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Zusammenfassung

Biologische Zellen nehmen nicht nur biochemische, sondern auch physikalische Reize
aus ihrer Mikroumgebung wahr. Zahlreiche Anhaltspunkte weisen darauf hin, dass
Veränderungen der physikalischen Mikroumgebung von Zellen eine kritische Rolle in
Prozessen wie Wachstum, Alterung und Erkrankung spielen. Bisher ist das Verständ-
nis der dynamischen Reaktion von Zellen auf spontane Änderungen der physikalischen
Mikroumgebung weitgehend unzureichend, da Substrate fehlen, welche klar de�nierte
physikalische Signale erzeugen können. Der Hauptbestandteil dieser Arbeit beschäftigt
sich mit der Entwicklung zweier Arten von Substraten, deren elastische und topographi-
sche Eigenschaften dynamisch verändert werden können, um die dynamische Reaktion
der Zellen weit auÿerhalb eines physikalischen Gleichgewichts zu verstehen.
In Kapitel 4 wird das Design eines Substrats mit periodischen Falten von regulier-

barer Wellenlänge vorgestellt, welches ermöglicht das Erscheinungsbild und die kollek-
tive Orientierung von Mausmyoblasten zu kontrollieren. Dieses Substrat wurde durch
die Ablagerung von hartem Polyimid auf weichem Polydimethylsiloxan unter axialer
Stauchung hergestellt. Im Gegensatz zu allgemein üblichen Herangehensweisen zur
statischen, topographischen Manipulation von Zellen (statische Kontaktführung), bietet
das in dieser Studie vorgestellten Substrat die Möglichkeit, die Orientierung der Fal-
ten innerhalb von 60 Sekunden durch axiale Stauchung reversibel um 90° zu drehen.
Des Weiteren wird in dieser Arbeit die dynamische Kontaktführung eingeführt, welche
zur Untersuchung der Reaktion von Zellen auf spontane Änderung der Faltenausrich-
tung sowohl die Kinetik der Formanpassung und der kollektiven Orientierung der Zellen
betrachtet, als auch die Existenz einer kritischen Wellenlänge nachweist, bei der die
Neuanordnung der fokalen Adhäsionen und des Zytoskeletts statt�ndet.
Kapitel 5 behandelt die Etablierung eines Hydrogel-Substrats, dessen Elastizität zur

Regulierung von Erscheinungsbild, aktiver Kraftausübung und Di�erenzierung mensch-
licher mesenchymaler Stammzellen aus dem Knochenmark reversibel verändert werden
kann. Einzigartig an dieser Studie ist die Verwendung eines Hydrogels mit reversiblen
Wirt-Gast-Interaktionen, dessen Elastizität durch die Konzentration freier Wirt- oder
Gastmoleküle gesteuert werden kann. Im Gegensatz zu häu�g verwendeten chemisch
vernetzten Hydrogelsubstraten mit fester Elastizität erlaubt dieses die Feineinstellung
der Substratelastizität sowie deren spontane Änderung zu einem beliebigen Zeitpunkt.
Die mechanische Kraft der Zelladhäsion wurde mit einem selbst entwickelten Messsystem
bestimmt, das durch den Einsatz von laserinduzierten Schockwellen eine hohe Durch-
satzrate erlaubt. Die so ermittelte Adhäsionsstärke und totale Energiedissipation durch
zelluläre Traktionskräfte deuteten auf eine kritische Substratelastizität hin, welche das
mechanosensorische System der Zelle aktiviert. Bemerkenswert ist, dass eine spontane
Reduktion der Elastizität über diese Grenze zu einer sofortigen Verringerung der totalen
Verzerrungsenergie führte. Des Weiteren führte der wiederholte Wechsel der Substrate-
lastizität zu einer Reduktion der Proliferation, ohne die Multipotenz der Stammzellen
zu beein�ussen.
Die dynamische Mikroumgebung für Zellen, welche in dieser Studie eingeführt wurde,

ermöglicht neue Einblicke in die physikalischen Mechanismen von beispielsweise Zellent-
wicklung, Alterung und Erkrankung, welche die Plastizität des Lebens untermauern.



Summary

Biological cells sense not only biochemical cues but also physical cues from the surround-
ing microenvironment, and adapt their function and fate. Ample evidence suggests that
changes in physical microenvironments of cells play critical roles in development, aging
and diseases. However, the understanding of the dynamic response of cells to abrupt
changes in physical microenvironments is still incomplete due to a lack of substrates
that can provide well de�ned physical commands. The main thrust of this thesis is the
design of two new types of substrates, which dynamically change elasticity or topography
in order to unravel dynamic cellular response far out of equilibrium.
Chapter 4 presents the design of substrates with periodic wrinkles of adjustable wave-

length for the switching of morphology and orientational order of mouse myoblasts. The
substrates used in this study were fabricated by the deposition of hard polyimide on
soft polydimethylsiloxane under axial strain. In stark contrast to commonly used ap-
proaches in topographic control of cells under static conditions (static contact guidance),
the wrinkled substrates designed in this study are able to reversibly switch the wrinkle
direction by 90° within 60 s simply by axial compression and relaxation. Dynamic contact
guidance introduced in this study unraveled the kinetics of shape adaptation and orien-
tational orders of cells as well as the existence of a critical wavelength for rearrangement
of the focal adhesions and remodeling of cytoskeletons in response to the abrupt change
in wrinkle direction.
Chapter 5 deals with the establishment of hydrogel substrates that can reversibly

change the bulk elastic modulus for regulation of the morphology, active force generation
and the fate decision of human mesenchymal stem cells derived from the bone marrow.
The uniqueness of this study is to use hydrogels with reversible host-guest interactions,
whose elasticity can be adjusted by the concentration of free host or guest molecules. In
contrast to commonly used, chemically crosslinked hydrogel substrates with �xed elastic
moduli, this enables to �ne-adjust the substrate elasticity as well as to abruptly switch
the substrate elasticity at any given time point. The mechanical strength of cell adhesion
determined from a self-developed, high-throughput assay utilizing shock waves as well as
the total energy dissipation by cellular traction forces indicated the presence of a critical
substrate elasticity which triggers the mechanosensory system. Remarkably, an abrupt
softening of substrate sti�ness across this threshold instantaneously led to a decreasing
total strain energy. Furthermore, frequent exchange of the substrate elasticity resulted
in decreased proliferation without interfering with the multipotency of stem cells.
The dynamic cellular microenvironments established in this study open the new pos-

sibility to gain insight into the physical mechanism underpinning the plasticity of life,
such as development, aging, and diseases.
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身を浅く思い、世を深く思う。

Think lightly of yourself and deeply of the world.

Miyamoto Musashi 1584 � 1645
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1 Introduction

Biological cells receive a variety of stimuli from their microenvironment, including

biochemical and physical cues. During the past two decades, physical interactions

between cells and their environment have been drawing increasing attentions, and

�mechanobiology� is an emerging new discipline connecting biologists, engineers,

material scientists, and physicists.1,2 Mounting evidence has suggested that phys-

ical cues trigger or regulate a large range of cell functions such as migration,3,4

proliferation,5,6 adhesion,4,7 orientation,8,9 di�erentiation6,10 and apoptosis.11,12 In

order to �feel� the environment, integrin receptors bind to the extracellular matrix

(ECM) and serve as mechanosensors. They activate signaling molecules13,14 and

adhesion domains (focal adhesions) which crosslink the ECM and cytoskeletons

inside of the cell. Once mechanosensing machineries are activated, cells actively

generate traction forces by molecular motors and adapt their shape, motion, and

functions.15

Mechanical interactions between cells and the extracellular matrix do not only

in�uence single cells but also determine the functionality of tissues. Within a tis-

sue, cells are able to migrate and change their shape and orientation to sustain their

structural and functional integrity in a robust manner.19 Here, the establishment

of orientational order is one of the prerequisites for connecting single-cellular func-

tions and tissue functions. For example, smooth muscle cells in heart muscle tissue

are aligned in the direction parallel to collagen �bers (Figure 1.1a). In the 1940s,

Weiss and co-workers reported the response of cell functions to a topographical

environment.17 As shown in Figure 1.1b, they scratched geometric shapes into the

surface of mica and plated spinal ganglia at the intersections of scratches. After a

few days, the initial cell clusters grew preferably into the direction of the scratches,
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1 Introduction

Figure 1.1: Examples of contact guidance. (a) Hematoxylin and Eosin staining of
histological smooth muscle sample. Cells are guided by the collagen �bers and elongate
in the same direction as the �bers.16 (b) Upper image: Scheme of grooved mica structure.
The dashed lines indicate scratches in the surface. Blue areas represent the explanted
ganglia and the gray areas are newly formed tissue after several days of cultivation.
(Adapted from P. Weiss).17 (c) Mathematical model of membrane adhesion. The pro�le
of a membrane h(x) is supported above a periodically structured substrate with ridges.
Due to the e�ects of rigidity and tension, the membrane shape follows the substrate
pro�le with a much reduced amplitude. (Adapted from Swain et al.)18
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demonstrating the principle of contact guidance. Afterwards, contact guidance has

been reported as a universal principle guiding many cell types, including �brob-

lasts, myoblasts, neuroblasts, dendrocytes, and endothelial cells.8,20�22 For exam-

ple, myoblasts develop into muscle tissue, where the cell alignment is essential to

optimize their contractile functions and stability.23 Seeding muscle cells on ridges

with sub-micrometer features signi�cantly enhanced the expression of dystrophin,

a muscle-connecting protein, and the myogenesis of cardiac cell patches from mice,

compared to �at substrates.24 Recently, a mechanosensitive Ca2+ ion channel was

identi�ed, called PIEZO1, which controls the aligned fusion of myoblasts into my-

otubes. PIEZO1 knock-out cells lack the ability to form myotubes and instead

fuse uncontrollably into large, isotropic syncytia.25

From the viewpoint of physics, the interaction of cells with topographic patterns

can be treated as a subtle problem of wetting.26 Di�erent from simple Newtonian

�uids,27 viscoelastic cells deform both plastically and elastically. Antelmann et

al. analytically calculated the deformation of membranes in response to a variety

of geometries, such as a rectangular ridge (Figure 1.1.c).18 To date, the principle

of contact guidance has been studied by using a variety of topographically struc-

tured substrates. Most studies rely either on a topography with periodic ridges

and grooves, which are created by lithography20,28 or on wrinkle patterns with no

singularity. The latter can be fabricated by the deposition of a sti� layer such

as metal,29,30 hard plastic,31 or graphene32 on top of soft polymers such as poly-

dimethylsiloxane (PDMS). More recently, a so-called direct laser writing method

is used to make such topographic patterns.33

Despite of the accumulating understanding of contact guidance, most studies

have been limited to look at the cell response under static environments. How-

ever, the microenvironment of biological cells and tissue is permanently evolving

and hence never uniform or static.34,35 The lack of understanding how cells follow

the guidance of topography in a dynamic environment has sparked a search for

substrates with switchable topography on-demand. Previously, substrates which

switch from �at to wrinkled topography were created by thin polyelectrolyte mul-

13



1 Introduction

Figure 1.2: (a) Phase contrast images of the wrinkle pattern at di�erent levels of axial
strain indicated by red arrows. The process of wrinkle realignment is achieved within
60 s. (b) Scheme of cell alignment on the wrinkle substrates. The cytosol of the cell
is sketched in green and the nucleus in blue. Reversible realignment of the cell to the
wrinkle direction was shown in this thesis.

tilayer coating on shape-memory material. Upon heating to physiological temper-

ature, wrinkles were formed with a wavelength of half a micrometer. Cardiomy-

ocytes derived from human induced pluripotent stem cells exhibited a distinct

alignment on the wrinkles compared to the �at substrate.36 Several other studies

have also reported the writing or erasing of wrinkles by thermal36,37 or optical

cues21, but these substrates irreversibly write or erase their topography only once.

Lam et al. reported a reversible writing/erasing of cells on a plasma oxidized

PDMS substrate.38 However, since the writing/erasing of wrinkles always returns

to the �at substrate, it can only activate or deactivate contact guidance. So far

the complete rearrangement of the topography, for example by changing the angle

of the surface pattern, has proved to be elusive.

In Chapter 4 a new strategy for dynamic contact guidance of cells is presented.

Speci�cally, a substrate with wrinkled topography was designed in collaboration

with Dr. T. Ohzono of the National Institute of Advanced Industrial Science and

Technology (AIST, Japan). The substrate was fabricated from PDMS which was

14



coated with polyimide31 and cured under strain to create periodic wrinkles with

micrometer-scale wavelength. The main advantage of these materials over the

previous approaches is not only the ability to �write/erase� wrinkles but also to

switch the wrinkle direction by 90° by applying an axial strain.30,39 In the �rst

step, the preparation and surface functionalization were systematically optimized

to control the adhesion, morphology, and orientational order of mouse myoblast

cells. Figure 1.2a presents the switching of wrinkle directions by axial strain. Sec-

tion 4.2f reveals how the cells adapt their morphology and orientational orders,

which is considered in this study as static contact guidance. In order to analyze

the alignment of cells and the actin cytoskeleton, the nematic order parameter 40,41

was introduced by approximating cells as ellipses. Furthermore, the localization

of focal adhesions is analyzed with respect to the peaks and troughs of the wrinkle

topography. This strategy was further extended to investigate dynamic contact

guidance (Section 4.4f). The dynamic response of C2C12 cells before and after

the change of wrinkle direction by 90° was monitored by live cell imaging. First,

the aspect ratio and cell angle are analyzed to characterize the orchestration of

cell morphology and the actin cytoskeleton. Additionally, the transfection with

LifeAct-GFP42 further enabled the in situ imaging of the transitions of their ne-

matic order.

Since cells detect the elasticity of their environment and control functions and

fate, another strategy for the dynamic control of cells is to change the substrate

elasticity. Depending on the elasticity of ECM and neighboring cells, they adjust

the active traction force powered by the actin-myosin network.45 In 1980s, Harris

et al. reported that the active traction force generated by chicken heart �brob-

lasts created wrinkles of silicon rubber (Figure 1.3a).43 As shown in Figure 1.3b,

traction forces can be visualized by embedded beads or micropatterning of ligand

molecules, called traction force microscopy. As many studies demonstrated that

cellular functions are optimized on substrates that possess a similar elasticity to

the elasticity of extracellular matrix (ECM),46�49 substrates with corresponding

elasticity have been developed. During the past 20 years, a number of synthetic
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1 Introduction

Figure 1.3: Examples of force generation in cells. (a) A chick heart �broblast pulls
on a thin sheet of silicone rubber, resulting in wrinkling of the substrate.43 (b) Lower
magni�cation image of ca. twelve chick heart �broblasts. The cell traction generates a
complex pattern of distortion in the rubber sheet. (Adapted from Harris et al.)43 (c)
Phase contrast image of a cardiac myocyte plated on a compliant substrate (E = 19 kPa)
with an embedded pattern of dots. The upper image shows the relaxed phase and the
lower image the contracted phase. Magenta colored dots highlight the displacement
during contraction in direction of the red arrows. (Adapted from Balaban et al.)44
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Figure 1.4: (a) Histology samples from healthy (above) and �brotic (below) bone mar-
row, stained by Gomori's staining.53 Healthy tissue shows no intersections while the
diseased tissue contains coarse bundles of thick �bers, leading to an increase in elastic
modulus by roughly an order of magnitude.54 (b) The bone marrow niche consists of
multiple cells of hematopoietic and mesenchymal lineages. This unique environment is
governed by a large range of elasticity from 40 kPa close to the bone region to 3 kPa in
the bone marrow.55 Mesenchymal stem cells (MSC) are self-renewing and maintain the
bone marrow niche by di�erentiation into various lineages that are native to the envi-
ronment. Additionally, they play an important role in the activation and self-renewal of
hematopoietic stem cells (HSC).56 (Adapted from Choi et al.)46

and natural polymers have been tested as substrate materials, such as hyaloronic

acid,50 polyacrylamide,4 PDMS51 and collagen.52 Nevertheless, it should be noted

that the majority of ECM models based on polymers are chemically crosslinked

by covalent bonds, which can merely o�er pre�xed elastic conditions to cells.

In is notable that mechanical properties of ECM in biological systems are never

static or homogeneous. In fact, abnormal ECM elastcity is often accompanied with

severe diseases. For example, hematological diseases like acute myeloid leukemia

are characterized by �brosis in the bone marrow, resulting in ECM sti�ening.57

As a result, the hematopoietic system is strongly impaired, followed by reduced

production of red blood cells, called cytopenia.58 Examples of healthy and �brotic

bone marrow samples are shown in Figure 1.4a, highlighting the importance of elas-
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1 Introduction

ticity in the context of disease research. Human mesenchymal stem cells (hMSC)

are a multipotent, somatic stem cell type that is able to di�erentiate into neurons,

muscles and bones. In the bone marrow (Figure 1.4b), hMSCs play instrumental

roles in the maintenance of hematopoiesis by harnessing hematopoietic stem cells

(HSC).59,60

In this thesis, hydrogel substrates that possess comparable elasticity to bone

marrow ECM have been developed in order to dynamically regulate the morphol-

ogy, active force generation and the fate decision of hMSCs. As the elasticity of

bone marrow ECM is between 3 kPa and 40 kPa (Figure 1.4a), a substrate that

can switch the elasticity within this range was designed. In contrast to widely

used hydrogels that can change the elasticity only once and in an ireversible

manner,24,61�67 a new class of hydrogels was developed in this study which are

crosslinked by reversible, supramolecular interactions in collaboration with Dr.

Masaki Nakahata and Prof. Akira Harada of the Department of Macromolecular

Science, Osaka University (Japan). As schematically shown in Fiure 1.5, hydrogels

are crosslinked by host-guest interactions between beta-cyclodextrin (βCD) and

adamantane (Ad). One of the unique characteristics of supramolecular hydrogels is

that host-guest pairs can be reversibly dissociated/associated by adding/removing

competitive host (or guest) molecules to/from the solution.

Section 5.1 presents how hMSCs adapt their morphology and nematic order of

actin under static conditions (static mechanosensing). As presented in Section

5.2, the strength of cell adhesion was measured using a pressure wave induced by

a picosecond laser pulse, yielding the critical pressure for cell detachment. Since

the adhesion force of cells is known to in�uence active force generation in cells,

in Section 2.4.4 the strain energy and net contractile moment were calculated by

means of traction force microscopy. Expanding on this strategy, the response of

hMSCs to an abrupt change in substrate elasticity was measured, which is consid-

ered dynamic mechanosensing. For this purpose, in situ traction force microscopy

experiments were performed with living cells (Section 5.4). Force-related as well

as morphological parameters were extracted and correlated with the morphologi-
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Figure 1.5: Schematic overview of the host-guest hydrogel. Cells (green) are seeded
on top of the gel (blue). By adding adamantane-carboxylic acid (Ad-COOH) the gel
becomes softer and cells respond, for example, by changing the morphology. Below, the
chemical composition of the gel is illustrated, showing the host beta-cyclodextrin (yellow
cone) and the guest molecule adamantane (black diamond).

cal dynamics. Finally, in Section 5.5, the in�uence of the frequency of mechanical

stimuli on the fate of hMSCs was investigated. hMSCs were exposed to cyclic

changes in elasticity over 20 days. The in�uence of substrate elasticity under

static conditions as well as the in�uence of stress frequency was evaluated by the

maintenance of multipotency and the change in self-renewal (proliferation). The

former was estimated by the expression level of the multipotency marker STRO-

1,68,69 while the latter was determined by the change in cell density. The obtained

results shed light on the suitability of the stimuli-responsive hydrogel as stem cell

niche model and demonstrate the control of stem cell functions and morphology

by dynamic mechanical cues.
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2 Theoretical background

2.1 Cell mechanics

In order to form biological organisms, cells have to provide a range of physical

functions ranging from simple structural integrity to complex neuronal signaling.70

Many of these functions involve physical properties such as elasticity, bending

rigidity, and force generation.13 Therefore, this section will focus on the basic

physical principles which are relevant in the �eld of cell mechanics.

