end of the interaction be-
tween photons and baryons, i.e. it marked the era of decoupling of radiation
from baryons, with last scattering surface at zlast ∼ 1100 (Seager et al. 2000;
Ryden 2003). As recombined hydrogen atoms were not interacting anymore
with radiation, the Universe became transparent to it and the isolated CMB
radiation has “frozen” its spectrum to the Planckian distribution, but the peak
wavelengths have shifted tomicrowaves due to theUniverse expansion (BT08),
and hence the name “Cosmic Microwave Background” for this radiation com-
ponent5.

The CMB is important to test the validity of the ΛCDMcosmological model
and of the assumptions on the cosmological parameters. Among the different
confirmations are the flatness of the Universe, the dominance of the DE com-
ponent and the fact that most of the matter is in CDM form (see the references
above).

Last Imention that, due to the different evolution and relevance of the radia-
tion, matter and DE density parameters in time, the Universe has encountered
three different corresponding epochs where each of them dominated. These
are (Frieman et al. 2008): 1) the radiation-dominated epoch, that lasted until
z ∼ 3000, i.e. until t = 0.064 Myr after the Big Bang; 2) the matter-dominated
epoch, that lasted from z ∼ 3000 to z ∼ 0.5, i.e. until a time t = 8.589 Gyr after

5The additional radiation that we observe as photons coming from our Galaxy and from the
other galaxies in the Universe has been produced later than recombination, after the galaxies
started to form the first stars.
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the Big Bang; 3) the DE-dominated epoch, that is currently ongoing.

1.3.2 Formation of the structures in the Universe
Now, I reviewhowgalaxies like theMWand its satellites are formed. In order to
obtain a correct description of the formation of structures in the homogeneous
and isotropic Universe, we need first to perturb the equations that describe the
evolution of the matter content of the Universe.

I first introduce the basic equations of hydrodynamics. These can be suc-
cessfully applied to our Universe, if we consider it behaving as a homogeneous
and isotropic fluid where perturbations determine the local concentration of
matter on the smaller scales (Kihara & Sakai 1970, as an example). These equa-
tions are useful to introduce the analytical linear perturbation approach to de-
scribe the growth of overdensities in the Universe, as a starting point for the
formation of structures.

Linear perturbation of the equations of hydrodynamics and growth of the
overdensities

Given afluiddefined in space and time, the basic equations describing its physi-
cal evolution are the following (see for instanceBT08, Landau&Lifshitz 1987):

∂ρ
∂t

+∇ · (ρ~v) = 0

ρd~v
dt

= −∇p− ρ∇Φ
∂
∂t

(1
2
ρv2 + ρε) +∇ · [ρ~v(1

2
v2 + w)] = 0 .

(1.17)

The first equation is the continuity equation. It describes the mass conserva-
tion in the fluid. In fact, if we consider an infinitesimal volume of matter with
density ρ = ρ(t), the density inside the volume will change in time according
to the flow of matter from that volume, represented by the divergence of ρ~v.

The second equation is the Euler equation, and it was first derived by Leon-
hard Euler. It states that the force acting on a fluid element is given by the con-
tribution of the pressure gradient∇p and of the potential gradient∇Φ (where
Φ can be, for instance, the gravitational potential).

The third equation is the energy equation. Here, ρε is the internal energy
density of the fluid element, and 1

2
ρv2 is its kinetic energy density. dw = Tds+

(1/ρ)dp according to Landau & Lifshitz (1987), with T the temperature of the
fluid and ds its infinitesimal entropy variation. The equation states that the to-
tal energy content of the fluid element increases inversely to the flow of energy,
represented by the divergence term.

With reference to BT08, in the expanding Universe, adopting the comoving
coordinates ~x, the first two of Equations (1.17), i.e. the continuity and the Euler
equation, can be rewritten as{

∂ρ
∂t

+ 3Hρ+∇ · (ρ~v) = 0
∂~v
∂t

+ (~v · ∇)~v + 2H~v + ä
a
~x = − 1

a2

(
1
ρ
∇p+∇Φ

)
.

(1.18)
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These equations describe the behaviour of matter in the expanding Universe
in the comoving frame. If the average density in the Universe is ρ̄, then at any
given point ~x in space the overdensity

∆(~x) =
ρ(~x)− ρ̄

ρ̄
(1.19)

represents the local deviation from homogeneity in the distribution of matter
(BT08).

Introducing a linear perturbation to Equations (1.18) in a matter-domi-
nated Universe returns, at large scales, a growing and a decaying mode. The
growing mode has a dependence on time ∆ ∝ t2/3 ∝ a. Specifically, the last
relation holds for a matter-dominated Universe, where in fact a(t) ∝ t2/3.

If the dominating fluid in the Universe is relativistic radiation, the linear
perturbation of Equations (1.18) gives, on small spatial scales, an oscillating
solution to the overdensity growth: any growing density perturbation is con-
trasted by radiation pressure and cannot increase in time. Instead, for large
spatial scales, the overdensities grow as ∆ ∝ t ∝ a, where the last relation
holds for a radiation-dominated Universe, where a(t) ∝ t.

Linear growth of the overdensities: radiation-dominated epoch and matter-
dominated epoch

Always with reference to BT08, in the radiation dominated epoch, until z ∼
3000, perturbations on large scales grow as much as ∼ t, and the baryons are
coupled with radiation, so also for baryons ∆ ∝ t during that epoch. Addition-
ally, during the radiation-dominated epoch, DM overdensities cannot grow,
since the free-fall timescale for gravitational instabilities would then be tff ∼
(Gρm)−1/2 > texp,γ ∼ (Gργ)

−1/2, where the last term is the expansion timescale
in the radiation-dominated Universe, and where ρm < ργ during that epoch.

Later (0.5 < z < 3000), in the matter-dominated epoch, DM can start its
gravitational collapse into haloes, while baryons are still coupled to radiation.
After recombination (z ∼ 1300), due to their large viscosities and conductiv-
ities, baryons cannot immediately collapse into haloes and the corresponding
overdensities are damped. This process of baryonic overdensity damping is
called Silk damping (Silk 1968) and dominates on scales of . 10 Mpc, i.e. the
scales of galactic clusters. Thus, as pointed out in BT08, due to the Silk damp-
ing of baryonic overdensities, CDM is necessary to explain the formation of the
galaxies, since being a collisionless form of matter it is not subject to this Silk
damping at . 10 Mpc scales.

Thus, the linear growthperturbationmethodpresented above explains, with
a relatively simple formalism, how local overdensities of the matter and radi-
ation content in the Universe can develop at a certain epoch and consequently
grow in time, being therefore the seeds of the structures forming at later epochs
in the Universe. The growth of the overdensities ∆ is considered in the linear
regime for small overdensity values, i.e. until when ∆ � 1. As I show be-
low, when overdensities become larger (∆ & 1), other methods must be imple-
mented in order to describe structure formation.
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Non-linear growth of the overdensities

For the case of overdensities∆ > 1, the linear regime of the perturbation theory
previously described is in principle not valid anymore, becausematter overden-
sities have entered a strong, non-linear regime of growth. Zel’Dovich (1970)
proposed an analytical model of extrapolation of the linear overdensity growth
to the case when ∆(~x, t) & 1.

This linear approximation of the strong growth regime is knownasZel’dovich
approximation (ZA). The ZA can predict the formation of the large scale struc-
ture of theUniverse in good agreementwithN-body simulations, including the
formation of filaments in which matter distributes in the large scale Universe,
and the large voids in between. However, it breaks at a scale of ∼ 20h−1 Mpc,
and already at 75h−1 Mpc it does not correctly take into account quadrupole
terms of the redshift-space correlation function of thematter distribution (White
2014, and references therein). Also, another limit of the ZA is that it does not
work in the case where there are converging streamlines that cross each other
(Scoccimarro & Frieman 1996).

Numerical cosmological simulations are a valid alternative to describe the
formation of structures in the strong, non-linear regime of overdensity growth.
As I will explain later in Section 1.4, modern state-of-the-art cosmological sim-
ulations nowadays can make advantage of refined gravitational and baryonic
physics algorithms to reproduce the formation of cosmic structures on a wide
range of scales. In large numerical projects like the Millennium simulation
(Springel et al. 2005b), it is found that CDM distributes in filament-like struc-
tures of ∼ 100h−1 Mpc scale. It is at the points of encounter of these filaments,
called nodes, that virialised haloes are found to form (BT08).

Hierarchical clustering scenario

The currently, most accepted scenario of galaxy and structure formation is the
so-called hierarchical clustering scenario (White & Rees 1978). According to this
model, the first CDM structures that formedwere the ones on the smallest spa-
tial scales. These structures then merged (clustered) together to form larger
structures, in a hierarchical fashion. This process is indeed called hierarchical
clustering or bottom-top formation (BT08).

In numerical simulations, this hierarchical process of galaxy formation in
large cosmological volumes can be reconstructed by determining the relation
between (and the history of) the different haloes and the families of their pro-
genitors and structures thatmerged together to build them. This can be done by
computing the corresponding, so-called merger tree. An example of calculation
of a merger tree is given by Genel et al. (2009) on the results of the Millennium
cosmological simulation, by applying a standard friends-of-friends algorithm
(Davis et al. 1985) to identify galactic haloes, their parents and progenitors, and
the corresponding families of sub-haloes in the simulation.

As for the baryons, gas collapsing into the DM haloes eventually became
dense enough and cold enough to undergo star formation (SF) and switch on
the light of the first galaxies, at a CDM halo mass level of 106 M� (Bromm et al.
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1999, and references therein). As the smallest galaxies formed and were creat-
ing stars from their gas reservoirs, these galaxies started to merge by means of
gravitational interaction, and to accrete on larger structures. This process went
on up to our epoch.

The satellites of theMW,whichwe observe and study, are the final remnants
of a large number of objects with a wide range of masses that hierarchically
accreted on each other, eventually merging into the main host halo, the MW
halo. The fact that some of these satellite galaxies are not yet dissolved means
that the process of accretion is still ongoing.

1.4 Tidal debris of the Milky Way satellites
Given the previous overview on the formation of galaxies like the MW, i.e. by
means of the hierarchical clustering of the subhaloes hosting the satellite galax-
ies, it is clear that the streams of stars and gas that we observe around objects
like the LMC and SMC, as well as the ones related to the Sgr dwarf, are the sig-
natures of the dissolution process that these satellite galaxies are undergoing
in the MW environment. Because they are still observable at our epoch, both
these streams and the remnants of their progenitors are an important test of
the validity of the ΛCDMpredictions about the evolution of the MW environ-
ment. At the same time, these streams and remnants pose some challenges to
understand which mechanisms and conditions play a role in determining their
distribution properties.

What follows is an extract frommy first author paperMazzarini et al. (2020,
hereafter MM20), written in collaboration with my supervisor A. Just (As-
tronomisches Rechen-Institut, Heidelberg), with A. V. Macciò (New York Uni-
versity, Abu-Dhabi), andwith R. Moetazedian (formerly ARI). The extract cor-
responds to the Introduction section of the paper. The final part of the intro-
duction, which was about the paper structure, was cut from this extract. I have
modified and rearranged parts of the text where convenient, in order to ade-
quate it to the context of this thesis. Figure 1.1 was not part of the introduction
of the paper, and I added it here for illustration purposes.

1.4.1 Section 1. fromMazzarini et al. (2020): Introduction
As I have recalled in Section 1.3, within the ΛCDM theoretical frameworkMW-
like galaxies are surrounded by several satellite galaxies, and in the hierarchical
scenario of structure formation smaller DM haloes form in the earlier stages of
the Universe, and later merge to form higher mass structures, with the cen-
tral massive host galaxies being the end product of this process (Blumenthal
et al. 1984). The satellite galaxies around the MW are the remnants of these
subhaloes and progenitors accreted in the past in the MW environment.

A stream of gas, the Magellanic Stream, is observed in the MW environ-
ment (Wannier & Wrixon 1972; Mathewson et al. 1974; Nidever et al. 2010).
This gaseous stream is attributed to the tidal interaction between the LMC and
SMC,with a possible contribution of theMWenvironment to this process (Diaz
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& Bekki 2011; Besla et al. 2016; D’Onghia & Fox 2016; Wang et al. 2019). Obser-
vations of the northern Galactic hemisphere give evidence of stellar overden-
sities in the shape of two elongated streams (Ibata et al. 1994; Newberg et al.
2007). These streams are the debris of a progenitor (identified with the Sgr
dwarf galaxy) that has been interacting with the MW in the last gigayears, has
thereby dissolved in the environment, and has lost matter (Martínez-Delgado
et al. 2004). Other observations include the discovery of the Monoceros-Canis
Major streams, with a progenitor of estimated mass similar to that of the Sgr
dwarf, around 109 M� (Newberg et al. 2002). See Figure 1.1 for some of the
observed streams of the MW satellites.

Figure 1.1: This astronomical image is a composite picture of the stars in the northern
sky, coloured according to the magnitude ranges to which the observed stars belong (red
for magnitudes r in the range [21.33 < r ≤ 22.0]; green for [20.66 < r ≤ 21.33]; blue
for [20.0 < r ≤ 20.66]). Different levels of intensity correspond to different levels of den-
sity of stars. Only turnoff and upper main sequence stars with g − r < 0.4 were chosen
here. For turnoff stars belonging to the same population, higher magnitudes imply larger dis-
tances. Thus, the red-coloured streams are the furthest ones and the blue-coloured streams are
the closest ones. Some of the streams of the MW satellites are captured, like the Sgr stream,
composite of two contiguous horizontal arms having a colour gradation (i.e. showing a dis-
tance gradient from us); the Monoceros stream on the right side of the image; and a green
stream cutting vertically the map close to the Sgr green-coloured bifurcation. See the page
https://www.sdss.org/science/idl-tiff-file-2 and Belokurov et al. (2006) for more in-
formation. Image credit: V. Belokurov and the SDSS.

Observations show that streams from dwarf galaxies are currently being
destroyed in the MW environment. Signs of the past accretion of satellites
can also be detected. From the abundances analysis of the data from Gaia
DR2 and APOGEE (Apache Point Observatory Galactic Evolution Experiment,
Abolfathi et al. 2018) surveys, recent work from Helmi et al. (2018) suggested
that most of the inner halo of our Galaxy originated from a past major impact
with the so-called Gaia Enceladus progenitor around 10 Gyr ago. Using DR2
photometry data combinedwith spectroscopic information from other surveys
(Wilson et al. 2010; Cui et al. 2012; Kunder et al. 2017; Abolfathi et al. 2018;Mar-
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rese et al. 2019), Koppelman et al. (2019) have identified new members of the
Helmi stellar stream, originally identified in the solar neighbourhood byHelmi
et al. (1999). Combining photometry and metallicity measurements with N-
body experiments, they found low-metallicity populations and predicted that
theHelmi stream originates from a dwarf galaxy ofmassM ∼ 108 M�, accreted
onto the MW 5 Gyr ago.

Different observational and theoretical studies have focused on the spatial
distribution of theMW satellites and of their debris, evidencing the presence of
the so-called Vaste Plane of Satellites (VPOS), but also aligned streams of dis-
rupted satellites (Pawlowski et al. 2012). By means of numerical simulations,
Santos-Santos et al. (2019) found that the inertia tensor related to the spatial
distribution of the bulk of satellites around the MW has a flatness c/a rang-
ing from 0.1 for less than 10 satellites around the MW to 0.2 for more than 25
satellites around the MW. Buck et al. (2016) showed however that, even when
forming these spatially coherent planes, satellites seem to be kinematically in-
coherent and these planar structures do not last a long time. Lisanti & Spergel
(2012) focused on the DM debris in the Via Lactea II simulation and found ev-
idence for the spatial homogeneity of its distribution. These results seem to
be in contrast, in the perspective of understanding the distribution of the MW
satellites and of their stellar and DM debris.

Considering the origin of the MW halo, the theoretical work of Pillepich
et al. (2015) predicted that 70% of MW stellar content is formed in situ, that
the majority of the ex situ stars come from in-falling satellites and characterise
most of the stellar halo, and that themass of these accreting satellites is relevant
to the formation process of the MW halo. The additional study of Deason et al.
(2016) suggested that the main contribution to the MW halo build-up (around
109 M�) comes from larger satellites such as the LMC and SMC, whereby the
contribution from ultra-faint dwarf galaxies (UFDs, with stellar masses below
105 M�) is minimal.

Large numerical investigations such as the Aquarius and the Via Lactea II
(Diemand et al. 2008) cosmological simulations successfully describe the clus-
tering properties of Cold DM in large portions of the Universe (∼ 100 Mpc)
down to the scales of subhaloes and the main MW halo core (∼ 10 − 100 pc).
These projects made use of state-of-the-art gravitational solvers (Gadget-3 af-
ter Gadget-2, and pkdgrav; see Springel 2005; Stadel 2001, respectively), but
lacked prescriptions for baryonic physics, which affects the final properties
of the galactic haloes (Pontzen & Governato 2012), and in the case of galax-
ies like the MW influences the process of matter stripping from their satellite
galaxies (Garrison-Kimmel et al. 2017). More recently, big simulation projects
were dedicated to combine gravity and baryonic physics with refined numeri-
cal recipes (see Arepo, Springel 2010b) in order to obtain more accurate results
in better agreementwith observations of galaxies in theUniverse (Vogelsberger
et al. 2014b,a; Genel et al. 2014; Sijacki et al. 2015) or more specifically with the
observational properties of dwarf galaxies (Wetzel et al. 2016, Latte simula-
tion).

The zoom-in simulations Auriga (Grand et al. 2017) and Eris (Guedes et al.
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2011) focus on the detailed properties of MW-like objects with a higher res-
olution (6 × 103 M� for gas particles and 4 × 104 M� for DM in Auriga, and
9.8 × 104 M�, 2 × 104 M�, and 6 × 103 M� for DM, gas, and stars in Eris). For
their study on the environmental effects on theMWsatellites, Buck et al. (2019)
adopted a similar mass resolution, with stellar particles reaching a resolution
of 6.7 × 103 M� and DM particles having a resolution of up to ∼ 105 M�. For
comparison, in the IllustrisTNG (The Next Generation) project, the typical res-
olution of particles in TNG50 (its highest resolution simulation box; Pillepich
et al. 2019; Nelson et al. 2019) is 8.5×104 M� for stars and 4.5×105 M� for DM.
In other projects like Apostle (A Project Of Simulating The Local Environment,
Sawala et al. 2016, 2017), which focuses on reproducing the kinematics and dy-
namics of the Local Group, the best resolutions for stellar and DM particles are
104 M� and 5× 104 M�, respectively.

While keeping in line with the best available resolution of DM particles
(M = 3.4 × 103 M� at best), Wang et al. (2015) made an advancement in re-
solving baryons for their NIHAO (Numerical Investigation of a Hundred As-
trophysical Objects) cosmological simulations, with adopted masses as low as
M = 6.2 × 102 M� for gas particles. Their high-resolution simulations were
used to study the evolution and properties of galaxies in a range of masses go-
ing fromdwarf DMhaloes ofmassM ∼ 109 M� toMW-like haloes withmasses
M ∼ 1012 M�. Higher resolutions were also employed in cosmological simula-
tions of isolated dwarf galaxies byM17, using theN-body codeGasoline (Wad-
sley et al. 2004) with SPH (Smoothed particle hydrodynamics) prescriptions
for gas dynamics (Lucy 1977; Gingold&Monaghan 1977;Monaghan 1992). For
their dwarf galaxy models, M17 reached resolutions as high asM = 1.2 × 102

M�, M = 4 × 10 M�, and M = 6 × 102 M� for gas, star, and DM particles,
respectively. M17 evolved their dwarf galaxy models in isolation (i.e. with-
out any host MW exerting gravitational and hydrodynamical effects on them)
in the redshift range [100 < z < 1]. The position-velocity (i.e. phase-space)
distribution of stars and DM at z = 1 in these objects reflects the additional
hydrodynamics, gas cooling, and stellar feedback recipes implemented in the
M17 simulations. Having switched on SF in their simulations, M17 obtained
satellites consisting of a realistic combination of DM particles, gas particles,
and star particles.

1.4.2 Numerical study on the Milky Way satellite tidal debris
distribution

Given the above picture, I will present in Chapter 3 our results from MM20 of
the study on the general properties of the MW satellites debris via numeri-
cal simulations. To do this, in this study we adopted a hybrid approach, for
which we combined high-resolution MWmodels from the literature (with pa-
rameters extracted from cosmological data) with M17high-resolution dwarf
galaxymodels (employing them as satellites of theMW). Furthermore, the ini-
tial distribution of the satellites around the MW comes from the results of the
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Aquarius cosmological simulations.
Our approach was similar to what was employed in MJ16. Following the

numerical prescriptions of Yurin&Springel (2014),MJ16 combined cosmologi-
cal initial set-up and high-resolution numerical simulations. Theymodelled six
MW numerical realisations, each consisting of live disc, bulge, and halo, and
each with halo parameters extracted from the Aq-A2 to Aq-F2 cosmological
simulations at redshift z = 0. They combined each MW model with a number
of N-body satellites for which they extracted the parameters from the corre-
spondingAquarius snapshot. Themass resolution of their discs is 3.4×103 M�,
higher than the stellar resolution in cosmological simulations. With this hybrid
approach theywere able to study the effect of a cosmologically motivated set of
satellites on a high-resolution MW disc. Specifically, they focused on studying
the impact that the MW satellites have on the MW disc vertical thickening and
heating (where by disc heating it is meant the increase in time of the vertical
velocity dispersion of its stellar particles). Since we wanted to address the dis-
tribution of both the stellar and DM satellite debris in our study, in contrast to
MJ16we decided to employ a selection of satellites made of baryons and DM
(hereafter hybrid satellites) that we extracted from the sample of dwarf galax-
ies described and studied inM17.

1.5 MilkyWaybar andnumerical simulations of bar
buckling

In this section, I give an overview of what is currently known about the bar
at the centre of the MW, including the X-shape. I also give an overview of the
study of the bar buckling in numerical simulations of MW-like galaxies. This
section is relevant to introduce the collaboration presented in Chapter 4, where
I show the results of the numerical study on an N-body simulation of the MW,
done to address the properties of the Galactic bar. In Chapter 4, I also briefly
review the description of the bar properties (strength, phase angle and buck-
ling) in terms of Fourier analysis, before presenting the results obtained so far
with this collaboration.

1.5.1 The Galactic bar
The presence of a bar in the central part of the MW disc is given by a series
of observational constraints (Kuijken 1996; Gerhard 2002). These include, for
instance:

• The early micron (2.4µm) telescope observations of the centre of the MW
(Matsumoto et al. 1982), by interpreting the surface brightness distribu-
tion in terms of a triaxial bar (Blitz & Spergel 1991);

• The stellar counts, as in Stanek et al. (1994) where, by analysing the dis-
tribution inmagnitudes of the stars observed at the extremes of the bulge,
the shift in their peaks in magnitude was interpreted with the presence
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of a triaxial, non-spherical and elongated structure. Amôres et al. (2013)
determined from stellar counts that the bar has an angle (43±5)o with the
Sun-GC line, while the value suggested by Wegg & Gerhard (2013a) was
equal to (27 ± 2)o, which finds confirmation in other literature (P15 and
references therein);

• Kinematic features, as in Palicio et al. (2018) that, comparing two numer-
ical MW simulations with and without bar with the APOGEE stellar line
of sight velocity (LOSV) data, found that the barred model reproduces
better the kurtosis of the LOSV distribution of the observed stars close to
the GC;

• The gravitationalmicrolensing effects that the bar exerts on observed back-
ground stars (Alcock et al. 1995; Stanek et al. 1997).

The age of theMWbar is still under discussion. Using carbon stars as tracers
of the age of the bar, Cole & Weinberg (2002) estimated an upper limit of 6
Gyr for it; they also found that its pattern speed is stable and that the bar is
not a fading structure. Polyachenko et al. (2016) studied the formation of the
bar in N-body runs for 4 Gyr using a full MW model (i.e. a model made of
an N-bodydisc, an N-bodyhalo and an N-bodybulge). They found that the
bar forms after 1.3 Gyr and therefore its age should be shorter than the one
indicated by Cole & Weinberg (2002).

Regarding themechanism of growth and evolution of the bar, Athanassoula
(2002) argued that the presence of the halo and the exchange of angular mo-
mentum with it are favouring the growth of the bar. As a result of numerical
simulations, Athanassoula (2003) obtained that the larger are the densities of
the disc and the halo, and the colder is their kinematics, then the lower is the
bar pattern speed and the higher is its strength. This is because of the possi-
bility for the bar to exchange angular momentum with the disc and the halo,
favouring its growth and its slowing down. Additionally, Athanassoula (2003)
showed that the presence of a higher mass bulge in the GC favours more angu-
lar momentum exchange and, consequently, a strengthening of the bar.

As for our understanding of the shape of the bar, Athanassoula (2008) re-
ported that N-body simulations, in agreementwith observations (e.g. the com-
parison of images from N-body simulations with the near-infrared observa-
tions of bulges of edge-on galaxies, Lütticke et al. 2000), show a correlation
between the bar strength and the formation of the B/P shape. Furthermore,
based on previous studies, Athanassoula (2008) suggested that galactic bars
are composed of an inner, short and thick part, corresponding to the B/P shape,
and of an outer, extended and elongated feature. By both considering the dis-
tribution of red clump stars in individual observed stellar fields in the region
of the long bar, and employing density models to fit all the observed fields to-
gether, Wegg et al. (2015) estimated a length of the bar lbar ≥ 4 kpc, and a total
stellar mass in the bar equal to 1.8× 1010 M�.

Gerhard & Wegg (2015) collected evidence from different studies, obser-
vational (for instance, Weiland et al. 1994; Wegg & Gerhard 2013a), numeri-
cal (Martinez-Valpuesta & Gerhard 2011) and analytical (Romero-Gómez et al.
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2011), on the MW and on other galaxies. They found support to the idea that
the MW central region may host a disc-like structure that immediately extends
to the typical B/P structure with its characteristic X-shape, and that the ex-
tended region in the shape of a misaligned long bar is probably a disc feature.

Regarding the rotation of the bar, in their MWN-body simulations (which I
already mentioned in Section 1.2.2) P15 found that the bar has a pattern speed
Ωbar ∼ 25 − 30 km s−1 kpc−1, but they did not find complete agreement with
previous literature. For comparison, different studies, including direct mea-
surements, gasdynamical models applied to the position and velocities of HI
and CO, and the study of the stellar velocity distribution bimodality in N-
body simulations, obtained much higher values of pattern speed, in the range
∼ 50− 70 km s−1 kpc−1 (Dehnen 2000; Debattista et al. 2002; Englmaier & Ger-
hard 1999), while more recent studies (Rodriguez-Fernandez & Combes 2008;
Long et al. 2012) placed the value somewhat closer to P15, though still higher
(∼ 30− 40 km s−1 kpc−1). Thus, P15 could not give a conclusive answer on the
pattern speed of the bar.

Still, comparing their values of bar pattern speed with the rotation curve of
Sofue et al. (2009), they could give their estimate of the ratio R between the
bar corotation radius Rcorot (the radius at which the bar pattern speed equals
the angular rotation curve of a galaxy) and the bar length. They found a value
R ∼ 1.5−1.8. Thus, since their value ofR is larger than 1.5 they concluded that
the bar is a slow rotator. For comparison, bars that have 1 ≤ R ≤ 1.4 are called
fast bars (see for instance Debattista & Sellwood 2000). Also, for the corotation
radius P15 found a value of Rcorot = 7.2− 8.4 kpc.

Additionally, P15 found that their model with ∼ 40% of the bulge mass in
DM is the one that better constraints the stellar mass-to-light ratio obtained
from the stellar initial mass function (IMF) of Zoccali et al. (2000, which was
the best IMF that P15 found in their analysis). Thus, with this fraction of DM
in the bulge, they could estimateMb,DM ∼ 0.7× 1010 M�.

From their models they could also estimate that the mass in the stars inside
the B/P shape is 24+5

−4% of the total bar mass. This fraction, they claimed, is
much higher than the previous estimates in literature, such as from Li & Shen
(2012), that estimated anyway a fraction of 7% of the total bar mass residing
in the X-shape, still translating into a detectable X-shape. The fraction of bar
mass ending in the X-shape finds confirmation from two numerical simulations
of Abbott et al. (2017) with MW-like N-bodymodels, where they found that
19% and 23% of the bar mass in the two models distributes in the X-shape,
respectively.

As for the orbits sustaining the X-shape, eariler studies with numerical sim-
ulations (Pfenniger & Friedli 1991; Martinez-Valpuesta et al. 2006; Quillen et al.
2014) showed that the x1 family of orbits in the bar is the main responsible
for the X-shape, as a consequence of orbits having angular speeds with ra-
tios Ωx : Ωz = 2: 1 (called “banana-shaped” orbits). However, Portail et al.
(2015b) disagreed with these results, finding instead that the 2: 1 banana or-
bits do not contribute significantly to the X-shape. The X-shape is mostly the
result of the contribution of different resonant orbits, of which the most impor-

26



CHAPTER 1. MILKY WAY AND SATELLITE STREAMS

tant ones seem to be the “brezel” 3: 5 orbits. Additionally, from the analysis of
projected density distribution maps and unsharp masked images in their MW
models, Abbott et al. (2017) confirmed that a variety of orbits contribute to
the X-shape: non-resonant box orbits, long-axis tube orbits, resonant boxlet or-
bits. Particularly from the unsharp masked images the resonant boxlet brezel
3: 5 orbits and the additional “fish-brezel” orbits (with angular speed ratios
Ωx : Ωy : Ωz = 3: − 2: 0) appear to be the main contributors to the X-shape,
while the x1 banana orbits contribute only externally to the elongated boxy
shape and cannot explain alone its characteristic inner bifurcation.

