
Inaugural-Dissertation

zur Erlangung der Doktorwürde der

Naturwissenschaftlich-Mathematischen Gesamtfakultät

der

Ruprecht-Karls-Universität Heidelberg

vorgelegt von
Diplom-Mathematiker

Lutz Büch

aus Arnsberg (Westfalen)

Tag der mündlichen Prüfung:

Metric Selection
and Metric Learning
for Matching Tasks

Betreuer, Erstgutachter: Prof. Dr. Artur Andrzejak
Zweitgutachter: Prof. Dr. Holger Fröning

Zusammenfassung

Ein Vierteljahrhundert nachdem das World-Wide Web eingeführt wurde, haben wir
uns sehr daran gewöhnt, einfachen Zugang zu einer riesigen Menge an Daten und
Open-Source Software zu haben. Der Wert dieser Resourcen ist allerdings dadurch
bedingt, dass sie ordentlich integriert und gewartet werden. Ein Großteil solcher Arbeit
läuft auf Matching hinaus: Das Auffinden von existierenden Datensätzen, um sie mit
weiterer Information aus neuen Datensätzen anzureichern; das Integrieren von Code in
eine bestehende Code-Basis, ohne gleichzeitig Duplikation einzuführen.
In dieser Arbeit gehen wir zwei verschiedene solcher Matching-Probleme an. Er-

stens machen wir Gebrauch von der vielfältigen und ausgereiften Menge an String-
Ähnlichkeitsmaßen um in einem iterativen, halb-überwachten Lernansatz das String-
Matching-Problem zu lösen. Er ist so angelegt, dass der User eine Sequenz an Einzelfällen
des String-Matchings entscheiden muss. Wir zeigen dass mit einer nur sehr kleinen Menge
an Entscheidungen fast optimale Lösungen gefunden werden können. Der geringe An-
notationsaufwand unseres Algorithmus kommt daher, dass wir das Cold-Start-Problem,
das dem Active Learning innewohnt, auf zweierlei Arten behandeln. Einerseits durch das
Ordnen der Instanzen nach ihrer Rang-Varianz, solange noch nicht genug überwachte
Information vorliegt, und andererseits durch einen selbstregulierenden Mechanismus,
der anfänglichen Verzerrungen des Komitees entgegenwirkt.

Zweitens widmen wir uns dem Matching von Code-Fragmenten für die Deduplikation.
Programmiercode ist nicht nur ein Werkzeug, sondern stellt selbst eine Resource dar,
die der Wartung bedarf. Code-Duplikation ist ein häufig auftretendes Problem, das
besonders im Zusammenhang moderner Entwicklungspraxis entsteht. Es gibt viele
Gründe, Code-Duplikate aufzudecken und zu beheben; zum Beispiel das Bewahren einer
sauberen und wartbaren Code-Basis. Für solche komplexeren Datenstrukturen wie Code
sind String-Ähnlichkeitsmaße inadäquat. Stattdessen untersuchen wir einen modernen
Ansatz des überwachten Metric-Learning, um Code-Ähnlichkeit mit Neuronalen Netzen
zu modellieren. Ein Ergebnis ist, dass das Repräsentieren der elementaren Code-Tokens
durch vortrainierte Embeddings die wichtigste Zutat in einem solchen Modell ist.
Unsere Auswertung ergibt sowohl qualitativ, durch Visualisierung, dass thematische
Verbundenheit gut durch diese Embeddings modelliert wird, und quantitativ, durch
Ablation, dass die kodierte Information nützlich für das nachgelagerte Matching ist.

Als nicht-technischen Beitrag geben wir einen einheitlichen Zugang zu gemeinsamen
Herausforderungen, die beim überwachten Lernen von Record Matching, Code Clone
Detection und allgemeinen Metric-Learning-Anwendungen auftreten. Wir geben einen

i

neuen Zugang zu String-Ähnlichkeitsmaßen vom Standpunkt der Wahrnehmungspsy-
chologie, zeigen einen lange bestehenden Namenskonflikt von String-Ähnlichkeitsmaßen
auf und dokumentieren ihn. Schließlich geben wir einen Überblick über die Schnittmenge
der neuesten Forschung in Code Clone Detection mit dem Gebiet des Natural Language
Processing.

ii

Abstract

A quarter of a century after the world-wide web was born, we have grown accustomed
to having easy access to a wealth of data sets and open-source software. The value
of these resources is restricted if they are not properly integrated and maintained. A
lot of this work boils down to matching; finding existing records about entities and
enriching them with information from a new data source. In the realm of code this
means integrating new code snippets into a code base while avoiding duplication.
In this thesis, we address two different such matching problems. First, we leverage

the diverse and mature set of string similarity measures in an iterative semisupervised
learning approach to string matching. It is designed to query a user to make a sequence
of decisions on specific cases of string matching. We show that we can find almost
optimal solutions after only a small amount of such input. The low labelling complexity
of our algorithm is due to addressing the cold start problem that is inherent to Active
Learning; by ranking queries by variance before the arrival of enough supervision
information, and by a self-regulating mechanism that counteracts initial biases.

Second, we address the matching of code fragments for deduplication. Programming
code is not only a tool, but also a resource that itself demands maintenance. Code
duplication is a frequent problem arising especially from modern development practice.
There are many reasons to detect and address code duplicates, for example to keep
a clean and maintainable codebase. In such more complex data structures, string
similarity measures are inadequate. In their stead, we study a modern supervised Metric
Learning approach to model code similarity with Neural Networks. We find that in
such a model representing the elementary tokens with a pretrained word embedding is
the most important ingredient. Our results show both qualitatively (by visualization)
that relatedness is modelled well by the embeddings and quantitatively (by ablation)
that the encoded information is useful for the downstream matching task.

As a non-technical contribution, we unify the common challenges arising in supervised
learning approaches to Record Matching, Code Clone Detection and generic Metric
Learning tasks. We give a novel account to string similarity measures from a psychological
standpoint and point out and document one longstanding naming conflict in string
similarity measures. Finally, we point out the overlap of latest research in Code Clone
Detection with the field of Natural Language Processing.

iii

Acknowledgements

First and foremost, I would like to thank my advisor, Prof. Dr. Artur Andrzejak, of the
Faculty of Mathematics and Computer Science at Heidelberg University, for his trust
and support over the whole duration of my PhD studies. He encouraged me to explore
and experiment and I learned a lot from him; not least about writing, teaching and
organization. I will keep fond memories of the battle experience of last minute paper
submissions and our fight for rooms, tutors and copies for the lectures and exams. I am
also grateful to Prof. Dr. Holger Fröning, Prof. Dr. Michael Gertz and PD Dr. Wolfgang
Merkle for serving on my thesis committee.

I thank the Heidelberg Graduate School of Mathematical and Computational Methods
for the Sciences (HGS MathComp) for the financial support for travelling and the fun
and educational annual colloquia. I am grateful to Prof. Dr. Filip Sadlo, who secured
an extension of my funding. I would like to thank Anke Sopka and Catherine Proux-
Wieland for their support in organizing my PhD studies and managing the teaching
activities. Thanks also to all the competent tutors who I worked with over the years as
a teaching assistant. And thanks to Rolf Bogus for the three years of tours through the
Universitätsrechenzentrum with wonderful anecdotes for our lecture ‘Betriebssysteme
und Netzwerke’.

I had the pleasure of working alongside lovely colleagues in the Parallel and Distributed
Systems group. Thanks to Felix Langner, Mohammadreza Ghanavati, Zhen Dong, Diego
Elias Damasceno Costa, Kai Chen and Thomas Bach for making my time in the group
enjoyable and for that sense of community spirit. I remember our discussions (Software
Engineering and otherwise), being humbled in chess by Mohammad and barely learning
the Chinese chess rules from Zhen, celebrating Christmas with Diego and Priscilla,
fixing hyper and turbo together, and hanging out on the Neckarwiese.

The joint lunch break with the optimization and the databases groups, that survived
the move to Mathematikon, was a constant source of joy, and replenishment of energy
and motivation. Thanks for that to all these countless “Botanik philosopher’s” over the
years, from Christian Sengstock, Jannik Strötgen, Stefan Wiesberg, Achim Hildenbrandt,
Hui Li, until Andreas Spitz, Erich Schubert and Sebastian Lackner, among others. The
“Happy Hour” group is near to my heart and overlaps with this lunch group. It includes
Victoria Ponce, Asha Roberts, Julia Jäger, Artsiom Sanakoyeu, Fereydoon Taheri. I am
glad to call you my friends and hope we can maintain this friendship, even when some
of us have gone or will go elsewhere in the world.

v

Bastian Rieck and Julia Portl, who I studied with, started their PhD studies before
me and were always in a higher floor. That floor was always a good stop when I
needed diversion, encouragement or concrete bureaucratic advice. I will always aspire
to Bastian’s discipline and technical literacy. Julia and the others of my oldest friend
circle in Heidelberg helped me persist through the tougher times of my PhD studies.
I was delighted when Martin Monath and my old work group moved right next door
in Mathematikon. That allowed me to drop by more often, share a laugh, and get a
glimpse of the cutting-edge of the research I got to know a little in my Diplom studies.

I want to thank my wonderful parents, Lieselotte and Thomas, and my brother Felix,
for their support, help and advice over all these years.
Finally, I especially thank my wife Mangayarkarasi for her patience and loving

support30. She does not know me without my PhD studies (and still stuck by me). I
cannot imagine a life without her anymore, and I am looking forward to our life after
the thesis.

30நான் உன்ைன காதலிக்கிேறன்

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Overview . 3

2 Background 5
2.1 Similarity . 5

2.1.1 Representation . 7
2.1.2 Syntax vs semantics . 9

2.2 Similarity measures . 10
2.2.1 String similarity measures . 10
2.2.2 Other similarity measures . 15
2.2.3 Confusion around ‘Monge-Elkan’ 16

2.3 Metric Learning . 21
2.3.1 Label distribution . 22
2.3.2 Generalization . 25
2.3.3 Quality metrics . 27

3 Related Work 35
3.1 Optimal similarity measures . 35
3.2 Optimal similarity thresholds . 36
3.3 Active Learning for matching . 38
3.4 Metric Learning for matching . 40

3.4.1 Code Clone Detection . 41
3.4.2 Other Software Engineering applications 43

4 Metric Selection for String Matching 45
4.1 Background . 45

4.1.1 Active Learning . 46
4.2 Approach . 48

4.2.1 Updating of thresholds . 49
4.2.2 Aggregated prediction function 50
4.2.3 Query strategy . 53
4.2.4 Stopping criterion . 55

vii

Contents

4.3 Evaluation . 56
4.3.1 Experimental setup . 56
4.3.2 Quality metric . 60
4.3.3 Labelling effort vs quality . 61
4.3.4 Experimental result discussion 64
4.3.5 Stopping criterion . 67

4.4 Discussion . 69

5 Metric Learning for Code Clone Detection 71
5.1 Background . 71

5.1.1 Code Clones . 71
5.1.2 Code Clone Detection . 73
5.1.3 Vocabulary . 74
5.1.4 Embeddings . 75

5.2 Approach . 77
5.2.1 Node embeddings . 77
5.2.2 Recursive Neural Network . 78
5.2.3 Long Short Term Memory . 79
5.2.4 Siamese Neural Network . 79

5.3 Evaluation . 83
5.3.1 Data . 83
5.3.2 Training . 87
5.3.3 Quality metric . 89
5.3.4 Baselines . 90
5.3.5 Influence of network layout . 91
5.3.6 Influence of training aspects . 94

5.4 Discussion . 100
5.5 Outlook . 101

6 Conclusion 105

Bibliography 107

viii

1 Introduction

In this thesis, we study two different kinds of matching problems. For each, very different
solution spaces are appropriate and we address the problems accordingly. In the first
case we can make use of existing proven solutions and minimize the human input needed
to pick the best one. This favours efficiency and simplicity. In the other, we use machine
learning to fit a Neural Network model to the data. This takes care of the more complex
data type.

1.1 Motivation

The advent of the internet and world-wide web marked the beginning of a new economy
of data. Software and data sets could be exchanged without having to create and ship
any physical copies. Open data, social media and the internet of things are sources for
an ever-increasing torrent of data sets and free software.
Variety is one of the ‘V’s that characterize the concept of Big Data1. This does not

only refer to the positive meaning (multi-modal, rich and diverse data) but also points
to the fact that data is inconsistent, duplicated, non-documented, or incompatible in
terms of schemas. Modern software development involves community-driven support
and resources (help forums like StackOverflow and open-source software repositories
like GitHub). This fuels fast-paced development and cooperation but arguably also
worsens the phenomenon of code duplication.

So to reap the benefits of the modern connected world, data has to be connected and
cleaned. Tasks like Record Matching, Similarity Join and Deduplication are therefore
frequent and ubiquitous technical problems. They have yet to be solved by off-the-shelf
tools and require bespoke solutions despite being mundane.

First, we address the most generic of such problems which appears as a subproblem
in many others, String Matching. We do this by iteratively zeroing in on one of many
existing similarity measures and simultaneously finding a good threshold. Both choices
are hard to make even for an expert while a domain expert can easily label the few
example cases we require. Second, we address Code Deduplication which represents the
opposite case. A new model is required here because there is no out-of-the-box solution
that reflects the data. We explore both problems and highlight the commonalities as
well as the unique challenges and opportunities.

1Also regularly included are Volume, Velocity, Veracity and others.

1

1 Introduction

1.2 Contributions

This thesis makes the following contributions:

String Matching without expert knowledge and requiring little effort

• We propose an Active Learning algorithm for picking the best string similarity
measure for a String Matching task which also tunes the according decision
threshold at the same time (Chapter 4). A committee of hypotheses queries the
user to label instances of string pairs. A self-regulating mechanism counteracts
the bias of the current committee. Finally, a simple stopping criterion terminates
the loop. We evaluate this algorithm on 13 widely used string matching data sets
and on 4 additional ones that we introduce. The results show that the algorithm
terminates after only a small number of queries and finds settings close to optimal
in the hypothesis space. This work is published in [BA15].

• We give a detailed account of an existing failure of nomenclature in the Computer
Science community, where the same name ‘Monge-Elkan’ is used for two very
different string similarity measures (Section 2.2.3). After outlining the history
and status quo of this unfortunate circumstance, we offer some ways to deal with
it in the future. We also categorize string similarity measures along psychological
notions of similarity (Section 2.2.1).

Metric Learning for Code Clone Detection

• We use a Twin Neural Network to cast Code Clone Detection as a supervised
Metric Learning problem (Chapter 5). We employ a Recursive Neural Network
with a Long-Short-Term-Memory (LSTM) unit to aggregate the code fragments
represented by Abstract Syntax Trees. We use self-supervised training to pretrain
embeddings for node types and contents and show that these on their own represent
a strong baseline when simply averaged. This work is published in [BA19].

• We present a discussion of Record Linking and Code Clone Detection in the
context of supervised Metric Learning (Section 2.3). The type of binary relation
associated with matching tasks yields a special label distribution. We discuss and
address different problems arising from this.

2

1.3 Overview

1.3 Overview

In Chapter 2 we give an introduction to important concepts and existing work that
pertain to both main chapters. We discuss our central concept of similarity in Section 2.1
where we take the psychological point of view because ultimately, humans define what
they deem similar.

In Section 2.2 we give an overview over the topic of similarity measures and for which
domains and data types they have been devised. Specifically, Section 2.2.1 presents the
most important string similarity measures and organizes these along the psychological
models of similarity we introduced in Section 2.1. Finally, we make a small detour to
resolve a long-standing confusion about the two different similarity measures that go
with the moniker ‘Monge-Elkan’ (Section 2.2.3).

Both main chapters present supervised learning approaches to arriving at a good
similarity measure. Only the latter would be properly named Metric Learning but there
are many insights that are important for both. We collect these in Section 2.3. All of
the discussed issues there are related to the specific fact that Metric Learning uses pairs
of instances and what that entails.

The Related Work in Section 3 is organized along the subsequent main chapters. The
first three Subsections 3.1–3.3 are related to Chapter 4, while the last Subsection 3.4
relates mainly to Chapter 5.

Chapter 4 lays out our study of using Active Learning to pick a similarity measure and
threshold for String Matching tasks. It follows the simple structure of providing some
background (about Active Learning; Section 4.1), description of the method (Section 4.2),
experimental setup and evaluation (Section 4.3) and discussion (Section 4.4).

Chapter 5 is about Metric Learning for Code Clone Detection and is structured very
similarly. The background (about Code Clone Detection and representation of tokens;
Section 5.1) is followed by the description of the approach (Section 5.2), experimental
setup and evaluation (Section 5.3), discussion (Section 5.4). It also features an outlook
(Section 5.5) outlining some directions in this quite active field of research.

We conclude this thesis in Chapter 6.

3

2 Background

In this chapter, we will introduce similarity as a fundamentally psychological notion,
what problems this entails and how psychology has tried to address them. Further,
we consider the problem of representation of abstract concepts by means of finite
strings of discrete symbols. A special focus will be on how to capture their similarity
through string similarity measures. And finally, we discuss common problems arising in
supervised learning of binary relations.

2.1 Similarity

The notion of similarity is not easily defined. It is a subjective and psychological notion
and depends on context. Similarity is a relationship between mental representations
of objects, not the objects themselves per se. Humans do not find it difficult to judge
(word) similarity without an external definition and show remarkably high reliability
when doing so [MC91]. Psychology has tried for decades to model similarity relations
and similarity scores reported by human subjects [Hah14].

One of the earliest models is the spatial model, which tries to capture the similarity
based on human reporting of their perception with an implicit space of attributes of
objects. The metric distance between vectors of attribute values of the respective objects
corresponds to their perceived (dis-)similarity.
The spatial model interfaces very neatly with the theory of vector spaces and nice

properties hold for the induced similarity relation. Many algorithms happily work with
this tidy definition. Hence, this concept is easy to use by computer scientists and other
quantitative scientists.

While the spatial model is nice and simple, it does not reflect some of the reality of
similarity as perceived by humans. Tversky [Tve77] observed that when measured in
human trials, similarity turns out to not be symmetric, and not obey transitivity.

Humans will more readily agree with the statement “a is like b” than with “b is like
a”, when the latter object is more prototypical. For example. “An ellipse is like a circle”
is more acceptable than “A circle is like an ellipse”. And “103 is virtually 100” will be
more likely subscribed to than “100 is virtually 103”.
Further, transitivity breaks down since similarity depends on context. For example,

a human might agree to “Jamaica is similar to Cuba” and “Cuba is similar to Russia”
(the study was conducted in Soviet time) while denying that Jamaica was similar to

5

2 Background

Russia. The reason is that the selection of the objects frames the comparison and
makes different features salient. In the first case, the geographical proximity drives the
similarity, in the latter it is about political similarity. But the independence of both
allows the transitivity to break down in this case.

In the same study, the contrast model is proposed. It is defined via (binary) features
of the objects under consideration. To determine similarity, the overlap of features, and
the unique features to each object are combined. Each feature is weighted relative to its
salience or importance. And the three feature sets (overlap, two sets of unique features)
are further combined linearly. Since the unique feature sets can be differently weighted,
the resulting relation s(a, b) can be asymmetric. The so-called focusing hypothesis states
that the perceived similarity is higher if the second argument’s features are more salient
(and the weight coefficients need to be adjusted accordingly). A human trial with
country names was able to confirm this [Tve77].

The same paper also investigates the difference between asking for similarity vs asking
for difference. To do this, the author sets asymmetry aside by tying the weights of
the distinctive features to make the overall relation symmetric. These two modes are
virtually equivalent in terms of correlation but differ in how the weights have to be set.
When asked for similarity humans put more emphasis on common features while they
focus more on distinctive features when asked for difference.

These two models—the spatial and the contrast model—represent objects merely by
real or binary features. Much of the semantics of an object is lost if its features are fixed
but all relations between them are discarded or shuffled. Much like how a face drawn
by Picasso in his later works might have all facial features but barely resemble a real
human face, because the spatial relations between the features have been scrambled.
A more expressive representation of objects not only records their features, but also
relations between them. The model of structural alignment consequently measures
the degree to which these structural representations of two objects can be aligned. A
perfect alignment is essentially an isomorphism, while for less similar pairs of objects
not all features or relations between features can be aligned perfectly.

A newer model for the human notion of similarity is centered on transformations.
Its central claim is that similarity is perceived relative to how many steps of basic
transformations lie between two object representations. For example, a horse (visually)
becomes a unicorn if you add a horn. This model of course relies on a set of permissible
transformations. The shortest sequence of transformations (possibly with different
weights) capable of transforming one object into the other then defines the distance
between those two objects. In computer science, this framework is well known and the

6

2.1 Similarity

L E V E N S H T E I N

L E W E N S

*

T E I N

�

Figure 2.1: Levenshtein edit distance

edit distance (Levenshtein) measures similarity of sequences of symbols. It considers
as permissible (local) transformations the deletion (or insertion) of one character, the
exchange of one character for another, and the swapping of neighboring characters.

The transformation model can be seen as generalization of the feature-based models
(spatial and contrast), as one can transform the values of each feature in one step. It also
generalizes the structural alignment model as it can transform corresponding features
into one another, and delete or create features without correspondence.

2.1.1 Representation

In the above discussion, all objects were stimuli in human studies. These include
sentences, words, numbers, diagrams, pictures or names of entities, such as countries. In
each case, they are either everyday entities (since every participant has to know them)
or abstract symbols or stimuli that elicit a certain psychological reaction.
In more technical domains, where the help of computers is desired because the size,

number or abstractness of data calls for machine support, the objects under consideration
are often of a different nature. They may be biological sequences like DNA or RNA –
too long for a human to handle, yet simple and unambiguous. Or they are sound files:
divorced from any human interpretation, they become mathematical objects – waves
that have been sampled at regular intervals. Also big relational data, like social graphs,
are in principle of interest for a human. But they break any individual human’s capacity
to understand them very fast, or even hold and manipulate them in their mind. But to
a computer, they are a simple and unambiguous data structure – a graph. Similarly,
strings of tokens in a formal language are simple, but more accessible to a computer
than a human.
Of course unambiguous data like this can still be ambiguous for a human. A sound

wave famously can be understood as both “Laurel” or “Yanny” by English speakers.
But while this data at least has an unambiguous abstract meaning, its representation

is seldomly unique. It is often hard to come up with a scheme to encode abstract objects

7

2 Background

of a certain class into strings of tokens such that each object can be represented by
exactly one string.
Real numbers, for example, escape any attempt of representation by finite strings,

since their cardinality is greater than the set of finite strings over a finite alphabet.
Conversely, if one picks a base b, the positional notation of real numbers (e.g., decimal
expansion for b = 10) will yield a periodic expansion as well as a simple terminating
expansion (e.g., 0.9 = 1.0). For rational numbers, if constructed as fractions of integers,
the problem of representations is even more prevalent: Every rational number has
infinitely many equivalent representations, e.g., 4

5 = 8
10 = −44

−55 = 52
65 =

These representations form equivalence classes: Each representation uniquely refers
to one abstract object and every abstract object may have a (finite or infinite) set of
representations referring to it.

For many cases, these representations can be normalized by algorithmically determin-
ing a unique canonical representative for each equivalence class. For example, one can
define a unique canonical representation for each real number with a finitely describable
(periodic or finite) decimal expansion. One can algorithmically determine the unique
representation for a rational number such that the denominator of that representation
is the smallest positive integer among all representations for that number.

In other cases, there is no canonical representation that can be arrived at algorithmi-
cally (or none has been found yet), such as for 2D projections of (mathematical) knots.
However, it has been proven that all representations of any given knot are in the same
orbit with respect to a small set of transformations (Reidemeister moves).

And then there are practical obstacles to arriving at canonical representations, even if
they exist. For example, propositional logic formulae can be used to represent Boolean
functions. They can be effectively mapped to a canonical form (e.g., full Disjunctive
Normal Form), but it is an NP-hard problem. Under some conditions, there are obvious
“brute force” ways of arriving at a normal form. For example, a graph as represented by
its adjacency matrix can be easily serialized. The column and row indices correspond to
an (arbitrary) numbering of its nodes. This means that equivalent representations must
be matrices of equal size. A canonical form may then be defined by the lexicographically
smallest matrix that represents a graph that is isomorphic to the original. However, the
graph canonization problem is known to be NP-hard as well. And that fact does not
depend on whether one defines the canonical form in any other way.

8

2.1 Similarity

Figure 2.2: Syntactical vs semantic similarity; figure from [EJ07]

2.1.2 Syntax vs semantics

Simple objects such as geometric shapes or images depicting simple scenes are used in
psychological research about similarity as simple stimuli that are largely unambiguous.
Language, on the other hand, is inherently complex. It links arbitrary sounds or symbols
to abstract concepts or concrete things1. Its design makes it possible to flip meaning by
just interjecting one syllable, or a few characters (e.g., “not”), into a long sentence. So
the elements of a sentence interact to create meaning. But elements, like words, do not
always come with a fixed isolated meaning. The task of determining the sense that a
given word has in a given context is called word sense disambiguation. Further, natural
language really only exists in its speakers’ minds and evades formal definition. This is
a fact that fuels a whole industry of researchers and engineers in the field of Natural
Language Processing/Understanding.
Language artifacts can have superficial similarity (syntax), whereas their semantics

are very dissimilar (and the other way around). Figure 2.2 illustrates this. Words
that share a lot of their contextual usage are likely to be semantically similar [MC91].
This fact has been used in modern efforts mapping natural language words to vectors
that reflect their similarity (see Section 5.1.4). However, if words have polar opposite

1Chinese characters may sometimes resemble concrete things in the world, and words may sometimes
sound like the concrete things they denote (onomatopoeia). But such close relation between a symbol
and what it signifies are the exception in languages, not the rule.

9

2 Background

meaning, it is likely that they share a lot of their contexts, too (antonyms, e.g., “weak”
and “strong”) [MC91].

2.2 Similarity measures

Similarity measures are concrete implementations reflecting certain kinds of variation
that (in a given domain) reflect change in semantics via change in syntax. Many different
fields have come up with their own similarity measures.
Similarity measures serve to solve concrete practical applications. For example,

suppose one wants to determine the identity of entities by some set of observable
features like faces, fingerprints or irises. In other circumstances, one is not interested
in identity, but similarity measures are used to characterize groups of individuals. It
enables clustering instances of observations, or matching instances against prototypical
specimen (e.g., with k-Nearest Neighbours classification). Downstream applications can
be exploratory studies of the emergent clusters or removal of the variation, in other
words, deduplication.

The concept of similarity measures comes with a few axioms that generally but not
always hold. A similarity measure is supposed to be symmetric in its two arguments,
and take the maximal value only for identical arguments. Often, values are normalized
to the interval [0, 1]. Distance metrics are similarly axiomatically defined (non-negativity,
identity of indiscernibles, symmetry, and triangle inequality). And by mapping the values
of a distance metric in certain ways, one can get a similarity measure. The details of this
mapping are not as important as the fact that it should invert the resulting ordering
of pairs. Because of this duality, whenever we talk about a distance in the context of
similarity measures, it is understood that we mean the associated similarity measure to
that distance.

2.2.1 String similarity measures

Different kinds of data types have their own kinds of similarity measures. One of the
simplest non-trivial data types pervasive in almost every field are strings of discrete
symbols. Apart from strings from the everyday human experience, such as names, dates,
addresses and text documents, there are more technical kinds of strings. Computational
Biology has emerged as a big field that deals with naturally occurring strings of discrete
symbols, like the base pairs in strings (or loops) of long organic molecules like DNA.
Richard Dawkins [Daw07] noted:

10

2.2 Similarity measures

Since Watson and Crick in 1953, biology has become a sort of branch
of computer science. I mean, genes are just long computer tapes, and they
use a code which is just another kind of computer code. It’s quaternary
rather than binary, but it’s read in a sequential way just like a computer
tape. It’s transcribed. It’s copied and pasted. All the familiar metaphors
from computer science fit.

Since strings are such a general concept, many different fields encountered the need
to measure similarity between instances of domain-specific strings.
A broad historic survey focusing on edit distances can be found in [Nav01]. An

empirical study evaluating a big set of string similarity measures in name matching
tasks has been conducted in [CRF03]. And [Chr12] introduces string similarity measures
in the context of general Data Matching pipelines.
Here, we want to give an account of the most prominent metrics in terms of the

models of similarity motivated by psychology.

Spatial model

The spatial model supposes that objects or stimuli (here: strings) are first mapped
into a numeric feature space, before being compared via Euclidean or cosine similarity.
The most prominent traditional example is called TF-IDF. This approach reserves one
dimension of the representation vector for each token of a fixed vocabulary. The given
string of tokens is then represented by one real value per token of this vocabulary. This
value is the relative frequency in the token string (term frequency, TF), normalized by the
base frequency of this token in a background corpus (inverse document frequency, IDF).
In [CRF03], the authors introduce a relaxation of TF-IDF, where tokens are matched
not by identity but by a secondary similarity measure for the tokens (Soft-TF-IDF).

A newer development leading to a numeric vector representation is where (Recurrent)
Neural Networks read input strings of tokens, which then can be represented by the
final hidden state of the network, which is trained on a (supervised or unsupervised)
objective. These vector representations are often called embeddings (see Section 5.1.4).
By comparing these vectors with Euclidean or cosine distance, one effectively has a
(domain-specific, because trained) string similarity measure. Related work about other
learnable string similarity measures is presented in Section 3.1.

11

2 Background

Contrast model

The contrast model relies on the definition of binary features and a way of quantifying
overlap between the feature sets of two inputs. For string similarity measures, a very
useful feature is the presence or frequency of n-grams. These sets of features for both
inputs are then compared by Overlap, Jaccard or Dice coefficient. N-grams are sometimes
generalized to n-grams of strings with padding, n-grams encoding also the position, or
skip-grams, that effectively relax identity. Again, like in Soft-TF-IDF, a relaxation of
identity of tokens to mere similarity as measured by a secondary similarity measure,
can be applied (e.g., Extended Jaccard [NH10]).

Structural alignment

The structural alignment model assumes that similarity is perceived as a measure of how
well parts of both instances can be matched and compared. These following similarity
measures work well with strings that naturally come as concatenation of substrings that
can occur in arbitrary ordering, for example, identifiers that are composed of names
and other characteristic features (like addresses).
The Longest Common Substring similarity measure [FS92] creates a matching by

repeatedly identifying the longest common substring. This process ends once there is no
common substring of a given minimal length. The lengths of these substrings are added
up and normalized by the lengths of the two string instances. Because the iterative
identification of substrings is greedy, it might not find a globally optimal matching, but
can be implemented by a dynamic programming paradigm. Furthermore, this measure is
only symmetric, if one imposes an additional regularization (like requiring the matching
to be globally optimal).

Another string similarity measure based on structural alignment is the hybrid metric
proposed by Monge and Elkan [ME95]. It assumes that strings are tokenized into
substrings and that there is a secondary similarity measure that measures similarity of
these tokens. It then looks at the bipartite weighted graph made up by the two sets of
tokens from the two input strings. The weights on the edges are the similarity value as
measured by the secondary similarity measure. It then finds for each token in the first
token set the most similar token in the opposite token set. The Monge-Elkan similarity
is then defined as the average over these similarities. Since this definition hinges on
which token set is the first one, this measure is not symmetric. However, this could be
amended if one instead averages similarities over the optimal matching in this weighted
bipartite graph. It has found wide-spread adoption specifically in the iteration ‘level 2’.

12

2.2 Similarity measures

For more on this metric and how its name is mistakenly used for another metric, see
Section 2.2.3.

TagLink [CS06] is also a hybrid metric, that is, it aggregates the similarity of tokens
of two tokenized strings. While the hybrid metric of Monge and Elkan (often simply
dubbed ‘Level2’) focuses on one string and finds matches for its strings, TagLink defines
the matching of tokens as a general matching (where the tokens are nodes of a bipartite
weighted graph).

Translation metrics The idea of matching tokens and aligning n-grams to measure
string similarity has special importance in the field of machine translation. It is hard to
automatically compare the output of a machine translation system against reference
translations. The NLP community has come up with different metrics to do this.
BLEU [PRWZ02] measures a modified n-gram precision which caps the repeated
matching of tokens to the reference tokens to a maximum. There is also a penalty on
short outputs which otherwise easily reach high precision by guessing the single-most
obvious token in the target translation.

ROUGE [LO04] denotes a family of similar metrics that try to address shortcomings
of BLEU. Instead of penalizing short output, they measure recall of matches. By either
requiring or favouring in-order and consecutive matches, they also naturally favour
closer alignments of syntactic structures between output and reference strings. These
notions of precision and recall are combined as in F-score. METEOR [LSJ04] is defined
very similarly, but aggregates to a F3 score which is a variant of F1 with 3 times as
much weight to precision over recall (see Section 2.3.3). METEOR further drops the
requirement of exact token matches. It instead allows equivalent tokens after stemming
and synonym matches. Stemming is the operation that maps words to their word stem
which gets rid of inflections. For example, “walking” and “walked” would both map to
the stem “walk”.

This last innovation is taken to a higher level by Bertscore [ZKW+19]. It also calculates
the F1 score of token matches but the matches have certain weights. First of all, tokens
are weighted by an IDF-weight, which makes it less important to find an equivalent
for words like “the” but infrequent words, especially content words like nouns and
adjectives, are important to match with a good equivalent. Another weight expresses
the similarity of the token in the context of their sentence. This is achieved by feeding
each sentence into BERT which is a general language model. It has been trained to
predict missing pieces of text and thereby has learned to represent tokens with highly
informative vectors. In this sense, these language models are an extension of the idea of

13

2 Background

(non-contextual) word embeddings (see Section 5.1.4). The contextual nature of the
BERT vectors can also capture aspects like the sense of an ambiguous term or the
meaning of a turn of phrase.
All these automatic metrics cannot replace human judgement of a good translation

or summary. However they achieve high correlation with the ground-truth and can be
evaluated cheaply.

Transformation model

This model defines a set of transformation rules along with a weight that determines
how costly each transformation is. The lowest cost that allows for a transformation
of the first input into the second input then defines the distance. This is called edit
distance in the context of strings. The Levenshtein distance is defined by allowing
deletion, insertion and replacing of single tokens, where each such transformation step
has uniform cost [Lev66].

Other distances are variations of this. The Damerau-Levenshtein distance additionally
allows and accounts for swapping of adjacent tokens [Dam64]. The Needleman-Wunsch
distance [NW70], which is motivated by DNA and protein sequences, allows for gaps.
The Smith-Waterman distance [SW81] is a variant of Needleman-Wunsch, which first
aligns substrings according to an alignment score, before measuring the edit distance.

Another variation on the edit distance concept, Editex, introduces the organization
of letters of the English language to equivalence classes. For example, v and f may be
considered equivalent. Replacing letters across equivalence classes then incurs higher
cost as compared to replacements within a class.

A hybrid model

Based on the above ideas, the US census bureau devised a domain-specific string sim-
ilarity measure for the special application of matching personal names. It is called
Jaro-Winkler similarity measure and combines n-gram based similarity with edit dis-
tance in an elaborate way optimized for its purpose. The basic Jaro algorithm [Jar89]
aggregates both the number of common characters within the first half of the longer
string with the number of transpositions to map sets of common substrings.
Several modifications by Winkler account for experiences gained in the work at the

census bureau [Win90]. They discount differences according to how long the common
prefix is relative to the total amount of common characters and treat small equivalence
classes of similar-sounding characters.

14

2.2 Similarity measures

The Similarity Metric

It has been shown that there exists a string similarity measure that in a sense generalizes
any practical string similarity measure. It is derived from what is called the normalized
information distance [LCL+04]. This distance is normalized for length differences of
its two arguments and is uniformly smaller or equal to any effectively implementable
distance (up to a constant). Because of this generality the associated similarity measure
is simply called ‘The Similarity Metric’. It is not a computable function but simply
a theoretic concept based on Kolmogorov complexity. If, however, one replaces the
Kolmogorov complexity by any computable compression function, one gets a practical
so-called compression distance.

2.2.2 Other similarity measures

Another very versatile data type are graphs and networks. Trees, as a special case of
graphs, can represent hierarchies, which, since it is a very general concept, are ubiquitous.
Graphs and networks can represent social relations or chemical reactions. Any binary
relation will map to a graph, which is why these structures are found in every field.
Probability distributions can be compared by Kullback-Leibler divergence. This is

not a real distance since it is not a symmetric relation. Furthermore, there is the
Wasserstein metric (with the so-called Earth mover’s distance as a special case) to
compare probability distributions.

Another frequent data type are scorings and rankings, because these functions operate
on any given data instance. As scorings they are commonly compared by Pearson’s
correlation correlating the scores themselves. When just correlating the rank indices,
Spearman’s correlation or Kendall’s Tau can be used. Similarly, clusterings are just
discrete-valued functions operating on data instances implying equivalence classes.
These can be compared by the Rand index or mutual information.