2.1.1 Cell adhesion

Cells form physical links with their microenvironment by adhesion domains, so

called focal adhesions. These protein complexes are mechanical links between

actin bundles and the extracellular matrix and facilitate various cell functions

such as migration, proliferation and di�erentiation.4,5,10 The key component is

the transmembrane protein integrin which interacts with a variety of proteins to

enhance stability but also processes the mechanical stimuli that the cell receives

from the outside.13,14 As a response, the mechanosensing machinery is activated

and the cell actively exerts forces on the extracellular matrix (ECM).

As shown in Figure 2.1a, focal complexes (red lines) are formed at the cell edge

(lamellipodium) and mature over time into focal adhesions (red clouds). Inter-

nally, focal adhesions are connected to stress �bers of the actin network (blue)

and externally to the ECM via ligands, e.g. �bronectin (green squares). Figure

2.1b shows a more detailed view of the focal adhesion, including some prominent

examples from the pool of more than 150 proteins involved in the focal adhesion
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Figure 2.1: Scheme of the focal adhesion. (a) Focal complexes (red lines) are formed
in the lamellipodium and mature into focal adhesions (red cloud). These are usually
connected to stress �bers of the actin network (blue). Outside of the cell, focal adhesions
are connected to the extracellular matrix (ECM) via ligands, e.g. �bronectin (green
squares). (b) Detailed view of the focal adhesion. Some prominent proteins included
in the focal adhesion are shown. A focus is put on integrin (red/orange) as the only
transmembrane protein in this complex. Adapted from Lu et al.71

complexes,72 like vinculin (yellow), talin (green) and paxillin (magenta).

Physically, cell adhesion can be understood as a double-well intermembrane

potential.73 Short-ranged attractive forces and medium range repellent forces, as

well as elastic stress due to deformation of the cell membrane, lead to the formation

of an adhesion area A. This mechanism depends on the type of ligand-receptor

pair and intrinsic cell properties like cell tension and elasticity.73�75 Assuming the

cell membrane as a lipid bilayer on a �at surface with the distance to the surface

h(x) (membrane contour), the total free energy of cell adhesion G can be expressed

as follows:76

G =

∫ [κ
2

(∇2h(x))2 +
σ

2
(∇h(x))2 + V (h(x))

]
d2x. (2.1)

The individual terms can be understood as follows: The �rst term refers to the

Helfrich repulsion,77 which considers thermal �uctuation and bending undulation

with the bending modulus κ ≈ 25 kBT . During adhesion, the cell membrane

is immobilized, which is entropically unfavorable, so that the membrane forms

undulations that increase with thermal energy and form a steric repulsion against
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2.1 Cell mechanics

cell adhesion. The steric potential is de�ned as follows:76

Vster(h(x)) =
(kbT )2

κh2
. (2.2)

The second term considers the membrane tension σ and depends on the �rst

derivative of the membrane contour.

Finally, the last term describes the intermembrane potential which includes

short-range steric repulsion, van der Waals interactions and repeller-induced re-

pulsion:

V (h(x)) ≈ Vsr(h(x)) + VvdW (h(x)) + Vrep(h(x)). (2.3)

The short-ranged steric repulsion (Vsr) has a decay length of λ ≈ 1 nm and a base

potential of V0 < 30 mJ/m2. It was empirically determined as:73

Vsr(h(x)) = V0 e
−h/λ. (2.4)

Van der Waals (vdW) interactions occur between dipoles, such as water molecules,

and are described by the following equation:

VvdW (h(x)) = −HA

12π

(
1

(h+ 2δ)2
+

1

h2
− 1

(h+ δ)2

)
, (2.5)

with the Hamacker constant HA ≈ 10−21 J and the bilayer thickness δ. Addition-

ally, inter-membrane repulsion is induced by extracellular proteins. The potential

of repellers is proportional to their lateral density σ0 and takes two di�erent forms,

depending on the relation between the radius of gyration Rgyr and the membrane-

surface distance h:

Vrep(h(x)) ≈


π
6
kbTσ0

(
Rg
h(x)

)2

e−1.5(h/Rg)2
, h� Rg,

kbTσ0, h� Rg.

(2.6)

The superposition of these three potentials has a primary minimum around 35 nm,
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which can be approximated by a harmonic potential as follows:76

V (h(x)) ≈ V0 +
1

2
γ(h− h0)2, (2.7)

where the parameter γ refers to the membrane curvature and h0 to the equilibrium

position of the membrane.73,78

2.1.2 Active force generation in cells

The shape of cells is determined by a diverse network of polymers and helper

proteins, called the cytoskelton. The following three polymers are most essential

for the integrity of the cytoskeleton: actin-�laments, microtubuli and intermedi-

ate �laments. This thesis will focus on actin-�laments, since they are the most

abundant �laments and crucial in de�ning the cell shape.

Figure 2.2: Scheme of the actin cytoskeleton during cell locomotion.79 Red lines in
enlarged images represent actin �laments and black arrows indicate the direction of the
pointed end. Stress �bers generate tension, cell cortex enhances membrane stability and
�lopodia allow the cell to probe its environment.

During actin polymerization, �laments (F-actin) are assembled from actin monomers

(globular actin, G-actin). In its �lamentous form, actin takes a helical shape with

two parallel strings twisted around each other. This polymer possesses a fast

growing end, called barbed end, and a slow growing end, called pointed end.

The association constant of new monomers is ca. six times larger on the barbed
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end, resulting in a dynamic growth which is limited by the concentration of G-

actin:

dN

dt
= (k+

on + k−on) cA − (k+
off + k−off ) . (2.8)

Here, N is the number of monomers in the �lament and cA is the concentration of

free G-actin. As the polymer grows, its length will reach an equilibrium state at

c∗A =
k+
off + k−off
k+
on + k−on

, (2.9)

where the growth rates on the barbed and pointed end are identical. This equi-

librium state is commonly described as threadmilling.

The arrangement of actin �laments to networks is responsible for a range of

morphological features in cells. Figure 2.2 shows three major appearances of actin

networks in the magni�ed sections. The red lines represent actin �laments with

black arrows indicating the direction of the pointed end, i.e. the direction of

polymerization. Spanning the whole cell body, stress �bers generate contractile

forces along their orientation. They consist of parallel actin �laments with two

directions of polymerization. Below the cell membrane exists a layer of dense

�lament networks, the cell cortex. Here, actin �laments are randomly oriented

to form a gel-like network. The main function of the cortical actin is to stabilize

the cell membrane. Pointing outward, actin bundles form �lopodia which enable

the cell to probe its environment. Here, the orientation of all actin �laments is

identical to maximize the growth speed of �lopodia.

2.1.3 Polymer networks and gels

Gels are ubiquitously represented in biological tissues. From intracellular actin- to

extracellular collagen-networks, proteins form gels to enhance stability and �ne-

tune elastic properties of tissues. Physically, the elasticity of a gel is determined

by the following quantities:1
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� the mean mesh size ξ,

� the total number of crosslinks Mc (with length Lc) between nodes which

consist of Nc Monomers,

� the density νc of connections between nodes with νc = Mc/V ,

� the concentration of dangling bonds, i.e. free polymer ends.

In Figure 2.3 a scheme of the gel structure is shown. The polymers are depicted

in black with red dots indicating the nodes. The elasticity of a gel is commonly

measured by the shear modulus, which is de�ned as shear stress devided by shear

strain. Accorting to Hill,80 the shear modulus of gels can be described as follows:

G′0 = gMc · kBT = g
c

Nc

· kBT = g
kBT

ξ3
, (2.10)

with the monomer concentration c and a topology dependent factor g ≈ 1. This

Figure 2.3: Scheme of gel structure. Network of polymers (black lines) connected
by nodes (red dots), structure de�ned by contour length Lc and mesh size ξ. Elastic
properties are further in�uenced by the number of dangling bonds (DB).

means that the shear modulus is proportional to the number of crosslinks Mc or,

alternatively, inverse proportional to the volume of a unit cell ξ3 with the mesh

size as edge length. G′ can be measured by rotational rheometry, where the gel

is sheared by rotation and the applied force as well as the degree of rotation is

monitored. An alternative parameter of elasticity is the Young's modulus which

will be explained in Section 2.4.1.
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2.1.4 Membrane deformations

When observing mechanical e�ects on cells, membrane deformation cannot be

avoided. The essential question in this matter is how the energy of deformation

depends on the cell shape. To quantify membrane deformation, four major e�ects

have to be di�erentiated as shown in Figure 2.4: stretching, bending, thickness

change, and shear.81 Stretching of a membrane is simply a change in the area

∆a(x, y) with respect to a reference area a0. Therefore, the free energy Gstretch

can be calculated as follows:82

Gstretch =
Ka

2

∫ (
∆a

a0

)2

da. (2.11)

This takes into account that the area stretch depends on the position. If the

area change is constant, the integration can be omitted. The parameter Ka is the

area-stretch modulus which lies in the range of 50−500 mN/m for lipid bilayers.83

Bending of cell membranes is more complex and usually described by a simple

height pro�le h(x1, x2). Note that this approach fails, if the membrane forms a

cavity or an overlap, which would require more complex approaches. The bending

κij of the membrane is then de�ned as the second derivative of h(x1, x2):

κij =
δ2h

δxiδxj
, (2.12)

so that the height pro�le h can be written as the sum of the individual curvatures:

h(x1, x2) =
2∑

i,j=1

κijxixj. (2.13)

With this expression the free energy of bending can be described by the Helfrich-

Canham-Evans model:84�86

Gbend[h(x, y)] =
Kb

2

∫
[κ1(x, y) + κ2(x, y)]2 da, (2.14)
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where κ1 and κ2 are the principal curvatures of the surface at the point of interest

and are obtained by diagonalization of the matrix κij. The typical range for the

bending rigidity Kb is 0.5− 1× 10−19 J for lipid membranes87 and 1− 10× 10−19 J

for biological cells.88

Figure 2.4: The geometry of membrane deformations. The four major deformations are:
membrane area stretching, bending, membrane thickness change and shearing. (Adapted
from Monzel et al.)81

The thickness of membrane can be altered locally by hydrophobic parts of mem-

brane proteins. The parameter w(x, y) is usually described as the half thickness

of a bilayer and results in an energy penalty when deviating from the equilibrium

thickness 2w0. The free energy of thickness change is de�ned as:82

Gthickness[w(x, y)] =
Kt

2

∫ [
w(x, y)− w0

w0

]2

da, (2.15)

with the area compressibility Kt which is typically around 300mN/m.89,90 Finally,

the shearing of membranes is also subjected to an energy penalty. However, it

rarely occurs in biological membranes and is thus not further explained.

2.2 Cell biology

The response of cells to physical cues strongly depends on the cell type. Some

cell functions are speci�c to certain types such as di�erentiation in stem cells,91
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while other functions are more pronounced in other types, such as active force

generation in muscle cells.92 Since this study focuses on two di�erent stimuli-

responsive substrates, two di�erent cell types were applied whose functions are

especially suited for each substrate. This section will introduce the two cell types

and highlight their biological background.

2.2.1 Mouse myoblast cells

C2C12 cells are a type of myoblast cells which were originally isolated by Ya�e

and Saxel.93 They are derived from C3H mouse leg muscle and exhibit rapid

proliferation and di�erentiation capabilities, providing a popular model system

for cell cycle and muscle development studies.94

Figure 2.5: Principle of myotube formation. Several myoblasts fuse into multinucleated
cells, so-called myotubes. Satellite cells reside at the periphery and provide regenerative
capabilities in the case of injury. The mature �ber is surrounded by the sarcolemma, a
speci�ed cell membrane with nuclei directly below. The center of the �ber is made of
myo�brils and mitochondria. (Adapted from Martini et al.)95

In order to create functional muscle �bers, myoblasts develop into multinucle-

ated structures, so called myotubes (Figure 2.5), by cell fusion, which is initiated
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in vitro under low serum conditions or starvation.94 The fusion of cells is a highly

complex mechanism, relying on cell-cell adhesion and vesicle tra�cking. The vesi-

cles are able to fuse with the cell membrane and, on this way, initiate pore forma-

tion and fusion with neighboring cells.96 Readily fused myotubes can be identi�ed

by increased expression of myosin heavy chain,97 as well as a dense actin wall

structure which facilitates further elongation of the plasma membrane.98

2.2.2 Mesenchymal stem cells

Stem cells are famous in regenerative medicine for their ability to develop into

any type of cell by di�erentiation. This ability allows applications from tissue

regeneration to organogenesis by transplantation or injection of multipotent stem

cells.99,100 Embryos consist predominantly of stem cells, which di�erentiate with

the development of organs and tissues.101 The more a stem cell speci�es into a

certain lineage, the more di�erentiation potential is lost, and since di�erentiation

is irreversible, this leads to relatively low stem cell numbers in adult humans and

animals.95 These adult stem cells usually reside in the so called stem cell niche in

a quiescent state and are activated during diseases or injuries to repair damaged

tissues.

Human mesenchymal stem cells (hMSC) have �rst been identi�ed by Frieden-

stein103 and exist most abundantly in the bone marrow, peripheral blood, adipose

tissue, umbilical cord, and cord blood.91,104 The major di�erentiation capabili-

ties of hMSCs are fat, cartilage, bone, and connective stromal cells which are all

members of the mesoderm lineage (Figure 2.6). Other di�erentiations into the

ectoderm and endoderm lineage have been performed in vitro but were not yet

con�rmed to also occur in vivo. Harvesting of hMSCs is performed by bone mar-

row aspiration and seeding on plastic culture vessels followed by elimination of

non-adherent cells.105 Several antibodies were con�rmed to be common among all

hMSC cultures, most commonly including CD105, CD45, CD90, HLA class II,

CD14, and CD34.106 A relatively new mesenchymal stem cell marker was discov-

ered, called STRO-1,68,69,107 which is present in bone-marrow derived hMSCs, but
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Figure 2.6: Di�erentiation potential of mesenchymal stem cells. Self renewal (curved
arrow), several di�erentiation potentials towards the mesoderm lineage (solid arrows),
and the ectoderm and endoderm lineages (dashed arrows). The latter two are possible
in vitro, but have not yet been con�rmed to occur also in vivo.102

not in adipose-tissue derived cells, and was correlated with multipotency poten-

tial among other cell functions. STRO-1 allows a rather convenient way to prove

multilineage capabilities of hMSCs compared to the traditional method, which

requires the full di�erentiation of hMSCs into major lineages.

2.3 Stimuli-responsive substrates

Two new stimuli-responsive substrates are introduced in this thesis. The mech-

anisms behind the ability to change substrate properties on-demand is based on

physical and chemical phenomenons.30,108 Furthermore, proper characterization of

the substrate properties is required to accurately assess the cell response towards

these features. Therefore, this chapter will address the theoretical background of

the chemical composition and physical properties of the two materials.
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2.3.1 Wrinkle formation

Wrinkling is a natural phenomenon, that exists on length scales of meters down to

the nanometer scale. It generally occurs, when a �at material is forced to extend

or shrink in its plane. This can have unwanted e�ects, for example the reduced

stability in strati�ed layers.109 However, when controlled, wrinkling can be used

to modify structures or physical properties of nanomaterials. For example, wrin-

kling can modify optical properties of materials or create channels for micro�uidic

applications.110

Compliant 
substrate

Es

H

Thin film Ef (> Es)

h

λ

Compression

Figure 2.7: Scheme of wrinkle formation. A thin, sti� �lm is deposited on top of a
compliant substrate. When strain is applied by axial compression, wrinkles form on the
surface due to local buckling of the thin �lm. (Adapted from Ohzono et al.)31

Mathematically, the wrinkling of a thin layer on a soft support can be modeled

using Hooke's law in two dimensions:

Fij = hEf [(1− νf ) εij + νf εkk δij]. (2.16)

Here, νf is the Poisson's ratio, h the thickness of the thin �lm, E is the Young's

modulus of the �lm with Ef = Ef/(1 − ν2
f ), and δij is the Kronecker delta.

The stress tensor εij includes the initial strains, the gradients of the in-plane

displacements, and the rotation caused by the de�ection.111 Under the assumption

of an in�nitely thick substrate (H →∞) and after minimizing the total energy in
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the system, the following relation is found for the wrinkle wavelength λ:111

λ = 2πh

(
Ef

3Es

)1/3

(2.17)

Using this equation, λ can be predicted from the Young's moduli of the �lm Ef

and the substrate Es. If these two properties are �xed, λ is proportional to the

�lm thickness h. Additionally, the critical force necessary to induce wrinkles can

be calculated by the following equation:111

Fc =
hEf

4

(
3Es

Ef

)2/3

. (2.18)

The method to determine the substrate elasticity will be addressed later in Section

2.4.1.

2.3.2 Host-guest interactions

One of the fundamental principles in biologic systems is molecular recognition

which allows the non-covalent, speci�c binding of biological components among

each other, for example receptor-ligand, DNA-RNA, DNA-protein or sugar-protein

recognition.112 Inspired by this principle, host-guest chemistry was developed

which is dedicated to the characterization and discovery of new complexes of two

molecules that are held together by non-covalent bonding, such as ionic bond-

ing, hydrogen bonding, van der Waals forces and hydrophobic interactions.79 The

extension of host-guest chemistry to build machines on the micrometer scale, re-

sembling molecular motors, was awarded with the Nobel Prize in Chemistry in

2016.113

Several studies have created new materials to mimic the dynamic elasticity of

tissues in vitro. The change in elasticity is usually controlled by external stimuli

such as light,24,115 redox reaction,116 pH level,6,117 heat118 and electric/magnetic

�elds.119,120 However, not all materials are applicable for cell culture, since strong

light exposure or change of temperature are generally cytotoxic.
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(a)

(b)

(c)

βCD-Ad gel (x,y)

Figure 2.8: Composition of stimuli-responsive host-guest hydrogels. (a) β-cyclodextrin
(βCD, yellow cone) and adamantane (Ad) form a highly speci�c non-covalent connection,
called host-guest interaction. Both molecules are functionalized with acrylamide (AAm)
to be embedded into a polyacrylamide network. (b) Chemical representation of the
polymer consisting of the two monomers presented in (a) and pure acrylamide. (c)
After radical polymerization a �exible and tear-proof gel is formed. The stability is
demonstrated in the image by pulling the gel sheet over a scalpel blade. (Adapted from
Nakahata et al.)114

Originally independent of biological applications, a new hydrogel was devel-

oped from polyacrylamide utilizing reversible host-guest connections.108,114 The

core component of this material is acrylamide which forms polymers by radical

polymerization. As host-guest moieties beta-cyclodextrin (βCD) and adamantane

(Ad) are selected, since they are approved by the Food and Drug Administration

(FDA) and therefore considered as biocompatible. By conjugating acrylamide

monomers with host-guest monomers, dynamic crosslinks are introduced which

form bonds by non-covalent interactions (Figure 2.8a). Mixing these monomers

with pure acrylamide and initiating radical polymerization results in polymers

with a chemical structure as shown in Figure 2.8b. The concentrations of the

monomers (x, y) can be adjusted to �ne-tune the elastic properties of the �nal hy-

drogel. As demonstrated in Figure 2.8c, the resulting gel is elastic and tear-proof.

