
DISSERTATION
submitted to

the Combined Faculty for the Natural
Sciences and Mathematics

of
Heidelberg University, Germany

for the degree of
Doctor of Natural Sciences

Put forward by
M.Sc. Omid Hosseini Jafari

Born in Tehran, Iran
Oral examination:

ii

Exploring Subtasks of

Scene Understanding:

Challenges and Cross-Modal Analysis

Advisor: Prof. Dr. Carsten Rother

iv

Acknowledgements

I would like to thank my supervisor, Prof. Dr. Carsten Rother, for his support
and supervision. He made an interesting atmosphere in the lab and gave us the
freedom to explore the things we want. Without his support, this thesis would
not have been possible.

During my Ph.D., I was privileged to work with Prof. Andreas Geiger for
one year. I would like to thank him for his support and supervision.

I would like to thank all the members of our lab in Heidelberg and Dresden
for their constructive discussions and feedback. Particularly, I want to thank
my magnificent colleges Hassan, Siva, Weihao, and Sid for making my Ph.D.
life more fun.

I would also like to thank my parents, my brother, and my sister for their
support and love. Most importantly, I would like to thank my wonderful wife,
Sarah, who has stood by me all the time. Without her unlimited support and
love, this thesis would not have been possible. And last but not least, I would
like to thank my son for making our life magical.

vi

Abstract

Scene understanding is one of the most important problems in computer vision.
It consists of many subtasks such as image classification for describing an image
with one word, object detection for finding and localizing objects of interest in
the image and assigning a category to each of them, semantic segmentation for
assigning a category to each pixel of an image, instance segmentation for finding
and localizing objects of interest and marking all the pixels belonging to each
object, depth estimation for estimating the distance of each pixel in the image
from the camera, etc. Each of these tasks has its advantages and limitations.
These tasks have a common goal to achieve that is to understand and describe a
scene captured in an image or a set of images. One common question is if there
is any synergy between these tasks. Therefore, alongside single task approaches,
there is a line of research on how to learn multiple tasks jointly.

In this thesis, we explore different subtasks of scene understanding and pro-
pose mainly deep learning-based approaches to improve these tasks. First, we
propose a modular Convolutional Neural Network (CNN) architecture for jointly
training semantic segmentation and depth estimation tasks. We provide a setup
suitable to analyze the cross-modality influence between these tasks for different
architecture designs. Then, we utilize object detection and instance segmenta-
tion as auxiliary tasks for focusing on target objects in complex tasks of scene
flow estimation and object 6d pose estimation.

Furthermore, we propose a novel deep approach for object co-segmentation
which is the task of segmenting common objects in a set of images. Finally,
we introduce a novel pooling layer that preserves the spatial information while
capturing a large receptive field. This pooling layer is designed for improving
the dense prediction tasks such as semantic segmentation and depth estimation.

viii

Zusammenfassung

Das Szenenverstndnis ist eines der wichtigsten Probleme in der Bildverarbei-
tung. Es besteht aus vielen Unteraufgaben wie Bildklassifizierung zum Beschrei-
ben eines Bildes mit einem Wort, Objekterkennung zum Finden und Lokalisieren
von interessierenden Objekten im Bild und Zuweisen einer Kategorie zu jedem
von ihnen, semantische Segmentierung zum Zuweisen einer Kategorie zu jedem
Pixel eines Bildes , Instanzsegmentierung zum Finden und Lokalisieren von in-
teressierenden Objekten und Markieren aller zu jedem Objekt gehrenden Pixel,
Tiefenschtzung zum Schtzen des Abstands jedes Pixels im Bild von der Kamera
usw. Jede dieser Aufgaben hat ihre Vor- und Nachteile. Diese Aufgaben haben
das gemeinsame Ziel, eine in einem Bild oder einer Reihe von Bildern aufge-
nommene Szene zu verstehen und zu beschreiben. Eine hufig gestellte Frage ist,
ob zwischen diesen Aufgaben Synergien bestehen. Daher gibt es neben Einzel-
aufgabenanstzen eine Reihe von Forschungsarbeiten zum gemeinsamen Lernen
mehrerer Aufgaben.

In dieser Arbeit untersuchen wir verschiedene Teilaufgaben des Szenenver-
stndnisses und schlagen hauptschlich auf tiefem Lernen basierende Anstze vor,
um diese Aufgaben zu verbessern. Zunchst schlagen wir eine modulare CNN-
Architektur (Convolutional Neural Network) vor, mit der Tiefenschtzungs- und
semantische Segmentierungsaufgaben gemeinsam trainiert werden knnen. Wir
bieten ein Setup, das geeignet ist, den modalittsbergreifenden Einfluss zwischen
diesen Aufgaben fr verschiedene Architekturdesigns zu analysieren. Anschlieend
verwenden wir die Objekterkennung und Instanzsegmentierung als Hilfsaufga-
ben, um Zielobjekte in komplexen Aufgaben der Szenenflussschtzung und der
Objekt-6d-Posenschtzung zu fokussieren.

Darber hinaus schlagen wir einen neuartigen tiefen Ansatz fr die Objekt-
Co-Segmentierung vor, bei dem gemeinsame Objekte in einer Reihe von Bildern
segmentiert werden. Schlielich fhren wir eine neuartige Pooling-Schicht ein, die
die rumlichen Informationen bewahrt und gleichzeitig ein groes Empfangsfeld
erfasst. Diese Pooling-Schicht dient zur Verbesserung der Aufgaben der dichten
Vorhersage wie der semantischen Segmentierung und der Tiefenschtzung.

x

Contents

List of Tables xv

List of Figures xvii

1 Introduction 1
1.1 Scene Understanding . 1

1.1.1 Semantic Tasks . 1
1.1.2 Geometric Tasks . 5

1.2 Scene Understanding Challenges 5
1.3 Contribution . 7
1.4 Publications . 9
1.5 Thesis Outline . 11

2 Analyzing Modular CNN Architectures for Joint Depth Pre-
diction and Semantic Segmentation 13
2.1 Introduction . 13
2.2 Related Work . 15
2.3 Joint Refinement Network . 18

2.3.1 Network Architecture . 18
2.3.2 JRN Variants . 18
2.3.3 JRN Training . 19
2.3.4 Quantifying the Cross-Modality Influence 20

2.4 Experiments . 21
2.4.1 Experimental setup . 21
2.4.2 Comparison of Results . 22
2.4.3 Performance Cross-Modality Influence Analysis 23

2.5 Discussion . 26

3 Instance-aware Scene Flow Estimation 27
3.1 Introduction . 27
3.2 Related Work . 29
3.3 Method . 31

3.3.1 2D Bounding Boxes and Instances 31
3.3.2 3D Object Coordinates 32

xi

xii CONTENTS

3.3.3 Scene Flow Model . 32
3.4 Experimental Evaluation . 37

3.4.1 Effect of recognition granularity 37
3.4.2 Results on the KITTI Benchmark 39
3.4.3 3D object coordinates prediction 40

3.5 Discussion . 40

4 iPose: Instance-Aware 6D Pose Estimation of Partly Occluded
Objects 41
4.1 Introduction . 41
4.2 Related Work . 43
4.3 Method . 45

4.3.1 Stage 1: Instance Segmentation 45
4.3.2 Stage 2: Object Coordinate Regression 45
4.3.3 Stage 3: Pose Estimation 46
4.3.4 Data Augmentation . 48

4.4 Experiments . 49
4.4.1 Datasets and Implementation 50
4.4.2 Pose Estimation Accuracy 50
4.4.3 Instance Segmentation . 53
4.4.4 Object Coordinate Estimation 55

4.5 Discussion . 55

5 Deep Object Co-Segmentation 57
5.1 Introduction . 57
5.2 Related Work . 59
5.3 Method . 61

5.3.1 Siamese Encoder . 61
5.3.2 Mutual Correlation . 62
5.3.3 Siamese Decoder . 63
5.3.4 Loss Function . 63
5.3.5 Group Co-Segmentation 63

5.4 Experiments . 63
5.4.1 Datasets . 63
5.4.2 Implementation Details and Runtime 64
5.4.3 Results . 65
5.4.4 Ablation Study . 70

5.5 Discussion . 70

6 Split-Merge Pooling 73
6.1 Introduction . 73
6.2 Related Work . 75
6.3 Method . 76

6.3.1 Split-Merge Pooling . 76
6.3.2 Shrink-Expand Pooling 77

6.4 Experiments . 78

CONTENTS xiii

6.4.1 Experimental Setup . 78
6.4.2 Implementation Details 79
6.4.3 Cityscapes . 80
6.4.4 GTA-5 . 82
6.4.5 Run-time Analysis . 82
6.4.6 Detailed Quantitative Results 85

6.5 Conclusion . 85

7 Conclusion 89
7.1 Future work . 89

Bibliography 93

xiv CONTENTS

List of Tables

2.1 Comparison of different JRN architectures 22
2.2 Depth comparison . 22
2.3 Semantic segmentation comparison 23

3.1 Quantitative results from ablation study on KITTI 2015 37
3.2 Quantitative Results on the KITTI Scene Flow Benchmark . . . 39

4.1 Results using RGB only . 51

5.1 Influence of number of pairs K. 65
5.2 Quantitative results on the MSRC dataset (seen classes) 68
5.3 Quantitative results on the Internet dataset (seen classes) 68
5.4 Quantitative results on the iCoseg dataset (unseen classes) 69
5.5 Analyzing the effect of number of training classes on unseen classes. 70
5.6 Impact of mutual correlation layer. 70

6.1 Cityscapes quantitative results 80
6.2 Quantitative results for GTA-5 80
6.3 Quantitative samll object results for Cityscapes 81
6.4 Quantitative samll object results for GTA-5 81
6.5 Runtime analysis . 85
6.6 Cityscapes detailed quantitative results 86
6.7 GTA-5 detailed quantitative results 87

xv

xvi LIST OF TABLES

List of Figures

1.1 Scene understanding . 2
1.2 Image classification . 3
1.3 Object detection . 3
1.4 Semantic segmentation and instance segmentation 4
1.5 Object detection . 5
1.6 Object detection . 6
1.7 Co-segmentation . 7

2.1 Example processing flow of our joint refinement network 14
2.2 Joint Refinement Network . 17
2.3 Scale Branch network . 18
2.4 Cross-Modality Influence Test . 20
2.5 JRN qualitative results . 24
2.6 Negative influence . 25
2.7 Performance vs. cross-modality influence 25
2.8 The performance vs. cross-modality influence curve 26

3.1 Instance Scene Flow Motivation 28
3.2 ISF Work flow . 31
3.3 Geometric Relationship . 34
3.4 Qualitative Results from Ablation Study on KITTI 2015 39
3.5 Qualitative Comparison on KITTI-15 Test Set 40

4.1 Illustration of iPose, 3-stage pipeline 42
4.2 Object centric data augmentation pipeline 47
4.3 Impact of data augmentation . 48
4.4 Qualitative results from the RGB setup 52
4.5 Left. Pose estimation accuracies on the RGB-D dataset using

various combinations of mask estimation, object coordinates es-
timation and pose estimation approaches. Right. Comparison
of 2D detection performance. 53

4.6 Left. Comparison of our pose estimation accuracy (RGB-D)
with competing methods. Right. The percentage of correctly
estimated poses as a function of the level of occlusion. 53

xvii

xviii LIST OF FIGURES

4.7 Qualitative results from the RGB-D setup 54

5.1 Co-Segmentation challenges . 58
5.2 Deep Object Co-Segmentation Network 61
5.3 The visualization of the heat-maps 62
5.4 Qualitative results on PASCAL Co-segmentation dataset 66
5.5 Qualitative results on the MSRC dataset (seen classes) 67
5.6 Qualitative results on the Internet dataset (seen classes) 67
5.7 Qualitative results on iCoseg dataset (unseen classes) 69

6.1 Split and Merge Pooling . 74
6.2 Shrink and Expand Pooling example. 76
6.3 Applying split pooling to ResNet 78
6.4 Inaccurate annotations in Cityscapes dataset 79
6.5 Cityscapes qualitative results . 83
6.6 GTA-5 qualitative results . 84
6.7 Runtime analysis setup . 85

Chapter 1

Introduction

In this chapter, we give a summary of scene understanding subtasks which are
addressed in the thesis. Then we present the challenges in scene understanding
that we cover in this thesis. Finally, we present the main contributions, a list
of publication and the thesis outline.

1.1 Scene Understanding

Human visual perception is the most important factor to understand the scene
around us. Therefore, computer vision is essential for designing a system to un-
derstand different aspects of a scene. Among different tasks in computer vision,
scene understanding is one of the most interesting ones with many applications
such as robotics and autonomous driving. Scene understanding itself consists of
many subtasks. Each of these subtasks captures and describes a different aspect
of a scene and the outcome of each subtask is necessary to achieve an overall
understanding of a scene.

As an example, a set of questions can be raised to describe and summarize
the scene in Fig. 1.1, including What kind of objects are existing in the scene?
Where are they located in the 2D image? What are their 3D locations with
respect to the camera? What is the precise boundary around each object in
the image? Depending on the application, a lot of questions are desired to be
answered and subtasks of scene understanding can be utilized. In the following,
we present a summary of semantic and geometric tasks that are related to this
thesis.

1.1.1 Semantic Tasks

In the following, we look at semantic tasks with different levels of detail. These
tasks focus on semantic properties of the scene.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Scene understanding. Looking at a scene, there exists many
different aspects to describe and understand it. Depending on the purpose,
even we as humans will look at different sets of clues and features.
Photo source: ”Abbey Road” by Iain Macmillan [1969].

Image classification: The goal of image classification task is to assign a
category to an image. More formally given an image, we want to assign a class
to the image from a list of predefined categories. This is a high level task in
scene understanding. The question we are trying to answer in this task is:

”In one word, what are we looking at?”,

for example, consider the class ”person” for Fig. 1.2(d). However, there are
some ambiguities in image classification. If the image is cluttered, it would
sometimes even be hard for a human to assign a specific class to the image, as
we can see in Fig. 1.2(a).

Object detection and localization: Given an image with multiple instances
of predefined categories, the goal is to localize all the objects of interests in
the image and classify each of them. As it is shown in Fig. 1.3, the objects
are localized using bounding-boxes around them with different color for each
category. This task answers the following questions:

”Which objects are existing in the scene?”
”Where are these objects located in the 2D image?”

”How many objects from each category are existing in the scene?”

For example in Fig. 1.3, seven people and nine cars are detected. Object detec-
tion provides more information about the scene compared to image classification
task, i.e. it provides labeled overlapping bounding-boxes in the image instead of
a single word.

2

CHAPTER 1. INTRODUCTION

(c) car (d) person(b) {street, cars}(a) {crosswalk, street,
people, cars}

Figure 1.2: Image classification. The ideal input for image classification task
contains a strong salient object in the center of the image (c and d). However
in real world cases, there exists multiple objects in different locations inside the
scene (a). In such cases, each region in the image can be classified as a different
category which is not necessarily the same as the category for the whole image
(b, c and d).

Person

Car

Categories

Figure 1.3: Object detection.

Semantic Segmentation: Given an image, the goal is to assign a category
to each pixel of the image (see Fig. 1.4(a)). Similar to image classification
and object detection the categories are predefined. Semantic segmentation task
answers the following questions:

”Which categories are existing in the image?”
”What ratio of the image is filled by different categories?”

Similar to object detection, semantic segmentation also provides more infor-
mation compared to the image classification task. They both discover existing

3

CHAPTER 1. INTRODUCTION

categories in the image. However in contrast to object detection, semantic seg-
mentation task does not tell us how many instances of each category are in
the image. On the other hand, semantic segmentation assigns a category to
each region and pixel in the image, while in object detection task each region
or pixel may be assigned to zero, one or more categories. In Fig. 1.3, the left-
most person (George Harrison) and the leftmost car have overlapping bounding
boxes. Therefore, the intersection region has two classes (person and car). Due
to mentioned limitations, the object detection task is incapable of finding a
precise boundary around the objects while the semantic segmentation task is
incapable of separating the instances. This leads us to a more interesting task
called instance segmentation.

(a) semantic segmentation (b) instance segmentation

Figure 1.4: Semantic segmentation and instance segmentation.

Instance segmentation : Given an image with multiple instances of prede-
fined categories similar to the object detection task, the goal is to localize all the
objects of interests in the image and classify them. The difference is that the in-
stance segmentation task localizes each object by masking the pixels belonging
to the object (see Fig. 1.4(b)). This task answers the following questions:

”Which objects are existing in the scene?”
”Where are these objects located in the 2D image?”

”How many objects from each category are existing in the scene?”
”What is the precise boundary of each object in the image?”

Compared to semantic segmentation and object detection, instance segmenta-
tion is the best of both worlds. The instance segmentation task is particularly
interesting for improving more complex and expensive tasks in scene under-
standing due to its object masks. In this thesis, we explore instance-aware
approaches to solve and improve complex tasks such as scene flow estimation
and object 6D pose estimation.

4

CHAPTER 1. INTRODUCTION

1.1.2 Geometric Tasks

In this section, we look at geometric tasks. These tasks focus on physical prop-
erties of the scene.