An important family of similarity measures are quality metrics (Section 2.3.3). They
measure the similarity of a target function which one aims to model and the function
instantiated by a model. They also appear in a more instrumental way as so-called
loss functions. In that context, they are semantically distance metrics. It is usually
important that the loss function is differentiable with respect to the model parameters,
to enable optimization strategies like gradient descent. The family of loss functions
includes cross entropy and hinge loss.

Another application around Neural Networks is to measure similarity of activations
of sets of neurons (e.g., a specific hidden layer) in two Neural Networks on a given set

15

2 Background

of inputs. The Neural Networks do not have to be the same. These activations can be
compared, even absent a direct mapping of neurons, by Canonical Correlation Analysis
(CCA, [MRB18]). This maximizes correlation scores of affine linear mappings from
one set of neurons onto the other. Centered Kernel Alignment (CKA, [KNLH19]) is a
related statistic about network activation patterns that has been shown to even better
recover existing correspondences.
Apart from these data types that are functions operating on data types, there are

many domain-specific data types where research communities come up with specialized
similarity measures to compare instances by. These include trajectories, spatio-temporal
data (events). And finally, some similarity measures cross distributions or even modalities,
for example, comparing queries to documents or persons to organizations.

2.2.3 Confusion around ‘Monge-Elkan’

In the following, we will discuss the confusion around the term ‘Monge-Elkan met-
ric/distance’. It is used in two broad but clearly different senses and to the best of
our knowledge this fact has not been addressed in the literature. Finally, we illustrate
how this has led to undesirable outcomes and provide suggestions how to resolve the
problem. This is a conclusive account of a failure of the organic way of naming concepts
in academia. It is unclear, if (and to what degree) anyone is to be blamed, or if this
bad outcome can emerge despite reasonable levels of care. We want to include it as a
general cautionary tale and as an attempt to disentangle the concrete confusion around
the particular term.

Historic background

In 1995, Monge and Elkan [ME95] study matching strings representing entire database
records. One central idea was to break up these strings into their fields, delimited
by specific characters. Another idea was accounting for the frequent phenomenon of
abbreviating parts of names. These two ideas would be developed in several publications
in the subsequent years.

In [ME95], the first idea was realized by a recursive matching algorithm. It defines a
matching score of whole text fields as the average of maximal matchings of subfields.
Their match score is determined by recursively breaking the subfields up into subsubfields
and again averaging the maximal matchings of subsubfields. Each input string comes
with an additional input list of delimiters that defines the sub- and subsubfields. The
base case deals with primitive values that will not be broken up further. Their match

16

2.2 Similarity measures

scores are binary, 1 or 0. A match score of 1 is given when string A (without punctuation)
is a prefix of string B. They outlined three other, more complex rules that matched
abbreviations (like “Dept.” with “Department” or “Caltech” with “California Institute
of Technology”), but they were not yet implemented. This was the first attempt at
addressing the second idea of dealing with abbreviations. The entire algorithm is
concretely given in pseudocode in this paper. It provided an overall scheme that was
capable of matching whole records, serialized as strings, with the capability of accounting
for out-of-order fields and patterns of abbreviations.
In [ME96], Monge and Elkan study this recursive algorithm alongside two other

algorithms for field matching. Here, they only give an abridged description of the
recursive matching algorithm which unfortunately does not specify how the hierarchy
of tokenization is defined. Furthermore, they introduce Smith-Waterman as a field
matching algorithm. The authors optimize the weights and character equivalence classes
to work better with text-based data, rather than biological sequences. They point
out that this algorithm does address variations like abbreviations (idea 2), but not
out-of-order subfields. In addition, a “base field matching algorithm” which measures
overlap of tokens in tokenized strings (without stop words) with the dice coefficient is
defined. Later, Monge and Elkan [ME97] study the potential of their variant of Smith-
Waterman for capturing abbreviations with local edits instead of complex formalized
rules addressing specific abbreviation patterns in a paper of its own.

In his dissertation thesis [Mon97], Monge devotes one chapter to domain-independent
record matching where for the first time the recursive algorithm and the Smith-Waterman
edit distance are studied combined in an explicit hybrid version (Smith-Waterman
fulfilling the role of scoring the base case matches).
Some years later, the first publication uses the term “Monger-Elkan distance func-

tion” (sic!) [CRF03]. The authors refer with this term to the variant of the Smith-
Waterman edit distance, citing [ME96]. At the same time, they address the “recursive
matching scheme” as introduced in [ME96], and state; “following Monge and Elkan, we
call this a level two distance function”. Of course, it had already been introduced and
explained in much greater detail in [ME95]. Moreover, the expression “level 2” cannot
be found in [ME96] (it only mentions “lowest level”).

This terminology is instead introduced in [Mon97] which explicitly talks about “nesting
levels”. Here, level “L=0” means applying Smith-Waterman directly to the inputs, level
“L=1” means breaking up the record into fields and matching the fields by their edit
distance scores (“subrecord-level Smith-Waterman”) and level “L=2” means breaking
the fields further into words before matching those with (“word-level Smith-Waterman”).

17

2 Background

The authors implemented a software library [CRFR03] for the evaluation in [CRF03].
A more appropriate reference in [CRF03] would have been [ME95], which details

the recursive algorithm with pseudocode. Instead, [ME96] is given as a reference,
which itself does not even reference [ME95]. Despite being the original and more
extensive publication of this algorithm, there are only a dozen citations for [ME95]2.
The implementation [CRFR03] gives an unambiguous definition of “Monge-Elkan
distance” as the modified Smith-Waterman edit distance by naming it in the source
code, while calling the Level 2 instantiation of the recursive algorithm simply “Level2”.

However, the vague reference in [CRF03] to [ME96] which shows both the recursive
algorithm and the Smith-Waterman variant side-by-side might have caused some confu-
sion down the line. The fact that the distance coined as ‘Monge-Elkan’ is a variant of
the already named ‘Smith-Waterman’ might have masked its role in [ME96], as well.

Subsequently, in 2004, a study about Information Integration for the Semantic Web
[CNC05] came with an open-source implementation of similarity measures [CSC04].
Here, unfortunately, ‘Monge-Elkan’ was the name given to the recursive algorithm,
instead of the variant of the Smith-Waterman edit distance. The base case is handled
here per default by Smith-Waterman-Gotoh, which is a computationally more efficient
approximation of Smith-Waterman, but can also be overridden with another metric.
Later, there were two influential publications using the moniker ‘Monge-Elkan’ in

the original sense of the edit distance [EIV07, KR10], but also some (comparatively
less-cited) publications used it in the recursive sense [PS07, MYC08, JBGG09]. In both
[PS07, JBGG09], several different secondary similarity measures were compared, that
calculated the base case of the recursive algorithm. One widely-cited publication [BE08]
did not specify the operative meaning of ‘Monge-Elkan’ at all.
Then, between 2010 and 2012, three text books about duplicate detection [NH10],

data matching [Chr12] and data integration [DHI12] were published. They all use the
non-original meaning of ‘Monge-Elkan’ (recursive function).

Status quo

Overall, the edit distance sense has more de facto relevance, having over 6300 citations in
influential publications3 that refer to this sense by some proper noun (e.g., ‘Monge-Elkan
similarity measure’, ‘Monge-Elkan metric’, or simply ‘Monge-Elkan’/‘MongeElkan’):
[CRF03, BMC+03, SSK05, EIV07, BE08, KR10, RRV13, CH13]. It is implemented
in two important academic software implementations – SecondString [CRFR03] and

2as of February 2020
3more than 100 citations as per Google Scholar in January 2020

18

2.2 Similarity measures

DKPro [BZG13]. The term ‘Monge-Elkan distance function’ was coined in [CRF03] and
unambiguously named and implemented in [CRFR03]. The follow-up paper [ME97] to
[ME96] exclusively studies the Smith-Waterman variant as the only similarity measure.
On the other hand, the hybrid metric sense is referred to with ‘Monge-Elkan’ in a

proper name in widely-cited publications that accumulate to 2200 citations in total
([MYC08, NH10, DAC10, Chr12, DHI12, GDD+14]). Among these are three text books,
which is the most important source of authority in this camp. Furthermore, apart from
[CSC04] there are at least four other open-source software implementations4.

Despite the imbalance in terms of reach by citations, the confusion is far from settled.
There are still papers being published referring to ‘Monge-Elkan’ distance or (similarity)
metric/measure in either sense (Smith-Waterman variant [ZGH+18] or the hybrid metric
[PWH18, SMFM18]). Which of the two broad meanings are used is sometimes implicit
(e.g., “character-based”, “edit distance” [ZGH+18]). A very good way of delineating
both variants carefully is exhibited in [SMW15]. Maybe it is because the authors use
the SecondString implementation [CRFR03] that clearly documents the differences in
programming code.

Bad consequences

Inconsistent naming like this inevitably leads to bad outcomes. The worst consequence
is that the body of research does not chrystalize to knowledge, because we are comparing
“apples with oranges”. The ambiguity is likely not even discovered by most researchers,
who may assume there was only one definition and they would likely go with the first or
most authoritative definition they encounter. This is exemplified by [JBGG09]5, which
introduces ‘Monge-Elkan’ in the sense of the hybrid metric and goes on to generalize it.
At the same time, it refers to four existing papers [BM03a, CRF03, Chr06, PS07] as
references for ‘Monge-Elkan’, only one of which [PS07] uses it in the same sense of the
hybrid/recursive algorithm.
We fell into the trap ourselves in [BA15], assuming there was only one meaning

(Level2), while using the implementation from [CRFR03] as a black box (which is
Smith-Waterman). In [AX06] the exact opposite happened: The authors refer to Monge-
Elkan distance in the sense of Smith-Waterman while giving [CSC04] as the only
reference which implements Monge-Elkan in the Level2 hybrid metric sense. And there

4https://github.com/chrislit/abydos
https://github.com/mpkorstanje/simmetrics
https://github.com/anhaidgroup/py_stringmatching (project Magellan [KDSG+16])
https://github.com/life4/textdistance

5that has ‘Mongue-Elkan’ right in the title – including that typo

19

https://github.com/chrislit/abydos
https://github.com/mpkorstanje/simmetrics
https://github.com/anhaidgroup/py_stringmatching
https://github.com/life4/textdistance

2 Background

is similar confusion in the paper [dPAEG15], calling Monge-Elkan an edit distance
(implying the Smith-Waterman variant), while also explicitly and formally defining it
as the Level2 hybrid method.

Conclusion

Usually, when a method, algorithm or such is named after its author(s), it is done by
a third party. The third party usually informally refers to it with such a name, and
this nomenclature picks up traction. In particular, this is outside the responsibility of
the original authors of the artifact themselves. In our particular circumstances, the
original sources for the algorithms, and the references to them, were sufficiently vague
and ambiguous that the mapping of name to algorithm was not unequivocal. The
paper [CRF03] and the accompanying implementation [CRFR03] that named the two
algorithms actually did a good job on that but later publications did not follow suit.

Clearly, both similarity measures have been valuable innovations and continue to play
important roles. Going forward, it would be good to not add to the existing confusion
between them. To this end, we want to discuss the different options.
For backwards-compatibility, names used in the future should ideally call attention

to the fact that there has been confusion around ‘Monge-Elkan algorithm/similarity
measure/metric’. This would be ideally engineered when readers familiar with any one
of the new terms would have to stop and wonder when encountering one of the existing
ambiguous terms like ‘Monge-Elkan metric’, or vice versa. To give an analogy: when
specifying either one of the two meanings of the word “billion”, one can use an additional
attribute, or the scientific notation: short-scale (109) or long-scale (1012). The notation
with the attribute is preferable, because it calls attention to the existence of a difference
in the first place.

The variant of the Smith-Waterman algorithm could be referred to as ‘Monge-Elkan
edit distance’. That would always clearly associate it with Smith-Waterman and call
attention in situations a reader has only encountered the recursive algorithm in the
context of ‘Monge-Elkan’. Another good title would be “Smith-Waterman with Monge-
Elkan weights”6. This also clearly refers to one rather than the other algorithm while
also distinguishing the original algorithm from the innovation of natural language
specific weights.

The recursive, hybrid algorithm should ideally always go with the “hybrid” attribute,
to make it understood that it is only fully qualified with a secondary similarity measure.

6This is similar to a formulation used in [Chr12] in the section about Smith-Waterman.

20

2.3 Metric Learning

A reader would stumble over this fact when they were understanding ‘Monge-Elkan’
to be the Smith-Waterman algorithm, which does not require a secondary similarity
measure. A good, albeit long name could be, e.g., “Monge-Elkan hybrid metric with
Levenshtein as secondary similarity measure”. Alternatively, “Monge-Elkan hybrid
metric with word-level Levenshtein”. Two good examples are [SMFM18] (“the Monge-
Elkan 2-level algorithm”, and later “leveraging Jaro-Winkler as an internal measure”)
and [PWH18] (“Level2 method proposed by Monge and Elkan”).

Authors that are aware of the confusion could also point it out directly, for example,
“by ‘Monge-Elkan’ metric, we specifically refer to the hybrid algorithm, as opposed to
the variant of Smith-Waterman”.

Computer science as a field has problems with reproducibility, even if all experiments
live in silico [Pen11]. The problem may not be as big as the replication crisis in
psychology [OSC15], but more avoidable. Peng [Pen11] states: “Perhaps the biggest
barrier to reproducible research is the lack of a deeply-ingrained culture that simply
requires reproducibility for all scientific claims.” Ironically, the terminology around this
very topic is fraught with conflict in nomenclature. In [Ple18], the various definitions
around ‘reproducibility’, ‘replicability’ and ‘repeatability’ and their histories are outlined.

2.3 Metric Learning

The goal of Metric Learning is to approximate a function that measures similarity (or
distance) according to an underlying notion of similarity.
A basic form of Metric Learning involves learning a linear transformation on the

instances and comparing the representation vectors by the Euclidean distance. The
result is a generalized Mahalanobis distance. The survey [Kul13] gives a good overview
of this framework. Metric Learning can be done with different amounts of supervision.
Good overviews of unsupervised, semi-supervised and supervised learning approaches
with linear or non-linear transformation functions are given in [BHS13, WS15]. There
are different paradigms to define the loss based on the supervision signal in supervised
learning. The overarching idea is always to make matching pairs of instances more
similar over time while making non-matching pairs less similar. A comprehensive survey
can be found in [KB19].

The concepts discussed above and the pointers are mostly relevant only for Chapter 5
which is about learning similarity of code fragments. But there are several important
aspects that equally apply to Chapter 4 which is about Active Learning of string
similarity for String Matching.

21

2 Background

These common challenges arise from a crucial difference to standard forms of su-
pervised machine learning. The most common case of supervised machine learning is
to approximate or learn a target function f : D → C = {0, . . . , n} (i.e., classification)
or f : D → R (i.e., regression). In our setting, the domain of the target function is
a Cartesian product D × E. A target matching function would have the signature
f : D×E → C = {match, non-match}, with deduplication as the special case of D = E.
This kind of supervision signal is also used in so-called Constrained Clustering [BDW08],
which uses weak supervision in form of must-link and cannot-link pairs. The associated
regression problem f : D × E → R is the target similarity metric. The central conse-
quence is that supervised data is not arbitrary, but necessarily inter-dependent. In the
following sections, we will look at resulting challenges.

2.3.1 Label distribution

For the following consideration, we lay down the following definitions: n := |D| and
m := |E|. Without loss of generality, n > m.
In matching, the positive class of matches can maximally be of size m, whereas

the negative class contains at least (n− 1) ·m tuples. So, the matches can only grow
linearly while the non-matches will grow quadratically. In clustering, the positive class
is determined by the biggest cluster. If its size is c, the positive class can be maximally
n
c ·

c·(c−1)
2 = n·(c−1)

2 while the negative class has at least n·(n−1)
2 − n·(c−1)

2 = n·(n−c)
2 many

elements. Since usually c� n, the label distribution for matching is similarly skewed,
even if generally less so. More specifically, with the assumption that cluster sizes will
not pass a certain size threshold, the asymptotic growth is linear versus quadratical, just
as in matching. Tables 4.3 and 5.2 exemplify this with the data sets of our experiments.

This simple combinatoric fact has several important implications that we are going to
address in the following. Learning under heavily-skewed label distributions is generally
referred to as the class imbalance problem. Good references for general supervised
learning with imbalanced data are [BTR16, Wei04]. For the specific challenges that
arise for Active Learning, refer to Chapter 7.4 in [Set12] or Section 4 in [AP11].

Blocking / Indexing

First of all, this class imbalance makes the application of any comparison function on
all pairs inefficient. It is clear that most pairs will not be matches, but finding out which
ones are (naïvely) requires quadratically many evaluations. Depending on the domain,
one can find simple necessary conditions for a pair to be a match. For example, in the

22

2.3 Metric Learning

matching of records representing persons, it might hold true that both data sources
have an up-to-date and complete field about the ZIP code the person is living in. The
records can be indexed/sorted by this key and comparisons are needed only within the
blocks of records with identical ZIP codes.

This idea can be relaxed to any preliminary classification of matches with (near)
perfect recall and with a not too terrible level of precision. This classification is not
perfect, but because of its perfect recall it can be used as a necessary condition (or filter)
for further comparisons. See [Chr12] for an overview of blocking methods in Record
Matching. These more general methods are usually still referred to as blocking, even if
they do not arrange instances in blocked lists.
Blocking schemes can be devised statically by a domain expert, but can also be

learned [MK06]. In [SW18], a blocking scheme is learned via Active Learning.
Blocking does not only increase efficiency during inference time of a similarity model.

It also affects all parts of the learning pipeline. It can make the task of labelling less
cumbersome, models will learn more effectively and it makes the evaluation of the query
strategy in Active Learning less expensive.

Sampling

Unlike in the evaluation of a model to identify all matches or clusters, the training
of such a model does not rely on the full data set – not even all of the positive pairs.
Because good models are capable of generalization, sampling from the data may be
appropriate. Note that depending on the particular loss the model is trained with,
the amount of supervised data relative to the number of instances can be even more
extreme (e.g., cubic for triplet loss). Informative sample selection is important in metric
learning [KB19], because it can speed up the learning and ensure better generalization.

Class imbalance is a problem that often arises, also outside of Metric Learning [BTR16,
KKP06, Wei04]. Applications like anomaly detection, intrusion detection or medical
screening often deal with small positive classes. Undersampling is the technique of
suppressing the prevalence of the majority class. It can be done entirely randomly or
with a specific strategy. Oversampling, on the other hand, artificially increases the
minority class, for example by synthesizing artificial instances (SMOTE [CBHK02]).
For more involved sampling strategies, refer to [Wei04, BTR16].

Not only the ratio of positive versus negative labels matters, but also their distribution.
Too easily classified samples eventually do not contribute to the learning progress in
Metric Learning [KB19]. Techniques like negative sample mining specifically seek out

23

2 Background

samples for which the current prediction is poor. At the extreme end of curating the
training data is Active Learning where one incrementally builds up the training data
to avoid the vast amount of labelling. In [EHBG07], Active Learning is used to drive
sampling in imbalanced data. In Chapter 4, we use Active Learning for string matching.
Refer to Section 3.3 for related work on Active Learning for Record Matching.
Finally, the way the samples are used in the learning can be adjusted to account

for the class imbalance. It is long known that classification runs into problems if the
involved classes are either not in a balanced distribution or not equally important (in
terms of error cost) [BFSO84]. In cost-sensitive learning, classes are weighted according
to the cost a specific error related to this class would incur. In Section 5.3.2, we employ
such a technique under the name ‘error scaling’. Changing the label distribution during
training through sampling is in theory equivalent to adjusting the cost for different
errors [BFSO84] albeit with some practical caveats [Wei04]. Also, sampling decreases the
quality of the approximation, either by loss of information (undersampling) or distortion
(oversampling) which may cause overfitting [CBHK02]. Cost-sensitive learning does not
change the selection of data points themselves but only how they are used.

Logic

The interdependence of labels does not only cause the problematic prevalence of negative
pairs. It also contains some structure that can be taken advantage of. One obvious
structural aspect of the label distribution is that it is symmetric. That is, (a, b) is
positive if and only if (b, a) is positive. This property is usually reflected in the model
and it is made sure that only one of both pairs are used to avoid inefficiencies.

There is another property that can be exploited. In the case of a matching problem, it
might be the case that both D and E are duplicate-free. Then, each represented entity
can only be represented at most once in each set D and E. Therefore, there can be at
most one match per element in both D and E. This has the following two implications.
The first implication affects the learning phase, at least in Active Learning. If one

knows that elements d and e can have at most one matching element in the opposite
set, and (d, e) has been revealed to be positive, then all tuples in {(d̃, e)|d̃ ∈ D \ {d}}
and {(d, ẽ)|ẽ ∈ E \ {e}} are necessarily negative. This significantly increases the pool
of labeled data without requiring additional labelling.
The other implication affects the inference phase: If a model produces similarity

values for all pairs, and each instance in one set can match at most one in the other, one
can solve this as a weighted bipartite graph matching problem. If one expects that there

24

2.3 Metric Learning

are non-matching elements in both sets, one should first prune the bipartite graph by
those edges below a minimum similarity value. In [Chr12], it is suggested to solve this
by maximizing the weights in the matching. However, [GRC11] finds that non-optimal
heuristics are more robust and give better results.

In clustering, this logical way of extending the negative data is not possible, because
we do not deal with two distinct duplicate-free sources. Instead, the very task is to
deduplicate or infer clusters of similar instances. A natural idea might be to instead
extend the positive data by the rule of transitivity: If a is a duplicate of b, and b is a
duplicate of c, can we not infer that a is a duplicate of c? In the ideal case, clusters
form equivalence classes and this logic reasoning works.

However, relations implied by similarity do not usually yield equivalence classes. For
example, string similarity defined by being closer than t in edit distance cannot be
transitive. Equally, the definition of type-3 code clones (Section 5.1.1) cannot result in
a transitive relation. And as seen in Section 2.1, human judgment of similarity behaves
similarly. In more well-defined scenarios like in the deduplication of databases, it might
make sense to assume transitivity of the duplicate relation [Mon00]. When many records
are very similar (e.g., because their number is very high relative to how big the records
are), this can still lead to incorrect inference through transitivity, but this happens
rarely in real-world applications (see Section 6.8 in [Chr12]).

2.3.2 Generalization

That fact that we deal with tuples of instances in Metric Learning also requires some
special attention in the evaluation of learned models.

Imagine that a system has been trained to recognize people’s identity from a photo-
graph. It has been exposed to pairs of photos from different people to learn to tell them
apart. And it has been shown pairs of different photos of the same person to learn to
identify the depicted person. Now, its creators want to measure the performance of this
system to get an idea how well it will work in the real-world application, in order that
they can be confident in its performance.

If they were to naïvely split the supervised data into training and test sets, without
any regard to which tuples were selected, they would commit the following error: There
would almost certainly be many pairs of photos in the test set that represent people
that the system saw on photos in the training phase. In fact, it is also very likely that
it will be evaluated on some of the same photos that it was exposed to then. The only
thing this naïve split guarantees, is that no exact same tuple will appear in the test set.

25

2 Background

Consequently, one cannot be terribly confident in the performance numbers that drop
out of this evaluation. It might simply be the case that the system got very good at
recognizing the particular people it saw during its training and excels at identifying
them (or conversely, telling them apart). A realistic evaluation must make sure that
the system generalizes to unseen people.
For example, in Code Clone Detection (CCD) there is the benchmark dataset Big-

CloneBench [SR15b, SR16]. It contains verified clone pairs and non-clone pairs and is
therefore sometimes used for training and testing of supervised Code Clone Detection
approaches (as is done in Chapter 5)7. BigCloneBench contains clusters of Java methods
that have been collected by heuristic searches. Each cluster only contains methods for
one specific functionality. So it would be advised to separate the clusters used in training
from those used in testing. We call this ‘cluster-aware data splitting’ (Section 5.3.2).
However, this care does not seem to be universally taken. We are aware of one

work [LFZ+17] that practices cluster-aware data splitting by explicitly isolating cluster
#4, as the biggest cluster, for training. There are no non-clones from pairs between
separate clusters this way, but there are false positives in populating the cluster by the
search heuristic. This way, the singular cluster contains verified non-clones that are
used during training. Another work [ZH18] repeats its own evaluation with this exact
data split (cluster #4 for training, and the rest for testing). However, it is claimed
in [ZH18] that the performance measured is almost the same as with the splitting that
is not cluster-aware. We run a comparison like that in Section 5.3.6, but find dramatic
differences in performance between the two.

Other related works in supervised learning of CCD [SK16a, WL17, TWB+18, ZWZ+19]
do not provide sufficiently explicit descriptions of how training and testing data are
split. It is hence unclear if care is taken to split along cluster lines or to make sure that
at least the same code fragments do not appear in both training and testing.

A similar case is reported in [VDK+20], where many studies make a similar mistake
in the data split. There, the data instances are not pairs but because of the common
practice of oversampling, they can be relevant in Metric Learning as well. Since one
class is in the overwhelming majority, these studies oversample from the other class by
synthesizing artificial instances. However, they only split the data into training and test
sets after this synthesizing step. By doing so, they leak information into the test set that
can no longer be considered fully unseen. The authors of [VDK+20] show that correct
splitting leads to sizable performance losses compared to the replicated approaches, in
most of the cases.

7The authors of [SFL+18] find that it is already bad practice to use a benchmarking dataset for that.

26

2.3 Metric Learning

2.3.3 Quality metrics

If we want to evaluate a binary classification model, we want to measure its ability to
predict the correct one of two outcomes. In a case like ours (matching/deduplication),
we pay special attention to one of the two. In a more general setting, this could be a
diseased person (as opposed to a healthy person), or a fraudulent transaction (among
normal transactions), or a security breach (among normal system logins), or an oil
reservoir (within other positions in the landscape without oil). This more interesting
class of the two is often called positive (through medical language it has found its
way into everyday language; e.g., HIV-positive) and comprises the noteworthy kind
of instances or events that a model is supposed to detect or retrieve. It is often the
minority class because of its exceptional character.

In our application, the general population are pairs of texts or code fragments. The
positive class are the matches, clones or duplicates. Using quality metrics that are
appropriate in other contexts can lead to sub-optimal classification models in the context
of imbalanced data sets [BTR16]. We will therefore put special focus on how the class
imbalance in this specific setting affects the quality metrics.

Types of errors

It is important to know how good a classification model is at predicting whether an
instance belongs to the positive class or negative class. Our model can make two kinds
of errors. One is to predict an exceptional event, when there is none (type I error, false
positive or error of commission). Colloquially, this is called a false alarm. Or it can fail
to predict such an event, when there really was one (type II error, false negative or
error of omission). We could also refer to this as a miss.
A model might make very cautious, specific predictions for the positive class. It

therefore may have a relatively low number of false positives (type I error, see Table 2.1).
At the same time, it may have many false negatives (type II errors). If a model does
generous predictions of the positive class, these characteristics may be exactly reversed.
Which scenario is more desirable depends on the application. This will determine

what costs are associated with what kind of error. In a security system that is supposed
to catch breaches or attacks, it is worse to miss an event than to err on the side of safety
and make more false alarms. Of course there is always a point of too many alarms,
because investigating reported events by some downstream process (possibly involving
human labour) may add up to too much wasted effort through the many false alarms
by the “hair-trigger” security system. In the worst case, human users notified by too

27

2 Background

Ground truth
Positive Negative

Predicted
positive True positive False positive

(Type I error) Precision:
∑

TP∑
PP

Predicted
negative

False negative
(Type II error) True negative

Recall:
∑

TP∑
P

F1:
2·
∑

TP

2·
∑

TP+
∑

FN+
∑

FP

Specificity:
∑

TN∑
N

Accuracy:
∑

TP+
∑

TN∑
P+
∑

N

Table 2.1: Confusion matrix and derived metrics

many false positives get tired, complacent with the inconsequential alerts, or actively
dismiss incoming alarms (as in “the boy who cried wolf”).
On the other end of the spectrum are systems that are detrimental if they produce

(too many) false positives. For example, a cleaning robot that is supposed to detect
junk and remove it. It is nice whenever it finds genuine junk and hence cleans the area
it is responsible for some more. But a false positive might mean that it identifies a
invaluable piece of modern art as junk and destroys it. And again, the less costly false
negatives can still add up to prohibitive cost. If the cleaning robot makes so many type
II errors that it effectively does not clean anything, it is not worth the cost of acquiring
and running it. Additionally, it might give a false sense of the problem (of cleaning)
having taken care of, while effectively, it has not.

Precision & Recall

There are two metrics capturing these two competing goals in avoiding each type
of error. Recall is the number of true positives over the number of all positives (see
Table 2.1). It measures the ratio of all positives that the model was able to retrieve.
Precision is the number of true positives relative to all instances that were predicted
as positives. That is, how much of the time the model was correct, when it claimed to
have found a positive. Unfortunately, both metrics offer a very poor goal for predictive
performance because they each can be trivially maximized. Any model that predicts
all instances to be positive will have perfect recall and any model that predicts all
instances to be negative will have perfect precision (or at least one instance that is very
obviously positive in order to have a non-zero denominator).

28

2.3 Metric Learning

Accuracy

A straightforward way to address this is to count the relative amount of avoiding both
types of errors a model does in its prediction. This is called accuracy and is defined
as the number of all correct predictions relative to the number of all instances (see
Table 2.1). Accuracy conflates the two types of errors and as such, does not make a
distinction between the two classes. It is symmetric in both classes and hence there is
no concept of a positive class that applies here. That makes it easily generalizable to
multi-class prediction. Accuracy can be a poor metric, however, when the task at hand
has a very skewed class distribution. If that is the case in a binary classification task,
the instances of one class will dominate the overall set of instances. Because of this, a
trivial model that always predicts that a given instance belongs to the majority class,
can achieve accuracy as high as the prevalence of the dominant class. In our specific
application of deduplication, we deal with matches among the set of pairs of documents.
Because of the combinatorics involved (see Section 2.3.1), we naturally deal with a
highly skewed class distribution. That is why accuracy is not a good metric in our case.

F1 score

The F1 score (or F1 measure) also addresses both kinds of errors. It is defined as the
harmonic mean of precision and recall. These two metrics clearly refer to one of the
classes as the positive one. This metric cannot be maximized by any trivial classifier as
it combines the competing metrics precision and recall in a way that it is not enough
to maximize one at the expense of the other. Hence, the errors are not interchangeable
like they were in the case of accuracy.

The F1 score can be generalized to the Fβ score, where a higher value for the parameter
β gives more importance to false negatives and a lower β emphasizes false positives. It
has been shown that optimal thresholds for Fβ are lower than optimal thresholds for
accuracy [FK15]. Averaging of F1 scores is misleading [FK15]. Instead, one can consider
the F-Gain score that allows proper averaging and takes into account the always-positive
baseline [FK15]. The F-Gain score can be translated into the corresponding F-Score.

The Fβ is employed in several metrics used for the evaluation of machine translation
(see Section 2.2.1). These are string similarity measures, but treat the aligning and
matching of tokens as a small retrieval problem. Fβ requires a good precision of token
matchings while punishing short translations by also requiring good recall.

29

2 Background

MCC

Matthew’s Correlation Coefficient (MCC) is the correlation between the prediction of
the model and the actual labels of instances (after identifying each of both classes with
an arbitrary real number). The MCC is a function of all four cells of the contingency
table. And it is symmetric with respect to the two classes, so there really is no concept
of a positive class. The MCC was originally conceived of in biochemistry [Mat75] and
has not reached much popularity in Computer Science literature.

Scatter plots

Computational models often do not just classify all samples or event candidates into
positives and negatives. More often, they provide a ranking of candidates, where an
instance is deemed more likely than another to be a positive if it is ranked higher by the
model. Or the model gives a concrete (probability) score for each candidate which of
course implies such a ranking. This allows the user of a system to choose an appropriate
cut-off point (or score threshold, in the case of scoring) that defines the decision by the
model underlying the system. In these cases, it is more informative to consider such a
ranking model as a family of classification models.
A ranking implies a maximum of n+ 1 many non-equivalent models because there

are at most this many thresholds with respect to a given test set of n instances. This
number can be less if the model is scoring instead of ranking and if some scores coincide.

Now, if one is not just optimizing for one metric but considering trade-offs between
different objectives, one can do a scatter plot of the performance of this family of models
with respect to any two quality metrics. Models without a threshold parameter that
simply classify instances into the two classes will appear as one single point in such plots.
For example, human experts have a hard time coming up with a score or a (consistent)
ranking for instances like that. They rather use their expertise, i.e., knowledge and
experience, to come to a definite answer, maybe with an additional rough score of how
confident they feel about a particular decision.

These plots are a useful tool in visualizing characteristics of a model and its behaviour
with different thresholds. One can pay attention to specific regions of interest [Faw06],
for example, if one has constraints or costs for specific kinds of errors. Or one might
have the requirement that one quality metric be higher than some lower bound after
which one is free to optimize for the other. Thus, it serves as a good tool to make an
informed decision about a decision threshold to turn the scoring/ranking model into a
classification model.

30

2.3 Metric Learning

In the following, we look at concrete examples of pairs of metrics that are in frequent
use in several different fields.

ROC curve

The so-called Receiver Operating Characteristic (ROC) plots Recall (Sensitivity, or
true positive rate, TPR) against Fall-out (or false positive rate, FPR). Sometimes, it is
equivalently defined as plotting Recall against Specificity (or true negative rate, TNR).

The term receiver operating characteristic was coined during the Second World War
when radar was used to pick up the presence of ships and planes. The sensitivity of the
radar set (the receiver) could increase the sensitivity and pick up more faint signals
with the side effect of picking up on the amplified noise which led to false positives. The
points in ROC space are also called operating points. These characterize the behaviour
of a specific setting an operator might use.
The first ROC plot was done in a technical report [PBF54] seminal for the field

of Signal Theory [Swe73]. The researcher Lee Lusted worked at the Radio Research
Laboratory at Harvard during World War II on the development of electronic radar
countermeasures equipment and was exposed to the ROC curve as an instrument to
analyze the quality of radar signal detection [Lus84]. In his later career as a medical
doctor, he introduced this tool into the field of medical decision-making [Lus71]. Later,
it was proposed to use Receiver Operating Characteristic curves to evaluate machine
learning classifiers [Bra97].

ROC plots have some nicely interpretable properties. The major diagonal line indicates
the performance of a random classifier where each point on that diagonal has a distinct
rate at which it guesses the positive class. The top-right operating point represents
the always-positive classifier and the bottom-left the always-negative classifier. Recall
is normalized by the prevalence of the positive class whereas Fallout is normalized by
the prevalence of the negative class. Therefore, the whole ROC plot is independent
of the class distribution and specific error costs. The angle between the x-axis and
the line connecting the point with the origin is proportional to precision [FK15]. An
introduction to ROC curve analysis is given in [Faw06].
To go from some measured points to the whole ROC curve, one has to interpolate,

as mentioned above. In the case of the ROC curve, linearly interpolating between the
few well-defined points makes sense: The classifiers corresponding to points on the line
between any two operating points can be achieved by interpolating the neighboring
classifiers via fractional sampling [Faw06]. Especially, points on the convex hull can be

31

2 Background

realized by such an ensemble model. So, in addition to the area under the ROC curve
(ROC-AUC), one can define the Area Under the ROC Convex Hull (ROCH-AUC).

The ROC-AUC of a classifier is equivalent to the probability that the classifier will
rank a randomly chosen positive instance higher than a randomly chosen negative
instance [Faw06]. It is worth noting that it is possible for a classifier to perform worse
in a specific region of ROC space than a classifier with a lower ROC-AUC [Faw06].
Furthermore, ROC analysis overemphasizes the region with highest recall [FK15].

PR curve

The Precision-Recall-Curve (PR curve) plots Precision against Recall. It was conceived
only after the ROC curve and was possibly inspired by it [FK15]. Random classifiers
do not show up in the same way in PR curves. Their performance is found on the
horizontal line at the height of the prevalence of the positive class.
A lot of favourable properties of the ROC curve do not hold for the PR curve.

Interpolating linearly between the measured points is not meaningful and the set of
operating points in PR space that are pareto-optimal are not convex or easily determined
[FK15]. The ROC curve and the PR curve relate to each other in that a curve dominates
in ROC space if and only if it does in PR space [DG06]. However, the PR curve is a
better tool than ROC when evaluating on imbalanced data [SR15a].

PRG curve

The Precision-Recall-Gain-Curve (PRG curve) was conceptualized to improve on the
PR curve. The central insight leading to the modification is that in Precision-Recall
analysis, the best trivial baseline is the always-positive classifier. It has perfect recall
and its precision takes the value of the prevalence π. So any classifier with precision or
recall below π would not be worth considering. Consequently, it makes sense to rescale
precision and recall to reflect this. The precision gain and recall gain are defined as
precision (or recall, respectively), rescaled with a harmonic scale:

precG = prec− π
(1− π) · prec = 1− π · FP

(1− π) · TP ,

recG = rec− π
(1− π) · rec = 1− π · FN

(1− π) · TP

Points on the line between two classifiers in PRG space can be achieved by interpo-
lating via fractional sampling, just like in ROC space (but not in PR space) [FK15].