To sum up, the bar in the central regions of the MW appears to be a dom-
inant feature in the disc: with a mass of ∼ 1.8 × 1010 M�, it represents about
40% the total mass of the disc, that is ∼ 4 × 1010 M� (I already discussed this
value in Section 1.2.1). Around 40% of its total mass is in the form of DM and
a number of different orbit families contribute to the X-shape, that represents a
non-negligible fraction, ∼ 20 − 30%, of its mass. However, to date there is still
uncertainty on the value of the bar pattern speed and on the age of theMWbar.

1.5.2 Bar buckling in numerical simulations
Bar buckling is defined as the process by which the bar develops vertical asym-
metries in the orbital distribution that determine its vertical bending. Athanas-
soula & Martinez-Valpuesta (2009) showed that, in simulated N-bodygalactic
models, bars that undergo buckling diminish their strength for the period of
the buckling, but increase the strength of their B/P feature. At this point, it is
important to stress that the X-shape is not the buckling event per se. Rather,
should there be any connection between the X-shape and the buckling, this is
then a consequential relation, and not the same phenomenon.

Regarding the possible connection between buckling instability andX-shape,
Quillen et al. (2014) showed from their numerical experiments that bar buck-
ling is not a necessary mechanism for developing the X-shape, and that res-
onances in the orbits inside the growing bar are another driving factor. The
result of Quillen et al. was obtained with mid-to-low–resolution simulations,
with around 240K to 320K particles in the disc and 160K particles in the halo.

Previous numerical work from Martinez-Valpuesta et al. (2006) has evi-
denced that in simulated live discs embedded in live haloes it is possible to
have a second, longer bar buckling episode of lower intensity. Also, they ar-
gued that the X-shape is developed as a consequence of the second buckling.
They employed a disc with 8×105 particles. The presence of a second buckling
event finds confirmation in more recent numerical work on a higher resolution
disc from Łokas (2019), where the second buckling event is again less intense
but lasts longer than the first one.

1.5.3 Numerical study on the Galactic bar
Based on the previous considerations, I will present in Chapter 4 the results of
a collaborative effort in which we addressed, by means of N-body simulations,
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the evolution properties of the bar in the MW, and where we tried to under-
stand if the X-shape can develop without necessarily having a bar buckling.
Furthermore, we wanted to understand the effects of the bar growth on the
kinematics and dynamics in the innerMWdisc. E. D’Onghia performed a high-
resolution numerical simulation of the MW, already described in D’Onghia &
Aguerri (2020), inclusive of N-bodydisc, bulge and halo, and evolved in isola-
tion using the code Gadget-3. We used this simulation to perform our analysis
of the growth of the Galactic bar, of its effects on the inner MW disc, and of its
buckling and X-shape.

1.6 Thesis: structure and content
What follows is a summary of the structure and content of the thesis.

In this chapter, I gave an overview of the MW and its environment, specifically
its disc, bulge and DM halo, as well as its satellite galaxies. I gave a review of
some aspects of the ΛCDMmodel that are useful to understand the MW envi-
ronment in a cosmological context. I then provided an overview, taken from
the introduction of my first author paper, MM20, of the tidal streams of the
MW satellites, illustrating the goal of this thesis, that is addressing the distri-
bution of the satellite tidal debris in the Galactic environment. I finally gave
an overview of the Galactic bar and I introduced the collaboration to study the
MW bar in a numerical simulation.

In Chapter 2, I review the numerical methods for N-body simulations of
galaxies. I then report the results of a benchmark performed to test how the N-
body codes Gadget-2 and ChaNGa(Jetley et al. 2008, 2010; Menon et al. 2015)
reproduce the evolution of the MW disc in isolation and interaction with the
MW satellites, in comparison to the results obtained byMJ16with the N-body
code Superbox-10 (Bien et al. 2013). I finally show the improvements of the code
Gadget-4 (Springel et al. 2020, in prep; hereafter S20) in terms of momentum
conservation with respect to Gadget-2.

In Chapter 3, I show the extract ofMM20 corresponding to the parts where
I present our simulations of MW-satellites interaction, and the results of the
study on the distribution of the satellite stellar and DM debris. At the end of
the chapter, I also show a brief investigation on how the calculation of the tidal
radius of a satellite galaxy of the MW is affected by the kind of MW potential
employed, to check the impact of our approximations on the calculation of the
satellite tidal radii.

In Chapter 4, I show the results of a collaboration with other researchers, to
study the evolutionary properties of the MW bar in an N-bodyhigh-resolution
simulation. The research is focused on studying the growth of the bar, the im-
pact of the bar on the MW inner disc, and the process of bar buckling. Addi-
tionally, I show some of the properties that we found in the X-shape.

In Chapter 5, I give a conclusive summary of the results obtained in this the-
sis. I also provide some additional discussion and I present the future, possible
developments of the projects described in this thesis.
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Chapter 2

A numerical comparison of
superbox-10, ChaNGa, Gadget-2,
and Gadget-4

In this chapter, I present the results of a benchmark done in order to compare
the performance of theN-body codesGadget-2 andChaNGaagainst the results
on the evolution of theMW, both in isolation and in interaction with its satellite
galaxies, obtained byMJ16with the N-body code Superbox-10. The goal of this
benchmark is to show that Gadget-2 is a robust code that still produces similar
results in comparison with the other two, more modern codes. I discuss the
benchmark in Section 2.7. Additionally, in Section 2.8 I show that momentum
conservation is improvedmoving fromGadget-2 to the follow-up codeGadget-
4, and that Gadget-4 is therefore a good choice for performing the simulations
discussed in Chapter 3.

Before discussing the benchmark, in Sections 2.1 to 2.5 I first review some
numericalmethods employed to runN-body simulations in astrophysics. These
are useful to discuss the benchmark presented in this chapter and the simula-
tions presented in Chapter 3 and in Chapter 4. In Section 2.6 I introduce the
N-body codes Superbox-10, ChaNGaand Gadget-2.

Galaxies are gravitating systems, i.e. systems whose dynamic evolution is ma-
inly determined by gravitational interactions. In the context of computational
astrophysics and N-body simulations, a gravitating system is typically discre-
tised in N particles. Each particle has a position and a velocity, to sample the
discrete phase-space distribution of the system, and a mass, to sample the dis-
crete spatial mass distribution of the system. The masses of the particles and
their total numberN determine the mass and number resolution of the system.
In order to simulate the evolution of a gravitatingN-body systemwith a numer-
ical code, the code needs 1) the input ICs of the system; 2) amethod to calculate
the forces acting on all the particles, and therefore to calculate the accelerations
that they suffer; 3) a scheme to integrate particles positions and velocities in
time, i.e. to update their velocities and positions by a finite timestep, once their
accelerations are computed.
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System of units in numerical simulations

The units of measure adopted in numerical simulations are called internal units.
The three fundamental quantities to describe the mechanics of N-bodies are
length, time and mass, with corresponding dimensions indicated by [L], [T]
and [M], respectively. The dimension of the gravitational constant is defined
by [L], [T] and [M], exactly as [G] = [L]3[T]−2[M]−1.

Therefore, a typical convention for the internal units it to choose them so
that correspondingly G = 1. This means that, of all the units UL, UT, and UM

(length unit, time unit and mass unit, respectively), one needs to fix two units
to have the full set of the three determined. For instance, by adopting UL = 1
kpc, andUM = 2.325×105 M�, thenUT is close to 1Gyr. With this advantageous
choice, moreover, another unit like the velocity unit, UV, is ∼ 1 km s−1.

2.1 Initial conditions of numerical simulations
To run a simulation with a code on a computer or a computer cluster, the code
requires to be given the initial conditions (ICs). Mathematically, the ICs are a
collection I of vectors and scalars,

I ≡
(
~r1(0), ..., ~rN(0), ~v1(0), ...

..., ~vN(0),m1(0), ...,mN(0)
)
,

(2.1)

where, for each i-th particle in the system (i = 1, ..., N), ~ri(0) represents its
initial position, ~vi(0) its initial velocity, andmi(0) its initial mass.

An additional parameter file can add information about how to run the sim-
ulation, providing the values of parameters that regulate specific behaviours of
the code. Examples of parameters required to run a simulationmay be the soft-
ening ε to limit the divergence of the gravitational force (see Section 2.2.3); the
timestep ∆t required to advance the simulation in time at every integration
step (see Section 2.3); the opening angle θ to regulate the accuracy of the tree
opening procedure in case the code implements a tree algorithm (see Section
2.2.2).

The more is the simulated physics complicated, the more are the requested
additional parameters. For instance, the additional presence of gas particles in
the simulation, as well as of stellar evolution recipes in the code, will require
input data for other physical parameters, such as the initial temperature of gas
particles or the initial metallicity of stellar particles. Also, additional parame-
ters may regulate the choice of the kind of physics to implement for gas (e.g.
if gas has metal cooling or if gas is evolving adiabatically), how much energy
is released by supernovae or whether to include the cosmological expansion of
space during the integration of the system.

To sum up, the combination of ICs and parameters provides all the infor-
mation that the code needs to calculate the evolution of an N-body system. The
way the code calculates gravity and implements recipes to simulate additional
physics determines the complexity of the required ICs and parameters.
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2.2 Force calculation
In a gravitating N-body system, given two particles Pi and Pj , with masses mi

and mj and coordinates ~ri and ~rj , we define the gravitational potential Φij felt
by Pi and due to Pj as

Φij = −Gmimj

rij
, (2.2)

whereG is the universal gravitational constant and rij = |~ri−~rj| is the distance
between Pi and Pj . The Newtonian force acting on the particle Pi due to the
particle Pj is calculated as

~Fij = −∇Φij = −Gmimj

r2
ij

ûij , (2.3)

where ûij is the unit vector applied on Pj and oriented towards Pi. Then, the
particle Pi will feel a total force ~Fi due to all the other particles Pj equal to

~Fi =
N∑
j 6=i

~Fij , (2.4)

where i, j = 1, ..., N and ~Fij is the same as in Equation (2.3) for particles Pi
and Pj . This system of differential equations is analytically unsolvable in the
general case. Thus, N-bodymethods are used to solve the system of Equations
(2.4), by computing the forces acting on all the particles, and therefore their
accelerations ~ai(t) = ~Fi(t)/mi. Depending on the kind of gravitating system,
different numerical solvers employ different algorithms to calculate the forces
acting on particles.

In N-body systems where pair-wise gravitational particle interactions are
frequent, strong and relevant to determine their acceleration, one needs to use
the system of Equations (2.4) to determine the integration of velocity and po-
sition of each particle. The N-body codes that adopt this approach are called
direct N-body codes. The advantage of this approach is that all the interactions
are taken into account to determine the evolution of particles in the system.

The disadvantage is the high computational cost. For each of theN particles,
the total force acting on it is the sum of N − 1 terms, each corresponding to
the force due to each of the other N − 1 particles. Any computer calculating
the force acting on all particles in this way will execute a number N × (N −
1) ∝ N2 of operations, with the N2 dependence being valid for large N . For a
system simulated at high resolution with at least ∼ 107 particles, the number
of required operations per timestep is∼ 1014, in order to calculate all the forces
acting on all the particles. A computer with a performance of 1 Gflops (i.e.
1 billion FLoating point OPerations per Second) would need 105 s, i.e. more
than 1 day, to calculate the force acting on all the particles for integrating one
timestep only!

In order to reduce the computational costs of this operation, simulations are
usually performed in parallel, i.e. the computational workload is distributed
among many processors or many GPU threads operating together at the same
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time. Therefore, parallel computing and parallel software programming are
fundamental concepts in N-body simulations.

It can be shown (BT08) that for galactic systems, like for instance the MW,
which are made of a large number of stars (theMWhas∼ 1010 stars), and with
a typical density of∼ 1 star pc−3, single star-star interactions are infrequent and
therefore they can be neglected. In this case, it is rather the total potential of
the galaxy that determines the resulting force felt by each star. These systems
are called collisionless systems.

Given the negligible importance of pair-wise interactions in collisionless
systems, and given the very large (typically > 1M) number of particles that
are used nowadays to describe them in N-body simulations, the calculation of
the force in an N-body collisionless system is simplified by means of proper al-
gorithms. The codes implementing these algorithms are called indirect N-body
codes. I describe now two N-body indirect schemes, the PM algorithm and the
tree algorithm, in Section 2.2.1 and in Section 2.2.2, respectively.

2.2.1 Particle mesh algorithm
Given an N-body system embedded in a grid or mesh, a particle mesh (PM) al-
gorithm is an algorithm that implements the Poisson equation to calculate the
potential from the distribution of the N-bodyparticles in the grid, and hence
calculates the force acting on the particles. The Poisson equation describes the
local relation between the gravitational potential derivatives and the matter
density distribution. It has the form

∇2Φ(~r) = 4πGρ(~r), (2.5)

where ∇2Φ(~r) and ρ(~r) are the Laplacian of the gravitational potential Φ and
the matter density, respectively, both evaluated at radius ~r.

In N-body systems, where the number of particles is finite, the mass distri-
bution is discrete and a possible solution to Equation (2.5) is given by using
the Fourier space. The idea behind this approach is that the convolution of two
functions corresponds to a product in the Fourier space. Below I follow Bien
et al. (2013) for a brief description of the algorithm.

The simulation volume can be divided in a grid ofNa×Nb×Nc cubic cells.
Each cell has mean density ρa,b,c, with a = 1, ..., Na; b = 1, ..., Nb; c = 1, ..., Nc.
The discrete potential Φa,b,c in the cell of indexes a, b, c is then given by

Φa,b,c =
∑

a1,b1,c1

Ha1−a,b1−b,c1−cρa1,b1,c1 , (2.6)

i.e. summing on all the other cells with indexes a1, b1, c1. HereHa1−a,b1−b,c1−c =
[(a1 − a)2 + (b1 − b)2 + (c1 − c)2]−1/2 is the discrete Green function, as in Bien
et al. (2013). In the Fourier space, the potential is then Fourier-transformed to

Φ̂i,j,k = Ĥi,j,kρ̂i,j,k , (2.7)

32



CHAPTER 2. A NUMERICAL COMPARISON

where Ĥ and ρ̂ are the Fourier transforms ofH and ρ, respectively. The Fourier
transform (FT) of Φ is then simply the product of the FTs ofH and ρ. The final
evaluation of the potential comes from anti-transforming Equation (2.7).

From the evaluation of the potential in the cells, by applying a discrete gra-
dient one can calculate the forces acting on the particles. The system can be
then integrated (as an example with Superbox-10, see Section 2.6.1 for the com-
putation of the force starting from the potential calculated in the grid cells).

Particle mesh codes and fast Fourier transform: cost

For a grid of cells with size N ×N ×N , if a method like the fast Fourier trans-
form is applied, the procedure requiresN3× log(N) calculations, withN being
the number of cells per size (Bien et al. 2013). This kind of approach has the
advantage that does not scale with a power of the number of the particles NP-
unlike N-bodydirect codes that scale with N2

P for large NP -, but only with a
power of the number of cells per dimension. If N � NP, then this operation is
much less expensive than force calculation in N-bodydirect codes.

2.2.2 Tree algorithm
The base idea of tree algorithms is to recursively divide the simulation volume
into sub-volumes or sub-cells of parallelepipedic or cubic shape. The force act-
ing on particles is evaluated with contributions from single particles or from
the mass centres of the sub-volumes, depending on the criterion. In analogy
with a tree ramification, the whole simulated volume is the tree, while each
sub-volume (or sub-cell) is the node or branch of the tree. When a minimum
number of particles (corresponding to a given threshold) is found in a sub-cell
during the tree subdivision, the algorithm stops the subdivision of that cell,
that is then called the leaf of the tree. In Figure 2.1 I show a schematic repre-
sentation of the tree hierarchy and domain decomposition.

An important reference for tree codes is the scheme presented by Barnes
& Hut (1986). Hereafter I refer to this as BH tree. The BH tree is an oct-tree.
This means that each volume or sub-volume is divided in 8 sub-cells. There are
other kinds of tree, similar to the BH tree. Another example is the binary tree,
where each cell is divided along the longer axis in only 2 sub-cells, as described
inWadsley et al. (2004). In the case ofWadsley et al., the division in sub-cells is
done along the direction of the longest cell side, and the point of division along
the longest cell side is chosen so that there is no sub-cell without particles.

Instead of evaluating the force acting on a test particle due to all the other
N − 1 particles, a tree algorithm operates a distinction. All the particles inside
cells that are far enough from the test particle will be substituted by a common
centre of mass m̄, and their interaction with the test particle is substituted by
the interaction of m̄with the test particle. Otherwise, if the cell is not far enough
from the particle, then it will be “opened”, i.e. the same evaluation proceeds
with its sub-cells. To evaluatewhether to stop the tree traversal at a given cell or
to open it, the code uses a threshold parameter, the opening angle θ. Whenever
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Figure 2.1: Schematic representation of the domain decomposition in a tree code. The rep-
resentation is in the two-dimensional space for graphical convenience, therefore I chose to rep-
resent a quad-tree (i.e. a tree where every cell is divided in four sub-cells). I chose an arbitrary
total number N = 26 of particles. For the leaf level, I chose a threshold of four particles per
cell. The tree decomposition is represented in the four panels delimited by thick full lines, and
it is executed in the order given by the following text. Top left panel: The whole simulation box
is considered, with all theN particles distributed inside. Top right panel: Since the total number
of particles is N > 4, the first level of division in four cells is applied to the whole simulation
volume, and it is represented by the thin full lines. Bottom left panel: The top-left sub-cell has
four particles, therefore it is not further divided (it has reached the leaf level). The other three
sub-cells have each more than four particles, therefore they are divided each in four sub-cells
(dashed lines). Bottom right panel: The only further division is applied to one sub-cell (thin
dotted lines), since there are more than four particles there. After this operation, all the sub-
cells have been divided until leaf level and the domain decomposition stops here. This scheme
is conceptually similar to the scheme represented in Figure 1 of Springel et al. (2001).

a cell satisfies the opening angle criterion,

l

d
> θ , (2.8)

the cell is opened and the same evaluation will be done on its sub-cells, until
leaf level is reached. Here l is the linear cell size and d is the distance of the cell
to the test particle.

In case Equation (2.8) is not satisfied, the particles in the cell are added
to a common list where they are substituted by m̄, and for that cell the code
calculates the gravitational force on the test particle due to m̄. Otherwise, the
cell is opened and the code proceeds with applying the criterion of Equation
(2.8) to its sub-cells.

If the value of the opening angle is chosen too large, too many cells will
not be opened and the code will lose accuracy in the force calculation. If the
opening angle is chosen too small, more cells are opened, with a consequently
higher accuracy in the force calculation, but with a higher computational cost,
because of more particle-cells force evaluations.
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Multipole expansion

The evaluation of the force due to a not open node on a distant test particle is
done by means of the multipole expansion of the mass distribution of the nodes
(and hence of the long-distance gravitational potential and force acting on par-
ticles). This is done in order to consider the fact that the distribution of mass
in the node is not point-like, and gravitationally speaking this impacts on the
test particle differently from a point-like source. As an example, if the node is
a cube of homogeneously distributed mass, the hexadecapole expansion of the
potential is (Barnes & Hut 1989)

Φ(~r) =
GM

r
+

7

960

GMa4

r9
[3r4 − 5(x4 + y4 + z4)] , (2.9)

where the first term is the monopole term of gravity, ~r = (x, y, z) is the position
vector of the test particle seen from the node, r is the correspondingmagnitude,
and a is the size of a side of the cell/node. As I show later in Section 2.6 when
introducing ChaNGaand Gadget-2, different codes implement the expansion
in different ways.

Tree codes: cost

Tree codes scale with order O(Nlog(N)), where N is the number of particles
(Barnes & Hut 1986). This is better than O(N2) of the direct codes. See Appel
(1985) for an early discussion on the speed-up that a tree code has in numerical
simulations with respect to direct summation codes.

2.2.3 Gravitational softening

Given two point particles Pi and Pj , if their distance rij goes to 0 (i.e. if the
two point particles approach each other infinitesimally), the force calculation
represented by Equation (2.3) diverges. This has some consequences, apart
from the obvious unphysical meaning of a force diverging to infinite.

First, the more the two point particles get closer, the more they can suffer a
very large acceleration due to each other’s effect. Thus, their mutual approach
introduces a large kick to their motions.

Second, given that in many codes (as we will see later) the integration in
time is done assigning discrete timesteps to each particle, inversely propor-
tional to some power of the particle’s acceleration, this means that for that pair
of particles the assigned timestep is very low. This slows down the whole inte-
gration of the system.

In order to solve this problem, one can introduce the so-called softening
length ε. This is a parameter defined in order to limit the gravitational interac-
tion between two particles within finite values, as they mutually approach.

Many N-body codes adopt a kernel function to implement the softening in
Equation (2.3). The simplest form of softening kernel is the one associated to a
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Plummer sphere of radius ε, for which the force calculation of Equation (2.4)
takes the form

~Fi = −G
N∑
j 6=i

mimj

(r2
ij + ε2)1.5

~rij , (2.10)

as in Athanassoula et al. (2000), for instance. The Plummer sphere is an ex-
ample of infinite kernel, where the modification to the pure Newtonian law is
extended to all distances between particles. In fact, here the term ε is always
inserted in the calculation of the force.

There are more refined formulas than Equation (2.10) to avoid the diver-
gence of the gravitational interaction at short distances. The spline kernel for
the calculation of the force from the works of Gingold &Monaghan (1977) and
Hernquist & Katz (1989) takes the form

g(r) =


1/ε3[4/3− (6/5)u2 + (1/2)u3] , 0 ≤ u ≤ 1

1/r3[−1/15 + (8/3)u3 − 3u4 + (6/5)u5 − (1/6)u6] , 1 ≤ u ≤ 2

1/r3 , u ≥ 2
(2.11)

where ε is the particles softening and u = r/ε is the radial distance between par-
ticles normalised by the softening. g(r) here has the dimension of acceleration
per unit length and unit mass, with G = 1. The force ~F is calculated as

~F (r) = mg(r)~r , (2.12)

wherem is themass of the particle that suffers the force ~F (r), and ~r is the vector
pointing from the test particle to the source exerting the gravitational force.

This expression returns three different behaviours for the spline kernel, de-
pending on the distance between the particles. At one extreme case, if two par-
ticles are distant less than u = 2 (i.e. the distance r is less than two times the
softening parameter ε), the spline returns a softened expression for the force
calculation, that does not diverge to infinity as Equation (2.3) does for r −→ 0.
At the other extreme case, for u > 2 (i.e. for distances r > 2 times the softening
parameter) Equations (2.11) reduce to Equation (2.3). This is an example of
finite kernel, because over a certain distance the force between particles is again
Newtonian as in Equation (2.3). Some codes like the one by Dehnen (2000)
consider also the node-node interaction by means of an evaluation mediated
by a spline kernel.

2.3 Time Integration
Once the forces - and therefore the accelerations - acting on particles are calcu-
lated, particles must have their positions and velocities ~r,~v integrated in time,
with ~v(t)− ~v(0) =

∫ t
0
~a(t′)dt′ and ~r(t)− ~r(0) =

∫ t
0
~v(t′)dt′. However, since there

is no analytical expression to solve this integration, N-body codes make use of
discrete timesteps ∆t.
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A way to advance the whole simulation in time is to use a common, global
timestep ∆t, with the advantage of having the particles synchronised in time,
because they all have their positions and velocities updated together. However,
this choice can be inadequate in situations where there is a range of dynamical
timescales over which the particles evolve.

2.3.1 Individual timesteps and block timesteps
In the case of collisional systems, adopting the same, global timestepmay show
some limitations. If some particles in the simulation suffer strong accelerations
(because they closely interact with other particles, or they are in dense regions
where the mean gravitational field changes quickly), updating them with the
same common timestep ∆t of particles that do not suffer strong accelerations
is not optimal. In fact, if the global timestep is chosen too small to follow the
evolution of the strongly accelerating particles, the whole simulation is slowed-
down because the timestep is too smaller than necessary for the many particles
that do not suffer these strong accelerations. On the contrary, a choice of too
large timesteps is good for the integration of particles that suffer low accelera-
tions, but leads to lose accuracy in the orbit integration of the highly accelerated
particles.

A better way to do the integration in this case is to attribute first individ-
ual timesteps to the particles, and then to organise them into a hierarchy, by
means of block timesteps. An example of individual timestep is the generalised
Aarseth timestep (Nitadori & Makino 2008; Capuzzo-Dolcetta et al. 2013)

∆t = η
( A(1)

A(p−2)

)1/(p−3)

, (2.13)

where η is the accuracy parameter, p is the order of the integration scheme and
A(m) being

A(m) =
√
|a(m−1)||a(m+1)|+ |a(m)|2 , (2.14)

with a being the particle acceleration and a(m) being its m-th derivative. With
these individual timesteps, a hierarchy is established and particles with a lower
timestep need to be integrated first, and consequently their positions and ve-
locities will be updated more rapidly than particles with a higher timestep.

However, if the individual timesteps are not one the exact multiple of the
others, the update of particles in time becomes asynchronous and thewhole in-
tegration is more complicated to handle. This is why the individual timesteps
are organised in block timesteps. The block timesteps satisfy the following re-
cursive relation between two contiguous timesteps,

∆tk = ∆tk−1/n , (2.15)

with k = 2, ...,M , and with n being a factor, for instance n = 2 (convenient
because of the binary representation of numbers in computers). With this no-
tation, the largest timestep is ∆t1. Particles whose individual timestep ∆t falls
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between tk and tk+1 are attributed the same block timestep ∆tk. Every n ad-
vancements in timestep ∆tk for particles belonging to the k-th block, particles
belonging to the (k − 1)-th block will be updated with timestep ∆tk−1.

In this model of time integration, every particle that can have position and
velocity updated at the current timestep is called active particle, while each par-
ticle whose position and velocity are not updated in the current timestep (be-
cause their individual timestep falls in a higher level inside the block hierarchy,
i.e. it is larger) is called passive particle.

2.3.2 Timesteps in simulations of collisionless systems
In all the simulations - including large cosmological simulations - involving
collisionless systems like galaxies and galaxy clusters there is a wide range of
dynamical scales that interests the evolution of these systems (Springel 2005;
Wadsley et al. 2004). This makes using only one global timestep inconvenient
to advance the simulation in time.

An alternative is employing a combination of individual timesteps for parti-
cles and of block timesteps inwhich to group them, aswell as of global timesteps
to determine the maximum overall size of the block hierarchy. Usually this
maximum timestep is taken to be a fraction of the dynamical timescale of the
simulated system. An example is illustrated in Quinn et al. (1997), where the
maximum timestep is chosen such that

∆tmax <
η√
Gρ

, (2.16)

with ρ the typical density of the system. Here, the dynamical timescale is tdyn ∼
(Gρ)−1/2.

Again, distributing the individual timesteps into a hierarchy of block time-
steps, starting from the largest timestep ∆tmax, allows synchronisation between
the different particles. For a comparison of the efficiency of different timestep
criteria, see Power et al. (2003).

2.3.3 The leapfrog method, a symplectic integration scheme
Once we have timesteps for particles, we need to update the system. The the-
oretical foundations for the integration methods employed in N-body systems
come from considerations on classical Hamiltonian systems, such as described
in Springel (2005). Hamiltonian systems have the equations of motion for the
particles in the phase-space (~r,~v) ≡ (~q, ~p) described by{

~̇ iq = ∂H
∂~pi

~̇ ip = −∂H
∂~qi

(2.17)

for a number of particles N and with i = 1, ..., N . Here, H is the Hamiltonian
of the system,

H =
N∑
i=1

1

2
mi|~vi|2 +

1

2

N∑
i=1

mi

N∑
j=1,j 6=i

Φij ≡ H(~q, ~p) . (2.18)
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In this last equation, the first term after the first equality sign is the sum over
all the kinetic terms of the N particles while Φ is the potential energy (in this
case, the gravitational potential).

As pointed out in Springel (2005), Hamiltonian systems are not stable a-
gainst perturbations: some integration methods may introduce numerical ap-
proximations that increase the inaccuracy in time integration and can eventu-
ally destabilise an Hamiltonian system. A way to solve this problem is to intro-
duce the so-called leapfrogmethod (Quinn et al. 1997; Springel 2005) by adopting
two possible techniques: the kick−drift−kick (KDK) or the drift−kick−drift
(DKD), where the drift operator D updates the position from the previous to
the next value, and the kick operator K similarly updates the velocity. In the
case of the KDKmethod, the operator for the total time integration has the form
K(~r,~v,∆t/2)D(~r,~v,∆t)K(~r,~v,∆t/2). This means that the update is done first
with a kick on velocities,

K(~r,~v,∆t/2) : ~v(t)→ ~v(t+ ∆t/2) = ~v(t) + ~a(t)∆t/2 , (2.19)

followed by a drift operation with an update on positions,

D(~r,~v,∆t) : ~r(t)→ ~r(t+ ∆t) = ~r(t) + ~v(t+ ∆t/2)∆t , (2.20)

and concluded with a second kick on velocities,

K(~r,~v,∆t/2) : ~v(t+ ∆t/2)→ ~v(t+ ∆t) = ~v(t+ ∆t/2) +~a(t+ ∆t)∆t/2 . (2.21)

With the first kick the velocity is updated for half the integration time, ac-
cording to the gravitational acceleration that the particle suffers at time t. After
that, the position is updated according to the half-time update of the velocity
value. Last, the final kick advances the velocity to the next time, considering
the acceleration of the particle in the new position.

