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Abstract
The nature of dark matter is one of the most exciting questions of fundamental physics. In terms of
a particle physics model the mass spectrum for possible dark matter candidates is huge. Extensive
experimental programs seek to unveil the microscopic physics governing dark matter. While indirect
and direct detection as well as collider searches have excluded a large class of dark matter models at the
weak scale, the region below the GeV scale is relatively unexplored by these experiments. Therefore,
it is particularly interesting to study the phenomenology of sub-GeV dark matter.
One of the leading constraints in the MeV to GeV range is expected to be set by indirect detection.
However, a theoretical description of dark matter annihilation processes into Standard Model quarks
is missing yet. In a Monte-Carlo based implementation in Herwig, we provide, for the first time,
a modeling of these annihilations for dark matter models with vector mediators. This allows for a
comprehensive study of sub-GeV dark matter annihilations in indirect detection searches.
In the sub-MeV mass range, low energy experiments and astrophysical as well as cosmological ob-
servations can set constraints on dark matter couplings to the Standard Model. If the dark matter
candidate does not couple to the Standard Model Higgs, standard collider searches are not able to
probe dark matter masses at the order of a few eV. We sytematically study a wealth of constraints on
scalar and pseudoscalar dark matter candidates over a large range of dark matter masses. In addition,
we introduce a novel search strategy at the LHC that extends the reach of complementary searches for
light dark matter candidates.

Zusammenfassung
Die Beschreibung der Natur von Dunkler Materie ist eine der spannendsten Fragen der fundamentalen
Physik. Das Massenspektrum für mögliche Dunkle-Materie-Kandidaten ist groß.
Unzählige experimentelle Projekte versuchen die mikroskopischen physikalischen Eigenschaften von
Dunkler Materie zu enthüllen. Während indirekte und direkte Suchen, ebenso wie Experimente an
Teilchenbeschleunigern, eine Reihe von Dunkle-Materie-Modellen an der elektroschwachen Skala aus-
geschlossen haben, sind Massenbereiche unterhalb der GeV-Skala weitgehend unerforscht. Diesen Bere-
ich phänomenologisch zu ergründen ist folglich besonders interessant.
Eine theoretische Beschreibung von Dunkle-Materie-Annihilationen in Standardmodell-Quarks fehlt
bisher jedoch. In einer Monte-Carlo-basierten Implementation in Herwig bieten wir zum ersten Mal
eine Modellierung dieser Prozesse für Dunkle-Materie-Modelle mit Vektoraustauschteilchen. Das er-
möglicht eine umfassende Analyse von Dunkle-Materie-Annihilationen in indirekten Suchen unterhalb
der GeV-Skala.
Im Bereich unterhalb von MeV-Massen können Niedrigenergiephysik-Experimente, astrophysikalische,
sowie kosmologische Beobachtungen Dunkle-Materie-Kopplungen an das Standardmodell stark ein-
schränken. Für den Fall, dass der Dunkle-Materie-Kandidat nicht an das Standardmodell-Higgsteilchen
koppelt, können übliche Teilchenbeschleuniger-Suchen Dunkle-Materie-Teilchen mit eV-Massen bisher
nicht testen. Wir untersuchen systematisch eine Vielzahl an Tests für skalare und pseudoskalare
Dunkle-Materie-Kandidaten über einen großen Massenbereich. Darüber hinaus führen wir eine neue
Art von Suchen am LHC ein, die die Reichweite von komplementären Suchen nach leichten Dunkle-
Materie-Kandidaten erweitert.
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1 | Introduction

Exploring the nature of dark matter (DM) is one of the biggest fundamental physics questions of
our time. The existence of DM has been evidently proven from galactic scales up to cosmological
scales. Besides, DM had a tremendous impact on the evolution of the Universe and shaped the present
Universe through its gravitational interaction with luminous matter. Below the galactic scale, DM
has evaded observations and its microscopic structure remains unresolved. In particular, there has not
been any sign of non-gravitational interactions so far. In this thesis, we explore the phenomenology of
DM models with DM masses in the range of 10−22 eV to O(1) GeV.
Guided by the great success of the Standard Model (SM) and standard cosmology, a microscopic
particle physics model is a logical way to connect the dark and visible matter content of the Universe
and explain macroscopic astrophysical observations. However, we know very little about its elementary
properties in terms of a quantum field theoretical description. A wealth of Beyond the Standard Model
(BSM) descriptions for DM exist. The mass of the DM agent ranges from mDM = 10−22 eV up to
masses of a 100 TeV, in some special cases even up to 10 solar masses as shown in Fig. 1.1. It is a
big challenge for the DM community to systematically study a mass spectrum that covers more than
40 orders of magnitude. Each of these mass scales is related to a certain kind of DM production
mechanism in order to reproduce the observed amount of DM in the Universe. Furthermore, the
energy scale of DM processes is often determined by the DM mass. Thus, DM mass ranges can be
probed by experiments that operate in the related energy region. To cover many orders of magnitude
in DM masses experimental searches range from atomic spectroscopy in the sub-eV range via LHC
experiments at the weak scale up to cosmic ray searches in the multi-TeV region.
Especially DM masses around the weak scale, down to the GeV scale, have been tested by the LHC in
missing energy searches [3, 4] where the missing momentum is expected to be of the order of the DM
mass. The same mass range is covered by relatively model-independent direct detection experiments [5].
In those experiments, one makes use of the local DM density in our galaxies and probes its recoils
with detector materials in DM-SM scattering processes. Energy threshold for observing recoils, bound
the mass reach of direct detection searches from below [6]. Standard indirect searches study possible
annihilation or decay processes of DM into SM particles by looking at dense regions of the sky [7–10].
Those produced particles, if not already stable, decay into stable SM particles, i.e. e±, p/p̄, γ, ν’s, at
the end of a decay chain. Finally, these stable particles come with certain energy and hit telescopes
or detectors. For DM masses above around 10 GeV, FERMI constrains these processes by studying
signatures of photons in dwarf spheroidal galaxies [11, 12], while AMS covers leptonic final states [13,
14]. In addition, precision measurements of the Cosmic Microwave Background (CMB) [15] also set
constraints on DM annihilation and decay process with their sensitivity to the total ionizing energy
injected at the time of recombination. Particularly exciting is the sub-GeV DM mass range where the
INTEGRAL telescope [16] is providing data and the eASTROGAM program will cover energies from
300 keV to 3 GeV [17].
On the theoretical side, the description of stable leptonic and hadronic DM annihilation products, i.e.
e±, p/p̄, γ, ν’s for indirect searches can be modeled by multi-purpose High-Energy-Physics (HEP) Monte
Carlo generators like Pythia [18] and Herwig [19]. The Pppc4dmid [20] tool provides energy spectra
of stable final SM particles in tabulated form based on Pythia. Inspired by Pppc4dmid [20], standard
DM tools like micrOMEGAs [21,22], MadDM [23,24], or DarkSusy [25,26] include similar tables or
link their programs to Pythia directly. While current Monte-Carlo tools can cover DM annihilations
to leptons from production threshold up to multi-TeV energies, DM annihilation into hadronic final
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Figure 1.1: Mass range of DM candidates [27].

have not been available in Monte-Carlo generators below 5 GeV.
The production mechanism of DM depends on the DM mass. For DM models in the multi-GeV to TeV
range that can be experimentally probed by the mentioned experiments, it is usually assumed that
the DM candidate has been in thermal contact with SM particles at some point in the evolution of the
Universe. Being part of a thermal bath, DM cannot be a relativistic degree of freedom from a certain
age of the Universe onwards in order to be consistent with Big Bang Nucleosynthesis (BBN) [28, 29]
and the formation of structures in the Universe. This sets a lower limit on the mass of thermal DM of
about mDM & O(1) MeV [30].
Lighter non-thermal DM can be fermionic or bosonic. The non-relativistic nature of DM nowadays
with velocities fixed by the escape velocity of galaxies to v ∼ 10−3 leads to a direct translation of the
DM momentum to its mass. For a fixed local DM mass density, the number density nDM is increasing
with decreasing mass. With a de Broglie wavelength λdB being inverse proportional to the DM mass
and the number density, the occupation number scales like ∼ nDMλ

3
dB ∝ m−4

DM. As a consequence,
below a few 100 eV, the DM candidate can only be bosonic due to the Pauli exclusion principle. While
DM candidates with high masses and momenta are best described as particles, for mDM ≤ 1 eV, the
occupation is so huge that DM can be described as a classical wave. This non-thermal bosonic field is
referred to as ultralight dark matter (ULDM) or fuzzy DM. In order to allow for galaxy-size structures
its de Broglie wavelength cannot be larger than 100 kpc [31]. This sets a lower limit on ULDM masses
of mDM & 10−22 eV. Search strategies for wave DM can often make use of the variation of fundamental
constants due to an additional scalar degree of freedom. These variations can be probed in atomic
spectroscopy [32–35], laser interference [36], Eot-Wash and ULDM-fifth-force experiments [37,38].
In the end, it is a matter of taste and interest of where to enter the DM hunt. Multi-GeV to TeV
DM candidates have been intensely under investigation by direct and indirect searches and collider-
based experiments. Many models in that mass region have been excluded and thermally produced
DM has been pushed more and more to the sub-GeV range. Forced by great experimental efforts,
theoretical models and experimental searches of sub-GeV DM have become more popular recently.
The phenomenology of sub-GeV is relatively new but is gaining more and more interest. We follow
that line of research and study phenomenological implications of sub-GeV DM. Between ∼ 10 MeV
and 1 GeV, DM can still be thermal and DM annihilations can be related to its production mechanism
in the Early Universe that explains the observed relic abundance of DM.
In Chapter 2 essential steps of the thermal history of the Universe. In Section 2.1, we introduce the
basic concepts for calculating the evolution of number densities of particle species in the thermal bath
of the Universe in order to determine their abundance today. In Section 2.2 , we discuss two crucial
epochs, i.e. namely BBN and CMB, that every DM model has to be consistent with.
Besides its consistency with the thermal history of the Universe, DM models also have to pass con-
straints from direct and indirect detection and collider-based experiments. We explain the most promi-
nent ways of searching for DM signals in those experiments in Chapter 3. In Section 3.1, we put special
emphasis on the calculation of event rates in indirect detection. The chapter is complemented with
low energy experiments probing ULDM and supernova constraints on light new particles.

2



In Chapter 4, we investigate annihilation channels of DM into quarks in the sub-GeV DM mass region.
Indirect searches are expected to set one of the leading constraints in that mass range. The main
assumption of indirect detection is that DM annihilations produce SM particles. In this context, the
calculation of energy spectra of final stable remnants of DM annihilations is of particular importance.
First, we present energy spectra of standard DM tools and show their limitations for lower DM masses
in Section 4.1. A major technical problem is the description of annihilations in the hadronic resonance
region of ρ−, ω− and φ−mesons. We describe how to calculate DM annihilations into a vector mediator
coupling to quarks for energies in the range of the hadronic resonance region. In Section 4.2, we present
energy spectra for sub-GeV DM in a Herwig-based implementation of these processes. We conclude
the Chapter in Section 4.3 with directions of DM searches that would need these spectra as well as
further tasks on the DM tool side.
On the lower edge of the mass spectrum mDM & 10−24 eV, more and more experimental searches have
been proposed and some measurements can already cover a wide range of couplings of DM to the SM.
In Chapter 5, we study the phenomenology of scalar and pseudoscalar ULDM candidates. Aside from
the relatively model-independent H → inv. constraint, there hasn’t been any LHC study dedicated
to ULDM, yet. Therefore, we look at new scenarios of DM interactions inside LHC detectors. The
DM can for instance be produced at the LHC in Higgs decays or through new mediators. The most
promising signature is DM inelastic scattering off the detector material. It would leave displaced jets
inside the detector. It is extremely unlikely that such signals appear as SM background. And they
are fundamentally different from other displaced signatures such as displaced vertices from decaying
massive particles or emerging jets [39]. We study in which way this LHC study can complement
existing searches that probe ULDM.
In Chapter 6, we will summarize the results and give an outlook to further directions and ideas for
exploring sub-GeV DM. The research described in this thesis investigates the phenomenology of DM in
the mass range of 10−22 eV to O(1) GeV. In fact, we tackle both edges of that range and move towards
intermediate masses. We provide a collection of astrophysical and cosmological observation as well as
experimental searches that probe DM in the sub-GeV range. Furthermore, we extend phenomenological
studies in that mass range. For one, we extend the theoretical basis of indirect detection searches by
Monte-Carlo based developments in order to generate energy spectra for sub-GeV DM. This sets the
ground for future indirect detection studies in the MeV to GeV mass range. For another, we introduce
ULDM models to study a large number of constraints spanning over the whole sub-GeV range down
to 10−22 eV. We are especially driven by the question of how the LHC could impact the parameter
space for these models.
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2 | Thermal History of the Universe

The evolution of the Universe is based upon the Friedmann-Robertson-Walker cosmological model,
known as standard cosmology [40, 41]. It is describing the evolution of the Universe from the hot big
bang until now. Looking out in space, we can see the history of the Universe unfolding in front of us.
The isotropy of the CMB shows us that the matter of the Universe was distributed homogeneously in
the Early Universe. From the CMB spectrum, we can tell that this matter was in causal contact in a
primordial thermal bath. The measurement of rare abundances of particles that cannot be explained by
solar processes allows us to speculate about even earlier times than the CMB. The validity of standard
cosmology extends further back to the epoch of primordial nucleosynthesis where fossil abundances
have been formed.
The theory of strong and electroweak interactions of the SM provides a profound basis for describing
the fundamental interactions at very high energies in the early Universe. Equipped with the particle
content of the SM and its fundamental forces, it is possible to deduce astrophysical and cosmological
observations from first principles. The remarkable success of standard cosmology is linking thermal
processes of microscopic physics at early times to macroscopic observations today. Whereas standard
cosmology is predicting the abundancy of DM it is missing to provide a quantum field theoretical
description for it. Under the assumption that DM is a particle, it is unclear if it was in thermal
contact with the “primordial soup” of SM particles in the Early Universe.
In this chapter, we introduce some important steps of the thermal history of the Universe. In order to
understand the measured abundances of elements today, we describe the evolution of number densities
of particle species in Section 2.1. This involves a thermal freeze-out condition of particle processes.
For the possibility of DM also interacting thermally with SM particles, we discuss possible structures
of interaction cross-sections and their consequences on cosmology and astrophysics. We then take a
closer look at BBN and the CMB in Section 2.2. We close the chapter with a discussion about the
observed DM abundance in Section 2.3. Therein we elaborate on the properties a DM particle has to
bring along to be a valid DM candidate.

2.1 Thermal Relics

The expansion of the Universe can be described by the scale parameter a(t). More specifically, the
Hubble parameter defined by H ≡ ȧ(t)/a(t) encodes the rate at which space is expanding. The
expansion is closely related to the total energy density ρ of the Universe via the first Friedmann
equation that can be written like

H2 = 8πG
3 ρ (2.1)

for a flat Universe and the gravitational constant G. The total energy density budget ρ is the sum of
radiaton ρr, contributions from matter ρm, and a vacuum energy contribution ρΛ. Each of them is
dominant at a certain time in the Universe. The scaling of these contributions with a is determined
by a continuity equation ρ̇+ 3H(ρ+ P ) that is describing the evolution of the density of a fluid with
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Chapter 2. Thermal History of the Universe

a certain pressure P in the expanding Universe. The solutions for the continuity equation yield

ρ ≈


a−3 matter
a−4 radiation
a0 vacuum .

(2.2)

The different scaling of a(t) of radiation, matter, and the vacuum energy implies that the Universe
was dominated by a single component at a certain time. In the following, we will work in a radiation-
dominated Universe since all epochs discussed in this chapter fall into this era.

2.1.1 Time Evolution of Particle Number Densities
A number density can simply change by an expansion of the volume that surrounds these particles.
Likewise, particle interaction can produce or annihilate particles. In the following, we discuss how
particle species evolve in an expanding Universe. That implies a description of the thermodynamics
of these particle in the thermal bath. To compute the time evolution of a number density n and
energy density ρ, we consider a dilute and weakly-interacting gas of particles with g internal degrees
of freedom, energy E and momentum p. Whereas fermions follow the Fermi-Dirac statistics, bosons
are described by the Bose-Einstein statistics. In both cases, the number density and energy density
can be written like

n = g

(2π)3

∫
f(p)d3p

ρ = g

(2π)3

∫
E(p)f(p)d3p (2.3)

with a phase space distribution function

f(p) = 1
e(E(p)−µ)/T ± 1 , (2.4)

describing the occupation number in phase space for a given particle in kinetic equilibrium. The (−)
sign corresponds to bosons and the (+) sign to fermions. E(p) =

√
p2 +m2 is the energy and µ is

the chemical potential of the particle.

Relativistic Species In the ultra-relativistic regime where T � m,µ and E ≈ |p| ≡ p, we get

n = g

(2π)3

∫ ∞
0

4πp2dp
ep/T ± 1 =

{
3

4π2 ζ(3)gT 3 for fermions
1
π2 ζ(3)gT 3 for bosons ,

ρ = g

(2π)3

∫ ∞
0

4πp3dp
ep/T ± 1 =

{
7
8
π2

30 gT
4 for fermions

π2

30 gT
4 for bosons .

(2.5)

with the Riemann zeta function ζ(3) = 1.20206.
For a radiation-dominated Universe, the Hubble parameter in eq. 2.1 can now be explicitly written as
a sum over all relativistic densities ρr =

∑
i ρi

H = 1.66g1/2
∗

T 2

MP
(2.6)

where MP = 1/G = 1.22 × 1019 GeV is the Planck Mass and the temperature dependent relativistic
number of degrees of freedom is given by

g∗ =
∑

bosons
gi

(
Ti
T

)4
+ 7

8
∑

fermions
g

(
Ti
T

)4
. (2.7)
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2.1. Thermal Relics

Once the mass of the particle is larger than the temperature and the particle becomes non-relativistic,
g∗ decreases. As a good approximation the expansion of the Universe can be treated adiabatically, so
that the total entropy S is constant. With the second law of thermodynamics TdS = d(ρV ) + PdV ,
the pressure-density relation for a relativistic gas P = 1

3ρ and continuity equation, the entropy density
s = S/V is

s =
∑
i

ρi + Pi
Ti

= 2π2

45 g∗s(T )T 3 , (2.8)

with the effective number of degrees of freedom in entropy g∗s =
∑

bosons g
(
Ti
T

)3 + 7
8
∑

fermions g
(
Ti
T

)3.
The conservation of entropy implies that s ∝ a−3 and g∗s(T )T 3a3 = const . As long as relativistic
particle species are not at the threshold of becoming non-relativist, we can assume g∗s to be constant
and T ∝ a−1.

Non-Relativistic Species In the non-relativistic limit, with T � m and T � m − µ, we can
approximate E = m + p2/2m and consequently, the denominator of eq. 2.4 becomes e(E−µ)/T ± 1 ≈
e(E−µ)/T . In this case both bosons and fermions are described by Maxwell-Boltzmann statistics. For
the number density, this yields

n = g

(
mT

2π

)3/2
e−(m−µ)/T . (2.9)

We see that for non-relativistic particles, the number density is exponentially suppressed by the
Boltzmann-factor e−m/T for decreasing temperatures.
As the number density is the number of particle N per volume V , we expect the number density of
a particle species in the Universe to scale like n ∼ N/V ∼ N/a3 for an expanding Universe with the
increasing scale-factor a(t). With a constant number of particles, the number density would decrease
and the gas would dilute. This also means that the number of particles in a comoving volume is
constant, i.e.

d
dt (na

3) = 0⇔ dn
dt + 3Hn = 0 (2.10)

if there are no processes that change the number density.
To describe number densities that are effected by interactions that produce or destroy these particles,
we exemplary go through the case of the annihilation and production of one particle species χ into
another particle species f . Later on, we relate that to certain particle processes, one of them being
DM annihilation to SM particles. So far, we haven’t specified the type of the particles χ and f . They
could be Majorana or Dirac fermions, vector or scalar bosons. They can be elementary particles or
even nuclear species like protons and neutrons. For now, we only assume that mχ > mf . At high
enough temperatures of the thermal bath, particles are able to annihilate as well as being produced

χχ̄↔ ff̄ . (2.11)

As the temperature decreases with time in the history of the Universe, it drops below T < mχ.
From then onwards, there is not enough kinetic energy available anymore to produce χ in thermal
equilibrium. Therefore, the process drops out of thermal equilibrium and goes preferably to the lighter
particles

χχ→ ff̄ (2.12)

As a consequence, the χ number density nχ drops very fast. This process with mχ > mf is possible as
long as two χ particles can meet and annihilate to f particles. Since the Universe expands, the mean
free path for χ is increasing and it is not likely that χ annihilations into f occur. Consequently, any
reaction of the form of eq. 2.11 freezes out. The evolution of number densities in a comoving volume
is depicted in Fig. 2.1.
The freeze-out condition that defines the time xf = mχ/Tf at which the process decouples from the
thermal bath is given by

Γ ≡ τ−1 ≡ σχχvrelnχ
!= H (2.13)
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Chapter 2. Thermal History of the Universe

1 10 100

equilibrium

relativistic non-relativistic

freeze-out

relic density

Figure 2.1: Freeze-out of a massive particle species [41]. With a decreasing temperature of the Uni-
verse, massive particle species become non-relativistic and its number density is therefor Boltzmann-
suppressed. After freeze-out Γ ∼ H, the comoving number density is slowly approaching its relic
abundance value.

where vrel is the relative velocity between the incoming particles, Γ the annihilation rate, and τ the
mean free path of a χ particle in the thermal bath. Of particular importance here is to note that with
a number density of a non-relativistic species as in eq. 2.9, we have an exponential x-dependence in
the freeze-out condition in eq. 2.13. As also depicted in Fig. 2.1, the sharp drop of the equilibrium
density tells us that the moment of freeze-out xf cannot vary too much in order to reproduce a specific
number density. To reproduce the observed DM abundance, this value should be around xf ∼ 20. In
the following, we will take that as a reference value whenever we insert numbers into our calculations
for DM estimates.
Once the process and its particles have decoupled from thermal equilibrium, its number densities
mostly change due to the expansion of the Universe and little by further annihilations occurring. To
be more precise, we have to include both effects to calculate the present abundance of that species.
The depletion rate from χ-pair annihilations

Γann. ∼ 〈σvrel〉n2
χ (2.14)

describes the probability of χ-pair annihilations with a thermally-averaged χ-pair annihilation cross-
section 〈σvrel〉. Including that into the time evolution of the number density yields the Boltzmann
equation (

dnχ
dt + 3Hnχ

)
= −〈σvrel〉(n2

χ − n2
eq.) . (2.15)

It is convenient to define the densities normalized by the time dependent volume a(t)−3. Since the
entropy density scales like s ∼ 1/a3, we can define the yield as a fraction

Y = nχ
s
. (2.16)

Notice that the yield remains constant in the absence of number-changing processes. Its derivative is
given by

dY
dt = d

dt

(
a3nχ
a3s

)
= 1
s

(
3Hnχ + dnχ

dt

)
. (2.17)

This allows us to rewrite the Boltzmann equation as

dY
dt = −s〈σvrel〉(Y 2 − Y 2

eq.) . (2.18)

With the dependencies a ∝ T−1 and x ∝ T−1, we conclude that d
dt (a/x) = 0 and hence, dx

dt = Hx.
With dimensionless parameter x = mχ/T and the particle species mass mχ, we can define H(x) as

8



2.1. Thermal Relics

follows
H(x) = Hx2 ≡ H(x = 1)x2 . (2.19)

In its final form, the Boltzmann-equation for the evolution of particle yields can be written as

dY
dx = −sx〈σvrel〉

H(x) (Y 2 − Y 2
eq.)