32

2.3 Metric Learning

In the PRG plot, isometric curves of F1 scores are straight lines parallel to the minor
diagonal. More generally, isometric curves of Fβ scores have slope −β2 [FK15].

‘Area under the curve’

The aforementioned scatter plots are often non-chalantly extended to a single metric
that gives a summary for the whole family of models – the so-called area under the
curve. It is worth unpacking what goes into the construction of this aggregated metric
derived from the set of 2D points.

Firstly, the set of 2-dimensional points is discrete whereas a curve is the image of an
interval mapped by a continuous function into a topological space. Secondly, the area
under a function graph (of an integrable function) can be well-defined as an integral,
whereas the area under a curve is not well-defined. These two gaps can be bridged
under certain conditions.

The points are the image of a function, specifically the function that maps a threshold
t ∈ R to the 2D point (q1(m, t), q2(m, t)) of the quality of model m with decision
threshold t with respect to the quality metrics q1, q2. But this function takes only a
discrete set of values as discussed above. If we could find a meaningful way of extending
the points to a curve that happened to coincide with the graph of an integrable function,
we could relate the points to the integral under that function and call it “area under the
curve”. There are three things that in principle can stand in the way of this endeavour.

First, for the curve to coincide with a functional graph and the integral to relate to
the curve, the curve has got to have values in the first dimension that are monotone in
the decision threshold t. In particular, q1(m, t) must be monotone as a function of t.
This is not true for every quality metric, so we must keep this constraint in mind. Recall,
for example, is monotonely decreasing. In other words, as you increase the decision
threshold, fewer instances will be classified as positive.

Second, the way to connect subsequent points with curve segments has to relate in a
meaningful way to the family of models. Otherwise, it is unclear what exactly the area
under the curve would measure. We go into this aspect in the below examples for the
concrete cases.

Third, there is a merely technical point. There might be non-unique values of q2(m, t)
for a given value of q1(m, t). In these cases q2(m, t) is not a function of q1(m, t). For
example, q1 might be Recall and a negative instance might be the only one scoring
in the interval [t1, t2]. Therefore, q1(m, t1) = q1(m, t2), but q2(m, t1) < q2(m, t2) (e.g.,
if q2 is Precision). This breaks any attempt of representing the curve connecting all

33

2 Background

points with a functional graph. We can define that the interpolation will only be done
on intervals (q1(m, t1), q1(m, t2)) where ∀t > t1 : q1(m, t1) > q1(m, t) ≥ q1(m, t2). That
is, t1 is the maximal threshold with that value of q1 and t2 is one of the thresholds
with the next value of q1. The value of the function is not well-defined at the points
(q1(m, t), q2(m, t)) themselves but that is not a problem since it is a discrete set which
has measure zero. How to meaningful interpolate in between the points depends on the
pair of quality metrics.

Area under ROC, PR, PRG

When measuring the area under the curves described above, one gets a measure that is
independent of the threshold and that aggregates the performance of the ranking/scoring
model. As noted above, the ROC curve is entirely independent of the prevalence of the
positive class and hence the AUROC may be viewed as only measuring the capability of
the ranking/scoring model. However, it is worth noting that differences in the prevalence
can make huge differences in the outcome. So tests should reflect the prevalence likely
encountered in the real application.
The AUROC of a classifier is equivalent to the probability that the classifier will

rank a randomly chosen positive instance higher than a randomly chosen negative
instance [Faw06]. It is also equivalent to the Wilcoxon statistic [HM82].

Maximizing AUROC is not equivalent to maximizing AUPR [DG06]. AUPR indeed
does not have an interpretable meaning (other than the expected precision when
uniformly varying the recall, which does not make a lot of sense) and it can favour
models with lower expected F1 score [FK15]. The AUPRG, on the other hand, coincides
with the expected F-Gain score [FK15].

Conclusion

Popular choices to measure the performance of matching systems with a single number
are F1 score and AUROC. Good alternatives seem to be AUPRG, F-Gain and MCC,
but these seem to be relatively unknown in Computer Science. In [BTR16, MWGM10]
one finds some more obscure quality metrics, especially for the use with imbalanced
data sets.

34

3 Related Work

3.1 Optimal similarity measures

In [VN11], a system is proposed to match attributes to a predefined set of semantic
classes (like phone number, last name, ZIP code, city) by comparing their values to
reference data. The system provides a fixed similarity measure that is preselected to
deal best with the variations usually encountered in an attribute of that class. The
study [DSSOH07] is centered on estimating optimal thresholds for similarity measures.
It shows that this consideration can be turned around and used to measure the quality
of similarity measures themselves. Our approach to selecting similarity measures, by
contrast, does not depend on specification of a domain but learns directly from sparse
user feedback.
For several domains, tasks and even languages (or combinations thereof) similarity

measures have been experimentally compared with respect to their usefulness in that
specific setting. This includes generic domains and tasks like (personal) names [CRF03,
Chr06, PS07, MYC08, GMIF16], ontology alignment [CH13, SMW15], and even obscure
niches like obscenities in Russian [Che17]. Our approach does not require a corpus of
such background knowledge or the specification of an existing target domain or task.
The information which similarity measure works best is given implicitly by the feedback
of the user, instead.
Systems for record matching1 require the selection of string similarity measures for

given attributes. FEVER [KTR09, KTR10, Köp14], a framework for evaluation and
comparison of record matching algorithms, offers different kinds of hyperparameter
search; random, grid search, and gradient descent. FEVER measures not only the
performance in terms of the contingency table but also the labelling effort for tuning the
parameters and training the matchers. In our approach these two stages are combined.
The string similarity measure and threshold are not hyperparameters but rather the
output of the learning loop. Our approach reaches near optimal results with up to around
20 labels whereas the labelling effort reported in the FEVER study [KTR10] ranges from
20 to 500 labels. Record matching and string matching are only somewhat comparable.
Three of the 17 datasets we evaluate on (fodorZagrat, census and coraATDV) are
matching records that are serialized in single strings.

1Ironically, many other synonymous terms for this exist, e.g., entity resolution/linking, record linkage,
reference reconciliation, to name a few

35

3 Related Work

There is some research on Metric Learning of string similarity measures, e.g., [ACGK08,
BM03a, TKM02]. Some is based on the rigorous theory of kernel functions [BBS08,
KJ12]. One specific variation is the learning of string edit distances. In the sur-
vey [BHS13], one section gives an overview over this specific area. Our approach
cannot be categorized the same way in Metric Learning, since it merely selects an
existing similarity measure and provides a corresponding threshold.

3.2 Optimal similarity thresholds

The distribution of similarity values of matching and non-matching attributes in practice
always overlap. Oftentimes, applications require setting a definite decision threshold
for classification2. This implies a trade-off between false positive and false negative
errors. In other circumstances no single threshold defines this relation, but selections
of thresholds have to be made at various points (e.g., in decision trees). Probabilistic
record matching introduced by Fellegi and Sunter [FS69] works with a low and a high
threshold classifying all pairs as links, possible links, and non-links. Here, the thresholds
are chosen by estimating the errors from samples.
Two works from the field of information retrieval [AvH01, DSSOH07] deal with the

optimal choice of a similarity threshold. Their applications can be seen as (one-to-many)
matching of strings, namely queries to relevant documents. Score-distributional threshold
optimization [AvH01] uses a statistical model to estimate an optimal threshold for this
task. In this work, the authors define a model for the distribution of similarity scores
and a measure for probability of relevance. The scores for matching pairs is modelled
with a Gaussian distribution, while the scores for non-matching pairs is modelled with
an exponential distribution. They introduce an effective way of approximating the score
densities in this theoretical model without loss of too much accuracy. In [AKR09], it
is observed that the statistical model in [AvH01] suffers from two shortcomings. One
is the support incompatibility between the two used distributions; the exponential
distribution is not defined everywhere. And the second is that the exponential dominates
the Gaussian in the long tail of high scores; which is exactly the opposite of the reality
of relevance of documents. The authors address this by modifying the distributions
by (two different) truncated versions and accordingly modifying the estimation of the
optimal threshold. In [KPDA09] it is shown that a mixture of Gaussians (matches) and
a sum of independent exponential distributions adds complexity but is a better fit. The
paper [ACG02] assumes a Gaussian distribution but applies outlier detection methods

2This simple process sometimes is referred to as the ‘threshold method’ [KKP06, BTR16].

36

3.2 Optimal similarity thresholds

to set good thresholds. Our method incrementally samples interesting samples that lie
in the intermediate area of similarity values for many similarity measures. This sample
is necessarily highly biased and does not allow for the estimation of such distributions.
Our method of picking a threshold does not assume and estimate any types of

distributions. Instead, it empirically optimizes a quality metric on a supervised sample.
This method is described in [AvH01] as the straight-forward empirical method. In
[DSSOH07], this method is compared to a score-distributional model with two Gaussian
distributions for relevant and non-relevant scores to estimate the optimal threshold.
Again, our query strategy does not follow this theoretic model. In [DSSOH07], accuracy
is the target metric, and the experiment is done on a small artificial dataset of 18
paper titles (i.e., the database) and 150 arbitrary manually created variations (i.e.,
possible queries) of these. The result of the straight-forward empirical method is also
evaluated as a function of number of samples. This is equivalent to an Active Learning
experiment with random sampling. In the one experiment, the threshold jumps to a
close proximity to the optimum at around 40 samples, and makes another jump at
around 75. In terms of labelling effort, each query entails 18 (interdependent) labels (1
relevant, 17 irrelevant). The straight-forward empirical method with respect to accuracy
is also used in several studies comparing biological string data (DNA and rRNA
sequences) [KOPC14, BDD15, BDBU+18].

Decision trees can be seen as cascades of splits by (sometimes) continuous attributes.
These splits are usually based on purity measures (like Gini coefficient or entropy) and
only apply to the remaining population of samples that are relevant in the given node.
Random Forests (see Section 3.3 below) further aggregate the decisions of many (shallow)
decision trees. The selection of thresholds in decision trees is not comparable (because
these have only local relevance) whereas our approach considers single-dimensional
matchers given by similarity measures where the threshold applies globally.
As mentioned in the previous section, the system FEVER [Köp14] for evaluating

record matching algorithms allows for hyperparameter search for individual matchers
which includes similarity thresholds. These can be optimized via random search, grid
search, or gradient descent. The search will be counted towards the overall effort of an
evaluated matching system. In our approach, the tuning of the similarity threshold is
integrated in the Active Learning loop and part of the output matcher.

Instead of overlap of score distributions, [GWP+17] suggests to define user preferences
for logical properties of the resulting matching of two sources viewed as a bipartite graph.
The authors define two user preferences; MaxGroups chooses a threshold such that
the number of non-trivial connected components is maximal. MinOutJoin, in contrast,

37

3 Related Work

selects a threshold such that the size of the full outer join is minimal. That objective
balances between an empty matching and a matching of all pairs, both of which have a
big outer join.

3.3 Active Learning for matching

There are many publications that address the Record Matching problem with Active
Learning techniques. All of this related work differs in at least two important aspects
from our work. Our approach yields the simplest possible model, namely just an existing
string similarity measure with a decision threshold and we address String Matching,
which is a special case and subproblem of Record Matching. Three of our datasets
(fodorZagrat, census and coraATDV) are actually comprised of records that are
represented by single strings.
Active Atlas [Tej02, TKM01, TKM02] is the first work to apply Active Learning to

Record Matching. The fundamental idea of Active Atlas is to create many hypotheses
about how the relationship between attributes from the two input sources can relate
by transformations. These include many ideas built into string similarity measures
(Section 2.2.1), like substring relationship, stemming and Soundex. Tokens occurrences
are compared by the cosine similarity of their frequency vectors weighted with TF-IDF
weights. Decision trees are built on the known examples (each from a random subset
of attribute similarities) to form a committee. The query strategy is to maximize the
disagreement in the committee as measured by the absolute difference in match and
non-match votes.

There are fundamental differences in how Active Atlas is evaluated compared to our
approach. Firstly, the whole committee is used to predict the matches whereas we only
evaluate the single best hypothesis. Secondly, Active Atlas applies logical inference to
improve the output matching. It uses the Hungarian method of determining a maximal
bipartite matching with the constraint that there can be at most one match per instance
per source. This can reduce the amount of false positives because some of the lower
similarity matches will be discarded. Active Atlas also uses the other type of logical
inference (Section 2.3.1) for Record Matching to increase the amount of labelled data
which we also do not apply.

This system is evaluated on three data sets among which are two that we use as string
matching problems in our evaluation (fodorZagrat alias restaurant and business
alias company). There are two important differences. Active Atlas uses the restaurant
data as split into three attributes, while we use the concatenated version. And crucially,

38

3.3 Active Learning for matching

these data sets included one important attribute that was used as the key attribute for
creating the ground-truth in [CRF03, CRFR03]; the website URL in business, and
the phone number in restaurant. These two reasons (and because Active Atlas uses a
much richer model) lead to the almost perfect prediction on these data sets. Still, this
level of accuracy is only reached after around 50 and 100 queries respectively.
Other works study variations of the concept of committees of decision trees (in

principle a random decision forest [Ho95]). ALIAS [SB02] compares this approach to
Active Learning with SVMs and Bayes classifiers. In [AGK10], active learning is used
to arrive at decision trees that maximize recall while exceeding a user-defined precision
level based on the assumption of a monotonicity property. This is compared to passive
learning and to a linear classifier. A similar importance to precision is given in the
active learning of blocking schemes [SW18]. RAVEN [NLAH11] uses stable matchings
among attributes to define features and as well as among instances to define matchings.
As for models, this paper compares decision trees to linear classifiers. In [XAF13],
logic inference for deduplication (outlined in Section 2.3.1) is used to increase the
amount of labeled data from queries by the decision trees committee. This kind of
inference is used similarly in [CVW15]. Corleone [GDD+14] answers the queries from
the random decision forest by crowdsourcing. DIAL [Dou17, DSLW17] proposes the
initialization of the committee of decision trees by an unsupervised density-driven
algorithm. Smurf [SGADA18] derives fields from strings and learns decision trees with
active learning loops driving both the blocking and matching phases.
Another batch of work uses genetic programming. Since this approach works by

randomly mutating and recombining solutions that are kept in a candidate pool of
models, it naturally has a committee of hypotheses. EAGLE [NL12] defines a population
of logical formulas over attribute similarity comparisons which are essentially equivalent
to decision trees. In [IJB12], the population is made up of models that aggregate
weighted comparisons of transformed attributes in several different ways.

A newer development is to learn a similarity or distance metric in the Active Learning
loop. This is essentially Metric Learning which we will discuss outside of the Active
Learning context in the following section. The first work in this direction is Bayesian
Active Distance Metric Learning (BADML, [YJS07]). It is a general Bayesian approach
that works with real-valued vector data. In [YJS07], it is evaluated by clustering an
image and a sound data set. ACIDS [SN12] learns a generalized edit distance for Record
Matching. And the first Neural Network based approach is proposed in [HGD19]. Here,
bidirectional RNNs with gated recurrent units (GRU) are pretrained to yield embedding
vector to represent the attribute values. The absolute difference of two attribute values

39

3 Related Work

for two records is then stored in vectors. The vectors are all added up across attributes.
A shallow Feedforward Neural Network is then trained to predict matches from this
300-dimensional aggregate vector.

In [KQG+19], the Active Learning task is not a matching task itself, but tagging of
sentences. It employs Metric Learning by a Siamese Network of bidirectional RNNs
with LSTM units, which is done with a fully-supervised sentence similarity data set.
The learned similarity metric is then used to filter redundant queries from a batch of
queries generated in the Active Learning loop.

Over the years there have been some solutions that do not fit into the aforementioned
model families. In [BM03b] an SVM is used in a weaker form of Active Learning called
‘static-active selection’. Instead of using features solely based on string similarity and
document frequency, [AJW+14] uses other features related to the represented entities,
like their social network links. The paper [FCW16] proposes the use of Markov logic
networks. LUSTRE [BQL+18] learns from (essentially) partial records a model made up
of a set of mapping rules. The query strategy is a combination of uncertainty sampling
and density-weighted sampling.

Recently, a benchmark framework for Active Learning of Record Matching has been
published [MPSS20]. It allows the comparison of different models and query strategies
on many data sets with several evaluation metrics.

3.4 Metric Learning for matching

Metric Learning is mainly applied for sensory recognition tasks like person identification
by face or voice [Kul13, BHS13, KB19]. We will highlight some work that focusses on
unstructured and token-based data like text or code, in order to be comparable to our
own work.

The closest in methods to our work is [TSM15]. In fact, we built our model in [BA19]
on their implementation. It is maybe the first paper applying nonlinear Metric Learning
to tree-structured data, after existing work only applied linear methods or learned tree
edit distances [BHS13].
Shortly after [BHS13], the idea of learning sentence similarity with Siamese Neural

Network was picked up [NVR16, MT16] but instead using Recurrent Neural Networks
which treat the data as strings. In [NVR16], a character-based bidirectional Recurrent
Neural Networks with LSTM was trained to match similar job titles. And [MT16]
applied the same type of network to short sentences and reportedly outperformed the
Recursive model of [TSM15]. They also found that the Manhattan distance performs

40

3.4 Metric Learning for matching

better than cosine distance. Besides a boost in performance, it also naturally delineates
the meaning of sentences along neurons; Some hidden units were found to represent
negation while others reflected categories of subjects, or of direct objects.
In Section 5.2.1, we observe that the negative sampling approximation of skipgram

word2vec is equivalent to training a Siamese Network with contrastive loss. The only
difference is that Siamese Networks are trained with supervised data, whereas word2vec
has only the implicit ground-truth of co-occurrence. The paper [KBdR16] similarly
extends the word2vec algorithm. First, words are represented by pretrained word2vec
vectors (they compare both word2vec variants). They average the word vectors to
obtain sentence representations because that is a strong model. These are then used in
the CBOW fashion to predict a focus sentence from its context sentences.
As further noted in Section 5.1.4, embeddings pretrained on the co-occurrence task

oftentimes result in similar vectors for antonyms. Siamese Networks, however, have a
built-in symmetry for the relation they are representing. In order to leverage direct
supervised learning of the antonym relation, [EW19] proposes a Parasiamese Network
which is asymmetric. One side has a single copy of the base network whereas the other
side applies the same base network twice in sequence.
Metric Learning has been also conducted with weak supervision by data sampled

from Active Learning algorithms (see Section 3.3 above). Apart from that, there is a
fully supervised linear approach using Largest-Margin Nearest Neighbors [LSLH18]. A
supervised Metric Learning approach for Record Matching is presented in [YHMH19].
First, names, addresses, coordinates, and categories representing businesses and other
venues are extracted from web pages. These are then represented by embeddings learned
in an unsupervised way. A Siamese Feedforward Neural Network is trained to match the
records. It is shown that hard sampling, attention mechanism in the Neural Network,
and label denoising improve the performance. By contrast, we use a Recursive Neural
Network to aggregate and compare unstructured data (programming code).

3.4.1 Code Clone Detection

In this section we only include such Code Clone Detection methods that are using some
kind of representation learning. That means that we also exclude learning-based ap-
proaches that rely on handwritten or mined features like [LFZ+17, SFL+18, ZH18] here.
We give a small overview over general Code Clone Detection methods in Section 5.1.2.

The first work learning a representation for the application of Code Clone Detection is
presented in [WTVP16]. A representation of the terminal nodes in an Abstract Syntax

41

3 Related Work

Tree (AST) is learned by training a Recurrent Neural Network to predict the next
token in the sequence of terminal nodes. Then, an autoencoder is trained to merge the
sequence of terminal nodes. Its objective is to reconstruct the original two child nodes
from the parent node representation. In this way, the embeddings for the terminal nodes
(learned in an unsupervised fashion) get extended to all internal nodes by another step
of unsupervised learning. Finally, the representation of whole fragments are compared
by Euclidean distance. Thus, similar to our approach, binarized AST representations are
used to aggregate pretrained node vectors that are finally compared to reflect similarity.
The main difference to our approach is that we only pre-train the node embeddings and
use a supervision signal to finetune the aggregated representation. Later, some of the
authors extended this work to types of sequential input (sequences of identifiers, AST
node types or bytecode) learned and aggregated in a very similar way [TWB+18]. They
compare it to a learned graph embedding of CFGs and combinations with (supervised)
ensemble models on top of the unsupervised pretrained representations.
CDLH [WL17] is the closest related work to ours. It also aggregates and compares

binarized ASTs with a Siamese Recursive Neural Network with LSTM units by supervised
learning. In contrast to our approach, CDLH employs an additional layer and non-
linearity after the aggregation to obtain binary features for the comparison. Only
terminal nodes seem to have a word2vec vector representation since there is no mention
of discrete information that does not have sequential context. We binarize our ASTs in
a balanced fashion whereas CDLH creates rather deep trees. Also, in our work we focus
on generalizability which requires careful cluster-aware data splitting (see Section 2.3.2).

A recent supervised approach [CYZ19] uses local aggregation (tree-based convolution)
of embedding vectors followed by pooling and a fully connected layer (TBCNN [MLJ+16]).
A Siamese network compares the vectors by cosine similarity and fine-tunes on supervised
data from BigCloneBench (Java) and OJClone (C).

Also unsupervised approaches are being proposed recently [ZWZ+19, GWL+19]. In-
stead of using autoencoders as in [WTVP16, TWB+18], both employ a token prediction
language modelling objectives. The approach presented in [ZWZ+19] uses AST trees
that are sequentialized by preorder traversal. Embedding vectors for the tokens are
trained with word2vec. This is then fed into a bidirectional Recurrent Neural Network
with GRU units. In [GWL+19], node vectors are trained by node2vec [GL16]. This
algorithm works very similarly to word2vec, but works on paths within graphs that are
generated by random walks. The vectors representing AST nodes are then aggregated
via a weighted average representation which is further refined by removing the first
principal component as proposed in [ALM16] and compared by Euclidean distance.

42

3.4 Metric Learning for matching

In general, any learned vector representation is a candidate for Code Clone Detec-
tion, by simple comparison through distance metrics like Euclidean or cosine distance.
A survey over such representations is given in [ABDS18]. Recently, the Transformer
architecture that uses self-attention has started to be explored for code representa-
tion [KMBS19, KZTC20, FGT+20]. An overview over embedding single code units
like tokens or AST nodes is given in [CM19, KBR+20] with a special focus on the
open vocabulary problem in [KBR+20]. A first benchmark measuring how well different
identifier embeddings reflect similarity and relatedness was proposed in [WRP19].

3.4.2 Other Software Engineering applications

The following works study Metric Learning approaches in the same domain of Software
Engineering. In contrast to our work, the data type either differs from code or is
represented differently from our approach.

One of the seminal papers in Metric Learning proposed Information Theoretic Metric
Learning (ITML [DKJ+07]) which is a form of Linear Metric Learning with regulariza-
tion. Among others, ITML is evaluated on a dataset about software failures. It uses
counts of function usage as representation for program runs. It matches similar program
configurations and inputs of failed runs by k-Nearest-Neighbors classification.
More recently, Metric Learning has been applied to match artifacts in Software

Engineering contexts. The paper [ATGW15] proposes an approach to match artifacts
of different modality (code and natural language). The code fragment representation
is based on its parse tree, relative to a probabilistic context free grammar, while the
natural language sequences are averages of word vectors. These two representations
are then fine-tuned by noise contrastive estimation to optimize for the matching task.
The authors propose as application snippet retrieval that matches code to natural
language queries and query retrieval that retrieves a natural language description for a
code fragment. More works that embed natural language artifacts and code fragments
have been published in recent years. An overview and comparative evaluation is given
in [CLK+19].

In [GCCH17], a Siamese Neural Network is used to jointly embed requirement spec-
ifications and design descriptions. The natural language tokens are first mapped to
word2vec vectors which are then aggregated via Recurrent Neural Networks. These
representations are then compared by a shallow Neural Network.

43

4 Metric Selection for String Matching

There exists a host of string similarity measures developed in different fields (see
Section 2.2.1). Each one is suited to solve a family of similar use cases. Even applications
that look very different on the surface might deal with very similar kinds of sources of
variation like typos or formatting variants. So in principle, one can expect that this
big “zoo” of string similarity measures offers a sufficient toolkit to solve almost any
application a practitioner might face.
However, very few practitioners that are experts in their domain are familiar with

many string similarity measures and can confidently tell which one will perform better
or worse in a given case. To make matters worse, even if the decision about the string
similarity measure is taken a definite matching of strings requires a threshold for the
similarity. This is difficult to choose because it involves arbitrary gradations and the
consequence of this choice is not easily grasped.
This kind of information is an essential input to many standard approaches for

Record Matching or Deduplication. In both tasks one seeks to identify pairs of records or
representations that refer to the same entities. Solutions to this problem rely on similarity
measures to compute similarity values on attribute level [KR10]. For example, the Fellegi-
Sunter model for probabilistic Record Matching [FS69] needs both similarity measures
and thresholds for all attributes. In fact, the setting of similarity measure and decision
threshold is often an important factor in determining the matching quality [BN09].
Even in modern approaches that determine decision thresholds in themselves (or are
independent of this concept) still rely on the definition of a similarity measure [KR10].

In this chapter, we propose and evaluate an approach to select both a string similarity
measure and a threshold to solve a given string matching task. Our approach defines
an interactive process that formulates queries of example cases to a user.
This chapter is based on a peer-reviewed publication [BA15].

4.1 Background

Record Matching and Deduplication are problems that frequently occur in managing
and analysing data. Relational data is ubiquitous in any field and combining different
sources of data can leverage the data better. However, if there is no unique key available
with which to define a join, one needs to employ Record Matching. Similarly, an existing
data source might have duplicates from imperfect data entry or joins.

45

4 Metric Selection for String Matching

As outlined above these tasks usually require the choice of a similarity measure.
Figure 4.1 illustrates how different similarity measures yield different distributions of
similarity values on the same data set. Choosing a decision threshold is very hard and
not intuitive, because usually one does not have such supervised data available. The
matches and non-matches usually cannot be perfectly separated by any threshold (unlike
TagLink in Figure 4.1) because the distributions usually overlap. So, the threshold
arbitrates a trade-off between the two types of error (see Section 2.3.3).

Figure 4.1: Similarity values and F1-optimal thresholds in data set ucdFolks (Sec-
tion 4.3.1) for MongeElkan edit distance similarity and the TagLink metric; blue
squares represent non-matching pairs, red diamonds matching pairs with respect to
the ground-truth

In this chapter, we present an approach for solving both problems—choosing a
similarity measure and threshold—at the same time with minimal overhead for the user.
The only required knowledge is the domain knowledge about the data. We build an
Active Learning loop that iteratively queries the user for a label match/non-match of
sample pairs of strings until a stopping criterion holds. We show that this approach
is capable of arriving at solutions close to the optimum with very little user input by
applying the approach to a diverse set of 17 string matching/deduplication datasets.

4.1.1 Active Learning

Active Learning is a form of semi-supervised learning. In this paradigm, a function on a
domain is supposed to be approximated, but (initially) there is no data for the desired
values of the function. Active Learning algorithms have the option to request the value
of an instance in the domain under the target function from a so-called oracle. Apart
from the objective to approximate the target function as accurately as possible (with

46

4.1 Background

respect to some quality metric), Active Learning tries to minimize the number of these
queries to the oracle.
Which instances are available for querying is one important aspect along which

to classify Active Learning strategies. In pool-based Active Learning, the algorithm
can always access the same pool of instances. In stream-based Active Learning, where
unlabelled instances are observed in a stream, the algorithm can at each iteration decide
whether or not to query the current instance. An early variant allows query synthesis
where instances are not sampled from real instances but instead synthesized.

The query strategies that govern how to pick the next instance or instances given the
already labelled data are broadly organized under the following overlapping categories.
Uncertainty sampling relies on a notion of uncertainty associated with each prediction
made by the current model. The idea is that it is not worthwhile to query those
instances for which the prediction under the model is highly certain assuming that the
intermediate model already has some predictive power. Instead, one should query the
label of instance with high uncertainty which is thereby removed locally.

The query by committee strategy works in scenarios where an ensemble (or committee)
of models is maintained. At each step, a level of disagreement is derived from the
predictions of each model in the committee for any input instance so that one can
choose the instance for which the committee disagrees the most. The oracle then reveals
which prediction is accurate for that instance and settles the disagreement. The models
can then be updated accordingly. Query by disagreement is a specific variant of query
by committee that assumes that the data can be perfectly reflected by a model in the
solution space.

Finally, there are strategies that estimate the concrete impact of any possible query,
taking into account all different outcomes. These are able to maximize the expected
model change or minimize the expected output error or variance (for specific mod-
els, under certain conditions). The best primers for Active Learning are provided by
Settles [Set12] and Munro [Mun21]. A study [PSPdC19] evaluates 15 Active Learning
algorithms organized in 7 query strategies for 5 learning algorithms on 75 data sets
and comes to the conclusion that Uncertainty Sampling and a strategy called Expected
Error Reduction can generally be recommended.

There is a connection between Active Learning and the sampling applied in supervised
Metric Learning which we describe in Section 2.3.1. And there is even a direct Active
Learning formulation of linear transformation distance learning (generalizedMahalanobis
distance) called Bayesian active distance metric learning (BADML, [YJS07]).

47

4 Metric Selection for String Matching

4.2 Approach

The goal of our approach is to pick the best similarity measure and threshold for
matching similar strings in our data in terms of F1-score (see Section 2.3.3). For our
purpose, the similarity measures are a fixed set of black box functions of signature
Σ∗×Σ∗ → R for some finite alphabet Σ. On an abstract level, the idea of our approach
is to combine all available similarity measures in a committee. Each one is associated
with a threshold that empirically works best on the labelled data seen so far. Their
predictions are then evaluated and aggregated to determine the string pair where
these predictions are the most uncertain (query by committee). This string pair is
then labelled by the oracle (the user) as match or non-match. According to this new
information, some of the thresholds have to be updated. This also updates the whole
committee and the notion of uncertainty for all remaining unlabelled instances. In each
such round, a stopping criterion is evaluated and the loop is broken once it holds. The
classifier (similarity measure and threshold) that works best on the labelled data is the
output of the whole process. Figure 4.2 gives a schematic overview.

oracle

calculate
uncertainties

adj. threshholds tm,i

stopping
criterionranking

criterion

most uncertain
pair qm

initial
t0,i

(qm, l(qm))

updated state
and metrics

go on

stop

output
best
hm,i

Figure 4.2: The process of Active String Matching

In the following we detail each aspect of this process concretely. We will use the
terms and symbols listed in Table 4.1. The pool of all string pair instances is denoted
by Q. The number m represents the number of iterations that are done which also
counts the number of labelled instances. The string pair queried for labelling in iteration
i will be denoted by qi ∈ Q and the total set of queried string pairs q1, . . . , qm in
the first m rounds is denoted by Qm. The function l gives us the ground-truth label
l(qi) ∈ {0, 1} provided by the oracle for string pair qi. Here, 1 (positive) represents a
matching string pair, while 0 (negative) represents a non-matching pair. For each set of
string pair instances T and a function p predicting their labels, we denote with F1(T, p)
the F1-score of the predictions of p with respect to the ground-truth.

48

4.2 Approach

Symbol Definition
m ∈ N iteration number
Q set of string pairs
Qm = {q1, .., qm} set of m queried string pairs
l(q1) . . . , l(qm) labels provided by the user
F1(T, p) F1-score a predictor p and ground-truth of a set T ⊆ Q
S = {s1, . . . , sn} set of n similarity measures
tm,i ∈ R threshold assigned to si in iteration m
pm,i predictor using si and threshold tm,i (in iteration m)
p∗m best predictor found in iteration m

Table 4.1: Important symbols for defining our Active Learning approach

4.2.1 Updating of thresholds

Next, we define how we update the thresholds associated with a similarity measure
in a given round. Table 4.2 summarizes the symbols and terms used. We denote with
tm,i the threshold associated with similarity measure si. This tuple defines a prediction
function (or predictor) on the set of string pairs:

pm,i(q) =

1 if si(q) ≥ tm,i
0 otherwise.

(4.1)

The function pm,i predicts a match, when the similarity value for the string pair
exceeds (or equals) the threshold. In each iteration, the threshold is chosen to maximize
the observed F1 score. Figure 4.3 illustrates this in a concrete example. Each of the
intervals between two adjacent string pairs and the two intervals before and after all
pairs yields the same empirical F1 score for every threshold in that interval. First, the
interval with the maximal F1 value is chosen from the (at most) m+ 1 intervals. This
procedure is called the straight-forward empirical method in [AvH01]. It is possible that
the maximum is reached in two intervals (see Figure 4.4 for an example). In that case,

q

match

q

non-match

0.625

q4

0.667

q2

0.714

q8

0.769

q3

0.667

q9

0.727

q1

Fpred(11, i) = 0.8

q6

0.667

q7

0.75

q5

0.571

q10

0.333

q11

0.0

Figure 4.3: Determining of threshold tm,i based on maximizing the F1 score w.r.t.
all revealed labels. Similarity values are increasing from left to right (not shown).
Matches are represented by red diamonds and blue squares indicate non-matches.
Unlabelled string pairs are not shown for clarity.

49

4 Metric Selection for String Matching

Symbol Definition
Fpred(m, i) := F1{Qm, pm,i} empirical F1; the F1 score for hm,i w.r.t.

observed labels only
C1, . . . , Ck ⊆ S k clusters of similarity measures
pm,i : Q→ {0, 1} prediction function of si with tm,i
p
Cj
m : Q→ [0, 1] (intermediate) prediction function associated to

cluster Cj
pm : Q→ [0, 1] aggregated prediction function
wm,i, w

Cj
m weights used in the aggregation

ptarget
m := 1− rm target prediction value

Table 4.2: Symbols used for the query strategy

0.571

q5

0.667

q4

0.4

q3

0.5

q1

0.667

q2

0.0

Figure 4.4: Maximum F1-score values for a measure si may be achieved by multiple
candidate thresholds

we simply pick the rightmost (containing the highest threshold) interval. That way,
we favour precision over recall if F1 is identical. In our experiments, we did not found
much difference when comparing this solution to others. The threshold tm,i is finally
defined as the arithmetic middle of the borders of the chosen interval.
Once the Active Learning loop terminates, si and tm,i with the maximal empirical

F1 score are the final output. However, this maximum might be not uniquely defined.
This is especially true in early rounds when not many different F1 score values are
possible at all. Figure 4.5 shows an example with queries arranged by their similarity
values. In this situation, we pick the similarity measure si with the least unlabelled
pairs in the threshold interval around tm,i (in the example, there is only one such pair
visible, for clarity). The intuition is that this threshold is more certain since there are
less unlabelled instances around it. By p∗m we then denote this currently best predictor.
Figure 4.8 shows the range of true F1 scores of the several prediction functions pm,i
that yield the same maximal empirical F1 score in an example experiment. The solid
line corresponds to the prediction function p∗m picked by the heuristic.

4.2.2 Aggregated prediction function

Now we explain the specifics of how the committee is constituted and how the notion
of its uncertainty is defined. All similarity measures used are treated as black boxes

50

4.2 Approach

q

match

q

non-match

q

unknown

s1 =JaroWinkler q2 q4q6q1q5 q3

Fpred(5, 1) = 0.75

s2 =Levenstein q2 q4q6 q1q5 q3
Fpred(5, 2) = 0.86

s3 =MongeElkan q2 q4q6 q1q5 q3
Fpred(5, 3) = 0.86

q1=(”John Calvin Coolidge, Jr.”, ”Calvin Coolidge” q4=(”Andrew Johnson”, ”Andrew Jackson”)
q2=(”John Adams, Jr.”, ”Andrew Johnson”) q5=(”George Herbert Walker Bush”, ”George H. W. Bush”)
q3=(”George Walker Bush”, ”George W. Bush”) q6=(”William McKinley, Jr.”, ”William Henry Harrison”))

Figure 4.5: A possible state during learning. Red diamonds indicate matches, blue
squares indicate non-matches and the circle indicates a pair with unknown label.
The highlighted areas (on the right) indicate that the respective prediction function
predicts matches, the white area (on the left) non-matches. All labelled string pairs
ordered by their similarity value.

and our approach does not rely on understanding how they work. Instead, we just use
the observed behaviour. In reality, some similarity measures may coincide with their
predictions on specific data, or even in general (given their default parameters).