Here, ~a(t) ≡ ~a(~r(t)) is the particle acceleration calculated at the initial po-
sition, and ~a(t + ∆t) ≡ ~a(~r(t + ∆t)) is the particle acceleration calculated at
the final position. The usage of ~v(t+ ∆t/2) instead of ~v(t) to integrate ~r allows
more accuracy, since the position is updated considering the variation of the
velocity during the integration. Similarly, the last kick is done using the accel-
eration of the particle at the next step to update the velocity, thus considering
the evolution of the dynamics that the particle suffers from time t to time t+∆t.

This method of integration is symplectic, i.e. it is symmetric with respect to
the direction of time integration. Therefore, it is convenient since it reduces
long-term increases in energy errors during the integration of the system.

In order to take into consideration the different dynamical timescales of
particles in a simulation, a way to implement the KDK is to group particle
timesteps in blocks, and advance active particles by means of a KDK integra-
tion. As pointed out by Quinn et al. (1997) and Springel (2005), integration
schemes where timesteps are distributed in a block hierarchy are not exactly
symplectic, even if the single timestep updates of each particle are done by
means of a KDK leapfrog method. Nonetheless, in this case the symplectic na-
ture of the KDK leapfrog method is preserved in the single timestep advance-
ment of the active particles.
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2.4 Smoothed particle hydrodynamics

Simulations that include gas need additional recipes to treat hydrodynamics.
Gas and fluids are in fact described by additional physical quantities such as
density, pressure, temperature, entropy and viscosity that give complete infor-
mation about their behaviour. To describe the behaviour of gas, one can adopt
an Eulerian or a Lagrangian approach.

With the Eulerian approach, the description of the fluid system focuses on
a given point in space and describes how the physical parameters of the fluid
change as a function of each point in space and of time. For the gas density
ρ, one would have for instance ρ = ρ(~r, t), with ~r and t being independent
coordinates in space and time. With the Lagrangian approach, instead, one
follows the individual fluid elements as theymove through space and time and
as they change their physical parameters. The calculation of the density for a
small gas element that moves in space and time with a parametric equation
~r = ~r(t) is ρ = ρ(~r, t) ≡ ρ(~r(t), t), with ~r depending in this case on t.

An example of Eulerian numerical scheme is the Adaptive mesh refinement
(AMR, Berger & Oliger 1984; Berger & Colella 1989), a technique that makes
use of ameshwith sub-grids of different size to describe the properties of gas in
a simulation. There is no gas particle employed in this method, and cells of dif-
ferent sub-grids in the mesh have sizes that adapt to the local hydrodynamical
properties of gas. arepo (Springel 2010b) is amodern example of hydrodynam-
ical adaptive mesh code that provides an improved scheme that eliminates the
lack of Galileian invariance typical of AMR codes.

For the case of Lagrangian numerical solvers, the typical example is rep-
resented by the SPH method (Gingold & Monaghan 1977; Lucy 1977, already
mentioned in Section 1.4.1 of this thesis). SPH is a method to solve the Euler
equations of hydrodynamics directly for N-bodygas particles. Therefore, SPH
does not adopt any grid in space.

2.4.1 SPH: smoothing the properties of gas particles to solve
the equations of hydrodynamics

The three Equations (1.17) describe the basic properties of fluids. Their appli-
cation to N-bodygas particles however is not straightforward. In fact, Equa-
tions (1.17) are valid for a fluid, that can be represented as a continuous sys-
tem. The discretisation of fluids in particles makes them incompatible with a
continuous representation.

The idea behind SPH is to smooth the properties of each gas particle accord-
ing to a given number of closest gas particles (the neighbours), before interpret-
ing gas particles as a continuous fluid. To do this, one associates a smoothing
length h to each gas particle in the simulation. h is then the radius of a sphere
centred on the particle, within which the Nh closest neighbours are included.
Then, by introducing a kernel functionW with compact support, it is possible
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to smooth the given parameter a of the gas particle as:

a0,i → as,i =

Nh∑
j=1

Wa0,j . (2.22)

Here, a0,i and as,i are the initial and smoothed value of a for the particle i, re-
spectively. W can be expressed as a function of the distance rij between the i-th
and j-th particles and of their smoothing lengths, hi and hj ,W ≡ W (rij, hi, hj)
(Stinson et al. 2006). The employment of the kernel W in Equation (2.22) is
intended to smooth the properties of each gas particle with the contributions of
the neighbour particles. In this way, the fluid can be considered as a continuous
system and the Equations (1.17) can be solved for each gas particle. Having
W a compact support, this means that only for particles within a certain range
of distances the kernel W is non-null, while out of that radius W is null. For
instance, (Stinson et al. 2006) chose this radius to be equal to 2h, i.e. two times
the smoothing length of gas particles.

Among the advantages of SPH, the method is Galilean invariant (Springel
2010a) and like other Lagrangian methods it is suitable for systems with large
density contrasts (Tasker et al. 2008). However, SPH shows problems in re-
solving shocks, and in treating fluid discontinuities and instabilities (Springel
2010b). In contrast, Tasker et al. (2008) pointed out that AMR and Eulerian
codes appear to work better in systems with regions of rapid change in density,
since they better resolve the properties of gas on smaller scales with the usage
of the adaptive grid, while they lack Galileian invariance (as mentioned above)
and they show problems with overmixing in hydrodynamic systems (Springel
2010b).

2.5 Sub-grid physics: star formation, gas cooling,
supernova feedback

Additional behaviour of baryonic matter, such as gas cooling processes, SF and
stellar feedback can be described introducing additional recipes to simulate
these effects happening on scales smaller than the mass resolution of the N-
bodyparticles. As an example, if the resolution limit of gas particles in a simula-
tion is of 103 M�, the birth of a star of 10 M� cannot be directly simulated as the
collapse of more gas particles together, since there is not enough mass resolu-
tion for that. Therefore, additional recipes are implemented to attribute a series
of physical properties and behaviours to each particle, to simulate these events
happening below mass resolution. These recipes are called sub-grid recipes.
To give some examples, I am going to describe SF, gas cooling and supernova
feedback.
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2.5.1 Star formation
SF is the process of spawning a new stellar particle from simulated gas. In the
case of SPH codes, this means spawning a stellar particle from a gas particle.
In practice, there are different ways to implement this process.

One way is to apply the concept of stability of a molecular gas cloud of tem-
perature T and density ρ, as well as the observations of the SF rate (SFR) in
disc-like galaxies, to the procedure of spawning stellar particles from gas par-
ticles. The base criterion to determine if a molecular gas cloud is unstable to
gravitational collapse is to evaluate if in the cloud there is any perturbation
with a size larger than a critical length, the Jeans Length, defined as

λJ =

√
RT

Gρ
, (2.23)

where R = NAkB = 8.314 J K−1mol−1 is the universal constant of gas, kB =
1.38 × 10−23 J K−1 is the Boltzmann constant, and NA = 6.022 × 1023 is the
Avogadro Number. This criterion was first derived by Jeans (1902). The Jeans
length expresses the maximum scale of a sound wave that can cross the cloud
without triggering its collapse through gravitational instability. From Equation
(2.23) it is clear that colder and denser cloudswill collapse easier andwill form
stars easier.

Observations of star forming, gas-rich galaxies suggest that the surface den-
sity of star forming gas, ΣSF, and the surface density of gas, Σgas, are related
through the Schmidt-Kennicutt relation (Kennicutt 1998). The Schmidt-Ken-
nicutt relation has the form

ΣSF = (2.5± 0.7)× 10−4
( Σgas

M� kpc−2

)1.4±0.15

M� yr−1 kpc−2 . (2.24)

Combining the previous concepts, the idea in numerical simulations is to find
a criterion to decide whether or not a gas particle is cold and dense enough
to spawn a star particle, to reproduce the Schmidt-Kennicutt relation in star
forming systems.

As an example of implementation of SF via jeans instability criterion in N-
body SPH simulations, I report the method illustrated by Katz (1992). Accord-
ing to this method, a gas particle, in order to be eligible for SF, must be part of
a converging flow that is unstable according to the Jeans criterion of Equation
(2.23). Assuming the smoothing length hi to be the size of the i-th gas parti-
cle and ci its local sound speed, the condition of Jeans instability is obtained
if the gas particle satisfies the requirement hi/ci < 1/

√
4πGρi, where the term

hi/ci represents the sound crossing timescale, and the term 1/
√

4πGρi is the
dynamical timescale.

If the particle is eligible to SF, a random number is compared to its SF prob-
ability, calculated as

p = 1− e−c∗∆t/tg , (2.25)
with c∗ being the dimensionless SFRparameter,∆t being the integration timestep
and tg being the maximum between the local gasdynamical timescale and the
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local gas cooling timescale. If this random number is larger than p, a star parti-
cle is spawned.

Even if themass of an SPHparticle represents the resolution limit of the sim-
ulated star forming regions, alternative numerical implementations to the one
showed above adopt a strategy to simulate an environment with many phases
inside the same particle where to form stars. This is for instance the case of
the explicit method for quiescent mode SF presented by Springel & Hernquist
(2003). In this case, the total SPH particle mass m is divided in three compo-
nents, the ordinary gas (gas that does not undergo any cooling or SF process),
the cold gas and the formed stellar component, with masses mg, mc and m∗,
respectively. Initially,m∗ = 0.

Inside the particle, every timestep ∆t there is a conversion of a fraction of
gas mass into stellar mass, as

∆mSF = mc
∆t

t∗
, (2.26)

where t∗ is the timescale for converting cold gas into stars. The remaining frac-
tion of gas mass is distributed between cold gas and ordinary gas, and evolves
according to a proper hydrodynamical treatment, see Springel & Hernquist
(2003).

Therefore, each SPH (initially gas) particle, after starting to form stars, has
a time interval during which both a stellar collisionless mass fraction and a
gaseous mass fraction co-exist together. When the total stellar mass inside the
particle satisfies the condition m∗ > 0.5m, the particle is fully converted into a
stellar particle of massm∗. The remaining gas mass is distributed to the neigh-
bour SPHparticles. For an alternative, simplified version of the explicit method
reported here, see again Springel & Hernquist (2003).

2.5.2 Gas cooling
Gas cooling is the process of temperature decrease in gas. In numerical sim-
ulations, this is typically represented by molecular hydrogen cooling or metal
line emission cooling.

Modelling gas cooling processes requires an additional energy variation
term into the Equations (1.17), inclusive of a cooling function Λ, which in the
general case is a function of the parameters of the gas, like temperature and
density. A description of the behaviour of the cooling function Λ due to metals
and molecular hydrogen can be found in Sutherland & Dopita (1993) and in
Shen et al. (2010). Also, a description of the non-equilibrium abundances of
the elements concurring to gas cooling in the specific case of SPH simulations
is provided by Christensen et al. (2012).

Gas cooling is important to lower gas temperature and allow gas to form
stars, if also other conditions are satisfied, (see the above SF treatment, for in-
stance). In fact, gas cooling diminishes the temperature of gas in Equation
(2.23) and therefore diminishes the Jeans length. This means that even a den-
sity wave with a small size can trigger the gravitational collapse of a gas cloud,
if this is cold enough.
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2.5.3 Supernova feedback
At the end of their evolution, stars can undergo different fates. Specifically, if
stars are massive enough (i.e. M∗ & 10 M�), they finally reach a phase of core
collapse explosion. This explosion is known as supernova. Supernovae II are
associated with the core collapse of a neutron star after that nuclear burning
has led to the production of Iron in its core, and after that the process of neu-
tronisation has converted all the iron into neutrons inside the star. Supernovae
II release a large amount of energy in the surrounding space (∼ 1051 erg) and
therefore are important to regulate SF in the interstellar environment of galax-
ies (Silk 2003; Stinson et al. 2006).

An example of supernovae II feedback implementation in N-body SPH sim-
ulations is the supernova blastwavemodel by Stinson et al. (2006). In theirmodel,
if in a stellar particle at a given time there is a supernova II explosion, the parti-
cle distributes a fraction of the total 1051 erg of energy, ∆ESN, to the i-th neigh-
bouring gas particle as

∆ESN, i =
miW (|~ri − ~rs|, hs)∆ESN∑N

j=1mjW (|~ri − ~rs|, hs)
, (2.27)

where they defined hs as the distance of the stellar particle to the 32nd clos-
est gas particle, and whereW is the smoothing kernel for SPH. In this model,
only thermal energy is considered as feedback since the kinetic energy of gas is
converted to gas thermal energy in timescales smaller than typical simulation
timesteps. To simulate the effects of the supernova blastwave on the surround-
ing gaseous environment, the authors imposed that the gas particles within hs

switch off cooling for an amount of time, in order to prevent these particles
from forming stars when receiving the thermal feedback from the supernova.

2.6 Superbox-10, ChaNGaand Gadget-2
In the Sections 2.1 to 2.5, I showed some methods employed in numerical sim-
ulations in astrophysics. Now I present the codes Superbox-10, ChaNGaand
Gadget-2, to show how the numerical methods discussed before apply to their
cases.

2.6.1 Superbox-10
As I mentioned at the beginning of this section, Superbox-10was the code em-
ployed byMJ16 to perform their set ofN-body simulations. Superbox-10 is a PM
code and it adopts the fast Fourier transform illustrated in Bien et al. (2013) to
calculate the gravitational potential and hence the force acting on particles. I
have recalled the principles of PM codes in Section 2.2.1.

Superbox-10 employs also a system of nested grids of cells. The system of
nested grids works as follows.

For each galaxy, an inner grid of cells is attributed to its densest region, in
order to obtain high resolution in the calculation of the acceleration applied
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to the N-bodyparticles there. An example can be the grid applied around the
bulge of a disc galaxy. A second grid is employed for the calculation of the force
at intermediate resolution, and for instance it can be localised in the region of
the disc of a galaxy.

A third, global grid is employed to sample matter distribution in the re-
maining regions of the simulation box, with the lowest resolution. For more
details, see Bien et al. (2013). Superbox-10 improves the vertical resolution of
disc-galaxy-like systems by introducing a flattening parameter, that represents
the vertical-to-horizontal ratio of the cells, thus increasing the vertical force res-
olution, following Just & Jahreiß (2010).

Having calculated the potential in each cell, it is possible to calculate the
force acting on each particle. For instance, a given particle in the a, b, c-th cell
will have an acceleration ax along the x-direction equal to

ax =
Φa+1,b,c − Φa−1,b,c

2lx
+

Φa+1,b,c + Φa−1,b,c − 2Φa, b, c

lx
2 ∆x

+
Φa+1,b+1,c − Φa− 1, b+ 1, c+ Φa−1,b−1,c − Φa+1,b−1,c

4lxly
∆y

+
Φa+1,b,c+1 − Φa− 1, b, c+ 1 + Φa−1,b,c−1 − Φa+1,b,c−1

4lxlz
∆z ,

(2.28)

where ∆x,∆y,∆z are the particle coordinates inside the cell and where lx, ly, lz
are the lengths of the cell in the three coordinate directions x, y and z.

The integration in Superbox-10 is performed bymeans of a leapfrog method
and with a global timestep, following Fellhauer et al. (2000). The code allows
to choose timesteps conveniently small to integrate the simulated systems, like
in the case of MJ16, that chose a timestep ∆t = 0.1 Myr in order to have a
high degree of accuracy in the integration of their simulations of MW-satellites
interaction.

2.6.2 ChaNGa
ChaNGa is the lastN-body code (togetherwith the recent Gasoline-2, seeWad-
sley et al. 2017) in a series started with the development of pkdgrav and pros-
ecuted with Gasoline. The code makes use of the optimised parallelisation
provided by Charm++ 1, to better distribute workload between cores2. As for
the parallelisation of the simulations in ChaNGadiscussed in this chapter, I
made additional use of routines and modules from the Open-MPI distribution3,
that follows the MPI(Message Passing Interface) protocol for parallel commu-
nication between cores in computer clusters. I also made use of the TIPSY4

1See http://charmplusplus.org.
2I used the ChaNGa release 3.7.1. As for the cluster version of the code, given the linux-

based cluster employed to perform the simulations, I installed the verbs-netrls-linux-x86
version of ChaNGaand Charm++.

3See https://www.open-mpi.org/ for more information.
4By N. Katz and T. Quinn, see the page http://faculty.washington.edu/trq/hpcc/

tools/tipsy/tipsy.html.
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package to convert the ICs data for Superbox-10 into a proper format readable
by ChaNGa.

The tree algorithm adopted in ChaNGa is a modification of the BH tree in
the form of a binary tree, similar to what is described in Wadsley et al. (2004).
To control the accuracy of the tree opening, the code employs an opening an-
gle θ by means of the cell-opening criterion of Equation (2.8). A value of the
opening angle θ ∼ 0.5 − 0.55 represents the typical, standard choice. For the
calculation of the force, the code employs a softening length parameter ε and
the spline kernel of Equations (2.11) for softening the forces when distances
between particles and nodes are less than 2ε, with ε being the average of the
softening values of the two interacting objects (particle or node). For distances
more than 2ε, the Newtonian force is recovered.

Additionally, ChaNGamakes use of the hexadecapole expansion to describe
matter distribution inside the tree cells and for the calculation of the force acting
on particles due to distant nodes (see Stadel 2001, for more details about the
calculation of the hexadecapole expansion terms). However, when particles
and cells are distant less than the average softening length, the spline-softened
force is evaluated only with the monopole term (Menon et al. 2015).

The combination of the standard opening angle values with the hexade-
capole expansion of the matter distribution grants a high accuracy in the cal-
culation of force in cosmological simulations (Menon et al. 2015). On the other
side, this requires a higher computational effort, as I will show later in the
benchmark.

Time integration is done by means of the leapfrog KDK scheme introduced
in Section 2.3.3, following Quinn et al. (1997). In particular, each particle of
given softening ε and acceleration a has an individual timestep ∆t given by

∆t = η

√
ε

a
. (2.29)

Here η is a parameter that controls the integration accuracy. Like in Quinn et al.
(1997), the maximum timestep can be set to be below the dynamical timescale
of the integrated system, as in Equation (2.16). Starting from this maximum
timestep, the code distributes particle timesteps into a block hierarchy as in
Equation (2.15).

ChaNGawas developed to simulate baryonic physics as well, and SPH and
sub-grid physics are implemented in the code. I only mention the main fea-
tures of these implementations, and I do not discuss them into detail, since I
did not use them for the simulations presented in this thesis, that are N-body-
only simulations.

As for the treatment of gas, the SPH implementation of ChaNGa improves
the calculation of entropy and thermal diffusion processes, as well as the de-
scription of pressure gradients and timesteps, following the results of previous
literature (Wadsley et al. 2008; Shen et al. 2010; Durier & Dalla Vecchia 2012;
Menon et al. 2015). Thanks to this revision on the SPH formulation, the code
can solve some issues like the Kelvin-Helmholtz instability problem, with a bet-
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ter performance than the SPHprescriptions of Gadget-2 (see Figure 1 ofMenon
et al. 2015).

As for the implementation of sub-grid physics, SF in ChaNGa is regulated
as a mechanism mainly developing in cold, dense gas regions (Menon et al.
2015), and gas cooling is implemented by means of recipes describing metal
lines and molecular hydrogen cooling, following Shen et al. (2010) and Chris-
tensen et al. (2012). Feedback from supernovae is includedwith two alternative
mechanisms: the already discussed blastwavemodel and the superbubblemech-
anism. For a description of the superbubblemechanism, see Keller et al. (2014).
This formulation of sub-grid physics allows ChaNGa to reproduce with suc-
cess a number of processes related to stellar evolution (Menon et al. 2015, and
references therein).

2.6.3 Gadget-2

The N-body code Gadget-2was developed as the sequel of Gadget-1 (Springel
et al. 2001). Gadget-2 offers a range of possible input/output formats. I have
chosen to work with the HDF5 format5, due to its intuitive, hierarchical organ-
isation of the data in directories inside the files. The installation of Gadget-
2 requires MPI protocols for parallel support when running simulations.

Like its predecessor, Gadget-2 is a tree code that follows the BH tree al-
gorithm. Gadget-2 adopts only the monopole expansion term to describe the
distribution of matter in the tree cells. However, the code compensates this
lower accuracy with a revised opening angle criterion, requesting that a node
is opened if the error on the corresponding monopole force evaluation on the
test particle is very small compared to the last total acceleration~a of the particle,
i.e.

GM

r2

( l
r

)2

≤ α|~a| , (2.30)

with M being the total mass in the node, l and r being the size and distance
of the node from the particle, respectively, and α being a parameter to control
the tolerance on the error (Springel 2005). The default value of α is set to 0.005.
Also, a node is always opened for force evaluation if the test particle is inside its
volume. With this opening criterion being employed, the old BH opening angle
criterion of Equation (2.8) is used in a simulation only for the first evaluation of
the forces, while the tree walks in the subsequent timesteps follow the revised
criterion of Equation (2.30).

Also, the construction of the oct-tree in Gadget-2 combined with the mono-
pole evaluation of the mass distribution in cells is claimed to have a series of
advantages, included a more efficient memory management and a better tree
update that avoids long-term large errors in the integration (Springel 2005).

The force softening is done by employing a similar spline kernel to the one
illustrated in Equations (2.11), but with somemodifications. The spline kernel

5For more information on HDF5, see the page www.hdfgroup.org.
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in Gadget-2 has the form

f(r, u) =


1/h3[10.67 + u2(32u− 38.4)] , 0 ≤ u ≤ 1/2

1/h3(21.33− 48u+ 38.4u2 − 10.67u3 − 0.67/u3) , 1/2 ≤ u ≤ 1

1/r3 , u ≥ 1
(2.31)

with u = r/h and with h being 2.8 times the larger of the softening values of
the two interacting objects (particle or node). This means that, adopting the
same softening ε as in ChaNGa, the Newtonian force in Gadget-2 is recovered
within a larger range (1.4 times more) than the range of ChaNGa.

In Gadget-2 time integration is done following the KDK leapfrog method
of Quinn et al. (1997). The method, like for the case of ChaNGa, is quasi-
symplectic and as I showed in Section 2.3.3 it avoids long-term divergences in
the energy errors.

Gadget-2 distributes the individual timesteps of particles into a block hier-
archy as in ChaNGa. The timestep for each i−th particle is calculated as

∆ti = min
[
∆tmax,

√
2ηεi
ai

]
, (2.32)

where η again is the accuracy parameter, εi is the softening length of the parti-
cle, ai is the magnitude of the acceleration vector of the particle, and ∆tmax is a
maximum timestep that holds for all the particles. Similar to Equation (2.16),
also in Gadget-2 the optimal choice for the maximum timestep is when this is
smaller than the dynamical timescale of the simulated system.

Like for ChaNGa, I used Gadget-2 for N-body-only simulations, switching off
all the SPHand sub-grid physics recipes. Therefore, like I did above for ChaNGa,
I am only going to briefly describe the SPH and sub-grid physics implemented
in Gadget-2.

As for the treatment of gas dynamics, Gadget-2 implements the SPH recipes
of Springel & Hernquist (2002), that have the advantage of manifestly conserv-
ing gas energy and entropy, improving on the previous, older implementations
of SPH in numerical codes (Springel 2005). Additionally, both the treatment of
radiative cooling and heating by photoionisation (Katz et al. 1996) andmolecu-
lar hydrogen cooling recipes (Yoshida et al. 2003) are implemented in the code.

Gadget-2 adopts the multi-phase treatment of SPH particles to simulate SF
in gaseous mixed environments at a sub-grid level, including regulation by
supernova feedback. This follows the prescriptions of Springel & Hernquist
(2003), that I already presented in Section 2.5.1.

2.7 Benchmark: comparing Superbox-10 , ChaNGa
and Gadget-2

In this section, I present the benchmark done with the N-body codes Superbox-
10, ChaNGa, and Gadget-2. The goal of this benchmark, as mentioned before,
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is to show that Gadget-2 produces similar results to ChaNGaand Superbox-10,
that are more modern codes, and that therefore the choice of a subsequent,
modern version of the Gadget family of codes is suitable for the N-body expe-
riments presented in Chapter 3.

For the benchmark, I considered the three following types of run performed
byMJ16using the Aq-D2 ICs. The three simulations are:

• A run simulating the isolated evolution of a full N-bodyMWmodelmade
of disc, bulge and halo. I will refer to this run as relax, since in this first
Gyr theMWmodel develops instabilities that propagate through the disc,
relaxing to the new equilibrium distribution function (DF) starting from
the initial axisymmetric set-up;

• A run simulating the isolated evolution of the same model starting at the
end of the first run, without MW satellites. I will refer to this run as iso-
lation, because it served as a control case for the evolution of the MW in
interaction with its satellites;

• A run having the same IC MWmodel as in the isolation run, but includ-
ing DM-only N-body satellites that orbit around the MW. I will refer to
this run as interaction. This is also the kind of simulation performed by
MJ16 to study the impact of the satellites on the disc vertical thickening
and heating.

2.7.1 Numerical set-up for the benchmark
I show here the ICs of the MW models and of the satellite models employed
in the benchmark, following MJ16. I also discuss the parameters employed in
ChaNGaand Gadget-2 to run the simulations with these two codes, the clus-
ter used for the simulations, the choice of the snapshots, and the coordinate
rescaling before analysing the results of the simulations.

Initial conditions of the Milky Way and of the satellites

As explained in MJ16, the simulated MW N-bodymodel consists of live disc,
live bulge and live halo, with 10M, 500Kand 4Mparticles, respectively. MJ16 re-
alised six initial MW models following the Aq-A2 to Aq-F2 cosmological sim-
ulations. For the benchmark, I chose the Aq-D2 case because of the average
properties of the model with respect to the other five cases. It is in fact the
model with respect to whichMJ16 rescaled the properties of the other fiveMW
models.

All the MW models were generated by MJ16using the code GalIC (Yurin
& Springel 2014). The code takes as input the desired, target equilibrium den-
sity distributions of the bulge, disc and halo components and the desired ad-
ditional constraints, like the values of velocity dispersion of these components.
It samples the target DF with N-bodyparticles, with an initial guess on their
kinematics. It integrates their orbits, similar to the Schwarzschild (1979) orbit-
based method, and evaluates inside spatial cells the time-averaged numerical
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quantities corresponding to the target ones. By adjusting iteratively the veloc-
ities of particles, the code searches for the simultaneous minimisation of the
relative differences between the numerical density and velocity dispersion val-
ues and the corresponding target values. The final distribution of the particles
in the phase-space samples the desired equilibrium DF for the model ICs.

I give now a summary of the properties of the Aq-D2 model, while more
details can be found in MJ16, and while in their Table 4 there is a summary
of the MW model parameters. This table, together with Table 2 and Table 3 of
their paper, is useful in the light of giving a summary of the properties of all
their six MWmodels and of the satellite models employed around them 6.

The disc was modelled with an exponential density profile, as described in
Equation (1.1) and with P = 1. The disc scale length is h = 2.8 kpc and the
scale height is z0 = 0.277 pc. The total mass is 3.42× 1010 M�.

The bulge was modelled as a Hernquist profile, with density profile as in
Equation (1.4). The scale radius was chosen to be ab = 0.35 kpc, while the total
mass isMb = 1.9× 1010 M�.

The information about theMWhalowas reconstructed from the correspond-
ing NFW halo extracted at redshift z = 0 in the Aq-D2 simulation. The halo at
redshift z = 0 has a total virial mass M200 = 1.77 × 1012 M� at a virial ra-
dius r200 = 242.8 kpc. The final N-bodyhalo employed in the simulation was
obtained by best-matching the properties of this NFW halo with a Hernquist
profile of the same total mass asM200, like described in Section 1.2.3. The NFW
scale radius is rs = 24.95 kpc, with a concentration parameter c = r200/rs = 9.37.
The Hernquist scale radius of Equation (1.8) is therefore a = 43.90 kpc.

Finally, in the interaction simulation, the additional 23 satellites have 50000
particles each 7. The satellites span over a range ofmasses, going from∼ 108 M�
to some 109 M�. MJ16generated the 23 N-body satellites adopting the recipes
from Lora et al. (2013) to return spheroidal N-bodygalaxy models with NFW
density profiles. The initial positions and velocities of the satellites in the MW
environment was set by MJ16 following the corresponding data extracted at
redshift z = 0 fromAq-D2. In Table 2.1 I sum up the relevant parameters of the
MWmodel and the number of satellites employed for the benchmark.

ChaNGa: parameters used in the runs

The parameter for the tree code opening angle θ was put to a value dTheta=
0.55, which is within the range of recommended values. For each particle of
given softening ε and acceleration a, the timestep ∆t is given by Equation

6MJ16performed an additional set of simulationswith a set-up that followed the indications
from the Via Lactea II cosmological simulations. However, this is far from the scope of this
thesis.