Depth estimation : The aim of this task is to find the distance of each pixel
in the image from the camera (see Fig. 1.5). Similar to semantic segmenta-
tion, the depth estimation is a pixel level task and it provides no information
regarding individual objects existing in the scene.

Far

Close

Figure 1.5: Depth estimation.

Object 3D pose estimation: Given an image including multiple objects of
interest, the goal is to find the 3D location of the object with respect to the
camera (see Fig. 1.6). This task can be defined in a different ways depending on
how to localize the objects in 3D (e.g. with 3D bounding boxes or 3D mesh of
specific objects), or what extra inputs are available (e.g. depthmap or ground-
plane). This task answers the following questions:

”Which objects are present in the scene?”
”Where are these objects located in 3D camera coordinate system?”

”What is the distance between each pair of objects?”

1.2 Scene Understanding Challenges

Joint learning of multiple tasks: One possible argument can be that all
of the mentioned tasks contribute to one central goal of scene understanding.
In the last decade a lot of research effort has focused on solving individual
tasks as well as possible. While it is certainly important to gauge the limits of
individual tasks, various researchers have recently raised the question of whether
the next big step forward can be achieved by focusing on improving single tasks
or by considering different tasks in a joint fashion. This question is particularly

5

CHAPTER 1. INTRODUCTION

Figure 1.6: Object 3D pose estimation. An example of estimating 3D pose
of pedestrians in the scene. Each pose is presented by a 3D bounding box around
the target pedestrian.

emphasized in robotics setups where the coordination of multiple tasks and
consolidation of various predictions is constitutive.

Recently, deep learning methods have shown significant improvement on
solving scene understanding tasks. However, designing a network architecture
to jointly learn and solve multiple tasks is challenging. One factor is the number
of parameters or the capacity of the network. A low capacity network performs
poorly while a very high capacity network may decouple the learning of tasks.
The other factor is how to fuse the features learned from different tasks. Im-
proper fusion may result in negative effect of one task on the others.

Feature matching: Feature matching is a challenging problem in complex
tasks with multiple inputs, such as finding the matching points:

• in temporal inputs for optical flow estimation
• in stereo images for disparity estimation
• between point-cloud and 3D-CAD model for object 3D pose estimation.

The main challenges in feature matching are existence of the large search space
for matching the pairs from all over the inputs, and mismatches due to repeating
structures in the scene.

Object co-segmentation: Finding and segmenting common objects in a
group of images is an interesting and challenging task in scene understand-
ing. Object co-segmentation aims to segment all common objects in a set of
given images (see Fig. 1.7). This task is specially useful in cases that the target
object is not predefined and the goal is to understand and learn the appearance
and structure of the object category from unlabeled data.

Dense prediction tasks: Recently, deep learning has improved many tasks
of computer vision significantly. Convolutional Neural Networks (CNNs) are

6

CHAPTER 1. INTRODUCTION

Figure 1.7: Co-segmentation. The goal is to segment all common objects in
input images. In this example koalas are the common objects. These results
are generated by our approach in chapter 5.

the most successful architectures for computer vision tasks. The main wining
factor of these networks is their large receptive field thanks to the combination of
convolution layers and pooling layers. These networks are originally designed for
image classification task. They map the input image into high level features and
normally the spatial dimension of these features are downscaled with a factor
of 32. These coarse features can perfectly summarize the information in the
image and are suitable for image level classification. After the success of these
networks in image classification, they are adapted for dense prediction tasks
such as semantic segmentation, depth estimation, object detection. However,
due to their spatial information loss, the performance of these networks on dense
prediction tasks is not as well as on image classification.

1.3 Contribution

The main contribution of this thesis is to improve and analyze different aspects
of scene understanding in three main directions: multiple tasks cooperation,
common-object segmentation, and dense prediction tasks.

Multiple tasks cooperation: As mentioned in the previous section, there
are many tasks for understanding a scene and each of these tasks has its ad-
vantages and limitations. In this thesis, we explore the benefits of combining
multiple tasks, as summarized below.

• We addresses the task of designing a modular neural network architec-
ture that jointly solves different tasks. As an example we use the tasks
of depth estimation and semantic segmentation given a single RGB im-

7

CHAPTER 1. INTRODUCTION

age. The main focus of this work is to analyze and achieve the so-called
synergy effect between the different tasks. While most previous works
solely focus on measuring improvements in accuracy, we are the first to
quantify the synergy effect. We show that there is a relationship between
accuracy and the synergy effect, although not a simple linear one. Hence
a larger synergy effect does not necessarily mean an improved accuracy.
This relationship can be utilized to understand different design choices
in network architectures. Towards this end we propose a shallow Convo-
lutional Neural Network (CNN) architecture that fuses the state of the
state-of-the-art results for depth estimation and semantic labeling. By
doing so we achieve improved results for both tasks using the NYU-Depth
v2 benchmark.

• Existing methods for scene flow estimation often fail in the presence of
large displacement or local ambiguities, e.g. texture-less or reflective sur-
faces. However, these challenges are omnipresent in dynamic road scenes,
which is the focus of this work. Our main contribution is to overcome these
3D motion estimation problems by exploiting recognition. In particular,
we investigate the importance of recognition granularity, from coarse 2D
bounding box estimates over 2D instance segmentations to fine-grained
3D object part predictions. We compute these cues using CNNs trained
on a newly annotated dataset of stereo images, and integrate them into
a slanted-plane CRF model for robust 3D scene flow estimation - an ap-
proach we term Instance Scene Flow. We analyse the importance of each
recognition cue in an extensive ablation study and observe that the in-
stance segmentation cue is by far strongest, in our setting. We demon-
strate the effectiveness of our method on the challenging KITTI 2015 scene
flow benchmark where we achieve state-of-the-art performance at time of
submission.

• We address the task of 6D pose estimation of known rigid objects from
single input images in scenarios where the objects are partly occluded.
Recent RGB-D-based methods are robust to moderate degrees of occlu-
sion. For RGB inputs, no previous method works well for partly occluded
objects. Our main contribution is to present the first deep learning-based
system that estimates accurate poses for partly occluded objects from
RGB-D and RGB input. We achieve this with a new instance-aware
pipeline that decomposes 6D object pose estimation into a sequence of
simpler steps, where each step removes specific aspects of the problem.
The first step localizes all known objects in the image using an instance
segmentation network, and hence eliminates surrounding clutter and oc-
cluders. The second step densely maps pixels to 3D object surface po-
sitions, so called object coordinates, using an encoder-decoder network,
and hence eliminates object appearance. The third, and final, step pre-
dicts the 6D pose using geometric optimization. We demonstrate that we
significantly outperform the state-of-the-art for pose estimation of partly
occluded objects for both RGB and RGB-D input.

8

CHAPTER 1. INTRODUCTION

Common object segmentation: We present a deep object co-segmentation
(DOCS) approach for segmenting common objects of the same class within a
pair of images. This means that the method learns to ignore common, or un-
common, background stuff and focuses on common objects. If multiple object
classes are presented in the image pair, they are jointly extracted as foreground.
To address this task, we propose a CNN-based Siamese encoder-decoder archi-
tecture. The encoder extracts high-level semantic features of the foreground
objects, a mutual correlation layer detects the common objects, and finally, the
decoder generates the output foreground masks for each image. To train our
model, we compile a large object co-segmentation dataset consisting of image
pairs from the PASCAL dataset with common objects masks. We evaluate our
approach on commonly used datasets for co-segmentation tasks and observe
that our approach consistently outperforms competing methods, for both seen
and unseen object classes.

Dense prediction tasks: There are a variety of approaches to obtain a vast
receptive field with convolutional neural networks (CNNs), such as pooling or
striding convolutions. Most of these approaches were initially designed for im-
age classification and later adapted to dense prediction tasks, such as semantic
segmentation. However, the major drawback of this adaptation is the loss of
spatial information. Even the popular dilated convolution approach, which in
theory is able to operate with full spatial resolution, needs to subsample fea-
tures for large image sizes in order to make the training and inference tractable.
In this work, we introduce Split-Merge pooling to fully preserve the spatial in-
formation without any subsampling. By applying Split-Merge pooling to deep
networks, we achieve, at the same time, a very large receptive field. We evaluate
our approach for dense semantic segmentation of large image sizes taken from
the Cityscapes and GTA-5 datasets. We demonstrate that by replacing max-
pooling and striding convolutions with our split-merge pooling, we are able to
improve the accuracy of different variations of ResNet significantly.

1.4 Publications

The thesis is based on the following publications:

1. Analyzing Modular CNN Architectures for Joint Depth Pre-
diction and Semantic Segmentation[1]
Omid Hosseini Jafari, Oliver Groth, Alexander Kirillov, Michael Ying
Yang, Carsten Rother
ICRA 2017 (Oral Presentation)

2. Bounding Boxes, Segmentations and Object Coordinates: How
Important is Recognition for 3D Scene Flow Estimation in Au-
tonomous Driving Scenarios?[2]
Aseem Behl*, Omid Hosseini Jafari*, Siva Karthik Mustikovela*, Hassan
Abu Alhaija, Carsten Rother, Andreas Geiger
ICCV 2017 (Poster Presentation)

9

CHAPTER 1. INTRODUCTION

(* equal contribution)
Declaration: The original idea of this work proposed jointly. We de-
veloped and improved the original idea together. I particularly focused
on dataset analysis/preparation/generation and object coordinate esti-
mation network design/implementation. The experimental setup is con-
ducted in a joint discussion and we wrote the paper together.

3. iPose: Instance-Aware 6D Pose Estimation of Partly Occluded
Objects[3]
Omid Hosseini Jafari*, Siva Karthik Mustikovela*, Karl Pertsch, Eric
Brachmann, Carsten Rother
ACCV 2018 (Poster Presentation)
(*equal contribution)
Declaration: I and Siva Mustikovela came up with the original idea in a
joint discussion. Siva focused mostly on ICP refinement of the predicted
poses for RGB-D setup and I focused on the rest of the pipeline, i.e.
dataset preparation and generation, instance segmentation, object coor-
dinate estimation and pose refinement of RGB setup. The experimental
setup is conducted in a joint effort and we wrote the paper together.

4. Deep Object Co-Segmentation[4]
Weihao Li*, Omid Hosseini Jafari*, Carsten Rother
ACCV 2018 (Poster Presentation)
(*equal contribution)
Declaration: Weiaho Li proposed the original idea. The idea improved
and developed in a joint discussions of me and Weihao. I mainly focused
on design and implementation side of the approach. The experimental
setup is conducted in a joint effort and we wrote the paper together.

5. Split Merge Pooling[5]
Omid Hosseini Jafari, Carsten Rother
arxiv 2020

I also contributed to the following publications during my PhD but these
works are not discussed in the thesis:

1. Real-time RGB-D based template matching pedestrian detec-
tion [6]
Omid Hosseini Jafari, Michael Ying Yang
ICRA 2016 (Oral Presentation)

2. Semantic-Aware Image Smoothing[7]
Weihao Li, Omid Hosseini Jafari, Carsten Rother
VMV 2017

3. Localizing Common Objects Using Common Component Acti-
vation Map[8]
Weihao Li, Omid Hosseini Jafari, Carsten Rother
CVPR 2019 Explainable AI Workshop

10

CHAPTER 1. INTRODUCTION

1.5 Thesis Outline

In chapter 2, we introduce a modular network for improving two tasks of seman-
tic segmentation and depth estimation. In chapter 3, we introduce an instance-
aware scene flow approach. In chapter 4, we propose an instance-aware object
6D pose estimation method for partially occluded objects. In chapter 5, we
introduce a novel deep learning approach to address the problem of object co-
segmentation. In chapter 6, we introduce a novel pooling layer that preserves
the spatial information and improves the performance of dense prediction tasks.
Finally, in chapter 7, we discuss the possible future work directions.

11

CHAPTER 1. INTRODUCTION

12

Chapter 2

Analyzing Modular CNN
Architectures for Joint
Depth Prediction and
Semantic Segmentation

2.1 Introduction

Machine perception is an important and recurrent theme in the robotics and
computer vision community. Computer vision has contributed a broad range
of tasks to the field of perception, such as estimating physical properties from
an image, e.g. depth, motion, or reflectance, as well as estimating semantic
properties, e.g. labeling each pixel with a semantic class. One may argue
that all of these tasks contribute to one central goal, which can be broadly
described as “holistic scene understanding”. In the last decade a lot of research
effort has focused on solving individual tasks as good as possible. While it is
certainly important to gauge the limits of individual tasks, various researchers
have recently raised the question of whether the next big step forward can be
achieved by focusing on improving single tasks or by considering different tasks
in a joint fashion, e.g. [9].1 This question is particularly emphasized in robotics
setups where the coordination of multiple tasks and consolidation of various
predictions is constitutive. In this work we focus on the question of “How to
analyze and exploit the cross-modality influence between depth and semantic
predictions in order to solve tasks jointly.”. While the idea of a “beneficial
influence between different tasks” is not new, it has in our opinion not received
enough attention. This is in contrast to other fields, such as neuroscience,
psychology and machine learning. In principle, there are two different ways

1See for example the recent workshop on “Recognition meets Reconstruction”, where one
aim is to solve two tasks jointly.

13

CHAPTER 2. ANALYZING MODULAR CNN ARCHITECTURES FOR JOINT
DEPTH PREDICTION AND SEMANTIC SEGMENTATION

to consider multiple tasks in a joint framework. One option is to have one
big, joint model. For example this can be a neural network which has a single
RGB image I as input and outputs a semantic segmentation S and a depth
labeling D; or a graphical model which represents p(S,D|I). While this is a
popular choice and many impressive results have been achieved, e.g. [10] (for
depth, semantic segmentation and more) or [11] (for depth, surface reflectance
and lighting), it has its drawbacks. Firstly, the models become rapidly complex
and are hence rarely used in follow-up works. Secondly, it is very difficult to
analyze whether there is indeed a beneficial influence between different tasks.
For instance, as we will see later, a joint model may have no interdependency
between modalities and tasks and can in fact be considered as two separate
models. The second possible approach for solving multiple tasks jointly is to
follow a modular design. In this work, we pursue this option. We propose
a simple modular design where individual tasks are first inferred separately
and then fed into our joint refinement network (see Fig. 2.1). The aim of this
network is to leverage a beneficial cross-modality influence between the soft
(probabilistic) input modalities in order to jointly refine both task outputs. We
show experimentally that there is indeed a relation between the cross-modality
influence and an improvement in accuracy for each individual task. However, the
relation is not linear, i.e. a larger cross-modality influence does not necessarily
mean higher accuracy.

Figure 2.1: Example processing flow of our joint refinement network.
A single RGB image is first processed separately by two state-of-the-art neural
networks for depth estimation and semantic segmentation. The two resulting
predictions contain information which can mutually improve each other: (1)
yellow arrow from depth to semantic segmentation means that a smooth depth
map does not support an isolated region (cyan means furniture); (2) yellow
arrow from semantic segmentation to depth map means that the exact shape
of the chair can improve the depth outline of the chair. (3) In most areas the
two modalities positively enforce each other (e.g. the vertical wall (dark blue)
supports a smooth depth map. The cross-modality influences between these
two modalities are exploited by our joint refinement network, which fuses the
features from the input prediction maps and jointly processes both modalities
for an overall prediction improvement. (Best viewed in color.)

14

CHAPTER 2. ANALYZING MODULAR CNN ARCHITECTURES FOR JOINT
DEPTH PREDICTION AND SEMANTIC SEGMENTATION

While such a modular design is not as rich as a complex joint model, it brings
many advantages: (i) New modalities can be easily integrated. For instance a
module that estimates the reflectance properties can be integrated. (ii) We can
quantify the cross-modality influence between different modalities, as discussed
in detail later. (iii) It is easier to train all the tasks, in contrast to a full
joint model. For example, in practice we often have many training images for
individual modalities but fewer training images for all modalities jointly. A joint
model would have to be trained in a semi-supervised fashion in order to cope
with such heterogeneous data, while in a modular architecture each module is
trained with the applicable training data. (iv) Since in our case each module,
i.e. for the individual task and the joint refinement, is realized in the form
of Convolution Neural Networks (CNNs), it is possible to conduct end-to-end
training.

The advantages of modular architectures are not new and indeed David Marr
describes it properly in his book ([12] page 102): “This principle [of modular
design] is important because if a process is not designed in this way, a small
change in one place has consequences in many other places. As a result, the
process as a whole is extremely difficult to debug or to improve, whether by a
human designer or in the course of natural evolution.”

To summarize, our main contributions are threefold:

• For both tasks, semantic segmentation and depth estimation, we improve
on the state-of-the-art results for the NYU-Depth v2 benchmark [13]. We
achieve this by proposing a new joint refinement network which takes as
input the results of the current state-of-the-art networks for the individual
tasks.

• For modular architecture designs we propose an experimental setup to
measure the cross-modality influence quantitatively. Such experiments
are well-known in neuroscience, but have not yet been used in computer
vision or robotics, to the best of our knowledge.

• We analyze different network designs with respect to their cross-modality
influence and show that there is indeed a relationship between the cross-
modality influences and tasks performances. Although not linear, this
relationship can be used to understand different design choices in network
architectures.

2.2 Related Work

A large body of work in computer vision has focused on the two separate prob-
lems of semantic segmentation and depth estimation. In the review below,
we focus on techniques that specifically address multi-modal architectures or
perform semantic segmentation and depth estimation from a single monocular
image.