Clustering of similarity measures

When aggregating the predictions to a committee, we do not want to give redundant
similarity measures implicitly more weight than others just because they offer essentially
duplicate views on the data. That is why the first step in the aggregation is clustering
of similarity measures by their predictions. We represent each similarity measure by
the vector of its similarity values on the current data. Then, we compare similarity
measures by the Pearson correlation coefficient of their respective vectors. This similarity
measure for similarity measures makes sense since Pearson correlation is invariant under
affine linear transformation (with positive determinant) in both arguments. And such a
transformation (a combination of scaling by a positive real factor and adding a constant)
yields an equivalent classifier (i.e., similarity measure and threshold). If applied to the
similarity values and the threshold, the resulting classifier will make the same predictions
as the original classifier. We compute the correlations of similarity values with respect
to the filtered data set that is rid of the more trivial non-matches (see Section 2.3.1
about Indexing). The correlation on this part of the data is more informative because
it does not have a long tail of trivial non-matches with low similarity values.
This results in a symmetric matrix of correlation values between pairs of similarity

measures which implies a weighted undirected graph. In this graph, nodes correspond to
similarity measures and the weights on the edges are the correlation coefficient between
the vectors of similarity values. We then take this graph of similarity measures and

51

4 Metric Selection for String Matching

pm,1 pm,2 pm,3pm,4 pm,5 pm,6pm,7pm,8

C1 C2 C3

pm
pC1
m

pC2
m

pC3
m

Figure 4.6: Structure of the aggregated prediction function pm

apply a graph clustering algorithm [Noa09] that maximizes the so-called modularity of
a graph clustering. We used the software Linloglayout1. Note that this can be computed
on unlabelled data and is independent of any thresholds. It is therefore computed just
once before the Active Learning loop and is fixed. In our experiments with 24 similarity
measures, this procedure resulted in 2− 5 clusters of size 1− 12 depending on the data.

Aggregating

Now we use the prediction functions pm,i and aggregate their predictions using the
clustering of the underlying similarity measures. Figure 4.6 gives an overview of the two
step process. First, we combine the prediction functions pm,i according to the cluster
membership of si to intermediate prediction functions pC . We weight each function pm,i
by its empirical F1 score wm,i = Fpred(m, i), assuming that functions that are better
able to reflect the revealed labels will be better at predicting the unrevealed labels:

pCm(q) :=

∑
si∈C

wm,i

−1

·

∑
si∈C

pm,i(q) · wm,i

 (4.2)

Then we combine the prediction functions of the clusters to an overall prediction
function pm:

pm(q) :=

 k∑
j=1

w
Cj
m

−1

·

 k∑
j=1

p
Cj
m (q) · wCj

m

 , (4.3)

where wCj
m = 1

|C|
∑
si∈C

Fpred(m, i). These weights wCj
m make sure that the more promising

clusters contribute more to the prediction. Finally, the expression in equation 4.3 can
be simplified to:

pm(q) =

 k∑
j=1

∑
si∈Cj

1
|Cj |

wm,i

−1

·
(

n∑
i=1

pm,i(q) · wm,i

)
(4.4)

1https://code.google.com/archive/p/linloglayout/

52

4.2 Approach

This aggregated prediction function pm (with the threshold ptarget
m) is used to find

the most uncertain string pair, that hence would serve best to tell the more adequate
similarity measures from the rest. As such, it aggregates over all similarity measures,
including the poorly suited ones. For this reason, pm performs worse with respect to
the ground-truth than p∗m, which is the output of our Active Learning loop. Since p∗m
comes from a singular similarity function, it is also more efficiently evaluated and more
readily interpreted than pm.

4.2.3 Query strategy

In this section, we explain the query strategy used to pick the next string pair to be
labelled by the oracle. Our query strategy can be described as an instance of uncertainty
sampling, but also as query by committee (in terms of the categories presented in
Section 4.1.1). Each similarity measure gets a threshold that optimally reflects the
revealed labels. Then, all associated prediction functions are aggregated to an overall
prediction function. Weighting accounts for redundancy among similarity measures and
favours the predictions of functions that reflect the seen data better. This committee
might completely agree on the label of certain yet unlabelled string pairs. There is no
point in querying these, since they very likely actually have the predicted label. To
aim for the opposite of these instances with high prediction certainty, we formalize our
notion of uncertainty based on the prediction function of the committee.
The most certain outcomes are associated with the predictions pm(q) = 1.0 and

pm(q) = 0.0. The most uncertain is the outcome of string pairs q with predictions
pm(q) = 0.5. Whatever the real label turns out to be in such a case, it is certain that
many prediction functions pm,i will be wrong because of the way we defined the function
pm. As a consequence, many thresholds tm,i will have to be updated to reflect this
new information (tm 6= tm+1,i)2. The first idea is therefore to find a string pair q that
minimizes the expression |0.5− pm(q)|.

Cold start problem

This strategy works fine in later iterations, but initially some of its assumptions just
do not hold yet. One of these assumptions is that the committee already is quite
good at predicting. In the very beginning, when the thresholds are not based on much
information, this is not very likely. This problem of bootstrapping informative data

2Note that according to our rules, a threshold tm,i might have to be updated, even if the associated
prediction function was correctly predicting pm,i(qm+1) = l(qm+1), simply because qm+1 happens
to shrink the interval tm,i is in.

53

4 Metric Selection for String Matching

from imperfect intermediate classifiers to create better classifiers is a common problem
in Active Learning and known under the name cold start problem [AP11].

Secondary query ranking At the very beginning, not all parameters described in
our query strategy are even well-defined under the initial conditions. First of all, the
thresholds tm,i do not have any value in the first round m = 1, because they are always
set to separate the seen data, which is simply not available at first. Consequently,
also the weights wCj

m cannot be defined initially as they can be in later iterations. We
therefore set wCj

m = 1.0 while the empirical F1 score is undefined. That is the case as
long as there is no positive, that is, matching label among the revealed labels, because
precision is undefined. Even if set to zero, no F1 score can be defined, because also no
recall can be achieved.

To define the prediction functions, we also require thresholds for all similarity measures.
The initial thresholds t0,i can actually be set arbitrarily, because of the following
observation. When aggregating the prediction functions defined by these thresholds,
initially all weights wCj

m are identical. This remains true as long as the first queries have
the same label, so at least for one more iteration. Then there is also a limited number
of ways string pairs can be distinguished by their overall prediction under pm. Then
minimizing the distance to the target prediction is in general not uniquely defined.
In a situation like this, it is advisable to apply a secondary ranking to the string

pairs, to make sure that an informed choice is still made. We first determine the rank
of each string pair with respect to the similarity value under a given similarity function.
So each string pair is associated to a vector of n ranks, for the n similarity functions.
We then calculate the variance of these numbers and pick the string pair with highest
variance. The idea is that if all similarity functions agree to rank a string pair relatively
consistently (no matter how high), it will not yield much information to reveal its label.

Regulating target uncertainty Even after the initial cold start, the prediction
functions might not be very well tuned. In particular, there might be an overall bias
of the individual prediction functions towards making more false positives or more
false negatives. As a consequence, what the committee predicts as close to 0.5 might
be a match (or non-match) more often than not. So these instances just contain less
information because of this bias. In fact, in this situation, a lower value than 0.5 would
give us more uncertain string pairs. Therefore, we build a self-correcting mechanism
into our query strategy. We track how often we reveal a match label (value 1) and how
often a non-match label (value 0) as a measure of the current bias. Instead of aiming

54

4.2 Approach

for prediction 0.5, we will aim for a target prediction ptarget
m , which is the complement

to the ratio of matches relative to all queries:

ptarget
m := 1− rm = 1

m− 1

m−1∑
n=1

1− l(qn)

If, for example, there is a bias of predicting matches (i.e., making more false positives),
the revealed labels will more likely be non-matches. Consequently, ptarget

m will be higher
than 0.5. This new aim will it make more likely to reveal a matching string pair in the
next round. In this way, the query strategy self-regulates to account for any bias.
Adjusting this target ratio makes sure that revealed labels have a high chance of

being relatively balanced. We see this empirically in Section 4.3. A desirable side-effect
is that this increases the possibility for the similarity measures to be told apart by
their empirical F1 scores. When one reveals k match labels and n− k non-match labels,
there are

(n
k

)
= n!

k!(n−k)! many distinct ways of ordering the string pairs (modulo equal
labels). And for measuring the maximum empirical F1 score, the ordering of the labels
(not the string pairs) is all that matters. This number is maximized by k = dn/2e and
k = bn/2c3.

4.2.4 Stopping criterion

Active Learning is an iterative process and its strength lies in choosing highly informative
instances for labelling which constitute a fraction of the total data set. In contrast to
fully supervised approaches which rely on a big dataset that has already been labelled,
Active Learning can make quick gains and approximate a good solution. In this sense,
Active Learning is an instance of multiobjective optimization. One objective is to
approximate the ground truth while a competing objective is to minimize the labelling
effort incurred in doing so.
Defining a stopping criterion is a systematic way of striking this balance. It is not

advisable to stop too early when the biggest gains are made. However, one should
also not continue to query once the returns start to diminish. We noticed that the
progress on different data sets was made at different speeds. As such, it did not make
sense to simply stop after a fixed number of queries. Instead, we measured the total
number of changes that were done to the thresholds during the learning loop. This was
a reasonable proxy for the real progress in terms of prediction quality.

3By using Sterling’s formula to bound n! and n
2 ! (from below or above, accordingly), one finds the

asymptotic behaviour
(

n
n/2

)
∈ Θ

(
2n
√

n

)
.

55

4 Metric Selection for String Matching

Formally, we measured this quantity, where δ is the Kronecker-delta indicating equality
of its arguments:

TCm :=
n∑
i=1

m−1∑
j=0

1− δ(tj,i, tj+1,i),

Our stopping criterion then simply holds once this measure exceeds a given threshold.
The problem remains how this threshold is to be set. But since the progress relative
to this metric is more uniform, one can choose the threshold based on the observed
performance on some known problem instances and expect a similar relative performance
on novel problems.

4.3 Evaluation

We evaluate our Active Learning approach to String Matching on a wide range of data
sets. We study the trade-off between labelling effort and quality and show a stopping
criterion that can help strike the trade-off.

4.3.1 Experimental setup

Data sets

All external data sets were used in the evaluation [CRF03] for the SecondString string
similarity toolkit [CRFR03]. Therefore, we use the same names for these datasets. Most
of these external data sets go back to the evaluation [Coh00] of the WHIRL DBS.
Original data can be found with the WHIRL website4, while the final data used in
SecondString can be found in its GitHub repository5. Unfortunately, the documentation
of the datasets is very weak and contradictory at times.

A total of 8 external data sets that we used were created for [Coh00]: bird1, bird2,
bird3, bird4, game, park, business and animal. Three of the bird datasets (bird1,
bird3 and bird4) and the park dataset were created via so-called hotlists on the
web (on governmental, educational and research websites). That means that manually
curated lists that hyperlink to web pages corresponding to individual entities (bird
names and names of US National parks, respectively). The name of the hyperlink and a
fixed field in the target web page can thereby reliably match two variants of identifiers.
Similarly, business was created by identifying company names by their common web

4https://www.cs.purdue.edu/commugrate/data/whirl/match/
5https://github.com/TeamCohen/secondstring/tree/master/data

56

https://www.cs.purdue.edu/commugrate/data/whirl/match/
https://github.com/TeamCohen/secondstring/tree/master/data

4.3 Evaluation

Dataset name src 1 src 2 Original Reduced
pairs match pairs match m / p

string matching problems
bird3 23 15 345 15 25 14 56.00%
USPresidents+ 43 43 1,849 43 173 43 24.86%
DBconferences+ 54 54 2,963 54 2441 54 2.21%
bird1 317 20 6,340 19 672 19 2.83%
faoMembers+ 194 194 37,636 194 2,633 192 7.29%
bird2* 914 68 62,152 64 4,089 64 1.57%
game 798 105 83,790 41 4,276 41 0.96%
bird4 564 155 87,420 155 11,297 155 1.37%
park 393 258 101,394 252 6,767 250 3.69%
census 449 392 176,008 329 18,438 326 1.77%
fodorZagrat 532 331 176,092 114 73,657 112 0.15%
nobelLaureates+ 839 839 703,921 839 27,011 831 3.08%
business* 1,162 962 1,117,844 310 502,316 309 0.06%
animal* 4,719 817 3,855,423 178 93,661 175 0.19%

string deduplication problems (single source)
UVA 116 6,670 280 2,932 272 9.28%
coraATDV 956 456,490 7,766 453,987 7,766 1.71%

Table 4.3: Data sets (ordered by number of pairs) for string matching (upper part) and
deduplication problems (lower part). Column “Reduced” shows effects of the indexing
step. Asterisks * indicate that ground-truth has been corrected; italic number of
matches means false negatives due to indexing. Plus signs + indicate newly introduced
data sets.

page URL. These were taken from lists provided by an electronics hardware supplier
(Iontech) and a commercial information broker (Hoover). After applying the joint key,
10-15% false negatives had to be corrected. The matching in animal was created by
matching the corresponding scientific name of the entities. Here, it was only required
that one of the two is a substring of the other. Finally, bird2 and games (educational
computer games) were matched manually. On inspection of the data we found and
corrected errors in the matching in three data sets (business, animal, and bird2).
The census dataset was also introduced in [CRF03] and is attributed in the docu-

mentation to William Winkler of the US Census Bureau. Rather than real data, it is
reportedly synthetic data. It contains realistic variations like misspellings but it is not
specified how this data was generated. Web research and email exchanges with former
collaborators of William Winkler could not fully elucidate the genesis of the data.
The remaining external data sets originate in other work. The restaurant dataset

goes back to [TKM01]. It uses data from an online catalogue of restaurants (Zagat) and

57

4 Metric Selection for String Matching

the Department of Health6. Records were matched by their common telephone number
followed by a manual revision and concatenation of their four fields into one string
(name, address, phone number and restaurant/food style). The coraATDV data set
was introduced in [MNU00]. It consists of (duplicate) citations of papers belonging to a
fixed set of three specific authors. Four values of these records (author, title, date, and
venue) were concatenated into single strings that were finally truncated at the length
of 60 characters. The data originated from the Cora website7 that provided a search
interface to over 50,000 computer science research papers.

In [CRF03], both ucdFolks (personal names of staff at UC Dublin) andUVA (names
of institutions near University of Virginia) are attributed to [ME96]. However, [ME96]
only deals with names of academic apartments at the University of California, San
Diego, and Stanford University. The SecondString documentation8 goes on to claim
that Nicholas Kushmerick is the “source” of these data sets while continuing to claim
that Monge (co-author of [ME96]) is the “original source”9. We could not verify this
claim [EM20]. In the case of ucdFolks, it makes sense that Nicholas Kushmerick would
be among the authors because his dissertation was on generating what today would be
called web scrapers [Kus97]. He had used a similar dataset (names of faculty members
of 30 computer science departments) in [FK00] and he was working at the University
College Dublin at the time. However, we could find no definite proof for his authorship
of ucdFolks outside of the (unreliable) SecondString documentation and his email
address at the University College Dublin is no longer active. The dataset UVA is
attributed by SecondString in the same way to Kushmerick (“source”) and Monge
(“original source”) but we could not find any further evidence for that. A parsimonious
explanation for this attribution could even be a copy-and-paste error (because of the
exact same wording).

In addition to the data sets available in the SecondString repository, we created four
new data sets. For some, we used the above described “hotlist” approach. For USpres-
idents (names of US presidents), this was done using Wikidata10, for faoMembers
(country names) the website of the Food and Agriculture Organization (FAO)11 and for
nobel (names of Nobel laureates) we used Wikipedia12. The dataset DBconferences

6The SecondString documentation claimed it was data from Zagat and another online restaurant
platform (Fodor’s).

7http://www.cora.whizbang.com, now defunct
8https://github.com/TeamCohen/secondstring/blob/master/data/README.txt
9literally: “original source: Alvaro Monge, I think.”

10https://www.wikidata.org/
11http://www.fao.org/
12https://www.wikipedia.org/

58

http://www.cora.whizbang.com
https://github.com/TeamCohen/secondstring/blob/master/data/README.txt
https://www.wikidata.org/
http://www.fao.org/
https://www.wikipedia.org/

4.3 Evaluation

was created by matching entries of database conference names in WikiCFP 13 with
the CORE Conference Ranking14 by their abbreviations followed by a manual revision.
These new data sets as well as the three corrected data sets from SecondString are
available online15.
To counteract the high skew in the label distribution we employ blocking (see

Section 2.3.1). We use n-gram blocking as implemented in [CRFR03] with n = 4.
Note that in principle, the concerns about cluster-aware data splitting apply (see
Section 5.3.2). But only two of our String Matching data sets actually correspond to
deduplication problems, and because of the incremental sampling by Active Learning,
the amount of seen data is tiny compared to the unseen data.

Similarity measures We used the following 24 string similarity measures imple-
mented in SecondString [CRFR03] organized by psychological similarity model (see
Sections 2.1, 2.2.1). We use the names used in the source code for easier reference.

Spatial model The first set of similarity measures from the spatial model family
are based on cosine similarity of TF-IDF vectors. In addition to the standard version
TFIDF, there are variations that take into account variations of tokens (SoftTFIDF,
SourcedTFIDF, SourcedSoftTFIDF) when constructing the document vectors.
And finally some concrete derivations of SoftTFIDF named after their employed sec-
ondary similarity measure: JaroTFIDF, JaroWinklerTFIDF and MongeElkanT-
FIDF. One other metric we use is called Mixture in SecondString. It considers each
tokenized string as sample from an unknown distribution of tokens. These distributions
are then compared by Jensen-Shannon distance which is based on the Kullback-Leibler
divergence. The distributions are estimated using maximum likelihood estimation.

Contrast model The only similarity measure from SecondString we used that falls
into the contrast model category, is measuring the Jaccard overlap of tokens.

Structural Alignment The Level2 algorithm introduced by Monge and Elkan
[ME95] and coined by Cohen et al. [CRF03] falls into the category of structural
alignment, because it matches (unidirectionally) the tokens in one string with the
tokens in the other. We use Level2Levenstein, Level2Jaro, Level2JaroWinkler
and Level2MongeElkan which are named after their secondary similarity measure.
13http://www.wikicfp.com/cfp/
14http://www.core.edu.au/conference-portal
15https://pvs.ifi.uni-heidelberg.de/team/lb/

59

http://www.wikicfp.com/cfp/
http://www.core.edu.au/conference-portal
https://pvs.ifi.uni-heidelberg.de/team/lb/

4 Metric Selection for String Matching

Here, ‘MongeElkan’ refers to the SmithWaterman edit distance with Monge-Elkan
weights (see next paragraph). We also use the TagLink metric which finds a maximal
matching with respect to an internal similarity measure without favouring any of the
two input strings.

Transformation model In this category, we include several edit distances. There
are Levenstein, and an adaption that normalizes the Levenstein score by the maximal
length of both inputs, called ScaledLevenstein. Further, we include the two distances
originating from the biology domain, NeedlemanWunsch and SmithWaterman,
as well as an approximation to NeedlemanWunsch (ApproxNeedlemanWunsch).
Further, we include the MongeElkan edit distance, which is a variant of Smith-
Waterman with adjusted weights and equivalence classes of similar characters, and
finally, a variant without the character classes (AffineGap).

Hybrid model The Jaro metric developed at the US census bureau and its Winkler
modification (JaroWinkler) combine both ideas of overlap as well as edit distances.
And the AveragedStringDistanceLearner averages the result of a set of secondary
similarity measures (by default, these are JaroWinkler, ScaledLevenstein, Jaccard,
TFIDF and JaroWinklerTFIDF).

Some similarity measures actually coincide (given their default parameter settings),
others strongly correlate or coincide on certain data sets. Our approach is designed to
be robust to these phenomena, given that many users may not have the resources to
understand all algorithms in detail, before proceeding.

4.3.2 Quality metric

In our approach we built in the target quality metric F1. However, nothing in our
approach relies on this exact choice. Any other metric that accounts for both false
positives and false negatives can in principle be employed to ranking the similarity
measures like Accuracy, MCC, AUROC, AUPR or AUPRG (see Section 2.3.3). To
turn the similarity measures into prediction functions, one needs a decision threshold.
And these metrics are all defined without a threshold (except Accuracy). So one would
have to pick a different metric or a completely different approach to define the best
thresholds, to define the (aggregate) prediction functions, which in turn is needed to
define uncertainty.

Note that we report the F-score after matching according to the final chosen similarity
measure and decision threshold. This can likely be improved for matching problems

60

4.3 Evaluation

by further considering the whole of the matching problem as a weighted bipartite
assignment problem (with respect to similarity weights). This includes the logical
constraint that each record in both data sets can be matched with at most one other
record as done in [Tej02]. This logic likely excludes some matches in favor of safer
matches and can be expected to improve the precision without harming the recall (see
also Section 2.3.1). Instead, we decide locally on an absolute threshold for the evaluation
that may induce contradictions globally16.
We have already defined the empirical F1 score Fpred(m, i) (see Table 4.2) that we

used to define the weights of the aggregation and the ranking of the prediction functions.
When we measure the F1 with respect to the whole ground-truth, we define the true F1

of the best prediction function in iteration round m as follows:

Ftrue(m) = F1(Q, p∗m).

This is an estimation of the general quality on the whole data. We also define a
ceiling for what we can possibly achieve with this approach, given the solution space.
So we define:

Fmax = max
p∈P

F1(Q, p),

where P is the set of all possible prediction functions resulting from any of the
similarity measures S with any decision threshold in R.

4.3.3 Labelling effort vs quality

The central idea of the Active Learning paradigm is to make fast progress in learning.
So the most important aspect of our evaluation is how labelling translates into progress
in terms of classification quality. It is intractable to show and discuss the true F1 score
for all experiments and iterations and derive conclusions from that. Instead, we use
the stopping criterion introduced in Section 4.2.4 as a way to measure progress. It was
conceived so as to make the progress on different datasets more comparable than is
possible with raw iteration count.
In Table 4.4 we show the results for two different values for TCm (total number of

threshold changes). The lower decision threshold of TCm ≥ 75 means that each of
the 24 similarity measures in S have had their threshold changed just over 3 times on
average. It is trading some of the achievable quality off for a lower iteration count. So

16‘Unconstrained ManyMany’ in terms of [GRC11]

61

4 Metric Selection for String Matching

for roughly 7 on average, one achieves roughly 92% of the achievable F1 on average.
A higher quality solution is reached at TCm ≥ 75 with a bit more than double the
effort (∅15 labels) one achieves 97% of the maximal quality. Both seem like acceptable
amounts of human effort given that only domain knowledge of the data is required.
Note that the labelling effort is likely over-estimated. Leveraging logic inference

(Section 2.3.1), one can increase the amount of negative labels that can be deducted
from the feedback from the oracle without increasing the labelling effort. This is done
in [Tej02, CVW15]. In [XAF13], it is similarly employed for deduplication. Although
the inference there is less productive than in a matching problem which is much more
constrained. It would be a promising extension of our approach to make use of this
information. This would likely introduce a systematic bias towards discovering negative
labels and the self-regulating feature of our query strategy would likely favor more
obvious positive samples.

62

4.3
Evaluation

stop at TCm ≥ 75 stop at TCm ≥ 130

Data set Fmax final m s∗ t∗m Ftrue
Ftrue
Fmax

final m s∗ t∗m Ftrue
Ftrue
Fmax

bird3 1.000 5 L2_JW 0.923 1.000 100.00% 15 TL 0.598 1.000 100.00%
USPresidents 0.953 6 ST 0.403 0.925 96.98% 14 TL 0.778 0.943 98.85%
ucdFolks 1.000 5 ASD 0.342 0.917 91.67% 12 TL 0.643 0.989 98.90%
DBconferences 0.874 8 ME 0.779 0.851 97.45% 14 ME 0.840 0.845 96.75%
bird1 0.947 7 TFIDF 0.513 0.947 100.00% 16 TL 0.766 0.944 99.69%
faoMembers 0.961 9 L2_L -0.300 0.958 99.70% 21 L2_ME 0.949 0.897 93.37%
bird2 0.944 7 JWT 0.982 0.918 97.25% 12 JC 0.633 0.929 98.42%
game 0.846 10 L2_JO 0.886 0.805 95.16% 20 L2_JO 0.927 0.827 97.70%
bird4 0.980 6 TL 0.615 0.951 96.96% 12 L2_JW 0.900 0.955 97.45%
park 0.970 7 SL 0.675 0.913 94.08% 15 ST 0.571 0.921 94.94%
census 0.899 6 A 0.609 0.665 73.94% 12 TL 0.816 0.817 90.80%
fodorZagrat 0.978 8 TL 0.751 0.959 98.09% 17 JWT 0.644 0.968 99.05%
nobelLaur. 0.989 7 JWT 0.399 0.790 79.93% 15 ST 0.443 0.882 89.21%
business 0.971 8 ASD 0.685 0.960 98.93% 16 ASD 0.663 0.964 99.30%
animal 0.926 8 M 0.495 0.891 96.24% 18 M 0.444 0.893 96.43%
UVA 0.907 7 JO 0.858 0.633 69.72% 13 TL 0.721 0.899 99.04%
coraATDV 0.800 6 ME 0.551 0.648 81.07% 15 L2_L -0.675 0.736 92.07%
average 7.06 92.19% 15.12 96.59%
median 7.00 96.96% 15.00 97.70%
std. dev. 1.30 9.39% 2.63 3.24%

Table 4.4: Results after stopping learning at TCm ≥ 75 and at TCm ≥ 130. Final m is the number of iterations, s∗ is the
best final similarity measure, and t∗m the corresponding final threshold. Ftrue/Fmax gives the ratio of solution quality (i.e.,
Ftrue) to maximum achievable quality (Fmax). Similarity measures: L2_*=Level2*, JW=JaroWinkler, ST=SourcedTFIDF,
ASD=AveragedStringDistanceLearner, ME=MongeElkan, L=Levenstein, JWT=JaroWinklerTFIDF, JO=Jaro, TL=TagLink,
SL=ScaledLevenstein, M=Mixture, JC=Jaccard. Note that thresholds may be negative.

63

4 Metric Selection for String Matching

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

F-
m

ea
su

re
,r

at
io

animal

Fmax
rm

Ftrue(m)

Figure 4.7: Convergence behavior in the active learning of animal. The x-axis
shows the iteration number m. The values of Fmax, rm, and F ∗

pred(m) are plotted on
the y-axis. Changes in F ∗

pred(m) result from adjusting thresholds and switching the
best ranked similarity metric (latter changes are indicated by vertical bars).

4.3.4 Experimental result discussion

In this section, we look at the experimental result of one exemplary data set, animal, to
discuss general observations. On this data set, we observe at first rapid, and then slower
improvement until we almost reach the maximal quality (see Figure 4.7). Of the 17 total
data sets, 10 yield qualitative similar behavior and another 5 show slower convergence
or slight instabilities. Two data sets (UVA, census) show stronger instabilities.

The vertical lines indicate iterations in which the highest ranking similarity measure
changes. Typically, this happens frequently in the first few iterations and then only
occasionally later.

In Figure 4.9 we can see that generally, empirical F1 scores Fpred(m, i) tend to decrease
over time for all similarity measures. In the end, the highest values are around 0.7
which is far less than the best true F1 score in that iteration which is above 0.9 (see
Figure 4.7). So, the empirical F1 score is not a direct approximation of the true score
but the ranking it implies finally yields one of the best solutions in the solution space.
The empirical scores are so low because the query strategy samples those string pairs

64

4.3 Evaluation

m string 1 string 2 ?
1 houndfish Woundfin 7

2 margate Margay 7

3 watercress darter Darter, watercress 3

4 Alabama red-bellied turtle Turtle, Alabama redbelly (=red-bellied) 3

5 Ash Meadows poolfish Dace, Ash Meadows speckled 7

6 Jaguar Jaguarundi 7

7 bonytail Chub, bonytail 3

8 Red-bellied turtle Turtle, Alabama redbelly (=red-bellied) 7

9 White-tailed deer Deer, Columbian white-tailed 3

10 Puaiohi Thrush, small Kauai (=puaiohi) 3

11 Hawaiian Duck Hawaiian vetch 7

12 Red Salamander Salamander, Red Hills 7

13 Red-bellied turtle Turtle, Plymouth redbelly (=red-bellied) 3

14 bluehead shiner Shiner, blue 7

15 blackside darter Dace, blackside 7

16 jaguar guapote Jaguar 7

17 Long-nosed leopard lizard Lizard, blunt-nosed leopard 7

18 Seaside Sparrow Sparrow, Cape Sable seaside 7

Table 4.5: Complete query history on dataset animal until TCm ≥ 130. The last
columns show the label: 3 denotes match and 7 non-match.

for which the committee is most uncertain. This means that these must be hard to
decide cases.

We can see the sequence of queries in this experiment in Table 4.5. In this example,
all pure edit distances (like Levenstein, MongeElkan) are soon ranked down because
they do not have any threshold that correctly separates the non-matches with low
distance (queries 1, 2, 6 and later 11) from the matches with relatively high distance
(queries 3, 4 and later 9). So the token-based approaches that can swap word order
with no or little cost will win. In comparison, on the data set DBconferences, the
edit distance MongeElkan was best at separating the revealed labels. Conference
titles usually do not reorder their tokens but only abbreviate or introduce optional
tokens, like ordinals (“17th”) or affiliations (“IEEE”) which MongeElkan with its gaps
is well-prepared to deal with.
Figure 4.8 gives us a slightly different view of the experiment on data set animal.

The shaded area shows the interval between the best and the worst true F1 score among
all prediction functions with the same maximal empirical F1 score. One graph shows
the total number of threshold changes TCm as a function of the iteration number m. It
is clear that many adjustments are done at the beginning. This later becomes less and

65

4 Metric Selection for String Matching

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

F-
m

ea
su

re
,r

at
io

th
re

sh
ol

d
ch

an
ge

s

animal

Fmax
TCm

Ftrue(m)

Figure 4.8: The x-axis shows the iteration number m. The left y-axis shows the
F1-scores, while the right y-axis reports the value of TCm. The line labelled with
Ftrue(m) shows the true F1-score of the best ranked predictor according to our ranking.
The highlighted interval indicates the minimal and maximal true F1-score among all
predictors with maximal empirical F1-scores.

less. Note that the slope of this curve varies for different data sets which turns out to
be a good proxy for measuring the speed of progress.

Figure 4.9 gives us an important view into the state of the Active Learning model; It
uses the ranking of the prediction functions by their empirical F1 score. This measure
generally decreases, in contrast to the true performance. The reason for this is that the
query strategy does not sample randomly which would result in a representative set of
string pairs. Instead, its objective is to find those string pairs where the committee is
the least certain about. That means that neither pairs that have high similarity values
for all similarity measures nor those with only low values will be picked. Those string
pairs can be taken for granted and whichever similarity measure is best able to separate
the difficult cases correctly will likely be best prepared to separate the whole data. That
is why, intuitively, F1 score on this small, difficult subset is a good proxy for ranking
the prediction functions truthfully.

66

4.3 Evaluation

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

F p
re

d(
m
,1
),
..
.F

pr
ed
(m

,2
4)

animal

Figure 4.9: The empirical F1-scores decrease with higher number of iterations.

4.3.5 Stopping criterion

In Figure 4.10 we can see how the quality of the current solution evolves over time.
Note that the quality is relative to the maximally achievable quality in the solution
space. In Figure 4.10a we see this value plotted as a function of iteration count directly,
aggregated over all experiments. We can see that the query strategy rapidly advances
the solution by picking informative string pairs for querying. Below, in Figure 4.10b, we
see the values binned after passing certain values for TCm. The same trend is observable
here. However, the first very high quality with low variance occurs around TCm = 75,
which corresponds to an average iteration count of m = 7 (Figure 4.4). A similar
performance for uniform m can only be achieved at m = 9. So the total number of
threshold changes gives us a better measure of progress in our experiments. And of
course, once the solutions stabilize, we would observe less and less threshold changes
while the iteration count linearly increases.

67

4 Metric Selection for String Matching

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

F t
ru

e/
F m

ax

m

relative performance vs m

(a) as a function of the iteration number m

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

F t
ru

e/
F m

ax

TCm

relative performance vs TCm

(b) as a function of the total number of threshold changes T Cm

Figure 4.10: Relat. performance of the best predictor aggregated over all data sets
68

4.4 Discussion

4.4 Discussion

In this chapter, we presented our approach to selecting an appropriate similarity metric
and decision threshold for a given string matching problem by requiring only very little
human input.
The key ingredient is the committee of basic prediction functions that leverage the

in-built mechanisms of the similarity measures to reflect diverse sets of variations in
string data. By clustering the similarity measures by their similarity on the unsupervised
data, we account for the redundancy in the hypotheses.
The cold start problem (see Section 4.2.3) is addressed by employing a secondary

ranking of pairs that allows picking informative samples before any labels have been
revealed. Also the self-regulating mechanism driven by the match ratio helps the model
to learn quickly. Measuring the total number of threshold changes offers less of a definite
stopping criterion but at the same time models the progress that has different speed on
different problems.

Our approach could most likely benefit from using logic inference (see Section 2.3.1).
It could provide extra information during the learning phase for both matching and
deduplication problems and likely would reduce the labelling effort noticeably. During
inference, constraint-based matching could be an alternative to the empirical threshold
on matching problems. It is plausible that the quality of matchings could benefit from
favouring safer matches in cases of logical collisions.

Further improvement is possible by widening the hypothesis space. Adaptive similarity
measures could mean that the optimal matching quality would be higher and possibly
introduce more variance in the committee. This could be achieved through either
parametrized similarity measures (like edit distances) or through more complex solution
spaces as in the Program Synthesis paradigm. Our own tentative experiments in this
direction (introducing transformations into similarity measure) were not successful. For
adaptable and learned similarity measures, refer to the related work in Section 3.1.

69

5 Metric Learning for Code Clone
Detection

We studied the problem of string matching in the previous chapter. Arguably any
kind of data that a computers processes can be turned into a string representation
(serialization). However, this is not always a natural representation as much of the
data’s structure might become implicit. For example, a (unlabeled, undirected) graph
can be represented by a binary matrix which can be serialized by printing each of its
rows in order. Comparing these strings directly as representations of the graphs is an
inadequate approach.
In the following we are going to study similarity of data of a complex type, namely

programming code. In terms of Metric Learning (see Section 2.3), we will study a
non-linear model trained with supervision. We employ the contrastive loss via a Siamese
Neural Network.
This chapter is based on a peer-reviewed publication [BA19].

5.1 Background

5.1.1 Code Clones

A Code Clone is a code fragment that is the result of copying and pasting an existing code
fragment possibly followed by modifications to fit its new context [RBS13]. Generally
this definition can be effectively extended to highly similar code fragments that are
similar by coincidence. It can happen that two developers write very similar code
fragements without copying from each other. This is unavoidable and more likely the
shorter the fragment and the looser the threshold for similarity. However, the copy-paste
pattern is of more practical relevance.

Using question-answer forums like StackOverflow is an important part of the present
day software developer’s work and there is evidence that code snippets posted on these
platforms are used in software projects directly, many including comments [YMSL17]. A
large scale study [LMM+17] has shown that duplication on the file level (on non-forked
projects) ranges from 94% (JavaScript) to 40% (Java). Only between a quarter and
a third of cases of duplication are properly attributed (when required by the license)
[BKD17, BD19]. There is also evidence that some code on forums like StackOverflow
itself originates from other software projects [RKP+19].

71

5 Metric Learning for Code Clone Detection

This illustrates the legal and ethical problems with Code Clones. In addition, there
are technical issues with cloning. In the context of a software project, code duplication
can increase maintenance cost and can lead to unexpected bugs due to inconsistent
changes [JDHW09]. Overall, the answers as to whether cloned code is harmful are mixed
(summarized in [RBS13]). So motivations to detect code clones include discovering
copyright violations and finding refactoring opportunities to make a code base more
maintainable. A comprehensive overview of the disadvantages and dangers around code
cloning and other applications for detection of code clones is given in [RC07].
Code clones are stratified into 4 types according to a hierarchy of variations they

exhibit [CFT93]. The details of their definition have slightly changed over time. A
comprehensive overview over Code Clone definitions and taxonomies in the literature is
given in [RC07]. An up-to-date typology [RBS13] (sometimes with Latin numbers) is
presented here:

Type 1 clones Pairs of code fragments that are identical or differ only in whitespace
or comments.

Type 2 clones Also changes in identifiers, literals, types and layout is permissible.

Type 3 clones The code fragments may also differ by added/missing statements (some-
times near-miss clones)

Type 4 clones Pairs of code fragments that are only semantically, but not syntactically
similar (sometimes semantic clones)

The last category of type 4 clones is made up of functionally (or behaviourally) equiv-
alent or similar code fragments, that is, only exhibiting the same or similar input/output
relations, without being syntactically similar. Since they cannot be the result of actual
cloning, ‘type 4 clones’ is a misnomer. A better name for these pairs of code fragments is
‘simion’ (proposed in [JDH10]) which stands for similar code fragments. This acronym
has been reinterpreted as similar input output functions in [MPS20].
It should be noted with regard to simions that, as an exact problem—equivalence

of programs—is undecidable1. However, Code Clone Detection never aspires to solve
this in its entirety. For one, it only deals with real world programs that are limited in
their size, scope and nature. For example, many non-sensical codes that have to be

1The Halting Problem [Tur37] can be Turing-reduced to this problem.