In previous publications, the self-healing properties were speci�cally highlighted

and applications in material science were discussed.108,114,121 Following a di�erent

approach, this thesis focuses on the ability to change the substrate elasticity on
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demand by immersing the gel in a solution with host or guest molecules which

block the existing crosslinks and result in a decrease in elastic modulus. Wash-

ing the gel with a blank bu�er recovers the substrate elasticity to the original

properties.9 These dynamic properties are studied in detail in Chapter 5.

2.4 Experimental background

2.4.1 Indentation of elastic materials

Similar to the shear modulus G′, the Young's modulus E is another measurement

of elasticity. To measure E, an uniaxial deformation is applied on the sample, i.e.

either elongation or indentation, and E is calculated by dividing the applied stress

over the resulting strain. In this study, the Young's modulus of a gel is measured

by an atomic force microscope (AFM). Figure 2.9a schematically shows the setup

of a commercially available AFM. A cantilever is attached to a piezo motor and

can be moved freely in x, y and z-direction. The tip of the cantilever is available

in a variety of shapes, most commonly applied are cone or sphere shaped tips. A

laser is re�ected from the cantilever onto a photodiode to register bending of the

cantilever. The di�erence between z-motor position and cantilever bending results

in the sample indentation δ as shown in Figure 2.9b. From the force F , which

is applied by the bending of the cantilever, and δ, the Young's modulus of the

sample can be calculated as explained in the next paragraph.

With increasing indentation, the contact area between probe and sample in-

creases, so that the applied stress is not linear. This problem is solved by the

Hertz-model which describes the deformation of elastic bodies in contact.122,123

In the case of a hard sphere indenting a soft material with a plane surface, the

pressure p(x, y) at the contact area is distributed as follows:

p(x, y) = p0

(
1−

(r
a

)2
)1/2

(2.19)

where a is the radius of the contact area, r is the distance from its center, and p0 is
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Figure 2.9: Principle of the atomic force microscope. (a) A cantilever with spherical
tip is connected to a piezo motor and pressed against the sample surface. A laser beam
is re�ected on the cantilever and centered on a photodiode to register the cantilever
de�ection d. (b) The magni�ed side view of the spherical probe with radius R and the
soft sample which is indented by the distance δ.

the pressure at the center of indentation. Consequently, the vertical deformation

uz of the surface also depends on r and is assumed to be of parabolic shape:

uz = δ − r2

2R
, (2.20)

where R is the radius of the sphere. Since the pressure exerted on the surface also

acts on the sphere, the e�ective Young's modulus E∗ depends on the individual

elasticity of the two bodies E1 and E2. However, since the sphere is assumed to

be rigid, this relation is simpli�ed as follows:

1

E∗
=

1− ν2
1

E1

+
1− ν2

2

E2

≈ 1− ν2
1

E1

, (2.21)

where ν is the Poisson's ratio. Alternatively, the vertical deformation uz can be

derived by integration of the strain over a circular area s ds dϕ:

uz =
1− ν2

πE
p

∫
S

∫
dϕ ds. (2.22)

Inserting equation 2.19 into 2.22, shows that a direct relation between the pressure
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p0 and the Young's modulus E exist:

p0 =
2E

π
√
R
δ , (2.23)

which can be converted to the force resulting in the equation commonly used for

spherical probe indentation with the AFM:124

F =
4
√
R

3

E

1− ν2
δ3/2. (2.24)

With this equation the Young's modulus of a sample measured by AFM can be

calculated.

2.4.2 Confocal microscopy

Normal light microscopy is only practicable for observation of thin samples, since

there is no way to extract 3D-information out of the images. Trying to observe

thick samples results in distorted images due to the superposition of di�use images

from out-of-focus objects. To overcome these downsides, confocal microscopy was

developed in 1955 by Marvin Minsky. The core of this technique is a set of confocal

pinholes which �lter the light of a laser beam focused on the sample (Figure

2.10). Out-of-plane signals emitted from the sample are removed by the pinholes

by e�ectively blocking the higher order maxima and minima of the point spread

function (PSF). In contrast to conventional microscopes, the image is not observed

directly by a camera, but the light intensity is measured by a photomultiplier. To

acquire a full 2D-image, the sample is scanned by moving the focal point within the

focal plane until each position in the region of interest has been illuminated. This

scanning motion is commonly performed by two mirrors in the beam path which

are tilted by galvanometer motors (not shown) to achieve fast imaging speed.

Consequently, there are three parameters which in�uence the image brightness:

the laser intensity, image resolution, and the scanning speed. Compared to normal

wide-�eld microscopy the lateral resolution limit according to Rayleigh is improved
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by a factor of
√

2:125

r =
0.61λ√
2NA

. (2.25)

Here, r is the minimum resolvable distance, de�ned by the overlap of the principal

di�raction maximum of the �rst point with the minimum of the PSF of the second

point. λ is the wavelength of the light and NA = n sin θ the numerical aperture.

Detector

Confocal
pinholes

Laser
Dichroic
mirror

3D sample
Focal
point

Excitation
Emission

Filtering
of PSF

Figure 2.10: Schematic view of a confocal microscope. The excitation light path is
indicated in blue and the emission in yellow. A laser is used as light source and focused
in one single point withing the 3D sample. Pinholes in the conjugate focal plane �lter
the point spread function (PSF) and block out emissions from out-of-focus illumination.
The light intensity is measured at the detector. In order to create images, the focal point
is moved by motorized mirrors (not shown) and the sample is scanned pixel-by-pixel.

Since the focus point is con�ned in all three dimensions, reconstructions of 3D

samples can be acquired by scanning of multiple slices. The resolution in axial

direction according to Rayleigh's di�raction limit is calculated as follows:126

r =
2nλ

NA2 . (2.26)

Thus, the axial resolution is stronger in�uenced by the numerical aperture com-

pared to the lateral resolution.

Usually the acquired image is decreased in quality by noise, scattering, and

blur. This is mainly due to the fact that a single sharp point is always imaged
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as a PSF with di�raction patterns around the center. To increase the image

contrast and resolution, deconvolution can be applied which aims to reduce the

artifacts created by the PSF. There are two categories of algorithms available to

deconvolute an image: linear �ltering and recursive restoration.127 A linear �lter

calculates the Fourier transform of the acquired image, applies a single calculation

in the frequency domain, and reverse transforms the image into real space. One of

these �lters is the Wiener �lter, which reduces image blur without any information

about the real object:128

G =
H · Su

|H|2Su + Sn
, (2.27)

where H is the Fourier transform of the PSF, Su is the spectral density, obtained

by the Fourier transform of the signal autocorrelation, and Sn is the spectral noise,

obtained by the Fourier transform of the noise autocorrelation.

Since the improvements of linear �ltering are relatively limited, more sophisti-

cated algorithms have been developed that are recursively applied until a certain

threshold is reached. The basic idea behind the recursive �lters is to estimate

the real object, create a blurred version using the PSF, and then compare it with

the observed data.127 Some examples of recursive �lters are the Tikhonov-Miller

inverse �lter,129 the Carrington algorithm,129 and the Richardson-Lucy130,131 algo-

rithm. Since the latter has proved to be most popular, it will be explained shortly.

The probability to acquire image i by observation of an object o would be written

as p(o | i). According to Bayes' theorem, one can predict the probability of two

simultaneous events, if the probabilities of the individual events are known:

p(o | i) = p(i | o)p(o)
p(i)

. (2.28)

Since each pixel in confocal microscopy is acquired successively, the image can be
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described as a Poisson process with the following likelihood to acquire an image:132

p(i | o) =
∏
x

(
(h ∗ o)(x)i(x)e(−h∗o)(x)

i(x)!

)
. (2.29)

Here, h refers to the PSF and x to a position in the image.

In this iterative process, each step adds noise to the �nal result, so that a

compromise between noise and sharpness has to be made. In the Richardson-

Lucy algorithm this is accomplished by minimization of the following function:133

f(o) =
∑
x

(−i(x)log[(h ∗ o)(x)] + (h ∗ o)(x)). (2.30)

While this recursive algorithm has a higher potential to improve the image quality

compared to linear �ltering, it also requires more computational power. Decon-

volution has proven to be most e�ective in the reconstruction of 3D �uorescence

data from high-resolution imaging techniques, such as confocal microscopy, but

can theoretically be applied to any image data.127

2.4.3 Quantitative analysis of cell adhesion

The cell adhesion can be measured in di�erent ways which all have their own

advantages and disadvantages. One of the �rst methods that were developed

is micropipette aspiration, where a part of the cell is sucked into the pipette

and pulled until the cell detaches.134�136 Even though this method was originally

developed to measure the viscoelasticity of cells, the adhesion measurement is

possible for small cells and relatively cheap as it can be performed with common

lab equipment. The disadvantage is, that the applied force is relatively small

(0.1 pN � 1 nN) and inverse proportional to the pipette diameter so that with

increasing cell sizes the detachment becomes di�cult. Furthermore, the direct

contact with cells can induce mechanical damage and it is a very slow method

when multiple cells are measured for reliable statistics. Another method is the

application of atomic force microscopy (AFM) to either scratch the cells o� the
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surface137 or to pull cells with a cantilever and measure the force by cantilever

de�ection138. In the latter case, the cell is �rst adhered to the cantilever, then

the cantilever approaches the surface and waits for cell adhesion. Finally, the cell

is slowly pulled away from the surface until it detaches.139 The maximum force

with this method is 100 times larger compared to micropipette aspiration (10 pN

� 100 nN) and the resolution of the force measurement is relatively high. On the

downside, the method is limited to single-cell measurements. Higher cell numbers

can be measured with �ow chambers allowing the measurement of cell adhesion

by detachment of cells by shear stress.140,141 Micro�uidic channels allow to control

�ow speed precisely and the detachment of cells is observed directly under the

microscope. While many cells can be measured contact-free and at the same time,

the detachment of cells depends on the time interval of shear exposure, inducing

elastic deformation of cells, so that the actual adhesion strength is di�cult to

estimate.

Oscilloscope

Power meter

Laser
Objective 10x

Cells

Cavitation 
bubble

Glass

Gel

Medium

Half-transparent
mirror

Pressure
sensor

Figure 2.11: Schematic view of the pressure wave assay. A laser is focused close to
the substrate surface. Calibration of the setup is performed using a power meter and
a pressure sensor. Within the red dashed circle the water is evaporated, creating a
cavitation bubble. The pressure decreases with distance to the focal point of the laser,
thus cells close to the focus are more likely to be detached.

A new method to quantify adhesion forces was developed by Yoshikawa et al.

which overcomes the aforementioned downsides.40,49 The core of this setup is a

high-power picosecond laser which is focused close to the surface of the sample
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as shown in Figure 2.11. Upon release of a single laser pulse, a cavitation bubble

is induced at the focal point by evaporation of the water in the vicinity (red

dashed line in Figure 2.11). Formation and collapse of the cavitation bubble

creates strong pressure waves which can be tuned by adjusting the laser power.

The resulting force is roughly six orders of magnitude larger compared to the

previously mentioned methods. Further advantages are the high throughput (>100

cells) with only one measurement and the contact free detachment which does not

impact cell viability.49 The high speed (1640m/s) and sharp peak (FWHM =

28ps) of the pressure wave inhibit any inelastic deformation of cells providing

accurate measurement of the adhesion force.49

Since the cells within the cavitation bubble are likely to be damaged by the

water vapor, it is useful to estimate the maximum radius of the bubble. Shock

waves induced by cavitation bubbles have been studied before and described by

mathematical models.142,143 If the shock wave velocity us(t) is known, the shock

wave pressure can be written as a function of distance r(t):142

ps(r(t)) = c1 ρ0 us(t) (10(us(t)−c0)/c2 − 1) + p∞. (2.31)

The constant ρ0 is the density of water before compression by the shock wave, c0 is

the sound velocity in water and p∞ is the hydrostatic pressure. Rice andWalsh em-

pirically determined the constants c1 = 5190 m/s and c2 = 25 306 m/s.144 Lauter-

born has discovered the highly symmetric rise and collapse of cavitation bubbles

in the case of short laser pulse duration and low viscosity of the liquid.145 There-

fore, the duration between the �rst and second peak in the pressure-time diagram

equals two times the collapse time Tc. With this information, the maximum radius

of the cavitation bubble can be calculated according to Rayleigh:146

Rmax =
Tc

0.915

√
p∞ − pν
ρ0

. (2.32)

Since these calculations assume the bubble expansion in a homogeneous medium,

some considerations must be made when the pressure wave is induced close to
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an elastic boundary such as a hydrogel. In this case, the cavitation bubble is

increasingly deformed the closer the focus is to the elastic surface and can create

liquid jets.143 To accurately determine the strength of the pressure wave as a

function of distance, a pressure sensor is recommended which can be used to

calibrate the setup.142

2.4.4 Traction force microscopy

First developed by Munevar et al.147 traction force microscopy has become a widely

popular method to reveal active cellular forces which were introduced in Section

2.1.2. In this method, �uorescent beads are embedded in a compliant substrate,

such as a hydrogel (Section 2.1.3). If a cell is exerting contractile forces on the

substrate, the displacement of the beads is measured and can be translated to the

two-dimensional force �eld. While the practical details are explained in Section

3.2.4, the mathematical background will be explained in the following paragraphs.

Solution of the inverse problem

In order to calculate the force from the bead displacement analytically, one has

to assume the substrate as a two-dimensional half-space, i.e. the thickness of the

substrate is in�nite. This is applicable, if the real thickness of the substrate is

su�ciently large in comparison to the displacement on the surface. Furthermore,

forces are considered as two-dimensional, i.e. forces normal to the substrate surface

are neglected.

The traction �eld is considered as the force per unit area, which is exerted by

a cell on the substrate surface. In the experiment the local displacements are

measured from which the traction �eld can be calculated which is known as the

inverse problem. In order to solve it, one has to �rst consider the forward problem

which calculates the displacement �eld ~u(~x) from the traction �eld ~f(~x) at position
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~x as follows:148

ui(~x) =

∫ ∑
j

Gij(~x− ~x′) fi(~x′) d~x′. (2.33)

Translating this integration into matrix notation results in a convolution with the

unknown matrix G and can be written in short:

~u = G⊗ ~f. (2.34)

This problem was solved by Bussinesq using the following Green's function:148,149

Gij(~x) =
1 + ν

πE

[
(1− ν)

δij
r

+ ν
xixj
r3

]

=
1 + ν

πEr3

(1− ν)r2 + νx2 νxy

νxy (1− ν)r2 + νy2

 .

(2.35)

Here, ν is the Poisson's ratio, E is the Young's modulus of the substrate, and

r = |~x|.

Attempting to solve the equation for f(~x) raises the problem that the matrix G

is not diagonal in ~x and therefore cannot be inverted easily. This is unavoidable,

because the traction at one given point always depends on the surrounding traction

of other points, causing the convolution in Equation 2.34. A solution can be

found by application of the Fourier transform which transforms convolutions into

a simple multiplication. This approach is commonly called the Fourier transform

traction cytometry (FTTC).150 With the notation F(G) = G̃ one can write the

traction �eld as follows:

~f = F−1
2 (G̃−1~̃u), (2.36)

where F−1
2 describes the two-dimensional inverse fourier transform. Hence, the
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Fourier transform of the Boussinesq equation (2.35) is needed, which yields:

G̃(~k) =
2(1 + ν)

E k3

(1− ν)k2 + νk2
y νkxky

νkxky (1− ν)k2 + νk2
x

 . (2.37)

It should be noted that the components of the wave vector are de�ned as k2 =

k2
x + k2

y. Inserting this function into Equation 2.36 solves the inverse problem and

the force �eld can now be derived from the displacement �eld.

Dipole and quadrupole analysis

One advantage of the FTTC approach is the additional information from the easily

derived moments of the traction �eld. The zero-order moment is always zero, since

the cell is considered to be in a micro-equilibrium state, where all net forces cancel

out, i.e. there is no displacement of the center of mass: ~̃f(0) = 0.

Less trivial, the �rst order moments reveal forces associated with contraction or

torque. Each entry of the matrix consist of a traction in x or y-direction weigthted

by their x or y coordinate, leading to four possible combinations. For example,

a positive traction in y-direction multiplied with the x-coordinate indicated a

counter-clockwise rotation while a negative traction in x-direction multiplied with

the x-coordinate results in a contraction along the x-axis. Schematically, one can

imagine the meaning of each matrix element as follows:31,150

xfx xfy

yfx yfy

 =̂

→← 	

�

→
←

 (2.38)

Accurately, the matrix elements are de�ned as follows:

Mij =
1

2

∫
[xifj(~x) + xjfi(~x)] dxidxj. (2.39)

Since rotational motion in cells is negligible, M can be diagonalized to obtain

the two eigenvectors and eigenvalues. The eigenvalue with larger absolute value
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Figure 2.12: Schematic visualization of the quadrupole tensor. Black arrows indicate
the direction and strength of the force components. The numbers in parenthesis refer
to the three indices of the quadrupole tensor (i,j,k). The two combinations (1,2,1) and
(1,2,2) are highly relevant in cell locomotion as they imply a front-rear asymmetry.
Adapted from Tanimoto et al.3

equals the major dipole moment Dmax and the smaller eigenvalue equals the minor

dipole moment Dmin while the eigenvectors indicate the direction of each dipole

moment.3 The ratio of both dipole moments is considered a measure of the traction

polarity of the cell.

Apart from the individual dipole moments, a commonly mentioned quantity

is the net contractile moment150�152 µ which is a measurement of the contractile

strength of the cell:

µ = tr(M) = Mxx +Myy. (2.40)

Another important quantity is the total strain energy U , which is the energy

transferred from the cell to the substrate by tactile strain. It is calculated as

follows:

U =
1

2

∫
~f(~x) · ~u(~x) dx dy. (2.41)

Note that µ and U are very di�erent in their physical meaning even though they

share the same unit Joule: U is an energy calculated by force times displacement

and µ is a moment calculated by force times distance from origin.
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The moment analysis can be further extended to the second moment, also called

quadrupole. Here, the calculations become signi�cantly more complicated as the

quadrupole tensor has six components which are described as follows:

Mijk =
1

2

∫
S

xixjfk(~x) dS. (2.42)

Schematically, this can be seen as shown in Figure 2.12. Here, the three indices

(i,j,k) of the quadrupole tensor are shown in parenthesis and the direction of the

force is indicated by black arrows. Longer arrows correlate with a stronger force.