Single tasks. Conditional Random Fields (CRFs) are popular models that
have been used in both depth estimation task, e.g. [14, 15, 16, 17, 18, 19],

15

CHAPTER 2. ANALYZING MODULAR CNN ARCHITECTURES FOR JOINT
DEPTH PREDICTION AND SEMANTIC SEGMENTATION

and semantic segmentation task, e.g. [20, 21]. Such approaches predominantly
use hand-crafted features. Recently, convolutional neural networks (CNNs) are
driving advances in computer vision, such as for image classification [22], object
detection [23, 24], recognition [25, 26], semantic segmentation [27, 28], pose es-
timation [29] and depth estimation [30]. The success of CNNs is attributed to
their ability to learn rich feature representations as opposed to hand-designed
features. Eigen et al. [30] trained multi-scale CNNs for depth map prediction
from a single image. Liu et al. [31] propose deep convolutional neural fields for
depth estimation, where a CRF is used to explicitly model the relations of neigh-
boring superpixels, and the potentials are learned in a unified CNN framework.
Eigen and Fergus [32] extend their previous method [30] to predict depth, sur-
face normals and semantic labels sequentially with a common multi-scale CNN.
A number of recent approaches, including recurrent CNNs (R-CNNs) [33] and
fully convolutional networks (FCN) [28] have shown a significant boost in accu-
racy by adapting state-of-the-art CNN-based image classifiers to the semantic
segmentation problem. Pinheiro and Collobert [33] present a feed-forward ap-
proach for scene labeling based on an R-CNN. The system is trained in an
end-to-end manner over raw pixels and models complex spatial dependencies
with low computational cost. FCNs [28] address the coarse-graining effect of
the CNN by upsampling the feature maps in deconvolution layers and combin-
ing fine-grained and coarse-grained features during prediction.

Joint models. Joint models of multiple tasks have been exploited in the com-
puter vision literature to a certain extent, e.g. joint image segmentation and
stereo reconstruction [34, 35, 36], joint object detection and semantic segmen-
tation [37], joint instance segmentation and depth ordering [38], as well as joint
intrinsic image, objects, and attributes estimation [10]. However, joint seman-
tic segmentation and depth estimation from a single image has been rarely ad-
dressed, with a few exceptions [39, 40]. These works explicitly reason about class
segmentation as well as depth estimation from a single image. Ladicky et al.
[39] jointly trained a canonical classifier considering both the loss from semantic
and depth labels of the objects. However, they use local regions with hand-
crafted features for prediction, which is only able to generate very coarse depth
and semantic maps. Wang et al. [40] formulate the joint inference problem in
a two-layer Hierarchical Conditional Random Field (HCRF). The unary poten-
tials in the bottom layer are pixel-wise depth values and semantic labels, which
are predicted by a CNN trained globally using the full image, while the unary
potentials in the upper layer are region-wise depth and semantic maps which
come from another CNN-based regressor trained on local regions. The mutual
interactions between depth and semantic information are captured through the
joint training of the CNNs and are further enforced in the joint inference of
HCRF. They consider an alternating optimization strategy by minimizing one,
fixing the other. In contrast, our model performs full joint inference.

16

CHAPTER 2. ANALYZING MODULAR CNN ARCHITECTURES FOR JOINT
DEPTH PREDICTION AND SEMANTIC SEGMENTATION

Scale1 (1/8)

Scale2 (1/4)

Scale3 (1/2)

cat

conv
3x3
relu

D

S

D’

S’

Joint Refinement Network (JRN)

C

C

C

3C 3C

Figure 2.2: Overall Network. JRN receives as input the predictions of two
independent single modalities: Depth and semantic labeling. Inspired by [32]
the inputs are considered at different scales (1/8, 1/4 and 1/2 of the total image
resolution) in order to capture different levels of details. C is the number of
output feature channels from each scale branch (see 2.3.2). After processing the
three scale branches, the computed features are concatenated, convolved and
then mapped to the two respective output maps.

Multi-modal learning and representation. Many different communities
have addressed the problem of multi-modal learning and representation, such
as machine learning [41, 42, 43], human-computer interaction [44, 45], and neu-
roscience [46, 47]. In [41], the authors present a series of tasks for multi-modal
learning and show how to train deep networks that learn features to address
these tasks. In particular, they demonstrate cross modality feature learning,
where better features for downstream classification tasks are learned from a
video if both audio and video signals are present during the feature learning
stage. While [41] deals with an unsupervised feature learning, our approach uses
supervised learning. Furthermore, unlike [41] we perform an analysis on the ef-
fect of different network architectures on the cross-modality influence. Similarly,
in the neuroscience community, the authors of [46] investigated the influence of
the face-benefit in speech and speaker recognition. Apparently, people who have
heard the voice and seen the face of a speaker during training time are more
likely to recognize both the speaker and the spoken words from recorded audio
only during test time. Additionally, [47] revisited the face-benefit experiment
and showed a joint audio-visual processing by the brain for the classification
task, indicating a joint feature representation is key to superior performance.
Canonical correlation analysis (CCA) [48] is the de-facto approach for learning
a common representation of two different modalities (so-called views) in the
machine learning literature. Deep CCA, a deep learning version of CCA, is
introduced in [49]. It aims at learning a complex non-linear transformation of
two views such that the resulting representation is highly correlated. It can be
considered as a non-linear extension of the linear CCA.

17

CHAPTER 2. ANALYZING MODULAR CNN ARCHITECTURES FOR JOINT
DEPTH PREDICTION AND SEMANTIC SEGMENTATION

op
conv
3x3
relu

C0

D

S

20

20

1

5

Scale Branch

C C C
conv
3x3
relu

conv
3x3
relu

conv
3x3
relu

conv
3x3
relu

Figure 2.3: A Scale Branch. On each scale there are first 20-dimensional
feature vectors extracted by performing 3x3 convolutions on each input modal-
ity. Immediately thereafter these modality features are fused by operation op.
We also consider the number of channels C0 after the fusion operation as a
network design variable, which affects the cross-modality influence. The subse-
quent channel number C is 60 by default (Cat60, Sum60). Based on op, C0 and
C we design five different network architectures and analyze their properties in
Sec. 2.4.2.

2.3 Joint Refinement Network

In this section, we present the details of the CNN architecture which we used
to predict jointly the depth map and the semantic labeling. We also discuss
different architectural design decisions and their relation to the cross-modality
influence between two modalities.

2.3.1 Network Architecture

Our network decomposes into two parts: (i) independent single-modality models
that output predictions for each modality separately and (ii) our joint refine-
ment network (JRN) that takes as input these prediction maps and outputs
refined predictions of all modalities. Our model does not have any constraints
on the choice of single-modality models. In order to capture dependencies on
different scales [32], we employ a multi-scale architecture for JRN, as illustrated
in Fig. 2.2. It has three scale-branches Scale1, Scale2 and Scale3 that work
with different scales of the input and have the same architecture, described in
Fig. 2.3. On each scale, 20-dimensional features are extracted by performing
3 × 3 convolutions on each input modality. After each convolutional layer, a
ReLU non-linearity is used. In the next section, we consider different architec-
ture designs for the combination.

2.3.2 JRN Variants

In order to analyze and understand the cross-modality influence, we design
different variations of JRN. Then we measure the cross-modality influence for

18

CHAPTER 2. ANALYZING MODULAR CNN ARCHITECTURES FOR JOINT
DEPTH PREDICTION AND SEMANTIC SEGMENTATION

designed JRN architecture using the approach which we propose in section 2.3.4.

Concatenation. In the concatenation architecture we have chosen concatena-
tion operations for op in all scale branches consistently (cf. Fig. 2.3). Therefore,
the number of channels C0 after concatenation has doubled to 40. The simple
concatenation of the single-modality features aims at achieving cross modality
features because the single-modality features are subsequently convolved to-
gether. We call this variant Cat60. Since concatenation is the weakest form of
our possible feature interactions, we subsequently refer to this model as featur-
ing a loose computation.

Summation. The summation architecture features an element-wise sum as
fusion operation op on each scale. Since the channels are summed up during
fusion, the number of subsequent channels C0 is equal to 20. We call this variant
Sum60. In contrast to the Cat60 architecture this network forces a joint feature
representation. We refer to this architecture as having a coupled computation
later on.

Channel Squeezing. Besides summation of input features we also consider
the number of channels used after fusion as an influencing factor on the cross-
modality influence and the overall network performance. We hypothesize that
fewer channels would generally enforce network to take into account both modal-
ities more during training of the convolutional layers. Directly after the con-
catenation (op) of the input features, which yields a 40-channel feature, the
number of channels C can be 10, 5 or 1. This gives us three more network
variations Cat10, Cat5 and Cat1. We still classify the Cat10 network as loose
computation whereas the Cat5 and Cat1 networks feature coupled computation.

2.3.3 JRN Training

We define D′ and S′ as the depth and semantic label prediction maps and D∗

and S∗ as the respective ground truth maps. D′ and D∗ are maps assigning
a depth value in the range of [0.0, 10.0] meters to every pixel. S′ and S∗ are
k-channel maps, assigning a probability distribution over k semantic classes to
each pixel. We restrict the loss computation to n valid pixels where we have
both a depth value and a semantic label as ground truth. The loss function for
JRN is a simple summation of single-task losses:

Ljoint(D
′
, S
′
, D
∗
, S
∗
) =

1

n

∑
i

(D′i − D∗i)2

D∗i︸ ︷︷ ︸
Ldepth

−
1

n

∑
i

S
∗
i log(S

′
i)︸ ︷︷ ︸

Lsemantic

(2.1)

The depth loss Ldepth is a relative quadratic distance between prediction and
ground truth map. For the semantic loss Lsemantic we use the cross-entropy
loss, where S′i = exp[zi]/

∑
s exp[zi,s] is the class prediction at pixel i given the

semantic output slice z of the last convolutional layer of JRN. During training we

19

CHAPTER 2. ANALYZING MODULAR CNN ARCHITECTURES FOR JOINT
DEPTH PREDICTION AND SEMANTIC SEGMENTATION

JRN f(.)
X

Y

X’

Y’

JRN f(.)
X

Y

X’

Y’

JRN f(.)
X

Y

X’

Y’

proper input

muted input

refined output

ignored output
(A)

(B) (C)

Figure 2.4: Cross-Modality Influence Test. In order to quantify the cross-
modality influence numbers we need to consider three different inference setups:
(A) Predicting both outputs X ′ and Y ′ from two proper input maps X and Y :
(X ′, Y ′) = f(X,Y); (B) Muting the input channel Y and computing X ′ and
Y ′: (X ′, Y ′) = f(X); and (C) Muting the input channel X and computing X ′

and Y ′: (X ′, Y ′) = f(Y).

keep the single-task networks fixed and use their predictions as inputs to JRN.
In the future we plan to also perform end-to-end training of all networks, single
task networks and JRN. The internal weights of JRN are initialized randomly.
We train JRN jointly on both tasks with the standard NYU-Depth v2 [13]
train-test split.

2.3.4 Quantifying the Cross-Modality Influence

Inspired by the “face-benefit” experiment in [46] we propose an evaluation proxy
to measure the influence of a modality on the final model performance and
quantify it in a so-called influence number. During training time the JRN is
trained to jointly predict two outputs X ′ and Y ′ from two input modalities X
and Y . During inference time we consider three different measurement setups
as explained in Fig. 2.4. The performance of the JRN predicts a particular
modality X ′ which is measured by a function AX (e.g. “mean IOU” for X
being semantic labeling or “rms(linear)” for X being a depth map).
The cross-modality influences between the modalities are directional and de-
pendent on a particular JRN architecture (represented by its transformation
function f(.)) as well as two performance functions AX and AY . The cross-
modality influence of input modality Y on the performance of the prediction of
X ′ measured under AX is defined as:

ωY→X′ = AX(f(X,Y))−AX(f(X)). (2.2)

Consequently the complementary influence from X to Y ′ is defined as:

ωX→Y ′ = AY (f(X,Y))−AY (f(Y)). (2.3)

Note that those influences are not necessarily symmetric. We compute the
influence values in the setup of a joint semantic segmentation (X) and depth

20

CHAPTER 2. ANALYZING MODULAR CNN ARCHITECTURES FOR JOINT
DEPTH PREDICTION AND SEMANTIC SEGMENTATION

estimation (Y) in Sec. 2.4.3 and analyze the relationship between the cross-
modality influences and the model performance.

2.4 Experiments

In this section, we introduce the dataset, and then describe details of our im-
plementation. After that we present a quantitative and qualitative comparison.
We conclude with a cross-modality influence analysis.

2.4.1 Experimental setup

Dataset. We evaluate our proposed method on the NYU-Depth V2 dataset
[13]. This dataset consists of 1449 RGBD images of indoor scenes, among which
795 are used for training and 654 for test (we use the standard train-test split
provided with the dataset). Following [40], we also map the semantic labels
into five categories conveying strong geometric properties, i.e. Ground, Vertical,
Ceiling, Furniture and Object, as it is shown in Fig. 2.5.

Implementation details. We use two state-of-the-art single modality CNN
models for providing the input depth-map and semantic segmentation prediction
map. For depth input, we use the inference code with pretrained model of Eigen
et al. [32] which is publicly available2. For semantic segmentation prediction
maps, we use the FCN model of Long et al. [28].

We implement our network in Caffe framework [50]. We train joint refine-
ment networks (Cat60, Cat10, Cat5, Cat1 and Sum60) with 795 training images
from NYU-Depth V2 dataset [13] using SGD solver with batches of size one.
The learning rate is 0.001 for all the convolutional layers and the momentum
is 0.9. The global scale of the learning rate is tuned to a factor of 5. Depend-
ing on the different architectures and the number of channels in scale branches,
training JRN took 5 to 6 hours using an NVidia GTX Titan X. We pass the
absolute depth maps and the semantic prediction maps to JRN.

Evaluation metrics. To evaluate the semantic segmentation, we take Inter-
section over Union (IOU) and pixel accuracy percentage as metrics. For the
depth estimation task we use several measures, which are also commonly used
in prior works [17, 30]. Given the predicted depth value of a pixel di and the
ground truth depth d∗i , the evaluation metrics are:

• Abs relative error (rel): 1
N

∑
i
|d∗i−di|

d∗i
;

• Squared relative error (rel(sqr)): 1
N

∑
i
|d∗i−di|2

d∗i
;

• Average log10 error (log10): 1
N

∑
i | log10 d

∗
i − log10 di|;

2http://www.cs.nyu.edu/~deigen/dnl/

21

http://www.cs.nyu.edu/~deigen/dnl/

CHAPTER 2. ANALYZING MODULAR CNN ARCHITECTURES FOR JOINT
DEPTH PREDICTION AND SEMANTIC SEGMENTATION

Error (Depth) Accuracy (Depth) Accuracy (Seg.)
(lower is better) (higher is better) (higher is better)

rel rel(sqr) log10 rms(linear) rms(log) δ < 1.25 δ < 1.252 δ < 1.253 Mean IOU Pix.Acc.

Input [32]&[28] 0.158 0.125 0.070 0.687 0.221 0.751 0.946 0.987 53.284 72.268
Cat60 0.158 0.124 0.0686 0.678 0.218 0.760 0.947 0.987 54.206 72.957
Sum60 0.157 0.123 0.068 0.673 0.216 0.762 0.948 0.988 54.184 72.967
Cat10 0.158 0.125 0.069 0.681 0.219 0.756 0.946 0.987 54.080 72.953
Cat5 0.160 0.125 0.068 0.670 0.218 0.762 0.946 0.986 54.120 72.952
Cat1 0.161 0.126 0.069 0.669 0.219 0.759 0.946 0.987 53.989 72.864

Table 2.1: Comparison of different JRN architectures. We compare our
different JRN networks with each other and also with our input single modality
networks for depth [32] and semantic segmentation [28]. Best results are shown
in bold.

Error (lower is better) Accuracy (higher is better)
rel rel(sqr) log10 rms(linear) rms(log) δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [30] 0.215 0.212 - 0.907 0.285 0.611 0.887 0.971
Joint HCRF [40] 0.220 0.210 0.094 0.745 0.262 0.605 0.890 0.970
Eigen & Fergus [32] 0.158 0.125 0.070 0.687 0.221 0.751 0.946 0.987
Liu et al. [31] 0.213 - 0.087 0.759 - 0.650 0.906 0.976
Ours (Sum60) 0.157 0.123 0.068 0.673 0.216 0.762 0.948 0.988

Table 2.2: Depth comparison. Baseline comparisons of depth estimation on
the NYU-Depth v2 dataset. Our method outperforms state-of-the-art methods.

• Root mean squared error (rms(linear)):√
1
N

∑
i(d
∗
i − di)2;

• Root mean squared error (rms(log)):√
1
N

∑
i | log d∗i − log di|2;

• Accuracy with threshold thr: percentage (%) of

di s.t.max(
d∗i
di
, di

d∗i
) = δ < thr, where

thr ∈ {1.25, 1.252, 1.253};

2.4.2 Comparison of Results

We first compare our five different JRN architectures described in Sec. 2.3.2 with
each other (see Table 2.1). We observe that none of the networks consistently
outperforms all others in all metrics. However, the Sum60 network is nearly the
best for all metrics. Hence we chose it for comparison with other models from
related work.