72

5.1 Background

considered in theory will never be implemented (on purpose)2. And even in this limited
domain, Code Clone Detection tools are very useful without perfect accuracy.

5.1.2 Code Clone Detection

Code Clone Detection (CCD) techniques are mainly categorized by the representation
of code they work with. In the following, we will give a short overview. Note that there
are of course also hybrid approaches that will not fit neatly in any of these categories. A
good survey over approaches in the following categories can be found in [SK16b]. Code
Clone Detection techniques are usually categorized as follows:

Text-based approaches like dude [WM05] or NICAD [RC08] do take code fragments
simply as strings of characters. They may use pretty-printing – a way of normalizing
the non-essential aspects like whitespace.

Token-based approaches use lexical analysis to tokenize code strings, to obtain a string
or bag of tokens as a representation. Baker introduced efficient identification of code
clones using suffix trees and implemented that in her tool Dup [Bak92]. Several
works picked up on this idea (CCFINDER [KKI02], iClone [GK09], SourcererCC
[SSS+16]). CP-miner [LLMZ06] is a tool that mines frequent token sequences and
SourcererCC [SSS+16] matches bags of tokens to detect clones in a scalable way.

Tree-based approaches will first parse the source code to obtain an Abstract Syntax
Tree (AST). A pioneering tool, CloneDr [BYM+98], uses subtree matching to
detect clones. Hashing the subtrees accelerates the process by avoiding unnecessary
comparisons. Similar to token-based approaches, cpdetector [KFF06] considers
sequences of AST nodes of the serialized Abstract Syntax Tree. Deckard [JMSG07]
aggregates the AST into characteristic vectors whose distances approximate the
tree edit distances of the according ASTs.

Metrics-based approaches measure software metrics to create a fingerprint of the code
fragment as its representation. These can be simple lexical metrics like the number
of certain kinds of tokens. But mostly, they are derived from higher level represen-
tations of the code; the AST, the Control Flow Graph (CFG) or the Data Flow
Graph (DFG) (or the Program Dependence Graph (PDG) which combines both
graphs). Such metrics include the number of CFG edges or McCabe’s cyclomatic

2For example, it is rare to come across a human-written program that does not halt on an infinite
class of inputs, unless it is a long-running application (run for its side-effects).

73

5 Metric Learning for Code Clone Detection

complexity. A very early metrics-based approach is proposed in [Ott76]. It consid-
ers numbers of unique operators, unique operands, operators, and operands for a
very limited set of programs (the submitted solutions to a homework assignment).
A more sophisticate approach is proposed in [MLM96]. It records number of lines
of code, number of function calls, metrics based on names, expressions and layout,
and simple metrics based on the CFG (e.g., number of independent paths, number
of loops).

Graph-based approaches use the PDG as the representation of code fragments. Tools
like duplix [Kri01] and gplag [LCHY06] search for similar subgraphs within PDGs
to identify code clones.

Another way of organizing the different techniques is through the lens of the different
models of similarity that psychological research brought us (see Section 2.1). The
spatial model is mostly found in the metrics-based approaches that calculate real-valued
vectors as fingerprints that are compared. The contrast model is behind approaches
that compare overlap of discrete features that are stripped of their interrelations, like
in bags of tokens (e.g., [SSS+16]). The structural alignment model is represented by
approaches searching for common sub-graphs in PDGs (e.g., [Kri01, LCHY06]). There is
significant overlap with the transformations model which measures string edit distance
in text-based approaches (e.g., [DLST04]), tree edit distance in tree-based approaches
(e.g., [JMSG07]), and graph edit distance in graph-based approaches (e.g., [PNN+09]).

In this chapter, we study a newer combination of representation and similarity
model. We start with the AST representation that is aggregated into a fingerprint by a
learned scheme. These fingerprints are then compared in spatial terms. Our approach
is published in [BA19].

5.1.3 Vocabulary

When we want to feed programming code as input into a Neural Network, we have to
think about the basic units of meaning that make up each code. Programming languages
of course do have a fixed set of reserved symbols (e.g., for). But there also symbols
the users can create themselves. In Java, for example, identifiers like variable names
are governed by their own (lexical) grammar and are unbounded in length. Natural
languages like English are not formally defined3 and its speakers determine its evolution
by their usage in an organic process. Some languages even feature mechanisms of word

3nor does it seem to be formally definable

74

5.1 Background

formation (productivity) for their speakers to produce one-off words that would be
recognized by other speakers as grammatical. In programming languages, the vocabulary
is fixed at runtime and saved in a symbol table.

But the vocabulary of programming languages comes with its own difficulties [HD17].
The meaning of a user-defined identifier is not fixed. One user can use it with one meaning,
while another uses it with another. The meaning can even change in the same program
and the same symbol can represent different entities in different scopes. Nevertheless,
symbols are not used quite as arbitrarily. Usually, certain symbols are reserved for
special purposes (like single-character loop variables) or they are natural language words
or concatenated phrases that “speak” to the reader (e.g., AbstractStringDistance).

Vocabularies in natural languages and programming languages are very big and follow
a Zipf distribution; Many rare words make up the long tail of the vocabulary whereas a
small subset of words make up the bulk of the usage. So the vocabulary of words that
may potentially be used is big and not knowable in advance. There are several ways to
address this. One is to use characters or sub-words of a fixed maximal length as the
basic unit of representation [KBR+20]. That has the advantage that it does not require
a fixed definition of permissible words or modelling of the morphology of the given
language. And at the same time, one has a small set of basic units representing the
sentences. Another approach is to fix a vocabulary and represent all out of vocabulary
words with a placeholder (UNK, for unknown, or OOV, for out-of-vocabulary).

5.1.4 Embeddings

Neural Networks are prepared to take real-valued vector input of fixed dimensionality.
For example, fixed-sized bitmap image data is in this format. Anything that deviates
from this pattern requires some adaptation. Languages—both natural and formal—come
with a lexical inventory as the basic unit that is composed to sequences. These are not
easily organized meaningfully in a vector space like colors are in RGB, HSV or CIE
color spaces.
A function that does map this discrete set of symbols into a vector space is called

an embedding or sometimes distributed representation. The goal of a good embedding
is to associate symbols with vectors such that close vectors belong to similar symbols.
In other words, it is to engineer a mapping that realizes the existing similarities in a
spatial model (cp. Section 2.1).

It was recognized in linguistic research that contexts of words determine their overall
and situational meaning; “You shall know a word by the company it keeps” [Fir57]. More

75

5 Metric Learning for Code Clone Detection

technically, Miller formulated the Strong Contextual Hypothesis: “Two words are seman-
tically similar to the extent that their contextual representations are similar” [MC91].
One concrete instance of such contextual representations discussed in the paper are
probabilities of co-occurrences with other words. In this instance, words that share a
lot of their contextual usage are likely to be semantically similar. Miller also noted,
ibd.: “Consequently, measures of contextual similarity based on substitutability come
closer to the desired goal. But the disadvantage of measures based on substitutability
is that there is no quick and easy computer algorithm for calculating them.”

Early information retrieval encoded word occurrences in documents in a large m× n
matrix for m words and n documents. This allowed comparing words by their respective
row vector. Co-occurrence of words over a corpus encodes this information even more
fine-grained but results in large sparse matrices since the matrix size grows quadratically
with the number of words. Normalization with TF-IDF or Positive Pointwise Mutual
Information and smoothing gave good embeddings. And Singular Value Decomposition
(SVD) transformed the long sparse vectors into a short dense representation. That
enforced generalization and made downstream learning easier.

In 2013, a ground-breaking publication introduced the word2vec algorithms [MSC+13,
MCCD13]. It builds on the idea of predicting word usage. It does so in two different
self-supervised learning tasks: Continuous bag-of-words (CBOW), in which a missing
word has to be predicted from its context words, and Skip-gram, in which the context
words have to be predicted from the word in the center.

First, the embedding vectors for all words are randomly initialized. Then, the artificial
learning task on the sequences of words is solved. The tasks are defined such that the
supervision signal can be constructed from raw corpora (self-supervised learning). The
entries of the embedding vectors are optimized as part of the parameters of the Neural
Network. The model learns to generalize by exploiting regularities in the data. That
is achieved by incrementally positioning embedding vectors of similar words close to
each other in the vector space. The part of the network that does the prediction based
on the word vectors is discarded after the embedding emerges as a side product of the
learning task.

The resulting word embeddings have shown to capture a lot of semantics as witnessed
by solving analogy tasks through simple vector space arithmetic [MYZ13, MSC+13,
MCCD13]. However, if words have polar opposite meaning, it is likely that they share
a lot of their contexts too (antonyms; e.g., the words “weak” and “strong”) [MC91].
As a result, words with opposite meanings can have very similar vectors in a word
embeddings based on co-occurrences in neighbourhood windows [SPH+11, WRP19].

76

5.2 Approach

The details of our variant of word2vec are explained in the next section. For related
work on embeddings in Software Engineering applications, refer to [CM19, KBR+20].

5.2 Approach

Our approach to Code Clone Detection is tree-based, that is, it takes in code represented
by its Abstract Syntax Tree. The nodes in this tree are combinations of discrete tokens
which we represent by a learned vector representation. Then, a Recursive Neural Network
aggregates the AST from the leaves to the root so that we are left with a single vector
of fixed length representing the whole code fragment. These vectors are then compared
as a proxy for the code they represent. In this section, we go into detail about what the
different concepts mentioned mean, how we put them to work, and what details have
to be considered on the way.

5.2.1 Node embeddings

Word2vec denotes two self-supervised algorithms that learn to model co-occurrence of
words (see previous Section 5.1.4). We will explain the variant which we employ further,
which is called skip-gram.

The skip-gram objective is to predict for a given focus word, if a context word likely
occurs in the close neighbourhood of the focus word. The focus word and the context
word are represented by randomly initialized embedding vectors which are compared
by their dot product. There is a separate lookup table of vectors for the focus word
and the context word – otherwise the dot product of each word vector with itself would
always be the square of its length.

The embedding vector dot products for one focus word with all words in the vocabulary
are then translated into a probability distribution by the softmax function. The objective
is to maximize the probability of observed co-occurrences within small context windows.
The corresponding loss function is usually computationally infeasible because of the
size of the vocabulary. One way of approximating this is negative sampling [MSC+13],
in which contrasting negative examples of co-occurrences that occur nowhere in the
training corpus are synthesized.
Interestingly, word2vec with skip-gram and negative sampling can be straight-

forwardly conceptualized in terms of Metric Learning. Word2vec’s (instrumental) ob-
jective is to learn not a distance function but another very similar binary relation –
co-occurrence. In terms of Metric Learning it then uses contrastive loss to learn the

77

5 Metric Learning for Code Clone Detection

co-occurrence relation. In [DS17], this concept is applied to the paraphrase relation
for n-grams and in [KBdR16] to co-occurrence of sentences. It was also shown that
word2vec skip-gram with negative sampling is equivalent to factorizing a word-context
matrix of pointwise mutual information [GL14].

We train two separate embeddings; one for node types and one for node contents. We
make a small adjustment to the normal word2vec skip-gram with negative sampling
algorithm4. Since we deal with a formal language, we know that word usage is more
regular and constrained by the Java grammar.

For the embedding of node contents, we fix the context window for co-occurrences to
two tokens both before and after the focus token. In the case of node types, these do
not occur in sequences. Instead of a sequential context, we therefore define the types
of parent and children of the according node as the local neighbourhood. We reserve
a separate embedding for each of these roles and aggregate the three dot products
by learned affine linear transformation into a single scalar before finally applying the
sigmoid non-linearity.

5.2.2 Recursive Neural Network

A Recursive Neural Network really does not refer to any specific type of network, but
rather to the mode of evaluating it on its input. The most well-known use case for
Neural Networks assumes an input of fixed size, which is connected to artificial neurons,
which are connected to another stratum of neurons, and so on, until a final layer of
neurons computes the output. This static setup is called Feedforward Neural Network.

In contrast, a Recursive Neural Networks operates like a Feedforward Neural Network
on some part of the input. Once that computation is done, the output of the Neural
Network is taken as additional input when evaluated on some other part of the input
that is connected to the first part of the input. So the Neural Network traverses the
input, is evaluated many times, and feeds its own output into itself. In a Recursive
Neural Network, the input is assumed to be tree-structured and evaluation starts at the
leaf nodes. Therefore, this mode of evaluation is well-defined and terminates. A special
case of this is when the tree of input happens to be just linear. The mode of evaluation
in this special case is described with the moniker Recurrent Neural Network.

Usually, a Neural Network only takes in a fixed sized input per evaluation5. Therefore,
Recursive Neural Networks have to be designed to take in the maximal number of children

4Based on the implementation in https://github.com/yoonkim/word2vec_torch
5Note that this paradigm is broken by the recent advent of the highly successful attention lay-
ers [VSP+17].

78

https://github.com/yoonkim/word2vec_torch

5.2 Approach

seen in the data or discard or aggregate the children. We perform a transformation of
the input trees to make sure that they are binary (see Section 5.3.1).

The field of Natural Language Processing deals with much less well-defined data. It
has been shown that current state-of-the-art Transformer language models [RYW+19]
and also (recurrent) LSTMs [STSC19] that are merely trained on self-supervised signals
from raw data implicitly learn the syntactic structure of natural language sentences.
In formal languages, we can assume this syntactic structure and exploit it directly, for
example, by using a Recursive Neural Network.

5.2.3 Long Short Term Memory

The most popular and successful method of setting the weights in a Neural Network
is by optimizing some objective function on its output by Gradient Descent. This is
mostly achieved by backpropagating the gradient of a loss function to all the weights
involved in the Neural Network. This not only works for Feedforward Neural Networks,
but can also be extended to iterative evaluations in a Recurrent Neural Network
(‘backpropagation through time’) and to recursive evaluations in a Recursive Neural
Network (‘backpropagation through structure’).

Once networks become very deep, it is easier to encode very complex functions. But
another consequence is that it is easier for gradients to either vanish or explode [HBFS01].
In Recursive Neural Networks, this can easily happen because the input structure
coincides with that of the computation graph. If the input is a deep tree, this can make
an otherwise shallow network effectively very deep.
Long Short Term Memory (LSTM) are a special kind of Neural Network unit that

can be used in the composition of any kind of Neural Network. They have feedback
connections that realize a gating mechanism that can leave the error gradient unchanged
over longer distances (i.e., in RNNs). This way, long distance dependencies in the input
can be learned and the problem of vanishing and exploding gradients is lessened.
We modify the n-ary tree-structured LSTM (conceived for constituency trees in

Natural Language Processing) to accommodate our specific AST nodes. We also imple-
mented the stacked [GJM13, SVL14] and nested [MK17] variants of the LSTM unit,
but these were slower and did not show performance gains.

5.2.4 Siamese Neural Network

A Siamese Neural Network [BGL+93] (also known as Twin Neural Network) is almost
akin to a Recursive Neural Network as it describes mostly a mode of evaluation of a

79

5 Metric Learning for Code Clone Detection

given Neural Network. As the name suggests, the input is composed of two input parts
of the same type. The Neural Network is then evaluated on both input parts. The
two outputs are then further processed by a shallow Neural Network that conjoins the
computation graph.

ASTl ASTr

RNN RNN

E = error(cos(hl, hr), label(l, r))

h l

h
r

(∇E
) l (∇

E)r

Figure 5.1: The Twin Neural Network during training

Forward pass

Putting it all together, the Neural Network operates as follows. The Recursive Neural
Network is just a simple LSTM unit that is evaluated at all (inner) nodes of the AST.
It receives six input vectors (see Figure 5.2). Firstly, the hidden states hl, hr and the
cell states cl, cr of the left and right child. If a child is missing, or is a leaf node, the
corresponding hidden state and cell state are set to zero. Secondly, the embedding
vectors representing the node type (xt) and the node content (xc) of the present node.

...

InfixExpression

!=

... ...

c,
h

c l
, h

l

c
r , h

r

LSTM

cl, hl, cr
, hr

c, h

embeddings

”!=”

”InfixExpr.”

x
t
, x

c

Figure 5.2: Flow of data during evaluation of the RNN

80

5.2 Approach

These are pretrained and are simply looked up in a fixed table. If there is no node
content for the present node, xc is set to zero.

The RNN traverses the inner nodes of the AST. The input tree can be assumed to be
binary (see Section 5.3.1). The RNN can only be evaluated at nodes where all children
have already been processed or do not need processing. Hence, the network starts at the
nodes that are parents only to leaf nodes. It continues to evaluate on nodes for which
each child is either a leaf node or has been traversed already. Lastly, it is evaluated at
the root node. The LSTM hidden state in this evaluation represents the whole AST.
The following equations describe how the six input vectors cl, hl, cr, hr, xt and xc

compute the next hidden state h and cell state c. Here, i, fk and u are the input, forget
and update gates of the LSTM, respectively:

i = σ

∑
p=t,c

W (i)
p xp +

∑
p=l,r

U (i)
p hp + b(i)

 (5.1)

fk = σ

∑
p=t,c

W (f)
p xp +

∑
p=l,r

U (f)
p hp + b(f)

 , (5.2)

where k ∈ {l, r}

u = tanh

∑
p=t,c

W (u)
p xp +

∑
p=l,r

U (u)
p hp + b(u)

 (5.3)

c = i� u+
∑
k=l,r

fk � ck (5.4)

h = tanh(c). (5.5)

Figure 5.3 makes above equations more accessible. LSTM units are often defined
including an additional output gate as shown in the diagram. We found in our preliminary
experiments that this simpler variant without an output gate performs better. In the
diagram this is equivalent to setting the gate o to the constant function o ≡ 1. Our
implementation is based on that of [TSM15]6.
The evaluation of the RNN is done for two AST trees independently. Their hidden

state vectors are then fed into a final layer that completes the Siamese Neural Network
(see Figure 5.1).

6available at https://github.com/stanfordnlp/treelstm

81

https://github.com/stanfordnlp/treelstm

5 Metric Learning for Code Clone Detection

xc, xt

u

⊙

⊕
c

tanh

⊙

h

i

⊙
f

o

hl, hr

cl, cr

Figure 5.3: The internals of the LSTM unit. Diagram modified from [SB18]

Backward pass & weight update

The shallow network conjoining the two copies of the Recursive Neural Network is
simply computing the cosine similarity between the two input hidden states hl and hr
representing the two trees ASTl and ASTr. Comparing the similarity value s to the
ground-truth label l, we define the error of the prediction as follows:

error(s, l) =

1− s l = clone

max(0, s−m) otherwise
(5.6)

where s = cos(hl, hr) and l = label(l, r). By default, the margin m is set to 0. We
explore other values for m in the evaluation (see Section 5.3.6).
The error is back-propagated through the whole network. For the Recursive Neural

Network, this means back-propagation through structure [GK96], that is, recursive
back-propagation in reverse order of evaluation. It is noteworthy, that there is a lot of
weight sharing in the evaluation of the whole network. Firstly, both copies of the RNN
share their weights. Secondly, the LSTM unit making up the RNN shares its weights
across all recursive evaluations. The top layer of the Twin Neural Network does not
have any weights. The weights of the pretrained embedding layer are of course shared
across all nodes.

82

5.3 Evaluation

These forward and backward passes are repeated for many AST pairs and the RNN
averages the error gradient for each weight of the LSTM across evaluations in order to
prepare a gradient descent step to minimize the prediction error. In Section 5.3.2 we
explain the details of the optimization.

5.3 Evaluation

5.3.1 Data

We want to use supervised learning to train our Neural Network to match code fragments.
As mentioned in Section 2.3,Metric Learning does not consider data instances in isolation,
but tries to model their (binary) similarity relation. As such, our data consists of pairs
of code fragments.
As a source of ground-truth data, we use BigCloneBench [SR15b, SR16]. It was

mined from IJaDataset 2.0, a large repository of Java source code from 25,000 software
projects. It contains method-level clones and non-clone pairs, which have partly been
verified as such by human experts.

The name code clone suggests that these instances can only come into existence by
(legitimate or illegitimate) copying and modification of existing code fragments. As laid
out in the definition (Section 5.1.1), this meaning is only the template for a more generic
notion that also allows for parallel development. Ultimately, the fact of cloning can
often not be tracked after the fact and is only important for legal and ethical concerns
but less so for technical ones.
The authors of BigCloneBench therefore construct their data set by building equiv-

alence classes of methods that all implement the same distinct “functionality”. Note
that this circumvents the problems of asymmetry that come with priming effects in
comparisons by humans (Section 2.1) and results in a transitive clone relation by
construction. Version 2 of BigCloneBench contains 8.6 million clones from almost
15,000 methods implementing 43 target functionalities like “Decompress zip archive”,
“Connect to Database” or “Setup ScrollingGraphicalViewer Event Handler”. Heuristics
were employed to search for candidate methods that might implement a given target
functionality. Human experts then review these candidates by confirming true positives
and flagging false positives.

BigCloneBench was not intended for the training of supervised learning approaches,
but many papers about supervised learning of Code Clone Detection use the supervised
data for both training and testing [SK16a, LFZ+17, WL17, ZH18, ZWZ+19, BA19]. In

83

5 Metric Learning for Code Clone Detection

[WTVP16] it is exclusively used for training and only for testing in [TWB+18]. To use
this data set for training and testing comes with a specific pitfall, because the instances
are pairs of methods. We describe this in detail in Section 2.3.2.

Data preprocessing

Initially, there are 43 clone clusters of sizes 9 to 3,055 (average 349, median 197). We
take these 14,992 methods that have been confirmed to implement one of the target
functionalities and filter them for several reasons.

Tree filtering The first filtering criterion is the labelling quality. We only allow those
methods for which the clone pair with other methods within the same cluster has been
judged to be a real clone with minimal confidence of 2 or greater. This confidence is
defined as the difference between the pro and con votes by the experts for a given
method pair to be clone. This ensures that we only train and test on high quality data.
This leaves 4,408 methods in 36 clusters. Furthermore, we remove clusters that have
less than 5 methods. This affects 3 small clusters with a total of 9 methods.
We then remove trees that are very big. We draw the line at trees with more than

1,000 nodes or depth greater than 28, because of limitations of our implementation.
This affects only a small part of observed methods; 94 because of the depth constraint,
48 because of size, and 85 because of both, for a total of 227.

Finally, we identify pairs of method that have isomorphic AST trees, and retain only
one per AST. This leaves us with 609 methods across 33 clusters. This step prevents us
from comparing trees that have an identical representation. On one hand, this speeds
up training. On the other, it leads to an underestimation of the overall performance
in testing because these easier code clones are missing there too. The vast majority
of clones (93.3%) among our method pairs are Type-4 clones as per BigCloneBench’s
internal definition.

Node modification We parse all methods to AST trees with the Eclipse Java
development tools (JDT). Each node in a tree has a specific node type. These have
names like “MethodInvocation”, “Modifier”, “FieldAccess” or “StringLiteral”. There is
only a relatively small set of node types and it is determined by the particular parser.

Some of the nodes have node content in addition to a type. These are very broad in
range. Some are part of the language specification like “true”. Others, like identifiers,
adhere to their own (lexical) part of the Java grammar. A set of frequent values are
determined by the authors of standard libraries, for example, “LinkedList” or “println”,

84

5.3 Evaluation

while others are defined by the user. Finally, the content of StringLiterals is basically
arbitrary, for example, “Hello, World!”.

We make two changes to the nodes of the tree. First, we delete the particular nodes
that holds the method name of the method the AST is representing. This is to ensure
that the model cannot leverage this information, but has to instead rely on the actual
body of the method. It is worth highlighting that this incurs an artificial disadvantage.
One would choose to keep this information in a real world implementation. But we want
to study how well Code Clones can be detected just by aggregating method bodies.
Second, we artificially limit the vocabulary of the node content. The node content

frequencies follow a Zipf distribution. There are a few contents that make up the bulk
of the occurrences like “double” or “false”. And then there is the long tail of singular
contents like “jdbc:postgresql://localhost/test”. Overall, we observed 32,000 distinct
content values where 21,000 occurred only within a single method each (29,000 only
within the same cluster). Another 5,000 values where unique to exactly two methods.
We only keep the content values that occur in at least six clusters and in at least 50
clone pairs.
After this filtering of the node content vocabulary, we are left with 1032 relatively

frequent to highly frequent values. This allows us to deal with a node content embedding
that has manageable size. Furthermore, it prevents overfitting – the model cannot pick
up on spurious patterns related to one-off contents. The remaining less frequent content
values are mapped to the value <UNK> for unknown.

Tree modification In an Abstract Syntax Tree, the maximal branching factor of
a node can be arbitrarily big. However, our Recursive Neural Network only accepts
a fixed-sized input. We use the N-ary Tree-LSTMs7 proposed in [TSM15], for N = 2.
We modify their implementation8 to accommodate node type and content as input at
every node. Note that [TSM15] also proposes a Child-Sum Tree-LSTMs that accepts
arbitrarily many children but it discards ordering.

In order to make general ASTs consumable by the binary RNN, we transform them by
what we might call balanced factorization. Each node that has more than two children,
will get one or two artificial children that will take over the children in its stead. We
first split the set of children in half. If it is an odd number, we make the first half bigger
(counting from left). We assign the left half (which must be greater or equal to two)
to an artificial new intermediate child. The right half might be one, in which case we

7In more standard terms, Tree-LSTM would be called a Recursive Neural Network with a LSTM unit.
8available at https://github.com/stanfordnlp/treelstm

85

https://github.com/stanfordnlp/treelstm

5 Metric Learning for Code Clone Detection

public static void main(String args []){
System .out. println ("Hello , World!");

}

Figure 5.4: Hello World code
MethodDeclaration

Modifier

public

Modifier

static

Prim.Type

void

SimpleName

main

SingleVar.Decl.

SimpleType

SimpleName

String

SimpleName

args

Block

Expr.Statement

MethodInvoc.

Qualif.Name

SimpleName

System

SimpleName

out

SimpleName

println

StringLiteral

Hello, World!

MethodDeclaration

MethodDecl.Ext

MethodDecl.Ext MethodDecl.Ext

Modifier

public

Modifier

static

Prim.Type

void

SingleVar.Decl.

SimpleType

SimpleName

String

SimpleName

args

Block

Expr.Statement

MethodInvoc.

MethodInvoc.Ext

Qualif.Name

SimpleName

System

SimpleName

out

SimpleName

println

StringLiteral

<UNK>

Figure 5.5: AST tree of Hello World code, before and after preprocessing

stop. If not, all these children are assigned to an artificial new right child of the original
parent node. We repeat recursively until no set of children is greater than two.
For example, for node “MethodDeclaration” in Figure 5.5, we have to do two such

recursion steps and introduce a total of three artificial children. We introduce new node
types for these artificial new nodes and we denote them as an “extension” of the original
parent node (e.g., “MethodDeclarationExtension” in the example). By this mechanism,
we introduce additional 25 to the existing 68 node types, for a total of 93. Note that in
addition to creating more nodes, this operation makes the AST trees deeper. In general,
it increases paths through a node with originally n children in length by dlog(n)e − 1
to dlog(n)e − 2. See Table 5.1 for how this transformation influences the statistics of
tree sizes and depths. Note that these values were measured on all parsed trees since
we did the selection of the final 609 trees partly on these values.

86

5.3 Evaluation

node counts tree depths
original binarized original binarized

min 13 15 5 7
5% 43 50 7 10
25% 80 93 9 13

median 130 151 11 16
average 203.98 240.66 11.81 17.16
75% 220 259 13 20
95% 577 681 19 28
max 6,554 8,117 55 70

Table 5.1: Statistics of tree sizes before and after binarization

5.3.2 Training

The general training procedure is to repeatedly compute the gradient of the weights of
the LSTM unit with respect to the prediction error and update the weights using this
information. The forward and backward pass through the Neural Network is outlined
in Section 5.2.4. The one input to the error function is defined by the cosine distance
in the Siamese (or Twin) Neural Network [BGL+93] (see Figure 5.1). The other input
is the label according to the ground-truth. The distance is then compared to the
ground-truth label (see Equation 5.6). A loss function that is defined to target low
distance for matching pairs and high distances for non-matching pairs is sometimes
called contrastive loss [HCL06].

Data split

We emphasized in Sections 5.3.1 and 2.3.2 that supervised data for Code Clone Detec-
tion (or Metric Learning more generally), has to be split along individual instances
(or, if available, clusters) to produce performance measurements that will generalize9.
Therefore, we divide the 609 methods in the 33 clusters as whole clusters. We use
roughly 1/6 of clusters each for validation and testing (concretely 6 out of 33, or 18%)
and the other ∼ 2/3 (concretely 21/33 or 64%) for training (see Table 5.2).

The last three columns show the resulting numbers of code fragment pairs; clones at
the top and non-clones at the bottom. Note that the ratios of cluster numbers do not
reflect the ratios on the level of pairs of code fragment. The reason is that the cluster
sizes are not uniform and the number of pairs within a cluster (clones) and between
clusters (non-clones) do not scale linearly with the involved cluster sizes. We employ

9In Section 5.3.6 we demonstrate what happens if data is split in the naïve way.

87

5 Metric Learning for Code Clone Detection

Clusters Resulting Pairs
Fold Training Valid. Test Train. Valid. Test

0
4, 5, 6, 7, 10, 11, 12, 13,
14, 15, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 29

39, 43,
45, 42,
41, 38

33, 32,
30, 31,
34, 36

3,277
64,619

1,140
6,000

1,140
6,000

1
4, 5, 6, 7, 10, 11, 12, 13,
14, 15, 31, 32, 33, 34, 36,
38, 39, 41, 42, 43, 45

23, 30,
29, 26,
25, 24

22, 21,
20, 19,
17, 18

3,482
69,289

1,070
5,600

1,005
5,100

2
18, 19, 20, 21, 22, 23, 24,
25, 26, 29, 30, 31, 32, 33,
34, 36, 38, 39, 41, 42, 43

11, 12,
13, 14,
15, 17

4, 5,
6, 7,
10, 45

3,920
82,400

841
4,109

796
3,482

Table 5.2: Split of supervised data in training, validation and test set of clusters in
three ways for cross-validation

3-fold cross-validation and therefore prepare three different splits of the data (one per
row in Table 5.2) where no two validation sets or two test sets overlap.

Error scaling

In Section 2.3.1 we described how Metric Learning comes with a highly imbalanced class
distribution and that this poses challenges during training. Over- or undersampling can
help in two ways. It increases efficiency because the overall computation is reduced.
And it ameliorates the class imbalance in the training data. Sampling can also have
downsides. For example, undersampling reduces the amount of information used and
oversampling may cause overfitting.
Sampling is not quite as efficient for us. The aggregation of the tree is the compu-

tationally expensive part. On the other hand, it only grows linearly in the number of
trees. Sampled pairs of trees always involve two trees but in an incomplete sample each
tree might be considered only a few times. So it is actually prudent to take advantage
of all information by aggregating all trees and doing all comparisons. Therefore, we do
full gradient descent steps as opposed to stochastic or mini-batch gradient descent.

However, the problem of class imbalance remains. The area of cost-sensitive learning
is concerned with ideas that address this issue. In [KK98], these were first extended
to Neural Networks. Among others, it proposes what we call error scaling. We divide
the error contributed by negative instances (non-clone pairs) by the ratio of number of
non-clones to clones to equally weight the errors of both positive and negative instances.

88

5.3 Evaluation

Hyperparameters

There are a few hyperparameters that have to be set to define the Neural Network and
the training process. We largely follow the settings in the implementation of [TSM15].
The dimensionality within the LSTM is 150 per default and we explore other values in
Section 5.3.5. The 1,033 node contents are represented with 10D embedding vectors,
and the 93 node types with 4D embedding vectors. They are pretrained as described in
Section 5.2.1.
We minimize the error by adjusting the weights based on the gradients with the

AdaGrad (“adaptive gradient”) heuristic [DHS11]. Note that we make full gradient
descent (as explained earlier in this Section) whereas [TSM15] applies mini-batch
gradient descent. We use a base learning rate of 0.05 for the LSTM unit and 0.1 for the
pretrained node type and content embeddings.
We use the standard initialization of weight matrices of torch7, which initializes

weights and biases of a linear transformation with random values from a uniform
distribution over [− 1√

n
, 1√

n
], where n is the output dimension. We also implemented

the Xavier (Glorot) [GB10], Kaiming [HZRS15], and chrono10 [TO18] initialization
schemes. However, they did not turn out to give improved performance in exploratory
experiments. Maybe this is due to the fact that these schemes were conceived of in the
context of Feedforward and Recurrent Neural Networks that do not recursively read
tree-shaped input.
We use the validation set to determine the best performing weights within the first

500 epochs. We exclude the very first 100 epochs because we observed some chaotic
jumps in the performance on the validation set during the first few dozen epochs.

5.3.3 Quality metric

We use the area under the ROC curve (AUROC; see Section 2.3.3) to measure the
quality of our models. By definition it is independent of any decision threshold. So
we can measure the quality of the vector representation as such. In other words, how
well does the similarity of the vectors reflect the similarity of the code fragments they
represent? Concretely, AUROC can be interpreted as the probability of ranking any
two given pairs—one matching and one non-matching pair—correctly. We train our
network with contrastive loss. However it is possible to directly optimize for AUROC
by using histogram loss [UL16].

10The name “chrono” comes from its initial use on sequential data.

89

5 Metric Learning for Code Clone Detection

Note that we systematically underestimate our real performance since the test pairs
are already filtered to not contain any Type-1 clones. These would be trivially matched
since Abstract Syntax Trees of Type-1 clones are identical. However, the BigCloneBench
data contains mainly Type-4 clones (93.3%). See Section 5.1.1 for a definition of code
clone types.

5.3.4 Baselines

We compare the recursive aggregation of embedded AST nodes against two baselines.
Both are vector representations of AST trees but they are not finetuned for the objective
in the same way.
The first baseline is the averaging of all node vectors (concatenation of node type

and content vectors). These vectors are the result of a learning process but it was
an unrelated, self-supervised task and the vectors mere by-products of that learning
loop. We compare these fixed vectors by cosine similarity. This approach has several
advantages as it requires low computation effort, is easy to implement and does not
need any supervised data.

The second baseline is a specialized vector representation for Code Clone Detection. It
is the vector representation calculated by the well-known Deckard CCD tool [JMSG07].
These vectors are not the result of machine learning but of a handwritten algorithm
backed by theory. Deckard’s complete algorithm approximates tree edit distance. How-
ever, we extract the vectors from the complete Deckard pipeline (that includes blocking
and locality-sensitive hashing) to get a vector space representation that we can use for
comparison. A small number of trees (5 out of 609) could not be parsed by Deckard.
Normally, the vectors in the Deckard approach are compared by the Euclidean norm,
but we observed that cosine distance gives better results.
Note that Deckard is designed to find code fragments of varying granularity, not

only methods. For this comparison, we only consider fragments from BigCloneBench,
which are whole methods. And as we already dismissed duplicate trees (in the sense
of isomorphism), we under-estimate both baselines and the main approach because
the easier code clones are missing from training and test data. Both baselines are
unsupervised and as such do not require a training phase. We still evaluate them on
the three test sets to get comparable performance measurements.

90

5.3 Evaluation

dim. #params AUC0 AUC1 AUC2 ∅AUC
300 752,294 0.799 0.771 0.903 0.824
200 345,094 0.766 0.861 0.876 0.834
150 201,494 0.764 0.841 0.929 0.845
100 97,894 0.690 0.840 0.857 0.795
50 34,294 0.613 0.817 0.793 0.741
30 20,054 0.588 0.768 0.783 0.713

Averaging embeddings 14 10,694 0.784 0.752 0.885 0.807
Deckard, cosine 300 – 0.565 0.746 0.798 0.703

Deckard, Euclidean 300 – 0.543 0.653 0.602 0.599

Table 5.3: The performance with respect to different dimensionalities; performances
of baselines

5.3.5 Influence of network layout

In the following we show the performance of the Neural Network model and how different
changes in its definition influence the performance. We report the AUROC value for
each cross-validation fold and the arithmetic mean.