= −λ〈σvrel〉
x2 (Y 2 − Y 2

eq.) (2.20)

where we defined

λ = 2π2

45
MP

1.66
g∗s

g
1/2
∗

mχ

≈ 0.26 g∗s
g

1/2
∗

MPmχ . (2.21)

Eq. 2.20 is the Riccati equation. Solutions are obtained numerically. For late times, x � xf , we can
assume that Y � Yeq. simplifying the equation to

dY
dx ≈ −

λ〈σvrel〉
x2 Y 2 . (2.22)

Being a separable equation, we can integrate it from freeze-out time xf up to nowadays x∞ � xf , i.e.∫ Y∞

Yf

dY 1
Y 2 =

∫ x∞

xf

(
−λ〈σvrel〉

x2

)
. (2.23)

WIMP miracle We complete the discussion about the evolution of number densities with the
example of a DM candidate that has been in thermal equilibrium at some point in the Early Universe.
We assume that the annihilation cross section of DM 〈σvrel〉 is independent of x. Furthermore, we
expect the yield at DM freeze-out Yf to be larger than the yield today Y∞ = YDM. For a rough
estimate of the DM abundance, we can ignore the 1/Yf boundary term in eq. 2.23 and finally obtain

YDM = xf
λ〈σvrel〉

, (2.24)

For the DM relic abundance, we get

Ωχh2 ≡ ρDM

ρc
h2 = mDMnDM

ρc
h2 = mDMYDMsh

2

ρc
, (2.25)

where h is the dimensionless scaling factor for the Hubble expansion rate defined by Htoday ≡ H0 =
100 h km s−1Mpc−1. Using the critical density ρc = 1.053672 · 10−5h2 GeV cm−3 [42], the measured
value of the entropy s = 2891.2 cm−3 [42], and xf ≈ 20 as a reference value, we can explicitly write
out the relic density as

Ωχh2 ≈ 3× 10−27cm3s−1

〈σvrel〉

≈ 10−10GeV−2

〈σvrel〉
. (2.26)

It is easy to see that weak-scale cross-sections σ ∼ G2
Fm

2
DM ∼ 3×10−26cm3s−1 with the Fermi-constant

GF ∼ 10−5GeV−2 and DM masses of a few GeV’s yield the correct relic abundance Ωχh2 ∼ O(10−1)
for DM. It is the so-called WIMP-miracle of a weakly-interacting massive particle (WIMP) acting as
DM. In the discussion about indirect detection signals in Section 3.1, we will use this weak-scale cross
section as a reference value.
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Chapter 2. Thermal History of the Universe

2.1.2 Velocity Dependence of Annihilation Cross Sections
For the case of DM we have assumed that the velocity-averaged cross section σvrel is velocity-
independent. This assumption is true as long as the leading term of the velocity expansion of the
cross section is constant. Nevertheless, the constant contribution might be absent and 〈σvrel〉 might
be temperature dependent. In general, we can expand 〈σvrel〉 in terms of x [43]. Following the
calculations performed in [44], we write the non-relativistic thermal average as

〈σvrel〉 =
∫
f(p1)f(p2)σvreld3p1d3p2∫
f(p1)f(p2)d3p1d3p2

. (2.27)

With the findings of Section 2.1.1, the thermally-averaged cross-section can be simplified to

〈σvrel〉 =
∫
e−p

2
tot/2mT e−p

2
rel/2mTσvrelp

2
totp

2
reldptotdprel∫

e−p
2
tot/2mT e−p

2
rel/2mTdptotdprel

(2.28)

where we have defined the total momentum ptot = p1 +p2 and the relative momentum prel = p1−p2.
We introduce the kinetic energy per unit mass in the lab frame, ε, defined by

ε = s− 4m2

4m2 . (2.29)

For small velocities compared to the mass of the particles, we have p2
rel = s − 4m2 and hence, ε is

related to the relative momentum via p2
rel = 4m2ε. The assumption of being able to perform that

expansion breaks down around resonances or thresholds where new annihilation channels are opening.
We expand σvrel in powers of ε

σvrel =
∞∑
n=0

a(n)

n! ε
n (2.30)

where a(n) indicates the n-th derivative of σvrel with respect to ε evaluated at ε = 0. Inserting that
expansion into 2.28, we obtain the well-known result of the thermally-averaged cross-section in the
non-relativistic limit

〈σvrel〉 = a(0) + 3
2a

(1)x−1 + 15
8 a

(2)x−2 + 35
16a

(3)x−3 +O(x−4) . (2.31)

Often enough, it is sufficient to keep the temperature-independent component only, i.e. 〈σvrel〉 ∼ a(0).
Nevertheless, in some cases the constant term is absent and the thermally-averaged cross-section is
dominated by its a(1)-term. In order to see which terms dominate, we relate the cross-section to its
non-relativistic expansion in terms of partial waves [45]

σvrel ∼
∑
L

c(L)v2L
rel , (2.32)

where L is the orbital angular momentum of the initial state DM pair. Implicitly, we already expanded
the cross-section in terms of relative velocities when we look at eq. 2.30. We mentioned that the
expansion parameter ε as defined in eq. 2.29, can be related to the relative momentum via p2

rel =
m2v2

rel = 4m2ε. So with ε = v2
rel/4, both expansions 2.30 and 2.32 are just the same if we redefine

the coefficients a(n) → c(L) and explicitly identify the summation index with the orbital angular
momentum. This tells us that, with quantum number arguments, we can now already tell if the
coefficients are zero or non-zero and might even be able to tell how they should scale with the mass
scales of the process [46, 47]. The recipe for constructing annihilation matrix elements is very well
described in [46]. It can be structured as follows

1. For each interaction structure, one can identify its transformations under charge conjugation C
and parity P as well as identify the total angular momentum J quantum number.

2. We match those DM bilinears to SM final state bilinears with the same J quantum number.
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2.1. Thermal Relics

DM bilinears (2S+1)LJ (JPC)
ψ̄ψ 3P0 (0 ++)
iψ̄γ5ψ 1S0 (0 −+)
ψ̄γ0ψ (0+−)
ψ̄γiψ 3S1/

3D1 (1 −−)
ψ̄γ0γ5ψ 1S0 (0 −+)
ψ̄γiγ5ψ 3P1 (1 ++)
φ†φ 1S0 (0 ++)
iIm(φ†∂0φ) none
iIm(φ†∂iφ) 1P1 (1 −−)

Interaction Structure velocity-suppressed?
ψ̄ψq̄q Yes
ψ̄γ5ψq̄q No
ψ̄ψq̄γ5q Yes
ψ̄γ5ψq̄γ5q No
ψ̄γµψq̄γµq No
ψ̄γµγ5ψq̄γµγ5q ∝ m2

q/m
2
DM

φ†φq̄q/φ2q̄q No
φ†φq̄γ5q/φ2q̄γ5q No
φ†∂µφq̄γ

µq Yes
φ†∂µφq̄γµγ5q Yes

Table 2.1: Quantum numbers for two fermion-bilinears ψ̄, ψ or scalar-bilinears φ†φ/φ2 in the initial
states (left) and all possible interaction structures and velocity dependence’s of annihilation cross
section for fermionic SM bilinears in the final states (right)

3. Finally, we check if the matrix element is chirality suppressed by mf/mDM. Knowing J of the
final states, we can get the Jz projections and find the possible helicities of the final state fermion
and anti-fermion. If the SM bilinear cannot have fermions with the appropriate helicities, the
annihilation cross section is suppressed.

For 2→ 2 annihilation processes, we look at the transformation under charge conjugation C and parity
P given by

C : (−1)L+S P : (−1)L+1, (2.33)
for a fermion/anti-fermion pair in the initial states and

C : (−1)L+S P : (−1)L, (2.34)

for a boson/anti-boson pair in the initial states. We call L = 0 states s-wave, and L = 1 states p-wave
referring to spectroscopic terminology. To give an explicit example, we go through the case of two
DM fermions ψ̄, ψ in the initial states. A more general treatment with scalar and vector particles can
be found in [46]. Also using the spectroscopic notation (2S+1)LJ (JPC) with L = S, P,D standing for
L = 0, 1, 2, respectively, we list all possibilities of DM fermionic bilinears in the left table of Tab. 2.1.
We now try to find final state SM bilinears with the same J quantum number. In the simplest case, we
just consider fermionic bilinears q̄q again. So we can just combine all J = 0 DM bilinears with J = 0
SM bilinears and for the J = 1 states correspondingly. This yields the possibilities as given in the right
table of Tab. 2.1. Interactions are velocity-suppressed if its initial states have L = 1, 2, ... instead of
L = 0 as in the unsuppressed case. Note that there won’t be any C-odd DM bilinears with Majorana
fermions since charge conjugation of Majorana fermions is always even. As one can see in Tab. 2.1, the
axial vector bilinear combination is chirality-suppressed by m2

f/m
2
DM. The axial vector bilinear with

3P1(1 ++) is an L = 1 velocity-suppressed mode. However, it also contains a pseudoscalar 1S0(0 −+)
component. One way to look at it is that the pseudoscalar coupling part is proportional to the final
fermion mass mf which yields a helicity-suppression of m2

f/m
2
DM [47]. Another way to understand it is

that an odd number of Dirac matrices tells us that the fermions should be from different Weyl spinors
in order to be able to build a SM bilinear. That includes that we have a Sz = 0 state. Nevertheless,
from a S = L = J = 1 state, we only get fermion helicities from the same Weyl spinor. Hence, there
will be a chirality flip arising from a mass-insertion. For the sake of completeness, we also added scalar
DM bilinears to Tab. 2.1.
In calculations of the DM relic abundance or indirect detection constraints, the velocity-dependence
plays a crucial role. For p-wave annihilation processes, 〈σvrel〉 is suppressed by x−1 = T/mDM, which
is a factor of x−1

f ∼ O(1/20) at DM freeze-out as discussed above. In indirect detection experiments
probing DM annihilations in Galactic halos with DM velocities around v ∼ 10−3, p-wave annihilations
yield suppressions of the order x−1 ∼ v2 ∼ O(10−6). Hence, the velocity dependence of 〈σvrel〉 can
have large effects on late-time signatures and also influence DM annihilations at earlier times.
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Chapter 2. Thermal History of the Universe

2.2 The Observable Early Universe
Two Early Universe epochs that are very well understood experimentally and theoretically are the
BBN and the CMB [40]. Therefore, they set strong constraints on DM processes that could influence
these epochs. In this section, we describe BBN and CMB in standard cosmology and indicate in which
way DM contributes or could influence both scenarios.

2.2.1 Big Bang Nucleosynthesis
BBN marks the earliest testable era of the Universe through measurements of fossil SM elements.
It occurred at t ∼ 0.01 − 100 s after the Big Bang. That translates to temperatures from 10 MeV
down to 0.1 MeV. BBN describes the production of the first light elements. In the case of Helium-4
(4He) and Deuterium (D) no other astrophysical processes can account for their observed substantial
abundances. BBN produces about 5 times more 4He than stellar processes altogether. For D, the
abundance is very low. But any other astrophysical processes destroy the weakly-bounded D which
burns at relatively low temperatures of T ∼ 0.5 · 106 K. BBN also determines precisely the baryon
density. For ΛB ∼ 1, we would expect an underproduction of D and an overproduction of 4He and
7Li. The initial phase setting the starting condition for BBN can be separated into three major steps.
At around T = 10 MeV, protons p and neutrons n were almost equally abundant, i.e. n/p ∼ 1. The
balance was maintained by the processes

n↔ p+ e− + ν̄e

νe + n↔ p+ e−

e+ + n↔ p+ ν̄e . (2.35)

When these interactions are in chemical equilibrium, we have

µn + µν = µp + µe . (2.36)

As outlined Section 2.1, the number density of a non-relativistic nuclear species A(Z) with mass number
A and charge Z in kinetic equilibrium can be written

nA = gA

(
mAT

2π

)3/2
exp

(
µA −mA

T

)
. (2.37)

With the nuclear chemical potential µA = Zµp + (A− Z)µn and the definition of the binding energy
BA ≡ Zmp + (A−Z)mn−mA, we can rewrite the number density in terms of the proton and neutron
densities, np and nn as

nA = gAA
3/22−A

(
2π
mnT

)3(A−1)/2
nZp n

A−Z
n exp(BA/T ) (2.38)

Similar to introducing the particle yield Y as done in eq. 2.16, it is useful to define quantities that are
independent of the scale factor a(t). We define mass fractions

XA ≡
nAA

nN
(2.39)

of the total nucleon density nN = nn + np +
∑
i(AnA)i. It implies that

∑
iXi = 1. For the neutron-

to-proton ratio, it follows that

n

p
≡ nn
np

= Xn

Xp
= exp

(
−Qnp

T
+ µe − µν

T

)
(2.40)
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where the neutron-proton mass difference can be approximated as Qnp = mn−mp = md−mu+αΛQCD.
We expect µe/T, µν/T � 1 [40] and therefore take(

n

p

)
EQ

= exp(−Q/T ) , (2.41)

for the equilibrium value of the neutron-to-proton ratio. Using eq. 2.38, the equilibrium nuclear
abundances for Deuterons X2, Helium-3 X3, Helium-4 X4, and metals like 12C denoted by X12 are
given by

X2 = 16.3(T/mN )3/2η exp(B2/T )XnXp

X3 = 57.4(T/mN )3/2η2 exp(B3/T )XnX
2
p

X4 = 113(T/mN )9/2η3 exp(B4/T )X2
nX

2
p

X12 = 3.22 · 105(T/mN )33/2η11 exp(B12/T )X6
nX

6
p . (2.42)

With the baryon-to-photon ratio η ≡ nN
nγ
� 1 being very small, all additional nuclear species are

suppressed. It is noteworthy that the different scaling of the neutron and proton mass ratios Xn/p

shows that the value of the ratio n/p is also playing a role in determining the relative abundances of
species. In thermal equilibrium and temperatures at around T ∼ 10 MeV, we expect Xn ' Xp ' 0.5
and get

X2 ' 6 · 10−12, X3 ' 2 · 10−23

X4 ' 2 · 10−34, X12 ' 2 · 10−126 (2.43)

To estimate the temperature at the weak interaction freeze-out Tweak, we use the general freeze-out
condition as introduced in eq. 2.13 with the interactions as defined in eq. 2.35, i.e. Γpe→νn. One finds
that

ΓW /H ∼ (TF /0.8 MeV)3 (2.44)
for T & me. More precise calculations [48] yield a weak freeze-out temperature of

TF = bm
4/3
W sin4/3(θW )
α2/3M

1/3
Pl

≈ 0.75MeV . (2.45)

At that time, we have (
n

p

)
W

= exp
(
− Q

TW

)
' 1

6 . (2.46)

After that, weak interactions only occur occasionally and n/p decreases further dominated by free
neutron β-decays. Finally the neutron-to-proton ratio becomes (n/p)BBN ∼ 1/7. At that time, we
expect the nuclear species to be still in nuclear equilibrium with small abundances of

Xn ' 1/7, Xp ' 6/7
X2 ' 10−12, X3 ' 10−23

X4 ' 10−28, X12 ' 10−108 . (2.47)

For temperatures below T < 0.5 MeV, the mass fraction of 4He is expected to rapidly increase and
reach unity in nuclear equilibrium. Nevertheless, at around T ∼ 0.5 MeV it first falls below its
equilibrium value. Although the abundances of other light nuclear species exceed their equilibrium
value, the rates of processes that synthesize 4He are not fast enough to provide enough “fuel” to
produce 4He. Another reason is that Coulomb-barrier suppression is beginning to become significant.
At around T ∼ 0.1 MeV, the abundances of D, 3He, and 3H reach order unity and produce enough
4He to establish the equilibrium abundance. Once these abundances are build up, all neutrons will be
pumped in the production of 4He and the resulting mass fraction for 4He is easily calculated with

X4 '
4n4

nN
= 4(nn/2)
nn + np

= 2(n/p)BBN
1 + (n/p)BBN

= 0.25 , (2.48)

13



Chapter 2. Thermal History of the Universe

where we have used that (n/p)BBN ' 1/7.
Since after the freeze-out of weak interactions, mostly the neutron β-decay will change n/p, we can
relate the proton-neutron ratio at BBN to the number densities at weak freeze-out via

nBBN
pBBN

= nW e
−ΓntBBN

pW + nW (1− e−ΓntBBN) , (2.49)

where Γn is the neutron decay rate. This will be of particular importance in the discussion of a DM
background field causing variations in the fundamental constants of nature. Any change in the fine-
structure constant α, the QCD scale ΛQCD, the weak boson masses, or the quark masses changes the
neutron decay rate, the weak freeze-out temperature and the neutron-to-proton ratio at weak freeze-
out and at BBN which in turn influence the 4He yield. The variation of ∆(n/p)W

(n/p)W and ∆Γn
Γn can be

expanded in terms of these constants as [32]

∆(n/p)W
(n/p)W

= −0.13∆α
α
− 2.7∆(md −mu)

(md −mu) − 5.7∆MW

MW
+ 8.0∆MZ

MZ
,

∆Γn
Γn

= −1.9∆α
α

+ 10∆(md −mu)
(md −mu) − 1.5∆me

me
+ 10∆MW

MW
− 14∆MZ

MZ
. (2.50)

Finally for small values of ΓntBBN a possible deviation of the 4He abundance can be traced as

∆X4

X4
≈ ∆(n/p)W

(n/p)W
−∆ΓntBBN . (2.51)

For the case of DM only coupling to gluons, Eq. (2.51) becomes particularly simple and one can
write [49]

∆X4

X4
=
(
−Qnp
TW

+ tBBN
∂xP (x)
P (x)

)
∆Qnp
Qnp

≈ 4.82∆Qnp
Qnp

, (2.52)

where P (x) is the phase space in the neutron decay width [49].
To sum up, BBN predicts the primordial abundances of D, 3He, 4He by using standard cosmology
and the Standard Model of particle physics. Although, one cannot measure the primordial abundances
nowadays, one can measure the present-day abundances in selected astrophysical sites. From there,
one can deduce its primordial abundances. Deuterium is very hard to produce and but easy to destroy.
Therefore, the primordial abundance is expected to be at least the observed abundance of D. The limit
on the D relative to hydrogen H of D/H & 10−5 is sensitive to the baryon-to-photon ratio η as seen
in eq. 2.42. A lower limit on D/H directly translates to an upper limit η . 10−9. As η is also related
to the baryon abundance via η ∼ 2.68 · 10−8, we can also set an upper limit on the baryon density.
Helium-3 is much harder to destroy than D. One does not expect that the primordial abundance of
3He exceeds the measurable pre-solar abundance of 3He by more than a factor of 2. Furthermore, the
burning of D produces 3He. Combining both abundances of D and 3He, one can set an upper limit on
the ratio (D + 3He)/H. This can then be translated to a lower limit on η of roughly η & 4 · 10−10.
We can see that only with the measured values of D and 3He, the window for possible values of the
baryon-to-photon ratio becomes really narrow with 4 · 10−10 . η . 10 · 10−10. The tiny fraction of
produced 7Li/H ∼ 10−10 leaves a small observable trace of 7Li that cannot be explained in any other
way than primordial nucleosynthesis. In fact, it is remarkable that the observed abundance of 7Li is
equal to the predicted abundance by big bang with a value of η in the limited range set by D and 3He.
Hence, consistently combining the results of D, 3He, and 7Li shrinks down the possible range of η even
more. In the case of 4He not all but a large part of the measured Helium-4 is expected to be coming
from BBN. Measurements yield a value that agrees with its predicted value of around X4 ∼ 0.25.
The prediction of the 4He abundance depends on the neutron-to-proton ratio n/p at weak freeze-out,
the neutron decay time τn and the relativistic degrees of freedom g∗. The latter one would change
with new light particles species not being part of the SM. Nevertheless, with limits on η, τn and the
X4 abundance, we can set an upper limit on g∗. This is often parameterized as the effective number of
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neutrino species Neff. It stands for the number of species that contribute to the total energy density
of radiation excluding photons. Current limits tell us that there should be less than four relativistic
species, i.e. Neff < 4. It is exactly the number of neutrino species in the SM. This sets a sharp limit on
new light particles. For example, a thermal DM candidate with a typical freeze-out value of xf ∼ 20,
should not have a mass lighter than ∼ 10 MeV.

2.2.2 The Cosmic Microwave Background
The CMB is known to be the surface of last scattering at a redshift of about z ∼ 1100 where the age
of the Universe was 180 000 yrs. The measured wavelengths of the background radiation range from
0.1 cm to 70 cm consistent with a black body radiation at a temperature of 2.72548± 0.00057 K [50].
It can be translated to a photon number density of nγ ∼ 422cm−3. Overall the CMB is very uniform
with temperature fluctuations of ∆T/T ≤ 10−4 on angular scales from 10 arc to 180◦. This is the main
evidence for an isotropic Universe already from early times onwards until nowadays. It sets strong
cosmological requirements on how structures have to be formed. The most attractive explanation for
the isotropy of the Universe is inflation [51].
The CMB can be split into three processes: recombination of matter, photon decoupling and the
“freeze-in” of residual ionization. Before the CMB is released, matter and radiation are in equilibrium.
At that time, there are rapid interactions between photons and electrons in the Universe. At the time
of recombination electrons and protons combine in the process

p+ e− → H + γ (2.53)

and form hydrogen atoms H. As a consequence, the Universe becomes opaque and the number density
of free electrons ne drastically drops. According to eq. 2.9, we have

ni = gi

(
miT

2π

)3/2
exp

(
µi −mi

T

)
, (2.54)

for T < mi in thermal equilibrium. The index stands for i = e, p,H, mi is the mass of the species, and
µi its chemical potential. In chemical equilibrium, we have p+ e→ H+γ and therefore µp+µe = µH .
Hence, we can express the hydrogen number density as

nH = gH
gpge

npne

(
meT

2π

)−3/2
exp(BH/T ) (2.55)

with the hydrogen binding energy BH ≡ mp + me −mH = 13.6 eV. For the pre-exponential factor,
we assumed mH ≈ mp. The ionization fraction, i.e. the fraction of protons and electrons that haven’t
combined to hydrogen atoms, can be expressed as

Xe ≡
np
nB

(2.56)

where nB = np + nH is the total baryon number density. With gp = ge = 2, gH = 4, nB = ηnγ , and
neutrality of the Universe np = ne, we get an equilibrium fractional ionization of

1−Xeq.
e

(Xeq
e )2 = 4

√
2ζ(3)√
π

η

(
T

me

)3/2
exp(BH/T ) . (2.57)

One can loosely define recombination as the point when around 90% of all electrons have combined
with protons, i.e. when 1−Xeq.

e = 0.9. We obtain [40]

Trec. ∼ 0.3 eV, (2.58)

which corresponds to 1+z ∼ 1300. The sharp drop of the electron number density during recombination
is accompanied by a rapidly increasing mean free path for photons. Thus, recombination and photon
decoupling occur practically simultaneously. Therefore, one can define the moment of recombination
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Figure 2.2: The three regimes of the CMB power spectrum [41]. Region I with angular resolutions
> 2◦ are determined by general relativistic effects. The intermediate range II describes oscillations of
the photon-baryon fluid at the moment of last-scattering. At small scales, i.e. region III, fluctuations
are damped when photon diffusion starts to become important.

and photon decoupling in the standard way with Γγ ∼ H where the interaction between photons and
electrons is

Γγ = neσT, (2.59)

with the Thomson cross-section σT = 8πα2

2m2
e

= 6.65 · 10−25 cm2. This more careful calculation yields
z ∼ 1100 and a temperature of Tdec. = 0.26 eV. For (1 + z) ≤ 1100 the ionization fraction evolves in
the same way as any abundance of a stable, massive particle species as described in Section 2.1.1.
To sum up, recombination of matter, the decoupling of radiation, and the “freeze-in” of residual
ionization all occur around 1 + z = 1100 corresponding to a temperature of T = 0.26 eV. After the
photons have decoupled, they free-stream through the expanding Universe and cool down to T0 ∼
2.73 K ∼ 2.4 · 10−4 eV.
The measurement of the CMB is hence the last scattering of photons with charged particles before the
Universe was made up of neutral bound states. The CMB can be seen as a spherical projection of how
the Universe looked like when it was 180 000 yrs old. All the information of the physics at that time
is encoded in the temperature fluctuations. The temperature variations can be expressed in spherical
coordinates by the expansion in spherical harmonics

∆T
T

:=
∞∑
l=0

l∑
m=−l

almYlm(θ, φ) . (2.60)

Squaring the temperature fluctuations and integrating over the solid angle Ω yields∫
dΩ
(
δT (θ, φ)
T0

)2
=
∑
lm

|alm|2, (2.61)

where we have used the relation
∫
dΩYlm(θ, φ)Y ∗l′m′(θ, φ) = δll′δmm′ . The index m describes the

angular momentum in one specific direction. Without any information about special directions in the
CMB, we introduce the angular power spectrum

Cl := 1
2l + 1

l∑
m=−l

|alm|2 . (2.62)

The discrete values Cl can be seen as averaged values over m. Hence, we expect statistical fluctuations
to cancel out for large l’s, i.e. by averaging over many m’s. The spherical harmonics can be expressed
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in terms of Legendre polynomials Pl(cos θ) for which we have the roots

Pl(cos θ) = 0, ↔ cos θl = cos
(
π

4k − 1
4l + 2

)
, k = 1, ..., l . (2.63)

The case k = 1 defines a relation between l and the angular resolution θl via [52]

θl = 3π
4l (2.64)

for large l. If we now know the distance of the surface of last scattering to us, we could even make a
statement about the spatial distances on the sphere. The distribution of Cl with respect to l consists
of peaks that represent particularly large contributions to the temperature fluctuations. Just before
recombination, the Universe was a tightly-coupled baryon-photon fluid, and DM which participated
mostly gravitationally to the physics. DM produces gravitational wells and the baryon-photon fluid
gets pulled into these regions. The baryon-photon fluid resists to collapse via pressure of the photons.
The interplay between gravity and pressure sets up a sound wave in the fluid, and its physics are
described by a forced harmonic oscillator. Such an oscillation produces a tower of modes with definite
wave lengths. We assign these effects to the dominant peak structures in the power spectrum region
from 2◦ to a few arc-minutes as seen in Fig. 2.2. Furthermore, we have the exponentially damped
sub-arc-minute region. This is due to the breakdown of the assumption of a perfect fluid and photon
diffusion starts to become important. If the scales are smaller than the mean free path of photons, the
photons can stream out of over-densities and erase perturbations. The range with angular resolutions
> 2◦ are determined by general relativistic effects, for example the Sachs-Wolfe effect.
Fitting the standard cosmological model to the CMB power spectrum yields precise determination of
cosmological parameters. Some of them are listed in Tab. 2.2. Among them, we find the measured
value of the relic abundance ΩDMh

2 = 0.1200± 0.0012.