7I have to report somediscrepancies in these numbers. Due to a small issue in the conversion
code from Superbox-10 to Gadget-2, the last satellite had∼40200 particles instead of 50000 par-
ticles. The satellite mass lost in this way was ∼ 2.5% of the total satellite mass. However as we
will see from the results presented in this chapter, the disc evolution of the MW in interaction
was not deeply affected by this in Gadget-2, with respected to the other codes.
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Table 2.1: Relevant parameters describing the MWmodel byMJ16 after extracting the corre-
sponding data from the Aq-D2 cosmological box. From top to bottom: Number of disc, bulge
and halo particles, disc mass, bulge mass, halo virial mass, halo virial radius, halo NFW scale
radius, halo Hernquist scale radius, bulge scale radius, disc scale length, disc scale height, and,
additionally, the corresponding number of satellites in the interaction simulation.

Ndisc 1× 107

Nbulge 5× 105

Nhalo 4× 106

Mdisc 3.4× 1010 M�
Mbulge 0.9× 1010 M�
M200 1.77× 1012 M�
r200 242.8 kpc
rs 25.91 kpc
a 43.90 kpc
ab 0.35 kpc
h 2.8 kpc
z0 0.277 kpc
Nsat 23

(2.29), where the η parameter corresponds to dEta in the parameter file for
ChaNGa. Here, I chose dEta= 0.3, high enough to avoid to excessively slow
down the simulations.

Regarding the choice of the softening, if it is chosen too small, according to
Equation (2.29) then 1) the timestep is decreased by a factor

√
ε; 2) the acceler-

ation that a particle suffers may be larger because of the smaller range of force
softening, thus contributing to decrease the timestep by another factor 1/

√
a.

If the softening is chosen too high, there is on the contrary more inaccuracy
in the time integration (the timesteps are larger) and the gravitational force is
softened at a higher range, with a consequent loss of accuracy in its calculation.

ChaNGawas the first code that I used for the relax, isolation and inter-
action simulations, therefore it was the code that I used to calibrate the choice
of the softening values, depending on the consequent integration speed of the
code. I chose a softening length ε = 100 pc for disc, bulge and satellite particles
and ε = 200 pc for the halo particles. For the halo, the choice of a softening
ε = 200 pc is optimal to avoid spurious kicks on the halo particles.

For the disc, bulge and satellite particles, I had initially opted for a smaller
softening, ε = 40 pc instead of 100 pc. This choice was done to get as close
as possible to the vertical force resolution of the disc in MJ16with Superbox-
10, which was set to 40 pc. For the halo in I initially chose a higher value of
the softening, ε = 500 pc, to counterbalance the higher computational time
required for the disc, bulge and satellite particles integration.

Since in ChaNGa the softening spline kernel reproduces the Newtonian
force at two times the average value of the softening of two given particles, then
to obtain a disc vertical force resolution of 40 pc the choice of the softening of
the disc particles should have been set to 20 pc. However, already choosing the
disc, bulge, and satellite particle softening to be ε = 40 pc, the simulations were
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slower by a factor 1.75 than the corresponding ones with ε = 100 pc for the disc,
bulge and satellite particles and ε = 200 pc for the halo particles.

Thus, a choice of 20 pc in the disc was excluded because it would have most
likely led to an even slower integration, and I opted for ε = 100 pc in the disc,
bulge and satellites, to gain this 1.75 speed-up factor and reduce the computa-
tional time. Also, I note that the value of ε = 100 pc is below the initial tidal
radii rtid of the satellites (satellite 17 of the Aq-D2 set-up has the smallest tidal
radius in the simulation, rtid = 1.5 kpc� 0.1 kpc), and therefore the satellites
are force-resolved within their tidal radii.

The base (i.e. the highest) timestep for the construction of the block hierar-
chy was chosen to be dDelta= 10 Myr, small enough to be conveniently below
the dynamical timescale of the evolution of the MW, which is of order ∼ 100
Myr. The resulting timesteps, given the division in rungs of the block hierarchy,
reach an order comparable to ∆t = 0.1 Myr in MJ16with Superbox-10.

The simulations performed by MJ16were N-body runs without any addi-
tional recipes for gas hydrodynamics, gas cooling, SF and feedback. Therefore,
I ran the simulations with ChaNGa in N-bodymode only, and I switched off
all the recipes to simulate additional physics.

Gadget-2: parameters used in the runs

Given that in Gadget-2 the timestep for particles is defined as in Equation
(2.32), then to have timesteps with a similar order of magnitude as the ones
in ChaNGa, η (ErrTolIntAccuracy) was set to 0.219 in the parameter file. The
value of the opening angle parameter (ErrTolTheta) for the first tree walk in
each simulation was set to 0.55 as in ChaNGa. As for the revised opening crite-
rion employed in the subsequent timesteps, I chose for the tolerance parameter
α the default value ErrTolForceAcc = 0.005. Regarding the softening, I chose
the same values as in ChaNGa, i.e. ε = 100 pc for disc, bulge and satellite
particles, and ε = 200 pc for the MW halo particles.

Before choosing these values of softening, I evaluated the option of rescaling
the softening values adopted in ChaNGaby a factor 1.4 smaller, in order to ob-
tain the corresponding softening values for Gadget-2. This, in principle, finds
justification in the different ranges adopted to recover the Newtonian force in
ChaNGaandGadget-2. In fact, as I showed in Sections 2.6.2 and 2.6.3, theNew-
tonian force in ChaNGa is recovered within two times the average softening of
the two interacting objects (particle or node), while in Gadget-2 it is recovered
within 2.8 times the larger of the softening values of the two interacting objects
(particle or node).

Thus, even if choosing ε = 100/1.4 pc ∼ 71.4 pc for disc, bulge and satel-
lite particles in Gadget-2would allow to recover the Newtonian force at the
same scale (200 pc) as in ChaNGa for disc-bulge-satellite particle interactions,
the same rescaling could not be granted already for the interaction of these
particles with the halo particles and with nodes containing different kinds of
particle. This motivated my final choice of adopting the same softening values
as in ChaNGa. This choice implies a softening of the force acting on similar
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scales in ChaNGaand Gadget-2 (few hundreds of pc) and, as I show later in
this section, it did not affect the final results in the benchmark and their overall
similarity.

Last, for the choice of the maximum timestep ∆tmax I adopted a value Max-
SizeTimestep = 10 Myr. This is the same value of the base timestep that I
adopted in ChaNGa, and it is again conveniently smaller than the dynamical
timescale of the MW galaxy. Also for Gadget-2 the resulting distribution of
particle timesteps in the block hierarchy allows for time synchronisations of
the same order as the 0.1 Myr ofMJ16.

Being this anN-bodybenchmark, alsowithGadget-2 I did not need to switch
on cooling, SF and feedback recipes. Therefore, I used the code inN-bodymode
only.

Computer cluster

The cluster used to run the simulations was the BwForCluster, a collaboration
of the Universities of Heidelberg and Mannheim 8. I found the choice of run-
ning the simulations in parallel with 48CPUs (3 nodes, 16 processors per node)
convenient to give results in a reasonable time of∼ 1 week per simulation both
with ChaNGaand Gadget-2. With a higher number of processors, the simu-
lations in ChaNGawere producing errors that terminated them9. Therefore, it
is clear now why the choice of a softening ε = 40 pc for disc, bulge and satel-
lite particles was inconvenient: to compensate for the higher workload in the
integration, I could have used more processors, but this was not possible due
to these crashes.

Selection of the snapshots and coordinate rescaling

Even if MJ16 originally run each simulation for at least 2 Gyr, in the case of
this benchmark I run each simulation for 1 Gyr. This choice, given the typical
dynamical timescales of MW-like galaxies of a few hundred Myr, is enough to
compare the isolated evolution of the MW model and its interaction with the
satellites in the different codes, and it is enough to capture significant diver-
gences in the behaviour of the codes.

I have stored outputs every 100Myr in the relax simulation for ChaNGaand
Gadget-2 to compare the energy, angular momentum and momentum conser-
vation with Superbox-10. For the analysis of the disc evolution in the relax si-
mulation, I took snapshots only every 500 Myr, enough to make a general com-
parison on the secular evolution of the MW disc between the different codes.
For the interaction and isolation simulations, I only considered the final snap-
shot to directly compare the result ondisc thickness andheating in ChaNGaand
Gadget-2with the results ofMJ16 in Superbox-10.

8See the page http://wiki.bwhpc.de/e/BwForCluster_User_Access for more informa-
tion.

9This may be due to the version of Charm++ that I employed at the time of the test, that may
have not been stable. For practical reasons I did not investigate this problem more in detail,
giving priority to start the simulations in ChaNGawith a convenient number of CPUs.
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Before calculating anydisc property from the outputs of ChaNGaandGadget-
2, and in order to compare it with the results ofMJ16, I have rescaled the coor-
dinates of the disc particles for the MW density centre position and velocity10,
and I have rotated the disc particles in order to have the angular momentum of
the disc aligned with the z-axis. This procedure was done to follow the calcu-
lations of MJ16 and to avoid biases in the benchmark.

2.7.2 Results for the evolution in isolation
I first show how ChaNGaand Gadget-2 compare with Superbox-10 in repro-
ducing the isolated evolution of the MW disc in the relax simulation.

ChaNGa: results for the isolated evolution of the Milky Way

I first discuss the results obtained with ChaNGa for the isolated evolution of
theMWmodel. In the relax simulation, I have studied some kinematic and dy-
namical quantities of the disc to check how they evolved in the different codes.

The Toomre Q parameter for stellar discs (Toomre 1964) describes the sta-
bility of stellar discs against gravitational collapse and puts in relation their
surface density Σ with the epicyclic frequency k of stellar orbits and the radial
velocity dispersion σR,

Q =
κσR

3.36GΣ
. (2.33)

A disc with hot kinematics in the radial direction or with high stellar epicyclic
frequency is less prone to instabilities, that otherwise can manifest in the form
of a bar or of spiral structures. A Fourier analysis of the disc mass distribution
can unveil these features, as I will discuss in Chapter 4, showing the numerical
study of the MW bar. A massive disc, on the contrary, tends to develop these
instabilities. The epicyclic frequency was calculated as in BT08,

κ =

√
R
dΩ2

dR
+ 4Ω2 , (2.34)

where Ω2 is the squared angular frequency, obtained from the gravitational
potential Φ as

Ω2 =
1

R

dΦ

dR
. (2.35)

This is slightly different than what is done in the case of MJ16, where the ac-
celeration of particles was employed. The derivatives appearing in the last two

10Themethod to calculate the density centre is based on the one adopted by P. Berczik (Main
Astronomical Observatory, Kiev, Ukraine). It consists in shrinking iteratively a sphere that ini-
tially contains all the particles of the MW. This is done by calculating at each iteration the cen-
tre of mass of the particles inside the previous sphere, and then in centring the new shrunken
sphere on this centre of mass. This method therefore excludes, iteration after iteration, all the
particles that do not have any more weight in determining the location of the densest region
of the system. The iteration can be stopped when a desired minimum number of particles or a
desired minimum radius are reached.
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Figure 2.2: Radial profiles of theMWdiscQ parameter (left panel) and surface density (right
panel), at times t = 0, 0.5 and 1 Gyr, for the simulation relax in Superbox-10 and ChaNGa.
Colour and line codes explained in the label in the left panel.

equationswere substitutedwith discrete differences between contiguous radial
bins. I chose a division in 80 equally spaced radial bins, two times the binning
chosen by MJ16. This binning is enough to obtain a smooth profile of Q. The
results are similar in the two codes through time (left panel of Figure 2.2).
Particularly, theQ parameter has a minimum between 1 and 2 that increases in
time, approaching ∼ 2 towards the end of the simulation. As a matter of fact,
this disc model does not develop any bar instability through its evolution, as
was already visible inMJ16.

The surface density appears to behave similarly in the two codes (right panel
of Figure 2.2). Both simulations show the propagation of a density perturba-
tion in the disc, that undergoes relaxation in the whole isolated evolution. This
density perturbation propagates outwards in time and causes the surface den-
sity to oscillate around the initial exponential profile. This is visible from the
crest present at t = 0.5 Gyr at around 7 kpc of GCd (cyan full line for Superbox-
10, blue dashed line for ChaNGa), which after other 0.5 Gyr moves to 12− 13
kpc of GCd (orange full line for Superbox-10, red dashed line for ChaNGa).

Last, I also show the average radial, tangential and vertical velocities and
their dispersion values for the case of ChaNGa in comparison to Superbox-
10 (top, central and bottom panels of Figure 2.3, respectively; the average ve-
locities are on the left panels, the dispersion values are on the right panels). In
both codes, the outward propagation of the density wave in the disc has effects
on the radial, tangential and vertical velocity profiles, which present crests that,
similarly to the surface density, propagate towards the outside. This may hap-
pen at the expense of the tangential velocity, which is lowered down in time,
due to the redistribution of part of the kinetic energy associated to the tangen-
tial motions into kinetic energy associated to radial motions. The numerical
MW model discussed here was realised by MJ16with σ2

R ∼ σ2
φ. This condition

favours transfer of kinetic energy from the tangential to the radial direction
throughout the evolution of the disc.

Additionally, the fact that the radial velocity dispersion profile (top right
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Figure 2.3: From top to bottom: MW disc average radial, tangential and vertical velocity
profiles (left panels) and the corresponding velocity dispersion profiles (right panels), at times
t = 0, 0.5 and 1 Gyr, for the simulation relax in Superbox-10 and ChaNGa. Colour and line
codes as in Figure 2.2.

.

panel) shows also in ChaNGaan increase in time out of 1 − 2 kpc of GCd,
specifically preventing bar formation, confirms that this surface density wave
and the increase of the energy budget invested in radialmotions are a numerical
artefact of the initial MW set-up generated with GalIC. Therefore, this is not
a numerical feature introduced by Superbox-10, that was the code originally
employed to simulate the MW evolution studied inMJ16.

In general, this analysis confirms that the evolution of the relaxingMWdisc
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in ChaNGa is similar to what was found by MJ16. Perturbations on the disc
surface develop within a similar timescale and the bar is a missing feature in
both simulations. Also, the exponential density profile of the disc was built
byMJ16 to follow the observations of the MW and does not change drastically
from equilibrium, if we exclude these perturbations.

Gadget-2: results for the isolated evolution of the Milky Way

I have performed with Gadget-2, like I did for ChaNGa, the same analysis of
the evolution in time of the Q parameter, of the surface density profile, of the
z−, r− and φ−velocities, and of their dispersion values. Again, I compared
these results to the results obtained in Superbox-10 byMJ16.

In the relax simulation, theQ parameter and the surface density profile be-
have and evolve very similarly using Gadget-2 and Superbox-10 ( Figure 2.4,
left and right panel, respectively). The evolution of the velocity and velocity

Figure 2.4: Radial profiles of theMWdiscQ parameter (left panel) and surface density (right
panel), at times t = 0, 0.5 and 1 Gyr, for the simulation relax in Superbox-10 and Gadget-2.
Colour and line codes explained in the label in the left panel.

dispersion profiles is similar as well ( Figure 2.5).
From this comparison, I can confirm that the density wave that propagates

radially in the MW disc simulated in Superbox-10 and ChaNGa is present also
in the case of Gadget-2, where the increase of the radial velocity dispersion at
the expense of the tangential velocity profile finds as well confirmation. This
reinforces the idea, discussed already for the case of ChaNGa, that this whole
effect is a consequence of the MW ICs, and it is not a peculiar numerical ef-
fect introduced neither by a PM code like Superbox-10, nor by the tree codes
ChaNGaand Gadget-2.

2.7.3 General comparison of the evolution in interaction with
the satellites

Now, I show and discuss the results obtained studying the evolution of the
MW disc interacting with the satellites in the interaction simulation using the
codes ChaNGaand Gadget-2, in comparison to the results of MJ16 obtained
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Figure 2.5: From top to bottom: MWdisc radial, tangential and vertical velocity profiles (left
panels) and the corresponding velocity dispersion profiles (right panels), at times t = 0, 0.5
and 1 Gyr, for the simulation relax in Superbox-10 and Gadget-2. Colour and line codes as in
Figure 2.4.

using the code Superbox-10.

FollowingMJ16, I have calculated the disc radial profiles of the average vertical
position of the particles,< z >, which is an indicator of the vertical average dis-
placement of the disc. Also, I calculated zrms, which is an indicator of the disc
vertical thickening, and σ2

z , which indicates the degree of vertical heating of the
disc. Additionally, I have calculated< z > and zrms for the isolation simulation
as well, in order to make a comparison between the cases of evolution in inter-
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action and evolution in isolation. For the calculation of σ2
z , instead, I compared

the results from the three codes in the interaction simulation with the data
provided at solar GCd (R0 = 8 kpc) by Holmberg et al. (2009), like previously
done inMJ16.

Regarding < z >, the final profile is overall similarly reproduced by the
three codes. In particular, in the interaction simulation, the outer downward-
oriented warp of the disc at 1 Gyr, that originally was found in MJ16, is simi-
larly captured in ChaNGaand Gadget-2, as showed in Figure 2.6 (full lines).
This confirms that the satellites impacting on the MW disc are able to produce
a warp on the external regions of the disc. Also, the similar effect of the satel-

Figure 2.6: < z > profile in the simulations interaction and isolation in all the three codes,
at time t = 1 Gyr. Colour and line codes explained in the label.

lites on the disc warp is evident if compared, for the three codes, against the
corresponding results on the < z > profile at the same time but for the iso-
lation case (dashed lines). The warp of the isolated disc at around 14 kpc of
GCd is smaller in ChaNGaand Superbox-10 than in Gadget-2, by a difference
of ∼ 70 pc. However, this difference is confined to this region only, therefore it
has no relevance in this analysis, overall.

I then compared the disc thickness, zrms, for the three codes in isolation and
interaction. I show the result in Figure 2.7. Using Gadget-2 and ChaNGa, I
found a similar, final disc thickness as in Superbox-10. Only in the inner regions
there is divergence between the three codes. The higher thickness close to the
MW disc centre is reached by ChaNGa, with values of zrms = 360 pc, 50 − 70
pc more than in Gadget-2 and Superbox-10.

Overall, the fact that in Superbox-10 the final disc thickness profile is higher
in the case of the interaction simulation than in the case of the isolation si-
mulation is confirmed in ChaNGaand Gadget-2, where the interaction of the
MW disc with the satellites produces again more flaring of the disc than in the

59



CHAPTER 2. A NUMERICAL COMPARISON

isolation case. This is particularly evident in the outer regions of the disc.

Figure 2.7: zrms profile in the simulations interaction and isolation in all the three codes, at
time t = 1 Gyr. Colour and line codes as in Figure 2.6.

Finally, I show in Figure 2.8 the comparison of the disc heating in the in-
teraction simulation, i.e. σ2

z(t) − σ2
z(0), between the three codes. In this case I

compared the heating, i.e. the increase of the disc vertical velocity dispersion
from the initial time, and not the value at the final time, in order to compare this
increase to the observational data provided byHolmberg et al. (2009) at the so-
lar GCd of 8 kpc. Based on the observation of positions and motions of several
stars in the solar neighbourhood, Holmberg et al. predicted an increase in the
squared vertical velocity dispersion of disc stars equal to 72 km2 s−2 Gyr−1. This
means that, after 2 Gyr, starting from a vertically cold disc, one should expect
a final increase in the vertical velocity dispersion σ2

z(t)− σ2
z(0) = 144 km 2 s−2.

This was the observational result that MJ16 compared with the numerical
one obtained in their simulations. MJ16 concluded that in the proximity of the
GCd of the Sun the satellites cannot heat the disc at a level that is able to repro-
duce the value predicted by Holmberg et al. (2009), not even when accounting
for a delay of 0.5 Gyr in the interaction process between the MW and its satel-
lites.

In the context of this benchmark, I considered the final comparison value
of vertical velocity dispersion σ2

z = 72 km2 s−2, since my runs reproduced
only 1 Gyr of interaction. For additional comparison, I also considered the
value of σ2

z = 36 km2 s−2 accounting for the case of 0.5 Gyr delay in the in-
teraction of the MW with the satellites. In all the three codes, the thicken-
ing cannot match the predicted value in the solar neighbourhood with any of
the codes ( Figure 2.8). ChaNGagets relatively closer to the value with 0.5
Gyr delay predicted after 1 Gyr by Holmberg et al. (2009), but cannot really
match this constraint. Therefore, the results on the final disc thickness and
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Figure 2.8: σ2
z(t)− σ2

z(0) profile for the simulation interaction in all the three codes, at time
t = 1 Gyr. Colour codes as in Figure 2.6. Additionally, the values of Holmberg et al. (2009) for
the solar neighbourhood are reported with an empty diamond and with a filled diamond. The
empty diamond accounts for the case of 0.5 Gyr delay in the interaction with the satellites, the
filled diamond accounts for no delay in the interaction.

heating obtainedwith ChaNGaandGadget-2 are in linewith the previous ones
of MJ16 obtained with Superbox-10. As an additional note, in ChaNGaand
Gadget-2 the inner heating profile turns towards negative values (not displayed
in the logarithmic scale of Figure 2.8). This is in contrast with what is observed
in Superbox-10 for the same region.

This should be compared with what I showed before in Figure 2.7 about
the inner higher values of zrms in ChaNGaand Gadget-2, in comparison to
Superbox-10. A lack of accuracy in the calculation of positions and velocities
of the density centre can be excluded, because then one would expect system-
atic discrepancies in all the results discussed in the benchmark. Rather, it is
plausible that the softening values for the bulge and disc particles employed in
ChaNGaand Gadget-2 reduce the effects of the gravitational potential in the
inner regions of the disc, where there is much more resolution in Superbox-
10 (∼ 20 pc of vertical force resolution, due to the inner PM grid employed to
better resolve the high-density region of the MW). In ChaNGaand Gadget-
2 the softening spline kernels act on a range of 200 − 300 pc, which may be of
non-negligible impact in a high-density region like the centre of the MW and
the bulge. The softened forces that act on the particles make them less gravita-
tionally bound to the system, and hence may cause the inner disc to vertically
thicken more than in Superbox-10 and to cause less heating of the vertical mo-
tions.

In conclusion, it is plausible that force resolution is the real cause of these
differences between the three codes, that however are confined only in the in-
ner MW disc. Apart from this, by means of the analysis above, I can conclude
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that the three codes similarly reproduce the impact of the MW satellites on the
Galactic disc, and that these results find confirmation when comparedwith the
case of isolated evolution of the MW disc.

2.7.4 Conservation of energy, angularmomentum, andmomen-
tum

Now, I discuss the results based on a comparison of the accuracy in Superbox-
10, ChaNGaand Gadget-2. I checked the relative variation (with respect to the
initial value) of the MW total energy, of the total angular momentum compo-
nents, and of the centre of mass position and velocity coordinates. I used the
relax simulation to perform this analysis.

Energy conservation and angular momentum conservation

The total energy was calculated as

Etot = Ekin + Epot , (2.36)

where Ekin is the total kinetic energy of the system, calculated as

Ekin =
N∑
i=1

1

2
mivi

2 , (2.37)

and Epot is the total potential energy, calculated as

Epot = −
N∑
i=1

N∑
j 6=i

Gmimj

2rij
. (2.38)

Here, N is the number of particles, mi is the mass of the i−th particle of the
system, rij is the distance between the i-th and j-th particle. The angular mo-
mentum vector is

~Ltot =
N∑
i=1

= mi~ri × ~vi . (2.39)

I calculated the relative displacement in energy, |∆Etot/Etot(0)|, and in the an-
gularmomentum components, |∆Ltot,x,y,z/Ltot,x,y,z(0)|, with respect to their ini-
tial values.

The energy conservation comparison returns no systematic differences be-
tween the three codes (left panel of Figure 2.9), and there is no code with a
better behaviour through the whole simulation. However, it can be observed
that the relative displacement of the total energy is overall good, being always
lower than 1% for all the three codes.

A check on the angular momentum variation shows that in ChaNGa the
three components of the total angular momentum conserve overall better than
in Superbox-10 and Gadget-2. However in the two latter codes the variation of
~Ltot in the in the x- and y-directions is still no more than∼ 2− 3% at the end of
the simulation.
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Figure 2.9: Left panel: Absolute value of the relative variation of Etot for the simulation re-
lax in all the three codes. Colour codes as in Figure 2.6. Right panel: Absolute value of the
relative variation of the three coordinate components of ~Ltot for the same simulation and in all
the three codes. Colour codes as in Figure 2.6. Full lines are for the x-component, dashed lines
are for the y-component and dot-dashed lines are for the z-component.

Momentum conservation

I then compared the momentum conservation in the three codes, by means of
checking the variation of the centre of mass coordinates and velocity compo-
nents with respect to the initial values. In absence of external forces, the centre
of mass of a system should have constant velocity (equal to the initial one) and
so it should move with uniform straight motion. Divergences from this be-
haviour are indicative of errors and inaccuracies introduced by the codes when
integrating the system in time.

The analysis performed on the three codes shows that the centre of mass
has the strongest divergences from uniform motion in Gadget-2, particularly
in the z-direction (left panel of Figure 2.10). Also regarding the velocity, in
ChaNGa the centre of mass has the least variation of velocity (right panel of
Figure 2.10), and again Gadget-2 performs as the worse of the three codes. In
Section 2.8 I discuss how the integration scheme of Gadget-2 limits momentum
conservation and I show how this problem is solved in Gadget-4.

2.7.5 Comparison on the computational speed
I now discuss the performance, in terms of computational speed, in the codes
ChaNGa, Gadget-2 and Superbox-10. I could not be provided precise details
about the computational speed in Superbox-10 for the simulations performed in
MJ16. I was only given some order-of-magnitude estimates of the time required
to run the simulationwith satellites, therefore I can only report a general, order-
of-magnitude comparison of the performances.

With reference to the interaction simulation, MJ16 spent ∼ 2.5 weeks, i.e.
17−18 days, in order to run the simulation for 2 Gyr in Superbox-10. Assuming
on average a constant rate of timestep advancement and of snapshot writing,
this means ∼ 9 days to run the simulation for 1 Gyr. However, MJ16used 32
cores instead of 48, so additionally assuming linear scaling with the number
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Figure 2.10: Absolute value of the variation of the centre of mass coordinates (left panel)
and of the centre of mass velocity components (right panel) for the simulation relax in all the
three codes. Colour codes as in Figure 2.6. Line codes for the three coordinate directions as in
the right panel of Figure 2.9.

of processors, this would correspond to no more than 6 days if using 48 CPUs.
Multiplying this in terms of hours and by the 48 CPUs, it means ∼ 6900 CPU
hours of total computational time. Assuming that the speed is similar for the
case of the relax and isolation runs, this is also an estimate of the CPU hours
for the relax simulation inMJ16.

For comparison, in the case of ChaNGa, it tookme 7−8 days of calculations
to run each simulation with 48 CPUs. This translates into ∼ 8600 total CPU
hours with ChaNGa. Gadget-2was run with the same number of processors
as ChaNGa. It took me 4−5 days to run each simulation, which translates into
∼ 5200 CPU hours with Gadget-2.

Among all the codes, given the same ICs, ChaNGa is the most demanding
one in terms of computational time, while Gadget-2 is the fastest one. However,
as I showed, ChaNGa returns in general more accuracy in the angular momen-
tum calculation and, most of all, it grants better momentum conservation than
Superbox-10 and Gadget-2.

2.8 Moving from Gadget-2 to Gadget-4
From the benchmarkperformedon theMWN-body simulations ofMJ16, based
on the Aq-D2 set-up, I have showed that Gadget-2 compares well with more
modern codes likeChaNGaand Superbox-10. Also, like for the other two codes,
for Gadget-2 the conservation of the total energy and angular momentum are
grantedwith a relative error less than 1% and 2−3%, respectively. This is an in-
dication that the Gadget family of N-body codes is a good choice for the study
of stellar dynamics and satellite dynamics in numerical simulations of the MW
environment.

However Gadget-2 does not conserve momentum as well as ChaNGaand
Superbox-10. Therefore the goal of this section is to show how the code Gadget-
4 is promising in terms of improvements of momentum conservation. This is
due to some aspects and features introduced by the code.
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2.8.1 Fast multipole method and revised timestepping
Among the features that it implements, Gadget-4makes use of the additional
fast multipole method (Greengard & Rokhlin 1997). Using this method, the
calculation of the force acting on particles ismanifestlymomentum conserving,
with residual force errors only at machine-precision level (S20).

Additionally, Gadget-4makes use of a revised hierarchical timestepping cri-
terion with respect to the one employed in Gadget-2. Gadget-2 employs the
KDK leapfrog method illustrated before in this thesis in Section 2.3.3, coupling
it with a hierarchical timestepping that does not allow the code to conserve
momentum. In fact, when updating the active particles by calculating the force
acting on them, their interaction with the passive particles is still calculated,
while for the passive particles the force is not calculated. The total force result-
ing from this is asymmetric, with a lack of conservation of the momentum of
the system. This explains the behaviour of the centre of mass seen in Figure
2.10 for the simulation relax in Gadget-2.