Influence of dimensionality

A very obvious and important hyperparameter is the dimensionality. In Table 5.3 we
report the different results for various values. This determines the size of the hidden
and cell states h and c in the LSTM and consequently the sizes of weight matrices
U

(∗)
p and bias vectors b(∗) in the different gates. The parameter count in the matrices

grows quadratically with this value and hence have great influence in the total count.
The overall number of parameters is listed in the second column of Table 5.3. The
sizes of the node embeddings are fixed (4 for types and 10 for contents). Their weight
matrices amount to 364 parameters for the 4D embedding of 91 node types and 10,330
parameters for the 10D embedding of the 1,032 node contents and the <UNK> token.
Generally, more parameters improve the ability of the network to learn to rank the

code fragment pairs properly. The models achieve values of 0.92 to 1.00 on the training
data. Beyond 150 dimensions, the test performance slightly decreases. This is possibly
due to overfitting.
We can also observe that the performance is different on the three cross-validation

folds. Generally, the last fold yields the best performance. One possible reason for this
that comes to mind is that in this fold, the training set is significantly bigger in terms
of code fragment pairs (see Table 5.2). However, this reason can be dismissed because

91

5 Metric Learning for Code Clone Detection

the unsupervised baseline of averaged embeddings also performs much better on this
fold. It might just be that the clusters in the test set of this fold make for particularly
easy cases of clones and non-clones.
The baseline of averaging embeddings performs remarkably well. Interestingly, it is

able to outperform the learned aggregation up until the dimensionality of 100. There are
easy parameter settings of an LSTM unit (with ≥ 14 dimensions) that would effectively
result in averaging the node vectors. However, the LSTM unit does not seem to be able
to learn this pattern – or at least not through gradient descent and with our particular
optimization heuristic. We describe one weight setting that would achieve the averaging
in the following for completeness. The equations 5.1-5.5 define the gates and their
interactions. Figure 5.3 summarizes the equations in a diagram.

The matricesW (f)
p , U

(f)
p , U

(i)
p ,W

(u)
p , U

(u)
p would be set to zero. The matrixW (i)

c would
in turn be set to a zero matrix with a 10× 10 unit matrix at the top, scaled by some
b ∈ R. Similarly, W (i)

t would be zero almost everywhere with a 4 × 4 unit matrix at
the bottom and scaled by the same factor b. If the dimensionality of the LSTM unit
is greater or equal to 14, these two parts will not interact downstream. The biases
would be b(f) = (1, . . . , 1)T , b(i) = (0, . . . , 0)T and b(u) = (B, . . . , B)T , for some B ∈ R.
This would deactivate forgetting and allow the input through scaled by a constant, but
otherwise unaltered11. The tangens hyberbolicus involved in computing c from u and h
from c introduces a slight problem in that it would distort the values. However, the
value for B can be chosen big enough to get arbitrarily close to the output 1 for the
update gate. And if we choose the value b to be small enough, then sums of node vectors
for trees with a certain maximal number of nodes would be placed in the approximately
linear regime of the non-linearity tanh. Finally, an LSTM unit with these weight settings
would compute the sum of all concatenated node embedding vectors, scaled by b. This
scaling factor (and the missing division by the total number of nodes) is irrelevant, as
the resulting ranking of pairs of code fragments would be the same as that for node
vector averaging.

Influence of embeddings

One important ingredient in our model is the setting of the parameters in the node type
and node content embeddings. We pretrained them in a self-supervised way hoping that
this would capture some of the regularities and therefore help the model to generalize.
To test just how useful the embeddings are, we run an experiment where we use the

11Note that here, our LSTM unit does not have an output gate.

92

5.3 Evaluation

#params AUC0 AUC1 AUC2 ∅AUC
no change 201,494 0.764 0.841 0.929 0.845

10×neg. scal. 201,494 0.744 0.817 0.912 0.824
margin m = 0.9 201,494 0.750 0.793 0.885 0.810

Averaged embeddings, 14D 10,694 0.784 0.752 0.885 0.807
margin m = 0.5 201,494 0.726 0.813 0.856 0.798

with output gate 249,194 0.700 0.763 0.822 0.761
no pretraining 201,494 0.668 0.807 0.763 0.746

Cluster-unaware split* 201,494 0.990* 0.997* 0.991* 0.993*

Table 5.4: The performance for dimensionality 150 with respect to other changes

randomly initialized embeddings before the pretraining instead. Table 5.4 shows that
the average AUROC score drops remarkably from 0.845 to only 0.746. We can also see
that this performance is below that of the averaged pretrained embedding vectors.
We can conclude that embedding vectors are very important because embedding

vectors that are trained without supervision beat a complex network trained with initially
random embedding vectors. A recent paper [WK19] in Natural Language Processing
comes to similar conclusions. It showed that pretrained word embedding vectors with
random aggregations via an untrained LSTM or other randomly parametrized models,
could rival state-of-the-art sentence embeddings.

We would like to offer some intuition as to how pretrained embeddings may be useful.
Word2vec results in token vectors that are very similar for tokens that share a lot of
their contexts. This is especially true for user-defined symbols that are naturally used
interchangeably, like “dir” versus “directory” or “i” vs “j”. If each of these tokens was
represented by a random vector, a network would have a hard time picking up that
the meanings of both of these pairs of tokens are in fact very similar. The word2vec
pretraining, however, provides the network with an important advantage. And any
confusion of tokens that is not helpful (e.g., similar vectors for the tokens “true” and
“false”) could be ameliorated by the finetuning during supervised training.

And why is the recursive aggregation by an LSTM comparatively less influential than
well pretrained node embeddings? Recent work [WYLZ19] suggests that this type of
aggregation may put too much emphasis on the root node and nodes close to the root. It
is shown that introducing dynamic routing can boost performance especially for deeper
trees. A recent ablation study [LLFZ18] that studies the LSTM in Recurrent Neural
Networks for NLP concludes that, among other results, the weighted sum of context
words is a powerful simple alternative to LSTMs and that in fact LSTMS implicitly
compute vectors of weighted sums.

93

5 Metric Learning for Code Clone Detection

Variation of network layout

We defined how our LSTM unit works12 in Section 5.2.4. The equations 5.1-5.5 do not
describe the output gate that is depicted in Figure 5.3. The following equation defines
the output gate:

o = σ

∑
p=t,c

W (o)
p xp +

∑
p=l,r

U (o)
p hp + b(o)

 (5.7)

In addition, Equation 5.5 has to be changed to the following to integrate the gate
into the LSTM:

h = o� tanh(c) (5.5*)

In Table 5.4 we show that introducing such an output gate does not improve the
performance. The additional parameters of the output gate’s weight matrices and bias
introduce about 25% more parameters. And the added complexity in the interaction of
the gates may also add to the network’s capability of approximating arbitrary functions.
Both effects may lead the network to overfit to the training data, but this is a hypothesis
that would require further experiments to test.

5.3.6 Influence of training aspects

Above evaluation concerned the makeup of the Neural Network. In the following, we
attend to aspects that concern the training of the network.

Variation of loss function As explained in Section 5.3.2, we employ error scaling,
a variant of cost-sensitive learning, to address the imbalance between the numbers of
clones and non-clones. That means that the error observed when evaluating a non-clone
pair with the Twin Neural Network is discounted by a factor that is equal to the ratio
of clones to non-clones. This puts the entirety of clones on the same level of influence
as the non-clones despite the wild mismatch.

We evaluate the influence of an additional factor of ten to this error. This explores the
middle ground between no scaling (ratio roughly 1:20) and full scaling (1:1). Table 5.4
shows that this does not yield the same performance as full scaling. We observe, however,
that convergence is faster and more stable under this condition. This suggests that the

12Note that there are slightly different competing definitions of LSTMs.

94

5.3 Evaluation

best use of error scaling might be to start with a higher factor and lower it until finally
reaching equal error ratio.
A similar conclusion can be made for the margin parameter m (see equation 5.6).

This parameter is a common parameter in contrastive loss. It means that non-clones
that are already less similar than m will not count towards the error. The ideal setting
is actually m = 0. In Table 5.4 we show the performance for two other values for m:
0.5 and 0.9. Both yield worse performance than m = 0, but the higher value less so
than the intermediate value. In both cases, the convergence is faster and for m = 0.5,
the learning curves are more stable. Again, it might be advantageous to start with a
higher value for m to make use of the faster convergence. In this phase, trees that have
assumed representations such that many negative pairs are relatively far away from
each other already, would not receive penalty. Only when m has been decreased later,
would the continued learning focus on these easier cases.

Importance of cluster-aware data splits It is not uncommon in supervised Code
Clone Detection to simply split a set of known clones and non-clones into training
and test sets regardless of which clusters the involved code fragments belong to. As
described in Section 2.3.2, this bears the danger of yielding unrealistic test performance.
Because the model has already seen instances from the same cluster in the training
that it is exposed to in testing, the measured performance cannot reflect generalization.
It is in fact likely that the model is evaluated on some of the exact same fragments,
because only the code pairs are guaranteed to not reappear in testing.

As described in Section 5.3.1, we make sure to split the data sets based on single code
fragments instead of pairs and we draw careful lines along clusters. This way, we can even
speak of training and testing clusters. To make the point about the generalization, we
conduct an experiment where we split the data in a cluster-unaware fashion. We simply
split the set of code fragment pairs into training and testing sets. We prepare three such
splits that exactly mirror the number of clones and non-clones in the corresponding
fold of our regular evaluation. That is, the first split contains 3,277 clones and 64,619
non-clones, and so on. This eliminates the question as to whether these numbers and
ratios play any role.

Table 5.4 shows the performance on this pair-based split that does not respect cluster
boundaries or even reuse of individual code fragments (“cluster-unaware split”). Not
unexpectedly, the performance is vastly better than in the careful evaluation. In fact,
it is comparable to the performance on the training set. It should be mentioned that
[ZH18] reports a similar comparison and claims to not observe such difference at all.

95

5 Metric Learning for Code Clone Detection

Qualitative assessment of node embeddings In Section 5.3.5 we demonstrated
quantitatively that pretrained embeddings are a very important part of our model for
code similarity. Even just averaging the node embedding vectors beats the aggregation
by a trained LSTM that had had to adjust random initial embedding matrices by the
supervision signal propagating from the root to the other nodes.

Now we evaluate the embedding vectors that represent the AST nodes qualitatively.
In Figures 5.6 and 5.7 a projection of the 4-dimensional type vectors and 10-dimensional
content vectors respectively, is shown. We use the T-SNE algorithm [MH08] to calculate
this projection (perplexity of 15). T-SNE approximately preserves local neighborhood
relations. It thus cannot give us information about what specific directions in higher-
dimensional space may encode (if there is a discernible meaning at all). But it can give
us a glimpse into what tokens are represented by similar vectors to other tokens. We
identify and outline a few clusters and offer some interpretation as to why the tokens
they are comprised of end up having similar vectors.

Most of the node types in cluster “A” only ever occur as leaf nodes (e.g., “NullLiteral”,
“SimpleName”). They all share the common null context from the side of their (nonexis-
tent) children. Near the top of the plot we find various block types (cluster “B”; e.g.,
“Block”, “TryStatement”). Node types that often have a number expression (e.g., literal
or variable) as their argument, (and therefore, first child) are found in cluster “C” (e.g.,
“InfixExpression”, “Assignment”). Node types which often have a Java type as their
first child are located at the bottom, in cluster “D” (e.g., “SingleVariableDeclaration”,
“ParameterizedType”). Some of the artificial node types (suffix “EXT”) do end up near
their parent types (e.g., “Block”, “TryStatement”, “IfStatement”, “SingleVariableDecla-
ration”). This is likely the case because these blocks come both in small sizes where the
block has only up to two children, and arbitrarily big sizes, where the “-EXT” variants
hold the children in lieu of the original parent, or other “-EXT” nodes themselves.
The node contents in Figure 5.7 are much more intuitively interpretable, because

they hold tokens that are visible to (and definable by) the programmer13.
There are obvious clusters of related tokens. In cluster “1”, we find exception types

(bottom), logging related terms (middle) and exception variable names and logging
levels (top). In cluster “2”, there are I/O stream classes whereas the I/O stream related
instance identifiers are in cluster “3”. File names, suffixes and paths (e.g., “fileName”,
“filename”, “src”) are in the top right cluster “4”. Note that here we find “zipFile” while
“ZipFile” with a capital letter is in cluster “2” for I/O stream related classes.

13“EMPTY” and “SPACE” represent the otherwise invisible empty string and whitespace, and
“NO_CONTENT” is the placeholder for nodes without content.

96

5.3 Evaluation

In cluster “5”, we find tokens from string related operations such as “startsWith”,
“endsWith” or “substring”. In cluster “ 6” are operators, and primitive and basic types.
Indices and positions (e.g., “pos”, “k”, “j”, “size” and small integer number literals)
concerned with 1-dimensional data (arrays) are in cluster “7” in the bottom right. Above
that, in cluster “8”, we similarly find indices and other terms around 2-dimensional data
(tables; e.g., “column”, “rows”, “fields”). These last two clusters illustrate a finding by
Wainakh et al. [WRP19]. Tokens seem to tend to group along relatedness (“columns”
and “rows”) more than individual similarity (“pos” and “position”). In fact, they showed
that generic edit distances better models similarity than the (word-based) word2vec,
but not relatedness.

The fact that the pretrained embedding vectors for very similar variations or synonyms
are placed nearby each other is very useful when we want to identify code clones
downstream. This can help to account for the variation that distinguishes the codes in
a Type-2 clone. It also allows to identify non-essential additions, like the catching of an
exception, which may elevate a clone to Type-3.

It is noteworthy that conversely, some contents are very similar despite having quite
different meaning. We explain in Section 5.1.4 that this can happen with word2vec-like
pretraining. This affects the modifiers “public”, “private” and “protected” that happen
to share a lot of their contexts. Quite odd pairs like “||” (lazy or) and “&&” (lazy and)
or even polar opposites like “true” and “false” end up direct neighbours in embedding
space14. This may seem like an undesirable artifact. However, this still does encode the
information that the node holds some Boolean value. And the supervised training does
backpropagate the error signal all the way to the node content embeddings, as well. So,
if it is crucial to distinguish these values in order to separate non-clones in the training
data, the finetuning of the embeddings can conceivably change the vectors accordingly.

14This effect has been noted for identifier names like “row” vs “col” in [WRP19].

97

5 Metric Learning for Code Clone Detection

AnonymousClassDeclaration

AnonymousClassDeclarationEXT

ArrayAccess

ArrayCreation

ArrayCreationEXT

ArrayInitializer
ArrayInitializerEXT

ArrayType

Assignment

Block
BlockEXT

BooleanLiteral

BreakStatement

CastExpression

CatchClause

CharacterLiteral

ClassInstanceCreation

ClassInstanceCreationEXT

ConditionalExpression

ConditionalExpressionEXT

ConstructorInvocation

ContinueStatement

DoStatement

EmptyStatement

EnhancedForStatement

EnhancedForStatementEXT

ExpressionStatement

FieldAccess

FieldDeclaration

FieldDeclarationEXT

ForStatement

ForStatementEXT

IfStatement

IfStatementEXT

InfixExpression

InfixExpressionEXT

Initializer

InstanceofExpression

Javadoc

LabeledStatement

MarkerAnnotation

MemberValuePair

MethodDeclaration

MethodDeclarationEXT

MethodInvocation

MethodInvocationEXT

Modifier

NormalAnnotation

NormalAnnotationEXT

NullLiteral

NumberLiteral

ParameterizedType

ParameterizedTypeEXT

ParenthesizedExpression

PostfixExpression

PrefixExpression

PrimitiveType

QualifiedName

QualifiedType

ReturnStatement

SimpleName

SimpleType

SingleMemberAnnotation

SingleVariableDeclaration

SingleVariableDeclarationEXT

StringLiteral

SuperConstructorInvocation

SuperConstructorInvocationEXT

SuperFieldAccess

SuperMethodInvocation

SuperMethodInvocationEXT

SwitchCase

SwitchStatement

SwitchStatementEXT

SynchronizedStatement

ThisExpression

ThrowStatement

TryStatement

TryStatementEXT

TypeDeclaration

TypeDeclarationEXT

TypeDeclarationStatement

TypeLiteral

TypeParameter

VariableDeclarationExpression

VariableDeclarationExpressionEXT

VariableDeclarationFragment

VariableDeclarationStatement

VariableDeclarationStatementEXT

WhileStatement

WildcardType

A

B

C

D
Figure 5.6: T-SNE projection of node type embedding vectors

98

5.3 Evaluation

to

!

!=

#

<UNK>

%

&

&&

'

(

)

*

+
++

+=

,

,

-

--

-=

.

.class

.png

.xml

.zip

/

0

0.0

0xFF

0xff

1

1.0

10

100

1000

1024

11

12

1314

15

16

17

18

2

20

200

2048

24

25

256

3

30

300

32

4

40

4096

5

50

500

6

60

7

8

8192

9

:

:

;

<

<<

<=

=
==

>
>=

>>

A

APPROVE_OPTION

Action

ActionEvent

Address

ArrayList

Arrays

Assert

B

Base64

BigDecimal

BigInteger

Boolean

BorderLayout

BufferedImage

BufferedInputStream

BufferedOutputStream
BufferedReader

BufferedWriter

BuildException

ByteArrayInputStream

ByteArrayOutputStream

ByteBuffer

C

Calendar

Class

ClassLoader

ClassNotFoundException

Collection

Collections

Color

Component

Config

Configuration

Connection

Constants

Constructor

Context

DEBUG

DataInputStream

DataOutputStream

Date

Debug

Dimension

Document
DocumentBuilderFactory

DocumentException

Double

DriverManager

E

EMPTY

ERROR

ERROR_MESSAGE

Element

Entry

Enumeration

Error

Event

Exception

Field

File

FileChannel

FileFilter

FileInputStream

FileNotFoundException

FileOutputStream

FileReader

FileUtils

FileWriter

Float

Font

GZIPInputStream

GZIPOutputStream

HashMap

HashSet

Hashtable

HttpServletRequest

HttpServletResponse

HttpURLConnection

IOException

IOUtils

ISO-8859-1

IllegalAccessException

IllegalArgumentException

IllegalStateException

Image

ImageIO

ImageIcon

InetAddress

InputStream

InputStreamReader

InstantiationException

Integer

InterruptedException

InvocationTargetException

Iterator

JButton

JFileChooser

JFrame

JLabel
JOptionPane

JPanel

JScrollPane

LOG
LOGGER

Level

LinkedList

List

Locale

LogLogger

Long

M

MAX_VALUEMD5

Main

MalformedURLException

Map

Matcher

Math

Message

MessageDigest

Messages

MessagingException

Method

MimeMessage

MouseEvent

N

NoSuchAlgorithmException

NoSuchMethodException

Node

NodeList

NullPointerException

NumberFormatException

Object

ObjectInputStream

ObjectOutputStream

OutputStream

OutputStreamWriter

Override

ParseExceptionParserConfigurationException

Path

Pattern

Point

PreparedStatement

PrintStream

PrintWriter

Process
Properties

R

Random

RandomAccessFile

Reader

Rectangle

ResultSet

Runtime

RuntimeException

SSAXException

SEVERE

SPACE

SQLException

Scanner

SecurityException

ServletException

Session
Set

SimpleDateFormat

Statement

Status

String

StringBuffer

StringBuilder

StringReader

StringTokenizer

StringUtil

StringUtils

StringWriter

SuppressWarnings

System

T

TYPE

Thread

Throwable

Type

U

URI

URISyntaxException

URL

URLConnection

URLEncoder

UTF-8

UnsupportedEncodingException

User

Util

Utils

Vector

Writer

ZipEntry

ZipFileZipInputStream

\"

\\
\n

\r\n

\t

]

_

a
abs

action

add

addActionListener

addAll

addElement

addHeader

address

algorithm

amount

app

append

appendChild

arg

arg0

args

argv

arr

array

arraycopy

assertEquals

assertTrue

attachments

auth

author

available

awt

b

bais

baos

base

baseDir

bb

bean

begin

bf

bi

bin

bis

body

boolean

bos

bout

br

buf
buff
buffer

bufferSize

bufferedReader

build

builder

bw

byte

bytes

bytesRead

c

cal

canRead

cb

cc

ch

channel

char

charAt

charset

check

child

children

chooser

cl

classLoader

className

classes

classpath

clazz

clear

client

clone

close

closeQuietly

cls

cm

cmd

cnt

code

col

collection

color

column

columns

com

command

commit

comp

compare

compareTo

compile

component

con

concat

conf

config

conn

connect

connection

contains
containsKey

content

contentType

contents

context

copy

cos

count

counter

cp

create

createElement

createNewFile

createStatement

createTempFile

cs

ctx

current

currentFile

currentThread

currentTimeMillis

cursor

d

data

date

db

debug

decode

delete

deleteOnExit

desc

description

desktop

dest

destination

df

dialog

diff

digestdim

dir
directory

dispose

distance

doc

document

dom
done

double

doubleValue

ds

dst

e

e1e2

e3

el

element

elementAt

elements

email

en

encode

encoder

encoding

end

endsWith

entity

entries

entry

entryName

entrySet

env

equals

equalsIgnoreCase

err

error

errorsevent

evt
ex

exc

exception

exec

execute

executeQuery
executeUpdate

exists

exit

exp

expression

ext

extension

f

factory

fail

false

fatal

fc

fd

field

fields

file

file2

fileChooser

fileIn

fileLength

fileList

fileName

fileNames

fileOut

filePath

fileType

filename

files
filter

fin

final

find

fine

finish

first

fis

flag

float

flush

fn

fname

folder

fontforName

form

format

fos

found

fout

fr

frame

from

fromFile

fs

fw

g

gc

get

getAbsoluteFile

getAbsolutePath

getActionCommand

getAttribute

getBytes

getCanonicalPath

getCause

getChannel

getChildNodes

getClass

getClassLoader

getConnection

getConstructor

getContent

getContentPane

getContentType

getData

getDefault

getDescription

getDesktop

getDocumentElement

getElementsByTagName

getEmail

getFile

getFileName

getHeight

getHost

getId

getInputStream

getInstance

getInt

getKey

getLength

getLocalizedMessage

getLocation

getLog

getLogger

getMessage

getMethod

getName

getNextEntry

getNodeName

getNodeValue

getOutputStream

getParameter

getParameterTypes

getParent

getParentFile

getPassword

getPath

getProperty

getResource

getResourceAsStream

getRuntime

getSelectedFile

getSelectedIndex

getSession

getSize

getSource

getString

getText

getTextContent

getTime

getTitle

getType

getURL

getValue

getWidth

getWriter

getY

group

groups

gui

h

handler

hasMoreElements

hasMoreTokens

hasNext

hash

header

headers

height

hi
high

host

html

i

i1

iae

icon

id

idx

ie

ignore

ii

image images

img

in

inStream

ind

index

indexOf

info

init

input

inputFile

inputStream

ins

insert

instance

int

intValue

invoke

io

ioe

ip

is

isAssignableFrom

isDebugEnabled

isDirectory

isEmpty

isFile

isSelected

isr

it

item

items

iter

iterator

j

jar

java

javax

join

jpg

k

key

keySet

keys

l

label

lang

language

last

lastIndexOf

lastModified

layout

left

len

length

line

lines

link

list

listFiles

listener

load

loadClass

loader

locale

location

loglogger

login

long

ls

m

m2

mail

main

map

match

matcher

matches

max md

me
message

method

methodName

methods

mid

min

mkdir

mkdirs

mode

model

module

monitor

ms

msg

n

name

names

net

newDocumentBuilder

newFile

newInstance

newLine

next nextElement

nextInt

nextLine

nextToken node

nodes

now num

number

o
obj

object

objects

offset

ok

oos

op

open

openConnection
openStream

options

order

org

orig

origin

original

os

out

outFile

outStream

outfile

output

outputDir

outputFile

outputStream

p

p1

p2

pack

page

panel

param

parameters

params

parent

parse

parseDouble
parseInt

parser

part

pass

passwd
password

path

pattern

pid

plugin

pm

png

port

pos

position

post

prefix

prepareStatement

print

printStackTrace

println

private

procprocess

progress

project

prop

properties

property

propertyName

props

protected

provider

ps

public

push

put

pw

pwd

q

query

r

raf

rand

random

raw

rc

rd

read

readLine

reader

ready

remove

renameTo

replace

replaceAll

reply

report

reqrequest

res

reset

resource
resourceName

resources

resp

response

result

results

ret

retVal

returnVal

retval

right

rollback

root

row

rows

rs

run

s

s1

s2

salt

save

sb

se

search
section

security

selectedFile

send

separator
separatorChar

seq

sequenceserver

session

set

setAttribute

setAutoCommit

setBounds

setContent

setContentType

setEnabled

setHeader

setInt

setLastModified

setLayout

setLevel

setLong

setMethod

setName

setProperty

setRequestProperty

setSize

setStatus

setString

setText

setTime

setTitle

setValue

setVisible

settings

severe

short

show

showConfirmDialog

showMessageDialog

showOpenDialog

showSaveDialog

site

size

sleep

socket

sort

source

sp

split

sql

sqle

src

ss

st

start

startIndex

startTime

startsWith

stat

state

statement

static

status

stmt

store

str

stream

string

style

substring

success

sw

synchronized

t

table

tableName

tag

target

task

temp

tempDir

tempFile

template

test

text

text/html

thread

time

title

tmp

tmpFile

to

toArray

toByteArray

toFile

toHexString

toLowerCase

toString

toURI

toURL

toUpperCase

token

tokenizer

tokens

top

total

trace

transform

transformer trim

true

type

types

u

uid

unchecked

update

uri

url

urls

user

userId

userName

username

utf-8

util

v

val

value

valueOf

values

var

verbose

version

view

void

w

waitFor

warn

warning

width

word

write

writeInt

writeObject

writer

x

xml

y

year

z

zip zipFile

zis

|

||

NO_CONTENT

1

6

2

3

5

4

7

8

Figure 5.7: T-SNE projection of node content embedding vectors

99

5 Metric Learning for Code Clone Detection

5.4 Discussion

In this chapter we presented our approach to learn a vector representation of code
fragments that allows for Code Clone Detection by comparing these vectors.

We start by learning an embedding for the discrete symbols defining the nodes of the
AST trees. These are recursively aggregated by an LSTM unit. Both the embedding
vectors and the parameters in the LSTM are subject to supervised optimization of the
Code Clone Detection task. In order to measure the real power of the aggregation, we
remove the method name node from the representation. We also clear the training and
test set from duplicates in terms of isomorphic ASTs.

We found that the model benefits from a higher dimensionality up to a certain point
after which performance deteriorates. This is likely due to overfitting the training data.
A good and simple baseline for CCD is to simply average node vectors which especially
does not involve further learning. We show that error scaling is a good way to address
the class imbalance problem. Our results also imply that in supervised learning of Code
Clone Detection, it is important to split training and test data by clusters to get a
useful estimation of generalization to unseen clusters.

There are some interesting open questions around our findings. Most revolve around
the representation of the vocabulary. One approach to represent an open vocabulary with-
out masking the long tail with an <UNK> token is to encode it with a character-RNN.
A Recurrent Neural Network has been used in purely unsupervised CCD in [WTVP16]
but since it was not based on characters, it cannot extend to an open vocabulary. Also,
supervised CCD can further finetune such embedding. Another alternative is given
by subwords as basic units [KBR+20] which allows different embedding algorithms
from token prediction by uni-directional RNN, supports an open vocabulary, and has
been shown to better model identifier similarity [WRP19]. Finally, the “tough-to-beat”
baseline for sentence representation [ALM16] looks like a good candidate for a CCD
baseline. Other ideas from adjacent fields include the use of histogram loss [UL16] to
learn to distinguish clones from non-clones.

Generally, it would be useful to have a standard benchmark for supervised Code Clone
Detection. This would ideally be part of a greater effort of making models comparable
on a diverse set of tasks as it would enable studying task-independent modelling of
source code (see next section). Since CCD is a task that is very easy to evaluate on
any vector representation, it lends itself perfectly to study the interaction with other
tasks. One could study the question if a representation that results from training on
CCD gives a performance boost for training on another task. Of course, this cross-task

100

5.5 Outlook

transfer learning consideration works in the opposite direction too. As in, does the CCD
performance improve by pretraining on a different task?

Finally, it would be good to get a qualitative insight into how our CCD model or others
work. For the node content embeddings, we were able to show that these capture certain
semantic information well (Section 5.3.6). But what about the dynamic non-linear way
the LSTM aggregates the information? Is it possible to identify certain parts of the
aggregation scheme as explicit and transparent features? Approaches like Layer-wise
Relevance Propagation (LRP [BBM+15]) offer an insight into how important any part
of a given input is to the decision a Neural Network made. LRP has been extended to
more involved models like LSTM [AMMS17].

5.5 Outlook

During the work on this chapter, it became apparent that Software Engineering in
general and Code Clone Detection in particular share a lot of challenges with the field
of Natural Language Processing. They both deal with human-generated data of varying
size and quality with an open vocabulary and hard to grasp semantics. To elaborate on
this idea, we give answers to two questions posed in the 2015 NSF Interdisciplinary
Workshop on Statistical NLP and Software Engineering15.

What’s special about software?

Programming languages are obviously very different from Natural languages like English.
Allamanis et al. [ABDS18] point out that they are designed and always have the goal
of execution. In some ways, the formal nature makes things easier. For one, the syntax
and grammar is completely specified whereas these are tasks in their own right in NLP.

Many problems with representing programming languages have to do with vocabulary.
In natural languages, large parts of the vocabulary of have fixed meanings. Their might
be several senses of the same lexical unit (e.g., “power”, as in physics vs “power”, as
in roles), but these can usually be disambiguated from local context. In programming
languages, user-defined identifiers are common-place since constructs like variables,
methods and such need names. Code fragments can be left completely equivalent by
refactoring operations like renaming of variables which does not have an equivalent in
natural language. There might be some loose morphology that is prescribed by some
written or unwritten programming style guides but in principle names are free to choose.

15http://languageandcode.org/nlse2015/#workshop_program

101

http://languageandcode.org/nlse2015/#workshop_program

5 Metric Learning for Code Clone Detection

This open vocabulary problem is not unique to programming languages but is arguably
more severe [HD17]. It can be ameliorated by subword embeddings [KBR+20].

Resolving the connection between named entities and the pronouns and other anaphora
that refer to them is a difficult task in NLP. Natural language has a limited set of
pronouns that have to be reassigned to refer to another entity. In code, this is easier
because of the designed nature of programming languages. But scope, number and
interaction of variables make grasping the semantics very difficult [HD17]. We can
address this problem with static and dynamic analysis. Allamanis et al. stipulate that
there will be a wave of machine learning approaches for code understanding that will
leverage such semantics [ABDS18].

What are NLP modelling techniques that are ripe for carrying over?

Despite the huge differences, there are also many similar aspects that might make it
possible to exploit proven concepts from NLP. The naturalness hypothesis states
that since software code is a kind of human communication, programming language
corpora have similar statistical properties to natural language corpora [ABDS18].

At least since a few years, more often than not the starting point in NLP has become
some general-purpose pretrained language model. These are language models that
are trained on raw data with self-supervised training objectives like masked language
modelling [DCLT19, KMBS19] or replaced token detection [CLLM20, FGT+20]16. They
have been hugely successful, define the state-of-the-art in NLP and have long been
commodified in a comprehensive, easy to access library including code and pretrained
(natural language) models [WDS+19].

Code Clone Detection as a task is first in line to be addressed by a general-purpose
language model as it can be approached by merely comparing representations of
code fragments. Works like [WTVP16, ZWZ+19, GWL+19] use self-supervised training
objectives to solve CCD. It seems very promising to turn the modern arsenal of language
modelling techniques developed in NLP towards this task.

These general-purpose representations from pretrained language models could show
their potential beyond CCD best in clearly defined shared tasks. Apart from CCD
(BigCloneEval [SR16]), there exist shared tasks around code retrieval using natural
language (GitHub’s CodeSearchNet17 [HWG+19]) and code generation from natural

16This extends the idea of traditional language modelling with unidirectional Recurrent Neural Networks
(next token prediction, [KJFF16, KZTC20]).

17https://app.wandb.ai/github/codesearchnet/benchmark/leaderboard

102

https://app.wandb.ai/github/codesearchnet/benchmark/leaderboard

5.5 Outlook

language (CoNaLa18 [YDC+18]) generating program snippets from natural language.
Other tasks could include natural language generation from code [Neu15], code summa-
rization [FAB19], code classification tasks, grammaticality/syntax error detection, and
bug localization. It would also be apt to include a general language modelling (token
prediction) task.
The field of NLP has shown that such tasks can be evaluated with shallow models

on top of general-purpose models. This allows to create evaluations summarized in
leaderboards like GLUE19 [WSM+18] and SuperGLUE20 [WPN+19]. There are even
models that natively cast tasks in one master task like conditioned language generation
(CTRL [KMV+19]) or translation (T5 [RSR+19]). An initiative that could bundle these
tasks is “Learning from ‘Big Code”’21 proposed at Dagstuhl Seminar “Programming
with ‘Big Code”’.

18https://conala-corpus.github.io/
19https://gluebenchmark.com
20https://super.gluebenchmark.com/
21http://learnbigcode.github.io/challenges/

103

https://conala-corpus.github.io/
https://gluebenchmark.com
https://super.gluebenchmark.com/
http://learnbigcode.github.io/challenges/

6 Conclusion

This thesis studies matching problems that arise in the natural evolution and connection
of data sources. One one hand, we approach the very generic String Matching problem
by selecting from proven models with very low labelling effort. On the other, we tackle
a matching problem involving very specific data (code deduplication). It cannot be
solved by simple existing models and we therefore study learning a representation which
allows for easy matching. We identify and study common challenges that arise in any
supervised approach to matching tasks because it is concerned with learning a binary
relation which comes with certain properties.

The Record Matching problem is very old (considering the pace of Computer Science)
and ubiquitous. And matching of strings is an even more ubiquitous problem. We
contribute to the existing canon of work in two ways. Firstly, we study string similarity
measures themselves. In this, we offer a new, psychological view on string similarity
measures which emphasizes the role of the human who ultimately defines and judges
similarity. And we discuss for the first time the naming conflict with respect to the
so-called ‘Monge-Elkan similarity’, which we discovered is used to refer to two very
different string similarity measures.
Secondly, we study an Active Learning approach to String Matching which outputs

a string similarity measure and a decision threshold. Our approach requires very low
labelling effort – an order of magnitude less than existing work. The existing work is
mostly on Record Matching, but some of the studied matching data sets are identical.
This efficiency is partly due to our taking the cold start problem very seriously. We
employ secondary ranking when hypotheses are still largely indiscernible and a self-
regulating mechanism to counteract initial biases. There is likely potential for further
improvement by logical inference. The more generic problem of Active Learning of
Record Matching is still active and has recently seen an effort in standardization in the
form of a benchmark framework.
The second matching task we consider is Code Clone Detection (CCD). This is a

problem with much less history and it cannot benefit in the same way from the big set
of simple, tested and proven similarity measures. Our approach is part of the recent
trend towards learning representations as opposed to learning a model on top of bespoke
features. For supervised CCD, there are no benchmarks that provide a standard split
into seen and unseen data. We point out that in the context of learning binary features
this split is important to get right in order to measure generalization. We found that

105

6 Conclusion

token representation plays a very important role. It is an open question if supporting
an open vocabulary can benefit supervised CCD.
We also show that there is a trend to use unsupervised pretrained models (and not

just word embeddings) now standard in NLP. The impact that such models will have
on Code Clone Detection is still to be seen. Also, CCD is the most basic task that lends
itself best to using such representations because it can directly be used for comparison.
Multitask and transfer learning which are very widespread in computer vision as well as
in NLP are exciting prospects for the field of Software Engineering which are facilitated
by these models.