Quantity Symbol Value(uncertainty)
scaling factor for Hubble expansion h 0.674(5)
DM density ΩDMh

2 0.1200(12)
redshift at matter-radiation equality zeq 3402(26)
age at matter-radiation equality teq 51.1(8) kyr
redshift at which optical depth equals unity z∗ 1089.92(25)
age at which optical depth equals unity t∗ 372.9(10) kyr
age of the Universe t0 13.797(23) Gyr
eff. number of neutrino species Neff 2.99(12)

Table 2.2: Some Cosmological parameters taken from [53] obtained by fitting standard cosmological
parameters to the CMB power spectrum.

2.3 What We Know About Dark Matter
Astrophysical and cosmological observations have provided substantial evidence that point towards
the existence of a non-luminous, transparent type of matter that is neither emitting nor absorbing
light. All measurements in a wide range of astrophysical scales can be described by the inclusion of
gravitationally interacting DM.
On the scale of galaxy clusters, the Bullet Cluster (1E 0657-558) is one example of a dynamical
system that is influenced by DM. After the collision of two galaxy clusters, the visible components of
the cluster show a characteristic shock wave as observed by X-ray telescopes. Through weak-lensing
analyses though, one could observe that most of the mass of the system is displaced from the visible
part. The accepted interpretation of this observation is that the DM components of the clusters have
crossed without interacting significantly [54,55].
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On galactic scales, the most prominent example of how dynamical properties of astrophysical objects are
effected by DM are rotation curves of spiral galaxies. Assuming a spherical distribution of matter in the
bulge of the galaxy, the rotation velocity is described by v =

√
GM(r)/r where G is the gravitational

constant and M(r) is the mass contained in a radius r. From the visible mass distribution of the
spiral galaxy, we would expect a v ∝ r−1/2 dependence of the the velocity since the visible mass is
not increasing in the outer parts of the galaxy. Vera Rubin’s observations of rotation curves of spiral
galaxies [56,57] and later studies [58,59] show that the velocity is only very slowly decreasing and that
this flatness of the rotation curves can only be described by introducing a new matter component,
with a mass distribution that is M(r) ∝ r. This mass distribution is what one would expect for a
self-gravitational gas of non-interacting particles.
On cosmological scales, DM left its footprint in the anisotropies of the CMB as discussed in chapter 2.2.
Non-DM solutions to all these observations like modifications of Newtonian physics can address some
problems at galactic scales but fail to describe other scales, i.e. at the level of clusters of galaxies or
anisotropies of the CMB.
By now, we know that DM makes up ∼ 85% of the matter density in the Universe and accounts for
∼ 25% of the critical density of the Universe. Besides, DM interacts gravitationally. Assuming that DM
is a particle, we can infer further information about the nature of DM. From numerical simulations of
structure formation we know that DM already became non-relativistic early in the Universe. It should
be electrically neutral, and if not, its electric charge has to be tiny [60]. It is non-baryonic and its
lifetime should be larger than the age of the Universe in order not to interfere with the cosmological
evolution of the Universe.
Nevertheless, the main particle properties of a DM are still unknown. What mass and spin does it
have? What particle processes lead to the observed relic abundance of DM? Is there only one DM
particle or is there a whole dark sector? The most important question is probably: Does DM interact
with the SM? And if it interacts with the SM, how does the interaction look like? With that many
unknown parameters, the variety of models that could describe DM is huge.
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A wealth of DM searches exist to explore the huge mass spectrum that DM candidates can lie in. Every
one of them is covering a certain mass range and probes a particular underlying interaction structure.
Whereas some searches might make use of the fact that DM can behave like a classical oscillating wave,
others study the particle behavior of DM in scattering processes.
In order to understand the motivation behind the work explained in Chapter 4, we will discuss the
general concepts behind indirect detection searches in Section 3.1. Furthermore, we present a set of
constraints that DM models have to pass in order to be a valid DM candidate. Apart from indirect
detection, this covers established search strategies like direct detection and collider searches in Sec-
tion 3.2 and 3.3, respectively. Closely related to exploring the parameter space of light DM candidates,
we give an overview over some low energy experiments in Section 3.4. Therein, we discuss in which
way fundamental constants can be effected by oscillating DM fields and explain some necessary steps
to calculate BBN constraints. We close the chapter with a description of how to calculate largely mass-
and model-independent supernova bounds on light particle species.

3.1 Indirect Searches
Indirect searches for DM study possible visible products of DM interactions originating from the
present DM of the Universe. In particular, it is the search of SM particles produced by DM decays
or annihilations, and their effects. The big advantage of indirect detection compared to collider-based
experiments is that we study the huge abundance of DM in the present Universe. SM final states
could either produce signals in detectors or telescopes, or they could effect processes of the Early
Universe. Hence, we split the discussion about indirect detection searches into two parts. In 3.1.1, we
discuss standard indirect detection searches. That includes the observation of dense DM abundances
with only few baryons like dwarf galaxies. DM annihilation processes in these objects could produce
visible annihilation products that propagate to the Earth and are detected in telescopes. Another
way of studying DM annihilations is to study the secondary effect of the produced particles on, for
example, the CMB and BBN. That will be discussed in Section 3.1.2. Furthermore, in Section 3.1.3
we emphasize that energy spectra are an essential particle physics input for theoretical predictions of
indirect detection bounds. We discuss the standard way of calculating those spectra and point out its
limitations for certain energy ranges.

3.1.1 Standard Indirect Detection
At collider scales, one can assume that some of the final states and decay products in particle processes
are stable. In indirect detection we are dealing with astrophysical scales and hence, everything that
is not completely stable will decay at a certain time. The signatures that reach the detector are
stable particles, i.e. electrons, positrons, protons, antiprotons, photons and neutrinos. We distinguish
between two classes of final states, neutral and charged particles. Neutral particles, i.e. neutrinos and
photons, travel approximately in straight lines towards the Earth. If we do not take into account the
redshift information, i.e. the distance at which a photon was emitted, we only have a two-dimensional
view of the sky. Hence, we only care about the number of photons or neutrinos N0 that arrive in
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our detectors within a certain time interval dt, with a certain energy E, coming from a volume dV .
The number of annihilations per unit volume is given by the depletion rate in eq. 2.14. For decaying
DM, the number of decays per unit time per unit volume is determined by the standard decay law
dN
dV = n(r)(1−exp(∆t/τDM)) ' n(r) ∆t

τDM
for ∆t/τDM � 1. In both annihilation and decay, the number

of photons/neutrinos produced with a certain energy in one processes follows the distribution of the
energy spectrum given by

(dN0
dE
)
. With a telescope or detector of area A, we get

dN0

dEdtdV =
(
dN0

dE

)
A

4πr2 ×

{
1
2 〈σvrel〉n(r)2 annihilation
n(r)
τDM

decay .
(3.1)

Integrating over the line of sight and the solid angle, we obtain

dN0

dEdt = A

4π

(
dN0

dE

)
×

{ 〈σvrel〉
2m2

DM

∫
drdΩρ(r)2 annihilation

1
mDMτ

∫
drdΩρ(r) decay .

(3.2)

This expression can be split into a particle physics part and an astrophysical part that is only de-
termined by the distribution of the DM mass density ρ(r), whereas the latter one can be predicted
by N-body simulations and/or by gravitational measurements. For annihilations, we can write the
spectrum as

1
A

dN0

dEdt = 〈σvrel〉
m2

DM

(
dN0

dE

)
Jann (3.3)

with the so-called “J-factor” of the DM source

Jann ≡
1

8π

∫
drdΩρ(r)2 . (3.4)

In general, the J-Factor sensitively depends on the density profile that we choose. For halos, a common
choice is the Navarro-Frenk-White (NFW) profile ρ ∝ r−1/(1 + r/rs)2 [61], where r is the distance
from the center of the halo and rs a characteristic scale radius. As an example, dwarf satellite galaxies
of the Milky way have J-factors of Jann ≈ 1017−20 GeV2/cm5. In the region within 1 degree of the
Milky Way’s center the J-factor is even larger Jann ≈ 1022 GeV2/cm5. Nevertheless, astrophysical
backgrounds in the region of the Galactic Center are also much larger. Therefore, it might be more
challenging to distinguish potential signals from background. Dwarf galaxies instead only contain a few
baryons and are hence, a relatively clean target for indirect detection. Another difference between the
Galactic Center region and dwarf galaxies is the DM velocity distribution of both regions. The typical
velocity of particles in dwarf galaxies is expected to be much smaller than in the Galactic Center.
This would reduce the signal in velocity-suppressed annihilations such as p-wave annihilation and
increase the annihilation rate in models with Sommerfeld enhancement. Besides, the density profile is
sometimes not known precisely and does not take into account substructures that might lead to large
enhancements of the J-factor. But the modeling of these dense substructures is highly uncertain and
cannot even be resolved in some simulations below a certain mass scale.
For decaying DM, the substructure does not play a role. It is controlled by the density profile integrated
over the distance r and the solid angle Ω, i.e. by

∫
ρ(r)drdΩ. That is essentially the total mass in a

certain volume. For the simple case of a very distant object from our detector/telescope, the distant
to every point is almost equal to r ≈ R. So the integral becomes 1

R2

∫
ρ(r)dV = M/R2. We can see

that the largest signals for decaying DM come from objects with larger total DM mass. In practice,
the observation of galaxy clusters is the most promising way to witness decaying DM.

Rough Estimates

To get a feeling for what kind of physics could be tested with current indirect detection experiments,
we roughly estimate the expected number of SM particles that might be detected in telescopes. Here,
we closely follow [62].
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Decaying DM: As a first case, we take a look at decaying DM. DM should be ’almost’ stable to
explain the present large DM abundance. And it cannot be enormously more abundant in the past at
the time of recombination. A significant amount of DM decays from recombination until now would
drastically change the well-measured CMB spectrum. Therefore, DM should be stable on scales of the
age of the Universe, i.e.

τDM � age of the Universe ∼ 1.410 yr ∼ 1017 s . (3.5)

Such a large suppression of DM decays could be possible with operators that are highly suppressed
at low energies. An obvious choice for operators that are highly suppressed are operators suppressed
by the scale of a Grand Unified Theory (GUT) MGUT ∼ 2 · 1016 GeV. As an example, we consider
a dimension-6 operator with a DM candidate mass of mDM ∼ 1 TeV. The operator will have a mass
suppression of 1/M2

GUT. The decay rate is consequently suppressed by 1/M4
GUT. Based on dimensional

arguments, we therefore have a decay rate ΓDM ∼ m5
DM

M4
GUT

. That gives us the lifetime

τDM ∼
M4

GUT
m5

DM
∼ (2 · 1016 GeV)4

(103 GeV)5 ∼ 1050 GeV−1 ∼ 1026 s ∼ 109 × age of the Universe . (3.6)

Such large DM lifetimes do not cause any observable changes in the history of the Universe. Besides,
there is no way that one can probe these DM decays at colliders for example. But can we see those
decays in indirect detection?
For simplicity, we assume that one observable particle is produced in every decay, and the energy of
the particle, whatever it is, is enough to be counted as a signal in the telescope. Hence, we do not have
to “weigh” the number of particles in a certain time frame by the energy spectrum as in eq. 3.2. The
rate of observable particles reaching a detector with area A at distance r from dV can be simplified to

dN
dt = A

4π
1

mDMτDM

∫
drdΩρ(r) . (3.7)

In the local DM halo with approximately constant ρDM ∼ 0.4GeV
cm3 within R = 1 kpc, the rate of

observable particles is
dN
dt = A

(
0.4 GeV
cm3

)
1 kpc

τDMmDM
. (3.8)

With τDM ∼ 1026 s and mDM ∼ 1 TeV, we expect dN
dt = 10−4 1

s events for A = 1 m2. It would mean
that a few thousand events reach the detector in a year. That could be visible in current indirect
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Figure 3.1: Constraints on DM decays to b̄b final states [74]. The numbers in the plot indicate bounds
from Fermi (2,3,5), AMS-02 (1,4), and PAO/KASCADE/CASAMIA (6) [78–81].
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detection experiments like AMS-02 [63–65] and IceCube [66–69], and earlier detectors like the Fermi
Gamma-Ray Space Telescope (Fermi) [70,71]. An exemplary plot for decaying DM limits can be found
in Fig. 3.1. It is remarkable that combining measurements from several experiments is covering DM
decay exclusion limits over a wide range of masses. For the sub-GeV range, leading constraints come
from CMB [72], X/γ-ray telescopes [73, 74], and Voyager I [75, 76]. Using these measurements, decay
constraint can be set around τDM & 1026 s as recently studied in [77] .

Annihilating DM: In case of annihilating DM, the rate of observable particles depends on the
strength of the annihilation, i.e. the velocity-averaged annihilation cross section 〈σvrel〉 that is pro-
ducing those SM particles. As a reference value, we take the s-wave velocity-averaged cross section
〈σvrel〉 ∼ 10−9 GeV−2 ∼ 10−26 cm3

s that is yielding the correct relic abundance as measured by Planck
and estimated in Section 2.2. As in the case of the estimate for decaying DM, we take the local DM
density as a reference value and integrate over a radius of 1 kpc. Again assuming that we produce one
visible particle per annihilation with sufficient energy, eq. 3.2 becomes

dN
dt = A〈σvrel〉

2 (1 kpc) ρ
2
DM

m2
DM
∼ 10−26 cm3

s A(1 kpc)
(

0.4 GeV
mDM

)2
cm−6 . (3.9)

For a detector with A = 1 m2 and a DM mass mDM = 1 TeV, one would expect roughly one event
in a year and consequently not enough to observe it. Nevertheless, with decreasing mass the rate of
observed particles is increasing since the number density is increasing and it is more probable that
two DM particles meet and annihilate. Already for mDM = 100 GeV, a hundred events can be seen
in a year. This is already close to the sensitivity limit of current indirect detection searches. This
is not surprising by looking at the numbers that we used. Whereas the average local DM density
might not be sufficiently dense for indirect detection, we integrate over a generously large radius of
1 kpc yielding a J-factor of Jann = 1 kpc

2
( 0.4 GeV

cm3

)2 ≈ 1020 GeVcm−5 which is in the range of dwarf
galaxies. Combining that with the generous assumption of one observable particle per annihilation
gives us an observable rate. Note that the number of annihilations is increasing with decreasing mass.
The 1/m2

DM dependence is a feature of annihilation processes since the depletion rate depends on the
number density squared. More annihilations cause more detectable particles and as a consequence,
strong bounds on DM annihilations can be obtained in the low-mass region for DM.
So far, we have assumed that the produced stable particles propagate to the Earth essentially un-
distorted. The indirect detection rates we presented and estimates we made should only give us
a feeling about the expected rates in indirect detection experiments. We have outlined important
ingredients that are needed to obtain those rates. However, particles might be redshifted or absorbed
for more distant targets. For more dedicated studies, we refer to [82–86].

3.1.2 Effects on Early Universe Physics
Assuming that DM annihilations had taken place in the Early Universe, these interactions could also
modify BBN and the CMB anisotropies, even after DM freeze-out. DM freeze-out only means that
DM decouples from the thermal bath. Nevertheless, DM annihilations can still occur really rarely
in an expanding Universe. We can approximate the evolution of the number of annihilations by its
depletion rate given in eq. 2.14 in a co-moving volume Vc in one Hubble time

Nann ≈
n2
DM〈σvrel〉

2 VcH
−1 ∝ 〈σvrel〉1 a−3H−1 . (3.10)

We have used that the volume scales like Vc ∝ a3 and the number density as nDM ∝ a−3. For a
radiation dominated Universe, we have H ∝ T 2 as given by eq. 2.6. Knowing that a ∝ T−1, the
number of annihilations per Hubble time in a radiation-dominated Universe scales with temperature
like

Nann ∝
〈σvrel〉

2 a−1 ∼ T rad. dominated, (3.11)
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xf = mDM/Tf ≈ 20 TBBN ∼ 1 MeV Trec. ∼ 1 eV

DM freeze-out BBN recombination

radiation dominated Universe

Figure 3.2: Early Universe physics timeline expressed in temperature dependence.

if we consider 〈σvrel〉 to be x-independent, i.e. only the a0-term in eq. 2.31 contributes.Note that this
assumption breaks down for p-wave annihilating DM. We see that with the decreasing temperature of
the Universe due to its expansion, the number of annihilations per Hubble time is decreasing as well.
A timeline of the epochs is depicted in Fig. 3.2. As a reference value for the number of annihilations,
we can consider its value at freeze-out Nann(freeze-out). From its definition in eq. 2.13, the freeze-out
condition is Γf ∼ 〈σvrel〉nDM

!= H with an interaction rate Γf at freeze-out. Therefore, we expect one
annihilation per Hubble time. If we assume the DM candidate mass to be mDM = 100 GeV, we have
Tf ≈ 5 GeV remembering that xf ≈ 20 at DM freeze-out. Consequently, the ratio of DM annihilations
at BBN compared to freeze-out is

Nann(BBN)
Nann(freeze-out) ∼

TBBN
Tf

∼ 1 MeV
5 GeV ∼ 1/5 · 10−3 . (3.12)

In order to estimate how BBN is influenced by the annihilations, we have to consider the energy that
is injected into BBN. Knowing that the DM abundance is 5 times the abundance of baryonic matter,
the power injected at BBN is

Nann(BBN)ρDM ∼
1
5 · 10−3 · 5 · ρB ∼ 1 MeV · nB (3.13)

where nB = ρB/mp is the number density of baryonic matter in the Universe with the proton mass
mp ∼ 1 GeV. That means that roughly 1 MeV is injected in every baryon of the Universe. That could
affect subdominant nuclear abundances produced during BBN.
For even later times, when the CMB is released, we expect the number of DM annihilations to be even
less. Nevertheless, the impact these annihilations could have on the time of recombination are much
more stringent than constraints on BBN for (sub-) GeV mass DM. As before, we can estimate the
energy injected into the Universe at the time of recombination by considering the ratio

Nann(rec.)
Nann(freeze-out) ∼

1 eV
5 GeV ∼ 1/5 · 10−9 (3.14)

and consequently
Nann(rec.)ρDM ∼ 1 eV · nB . (3.15)

For simplicity, we assumed that the Universe is radiation-dominated from freeze-out until CMB. This
assumption is not strictly correct since matter-radiation equality is reached just before CMB. Never-
theless, it is sufficient to assume it for a rough estimate. Compared to the energy of 13.6 eV required to
ionize a hydrogen atom, 1 eV per baryon would lead to the conclusion that DM annihilation could be
able to ionize about 10 % of the hydrogen in the Universe. Every extra free electron or charged particle
in the Universe after the time of recombination broadens the surface of last scattering for photons. As
a consequence, the well-measured image of the CMB anisotropies would look different. That implies
that we can set stringent constraints on DM annihilation. Of course not all the energy that is available
through DM annihilation is finally ionizing hydrogen atoms. Only a fraction of the energy is converted
to hydrogen ionization and is affecting the CMB. The effect can be calculated by public codes [87–91].
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Figure 3.3: Bounds on generic thermal s-wave annihilating WIMP assuming that this process is ex-
plaining 100% of the DM [86]. The thermal relic cross section is the dashed line.

Besides, the electromagnetically interacting particles produced in these DM annihilations cool down.
The cooling and its duration as well as the efficiency of the energy injection into ionization has been
calculated in [85,92]. A more detailed formula for calculating the energy injection is given by [83](

dE
dtdV

)
deposited

= (1 + z)6Ω2
DMc

2ρ2
cPann(z) (3.16)

with the DM model dependent annihilation parameter

Pann(z) = f(z) 〈σvrel〉
mDM

. (3.17)

In the above formulae, z is the redshift, and ΩDM the cosmological DM density as a fraction of the
critical density ρc. f(z) is a redshift dependent efficiency factor that characterizes the fraction of
rest mass energy that is released into the gas. Its redshift dependence for annihilation processes is
discussed in [84, 93, 94]. It has been pointed out that for annihilations only the excess ionization
at redshift z ∼ 600 is important. For decays, the signal is dominated by redshift z ∼ 300 [72, 95].
As current CMB data is only sensitive to energy injection during a rather narrow range of redshifts
z ∼ 1000− 600 one can neglect the redshift dependence and take feff to be constant in z. For electron
and photon final states these constant coefficients have been calculated in [84] as a function of energy.
Finally, given a certain DM model it is possible to calculate an effective efficiency factor that only
depends on the DM mass via the electron and photon spectra

feff(mDM) = 1
2mDM

∫ mDM

0
EdE

[
2fe

+e−

eff (E)
(

dN
dE

)
e+

+ fγeff(E)
(

dN
dE

)
γ

]
. (3.18)

These coefficients have been provided for various annihilation channels [84], however only down to DM
masses of O(GeV) for reasons that will become clear later. As one can see in Fig. 3.3, the CMB and
standard indirect detection searches put stringent constraints on GeV WIMPs. In the region below
mχ . 7 GeV, CMB is most constraining. For energies above 7 GeV combined limits from Fermi and
AMS provide the strongest indirect detection constraints up to masses of about a 1 TeV.
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Nevertheless, the question is what these constraints really tell us. Let us summarize the assumptions
that have been made to calculate the bounds as depicted in Fig. 3.3. They are:

• σvrel is dominated or fully determined by its velocity-independent term, i.e. we approximate
〈σvrel〉 to be temperature-independent.

• the thermal relic abundance is determined by one single annihilation process.

• the total relic abundance is fully determined by thermal DM annihilation process(es).

So what do the exclusion plots like in Fig. 3.3 tell us? They only tell us that the relic abundance is
not determined by one single velocity-independent annihilation process! So what happens if we have
more than one annihilation process and one of them is velocity-suppressed? How much can a velocity-
independent annihilation cross section contribute to the total relic abundance? Is the relic abundance
of DM determined by a velocity-dependent cross section? Or one of them has SM final states that
are invisible to ID searches? Or is the WIMP even only a sub-component of DM? Another possibility
is that DM is not completely symmetric between particles and anti-particles. Sufficiently asymmetric
DM weakens the constraints from CMB [96]. In conclusion, if we do not consider the simplest case
of thermal DM existing of one annihilation process that is responsible for the total relic abundance of
DM, ID constraints become weaker. In that case, especially the GeV/sub-GeV region of DM masses
becomes interesting to study.

3.1.3 Particle Physics Input to Indirect Detection
Experimental searches have moved into the sub-GeV energy region such as the INTEGRAL telescope
[16] or the eASTROGAM [17] program. On the theory side, however, these processes have only been
studied for the case of leptonic final states for X-ray emissions [97] and p-wave annihilations [77]. For
hadronic final states the sub-GeV DM mass region is almost unexplored yet. The main reason for this
is that predictions for the energy spectra for the sub-GeV region were missing until recently.
An energy spectrum is showing how many stable particles of a specific type we expect to obtain with
a certain energy in a DM annihilation process or decay. On astrophysical scales, the only stable
particles are e±, p/p̄, γ and ν/ν̄’s. They can be produced directly or are the final particles of a longer
decay chain in a particle process. So far the calculation of energy spectra is based on Monte-Carlo-
Generator tools originally designed for high-energy physics experiments at the LHC. The procedure of
these simulations [98] is always as seen in Fig. 3.4. In the following, we will focus on 2 → 2 particle

(I)

(II)

(III)

(IV)

Figure 3.4: DM annihilations into quarks split into matrix element calculation (I), QED and QCD
parton shower (II), hadronization (III), and decay of hadrons (IV).
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Chapter 3. Dark Matter Searches

processes. One starts at the matrix element level and calculates the perturbative process for a DM
annihilation through a mediator decaying to two quarks. Next, the high-energetic final state quarks can
radiate off gluons and the gluons can split into quark pairs or gluon pairs. That phase is called parton
shower. The splitting of quarks into a quark and gluon q → q′g and gluon into a gluon pair g → gg
or quark pair qq̄ is determined by splitting functions. It is accompanied by the QED parton shower
of emitting photons off quarks. Just as the matrix element calculation, parton shower calculations are
in the perturbative regime. It is followed by hadronization that is already non-perturbative. As a last
step, the mesons and baryons formed in the hadronization decay to stable particles if not already stable.
At the end of that decay chain, usually pions decay into stable particles, either through π0 → γγ, or
π± → µ±

(−)
ν µ → e±

(−)
ν e

(−)
ν µ

(−)
ν µ.

A user-friendly way of providing those spectra has been started by Pppc4dmid [20] where they
compared the energy spectra obtained by Pythia [18] and Herwig [19] for a wide class of annihilation
channels of 2 → 2 annihilations processes. Finally, Pppc4dmid decided to provide tabulated spectra
based on Pythia simulations down to 5 GeV DM masses. Standard DM tools like micrOMEGAs [21,
22], MadDM [23, 24], or DarkSusy [25, 26] include similar, if not even the same spectra.
The problem that we are facing below 5 GeV DM processes is that there is no intermediate step
of parton shower and transition from a perturbative matrix element to the non-perturbative regime.
Below 5 GeV we can not start on a parton level and move to the hadron level. With energy scales that
are close to ΛQCD, we are already in the non-perturbative regime of QCD once the DM particles have
annihilated. How to calculate energy spectra for those DM masses will be discussed in Chapter 4.