The quardupole is highly relevant for cell locomotion, because at low Reynold's

numbers, i.e. with high friction and low inertia, a bipolar motion will always result

in zero net movement.153,154 Therefore, the tensor components with indices (1,1,1),

(1,1,2),(2,2,1) and (2,2,2) are usually negligible as they do not result in a a net

movement. However, directed motion becomes possible with a break in front-rear

symmetry, as indicated by indices (1,2,1) and (1,2,2) (Figure 2.12). In these cases

the cell is contracting on one side and relaxing on the other side, which e�ectively

pushes the center of mass in direction of the relaxed side.
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3 Materials and methods

3.1 Wrinkled substrates

3.1.1 Materials

Poly(dimethylsiloxane) (PDMS, Sylgard 184) was purchased from Dow Corn-

ing (Midland, MI, USA), and fetal bovine serum (FBS), goat anti-mouse Alexa

Fluor 488 conjugate, and rhodamine-phalloidin were from Thermo Fisher Sci-

enti�c (Tokyo, Japan). Penicillin, streptomycin, and phosphate-bu�ered saline

(PBS) were purchased from Nacalai Tesque (Kyoto, Japan), HiLyte 488-labeled �-

bronectin was purchased from Cytoskeleton Inc. (Denver, CO, USA), and LifeAct-

TagGFP2 and Torpedo lipofection reagent were obtained from Ibidi (Munich,

Germany). Unless stated otherwise, other chemicals were purchased from Sigma-

Aldrich (St. Louis, MO, USA) and used without further puri�cation

3.1.2 Fabrication of Substrates with Periodic Wrinkles

The substrates displaying periodic wrinkles were fabricated by slightly modifying

the protocols reported previously14 (�gure 3.1). In brief, PDMS was polymer-

ized on a silicon wafer (Furuuchi Chemicals, Tokyo, Japan) and cut into blocks of

12× 12× 5 mm3 size. The PDMS blocks were treated with ambient air plasma for

20 s (PDC-001, Harrick Plasma, USA), followed by spin-coating (MS-A150, Mikasa

Corporation, Hokkaido, Japan) with a solution of poly-pyromellitic dianhydride-

co-4,4'-oxidianiline (polyamic acid) in N-methylpyrrolidone (NMP) at 5000 rpm

for 60 s. The solvent was evaporated by preheating at 90 °C for 5min, and the

samples were axially compressed by 3% strain and cured at 180 °C for 30 h during
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Figure 3.1: Fabrication of Substrates Displaying Periodic Wrinkles. The poly(dimethyl-
siloxane) (PDMS) block was �rst treated with ambient air plasma, then polyamic acid
dissolved in NMP was spin-coated. A thin polyimide layer was formed by curing the
sample at 180° under axial compression. The release of axial strain resulted in the
periodic wrinkle structures.

the formation of polyimide. The wrinkles were formed upon release of the exter-

nal strain. Three-dimensional structures of wrinkles were characterized using an

atomic force microscope (NanoWizard, JPK Instruments, Berlin, Germany) with

a pyramidal cantilever (MLCT, Bruker, Billerica, USA).

3.1.3 Modulation of Wrinkle Orientation

To dynamically modulate the wrinkle orientation, an external strain was exerted

on the substrate in the direction of wrinkle orientation.39 A strain above 10% in-

duced reorganization of the wrinkle structure perpendicular to the original wrinkle

orientation. To control the strain accurately, a custom-built motorized pusher was

used including a cell incubation chamber, which can be mounted on a microscope

stage (Strex, Osaka, Japan).

3.1.4 Cell Culture, Immunostaining, and Transfection

C2C12 mouse myoblast cells (<20 passages) purchased from RIKEN BRC Cell

Bank (Tsukuba, Japan) were cultured in RPMI-1640 medium supplemented with

10% (v/v) FBS, 100U/mL penicillin, and 100 µg/µL streptomycin. Before seeding

the cells, wrinkled substrates were incubated with 30µg/µL human �bronectin for

2 h at room temperature. The cells were detached from the culture �asks using

0.25% trypsin-EDTA solution, and 2× 103 cells/cm2 were seeded on the wrinkled

substrate. For immunostaining, the cells were �xed with 0.02 g/mL paraformalde-

hyde permeabilized with 0.1% Tween-20 and blocked with 1% BSA in PBS. Then
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the cells were incubated with mouse antivinculin, goat antimouse Alexa Fluor

488 conjugate, rhodamine-phalloidin, and 4',6-diamidino-2-phenylindole (DAPI),

each for 1 h at room temperature. To visualize actin �bers in living cells, C2C12

cells were transfected with LifeAct-TagGFP2 using Torpedo lipofection reagent

following the manufacturer's protocol.

3.1.5 Image Acquisition and Analysis

Cells on wrinkled substrates were imaged with an upright laser scanning confocal

microscope (FV1000, Olympus, Tokyo, Japan) equipped with a water dipping ob-

jective (40×, N.A. 0.8). Morphometric parameters, such as the aspect ratio and

circularity, and the orientation of cells with respect to the wrinkle direction were

extracted using Fiji software.155 Each cell was �tted as an ellipse from the calcu-

lated �rst- and second-order moments of the binary image,156 and then the aspect

ratio was de�ned as the fraction of the major and minor axis of the �tted ellipse.

The order parameters of cells and actin �laments were calculated using a self-

written routine in MatLab (MathWorks, Natick, USA) as described before.41,42 In

short, the original image was convoluted with a series of elongated Laplacians of

Gaussian kernels, which were rotated n times between 0 and π−π/n. The applica-

tion of an intensity threshold yields the orientation of �bers at each pixel. Finally,

the order parameter can be calculated from the histogram of �ber orientations.

3.2 Host-guest gels

3.2.1 Materials

The host-guest monomers beta-cyclodextrin-acrylamide (βCD-AAm) and adaman-

tane-acrylamide (Ad-AAm) were kindly provided by Professor Masaki Nakahata,

Osaka University, Japan. Ammonium-peroxidisulfate (APS) and Tetramethyl-

ethylenediamine (TEMED) were purchased from Bio-Rad (Hercules, CA, USA).

Vinyltrimethoxysilane was obtained from VWR (Wayne, PA, USA). Polydimethyl-
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siloxane (PDMS, Sylgard 184) was purchased from Dow Corning (Midland, MI,

USA). Mesenchymal Stem Cell Growth Medium MSCGM� was purchased from

Lonza (Basel, Switzerland). Texas Red�-X Phalloidin and STRO-1 antibody were

obtained from Thermo Fisher Scienti�c (Waltham, MA, USA). CellBrite� green

was purchased from Biotium (Fremont, CA, USA). Unless stated otherwise, other

chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used

without further puri�cation.

3.2.2 Fabrication of host-guest gels

Host-guest gels were prepared as described previously.9 In short, the monomer

solution was created by dissolving 71.3mg βCD-AAm and 12.3mg Ad-AAm in

1mL distilled water. This solution was stirred at 90° for 3 h. After cooling down

to room temperature, 133.6mg acrylamide (AAm) and 4.6mg APS were added.

This solution was �ltered with a pore size of 0.22 µm. Glass slides with a diameter

of 25mm were rinsed with solvents and further processed by RCA Clean.157 Half

of the glasses were silanized using vinyltrimethoxysilane. To initiate the polymer-

ization, 0.3% (v/v) TEMED was added to the monomer solution and 25µL was

pipetted onto the silanized glass. The non-silanized glass was then placed on top so

that the monomer solution was spread evenly between both glasses. After 15min

the gel was polymerized and was sticking to the silanized glass. The top glass was

removed and the gel was washed in 50% DMSO for 1 day and in distilled water

for 2 days. The gel was then glued into a petri dish using PDMS. Fibronectin

was bound covalently to the substrate surface by the cross-linker Sulfo-SANPAH

as described previously.158,159 The elastic modulus of the gel was measured with

an atomic force microscope (NanoWizard, JPK Instruments, Berlin, Germany)

using a colloidal probe cantilever (CP-PNPL-BSG-B, NanoAndMore, Wetzlar,

Germany) with a diameter of 10µm and a force constant of 0.08N/m.
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3.2.3 Cell culture

hMSCs were isolated and cultured as described before.160 Bone marrow from

healthy donors for allogeneic transplantation was taken after written consent using

guidelines approved by the Ethic Committee on the Use of Human Subjects at

the University of Heidelberg. The cells were cultured at 37° in a humidi�ed atmo-

sphere. As a cell culture medium MSCGM was used, which was exchanged every

second day. In order to reduce the substrate elasticity, adamantanecarboxylic acid

(Ad-COOH) was added to the cell culture medium, �ltered sterile and added to

the samples after removing the previous medium. To return the substrate to the

original elasticity, the medium was exchanged 3 times followed by 30min incuba-

tion at 37° between each step. Viability assays were performed by incubating the

cells with di�erent concentrations of Ad-COOH for 24 h followed by incubation

with water-soluble tetrazolium salt (WST-1) for 4 h. The WST-1 is cleaved to

formazan by cellular enzymes which becomes visible by a change in color. Using a

photometer (TECAN, Männedorf, Switzerland) the absorbance at the wavelength

of 450 nm was measured relative to a control sample without Ad-COOH.

For immunostaining, cells were incubated with Texas Red�-X Phalloidin or

mouse anti-STRO-1 antibody followed by goat anti-mouse antibody conjugated

with Alexa Fluor 488 for 1 h each. Nuclei were stained with 4',6-diamidino-2-

phenylindole (DAPI). Images were acquired with a Nikon C2 Plus confocal mi-

croscope equipped with a 60× water immersion objective. Analysis of the cell

morphology was performed in Fiji.155

3.2.4 Traction force microscopy

Fluorescent beads with a diameter of 0.2µm were embedded in the top layer of

the host-guest gel as follows. After suspending the beads in distilled water, the

suspension was spread on the RCA-cleaned cover glass and dried with nitrogen

gas. This glass was then placed upside down onto the monomer solution during

the polymerization process. The beads which adhered to the glass remained in a

53



3 Materials and methods

con�ned layer below the gel surface after polymerization. Calculation of the force

�eld was performed in MATLAB (MathWorks, Natick, MA, USA) as described

previously.160,161 The MATLAB script was kindly provided by Professor Masaki

Sano, Tokyo University, Japan.

3.2.5 Pressure wave assay

Similar to a previous publication,7 a pulsed Nd:YAG laser system (λ = 1064 nm,

τL = 28 ± 3 ps, EKSLPLA, Vilnius, Lithuania) was coupled to an inverted mi-

croscope (Eclipse TE2000-U, Nikon Europe) with a 10×objective. Before the ex-

periments, the system was calibrated using a piezoelectric pressure sensor (Müller

Instruments, Oberursel, Germany). Cells were seeded onto sti� host-guest gels

at a density of 500 cells/cm2. After 4 days of equilibration time, the substrate

elasticity was reduced as desired, followed by another 4 days of incubation. The

laser was then focused on four di�erent positions with a distance of at least 1 cm

and the pressure wave was induced at each position at 700µm above the substrate

surface two times. For the �rst pressure wave the laser power is reduced to 0.5mJ,

which resulted in a weak pressure wave to remove dead or non-adherent cells. The

second laser pulse is initiated at 12.7mJ (100%) laser power. Before and after

each pulse a bright �eld image of the size 4 × 3 mm was recorded by stitching.

Cells which were still adhered after the second laser pulse were marked manually

using the software Fiji155 and their distance to the laser focus was calculated. If a

cell has changed its adhesion area signi�cantly, it was considered to be detached.

3.2.6 Cyclic change of substrate elasticity

hMSCs wee seeded on the initially sti� gels (E = 25 kPa) for 4 days after which

the substrate elasticity was switched to soft �rst (E = 8 kPa) and then changed

every 2, 4, 7, 10 or 20 days. Switching the substrate elasticity from sti� to soft

was achieved by exchanging the medium with fresh medium containing 5mM

Ad-COOH. Returning to the sti� substrate required 3 times exchanging to the
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unmodi�ed medium followed by 30min incubation at 37°. After 20 days the cell

were �xed and the density was measured by counting the nuclei per area. Cells

were stained with mouse anti-STRO-1 to assess the mutipotency.
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4 Dynamic contact guidance of

myoblast cells

Biological tissues are highly anisotropic in their shape and composition. Many tis-

sues, such as muscle �bers, rely on the anisotropy in order to ful�ll their functions.

This internal ordering originates from single cells, as several properties such as cell

orientation, migration direction and proliferation are in�uenced by the topogra-

phy of their environment which is called contact guidance.3,5,8,34 Even in matured

tissue, cells are able to sustain the structure and functional integrity reliably.19

Earlier studies have proven that cells follow geometric cues, like grooves and ridges

or periodic wrinkles, by aligning their shape and cytoskeleton in the direction of

the topography.28,162 However, most studies are limited to a static topography

in contrast to biological tissues which are changing over time during aging and

diseases. Therefore, a new substrate was developed in this study which features

a wrinkled surface and is able to switch the angle of the wrinkle direction in situ.

This enables the immediate observation of cell responses to a radical change in

surface topography.

4.1 Characterization of the wrinkled substrate

In this section, the wrinkled substrate is characterized regarding its geometry,

surface wettability and protein coating. Figure 4.1a Shows an image acquired

by AFM imaging which reveals the height pro�le of the wrinkled substrate. A

line pro�le was extracted perpendicular to the wrinkle direction and is plotted

below. Here, the wavelength λ = 2.5 ± 0.1 µm is measured as the peak-to-peak
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Figure 4.1: (a) AFM height map of a surface with periodic wrinkles. The pro�le along
the yellow line is extracted below and yields a wavelength of λ = 2.5 ± 0.1 µm and an
amplitude of ∆h = 0.32± 0.01 µm. (b) The Wavelength λ (open circles) and amplitude
∆h (solid circles) of wrinkles are plotted as a function of polyimide thickness dPI . λ
was �tted with a linear function as indicated by the broken line. It should be noted
that the ratio ∆h/λ = 0.13 is almost constant for all samples. (c) Contact angle of
a water droplet on PDMS before and after plasma treatment. (d) Fluorescence image
of labeled �bronectin adsorbed to polyimide. The bar plot reveals a strong signal of
adsorbed �bronectin compared to control.

distance and the height ∆h = 0.32± 0.01 µm is de�ned as the di�erence between

peak and trough. In Figure 4.1b the wavelength λ and amplitude ∆h are plotted

against the polyimide thickness dSI. The exact concentrations of polyamic acid

in NMP (v/v) and resulting thickness dPI are listed in Table 4.1. It should be

noted that λ also depends on the ratio of Young's modulus E of polyimide and

PDMS as shown by Equation 2.17. Both values for E were kept constant in this

study. EPDMS ≈ 10 MPa was measured by AFM indentation and EPI ≈ 2.5 GPa

is given by the manufacturer. The ratio between λ and ∆h is almost constant and

relatively low (∆h/λ ≈ 0.13), therefore displaying a rather shallow wrinkle pro�le.

In order to form a stable connection between PDMS and polyimide, the surface

of the PDMS is treated by ambient plasma for 20 s. As shown in Figure 4.1c, the
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4.2 Directional ordering of cells and cytoskeleton

Polyamic acid [% (v/v)] dPI [µm]
2.3 0.06 ± 0.01
3.0 0.24 ± 0.03
3.6 0.39 ± 0.09
4.8 0.86 ± 0.04

Table 4.1: Polyamic acid concentration and resulting polyimide thickness dPI. A part
of the polyimide layer was removed by scratching to measure dPI by atomic force mi-
croscopy.

contact angle changes from ϕ = 110° to ϕ < 10°. The substrates were incubated

with �bronectin labeled with HiLyte 488 to con�rm �bronectin adhesion to poly-

imide. Figure 4.1d shows the �uorescence image after incubation with 30µg/mL

�bronectin for 2 h at room temperature with a control sample on the right. Next

to the image the average intensity of the coated sample and a control sample is

plotted which shows a signi�cant di�erence between both samples.

4.2 Directional ordering of cells and cytoskeleton

The ordering of cells and actin was studied separately to determine the individual

in�uence of the wrinkled topography quantitatively. Starting with the cell order-

ing, Figure 4.2a shows C2C12 cells 4 h after seeding on wrinkles with a wavelength

of λ = 1.7 µm. The image presents an overlay of �uorescence and di�erential in-

terference contrast (DIC) microscopy. The actin cytoskeleton is shown in green

and the nuclei in blue. An ellipse (red) was �tted to the cells to determine its

orientation de�ned by the major axis of the ellipse (red line). The angle between

the major axis and the wrinkle direction is de�ned as αcell, as shown in the in-

set. Individual distributions of αcell are shown in Figure 4.2b for each wavelength

λ. Each distribution was �tted with a Gaussian function (broken lines). The

broadest distribution, de�ned by the full width at half maximum (FWHM), was

observed for λ = 1.7 µm at FWHMcell,1.7 µm = 68 ± 15 degree. With increasing λ

the FWHM decreased, i.e. the distribution was sharper. For quantitative analysis

of the collective cell the order parameter was calculated according to the following
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4 Dynamic contact guidance of myoblast cells
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Figure 4.2: (a) C2C12 cells on wrinkles with λ = 1.7 µm. The image is an overlay of
the wrinkles imaged by DIC (grey) and actin (green) and the nucleus (blue), which are
imaged by �uorescnece microscopy. The red ellipses are �tted to the cell shape while
the red line indicates the major axis. In the inset the de�nition of αcell is explained
which equals the angle between major axis of the ellipse and wrinkle direction. (b) The
distribution of αcell is plotted for each wavelength λ and �tted with a Gaussian function
(broken lines). (c) Full width at half maximum (FWHM) of the αcell-distributions and
order parameter of cells 〈Scell〉 are plotted against λ. (d) Overlay of the DIC image with
the detected actin �laments. The color code represents the angle αactin which is the
angle between individual actin �laments and the wrinkle direction as shown in the inset.
(e) The distribution of αactin is plotted for each wavelength λ and �tted with a Gaussian
function (broken lines). (f) FWHM of the αactin-distributions and order parameter of
actin 〈Sactin〉 are plotted against λ.
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4.2 Directional ordering of cells and cytoskeleton

formula:

〈Scell〉 =

∑
iARi cos(2αi)∑

iARi

. (4.1)

This order parameter is weighed by the aspect ratio ARi which is de�ned as the

fraction of major and minor axis of the ellipse �t. In Figure 4.2c the FWHMcell

(open circles) and order parameter 〈Scell〉 (closed circles) are plotted against λ.

〈Scell〉 starts at 0.55, indicating moderate alignment at λ = 1.7 µm, and increases

to 〈Scell〉 ≈ 0.91 at λ = 3.7 µm. For higher λ, 〈Scell〉 does not increase any further.

On the other hand, the FWHMcell decreases continuously with increasing λ, with

the most noticeable change from λ = 1.7 µm (FWHMcell ≈ 70°) to λ = 2.5 µm

(FWHMcell ≈ 35°). Overall, this indicates that the cells have already reached

their maximum alignment at λ = 3.7 µm.

The lower images in Figure 4.2 represent the results of actin ordering analysis.

In Figure 4.2d an overlay of DIC and the detected actin �laments is shown. The

color of each �lament indicates the angle αactin which is the angle between each

�lament and the wrinkle direction as shown in the inset. In Figure 4.2e the distri-

bution of αactin is plotted for each λ and �tted with Gaussian functions (dashed

lines). The FWHM decreases monotonically from FWHMactin,1.7 µm = 82 ± 5° to

FWHMactin,6.3 µm = 25 ± 1°. For the nematic order parameter of actin �laments

the following equation was applied:

〈Sactin〉 =

∑
iAi cos(2αi)∑

iAi
, (4.2)

where Ai is the area of individual �laments measured by the number of pixels

multiplied by the pixel size. In Figure 4.2f the order parameter 〈Sactin〉 and the

FWHMactin are plotted against λ. It can be seen that the order parameter is lower

compared to 〈Scell〉 on the same substrate, e.g. 〈Sactin,1.7µm〉 ≈ 0.34 is smaller

compared to 〈Scell,1.7 µm〉 ≈ 0.55. An increase in λ from 1.7 to 3.7µm also results

in an increase of the order parameter to 〈Sactin,1.7µm〉 ≈ 0.73± 20 which indicates

an increased alignment of actin �laments towards the wrinkle direction. A further
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4 Dynamic contact guidance of myoblast cells
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Figure 4.3: Focal adhesion location depending on wrinkle wavelength. (a,b,d,e) On the
left side of each panel an overlay of �uorescence signal of vinculin and DIC is shown. The
�uorescence signal inside the yellow box is integrated in wrinkle direction and plotted
on the right side. Blue arrows indicate locations where vinculin is found on the peak
of wrinkles while red arrows point towards vinculin accumulation in the trough. In (a)
λ = 1.7 µm and (b) λ = 2.5 µm vinculin is mostly located at the peaks, suggesting a �at
cell membrane as shown in panel (c). In contrast, in (d) λ = 3.7 µm and (e) λ = 6.3 µm
vinculin is found on peaks and troughs so that the cell membrane follows the wrinkle
undulation as schematically shown in panel (f).

increase in λ to 6.3 µm did not increase the order parameter signi�cantly.