For depth estimation, we compare our results with four most recent meth-
ods, i.e. Eigen et al. [30], Joint HCRF [40], Eigen & Fergus [32], and Liu et
al. [31]. Table 2.2 shows the quantitative results from all the algorithms. Our
JRN network consistently outperforms all the state-of-the art algorithms in all
metrics. The main difference to the models of Eigen et al. [30], Eigen & Fergus
[32] and Liu et al. [31] is that they only deal with the depth estimation task, and
hence cannot exploit cross-modality influence. However, the Joint HCRF [40]
also jointly predicts a depth map and semantic labeling, yet our model outper-

22

CHAPTER 2. ANALYZING MODULAR CNN ARCHITECTURES FOR JOINT
DEPTH PREDICTION AND SEMANTIC SEGMENTATION

Ground Vertical Ceiling Furniture Object Mean IOU Pix.Acc.
Semantic HCRF [40] 61.84 66.344 15.977 26.291 43.121 42.715 69.351
Joint HCRF [40] 63.791 66.154 20.033 25.399 45.624 44.2 70.287
FCN16s NYU-5 [28] 66.578 67.354 46.351 35.71 50.429 53.284 72.268
Ours (Sum60) 67.87 68.707 48.166 35.82 50.770 54.267 73.035

Table 2.3: Semantic segmentation comparison. Class-wise results report-
ing mean IOU and pixel-wise accuracy for semantic segmentation on NYU-
Depth v2 with five classes. Best results are shown in bold.

forms theirs by a large margin both in depth estimation (8.7% rel(sqr) decrease)
and in semantic segmentation (10% mean IOU increase, see Table 2.3). We eval-
uate the published predicted depth maps from Eigen & Fergus [32] and Eigen
et al. [30] with our evaluation script, and for Eigen et al. [30] we obtain the
same reported numbers. However, we do not obtain the same numbers for [32]
as reported. Our goal in this work is to improve the performance of the input
predictions. Therefore, this comparison is fair since we use the same evaluation
script for the input and the output of our network.

For semantic segmentation, we compare two recent methods: Our baseline
FCN [28] and Joint HCRF [40]. Results are shown in Table 2.3. We outperform
the other methods for all five classes. Compared with the baseline FCN [28] our
method is 1% better in mean IOU.

Qualitative results of both tasks are shown in Fig. 2.5. Even though our
method does not use superpixels or any explicit CRF model, it tends to produce
large homogeneously labeled regions.

2.4.3 Performance Cross-Modality Influence Analysis

We compute the cross-modality influence for all five JRN networks by looking at
the relation between the cross-modality influence numbers and the performance
in the respective modalities (see Fig. 2.7). We observe that there is no linear
relationship between cross-modality influence and performance but they rather
lie within an area which is, according to our observations, upper-bounded by a
concave curve. This means that a larger influence between modalities does not
guarantee better performance in the respective metric. Indeed a large negative
effect can hamper performance (see Fig. 2.6).

Based on our findings about cross-modality influence, we hypothesize that
the relationship between cross-modality influence and performance can be gen-
eralized into a plot which is sketched in Fig. 2.8. The cross-modality influence
arises from certain model design decisions, as well as from modality combina-
tions for a particular end-task. For example, we have seen in our experiments
that moderately transferring shapes and class-wise depth priors from the se-
mantic map into the depth map can help improving depth estimation (see Fig.
2.5 bottom). However, the cross-modality influence ωS→D′ can also be too
strong (large positive influence number) which causes a decrease in performance.
For example, shapes from semantic segmentation can cause halos and artifacts
in the depth map (see Fig. 2.6). We conclude that inspecting performance

23

CHAPTER 2. ANALYZING MODULAR CNN ARCHITECTURES FOR JOINT
DEPTH PREDICTION AND SEMANTIC SEGMENTATION

Ceiling

Vertical

Object

Furniture

Ground

Figure 2.5: Two qualitative results of our Sum60 network compared with the
input (i.e state-of-the-art). Each top row (from left to right): Image, ground
truth semantic labeling, result of [28] and our result. Each bottom row (from
left to right): Ground truth depth map, result of [32] and our result. The
first example depicts an improvement in semantic labeling, where ground label
(yellow) has been removed (next to object label (red)). In the second example,
the depth edges of the upper bed frame are better recovered in our result (best
viewed zoomed-in). Please note that our results are smooth and follow edges in
the input image, despite having no explicit CRF model.

24

CHAPTER 2. ANALYZING MODULAR CNN ARCHITECTURES FOR JOINT
DEPTH PREDICTION AND SEMANTIC SEGMENTATION

 Image Semantic Semantic True Depth Depth Depth
 [10-Ch] [Sum] [10-Ch] [Sum]

Figure 2.6: Negative influence. From left to right: Input image, our semantic
labeling of the Cat10 network, semantic labeling of the Sum60 network, ground
truth depth, result of our Cat10 network, result of our Sum60 network. Despite
the Cat10 network having a higher cross-modality influence number ωS→D′

than the Sum60 network (cf. Fig. 2.7 top right), the respective depth accuracy
(-rel(sqr)) of the Cat10 network is lower. This is visible in the image where the
picture frame has received a wrong depth in the Cat10 network result, compared
to the Sum60 network result. (Image crops shown for visualization purpose.)

ωD→ S'
53.98

54.12

54.20

54.08

M
ea

n-
IO

U

Cat5

Sum60

Cat10

Cat60
Cat1

ωS→D'
−12.66

−12.58

−12.37

−12.44

−12.54

−
re

l(
sq

r)

Cat1

Cat5

Sum60 Cat60

Cat10

ωD→S′ ωS→D′

Cat60 0.94 4.9
Cat10 0.39 4.93
Cat5 0.10 -0.24

Sum60 0.32 1.11
Cat1 7.59 -0.40

Figure 2.7: Performance vs. cross-modality influence plots for all mod-
els. We use the mean IOU measure for semantic labels (AS), and −rel(sqr)∗100
for depth (AD). The right table shows all influence numbers ωD→S′ and ωS→D′

for all models. The top figures are the respective performance-influence plot.
Both plots exhibit a peak where the optimal trade-off between cross-modality
influence and evaluated performance is achieved. We see that the Sum60 and
Cat60 models are at the peaks of the respective plots. We colored models in red
which feature loose computation and in green which feature coupled computa-
tion (see Sec. 2.3.2). This supports the idea that the cross-modality influence
number can facilitate the systematic exploration of network architectures.

25

CHAPTER 2. ANALYZING MODULAR CNN ARCHITECTURES FOR JOINT
DEPTH PREDICTION AND SEMANTIC SEGMENTATION

vs. cross-modality influence plots is a useful way to find appropriate modular
architectures. Furthermore, these plots may help identifying complementary
modalities to further leverage the cross-modality influence for task performance
improvements.

Cross-modality influence

Influence
Performance
Equilibrium

Figure 2.8: The performance vs. cross-modality influence curve. For
each modality pair (X,Y) and in each modality influence direction Y → X ′ and
X → Y ′ the relationship between the magnitude of the cross-modality influence
and the prediction performance needs to be balanced into an equilibrium. This
cross-modality influence analysis will be helpful when designing models which
should operate on multiple modalities and carry out joint predictions.

2.5 Discussion

Inspired by work in neuroscience we have introduced a systematic way to mea-
sure the cross-modality influence present in our JRN networks. By doing so, we
were able to identify a network which achieves a measurable influence between
modalities, has an overall good performance compared to other JRN networks,
and is consistently better than the state-of-the-art input modalities.

26

Chapter 3

Instance-aware Scene Flow
Estimation

3.1 Introduction

3D motion estimation is a core problem in computer vision with numerous
applications. Consider, for instance, an autonomous car navigating through a
city. Besides recognizing traffic participants and identifying their 3D locations,
it needs to precisely predict their 3D position in the future.

In this paper, we focus on 3D scene flow estimation for autonomous driv-
ing scenarios. More specifically, given two consecutive stereo images we want
to predict the 3D motion of every pixel. With the advent of challenging real-
world benchmarks, such as the KITTI 2012 [51] and KITTI 2015 [52], great
progress has been made in this area. In particular, segmentation-based formu-
lations which gain their strength by reasoning over piece-wise planar patches
[53] or segmenting the scene into its rigidly moving components [52] dominate
the leaderboards.

However, existing methods rely heavily on local features for computing the
data term and for initialization. As a consequence, even state-of-the-art methods
fail in the presence of very large displacements or local ambiguities from, e.g.,
textureless or reflective surfaces. Consider Fig. 3.1 (top) which shows an image
from the KITTI 2015 scene flow dataset [52]. Due to the large displacement
between frames, the front wheel in the first frame appears similar to the back
wheel in the second frame, resulting in wrong predictions. Furthermore, the
small amount of texture and the reflective car surface complicate the matching
task.

In this paper, we propose to exploit recognition to facilitate this problem.
In particular, we investigate the benefits of semantic grouping and fine-grained
geometric recognition for this task as illustrated in Fig. 3.1. We will formulate
the output of the recognition task as a new constraint, besides standard con-
straints such as local appearance and 3D motion-smoothness within an image,

27

CHAPTER 3. INSTANCE-AWARE SCENE FLOW ESTIMATION

2D Bounding Box 2D Instance Segmentation 3D Object Coordinates

Figure 3.1: Motivation. Top: Two consecutive frames (overlaid) from the
KITTI 2015 scene flow dataset. Large displacements and specular surfaces are
challenging for current scene flow estimation algorithms. Bottom: Recognition
can provide powerful geometric cues to help with this problem. In this work,
we investigate: 2D bounding boxes, 2D instance segmentations and 3D object
coordinates.

in a CRF-based framework.

For semantic grouping, we consider two scenarios: i) a bounding box around
the visible part of each semantic instance, and ii) a pixel-wise segmentation of
the visible part of each semantic instance. While the latter output provides a
more detailed mask of the object, and hence may be more beneficial for the scene
flow task, it is also a harder task to solve, and hence may contain segmentation
errors. While these cues do not provide additional geometric evidence, they
constrain the space of possible rigid body motions: pixels which are grouped
together are likely to move as a single rigid object in the case of vehicles. We
integrate both cues into the scene flow task by enforcing consistency between
neighboring views (either in time or space). In short, a pixel within an instance
region (bounding box or segment) in one frame should be mapped to an instance
in the other frame. Furthermore, all pixels within an instance should move as
one rigid entity.

To obtain the bounding box or segmentation masks, we utilize an existing
state-of-the-art approach - the multi-task network cascade (MNC) from Dai et
al. [54]. In contrast to [54], we achieve improved outputs, by providing a dense
depth map as additional input to the network. To train the CNN, we annotated

28

CHAPTER 3. INSTANCE-AWARE SCENE FLOW ESTIMATION

400 stereo images from the KITTI 2015 benchmark of Menze et al. [52] using
in-house annotators.

For fine-grained geometric recognition we train a new convolutional neural
network (CNN) on 2D instance segmentations of MNC which predicts the con-
tinuous 3D object parts, also known as 3D object coordinates [55, 56, 57, 58, 59],
for each pixel inside the instance mask. The 3D object coordinates specify the
relative 3D location of an object’s surface point with respect to the object’s lo-
cal coordinate frame as shown in Fig. 3.1 (bottom-right) with illustrative colors.
Thus, they provide a detailed geometric cue for matching pixels in neighboring
frames, even in the presence of large displacements.

The fine-grained geometric recognition and the semantic grouping have, cer-
tainly, a different trade-off between modeling-power versus prediction accuracy.
If the recognition task was to be solved perfectly well, the continuous object
part would be the strongest geometric cue, followed by the segmentation mask
and the bounding box. On the other hand, as we will see experimentally, the
continuous object parts are most challenging to predict precisely, followed by
the segmentation mask and the bounding box. Given this trade-off, the key
question addressed in this work is:

Which level of recognition is most beneficial for the scene flow task, when
combining different cues, i.e. local appearance, 3D motion-smoothness and recognition-
based geometric constraint, in a CRF-based framework?

Our CRF framework is based on [52] and termed Instance Scene Flow. We
validate the benefits of recognition cues for scene flow on the challenging KITTI
2015 benchmark [52]. Firstly, we conduct a detailed ablation study for the three
levels of recognition granularity, i.e. 2D bounding box, 2D segmentation mask,
and continuous 3D object parts. From this study, we conclude that the instance
segmentation cue is by far strongest, in our setting. Secondly, we show that
our Instance Scene Flow method significantly boosts the scene flow accuracy,
in particular in challenging foreground regions. Alongside, we obtain the lowest
overall test errors amongst all methods at time of submission. Our code and
datasets will be made available upon publication.

In short, our contributions are:

• A new 3D scene flow method, leveraging recognition-based geometric cues
to achieve state-of-the-art performance on the challenging KITTI 2015
scene flow benchmark, at the time of submission.

• A detailed ablation study of the importance of recognition granularity,
from coarse 2D bounding boxes over 2D instance segmentations to fine-
grained 3D object part predictions, within our scene flow framework.

• High-quality, instance-level annotations of 400 stereo images from the
KITTI 2015 benchmark [52].

3.2 Related Work

In the following, we review the most related works on image-based scene flow
estimation, semantic priors and object coordinates. For an overview of RGB-D

29

CHAPTER 3. INSTANCE-AWARE SCENE FLOW ESTIMATION

methods (e.g., using the Kinect), we refer to [60, 61, 62, 63, 64, 61].

Scene Flow: Following the work of Vedula et al. [65, 66] several approaches
formulate 3D scene flow estimation as a variational optimization problem [67,
68, 69, 70, 71, 72]. Unfortunately, coarse-to-fine variational optimization suffers
when displacements are large. Thus, slanted-plane models [73, 74] have recently
been introduced [75, 76, 52, 77, 78] which gain their robustness by decomposing
the scene into a collection of rigidly moving planes and exploiting discrete-
continuous optimization techniques.

While these methods have demonstrated impressive performance on the chal-
lenging KITTI benchmark [51, 52], they fail to establish correspondences in
textureless, reflective or fast-moving regions due to violations and ambiguities
of the data term and weak prior assumptions. In this paper, we propose to
approach this problem using fine-grained instance recognition and 3D geometry
information, resulting in significant accuracy gains.

Semantic Priors: Several works have considered semantic information for
stereo or optical flow estimation. Gney et al. [79] presented a model for stereo
estimation where 3D object hypotheses from a CAD model database are jointly
estimated with the disparity map. Hur et al. [80] proposed a model for joint
optical flow and semantic segmentation. In particular, they classify the scene
into static and dynamic regions and introduce a constraint which measures how
well the homography of a superpixel meets the epipolar constraint. Sevilla-Lara
et al. [81] used semantic segmentation to identify object instances and combine
per-object layered flow predictions [82] with DiscreteFlow [83]. Bai et al. [84]
proposed a model which first identifies car instances and then predicts each
rigidly moving component in the scene with a separate epipolar flow constraint.

While existing methods leverage recognition to aid either reconstruction or
motion estimation, in this paper we consider recognition for the 3D scene flow
problem, i.e., the combination of the two. In contrast to flow-only methods [84]
that need to search for correspondences along epipolar lines, our method exploits
the semantic cues as well as the geometry which allows us to estimate the rigid
motion between frames more robustly and leads to significantly improved results
compared to all baselines. Furthermore, we are (to the best of our knowledge)
the first to investigate the impact of recognition granularity on the task, ranging
from coarse 2D boxes to fine grained 3D object coordinates predictions.

3D Object Coordinates: Continuous 3D object parts, also known as 3D
object coordinates, have so far mainly been leveraged in the context of 3D pose
estimation [59, 55, 56, 58], camera re-localization [57] and model-based tracking
[85]. The typical approach is to train a random forest for predicting instance-
specific object probabilities and 3D object coordinates with respect to a fixed
local coordinate system. These predictions are used to fit a 3D model of the
known object, resulting in the 3D object pose.

In this work, we explore the possibility of using object coordinates as a
continuous labeling for the surface points of the object.

30

CHAPTER 3. INSTANCE-AWARE SCENE FLOW ESTIMATION

Dense XYZ Scene
Coordinates

Instance Segmen.
& Bound. Boxes

Scene Flow

4 RGB Input
Images

Obj. Coordinates
for each instance

Figure 3.2: Work flow for our approach. Note that each intermediate step
uses as input all of the previous results. Given the four RGB input images
(t/t+1, left/right) we compute 3D points (XYZ) for each pixel. For each of
the four RGB,XYZ image-blocks we obtain instance segmentations, alongside
bounding boxes. The M instances are processed individually to obtain object
coordinates for each instance, using our object coordinates CNN. Finally, all
this information is integrated into our Instance Scene Flow method (ISF) to
produce the final output.

3.3 Method

This section describes our approach to 3D scene flow estimation. The overall
work flow of our approach is illustrated in Fig. 3.2. Given the 4 RGB images
we extract 3D points (XYZ) for each pixel in camera coordinate system using a
stereo method (see Section 5.4.3 for details). Based on the RGB and XYZ values,
we train a multi network cascade (MNC) [54] to predict 2D bounding boxes and
2D instance segmentations. We train a CNN to predict object coordinates for
car instances. Finally, we integrate the bounding box, instance and object
coordinates cues into a slanted-plane formulation and analyze the importance
of each cue for the scene flow estimation task. The remainder of this section is
structured as follows.