3.2 Collider Searches
Collider searches study the possibility of DM being produced in experiments instead of making use
of the abundant DM in the Universe. Based on the interaction of the dark sector, DM models can
be tested in searches of missing energy and exotic signatures such as displaced vertices or visible
signatures of DM mediators. Both searches are based on the assumption that the DM or dark particle
itself is electromagnetically and hadronically invisible, i.e. it does not leave any traces in the tracker
and calorimeter systems.

Missing Energy Searches: If the DM particle has a lifetime large enough to escape the detector
entirely, the only signature it will leave in the detector is missing energy. Similar to the approach of
neutrino ’detection’, energy-momentum conservation is applied to the visible objects of the collider
process under study. For the case that energy-momentum is not conserved in a process, we expect
additional particles to take part in the interaction. In particular, in a head-to-head collision of two
particles moving along a beam-line, we expect the total transverse momentum of the process to be
zero. We define the missing energy

Emiss = −
∑
i

pout
i (3.19)

where pout
i are the momenta vectors of the visible outgoing particles. The misleading name of missing

energy is historically inherited from ’massless’ neutrino searches. So strictly speaking we define missing
momentum. Collider analysis usually look at observables in the transverse plane, in particular the
missing transverse energy (MET). The major SM backgrounds in missing energy searches are processes
including neutrinos and events with undetected leptons or mismeasured hadronic jets. Especially at
hadron colliders, if only little MET is expected, it is hard to distinguish MET arising from invisible
particles from mismeasurements of jets. The most prominent example of missing energy searches are
so-called X+MET searches. DM models could contribute to this class of searches, for example, via
pp → χχ + X where X denotes a SM particle produced along with DM particles that are only seen
through MET. These SM particles could be hadronic jets (Mono-jet), photons (Mono-photon), vector
bosons (Mono-Z/W ) or the Higgs (mono-Higgs) [4, 99].
In models in which the DM candidate couples to the SM Higgs, the Higgs can decay to a pair of
DM particles given that the mass of the DM candidate satisfies mDM < mh/2. Hence, the decay
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h → χχ contributes to the invisible branching ratio of the Higgs boson. Compared to the strongly
constrained Z → inv. searches by LEP [100], bounds on H → inv. are relatively weak. Indirectly,
one can study this decay through combining all visible Higgs decay channels and set an upper bound
on all unobserved decay modes. This requires an assumption on the Higgs production cross section
that is typically given by the SM prediction. Alternatively, one can directly study the h → inv.
process. The most sensitive channel is Higgs production in vector boson fusion in association with
two jets [101, 102]. Other examples are gluon-fusion with an additional jet coming from initial state
radiation, or associated production of a Higgs boson together with a massive vector boson. Combining
all contributions, the strongest current limit on the branching ratio of Higgs to invisible final states
for the LHC and future high-luminosity run of the LHC (HL-LHC) are

BR(h→ inv) . 26%, (ATLAS) [102]
BR(h→ inv) . 19%, (CMS) [101]
BR(h→ inv) . 2%, (HL-LHC) [103]. (3.20)

Minimizing the underlying assumptions and interpreting the LHC limits in an effective theory frame-
work hardly changes this limit [104]. Note that bounds on the branching ratio BR(h → inv) are
relatively model-independent and don’t even require the invisible particle to be DM. If the invisible
state is far below the Higgs mass, we expect robust, mass-independent bounds on the couplings of the
Higgs to the new particle.

Mediator Searches: DMmodels can also be probed without actually producing invisible particles.
Simplified models always come with a DM mediator. If the mediator can be produced in interactions
with quarks it can also decay to quarks. In this case, one can search for resonances on top of a smooth
QCD di-jet background [99,105,106]. A challenge for LHC searches, is to trigger on events with low-pT
objects. Hence, di-jet searches lose sensitivity below mediator masses of roughly 1 TeV. One way out
is to look for events with di-jets along with other SM particles. An example is a di-jet event with a
high-pT initial state radiation (ISR) object to trigger on. The mediator decay products form a single
jet that is explored with jet substructure techniques. In that way LHC searches are sensitive to events
with lower mediator masses.

Exotic Searches: MET searches can not be applied to co-annihilation/co-scattering scenarios of
DM production at colliders. It does not feature substantial missing energy to be distinguished from the
SM background. Nevertheless, if the DM candidate is part of a dark sector including several particles
that are accessible at the LHC, these additional states can cause displaced vertices, e.g. displaced soft
leptons [107–109].
Another possibility are emerging jets. Introducing a whole new dark gauge group coupled to QCD,
one can end up with a zoo of unstable particles [39]. Just like in QCD, dark quarks shower, hadronize
and form dark mesons and baryons. Some of them are stable and some of them decay back to the SM.
If the decay is very slow, those mesons will first invisibly travel some distance. Once they turn into
visible SM particles, jets will emerge in the detector.
In Chapter 5, we will discuss a new kind of signature that is fundamentally different from all collider
signatures discussed above.

3.3 Direct Searches
Direct Detection (DD) searches essentially study the interaction of the local DM density in the Milky
Way with the target material of an Earth-based detector. In particular, DD experiments study the
movements of nucleons that are expected to be at rest in a very well-controlled laboratory environment.
The SM background for these events is expected to be very low. This is a big advantage compared
to indirect detection and collider searches where the DM topologies are usually accompanied by sim-
ilar pure SM processes happening in the same astrophysical or collider physics environment. In DD
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Figure 3.5: Kinematics of DM-nucleus scattering in direct detection experiments.

experiments, the background is very well under control. In a very quiet experimental environment
it is possible to measure possible low-energy DM-SM scattering events in the sub-MeV energy range.
In the following, we will go through the basic steps to calculate the scattering cross section in the
non-relativistic limit [27]. The typical kinetic energy of a nucleus is of the order of kT , where the tem-
perature T is usually far below room temperature. Hence, we can assume that the nucleus is initially
at rest. With a process topology as in Fig. 3.5, the non-relativistic total initial and final energy read

Ei = p2

2mDM
, Ef = (p− q)2

2mDM︸ ︷︷ ︸
EDM

+ q2

2mN︸ ︷︷ ︸
ER

, (3.21)

where EDM is the final DM energy and ER is the recoil energy of the nucleus with a momentum
transfer q = p − p′. By defining cos(θ) = p̂ · q̂, and the reduced mass for the DM-nucleus system
µDMN = mDMmN/(mDM +mN ), we get

p · q
mDM

= |p||q| cos θ
mDM

= q2

2µDMN
. (3.22)

The maximal momentum transfer is then given for |q|max = 2νDMN |p|/mDM = 2νDMNv and for the
corresponding maximum recoil energy

Emax
R = |q|

2
max

2mN
= 2µ2

DMNv
2

mN
. (3.23)

It is easy to see that Emax
R is maximized for mDM = mN for fixed DM velocities [52]. Hence, we can

expect the strongest constraints on DM if the DM candidate has a mass around the nucleus mass.
Typically, we have νDMN ' 10...100 GeV and consequently Emax

R ' 20...200 keV for a DM velocity of
v ∼ 10−3. With the given definitions, the final state phase space can be written like [27]

dΦ2 = |q|
2d|q|d cos θ dφ

(2π)2
1

vDM |q|
δ

(
cos θ − |q|

2µDMN vDM

)
(3.24)

where we have used that p = mχ vχ. Now we can write the differential nucleon-DM scattering cross
section as [27]

dσN = |M|2

4π(4mDMmN )2 v2
DM

d|q|2 d cos θ δ
(

cos θ − |q|
2µDMN vDM

)
. (3.25)

For the case of θ-independent squared matrix elements, the total scattering cross section is only an
integral over the final nucleon momentum

σN =
∫ (2µDMNvDM)2

0
d|q|2

(
|M|2

4π(4mDMmN )2 v2
DM

)
. (3.26)

Constraints are usually set on the DM-nucleon scattering cross section. Hence, once we calculated
eq. 3.26 for specific models, we can constrain the models therein. A full calculation of the interaction
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rate for DM-nucleus scattering also includes the DM flux of the local DM density. This gives us
an additional integration over the galactic DM velocity distribution [110]. It also implies an annual
modulation of the DM signal due to the earth’s revolution [110].
As a little preparatory work for Chapter 5, we go through matrix elements for DM-nucleon scattering
where the DM candidate is either a scalar s or a pseudoscalar a. The matrix element of the effective
partonic operator with asymptotic nucleon states is given by

M = 〈N(k′)|Oeff|N(k)〉 . (3.27)
For light quarks, we can directly evaluate the nuclear matrix element

〈N(k′)|mq q̄q|N(k)〉 = mN fnT,q ūN (k′)uN (k) . (3.28)
In the case of heavy quarks we will integrate out the heavy quark fields via the QCD trace anomaly,

mq q̄q → −
αs
12π Tr[GµνGµν ] . (3.29)

So the nuclear matrix element for each heavy quarks can be evaluated via

〈N(k′)|αS Tr[GµνGµν ]|N(k)〉 = −8π
9 mN fnT,g ūn(k′)un(k) . (3.30)

The coefficients fnT,q, fnT,g parameterize the nuclear matrix elements of the scalar parton operators and
can be found e.g. in Table II of Ref. [27]. For effective DM operators coupling to quarks like

Os,q = mq

2Λ2
s

s2q̄q

Oa,q = p · p′

2Λ4
a

mq q̄qa
2 (3.31)

this finally yields

Ms,q = mN

Λ2

(
fnT,u + fnT,d + fnT,s + 2

9 f
n
T,g

)
(2mN ) ξ†s′ξs

Ma,q = p · p′

Λ4 mN

(
fnT,u + fnT,d + fnT,s + 2

9 f
n
T,g

)
(2mN ) ξ†s′ξs . (3.32)

where we have used a non-relativistic field expansion as given in [46]. The effective suppression scale
Λ is will be specified later in terms of model parameters in Chapter 5. For effective operators directly
related to the gluon field strength tensor via

Os,g = αS
2Λ2

s

s2 Tr[GµνGµν ]

Oa,g = αS
2Λ4

a

(p · p′) a2 Tr[GµνGµν ] , (3.33)

we get

Ms,g = −8π
9
mN

Λ2
s

fnT,g(2mN ) ξ†s′ξs

Ma,g = −8π
9
mNp · p′

Λ4
s

fnT,g(2mN ) ξ†s′ξs . (3.34)

For the momentum-dependent matrix elements, we can use eq. 3.22 and p · p′ ≈ m2
a −m2

av
2
a + p · q in

order to write

p · p′ = m2
a

(
1− v2

a + q2

2maµaN

)
. (3.35)

Plugging this into the matrix elements and calculating the cross section as given in eq. 3.26 yields
effectively a velocity expanded cross section. Since va ∼ 10−3, the velocity-suppressed terms can be
dropped. In Chapter 5, we will go through a set of models that describe these interactions. With the
groundwork done here, we only have to replace the suppression scales by explicit parameters of our
theory. Followed by squaring the matrix elements and the integration of eq. 3.26, we get expressions
for the cross section that we then compare to its limits from several experiments.
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Figure 3.6: Effective nucleon-nucleon-interaction via the coupling of a scalar bilinear to a nucleon-pair
as often probed by fifth force searches.

3.4 Low Energy Experiments
For low energy experiments, we will concentrate on the interaction of scalar bilinear interactions with
SM particles as we will need them later in Chapter 5. We distinguish between low energy experiments
that are based on fifth force searches and some that study the consequences of variations of the
fundamental constants due to new scalar fields.

Fifth Force Searches: In fifth force searches, we look at the DM pair exchange between nuclei
as depicted in Fig. 3.6. It is often expressed in terms of effective operators of the form

Os = 1
ΛN̄N

s2

2 , Oa = 1
Λ3 N̄N

(∂µa)2

2 . (3.36)

These interactions are creating a potential that affects measurements of low energy observables [34].
The effects would be seen in experiments like neutron-nucleon scattering [111], Eot-Wash limits on
fifth forces based on data from torsion balance experiments [112–114], fifth force experiments based
on planar geometry [115, 116], and molecular spectroscopy measurements [117]. All the constraints
coming from these measurements do not require the introduced scalar particle to be of DM nature in
the first place.
In contrast to that, the MICROSCOPE satellite [118] tests the interactions of eq. 3.36 in the presence
of a DM background field. It probes deviations in the orbits of test masses.

Variation of Fundamental Constants: If the DM halo acts like a classical background field
s(t) = s0 cos(mst), it induces oscillating variations in fundamental constants. Measurements that are
sensitive to variations in fermion masses mf , the fine-structure constant α and massive gauge boson
masses mV set stringent constraints on ULDM with masses � eV. SM-like operators including mf , α,
and mV are

LSM ⊃ −
∑
f

mf f̄f −
FµνF

µν

4 +
∑
V

δVm
2
V VµV

µ , (3.37)

with δW = 1 and δZ = 1/2. These constants are modified by effective interaction operators of the form

L ⊃ s2

Λ2
s,f

mf f̄f −
s2

Λ2
s,γ

FµνF
µν − s2

Λ2
s,V

δVm
2
V VµV

µ , (3.38)
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for scalar bilinears coupling to those SM operators. For pseudoscalar fields entering the operators
in derivatives, i.e. ∂µa, only the time derivative is important. We have ∂0a = ∂0(a0 cos(mat)) =
−maa0 sin(mat) = maa0 cos(ma+δ′) with some arbitrary phase δ′ that we will drop. The corresponding
effective Lagrangian reads

L ⊃ m2
aa

2

Λ4
a,f

mf f̄f −
m2
aa

2

Λ4
a,γ

FµνF
µν − m2

aa
2

Λ4
a,V

δVm
2
V VµV

µ . (3.39)

Wherever we treat the DM field as a classical field, we can simply translate these two sets of Lagrangians
into each other via s2/Λ2

s,i ↔ m2
aa

2/Λ2
a,i. In both the scalar and pseudoscalar case, we insert the

classical field solution and rewrite the quadratic (pseudo-) scalar interaction in a constant and a time-
dependent part as done in Ref. [32]

s2 = s2
0 cos2(mst)→

s2
0
2 (1 + cos(2mst))

a2 = a2
0 cos2(mat)→

a2
0

2 (1 + cos(2mat)) . (3.40)

In this form the constant term describes a fifth force while the oscillating terms lead to a variation of
fundamental constants, for instance the fermion mass is

mf → mf

[
1 + s2

Λ2
s,f

]
= mf

[
1 + s2

0
2Λ2

s,f

+ s2
0

2Λ2
s,f

cos(2mst)
]

(3.41)

The variation of the fine structure constant and the weak boson masses can be derived in complete
analogy and accordingly for the derivative case.
Spectroscopy searches are sensitive to time-dependent oscillations of nucleus and electron masses and
the fine-structure constant. Since the frequency of these oscillations are related to the mass, ω =
msc

2/~, the sensitivity of these searches peaks for a mass related to the total measurement time,
and the experiment looses sensitivity below the lowest frequency for which one full oscillation can be
measured and for frequencies higher than the shortest time between measurements [119]. The strongest
constraint comes from measurements with rubidium and cesium at LNE-SYRTE [37,120].
Note that also BBN is affected by the variation of the fundamental constants as already discussed in
Section 2.2. To quantify the effect of the oscillating DM field it is useful to relate the field to its energy
density. For a non-relativistic oscillating DM field this is given by ρ ' m2

s〈s2〉 and evolves according
to [33]

ρ̄DM = 1.3 · 10−6[1 + z(t)]3 GeV
cm3 , (3.42)

with the redshift parameter z(t). For a non-oscillating DM field, we have ρ ' m2
s〈s2〉/2 and

ρ̄DM = 1.3 · 10−6[1 + z(tm)]3 GeV
cm3 , (3.43)

with z(tm) defined by H(tm) ≈ ms. Applied to BBN constraints, we always assume that the mean
DM energy density during weak freeze-out is much greater than the present-day local cold DM energy
density 〈s2〉W � 〈s2〉0. In the case of the oscillating field, we make use of the relation [1 + z(tm)]/(1 +
zW ) =

√
tW /tm and take [33]

tW ≈ 1.1 s
zW ≈ 3.2 · 109

H(tm) ∼ 1/(2tm) ∼ ms → tm ∼ 1/(2ms) (3.44)
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Figure 3.7: Processes for Calculations of Energy-Loss in supernovas. Photon annihilation (left) and
bremsstrahlung-like scalar emission in nucleon-nucleon interactions (right).

3.5 Supernova Constraints on Light Particles
Stars can be used as a particle-physics laboratory [121] by studying the energy-loss rate implied by new
low-mass particles such as ULDM particles. Any annihilation process from SM to light new particles
contributes to supernova cooling. The main assumption in the corresponding calculation is that the
produced particles can freely escape the supernova. This is the so-called free-streaming limit. It allows
us to set an upper bound on the coupling strength of the additional processes. New particles only
cause significant effects if they can compete with the cooling from neutrinos already carrying away
energy directly from the interior of stars. The strongest bound comes from the SN1987A [121],

εx < 1019 erg g−1s−1 . (3.45)

To set constraints, one has to evaluate the novel energy-loss rates at typical core conditions with a
temperature and density of around

TSN = 30 MeV and ρcore = 3 · 1014 g cm−3 . (3.46)

This sets a constraint to the total energy-loss rate per unit mass, volume and time of novel light
particles

Γ = εxρcore < 10−14 MeV5 . (3.47)

The most prominent processes considered are photon annihilation and a bremsstrahlung-like emission.
As we will focus on quadratic scalar and pseudoscalar couplings to the SM in the further course of the
thesis, we shortly discuss pair emission processes as depicted in Fig. 3.7. Generally, the energy-loss
rate per unit mass, volume and time due to novel particle emission is given by

Γxx = n2
SM〈Eσssv〉 , (3.48)

where nSM is the number density of the incident SM particle pair xx and 〈Eσssv〉 is the thermally
averaged cross section for s-pair emission. The crucial ingredient is the cross section of the underlying
process. In the case of photon annihilation, it is easy to calculate the cross section for γγ → ss once
we know how the new particle couples to the electromagnetic field strength tensor. Nevertheless, the
dominant process for scalar DM production in the core is usually nucleon bremsstrahlung NN →
NN + ss [122]. With an effective operator as in eq. 3.36, the energy-loss bound can be estimated
as [122]

ΓNN ∼ σNN
n2
NT

7/2m
3/2
N

12π4Λ4 < 10−14 MeV5 . (3.49)
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Figure 3.8: Elastic s−N scattering process relevant for the trapping limit in supernova constraints.
For the simplified models the Higgs has to be replaced by the new scalar mediator.

For the derivative coupling operator in eq. 3.36, we have [123]

ΓNN '
1056

√
π

(2π)6

(
3− 2β

3

)(
n2
B

2Λ3

)2(2mN

mπ

)4
T 9.5

m4.5
N

< 10−14 MeV5 (3.50)

for the process NN → NNaa where the β = 2.0938 arises from averaging over the nucleon scattering
angle, and mπ is the mass of the pion that is exchanged between the nucleons.
After being produced, new particles travel through the SN core and might start interacting with
the supernova. The process considered here is elastic scattering Ns → Ns with a t-channel Higgs
or scalar particle exchange. Here, we only mention the scalar s but the same procedure applies to
the pseudoscalar. To estimate for which couplings light scalars start to interact with the supernova
particles, we compare the radius of the supernova, RSN ≈ 10 km, with the mean free path of elastic
scattering as depicted in Fig 3.8,

λ = 1
nN (r)σsN→sN

, nN (r) =


ρcore
mp

for r ≤ RSN ,

ρcore
mp

(
RSN

r

)m
for r > RSN ,

(3.51)

and m = 3 ... 7 depending on the profile chosen. This condition characterizes the trapping regime,
i.e. the point where the new scalars start thermalizing and are trapped such that they cannot escape
the supernova freely anymore. Once the scalars are trapped they create a scalar-sphere similar to the
axiosphere [121,124]. In the regime where the free-streaming limit doesn’t apply anymore, the sphere
still looses energy via black-body-radiation. The radius of the sphere r0 can be determined by

4πr2
0
gπ2

120 T (r0)4 < 1053 ergs−1 , (3.52)

with a temperature profile of T (r) = TSN(R/r)m/3 [125] and g = 1 the number of effective degrees of
freedom. It varies between

r0 = 1.7 ... 7.2 · 106 cm , (3.53)

depending on m. The second condition for the black-body radiation of a scalar-sphere with radius r0
is an upper bound on the optical depth ∫ ∞

r0

λ−1dr ≤ 2
3 . (3.54)

Combining the optical depth criterion with the upper bound on the luminosity of the scalar-sphere, we
will set a bound on the couplings of our models discussed in Chapter 5. We call this the trapping limit.
Note that the only input from the DM model side to these calculations is only the elastic scattering
cross section.
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This chapter is based on work in collaboration with Tilman Plehn and Peter Richardson [1]. All tables
and figures as well as a significant part of the text are taken from the corresponding publication.
As described in Section 3.1, indirect searches for DM are an important way to directly probe the
properties of DM in the Universe. Leading signatures are photons, or charged particles like leptons
and anti-protons produced in DM annihilations in dense regions of the sky [7–10]. These photons and
charged particles can be produced directly, they can be the decay products of hadrons and in the case
of photons produced through radiation from any charged annihilation product. As discussed in Sec-
tion 3.1, standard indirect detection searches and CMB can set strong constraints on DM annihilations.
In fact for DM masses in the range mDM = 0.1 ... 7 GeV the CMB provides the leading constraint on
thermal DM. If s-wave annihilating DM should account for the total DM relic abundance, models are
even excluded by indirect detection below mDM . 10 GeV .
These constraints are weaker in many non-standard thermal DM scenarios. For example, asymmetric
DM is an alternative production model leading to weaker CMB constraints if the DM is sufficiently
asymmetric [96]. CMB constraints can be evaded if the ratio of anti-DM over DM is less than ∼
2 × 10−6(10−1) for DM masses mDM = 1 MeV(10 GeV). [96]. Not yet being fully asymmetric, one
still gets indirect detection signals. Other modifications weakening the CMB constraints for thermal
production are softer spectra from annihilation modes beyond 2 → 2 kinematics [126, 127], including
2 → 3 bremsstrahlung process [128–143]. As pointed out in Section 2.1.2, velocity-dependent cross
sections can have a x−1 = T/mDM suppression in thermal processes. In addition, for DM dense
regions at the sky with low expected DM velocities, any velocity-suppressed cross section would lower
the signals. These models are not excluded in the sub-GeV range and depend on the modeling of the
final states. Recent studies have investigated p-wave annihilations for leptonic final states [77,97,144].
Another interesting case is DM that can be captured into bound states through light force carries [145].
For DM annihilations directly into leptonic final states, the energy spectra for positrons, as well as for
photons are rather easy to calculate, maybe with the exceptions of τ final states. A major technical
problem with DM annihilation into hadrons is that its description is not available through standard
Monte-Carlo tools like Pythia once the DM mass drops below around 5 GeV. The only exception is
the recent Hazma [146] tool covering DM masses below 250 MeV [30]. This leaves DM annihilation to
hadronic final states for masses between 250 MeV and 5 GeV essentially uncovered and yet unstudied.
GeV-scale DM annihilations to SM particles can be mediated through light scalar or vector bosons. For
a new scalar mediator we would expect Yukawa-type couplings to SM quarks that roughly reflect the
SM mass hierarchy. Vector mediators, instead, are generation-universal. Both scenarios are unexplored
and should be investigated for hadronic final states. The advantage in the case of vector mediators
coupling to quarks is that one can benefit from a large amount of data of similar processes in the
SM, namely e+e− annihilation processes. In that case we observe a wealth of hadronic annihilation
channels below the bb̄ threshold. Guided by these hadronic SM processes, we can deduce the form of
interaction that DM is expected to have in these channels. These DM annihilation channels will have
distinct photon and lepton spectra, which we will focus on in this study.
In Sec. 4.1 , we review the established implementations. We show how their reliability starts to fade
once we go below DM masses of 5 GeV and the tools start to extrapolate beyond their common Pythia
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input masses. In Sec. 4.2, we provide the first proper description of energy spectra from sub-GeV DM
annihilating into hadronic final states based on Herwig with an updated fit to electron–positron data,
including several new final states. Especially for the photon spectrum we observe a complete change
in the shape of the spectrum when we reduce the DM mass. In addition we provide a first estimate of
the impact of the input-data fit uncertainties on the output spectra. In the Appendix we provide all
details about our new fit, the underlying parametrizations, the best-fit points, and the error bands.

4.1 Established Tools For Indirect Detection Searches
Energy spectra for different DM annihilation channels to SM particles can be generated by several
public tools. As discussed in Section 3.1, the calculation of these energy spectra is based on Monte-
Carlo simulations and are limited in DM masses. The approach used by DM tools and their back-end
are summarized in Tab. ??. In the following, we shortly describe their features

• Pppc4dmid [20] provides tabulated energy spectra for indirect detection. The e±, p̄, d̄, γ, and
νe,µ,τ fluxes are generated with Pythia8.135 [18] down to mχ = 5 GeV. We use the provided
interpolation routine to extrapolate the results to mχ = 2 GeV.