4.3 Localization of focal adhesions

The asymptotic behavior of both order parameters 〈Scell〉 and 〈Sactin〉 implies the

existence of a threshold wavelength λ∗ between 2.5 and 3.7µm which di�erenti-

ates between the ordered and disordered state of both, the cells and the actin

cytoskeleton. To assess this hypothesis, the location of focal adhesions of cells was

measured by �uorescence staining of vinculin, a major contributor to the adhesion

complex. In Figure 4.3a,b,d,e the left side shows the �uorescence signal of vinculin

as an overlay of the DIC image. The �uorescence signal inside the yellow box is

integrated in wrinkle direction and plotted on the right side. Blue arrows point

towards locations where the vinculin signal correlates with the peaks in the wrin-

kle pro�le. Red arrows point towards a vinculin signal inside the wrinkle trough.
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4.4 Dynamic cell spreading on wrinkles

It should be noted that the mean distance between blue arrows roughly correlates

with the wavelength of the wrinkles.

At a wavelength of λ = 1.7 µm (Figure 4.3a) and λ = 2.5 µm (Figure 4.3b) all

maxima of the vinculin signal were found on the wrinkle peaks. Since a strong

vinculin signal is associated with focal adhesions, it means that focal adhesions

are mostly found on the peaks of wrinkles. Therefore, the cell membrane is mostly

�at and cannot reach the trough of wrinkles (Figure 4.3c). On the other hand,

substrates with a wavelength of λ = 3.7 µm (Figure 4.3d) and λ = 6.3 µm (Figure

4.3e) result in a vinculin signal in troughs and peaks. Consequently, the cell

membrane bends to follow the undulation of the substrate as schematically shown

in Figure 4.3f. Intriguingly, the �uorescence signal in the troughs seems to be

lower compared to the signal on peaks.

4.4 Dynamic cell spreading on wrinkles

Live cell imaging was performed on C2C12 cells right after seeding on the wrinkled

substrates. The cells were previously tranfected with LifeAct-GFP to visualize the

cell shape and the actin cytoskeleton by �uorescence microscopy. In Figure 4.4a

the actin �laments of one cell are shown at di�erent time points after seeding on

λ = 1.7 µm. Right after seeding, the cell displays a circular shape with isotropic

actin orientation. Afterwards, the cell elongates for ca. 3 h in wrinkle direction

and develops an ordered actin cytoskeleton. After 3 h the cell shape reaches an

equilibrium state without signi�cant changes. Figure 4.4b shows the aspect ratio

AR of the cell (red triangles) and the nematic order parameter of actin 〈Sactin〉

(black circles) plotted against time t. Notably, within the �rst 3 h the change of

AR over time is almost linear while 〈Sactin〉 can be �tted well with an exponential

function. From the �t, the characteristic relaxation time was determined to be

τ ≈ 37± 4 min. In Figure 4.4c the relationship between AR and 〈Sactin〉 is plotted

for the whole duration of the experiment. The behavior of this correlation can be

roughly separated into three parts: from t = 0 − 1.5 h (purple) the AR increases
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Figure 4.4: Spreading of a cell on wrinkled substrate. (a) The actin �laments of one
C2C12 cell are shown at several time points after seeding on λ = 1.7 µm. The color
in the images represents the angle αactin of actin �laments with respect to the wrinkle
direction (white arrow). The thickness of actin �laments was increased by 2 pixel to
improve visibility. (b) Aspect ratio AR (red triangles) and nematic order parameter
of actin 〈Sactin〉 (black circles) are plotted against time t. (c) AR is plotted against
〈Sactin〉. Within the �rst 1.5 h there is a positive correlation between both values (purple).
Afterwards the AR increases (t = 1.5 − 3 h, green) and reaches a saturation after 3 h
(orange).
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4.5 Cellular response to dynamic change in wrinkle orientation
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Figure 4.5: (a) Picture of the motorized pusher which was built speci�cally for live cell
imaging. The motor speed and percentage of strain can be controlled. For this study
a speed of v = 25 µm/s was applied. (b) Scheme of the experimental setup. (c) DIC
images were acquired at di�erent time points and strain levels. Yellow arrows indicate
the direction of strain. The inset shows the Fourier transform of the DIC images.

slowly with a fast growing 〈Sactin〉. Afterwards, 〈Sactin〉 reaches a saturation at

≈ 0.7 while AR continues to grow (green). Finally, after 3 h (orange) both values

reach the saturation without further signi�cant changes.

The same experiment was performed on a smaller wavelength λ = 1.7 µm and

on �at polyimide. With λ = 1.7 µm the correlation between AR and 〈Sactin〉 was

linear throughout the whole experiment and the cell reached an equilibrium state

after t = 3 h (Appendix A.1). On �at polyimide, C2C12 cells spread isotropically

with almost constant AR ≈ 1 and 〈Sactin〉 ≈ 0 within over 4 h after seeding

(Appendix A.2).
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4 Dynamic contact guidance of myoblast cells

4.5 Cellular response to dynamic change in

wrinkle orientation

The goal of the following experiment was to analyze the cell response, especially

morphology and nematic order parameter of actin, to a dynamic change of topog-

raphy. The wrinkled substrates were previously shown to change the orientation of

wrinkles by 90° upon compression.39 For this purpose, a custom motorized pusher

was built as shown in Figure 4.5a. The pusher is mounted on the stage of a con-

focal microscope and can adjust the speed of compression and the level of applied

strain in a precise manner. Viewed from the top, Figure 4.5b shows schematically

the experimental setup. In Figure 4.5c di�erential interference contrast (DIC) mi-

croscopy images of one wrinkled substrate are displayed at di�erent time points

and di�erent strain levels. The motor speed was set constant at v = 25 µm/s.

In the insets the 2D Fourier transform of each image is shown. Without any ax-

ial strain (0%) the alignment of wrinkles is parallel. The accurate wavelength λ

was calculated from the Fourier transform by measuring the distance of the �rst

maximum (bright spot) from the center which results in a real-space characteristic

distance of λ = 3.9 µm. At a strain level of 9.5 percent the periodic topography

is broken by locally appearing wrinkles in perpendicular direction. Complete re-

arrangement of the wrinkles is achieved after 60 s at 12.5% strain. At this point

the orientation of wrinkles and the image in Fourier space are rotated by 90°. The

latter yields a characteristic wavelength of 4.0µm. The strain was then released

with the same velocity of v = 25 µm/s which resulted in recovery of the original

topography at λ = 4.1 µm. Optimization of the protocol, especially regarding

plasma treatment of PDMS, resulted in increased stability of bonding between

polyimide and PDMS. The reversible switching of the topography is applied to

examine the dynamic change of cell morphology and nematic order parameter of

actin.

Cell were observed over time on the wrinkled substrate with a wavelength of

λ = 3.7 µm until they reached an equilibrium state. Then, the wrinkle orientation

66



4.5 Cellular response to dynamic change in wrinkle orientation
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Figure 4.6: (a) Transected C2C12 cell responds to the change in wrinkle direction at
a wavelength of λ = 3.7 µm. The color code refers to the angle αactin between original
wrinkle orientation (white arrow) and the actin �laments. The dotted white ellipse was
�tted to the cell shape to extract the aspect ratio AR and the angle of cell orientation
θcell with respect to the wrinkle orientation. In the inset the wrinkle pattern is shown
with the black arrow pointing in the current wrinkle direction. Strain was applied at
t = 0 h and increased to 12.5% within 60 s. After 6 h the cell shape and actin ordering
reached a steady state. (b) The aspect ratio AR (red triangles) and angle θcell (blue
circles) of the cell are plotted over time t. A transition time point was observed and
de�ned as the minimum of AR at t∗AR,3.7 µm = 2.8 h. Note that θcell is always calculated
with respect to the original wrinkle direction. (c) The neamtic order parameter of actin
〈Sactin〉 is plotted against time t. The data can be �tted well with an error function
with the critical time point t∗actin,2.8 µm = 2.8 h de�ned by 〈Sactin〉 = 0. (d) After 6 h the
strain is relaxed and the substrate recovers the original con�rmation. The color code is
identical to (a). It can be seen that the cell shape and actin ordering are reversible.
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4 Dynamic contact guidance of myoblast cells

was switched by 90° within 60 s as shown in Figure 4.5. The time point at which

the compression of the substrate started was de�ned as t = 0 h. Figure 4.6a

shows the actin �laments of one example cell with the color code indicating the

angle αactin between individual �laments and the original wrinkle direction (white

arrow). An ellipse was �tted to the cell shape (dotted white line). The cell angle

θcell is measured between the ellipse major axis and the original wrinkle direction.

In the inset, the current wrinkle direction is shown. In Figure 4.6b the aspect ratio

AR (red triangles) and cell angle θcell (blue circles) are plotted against time t. The

symbol θ is chosen to describe the angle during a dynamic change of topography

in contrast to α which is used only for static topography. In this experiment,

the initial wrinkle direction is θcell = 0° which changes to θ = 90° when strain is

applied.

With a delay of ca. 1 h after change of wrinkle orientation, the AR decreases

sharply from AR0 = 2.4 and reaches a minimum of ARmin = 1.1 which is de-

�ned as the critical time point t∗AR,3.7µm. The low AR indicates an almost round

shape of the cell. During the decrease of AR the cell angle θcell increases from

≈ 0° to ≈ 75° after t∗θ,3.7 µm ≈ 3 h (Figure 4.6b). The apparent synchronization

between t∗AR,3.7µm and t∗θ,3.7µm was con�rmed by observation of other cells by DIC

microscopy (Appendix A.3). It should be noted that the change in cell morphology

and orientation are induced by the topography and not by the strain of the sub-

strate. While the latter can induce similar changes, it takes much longer for cells

to respond. Steward et al. observed the change in cell morphology and orientation

on �at PDMS in response to a strain of 20% which resulted in a characteristic

response time of 24 h.163

Additionally to the external properties like cell morphology and orientation,

the internal ordering of the cell was assessed by the nematic order parameter of

actin. In Figure 4.6c, the order parameter 〈Sactin〉 is plotted against time t which

is calculated by Equation 4.2. Since the angle of each actin �lament is measured

with respect to the original wrinkle direction, 〈Sactin〉 = 1 means perfectly paral-

lel alignment and 〈Sactin〉 = −1 means perpendicular alignment with the original
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Figure 4.7: (a) Transected C2C12 cell responds to the change in wrinkle direction at a
wavelength of λ = 1.7 µm. (b) The aspect ratio AR (red triangles) and angle θcell (blue
circles) of the cell are plotted over time t. (c) The nematic order parameter of actin
〈Sactin〉 is plotted against time t. The data can be �tted well with an error function
(black line).

wrinkle direction. As shown in the plot, 〈Sactin〉 decreased monotonically from 0.9

to −0.7 after the wrinkle direction was changed by 90° and could be �tted well with

an error function (black line). The transition time was de�ned as the time point

when 〈Sactin,fit〉 = 0 and resulted in t∗actin,3.7 µm ≈ 2.8 h. Intriguingly, this tran-

sition time was in good agreement with the previously revealed transition times

t∗actin,3.7 µm ≈ t∗AR,3.7µm ≈ t∗θ,3.7µm ≈ 2.8 h indicating that the intrinsic (cytoskeleton)

and extrinsic (morphology) orientation in the cell was synchronized. To con�rm

the reversibility of the cell and actin organization, the stress was released after

6 h so that the wrinkle topography returned to the original con�rmation. As a

response, the cell also recovered its previous orientation (Figure 4.6d).

4.6 Impact of wrinkle wavelength

Since a di�erent behavior of the cell adhesion was found in Figure 4.2 for small

(λ = 1.7− 2.5 µm) and large wavelengths (λ = 3.7− 6.3 µm), the dynamic adap-

tation to the change in topography could also behave di�erently depending on the

wavelength. To test this hypothesis, a cell was observed over time on λ = 1.7 µm
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4 Dynamic contact guidance of myoblast cells

after the change of wrinkle direction (Figure 4.7a). Similar to Figure 4.6a, the

cell was �rst incubated until it reached an equilibrium and the wrinkle orientation

was switched by 90° by slowly increasing the strain over 60 s. As shown in Figure

4.7b, the AR decreased immediately from the initial value of AR0 = 3.3 until it

reached the minimum at t∗AR,1.7 µm ≈ 2.3 h. At this time, the cell exhibited a more

spiky morphology compared to the cell on λ = 3.7 µm (Figure 4.6a). The angle

of the cell θcell changed rapidly from ≈ 0° to ≈ 90° at t∗θ,1.7µm ≈ 2.3 h, agreeing

well with the transition time of the AR. The general consistency of this behavior

was con�rmed with DIC images of other cells (Appendix A.4). The plot in Figure

4.7c shows the nematic order parameter 〈Sactin〉 which decreases monotonically

over time from 0.6 to −0.6. The �t with an error function (black line) reveals

a transition time of t∗actin,1.7µm ≈ 2.2 h which also agrees well with the previous

transition times: t∗actin,1.7µm ≈ t∗AR,1.7 µm ≈ t∗θ,1.7 µm ≈ 2.3 h.
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4.7 Discussion

4.7 Discussion

As shown in Figure 4.2, seeding of C2C12 on a topography with di�erent wave-

lengths λ resulted in di�erent cell and actin ordering as well as cell morphology.

The angle αcell was measured between the major axis of cells and the orientation

of the wrinkle topography. On small λ = 1.7 µm the distribution of αcell was

relatively broad, i.e. it showed a large FWHM, which decreased with increasing

λ (Figure 4.2b). Therefore the cells are more aligned on substrates with larger

λ. In a previous study162 using PDMS substrates with periodic waves or grooves,

the angle of bovine capillary endothelial cells has been measured. They suggested

that the cell angle decreases with an increase in λ: θ = 20 ± 3° at λ = 5 µm and

θ = 14± 4° at λ = 10 µm.162 θ was calculated in this case as the average value of

all cell-wrinkle angles, where θ = 0° is de�ned as optimal alignment and θ = 45°

is de�ned as random alignment. Another study introduced the cell orientation

index (COI) which was used for substrates with submicrometer-scale features.164

This index is de�ned as COI = 1− θ/45. Since the information about the wrinkle

distribution is missing, a direct comparison with the nematic order parameter was

not possible. Other studies presented a percentage of aligned versus non-aligned

cells and actin cytoskeletons. They found that the alignment on substrates with

ridges with 1− 5 µm wide features was more pronounced compared to substrates

with larger features5,8,165. However, the threshold of aligned and non-aligned cells,

was not clearly de�ned.

Commonly, cells in anisotropic biological environments not only align, but also

elongate along the axis of the anisotropic feature. This behavior is emulated

with substrates using the periodic topography. For example, bovine capillary

endothelial cells feature an aspect ratio of 2.5 on �at substrates. The aspect

ratio increases to 2.9 on periodic waves at λ = 5 µm and became 3.2 at λ =

10 µm.162 While this behavior was most frequently observed, some studies also

found a decrease in the alignment with an increase in the lateral dimension of the

substrate features, for example in the case of mesenchymal stem cells on ridges and
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4 Dynamic contact guidance of myoblast cells

grooves.166 The elongation and orientation of cells were both taken into account by

the calculation of the nematic order parameter 〈Scell〉 and weighing the distribution

of cos(2αcell) with the aspect ratio AR of cells (Equation 4.1. After increasing the

wavelength from λ = 2.5 to 3.7 µm a saturation of the order parameter was

found (〈Scell〉 ≈ 0.9). This indicates that there is a critical wavelength λ∗, which

distinguishes the aligned from the non-aligned state. Observation of the actin

angle αactin revealed a larger distribution of αactin (Figure 4.2e) compared to the cell

orientation (Figure 4.2b). However, when calculating the nematic order parameter

〈Sactin〉, it was clearly distinct from the isotropic ordering of the actin cytoskeleton

on �at substrates (Appendix A.2). Increasing the wavelength from λ = 2.5 to

3.7 µm resulted in a saturation of 〈Sactin〉 ≈ 0.7 (Figure 4.2f). This indicates

that there is a common critical wavelength λ∗ for the cell orientation and actin

ordering, despite the hierarchical di�erences.

It is well known, that the formation of actin stress �bers is induced by the

mechanosensory signals of focal adhesions.15 Therefore, the location of focal ad-

hesions was determined by immuno�uorescence labeling of vinculin (Figure 4.3).

It was found, that focal adhesions are elongated in wrinkle direction for all wave-

lengths. Remarkably, the location of focal adhesions di�ered signi�cantly depend-

ing of the critical wavelength λ∗. At λ < λ∗ (Figure 4.2a,b) focal adhesions are

located at the peaks of wrinkles, but not in the troughs. Therefore, the bottom

membrane of the cell must be �at and only in contact with wrinkle peaks as well.

At λ > λ∗ the focal adhesions are located at peaks and in troughs (Figure 4.3d,e),

indicating that the cell membrane bends according to the wrinkle pro�le.

Physically, the di�erence in location of the focal adhesions depends on the

counterplay of two energies: the adhesion free energy Fadh and the bending en-

ergy Fbend. The height pro�le of wrinkles is de�ned as h(x, y) = ∆h
2

sin
(

2π
λ
x
)
,

where the x-axis is perpendicular and the y-axis is parallel to the wrinkle direc-

tion. Assuming, the cell membrane completely follows the wrinkle undulation

(full adhesion, Figure 4.3c), the total free energy is simply the sum of all energies:

Ffull = −Fadh + Fbend. In the case that the focal adhesions are only at the wrin-

72



4.7 Discussion

kle peaks and the cell membrane is �at (partial adhesion, Figure 4.3c), a factor

0 < χ < 1 is introduced which de�nes the fraction of the contact area between

cell and substrate. In this case, the total free energy is calculated as follows:

Ffull = −χFadh. The di�erence in free adhesion between full and partial adhesion

is therefore calculated as follows:

∆F = −(1− χ)Fadh + Fbend . (4.3)

In the literature, the bending energy of a membrane is de�ned as follows:15,167

Fbend · A =

∫
1

2
κ(Cx + Cy − 2C0)2dA . (4.4)

Here, κ is the bending modulus of the cell membrane and C is the contact cur-

vature. In case of the wrinkled substrate, Cy and the spontaneous curvature C0

are zero. Since the wrinkle topography is periodic, it makes sense to calculate the

bending energy per unit area A = L×1 where L is the contour length correspond-

ing to one wavelength and 1 is the unit length along the x-axis. Inserting this into

Equation 4.4 results in the following relations:

Fbend = f1(∆h
λ

)
κ

λL
(4.5)

L = f2(∆h
λ

)λ . (4.6)

f1 and f2 are functions depending on the amplitude ∆h and wavelength λ of the

wrinkles whose complete forms are written in the Appendix A.6. The fraction ∆h
λ

was almost constant in this study at ∆h
λ
≈ 0.13. Using Equation 4.3 results in the

following relation for the critical wavelength:

λ∗ =

√
f1

(
∆h
λ

)
κ

(1− χ)f2

(
∆h
λ

)
Fadh

. (4.7)

Using the literature values for Fadh ≈ 10−7 to 10× 10=5 J/m2 168,169 and κ ≈

10× 10−19 J,168,170 and inserting the characteristic wavelength from this study
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4 Dynamic contact guidance of myoblast cells

(2.5 µm < λ∗ < 3.7 µm) results in the fraction of adhesion area in the following

interval: 0.77 < χ < 1. Apparently, the omission of the bending energy in the

case of partial adhesion could result in large values for χ. The transition of ad-

hesion depending on λ∗ shares some common features with the wetting transition

depending on the healing length.171 Further details of the calculation are added

in the appendix.