106

Bibliography

[ABDS18] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles
Sutton. A survey of machine learning for big code and naturalness. ACM
Computing Surveys (CSUR), 51(4):1–37, 2018. DOI: 10.1145/3212695. 43,
101, 102

[ACG02] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Elim-
inating fuzzy duplicates in data warehouses. In Proceedings of the 28th
International Conference on Very Large Databases, VLDB 2002, pages
586–597. Elsevier, 2002. DOI: 10.1016/B978-155860869-6/50058-5. 36

[ACGK08] Arvind Arasu, Surajit Chaudhuri, Kris Ganjam, and Raghav Kaushik.
Incorporating string transformations in record matching. In Proceed-
ings of the 2008 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2008, pages 1231–1234. ACM, 2008. DOI:
10.1145/1376616.1376742. 36

[AGK10] Arvind Arasu, Michaela Götz, and Raghav Kaushik. On active learning
of record matching packages. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, pages
783–794, 2010. DOI: 10.1145/1807167.1807252. 39

[AJW+14] Ning An, Lili Jiang, Jianyong Wang, Ping Luo, Min Wang, and Bing Nan
Li. Toward detection of aliases without string similarity. Information
Sciences, 261:89–100, 2014. DOI: 10.1016/j.ins.2013.11.010. 40

[AKR09] Avi Arampatzis, Jaap Kamps, and Stephen Robertson. Where to stop
reading a ranked list?: threshold optimization using truncated score distri-
butions. In Proceedings of the 32nd international ACM SIGIR conference
on Research and development in information retrieval, SIGIR 2009, pages
524–531. ACM, 2009. DOI: 10.1145/1571941.1572031. 36

[ALM16] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-
beat baseline for sentence embeddings. In International Conference on
Learning Representations, ICLR 2017, 2016. URL: https://openreview.

net/forum?id=SyK00v5xx. 42, 100

107

http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.1016/B978-155860869-6/50058-5
http://dx.doi.org/10.1145/1376616.1376742
http://dx.doi.org/10.1145/1376616.1376742
http://dx.doi.org/10.1145/1807167.1807252
http://dx.doi.org/10.1016/j.ins.2013.11.010
http://dx.doi.org/10.1145/1571941.1572031
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx

Bibliography

[AMMS17] Leila Arras, Grégoire Montavon, Klaus-Robert Müller, andWojciech Samek.
Explaining recurrent neural network predictions in sentiment analysis. In
Proceedings of the 8th Workshop on Computational Approaches to Subjec-
tivity, Sentiment and Social Media Analysis, pages 159–168, Copenhagen,
Denmark, September 2017. Association for Computational Linguistics.
DOI: 10.18653/v1/W17-5221. 101

[AP11] Josh Attenberg and Foster Provost. Inactive learning? difficulties employ-
ing active learning in practice. ACM SIGKDD Explorations Newsletter,
12(2):36–41, 2011. DOI: 10.1145/1964897.1964906. 22, 54

[ATGW15] Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. Bimodal
modelling of source code and natural language. In Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, pages
2123–2132, 2015. 43

[AvH01] Avi Arampatzis and André van Hameran. The score-distributional thresh-
old optimization for adaptive binary classification tasks. In Proceedings of
the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2001, pages 285–293. ACM,
2001. DOI: 10.1145/383952.384009. 36, 37, 49

[AX06] Prasanth Anbalagan and Tao Xie. Efficient mutant generation for mutation
testing of pointcuts in aspect-oriented programs. In Second Workshop on
Mutation Analysis, ISSRE 2006, pages 3–3. IEEE, 2006. DOI: 10.1109/MU-
TATION.2006.3. 19

[BA15] Lutz Büch and Artur Andrzejak. Approximate string matching by end-
users using active learning. In Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management, CIKM 2015,
pages 93–102. ACM, 2015. DOI: 10.1145/2806416.2806453. 2, 19, 45

[BA19] Lutz Büch and Artur Andrzejak. Learning-based recursive aggregation
of abstract syntax trees for code clone detection. In Proceedings of
the 26th IEEE International Conference on Software Analysis, Evolu-
tion and Reengineering, SANER 2019, pages 95–104. IEEE, 2019. DOI:
10.1109/SANER.2019.8668039. 2, 40, 71, 74, 83

[Bak92] Brenda S Baker. A program for identifying duplicated code. Computing
Science and Statistics, pages 49–57, 1992. 73

108

http://dx.doi.org/10.18653/v1/W17-5221
http://dx.doi.org/10.1145/1964897.1964906
http://dx.doi.org/10.1145/383952.384009
http://dx.doi.org/10.1109/MUTATION.2006.3
http://dx.doi.org/10.1109/MUTATION.2006.3
http://dx.doi.org/10.1145/2806416.2806453
http://dx.doi.org/10.1109/SANER.2019.8668039
http://dx.doi.org/10.1109/SANER.2019.8668039

Bibliography

[BBM+15] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick
Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance prop-
agation. PloS one, 10(7), 2015. DOI: 10.1371/journal.pone.0130140. 101

[BBS08] Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. A theory of
learning with similarity functions. Machine Learning, 72(1-2):89–112, 2008.
DOI: 10.1007/s10994-008-5059-5. 36

[BD19] Sebastian Baltes and Stephan Diehl. Usage and attribution of stack
overflow code snippets in github projects. Empirical Software Engineering,
24(3):1259–1295, 2019. DOI: 10.1007/s10664-018-9650-5. 71

[BDBU+18] Mathilde Borg Dahl, Asker D Brejnrod, Martin Unterseher, Thomas Hoppe,
Yun Feng, Yuri Novozhilov, Søren J Sørensen, and Martin Schnittler. Ge-
netic barcoding of dark-spored myxomycetes (amoebozoa)—identification,
evaluation and application of a sequence similarity threshold for species
differentiation in ngs studies. Molecular Ecology Resources, 18(2):306–318,
2018. DOI: 10.1111/1755-0998.12725. 37

[BDD15] Charles Bettembourg, Christian Diot, and Olivier Dameron. Optimal
threshold determination for interpreting semantic similarity and particu-
larity: application to the comparison of gene sets and metabolic pathways
using go and chebi. PloS one, 10(7):e0133579, 2015. DOI: 10.1371/jour-
nal.pone.0133579. 37

[BDW08] Sugato Basu, Ian Davidson, and Kiri Wagstaff, editors. Constrained clus-
tering: Advances in algorithms, theory, and applications. Data Mining and
Knowledge Discovery Series. CRC Press, 2008. 22

[BE08] Michele Banko and Oren Etzioni. The tradeoffs between open and tradi-
tional relation extraction. In Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies,
ACL 2008, pages 28–36. Association for Computational Linguistics, 2008.
18

[BFSO84] Leo Breiman, Jerome H. Friedman, Charles J. Stone, and Richard A.
Olshen. Classification and regression trees. CRC press, 1984. DOI:
10.1201/9781315139470. 24

109

http://dx.doi.org/10.1371/journal.pone.0130140
http://dx.doi.org/10.1007/s10994-008-5059-5
http://dx.doi.org/10.1007/s10664-018-9650-5
http://dx.doi.org/10.1111/1755-0998.12725
http://dx.doi.org/10.1371/journal.pone.0133579
http://dx.doi.org/10.1371/journal.pone.0133579
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1201/9781315139470

Bibliography

[BGL+93] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak
Shah. Signature verification using a "siamese" time delay neural network.
In Advances in Neural Information Processing Systems 6, NIPS 1993, pages
737–744. Curran Associates, Inc., 1993. 79, 87

[BHS13] Aurélien Bellet, Amaury Habrard, and Marc Sebban. A survey on metric
learning for feature vectors and structured data. preprint, 2013, 1306.6709.
21, 36, 40

[BKD17] Sebastian Baltes, Richard Kiefer, and Stephan Diehl. Attribution required:
Stack Overflow code snippets in GitHub projects. In IEEE/ACM 39th
International Conference on Software Engineering Companion, ICSE 2017,
pages 161–163. IEEE, 2017. DOI: 10.1109/ICSE-C.2017.99. 71

[BM03a] Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In Proceedings of the ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2003, pages 39–48. ACM, 2003. DOI: 10.1145/956750.956759.
19, 36

[BM03b] Mikhail Bilenko and Raymond J. Mooney. On evaluation and training-set
construction for duplicate detection. In Proceedings of the KDD Workshop
on Data Cleaning, Record Linkage, and Object Consolidation, pages 7–12,
2003. 40

[BMC+03] Mikhail Bilenko, Raymond J. Mooney, William Cohen, Pradeep Raviku-
mar, and Stephen Fienberg. Adaptive name matching in informa-
tion integration. IEEE Intelligent Systems, 18(5):16–23, 2003. DOI:
10.1109/MIS.2003.1234765. 18

[BN09] Jens Bleiholder and Felix Naumann. Data fusion. ACM computing surveys
(CSUR), 41(1):1–41, 2009. DOI: 10.1145/1456650.1456651. 45

[BQL+18] Nikita Bhutani, Kun Qian, Yunyao Li, H.V. Jagadish, Mauricio Hernandez,
and Mitesh Vasa. Exploiting structure in representation of named entities
using active learning. In Proceedings of the 27th International Conference
on Computational Linguistics, COLING 2018, pages 687–699, 2018. URL:
https://www.aclweb.org/anthology/C18-1058. 40

110

http://arxiv.org/abs/1306.6709
http://dx.doi.org/10.1109/ICSE-C.2017.99
http://dx.doi.org/10.1145/956750.956759
http://dx.doi.org/10.1109/MIS.2003.1234765
http://dx.doi.org/10.1109/MIS.2003.1234765
http://dx.doi.org/10.1145/1456650.1456651
https://www.aclweb.org/anthology/C18-1058

Bibliography

[Bra97] Andrew P. Bradley. The use of the area under the roc curve in the
evaluation of machine learning algorithms. Pattern Recognition, 30(7):1145–
1159, 1997. DOI: 10.1016/S0031-3203(96)00142-2. 31

[BTR16] Paula Branco, Luís Torgo, and Rita P. Ribeiro. A survey of predictive mod-
eling under imbalanced distributions. ACM Computing Surveys (CSUR),
49(2):1–31, 2016. DOI: 10.1145/2907070. 22, 23, 27, 34, 36

[BYM+98] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and
Lorraine Bier. Clone detection using abstract syntax trees. In Proceedings
of the International Conference on Software Maintenance, ICSM 1998,
pages 368–377. IEEE, 1998. DOI: 10.1109/ICSM.1998.738528. 73

[BZG13] Daniel Bär, Torsten Zesch, and Iryna Gurevych. DKPro similarity: An
open source framework for text similarity. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, ACL 2013, pages 121–126. Association for Computational
Linguistics, 2013. URL: https://dkpro.github.io/dkpro-similarity/.
19

[CBHK02] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal
of Artificial Intelligence Research, 16:321–357, 2002. DOI: 10.1613/jair.953.
23, 24

[CFT93] S. Carter, R.J. Frank, and D.S.W. Tansley. Clone detection in telecommu-
nications software systems: A neural net approach. In Proceedings of the
International Workshop on Application of Neural Networks to Telecommu-
nications, pages 273–287, 1993. 72

[CH13] Michelle Cheatham and Pascal Hitzler. String similarity metrics for
ontology alignment. In Proceedings of the 12th International Semantic Web
Conference, ISWC 2013, pages 294–309, Berlin, Heidelberg, 2013. Springer,
Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-41338-4_19. 18, 35

[Che17] Ekaterina Chernyak. Comparison of string similarity measures for obscenity
filtering. In Proceedings of the 6th Workshop on Balto-Slavic Natural Lan-
guage Processing, pages 97–101. Association for Computational Linguistics,
2017. 35

111

http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.1145/2907070
http://dx.doi.org/10.1109/ICSM.1998.738528
https://dkpro.github.io/dkpro-similarity/
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1007/978-3-642-41338-4_19

Bibliography

[Chr06] Peter Christen. A comparison of personal name matching: Techniques
and practical issues. In Sixth IEEE International Conference on Data
Mining-Workshops, ICDMW 2006, pages 290–294. IEEE, 2006. DOI:
10.1109/ICDMW.2006.2. 19, 35

[Chr12] Peter Christen. Data matching: concepts and techniques for record linkage,
entity resolution, and duplicate detection. Springer Science & Business
Media, 2012. DOI: 10.1007/978-3-642-31164-2. 11, 18, 19, 20, 23, 25

[CLK+19] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish
Chandra. When deep learning met code search. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE,
pages 964–974, 2019. DOI: 10.1145/3338906.3340458. 43

[CLLM20] Kevin Clark,Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning.
Electra: Pre-training text encoders as discriminators rather than generators.
In International Conference on Learning Representations, ICLR 2020, 2020,
2003.10555. URL: https://openreview.net/forum?id=r1xMH1BtvB.
102

[CM19] Zimin Chen and Martin Monperrus. A literature study of embeddings on
source code. preprint, 2019, 1904.03061. 43, 77

[CNC05] Sam Chapman, Barry Norton, and Fabio Ciravegna. Armadillo: Integrating
knowledge for the semantic web. In Proceedings of the Dagstuhl Seminar
in Machine Learning for the Semantic Web, 2005. 18

[Coh00] William W. Cohen. Data integration using similarity joins and a word-
based information representation language. ACM Transactions on Infor-
mation Systems, 18(3):288–321, July 2000. DOI: 10.1145/352595.352598.
56

[CRF03] William W. Cohen, Pradeep D. Ravikumar, and Stephen E. Fienberg. A
comparison of string distance metrics for namematching tasks. In Pro-
ceedings of the 2003 International Conference on Information Integration
on the Web, IIWEB 2003, pages 73––78. AAAI Press, 2003. URL: https:

//www.cs.cmu.edu/~wcohen/postscript/ijcai-ws-2003.pdf. 11, 17,
18, 19, 20, 35, 39, 56, 57, 58, 59

112

http://dx.doi.org/10.1109/ICDMW.2006.2
http://dx.doi.org/10.1109/ICDMW.2006.2
http://dx.doi.org/10.1007/978-3-642-31164-2
http://dx.doi.org/10.1145/3338906.3340458
http://arxiv.org/abs/2003.10555
https://openreview.net/forum?id=r1xMH1BtvB
http://arxiv.org/abs/1904.03061
http://dx.doi.org/10.1145/352595.352598
https://www.cs.cmu.edu/~wcohen/postscript/ijcai-ws-2003.pdf
https://www.cs.cmu.edu/~wcohen/postscript/ijcai-ws-2003.pdf

Bibliography

[CRFR03] William W. Cohen, Pradeep Ravikumar, Stephen Fienberg, and Kathryn
Rivard. Secondstring: An open source java toolkit of approximate string-
matching techniques, 2003. URL: http://secondstring.sourceforge.

net. 18, 19, 20, 39, 56, 59

[CS06] Horacio Camacho and Abdellah Salhi. A string metric based on a one-to-
one greedy matching algorithm. Research in Computer Science number,
19:171–182, 2006. 13

[CSC04] Sam Chapman, Marco Aurélio Graciotto Silva, and Horacio Camacho.
Simmetrics: A similarity metric library for strings, 2004. 18, 19

[CVW15] Peter Christen, Dinusha Vatsalan, and Qing Wang. Efficient entity resolu-
tion with adaptive and interactive training data selection. In Proceedings
of the IEEE International Conference on Data Mining, ICDM 2015, pages
727–732. IEEE, 2015. DOI: 10.1109/ICDM.2015.63. 39, 62

[CYZ19] Long Chen, Wei Ye, and Shikun Zhang. Capturing source code semantics
via tree-based convolution over API-enhanced AST. In Proceedings of the
16th ACM International Conference on Computing Frontiers, CF 2019,
pages 174–182, 2019. DOI: 10.1145/3310273.3321560. 42

[DAC10] Danica Damljanovic, Milan Agatonovic, and Hamish Cunningham. Nat-
ural language interfaces to ontologies: Combining syntactic analysis and
ontology-based lookup through the user interaction. In Proceedings of the
7th Extended Semantic Web Conference, ESWC 2010, pages 106–120, Berlin,
Heidelberg, 2010. Springer, Springer Berlin Heidelberg. DOI: 10.1007/978-
3-642-13486-9_8. 19

[Dam64] Fred J. Damerau. A technique for computer detection and correction of
spelling errors. Communications of the ACM, 7(3):171–176, 1964. DOI:
10.1145/363958.363994. 14

[Daw07] Richard Dawkins. Fresh Air: Richard Dawkins Explains ’The God Delu-
sion’, March 2007. URL: https://freshairarchive.org/segments/

richard-dawkins-explains-god-delusion. 10

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of the North American

113

http://secondstring.sourceforge.net
http://secondstring.sourceforge.net
http://dx.doi.org/10.1109/ICDM.2015.63
http://dx.doi.org/10.1145/3310273.3321560
http://dx.doi.org/10.1007/978-3-642-13486-9_8
http://dx.doi.org/10.1007/978-3-642-13486-9_8
http://dx.doi.org/10.1145/363958.363994
http://dx.doi.org/10.1145/363958.363994
https://freshairarchive.org/segments/richard-dawkins-explains-god-delusion
https://freshairarchive.org/segments/richard-dawkins-explains-god-delusion

Bibliography

Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL 2019, 2019. DOI: 10.18653/v1/N19-1423.
102

[DG06] Jesse Davis and Mark Goadrich. The relationship between precision-
recall and roc curves. In Proceedings of the 23rd international conference
on Machine learning, ICML 2006, pages 233–240. ACM, 2006. DOI:
10.1145/1143844.1143874. 32, 34

[DHI12] AnHai Doan, Alon Halevy, and Zachary Ives. Principles of data integration.
Elsevier, 2012. DOI: 10.1016/C2011-0-06130-6. 18, 19

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159, 2011. 89

[DKJ+07] Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S
Dhillon. Information-theoretic metric learning. In Proceedings of the 24th
International Conference on Machine Learning, ICML 2007, pages 209–216,
2007. DOI: 10.1145/1273496.1273523. 43

[DLST04] Andrea De Lucia, Giuseppe Scanniello, and Genoveffa Tortora. Identifying
clones in dynamic web sites using similarity thresholds. In Proceedings
of the Sixth International Conference on Enterprise Information Systems,
ICEIS 2004, pages 391–396, 2004. DOI: 10.5220/0002597303910396. 74

[Dou17] Chenxiao Dou. Property of Density in Entity Resolution and its Usage
for Blocking and Learning. PhD thesis, University of New South Wales,
Sydney, Australia, 2017. 39

[dPAEG15] Maria del Pilar Angeles and Adrian Espino-Gamez. Comparison of methods
Hamming distance, Jaro, and Monge-Elkan. In Proceedings of the Seventh
International Conference on Advances in Databases, Knowledge, and Data
Applications, DBKDA 2015, page 73, 2015. 20

[DS17] Vijay Prakash Dwivedi and Manish Shrivastava. Beyond word2vec: Embed-
ding words and phrases in same vector space. In Proceedings of the 14th In-
ternational Conference on Natural Language Processing, ICON 2017, pages
205–211, 2017. URL: https://www.aclweb.org/anthology/W17-7526/.
78

114

http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1145/1143844.1143874
http://dx.doi.org/10.1145/1143844.1143874
http://dx.doi.org/10.1016/C2011-0-06130-6
http://dx.doi.org/10.1145/1273496.1273523
http://dx.doi.org/10.5220/0002597303910396
https://www.aclweb.org/anthology/W17-7526/

Bibliography

[DSLW17] Chenxiao Dou, Daniel Sun, Guoqiang Li, and Raymond K Wong. Ac-
tive learning with density-initialized decision tree for record matching.
In Proceedings of the 29th International Conference on Scientific and
Statistical Database Management, SSDBM 2017, pages 1–12, 2017. DOI:
10.1145/3085504.3085518. 39

[DSSOH07] Roberto Da Silva, Raquel Stasiu, Viviane Moreira Orengo, and Car-
los A Heuser. Measuring quality of similarity functions in approxi-
mate data matching. Journal of Informetrics, 1(1):35–46, 2007. DOI:
10.1016/j.joi.2006.09.001. 35, 36, 37

[EHBG07] Seyda Ertekin, Jian Huang, Leon Bottou, and Lee Giles. Learning on
the border: active learning in imbalanced data classification. In Pro-
ceedings of the sixteenth ACM Conference on Conference on Information
and Knowledge management, CIKM 2007, pages 127–136, 2007. DOI:
10.1145/1321440.1321461. 24

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios.
Duplicate record detection: A survey. IEEE Transactions on knowledge
and data engineering, 19(1):1–16, 2007. DOI: 10.1109/TKDE.2007.250581.
18

[EJ07] Michael Ellsworth and Adam Janin. Mutaphrase: Paraphrasing with
framenet. In Proceedings of the ACL-PASCAL Workshop on Textual En-
tailment and Paraphrasing, pages 143–150. Association for Computational
Linguistics, 2007. URL: https://www.aclweb.org/anthology/W07-1424.
9

[EM20] Charles P. Elkan and Alvaro Edmundo Monge. private correspondence,
January 2020. 58

[EW19] Mathias Etcheverry and Dina Wonsever. Unraveling antonym’s word
vectors through a Siamese-like network. In Proceedings of the 57th An-
nual Meeting of the Association for Computational Linguistics, ACL 2019,
pages 3297–3307. Association for Computational Linguistics, 2019. DOI:
10.18653/v1/P19-1319. 41

[FAB19] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. Struc-
tured neural summarization. In International Conference on Learning Rep-

115

http://dx.doi.org/10.1145/3085504.3085518
http://dx.doi.org/10.1145/3085504.3085518
http://dx.doi.org/10.1016/j.joi.2006.09.001
http://dx.doi.org/10.1016/j.joi.2006.09.001
http://dx.doi.org/10.1145/1321440.1321461
http://dx.doi.org/10.1145/1321440.1321461
http://dx.doi.org/10.1109/TKDE.2007.250581
https://www.aclweb.org/anthology/W07-1424
http://dx.doi.org/10.18653/v1/P19-1319
http://dx.doi.org/10.18653/v1/P19-1319

Bibliography

resentations, ICLR 2019, 2019, 1811.01824. URL: https://openreview.

net/forum?id=H1ersoRqtm. 103

[Faw06] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters,
27(8):861–874, 2006. DOI: 10.1016/j.patrec.2005.10.010. 30, 31, 32, 34

[FCW16] Jeffrey Fisher, Peter Christen, and Qing Wang. Active learning based
entity resolution using markov logic. In Proceedings of the 20th Pacific-
Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2016,
pages 338–349, Berlin, Heidelberg, 2016. Springer. DOI: 10.1007/978-3-
319-31750-2_27. 40

[FGT+20] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou.
CodeBERT: A pre-trained model for programming and natural languages.
preprint, 2020, 2002.08155. 43, 102

[Fir57] John R. Firth. A synopsis of linguistic theory, 1930-1955. Studies in
Linguistic Analysis, 1952–59:1–32, 1957. 75

[FK00] Dayne Freitag and Nicholas Kushmerick. Boosted wrapper induction. In
Proceedings of the Seventeenth National Conference on Artificial Intel-
ligence and Twelfth Conference on Innovative Applications of Artificial
Intelligence, pages 577–583. AAAI Press, 2000. 58

[FK15] Peter Flach and Meelis Kull. Precision-recall-gain curves: Pr analysis done
right. In Advances in Neural Information Processing Systems 28, NIPS
2015, pages 838–846. Curran Associates, Inc., 2015. 29, 31, 32, 33, 34

[FS69] Ivan P. Fellegi and Alan B. Sunter. A theory for record linkage. Journal
of the American Statistical Association, 64(328):1183–1210, 1969. DOI:
10.1080/01621459.1969.10501049. 36, 45

[FS92] Carol Friedman and Robert Sideli. Tolerating spelling errors during patient
validation. Computers and Biomedical Research, 25(5):486–509, 1992. DOI:
10.1016/0010-4809(92)90005-U. 12

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, AISTATS 2010,
pages 249–256, 2010. 89

116

http://arxiv.org/abs/1811.01824
https://openreview.net/forum?id=H1ersoRqtm
https://openreview.net/forum?id=H1ersoRqtm
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1007/978-3-319-31750-2_27
http://dx.doi.org/10.1007/978-3-319-31750-2_27
http://arxiv.org/abs/2002.08155
http://dx.doi.org/10.1080/01621459.1969.10501049
http://dx.doi.org/10.1080/01621459.1969.10501049
http://dx.doi.org/10.1016/0010-4809(92)90005-U
http://dx.doi.org/10.1016/0010-4809(92)90005-U

Bibliography

[GCCH17] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. Semantically enhanced
software traceability using deep learning techniques. In Proceedings of the
IEEE/ACM 39th International Conference on Software Engineering, ICSE
2017, pages 3–14. IEEE, 2017. DOI: 10.1109/ICSE.2017.9. 43

[GDD+14] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton,
Narasimhan Rampalli, Jude Shavlik, and Xiaojin Zhu. Corleone: hands-
off crowdsourcing for entity matching. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data, SIG-
MOD 2014, pages 601–612, New York, NY, USA, 2014. ACM. DOI:
10.1145/2588555.2588576. 19, 39

[GJM13] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech
recognition with deep bidirectional LSTM. In Proceedings of the IEEE
Workshop on Automatic Speech Recognition and Understanding, pages
273–278. IEEE, 2013. DOI: 10.1109/ASRU.2013.6707742. 79

[GK96] Christoph Goller and Andreas Kuchler. Learning task-dependent dis-
tributed representations by backpropagation through structure. In Pro-
ceedings of the International Conference on Neural Networks, volume 1 of
ICNN 1996, pages 347–352. IEEE, 1996. DOI: 10.1109/ICNN.1996.548916.
82

[GK09] Nils Göde and Rainer Koschke. Incremental clone detection. In Proceedings
of the 13th European Conference on Software Maintenance and Reengineer-
ing, CSMR 2009, pages 219–228. IEEE, 2009. DOI: 10.1109/CSMR.2009.20.
73

[GL14] Yoav Goldberg and Omer Levy. word2vec explained: deriving Mikolov et
al.’s negative-sampling word-embedding method. preprint, 2014, 1402.3722.
78

[GL16] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2016, pages
855–864, 2016. DOI: 10.1145/2939672.2939754. 42

[GMIF16] Najlah Gali, Radu Mariescu-Istodor, and Pasi Fränti. Similarity measures
for title matching. In Proceedings of the 23rd International Conference

117

http://dx.doi.org/10.1109/ICSE.2017.9
http://dx.doi.org/10.1145/2588555.2588576
http://dx.doi.org/10.1145/2588555.2588576
http://dx.doi.org/10.1109/ASRU.2013.6707742
http://dx.doi.org/10.1109/ICNN.1996.548916
http://dx.doi.org/10.1109/CSMR.2009.20
http://arxiv.org/abs/1402.3722
http://dx.doi.org/10.1145/2939672.2939754

Bibliography

on Pattern Recognition, ICPR 2016, pages 1548–1553. IEEE, 2016. DOI:
10.1109/ICPR.2016.7899857. 35

[GRC11] Jim Gemmell, Benjamin I.P. Rubinstein, and Ashok K. Chandra. Improving
entity resolution with global constraints. Technical report, Microsoft
Research, 2011. 25, 61

[GWL+19] Yi Gao, Zan Wang, Shuang Liu, Lin Yang, Wei Sang, and Yuanfang Cai.
TECCD: A tree embedding approach for code clone detection. In Proceed-
ings of the IEEE International Conference on Software Maintenance and
Evolution, ICSME 2019, pages 145–156. IEEE, 2019. DOI: 10.1109/IC-
SME.2019.00025. 42, 102

[GWP+17] Chuancong Gao, Jiannan Wang, Jian Pei, Rui Li, and Yi Chang.
Preference-driven similarity join. In Proceedings of the International
Conference on Web Intelligence, WI 2017, pages 97–105, 2017. DOI:
10.1145/3106426.3106484. 37

[Hah14] Ulrike Hahn. Similarity. Wiley Interdisciplinary Reviews: Cognitive Science,
5(3):271–280, 2014. DOI: 10.1002/wcs.1282. 5

[HBFS01] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber.
A field guide to dynamical recurrent neural networks, chapter Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies.
Wiley-IEEE Press, 2001. DOI: 10.1109/9780470544037.ch14. 79

[HCL06] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction
by learning an invariant mapping. In Proceedings of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, volume 2 of
CVPR 2006, pages 1735–1742. IEEE, 2006. DOI: 10.1109/CVPR.2006.100.
87

[HD17] Vincent J. Hellendoorn and Premkumar Devanbu. Are deep neural net-
works the best choice for modeling source code? In Proceedings of the 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017,
pages 763–773, 2017. DOI: 10.1145/3106237.3106290. 75, 102

[HGD19] Rishi Hazra, Shubham Gupta, and Ambedkar Dukkipati. Active2 learning:
Actively reducing redundancies in active learning methods for sequence
tagging. preprint, 2019, 1911.00234. 39

118

http://dx.doi.org/10.1109/ICPR.2016.7899857
http://dx.doi.org/10.1109/ICPR.2016.7899857
http://dx.doi.org/10.1109/ICSME.2019.00025
http://dx.doi.org/10.1109/ICSME.2019.00025
http://dx.doi.org/10.1145/3106426.3106484
http://dx.doi.org/10.1145/3106426.3106484
http://dx.doi.org/10.1002/wcs.1282
http://dx.doi.org/10.1109/9780470544037.ch14
http://dx.doi.org/10.1109/CVPR.2006.100
http://dx.doi.org/10.1145/3106237.3106290
http://arxiv.org/abs/1911.00234

Bibliography

[HM82] James A. Hanley and Barbara J. McNeil. The meaning and use of the
area under a receiver operating characteristic (roc) curve. Radiology,
143(1):29–36, 1982. DOI: 10.1148/radiology.143.1.7063747. 34

[Ho95] Tin Kam Ho. Random decision forests. In Proceedings of 3rd International
Conference on Document Analysis and Recognition, volume 1 of ICDAR
1995, pages 278–282. IEEE, 1995. DOI: 10.1109/ICDAR.1995.598994. 39

[HWG+19] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and
Marc Brockschmidt. CodeSearchNet challenge: Evaluating the state of
semantic code search. preprint, 2019, 1909.09436. 102

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classifica-
tion. In Proceedings of the IEEE International Conference on Computer
Vision, ICCV 2015, pages 1026–1034, 2015. DOI: 10.1109/ICCV.2015.123.
89

[IJB12] Robert Isele, Anja Jentzsch, and Christian Bizer. Active learning of
expressive linkage rules for the web of data. In Proceedings of the 12th
International Conference on Web Engineering, ICWE 2012, pages 411–418,
Berlin, Heidelberg, 2012. Springer. DOI: 978-3-642-31753-8_34. 39

[Jar89] Matthew A. Jaro. Advances in record-linkage methodology as applied to
matching the 1985 census of Tampa, Florida. Journal of the American
Statistical Association, 84(406):414–420, 1989. DOI: 10.2307/2289924. 14

[JBGG09] Sergio Jimenez, Claudia Becerra, Alexander Gelbukh, and Fabio Gonzalez.
Generalized Mongue-Elkan method for approximate text string comparison.
In Proceedings of the 10th International conference on intelligent text
processing and computational linguistics, CICLing 2009, pages 559–570.
Springer, 2009. DOI: 10.1007/978-3-642-00382-0_45. 18, 19

[JDH10] Elmar Juergens, Florian Deißenböck, and Benjamin Hummel. Code similar-
ities beyond copy & paste. In Proceedings of the 14th European Conference
on Software Maintenance and Reengineering, CSMR 2010, pages 78–87.
IEEE, 2010. DOI: 10.1109/CSMR.2010.33. 72

[JDHW09] Elmar Juergens, Florian Deißenböck, Benjamin Hummel, and Stefan Wag-
ner. Do code clones matter? In Proceedings of the IEEE 31st International

119

http://dx.doi.org/10.1148/radiology.143.1.7063747
http://dx.doi.org/10.1109/ICDAR.1995.598994
http://arxiv.org/abs/1909.09436
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/978-3-642-31753-8_34
http://dx.doi.org/10.2307/2289924
http://dx.doi.org/10.1007/978-3-642-00382-0_45
http://dx.doi.org/10.1109/CSMR.2010.33

Bibliography

Conference on Software Engineering, ICSE 2009, pages 485–495. IEEE,
2009. DOI: 10.1109/ICSE.2009.5070547. 72

[JMSG07] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu.
Deckard: Scalable and accurate tree-based detection of code clones. In
Proceedings of the 29th International Conference on Software Engineering,
ICSE 2007, pages 96–105. IEEE, 2007. DOI: 10.1109/ICSE.2007.30. 73,
74, 90

[KB19] Mahmut Kaya and Hasan Şakir Bilge. Deep metric learning: a survey.
Symmetry, 11(9):1066, 2019. DOI: 10.3390/sym11091066. 21, 23, 40

[KBdR16] Tom Kenter, Alexey Borisov, and Maarten de Rijke. Siamese CBOW: Op-
timizing word embeddings for sentence representations. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics,
ACL 2016, pages 941–951, 2016. DOI: 10.18653/v1/P16-1089. 41, 78

[KBR+20] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton,
and Andrea Janes. Big code!= big vocabulary: Open-vocabulary models
for source code. In Proceedings of the 42nd International Conference on
Software Engineering, ICSE 2020, 2020. DOI: 10.1145/3377811.3380342.
43, 75, 77, 100, 102

[KDSG+16] Pradap Konda, Sanjib K. Das, Paul Suganthan G.C., AnHai Doan, Adel
Ardalan, Jeffrey R. Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff F.
Naughton, Shishir K. Prasad, Ganesh Krishnan, Rohit Deep, and Vijay
Roghavendra. Magellan: Toward building entity matching management
systems. Proceedings of the VLDB Endowment, 9(12):1197–1208, 2016.
DOI: 10.14778/2994509.2994535. 19

[KFF06] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using
abstract syntax suffix trees. In Proceedings of the 13th Working Conference
on Reverse Engineering, WCRE 2006, pages 253–262. IEEE, 2006. DOI:
10.1109/WCRE.2006.18. 73

[KJ12] Purushottam Kar and Prateek Jain. Supervised learning with similarity
functions. In Advances in Neural Information Processing Systems 25, NIPS
2012, pages 215–223. Curran Associates, Inc., 2012. 36

120

http://dx.doi.org/10.1109/ICSE.2009.5070547
http://dx.doi.org/10.1109/ICSE.2007.30
http://dx.doi.org/10.3390/sym11091066
http://dx.doi.org/10.18653/v1/P16-1089
http://dx.doi.org/10.1145/3377811.3380342
http://dx.doi.org/10.14778/2994509.2994535
http://dx.doi.org/10.1109/WCRE.2006.18
http://dx.doi.org/10.1109/WCRE.2006.18

Bibliography

[KJFF16] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing
and understanding recurrent networks. In Workshop proceedings
of the First International Conference on Learning Representations
(ICLR), 2016, 1506.02078. URL: https://openreview.net/forum?id=

71BmK0m6qfAE8VvKUQWB. 102

[KK98] Matjaz Kukar and Igor Kononenko. Cost-sensitive learning with neural
networks. In Proceedings of the 13th European Conference on Artificial
Intelligence, volume 98 of ECAI 1998, pages 445–449, 1998. 88

[KKI02] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a
multilinguistic token-based code clone detection system for large scale
source code. IEEE Transactions on Software Engineering, 28(7):654–670,
2002. DOI: 10.1109/TSE.2002.1019480. 73

[KKP06] Sotiris Kotsiantis, Dimitris Kanellopoulos, and Panayiotis Pintelas. Han-
dling imbalanced datasets: A review. GESTS International Transactions
on Computer Science and Engineering, 30(1):25–36, 2006. 23, 36

[KMBS19] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Pre-
trained contextual embedding of source code. preprint, 2019, 2001.00059.
URL: https://openreview.net/forum?id=rygoURNYvS. 43, 102

[KMV+19] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong,
and Richard Socher. CTRL: A conditional transformer language model
for controllable generation. preprint, 2019, 1909.05858. 103

[KNLH19] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey E. Hin-
ton. Similarity of neural network representations revisited. In Proceedings
of the 36th International Conference on Machine Learning, ICML 2019,
pages 3519–3529, 2019. 16

[Köp14] Hanna Köpcke. Object Matching on real-world problems. PhD thesis,
Universität Leipzig, 2014. 35, 37

[KOPC14] Mincheol Kim, Hyun-Seok Oh, Sang-Cheol Park, and Jongsik Chun. To-
wards a taxonomic coherence between average nucleotide identity and
16S rRNA gene sequence similarity for species demarcation of prokary-
otes. International Journal of Systematic and Evolutionary Microbiology,
64(2):346–351, 2014. DOI: 10.1099/ijs.0.059774-0. 37

121

http://arxiv.org/abs/1506.02078
https://openreview.net/forum?id=71BmK0m6qfAE8VvKUQWB
https://openreview.net/forum?id=71BmK0m6qfAE8VvKUQWB
http://dx.doi.org/10.1109/TSE.2002.1019480
http://arxiv.org/abs/2001.00059
https://openreview.net/forum?id=rygoURNYvS
http://arxiv.org/abs/1909.05858
http://dx.doi.org/10.1099/ijs.0.059774-0

Bibliography

[KPDA09] Evangelos Kanoulas, Virgil Pavlu, Keshi Dai, and Javed A. Aslam. Mod-
eling the score distributions of relevant and non-relevant documents. In
Proceedings of the 2nd International Conference on Theory of Information
Retrieval: Advances in Information Retrieval Theory, ICTIR 2009, pages
152–163. Springer, 2009. DOI: 10.1007/978-3-642-04417-5_14. 36

[KQG+19] Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa.
Low-resource deep entity resolution with transfer and active learning. In
Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2019, pages 5851–5861. Association for Computa-
tional Linguistics, 2019. DOI: 10.18653/v1/P19-1586. 40

[KR10] Hanna Köpcke and Erhard Rahm. Frameworks for entity matching: A
comparison. Data & Knowledge Engineering, 69(2):197–210, 2010. DOI:
10.1016/j.datak.2009.10.003. 18, 45

[Kri01] Jens Krinke. Identifying similar code with program dependence
graphs. In Proceedings of the Eighth Working Conference on Re-
verse Engineering, WCRE 2001, pages 301–309. IEEE, 2001. DOI:
10.1109/WCRE.2001.957835. 74

[KTR09] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Comparative evaluation
of entity resolution approaches with FEVER. Proceedings of the VLDB
Endowment, 2(2):1574–1577, 2009. DOI: 10.14778/1687553.1687595. 35

[KTR10] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity
resolution approaches on real-world match problems. Proceedings of the
VLDB Endowment, 3(1-2):484–493, 2010. DOI: 10.14778/1920841.1920904.
35