• micrOMEGAs [21,22] uses tabulated Pythia spectra for γ, e+, p̄, νe,µ,τ and extrapolates down
to mχ = 2 GeV. In the manual of version micrOMEGAs2.0 it is mentioned that the strategy for
calculating spectra is analogous to that of DarkSusy and that spectra extrapolated to masses
below 2 GeV should be taken with care.

• MadDM [23,24] provides two ways of calculating the energy spectra both based on Pythia [147].
The ‘fast’ calculation is based on the numerical tables provided by Pppc4dmid. In the ‘precise’
mode, events are generated with MadGraph and then passed to Pythia for showering and
hadronization. In this mode it is possible to calculate the fluxes of any final states based on the
UFO model implementation.

• DarkSusy [25, 26] provides tables down to 3 GeV for energy spectra of two-particle SM
final states based on Pythia6.426 [148]. The tool can interpolate and extrapolate the
γ, e+, p̄, d̄, π0, νe,µ,τ , µ fluxes for all quark final states. In addition it includes annihilation to µµ,
ττ , gluons, and weak bosons. DM annihilation into e+e− pairs appears to not be included.

• Hazma [146] is a Python toolkit to produce energy spectra in the sub-GeV range. It is based
on leading order chiral perturbation theory and is valid in the non-resonance region below mχ =
250 MeV.

From that list of public tools, it is clear that except of Hazma all are based on Pythia. In general,
all multi-purpose Monte Carlo tools, such as Pythia or Herwig can calculate the energy spectra
for many hard scattering processes, followed by hadronization or fragmentation and hadron decays as
discussed in Section 3.1.3.

Tool Back-end mmin
χ DM models

Pppc4dmid Pythia8.135 tables 5 GeV generic DM
micrOMEGAs Pythia6.4 tables ∼ 2 GeV UFO model

MadDM Pppc4dmid 5 GeV UFO modelPythia8.2 direct ∼ 2 GeV
DarkSusy Pythia6.426 tables ∼ 3 GeV generic DM, SUSY

Table 4.1: Comparison of publicly available tools to generate spectra from DM annihilation [1].
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Figure 4.1: Photon and positron spectra dN/d log x with x = Ekin/mχ for mχ = 5 GeV from the
different hard annihilation channels [1]. We show results from DarkSusy, MadDM, micrOMEGAs,
Pppc4dmid, and Herwig.

For a detailed comparison of all tools, we assume annihilation processes of the form χχ →
µ+µ−/τ+τ−/q̄q, and allow for any kinematically allowed SM quark final state. This is identical to
the well-known e+e− → µ+µ−/τ+τ−/q̄q process, at a given energy mee = 2mχ, if we switch off initial
state radiation. In Fig. 4.1 we compare the corresponding Pythia-like spectra from the standard tools
discussed above. We show the photon and positron spectra from DM annihilation into muon, tau,
light-quark (u, d, s) and c̄c pairs and compare them to the standard Herwig output for e+e− → SM
pairs. Starting with the left panels of Fig. 4.1 we see a flat photon spectrum from soft-enhanced
radiation and a triangular positron spectrum from the µ+-decay with a three-particle final state
µ+ → e+νeν̄µ. The spectra for taus are characterized by its leptonic and hadronic decays. Especially
for the photon spectrum, we observe a flat leptonic region from soft photon emission for low x. In
hadronic decays τ leptons produce neutral and charged pions, e.g. in τ− → π+π0ντ decays, where
for instance the decay π0 → γγ dominates the photon spectrum down to x ≈ 10−3. The dominant
contribution to the position spectrum are the hadronic decays into charged pions accompanied by
neutral pions and a tau neutrino. Positrons are produced in the subsequent decays of the charged
pions into muons into electrons π+ → µ+ → e+. A sub-dominant contribution is coming from the
leptonic β-decay τ+ → e+. Next, light-flavor quarks u, d, s form a range of hadrons which then decay
to π0 → 2γ. The positron spectrum from these light quarks includes a soft neutron β-decay, which
gives rise to the secondary maximum around x ≈ 10−4. The neutron decay has not been included in
the default version of micrOMEGAs we used. Finally, moving to DM annihilation into charms we
see that the photon and positron spectra are the same as for the light quarks.
In Fig. 4.2 we show the same spectra, but for a slightly lower DM mass of 2 GeV. This value is already
slightly beyond where Pythia output should be used. Almost all radiation and decay patterns remain
the same as for 5 GeV, but the different curves start moving apart. An interesting feature appears
in the annihilation χχ → cc̄. Here the extrapolated results from Pppc4dmid and DarkSusy still
include a secondary peak corresponding to the neutron decay in the light quark channel. However, the
lightest charm baryon is Λc has a mass of 2.29 GeV, so at mχ = 2 GeV it cannot be produced on-shell.
What we see is likely an over-estimate of off-shell effects or an extrapolation error from the 5 GeV case,
which illustrates the danger of ignoring the explicit warning not to use for instance Pppc4dmid or
DarkSusy below their recommended mass ranges. For micrOMEGAs the spectrum is significantly
softer than from the dedicated MadDM call to Pythia and from Herwig.

Altogether we find that for mχ = 5 GeV there is a completely consistent picture, where the Pythia-
based results are in excellent agreement with e+e− results from Herwig. Going to mχ = 2 GeV leads
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Figure 4.2: Photon and positron spectra dN/d log x with x = Ekin/mχ for mχ = 2 GeV from the
different hard annihilation channels [1]. We show results from DarkSusy, MadDM, micrOMEGAs,
Pppc4dmid, and Herwig.

to an increased variation between the different tools and illustrates why we might not want to use the
standard tools outside their recommended mass ranges.

4.2 Herwig4DM Spectra

4.2.1 Calculational Details
e+e− → hadrons
If we limit ourselves to DM annihilation through a vector mediator we can relate the DM annihilation
process to the corresponding and measurable process

e+e− → hadrons. (4.1)

The e+e−-annihilation cross section to hadrons does not behave that different from annihilations into
µ+µ− above 10 GeV. Both channels are mediated by neutral vector bosons. As we can see in Fig. 4.3,
the only exceptions are resonance regions. At the Z-pole e+e− dominantly annihilates through the
Z boson into kinematically favored hadrons. Down to 10 GeV energies, the ratio of annihilations to
hadrons over muons R = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s) is almost flat. A couple of narrow
resonances like the J/Ψ and Υ lie in the range between 3 and 10 GeV where we expect more direct
annihilations to mesons with charm and bottom content. As illustrated in blue in Fig. 4.3, the most
challenging region is below about 2 GeV. That region is dominated by ρ−, ω−, and φ-meson resonances
and its excited states. These measurements indicate that instead of a non-resonant photon mediator,
the hadronic processes are mediated by light meson propagators. Hence, we expect the photon to mix
with the vector mesons leading to an interaction structure of the form e+e− → γ∗ → ρ, ω, φ→ hadrons.
Its matrix element has the form

M = e v̄e+γµue− d
em
µν 〈had|Jνem|0〉 (4.2)

where demµν is the electromagnetic photon operator, e the electric charge coupling the electron-positron
pair to the photon and Jµem =

∑
q=u,d,s eq q̄γ

µq is the electromagnetic quark current. In order to
relate the electromagnetic current to the vector meson propagators, we decompose it into its isospin
components I = 0, 1. Starting with the isospin doublets Ψq = (ud)T and Ψ̄q = (ūd̄), we can form

38



4.2. Herwig4DM Spectra

5 52. Plots of Cross Sections and Related Quantities
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Figure 52.2: World data on the total cross section of e+e≠ æ hadrons and the ratio R(s) = ‡(e+e≠ æ
hadrons, s)/‡(e+e≠ æ µ+µ≠, s). ‡(e+e≠ æ hadrons, s) is the experimental cross section corrected for initial state
radiation and electron-positron vertex loops, ‡(e+e≠ æ µ+µ≠, s) = 4fi–2(s)/3s. Data errors are total below 2 GeV
and statistical above 2 GeV. The curves are an educative guide: the broken one (green) is a naive quark-parton model
prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of this
Review, Eq. (9.7) or, for more details [99], Breit-Wigner parameterizations of J/Â, Â(2S), and Ã (nS), n = 1, 2, 3, 4
are also shown. The full list of references to the original data and the details of the R ratio extraction from them can
be found in [100]. Corresponding computer-readable data files are available at http://pdg.lbl.gov/current/xsect/.
(Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2019. Corrections by P. Janot
(CERN) and M. Schmitt (Northwestern U.))
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Figure 4.3: World data on the ratio of R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s) [42].

an isospin triplet by using Pauli matrices just like in every two-state spin statistic. Two of the three
isospin I = 1 components are charged currents and can be used for processes involving for example
τ ’s. The third component of the isospin I = 1 triplet JµI=1,3 = 1√

2 (ūγµu− d̄γµd) is neutral. Combined
with the isospin singlet JµI=0 = 1√

2 (ūγµu+ ūγµd), we can rewrite the electromagnetic quark current as

Jµem = 1√
2
JµI=1,3 + 1

3
√

2
JµI=0 −

1
3J

µ
s , (4.3)

with

JµI=1,3 = ūγµu− d̄γµd√
2

,

JµI=0 = ūγµu+ d̄γµd√
2

,

Jµs = s̄γµs . (4.4)

Now we can associate the isospin I = 1 part with the ρ-meson and and the isospin I = 0 part with the
ω meson. The strange quark current Jµs is related to the φ-meson. Note that it can also be counted as
an isospin I = 0 current. So only by rewriting the electromagnetic quark current, we can decompose
the process into its resonant isospin components.
Next, we relate those vector meson resonance contributions to possible final states via G-parity. G-
parity is a multiplicative quantum number combining C-parity and isospin symmetry. In general, the
G-parity of a particle is given byG = (−1)S+L+I . For mesons with L = 0, this reduces toG = (−1)S+I .
For example, pions are pseudoscalar particles with S = 0 and isospin I = 1. Therefore, they have
G-parity G = (−1). Since the quantum number is multiplicative, all even numbers of pion final states
have positive G-parity and all odd number of pions in the final state have negative G-parity. For the
resonant vector mesons with S = 1 that produce these final state particles, we have G = (−1)1+I . We
see that, in order to preserve G-parity, even number of pion final states are mediated by the I = 1
ρ-meson and odd numbers of pions in the final state by the I = 0 isospin ω-meson. For the case of
annihilations into 3 pions, we also include a φ contribution. For final states with half-integer isospins
like kaons, it is possible to form I = 0 and I = 1 contributions and thus, all vector mesons are
considered as intermediate particles of the process. For energies above 1 GeV, we also include excited
states of ρ’s and ω’s. Since G-parity is not strictly a symmetry of QCD, but more a guideline for
the leading effects, isospin-breaking contributions are considered in some cases. For the three lightest
quarks there exists a wealth of measurements to several final states. Based in e+e−-data we perform
fits to the parameterized currents for all channels. For more details on the parameterization and the
final states that are included in our calculations, we refer to Appendix A.1.
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χχ→ hadrons

In the case of DM annihilations, the procedure is just the same. Instead of the photon propagator demµν
coupling to electrons and quarks, we consider a new vector mediator coupling to the DM and quarks.
The general matrix element for DM annihilation can be written in the form

M = aDMv̄(p1)γνu(p2)dDM
νµ 〈X|J

µ
DM|0〉 (4.5)

with the DM-mediator coupling aDM and the vector mediator propagator dDM
νµ . We decompose the

quark DM current JµDM =
∑
q=u,d,s aq q̄γ

µq into isospin components and a separate ss̄ contribution,

JµDM = 1√
2
(
(au − ad)JI=1,3,µ + (au + ad)JI=0,µ)+ asJ

s,µ (4.6)

where aq with q = u, d, s are the couplings of the vector mediator to the light quarks. The isospin
currents in eq. 4.6 are just the same as in eq. 4.3. Hence, all e+e− annihilation processes can simply
be translated to DM annihilations. Depending on values of au, ad, and as, one or the other isospin
current might vanish. As a consequence, some resonance contributions to the channels might vanish,
or even more drastically, pure isospin I = 0 channels, for example

χχ→ ωππ, ηω, . . . . (4.7)

or pure I = 1 channels such as

χχ→ ππ, 4π, ηππ, ωπ, φπ, η′ππ, . . . (4.8)

are absent. We also choose to include the isospin breaking contribution from ω → π+π− in the I = 1
current for simplicity. With this method we are able to study DM annihilations to hadronic final states
down to the threshold of the π0γ channel which is just above the pion mass mDM & mπ.

4.2.2 Toy Model Results
As a toy model for our hadronization we assume that the observed DM density is somehow produced
through thermal freeze-out, but with a light vector mediator. We assume that the DM candidate is
a Majorana fermion χ, but our results apply the same way to other initial state DM particles. Since
our study is based on e+e−- data, we have to focus on vector mediator models. A simple mediator
choice starts from an additional U(1) gauge symmetry, where we gauge one of the accidental global
symmetries related to baryon and lepton number [149–153]. For our purpose of testing DM annihilation
into light mesons, the coupling strength of the DM to the mediator can be chosen arbitrarily. We are
only interested in the form of the energy spectra from hadronic final states. Crucial are only the
couplings of the mediator to quarks. We choose a B−L-like model with universal couplings to all light
quarks aq = 1/3. An attractive combination is for example B−3Lµ [154]. To avoid strong biases from
an underlying model we also show results for couplings similar to the Standard Model case of photons
coupling to quarks for low energies. For both cases, we assume an approximately on-shell annihilation

χχ→ Z ′ → qq̄ with mZ′ ≈ 2mχ . (4.9)

In our toy models we always assumemZ′ = 2mχ, but changing that should only have a negligible impact
on our spectra. Since the mass of the mediator determines the width of the mediator, we calculate the
width in the hadronic resonance region within Herwig through its decays to all kinematically allowed
hadronic final states listed in Tab. A.1 of the Appendix.
For light DM masses the relevant quarks are u, d, s. The charm quark plays a special role, because its
threshold region is poorly understood. Examples for distinct photon spectra from annihilations to c
and b quarks are, for example, described in [155]. All we can do for b and c quarks is to rely on the
spectra included in the default version of Herwig.
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Figure 4.4: Photon and positron spectra dN/d log x with x = Ekin/mχ for mχ = 0.25 ... 2 GeV from
u, d, s, c quarks with SM-like and (B−3L)-like couplings [1]. We use our modified version of Herwig7
for all curves below 2 GeV.

Most photons and positrons in hadronic processes come from neutral and charged pion decays, respec-
tively. These pions are either directly produced or are the end of a decay chain of all forms of hadronic
states listed in Tab. A.1 in the Appendix. In a few cases, photons can also be directly produced in
DM annihilation, for instance

χχ→ ηγ, πγ . (4.10)

In the left panel of Fig. 4.4 we see how photon production channels drop out when we reduce the DM
mass or center-of-mass energy of the non-relativistic scattering process. Whereas for mχ > 1 GeV all
possible hadronic final states contribute to the round shape of the spectrum, for lower energies only
photons and positrons from very specific processes give a characteristic energy spectrum.
For example for mχ = 500 MeV which corresponds to a center-of-mass energy of 1 GeV we expect two
kaons from the φ resonance to provide most photons through consecutive decays of kaons to pions to
photons. This leads to a triangular shape of the photon spectrum. If we go down to 250 MeV, the
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only remaining annihilation channels are

χχ→ π0γ, ππ, 3π . (4.11)

Of those, the photons mainly come from the π0γ final state, so one photon is produced directly with
an energy around the DM mass. It leads to the distinct sharp peak around x ≈ 1. The additional
photons come from the π0-decay and are responsible for the distribution to roughly x ≈ 10−1. The
same applies for mχ = 375 MeV with an additional bump-like contribution from neutral pions in the
3π and 4π channels as well as additional photons from the dominantly neutral ηγ → (2γ)γ, (3π0)γ
decay including a direct photon.

The basic shape of the positron spectrum largely depends on neutron pair production. Above the
production threshold, we observe an additional peak slightly above x ∼ 10−4 resulting from positron
production in the neutron β-decay. Formχ < 1 GeV, all positrons come from charged pion decays. The
peak position depends on how early that charged pion decay occurs for the dominant processes at the
respective center-of-mass energy. For example, for mχ < 500 MeV, charged pions are mainly produced
directly in ππ, 3π, 4π production and hence the peak of the spectrum is shifted towards x = 1.
As mentioned in Sec. 4.2.1, the composition of the DM current depends on the mediator couplings to
quarks aq. In case of any (B − 3L)-like model with aq = 1/3, the isospin I = 1 contribution vanishes
and consequently some resonance contributions as well as all channels listed in Eq.(4.8) vanish. For
mχ = 250 MeV this implies that without the ππ channel, π0γ becomes the dominant annihilation mode.
The direct photon production lifts the photon spectrum, as seen in the upper panels of Fig. 4.4. This is
accompanied by a drop in the positron spectrum that only receives contributions from the subdominant
3π final state. If we choose a center-of-mass energy below the 3π threshold, positron spectra from
quarks would be completely absent. For mχ = 375 MeV with an increasing 3π contribution towards
the ω(782) resonance, the position spectra are lifted. For higher energies and the contribution from
several channels, the (B − 3L)-like spectra resemble the SM-like case.

4.2.3 Uncertainty Discussion
Uncertainties on the energy spectra are dominated by the uncertainties from the fits to electron-
positron data discussed in the Appendix. We define ranges of model parameters to cover bands in
the e+e−-annihilation cross sections as a function of the energy and propagate those parameter ranges
through the hadronic currents into the energy spectra. This means that the error on a given spectrum
corresponds to the uncertainty of the dominant channel at the corresponding energy.
In the upper panels of Fig. 4.5 we see that the photon spectrum at mχ = 250 MeV inherits large
uncertainties from the poorly measured dominant π0γ channel in that energy range. Formχ = 375 MeV
the more precisely measured 3π channel suppresses the π0γ channel, but still leaves us with visible
error bands. For even higher energies several channels contribute to the uncertainty of the photon
spectrum. We observe the smallest error bands for spectra that benefit from precisely measured
dominant processes, for instance peak regions such as the φ resonance at 1 GeV in the KK channel,
the ρ resonance in the 2π decay, or generally well-measured channels such as 4π. Positron spectra
with their dominant 2π, 3π, 4π channels are always well measured. The only exception is mχ = 1 GeV
spectrum, especially the lower peak around ∼ 10−4 , which comes from the neutron β-decay. As
discussed in the Appendix, the nn̄ channel is poorly measured and leaves us with larger uncertainties
in that regime.
In (B − 3L)-like models, we will not get any contributions from well-measured 2π and 4π final states.
This means the uncertainties on the position spectrum for mχ = 250 MeV are slightly larger than in
the SM-like case, see the lower panel of Fig 4.5. Nevertheless, as long as no channel drops out and
another channel with larger uncertainties starts to dominate, the uncertainties in the (B−3L)-like case
tend to be smaller. The reason is the absence of the I = 1 contributions and their sizable uncertainties.

In Fig. 4.5 so far, we have used the uncertainties on the individual channels bin-wise, add all contri-
butions up and normalize by the sum of their corresponding cross-sections. For channels with large
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Figure 4.5: Photon and positron spectra dN/d log x with x = Ekin/mχ for mχ = 0.25 ... 2 GeV from
u, d, s, c quarks with SM-like and (B − 3L)-like couplings with uncertainty bands allowing for perfect
cancellations [1]. The 2 GeV curve and the central values correspond to Fig. 4.4.

cross-sections that are also giving the main contribution to the total amount of photons/positrons in
the spectrum, the error bars can completely cancel for the normalized spectra. This way, we only get
sizable uncertainty bands for spectra where one channel is dominating the shape of the spectrum, but
is playing a sub-dominant role in the total cross-section. An example is the π0γ final state for the
SM-like photon spectrum at mχ = 250 MeV or the lower bump in the 1 GeV positron spectrum caused
by nn̄. This assumption can be considered somewhat aggressive in a situation where we do not have
full control of the full error budget. Instead, we also choose a bit more conservative approach study the
uncertainties. We can maximize and minimize all spectra channel by channel and separately normalize
them by the smallest and largest total cross-section possible. This way there will be no cancellation for
single-channel spectra, and in Fig. 4.6 we indeed see much increased uncertainties. Obviously, the real
error bands are going to be somewhere between the results shown in Fig. 4.5 and Fig. 4.6 determined
by analysis details beyond the scope of this first analysis.
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Figure 4.6: Photon and positron spectra dN/d log x with x = Ekin/mχ for mχ = 0.25 ... 2 GeV from
u, d, s, c quarks with SM-like and (B − 3L)-like couplings with very conservative uncertainty bands.
The 2 GeV curve and the central values correspond to Fig. 4.4.

4.3 Conclusion & Outlook
We have studied the positron and photon spectra from non-relativistic DM annihilation in a DM mass
range from 250 MeV to 5 GeV (with the exception of the poorly understood region near the charm
threshold). With the method we have used we are even able to study DM annihilations down to
the production threshold of the π0γ channel which is just above the pion mass. We consider a vector
mediator with general couplings to SM fermions. For the photon spectra we see a smooth interpolation
from typical hadron decay chains with their round spectra down to the pion continuum with a triangular
shape. For positrons the main feature is the secondary neutron decay above threshold.
Since we are relying on an updated fit to electron-position input data to Herwig we can also propagate
the uncertainties from poorly measured channels into the photon and positron spectra. Already for
relatively heavy DM the positron spectrum shows sizable error bars. In the case of photons, smaller
DM masses with fewer and less well measured annihilation channels are also plagued by significant
error bars, eventually covering an order of magnitude for mχ = 250 MeV.
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Our new implementation closes the “MeV gap” between standard Pythia-based tools such as
Pppc4dmid, MicrOMEGAS, MadDM, or DarkSUSY and the comparably simple small-mass
continuum regime for vector mediator DM models and should allow for a reliable study of GeV-scale
DM even if it dominantly interacts with SM quarks. The code we have used to produce these results
will be available in a future version Herwig7. The energy spectra for photons, positrons, neutrinos,
and anti-protons will also be available in a future version of DarkSUSY.
DM annihilations to hadronic final states in the sub-GeV range, extend the current possibilities of
indirect searches for DM. Vector mediator DM models with couplings to quarks complement searches
that have only been considered for leptonic final states so far. With data from current sub-GeV
indirect detection programs like eAstrogam and INTEGRAL, there has been the urgent need for a
proper theoretical description of DM annihilation to hadrons. Based on our study, s-wave as well as
p-wave processes of DM models can be constrained more detailed and more robustly in future indirect
detection searches.
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5 | Light Dark Matter Annihilation
and Scattering in LHC Detectors

In the following, we investigate the phenomenological aspects of ULDM. For cold DM with mass m
and a non-relativistic velocity of v/c ∼ 10−3, the de Broglie wavelength is given by λdB = 2π/(mv).
With a local number density of n = (0.04 eV)4/m the occupation number then scales like

nλ3
dB ≈ 6.35 · 105

(
eV
m

)4
, (5.1)

Below ∼ 100 eV, the ULDM candidate has to be bosonic due to the Pauli Exclusion Principle. For
m . 1 eV the occupation number is so huge that DM can be treated as a classical field [156].
In order to investigate the possibility of interactions with the SM, we describe the wave DM candidate
in terms of a quantum field theory. We systematically study models of light scalar and pseudoscalar
DM candidates in Sec. 5.1. The light DM is coupled to the SM either via the SM Higgs mediator or a
new weak-scale mediator.
In Section 5.1, we derive bounds on our exemplary models covering cosmological and astrophysical
observations, as well as collider searches, direct detection constraints and low-energy experiments.
Leading constraints will come from the Helium-abundance produced at the time of BBN as discussed
in Chapter 2. The derivations of supernova bounds, constraints from Higgs-to-invisible searches,
direct detection bounds, and the impact of low energy experiments are based upon the discussions
of Chapter 3.
In Section 5.2, we study two novel processes inspired by indirect and direct detection process topologies.
First, ULDM could be produced with a large boost at the LHC and annihilate with the local DM density
in ATLAS or CMS detectors. This would lead to the production of pairs of photons or electrons, in
analogy to indirect detection signals. Unfortunately, the probability for these processes to happen is
almost zero. Second, ULDM can be produced for instance in Higgs decays and then inelastically scatter
off the detector material. These inelastic scatterings produce displaced recoil jets that can generally
appear in the first dense layers of the LHC detectors. For ATLAS this will be the two calorimeters
and for CMS it can include the silicon tracker. Unlike in standard direct detection searches, we do
not probe the actual DM nature of the candidate particle with these signatures. Nevertheless, we find
that this strategy is promising and different from other displaced signatures.
This chapter is based on work in collaboration with Martin Bauer, Patrick Foldenauer and Tilman
Plehn [2]. All tables and figures as well as a significant parts of the text are taken from the corre-
sponding publication.