Some studies have suggested a characteristic length scale for the localization of

focal adhesions. Human �broblasts and vascular endothelial cells were able to form

focal adhesions on 2 µm wide ridges, but not on 2 µm wide grooves. At a width

of 10 µm, focal adhesions cound be found on ridges and groves alike,20 indicating

a characteristic mean distance between focal adhesions of 4 to 20 µm. In another

study, Ray et al. seeded breast cancer cells on substrates with ridges and grooves

of equal width between 0.4 − 1.2 µm. They found focal adhesions only on ridges

with a width of 0.4 µm, but not on ridges and grooves which were 0.8 µm wide.164

Therefore, the characteristic distance between focal adhesions is 0.8− 1.6 µm. In

this thesis, a characteristic wavelength was found at λ∗ = 2.5 − 3.7 µm which

seems to be in good agreement with the previous reports regarding the order

of magnitude. The lower characteristic repeat distance for breast cancer cells

can be attributed to the higher deformability of these cells. This is reasonable,

because cancer cells are generally more deformable compared to normal myoblasts,

�broblasts, and vascular endothelial cells.172 A study by Kim et al. observed that

cardiac cells are able to enter 400 nm wide grooves,173 which can be explained by

the elasticity of cells. Cardiac muscle cells typically exhibit a Young's modulus of

0.5 kPa,174 which is much lower compared to C2C12 cells (12− 15 kPa).175

Until now, most studies focused on the morphology and alignment of cells

on static substrates, namely �at compared to wrinkled substrates or ridges and

grooves on which the cells have reached a steady state.28,162,176 Formerly, the only

way to observe the dynamics of cytoskeleton remodeling was by �xation and stain-

ing of actin177 and microtubules178 ex situ at di�erent time points. In this study,

live cell imaging of C2C12 cells was performed using LifeAct-GFP and the actin
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dynamics were observed in situ (Figure 4.4a). Shortly after adhesion the cells ex-

hibited an initially round shape and started to elongate in the wrinkle direction.

The actin cytoskeleton also organized itself primarily in the same direction. In

Figure 4.4b the development of cell shape (AR) and nematic order parameter of

actin (〈Sactin〉) were plotted over time and both quantities reached a saturated

level after 3 h. A positive correlation between AR and 〈Sactin〉 was observed in

the initial phase of spreading. After 〈Sactin〉 reached the saturation, AR continued

to increase (Figure 4.4c), indicating that the change in cell shape is guided by

the actin cytoskeleton. On a substrate with lower wavelength (λ = 1.7 µm) the

correlation between AR and 〈Sactin〉 was sustained until both quantities reached

the saturation level (Appendix A.1). In contrast, the cell spreading and actin

cytoskeleton of cells on �at substrates was completely isotropic during the time of

observation (Appendix A.2).

The wrinkled substrate has the unique ability to reversibly change the orien-

tation of its topography by axial compression and relaxation (Figure 4.5). Other

studies have applied several strategies to achieve similar features. For example,

PDMS was treated by strong plasma exposure which hardened the surface. When

strain is applied from the side, this substrate forms wrinkles with a wavelength of

λ = 6− 7 µm, while the �at surface is recovered upon relaxation.21 When C2C12

cells are seeded on these substrates the alignment was switched between random

and parallel within 24 h upon formation and decomposition of the wrinkled surface.

Another strategy is to embed magnetic microwires into polyacrylamide hydrogels.

If a magnetic �eld is applied, these substrates induce a random roughness on the

surface which recovers to a �at surface in the absence of the magnetic �eld.22 In

comparison to these studies, the substrate in this thesis o�ers the unique abil-

ity to switch the wrinkle orientation by 90° instead of returning to a �at surface

(Figure 4.5). When strain was applied to the substrate with λ = 3.7 µm, the AR

of cells decreased �rst until it reached a minimum at ARmin ≈ 1 (Figure 4.6b).

Afterwards the AR increased while the cell angle was changed towards the new

wrinkle orientation. The transition point was de�ned as the minimum of the AR
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4 Dynamic contact guidance of myoblast cells

where the cell becomes almost spherical and resulted in t∗AR,3.7µm = 2.8 h. Roughly

within the same time (≈ 3 h) the cell angle changed from ≈ 0° to ≈ 75°. In another

study, the change from aligned to isotropic ordering of adipose-derived stem cells

after removal of the wrinkle pattern reached an equilibrium after ≈ 20 h.37 Here,

the substrate consisted of a gold layer coated shape memory polymer. On PDMS

wrinkles the response of C2C12 cell orientation was observed within 15 − 30 h.38

In this thesis, the response of C2C12 alignment to a dynamic change in substrate

topography was signi�cantly faster at about t∗ = 1− 4 h.

The actin cytoskeleton orientation switched its orientation by almost 90°, as

shown by the 〈Santin〉 which decreased monotonically from 0.9 to −0.7 (Figure

4.6c). By �tting an error function, the transition time was de�ned as the point

where the function equals zero and resulted in t∗AR,3.7 µm = t∗actin = 2.8 h. This

indicates, that the global orientation of cells and the sub-cellular ordering of actin

�laments is mutually orchestrated. The reversibility of cell alignment was con-

�rmed by release of the strain and return to the original substrate topography

(Figure 4.6d).

Up to this point, the dynamic response of cells has only been observed above the

proposed critical wavelength 3.7 µm > λ∗ (Figure 4.6). Therefore, another sample

with a wavelength 1.7 µm < λ∗ was subjected to a similar experiment (Figure

4.7). The response of the cell was similar compared to the previous experiment:

the AR �rst decreased and reached a minimum at t∗AR,1.7µm ≈ 2.3 h. This was in

good agreement with the transition of the nematic order parameter of actin at

t∗actin,1.7 µm ≈ 2.2 h. Intriguingly, the cell shape appeared more spiky compared to

the cell on λ > λ∗ (Figure 4.7a) which seems to be related to to the location of focal

adhesions on λ < λ∗ which were shown to be only located at the peaks of wrinkles

(Figure 4.3a,b). This means that the reorganization of the actin cytoskeleton

occurred predominantly in the same plane. In contrast, on the substrates with

λ > λ∗ the focal adhesions were found on wrinkle peaks and in troughs (Figure

4.3d,e), indicating that the actin cytoskeleton is reorganized in a three-dimensional

space.
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4.7 Discussion

Until now, this is the �rst study which systematically presented the dynamic

cell response to a reversible switching of wrinkle direction by 90°. Additionally, the

in�uence of a characteristic wavelength and and the kinetics of contact guidance

were studied. In principle, the wrinkled substrate used in this study is able to

change the wrinkle direction by an arbitrary angle, as shown by Ohzono et al.39

In the future, more studies on the in�uence of the wrinkle wavelength, direction of

wrinkle modulation, and genetic modi�cation of mechanosensing proteins25 would

help us to understand the interaction between extrinsic topographical cues and

intrinsic genetic cues. Especially the di�erentiation of C2C12 cells into myotubes

would be a suitable model system, since the formation of functional muscle �bers

depends highly on cell alignment.23
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5 Regulating stem cell functions and

fate by dynamic substrate elasticity

The elasticity of the microenvironment of cells plays a major role in cellular pro-

cesses such as adhesion, migration, di�erentiation and apoptosis.4,43,48,69,179 Cells

are able to respond to elastic cues by contraction of the actin-myosin network

which inspired many studies to analyze active force generation in cells.13,151,180,181

However, most studies observe the cell behavior on substrates with static elasticity

even though biologic tissue is never static and alters its physical properties during

development, aging and diseases. To provide such a dynamic system in vitro, this

chapter focuses on a new material with the ability to change substrate elasticity

on-demand and enables the analysis of dynamic mechanosensing during live cell

microscopy.

5.1 Morphological phenotypes and remodeling of

cytoskeletons

In a �rst step, the new substrate was characterized regarding its dimensions, elas-

ticity, and dynamic behavior. Figure 5.1a shows two 3D-reconstructed images of

the host-guest hydrogel (βCD�Ad gel (3,3)) acquired by a confocal microscope

(Section 2.4.2). The bulk is shown in purple and the �bronectin coating is shown

in green. Below the 3D images, two schemes show the chemical structure of the

bulk material in the sti� (25 kPa, left) and soft (8 kPa, right) state. A cross-linking

point is framed in red, which consists of a β-cyclodextrin and adamantane inclusion

complex. In the sti� state most cross-linking points (red square) are closed. When
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Figure 5.1: (a) Scheme of host-guest gel swelling. The image shows the bulk of the gel
in purple and �bronectin coating in green. The dotted circles present a magni�cation of
the bulk material which consists of polyacrylamide (black lines) and cross-linking points
(red rectangle). These points are inclusion complexes of β-cyclodextrin (yellow cone)
and adamantane (black cube). If adamantane-carboxylic acid (Ad-COOH) is added, the
cross-linking points are opened partially (right dotted circle) resulting in swelling (from
35µm to 65 µm) and softening of the gel (from E = 25 kPa to 8 kPa). (b) Maximum
projected images show �uorescently labeled �bronectin in green close to a scratch in the
gel (dark area). The concentration of �bronectin during coating was between 30µg/mL
(top image) and 200 µg/mL (bottom image). In the right panel the relative �uorescence
intensity depending on coating density is plotted and �tted with an exponential func-
tion. (c) Elastic modulus E measured by AFM nano-indentation, and substrate height h
measured by confocal microscopy, plotted as a function of [Ad-COOH]. Note that [Ad-
COOH] = 0−5 mM (shaded in grey), corresponding corresponds to E = 25−8 kPa. (d)
The lateral displacement δ of �uorescent beads embedded in the hydrogel after incuba-
tion with 5mM Ad-COOH for 10min. The magnitude of displacement is indicated by
the color code, while the direction is indicated by the white arrows. The histogram in
the inset represents the correlation of bead positions with the elasticity E = 25 kPa as
reference. The change in bead position was negligible as the correlation remained above
95% for all samples.
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5.1 Morphological phenotypes and remodeling of cytoskeletons

adamantane-carboxylic acid (Ad-COOH) is added, it blocks the β-cyclodextrin as

shown in the right scheme. This results in swelling and softening of the hydrogel.

In Figure 5.1b the �uorescence signal of the �bronectin coating on the surface of the

host-guest hydrogel (left side) is shown. Fibronectin was covalently bound to the

hydrogel surface by the photo-responsive crosslinker Sulfo-SANPAH. In the dark

region of the images the hydrogel was removed to measure the background signal.

Four di�erent concentrations of �bronectin were tested between 30 µg/mL and

200 µg/mL. The plot on the right shows the relative �uorescence intensity of the

samples which is �tted with an exponential function. To optimize cell adhesion, all

following experiments were performed with 200µg/mL �bronectin coating. Figure

5.1c shows the elastic modulus E and sample height h of the host-guest hydrogel,

plotted as a function of Ad-COOH concentration [Ad-COOH]. While the elasticity

was measured by atomic force microscopy (AFM, Section 2.4.1), the height was

determined by the auto-�uorescence in confocal microscopy stacks, similar to Fig-

ure 5.1a. Changes in E were proportional to log[Ad-COOH] (solid line), re�ecting

the equilibrium between the chemical potential of Ad-COOH in solution and that

in hydrogel. Prior to the experiments with hMSCs, the in�uence of Ad-COOH

on cell viability was tested, which did not in�uence the viability of hMSCs up to

[Ad-COOH] = 5mM (Appendix B.1). Fluorescent beads were embedded in the

substrate surface to measure the surface deformation during swelling. Figure 5.1d

shows the displacement of beads after the elasticity was changed from 25 to 8 kPa.

From the color code it can be seen that the average bead displacement remained

below 0.2µm. In the inset, the correlation between bead positions at di�erent

elasticities is shown with respect to E = 25 Pa as a reference. As the correlation

is always >95%, the deformation of the substrate surface is negligible.

Figure 5.2a and 5.2d represents two typical phase contrast microscopy images

of hMSCs on sti� (25 kPa, [Ad-COOH] = 0 mM) and soft (8 kPa, [Ad-COOH]

= 5 mM) hydrogels. As shown in the �gure, the cell on a sti� substrate gripped the

substrate by establishing clearly visible adhesions, while the cell on a soft substrate

took an elongated shape. The color code in Figure 5.2b and 5.2e represents the
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Figure 5.2: (a) Phase contrast image of a representative human mesenchymal stem
cell (hMSC) on soft (8 kPa) supramolecular hydrogel. (b) Orientation of actin �laments
with respect to θ = 0° corresponding to the cell's major axis de�ned by an ellipse �t.
(c) Distribution of �uorescence intensity calculated from panel (b), yielding the weighed
nematic order parameter, 〈S8 kPa〉 = 0.78. The corresponding data for hMSC on sti�
(25 kPa) hydrogel are presented in panels (d) � (f). Physical (g) Cells on soft (blue) and
sti� (red) substrates can be classi�ed by using aspect ratio AR and projected area A. (h)
Order parameter 〈S〉 vs. AR showed two di�erent correlations independent of substrate
sti�ness, suggesting that the cell morphology correlates with actin ordering. (i) 〈S〉 vs.
Aproj showed no correlation.
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5.1 Morphological phenotypes and remodeling of cytoskeletons

angles of individual actin �laments with respect to the major axis by taking the

same cells as shown in Figure 5.2a and 5.2d. θ = 0° is de�ned by a white arrow

in each panel. Figure 5.2c and 5.2f show the distribution of actin �lament angles

in the displayed cells. It can be seen that the distribution is broader for sti� gels.

Using this data, the nematic order parameters of actin �laments6,41 are extracted

from two representative cells calculated by Equation 4.2 and suggested a clear

di�erence in cytoskeletal arrangements. hMSCs on sti� substrates established

several adhesions that are stabilized through the contractile forces generated by

several stress �bers, 〈S25 kPa〉 = 0.54, while hMSCs on soft substrates are axially

stretched and align actin �laments parallel to the major axis, 〈S8 kPa〉 = 0.78.

Major and minor axes of each cell are de�ned by �tting the cell as an ellipse.

The morphological phenotype of hMSCs on sti� (red) and soft (blue) hydrogel

substrates were classi�ed by plotting the aspect ratio AR (the ratio of major and

minor axes of a cell) versus the projected cell area Aproj, extracted from more than

40 cells (Figure 5.2g). As shown by ellipses in the �gure, hMSCs on sti� substrates

can be characterized by a larger cell area Aproj and a more isotropic shape and

hence smaller AR, while hMSCs on soft substrates were smaller and more elon-

gated. If one compares the order parameter 〈S〉 with AR (Figure 5.2h), cells show

two di�erent correlations independent of substrate sti�ness. As indicated by the

black ellipses, high order parameters (〈S〉 > 0.7) correlate with large aspect ratios

(AR = 2 − 18) while cells with low order parameter (〈S〉 = 0 − 0.7) have also

low aspect ratio (AR = 1− 5). In addition to the morphological phenotyping, the

remodeling of cytoskeletons was assessed quantitatively. In a previous study, pH

responsive hydrogels were used, based on physically crosslinked blockcopolymer

micelles, which showed that hMSCs take an isotropic shape on soft substrates and

a spindle-like shape on sti� substrates.6 The apparent di�erence in morphological

phenotypes most likely depends on the mobility of extracellular matrix proteins.

The surface of pH responsive hydrogels was coated with �bronectin by physisorp-

tion,6,49 while the surface of supramolecular hydrogels is functionalized by covalent

immobilization of �bronectin.9
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5 Regulating stem cell functions and fate by dynamic substrate elasticity

5.2 Regulating cell adhesion by substrate

elasticity

The signi�cant modulation of morphology observed on substrates with di�erent

elasticity suggests that the strength of cell adhesion should also be modulated. In

order to measure the adhesion strength of hMSCs quantitatively, it was determined

by a laser-induced pressure-wave (Section 2.4.3).49 This setup allows to determine

the critical pressure for cell detachment in a non-invasive manner.7,49,182 Figure

5.3a,b represents the binarized microscopy images of hMSCs on a substrate with

E = 15 kPa before (a) and after (b) the exposure to the pressure wave. The range

at which the cavitation bubble could reach (d 6 511 µm) is indicated by a red

broken line, and the region (∆d = 100 µm) exposed to P ≈ 4 MPa is indicated

by a yellow ring. In order to determine the accurate cavitation bubble size, a

video with an ultra fast camera was acquired and the bubble radius was measured

directly in the images (Appendix B.2). By counting the fraction of cells remaining

on the surface χ within ∆d = 100 µm (Figure 5.3c), the critical pressure P ∗ of cell

detachment is obtained by �tting the data with the adapted error function:

χ(P ) = 1− 1

2

(
erf

(
P − P ∗√

2σ

)
+ 1

)
, (5.1)

where σ is the standard deviation, and P ∗ the critical pressure of cell detachment

at which 50% of the cells are detached.

The transition points, indicated by black circles connected by a broken line as

presented in Figure 5.3c, coincide with the pressure at which the �rst derivative

δχ/δP takes the minimum. Intriguingly, the transition pressure P ∗ exhibited a

change between E = 20 and 25 kPa. Moreover, the full width at half maximum

(FWHM) of δχ/δP re�ects the width of the transition. The monotonic decrease in

FWHM with increasing E suggests that the binding/unbinding transition becomes

sharper when the substrate becomes sti�er. The observed tendency is summarized

in Figure 5.3e, representing P ∗ and FWHM plotted as a function of E.
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Figure 5.3: Binarized images of cells on a hydrogel substrate (E = 15 kPa) before (a)
and after (b) the irradiation with a laser pulse. Size of the cavitation bubble is indicated
by red broken line. The yellow belt corresponds to the region (∆d = 100 µm) exposed
to P ≈ 4 MPa. (c) Fractions of adherent cells χ on substrates with di�erent sti�ness E,
plotted as a function of pressure P . The data points were �tted with the adapted error
function. The critical pressures corresponding to the binding-unbinding transition P ∗

are indicated by black circles, connected by a black broken line. (d) Change in the width
of transition evaluated from δχ/δP . To compare di�erent data sets, P was converted to
P − P ∗. (e) E�ect of substrate elasticity E on the transition pressure P ∗ and the width
(FWHM) of transition. The transition observed between 20 and 25 kPa suggests that
the threshold elasticity for the mechanosensing of hMSCs is likely within this range.

5.3 Contractile forces exerted on elastic substrate

by cells

Change in the cell adhesion strengths suggests the modulation of the contrac-

tile forces of cells exerted on substrates. To quantitatively determine the spatial

pattern of forces generated by hMSCs, the traction stress of hMSCs that grip elas-

tic substrates was measured by monitoring the displacement of �uorescent beads

(diameter: 0.2µm) embedded in the vicinity of substrate surfaces (Figure 5.4a).