As our goal is to analyze the impact of different levels of recognition granular-
ity, we first describe the inputs to our method in Section 3.3.1 and Section 3.3.2.
In particular, we are interested in improving scene flow estimation of vehicles
which are challenging due to their large motion and non-lambertian appearance.
In Section 3.3.3, we finally show how these predictions can be integrated into a
CRF model for 3D scene flow estimation.

3.3.1 2D Bounding Boxes and Instances

As discussed before, recognizing and segmenting objects is imperative for our ap-
proach. For this task, we use the state-of-the-art Multi-task Network Cascades
(MNC) proposed by Dai et al. [54] to obtain bounding boxes and segmentation
masks of all cars present in the scene. Unlike the standard MNC framework
which operates on RGB images, we provide the network with an RGB-XYZ
image, where XYZ denotes the 3D scene coordinates, i.e., the 3D location of
every pixel in the scene in camera coordinates. The 3D location for each pixel

31

CHAPTER 3. INSTANCE-AWARE SCENE FLOW ESTIMATION

is computed from disparity maps, see Section 5.4.3 for details.

We pre-train the network using Pascal VOC and fine-tune it using 3200
coarse annotations of KITTI [51] provided by [86]. We obtained 200 images with
1902 pixel-accurate instance annotations from the KITTI 2015 Stereo bench-
mark [52] using in-house annotators. We further refined the model with these
fine annotations. The final accuracy (IoU-50%) on the validation set of [86] is
83% as compared to 78% when using only RGB images.

3.3.2 3D Object Coordinates

3D object coordinates specify the 3D location of the surface of an object with
respect to a local coordinate frame, see Fig. 3.1 for an illustration. They can be
viewed as a fine grained unique geometric labeling of the object’s surface which
is independent of the viewpoint and can be used to establish correspondences
between frames, which we expect to be more robust to appearance changes than
correspondences based on sparse feature matching.

While random forests have been used for estimating object coordinates when
the target instance is known [55, 56, 57, 85], we found that a CNN-based ap-
proach leads to significantly better object coordinates predictions as also evi-
denced by our experiments in Section 5.4.3. We use a modified version of the
encoder-decoder style CNN proposed in [87] for estimating the object coordi-
nates at each pixel. As above, the input to the CNN is an RGB-XYZ image
as well as the instance prediction from the MNC. The output of the CNN is
a 3 layer regression which stores the X, Y and Z coordinates for each point of
the input. We refer to the architecture of our CNN in supplementary material.
The encoder part comprises a set of 5 convolutional layers with a stride of 2 in
each layer, followed by a set of 3 fully connected layers. The decoder part has 5
deconvolutional layers followed by a 3D regression layer which predicts the 3D
object coordinates.

3.3.3 Scene Flow Model

We now describe our scene flow model which is based on [52] but adds two new
components to it, in particular an instance sensitive appearance term and a
term which encourages object coordinates to align across frames. For making
the paper self-contained, we specify the full model.

Notation: We first describe the notation of the inputs to the scene flow
model which are pre-computed as described in the previous section and fixed
during inference. Let V = {0, 1, 2, 3} denote the set of views as illustrated in
Fig. 3.3 and let Iv ∈ Rw×h×3 denote the input image corresponding to each
view. For each view v ∈ V, we compute the following information: first, our
MNC predicts instance label maps Mv ∈ {0, . . . , |Mv|}w×h which determine the
predicted semantic instance label for each pixel in each view. In our experiments,
these maps are either coarse 2D bounding box segmentations or more accurate
2D instance segmentations which are both computed via MNC. Background

32

CHAPTER 3. INSTANCE-AWARE SCENE FLOW ESTIMATION

pixels are assigned the label Mv(p) = 0 and foreground pixels are assigned
positive labels. Note that instance labels do not correspond across frames as
the correspondence is unknown a-priori and needs to be inferred jointly with
the scene flow. Furthermore, we denote the 3D object coordinates predicted by
the network with Cv ∈ [−1, 1]w×h×3.

We now describe the parameters of our model which are optimized during
inference. Let S denote the set of superpixels in the reference view and O
denote the set of objects in the scene. Each superpixel i ∈ S is associated
with a region Ri in the reference image and a variable si = (ni, ki)

T, where
ni ∈ R3 describes a plane in 3D via nT

i x = 1. Further, let ki ∈ {0, . . . , |O|}
index the object which the superpixel is associated with. Here |O| denotes an
upper bound on the number of objects we expect to see, and k = 0 refers to
the background object with k > 0 to other traffic participants. Each object
j ∈ O is associated with a variable oj ∈ SE(3) which describes its rigid body
motion in 3D. Each superpixel associated with object j inherits its rigid motion
parameters oj ∈ SE(3). In combination with the plane parameters ni, this fully
determines the 3D scene flow at each pixel inside the superpixel.

Energy Model: Given the left and right input images of two consecutive
frames (Fig. 3.3), our goal is to infer the 3D geometry of each superpixel ni

in the reference view, the association to objects ki and the rigid body motion
of each object oj . We formulate the scene flow estimation task as an energy
minimization problem comprising data, smoothness and instance terms:

ŝ, ô = argmin
s,o

ϕ(s,o)︸ ︷︷ ︸
data

+ ψ(s)︸︷︷︸
smooth.

+ χ(s,o)︸ ︷︷ ︸
instance

(3.1)

We summarize all variables involved in the optimization with s = {si|i ∈ S}
and o = {oi|i ∈ O}. For clarity of exposition we omit all weight parameters of
the model.

Data Term: Our data term encodes the assumption that corresponding points
across all images should be similar in appearance:

ϕ(s,o) =
∑
i∈S

∑
p∈Ri

∑
v∈V

ϕD
v (p,q) (3.2)

q = K
(
Rv(oki

)− tv(oki
) nT

i

)
K−1︸ ︷︷ ︸

homography (view 0 → view v)

p (3.3)

Here, V = {1, 2, 3} denotes the set of target views and q is the location of
pixel p in reference view 0 mapped into the target view v ∈ V according to the
calibration matrix K, the rigid body motion Rv|tv of the corresponding object
oki and the plane parameters of the associated superpixel ni. See Fig. 3.3 for
an illustration.

The data cost ϕD
v (p,q) compares the appearance at pixel p in reference

image 0 with the appearance at pixel q in the target view v ∈ V. In our exper-
iments, we use Census descriptors [88] which are robust to simple photometric

33

CHAPTER 3. INSTANCE-AWARE SCENE FLOW ESTIMATION

Figure 3.3: Geometric Relationship between reference and target views.
Pixels in the reference view are mapped to a pixels in a target view via their
depth and rigid body motion.

variations [52, 53, 74]. To guide the optimization process and overcome local
minima we additionally add a robust `1 loss to ϕD

v . This loss measures the
difference with respect to sparse DiscreteFlow correspondences [83] for the flow
terms (v = 2, 3) and depth estimates from SPS-stereo [74] for the stereo term
(v = 1).

Smoothness Term: The smoothness term encourages coherence of adjacent
superpixels in terms of depth, orientation and motion. It decomposes as

ψ(s) = γSij
∑
i∼j

ψG
ij(ni,nj) + ψM

ij (si, sj) (3.4)

with the following geometry (G) and motion (M) terms:

ψG
ij(ni,nj) =

∑
p∈Bij

ρ (d(ni,p)− d(nj ,p))

+ ρ
(
1− |nT

i nj |/(‖ni‖‖nj‖)
)
,

ψM
ij (si, sj) = γMij (ni,nj) [ki 6= kj].

Here, d(n,p) denotes the disparity of plane n at pixel p in the reference image,
Bij is the set of shared boundary pixels between superpixel i and superpixel j,
and ρ is the robust `1 penalty. The instance-sensitive weight γSij is defined as

γSij = 1− βS · [(i, j) ∈M] (3.5)

where M denotes the set of adjacent superpixel pairs where exactly one of the
superpixels lies on an object instance. β ∈ [0, 1] is a hyper-parameter which

34

CHAPTER 3. INSTANCE-AWARE SCENE FLOW ESTIMATION

weighs down the costs of discontinuities for adjacent superpixels in M. Note
that this weighting is only possible in the presence of instance predictions.

The geometry-sensitive motion weight is defined as

γMij (ni,nj) = exp

− λ

|Bij |
∑

p∈Bij

(d(ni,p)− d(nj ,p))2

× |nT

i nj |/(‖ni‖‖nj‖)

encouraging motion boundaries to align with 3D folds and discontinuities rather
than within smooth surfaces.

Instance Term: The instance term χ(s,o) measures the compatibility of ap-
pearance and part-labeling induced by the 3D object coordinates when warping
the detected instances into the next frame. It takes the following form

χ(s,o) =
∑
i∈S

∑
p∈Ri

∑
v∈V

χI
v(p,q) (3.6)

with

χI
v(p,q) = [M0(p) = 0 ∨Mv(q) = 0] · λ + (3.7)

[M0(p) > 0 ∧Mv(q) > 0] ·
(
χA
v (p,q) + χL

v (p,q)
)

Here, q is calculated as in Eq. 3.3 and the appearance (A) potential and the
part labeling (L) potential are defined as

χA
v (p,q) = ‖I0(p)− Iv(q)‖1 (3.8)

χL
v (p,q) = ‖C0(p)−Cv(q)‖1 (3.9)

and measures the difference in appearance I and 3D object coordinates C be-
tween image location p in the reference view and q in the target view, respec-
tively. While the data term in Eq. 3.2 also evaluates appearance, we found that
the Census descriptors work well mostly for textured background regions. In
contrast, it returns noisy and unreliable results in the presence of textureless,
specular surfaces such as on cars. However, as evidenced by our experiments,
including an additional `1 constraint on appearance for instances leads to signif-
icantly better estimates in those cases. This observation is in accordance with
recent works on direct visual odometry and SLAM [89, 90, 91] which use similar
measures to reliably estimate the camera pose in weakly textured environments.
In contrast to them, here we exploit this constraint to estimate the relative pose
of each individual weakly textured object in the scene.

The intuition behind this term is as follows: when warping the recognized
instances from the reference frame into the target frame according to the esti-
mated geometry and motion, the appearance as well as the part labeling induced
by the object coordinates should agree. The term [M0(p) > 0 ∧Mv(q) > 0]
ensures that these constraints are only evaluated if both the reference and the
target pixel belong to a detected instance (i.e., when M > 0). However, as

35

CHAPTER 3. INSTANCE-AWARE SCENE FLOW ESTIMATION

Algorithm 1 Optimization

1: Input: Iv, Mv, Cv for v ∈ V
2: Initialize s and o as described in “Initialization”
3: for all iterations n = 1, . . . , N do
4: for all i ∈ S do
5: Draw samples for si (Gaussian)

6: for all j ∈ O do
7: Draw samples for oj (MCMC)

8: Run TRW-S [92] on discretized problem

9: Output: ŝ, ô

both χA
v and χL

v are positive terms the model prefers to associate instances with
background regions which incurs no additional cost compared to associating
instances with instances. We therefore incorporate an additional term which
yields an appropriate bias λ and favors the association of instances.

Optimization: For optimizing Eq. 3.1, we leverage max-product particle
belief propagation with TRW-S [92] as proposed in [52]. At each iteration this
optimization algorithm discretizes the continous variables by drawing samples
around the current maximum-a-posteriori (MAP) solution and runs TRW-S
until convergence before resampling. However, we found that this approach
gets easily trapped in local minima, in particular due to the highly non-convex
energy function associated with the appearance of the foreground objects.

We thus modify their sampling strategy as shown in Algorithm 1, which leads
to better results. While the original algorithm [52] discretizes the continuous
variables (in particular the rigid body motions o) by sampling from a Gaussian
centered at the current MAP estimate, we create samples by running a Markov
chain based on the appearance term in Eq. 3.6 for each object individually.
More specifically, our sampling energy warps all pixels inside an instance based
on the predicted depth and the rigid body motion of the sample, and measures
the photoconsistency between reference and target views using the `1 norm.
This “informed” way of sampling ensures that TRW-S has access to high-quality
samples compared to noisy estimates drawn around the current MAP solution.
For sampling the geometry variables (i.e., normals), we follow [52].

The hyper parameters in our model are estimated using block coordinate
descent on a train/validation split.

Initialization: As we are presented with a complex NP hard optimization
problem in Eq. 3.1, initialization of parameters is an important step. We de-
scribe the details of our initialization procedure in the following.

We initialize the geometry parameters using dense disparity maps and the
object hypotheses/motion variables using sparse flow predictions and the pre-
dicted bounding boxes/instances. More specifically, we robustly fit all superpixel
parameters to the disparity estimates and aggregate all sparse flow estimates
for each instance to robustly fit a rigid body motion to it via RANSAC. We

36

CHAPTER 3. INSTANCE-AWARE SCENE FLOW ESTIMATION

refer to Section 5.4.3 for details on the particular choice of input algorithms.
For the instance-based algorithms, we aggregate the sparse flow estimates

directly based on the instance masks and robustly fit a rigid body motion to
it via RANSAC. Given the high quality of the instance predictions, this leads
to very robust initializations. For baselines which do not leverage recognition
we follow [52] and initialize objects based on clustering sparse 3D scene flow
estimates which disagree with the background motion. Based on this clustering,
we initialize the associations and poses using robust fitting using RANSAC. We
refer the reader to [52] for further details.

While we have also experimented with color histograms and pose prediction
to support the assignment of instances across frames, we found that aggregating
sparse flow vectors [83] and dense geometry [93] allows for correctly associating
almost all objects. We thus don’t use such an additional term in the model,
which, however, could be easily integrated to solve more challenging association
problems as present in the KITTI 2015 scene flow benchmark.

Runtime: Our MATLAB implementation with C++ wrappers requires on
average 40 seconds for each of the 10 iterations of the optimization described in
Algorithm 1. This leads to a runtime of 7 minutes for processing one scene (4
images) on a single i7 core running at 3.0 Ghz. In addition, the inputs to our
methods namely, dense disparity maps, sparse flow predictions and predicted
bounding boxes/instances require on average 3 minutes for processing one scene,
leading to a total runtime of 10 minutes.

3.4 Experimental Evaluation

D1 D2 Fl SF
bg fg bg+fg bg fg bg+fg bg fg bg+fg bg fg bg+fg

OSF 4.00 8.86 4.74 5.16 17.11 6.99 6.38 20.56 8.55 7.38 24.12 9.94
ISF-BBox 3.94 8.81 4.69 5.10 10.77 5.97 6.46 12.90 7.44 7.42 17.11 8.90
ISF-SegMask 4.06 7.97 4.66 5.26 9.20 5.86 6.72 10.78 7.34 7.74 14.60 8.79
ISF-SegMask-ObjCoord 4.08 7.98 4.68 5.27 9.20 5.87 6.72 10.84 7.35 7.75 14.66 8.80
ISF-SegMask-CNNDisp 3.55 3.94 3.61 4.86 4.72 4.84 6.36 7.31 6.50 7.23 8.72 7.46

Table 3.1: Quantitative results from ablation study on KITTI 2015
Validation Set. We report the disparity (D1,D2), flow (Fl) and scene flow
(SF) error averaged over our validation set for OSF [52] (no recognition input),
ISF-BBox (bounding box input), ISF-SegMask (segmentation input) and ISF-
SegMask-ObjCoord (segmentation + object coordinates input). Additionally, we
also report results of ISF-SegMask-CNNDisp (ISF-SegMask with higher quality
CNN based disparity input).

3.4.1 Effect of recognition granularity

In this section, we study the impact of different levels of recognition granularity
for estimating the 3D scene flow of dynamic (i.e., foreground) objects. In addi-

37

CHAPTER 3. INSTANCE-AWARE SCENE FLOW ESTIMATION

tion to the recognition cues, we use sparse optical flow from sparse DiscreteFlow
correspondences [83] and dense disparity maps from SPS-stereo [74] for both rec-
tified frames. We obtain the superpixel boundaries using StereoSLIC[73]. Table
3.1 provides a quantitative comparison of the performance of OSF [52] (no recog-
nition input), ISF-BBox (2D bounding boxes as recognition input), ISF-SegMask
(2D instance segmentations as recognition input) and ISF-SegMask-ObjCoord
(2D instance segmentations in conjunction with 3D object coordinates as recog-
nition input) on our validation set (which is a subset of the KITTI 2015[52]
scene flow training set). We report the error with respect to four different out-
puts: disparities in the first and second frame (D1,D2), optical flow (FL) and
scene flow (SF).

Our results indicate that recognition (both 2D bounding box and 2D in-
stance segmentation) provides large improvements for optical flow estimation
(and in turn scene flow estimation) on foreground parts of the scene. Note
that we do not tackle the recognition of static background objects in this paper
which are estimated relatively well without such priors. Furthermore, we note
that instance segmentations as input improve performance in particular at the
boundary of objects. We attribute this effect to the more fine grained nature of
the 2D segmentation input compared to using rough 2D bounding boxes input.
We remark that for evaluation, the KITTI 2015 benchmark considers only a
subset of the cars in the scene as foreground, specifically dynamic cars within
a threshold distance to the camera. In contrast, as defined in section 3.3.3, our
scene flow estimation model considers all car instances detected by our CNN
as foreground. Figure 3.4 provides a qualitative comparison illustrating the dif-
ferences between the scene flow errors of methods employing different levels of
recognition granularity. We encourage the reader to have a look at the first
section of our supplementary material for additional examples.