5.1 Light Dark Matter Models and Current Constraints
A particular attractive aspect of wave DM is that the macroscopic de Broglie wave length can suppress
the formation of small structures and lead to less cuspy halo profiles as opposed to cold DM [157–161]. If
DM only interacts gravitationally, there is a narrow, preferred mass scale of 10−22 eV which suppresses
kpc-sized cusps and substructures [158, 162]. For wave DM with additional repulsive interactions
[163–165], these problems can be solved for a range of masses over many orders of magnitude [166–168].
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In contrast, DM with attractive self-interactions, has a destabilizing effect and causes collapses of
structures such as boson stars [169,170].
Without specifying a particular model, we can already deduce a few characteristics of sub-eV mass
DM. First of all, it has to be bosonic. Additionally, as already discussed in Section 2.2, the DM
abundance can clearly not be produced thermally. Instead, the correct relic density can be explained
by the misalignment mechanism [171,172] or by the Affleck-Dine mechanism if the scalar sector has an
explicitly broken global symmetry [173]. Furthermore, we can assume that DM is stable. Such light
DM can only decay into photons which is largely suppressed by the DM mass. Similar to the example
of decaying DM in Section 3.1, we can argue with simple dimensional arguments why this is the case.
A DM scalar can couple to two powers of the QED field strength Fµν such that its life time scales like
m3/Λ2. Similarly, a light vector couples to three powers of the field strength, leading to a life time
proportional to m9/Λ8. This implies that as long as the suppression scale is Λ & 104 GeV(m/eV)3/2

and Λ & 2.25 keV(m/eV)9/8, respectively [174], light DM does not require an additional symmetry
to make it stable. This is particularly true for the QCD axion for which the mass is related to the
suppression scale m ≈ 5.7 · 10−6 eV(1012 GeV/Λ) [175]. Nevertheless, as soon as the DM mass is above
the electron-positron threshold m > 2me, stability becomes a bad assumption.
In the following, we discuss models with a Z2-symmetry with repulsive self-interactions and point
out interesting consequences for low-energy and cosmological constraints in a class of models. This
symmetry guarantees DM stability for the whole mass range and self-interactions can be repulsive. In
our overview we distinguish two different classes: scalar and Goldstone-boson (axion-like) DM coupled
through the Higgs portal as well as through a scalar portal with a new mediator.

5.1.1 Scalar Dark Matter
A scalar singlet s protected by a Z2-symmetry provides a UV-complete model for light DM

L ⊃ 1
2∂µs∂

µs− 1
2m

2
ss

2 − 1
4!λss

4 . (5.2)

Vacuum stability requires λs ≥ 0, which implies repulsive self-interactions. Renormalizable couplings
to the SM can be established through the Higgs portal

L ⊃ −1
2λhs s

2H†H . (5.3)

Effective SM Higgs boson couplings to gluons and photons can be obtained from the low-energy
Lagrangian

L ⊃ ghγγ
v

hFµνF
µν + ghgg

v
hTrGµνGµν , (5.4)

with ghgg = αs/(12π) and ghγγ = 47α/(72π) in the consistent heavy top limit and by integrating out
the W -boson at one loop [176]. Higgs-induced DM self-interactions can be large for sizable λhs, but
any contribution can be absorbed by choosing appropriate values of λs. Scalar DM with a Higgs portal
is effectively a two parameter model, and both λhs and ms need to be independently very small to
have a viable ULDM candidate.
The second representative scalar model case is the Lagrangian of Eq.(5.2) without a Higgs portal, but
with a new scalar mediator φ and an effective coupling to gluons

L ⊃ −1
2m

2
φφ

2 − µφs
2 φs2 − αs

Λφ
φ TrGµνGµν . (5.5)

In contrast to the Higgs portal model, the mediator model introduces three additional parameters, the
mediator mass mφ, the dimensionful coupling strength to DM µφs and a coupling to gluons suppressed
by the scale Λφ. In the following, we assume a weak-scale mediator with mφ = 100 GeV. For both
scalar models we will consider a set of low-energy and cosmological constraints.
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Figure 5.1: Constraints from precision experiments, cosmology, and direct detection on scalar ULDM
with a Higgs portal [2]. The DM mass ms and the portal coupling λhs are the only free parameters.
Constraints which require the DM nature are shown with dotted contours.

Effective DM-nucleon interactions In eq. 3.36, we introduced a universal way of parameter-
izing the DM-nucleon interactions. Now that we work with fundamental models, we can resolve the
structure hidden in the effective suppression scales Λ. By relating the parameters of our model to these
scales, we can adapt constraints from neutron scattering, fifth-force searches, Eot-Wash experiments
and molecular spectroscopy measurements in Ref [34] to our models. In our case, the mediator coupling
to the gluon coupling induces an effective mediator-nucleon interaction the same way it does for the
Higgs [177],

L ⊃ gφNN N̄N φ , (5.6)

where the effective coupling in terms of the QCD partons is

gφNN = 8π
11− 2

3nL

mN

Λφ
, (5.7)

and nL denotes the number of light quarks. Combined with µφs this coupling induces a contact
interaction of two DM scalars s with two nucleons N . We can integrate out the Higgs as well as the
scalar mediator by using the matching condition

gφNN µφs
m2
φ

N̄N
s2

2 = 1
Λ N̄N

s2

2 . (5.8)

and formulate limits in both scalar DM models in terms of

L ⊃ csNNs2N̄N (5.9)

with the dimensionful coefficients

csNN = λhs
mN

m2
h

2nH
3(11− 2

3nL)
(Higgs portal)

csNN = µφs
Λφ

mN

m2
φ

8π
11− 2

3nL
(scalar mediator) . (5.10)
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Figure 5.2: Constraints from precision experiments, cosmology, and direct detection on scalar ULDM
with a scalar mediator [2]. In addition to the DM mass ms and mediator-gluon coupling 1/Λφ we fix
the mediator mass to mφ = 100 GeV its coupling to the DM agent to µφs = 60 GeV. Constraints which
require the DM nature are shown with dotted contours.

Low-energy constraints These effective operators lead to a new, fifth force, mediated by the
light scalar s that is independent of its DM character. The low-energy limits are shown in Fig. 5.1 as
a function of the DM mass and the Higgs portal coupling. Eot-Wash limits on fifth forces based on
data from torsion balance experiments [112–114] are shown in blue. For relatively high masses, shown
in the right panel of Fig. 5.1, they lose sensitivity for masses ms & 10−4 eV, corresponding to around
10−4 m, the length scale tested by the experiment. Searches for fifth forces with planar geometry
are less sensitive, but can probe distances down to a few µm. The limits from experiments by the
Stanford group [115] and at Indiana-Purdue (IUPUI) [116] are shown in the right panel of Fig. 5.1
in orange and green, respectively. Below the µm scale, constraints can be set by neutron-nucleon
scattering [111]. The corresponding limit is shown in orange in the right panel of Fig. 5.1. Finally,
molecular spectroscopy experiments are sensitive to forces below the keV scale or 10−10 m [34]. The
strongest limit is provided by measurements with muonic molecular deuterium ions [117] shown in
purple in the right panel of Fig. 5.1.
The DM halo acts like a classical background field inducing oscillating variations in fundamental con-
stants as discussed in Section 3.4. The strongest constraint comes from measurements with rubidium
and cesium at LNE-SYRTE [37,120]. In particular, the combination of quadratic couplings to quarks
and gluons effect the quark masses and QCD mass scale Λ3 [37]. A description of how to translate
these coupling to the suppression scale Λ is given in [37]. The constraints are shown in yellow in the
left panel of Fig. 5.1. The MICROSCOPE satellite [118] tests this interaction in the presence of the
same DM-background and probes deviations in the orbits of test masses. These limits, shown in light
red in Fig. 5.1, are strong up to ms ≈ 10−12 eV or length scales around 2 ·105 m, roughly corresponding
to the orbit of the satellite [37]. Considering the DM-background also for Eot-Wash limits leads to
stronger limits in the same mass range [37].

BBN constraints Another example for constraints coming from time-dependent DM oscillations
are coming from BBN. In the same way as before the oscillations induce variations in fundamental
constants such as the fine-structure constant and masses of fermions and vector bosons. From Sec-
tion 2.2.1, we know that the value of the 4He yield X4,th = 0.24709 ± 0.00025 [178] can be predicted
from BBN and agrees very well with the measured value X4,exp = 0.245 ± 0.003 [179]. Herefrom, we
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follow that any variation of the standard prediction should be within the range

∆X4

X4
= −0.008458± 0.012183 . (5.11)

This is the variation that is allowed for all fundamental constants in eq. 2.51 or more specifically
eq. 2.50. Just like in eq. 3.41, the variation of the fundamental constants depends on the classical field
value squared. Following the effective operator analysis of Section 2.2 with the variation of fundamental
constants as in Section 3.4, we get

〈s2〉W

[
−0.25

Λ2
s,γ

+ 0.32
Λ2
s,e

− 4.9
(md −mu)

(
md

Λ2
s,d

− mu

Λ2
s,u

)
+ 3.9

Λ2
s,W

− 5.4
Λ2
s,Z

]
' −0.008458±0.012183 (5.12)

By integrating out the Higgs, we get effective couplings of the DM scalar to SM particles. This yields
effective operators that we can match to the operators given in eq. 3.38 in order to obtain explicit
expressions for the scales Λs,i. With the energy density relations as in Section 3.4, we derive the
constraint for the Higgs portal

1
m2
s

λφs
m2
h

[−0.25(2ghγγ)− 3.79] ' (−2.6± 3.7) · 10−20 eV−4 , (5.13)

for ms � 10−16 eV and

1
m2
s

( ms

3 · 10−16 eV

)3/2 λhs
m2
h

[−0.25(2ghγγ)− 3.79] ' (−1.3± 1.8) · 10−20 eV−4 , (5.14)

for ms � 10−16 eV.
For the scalar mediator the operators in Eq.(5.5) lead to a universal correction to the nucleon masses
induced by the coupling to gluons, whereas corrections to other fundamental constants are strongly
suppressed. With the variation as in eq. 2.52, the constraint can therefore be expressed as

1
m2
s

4π
9
µφs
Λφ

1
m2
φ

' (4.2± 6.2) · 10−21 eV−4 , (5.15)

for ms � 10−16 eV and

1
m2
s

( ms

3 · 10−16 eV

)3/2 4π
9
µφs
Λφ

1
m2
φ

' (2.1± 3.1) · 10−21 eV−4 , (5.16)

for ms � 10−16 eV. In Fig. 5.1 we see that for ms . 10−3 eV the observed 4He abundance set during
BBN is indeed the most stringent constraint. The results for a scalar mediator displayed in Fig. 5.2
show a similar situation for a fixed mediator mass mφ = 100 GeV and coupling µφs = 60 GeV.

Supernova constraints For masses below the supernova core temperature of 2ms < TSN ≈ 30
MeV, scalar DM pairs can be radiated off in nuclei interactions inside the supernova core. In the so
called free streaming limit they are assumed to leave the star freely and provide a new source of cooling
in addition to neutrinos [121]. With the SN limit of the observation of SN1987A introduced in eq. 3.47
and the estimate in eq. 3.49, we can put a limit on the total energy-loss rate per unit mass, volume
and time. The dominant process for scalar DM production in the core is nucleon bremsstrahlung
NN → NN + ss [122]. With the prescription of relating the effective scale Λ of the DM-nucleon
interaction to our model parameters in eq. 5.10, this translates into

λhs < 2.75 · 10−4 (Higgs portal) ,
µφs
Λφ

< 1.8 · 10−5
( mφ

100GeV

)2
(scalar mediator) (5.17)

for the Higgs portal and the scalar mediator.
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For large couplings, the free-streaming limit breaks down as soon as the mean free path becomes
smaller than the supernova radius λ ≤ RSN. The light scalar particle thermalizes and is trapped in the
supernova. Building up a scalarsphere it radiates energy through black-body radiation. As elaborated
in Section 3.5, the only model input to the trapping limit is the elastic DM-nucleon scattering cross
section. It is approximately given by

σsN→sN '
1

4π c
2
sNN , assuming ms, Es � mN , (5.18)

with csNN as in eq. 5.10. We obtain the constraints

λhs < 8.1 · 10−3 (Higgs portal) ,
µφs
Λφ

< 5.2 · 10−4
( mφ

100GeV

)2
(scalar mediator) . (5.19)

The effect of these constraints on our model parameters is shown in Figs. 5.1 and 5.2. We note that
for DM masses close to the core temperature, ms . TSN, we have to include a Boltzmann factor
exp(−2ms/TSN) into the energy loss rate to model the temperature dependence [6]. For masses above
ms > 10−3 eV the BBN constraints vanish and supernova cooling yields the leading constraints,
independent of the couplings and for DM masses up to ms ∼ 50 MeV.

Invisible Higgs decays Among all possible ways to search for DM at colliders discussed in Sec-
tion 3.2, the only constraining one is the largely model-independent bound coming from searches for
invisible Higgs decays. For setting limits on DM masses, we take the ATLAS value of eq. 3.20. A
future high-luminosity run of the LHC (HL-LHC) could improve this limit by an order of magnitude
BR(h → inv) . 2% [103]. For the Higgs portal the partial decay rate of the Higgs to two scalars is
given by

Γ(h→ ss) = λ2
hs

8π
v2

mh

√
1− 4m2

s

m2
h

. (5.20)

With ms � mh/2, this provides an essentially ms-independent limit on the portal coupling of light
DM of

λhs < 8.7 · 10−3 (current) ,
λhs < 2.1 · 10−3 (HL-LHC) . (5.21)

This constraint is absent in the case of the scalar mediator portal. In Fig. 5.1 we see this limit right
above the supernova limit.

Direct detection Finally, direct detection experiments based on heavy noble gases have a recoil
threshold of ∼ 1 keV, which translates, according to eq. 3.23, into a sensitivity to DM masses of
m & 1...10 GeV. Cryogenic calorimeter experiments can lower the nuclear threshold to ∼ 100 eV,
providing sensitivity down to DM masses of m & 100 MeV. A similar threshold has been obtained
by the space based X-ray Quantum Calorimetry Experiment (XQC) which is sensitive to strongly
interacting DM in this mass range [180]. The form of the cross section for the scalar models can easily
be determined based on the preparatory work of Section 3.3. With effective quark and gluon operators
of the form

L ⊃ λhsmq

2m2
h

s2 q̄q (Higgs portal)

L ⊃ αs µφs
2Λφm2

φ

s2 TrGµνGµν (scalar mediator) . (5.22)
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we get the DM-nucleon elastic scattering cross sections

σsN→sN = 1
π

(
µsN λhsmN

2msm2
h

)2 (
fnT,u + fnT,d + fnT,s + 2

9 f
n
T,g

)2
(Higgs portal)

σsN→sN = 16π
81

(
µsN mN µφs
Λφmsm2

φ

)2

(fnT,g)2 (scalar mediator) . (5.23)

We use the results from [35,181] to set constraints on the parameters of the Higgs portal as shown in
Fig. 5.1. For DM masses of ms & 100 MeV we see the leading constraints from Xenon1T [182] (dark
grey), CRESST-III [183] (pink), CDEX [184] (cyan), Edelweiss [185] (pale brown) and XQC [180] (pale
blue). In Fig. 5.2 we show the corresponding limits for a scalar mediator.

5.1.2 Pseudoscalar Dark Matter
Unlike scalar DM, pseudoscalar or axion-like (ALP) DM [186] is described by a non-renormalizable
Lagrangian

L ⊃1
2∂µa∂

µa− m2
a

2 a2 + ∂µa

f

∑
i

ci
2 ψ̄iγµγ5ψi

+ cG
g2
s

16π2
a

f
Tr[GµνG̃µν ] + cW

g2

16π2
a

f
Tr[WµνW̃

µν ] + cB
g′ 2

16π2
a

f
BµνB̃

µν . (5.24)

All pseudoscalar couplings are suppressed by at least one power of the mass scale f . To understand
the role of f and compute the couplings to the Higgs sector we consider the UV-complete theory with
a complex scalar breaking a global symmetry

S = s+ f√
2

eia/f . (5.25)

In this section the scalar mode s is heavy. Its mass is set by f , while the mass of the pseudoscalar
a is proportional to some explicit breaking of the shift symmetry parameterized by µ, such that
ma = µ2/f . A conserved Z2-symmetry S → −S forbids all dimension-5 operators. Dimension-6
operators are introduced by the renormalizable Higgs portal and the kinetic term of the full theory

L ⊃ 1
2∂µS∂

µS† + µ2
sS
†S − λs(S†S)2 − 1

2λhs S
†S H†H . (5.26)

They give a scalar mass ms =
√

2λsf and lead to an effective, derivative Higgs portal suppressed by
1/f2 [187],

L ⊃ 2λhs
m2
s

∂µa∂
µa H†H . (5.27)

The derivative Higgs-portal can also be induced by a coupling between the complex scalar and the SM
through the effective operator

L ⊃ (∂µS)(∂µS)†
Λ2
ha

H†H = ∂µa ∂
µa

2Λ2
ha

H†H = ∂µa ∂
µa

4Λ2
ha

(v2 + 2v h+ h2) , (5.28)

where we introduce a specific suppression 1/Λha and, in the last step, insert the Higgs field. In principle,
there can be a hierarchy of scales f � Λha and we parameterize effects through the derivative Higgs
portal by Λha from now on. We also note that this operator will be generated from the Higgs portal.
Alternatively, we can write it as

∂µa ∂
µa

2Λ2
ha

H†H = −m
2
aa

2

4Λ2
ha

(v + h)2 − a∂µa

2Λ2
ha

(v ∂µh+ h∂µh) , (5.29)
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Figure 5.3: Constraints from precision experiments, cosmology, and direct detector on pseudoscalar or
axion-like ULDM with a Higgs mediator (left) and a scalar mediator (right) [2]. For the latter we again
fix the mediator mass to mφ = 100 GeV its coupling to the DM agent to Λφa = 10 GeV. Constraints
which require the DM nature are shown with dotted contours.

where the second term gives rise to a momentum-dependent scalar coupling to ALP pairs.
As a simple generalization of the Higgs mediator model we again consider a model with a new scalar
mediator φ. It is defined by the operators

L ⊃ −1
2m

2
φφ

2 − ∂µa ∂
µa

2Λφa
φ− αs

Λφ
φ TrGµνGµν . (5.30)

The coupling to gluons is described by the same parameter Λφ as in the scalar case of Eq.(5.5).
However, unlike in the scalar case this new scale is supplemented with the new physics scale of the
pseudoscalar Λφa. Such a scalar portal operator in a Z2-protected symmetry is not very exotic. It has
for example been considered to generate a fractional contribution to the effective number of degrees of
freedom [187]. More recently, the derivative Higgs portal has been considered in the context of missing
energy signals at the LHC in [188].

Effective DM-nucleon interactions In the same way as for the scalar case, we can derive ef-
fective DM-nucleon interactions. The operators given in Eq.(5.28) and (5.30) induce couplings between
ALPs and nuclei,

L ⊃ caNN ∂µa ∂
µa N̄N . (5.31)

with the dimensionful coefficients

caNN = 1
Λ2
ha

mN

m2
h

2nH
3(11− 2

3nL)
(Higgs portal)

caNN = mN

ΛφaΛφm2
φ

8π
11− 2

3nL
(scalar mediator) . (5.32)

Low-energy constraints Constraints from low-energy precision experiments can therefore be
discussed in analogy with the bounds on the couplings in Eq.(5.10). In contrast to the case of the
operators in Eq.(5.24), all ALP interactions mediated by Eq.(5.27) are momentum suppressed due to
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its derivative nature. This generalizes to theories with more than one derivative. The sensitivity of
low-energy observables is therefore strongly suppressed with respect to the case of an ALP with linear
interactions and in contrast to the scalar without a shift symmetry discussed in Sec. 5.1.1. For a more
detailed discussion of this we refer to Appendix A.2.1. The potential for the long-range force induced
by the exchange of at least two ALPs with shift-symmetry, Eq.(5.31), is suppressed by 1/r7 [34], which
suppresses the sensitivity from experiments sensitive to effects at large scales. In Fig. 5.3 we show the
constraints adapted from Ref. [34] both for the Higgs mediator and a new scalar mediator. The bounds
from Eot-wash experiments and MICROSCOPE are not relevant for the parameter space shown in
Fig. 5.3 and constraints from neutron scattering and molecular spectroscopy provide the dominant
low-energy constraints.

BBN constraints Constraints on pseudoscalar DM from BBN are further suppressed by the
derivative coupling. As shown in Section 3.4, an additional factor of m2

a enters the effective La-
grangians that vary the fundamental constants through the time derivative of the classical field with
a(t) = a0 cos(mat). As a result the DM mass dependence in Eq.(5.15) is canceling for the derivative
model. The constraints now read

1
2Λ2

ham
2
h

(
0.25chγγ

4π + 3.79
)
' (2.6± 3.7) · 10−20 eV−4 (Higgs portal)

4π
9ΛφΛφam2

φ

' (4.2± 6.2) · 10−19 eV−4 (scalar mediator) (5.33)

for ms � 10−16 eV. For masses below ma � 10−16 eV, we get

1
Λ2
ham

2
h

(
ma

3× 10−16 eV

)3/2 [0.25ghγγ
4π + 3.79

]
' (1.3± 1.8)× 10−20 eV−4 (5.34)

In any case, we see in Fig. 5.3 that the derivative interaction weakens the BBN bounds to the point
that they do not even appear in the plot.

Supernova constraints Similarly, constraints from supernova cooling are strongly suppressed,
because the derivatives induce additional temperature suppression in the nuclear bremsstrahlung rate.
For derivative models the energy loss rate is given by eq. 3.50. For setting the free-streaming limit, we
just have to make the replacement

1
2Λ3 → caNN . (5.35)

in order to find that couplings in the range

34.1
GeV >

1
Λha

>
0.3
GeV (Higgs portal) ,

740
GeV >

1
Λφ

10GeV
Λφa

(
100GeV
mφ

)2
>

0.063
GeV (scalar mediator) , (5.36)

are excluded by supernova cooling constraints.

Invisible Higgs decays These relatively model-independent constraints work the same way as
for the scalar case. With the partial width

Γ(h→ aa) = v2m3
h

128πΛ4
ha

(
1− 2m2

a

m2
h

)2
√

1− 4m2
a

m2
h

≈ v2m3
h

128πΛ4
ha

, (5.37)

the limits on invisible Higgs decays translate into

Λha & 672 GeV , (5.38)
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for the current ATLAS bound and Λha & 1.37 TeV for the projected bound from the HL-LHC. This
reach is clearly limited and an observation would not yield any information on the DM character of
a new light particle. Nevertheless, in the left panel of Fig. 5.3 we see that the invisible Higgs decays
give the leading constraint on the model.

Direct detection Finally, we again contrast the pseudoscalar model predictions with the limits set
by different direct detection experiments. Analogous to the scalar case, we derive effective interactions
term of the form

L ⊃ p · p′

2m2
h Λ2

ha

mq q̄q a
2 (Higgs portal)

L ⊃ − αS p · p′

2Λφa Λφm2
φ

a2 Tr[GµνGµν ] (scalar mediator) (5.39)

to obtain the elastic scattering cross sections via eq. 3.26

σaN→aN ≈
µ2
aN m

2
am

2
N

4πΛ4
ahm

4
h

(
fnT,u + fnT,d + fnT,s + 2

9 f
n
T,g

)2
(Higgs portal)

σaN→aN ≈
16π
81

µ2
aN m

2
am

2
N

Λ2
ah Λ2

φm
4
h

(
fnT,g

)2 (scalar mediator) . (5.40)

For the Higgs and scalar mediators we see in Fig. 5.3 that the different experiments systematically probe
their respective model parameter space for DM masses exceeding ma ∼ 50 MeV. Because of the mo-
mentum dependence of (5.31), scattering from the nuclei is suppressed by the DM velocity and bounds
from direct detection are considerably weaker compared to scalar DM. The limits from CRESST [189],
XQC [180], Xenon1T [182], CRESST-III [183], CDEX [184] Edelweiss [185] and XQC [180] are shown
with the same color coding as in Fig. 5.2. The constraints seem more important in comparison to
the supernova bounds, because the temperature suppression in the latter is more effective than the
velocity suppression in ALP-nucleus scattering.

5.2 LHC Signatures of Light Dark Matter
The strongest constraint on light new particles that can be set by the LHC relies on invisible Higgs
decays. However, this signature is largely model-independent and would not link the new particle to
DM. To test the nature of DM at the LHC one could for instance search for interactions of two light
scalar particles where one is produced in LHC processes and the other scalar comes from the local DM
background of our galaxy. Alternatively, a light scalar produced in Higgs decays can scatter with the
detector, a DIS-like process which corresponds to direct detection. In the following we will look at
both scenarios.