Figure 5.4b represents a typical traction stress �eld and the corresponding force

dipoles Mij as shown by equation 2.39. It is notable that the dipole matrix is

symmetric and hence diagonalized because the net moment of inertia of the sys-
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5 Regulating stem cell functions and fate by dynamic substrate elasticity

tem is negligible. This enables the calculation of major and minor eigenvectors

possessing larger and smaller eigenvalues, Dmax and Dmin, respectively. The math-

ematical background is explained more detailed in Section 2.4.4. In Figure 5.4b

The directions of traction stress vectors are indicated by white arrows, while their

magnitudes are shown by the length of arrows combined with the color scale. The

inset is a zoom-up of the traction stress �eld near the cell periphery (red), imply-

ing that the large traction stresses pointing towards the cell center correspond to

the contraction of acto-myosin stress �bers.

Using the traction stress ~T (~r) and the particle displacement ~u(~r), the total strain

energy U is calculated (Equation 2.22).150,151,183 This quantity coincides with the

energy transferred from the cell to the substrate by elastic deformation. Here, the

strain energy density was calculated within a region of interest close to the cell

boundary to avoid possible artifacts at the �eld boundary which occur from the

Fourier transform. As presented in Figure 5.4c, the total strain energy U exhib-

ited a monotonic increase from 1 to 2 pJ with increasing substrate sti�ness from

E = 8 kPa to 25 kPa. The di�erence between soft substrates (8 − 10 kPa) and

sti� substrates (25 kPa) was signi�cant (p < 0.05), but the transition seemed slow

and progressive. Figure 5.4d represents the net contractile matrix µ, which can be

obtained by the trace of diagonalized dipole matrix (Equation 2.40). Note that µ

only includes the strains in direction of the principal axis of traction into consid-

eration but excludes the rotational and translational strains. The net contractile

strain µ also monotonically increased from µ = 1 to 5 nJ according to the increase

in substrate sti�ness. Compared to the total strain energy (Figure 5.4c), the net

contractile moment showed a sharper transition between E = 20 and 25 kPa. The

distinct increase in the axial contraction µ (Figure 5.4d) and critical pressure for

cell detachment P ∗ (Figure 5.3c) between E = 20 and 25 kPa suggest the presence

of an elasticity threshold in the mechanosensing machinery of hMSCs (Appendix

B.3). In Figure 5.4e µ is plotted against the aspect ratio AR of cells, where the

aspect ratio AR and µ exhibit an anti-correlation behavior: If µ is large, the AR

decreases and if µ is small, the AR increases.
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Figure 5.4: (a) Top (upper panel) and side (lower panel) views of hMSCs on a
supramolecular hydrogel substrate (E = 25 kPa) embedding �uorescent beads (diam-
eter: 0.2µm). The cell membrane was labeled with CellBrite� (green). The side view
con�rmed that the beads (red) are con�ned in the close vicinity of the surface. (b) Trac-
tion stress �eld and the corresponding force dipoles extracted from hMSC on a substrate
with E = 25 kPa. The red line highlights the cell rim. White arrows show the direction
of the traction stress, while the length of arrows and the color represent the magnitudes.
The eigenvectors of force dipoles (Dmax and Dmin) are given as large white arrows. Inset
shows the zoom-up image of stress �eld near the cell periphery. (c) Total strain energy
U of hMSCs adherent on supramolecular hydrogels with di�erent E. (d) Net contractile
moment µ of hMSCs on substrates with di�erent E. Each data set consists of the data
from > 10 cells. The asterisk indicates a signi�cant di�erence with a p-value of p < 0.05
by Student's t-test. (e) µ is plotted against the aspect ratio AR of cells. Groups of data
are surrounded by ellipses in red for E = 25 kPa, dashed black for E = 10− 20 kPa and
blue for E = 8 kPa.
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5.4 Cell response to dynamic mechanical stimuli

To simulate a dynamic stem cell niche, hMSCs were seeded on a sti� substrate

(E = 25 kPa) and the elasticity was changed to soft (E = 15 kPa) without de-

taching the cells. Figure 5.5a shows �uorescence microscopy images of one repre-

sentative cell before and after the change of elasticity. The green color indicates

the cell membrane which was stained by CellBrite� and the red color represents

the �uorescent beads embedded in the substrate. Within the �rst 2 h the cell area

and aspect ratio were almost constant, con�rming that the cell was in a steady

state. After switching the substrate elasticity from 25 kPa to 15 kPa, the adhesion

area decreased notably and the cell shape became almost spherical. Using particle

image velocimetry (PIV) and Fourier transform traction cytometry (FTTC) the

force �eld exerted by the cell on the substrate surface was calculated (Section

2.4.4).

In Figure 5.5b the total strain energy U of the same cell is plotted over time

t. On the substrate with 25 kPa (red squares) U maintained an almost constant

level at U ≈ 2 − 2.5 pJ which decreased sharply to U ≈ 1 − 1.5 pJ when the

elasticity is switched to 15 kPa. Afterwards, the strain energy remains constant

for the observed time period. The average total strain energy and change in

aspect ratio over time for �ve cells is shown in the Appendix B.4. In Figure 5.5c

U is plotted against Aproj for four di�erent cells. The data points of all observed

time points are shown while data on E = 25 kPa is plotted as open circles and

E = 15 kPa as �lled triangles. Most cells exhibit two separate clusters of data

points, indicating a distinctly di�erent behavior depending on substrate elasticity.

The linear �t (dashed line) was �tted to all data points and indicates a generally

positive correlation between U and Aproj with a correlation coe�cient of r = 0.89.
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Figure 5.5: Response of a representative cell to a change in substrate elasticity from
E = 25 to 15 kPa. (a) Fluorescence images of one representative cell at di�erent time
points. The cell membrane is stained with a non-toxic carbocyanine dye CellBrite�184

(green) and in the background the �uorescent beads embedded within the substrate
surface are visible (red). After con�rming that the cell reached a steady state, the
elasticity was switched (t = 0 h) and the cell was further observed for 4 h while snapshots
are taken every 10min. The cell area decreases notably after the decrease in elasticity.
(b) The total strain energy U of the same cell is plotted over time. At the time of
switching (t = 0 h), U decreases promptly. (c) U is plotted against the projected cell
area Aproj for 5 cells on 25 kPa (open circles) and 15 kPa (�lled triangles). A linear
function was �tted to the data (dashed line), indicating a positive correlation (r = 0.89).
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5.5 Cell fate and proliferation regulated by

mechanical stimuli

To investigate the e�ect of cyclic mechanical stimuli on cell proliferation and fate,

the substrate elasticity was switched between 25 kPa (sti�) and 8 kPa (soft). First,

the cells were pre-incubated on an elasticity of 25 kPa, then the elasticity was

switched every 2, 4, 7, 10 or 20 days. Since the cells were �xed 20 days after the

pre-incubation, a period of f−1 = 20 indicates that the elasticity was constant

for this sample. In Figure 5.6a snapshots of the cells are shown by phase contrast

microscopy as a function of time t (x-axis) and inverse frequency f−1 (y-axis). It is

notable that the cell number increases over time while the proliferation is inhibited

at higher frequencies (f−1 = 10− 4 days). In Figure 5.6b the cell density d after

20 days is plotted against the inverse frequency f−1 of mechanical stimulus. The

mean and standard error were calculated from the individual cell densities in at

least 20 randomly selected areas of 0.5mm2. Evidently, the cell density decreased

monotonically with an increase in mechanical stimuli. An error function (black

line) was �tted to the data and the critical frequency f ∗−1 = 8 d (dashed line) was

de�ned as the in�ection point of the error function ( d
2

dx2 erf(x) = 0).

After the exposure to mechanical stimuli for 20 days, the cells were �uorescently

labeled with a STRO-1 antibody, i.e. a marker for mesenchymal stem cells. In

Figure 5.6c a bar plot is shown where cells are categorized as STRO-1 positive

(dark gray), intermediate (light gray), or negative (not shown). As a control, cells

were incubated on glass substrates for the same time period and �xed at day 0

and day 20. The percentage p of STRO-1 positive cells in the control samples is

indicated by the green bar (day 0, p ≈ 85 %) and the red bar (day 20, p ≈ 7 %).

Compared to control samples, cells on host-guest gels maintained a much higher

niveau of immunoreactivity to STRO-1, for example 25% for f−1 = 20 d and

75% for f−1 = 4 d. It is notable, that a higher frequency of mechanical stimuli

mostly resulted in a higher fraction of STRO-1 positive cells, indicating a positive

correlation.
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5.5 Cell fate and proliferation regulated by mechanical stimuli

(a) (b)

100 µm

0 10 20

20

10

4

t [d]

f   –1 [d]

(c)

Figure 5.6: (a) In�uence of periodic mechanical stress on cell density and stem cell
marker expression. The substrate elasticity was switched repeatedly between 25 and
8 kPa with a frequency of 2, 4, 7, 10 or 20 days. Representative phase contrast images
are shown for 9 conditions with di�erent time t (x-axis) and inverse frequency f−1 (y-
axis). (b) The cell density d, measured after 20 days, is plotted against the inverse
frequency of switching f−1. Each data point corresponds to the mean and standard
error calculated from > 20 randomly selected regions of interest (0.5mm2). A �t with
an error function (black line) yields the critical inverse frequency f∗−1 = 8 d. (c) Fraction
of cells p showing positive (dark gray) and intermediate (light gray) immunoreactivity to
STRO-1. Compared to the control level on plastic dishes showing a signi�cant decrease
in p from 85% (green line) to 7% (red line) in 20 d, hMSCs on hydrogel substrates
showed higher immunoreactivity. Note that frequent switching of substrate sti�ness at
shorter periodicity f−1 6 4 d resulted in the most e�cient maintenance of STRO-1 level,
p ≈ 80 %.
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5 Regulating stem cell functions and fate by dynamic substrate elasticity

5.6 Discussion

Human mesenchymal stem cells (hMSCs) were seeded on the supramolecular hy-

drogel where they showed signi�cant di�erences in morphology and actin ordering

(Figure 5.2a,d). The ordering of the actin cytoskeleton was analyzed by the ne-

matic order parameter (Equation 4.2) which is calculated from the distribution of

actin angles (Figure 5.2c,f). There have been several studies of hMSCs on poly-

acrylamide gels, observing the cell morphology depending on substrate elasticity.

For instance, regarding the projected cell area (Aproj), hMSCs generally exhibit

larger Aproj on sti�er gels.185 Cell areas were reported between 1000 µm2 on gels

with an elasticity below 1 kPa179,186 and up to 10 000µm2 at E = 40 kPa.187 The

results in this thesis are agree with these reports for with Aproj = 500− 2000 µm2

for E = 8 kPa and Aproj = 1000 − 6000 µm2 for E = 25 kPa (Figure 5.2). Multi-

ple studies have reported an increased aspect ratio (AR, sometimes called spindle

factor) around a substrate elasticity of E = 11 kPa.41,179 This is is con�rmed here,

since hMSCs on E = 8 kPa showed a larger AR (≈ 6) compared to E = 25 kPa

(≈ 3).

The nematic order parameter of actin 〈S〉 in hMSCs was shown before to be

positively correlated with the AR of cells.41 Another study measured the nematic

order parameter of �broblasts on micropillars with di�erent rigidity. They reported

that even though the bending rigidity of micropillars is not directly comparable

with that of a homogeneous gel, a di�erence in 〈S〉 was observed depending on

pillar rigidity so that the ordering of the actin cytoskeleton was higher on sti�

pillars (〈S〉 = 0.7) compared to soft pillars (〈S〉 = 0.3).188 In addition to that, this

study found two distinct groups of data with either low AR and a large variation

in 0 < 〈S〉 < 1 or large 〈S〉 > 0.6 and large variation in AR (Figure 5.2h).

Intriguingly, these groups show only a very small area of overlap, in the high 〈S〉

and low AR regime, indicating a strongly distinct cell morphology depending on

the two observed elasticities. Between 〈S〉 and Aproj no apparent correlation was

observed. Note, that depending on the cell type, 〈S〉 can have di�erent results, for
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5.6 Discussion

example C2C12 myoblasts exhibited a maximum order parameter of 〈S〉 = 0.4 on

E = 40 kPa, which reached almost 0, i.e. a perfectly isotropic state, on E = 2 kPa.

This study presents a unique method to determine the adhesion strength of cells

by detachment with a pressure wave (Figure 5.3). In the past, several techniques

have been developed to measure cell adhesion, for example pulling with an AFM

cantilever,139,189 moving and pulling of cells with an optical trap,190 or detachment

of cells by a laminar �ow inside a �ow chamber.191,192 In comparison with these

methods, the detachment assay in this study is able to analyze much higher num-

bers of cells in a short time compared to the single cell pulling with AFM or optical

traps, and can induce much stronger pressures compared to the �ow chamber, so

that strong cell adhesions can be determined as well. Another strategy is to create

the shock wave by focused ultrasonic waves using piezoceramics, which is called

a lithotripter. Ohl et al. utilized this device to create pressure waves with similar

pressure (10 − 40 MPa) compared to the setup in this thesis and detached HeLa

cells from a plastic surface. They found that a shear stress of 160Pa detaches

100% of the HeLa cells.193 Pressure waves induced by a focused laser beam have

also been used to kill cancer cells, however, the critical pressure of detachment

was not calculated.194

The result in this thesis show that the critical pressure of detachment P ∗ =

4 − 5 MPa of hMSCs is in a similar range compared to other cell types, such as

hematopoietic stem cells (HSC, P ∗ = 3.2 − 7.0 MPa)7 and Osteosarcoma cells

(U2OS, P ∗ = 7.4 − 8.8 MPa).195 Surprisingly, the change in P ∗ was maximal

between 20 and 25 kPa, indicating the existence of a critical elasticity separating

between weak and strong adhesion states around E = 25 kPa. It should be noted,

that cell detachment by �ow chambers is not directly comparable with the laser

pulse detachment, because the exposure time to the pressure is orders of magnitude

di�erent. In �ow chambers the detachment of cells occurs gradually over time (for

example, exposure to a shear stress of 8Pa for 30min)10 while detachment by

pressure waves is immediate (cavitation bubble life time is ≈ 100 s, Appendix

B.2).

93



5 Regulating stem cell functions and fate by dynamic substrate elasticity

Intriguingly, the distribution width of the fraction of adherent cells (FWHM)

after applying laser pulse increased with decreasing elastic modulus E. The rea-

son for this behavior is probably the di�erent morphology of cells which depends

on substrate sti�ness. As cells get more elongated on softer substrates (Figure

5.2g and 5.4e), the force they experience during a pressure wave becomes more

dependent on the orientation of the cell, thus creating a larger FWHM of the

distribution of adherent cells after applying the laser pulse.

Traction force microscopy has been widely used to reveal the forces exerted

by cells on their environment. These forces are generated by the cytoskeleton

which regulates various cellular functions from proliferation to di�erentiation.13,180

Even though traction forces have been measured extensively, many studies lack

a quantitative analysis. In this study, the total strain energy U was calculated

from the traction �eld by Equation 2.22 and showed a moderate increase with

elastic modulus of the substrate (Figure 5.4c). On average, the total strain energy

�uctuates around a value of U ≈ 1.5 pJ. Other studies have calculated the strain

energy for various cell types whose strain energy is usually in the same order

of magnitude, for example aortic smooth muscle cells (U = 0.21 pJ),150 human

�broblasts (U = 3−2.3 pJ)196 or human liver cells (U = 3 pJ).197 It is known that

cells exert stronger forces on sti� substrates,198,199 and also higher total strain

energy,196 which supports the positive trend between U and E that was found

in this study. Alternatively, many studies focus on the net contractile moment

µ which is more speci�c, considering the contractile forces along the major and

minor axis of the cell. Other studies reported values of 3.3 pJ for aortic smooth

muscle cells,150 10 pJ for �broblasts151 and 30 − 80 pJ for rat mesenchymal stem

cells.200 hMSCs in this study generated a much higher net contractile moment at

µ = 1−5 nJ (Figure 5.4d) which can be explained by the larger cell area. While µ

increased monotonically with the elastic modulus E, the largest increase occurred

between 20 and 25 kPa. This indicates that the contractile response of hMSCs

is especially sensitive around an elastic modulus of E∗ ≈ 25 kPa and apparently

correlates with the critical elasticity observed in the cell adhesion measurement.
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5.6 Discussion

Plotting µ against the cell aspect ratioAR (Figure 5.4a) reveals an anti-correlation:

E = 25 kPa results in large µ and small AR in contrast to E = 8 kPa with small

µ and large AR. This is in contrast to studies which suggested stronger traction

forces in cells with elongated cell shape compared to the spherical morphology.201

However, in the previous study the cell shape was regulated by microcontact

printing at �xed elasticity, while in this study the cell is regulated by substrate

elasticity. As a conclusion, the substrate elasticity seems to have a greater e�ect

on cellular traction force compared to the cell shape.

Most in vitro studies are performed on static substrates, i.e. with �xed mechan-

ical and biochemical properties. However, the stem cell niche and biological tissue

in general are never static.202,203 In this thesis, the cell response to a single change

in substrate elasticity, from E = 25 kPa to 15 kPa was investigated (Figure 5.5).

An abrupt change in morphology (Figure 5.5a) and total strain energy (Figure

5.5b) was observed for four di�erent cells (Appendix B.4). The values obtained

for U are in good agreement with the static experiment (Figure 5.4c). A di�er-

ent study by Guvendiren et al. observed the projected cell area Aproj of hMSCs

on hyaluronic acid gels while increasing the elasticity by delayed UV-crosslinking.

They found, that hMSCs increase in Aproj over the course of 4 h when the elas-

ticity is increased from 3 to 30 kPa.61 Before and after the change in elasticity,

Aproj was comparable to the average cell area on a substrate with the respective

static elasticity. This indicates, that the response to an increase in E is much

slower compared to the decrease in elasticity. A similar correlation was found by

Hörning et al., who measured the response of myoblasts to a dynamic change in

elasticity. Here, the response to a decrease in E was delayed by 10 − 20 min and

the response to an increase was delayed by 3 h. They suggested that the ability of

cells to respond quickly to a decrease in elasticity, is probably due to the discrete

clustering of focal adhesions. Applying a shear stress on cells leads to a step-wise

detachment of such clusters, which results in a fast decrease in cell area.189 In con-

trast, the spreading of cells depends on actin polymerization, di�usion of adhesion

receptors, and myosin contractility204, which results in a relatively slow process.
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5 Regulating stem cell functions and fate by dynamic substrate elasticity

A positive correlation was found for the total strain energy and projected cell area

(Figure 5.4c). Since the data points before and after switching of E are shown, a

gap between both states is visible for all cells, indicating the immediate response

by decreased cell area and strain energy. Previously, a linear correlation between

the average traction force and the cell area was shown,61 suggesting that the cell

shape plays a major role in the active force generation.

hMSCs are exposed to a large range of elastic moduli in vivo.46,205 When cul-

tured on �xed elasticity in vitro, hMSCs specify to various lineages like adipogenic

or osteogenic,205 but little is known how hMSCs behave in a dynamic environment,

similar to the in vivo niche. To simulate this behavior, the elasticity of the host-

guest gel was switched every 2, 4, 7, 10 or 20 days, inducing a periodic mechanical

stimulus on the cells. After 20 days, the long term e�ects of this dynamic niche

model are investigated. The cell density after 20 days was signi�cantly lower in

samples which were exposed to more frequent mechanical stimuli (Figure 5.6b).