[Kul13] Brian Kulis. Metric learning: A survey. Foundations and Trends R© in
Machine Learning, 5(4):287–364, 2013. DOI: 10.1561/2200000019. 21, 40

[Kus97] Nicholas Kushmerick. Wrapper induction for information extraction. PhD
thesis, University of Washington, 1997. 58

[KZTC20] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. Code
prediction by feeding trees to transformers. preprint, 2020, 2003.13848. 43,
102

122

http://dx.doi.org/10.1007/978-3-642-04417-5_14
http://dx.doi.org/10.18653/v1/P19-1586
http://dx.doi.org/10.1016/j.datak.2009.10.003
http://dx.doi.org/10.1016/j.datak.2009.10.003
http://dx.doi.org/10.1109/WCRE.2001.957835
http://dx.doi.org/10.1109/WCRE.2001.957835
http://dx.doi.org/10.14778/1687553.1687595
http://dx.doi.org/10.14778/1920841.1920904
http://dx.doi.org/10.1561/2200000019
http://arxiv.org/abs/2003.13848

Bibliography

[LCHY06] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. GPLAG: detec-
tion of software plagiarism by program dependence graph analysis. In
Proceedings of the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, KDD 2006, pages 872–881, 2006. DOI:
10.1145/1150402.1150522. 74

[LCL+04] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul M.B. Vitányi. The similarity
metric. IEEE transactions on Information Theory, 50(12):3250–3264, 2004.
DOI: 10.1109/TIT.2004.838101. 15

[Lev66] Vladimir I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10(8):707–710, 1966. 14

[LFZ+17] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder.
CCLearner: A deep learning-based clone detection approach. In Pro-
ceedings of the IEEE International Conference on Software Maintenance
and Evolution, ICSME 2017, pages 249–260. IEEE, 2017. DOI: 10.1109/IC-
SME.2017.46. 26, 41, 83

[LLFZ18] Omer Levy, Kenton Lee, Nicholas FitzGerald, and Luke Zettlemoyer. Long
Short-Term Memory as a dynamically computed element-wise weighted
sum. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, pages 732–739. Association for
Computational Linguistics, 2018. DOI: 10.18653/v1/P18-2116. 93

[LLMZ06] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-
Miner: Finding copy-paste and related bugs in large-scale software code.
IEEE Transactions on software Engineering, 32(3):176–192, 2006. DOI:
10.1109/TSE.2006.28. 73

[LMM+17] Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub
Zitny, Hitesh Sajnani, and Jan Vitek. DéjàVu: a map of code duplicates
on GitHub. Proceedings of the ACM on Programming Languages, 1:1–28,
2017. DOI: 10.1145/3133908. 71

[LO04] Chin-Yew Lin and Franz Josef Och. Automatic evaluation of machine
translation quality using longest common subsequence and skip-bigram
statistics. In Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, ACL 2004, page 605. Association for Computa-
tional Linguistics, 2004. DOI: 10.3115/1218955.1219032. 13

123

http://dx.doi.org/10.1145/1150402.1150522
http://dx.doi.org/10.1145/1150402.1150522
http://dx.doi.org/10.1109/TIT.2004.838101
http://dx.doi.org/10.1109/ICSME.2017.46
http://dx.doi.org/10.1109/ICSME.2017.46
http://dx.doi.org/10.18653/v1/P18-2116
http://dx.doi.org/10.1109/TSE.2006.28
http://dx.doi.org/10.1109/TSE.2006.28
http://dx.doi.org/10.1145/3133908
http://dx.doi.org/10.3115/1218955.1219032

Bibliography

[LSJ04] Alon Lavie, Kenji Sagae, and Shyamsundar Jayaraman. The significance
of recall in automatic metrics for mt evaluation. In Proceedings of the 6th
Conference of the Association for Machine Translation in the Americas,
AMTA 2004, pages 134–143, Berlin, Heidelberg, 2004. Springer. DOI:
10.1007/978-3-540-30194-3_16. 13

[LSLH18] Lingli Li, Xiaodan Shang, Jinbao Li, and Jin Hu. Learning distance
metrics for entity resolution. IEEE Access, 6:54900–54909, 2018. DOI:
10.1109/ACCESS.2018.2871168. 41

[Lus71] Lee B Lusted. Signal detectability and medical decision-making. Sci-
ence, 171(3977):1217–1219, 1971. URL: https://www.jstor.org/stable/

1731167. 31

[Lus84] Lee B Lusted. Roc recollected. Medical Decision Making, 4(2):131–135,
1984. DOI: 10.1177/0272989X8400400201. 31

[Mat75] Brian W. Matthews. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442–451, 1975. DOI: 10.1016/0005-2795(75)90109-
9. 30

[MC91] George A Miller and Walter G. Charles. Contextual correlates of seman-
tic similarity. Language and cognitive processes, 6(1):1–28, 1991. DOI:
10.1080/01690969108406936. 5, 9, 10, 76

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. InWorkshop proceedings
of the First International Conference on Learning Representations (ICLR),
2013, 1301.3781. 76

[ME95] Alvaro Edmundo Monge and Charles P. Elkan. Integrating external
information sources to guide worldwide web information retrieval. In
AAAJ 1995 Fall Symposium on Knowledge Navigation and Retrieval,
pages 1–12, 1995. 12, 16, 17, 18, 59

[ME96] Alvaro Edmundo Monge and Charles P. Elkan. The field matching problem:
Algorithms and applications. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, KDD 1996, pages

124

http://dx.doi.org/10.1007/978-3-540-30194-3_16
http://dx.doi.org/10.1007/978-3-540-30194-3_16
http://dx.doi.org/10.1109/ACCESS.2018.2871168
http://dx.doi.org/10.1109/ACCESS.2018.2871168
https://www.jstor.org/stable/1731167
https://www.jstor.org/stable/1731167
http://dx.doi.org/10.1177/0272989X8400400201
http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://dx.doi.org/10.1080/01690969108406936
http://dx.doi.org/10.1080/01690969108406936
http://arxiv.org/abs/1301.3781

Bibliography

267–270. AAAI Press, 1996. URL: http://www.aaai.org/Papers/KDD/

1996/KDD96-044.pdf. 17, 18, 19, 58

[ME97] Alvaro Edmundo Monge and Charles P. Elkan. An efficient domain-
independent algorithm for detecting approximately duplicate database
records. In Proceedings of the SIGMOD Workshop on Research Issues on
Data Mining and Knowledge Discovery, pages 23–29, 1997. 17, 19

[MH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-SNE. Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.
96

[MK06] Matthew Michelson and Craig A Knoblock. Learning blocking schemes for
record linkage. In Proceedings of the 21st national conference on Artificial
intelligence, volume 6 of AAAI 2006, pages 440–445, 2006. 23

[MK17] Joel Ruben Antony Moniz and David Krueger. Nested LSTMs. In Pro-
ceedings of the Ninth Asian Conference on Machine Learning, ACML 2017,
pages 530–544, 2017. 79

[MLJ+16] Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang. Convolutional neural
networks over tree structures for programming language processing. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
AAAI 2016, pages 1287––1293, 2016. DOI: 10.5555/3015812.3016002. 42

[MLM96] Jean Mayrand, Claude Leblanc, and Ettore Merlo. Experiment on the
automatic detection of function clones in a software system using metrics.
In Proceedings of the International Conference on Software Maintenance,
volume 96 of ICSM 1996, page 244, 1996. DOI: 10.1109/ICSM.1996.565012.
74

[MNU00] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient clustering
of high-dimensional data sets with application to reference matching.
In Proceedings of the sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2000, pages 169––178, New
York, NY, USA, 2000. DOI: 10.1145/347090.347123. 58

[Mon97] Alvaro Edmundo Monge. Adaptive Detection of Approximately Duplicate
Database Records and the Database Intergration Approach to Information
Discovery. PhD thesis, University of California, San Diego, 1997. 17

125

http://www.aaai.org/Papers/KDD/1996/KDD96-044.pdf
http://www.aaai.org/Papers/KDD/1996/KDD96-044.pdf
http://dx.doi.org/10.5555/3015812.3016002
http://dx.doi.org/10.1109/ICSM.1996.565012
http://dx.doi.org/10.1145/347090.347123

Bibliography

[Mon00] Alvaro Edmundo Monge. An adaptive and efficient algorithm for de-
tecting approximately duplicate database records. International Journal
on Information Systems Special Issueon Data Extraction, Cleaning, and
Reconciliation, 2000. 25

[MPS20] George Mathew, Chris Parnin, and Kathryn T. Stolee. Slacc: Simion-
based language agnostic code clones. In Proceedings of the 42nd Inter-
national Conference on Software Engineering, ICSE 2020, 2020. DOI:
10.1145/3377811.3380407. 72

[MPSS20] Venkata Vamsikrishna Meduri, Lucian Popa, Prithviraj Sen, and Mo-
hamed Sarwat. A comprehensive benchmark framework for active learning
methods in entity matching. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2020, page
1133–1147. ACM, 2020. DOI: 10.1145/3318464.3380597. 40

[MRB18] Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational
similarity in neural networks with canonical correlation. In Advances in
Neural Information Processing Systems 31, NeurIPS 2018, pages 5727–5736.
Curran Associates, Inc., 2018. 16

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality.
In Advances in Neural Information Processing Systems 26, NIPS 2013,
pages 3111–3119. Curran Associates, Inc., 2013. 76, 77

[MT16] Jonas Mueller and Aditya Thyagarajan. Siamese recurrent architectures
for learning sentence similarity. In Proceedings of the thirtieth Conference
on Artificial Intelligence, AAAI 2016, 2016. 40

[Mun21] Robert Munro. Human-in-the-loop machine learning. Manning Early
Access Program. Manning, estim. 2021. URL: https://www.manning.

com/books/human-in-the-loop-machine-learning. 47

[MWGM10] David Menestrina, Steven Euijong Whang, and Hector Garcia-Molina.
Evaluating entity resolution results. Proceedings of the VLDB Endowment,
3(1-2):208–219, 2010. DOI: 10.14778/1920841.1920871. 34

[MYC08] Erwan Moreau, François Yvon, and Olivier Cappé. Robust similarity
measures for named entities matching. In Proceedings of the 22nd In-

126

http://dx.doi.org/10.1145/3377811.3380407
http://dx.doi.org/10.1145/3377811.3380407
http://dx.doi.org/10.1145/3318464.3380597
https://www.manning.com/books/human-in-the-loop-machine-learning
https://www.manning.com/books/human-in-the-loop-machine-learning
http://dx.doi.org/10.14778/1920841.1920871

Bibliography

ternational Conference on Computational Linguistics, Coling 2008, pages
593–600, 2008. 18, 19, 35

[MYZ13] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities
in continuous space word representations. In Proceedings of the Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL 2013, pages 746–751.
Association for Computational Linguistics, 2013. URL: https://www.

aclweb.org/anthology/N13-1090/. 76

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching.
ACM Computing Surveys (CSUR), 33(1):31––88, March 2001. DOI:
10.1145/375360.375365. 11

[Neu15] Graham Neubig. Survey of methods to generate natural language from
source code, 2015. URL: http://www.languageandcode.org/nlse2015/

neubig15nlse-survey.pdf. 103

[NH10] Felix Naumann and Melanie Herschel. An introduction to duplicate
detection. Synthesis Lectures on Data Management, 2(1):1–87, 2010. DOI:
10.2200/S00262ED1V01Y201003DTM003. 12, 18, 19

[NL12] Axel-Cyrille Ngonga Ngomo and Klaus Lyko. EAGLE: Efficient active
learning of link specifications using genetic programming. In Proceedings
of the 9th Extended Semantic Web Conference, ESWC 2012, pages 149–163,
Berlin, Heidelberg, 2012. Springer. DOI: 10.1007/978-3-642-30284-8_17.
39

[NLAH11] Axel-Cyrille Ngonga Ngomo, Jens Lehmann, Sören Auer, and Konrad
Höffner. Raven – active learning of link specifications. In Proceedings of
the 6th International Conference on Ontology Matching, OM 2011, 2011.
39

[Noa09] Andreas Noack. Modularity clustering is force-directed layout. Physical
Review E, 79(2), 2009. DOI: 10.1103/PhysRevE.79.026102. 52

[NVR16] Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. Learning text
similarity with siamese recurrent networks. In Proceedings of the 1st
Workshop on Representation Learning for NLP, pages 148–157, 2016. DOI:
10.18653/v1/W16-1617. 40

127

https://www.aclweb.org/anthology/N13-1090/
https://www.aclweb.org/anthology/N13-1090/
http://dx.doi.org/10.1145/375360.375365
http://dx.doi.org/10.1145/375360.375365
http://www.languageandcode.org/nlse2015/neubig15nlse-survey.pdf
http://www.languageandcode.org/nlse2015/neubig15nlse-survey.pdf
http://dx.doi.org/10.2200/S00262ED1V01Y201003DTM003
http://dx.doi.org/10.2200/S00262ED1V01Y201003DTM003
http://dx.doi.org/10.1007/978-3-642-30284-8_17
http://dx.doi.org/10.1103/PhysRevE.79.026102
http://dx.doi.org/10.18653/v1/W16-1617
http://dx.doi.org/10.18653/v1/W16-1617

Bibliography

[NW70] Saul B Needleman and Christian D Wunsch. A general method applicable
to the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443–453, 1970. 14

[OSC15] Open Science Collaboration. Estimating the reproducibility of psycho-
logical science. Science, 349(6251), 2015. DOI: 10.1126/science.aac4716.
21

[Ott76] Karl J. Ottenstein. An algorithmic approach to the detection and pre-
vention of plagiarism. ACM SIGCSE Bulletin, 8(4):30–41, 1976. DOI:
10.1145/382222.382462. 74

[PBF54] H.W. Peterson, T.G. Birdsall, and W. Fox. The theory of signal detectabil-
ity. Transactions of the IRE Professional Group on Information Theory,
4(4):171–212, 1954. DOI: 10.1109/TIT.1954.1057460. 31

[Pen11] Roger D. Peng. Reproducible research in computational science. Science,
334(6060):1226–1227, 2011. DOI: 10.1126/science.1213847. 21

[Ple18] Hans Ekkehard Plesser. Reproducibility vs. replicability: a brief history
of a confused terminology. Frontiers in Neuroinformatics, 11(76), 2018.
DOI: 10.3389/fninf.2017.00076. 21

[PNN+09] Nam H Pham, Hoan Anh Nguyen, Tung Thanh Nguyen, Jafar M. Al-
Kofahi, and Tien N. Nguyen. Complete and accurate clone detection
in graph-based models. In Proceedings of the IEEE 31st International
Conference on Software Engineering, ICSE 2009, pages 276–286. IEEE,
2009. DOI: 10.1109/ICSE.2009.5070528. 74

[PRWZ02] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU:
a method for automatic evaluation of machine translation. In Proceedings
of the 40th Annual Meeting on Association for Computational Linguistics,
ACL 2002, pages 311–318. Association for Computational Linguistics, 2002.
DOI: 10.3115/1073083.1073135. 13

[PS07] Jakub Piskorski and Marcin Sydow. Usability of string distance metrics
for name matching tasks in polish. In Proceedings of the 3rd Language &
Technology Conference, 2007. 18, 19, 35

[PSPdC19] Davi Pereira-Santos, Ricardo Bastos Cavalcante Prudêncio, and An-
dré C.P.L.F. de Carvalho. Empirical investigation of active

128

http://dx.doi.org/10.1126/science.aac4716
http://dx.doi.org/10.1145/382222.382462
http://dx.doi.org/10.1145/382222.382462
http://dx.doi.org/10.1109/TIT.1954.1057460
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.3389/fninf.2017.00076
http://dx.doi.org/10.1109/ICSE.2009.5070528
http://dx.doi.org/10.3115/1073083.1073135

Bibliography

learning strategies. Neurocomputing, 326:15–27, 2019. DOI:
10.1016/j.neucom.2017.05.105. 47

[PWH18] Didik Dwi Prasetya, Aji Prasetya Wibawa, and Tsukasa Hirashima. The
performance of text similarity algorithms. International Journal of Ad-
vances in Intelligent Informatics, 4(1):63–69, 2018. DOI: 10.26555/i-
jam.v4il.152. 19, 21

[RBS13] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. Software clone
detection: A systematic review. Information and Software Technology,
55(7):1165–1199, 2013. DOI: 10.1016/j.infsof.2013.01.008. 71, 72

[RC07] Chanchal Kumar Roy and James R. Cordy. A survey on software clone
detection research. Technical Report 541, Queen’s School of Computing,
2007. 72

[RC08] Chanchal Kumar Roy and James R. Cordy. NICAD: Accurate detection
of near-miss intentional clones using flexible pretty-printing and code
normalization. In Proceedings of the 16th IEEE International Conference
on Program Comprehension, ICPC 2008, pages 172–181. IEEE, 2008. DOI:
10.1109/ICPC.2008.41. 73

[RKP+19] Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus Paixao, Giuseppe Bianco,
and Rocco Oliveto. Toxic code snippets on stack overflow. IEEE Trans-
actions on Software Engineering, 2019. DOI: 10.1109/TSE.2019.2900307.
71

[RRV13] Antonio Reyes, Paolo Rosso, and Tony Veale. A multidimensional approach
for detecting irony in twitter. Language resources and evaluation, 47(1):239–
268, 2013. DOI: 10.1007/s10579-012-9196-x. 18

[RSR+19] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the
limits of transfer learning with a unified text-to-text transformer. Journal
of Machine Learning Research, 21(140):1–67, 2019, 1910.10683. 103

[RYW+19] Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Viegas, Andy
Coenen, Adam Pearce, and Been Kim. Visualizing and measuring the
geometry of BERT. In Advances in Neural Information Processing Systems
32, NeurIPS 2019, pages 8592–8600. Curran Associates, Inc., 2019. 79

129

http://dx.doi.org/10.1016/j.neucom.2017.05.105
http://dx.doi.org/10.1016/j.neucom.2017.05.105
http://dx.doi.org/10.26555/ijam.v4il.152
http://dx.doi.org/10.26555/ijam.v4il.152
http://dx.doi.org/10.1016/j.infsof.2013.01.008
http://dx.doi.org/10.1109/ICPC.2008.41
http://dx.doi.org/10.1109/ICPC.2008.41
http://dx.doi.org/10.1109/TSE.2019.2900307
http://dx.doi.org/10.1007/s10579-012-9196-x
http://arxiv.org/abs/1910.10683

Bibliography

[SB02] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication
using active learning. In Proceedings of the eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD 2002,
pages 269–278, 2002. DOI: 10.1145/775047.775087. 39

[SB18] Luzi Sennhauser and Robert C. Berwick. Evaluating the ability of LSTMs
to learn context-free grammars. In Proceedings of the EMNLP Workshop
BlackboxNLP, 2018. DOI: 10.18653/v1/W18-5414. 82

[Set12] Burr Settles. Active Learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning. Morgan & Claypool Publishers, 2012. DOI:
10.2200/S00429ED1V01Y201207AIM018. 22, 47

[SFL+18] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and
Cristina V. Lopes. Oreo: Detection of clones in the twilight zone. In Pro-
ceedings of the 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2018, pages 354—-365, New York, NY, USA, 2018. ACM. DOI:
10.1145/3236024.3236026. 26, 41

[SGADA18] Paul Suganthan GC, Adel Ardalan, AnHai Doan, and Aditya Akella. Smurf:
self-service string matching using random forests. Proceedings of the VLDB
Endowment, 12(3):278–291, 2018. DOI: 10.14778/3291264.3291272. 39

[SK16a] Abdullah Sheneamer and Jugal Kalita. Semantic clone detection using
machine learning. In Proceedings of the 15th IEEE International Conference
on Machine Learning and Applications, ICMLA 2016, pages 1024–1028.
IEEE, 2016. DOI: 10.1109/ICMLA.2016.0185. 26, 83

[SK16b] Abdullah Sheneamer and Jugal Kalita. A survey of software clone detection
techniques. International Journal of Computer Applications, 137(10):1–21,
2016. DOI: 10.5120/ijca2016908896. 73

[SMFM18] Rui Santos, Patricia Murrieta-Flores, and Bruno Martins. Learning to
combine multiple string similarity metrics for effective toponym match-
ing. International Journal of Digital Earth, 11(9):913–938, 2018. DOI:
10.1080/17538947.2017.1371253. 19, 21

[SMW15] Yufei Sun, Liangli Ma, and Shuang Wang. A comparative evaluation of
string similarity metrics for ontology alignment. Journal of Information &

130

http://dx.doi.org/10.1145/775047.775087
http://dx.doi.org/10.18653/v1/W18-5414
http://dx.doi.org/10.2200/S00429ED1V01Y201207AIM018
http://dx.doi.org/10.2200/S00429ED1V01Y201207AIM018
http://dx.doi.org/10.1145/3236024.3236026
http://dx.doi.org/10.1145/3236024.3236026
http://dx.doi.org/10.14778/3291264.3291272
http://dx.doi.org/10.1109/ICMLA.2016.0185
http://dx.doi.org/10.5120/ijca2016908896
http://dx.doi.org/10.1080/17538947.2017.1371253
http://dx.doi.org/10.1080/17538947.2017.1371253

Bibliography

Computational Science, 12(3):957–964, 2015. DOI: 10.12733/jics20105420.
19, 35

[SN12] Tommaso Soru and Axel-Cyrille Ngonga Ngomo. Active learning of domain-
specific distances for link discovery. In Second Joint International Semantic
Technology Conference, JIST 2012, pages 97–112, Berlin, Heidelberg, 2012.
Springer. DOI: 10.1007/978-3-642-37996-3_7. 39

[SPH+11] Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and
Christopher D Manning. Semi-supervised recursive autoencoders for
predicting sentiment distributions. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, EMNLP 2011, pages
151–161. Association for Computational Linguistics, 2011. 76

[SR15a] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more
informative than the roc plot when evaluating binary classifiers on im-
balanced datasets. PloS one, 10(3):e0118432, 2015. DOI: 10.1371/jour-
nal.pone.0118432. 32

[SR15b] Jeffrey Svajlenko and Chanchal Kumar Roy. Evaluating clone detection
tools with BigCloneBench. In Proceedings of the IEEE International
Conference on Software Maintenance and Evolution, ICSME 2015, pages
131–140. IEEE, 2015. DOI: 10.1109/ICSM.2015.7332459. 26, 83

[SR16] Jeffrey Svajlenko and Chanchal Kumar Roy. BigCloneEval: A clone
detection tool evaluation framework with BigCloneBench. In Proceedings of
the IEEE International Conference on Software Maintenance and Evolution,
ICSME 2016, pages 596–600. IEEE, 2016. DOI: 10.1109/ICSME.2016.62.
26, 83, 102

[SSK05] Giorgos Stoilos, Giorgos Stamou, and Stefanos Kollias. A string metric for
ontology alignment. In Proceedings of the the 4th International Semantic
Web Conference, ISWC 2005, pages 624–637. Springer, Springer Berlin
Heidelberg, 2005. DOI: 10.1007/11574620_45. 18

[SSS+16] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal Kumar Roy, and
Cristina V. Lopes. SourcererCC: Scaling code clone detection to big-code.
In Proceedings of the 38th International Conference on Software Engineer-
ing, ICSE 2016, pages 1157–1168, 2016. DOI: 10.1145/2884781.2884877.
73, 74

131

http://dx.doi.org/10.12733/jics20105420
http://dx.doi.org/10.1007/978-3-642-37996-3_7
http://dx.doi.org/10.1371/journal.pone.0118432
http://dx.doi.org/10.1371/journal.pone.0118432
http://dx.doi.org/10.1109/ICSM.2015.7332459
http://dx.doi.org/10.1109/ICSME.2016.62
http://dx.doi.org/10.1007/11574620_45
http://dx.doi.org/10.1145/2884781.2884877

Bibliography

[STSC19] Yikang Shen, Shawn Tan, Alessandro Sordoni, and Aaron Courville. Or-
dered neurons: Integrating tree structures into recurrent neural networks.
In International Conference on Learning Representations, ICLR 2019, 2019,
1810.09536. URL: https://openreview.net/forum?id=B1l6qiR5F7. 79

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learn-
ing with neural networks. In Advances in Neural Information Processing
Systems 27, NIPS 2014, pages 3104–3112. Curran Associates, Inc., 2014.
79

[SW81] Temple F. Smith and Michael S. Waterman. Identification of common
molecular subsequences. Journal of molecular biology, 147(1):195–197,
1981. DOI: 10.1016/0022-2836(81)90087-5. 14

[SW18] Jingyu Shao and Qing Wang. Active blocking scheme learning for entity
resolution. In Proceedings of the 22nd Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, PAKDD 2018, pages 350–362. Springer,
2018. DOI: 10.1007/978-3-319-93037-4_28. 23, 39

[Swe73] John A Swets. The relative operating characteristic in psychology: a
technique for isolating effects of response bias finds wide use in the study
of perception and cognition. Science, 182(4116):990–1000, 1973. DOI:
10.1126/science.182.4116.990. 31

[Tej02] Sheila Tejada. Learning High Accuracy Rules for Object Identification.
PhD thesis, University of Southern California, 2002. 38, 61, 62

[TKM01] Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning object
identification rules for information integration. Information Systems,
26(8):607–633, 2001. DOI: 10.1016/S0306-4379(01)00042-4. 38, 57

[TKM02] Sheila Tejada, Craig A Knoblock, and Steven Minton. Learning domain-
independent string transformation weights for high accuracy object identifi-
cation. In Proceedings of the eighth ACM SIGKDD international conference
on Knowledge Discovery and Data Mining, KDD 2002, pages 350–359, 2002.
DOI: 10.1145/775047.775099. 36, 38

[TO18] Corentin Tallec and Yann Ollivier. Can recurrent neural networks
warp time? In International Conference on Learning Representations,

132

http://arxiv.org/abs/1810.09536
https://openreview.net/forum?id=B1l6qiR5F7
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1007/978-3-319-93037-4_28
http://dx.doi.org/10.1126/science.182.4116.990
http://dx.doi.org/10.1126/science.182.4116.990
http://dx.doi.org/10.1016/S0306-4379(01)00042-4
http://dx.doi.org/10.1145/775047.775099

Bibliography

ICLR 2019, 2018, 1804.11188. URL: https://openreview.net/forum?

id=SJcKhk-Ab. 89

[TSM15] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved
semantic representations from tree-structured long short-term memory
networks. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), ACL/IJCNLP
2015, pages 1556–1566, Beijing, China, 2015. Association for Computational
Linguistics. DOI: 10.3115/v1/P15-1150. 40, 81, 85, 89

[Tur37] Alan Mathison Turing. On computable numbers, with an application
to the Entscheidungsproblem. Proceedings of the London Mathematical
Society, s2-42(1):230–265, 01 1937. DOI: 10.1112/plms/s2-42.1.230. 72

[Tve77] Amos Tversky. Features of similarity. Psychological review, 84(4), 1977.
DOI: 10.1037/0033-295X.84.4.327. 5, 6

[TWB+18] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. Deep learning similarities from
different representations of source code. In Proceedings of the IEEE/ACM
15th International Conference on Mining Software Repositories, MSR 2018,
pages 542–553. IEEE, 2018. DOI: 10.1145/3196398.3196431. 26, 42, 84

[UL16] Evgeniya Ustinova and Victor Lempitsky. Learning deep embeddings with
histogram loss. In Advances in Neural Information Processing Systems 29,
NIPS 2016, pages 4170–4178. Curran Associates, Inc., 2016. 89, 100

[VDK+20] Gilles Vandewiele, Isabelle Dehaene, György Kovács, Lucas Sterckx, Olivier
Janssens, Femke Ongenae, Femke De Backere, Filip De Turck, Kristien
Roelens, Johan Decruyenaere, Sofie Van Hoecke, and Thomas Demeester.
Overly optimistic prediction results on imbalanced data: Flaws and benefits
of applying over-sampling. preprint, 2020, 2001.06296. 26

[VN11] Tobias Vogel and Felix Naumann. Instance-based ’one-to-some’ assignment
of similarity measures to attributes. In On the Move to Meaningful Internet
Systems, OTM 2011, pages 412–420, Berlin, Heidelberg, 2011. Springer.
DOI: 10.1007/978-3-642-25109-2_27. 35

133

http://arxiv.org/abs/1804.11188
https://openreview.net/forum?id=SJcKhk-Ab
https://openreview.net/forum?id=SJcKhk-Ab
http://dx.doi.org/10.3115/v1/P15-1150
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1037/0033-295X.84.4.327
http://dx.doi.org/10.1145/3196398.3196431
http://arxiv.org/abs/2001.06296
http://dx.doi.org/10.1007/978-3-642-25109-2_27

Bibliography

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems 30, NIPS
2017, pages 5998–6008. Curran Associates, Inc., 2017. 78

[WDS+19] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, and Jamie Brew. Huggingface’s transformers: State-of-the-art
natural language processing. preprint, 2019, 1910.03771. 102

[Wei04] Gary M. Weiss. Mining with rarity: a unifying framework. ACM SigKDD
Explorations Newsletter, 6(1):7–19, 2004. DOI: 10.1145/1007730.1007734.
22, 23, 24

[Win90] William E. Winkler. String comparator metrics and enhanced decision
rules in the fellegi-sunter model of record linkage, 1990. URL: https:

//eric.ed.gov/?id=ED325505. 14

[WK19] John Wieting and Douwe Kiela. No training required: Exploring ran-
dom encoders for sentence classification. In International Conference on
Learning Representations, ICLR 2019, 2019, 1901.10444. URL: https:

//openreview.net/forum?id=BkgPajAcY7. 93

[WL17] Huihui Wei and Ming Li. Supervised deep features for software func-
tional clone detection by exploiting lexical and syntactical information
in source code. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, pages 3034–3040, 2017.
DOI: 10.24963/ijcai.2017/423. 26, 42, 83

[WM05] Richard Wettel and Radu Marinescu. Archeology of code duplication:
Recovering duplication chains from small duplication fragments. In Pro-
ceedings of the Seventh International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2005, pages 8–15. IEEE,
2005. DOI: 10.1109/SYNASC.2005.20. 73

[WPN+19] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel Bowman. SuperGLUE: A
stickier benchmark for general-purpose language understanding systems.
In Advances in Neural Information Processing Systems 32, NeurIPS 2019,
pages 3266–3280. Curran Associates, Inc., 2019. 103

134

http://arxiv.org/abs/1910.03771
http://dx.doi.org/10.1145/1007730.1007734
https://eric.ed.gov/?id=ED325505
https://eric.ed.gov/?id=ED325505
http://arxiv.org/abs/1901.10444
https://openreview.net/forum?id=BkgPajAcY7
https://openreview.net/forum?id=BkgPajAcY7
http://dx.doi.org/10.24963/ijcai.2017/423
http://dx.doi.org/10.1109/SYNASC.2005.20

Bibliography

[WRP19] Yaza Wainakh, Moiz Rauf, and Michael Pradel. Evaluating semantic
representations of source code. preprint, 2019, 1910.05177. 43, 76, 97, 100

[WS15] Fei Wang and Jimeng Sun. Survey on distance metric learning and
dimensionality reduction in data mining. Data mining and knowledge
discovery, 29(2):534–564, 2015. DOI: 10.1007/s10618-014-0356-z. 21

[WSM+18] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. GLUE: A multi-task benchmark and analysis
platform for natural language understanding. In Proceedings of the EMNLP
Workshop BlackboxNLP, pages 353–355. Association for Computational
Linguistics, 2018. DOI: 10.18653/v1/W18-5446. 103

[WTVP16] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshy-
vanyk. Deep learning code fragments for code clone detection. In
Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2016, pages 87–98. IEEE, 2016. DOI:
10.1145/2970276.2970326. 41, 42, 84, 100, 102

[WYLZ19] Jin Wang, Liang-Chih Yu, K Robert Lai, and Xuejie Zhang. Investigat-
ing dynamic routing in tree-structured LSTM for sentiment analysis. In
Proceedings of the Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP 2019, pages 3423–3428. Association
for Computational Linguistics, 2019. DOI: 10.18653/v1/D19-1343. 93

[XAF13] Sicheng Xiong, Javad Azimi, and Xiaoli Z Fern. Active learning of con-
straints for semi-supervised clustering. IEEE Transactions on Knowledge
and Data Engineering, 26(1):43–54, 2013. DOI: 10.1109/TKDE.2013.22.
39, 62

[YDC+18] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham
Neubig. Learning to mine aligned code and natural language pairs from
Stack Overflow. In Proceedings of the IEEE/ACM 15th International
Conference on Mining Software Repositories, MSR 2018, pages 476–486.
ACM, 2018. DOI: 10.1145/3196398.3196408. 103

[YHMH19] Carl Yang, Do Huy Hoang, Tomas Mikolov, and Jiawei Han. Place dedupli-
cation with embeddings. In Proceedings of the World Wide Web Conference,
WWW 2019, pages 3420–3426, 2019. DOI: 10.1145/3308558.3313456. 41

135

http://arxiv.org/abs/1910.05177
http://dx.doi.org/10.1007/s10618-014-0356-z
http://dx.doi.org/10.18653/v1/W18-5446
http://dx.doi.org/10.1145/2970276.2970326
http://dx.doi.org/10.1145/2970276.2970326
http://dx.doi.org/10.18653/v1/D19-1343
http://dx.doi.org/10.1109/TKDE.2013.22
http://dx.doi.org/10.1145/3196398.3196408
http://dx.doi.org/10.1145/3308558.3313456

Bibliography

[YJS07] Liu Yang, Rong Jin, and Rahul Sukthankar. Bayesian active distance metric
learning. In Proceedings of the Twenty-Third Conference on Uncertainty
in Artificial Intelligence, UAI 2007, pages 442–449, 2007. 39, 47

[YMSL17] Di Yang, Pedro Martins, Vaibhav Saini, and Cristina Lopes. Stack overflow
in github: any snippets there? In Proceedings of the IEEE/ACM 14th
International Conference on Mining Software Repositories, MSR 2017,
pages 280–290. IEEE, 2017. DOI: 10.1109/MSR.2017.13. 71

[ZGH+18] Dongxiang Zhang, Long Guo, Xiangnan He, Jie Shao, Sai Wu, and Heng Tao
Shen. A graph-theoretic fusion framework for unsupervised entity res-
olution. In Proceedings of the 34th IEEE International Conference
on Data Engineering, ICDE 2018, pages 713–724. IEEE, 2018. DOI:
10.1109/ICDE.2018.00070. 19

[ZH18] Gang Zhao and Jeff Huang. DeepSim: deep learning code functional
similarity. In Proceedings of the 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2018, pages 141–151, 2018. DOI:
10.1145/3236024.3236068. 26, 41, 83, 95

[ZKW+19] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav
Artzi. BERTScore: Evaluating text generation with BERT. In International
Conference on Learning Representations, ICLR 2020, 2019, 1904.09675.
URL: https://openreview.net/forum?id=SkeHuCVFDr. 13

[ZWZ+19] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and
Xudong Liu. A novel neural source code representation based on abstract
syntax tree. In Proceedings of the IEEE/ACM 41st International Con-
ference on Software Engineering, ICSE 2019, pages 783–794. IEEE, 2019.
DOI: 10.1109/ICSE.2019.00086. 26, 42, 83, 102

136

http://dx.doi.org/10.1109/MSR.2017.13
http://dx.doi.org/10.1109/ICDE.2018.00070
http://dx.doi.org/10.1109/ICDE.2018.00070
http://dx.doi.org/10.1145/3236024.3236068
http://dx.doi.org/10.1145/3236024.3236068
http://arxiv.org/abs/1904.09675
https://openreview.net/forum?id=SkeHuCVFDr
http://dx.doi.org/10.1109/ICSE.2019.00086

	Introduction
	Motivation
	Contributions
	Overview

	Background
	Similarity
	Representation
	Syntax vs semantics

	Similarity measures
	String similarity measures
	Other similarity measures
	Confusion around `Monge-Elkan'

	Metric Learning
	Label distribution
	Generalization
	Quality metrics

	Related Work
	Optimal similarity measures
	Optimal similarity thresholds
	Active Learning for matching
	Metric Learning for matching
	Code Clone Detection
	Other Software Engineering applications

	Metric Selection for String Matching
	Background
	Active Learning

	Approach
	Updating of thresholds
	Aggregated prediction function
	Query strategy
	Stopping criterion

	Evaluation
	Experimental setup
	Quality metric
	Labelling effort vs quality
	Experimental result discussion
	Stopping criterion

	Discussion

	Metric Learning for Code Clone Detection
	Background
	Code Clones
	Code Clone Detection
	Vocabulary
	Embeddings

	Approach
	Node embeddings
	Recursive Neural Network
	Long Short Term Memory
	Siamese Neural Network

	Evaluation
	Data
	Training
	Quality metric
	Baselines
	Influence of network layout
	Influence of training aspects

	Discussion
	Outlook

	Conclusion
	Bibliography