5.2.1 Dark Matter Annihilation
If the observed relic density is given by very light scalars with a Z2-symmetry, its number density in
the local halo is expected to be huge. For that reason, we could study the case of a particle which we
produce at the LHC and annihilates with the DM background 〈s〉 like

〈s〉s→ γγ , (5.41)

as shown in Fig. 5.4. For example we can assume that pairs of scalars s are produced at high momentum
in Higgs decays and then traverse the dense DM background. In analogy to fixed target experiments,
we can estimate the number of photon pairs produced from a beam of Ns scalars s with initial energy
Es at a distance l from the production point as [190–192]

d2Nγγ
dEs dl

= Ns Is(E0, Es, l)
dPconv
dl

, (5.42)
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h

s

s

〈s〉

γ

γ

Figure 5.4: Appearing pair of boosted photons from DM-background scattering. The produced DM
scalars originate from a Higgs decay and share the Higgs rest mass between them.

where Is denotes the energy distribution function of the scalars s. In our case, the number of produced
scalars can be calculated as Ns = Nh BR(h → ss). We assume that the scalar annihilates once it
hits the DM background and does not interact in any other way. Therefore, we can set Is(Es, E0, l) =
δ(Es − E0). This assumption is justified since we do not expect, for example, scalar self-interactions
for a DM candidate because of structure formation arguments.
Finally, we are interested in the number of DM-to-photon conversions taking place in the fiducial
detector volume. As the scalars move through the DM gas, the differential probability of a single
scalar to annihilate with a DM background particle into two photons within a spatial slice dl is given
by

dPconv(l)
dl

= e−l/λ

λ
, (5.43)

with the mean free path

λ = 1
nDM σ〈s〉s→γγ

, (5.44)

and the local DM number density

nDM = ρDM

ms
≈ 10−41

ms
GeV4 . (5.45)

Integrating Eq.(5.42) along a detector with size Ldet at a distance L0 away from the interaction point
gives us

Nγγ = Ns

∫ mh/2

0
dEs δ(Es −mh/2)

∫ L0+Ldet

L0

dl′
e−l/λ

λ

= Nh BR(h→ ss) e−L0/λ
(

1− e−Ldet/λ
)
, (5.46)

With the effective Higgs couplings defined in Eq.(5.4), the corresponding differential cross section is

dσ〈s〉s→γγ

dt
= 1

2π
λ2
hs g

2
hγγ

(s−m2
h)2 . (5.47)

As for all fixed target experiments, the center-of-mass energy is much lower than the momentum of
the incoming DM particle hitting the DM target, in our case s = msmh. With the integration bounds
of Ref. [178] this leads to the typical scaling of the total rate

σ〈s〉s→γγ ≈
λ2
hsg

2
hγγ

4π
ms

m3
h

. (5.48)
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Inserting the maximum allowed value from Higgs to invisible searches for the Higgs portal coupling,
λhs = 8.7 · 10−3, we arrive at a mean free path of

λ = 4π
λ2
hsg

2
hγγ

m3
h

ρDM
& 1043 m . (5.49)

The crucial observation is that a light DM mass cancels between the cross section and the particle
density. Hence, the mean free path for light DM particle (ms � mh) due to scattering at the DM
background is universally bigger than the size of the observable Universe, luniv ≈ 30Gpc ≈ 1027 m, by
a factor of 1016. Hence, the process is unobservable in our Universe.
For slightly larger DM masses we can briefly look at the competing annihilation channel

〈s〉s→ f̄f . (5.50)

The threshold condition

ŝ ≈ mhms = 4m2
f ⇔ ms = 4mf

mh
, (5.51)

gives us the numerical values

channel f̄f e+e− µ+µ− b̄b

ms 8.4 eV 360 keV 0.56 GeV
,

and the cross section is given by

σ〈s〉s→f̄f = λ2
hs

8π
m2
f

m4
h

(
1−

4m2
f

msmh

)
, (5.52)

where we again use s = msmh and assume ms � mh. For electrons and ms ∼ 10 eV the relic number
density will become very small and the mean free path will still be λ ≈ 1039 m, and the process hence
unobservable.
To summarize, the mean free path of a DM particle in the DM background field with our local DM
density can be written as

λ = 8.5m
( ms

10−22eV

) (10−6 GeV−2

σ〈s〉s→sth.

)
. (5.53)

The first term implies that the DM abundance increases with decreasing DM mass, and the mean
free path decreases. The second term says that higher cross sections also shorten the mean free path.
Applied to fuzzy DM with ms ∼ 10−22 eV annihilating to γγ, the first term becomes O(1) but due to
the ms/m

3
h suppression in the cross section, we cannot even come close to the 10−6 GeV−2 ∼ O(1) nb

of the numerator. For annihilations into e+e− the cross section is larger but still suppressed bym2
e/m

4
h,

i.e. nowhere close to 10−6 GeV−2. In either case, we face a large Higgs mass suppression coming from
the Higgs propagator in the annihilation process. The only way out of this is to introduce a new
scale that compensates or replaces at least some suppression factors. Replacing the light scalar with
a pseudoscalar does not help, either. Instead, it adds a momentum suppression relative to the Higgs
mass which further reduces the rate.

5.2.2 Dark Matter Scattering
The second LHC process we explore is the production of a light scalar that scatters with the detector
material as depicted in Fig. 5.5. If the scalar is sufficiently light it will be highly energetic and can
break up the nucleus in deep inelastic scattering. This time, the scalar does not scatter with the DM
background. In this case, the characteristic signature of a spontaneously appearing hadronic jet in the
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Figure 5.5: Illustration of the displaced recoil jet signature [2].

dense calorimeter material would not confirm the DM nature of the light new scalar. As before, we
consider the mean free path,

λ = 1
ndet σDIS

, (5.54)

of a light scalar s, this time moving through the detector material with the number density ndet.
σDIS is the deep inelastic scattering cross section of the process. As an example we consider the
electromagnetic (ECAL) and hadronic calorimeter (HCAL) of ATLAS. Both are sampling detectors
using lead and iron as absorber materials [193]. As DIS takes place at the level of nucleons rather than
the full nuclei we are interested in the nucleon density per unit target material. The effective nucleon
density for a material X can be computed as,

nX = NA ρX
AX
mmol
X

, (5.55)

where NA denotes Avogadro’s number, AX the mass number, ρX the density, and mmol
X the molar mass

of the material X. In the central region of the detector the ECAL has a radial extension of LE = 0.6 m
and the HCAL of LH = 2 m. The inner tracking detector is a gas detector and hence can be neglected
due to its low number density.
For each of the two detector materials we can compute the partonic cross section for the process

sN → sg +X , (5.56)

as shown in Fig. 5.6. We start with the kinematics of our process before we compute the hard matrix
element. The Feynman diagram for the process is shown in Fig. 5.6. We first define the incoming and
outgoing scalar momenta as

ps,i = (Es,i,ps,i) (incoming)
ps,i = (Es,i,ps,i) (outgoing) . (5.57)

The nucleon momentum at rest is given by

P = (M, 0, 0, 0) (5.58)
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s s
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Figure 5.6: Deep inelastic scattering of a light scalar s off a nucleon [2].

with the nucleon mass M . Therewith, we can define the momentum transfer of the scalar to the
nucleon system as q = (ps,f − ps,i) = (ν,ps,f − ps,f ) where we defined the energy loss of the scalar as
ν = Es,f − Es,i. Furthermore, we introduce the scaling variables

x = − q2

2P · q = Q2

2Mν
and y = P · q

P · ps,i
= ν

Es,i
, (5.59)

where Q2 = −q2.
The nucleon scattering cross section can now be expressed as the incoherent sum of partonic cross
sections weighted by their respective parton distribution function,

dσDIS

dx dy
=
∑
j

dσ̂DIS

dx dy
fj(x,Q2) . (5.60)

As long as we only consider DM particles dominantly coupling to gluons, the incoherent sum in
Eq.(5.60) reduces to a weighting of the partonic cross section with the gluon PDF. To study DIS in the
material of the LHC detectors we need to take into account nuclear effects by using the nuclear rather
than proton PDF sets. Therefore, we perform all our calculations with the nCTEQ15 nuclear PDF
set [194] via the ManeParse package [195]. As a cross check we compare the results with those using
the MMHT proton densities [196]. For instance in case of a scalar mediator we find about 40% more
events predicted by the appropriate proton PDF sets. With the numerically calculated interaction rate
σDIS, we can compute the probability that a single particle s scatters in a detector of length Ldet as

PDIS = 1− e−
∑

L/λ . (5.61)

Scalar Higgs portal For all models, we assume that the produced light particle carries half of the
on-shell produced mediator energy. In case of the scalar Higgs portal we approximately get Es ≈ mh/2.
Instead of a usual DIS process in high energy physics, the nucleus N in our case it at rest. Therefore,
the center-of-mass energy of the scalar–nucleus scattering is given by s = 2EsM ≈ mhM . This yields
the differential cross section for the hard scattering process in the Higgs portal model

d2σ̂DIS

dx dy
=
λ2
hsg

2
hgg

4π ŝ
Q4

(Q2 +m2
h)2 , (5.62)

where ŝ = xs = 2MEs x. The partonic cross section has to be convoluted with the gluon density in
the heavy nucleus as in eq. 5.60 and integrated over the full phase space. In the case of the scalar
Higgs portal the full DM DIS cross section on lead and iron evaluate numerically to

σFe = 5.3 · 10−9 fb and σPb = 5.5 · 10−9 fb . (5.63)
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The total scattering probability of a particle moving radially outwards is then given by

PDIS = 1− e−LE nPb σPbe−LH nFe σFe ≈ 7.5 · 10−21 . (5.64)

Next, we can combine this scattering probability with the Higgs production rate at the LHC. The
expected number of DM DIS events for the maximum allowed branching ratio by supernova cooling
constraints, λhs ≈ 2.75 · 10−4 of eq. 5.17, and invisible Higgs decay in eq. 5.21 is then given by

NDIS = LHL σh BRh→ss PDIS ≈ 4.1 · 10−16 . (5.65)

Inserting the Higgs production rate at
√
s = 14 TeV of around σh ≈ 60 pb [197] and the total integrated

luminosity expected in the high-luminosity run of the LHC (HL-LHC) of LHL ≈ 3 ab−1, we find that
this process is hopeless to observe in the renormalizable Higgs portal model.

Scalar with new mediator A more flexible alternative to the renormalizable Higgs portal is a
new scalar mediator φ with an effective coupling to gluons. Before we study the DIS signature at the
LHC we note that such a mediator can decay back into a pair of gluons or produce a pair of DM
particles,

Γφ→gg = 2α2
s

π

m3
φ

Λ2
φ

,

Γφ→ss = 1
32π

µ2
φs

mφ

√
1− 4m

2
s

m2
φ

. (5.66)

This means that the coupling to gluons will always lead to a di-jet resonance φ→ gg. As discussed in
Section 3.2, mediator searches are one way to study these interactions.
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Figure 5.7: Cross section times branching ratio for the process pp→ (φ→ gg) + j for mφ = 100 GeV
for the scalar (left) and pseudoscalar (right) model with a scalar mediator [2]. The purple contour
shows the CMS cross section limit of Ref. [198].
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We briefly report on the rough order of existing constraints although the limits from narrow resonance
searches cannot be simply translated to our model with a potentially wide mediator. Among all collider
constraints discussed in Section 3.2, mediator searches are expected to be the most relevant study for
our model. In the low-mass regime of 50 − 300 GeV, vector resonance searches Z ′ → q̄q in di-jet
events with an additional jet from ISR have been considered by CMS [198, 199]. In this search, the
highly boosted di-jet system is reconstructed as a single large jet. This jet has to recoil back to back
against a hard ISR jet, with one of the jets satisfying pT > 500 GeV. We reinterpret this analysis for
our mediator model by simply generating the (φ→ gg) + j signal and cutting with pT > 500 GeV on
the scalar. The relevant signal events pp→ φ+ j are generated with MadGraph5_aMC@NLO [200]. The
corresponding cross section times branching ratio is shown in Fig. 5.7. The purple contour represents
the CMS cross section limit for a 100 GeV. Such a boosted jet analysis should be more stable for a
broadening resonance than for instance a trigger-level resonance search. We quote the CMS limits as
the most optimistic estimate accepting that an actual analysis for our model will not be as good as
the narrow-width Z ′ search.
Just as in the Higgs portal case, the DM scalars s can undergo DIS in the detector material. We can
again calculate the partonic DIS cross section

d2σ̂DIS

dx dy
= α2

s

4π ŝ

(
µφs
Λφ

)2
Q4

(Q2 +m2
φ)2 . (5.67)

To compute the total number of expected DIS events we simulate DM production, pp → φ → ss for
a large range of mediator couplings to gluons (1/Λφ) and couplings to the DM scalar (µφs) as shown
in the left panel of Fig. 5.8. In our Monte Carlo study we analyze the pT - spectra of the produced
DM particles s and confirm that in the regime of a narrow mediator, Γφ/mφ . 10%, the averaged DM
energy is 〈Es〉 ≈ 39 GeV, with the bulk of the particles having Es = mφ/2 = 50 GeV. For simplicity,
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Figure 5.8: Left: number of expected DIS events in the plane of DM-mediator coupling µφS versus
mediator-gluon coupling Λφ for mφ = 100 GeV [2]. The blue band represents the constraint from
Supernova cooling, the purple area is the bound on low-mass di-jet resonances [198], and the dashed
lines indicate fixed ratios µφS/Λφ. Right: comparison of the projected DIS reach with the low-energy
constraints in terms of Λφ for fixed µφs [2]. Constraints which require the DM nature are shown in
light grey.
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we assume this average energy over all displayed parameter space in order to compute the number of
DIS events. This can be considered a conservative estimate since in the case of a broader resonance
the produced DM particles become more energetic on average. Thus that would enhance the DIS cross
section. In a more comprehensive study the scattering cross section should be convoluted with the DM
energy spectrum. However, this is beyond the scope of this sensitivity study. Similarly, we assume
that the displaced recoil jet signature is essentially background-free. At the LHC this statement is
never strictly true, because for instance detector failures or support structures can of course generate
displaced objects. Moreover, if a highly energetic jet were to consist only of long-lived neutral hadrons
it could generate such a recoil, but such a strong suppression of all charged hadronic activity is rather
unlikely.
To sum up, in order to pass the LHC triggers we can rely on the standard mono-jets trigger requiring
missing transverse momentum around 100 GeV. The SM-background can be reduced by using displaced
recoil jets. Nevertheless, there might be additional handles on the trigger, so we will quote projected
limits without the trigger requirements. We have checked that a for a momentum-independent scalar
coupling the trigger catches at least 10% of the signal rate and weakens the projected limits in the
coupling 1/Λφ by at most a factor three.
In the right panel of Fig. 5.8 we contrast the projected reach of the DIS process with the low-energy
and other limits from Fig. 5.2. We see that the DIS probe is complementary to all other constraints
and fills the gap for DM masses between 1 eV and 100 MeV over two orders of magnitude in the
gluon coupling 1/Λφ. The projected FCC sensitivity corresponds to a collider energy of 100 TeV and
a luminosity of L = 30 ab−1 [201]. More details on the FCC estimate can be found in App. A.2.2.
In terms of parameter reach the FCC projections exceed the HL-LHC projections by another order of
magnitude in the coupling.

Pseudoscalar with Higgs mediator Furthermore, we study the DIS signature with the deriva-
tive coupling models as well. The process is analogous to the scalar s replaced by the shift-symmetric
scalar a

aN → ag +X , (5.68)

and yields the differential DIS cross section

d2σ̂DIS

dx dy
=

g2
hgg

16π ŝ
Q4

Λ4
ha

(
Q2 + 2m2

a

Q2 +m2
h

)2

, (5.69)

where ŝ = xs = 2MEa x and Q2 = 2MEa x y. We always assume the minimum suppression scale from
the Higgs to invisible limit of Λah ≈ 672 GeV. In the limit ma � mh, the full DM DIS cross section
on lead and iron give us

σPb = 1.3 · 10−11 fb and σFe = 1.5 · 10−11 fb . (5.70)

This means that a single produced pseudoscalar a undergoes DIS in the detector with a probability of

PDIS ≈ 2.1 · 10−23 . (5.71)

Just as for the ULDM scalar Higgs portal model, The total number of expected DIS events is given by

NDIS ≈ 1.0 · 10−15 . (5.72)

is too low to be observable at the HL-LHC.

Pseudoscalar with new mediator For the pseudoscalar model with a new mediator, the light
particle a is produced from the decaying mediator φ, which again is produced in gluon fusion. We
follow the analysis of the scalar case to produce the signal, pp → φ → aa. Our Monte Carlo study
shows that as long as the mediator has a comparatively narrow width, Γφ/mφ . 10%, the produced
DM particle a carries roughly half the mediator mass in momentum. For a weak-scale mediator mass
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Figure 5.9: Left: number of expected DIS events in the plane of DM-mediator coupling Λφa versus
mediator-gluon coupling Λφ for mφ = 100 GeV [2]. Right: comparison of the projected DIS reach with
the low energy constraints in terms of Λφ for fixed Λφa = 10 GeV [2]. Constraints which require the
DM nature are shown in light grey.

mφ ∼ 100 GeV this is typically enough such that a can undergo deep inelastic scattering with the nuclei
in the detector material. The relevant cross section of the hard scattering process aN → ag+X, reads

d2σ̂DIS

dx dy
= α2

s

16π ŝ
Q4

Λ2
φaΛ2

φ

(
Q2 + 2m2

a

Q2 +m2
φ

)2

. (5.73)

The left panel of Fig. 5.9 displays the expected number of DIS events at an ATLAS-like detector for the
high luminosity run of the LHC. The grey and black dashed lines show the contours of Γφ/mφ . 10%
and . 100%. Because of its momentum dependence in the DM-coupling, the effect of the mono-jets
trigger is significantly smaller than for the scalar case. We estimate the trigger survival rate of the
pseudoscalar signal to be above 70%, translating into a negligible 15% shift in the coupling reach.
Again, the right panel of Fig. 5.9 shows the corresponding HL-LHC and FCC projections in model
space, compared to all other limits from Fig. 5.3. The DIS signature closes the wide gap from all
other limits over 13 orders of magnitude in ma and covers the supernova constraints, providing an
independent collider probe of the cosmological observations. The FCC projections again exceed the
HL-LHC projections by an order of magnitude in the coupling and provides the leading signatures for
pseudoscalar DM with a weak-scale mediator.

5.3 Conclusions
Light DM is a relatively new avenue of DM model building and phenomenology. The ULDM candidate
can be described by a semi-classical wave and can be embedded into a quantum field theory Lagrangian.
This enables us to consider a wealth of measurements based on astrophysical observations, fifth force
experiments, measurements that are sensitive to variations of fundamental constants as well as well
established search strategies at the LHC and in direct detection experiments.
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In particular, we have studied ULDM models with a light scalar or pseudoscalar DM particle in a
mass range from well below the eV scale to the GeV scale. In both model cases the DM candidate
couples to the SM via the SM-like Higgs or a new, weak-scale scalar mediator. We have studied a large
number of constraints including low-energy precision measurements, BBN, supernova cooling, invisible
Higgs decays, and direct DM detection. The relative impact of these constraints depends strongly
on the quantum numbers of the DM and on the nature of the mediator. In pseudoscalar models
with momentum-dependent couplings to the mediator, experimental searches at low energies have
a negligible impact on constraining the parameter space. For scalar DM instead BBN for instance
strongly constrains very light DM masses. Whereas invisible Higgs decays obviously only apply to
models with a SM-like Higgs mediator, supernova constraints are very model independent. Current
direct detection experiments, like Xenon1T, start cutting into the parameter space at relatively large
DM masses.
Apart from existing constraints, we have studied two novel LHC signatures. On the one hand, light
DM particles produced for instance in Higgs decay can annihilate with the DM background in the
LHC detector. Such processes can produce pairs of photons or electrons that could be detected in
LHC detectors. Unfortunately, we find the rate of this signal to be too low. On the other hand,
similar to direct detection in nucleon recoils, light DM produced at the LHC can hit the nuclei in
the ATLAS and CMS calorimeters and produce a hard, displaced recoil jet. This completely new
signature of ULDM is a lot more promising and should be observable at the LHC for scalar mediator
models. In a first sensitivity study, we have estimated that theses signatures could close a gap in all
current constraints from ms = 1 eV to the direct detection thresholds around ms = 100 MeV for scalar
ULDM. For pseudoscalar ULDM it covers the whole parameter space between ma = 10−6 ... 107 eV,
ranging from atomic spectroscopy measurements to supernova cooling all the way to large-scale direct
detection experiments. This search strategy can also be immediately generalized to other very light
particles, for instance neutrinos, as long as they can be produced at the LHC with sufficient energies
and rates.
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6 | Conclusions

Exploring the fundamental nature of DM remains one of the biggest questions of fundamental physics
nowadays. Gravitational evidence for its existence has been provided by a wealth of astrophysical and
cosmological observations. On galactic scales DM is needed in order to explain rotation curves of spiral
galaxies. The inclusion of DM in explaining astrophysical observations has been further supported on
the scale of galaxy clusters by studying the peculiar motion of cluster and cluster collisions. The CMB
power spectrum has confirmed that we live in a flat Universe dominated by DM and dark energy.
Moreover, the CMB yields a precise prediction of the DM abundance in the Universe.
Beyond its gravitational interaction, the behavior of DM is unknown. In the context of particle DM,
DM searches have only been successful in excluding models rather than providing any signals so far.
Especially, WIMPs with s-wave annihilation processes have been largely excluded by indirect detection
searches in the multi-GeV region. With weak-scale DM being under pressure, it might be more likely
that DM lies in other mass ranges.
In this thesis, we focused on DM candidates in the sub-GeV mass range. In Chapter 2 and 3 we have
collected a variety of tests that sub-GeV DM has to pass in order to represent a valid DM candidate.
Phenomenologically that mass range is relatively new. So far, experimental studies dedicated to DM
have been largely based on searches that have been initially designed for weak-scale DM. Nevertheless,
great experimental efforts push indirect and direct detection limits on DM masses down to the sub-GeV
range. Collider experiments operate at energies around the TeV and are plagued by QCD backgrounds
for low energies. For light DM masses, the major challenge for LHC studies is to find clean signatures
distinguishable from QCD activities. If the DM candidate couples to the Higgs, Higgs-to-invisible
searches set constraints on these couplings. Extended dark sectors often include particles that behave
a lot differently from SM particles. If the lifetime of these produced particles is just as long that
they can travel some distance before decaying inside the detector, this could yield exotic signatures
like displaced vertices or emerging jets. For ULDM masses, the search strategy seems to be a lot
different. If the DM candidate is a scalar and can be described by its wave nature, it could vary
fundamental constants of nature. These variations affect the production of helium at the time of BBN,
and atomic spectroscopy experiments. Furthermore, fifth force searches and the observation of the
SN1987A supernova set constraints that do not require DM nature of a novel particle.

Indirect detection searches in the sub-GeV range have so far only been explored for DM annihilations
into leptonic final states. The description of DM annihilations into hadronic final states have not been
provided by standard Monte-Carlo tools like Pythia. As described in Chapter 4, a major technical
problem is the theoretical description of vector meson resonances in the MeV to GeV DM mass range.
In order to fully explore the sub-GeV range for indirect detection searches, we developed a Monte-
Carlo-based implementation in Herwig to describe annihilations of DM in vector mediator models.
The calculations are based on data for e+e− → hadrons and cover all dominant hadronic final states
in the sub-GeV range. We present distinct photon and lepton energy spectra that serve as a direct
input to indirect detection rate calculations. The results of Chapter 4 will be available in a future
version of Herwig7 and tabulated energy spectra of exemplary DM models will included in the next
DarkSUSY release. This provides the basis of fully exploring thermal DM in the sub-GeV range.
Furthermore, the results can be beneficial for any BSM model depending on the description of new
light vector mediator decays.
Beyond thermal DM, ULDM is an attractive candidate to describe the DM of the Universe. It can be
described as a classical wave and its macroscopic de Broglie wavelength can suppress the formation
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of small structures. Besides its wave nature, we formulate ULDM as a quantized field in a quantum
theoretical particle physics model. In Chapter 5, we systematically go through to exemplary models,
a light scalar or pseudoscalar DM candidate coupling, either to the SM Higgs, or a new weak-scale
mediator. We find that especially BBN puts strong constraints on scalar ULDM below 10−3 eV
complemented by fifth force searches. Higgs-to-invisible searches and SN constraints that set largely
mass-independent, are the leading bounds on ULDM coupling to the SM Higgs above 10−3 eV for both
scalar and pseudoscalar DM candidates. Whereas SN constraints are still present for DM coupling
to a new mediator, the Higgs-to-invisible constraints are absent. This opens up a large uncovered
parameter space between low energy constraints below eV DM masses and direct detection bounds
above 107 eV. That range can be tackled by a novel LHC signature that we propose. Similar to
direct detection in nucleon recoils, we study the case of DM hitting the nuclei of material inside LHC
detector. These interactions can produce hard, displaced jets that are fundamentally different from
existing BSM searches and expected to be largely SM background free. Besides testing ULDM, the
novel LHC signature can be applied to other searches of very light particles that are produced at the
LHC with sufficient energy and rates.
In summary, sub-GeV DM candidates have become an attractive target of both experimental and theo-
retical DM searches. Just below the GeV scale, indirect detection is expected to put strong constraints
on annihilating DM. The inclusion of DM processes into hadronic final states is therefore of great
importance to fully explore the parameter space. We provide a Monte-Carlo based implementation of
DM annihilations to fill the MeV gap for DM vector mediator models. In case of non-thermal DM,
experimental searches for ULDM are mostly based on low energy experiments, and astrophysical or
cosmological observations. Many of them study the properties of wave DM and its consequences on
the fundamental constants of nature. Others set constraints on ULDM in fifth force experiments.
Thereby, introducing a new LHC signature extends the opportunities to study very light DM. Overall,
the results discussed in this thesis broaden the possibilities to study DM candidates in the sub-GeV
range to finally shed a light on the nature of DM!