The new scheme implemented in Gadget-4 solves this problem. In fact,
while keeping a KDK leapfrog integration for particles and a hierarchical distri-
bution of timesteps, the code now allows only active particles to feel themutual
forces and interactions, neglecting the contribution from the passive particles
(S20). The resulting, total force calculation is symmetric and makes the code
manifestly momentum conserving in the local time integration of the active
particles, reducing the total force error to the residual forces only coming from
the calculation of the tree.

2.8.2 Numerical test and simulation set-up
To prove the validity of the revised hierarchical timestepping for momentum
conservation in Gadget-4, I have performed with the code a simulation, with
the same ICs as in the relax case presented in Section 2.7 (i.e. a run of an iso-
latedMWmodel starting from an initial axisymmetric set-up, and consisting of
live disc, live bulge and live halo). I have switched on the HIERARCHICAL_GRA-
VITY option for allowing the revised timestepping criterion of Gadget-4, adopt-
ing the same value of toleranceα on the force error, i.e. ErrTolForceAcc= 0.005.
Also, I set the η accuracy parameter for the timpestep calculation to a value
ErrTolIntAccuracy= 0.0219, i.e. the same as in Gadget-2. I have employed the
same value of the initial opening angle θ as before, i.e. ErrTolTheta= 0.55.

Gadget-4 runs in parallel using MPI prescriptions. I have used again the
BwForCluster to run the simulation with 48 CPUs. I have run the relax simu-
lation for 1 Gyr like in the other cases.

2.8.3 Results on the disc properties
I show first the results with Gadget-4 on the evolutionary properties of the
MW disc already showed for the relax simulation before. I compared them
to Gadget-2. I show the same results on the Q parameter and on the surface
density profile for the isolated disc from t = 0 to t = 1 Gyr in Figure 2.11,
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similarly to what I showed for instance in Figure 2.2. In Figure 2.12 I show the

Figure 2.11: Radial profiles of the MW disc Q parameter (left panel) and surface density
(right panel), at times t = 0, 0.5 and 1 Gyr, for the simulation relax in Gadget-4 and Gadget-2.
Colour and line codes explained in the label in the left panel.

results for the radial, tangential and vertical velocity profiles in the disc, as well
as the corresponding velocity dispersion profiles, similarly to what I showed in
Figure 2.3.

Figure 2.11 and Figure 2.12 suggest that Gadget-4 produces results in line
with the ones from Gadget-2 (and therefore with the other two codes). Only
some discrepancies are found in the calculation of the vertical average velocity
profile vz. However, given the very low range in velocities under consideration
(between -2 and 2 km s−1), and given the fact that all the other profiles show
strong agreement, this does not pose problems in the light of the comparison.

Given the good agreement between the two codes, this first test does not
need further discussion. The main reason behind it in fact was to show that the
overall dynamics and kinematics of the isolated evolution of theMWpresented
before with ChaNGa, Superbox-10 and Gadget-2 finds confirmation in Gadget-
4.

2.8.4 Conservation of energy, angularmomentum, andmomen-
tum

I calculated again the total energy and the total angular momentum of the iso-
latedMW in Gadget-4, to compare their conservation with the previous results
of Gadget-2. In Figure 2.13 I show the results of this calculation. There is no
systematic difference in the energy and angular momentum conservation be-
tween the two codes. Also in Gadget-4, the variation of angular momentum,
specifically in the x- and y-directions, while not as good as seen previously in
ChaNGa, is still reasonably confined below ∼ 2− 3%.

As for the momentum conservation, in Figure 2.14 I show the variation of
the centre of mass coordinates and velocity in the simulation relax in Gadget-
4 and Gadget-2. Remarkably, Gadget-4 shows an improvement in momentum
conservation. In Gadget-4 the variation of the centre of mass position and ve-
locity is much smaller, in comparison with the displacement that is found in
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Figure 2.12: From top to bottom: MW radial, tangential and vertical velocity profiles (left
panels) and the corresponding velocity dispersion profiles (right panels), at times t = 0, 0.5
and 1 Gyr, for the simulation relax in Gadget-4 and Gadget-2. Colour and line codes as in
Figure 2.11.

Gadget-2. Also, Gadget-4 conserves momentum in a similar way to what was
showed in the case of ChaNGa in Figure 2.10.

Last, I compared the performance of Gadget-4 and Gadget-2 in terms of the
total computational time in the simulation relax. It took ∼ 4 days to run the
simulation with Gadget-4, i.e. multiplying by 24 hours and the 48 cores em-
ployed it means a total of ∼ 4600 CPU hours. Thus, the speed of Gadget-4 is
better than the one of Gadget-2, given the ∼ 5200 CPU hours required by the
latter code.
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Figure 2.13: Left panel: Absolute value of the relative variation of Etot in Gadget-4 (purple
line) and Gadget-2 (orange line) for the simulation relax. Right panel: Absolute value of the
relative variation of the three coordinate components of ~Ltot in the two codes. Colour codes as
in the left panel. Line codes for the three coordinate directions as in the right panel of Figure
2.9.

Figure 2.14: Absolute value of the variation of the centre ofmass coordinates (left panel) and
of the centre of mass velocity components (right panel) for the simulation relax in Gadget-
4 and Gadget-2. Colour codes as in Figure 2.13. Line codes for the three coordinate directions
as in the right panel of Figure 2.9.

2.9 Benchmark: summary and remarks

In this chapter, I showed a direct comparison of the results - obtained with the
codes Superbox-10 (by MJ16), ChaNGa, and Gadget-2 - on the isolated evolu-
tion of the MW disc and on its thickening and heating when interacting with
the MW satellites.

In the isolated case, the response in time of the disc to the presence of density
perturbations is similar in the three codes, as evidenced by the similar oscilla-
tions of the surface density profile of the disc. For the isolated evolution, this
general similarity of results has implications on the Galactic model employed
here. TheMWmodel used for these tests evolves overall due to its initial set-up,
and not due to the peculiarities of the employed code, may this be a PM code
like Superbox-10 or a tree code like ChaNGa and Gadget-2 (or even Gadget-4).
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Also, another point emerging from the comparison of the isolated evolution
of theMW is that the high values of the disc σR favour the increase of the profile
of theQparameter in the disc, preventing the formation of a bar. The generation
of ICs for MWmodels like this one, using GalIC, produces non-equilibrium in
the ratio σR/σφ, with transfer of kinetic energy from the tangential to the radial
direction. Therefore, the fact that σR increases rapidly in the disc is not related
to any specific issue of Superbox-10, since it was confirmed using the other three
codes.

The test on the evolution of the MW in interaction shows similar results
between the codes. It is confirmed, furthermore, what was found inMJ16: the
satellite galaxies cannot impact too much on disc thickening and heating.

The usage of the new hierarchical timestepping in Gadget-4 produces more
accurate results than in Gadget-2 and puts Gadget-4 in line with ChaNGa in
terms of momentum conservation, at the same time with sufficiently good to-
tal energy and angular momentum conservation. Also, the smallest computa-
tional times required by Gadget-4make it the fastest code among all the four
codes tested in this benchmark.

Thus, Gadget-4 is an eligible code for the set of simulations that I am going
to describe in Chapter 3, where I address the distribution of the satellite debris
in the MW environment. The degree of accuracy and computational efficiency
at an optimal speed granted by Gadget-4make it convenient for obtaining reli-
able results on the distribution of the satellite debris with N-body simulations
of theMWenvironment, at a good force resolution and in a short computational
time.
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Chapter 3

The distribution of the tidal debris
of the Milky Way satellites in
numerical simulations

In this chapter, I present an adapted version of the publicationMM20 , with the
exclusion of its introduction, thatwas adapted in Section 1.4.1 of this thesis. The
part of the publication adapted here corresponds to the numerical investigation
on the satellite tidal debris in the MW environment. In Section 3.5 I then report
an additional investigation of the effects of adding the MW stellar gravitational
potential in the analytical calculation of the tidal radii of the satellites.

3.1 Section 2. fromMazzarini et al. (2020): Numer-
ical simulations

We ran a set of N-body simulations of the MW interacting with its satellites to
address the properties of the stripped satellite debris. As I already mentioned
in Section 1.4.1 of this thesis, for each simulation we took the MW model used
byMJ16 for the corresponding Aquarius set-up, from Aq-A2 to Aq-F2. As I al-
ready discussed in Section 2.7.1 for the specific case of Aq-D2, the initial MW
data for all the six caseswere originally extracted byMJ16 from the correspond-
ing Aquarius cosmological volumes by recognising the corresponding NFW
haloes at redshift z = 0. Then, MJ16used the information about these haloes
to construct full disc-bulge-halo N-bodymodels where the DM haloes have the
best-matching Hernquist profiles corresponding to the original NFW halo pro-
files, as prescribed in Springel et al. (2005a). Like for the specific case of Aq-D2,
the disc of these numerical MWmodels has an exponential profile with the dis-
tance of the Sun set toR0 = 8 kpc from the GC, while the bulge has a Hernquist
density profile. I already showed the parameters common to the MW models
in Table 2.1.

For each MW halo that had been selected in the corresponding Aquarius
simulation,MJ16 employed a subhalomass cut of 108 M� and required the sub-
haloes to have a pericentre passagewithin 25 kpc of theMWwithin 2Gyr. They
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resimulated these systems as higher resolution DM-only N-body spheroids (50
K particles each), for a total number of satellites per simulation ranging from
a minimum of 12 (Aq-E2) to a maximum of 24 (Aq-F2). Their satellites have
a range in mass that spans from 108 M� 1 to 6 × 1010 M�. They modelled each
satellite as an NFW profile, and each satellite has particles of equal mass. They
placed the satellites in the positions indicated from the corresponding Aquar-
ius simulations. In Table 3.1 we show the number of satellites, the NFW scale
radii and the corresponding best-matching Hernquist scale radii of the MW
models for the six Aquarius set-ups.

Table 3.1: Number of satellites andMWhalo scale radii for the six Aquarius set-ups (from the
second line from the top to the bottom line, Aq-A2 to Aq-F2) employed byMJ16. The columns
indicate (from left to right) Aquarius run, number of satellites Nsat in the simulations, halo
NFW scale radius rscale,NFW and halo best-matching Hernquist scale radius a.

Aquarius run Nsat rscale,NFW a
(kpc) (kpc)

Aq-A2 20 15.00 29.25
Aq-B2 17 24.98 42.76
Aq-C2 14 15.96 30.68
Aq-D2 23 25.91 43.90
Aq-E2 12 29.39 44.28
Aq-F2 24 24.80 42.54

3.1.1 Selecting the satellite galaxies
For the selection of the satellite galaxies to be used in our simulations in place
of the DM-only ones fromMJ16, we extracted the best dwarf galaxies from the
sample of M17. The two samples of satellites come from different simulations
(DM-only versus full N-body-SPH) run up to different final redshifts (zfinal =
0 versus zfinal = 1). Therefore, we chose to match them by minimising the
distances of the two satellite samples in the log(M200)-log

[
(vmax/rmax)2

]
space.

Here, vmax/rmax is the ratio of the maximum circular velocity of the satellite to
the radius of maximum circular velocity. This ratio is an indicator of the inner
density (and therefore of the depth of the potential well) of each satellite. In
fact,

(
vmax

rmax

)2

=
G×M(< rmax)

rmax

× 1

r2
max

=
4πG

3
ρ̄(< rmax) , (3.1)

where ρ̄(< rmax) is the average density within the radius of maximum circular
velocity.

1This mass cut inMJ16was done to address the impact of satellite galaxies on the MW disc
kinematics and dynamics, and in this case they showed that the impact of satellites increases
with satellite mass as ∝M2.
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Figure 3.1: Distribution of the candidate best-matching dwarf galaxies in the log(M200) −
log
(
vmax/rmax

)
plane. Empty grey circles represent all the five best-matching dwarf galaxies

in the M17 sample, which are used for the six Aquarius simulations (see Table 3.2 for their
properties). The tessellation with grey segments represents the division in regions where the
satellite galaxies ofMJ16 are closest to any of the five best-matching dwarf galaxies ofM17. The
satellites of MJ16 are shown here for the case of Aq-E2 as empty triangles, according to their
M200 and vmax/rmax values. Filled triangles are the same satellites after tidal cutting, i.e. with
their Mtid values. The filled circles show the corresponding M17 satellites after tidal cutting.
The colours of the filled symbols represent the matched pairs. For Aq-E2, only sat1 and sat4
have triangles that fall in their regions.

Due to the intrinsic differences in properties of the two samples of objects,
we do not expect the matching sample to be as homogeneously distributed in
the log-log space as theMJ16 satellites. Consequently, five of theM17 satellites
fall in the relevant parameter range and so each candidate dwarfmatchesmany
satellites of MJ16. We also note that the selected objects tend to be lower in
central density than the ones from MJ16. In Table 3.2 we show the number
of particles, the masses of the gas, DM, and stellar component for each of the
five selected dwarfs, together with their ratio of maximum circular velocity to
radius of maximum circular velocity and their radius of maximum circular ve-
locity.

In the next step we cut the total masses of the selected dwarfs to their initial
tidal radii. In order to do this mass cut, we first calculated the tidal radius of
each satellite ofMJ16, as in Ernst & Just (2013):

rtid(r) =

(
Mtid

ω2 − d2Φ(r)
dr2

) 1
3

. (3.2)

HereMtid is the tidal mass of the satellite, r is its GCd, ω is its orbital angular
speed, and Φ is the gravitational potential of the MW. In order to obtain the
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Table 3.2: Properties of the five selected satellites before they are cut in tidal radii. The satel-
lites are ordered from sat1 to sat5 (second column from left to right column) according to
decreasing total DM mass. The lines indicate (from top to bottom) satellite name, number of
gas particles, number of DM particles, number of star particles, total gas mass, total DMmass,
total stellar mass, vmax/rmax, and rmax.

Satellite sat1 sat2 sat3 sat4 sat5
Ngas 3.5× 105 1.20× 105 5.99× 104 6.54× 104 1764
NDM 3.7× 106 1.05× 106 9.32× 105 1.06× 106 1.62× 105

N∗ 8.2× 104 7880 8116 5194 406
Mgas (M�) 1.92× 108 9.80× 107 4.92× 107 3.61× 107 9.72× 105

MDM (M�) 1.02× 1010 4.34× 109 3.85× 109 2.92× 109 4.49× 108

M∗ (M�) 8.97× 106 1.27× 106 1.30× 106 5.46× 105 4.25× 104

vmax/rmax 3.34 6.37 10.37 12.27 6.26
(km s−1kpc−1)
rmax (kpc) 12.35 4.65 3.11 2.53 2.40

tidal radius for eachM17 satellite, we used the approximation

rtid,M17 = rtid,MJ16

(
M200,M17

M200,MJ16

) 1
3

. (3.3)

The resulting distribution of satellitesmasses is shown as full coloured symbols
for the case of Aq-E2 in Figure 3.1. Since vmax and rmax are not altered by the
tidal cutting, the satellites are shifted horizontally in the figure. For Aq-E2 only
the two satellites sat1 and sat4 ofM17were relevant.

3.1.2 Numerical dwarf galaxies as candidate satellites: proper-
ties

We show now that, thanks to our hybrid approach, with the selected hybrid
dwarf galaxies we achieve a mass resolution which is an order of magnitude
better thanwhat is possible in current self-consistent cosmological simulations;
that the density profiles of their stellar and DM components have different
slopes, thereby allowing us to treat them as two distinct populations; and that
the mass distribution of their DM and stars as a function of specific energy
returns two distinct populations that we cannot naturally derive from the DM-
only satellites. To do this, we show the properties of satellite 3 (particle mass
distribution, density profile, and mass distribution as a function of specific en-
ergy) to represent all five satellites, since they all have similarities in these as-
pects.

Mass resolution

In the top panel of Figure 3.2 we can see that DM and stellar particle masses
are orders of magnitude below themasses of the corresponding particles in the
cosmological simulations TNG50, Eris, and Latte. The disc of our MWmodels,
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Figure 3.2: From top to bottom: Particle mass distributions, radial density profiles, and spe-
cific energy distributions for the three components (stars, gas, and DM) of satellite 3. In all
figures, red is for stars, green for gas, and blue for DM. Cyan is for one corresponding DM-
only satellite from MJ16. Top panel: The additional vertical dashed red line is the stellar mass
resolution for the TNG50 simulation, the red dot-dashed vertical line is for Latte, and the red
full line is for Eris. The purple full line is for the disc resolution in the MW model of MJ16.
Central panel: The density profiles are given as a function of the distance r from the density
centre of the satellite. For comparison, the full grey line represents an NFW inner profile (with
radial dependence ∝ r−1). The black dashed vertical line indicates the tidal radius position of
satellite 3 after tidal radius rescaling from the corresponding DM-only satellite. Bottom panel:
The dashed and full histograms represent the specific energy distribution in terms of mass
per energy bin for each component of satellite 3 before and after applying the tidal cut to the
satellite, respectively. The cyan line shows the same for the DM-only satellite.
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which is made of collisionless stellar particles, has a better resolution than the
stars in the Eris simulation. This puts our satellite models and the disc models
in a better position in terms of resolution. The fact that the stellar and DM de-
bris particle masses are at least 2 orders of magnitude below the corresponding
best cosmological simulation resolutions allows a more accurate statistical in-
vestigation of the stellar and DM debris in our simulations, avoiding low num-
ber noise in the calculations.

Density profiles

The central panel of Figure 3.2 shows the density profiles of gas, DM, and
stars in satellite 3, as well as the density profile of a DM-only satellite that is
substituted by satellite 3 in Aq-B2. The grey straight line shows the inner slope
∝ r−1 of a NFW profile, for comparison. We can see that while DM and gas
have a slope of their inner density profiles close to the NFW case, the stellar
component has a significantly steeper inner density profile. This is already a
hint that there is no simple recipe to select a realistic stellar component based
on a DM-only simulation.

Specific energy distribution

For each satellite particle we calculated its total specific binding energy (i.e.
binding energy per unit mass) as

Ebin = −εtot , (3.4)

with

εtot = εpot + εkin , (3.5)

where εtot, εpot, and εkin are the specific total, potential, and kinetic energy of the
particles. For the gas particles, an additional term, the specific thermal energy
(εtherm) was counted in the sum. The specific thermal energy was calculated as

εtherm =
3

2

n

ρ
kBT , (3.6)

where kB is the Boltzmann constant and

n

ρ
=

1

0.6mH

(3.7)

is the number of particles per unit mass for fully ionised gas, with the termmH

at the denominator being the hydrogen mass,mH = 1.67× 10−27 kg.
Since the particle masses of the M17 satellites vary over a wide range, we

weighted the particle distributions in specific energy by their masses. In the
bottom panel of Figure 3.2 we plot the specific energy distributions of each
component for the satellite 3 at z = 1 before and after tidal cutting. For compar-
ison the specific energy distribution function (also weighted by particle mass)
of a corresponding DM-only satellite of MJ16 is shown in cyan. Even after
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tidal cutting, the gas and DM particles of M17dwarfs and the DM particles of
MJ16 satellites have specific energy distribution functions with a similar slope.
In contrast, the shape of the distribution function of the stellar component is
very different to the distribution of the DM component of the M17 and the
MJ16 satellites. This confirms the need for baryonic physics in the satellite
models in order to obtain a realistic stellar component.

3.1.3 Numerical set-up and simulation properties

We ran a total of 12 simulations, two for each corresponding Aquarius set-up
from MJ16. For the first set of six simulations, one for each Aquarius set-up
fromMJ16, we put the five best-matching satellites in place of the correspond-
ingMJ16 satellites at the same initial positions and velocities. For the second set
of six simulations, again one for each Aquarius set-up fromMJ16, we used the
same five best-matching satellites in place of the correspondingMJ16 satellites,
this time rotating the MW disc by 90o to obtain a control set of simulations to
check the final distribution of the satellite debris.

Each satellite contains hundreds of thousands of DM particles and hun-
dreds to thousands of star particles. This, considering the number of satellites
per simulation, allows a good statistical investigation of the properties of the
DM and stellar debris.

Wemade use of the N-body code Gadget-4 (with MPI prescriptions to run it
in parallel), since, as I showed in Section 2.8, it compares well with other recent
codes, and at a reasonable degree of accuracy and momentum conservation.
In addition to what I described in Section 2.8, Gadget-4 has SPH (Springel &
Hernquist 2002; Hopkins 2013) and SF (Springel & Hernquist 2003) recipes
that can optionally be switched on.

Typically, gas is stripped from satellites as they enter the MW environment
(Grebel et al. 2003; Frings et al. 2017; Simpson et al. 2018). Additionally, consid-
ering the median case, the surviving gas in satellites forms the greatest fraction
of their present-day stellar component before z = 1 (Weisz et al. 2014). There-
fore, as a first approximation, we can switch off the hydrodynamics and the SF
recipes and focus only on running N-body simulations.

The M17 satellites are made of DM, stars, and gas. Here we are only inter-
ested in the tidal debris of the DM and the stellar component. Since the gas
component contributes to the depth of the satellite potential wells, we kept it in
the simulations as N-bodyparticles. On the other hand, the gas particles repre-
sent only a tiny fraction at each specific energy compared to theDM component
(see Figure 3.2), which also results in a negligible contribution to the total de-
bris. Therefore, for simplicity we added the gas particles to the DM component
in the following analysis.

In all our simulations we employed a softening ε = 200 pc for the MW halo
(in order to minimise spurious scatter effects on the DM halo particles) and
ε = 50pc for the disc and bulge (for a higher resolution in the force calculation).
The satellite DM and star particles have softening values ε = 25 pc and ε = 10
pc, respectively. Given that for the employed gravitational softening kernel
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(Monaghan & Lattanzio 1985) the Newtonian force radial dependence∝ r−2 is
exactly reproduced at distances r > 2.8ε (Springel 2005), the smaller softening
choice adopted for the satellite particles allows a very high resolution of the
forces, and hence a more accurate description of the tidal forces acting on the
satellites. The MW disc, bulge, and halo particles have masses of 3.4× 103 M�,
3.8×104 M� and 4.4×105 M�, respectively. MJ16 also chose to use 10Mparticles
in the disc of their MW models in order to have a high-resolution disc. This is
useful because the higher resolution of the disc means less spurious scattering
of the satellite debris particles that approach the inner MWhalo, dominated by
the disc.

Each simulation was run on 96 parallel CPUs on the computer cluster bw-
ForCluster. We ran each of the six simulations for a total of 2 Gyr. For our
analysis, we focused mainly on the final snapshot of each simulation. How-
ever, we generated outputs every 50 Myr in order to track the process of mass
stripping from the satellites.

In all the simulations, before analysing any snapshot, we have rescaled all
the particle coordinates and velocities in the snapshot by the position and ve-
locity of the MW density centre. Then, we have rotated the coordinate frame
around the MW density centre in order to have the MW disc angular momen-
tum aligned with the new z-axis. This procedure is the same as the one em-
ployed in Chapter 2 before analysing the simulations in the benchmark.

3.1.4 Impact of the satellites on the MW disc thickening and
heating

As a cross-check of the quality of our selection of satellites, we first compare the
impact of our satellites on the MW disc with the corresponding results from
MJ16data, in particular calculating the disc thickening and heating. We com-
pare these results to check whether a different distribution of satellites (the
distribution of hybrid satellites) has a different impact on the thickening and
heating of the disc, and hence whether it produces a different dynamical effect
on the disc.

For each simulation we calculated the disc vertical thickness zrms and the
squared vertical velocity dispersion σ2

z for each ring-like bin of radius R in the
disc. The vertical thickening and heating were calculated as ∆zrms = zrms,2 −
zrms,0 and ∆σ2

z = σ2
z,2−σ2

z,0, where the subscripts 2 and 0 indicate that the given
quantity is calculated at time t = 2 Gyr and t = 0 Gyr, respectively.

In Figure 3.3 we show the average radial profile of the disc vertical thick-
ening and heating for the two simulation sets, together with their root mean
square (rms) scatters (represented by the shaded areas). We note that, even
if the disc thickening and heating are higher on average for MJ16data, within
the rms scatter of the six simulations our results are consistent with those from
MJ16.

The implications are that the MW disc is similarly excited if a population
of DM-only satellites or hybrid satellites is used. Since the selection of satel-
lites fromMJ16was made based on their dynamical effect on the MW disc (i.e.
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Figure 3.3: Top and bottom panels: Radial profiles of disc thickening and disc heating, re-
spectively. The cyan full line represents the data from MJ16 simulations; the orange dashed
line represents the data from our simulations.

based on a mass cut), having a population of satellites with similar mass range
(see Figure 3.1) implies that the effects on the disc are similar and weakly de-
pendent on the presence of only DM or of additional stars as well. The thicker
scatter inMJ16data is due to the F2 case, where amassive satellite of more than
1010 M� is strongly interacting with the MW disc.

3.2 Section 3. fromMazzarini et al.(2020): Results

3.2.1 Stripping of matter
We now show how much stellar and DM debris are stripped by the MW and
their distribution in the Galactic environment. For each satellite we calculated
its density centre at every snapshot in order to define its position in time. We
then used the tidal radius calculation of Equation (3.2), approximating the
orbit of the particle to a circular orbit, i.e. interpreting the magnitude of the
velocity vector as the magnitude of the velocity pointing in the tangential di-
rection of the orbit. The total, initial satellite mass was used at the numerator
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of Equation (3.2). At each snapshot we checked what fraction of total satellite
stars and DMwas found outside of the tidal radii of the satellites. We show the
result in Figure 3.4. The fraction of tidally stripped stellar debris increases to a
maximum of 30% of the total initial stellar satellite mass. Instead, the satellite
DM is stripped up to 80% of the total initial mass. We also plot the results of
our analysis on the data from MJ16. DM-only satellites also lose most of their
DM, up to 70% of the initial DM mass.

In order to interpret these results, we focus on the properties and orbital
distribution of the satellites in our simulations. These satellites were modelled
as N-bodyobjects made of star particles, mostly found in their core region, and
DM particles, which distribute into shallower and more extended density pro-
files. Thus, DM can be stripped more easily and larger fractions of its mass,
originally residing in the satellites, can end up as debris in the MW environ-
ment. Instead, stars are mostly confined in the inner regions of the satellites
and significant stripping of this matter only occurs when the satellites closely
approach the MW.
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Figure 3.4: Fraction of the satellite matter stripped out of the tidal radii of all the satellites as
a function of time. Colour-coding and lines: dashed red for stars, full blue for DM, and dot-
dashed cyan for DM-only satellites from the MJ16 simulations. For each colour, the lines are
the average over the six simulations, and the shaded areas represent the rms scatter.

3.2.2 Radial distribution of the debris
We wanted to know whether there is any difference in the final distribution of
the stellar and DM debris in the MW environment. We addressed this by cal-
culating the probability distribution function Pstripped of the debris (normalised
by the total debris mass within the virial radius of the MW, r200 = 242.8 kpc; all
the debris out of this radius is considered lost) that ends at a given GCd from
the MW centre, as a function of the GCd. The radial bins have a width of ∼ 6
kpc. Pstripped is a measure of how much mass out of the total debris ends in a
given spherical shell. In the top panel of Figure 3.5 we plot the results of this
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calculation. The distribution of the DM debris is quite smooth and uniform
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Figure 3.5: Top panel: Radial profile of Pstripped for the stripped debris mass deposited at a
given spherical shell, normalised by the total debris mass of stars and DM, respectively. Colour
and line codes as in Figure 3.4. Bottom panel: Radial matter density profile of the debris in log-
scale. Colour and line codes as in Figure 3.4. The DM-only satellite data from MJ16 are not
plotted here. The full black and dashed black line are the best-fit profiles for the DM and stellar
debris, respectively. All profiles are normalised by the corresponding density values at r ∼25
kpc.

throughout all radii up to the MW virial radius with some deficit in the inner-
most region. In the stellar distribution there are some prominent peaks in the
inner 100 kpc which correspond to more confined stellar streams of satellites
close to pericentre passage. In the outer MW halo, significantly lower fractions
of stellar debris are found. We note that the DM-only satellites debris and the
hybrid satellites DM debris suffer similar tidal stripping and have similar val-
ues of Pstripped.

In the bottom panel of Figure 3.5 we show the radial density profiles of
the DM and stellar debris in the MW halo, and their best-fitting functions, for
the simulations with the hybrid satellites. The radial density profiles were cal-
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Table 3.3: Best-fit parameters for the fitting curves of the density profiles of theDMand stellar
debris in Figure 3.5.

Debris ρ0 rs α β
component (M� kpc−3) (kpc)

DM 1.62× 105 15.34 −0.66 2.94
Stars 7.15× 101 47.51 −0.44 6.17

culated dividing the values of Pstripped by the spherical-shell volumes of the
corresponding bins. To fit the data, we chose the generalised NFW profile as a
function of GCd:

ρ(r) =
ρ0(

r
rs

)α(
r
rs

+ 1

)β−α . (3.8)

Here, ρ0 is the scale density, rs is the scale radius, α controls the inner slope,
and β controls the outer slope. The best-fit parameters are given in Table 3.3.
For both debris components we found that the inner slope is positive (α < 0)
describing the mass deficit inside ∼ 5 kpc for DM and for stars. The profile
scale radius is higher for stars, reaching ∼ 45 kpc against the ∼ 15 kpc of the
DM debris profile. The outer slope of the DM debris is very close to that of
a standard NFW profile. In contrast, the stellar debris shows a much steeper
drop at large radii.