Moreover, we observe that 3D object coordinates do not increase perfor-
mance beyond 2D instance segmentations (and hence yield the same estimates,
i.e., the weight of the object coordinate terms are zero after optimization). We
attribute this to the quality of the state-of-the-art object coordinate predictions.
Specifically, the accuracy of 3D object coordinate predictions from state-of-the-
art CNN-based methods is below what is required to further improve 3D scene
flow estimation due to the high level of accuracy requested by current bench-
marks (i.e., 3 pixels error in KITTI). We refer the reader to the second section of
our supplementary material for a detailed analysis of why 3D object coordinate
predictions do not provide any further gains.

Experiments with CNN based disparity as input: Furthermore, we
evaluated our method with the optimal level of recognition granularity selected
based on the ablation study (ISF-SegMask) on higher quality disparity inputs
computed from DispNetC [93] and MC-CNN-acrt [94]. In particular, combining
DispNetC results for instance pixels and MC-CNN-acrt results for the rest per-
formed best on our validation set. We report the results of our top performing
method ISF-SegMask-CNNDisp on the validation set in Table 3.1.

38

CHAPTER 3. INSTANCE-AWARE SCENE FLOW ESTIMATION

D1 D2 Fl SF
bg fg bg+fg bg fg bg+fg bg fg bg+fg bg fg bg+fg

PRSM* [75] 3.02 10.52 4.27 5.13 15.11 6.79 5.33 13.40 6.68 6.61 20.79 8.97
OSF+TC* [95] 4.11 9.64 5.03 5.18 15.12 6.84 5.76 13.31 7.02 7.08 20.03 9.23
OSF [52] 4.54 12.03 5.79 5.45 19.41 7.77 5.62 18.92 7.83 7.01 26.34 10.23
ISF-SegMask-CNNDisp 4.12 6.17 4.46 4.88 11.34 5.95 5.40 10.29 6.22 6.58 15.63 8.08

Table 3.2: Quantitative Results on the KITTI 2015 Scene Flow Eval-
uation Server. This table shows the disparity (D1/D2), flow (Fl) and scene
flow (SF) errors averaged over all 200 test images for our method in comparison
to other leading methods (OSF[52], OSF-TC[95] and PRSM[75]) on the KITTI
15 benchmark. Methods with * use more than two temporal frames.

Figure 3.4: Qualitative Results from Ablation Study on KITTI 2015
Validation Set. The top row shows predicted masks and bounding boxes
which form the input to our method overlaid onto the left camera image at time
t and t + 1. Each figure in the bottom row (from left to right) shows scene
flow error of OSF [52] (no recognition input), ISF-BBox (bounding box input)
and ISF-SegMask (segmentation input) using the color scheme depicted in the
legend. The red box shows zoom-ins.

3.4.2 Results on the KITTI Benchmark

In this section, we present results of our top performing method ISF-SegMask-
CNNDisp evaluated on the KITTI 2015 scene flow evaluation server. Table
3.2 compares the performance of our method with other leading methods on
the benchmark: PRSM [53], OSF [52] and OSF-TC [95]. We obtain state-
of-the-art performance at the time of submission, even including anonymous
submissions. Notably, our method also outperforms methods which use more
than two temporal frames (OSF-TC [95] and PRSM[53]). Figure 3.5 shows scene
flow errors for examples where other leading methods fail to effectively estimate
scene flow in foreground regions. Scene flow estimation is challenging for this
region as the texture-less car undergoes large displacement and is occluded in the
second frame. Our method employing recognition cues performs comparatively
better than other methods. Without recognition cues, only very few matches
could be established in those regions and most of them would be wrong. We
encourage the reader to have a look at our supplementary material for additional
qualitative comparisons of our method to other state-of-the-art methods.

39

CHAPTER 3. INSTANCE-AWARE SCENE FLOW ESTIMATION

Scene at T=0 OSF Scene Flow error

PRSM Scene Flow error Our Scene Flow errorScene at T=1

OSF-TC Scene Flow Error

Figure 3.5: Qualitative Comparison on KITTI-15 Test Set. The first
column shows the input images, followed by scene flow error maps of OSF[52],
OSF-TC[95], PRSM[75] and our method using the color scheme depicted in the
legend.

3.4.3 3D object coordinates prediction

We model our encoder-decoder network for 3D object coordinate prediction in
Caffe [96]. The network is trained by minimizing a robust and smooth Huber
loss [97] using the Adam solver with a momentum of 0.9 and learning rate of
1e-5. Furthermore, in order to compare the performance of our CNN model
with existing state-of-the-art approaches for predicting the object coordinates,
we train a random forest[55] with 3 trees and maximum depth of 64. We use the
RGB image and the depth map as input feature and sample 3 million random
points during training. We find the quality of 3D object coordinate predictions
significantly better using our CNN architecture with an average Euclidean error
of 0.6 meters in comparison to an error of 2.89 meters using the random forest
method. We attribute the lower error of the CNN based predictions to the net-
work’s ability to generalize well to cars with high intra class variation. We refer
the reader to the last section of the supplementary material for a detailed de-
scription of the CNN architecture we employed and a comparison of the quality
of our 3D object coordinate predictions to other state-of-the-art methods.

3.5 Discussion

In this work, we studied the impact of different levels of recognition granularity
on the problem of estimating scene flow for dynamic foreground objects. Our
results indicate that recognition cues such as 2D bounding box and 2D instance
segmentation provide large improvements on foreground parts of the scene in
the presence of challenges such as large displacement or local ambiguities. Fur-
thermore, we showed that our method achieves state-of-the-art performance on
the challenging KITTI scene flow benchmark.

40

Chapter 4

iPose: Instance-Aware 6D
Pose Estimation of Partly
Occluded Objects

4.1 Introduction

Localization of object instances from single input images has been a long-
standing goal in computer vision. The task evolved from simple 2D detection
to full 6D pose estimation, i.e. estimating the 3D position and 3D orientation of
the object relative to the observing camera. Early approaches relied on objects
having sufficient texture to match feature points [98]. Later, with the advent
of consumer depth cameras, research focused on texture-less objects [99] in in-
creasingly cluttered environments. Today, heavy occlusion of objects is the main
performance benchmark for one-shot pose estimation methods.

Recent RGB-D-based methods [100, 101] are robust to moderate degrees
of object occlusion. However, depth cameras fail under certain conditions, e.g.
with intense sunlight, and RGB cameras are prevalent on many types of devices.
Hence, RGB-based methods still have high practical relevance. In this work,
we present a system for 6D pose estimation of rigid object instances with heavy
occlusion, from single input images. Our method outperforms the state-of-the-
art for both RGB and RGB-D input modalities.

During the last decade, computer vision has seen a large shift towards
learning-based methods. In particular, deep learning has massively improved
accuracy and robustness for many tasks. While 6D object pose estimation has
also benefited from deep learning to some extent, with recent methods being able
to estimate accurate poses in real time from single RGB images [102, 103, 104],
the same does not hold when objects are partly occluded. In this case, afore-
mentioned methods, despite being trained with partly occluded objects, either
break down [103, 104] or have to simplify the task by estimating poses from

41

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

Depth Image

Input
RGB Image

Stage1: Instance Segmentation

Stage2: Object Coordinate Estimation

Stage3: Pose Estimation

Only for RGB-D

Pose Sampling
+

ICP

RGB-D

RANSAC
Pose Sampling

+
Refinement

RGB

Figure 4.1: Illustration of our modular, 3-stage pipeline for both RGB
and RGB-D input images.

tight crops around the ground truth object position [102]. To the best of our
knowledge, we are the first to show that deep learning can improve results con-
siderably for objects that are moderately to heavily occluded, particularly for
the difficult case of RGB input.

At the core, our method decomposes the 6D pose estimation problem into
a sequence of three subtasks, or modules (see Fig. 4.1). We first detect the
object in 2D, then we locally regress correspondences to the 3D object surface,
and, finally, we estimate the 6D pose of the object. With each subtask, we can
remove specific aspects of the problem, such as object background and object
appearance. In the first module, 2D detection is implemented by an instance
segmentation network which estimates a tight mask for each object. Thus,
we can separate the object from surrounding clutter and occluders, making
the following steps invariant to the object environment, and allowing us to
process each detected instance individually. In the second module, we present an
encoder-decoder architecture for densely regressing so-called object coordinates
[105], i.e. 3D points in the local coordinate frame of the object which define
2D-3D correspondences between the image and the object. The third module
is a purely geometric pose optimization which is not learned from data because
all aspects of object appearance have been removed in the previous steps. Since
we estimate 6D poses successively from 2D instance segmentation, we call our
approach iPose, short for “instance-aware pose estimation”.

Our decomposition strategy is conceptually simple, but we show that it is
considerably superior to other deep learning-based methods that try to rea-
son about different aspects of these steps jointly. In particular, several recent
works propose to extend state-of-the-art object detection networks to output
6D object poses directly. Kehl et al. [103] extend the SSD object detector [106]
to recognize discretized view-points of specific objects, i.e. re-formulating pose
regression as a classification problem. Similarly, Tekin et al. [104] extend the
YOLO object detector [107] by letting image grid cells predict object presence,

42

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

and simultaneously the 6D pose. Both approaches are highly sensitive to object
occlusion, as we will show in the experimental evaluation. Directly predicting
the 6D pose from observed object appearance is challenging, due to limited
training data and innumerable occlusion possibilities.

We see three reasons for the success of our approach. Firstly, we exploit
the massive progress in object detection and instance segmentation achieved by
methods like MNC [54] and Mask R-CNN [108]. This is similar in spirit to the
work of [103, 104], but instead of extending the instance segmentation to predict
6D poses directly, we use it as a decoupled component within our step-by-step
strategy. Secondly, the rich structural output of our dense object coordinate
regression step allows for a geometric hypothesize-and-verify approach that can
yield a good pose estimate even if parts of the prediction are incorrect, e.g. due
to occlusion. Such a robust geometry-based step is missing in previous deep
learning-based approaches [102, 103, 104]. Thirdly, we propose a new data aug-
mentation scheme specifically designed for the task of 6D object pose estimation.
Data augmentation is a common aspect of learning-based pose estimation meth-
ods, since training data is usually scarce. Previous works have placed objects at
random 2D locations over arbitrary background images [109, 102, 103], which
yields constellations where objects occlude each other in physically impossible
ways. In contrast, our data augmentation scheme infers a common ground plane
from ground truth poses and places additional objects in a physically plausi-
ble fashion. Hence, our data augmentation results in more realistic occlusion
patterns which we found crucial for obtaining good results.
We summarize our main contributions:

• We propose iPose, a new deep learning architecture for 6D object pose
estimation which is remarkably robust with respect to object occlusion,
using a new three-step task decomposition approach.

• We are the first to surpass the state-of-the-art for partly occluded objects
with a deep learning-based approach for both RGB-D and RGB inputs.

• We present a new data augmentation scheme for object pose estimation
which generates physically plausible occlusion patterns, crucial for obtain-
ing good results.

4.2 Related Work

Here, we give an overview of previous methods for 6D object pose estimation.
Early pose estimation methods were based on matching sparse features [98]
or templates [110]. Templates work well for texture-less objects where sparse
feature detectors fail to identify salient points. Hinterstoisser et al. proposed the
LINEMOD templates [99], which combine gradient and normal cues for robust
object detection given RGB-D inputs. Annotating the template database with
viewpoint information facilitates accurate 6D pose estimation [111, 112, 113,
114, 115]. An RGB version of LINEMOD [116] is less suited for pose estimation
[109]. In general, template-based methods suffer from sensitivity to occlusion
[105].

43

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

With a depth channel available, good results have been achieved by voting-
based schemes [117, 118, 119, 120, 121, 101]. In particular, Drost et al. [121]
cast votes by matching point-pair features which combine normal and distance
information. Recently, the method was considerably improved in [101] by a
suitable sampling scheme, resulting in a purely geometric method that achieves
state-of-the-art results for partly occluded objects given RGB-D inputs. Our
deep learning-based pipeline achieves higher accuracy, and can also be applied
to RGB images.

Recently, CNN-based methods have become increasingly popular for object
pose estimation from RGB images. Rad et al. [102] presented the BB8 pipeline
which resembles our decomposition philosophy to some extent. But their pro-
cessing steps are more tightly coupled. For example, their initial detection stage
does not segment the object, and can thus not remove object background. Also,
they regress the 6D pose by estimating the 2D location of a sparse set of control
points. We show that dense 3D object coordinate regression provides a richer
output which is essential for robust geometric pose optimization. Rad et al.
[102] evaluate BB8 on occluded objects but restrict pose prediction to image
crops around the ground truth object position1. Our approach yields superior
results for partly occluded objects without using prior knowledge about object
position.

Direct regression of a 6D pose vector by a neural network, e.g. proposed by
Kendall et al. for camera localization [122], exhibits low accuracy [123]. The
works discussed in the introduction, i.e. Kehl et al. [103] and Tekin et al. [104],
also regress object pose directly but make use of alternative pose parametriza-
tions, namely discrete view point classification [103], or sparse control point
regression [104] similar to BB8 [102]. We do not predict the 6D pose directly,
but follow a step-by-step strategy to robustly obtain the 6D pose despite strong
occlusions.

Object coordinates have been used previously for object pose estimation
from RGB-D [105, 124, 100] or RGB inputs [109]. In these works, random forest
matches image patches to 3D points in the local coordinate frame of the object,
and the pose is recovered by robust, geometric optimization. Because few correct
correspondences suffice for a pose estimate, these methods are inherently robust
to object occlusion. In contrast to our work, they combine object coordinate
prediction and object segmentation in a single module, using random forests.
These two tasks are disentangled in our approach, with the clear advantage
that each individual object mask is known for object coordinate regression. In
this context, we are also the first to successfully train a neural network for
object coordinate regression of known objects. Overall, we report superior pose
accuracy for partly occluded objects using RGB and RGB-D inputs. Note that
recently Behl et al. [125] have trained a network for object coordinate regression
of vehicles (i.e. object class). However, our network, training procedure, and
data augmentation scheme differ from [125].

1Their experimental setup relies on ground truth crops and is not explicitly described in
[102]. We verified this information via private email exchange with the authors.

44

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

To cope well with limited training data, we propose a new data augmentation
scheme which generates physically plausible occlusion patterns. While plausible
data augmentation is becoming common in object class detection works, see
e.g. [126, 127, 128], our scheme is tailored specifically towards object instance
pose estimation where previous works resorted to pasting 2D object crops on
arbitrary RGB backgrounds [109, 102, 103]. We found physically plausible data
augmentation to be crucial for obtaining good results for partly occluded ob-
jects.

To summarize, only few previous works have addressed the challenging task
of pose estimation of partly occluded objects from single RGB or RGB-D inputs.
We present the first viable deep learning approach for this scenario, improving
state-of-the-art accuracy considerably for both input types.

4.3 Method

In this section, we describe our three-stage, instance-aware approach for 6D
object pose estimation. The overall workflow of our method is illustrated in
Fig. 4.1. Firstly, we obtain all object instances in a given image using an in-
stance segmentation network (Sec. 4.3.1). Secondly, we estimate dense 3D ob-
ject coordinates for each instance using an encoder-decoder network (Sec. 4.3.2).
Thirdly, we use the pixel-wise correspondences between predicted object coor-
dinates and the input image to sample 6D pose hypotheses, and further refine
them using an iterative geometric optimization (Sec. 4.3.3). In Sec. 4.3.4, we
describe our object-centric data augmentation procedure which we use to gen-
erate additional training data with realistic occlusions for the encoder-decoder
network of step 2.

We denote the RGB input to our pipeline as I and RGB-D input as I-D.
K = {1, ...,K} is a set of all known object classes, a subset of which could
be present in the image. The goal of our method is to take an image I /I-D
containing n objects O = {O1, ..., On}, each of which has a class from K, and to
estimate their 6D poses. Below, we describe each step of our pipeline in detail.

4.3.1 Stage 1: Instance Segmentation

The first step of our approach, instance segmentation, recognizes the identity
of each object, and produces a fine grained mask. Thus we can separate the
RGB(-D) information pertaining only to a specific object from surrounding clut-
ter and occluders. To achieve this, we utilize instance segmentation frameworks
such as [54, 108]. Given an input I, the output of this network is a set of n
instance masks M = {M1, ...,Mn} and an object class k ∈ K for each mask.