68



Acknowledgments

First of all, I am grateful to my advisor Tilman Plehn for taking me as a student in my Bachelor, Master
and PhD and for all his advice and support during the past five years. Giving me the opportunity to
work on an exciting Bachelor’s project, encouraging me to do my Master’s thesis abroad in Durham
and accepting me as a PhD student did not only have a great impact on my path in physics but also
on my life over the last few years.
Moreover, I would like to thank Björn Malte Schäfer for refereeing my thesis and Stephanie Hansmann-
Menzemer and Hans-Christian Schultz-Coulon for completing my examination committee.
I acknowledge the Research Training Group “Particle Physics at the LHC” (DFG GRK 1940) for
funding my PhD and for the financial support for my travels during my PhD.
It has been a pleasure to collaborate with many inspiring people. Special acknowledgments go to
Peter Richardson for numerous inspiring and helpful Skype meetings and his huge contribution to the
implementation of dark matter processes in Herwig. A big thank-you also goes to Martin Bauer and
Patrick Foldenauer. Discussing exotic novel LHC signatures and working with you has been great fun!
I thank Dominic Chia, Caspar Groiseau, Ramon Winterhalder and especially Anke Biekötter and
Sebastian Schenk for proofreading parts of my thesis.
I would like to thank all current and former members of the Heidelberg pheno group for all the fun coffee
breaks, Marstall lunches, and moments we shared in Philosophenweg and elsewhere. In particular, I
would like to thank the previous generation of PhD students, Anke Biekötter for her hospitality during
my research stay in Durham, and the little tricks she played like the common effort to provide magnets
and nice posters for the coffee kitchen, Sebastian Schenk for all the fun Skype chat conversations and
sharing an endless list of in-jokes with me, and Patrick Foldenauer for making me feel that I am not the
only Geordie-Schwoab in the group; Anastasiia Filimonova for enriching the coffee breaks with fancy
sweets and fun conversations; Michel Luchmann for standing all the well-meant banter ;-); Marco
Bellagente for not only carrying each other over the finish line in the NCT run but also for all the
delicious cooking evenings and all the other off-time fun during my PhD; and last but not least my
“Prolli<3” Ramon Winterhalder for sharing the PhD journey together, for a great time in the Proll
office in Phil16, as well as many evenings together, mostly including a beer, or two ;-) .
Further, I would like to thank my flatmates for their support and letting me occupy the kitchen often
enough to work there. Finally, I want to thank my family and friends for their support through all
stages of my life! I am so proud to have you!

69



Chapter 6. Acknowledgments

70



A | Appendix

The content of the appendix with all tables, plots as well as the text is fully taken from the work done
in [1] and [2].

A.1 Fits to e+e− Annihilations with Error Envelopes
A list of all studied channels of e+e− → hadrons processes, their parametrizations, their data fits,
and their threshold values is given in Tab. A.1. Our modelling of the e+e− scattering processes
relies on the theory of vector meson dominance [255]. In that case the hadronic current 〈had|Jµem|0〉
can be described by a momentum-dependence and a form-factor that includes all resonances allowed
under certain isospin symmetry assumptions. The parametrization and fit values for the form-factors
for the πγ, ππ, 3π, ωπ, and ηγ final states are taken from Refs. [206, 208, 211], as implemented
in the event generator Phokhara [256, 257], and the Born cross section formulae from the SND
measurements [202, 212, 232]. For all other channels, we provide new fits. Our modelling does not
take into account possible final state interactions such as rescattering [258] and Sommerfeld-effects of
non-relativistic final states [259]. For example, the K-matrix approach [260] includes such interactions,
e.g. the ππ ↔ KK rescattering above the KK threshold, with an infinite series of rescattering loops.
It is used to describe, for example, three-body B-decays [261]. The only exception of using rescattering
effects is the Flatté parametrization in the ωππ channel that takes into account KK threshold effects
as seen below.

Channel Data Parametrization fit threshold [GeV]
πγ [202] [202] [202]
ππ [203–205] [206] [206] 0.280
πππ [207] [208] [208] 0.420
4π [209,210] [211] own 0.560
ωπ [212] [212] [212] 0.918
pp̄/nn̄ [213–230] [231] own 1.877
ηγ [232] [232] [232] 0.548
ηππ [233,234] [235] own 0.827
η′ππ [236] [235] own 1.237
ωππ [236–238] own own 1.062
ηφ [239,240] own own 1.568
ηω [241] own own 1.331
φπ [239,242] own own 1.160
KK [215,243–251] [206] own 0.996
KKπ [239,242,252–254] own own 1.135

Table A.1: Dominant processes contributing to e+e− → hadrons in the relevant energy range [1].
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c1R1 -0.467(12) c1I1 -0.385(15) c1R2 -0.177(11) c1I2 0.149(12)
c1R3 0.301(18) c1I3 0.264(16) c2R1 0.052(13) c2I1 -3.040(21)
c2R2 -0.003(11) c2I2 2.380(15) c2R3 -0.348(11) c2I3 -0.104(12)
c3R1 -7.88(47) c3I1 5.67(29) c3R2 10.20(10) c3I2 -1.94(31)
c4R1 -0.8320(11) c4I1 0.3080(12) c4R2 0.4050(11) c4I2 -0.2500(12)

Table A.2: Parameters of the nucleon form factor from our fit using the model describing pp production
from Ref. [231].

pp̄ (update)
The data and the fit function for this channel are given in Tab. A.1. We updated the data set
used for our fit since from the input to the previous fit [231] Ref. [262] is superseded by Ref. [223],
Ref. [263] by Ref. [228], and Ref. [264] by Ref. [214]. For asymmetric data uncertainties we symmetrize
statistical and systematic uncertainties separately and then add both in quadrature. We refrain from a
more sophisticated error analysis for instance including correlations between systematic uncertainties,
since in most cases detailed information about the systematic uncertainties is either missing or the
statistical uncertainty dominates. For the fit, we get χ2/n.d.f = 1.069, and the best-fit values are
shown in Tab. A.2.

ηππ, η′ππ (update)
The fit function for the ηππ and η′ππ hadronic currents are based on [235]. We re-fit the fit function
to more recent data sets [233, 234] compared to those used in [235]. The fit values can be found in
Tab. A.3.

KK (update)

We parametrize the hadronic current for the K0K̄0 and K+K− channels in the same way as done
in Ref. [206]. Unlike Ref. [206], we do not fix all masses and widths of the ρ, ω and φ states to their
PDG values but let them float in the fit. Furthermore, we use an updated data set for the fit, as
mentioned in Tab. A.1 and included the τ− → K0

Sπ
−ντ data from Ref. [265] to better constrain the

I = 1 component of the current. The fit values are listed in Tab. A.4. The last coupling of each
resonance is calculated via Eq.(16) in Ref. [206], and we keep ηφ = 1.055, γω = 0.5 and γφ = 0.2 fixed
such as in Ref. [206]. For the simultaneous fit to K0K0 and K+K− data we obtain χ2/n.d.f = 1.621.

4π (update)
For the 4π channel, we use the parametrization of Ref. [211] and fit it to more recent rate measurements
for e+e− → 2π0π+π− and e+e− → 2π+2π− from BaBar [209, 210]. We obtain a χ2/n.d.f = 1.28 and
the fit values are listed in Tab. A.5.

Parameter ηππ η′ππ Parameter ηππ η′ππ

mρ1 [GeV] 1.5400(39) - a1 0.326(10) 0 (fixed)
mρ2 [GeV] 1.7600(58) - a2 0.0115(31) 0 (fixed)
mρ3 [GeV] 2.15 (fixed) 2.110(36) a3 0 (fixed) 0.0200(81)
Γρ1 [GeV] 0.356(17) - ϕ1 π (fixed) -
Γρ2 [GeV] 0.113(22) - ϕ2 π (fixed) -
Γρ3 [GeV] 0.32 (fixed) 0.18(11) ϕ3 0 (fixed) π (fixed)

χ2/n.d.f 0.8732 0.9265

Table A.3: Fit values for the ηππ and η′ππ channels [1].
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mρ0 0.77549 (PDG) Γρ0 0.1494 (PDG) cρ0 1.1149(24) cρ4 -0.0383(66)
mρ1 1.5207(53) Γρ1 0.213(14) cρ1 -0.0504(44) cρ5 0.0775 (calc.)
mρ2 1.7410(38) Γρ2 0.084(12) cρ2 -0.0149(32) βρ 2.1968
mρ3 1.992(15) Γρ3 0.290(41) cρ3 -0.0390(45) - -
mω0 0.78265 (PDG) Γω0 0.00849 (PDG) cω0 1.365(44) cω3 1.40(27)
mω1 1.4144(71) Γω1 0.0854(71) cω1 -0.0278(83) cω4 2.8046 (calc.)
mω2 1.6553(26) Γω2 0.1603(26) cω2 -0.325(30) βω 2.6936
mφ0 1.0194209(94) Γφ0 0.004253(21) cφ0 0.9658(27) cφ3 0.1653(50)
mφ1 1.5948(51) Γφ1 0.029(18) cφ1 -0.0024(20) cφ4 0.1195 (calc.)
mφ2 2.157(57) Γφ2 0.67(16) cφ2 -0.1956(19) βφ 1.9452

Table A.4: Parameters for the description of KK production from our fit [1] using the model of
Ref. [206]. All masses and widths are given in GeV, all other parameters are dimensionless

ηφ, ηω, φπ (new)

Our first new fit is to the processes e+e− → ηφ, ηω, φπ, where the momentum-dependent Born cross
sections are

σ(s) = 4παem(s)2

3ŝ3/2 Pf (s) |F |2, (A.1)

where αem(s) is the fine structure constant, Pf (s) = q3
cm,X the final-state phase space, qcm,X the final-

state particle momentum and F is the respective form factor. The resonant contributions are simply
parametrized by

Fηω,ηφ =
∑
i

aie
iϕi

m2
i − ŝ− imiΓi

,

Fφπ =
∑
i

aie
iϕi

m2
i − ŝ− i

√
ŝΓ(ŝ)

, (A.2)

where we take the s-dependent width Γ(s) from Ref. [239]. All parameters and fit values for ηφ, ηω,
and φπ production are listed in Tab. A.6.

ωππ (new)
Next, for the ωππ channel, we use

〈ωππ|Jµem|0〉 = egµν
gω′′m

2
ω′′

ŝ−m2
ω′′ + imω′′Γω′′

gνσε
σ
ω

∑
i=1,2

BWfi(q2) (A.3)

m̄ρ1 1.44 (fixed) m̄ρ2 1.74 (fixed) m̄ρ3 2.12 (fixed)
Γ̄ρ1 0.678(18) Γ̄ρ2 0.805(29) Γ̄ρ3 0.209(29)
βa1

1 -0.0519(56) βa1
2 -0.0416(20) βa1

3 -0.00189(47)
βf0

1 7.39(0.29) · 104 βf0
2 −2.62(0.19) · 103 βf0

3 334(87)
βω1 -0.367(27) βω2 0.036(11) βω3 -0.00472(77)
ca1 -202.0(24) cf0 124.0(52) cω -1.580(73)
cρ -2.31(24) χ2 291 n.d.f 228

Table A.5: Parameters for the 4π channel for our fit [1] using the model from [211]. All masses and
widths are in GeV; couplings βji , (j = a1, f0, ω and i = 1, 2, 3) as well as cρ are dimensionless; ca1 and
cf0 in GeV−2 and cω in GeV−1.
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Process ηφ ηω φπ

i φ′ φ′′ ω′ ω′′ ρ ρ′

mi [GeV] 1.67 ± 0.0063 2.14 ± 0.012 1.425 [178] 1.67 ± 0.0087 0.77526 [178] 1.593 [239]
Γi [GeV] 0.122 ± 0.0075 0.044 ± 0.033 0.215 [178] 0.113 ± 0.016 0.1491 [178] 0.203 [239]
ai 0.175 ± 0.0084 0.0041 ± 0.0019 0.0862 ± 0.011 0.0648 ± 0.0078 0.194 ± 0.073 0.0214 ± 0.0035
ϕi 0 (fixed) 2.19 ± 0.046 0 [241] π [241] 0 (fixed) 121 ± 16.9 deg.
χ2/n.d.f 0.9388 1.3332 0.9798

Table A.6: Fit values for the ηφ, ηω, and φπ channels [1].

for the hadronic current. In our energy range we only need to consider one vector meson mediator ω′′,
namely the ω(1650) meson. For the fi mediator we have

BWf1(mππ) = gω′′ωσm
2
σ

m2
ππ −m2

σ + imσΓσ
(A.4)

where mσ and Γσ are the mass and width of the σ meson and using the Flatté parametrization [266]

BWf0(mππ) =
gω′′ωf0(980)mf0(980)

√
Γ0Γππ

m2
ππ −m2

f0(980) + imf0(980)(Γππ + Γ∗
K̄K

) (A.5)

with

Γππ = gππqπ(mππ)

ΓK̄K =
{
gK̄K

√
(1/4)m2

ππ −m2
K , above threshold

igK̄K
√
m2
K − (1/4)m2

ππ, below threshold
Γ∗
K̄K

= 0.5 · (ΓK̄0K0 + ΓK+K−)
Γ0 = gππqπ(mf ) (A.6)

for the f0(980) meson, with parameters from Ref. [267]. If not mentioned otherwise, the parameters are
set to their PDG values [178]. The σ meson contribution can be viewed as a phase space contribution
to the ωππ channel more than resonant contribution. Therefore, the width is chosen to be large, see
Tab. A.7.

KKπ (new)

Below 2 GeV center-of-mass energy the process e+e− → KKπ is dominated by
e+e− → KK∗ → K(Kπ) where KK∗ can be either K0K∗0(890) or K±K∗∓(890). We can re-
late the possible final states through their isospin I = 0, 1 and can use the following relations for the

Parameter Fit value PDG
mω′′ 1.69± 0.00919 GeV 1.670± 0.03 GeV
Γω′′ 0.285± 0.0143 GeV 0.315± 0.035 GeV
mσ 0.6 GeV -
Γσ 1.0 GeV -
gω′′ωσ 1. (fixed) -
mf0(980) 0.980 GeV 0.990± 0.020 GeV
Γf0(980) 0.1 GeV 0.01-0.1 GeV
gω′′ωf0(980) 0.883± 0.0616 -
gω′′ 1.63± 0.0598 -
χ2/n.d.f 2.001

Table A.7: Fit values for the ωππ channel [1].
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fit value I i = 1 i = 2 i = 3

AI,i in GeV−1 I = 0 0 (fixed) 0.233± 0.020 0.0405± 0.0081
I = 1 −2.34± 0.15 0.594± 0.023 −0.018± 0.013

ϕI,i
I = 0 0 (fixed) 1.1E-07± 0.092 5.19± 0.34
I = 1 0 (fixed) 0.317± 0.056 2.57± 0.32

mI,i [GeV] I = 0 1.019461 (fixed) 1.6334± 0.0065 1.957± 0.034
I = 1 0.77526 (fixed) 1.465 (fixed) 1.720 (fixed)

ΓI,i [GeV] I = 0 0.004249 (fixed) 0.218± 0.013 0.267± 0.032
I = 1 0.1491 (fixed) 0.400 (fixed) 0.250 (fixed)

Table A.8: Fit values for the KKπ channel [1].

corresponding amplitudes A0,1 [268],

K+(K−π0) +K−(K+π0) : 1√
6

(A0 −A1),

K0
S(K0

Lπ
0) +K0

L(K0
Sπ

0) : 1√
6

(A0 +A1),

K0(K−π+) + K̄0(K+π−) : 1√
3

(A0 +A1),

K+(K̄0π−) +K−(K0π+) : 1√
3

(A0 −A1) . (A.7)

For the amplitudes with intermediate resonances, e+e− → V → KK∗, we use the standard Breit-
Wigner dsitribution

AI =
∑
i

AI,i
m2
I,ie

ϕI,i

m2
I,i − ŝ− i

√
ŝΓI,i

. (A.8)

In the energy range we are dealing with, we expect the resonances to be φ(1680) and φ(2170) for I = 0
and ρ(1450) and ρ(1700) for I = 1. The lower resonances ρ(770) and φ(1020) are not considered in
the energy range of the fit and we set their couplings to zero. Furthermore, we fix the mass and the
width of the intermediate K∗ resonance to mK∗ = 0.8956 GeV and ΓK∗ = 0.047 GeV and use a p-wave
Breit-Wigner propagator of the form

BWK∗(s) = gK∗Kπm
2
K∗

m2
K∗ − s− i

√
sΓ(s) , (A.9)

with the s-dependent width

Γ(s) = ΓK∗
√
s

mK∗

(
β(s,m1,m2)2

β(mK∗ ,m1,m2)2

)3/2

. (A.10)

where m1,m2 are the decay products of the K∗ state and

β(s,m1,m2) =
(

1− (m1 +m2)2

s

)1/2(
1− (m1 −m2)2

s

)1/2

(A.11)

is their velocity in the rest frame of K∗. The K∗Kπ coupling is given by

gK∗Kπ =
√

6πm2
K∗/(0.5mK∗β(m2

K∗ ,mK± ,mπ±))3ΓK∗ = 5.37392360229 . (A.12)

Furthermore, we include a small φπ0 contribution for final states including neutral pions by adding
the φπ0 cross section obtained by the φπ fit and the corresponding branching fractions BR(φ(1020)→
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K0
LK

0
S) = 0.342 and BR(φ(1020) → K+K−) = 0.489. We perform a simultaneous fit to all possible

final states in order to obtain the fit parameters of the amplitudes A0,1. The fit values can be found
in Tab. A.8.
We show all numerical best-fit solutions as blue lines for all final states in Figs. A.1, A.2, and A.3.
The error bars on the data are dominated by statistical uncertainties. All fits describe the most recent
data sets over the entire range shown.

Error bands

In addition to the central values of the relevant parameters describing the e+e− data we also estimate
the error bands for the relevant processes. The reason is that some of the channels are rather poorly
measured, and it is important to propagate these uncertainties through the analysis. Because most fit
parameters are physical parameters appearing in the analytic description of the e+e− cross sections,
such as masses or widths or rates, we do not find them suitable for a proper statistical analysis.
For instance a total cross section measurement will lead to uncontrolled correlations between widely
different phase space regions in the fit, where the different phase space regions are crucial to describe
the dark matter spectra for a variable dark matter mass. Examples for the impact of a known form of
the energy dependence of the scattering process on poorly measured phase space regions are the ηππ
channel in Fig. A.1, the ππ channel in Fig. A.2, or the 3π channel in Fig. A.3.
Instead, we define envelopes by varying a sub-set of fit parameters around their mean value within
their uncertainty provided our python IMinuit [269,270] fit or as stated in papers. For poorly resolved
peak structures as in the η′ππ, φπ, and ηω case or higher resonances as in ηφ and KKπ, we do not
vary any widths and only some masses, since they are determined from the peak structure and bias the
off-peak spectrum through correlations. The contribution of phases to our envelopes is only considered
if no other set of parameters is sufficient to describe the measurement uncertainties. For channels with
simple parametrizations with fixed masses and widths and floating peak cross sections and phases as
in the case of πγ [202] and ηγ [232], we vary all peak cross sections and the phases of the φ and ω
resonance, respectively. In these cases, we see that away from the resonance region the error envelopes
increase. For precisely measured phase space regions, we consider the full set of parameters describing
these regions. These are usually large peak structures such as the φ → KK and ρ → ππ resonances
in Fig. A.2 or the ω, ρ→ 3π peak around 0.78 GeV in Fig A.3. Those resolved regions turn out to be
well described and are stable against variations of the parameters, so they give only small envelopes.
It can be challenging or nearly impossible to obtain consistent envelopes for some channels, where one
parametrization is used for several sub-channels as in the case of KK and pp̄/nn̄. As long as the shape
of the data is the same as in the case of 4π, KKπ and the φ resonance region in the KK channel, this
does not cause any problems. Here we can assume that a parameter and its variation influence the fit
curve in the same way. However, for energies above 1.4 GeV in the KK channel, the trend of the data
of K+K− and K0K̄0 is completely different. Therefore, already the fit to the data is challenging and
only possible by allowing for more resonance fit parameters in the parametrization [206]. A variation
of the parameter might influence both channels differently and it is not clear that an extremal value in
the one case is also extremal in the other. This tension of both data sets causes too small error bands
for energies above 1.8 GeV. For the pp̄/nn̄ channel, we do not have sufficient data for nn̄ to describe
this channel properly as already described in Ref. [231].
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Figure A.1: Cross sections for hadronic final states with error envelopes [1].
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Figure A.2: Cross sections for hadronic final states with error envelopes [1].
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Figure A.3: cross sections for hadronic final states with error envelopes [1].
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Figure A.4: Left: Two-to-two scattering via two-pseudoscalar exchange. Right: Two-to-two scattering
via n-pseudoscalar exchange [2].

A.2 Very Light Dark Matter

A.2.1 Multi-Pseudoscalar Exchange
We mention in the main text that a pseudoscalar field a obeying a shift symmetry can be coupled
to SM fields via derivative couplings. For long-range forces mediated by the exchange of a there are
important differences between linear couplings of a to the SM and theories in which only operators
with multiple a insertions feature. For a linear derivative coupling of a to an axial current,

∂µa

2f ψ̄γµγ5ψ + ∂µa

2f χ̄γµγ5χ , (A.13)

long-range forces between the fermions ψ and χ can be induced due to s-channel pseudoscalar exchange.
The corresponding amplitude reads

|M|2 = 1
64f4

1
(q2 −m2

a)2 Tr[(/p2 −mψ)/qγ5(/p1 +mψ)/qγ5] Tr[(/p3 +mχ)/qγ5(/p4 −mχ)/qγ5]

=
m2
ψm

2
χ

f4
(

1− 2m
2
a

q2 + m4
a

q4

) =
m2
ψm

2
χ

f4 +O
(
m2
a

q2

)
. (A.14)

In the limit of large momentum transfer q � ma the leading term of the amplitude is q-independent.
The leading operator for derivative couplings with two a insertions is given by (5.28),

∂µa ∂
µa

2Λ2
ha

H†H .

At low energy we can integrate out the Higgs such that the derivative Higgs portal induces interactions
of the type

L ⊃ 1
v

∂µa∂
µa

2Λ2
ha

ψ̄ψ + 1
v

∂µa∂
µa

2Λ2
ha

χ̄χ . (A.15)

Similar to the case of linear derivative interactions this leads to the scattering shown in Fig. A.4. The
corresponding matrix element reads

iM = v̄(p2) iq2

2vΛ2
ha

u(p1)
∫

d4`

(2π4)
i

`2 −m2
a

i

(`+ q)2 −m2
a

ū(p3) iq2

2vΛ2
ha

v(p4)

∝ q4
∫
dx log

(
xΛc

m2
a − x(1− x)q2

)
, (A.16)

where Λc is a momentum cutoff of the loop integral. Obviously, the resulting amplitude |M|2 has no q-
independent part and vanishes ∝ q4 at low momentum transfer. Operators with additional derivatives
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increase the power of the momentum q associated with the n-point vertex. In contrast, the overall
momentum transfer flowing through the diagram will always be equal to q2. Any long-range force
mediated in such a theory is momentum-suppressed.
Theories with multi-pseudoscalar exchange are therefore qualitatively different from theories with
a linearly coupled pseudoscalar. The sensitivity of experiments with small momentum exchange is
strongly suppressed in the case of multi-pseudoscalar exchange which makes the case for complementary
approaches beyond astrophysical and precision measurements of low-energy observables.

A.2.2 FCC Projections
Complementing our LHC analysis of DIS in scalar simplified DM models at the LHC in Sec. 5.2.2, we
illustrate our results for a future circular hadron collider (FCChh) with an energy of 100 TeV and an
integrated luminosity of 30 ab−1 [201]. Just as in Chapter 5 we generate Monte Carlo events using
MadGraph5_aMC@NLO [200] for the DM production channels

pp→ φ→ ss , aa (A.17)

where the mediator φ couples to gluons through the usual dimension-5 operator. For these signals
we calculate the number of expected DIS events as outlined in Sec. 5.2.2. We illustrate our result
in Fig. A.5. Comparing our findings for the FCC in the simplified portal model in the left panel
of Fig. A.5 with those for the LHC shown in the left panel of Fig. 5.8, we see that at the FCC we
expect roughly a factor of hundred more events for a given point in the parameter space. For the
pseudoscalar, derivative case we compare the right panel of Fig. A.5 to the left panel of Fig. 5.9 and
find a thousand times as many events for the FCC. This is expected from the momentum enhancement
shown in Eq.(5.67) compared to Eq.(5.73).
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Figure A.5: Left: number of expected DIS events at the FCChh in the plane of DM-mediator coupling
µφs versus mediator-gluon coupling Λφ for scalar ULDM with mφ = 100 GeV [2]. Right: same for the
pseudoscalar ULDM [2].
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