This picture points to the fact that at large radii fewer stars are stripped,
and the stars stripped in the inner halo are on more circular orbits. This also
explains the inner peaks of stellar mass fractions in Figure 3.5. DM debris can
be released at any distance and the contribution to its radial distribution comes
from both inner and outer satellites, thus the probability distribution function
of the DM debris is radially more uniform and its density profile is less steep.
Calculating the cumulative fraction of the stellar debris as a function of GCd,
we find that ∼ 30% of the total stellar debris is inside 30 kpc and ∼ 50% is
within 60 kpc of GCd. For comparison, the MW NFW halo scale radii in these
MWmodels range between 15 kpc and 30 kpc (see Table 3.1).

3.2.3 Shape of the debris

We now consider the geometrical distribution of the tidal debris in the inner
MW region. We focused on the inner 25 kpc of GCd in order to see what the
impact of the local MW environment is on the debris. We wanted to under-
stand the following points: a) Does the debris finally show a spherical or flat
geometry? b)What is the orientation of the debris distribution? c) Is there any
difference between the DM and stellar debris?

In order to answer these questions, we introduced the Second Order Mo-
menta Tensor (hereafter SOMT) in our analysis. The SOMT is a rank-2 tensor
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for which the jk entry is calculated as

Ijk =
N∑
i=1

mixi,jxi,k , (3.9)

where i indicates the i-th particle (out of N particles), mi is its mass, and xi,j
and xi,k are its Cartesian coordinates (BT08, Polyachenko et al. 2016). In our
case N is the total number of particles that fall in a given sphere centred on
the MW GC. The definition employed here for the SOMT addresses the global
geometrical distribution of the debris, no matter how sub-structured it is. An
indicator of the flattening of the matter distribution is represented by the ratio
c/a between the SOMT semi-minor and semi-major axes c and a, whereby c and
a are the square roots of the eigenvalue with the smaller and larger magnitude,
respectively.

We focused on the inner 25 kpc in the MW halo since we were interested
in the behaviour of the debris in the local halo environment. Specifically, for
each simulation we calculated the tensor for the debris falling in each sphere
centred on the GC.We chose a radial binning of 5 kpc tominimise the noise due
to low number statistics and to smooth the contribution of single streams. For
each simulation we calculated c/a at each sphere, and then for each sphere we
averaged the ratio over the six simulations. In Figure 3.6 we show the radial
profile of c/a for the stellar and DM debris together with the rms scatter. From
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Figure 3.6: Radial profile of the c/a ratio for the SOMT of the stellar (red) and DM (blue)
debris at t = 2 Gyr. Colour and line codes as in Figure 3.4. For each profile, the central line is
the average profile over the six simulations, and the shaded area represents the rms scatter.

Figure 3.6 it is evident that the stellar and DM debris are both geometrically
flat, but with a significant scatter. For the DM debris we found c/a ∼ 0.55,
whereas the stellar debris is flatter by a factor of two. The flattening depends
only weakly on the size of the sphere.

We now discuss the spatial orientation of the flattening, which is defined by
the direction of the shortest eigenvector ec of the SOMT corresponding to the
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eigenvalue c2. We calculated this orientation in the θ − φ (latitude-azimuth)
angles-space for the DM and stellar debris at each radius and for each simula-
tion separately. In Figure 3.7 we plot the distribution of the directions of ec in
the angles-space at different GCds, using a Mollweide projection. If ec was de-
fined at any point with negative z corresponding to θ < 0, we changed its sign
in order to have it with positive values of z. This was done to avoid ambigui-
ties in the interpretation of the direction of the minor axis in the angles-space
since every eigenvector allows taking both orientations along its direction, with
a difficult interpretation in the Mollweide projection2.
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Figure 3.7: Mollweide projection of the distribution of the orientation of the semi-minor
axis c. The azimuth φ changes horizontally, while the latitude θ changes vertically. Squares
represent DM, triangles represent stars. Smaller markers are for inner radii, larger markers
are for outer radii. Colours are black, lime, purple, red, magenta and orange for the Aq-A2 to
Aq-F2 set-up, in order. The horizontal dot-dashed line indicates the Galactic plane.

The orientations of the short axis in the different simulations (different co-
lours) are distributed over a wide region in the angles-space. This suggests
that there is not a huge impact of the disc on the final distribution of the debris.
Additionally, there is a large variation in the orientation with increasing GCd
(size of symbols) as a sign of strong substructures in the debris. Furthermore,
squares (DM) and triangles (stars) of the same simulation (same colour) do
not occupy the same region in the angles-space. We interpret this as an indi-
cation that the DM and stellar debris show significantly different distributions
and structures.

We wanted to quantify how big the differences in φ and θ are between the
short axis of the stellar and DM debris tensor. To do this, we calculated the

2In fact, the opposite of a vector in this kind of projection is not simply represented as the
symmetric opposite in the map with respect to (φ, θ) = (0, 0).
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great-circle distance (GCircD) ∆α at each sphere between DM and stars as

∆α(DM, ∗) = arccos
[

sin θDM sin θ∗ + cos θDM cos θ∗ cos ∆φ
]
, (3.10)

where φDM, θDM are the angles of ec for the DM debris SOMT as a function of
the radius r of the sphere; φ∗, θ∗ are the same angular quantities for the stellar
debris; and ∆φ = φDM − φ∗. We show these results in Figure 3.8. The aver-
age difference in angular distribution between DM and stars is no more than
10 − 20o in the central part of the halo (the first few kpc), whereas it reaches
up to 40o going out towards 15-20 kpc, where the scatter around the average
is very high. This indicates that it is not possible to find a simple systematic
correlation between the DM and stellar debris orientations in the environment
around the MW. This is reinforced by the different c/a and the different radial
distribution of the debris seen in Figure 3.5 and Figure 3.6. The DMand stellar
debris do not share the same geometry once they are stripped from their satel-
lite progenitors. Observationally, this means that it is not possible to track the
distribution of the DMdebris from the distribution of the stellar debris directly.
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Figure 3.8: Average radial profile of the GCircD between DM and stellar debris as a function
of spherical radius r. The shaded area represents the rms scatter.

It is important at this point to understand if the disc can have any impact at
all on the final distribution of the debris, or if this depends on the initial distri-
bution of the satellites only. To test this, we ran another set of six simulations,
each corresponding to one of the six previous simulations. For each simulation
set-up, we rotated the initial relative position and velocity of the disc particles
by 90o around the y-axis resulting in a disc in the yz-plane rotating around the
x-axis3. We ran these six new simulations for 2 Gyr.

At the end of the simulations, we analysed the final angular distribution of
the debris, alwayswithin 25 kpc of GCd. If the disc weremainly responsible for

3This effective rotation transforms the x-axis to the −z-axis, the z-axis to the x-axis, and
leaves the y-axis unchanged.
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theflattening of the satellite debris, wewould expect theminor axis distribution
of the SOMT to be rotated approximately similarly to the disc by ∼ 90o. As can
be seen in Figure 3.9, the final Mollweide projection of the debris is mostly
overlapping the same region of the debris distribution in the original set of
simulations, and shows no systematic rotation with respect to it. This confirms
that the ICs of the satellites have a larger effect than the disc orientation on the
final debris distribution.
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Figure 3.9: Mollweide projection of the distribution of the debris c axis in the angles-space,
for the rotated and non-rotated disc simulations. Data from Figure 3.7 are re-plotted as empty
markers. Solid markers are for the rotated disc simulations. Colour codes as in Figure 3.7.

We then quantified theGCircD at each sphere between the debris in the new
set of simulations and the debris from the original set of simulations,

∆α(rot, 0) = arccos
[

sin θrot sin θ0 + cos θrot cos θ0 cos ∆φ
]
, (3.11)

where in this caseφrot, θrot are the angles of the cminor axis for the SOMTwithin
the given spherical radius r for the debris from the second set of simulations
with rotated disc orientation; φ0, θ0 are the same angular quantities for the orig-
inal set of simulations; and ∆φ = φrot − φ0.

In Figure 3.10 we can see that on average ∆α(rot, 0) ∼ 10o for DM, while at
the outer radii it reaches values of up to ∆α(rot, 0) ∼ 20o for stars. So, the ro-
tation of the disc ICs produces a limited, yet not completely negligible rotation
of the final distribution of the debris, which implies that the disc may have a
moderate impact on the final distribution of the local satellite debris.
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Figure 3.10: Radial profile of the GCircD ∆α of the rotated disc simulations compared to the
corresponding original simulations, for the short axis orientation of the stellar and DM debris.
Colour and line codes as in Figure 3.4. The shaded areas are the rms scatter.

3.3 Section 4. from Mazzarini et al.(2020): Addi-
tional investigation: fraction of surviving satel-
lites and dark-matter-to-stellar mass ratio

In addition to the final distribution of the debris in the MW halo, we checked
the fraction of satellites that survived after 2 Gyr. To determinewhether a satel-
lite survived stripping, we chose a threshold fraction of 10% of its total initial
mass. A satellite that has a final tidal mass higher than 10% of its initial mass is
considered to have survived. Otherwise, it is counted as dissolved. In Figure
3.11, top panel, we show the fractions of the surviving satellites for our six sim-
ulations and for theMJ16 simulations. The error bar around each data point is
the scatter between the six simulations of the same set.

In all simulations more than ∼ 65% of all satellites survive after 2 Gyr. The
averages of the six simulations for both cases are reported as a full cyan line
(DM-only) and a dashed orange line (hybrid). We also plot the area of the
rms scatter between them with the same colour-coding. We found fsurvived ∼
0.8 ± 0.1 for both sets of simulations, thus we confirm the similarity of results
between them with no systematic differences.

We also looked at the ratio between DM and stellar mass inside the satel-
lites at the beginning and at the end of the hybrid simulations, to understand
the evolution of the matter content inside the satellites. This result is plotted
in the bottom panel of Figure 3.11 in logarithmic values. The best-fit value
(Mtot/M∗)best = 768+217

−301 at the final epoch is also shown. For all the satellites
that survived, the ratio of DM to stellar matter, though still much higher than
the cosmic ratio, decreased in time. This is a consequence of what was shown
in Figure 3.4 where more DM than stars is stripped from the satellites.

For comparison, we give the cosmic ratio of all matter to baryons from the
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Figure 3.11: Top panel: Fraction of surviving satellites, with 10% of their initial mass adopted
as the threshold to determine their survival, in the Aq-A2 to Aq-F2 simulations. Colour codes
as in Figure 3.3. The orange and cyan error bars are the rms scatter for our set of simulations
and for the MJ16 simulations, respectively. Bottom panel: Logarithm of the ratio of total mass
to stellar mass in the satellites in the Aq-A2 to Aq-F2 simulations, log (Mtot/M∗), for the initial
and final snapshot. Purple pentagons are the average of each corresponding simulation for the
initial data at t = 0 Gyr; pink diamonds are instead for the final data at t = 2 Gyr. The purple
and pink error bars are the rms scatter for all the satellites in each corresponding simulation
(initial and final snapshot, respectively). The dot-dashed black line is the density ratioΩm/Ωbar

of all matter to baryonic matter. The pink dashed line represents the best fit for the final ratios
(Mtot/M∗)best. Only the satellites that survive the stripping process are employed to calculate
the average and the standard deviation in each simulation.

WMAP-7 (Seven-year Wilkinson Microwave Anisotropy Probe) results (see
Komatsu et al. 2011), Ωm/Ωbar ∼ 6.0, being much lower than the initial ratio in
our simulations. It appears that the DM-to-star ratio is subject to two phases.
As argued inM17, in the first phase, before they strongly interact with theMW,
the satellite galaxies lose large quantities of gas; therefore, their total-matter–
to–baryons ratio increases (so they start in our simulations with a high total-
matter–to–stars ratio). In a second phase (i.e. in more recent epochs), strong
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tidal interactions with the MW deplete the satellite dwarf galaxies of more DM
than stars and drive the total-matter–to–stars ratio towards lower values by a
factor of 2− 4 on average.

Assuming a stellar mass-to-light ratio of two in solar units, the satellites in
our simulations fall in the regime 1.2 × 103 L� − 4 × 106 L� corresponding to
UFDs (Simon 2019)4. The mass-to-light ratios, which correspond to the tidal
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Figure 3.12: Distribution of the surviving satellites in the L−M/L plane for the six simula-
tions adopting a stellar mass-to-light ratio of two. Colour codes as in Figure 3.7.

mass-to-light ratios, of all our surviving satellites are shown as a function of
luminosity in Figure 3.12. The tidal mass-to-light ratio was estimated for the
first time by Faber & Lin (1983) for seven dwarf spheroidal galaxies, finding a
much lower value than ourmass-to-light ratio of (M/L)best ∼ (1.5×103)+434

−606 M�
L−1
� . Simon (2019) showed thatM/L inside the half-light radius Rh decreases

with increasing luminosity from ∼ 1000 (with a large scatter) for L = 103 L�
to ∼ 10 for L = 107 L�, which is similar to the values of Errani et al. (2018)
inside 1.8Rh. We found the same trend of mass-to-light ratios as a function of
luminosity, but our values are systematically higher by a factor of a few. This
offset is expected because the tidal radius is larger than 2Rh in most cases.

3.4 Extract from the paperMazzarini et al.(2020): 5.
Conclusions and discussion

3.4.1 Conclusions

Wehave performed a set of N-body simulations to investigate the general prop-
erties of the satellite debris distribution in the MW environment. For the first

4There is one satellite in our simulation from the Aq-F2 set-up that ends with L= 50 L�, but
it is below the range considered in Figure 4 of Simon (2019).
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time, we took advantage of a set of satellite galaxy models taken from cosmo-
logical high-resolution hydrodynamical simulations, placed in initial orbits de-
rived from the results of N-body cosmological simulations of structure forma-
tion, and of a full high-resolution N-bodyMW host model taken from the liter-
ature, consisting of live disc, bulge, and halo. For a statistical analysis, the ICs
of six Aquarius simulations were used. Following the approach of MJ16, all
satellites with tidal masses higher than 108 M� and with a pericentre passage
closer than 25 kpc were taken into account. We ran each simulation for 2 Gyr.

We investigated the general properties of the debris of satellite galaxies in
the global and local MW environment. We focused on the differences in the
distribution of stellar and DM debris. Based on our findings, we can state the
following:

• The stellar component in the satellite galaxies ismuchmore tightly bound
than the DM component and cannot be deduced from DM-only simula-
tions;

• The stripping process acting on satellite DM is more efficient than on
satellite stars and releases more DM debris than stellar debris in the MW
environment (80% compared to 30%);

• The radial density profile of the DM debris covers the whole host halo
and shows a standard NFW slope in the outer region; the stellar debris
is confined to the inner 50 kpc with a steep cutoff outside; both profiles
show a deficit in the inner 5 kpc;

• The stellar debris shows more prominent peaks of the radial probability
distribution function than the DM debris, pointing to a more confined
structure of individual streams in the inner part of the MW halo;

• The debris of DM and stars distribute with some degree of flatness (c/a ∼
0.55 and 0.3, respectively); the orientation of the minor axis is very differ-
ent for the different simulations and shows no obvious correlation to the
MW disc plane; the orientation of the DM and the stellar debris is not
well correlated in each simulation, thus it is not possible to reconstruct
DM debris and streams directly from observed stellar streams;

• Changing the orientation of the disc by 90o has a small effect on the dis-
tribution of the satellite debris; this confirms that the structure of the DM
and stellar debris of satellite galaxies is mainly determined by the ICs of
the satellites; the flattened potential of the disc only plays a minor role;

• The tidal total-to-stellar mass ratio of the satellites decreases by a factor
of 2− 4 during the simulations and shows at the end mass-to-light ratios
that are consistent with observations of the Local Group UFDs.

In conclusion, we can state that the stellar and DM components of the satel-
lites are subject to different stripping efficiencies and different redistributions in
the MW environment, thus they are not strongly correlated. As a consequence,
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observed stellar streams cannot directly be converted to the distribution of the
DM debris. Furthermore, we showed the importance of cosmological ICs as
well as the realistic structure of satellite galaxies in determining the final dis-
tribution of the satellite streams around the MW.

3.4.2 Discussion

The fact that the debris (particularly the stellar debris) has some degree of flat-
ness shows that with a cosmologicallymotivated initial set-up (e.g., in our case,
from Aquarius simulations data) it is possible to obtain a flat spatial distribu-
tion of the debris. On the other hand, our debris does not show any distribu-
tion on a unique plane, as can be seen from Figure 3.7, where within different
radii the debris tensor seems to occupy different regions in the angles-space in
the same simulation and for each individual component (DM and stars). This
contrasts with what was stated by Pawlowski et al. (2012), that was in favour
of the formation of a plane of debris. Furthermore, since our results predict
no systematic orientation of the stellar and DM debris, this means that other
techniques may be needed to trace the distribution of DM streams other than
addressing the distribution of the stellar streams alone.

Regarding the mass loss of the satellites in our simulations, Simon (2019)
stated that tidal stripping affects the luminosity but not the metallicity of the
stellar populations of satellites, and since the luminosity-metallicity relation is
satisfied for the observed UFDs, then the stripping of stars acting on satellites
must be moderate. This conclusion is in line with what we obtained for the
stripped fraction of stars, which is not high for stellar satellite matter. Simon
(2019) found the result in agreement with previous estimates, such as from
Kirby et al. (2013).

When considering the fraction of surviving satellites, regardless of whether
the satellites are DM-only or hybrid, this is not the feature that determines their
survival. In fact, no systematic differences were found between theMJ16 simu-
lation sample and our simulation sample. The inner properties of the satellites,
as previously stated, differ in the shape of their density profiles, shallower for
DM in hybrid satellites than in DM-only satellites. However, the difference in
slope of these profiles is limited, and the energy distribution of DM particles is
similar for DM-only and hybrid satellites. Instead, it seems that other drivers,
such as the satellite ICs of our simulations, determine the survival probability
of the satellites; therefore, this is related to their orbital parameters and intrinsic
structure.

The fact that the tidal stripping exerted by theMWis not strongly efficient on
its satellite galaxies seems to be compatible with what Peñarrubia et al. (2008)
found in their simulations. In particular, they found that even after 99% of
the stars are stripped from a satellite, the King profile (King 1966) of the re-
maining stellar component remains unchanged. Furthermore, they found that
the stripping of stars is efficient only when the satellites approach their orbital
periapsis, i.e. when they get closer to the MW centre. Previous work from
Bullock & Johnston (2005) that has investigated the effect of MW–satellite in-
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teractions in the past epochs has underlined the importance of these mergers
to form the stellar halo. However, they adopted a combination of methods and
semi-analyticalmodels to address their study. TheMW, for instance, was added
only analytically as a time-evolving potential. Herewe have taken advantage of
full N-body simulations, and the live evolution of the gravitational potential of
the MW, with effects such as dynamical friction (Chandrasekhar 1943) being
naturally incorporated, however without secular long-term growth. Further-
more, our analysis is different from that of Bullock & Johnston (2005) in the
sense that it focuses on the current distribution of the residual debris coming
from recently accreted satellite structures rather than focusing on the build-up
of the MW halo from past accretion processes.

3.5 Estimating the approximationdonewith the tidal
radius calculation

The satellites tidal radii were calculated at each snapshot with Equation (3.2) ,
where for the potential Φ I employed the DM halo Hernquist potential

Φhern(r) = −G Mtot

(r + ahern)
, (3.12)

with Mtot the total halo mass and with ahern the halo scale radius (Hernquist
1990). By doing this, the contributions of the disc and of the bulge to the total
potential are neglected. However, the Galactic disc and bulge are dynamically
dominating in the few inner kpc. An estimate of how large the approximation
of neglecting them is5, and of how much the inclusion of the disc and bulge
potentials would impact, can be obtained by means of the relative difference

|∆rtid|
rtid

=
|rtid,Hern+stellar − rtid,Hern|

rtid,Hern

(r). (3.13)

Here, rtid,Hern+stellar is the tidal radius estimated by taking into account the sec-
ond derivative of the stellar potential as well, and rtid,Hern is the tidal radius
estimated by only calculating the second derivative of the DM Hernquist halo
potential. The stellar potential is calculated as

Φstar(r) = −G
( Md

r + ad

+
Mb

r + ab

)
, (3.14)

where ad = 2.8 kpc and ab = 0.35 kpc are the disc scale length and bulge
scale radius, respectively. Here, the assumption and approximation is that the
disc and the bulge are treated as spherical components, with a non-Keplerian
distribution and with a scale radius, similar to a Hernquist-like profile.

5As already said, the other approximation is that the whole velocity modulus of the satellite
was considered for the calculation of the corresponding angular velocity appearing in the tidal
radius in Equation (3.2), thus approximating the orbit as circular.
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In Figure 3.13 I show the second derivatives of theMWpotential, bothwith
andwithout including the stellar potential (top panel), the corresponding tidal
radii (central panel) and their relative difference following Equation (3.13)
(bottom panel), as functions of GCd. For the case of the tidal radius and of
its relative difference, I plot the data for different values of satellite angular
speed ω, ranging from 0 to 103 km s−1 kpc−1 (colours from red to grey). The
calculation of the tidal radius is the same as in Equation (3.2). The example
represented in the figure is for a satellite of mass Msat = 109 M� and for Aq-
D2 only, since Aq-D2 is the simulation set-up fromMJ16where the MWmodel
presented intermediate, average properties among all the six set-ups.

First, as can be seen in the top panel of Figure 3.13, the potential second
derivatives strongly diverge approaching theMW centre for the case where the
stellar potential is included. Second, the tidal radius decreases by increasing
ω (central panel), because ω appears at the denominator in Equation (3.2).
However, when including the stellar potential in the calculation of the tidal
radius, the second derivatives of the disc and of the bulge potential dominate
the denominator of Equation (3.2) , and the variation of the tidal radius close
to the MW centre is stronger in this case, with no relevant dependence on ω.

Last, looking at the bottom panel of Figure 3.13, the fact that the two calcu-
lated potentials (with full stellar contribution andwithout any stellar contribu-
tion) are closer to each other at large radii implies a smaller relative difference
between the corresponding tidal radii (relative difference down to 3 × 10−2 at
r = 100 kpc). Instead, close to the MW centre, the tidal radius calculated with
the additional full stellar contribution approaches zero, therefore the relative
difference approaches ∼ 1.

In conclusion, the larger is the approach to the MW centre, the larger is the
divergence of the tidal radius calculation when employing the full potential
with respect to the case of the Hernquist DM halo potential only. The error
however is large (∼ an order of magnitude or more) only in proximity of the
MW centre (within few kpc). Given the random distribution of the satellites
orbits in the six simulations and that in general the satellites are not expected
to transit always so close to the MW centre in the simulations, the final result
on the satellite stripped debris is not expected to be strongly affected by the ap-
proximation that we have done on the second derivatives of the MW potential
when calculating the tidal radii of the satellites.
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Figure 3.13: Top panel: potential second derivative for the case of the haloHernquist potential
only (dashed line) and for the case with the stellar potential included (full line), as functions
of GCd. Central panel: tidal radius dependence on GCd for different angular velocities ω (from
lower to higher ω, red to grey lines), for the case of the halo Hernquist potential only (dashed
lines) and for the case with the stellar potential included (full lines). Bottom panel: relative
difference between the tidal radii plotted in the central panel. Only the case of Aq-D2 is repre-
sented in all the three panels.
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Chapter 4

A numerical study on the Milky
Way bar

In this chapter, I present the collaborative research carriedwith ElenaD’Onghia
(University of Wisconsin, MadisonWI, USA), Jose Alfonso Lopez Aguerri (In-
stituto de Astrofísica de Canarias, Tenerife, Spain) and Benoit Famaey (Ob-
servatoire Astronomique de Strasbourg, Strasbourg, France). The goal of this
collaboration was to investigate the process of bar formation and the properties
of the Galactic bar in a MW N-bodymodel that is faithful to the observations
of the Galaxy. Also, part of the goal was checking if there is any presence of
vertical buckling instabilities and of the X-shape in the bar, and if there is any
correlation between them.

In order to address the properties of the bar, we first needed to perform a
Fourier analysis of the MW disc. In Section 4.1, I first introduce the principles
of the Fourier analysis, useful to understand our study of the bar in the MW
model. In the subsequent sections I then present the simulation and the results
obtained so far in this collaboration.

As I already pointed out, the MW models employed for my numerical inves-
tigations in Chapter 2 and in Chapter 3 were the ones from MJ16. These MW
models are stable against bar formation, while on the contrary the bar is ob-
served in our Galaxy. The reasons for testing a MW model that matches the
observational constraints of our Galaxy are different:

1. Improving the properties of theMWmodels fromMJ16 in order to repro-
duce bar formation;

2. Creating a newMWmodel with higher resolution that can be competitive
against the MW-like galaxies formed in the state-of-the-art cosmological
simulations;

3. Studying the formation and evolution of the bar in the MW, to under-
stand how, given a MW model compatible with observations, the bar is
predicted to develop and how it is predicted to impact on the surrounding
environment;
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4. Addressing the process of vertical buckling of the Galactic bar and if it
has any correlation with the formation of the X-shape.

In particular, point 2) is understandable in the line of the increasing resolution
that cosmological simulations of formation and evolution of MW-like galax-
ies are achieving, combined with the implemented refined baryonic physics
prescriptions, as already discussed in Section 1.4.1. Here, the computational
resources are not spent in the refined cosmological and baryonic recipes, but
are spent for the detailed sampling of the mass distribution in the MW.

High resolution is important to properly address the resonances between
MW halo particles and disc particles, that in turn are playing a role in the for-
mation of instabilities like the Galactic bar. Another advantage of this kind of
simulations is the possibility of focusing on ad-hocmodels set tomatch the spe-
cific observational constraints of the MW, instead of dealing with the random-
ness of statistical samples of MW-like objects from large cosmological boxes.

4.1 Bar instability and buckling instability: Fourier
analysis

I now summarise the methods to study the bar formation and the bar buckling
instability via Fourier analysis.

4.1.1 Fourier transform
In the Fourier analysis, a function f(x) of a continuous variable x can be ex-
pressed in terms of an infinite series of wave functions exp(−ikx), by integrat-
ing on all the wave numbers (or modes) k, with k = 2π/x, so that

f(x) =
1√
2π

∫
x

f̂(k)e−ikxdk . (4.1)

The element f̂(x) is the weight that the mode k has in reconstructing the signal
f(x). f̂(k) is the FT of f(x), f̂ ≡ F (f), evaluated on the frequency k, and 1/

√
2π

is the normalisation factor. The FT of the FT is the function itself,

f(x) = F (F (f)) = F (f̂). (4.2)

4.1.2 Fourier analysis of numerical MW-like discs
The disc of a numerical MW model is a discrete distribution of particles. Each
i-th particle Pi carries a quantity of mattermi, and it is described by its position
vector ~Ri

1. This distribution can be described by means of a kernel function,

W (~R) =
∑
i

miδ(~R− ~Ri) , (4.3)

1Where ~R =
√
x2 + y2, since the disc lies on first approximation in the xy-plane.
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where the functionW is non-null only where ~R corresponds to any of the po-
sitions ~Ri of the particles. This is because of the convolution properties of the
Dirac delta functional δ, ∫

f(x)δ(x− x0)dx = f(x0) . (4.4)

If we divide the disc in radial bins, each one being a radial ring centred on
GCd R, we can define a function of polar coordinates (R, φ), where ~R ≡ (R, φ),
such that

W (~R) ≡ W (R, φ) =
∑
i,R

mi,Rδ(φ− φi,R) ≡ WR(φ) , (4.5)

where the dependence on the radius vector is replaced by the dependence, at a
fixed radius R, on the azimuth φ only. Here the index i, R is running on all the
particles inside the radial bin centred on R and the terms mi,R are the masses
of the particles inside the bin.

For each radial bin of centre R, we can decompose the signalWR(φ) into an
infinite series of wave functions of different modes. Each wave function repre-
sents a mode k of the FT of the mass distribution of the disc in that bin. Since
the angle φ has periodicity 2π on the disc, then we can consider a infinite num-
ber of discrete modes k = 0, 1, 2, .... For each of thesemodes, we can determine,
along the whole disc, a function Ak(R) such that

Ak(R) = Ck

∫ 2π

0

WR(φ)e−ikφdφ = ŴR(k) (4.6)

is the discrete FT of W , evaluated at the discrete mode k, and Ck is the corre-
sponding normalisation constant. By substituting Equation (4.5) in Equation
(4.6), then

Ak(R) = Ck

∫ 2π

0

∑
i,R

mi,Rδ(φ− φi,R)e−ikφdφ =

Ck
∑
i,R

mi,R

∫ 2π

0

δ(φ− φi,R)e−ikφdφ = Ck
∑
i,R

mi,Re
−ikφi,R .