4.3.2 Stage 2: Object Coordinate Regression

An object coordinate denotes the 3D position of an object surface point in the
object’s local coordinate frame. Thus given a pixel location p and its predicted

45

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

object coordinate C, a (p, C) pair defines a correspondence between an image I
and object O. Multiple such correspondences, at least three for RGB-D data and
four for RGB data, are required to recover the 6D object pose (see Sec. 4.3.3).
In order to regress pixelwise object coordinates C for each detected object, we
use a CNN with an encoder-decoder style architecture with skip connections.
The encoder consists of 5 convolutional layers with a stride of 2 in each layer,
followed by a set of 3 fully connected layers. The decoder has 5 deconvolutional
layers followed by the 3 layer output corresponding to 3-dimensional object co-
ordinates. Skip connections exist between symmetrically opposite conv-deconv
layers. As input for this network, we crop a detected object using its estimated
mask M , resize and pad the crop to a fixed size, and pass it through the object
coordinate network. The output of this network has 3 channels containing the
pixelwise X, Y and Z values of object coordinates C for mask M . We train
separate networks for RGB and RGB-D inputs.

4.3.3 Stage 3: Pose Estimation

In this section, we describe the geometric pose optimization step of our approach
for RGB-D and RGB inputs, respectively. This step is not learned from data,
but recovers the 6D object pose from the instance mask M of stage 1 and the
object coordinates C of stage 2.

RGB-D Setup. Our pose estimation is inspired by the original object co-
ordinate framework of [105]. Compared to [105], we use a simplified scoring
function to rank pose hypotheses, and an Iterative Closest Point (ICP) refine-
ment.

In detail, we use the depth channel and the mask MO to calculate a 3D point
cloud PO associated with object O with respect to the coordinate frame of the
camera. Also, stage 2 yields the pixelwise predicted object coordinates CO. We
seek the 6D pose H∗O which relates object coordinates CO with the point cloud
PO. For ease of notation, we drop the subscript O, assuming that we are de-
scribing the process for that particular object instance. We randomly sample
three pixels j1, j2, j3 from mask M , from which we establish three 3D-3D cor-
respondences (P j1 , Cj1), (P j2 , Cj2), (P j3 , Cj3). We use the Kabsch algorithm
[129] to compute the pose hypothesis Hi from these correspondences. Using Hi,
we transform Cj1 , Cj2 , Cj3 from the object coordinate frame to the camera co-
ordinate frame. Let these transformed points be T j . We compute the Euclidean
distance, ‖P j , T j‖, and if the distances of all three points are less than 10% of
the object diameter, we add Hi to our hypothesis pool. We repeat this process
until we have collected 210 hypotheses. For each hypothesis H, we obtain a
point cloud P ∗(H) in the camera coordinate system via rendering the object
CAD model. This lets us score each hypothesis using

SRGB-D(H) =

∑
j∈M

[
||P j − P ∗j(H)|| < d/10

]
|M |

, (4.1)

where [·] returns 1 if the enclosed condition is true, and the sum is over pixels

46

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

(a) (b) (c)

Figure 4.2: Object centric data augmentation pipeline. (a) If the cropped
object (Ape) is inserted within the red area, it can cause a physically plausible
occlusion for the center object (Can). (b) shows the resulting augmented RGB
image, and (c) shows the resulting augmented depth image.

inside the mask M and normalized. The score SRGB-D(H) computes the average
number the pixels inside the mask for which the rendered camera coordinates
P ∗j(H) and the observed camera coordinates P j agree, up to a tolerance of 10%
of the object diameter d. From the initial pool of 210 hypotheses we select the
top 20 according to the score SRGB-D(H). Finally, for each selected hypothesis,
we perform ICP refinement with P as the target, the CAD model vertices as
the source, and Hi as initialization. We choose the pose with the lowest ICP
fitting error HICP for further refinement.
Rendering-Based Refinement. Under the assumption that the estimate
HICP is already quite accurate, and using the instance mask M , we perform
the following additional refinement: using HICP, we render the CAD model to
obtain a point cloud Pr of the visible object surface. This is in contrast to the
previous ICP refinement where all CAD model vertices were used. We fit Pr

inside the mask M to the observed point cloud P via ICP, to obtain a refining
transformation Href. This additional step pushes Pr towards the observed point
cloud P , providing a further refinement to HICP. The final pose is thus obtained
by H∗RGB-D = HICP ∗Href.

Our instance-based approach is a clear advantage in both refinement steps,
since we can use the estimated mask to precisely carve out the observed point
cloud for ICP.

RGB Setup. Given RGB data, we follow Brachmann et al. [109] and
estimate the pose of the objects through hypotheses sampling [105] and pre-
emptive RANSAC [130]. At this stage, the predicted object mask M and the
predicted object coordinates C inside the mask are available. For each pixel
j at the 2D position pj inside M , the object coordinate network estimates a
3D point Cj in the local object coordinate system. Thus, we can sample 2D-
3D correspondences between 2D points of the image and 3D object coordinate
points from the area inside the object mask. Our goal is to search for a pose
hypothesis H∗ which maximizes the following score:

SRGB(H) =
∑
j∈M

[
‖pj −AHCj‖2 < τin

]
, (4.2)

where A is the camera projection matrix, τin is a threshold, and [·] is 1 if the

47

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

Figure 4.3: Impact of our data augmentation. Top row illustrates the on-
object occlusion distribution of the base training set before augmentation and
the bottom row shows the same for augmented data using our object centric
data augmentation. Red indicates that the part is often occluded and blue
indicates rare occlusion in the dataset.

statement inside the bracket is true, otherwise 0. The score SRGB(H) counts
the number of pixel-residuals of re-projected object coordinate estimates which
are below τin. We use pre-emptive RANSAC to maximize this objective func-
tion. We start by drawing four correspondences from the predicted mask M .
Then, we solve the perspective-n-point problem (PnP) [131, 132] to obtain a
pose hypothesis. If the re-projection error of the initial four correspondences is
below threshold τin we keep the hypothesis. We repeat this process until 256
pose hypotheses have been collected. We score each hypothesis with SRGB(H),
but only using a sub-sampling of N pixels inside the mask for faster computa-
tion. We sort the hypotheses by score and discard the lower half. We refine
the remaining hypotheses by re-solving PnP using their inlier pixels according
to SRGB(H). We repeat scoring with an increased pixel count N , discarding
and refining hypotheses until only one hypothesis H∗RGB remains as the final
estimated pose.

4.3.4 Data Augmentation

Data augmentation is crucial for creating the amount of data necessary to train
a CNN. Additionally, data augmentation can help to reduce dataset bias, and
introduce novel examples for the network to train on. One possibility for data
augmentation is to paste objects on a random background, where mutually over-
lapping objects occlude each other. This is done e.g. in [109, 102, 103] and we
found this strategy sufficient for training our instance segmentation network in
step 1. However, the resulting images and occlusion patterns are highly implau-
sible, especially for RGB-D data where objects float in the scene, and occlude
each other in physically impossible ways. Training the object coordinate net-
work in step 2 with such implausible data made it difficult for the network
to converge and also introduced bias towards impossible object occlusion con-
figurations. In the following, we present an object-centric data augmentation
strategy which generates plausible object occlusion patterns, and analyze its
impact on the dataset. We assume that for each target object k in the set of
all known objects K, a sequence of images is available where the object is not

48

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

occluded. For each image, we compute the ground plane on which the target
object stands, as well as the distance between its base point and the camera.
Then, as shown in Fig. 4.2(a)(red), a surface of interest is defined on the ground
plane in front of the target object, representing a cone with an opening angle
of 90◦. Next, we search for images of other objects in K, where the ground
plane normal is close to that of the target object, and which are located in the
defined surface of interest, based on their distance from the camera. Finally, by
overlaying one or more of these chosen objects in front of the target object, we
generate multiple augmented RGB and depth images (cf. Fig. 4.2(b,c)). Using
this approach, the resulting occlusion looks physically correct for both the RGB
and depth images.

To analyze the impact of our data augmentation scheme, we visualize the
distribution of partial occlusion on the object surface in the following way: we
first discretize the 3D bounding box surrounding each object into 20× 20× 20
voxels. Using the ground truth 6D pose and the 3D CAD model, we can render
the full mask of the object. Each pixel that lies inside the rendered mask but
not inside the ground truth mask is occluded. We can look-up the ground
truth object coordinate of each occluded pixel, and furthermore the associated
bounding box voxel. We use the voxels as histogram bins and visualize the
occlusion frequency as colors on the surface of the 3D CAD model.

The impact of our object-centric data augmentation for two objects of the
LINEMOD dataset [111] is illustrated in Fig. 4.3. Firstly, by looking at the
visualization (top row), we notice that the un-augmented data contains biased
occlusion samples (irregular distribution of blue and red patches) which could
induce overfitting on certain object parts, leading to reduced performance of
the object coordinate network of step 2. In the second row, we see that the
augmented data has a more regular distribution of occlusion. This visualization
reveals the bias in the base training set, and demonstrates the efficacy of our
object-centric data augmentation procedure in creating unbiased training data.

4.4 Experiments

In this section, we present various experiments quantifying the performance of
our approach. In Sec. 4.4.1, we introduce the dataset which we use for evaluat-
ing our system. In Sec. 4.4.2, we compare the performance of our approach to
existing RGB and RGB-D-based pose estimation approaches. In Sec. 4.4.2, we
analyze the contribution of various modules of our approach to the final pose
estimation performance. Finally, in Sec. 4.4.3 and 4.4.4, we discuss the perfor-
mance of our instance segmentation and object coordinate estimation networks.
Please see the supplemental materials for a complete list of parameter settings
of our pipeline.

49

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

4.4.1 Datasets and Implementation

We evaluate our approach on occludedLINEMOD, a dataset published by Brach-
mann et al. [105]. It was created from the LINEMOD dataset [111] by anno-
tating ground truth 6D poses for various objects in a sequence of 1214 RGB-D
images. The objects are located on a table and embedded in dense clutter.
Ground truth poses are provided for eight of these objects which, depending on
the camera view, heavily occlude each other, making this dataset very challeng-
ing. We test both our RGB and RGB-D-based methods on this dataset.

To train our system, we use a separate sequence from the LINEMOD dataset
which was annotated by Michel et al. [100]. For ease of reference we call this the
LINEMOD-M dataset. LINEMOD-M comes with ground truth annotations of
seven objects with mutual occlusion. One object of the test sequence, namely the
Driller, is not present in this training sequence, so we do not report results for it.
The training sequence is extremely limited in the amount of data it provides.
Some objects are only seen from few viewpoints and with little occlusion, or
occlusion affects only certain object parts.

Training Instance Segmentation. To train our instance segmentation net-
work with a wide range of object viewpoints and diverse occlusion examples, we
create synthetic images in the following way. We use RGB backgrounds from
the NYUD dataset [133], and randomly overlay them with objects picked from
the original LINEMOD dataset [111]. While this data is physically implausible,
we found it sufficient for training the instance segmentation component of our
pipeline. We combine these synthetic images with LINEMOD-M to obtain 9000
images with ground truth instance masks. We use Mask R-CNN [108] as our
instance segmentation method. For training, we use a learning rate of 1e-3,
momentum of 0.9 and weight decay of 1e-4. We initialize Mask R-CNN with
weights trained on ImageNet, and finetune on our training set.

Training Object Coordinate Regression. For training the object coor-
dinate estimation network, we found it important to utilize physically plausi-
ble data augmentation for best results. Therefore, we use the LINEMOD-M
dataset along with the data obtained using our object-centric data augmen-
tation pipeline described in Sec. 4.3.4. Note that the test sequence and our
training data are strictly separated, i.e. we did not use parts of the test se-
quence for data augmentation. We trained our object coordinate network by
minimizing a robust Huber loss function [134] using ADAM [135]. We train a
separate network for each object. We rescale inputs and ground truth outputs
for the network to 256x256px patches.

4.4.2 Pose Estimation Accuracy

RGB Setup.

We estimate object poses from RGB images ignoring the depth channel. We
evaluate the performance using the 2D Projection metric introduced by Brach-
mann et al. [109]. This metric measures the average re-projection error of 3D

50

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

Acceptance Threshold: 5 px Acceptance Threshold: 10 px
BB8[102] Brachmann Ours BB8[102] Brachmann SSD-6D SSS-6D Ours

(GT crops) [109] (GT crops) [109] [103] [104]
Ape 28.5% 31.8% 24.2% 81.0% 51.8% 0.5% 0% 56.1%
Can 1.2% 4.5% 30.2% 27.8% 19.1% 0.6% 0% 72.4%
Cat 9.6% 1.1% 12.3% 61.8% 7.1% 0.1% 0% 39.7%
Duck 6.8% 1.6% 12.1% 41.3% 6.4% 0% 5% 50.1%
Glue 4.7% 0.5% 25.9% 37.7% 6.4% 0% 0% 55.1%
HoleP. 2.4% 6.7% 20.6% 45.4% 2.6% 0.3% 1% 61.2%
Avg 8.9% 7.7% 20.8% 49.2% 17.1% 0.3% 0.01% 56.0%

Table 4.1: Results using RGB only. Comparison of our pose estimation ac-
curacy for RGB inputs with competing methods. Italic numbers were generated
using ground truth crops, thus they are not directly comparable.

model vertices transformed by the ground truth pose and the estimated pose.
A pose is accepted if the average re-projection error is less than a threshold.

In Table 4.1, we compare the performance of our pipeline to existing RGB-
based methods using two different thresholds for the 2D projection metric. We
see that our approach outperforms the previous works for most of the objects
significantly. Our RGB only pipeline surpasses the state-of-the-art for a 5 pixel
threshold by 13% and for a 10 pixel threshold by 39% on average. Note that
the results of BB8 [102] were obtained from image crops around the ground
truth object position. Similar to [102] and [104], we do not report results for
EggBox since we could not get reasonable results for this extremely occluded
object using RGB only. Note that SSD-6D [103] and SSS-6D [104] completely
fail for partly occluded objects. We obtained the results of SSS-6D directly from
[104], and of SSD-6D [103] using their publicly available source code and their
pre-trained model. However, they did not release their pose refinement method,
thus we report their performance without refinement. In the supplement, we
show the accuracy of SSD-6D using different 2D re-projection thresholds. Most
of the detections of SSD-6D are far off (see also their detection performance in
Fig. 4.5, right), therefore we do not expect refinement to improve their results
much. We show qualitative pose estimation results for the RGB setting in
Fig 4.4.

RGB-D Setup.

Similar to the RGB setup, we measure accuracy as the percentage of correctly
estimated poses. Following Hinterstoisser et al. [111], we accept a pose if the
average 3D distance between object model vertices transformed using ground
truth pose and predicted pose lies below 10% of the object diameter.

In Fig. 4.6, left, we compare the performance of our approach to Michel et al.
[100] and Hinterstoisser et al. [101]. We significantly outperform the state-of-
the-art on average by 6%, and show massive improvements for some objects.
Fig. 4.7 shows qualitative results from our RGB-D pipeline and an illustration of
the performance of our method on an object under increasing occlusion. Fig. 4.6,
right represents the percentage of correct poses as a function of occluded object

51

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

OursInput image SSD-6D

Figure 4.4: Qualitative results from the RGB setup. From left to right:
input image, our results, results of SSD-6D [103].

surface. We see that for cases of mild occlusion, our method surpasses accuracy
of 90% for all objects. For cases of heavy occlusion (above 60%) our method
can still recover accurate poses.

Ablation Study.

We investigate the contribution of each step of our method towards the final
pose estimation accuracy for the RGB-D setup. As discussed before, our method
consists of three steps, namely instance mask estimation, object coordinate re-
gression and pose estimation. We compare to the method of Brachmann et al.
[105] which has similar steps, namely soft segmentation (not instance-aware),
object coordinate regression, and a final RANSAC-based pose estimation. The
first two steps in [105] are implemented using a random forest, compared to
two separate CNNs in our system. Fig 4.5, left shows the accuracy for vari-
ous re-combinations of these modules. The first row is the standard baseline
approach of [105] which achieves an average accuracy of 52.9%. In the second
row, we replace the soft segmentation estimated by [105] with an instance seg-
mentation method, Multi-task Network Cascades (MNC) [54]. The instance
masks effectively constrain the 2D search space which leads to better sampling
of correspondences between depth points and object coordinate predictions.
Next, we replace the object coordinate predictions of the random forest with
our CNN-based predictions. Although we still perform the same pose optimiza-
tion, this achieves a 4.6% performance boost, showing that our encoder-decoder
network architecture predicts object coordinates more precisely. Next, we use

52

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

Mask Obj. Coord. Pose Estimation Accuracy

RF[16] RF[16] Brachmann [16] 52.9%

Ours (MNC) RF[16] Brachmann [16] 56.4%

Ours (MNC) Ours (CNN) Brachmann [16] 61.0%

Ours (MNC) Ours (CNN) Ours 75.7%

Ours (Mask R-CNN) Ours (CNN) Ours 80.7%

Method MAP

Hinterstoisser [3] 0.21

Brachmann [17] 0.51

SSD-6D [14] 0.38

SSS-6D [15] 0.48

Ours 0.84

Figure 4.5: Left. Pose estimation accuracies on the RGB-D dataset using
various combinations of mask estimation, object coordinates estimation and
pose estimation approaches. Right. Comparison of 2D detection performance.