A similar behavior was observed in a previous study where hMSCs were seeded

on pH-sensitive substrates and exposed to a frequent change in elasticity with the

same frequency as in this thesis. The proliferation was measured by BrdU activity

and decreased with the frequency of mechanical stimulus and agrees well with the

cell density in the current study. Previously, Winer et al. reported that hMSCs

enter a quiescent mode, i.e. stop proliferation, when cultured on very soft sub-

strates (E = 0.25 kPa), while on sti�er substrates the fraction of proliferating cells

was higher (≈ 50 % at E = 7.5 kPa).206 Yang et al. studied the expression of the

mechanosensitive marker YAP (yes-associated protein) to a reversible switching

of substrate elasticity and found that the nuclear fraction of YAP was irreversibly

changed after 7 or more days of incubation on the sti� substrate.24 This shows

that the temporal information of mechanical stimuli is indispensable in order to

characterize the cell response.

After 20 days of repeated mechanical stimuli, the hMSCs were �uorescently

labeled for STRO-1, a well-known mesenchymal stem cell marker, that has been

shown to deplete during lineage speci�cation.68,107,207 Compared to control (p ≈
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5.6 Discussion

7 %), the STRO-1 expression increased on the static gel (f−1 = 20 d, p ≈ 25 %)

and was even enhanced for periodic stimuli (f−1 = 2 − 10 d, p ≈ 60 − 85 %,

Figure 5.6c), indicating a sustained activity of STRO-1 on stimuli-responsive hy-

drogels. A previous study reported the sustainability of STRO-1 levels on hydrogel

substrates independent of substrate sti�ness.6 Other studies also reported the in-

creased immuno�uorescence of STRO-1 on static soft compared to sti� or rigid sub-

strates.208,209 Therefore, this is the �rst study to reveal a stimuli- and frequency-

dependent STRO-1 expression. Additionally, a clear threshold in elasticity was

discovered around E = 20− 25 kPa which triggers the cellular mechanomachinery

and signi�cantly increases adhesion strength and active force generation beyond

this threshold.
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6 Conclusions

Increasing number of studies have demonstrated that physical microenvironments

of cells are highly dynamic during the development, aging, and diseases. The

aim of this study is to develop quantitative systems for understanding how cells

control their functions and fate in response to dynamic changes in the physical

microenvironments. Two new stimuli-responsive substrates that reversibly change

the surface topography and elasticity were designed, and the dynamic response

of cells, driven by contact guidance and mechanosensing, was measured using the

combination of unique experimental and analytical tools.

In Chapter 4 a substrate with periodic wrinkles of adjustable wavelength is pre-

sented which was designed under collaboration with Dr. T. Ohzono of the National

Institute of Advanced Industrial Science and Technology (AIST, Japan) to con-

trol the adhesion, morphology, and orientational order of C2C12 mouse myoblasts.

The substrate is made from polydimethylsiloxane with a thin coating of polyamic

acid which forms periodic wrinkles with �ne-adjustable wavelengths (1.7−6.3 µm)

on the surface. In the �rst step, the experiments were performed under static con-

ditions, where cells followed the undulation of wrinkles by arranging the focal

adhesions, morphology and cytoskeletons (static contact guidance). In addition to

standard measures for morphology, such as projected cell area and aspect ratio,

the directional order of cells was assessed by calculating nematic order parameter

by approximating cells as ellipses. Furthermore, the order parameter was calcu-

lated for actin cytoskeletons to see how intracellular macromolecules follow the

substrate anisotropy. Remarkably, both order parameters strongly suggested the

existence of a critical wavelength for the contact guidance λ∗ = 3 − 4 µm. The

localization of focal adhesions by immuno�uorescence staining demonstrated focal
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6 Conclusions

adhesions were located only at the peaks of wrinkles at λ < λ∗, indicating that cell

membrane in contact with the surface remained �at and span across the troughs.

On the other hand, focal adhesions were present at both, the peaks and troughs

for λ > λ∗, implying the cell membrane was able to follow the wrinkle undulation.

Since this duality shares common features with the transition between partial

wetting and complete wetting, the physical mechanism was discussed in terms of

balance between tension-induced gain in free energy and the energy penalty of

membrane bending. In the second step, these wrinkled substrates were integrated

into a custom-designed, motorized pusher to precisely control the applied strain.

Upon application of axial strain, the wrinkle orientation is switched by 90° within

60 s, and the dynamic response of cells, such as shape adaptation and change in

directional order out of equilibrium, was monitored by live cell imaging. In con-

trast to the contact guidance under static conditions, such experiments can be

considered as dynamic contact guidance. Transfection with LifeAct-GFP allows

to monitor dynamic changes in the nematic order parameter of actin 〈Sactin〉 over

time which smoothly changed from the parallel to the perpendicular alignment of

actin �laments after switching of the wrinkle direction. Intriguingly, the transition

of order parameter can be characterized quantitatively by the minimum aspect ra-

tio and the isotropic actin order, 〈Sactin〉 = 0, indicating the orchestration of shape

change and cytoskeletal remodeling. Notably, the dynamic contact guidance ob-

served here is fully reversible, as con�rmed by the observation after the release of

strain. The combination of substrates with tunable and switchable wrinkles with

quantitative analytical tools unraveled (i) the presence of critical wavelength for

partial to full adhesion (wetting) and (ii) the kinetics of dynamic adaptation of

cell shape and orientational order of cells and actin cytoskeletons.

Chapter 5 presents the design of a new class of supramolecular hydrogel sub-

strate crosslinked via reversible host-guest interactions. The substrates were pre-

pared by the radical polymerization of acrylamide monomers with host (β-cyclo-

dextrin) and guest (adamantane) moieties, synthesized by the group of Prof. A.

Harada of Osaka University (Japan). The crosslinks mediated via host-guest in-
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teractions can be canceled by incubating the substrates with the medium con-

taining solubilized host/guest molecules, while the host-guest interactions can be

recovered by incubating the blank medium with no host/guest molecules. The

substrate elasticity can be adjusted �exibly and reversibly by the concentration

and hence the chemical potential of host/guest molecules. Thus, by using non-

toxic host or guest molecules, the micromechanical environment of cells can be

switched reversibly without interfering with cell viability, which was not possible

with commonly used stimulus responsive gels utilizing toxic UV irradiation or ir-

reversible enzymatic degradation. In this thesis, supramolecular hydrogels that

can possess the elastic modulus of 8 − 25 kPa were used to dynamically regulate

the morphology, adhesion strength, active traction force, and fate of human mes-

enchymal stem cells (hMSC) derived from bone marrow under collaboration with

the Department of Hematology, University Hospital Heidelberg. In the �rst step,

the morphology and cytoskeleton arrangement of hMSC on soft (8 kPa) and sti�

(25 kPa) hydrogels were analyzed under static conditions, exhibiting a clear pat-

tern by plotting aspect ratio vs. projected cell area. It is notable that aspect ratio

and actin order parameter 〈Sactin〉 represent well the di�erence between hMSC ex-

posed to two di�erent mechanical environments. Distinctly di�erent morphology

and actin ordering should cause a clear di�erence in adhesion strength. Thus, in

the next step, the strength of cell adhesion was quanti�ed by measuring the critical

pressure required for cell detachment with a self-developed setup utilizing a laser-

induced pressure wave. Remarkably, the critical detachment pressure P ∗ showed

a monotonic increase with increasing substrate elasticity, suggesting the existence

of a critical elastic modulus at E∗ ≈ 20 − 25 kPa, turning on the mechanosen-

sitive machinery. Moreover, the analysis of traction forces generated by hMSC

with the aid of traction force microscopy, the net contractile moment calculated

from the displacement of nanoparticle probes showed a distinct increase across

E∗ ≈ 20 − 25 kPa, too. Extending the results obtained under static conditions,

the dynamic response of hMSC to changes in the elastic modulus of substrate was

investigated in the next step. The traction force microscopy data collected from
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6 Conclusions

the live cell imaging implied that the total strain energy decreased immediately

after the shift of the elastic modulus from 25 to 15 kPa. A clearly positive correla-

tion between total strain energy and projected cell area was observed, suggesting

that the area of cell-substrate contact determines the energy dissipated by the

deformation of the substrate. Finally, the in�uence on cell fate was examined by

periodically switching the substrate elasticity between 25 and 8 kPa every 2, 4,

7, 10 and 20 days. Intriguingly, the cell density monotonically decreased with

increasing frequency of elasticity switching, indicating that frequent mechanical

stress suppresses the proliferation of hMSC without interfering with the multipo-

tency. It is notable that the multipotency marker (STRO-1) exhibited a higher

level of expression when cells were stressed at higher frequencies, indicating that

frequent mechanical stresses enhance the multiple lineage capacity and suppress

the self-renewal.

The reversibly tunable, stimuli-responsive substrates established in this study

open new possibilities to investigate non-equilibrium cellular responses to external

mechanical cues. New insights into the mechanism behind dynamic contact guid-

ance as well as dynamic mechanosensing of the cellular microenvironment obtained

here will be helpful not only as well-de�ned platforms for the investigation on the

interplays of biochemical and physical cues, but also as new materials for the op-

timization of functions and fate of stem and progenitor cells by time-dependent

cues.
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A Supporting information to Chapter 4

A.1 Dynamic spreading of cell on substrate below

critical wavelength

Figure A.1: Dynamic spreading of one example C2C12 cell on wrinkled substrate with
λ = 1.7 µm. (a) Actin �laments were stained by transfection and the detected actin
�laments are shown with a color code indicating the orientation with respect to the
wrinkle direction (white arrow). (b) The aspect ratio AR and order parameter of actin
〈Sactin〉 are plotted over time. (c) A positive correlation was observed between AR and
〈Sactin〉 during the observed time period.
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A.2 Dynamic spreading of cell on �at substrate

Figure A.2: Dynamic spreading of one example C2C12 cell on a �at substrate. (a) Ori-
entation of detected actin �laments with respect to the vertical axis. The glass substrate
was coated with a polyimide layer. (b) The aspect ratio AR and order parameter of
actin 〈Sactin〉 are plotted over time. Both parameters remained almost constant during
the observed time period (AR ≈ 1, 〈Sactin〉 ≈ 0). (c) Change of cell area over time. The
cell area increased over time despite the isotropic actin ordering.
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A.3 Response of C2C12 cells to a dynamic

change in wrinkle orientation with a

wavelength of λ = 3.7 µm

Figure A.3: Response of C2C12 cells to a dynamic topography. The wrinkle wavelength
was λ = 3.7 µm and the orientation was switched by 90° at t = 0 h within 60 s. Images on
the left are acquired by DIC imaging and for better visibility, the cell edge was marked
in yellow. On the right, aspect ratio AR (red triangles) and cell angle θcell (blue circles)
are plotted against time. The dashed line indicates the minimum of AR which is de�ned
as the critical transition time and usually correlates with the increase of the cell angle
(t∗AR ≈ t∗θ).
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A.4 Response of C2C12 cells to a dynamic

change in wrinkle orientation with a

wavelength of λ = 1.7 µm

Figure A.4: Response of C2C12 cells to a dynamic topography. The wrinkle wavelength
was λ = 1.7 µm and the orientation was switched by 90° at t = 0 h within 60 s. Images on
the left are acquired by DIC imaging and for better visibility, the cell edge was marked
in yellow. On the right, aspect ratio AR (red triangles) and cell angle θcell (blue circles)
are plotted against time. The dashed line indicates the minimum of AR which is de�ned
as the critical transition time and usually correlates with the increase of the cell angle
(t∗AR ≈ t∗θ).
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A.5 Rough estimation of adhesion free energy

The behavior of cell membranes can be modeled to some extend by treating it

as a simple Newtonian �uid.210 Therefore, it establishes a �nite contact angle ϕ

at the three phase contact (solid/liquid/vapor = S/L/V). According to Young's

equation, the free energy of adhesion is calculated as follows:

Fadh = γSV + γLV − γSL = γLV(1 + cosϕ) . (A.1)

The three parameters γSV, γLV and γSL represent the tension at the solid-vapor,

liquid-vapor and solid-liquid interface respectively. Additionally, the e�ect of mem-

brane elasticity has to be considered.74 The length scale within which the mem-

brane deformation is driven by the elasticity is de�ned as the capillary length:211

l =

√
κ

γ
. (A.2)

The determination of the capillary length requires an accurate measurement of

the membrane distance near the contact line which can be achieved by microint-

erferrometry.74 However, in the case of wrinkled substrates, this technique is not

available, therefore an estimation of the contact angle was made by recontructing

the cell shape from vertical slices of a confocal stack (Figure A.5). Microscopy

images were obtained from the �uorescence signal of LifeACT-GFP which stains

actin in living cells. The vertical slice was taken perpendicular to the wrinkle

direction and the contact angle was measured by approximating the cell mem-

brane with a circular arc (curved yellow line). To mitigate the in�uence of the

cell nucleus which heavily in�uences the cell shape, three vertical slices are taken

of each image, indicated by the straight yellow lines. With the average contact

angle 〈ϕ〉 ≈ 23° and the membrane tension of cell membranes γ ≈ 10−6 J/m2 168

the order of magnitude of the adhesion free energy results in ≈ 10−6 J/m2.
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Figure A.5: Top view (maximum projection of slices) and side view (vertical sections) of
three C2C12 cells are shown after 4 h on substrates with (a) λ = 1.7 µm, (b) λ = 3.7 µm,
and (c) the �at substrate. The upper images show the top view with the wrinkle direction
along the white arrow. Below are the vertical slices where the cell shape is approximated
by circular arcs (curved yellow line) and the contact angle ϕ is measured at the contact
point with the substrate. Since the height pro�les ii, v and viii were heavily in�uenced
by the nucleus, two additional slices in the cell periphery were analyzed for each cell
which resulted in the average contact angle of 〈ϕ〉 ≈ 23°
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A.6 Free energy of cell membranes on wrinkled

substrates

Assuming, the cell membrane perfectly follows the undulation of the wrinkled

substrate (full adhesion, Figure 4.3f), then the height pro�le of the membrane can

be written as:

h(x, y) =
∆h

2
sin

(
2π

λ
x

)
. (A.3)

The bending energy exerted on the area A = L · 1 is calculated according to

Equation 4.4:

Fbend =
1

L

∫ 1

0

dy

∫ λ

0

dx
1

2
κC2

x

√
g, (A.4)

where g = 1 +
(
δh
δx

)2
is the surface metric. The substitution of Cx =

δ2h
δx2

g3/2 yields:
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Since the integrand is periodic with the period π/2, one can write:

Fbend =
2κ
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= f1(∆h
λ

)
κ

λL
. (A.8)

The two parametersK(k) =
∫ π/2

0
1√

1−k2 sin2 θ
dθ and E(k) =

∫ π/2
0

√
1− k2 sin2 θ dθ

are the complete elliptic integrals of the �rst kind and the second kind, respectively.
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Applying the same strategy, the length L cas be represented as follows:

L =

∫ λ

0

√
1 +

(
δh

δx

)2

dx (A.9)

L =
2

π

√
1 + π2

(
∆h

λ

)2

E

(
π2
(

∆h
λ

)2

π2
(

∆h
λ

)2
+ 1

)
λ (A.10)

L = f2(∆h
λ

)λ. (A.11)

Combining these two results, the bending energy per unit area can be written as:

Fbend =
f1(∆h

λ
)

f2(∆h
λ

)

κ

λ2
. (A.12)

From the experiments in this thesis the fraction of height and wavelength resulted

in ∆h
λ
≈ 0.13 so that the two functions in Equation A.6 are represented by constant

values: f1(0.13) ≈ 1.50 and f2(0.13) ≈ 1.04. Thus, the bending energy per unit

area scales with Fbend ∝ κ
λ2 .

Assuming, the cell membrane remains �at and only adheres to the peaks of

wrinkles (partial adhesion, Figure 4.3c), the adhesion area is reduced due to the

fraction of cell-substrate contact (0 < χ < 1), as described in the main text. Nat-

urally, the adhesion energy per unit area is smaller in the case of partial adhesion,

compared to full adhesion. Geometrically, a perfectly �at area has in�nitesimally

small contacts at the peaks of wrinkles (χ = 0), therefore the bending energy is

neglected in the case of partial adhesion, leading to an underestimation of the

total free energy per unit area.
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B Supporting information to Chapter 5

B.1 Viability of mesenchymal stem cells

Figure B.1: Viability of mesenchymal stem cells is plotted against concentration of
adamantane-carboxylic acid (Ad-COOH). The WST-a assay was used, which evaluates
the cell viability based on mitochondrial activity. At concentrations up to 5mM the
viability was sustained at >80%.
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B.2 Size of cavitation bubble

(a)
t [µs]
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194

52

26

78

100 µm
rmax ≈ 0.5 mm

(b)

(c)
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perimeterFocus 

center
RadiusRadius

100 µm

Camera image

Figure B.2: Cavitation bubble size is estimated by high frame rate video. (a) Bright�eld
images with rectangular region of interest are shown depending on acquisition time t.
The black area is the cavitation bubble with the center at the right dashed line and the
maximum radius (rmax ≈ 0.5 mm) at the left dashed line. Due to overexposure of the
camera during the laser pulse, the second image is white. (b) Scheme of the region of
interest in comparison to the full bubble size. The bubble radius is shown in green, the
bubble perimeter in blue, and the focus point in red. Larger images would slow down the
camera speed (frame rate) and are therefore not possible. (c) The radius of the bubble
is plotted against time. A second order polynomial was �tted to the data to determine
the maximum radius.
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B.3 Net contractile moment depending on

adhesion strength
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0
2
4
6
8

1 0

µ [
nJ

]
P *  [ M P a ]

2 5  k P a
2 0  k P a
1 5  k P a
1 0  k P a
  8  k P a

Figure B.3: The net contractile moment µ is plotted against the critical pressure of cell
detachment. Each data point was acquired at a di�erent substrate elasticity E which is
indicated by the color code. A positive correlation was observed with signi�cantly higher
values for both parameters at E = 25 kPa compared to softer samples.

B.4 Total strain energy and aspect ratio respond

to elasticity change
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Figure B.4: (a) Total strain energy U is plotted against time. The data of four cells is
averaged and plotted as black squares with the standard deviation indicated by the red
and blue areas. Substrate elasticity is switched at t = 0 h from 25 to 15 kPa. (b) Aspect
ratio AR of four cells is plotted over time. Substrate elasticity is switched at t = 0 h.
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C Abbreviations

Ad Adamantane

AFM Atomic force microscopy

AIST National Institute of Advanced Industrial Science and Technology

AML Acute myeloid leukemia

APS Ammonium persulfate

AR Aspect ratio

βCD Beta-cyclodextrin

BrdU DescriptionBromodeoxyuridine

BSA Bovine serum albumin

COI Cell orientation index

DIC Di�erential interference contrast

DNA Deoxyribonucleic acid

ECM Extra-cellular matrix

FDA Food and Drug Administration

FTTC Fourier transform traction cytometry

FWHM Full width at half maximum

GFP Green �uorescent protein

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

hMSC human mesenchymal stem cells

KIT Karlsruhe Institute of Technology

Laser Light ampli�cation by stimulated emission of radiation

PBS Phosphate bu�ered saline

PDMS Polydimethylsiloxane

PFA Paraformaldehyde

pH Power of hydrogen

PIV Particle image velocimetry

PSF Point spread function

TEMED Tetramethylethylenediamine

YAP Yes-assosiated protein
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