(4.7)

If k = 0, Equation (4.7) becomes

A0(R) = C0

∑
i,R

mi,R = C0MR , (4.8)

where MR is the total mass of the bin centred on R. Thus, the mode k = 0 is
associated to the total disc mass in the ring. By imposing that the mode A0 is
normalised to unity, we have C0 = 1/MR. For modes k > 0, the contribution of
the terms e−ikφi,R in each radial bin is such that∑

i,R

|mi,Re
−ikφi,R | ≤

∑
i,R

mi,R = MR (4.9)

for each particle Pi,R. Therefore, by imposing the same condition on the con-
stants Ck for k > 0, i.e. Ck = 1/MR, we obtain that the corresponding Fourier
terms are Ak ≤ A0, i.e. we can normalise the higher order modes to equal or
less than unity.
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4.1.3 Bar instability
Galactic bars are axisymmetric structures. Themode that describes these struc-
tures and other features like spiral arms by means of the Fourier analysis is the
mode k = 2 (BT08). Following Equation (4.7), the corresponding FT defined
at GCd R has the form

A2(R) =
1

MR

∑
i,R

mi,Re
−i2φi,R . (4.10)

For each i−th particle, the exponential term in Equation (4.10) is a complex
number, and can be rewritten as the sum of a real part and an imaginary part,

e−i2φi,R = cos(2φi,R) + i sin(2φi,R) . (4.11)

Let Re2(R) and Im2(R) be the sums over all the real parts and all the imaginary
parts, {

Re2(R) =
∑

i,R cos(2φi,R)

Im2(R) =
∑

i,R sin(2φi,R) .
(4.12)

Then, {
|A2(R)| = 1

MR

√
Re2

2(R) + Im2
2(R)

Φ2(R) = atan2(Im2(R),Re2(R)) ,
(4.13)

where |A2(R)| is the magnitude of A2(R) in the bin R and Φ2(R) is the corre-
sponding phase angle2.

For the case of the bar, then, Φ2(R) is the angular orientation of the semi-
major axis of the bar in the given bin centred on R. The bar strength is the
maximum value of |A2(R)|, and I indicate it here as A2,max. Rmax is the corre-
sponding radius of maximum |A2(R)|. Also, I indicate simply with Φ the bar
phase angle at the radius Rmax, as the phase angle representative of the whole
bar orientation in the Galactic disc.

As an additional note, the same Fourier term A2(R) cannot disentangle dif-
ferent modes at the same radius, and the coefficient A2(R), for instance, can be
sensible to both bar and spiral features. However, different features and insta-
bilities evolvewith different pattern speeds and survive on different timescales.
Thus, in order to disentangle the different contributions to the coefficient, it is
helpful to do a time-dependent analysis ofA2,max. Another aspect that helps the
analysis of the bar growth shown below is that I focused on the region within
5 kpc of GCd, i.e on the region where the bar dominates after forming. This
helped rule out external perturbations that could have contaminated further
the signal in the Fourier analysis and in the study of the bar properties.

2The function atan2(Im2(R),Re2(R)) is the arctangent arctan(Im2(R)/Re2(R)) evaluated to
extend the angle at any quadrant. The angle is returned in radians in the range [−π,+π]. An
example of numerical implementation of the function in C++ can be found in the page https:
//en.cppreference.com/w/cpp/numeric/math/atan2.
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4.1.4 Buckling instability
Buckling instabilities in a bar appear in the form of vertical bendings that alter
the symmetry of its distribution with respect to the Galactic plane. If we centre
a coordinate frame on the disc, and we rotate the coordinate frame by the angle
Φ that the bar formswith the x−axis, the new x-axis lies then on the direction of
the bar major axis, the new y-axis lies on the direction orthogonal to it, always
on the disc plane, and the z-axis always lies orthogonal to the disc plane.

Projecting all the particle coordinates on this new coordinate frame, we can
now perform another Fourier analysis, this time on the new xz-plane, in order
to catch the bar buckling instability. Since the buckling instability is a vertical
asymmetry in the distribution of the bar with respect to the Galactic plane, the
Fourier coefficient corresponds to the firstmode k = 1 of thematter distribution
in the xz-plane, in the form

B(Rxz) =
1

πMRxz

∑
i,Rxz

mi,Rxze
−iθi,Rxz , (4.14)

as in Martinez-Valpuesta & Athanassoula (2008). Here, Rxz is the radius in the
xz-plane, Rxz =

√
x2 + z2, and i, Rxz is the index running on all the particles

inside the ring-like bin in the xz-plane with central radius Rxz. Also, θiRxz
is

the corresponding angle of the particle, calculated on the xz-plane from the
positive x-axis, andMRxz =

∑
iRxz

miRxz
is the total mass in the bin centred on

radius Rxz.
Again, being B(Rxz) a complex coefficient, its magnitude (i.e the intensity

of the bar buckling) at each ring-like bin is |B(Rxz)|, similarly to the first of the
Equations (4.13). I will simply call B the intensity of the buckling.

A secondway of calculatingB is using Equation (4.14), summing on all par-
ticles inside a parallelepipedic region elongated on the direction of the bar semi-
major axis (Martinez-Valpuesta et al. 2006;Martinez-Valpuesta &Athanassoula
2008). This parallelepipedic region is chosen to enclose the bar, avoiding con-
tamination in the FT from particles outside of it. This calculation of the coeffi-
cient B can be used as indicative of the intensity of the buckling in the whole
bar region. We opted for this second approach, as I will show below.

4.2 Bar evolution in a MWmodel

4.2.1 Milky Way: numerical set-up and initial conditions
A high-resolution N-bodyMW model, with a disc of 24M particles, a bulge of
8.4M particles, and a DM halo of 60M particles, was realised by E. D’Onghia.
This is the N-body model that we used in order to address the evolutionary
properties of the MW bar and to check its impact on the local Galactic disc.

The model was realised using the package makeNewGal of V. Springel (see
Springel et al. 2005a), in a similar way to the MW models of MJ16 employed
in Chapter 2 and in Chapter 3. The MW model parameters are originally re-
ported in D’Onghia & Aguerri (2020). These parameters were chosen in order
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tomatch the observational properties of theMWdescribed in BHG16. In Table
4.1 I show the relevant parameters of the model.

Table 4.1: Relevant parameters of the MW model realised by E. D’Onghia. From top to bot-
tom: halo mass, Hernquist scale radius, maximum circular velocity, radius of maximum cir-
cular velocity, disc mass, disc scale length, disc scale height, bulge mass, bulge scale radius,
number of disc, bulge and halo particles.

Mh 9.50× 1011 M�
a 30 kpc

vmax 233.65 km s−1

rmax 7.39 kpc
Md 4.83× 1010 M�
h 2.67 kpc
z0 0.32 kpc
Mb 8.06× 109 M�
ab 0.120 kpc
Nd 24M
Nb 8.4M
Nh 60M

The DM halo was built again with the best-matching Hernquist profile hav-
ing a similar inner density cusp as the corresponding NFW profile. The Hern-
quist total mass is compatible with the value of mass enclosed within r200 esti-
mated by BHG16,M200 = (1.1± 0.3)× 1012 M�. Thus, the halo has a Hernquist
density profile as in Equation (1.4) and its scale radius is related to the corre-
sponding NFW scale radius according to Equation (1.8). The bulge follows a
Hernquist density profile as well. The disc density has an exponential profile
like in Equation (1.1) and again with P = 1.

In Figure 4.1 I show the initial projected mass surface density map of the
disc (the central panel, the top panel and the right panel correspond to the xy-,
the xz- and the yz-projections, respectively). The ICs model, as can be seen, is
axisymmetric and shows no bar and no spiral features. This map (and the ones
in Figure 4.4 for the subsequent snapshots) was createdwith square bins of 0.1
kpc side each and by imposing a lowermass cut-off of 2×104 M� in each bin (i.e.
with at least 10 particles in each bin), in order to avoid the contamination from
the noise, that below this mass threshold would become increasingly relevant.
As can be seen later in Figure 4.4, this threshold is also enough to show the
different structures developing in the disc: the bar, the symmetric vertical X-
shape of the bar, the spiral features and the ring-like density waves.

The initial MW rotation curve, calculated as in Equation (1.3), is shown in
the left panel of Figure 4.2 with a full line. Here the total circular velocity en-
closed within a GCdR is coming from the contribution of three terms: the disc
mass (dot-dashed line), the bulge mass (sequence of triangles) and the DM
halo mass (dotted line). For the calculation of the contribution of the disc to
the circular velocity, Vcirc,d, I used the approximation that the disc is spherically
distributed within each radius R.
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Figure 4.1: Surface density map of the ICs MW disc. The central, top and right maps corre-
spond to the xy-, xz- and yz-projections of the disc mass surface density. Colour codes as in
the colour bar.

The right panel of Figure 4.2 is a zoom of the left panel into the first 20
kpc of GCd. In the right panel I have also added the mean tangential velocity
profile of the disc particles, vφ, as a dashed line. For comparison with the total
MW rotation curve that I have calculated, I additionally plotted (red dashed
line) the initial MW rotation curve where I considered for the disc its actual ex-
ponential density profile (Freeman 1970), and not the spherical density profile
approximation. Following Springel et al. (2005a), in fact, the square circular
velocity coming from the contribution of the disc exponential profile is

V 2
circ,exp(R) =

2GMd

h

( R
2h

)2

[I0K0 − I1K1] , (4.15)

with I0, K0, I1, K1 being the Bessel functions evaluated at (R/2h). Therefore,
having assumed a spherical density distribution for the disc mass in the calcu-
lation of the rotation curve by means of Equation (1.3), we have obtained an
approximation of the actual Vcirc.

Having used the disc spherical mass in the calculation of Vcirc,d, we under-
estimate the actual peak of Vcirc,exp by a fraction 15% of its value (BT08). How-
ever, the relative difference of the total rotation curve Vcirc (black line in the
right panel of Figure 4.2), calculated with the spherical disc assumption, to the
actual rotation curve calculated including the effective disc exponential density
profile (red dashed line), is of no more than∼ 10−11% in the first kpc of GCd,
and it drops immediately to less than 6% at less than one disc scale length.
Thus, though not representing the actual rotation curve, the assumption of a
spherical distribution of the disc in Equation (1.3) returns a good approxima-

101



CHAPTER 4. BAR FORMATION IN THE MILKY WAY

tion of Vcirc. I therefore refer to our approximated estimate of the rotation curve
simply as Vcirc.

At large radii (up to the virial radius), the circular velocity is dominated by
the DM halo. The disc dominates the region within the first ∼ 5 kpc of GCd,
while the bulge is relevant only within the first kpc of GCd.

The tangential velocity is much lower than Vcirc in the first few kpc, where
the difference reaches up to ∼ 60 − 70 km s−1. This is because of the bulge,
that imposes non-circular and radial orbits in the centre of the MW, due to its
spherical potential. For the rest of the disc extent, the fact that the circular and
tangential velocities are similar is indicative of an initially low asymmetric drift
(BT08) in the model. At a GCd R0 = 8.2kpc, that BHG16used as the GCd of
the Sun, our value of Vcirc ∼ 230 km s−1 is compatible with their value, that is
Vcirc,R0 = 238± 15 km s−1.

Figure 4.2: Left panel: rotation curve at the beginning of the simulation. The full line is the
circular velocity profile resulting from the contribution of all the three components (disc, bulge,
and halo). The dot-dashed line is the profile resulting from the contribution of the disc, the
sequence of triangular markers represents the contribution of the bulge and the dotted line
is the contribution of the halo. The radial bins have 0.5 kpc thickness. Right panel: zoom in
the first 20 kpc. The additional black dashed line is the initial disc tangential velocity profile.
The additional red dashed line instead is the initial actual total circular velocity, calculated
considering the actual distribution of an exponential disc and not using the spherical mass
distribution approximation for it.

The spherical bulge employed here to construct the IC has a lowermass than
in BHG16 (∼ 8× 109 M� in this model versus∼ 1.6× 1010 M� from literature).
This bulge can be considered a classical bulge. This is in accordance with the
fact that the classical bulge mass estimated from literature is smaller than the
total measured bulge mass, as I recalled in Section 1.2.2.

The fact that we started already with a classical bulge in the simulation is
justified by the fact that this initial set-up is not directly coming from a cos-
mological simulation, but it is made with the purpose of building an isolated
model, where the disc can easily develop instabilities and fragmentation if it
is massive enough like in this case (see for instance Toomre 1964). In this
sense, the presence of the bulge has a stabilising effect on the disc. Additionally,
D’Onghia & Aguerri (2020) noted that the bulge in this model does not rotate,
contributing to slow down the bar and to increase its exchange of angular mo-
mentum with the environment.
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4.2.2 Numerical simulation
The simulation3 was run by E. D’Onghia for a total of 4 Gyr4 at the La Palma
supercomputer centre 5. It was run with the code Gadget-3 using 225 CPUs
in parallel, again adopting MPI prescriptions for the parallelisation of the code.
Snapshots were taken every 5 Myr, in order to track all the evolutionary steps
of the bar with a high temporal resolution, small enough to catch any possible
vertical buckling event. More information about the simulation parameters is
found in D’Onghia & Aguerri (2020).

For each snapshot, before analysing the properties of the disc and of the
bar, I first calculated the MW density centre, then I rescaled the disc particle
coordinates and velocities to the ones of the MW density centre, and I rotated
them to have the total disc angular momentum vector lying in the z-direction.
This procedure is the same as the one employed in Chapter 2 and in Chapter 3
before analysing the corresponding simulations.

4.2.3 Radial density waves in the Milky Way model
As a final consideration on the construction of the numerical MW models de-
scribed here and in the previous chapters of this thesis, let us consider again
the radial propagation of ring-shaped density waves in the numerical Galactic
disc. For the case of the MW model employed in this chapter, these density
waves can be observed in the xy-projected surface density maps of the disc in
Figure 4.4 and in the evolution of the disc surface density profile in Figure 4.8.
As I already noticed in Chapter 2, these density waves are found also in the
isolated evolution of the MWmodel ofMJ16.

At least comparing the numerical set-up of MJ16 and the one discussed
here, it appears that the production of these density waves is independent from
the presence of the bar in the disc. In fact, in the models ofMJ16no bar forms.
Thus, this comparison indicates that the ring-shaped density waves most likely
are a numerical artefact of the ICs, and they are an effect of the relaxation of
the numerical MW disc, that moves to a new equilibrium DF, starting from the
ICs equilibrium DF, and independently from the gravitational instabilities that
the disc develops.

The presence of these waves poses some problems related to the construc-
tion of MW numerical models with discs in an initial equilibrium DF. This re-
quires future investigation, either checking for proper modifications to the al-
gorithms employed in the codes GalIC and makeNewGal, or alternatively under-
standing under which conditions and selections of parameters theMWmodels
generated with these two packages do not develop these radial density waves.

3The simulation was named GALAKOS by D’Onghia & Aguerri (2020), after the ancient
Greek for “Galaxy”.

4I was able to access the data corresponding to the first 3.84 Gyr. However, for the sake of
the discussion in this chapter, these 3.84 Gyr are way enough to show the relevant evolutionary
properties of the MW disc and of the bar.

5Information about the cluster can be found at http://www.iac.es/en/
science-and-technology/technology/technical-facilities/lapalma-supercomputer.
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4.3 Bar: evolutionary properties
First, I discuss the process of bar growth and evolution. This is useful to un-
derstand the impact of bar growth on the secular evolution of the inner disc
kinematics and dynamics.

4.3.1 Bar formation and growth
To quantify the growth of the bar, I calculatedA2,max in the disc as a function of
time, from the beginning of the simulation to t = 3.84 Gyr. In the left panel
of Figure 4.3, I show the evolution of A2,max in time. For each snapshot, I
smoothed A2,max by averaging it together with the previous and subsequent
snapshot. A2,max shows an exponential increase from the beginning of the sim-
ulation up to t = 0.5 Gyr, where it reaches the value A2,max ∼ 0.2, entering the
strong bar regime. Afterwards, the bar slowly grows and steadily persists in
the disc until the end, as can be seen also from the xy-projected density maps
of the MW disc in Figure 4.4. From now on, I adopt t = 0.5 Gyr as the initial
time of secular bar evolution.

In the right panel of Figure 4.3, I show the evolution of Rmax in time. For
each snapshot, I smoothed Rmax like I did with A2,max. The A2(R) coefficient is
sensitive to other disc perturbations, such as spiral structures. Therefore, par-
ticularly at the first epochs and until t ∼ 1 Gyr, the fact that Rmax is placed at
∼ 4− 5 kpc, even if the bar is still not fully developed, may reflect the contam-
ination of other, more external perturbations in the disc. After the first Gyr,
anyway, when the bar grows significantly the evolution ofRmax is more regular
and Rmax slowly increases from ∼ 1.5 kpc to a final value of ∼ 2.5 kpc. The
peaks of minimum Rmax that are visible at t ∼ 0.7 Gyr and t ∼ 1.1 Gyr may be
due to noise in the signal of the forming bar, as I will discuss when addressing
the bar pattern speed and the corotation radius (Section 4.3.2).

Figure 4.3: Left panel: Evolution in time of the bar strength A2,max (left panel). Right panel:
Evolution in time of the radius of maximum strength Rmax (full dark cyan line) and of the bar
length lbar (dashed brown line). In both panels the vertical dot dashed black line marks the
epoch of bar formation at t = 0.5 Gyr.

Always in the right panel of Figure 4.3 I show the bar length lbar, that was
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calculated by J. A. L. Aguerri6, following the prescriptions of Aguerri et al.
(2000). For the bar length, I took data every 125 Myr until t = 3 Gyr, and
then every 250 Myr, to display it as regularly as possible, given the fewer data
points that I was provided. However, they are still enough to capture the gen-
eral evolution of lbar. The first peak of bar length, lbar ∼ 4.4 kpc, appears at
t ∼ 1.0 Gyr, whileRmax is∼ 4.5 kpc already at 0.5 Gyr. This confirms that other
perturbations in the disc may influence the early growth of A2,max until the bar
does not overcome their strength in the subsequent epochs.

Another feature to note is that, after t ∼ 1 Gyr, i.e. after the bar has started
to dominate in the disc, the value of lbar is always higher than Rmax, reaching a
final ratio lbar/Rbar ∼ 2. This is a confirmation that the maximum of A2(R) falls
inside the bar range, i.e. this maximum is due to the contribution in strength
of the bar.

For comparison, in Figure 4.4 I show the evolution of the disc mass surface
density, visualised throughmaps as in Figure 4.1. At a time t = 0.5Gyr (top left
map), the bar is still not developed in the centre of the disc, with correspond-
ing low levels of mass density (see the corresponding xy-projection). Thus, the
bar seed is still small in terms of dominance in the disc. Instead, visible spiral
features have already developed by that time. Subsequently, the bar increases
in strength and length (top right map and all the maps below; higher density
values in the centre of the corresponding xy-projection and visibly higher ex-
tent of the bar feature). Already at t = 1.0 Gyr the spirals are a fading feature,
in comparison to the bar.

To sum up, the presence of the spiral patterns at t = 0.5 Gyr extending
further than the bar can offer an explanation for the higher value of lbar and
Rmax obtained at early epochs, while the bar is still small. The A2,max coefficient
is first influenced by spiral features and around 1.0 Gyr the bar dominates the
contribution to A2,max, that grows to its final value of ∼ 0.5 and falls inside the
bar region.

4.3.2 Bar pattern speed and corotation radius
Pattern speed

The bar pattern speed Ωbar was calculated at each time t as

Ωbar(t) =
Φ(t+ ∆t)− Φ(t)

∆t
, (4.16)

with ∆t being the time difference between the snapshot at time t and the sub-
sequent snapshot. In this case, ∆t = 0.005 Gyr. In Figure 4.5 I show the bar
phase angle Φ (left panel) and the pattern speed Ωbar (right panel) as func-
tions of time7. The values of Φ and Ωbar were smoothed again like for the case

6J. A. L. Aguerri gently allowed me to plot and show the bar length evolution in time.
7I performed the calculation of Φ with twoMatlab routines, bar_fit.m and fit_ellipse.m,

gently provided by Evgeny Polyachenko (Institute of Astronomy of the Russian Academy of
Sciences, Moscow, Russian Federation). These routines require as input the projected matter
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Figure 4.4: Maps showing the evolution of the disc surface density, every 0.5Gyr from t = 0.5
Gyr until t = 3.5 Gyr (top to bottom line, left to right column for each line) and with the
addition of the map taken at t = 3.84 Gyr (bottom right panel). For each plot, the projections
are as in Figure 4.1 and the colour codes are as in the corresponding colour bars.

distribution of the disc in the xy-plane and return elliptical contours that fit this matter distri-
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of A2,max, i.e. averaging each value at every time with the previous and follow-
ing values.

Figure 4.5: Left panel: bar phase angle as a function of time. The black dots mark the corre-
sponding values of phase angle Φ at the given times. The four coloured dashed lines (cyan,
spring green, orange and magenta) represent the corresponding best-fit linear functions to Φ
as functions of time, during the corresponding time intervals. Right panel: bar pattern speed
Ωbar as a function of time (full black line). The four characteristic bar pattern speeds of the
four time intervals, obtained from the corresponding best-fit linear functions, are plotted as
horizontal dashed lines with the same colours as in the left panel.

Excluding a few data points, the evolution of Φ can be distinguished in four
separate time intervals, each characterised by a linear increase of the angle in
time, i.e. characterised by constantΩbar. Therefore, I calculated the correspond-
ing linear functions that better fit the values of Φ in these four regions. Between
the first and second period of time, and between the second and third period of
time, there are some jumps in Φ (see below the discussion on the early sources
of noise). I skipped the times around these jumps, to better fit the data in the
four time intervals. The third and fourth time interval are connected, with no
jump in Φ in between.

Each best-fit linear function has the form

Φ(t) = Φ̇× (t− ti) + Φ0 , (4.17)

where ti represents the initial time of the corresponding interval, Φ0 represents
the phase angle at the time t = ti, and the value Φ̇ ≡ Ωbar represents the char-
acteristic angular speed in the corresponding time interval. In the left panel of
Figure 4.5 these four best-fit functions are plotted as cyan, spring green, orange
and magenta dashed lines, in order of corresponding time interval.

In Table 4.2 I report the best-fit parameters for the linear interpolation of
the data in the four epochs, including the rotational period of the bar in the
corresponding time intervals, where the rotational period is defined as T =
2π/Ωbar. The angular speed was inverted in sign, in order to orient it positively
with the bar rotation verse. The average bar pattern speeds are decreasing from
the beginning of the simulation, starting with a maximum Ωbar = 57.26 km s−1

kpc−1 and reaching a minimum Ωbar = 37.04 km s−1 kpc−1 after t = 2.5 Gyr.

bution, as well as the parameters that describe these ellipses, including the phase angles.
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Table 4.2: Best-fit parameters of the linear functions representing the bar pattern speed in
the four time intervals. From left to right, time interval, bar pattern speed φ̇ ≡ Ωbar, bar phase
angle Φ0 at the beginning of the given time interval, bar rotational period T .

Time interval Ωbar Φ0 T
(Gyr) (km s−1 kpc−1 ) (deg) (Myr)

[0.5, 0.76] 57.26 115.47 107.54
[0.77, 1.1] 49.29 281.98 124.94
[1.13, 2.51] 47.64 263.60 129.26
[2.51, 3.94] 37.04 105.13 166.25

In the right panel of Figure 4.5, I show (black full line) the evolution of the
bar pattern speed as a function of time. I also plotted the four rotation speeds
corresponding to the four time intervals, with the same colours as in the left
panel.

I focused on the range of angular velocities 0 km s−1 kpc−1 < Ω < 100 km
s−1 kpc−1, since the high-speed and low-speed/negative-speed peaks appear-
ing out of this range are most probably due to noise, as I said before when con-
sidering the corresponding minima in Rmax. Specifically the high-speed peaks
at t ∼ 0.7 Gyr and t ∼ 1.1 Gyr are associated with the rapid variation of bar
angle seen in the left panel of Figure 4.5. These high peaks in Ωbar, given the
corresponding minima in Rmax, may be due to noisy features temporarily de-
veloping in the still weak bar. Instead, the low-speed/negative-speed peak of
Ωbar at t ∼ 0.85 Gyr (not fully visible because of the cut in the plot) may be due
to noisy, external perturbations, given that at the same time Rmax has a local
maximum (see again the right panel of Figure 4.3). These are connected to the
small decrease in bar phase angle at t ∼ 0.85 Gyr (again, left panel of Figure
4.5).

Therefore, in the right panel of Figure 4.5 it is confirmed that the first epoch
(i.e. until ∼ 1 Gyr) is dominated by oscillations in Ω, because of the mixed
contribution of the already discussed early spirals and features in the disc and
of occasional noisy signals. When the bar becomes dominant, these sources do
not affect anymore Ω, that is then clearly associated to Ωbar and decreases until
the end of the simulation.

Comparing Figure 4.5 and Figure 4.3, an additional thing can be noticed.
After t = 1 Gyr the values of Rmax and the values of Ωbar start to oscillate on
similar timescales, in the range ∼ 200− 300 Myr.

In their analysis of the evolution of the bar in MW-like numerical models,
Hilmi et al. (2020) showed that there is coupling between the oscillations in
Ωbar and the oscillations in lbar, and that this is due to the interaction of the
bar with the spiral structures in the disc. Though the spiral-like features fade
after t ∼ 1 Gyr, in the disc of our model there are still sub-dominant, external
features at later times (see the features visible in the density maps of Figure
4.4 corresponding to the times t > 1 Gyr), and they can possibly explain these
oscillations inRmax. Also, Hilmi et al. (2020) distinguished the effects of the bar-
spirals coupling for the case of fast bars, where the oscillations in lbar happen
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with peaks distant∼ 60 Myr in time, and the case of slow bars, where the peaks
are distant ∼ 200 Myr in time. For our bar, these oscillations have a timescale
that increases from∼ 200Myr at t = 1.5−2.0Gyr to∼ 300Myr towards the end,
putting our bar in line with the classification of slow bars of Hilmi et al. (2020),
though with a higher timescale of the oscillations in our case. This increase in
the timescale of the oscillations could be due to the fact that, as the bar becomes
stronger, its coupling with the external disc features becomes negligible. This
may also explain the decreasing amplitude of the oscillations towards the end
of the simulation (where by “amplitude” I indicate the difference between the
crests and troughs in the value of an oscillating parameter).

In order to test if this kind of coupling explains the oscillations in the bar
parameters, we need to track the detailed evolution of lbar in all the snapshots,
and to check for possible oscillations in lbar as inHilmi et al. (2020). The current
sampling of the bar length reported in this chapter is incomplete for this goal
and requires further analysis. Therefore, future work must be done to give a
complete answer to the oscillations in Rmax, Ωbar and lbar.

Corotation radius

In the top left panel of Figure 4.6 I show the results of the calculation of the
corotation radius Rcorot, i.e. the radius at which the bar pattern speed equals
the angular speed of the disc. In addition to calculating Rcorot using the aver-
age tangential velocity profile in the disc (results showed with a red dashed
line), for comparison I also calculated it making use of the Vcirc profile (results
showed with a full blue line).

The value of Rcorot is very similar in both cases and it increases in time. At
the end of the simulation, it has increased enough to reach ∼ 7 kpc. This is a
consequence of the bar slowing down andmatching the disc tangential velocity
and Vcirc at increasing radii. The oscillations in Rcorot observable at t > 1.5 Gyr
are due to the oscillations in Ωbar and I refer to the above analysis of the bar
pattern speed for their explanation.

The two minima of Rcorot at t ∼ 0.7 Gyr and t ∼ 1.1 Gyr are connected
to the corresponding high values of Ωbar. The two high peaks of corotation
radius between t ∼ 0.85 and t ∼ 1.0 Gyr are instead connected to the low-
speed/negative-speed noisy features associated with the correspondingly high
peak of Rmax.

Thus, to sum up the discussion on these early minima and maxima in Ωbar,
Rmax andRcorot, two high-speed noisy features develop inside the bar at t ∼ 0.7
Gyr and t ∼ 1.1 Gyr, and theymoveRmax andRcorot temporarily towards values
ofminimum. Instead, the low-speed/negative-speed noisy features, external to
the bar, temporarily determine a maximum in Rmax and Rcorot at t ∼ 0.85 Gyr.

As an example of comparison of the pattern speed of the bar with the disc
tangential velocity and rotation curve, in the top right panel of Figure 4.6 I
show the profile of tangential angular velocity Ωtan (dashed line), as well as
the profile of angular velocity Ωcirc calculated from Vcirc (full line), at t = 3 Gyr.
I also show the bar pattern speed at t = 3 Gyr corresponding to the fourth time
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Figure 4.6: Top left panel: Bar corotation radiusRcorot as a function of time. The full blue line is
for the case of comparison of the bar pattern speedwith the angular velocity associated to Vcirc.
The red dashed line is for comparisonwith the angular velocity associated to the disc tangential
velocity. Top right panel: Radial profile of the tangential angular velocity (dashed black line)
and the angular velocity associated to Vcirc (full black line) at t = 3.0 Gyr, in comparison with
the value of bar pattern speed of the third time interval (dot-dashed horizontal line, see again
Table 4.2). Bottom panel: RatioR between Rcorot and lbar as a function of time. Colour codes as
in the top left panel.

interval in Table 4.2 (horizontal dot-dashed line in the plot).
The tangential velocity is always smaller than Vcirc for the first few kpc of

GCd. However, their values get similar at larger GCds, like at 6-7 kpc of GCd,
where the tangential velocity is slightly larger than Vcirc. This explains the fact
that, for some snapshots, using the tangential velocity profile returns a higher
Rcorot than using Vcirc.

However, with reference to the right panel of Figure 4.2 , the actual initial
circular velocity of theMWmodel is everywhere higher than the mean tangen-
tial velocity of the disc particles. Since Vcirc is an underestimation of the rotation
curve, using the actual rotation curve would probably return always a slightly
higher value ofRcorot than using the tangential velocity, though probably a sim-
ilar one again - given the similarities of the initial tangential velocity and Vcirc

profiles with the actual rotation curve.
Last, in the bottom panel of Figure 4.6 , I plot the ratio R = Rcorot/lbar, i.e.

the ratio between the bar corotation radius and the bar length. I used the same
snapshots that I used to calculate lbar. Again, I plotted R for both the cases of
the corotation radius calculated using Vcirc and using the tangential velocity.
The result is that R overall increases from ∼ 0.9 at t ∼ 1.0 Gyr to ∼ 1.6 at
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t = 3.25 Gyr. For the early peaks I refer to the discussion above on the early
noisy signals.

Our final values of Rcorot ∼ 7 kpc compare similarly to the ones found in
P15, in the range Rcorot ∼ 7.2− 8.4 kpc (see Section 1.5). At the same time, we
obtained a value ofR ∼ 1.6, which is in linewith their estimate ofR ∼ 1.5−1.8,
and puts our MW in the group of the slow rotators, that P15 claimed are not
commonly found among external galaxies (see references therein). The result
that the MW in our model is a slow rotator is also in line with the result from
Polyachenko et al. (2016), where however they found higher final values ofR,
i.e. R > 2.

4.4 Bar: effects on the local MW kinematics and dy-
namics

In this section, I describe the impact of the bar on the MW disc, both consid-
ering dynamical effects on the disc mass distribution and effects on the MW
kinematics. This is important to understand how relevant is the presence of
the bar to determine the evolution of the disc.

4.4.1 Impact on the rotational kinematics and dynamics
We first evaluated the effects of the bar on the disc kinematics and dynamics,
with particular focus on the disc tangential velocity profile and on the MW
circular velocity profile. I chose a timestep of 0.5 Gyr for this analysis. This
choice is adequate to get the main steps in the secular evolution of the disc,
given that the typical dynamical timescale for the evolution of galaxies like the
MW is of order 0.1− 0.2 Gyr.

I used again Equation (1.3) to calculate Vcirc, with steps of 0.5 kpc inR. For
the calculation of the tangential velocity vφ, I divided the disc in radial bins of
thickness 0.5 kpc and I calculated the mean tangential velocity of all the parti-
cles falling in those bins.

The evolution of Vcirc and vφ is shown in Figure 4.7, as a zoom into the first
20 kpc of GCd. After the bar develops, the inner profiles of Vcirc and vφ di-
verge in their evolution in the few inner kpc and throughout the simulation.
Vcirc increases in the inner MW as a consequence of the bar strengthening. The
growth of the bar, in fact, produces an increase of the disc mass density within
the few inner kpc, which translates in an increased dynamical support on Vcirc.
However, the tangential velocity decreases in time in the few inner kpc. This is
because the bar imposes eccentric orbits, that are radially elongated and have
a small tangential velocity component. This means that the bar has a non neg-
ligible effect on the dynamics and kinematics of the local MW after it forms.
Towards the end of the simulation the difference between the inner profiles of
Vcirc and vφ, while being initially of ∼ 60− 70 km s−1, goes up to ∼ 150 km s−1.

In Figure 4.8 I show the density profile evolution of the disc (surface den-
sity) and of the halo (volume density) in the first 20 kpc of GCd. I chose the
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Figure 4.7: Evolution in time of the Vcirc profile (full lines) and vφ profile (dashed lines).
From dark blue to red the lines represent snapshots from the time t = 0 Gyr to the time t = 3.5
Gyr, with timestep of 0.5 Gyr, as indicated in the label.

same timestep of 0.5 Gyr, starting from t = 0 Gyr, until t = 3.5 Gyr. For every
snapshot, I used again a binning of 0.5 kpc to trace the density distribution of
the two components. While the halo density profile remains mostly similar to
the initial profile, in the case of the disc different effects are visible.

The first, that was already found in the MW model described in Chapter 2,
is the presence of radial perturbations in the disc, that propagate towards the
outer disc and make its surface density profile oscillate in time. I have already
discussed these features in Section 4.2.3.

Second, in the inner regions, the disc surface density profile bends in time
towards an inner peak and a convex knee between 2.5 and 7.5 kpc. This is a
reflection of the increasing disc mass in the inner regions of the disc because of
the formation of the bar, whichmakesmatter fall towards the centre. Therefore,
themajor effect of the bar on the localMWdynamics is to increase the inner disc
mass and to remove it from the intermediate GCds, shrinking and elongating
the orbits to higher eccentricities.

4.4.2 Effects of the bar on the vertical kinematics
I now discuss the evolution of the disc thickness zrms, vertical velocity disper-
sion σz and radial velocity dispersion σR, by plotting their profiles as functions
of time. This is useful to check if in their evolution there is any signature of the
impact of the bar. I show the profiles in Figure 4.9.

The profile of zrms (top left panel) increases in time over all the radial range.
However, it is inside the first 5 kpc that the increase is larger. The initial value
of zrms inside the first few kpc is of ∼ 270 pc (i.e. the initial disc scale height),
but raises up to 550 pc at t = 3.5 Gyr. Since the bar dominates in these inner few
kpc, and since the radial profile of zrms shows otherwise less increase, the inner
increase may be a direct effect of the bar. This indicates that the bar is able to
thicken the disc by roughly the double its initial scale height. This seems to be
also connected to the formation of the X-shape in the centre of the disc, that is
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Figure 4.8: Evolution in time of the density profile of the MW disc and halo from the begin-
ning of the simulation to t = 3.5 Gyr, with a a timestep of 0.5 Gyr. The full lines are for the disc
surface density. The dotted lines are for the halo volume density. Colour codes as in Figure
4.7.

Figure 4.9: Radial profiles of the disc thickness zrms (top left panel), vertical velocity disper-
sion σz (top right panel) and radial velocity dispersion σR (bottom panel) as functions of time,
from t = 0 Gyr to t = 3.5 Gyr, with timestep of 0.5 Gyr. Colour codes as in Figure 4.7.

a visible feature in the xz- and yz-projected maps of Figure 4.4.
On the top right panel of Figure 4.9 I show the vertical velocity dispersion

profile. It increases during the MW evolution, after t = 0.5 Gyr, to reach a peak
of ∼ 120 km s−1 in the inner MW at t = 3.5 Gyr. Thus, the presence of the bar
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has the effect of heating the inner disc vertically. Instead, the outside regions
of the disc are left mostly unchanged, showing only a small heating. The GCd
for the change of behaviour is around 5 kpc, which is similar to the maximum
value of bar length that I discussed in Figure 4.3. The overall picture points
towards non negligible effects of the bar on the thickening and heating of the
inner disc.

I now compare the results ondisc thickening∆zrms = zrms(2 Gyr)−zrms(0 Gyr)
and heating ∆σ2

z = σ2
z(2 Gyr) − σ2

z (0 Gyr) with the ones for the isolated MW
model shown in Figure 21 ofMJ16 (top and bottom panel, respectively). MJ16

found that in 2 Gyr the values of zrms increase on average of no more than 35−
50 pc within 15 kpc of GCd. Considering the scatter between their different
simulations, they found that only in the outer disc there is a statistical increase
that reaches ∆zrms ∼ 70 pc. Compared to these values, the inner increase of
zrms visible in the top left panel of Figure 4.9 is much higher in the centre of
the disc. In fact, the final increase is of ∼ 90 − 100 pc. Moving to the outer
regions of the disc, however, the increase of zrms is much more moderate in the
case of this model, with no more than ∼ 10 pc, even lower than the value of
∼ 50− 70 pc thatMJ16 found accounting for the scatter between their different
simulations.

Regarding the vertical heating of the inner disc, at t = 2 Gyr the increase in
σ2
z is of the order ∼ 3800 km2 s−2. For comparison, the model of MJ16 shows

a final average increase of the inner σ2
z of only ∼ 400 km2 s−2, or ∼ 500 km2

s−2 accounting for the statistical scatter between the simulations. This is much
lower than our value. In the outer regions of the disc the increase is similar in
the two models, of order ∼ 20 km2 s−2 for both cases.

To sum up, the bar thickens and heats up the inner disc in an efficient way
with respect to an isolated MW model that does not develop bar instabilities.
However, in the outer regions of the disc the effects are comparable in the two
models and zrms is even lower in our case than in the case ofMJ16.

As an additional consideration, in the bottom panel of Figure 4.9 I show
the radial profile of σR, and how it is affected by the bar in time. Again from
this plot it is visible that there is a different evolution of the kinematics inside
the bar and outside the bar: at the end of the simulation, σR increases of ∼ 90
km s−1 inside the disc, while at 17.5− 20.0 kpc of GCd it increases only of ∼ 20
km s−1. At time t = 1.0 Gyr I note that the profile of σR shows a significantly
highermomentary increase, that may be due to the ring-like density waves that
propagate outwards during the evolution of the disc, and that are visible in the
disc around that time (e.g. see the maps in Figure 4.4).

This analysis, including the comparison with the results on vertical thick-
ening and heating in the isolated model of MJ16, shows that the impact of the
bar on the disc kinematics is limited to its inner regions, while outside there are
less visible effects. Also, it shows that the local impact on the kinematics does
not invest only the vertical stellar motions but, as expected from the elongated
orbits in the bar, also the radial stellar motions.
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Figure 4.10: Bar buckling intensity B in our MWmodel as a function of time.

4.5 Buckling instability
Having calculated for each snapshot the bar phase angle Φ, I rotated all the
disc particles by Φ, in order to have the x-axis now corresponding to the semi-
major axis of the bar. I then calculated the bar buckling intensity B taking the
magnitude of the Fourier coefficient of Equation (4.14) . I calculated B inside
a parallelepipedic region around the bar in the xz-plane, accounting also for
the bar thickness in the y- and z-directions, as explained inMartinez-Valpuesta
et al. (2006) and in Section 4.1.4 of this thesis. The semi-thickness in the x-
direction was set to 5 kpc to encapsulate the maximum bar length shown in
Figure 4.3. The semi-thickness along the y- and z-directions was set to 1.5 kpc.
This range is more conservative than the ranges−2 kpc< y < 2 kpc and−∞ <
z <∞ chosen byMartinez-Valpuesta et al. (2006), and it was chosen to exclude
the contribution of particles out of the bar region.

The resulting evolution of B is shown in Figure 4.10 as a function of time.
The time-evolution of B was smoothed like for the case of A2,max, i.e. for each
snapshot the value of B was averaged together with the previous and subse-
quent ones.

The evolution of B in time shows that the bar buckling is almost negligible
in this model. In fact we found that B < 0.02 at all times.

In Figure 5 of Martinez-Valpuesta et al. (2006) and in Figure 2 of Martinez-
Valpuesta & Athanassoula (2008), the authors found always a first distinct, rel-
evant peak of vertical buckling, of value ∼ 0.08 − 0.11, followed by a second
smaller, yet recognisable peak of value ∼ 0.03 − 0.04. The rest of the signal is
below∼ 0.01 and represents the noise regime, where no other relevant episode
of buckling is found. For comparison, in the simulation discussed here I found
that there is no distinct peak appearing in the profile of B, and that the values
of buckling are always dominated by the noise regime, i.e. B < 0.02 almost at
any time.

Additionally, I notice that after t ∼ 2 Gyr, the pattern of B presents os-
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cillations that appear with a periodicity of ∼ 80 Myr. I checked for possible
correlations of this periodicity with the rotational period of the bar. However,
looking at values of the bar rotational periods in Table 4.2 for t ≥ 2 Gyr, there
is no systematic correlation with the oscillations in B (though after 2.5 Gyr the
rotational period of the bar is around two times the oscillation period of the
coefficient B) over all the time range [2., 3.84] Gyr. To the present date, fur-
ther investigation needs to be done to understand if, for instance, there is any
connection of these oscillations in B with any other mechanism in the bar.

In conclusion, this MW model develops no sensible vertical buckling, that
consequently is not expected to play any role in the evolution of the bar and of
the surrounding MW disc. Given this result, there is an important implication
on the origin of the X-shape of the MW bar, that I discuss in Section 4.6.

4.6 The X-shape in the bar
The bar present in this model develops a B/P feature, or X-shape feature. This
is evident from a visual inspection of the xz- and yz-projections in the density
maps of Figure 4.4. The X-shape rotates with the bar potential. After develop-
ing around ∼ 1.2− 1.3 Gyr, the X-shape increases its strength and survives for
the subsequent ∼ 2.7 Gyr, i.e. until the end of the simulation.

I first discuss the origin of the particles in the X-shape. At the snapshot
corresponding to t = 3.0 Gyr, I rotated the coordinates by Φ to have the new
x-axis corresponding to the direction of the bar semi-major axis. Then, I rotated
the obtained coordinate frame by 45o in the new xz-plane (i.e. I estimated an
inclination ∼ 45o of the arms of the X-shape with respect to the Galactic plane,
from visual inspection of the maps in Figure 4.4), so that the final x-axis and
z-axis are aligned with the two arms of the X-shape.

In this rotated final coordinate frame I then selected a group of particles
falling in the X-shape. In order to delimit the X-shape volume, I took a cross-
shaped region with y-thickness 0.6 kpc centred on the xz-plane and with an
extension of both arms from the GC (i.e. a semi-extension) equal to 1.5 kpc.
Then, I traced these particles back using their unique IDs returned by the sim-
ulation, and I also checked their final distribution in the disc.

The result is shown in Figure 4.11, where from top to bottom I plot the
xy-projections, the xz-projections and the yz-projections of the distribution of
these selected particles at different times. For each projection, I show in the
left panel the initial distribution of the particles and in the central panel the
distribution of the particles in the X-shape at t = 3 Gyr. In the right panel, I
show the final distribution of the same particles at t = 3.84 Gyr. This was done
to check whether the particles persist orbiting inside the X-shape or if they just
happen to cross the X-shape for a limited amount of time. The colours are used
to distinguish particles originally belonging to different GCds (from blue to red
means from smaller to higher initial GCds, respectively).

The first thing to notice is that all the particles selected inside the X-shape
come originally from a range of radial extensions around the GC, distributed
until 4− 5 kpc of GCd. Given that the bar length reaches at most ∼ 4− 5 kpc,
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Figure 4.11: From top to bottom: xy-, xz- and yz-projections of the distribution of the par-
ticles that end in the X-shape at t = 3 Gyr. From left to right, particle distributions at t = 0,
3.0 and 3.84 Gyr. Colour codes, from blue to red, represent stars initially belonging to different
GCds, going from smaller to larger GCds, in order.

then it is clear that these stars are the ones that contribute to the bar formation
and to its orbits. Thus, the bar captures first the stars within 5 kpc of GCd
and traps them into its orbits, shrinking their distribution to 2 − 3 kpc of GCd
at most. Later on, these particles are driven into resonant orbits that support
the structure of the X-shape. Further investigation needs to be done on this
model to determine which of the orbits discussed already in Section 1.5.1 are
responsible for the formation of the X-shape.

The second thing to notice is that there is no systematic distribution of the
selected stellar particles by initial GCd (i.e. by colour-code) in the X-shape.
The orbits of the stellar particles enter the X-shape, mixing between themselves.
Thus, the information about the original distribution of the particles is lost once
their orbits enter the X-shape potential.

Last, from the right panels of Figure 4.11 it is evident that the particles
are more spread than the X-shape volume at the end of the simulation. This is
most likely a reflection of the fact that the orbits supporting the X-shapemay be
more extended than the volume that I adopted to sample the X-shape at t = 3
Gyr. If different orbits contribute to the X-shape, like the brezel and fish-brezel
orbits, then since they have different Ωx : Ωz ratios they can produce a mixed
spatial distribution of the particles that populate them, explaining the mixed
projection of these same particles in the right panels of Figure 4.11.
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Figure 4.12: Evolution in time of the fraction of disc particles in the bar (full orange line),
of the fraction of disc particles in the X-shape (dashed purple line) and of their relative ratio
(dot-dashed red line).

In Figure 4.12 I show the fraction of disc particles ending in the bar, fbar,
the fraction of disc particles ending in the X-shape, fX , and their relative ratio,
as functions of time. In order to calculate the number of particles ending in the
bar, I employed the same bar length data that I plotted in Figure 4.3, in order
to define, at the corresponding snapshots, the rectangular regions with major
length equal to two times the bar length and inside which all the particles are
considered belonging to the bar. The semi-thickness in y and z assumed for the
bar is again 1.5 kpc.

The results confirm that the bar mass grows in time (similarly to what I
showed before from the analysis of A2,max), and that the X-shape increases its
total mass as well. The total mass of the bar is in the end ∼ 1.8× 1010 M�, that
is up to ∼ 40% of the disc mass. However, the X-shape grows to a final mass
of ∼ 2.5 × 109 M�, i.e. no more than ∼ 5% of the total disc mass. The X-shape
is a much lighter feature in comparison with the bar. However, the ratio of the
X-shape mass to the bar mass is going towards a final, constant value of∼ 0.13,
after having slightly increased in time, thus indicating that in the final stages of
the evolution of this MW model the X-shape grows proportionally to the bar.
This result is in line with the proportional growth of the X-shape and the bar
strength in in numerical simulations, reported by Athanassoula (2008).

4.6.1 Correlation of the X-shape with the buckling instability
We wanted to understand if there is any correlation between the development
and growth of the X-shape, the growth of the bar, and its buckling instability.
To do this, let us consider the results of Figure 4.12 in the light of the results
on bar buckling from Figure 4.10. I briefly recall that in this simulation the
buckling intensity B is always dominated by the noise regime or characterised
by very small values, i.e. no sensible buckling develops in the bar.

In Figure 4.12 we can observe that, while not growing strongly, the X-shape
increases its strength from t = 0.5 Gyr to the end of the simulation, in correla-

118



CHAPTER 4. BAR FORMATION IN THE MILKY WAY

tion with the bar strength. Thus, in this Galactic model the X-shape does not
correlate with any relevant buckling event, yet it grows in time.

This result is in line with what Quillen et al. (2014) stated for barred galax-
ies, i.e. that in general bar buckling is not the only process responsible for the
formation of the X-shape. It also shows a different behaviour than the bar stud-
ied inMartinez-Valpuesta et al. (2006), where the second buckling episodewas
followed by the subsequent development of the X-shape. In the specific case of
this model, that was built to match the observational properties of theMW, this
brings to the conclusion that the buckling is not responsible for the formation
of the X-shape in the MW.

Other mechanisms, such as the growth of resonant orbits in the bar poten-
tial, may be the cause of the formation of the X-shape in the MW. These mech-
anisms require further investigation in the context of this collaboration, before
having conclusive results on this point.

4.7 Summary and remarks
In this chapter, I presented the results of a collaboration to study the prop-
erties of an N-bodyMW model that matches the observations of our Galaxy
(BHG16), in order to address the problem of bar formation in the MW disc
and of its impact on the local disc. I could determine that this full N-bodyMW
model forms a bar and that the bar grows until it reaches more than a third of
the MW disc mass.

This strong bar slows down in time, and this is expected in the light of what
was discussed in Chapter 1 (and, for instance, also in D’Onghia & Aguerri
2020): the exchange of angular momentum of the bar with the MW compo-
nents strengthens the bar and slows it down. This exchange of angular mo-
mentum is possible because of the presence of both an N-bodyDMhalo and an
N-body stellar disc in the simulation. The additional presence of a non-rotating
bulge favours this mechanism. However, as D’Onghia &Aguerri (2020) stated,
the fact that the bulge does not rotate is a limitation of the numerical set-up of
this model, because it fastens the decrease of the bar pattern speed. The bar
presented in this study would have reached a final pattern speed . 40 km s−1

on a larger timescale than ∼ 3− 4 Gyr if the bulge was rotating.
The bar strongly affects the inner MW disc kinematics and dynamics, pro-

voking the divergence of the inner profiles of Vcirc and tangential velocity. It
also thickens and heats the inner disc in the vertical and radial directions.

The X-shape is most likely a consequence of the orbits developing in the
rotating bar potential. The determination of these orbits requires more investi-
gation, which is part of the next steps of the collaboration.

Last, the bar does not suffer any relevant event of vertical buckling. The X-
shape grows almost in correlation with the bar strength, and is not correlated
with any bar buckling. Therefore it is expected that the Galactic bar did not
suffer any significant buckling in the past few Gyr of evolution.
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Chapter 5

Thesis summary, final discussion,
and future outlook

5.1 Summary of the research and final discussion
In this thesis I have explored a variety of N-body simulations of Galactic and
stellar dynamics, in order to address the distribution of the MW satellite tidal
debris in the Galactic environment and in order to study the properties of the
bar in a model that matches to the observations of the Galaxy.

First, in Chapter 2, using high-resolution ICs from previous literature (MJ16), I
investigated with a benchmark how different N-body codes reproduce the evo-
lution of the MW in isolation and in interaction with its satellite galaxies, com-
paring also the accuracy and speed of these codes. I found that the family of
Gadget codes has good candidates for running simulations of theMWenviron-
ment, and that specifically Gadget-4 shows a goodmomentum conservation at
an optimal computational speed.

Having chosen Gadget-4 as the best code, I employed it (Chapter 3) to ex-
plore the distribution of the satellite tidal debris in the MW environment, us-
ing the same high-resolution N-bodyMW models of MJ16, as well as realis-
tic hybrid dwarf galaxy models (M17) placed in cosmologically motivated ICs
(MJ16 , Springel et al. 2008).

Within this realistic and cosmologically motivated framework, stars are fo-
und to be less stripped than DM from the satellites in the MW environment,
where the stellar and DM debris distribute differently. Specifically, the stellar
debris is more focused in the inner MW halo and has a different orientation
than the DM debris within 25 kpc of GCd. The fact that tilting the disc impacts
only weakly on the final distribution of the local debris points towards the im-
portance of the satellites ICs in determining the final distribution of the local
debris.

The last part of the research, described in Chapter 4, was a collaboration to
use a high-resolutionMWmodel (simulated by E. D’Onghia) that matches the
observational constraints of our Galaxy and improves theMWmodels ofMJ16,
since it develops a bar, a feature that we observe in our Galaxy. In this simula-
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tion the bar grows strongly, and towards the end it rotates slowly, with a final
pattern speed below 40 km s−1 kpc−1. The bar is dominant in terms of mass
in the disc ( more than 1/3 of the disc mass) and presents no sign of relevant
vertical buckling instabilities. Therefore, the X-shape that the bar develops is
formed without the need of a vertical buckling.

The results presented in this thesis were obtained by means of N-body-only
simulations, with SPH and stellar evolution recipes being switched off in the
codes. However, the numerical set-up for the simulations of the MW satellite
debris distribution described in Chapter 3 would have not been possible with-
out recipes that distinguished stars from DM in the dwarf galaxies ofM17.

As I mentioned at the end of Chapter 3, the fact that the DM and stellar
debris have a different distribution and orientation in the MW environment
means that it is not possible to track the distribution of the DM streams from
the distribution of the observed stellar streams in the sky. While baryons are
important tomodel the formation and evolution of structures in theUniverse, if
this different distribution of stellar and DMdebris finds confirmation by future
detections of DM in the MW halo, then the combination of realistic cosmologi-
cal ICs (that include the effects of baryons on shaping structure formation and
evolution until redhisft z = 1) and the solely gravitational interaction of the
MW satellites with our Galaxy in the last few Gyr provide all the ingredients
to model the distribution of the debris in the MW halo.

On the other hand, if including baryonic physics in the simulations of the
satellite debris produces different results on the final distribution of the stellar
and DM debris with respect to the N-body-only case, then future detections
of DM are important to rule out one of the cases (negligible contribution or
significant contribution of the baryonic physics in determining the local debris
distribution). The argumentation presented in Section 3.1.3 already points to-
wards neglecting the role of baryonic physics in shaping the local distribution
of the debris at the current epoch, making it relevant only until z ∼ 1. However,
more investigation needs to be done on this point in the future.

The simulations presented in Chapter 3 and in Chapter 4 are N-body-only
high-resolution simulations of theMW and its environment. As mentioned be-
fore in this thesis, one advantage of having N-body-only simulations with no
cosmological integration is that all the computational effort can be spent in en-
hancing the resolution of the simulated galaxies to study in detail the evolution
of their components. The other advantage is that these models can be initially
set following specific observational constraints.

In this sense, the fact that the bar of theMWmodel studied in Chapter 4 has
similar properties to the bars of models tailored to the observations of the MW
or that reproduce the typical dynamics of MW-like galaxies (P15, Polyachenko
et al. 2016;Abbott et al. 2017, among theworks cited in this thesis), suggests that
the approach of constructing ad-hoc MWmodels, even if with no cosmological
ICs, is still valid in the scope of understanding the current and recent properties
of our Galaxy.

Regarding the X-shape in the model of Chapter 4, the final value of the B/P
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mass that we found is 2.5 × 109 M�, a much lighter feature than the B/P mass
from literature reported in Chapter 1. Thus, there are two possibilities: 1) the
bar needs to increase more and the X-shape has not reached the final value of
∼ 1.2− 1.6× 1010 M�, or 2) we underestimated the mass in the X-shape of this
model, e.g. due to the choice of too small volumes where to integrate the mass.

If case 1) is true, then more Gyr of simulation are needed, and the bar may
have an age higher than 3.5 Gyr, going in favour of the age estimated by Cole
& Weinberg (2002) rather than Polyachenko et al. (2016). However, if case 2)
is true, then future work is needed to investigate the effects of increasing the
estimated X-shape volume on the calculation of its mass, comparing our re-
sults with other mass calculation methods, like for instance the combination of
unsharp masked images with the integration of B/P orbits as in Abbott et al.
(2017).

5.2 Future outlook
Being theMWa rich environment, inclusive ofmany satellites, of their stripped
debris that dissolves in the halo, and of a variety of other structures (e.g. bar
and spirals in the Galactic disc), there is natural space for the prosecution and
expansion of the projects described in this thesis.

Aswementioned in the conclusions toMM20 , though our simulations ofMW-
satellites interaction have full N-bodyMWmodels that allow the natural inclu-
sion of such effects like dynamical friction, other mechanisms like the secular
growth of the disc and the halo, that are a consequence of the bottom-up for-
mation process of galaxies like the MW, are missing in our description. There
are available projects, like the alreadymentionedNIHAO ofWang et al. (2015),
where many galaxies in a range of scales (from the mass of the MW, down to
much smaller halo masses) are studied and described in detail, with the inclu-
sion of their formation and evolution histories. A natural extension of the work
presented in Chapter 3 could be using these MW-like models from Wang et
al. (or from equivalent literature), extracting the information about the secular
growth of their disc and of their halo, and simulating again the distribution of
the tidally stripped satellite debris in the MW environment, this time with a
MW time-evolving live potential.

The secular mass growth of theMW can be achieved by properlymodifying
the code (Gadget-4 in this case) to increase the disc and halo particle masses,
at a pace determined by the MW accretion history extracted from Wang et al.
or equivalent literature. The outcome of these simulations would allow to eval-
uate the long-term effects of the secular MW growth on the distribution of the
satellite debris, in comparison with the results of Chapter 3, that were focused
on studying the debris distribution in the last epochs only (i.e. z ∼ 0).

As for the collaborative project on the MW model of Chapter 4, the results
on the bar evolution show that there is a number of aspects that require further
investigation. In fact, it is essential to understand which orbits and which reso-
nant frequencies are at play in determining the formation of the X-shape. The
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fact that recent literature is changing the view that x1 orbits are the main ones
responsible for the formation of the X-shape in the MW bar (e.g. Pfenniger &
Friedli 1991; Quillen et al. 2014) in favour of the view that a variety of orbits
contribute to the formation of the X-shape (Portail et al. 2015b; Abbott et al.
2017) poses a challenge to our MW model. The analysis of the orbits inside
the bar in our MW model can give a great help to validate the old view or the
emerging, recent view about the contribution of the different orbits. This is im-
portant for our understanding of the stellar dynamics behind the formation of
the Galactic B/P bulge.

Additionally, the study of the frequencies characterising the stellar orbits
in the bar of this model may be of help to understand the interplay between
the bar and other disc features. This could offer a more complete answer to the
oscillations in the radius ofmaximumA2, in the bar speed, and in the corotation
radius.

Last, the availability of the MW high-resolution model of Chapter 4, that
describes the formation of a strong bar, could represent the base for the next
step in the study of the distribution of the satellite debris in the MW. Repeating
one of the simulations described in Chapter 3 with this bar-formingMWmodel
in place of the MW models of MJ16, and with the same initial positions and
velocities of the hybrid satellites of M17 as described in MM20, will allow to
investigate whether the presence of the bar potential in theMWdisc can impact
the distribution and orientation of the stellar and DM debris.

Being itsmass a third of the total disc stellarmass, all concentrated in a small
region (within∼ 5 kpc of GCd), the bar can potentially change the distribution
of the local debris. The outcome of this analysis may be compared to the results
on the debris distribution in presence of a growingMWpotential, to determine
which of the two processes (bar formation or secular growth of the MWpoten-
tial) is impacting themost on the debris distribution, and to compare the effects
of the two processes.
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