Object Michel et al. [4] Hinterstoisser et al. [5] Ours

Ape 80.7% 81.4% 83.0%

Can 88.5% 94.7% 89.6%

Cat 57.8% 55.2% 57.5%

Duck 74.4% 79.7% 76.6%

Eggbox 47.6% 65.5% 82.1%

Glue 73.8% 52.1% 78.8%

Holep. 96.3% 95.5% 97.0%

Avg. 74.2% 74.9% 80.7%

Figure 4.6: Left. Comparison of our pose estimation accuracy (RGB-D) with
competing methods. Right. The percentage of correctly estimated poses as a
function of the level of occlusion.

the instance masks as above and object coordinates from our network with our
geometric ICP-based refinement which further boosts the accuracy to 75.7%.
Finally, in the last row, we use our full pipeline with masks from Mask R-CNN
followed by our other modules to achieve state-of-the-art performance of 80.7%.
The table clearly indicates that the accuracy of our pipeline as a whole im-
proves when any of the modules improve. On the other hand, we trained our
Obj.Coord. network without the proposed data augmentation, and observe a
decline in average pose accuracy from 80.7% to 73.2% (-7.4%).

4.4.3 Instance Segmentation

The performance of instance segmentation is crucial for our overall accuracy.
Fig. 4.5, right shows the mean average precision of our method for a 2D bound-
ing box IoU > 0.5 compared to other methods. Since our RGB only instance
segmentation network is used for both, the RGB and RGB-D setting, the MAP
is equal for both settings. We significantly outperform all other pose estimation
methods, showing that our decoupled instance segmentation step can reliably
detect objects, making the task for the following modules considerably easier.

53

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

Figure 4.7: Qualitative results from the RGB-D setup. Our approach
reliably estimates poses for objects which are heavily occluded. (First two rows)
The middle column shows estimated object masks of our instance segmentation
step. (Last row) We show a sequence of estimated poses for the Cat object
under increasing occlusion. We reliably estimate the correct pose until ca. 50%
of the object is occluded.

54

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

4.4.4 Object Coordinate Estimation

We trained our object coordinate network with and without our data augmen-
tation procedure (Sec. 4.3.4). We measure the average inlier rate, i.e. object
coordinate estimates that are predicted within 2cm of ground truth object co-
ordinates. When the network is trained only using the LINEMOD-M dataset,
the average inlier rate is 44% as compared to 52% when we use the data created
using our object centric data augmentation procedure. A clear 8% increase in
the inlier rate shows the importance of our proposed data augmentation.

4.5 Discussion

We have presented iPose, a deep learning-based approach capable of estimating
accurate poses of partly occluded objects. Our approach surpasses the state-
of-the-art for both RGB and RGB-D inputs. We attribute the success of our
method to our decomposition philosophy, and therefore the ability to leverage
state-of-the-art instance segmentation networks. We are also the first to success-
fully train an encoder-decoder network for dense object coordinate regression,
that facilitates our robust geometric pose optimization.

55

CHAPTER 4. IPOSE: INSTANCE-AWARE 6D POSE ESTIMATION OF PARTLY
OCCLUDED OBJECTS

56

Chapter 5

Deep Object
Co-Segmentation

5.1 Introduction

Object co-segmentation is the task of segmenting the common objects from a
set of images. It is applied in various computer vision applications and beyond,
such as browsing in photo collections [136], 3D reconstruction [137], semantic
segmentation [138], object-based image retrieval [139], video object tracking and
segmentation [136], and interactive image segmentation [136].

There are different challenges for object co-segmentation with varying level
of difficulty: (1) Rother et al. [136] first proposed the term of co-segmentation
as the task of segmenting the common parts of an image pair simultaneously.
They showed that segmenting two images jointly achieves better accuracy in
contrast to segmenting them independently. They assume that the common
parts have similar appearance. However, the background in both images are
significantly different, see Fig. 5.1(a). (2) Another challenge is to segment the
same object instance or similar objects of the same class with low intra-class
variation, even with similar background [140, 139], see Fig. 5.1(b). (3) A more
challenging task is to segment common objects from the same class with large
variability in terms of scale, appearance, pose, viewpoint and background [141],
see Fig. 5.1(c).

All of the mentioned challenges assume that the image set contains only one
common object and the common object should be salient within each image. In
this work, we address a more general problem of co-segmentation without this
assumption, i.e. multiple object classes can be presented within the images, see
Fig. 5.1(d). As it is shown, the co-segmentation result for one specific image
including multiple objects can be different when we pair it with different images.
Additionally, we are interested in co-segmenting objects, i.e. things rather than
stuff. The idea of object co-segmentation was introduced by Vicente et al.
[139] to emphasize the resulting segmentation to be a thing such as a ‘cat’ or

57

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

a ‘monitor’, which excludes common, or uncommon, stuff classes like ‘sky’ or
‘sea’.

(a) stone-pair (c) car(b) panda

(d) our object co-segmentation

Figure 5.1: Different co-segmentation challenges: (a) segmenting common
parts, in terms of small appearance deviation, with varying background [136],
(b) segmenting common objects from the same class with low intra-class varia-
tion but similar background [140, 142], (c) segmenting common objects from the
same class with large variability in terms of scale, appearance, pose, viewpoint
and background [141]. (d) segmenting common objects in images including
more than one object from multiple classes. Second row shows our predicted
co-segmentation of these challenging images.

Segmenting objects in an image is one of the fundamental tasks in computer
vision. While image segmentation has received great attention during the re-
cent rise of deep learning [143, 144, 145, 146, 147], the related task of object
co-segmentation remains largely unexplored by newly developed deep learning
techniques. Most of the recently proposed object co-segmentation methods still
rely on models without feature learning. This includes methods utilizing super-
pixels, or proposal segments [139, 148] to extract a set of object candidates, or
methods which use a complex CRF model [149, 147] with hand-crafted features
[147] to find the segments with the highest similarity.

In this work, we propose a simple yet powerful method for segmenting ob-
jects of a common semantic class from a pair of images using a convolutional
encoder-decoder neural network. Our method uses a pair of Siamese encoder
networks to extract semantic features for each image. The mutual correlation
layer at the network’s bottleneck computes localized correlations between the
semantic features of the two images to highlight the heat-maps of common ob-
jects. Finally, the Siamese decoder networks combine the semantic features
from each image with the correlation features to produce detailed segmentation
masks through a series of deconvolutional layers. Our approach is trainable in

58

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

an end-to-end manner and does not require any, potentially long runtime, CRF
optimization procedure at evaluation time. We perform an extensive evalua-
tion of our deep object co-segmentation and show that our model can achieve
state-of-the-art performance on multiple common co-segmentation datasets. In
summary, our main contributions are as follows:

• We propose a simple yet effective convolutional neural network (CNN)
architecture for object co-segmentation that can be trained end-to-end. To
the best of our knowledge, this is the first pure CNN framework for object
co-segmentation, which does not depend on any hand-crafted features.

• We achieve state-of-the-art results on multiple object co-segmentation
datasets, and introduce a challenging object co-segmentation dataset by
adapting Pascal dataset for training and testing object co-segmentation
models.

5.2 Related Work

We start by discussing object co-segmentation by roughly categorizing them into
three branches: co-segmentation without explicit learning, co-segmentation with
learning, and interactive co-segmentation. After that, we briefly discuss various
image segmentation tasks and corresponding approaches based on CNNs.
Co-Segmentation without Explicit Learning. Rother et al. [136] proposed
the problem of image co-segmentation for image pairs. They minimize an en-
ergy function that combines an MRF smoothness prior term with a histogram
matching term. This forces the histogram statistic of common foreground re-
gions to be similar. In a follow-up work, Mukherjee et al. [150] replace the l1
norm in the cost function by an l2 norm. In [151], Hochbaum and Singh used a
reward model, in contrast to the penalty strategy of [136]. In [142], Vicente et al.
studied various models and showed that a simple model based on Boykov-Jolly
[152] works the best. Joulin et al. [153] formulated the co-segmentation prob-
lem in terms of a discriminative clustering task. Rubio et al. [154] proposed to
match regions, which results from an over-segmentation algorithm, to establish
correspondences between the common objects. Rubinstein et al. [141] combined
a visual saliency and dense correspondences, using SIFT flow, to capture the
sparsity and visual variability of the common object in a group of images. Fu
et al. [155] formulated object co-segmentation for RGB-D input images as a
fully-connected graph structure, together with mutex constraints. In contrast
to these works, our method is a pure learning based approach.
Co-Segmentation with Learning. In [139], Vicente et al. generated a pool of
object-like proposal-segmentations using constrained parametric min-cut [156].
Then they trained a random forest classifier to score the similarity of a pair of
segmentation proposals. Yuan et al. [157] introduced a deep dense conditional
random field framework for object co-segmentation by inferring co-occurrence
maps. These co-occurrence maps measure the objectness scores, as well as, sim-
ilarity evidence for object proposals, which are generated using selective search
[158]. Similar to the constrained parametric min-cut, selective search also uses

59

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

hand-crafted SIFT and HOG features to generate object proposals. Therefore,
the model of [157] cannot be trained end-to-end. In addition, [157] assume that
there is a single common object in a given image set, which limits application
in real-world scenarios. Recently, Quan et al. [147] proposed a manifold ranking
algorithm for object co-segmentation by combining low-level appearance fea-
tures and high-level semantic features. However, their semantic features are
pre-trained on the ImageNet dataset. In contrast, our method is based on a
pure CNN architecture, which is free of any hand-crafted features and object
proposals and does not depend on any assumption about the existence of com-
mon objects.

Interactive Co-Segmentation. Batra et al. [140] firstly presented an algo-
rithm for interactive co-segmentation of a foreground object from a group of
related images. They use users’ scribbles to indicate the foreground. Collins
et al. [159] used a random walker model to add consistency constraints between
foreground regions within the interactive co-segmentation framework. However,
their co-segmentation results are sensitive to the size and positions of users’
scribbles. Dong et al. [160] proposed an interactive co-segmentation method
which uses global and local energy optimization, whereby the energy function
is based on scribbles, inter-image consistency, and a standard local smoothness
prior. In contrast, our work is not a user-interactive co-segmentation approach.

Convolutional Neural Networks for Image Segmentation. In the last
few years, CNNs have achieved great success for the tasks of image segmenta-
tion, such as semantic segmentation [143, 161, 162, 163, 146, 164], interactive
segmentation [146, 165], and salient object segmentation [166, 167, 168].

Semantic segmentation aims at assigning semantic labels to each pixel in an
image. Fully convolutional networks (FCN) [143] became one of the first popular
architectures for semantic segmentation. Nor et al. [161] proposed a deep decon-
volutional network to learn the upsampling of low-resolution features. Both U-
Net [144] and SegNet [169] proposed an encoder-decoder architecture, in which
the decoder network consists of a hierarchy of decoders, each corresponding to
an encoder. Yu et al. [162] and Chen et al. [170] proposed dilated convolutions
to aggregate multi-scale contextual information, by considering larger receptive
fields. Salient object segmentation aims at detecting and segmenting the salient
objects in a given image. Recently, deep learning architectures have become
popular for salient object segmentation [166, 167, 168]. Li and Yu [166] ad-
dressed salient object segmentation using a deep network which consists of a
pixel-level multi-scale FCN and a segment scale spatial pooling stream. Wang
et al. [167] proposed recurrent FCN to incorporate saliency prior knowledge for
improved inference, utilizing a pre-training strategy based on semantic segmen-
tation data. Jain et al. [168] proposed to train a FCN to produce pixel-level
masks of all object-like regions given a single input image.

Although CNNs play a central role in image segmentation tasks, there has
been no prior work with a pure CNN architecture for object co-segmentation.
To the best of our knowledge, our deep CNN architecture is the first of its kind
for object co-segmentation.

60

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

N N N N N NN N N N

C
on

vo
lu

tio
n

M
ax

 P
oo

lin
g

D
ec

on
vo

lu
tio

n

64 128 256 512 512 512 512 256 128 64

1024

1024 2

64 128 256 512 512 512 512 256 128 64

1024

1024

1024

1024

MC

512
961

512
961 2

fB

fA

CBA

CAB

IA

IB

MA

MB

S
ha

re
d

W
ei

gh
ts

Encoder Decoder pA

pB

Figure 5.2: Deep Object Co-Segmentation Network. Our network includes
three parts: (i) passing input images IA and IB through a Siamese encoder
to extract feature maps fA and fB , (ii) using a mutual correlation network
to perform feature matching to obtain correspondence maps CAB and CBA,
(iii) passing concatenation of squeezed feature maps and correspondence maps
through a Siamese decoder to get the common objects masks MA and MB .

5.3 Method

In this section, we introduce a new CNN architecture for segmenting the com-
mon objects from two input images. The architecture is end-to-end trainable
for the object co-segmentation task. Fig. 5.2 illustrates the overall structure
of our architecture. Our network consists of three main parts: (1) Given two
input images IA and IB , we use a Siamese encoder to extract high-level semantic
feature maps fA and fB . (2) Then, we propose a mutual correlation layer to
obtain correspondence maps CAB and CBA by matching feature maps fA and
fB at pixel-level. (3) Finally, given the concatenation of the feature maps fA
and fB and correspondence maps CAB and CBA, a Siamese decoder is used to
obtain and refine the common object masks MA and MB .

In the following, we first describe each of the three parts of our architecture
in detail. Then in Sec 5.3.4, the loss function is introduced. Finally, in Sec 5.3.5,
we explain how to extend our approach to handle co-segmentation of a group
of images, i.e. going beyond two images.

5.3.1 Siamese Encoder

The first part of our architecture is a Siamese encoder which consists of two
identical feature extraction CNNs with shared parameters. We pass the input
image pair IA and IB through the Siamese encoder network pair to extract
feature maps fA and fB . More specifically, our encoder is based on the VGG16
network [171]. We keep the first 13 convolutional layers and replace fc6 and
fc7 with two 3× 3 convolutional layers conv6-1 and conv6-2 to produce feature
maps which contain more spatial information. In total, our encoder network has
15 convolutional layers and 5 pooling layers to create a set of high-level semantic
features fA and fB . The input to the Siamese encoder is two 512× 512 images

61

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

I
A

f
A

C
AB

M
A

I
A

f
A

C
AB

M
A

I
B

f
B

C
BA

M
B

I
B

f
B

C
BA

M
B

Figure 5.3: The visualization of the heat-maps. Given a pair of input
images IA and IB , after passing them through the Siamese encoder, we extract
feature maps fA and fB . We use the mutual correlation layer to perform fea-
ture matching to obtain correspondence maps CAB and CBA. Then, using our
Siamese decoder we predict the common objects masks MA and MB . As shown
before correlation layer, the heat-maps are covering all the objects inside the
images. After applying the correlation layer, the heat-maps on uncommon ob-
jects are filtered out. Therefore, we utilize the output of the correlation layer
to guide the network for segmenting the common objects.

and the output of the encoder is two 1024-channel feature maps with a spatial
size of 16× 16.

5.3.2 Mutual Correlation

The second part of our architecture is a mutual correlation layer. The outputs
of encoders fA and fB represent the high-level semantic content of the input im-
ages. When the two images contain objects that belong to a common class, they
should contain similar features at the locations of the shared objects. Therefore,
we propose a mutual correlation layer to compute the correlation between each
pair of locations on the feature maps. The idea of utilizing the correlation layer
is inspired by Flownet [172], in which the correlation layer is used to match
feature points between frames for optical flow estimation. Our motivation of
using the correlation layer is to filter the heat-maps (high-level features), which
are generated separately for each input image, to highlight the heat-maps on the
common objects (see Fig. 5.3). In detail, the mutual correlation layer performs
a pixel-wise comparison between two feature maps fA and fB . Given a point
(i, j) and a point (m,n) inside a patch around (i, j), the correlation between
feature vectors fA(i, j) and fB(m,n) is defined as

CAB(i, j, k) = 〈 fA(i, j), fB(m,n)〉 (5.1)

where k = (n − j)D + (m − i) and D × D is patch size. Since the common
objects can locate at any place on the two input images, we set the patch size
to D = 2∗max(w−1, h−1)+1, where w and h are the width and height of the
feature maps fA and fB . The output of the correlation layer is a feature map
CAB of size w × h×D2. We use the same method to compute the correlation
map CBA between fB and fA.

62

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

5.3.3 Siamese Decoder

The Siamese decoder is the third part of our architecture, which predicts two
foreground masks of the common objects. We squeeze the feature maps fA and
fB and concatenate them with their correspondence maps CAB and CBA as the
input to the Siamese decoder (Fig. 5.2). The same as the Siamese encoder, the
decoder is also arranged in a Siamese structure with shared parameters. There
are five blocks in our decoder, whereby each block has one deconvolutional layer
and two convolutional layers. All the convolutional and deconvolutional layers in
our Siamese decoder are followed by a ReLU activation function. By applying a
Softmax function, the decoder produces two probability maps pA and pB . Each
probability map has two channels, background and foreground, with the same
size as the input images.

5.3.4 Loss Function

We define our object co-segmentation as a binary image labeling problem and
use the standard cross entropy loss function to train our network. The full loss
score LAB is then estimated by LAB = LA +LB , where the LA and the LB are
cross-entropy loss functions for the image A and the image B, respectively.

5.3.5 Group Co-Segmentation

Although our architecture is trained for image pairs, our method can handle a
group of images. Given a set of N images I = {I1, ..., IN}, we pair each image
with K ≤ N − 1 other images from I. Then, we use our DOCS network to
predict the probability maps for the pairs, P =

{
pkn : 1 ≤ n ≤ N, 1 ≤ k ≤ K

}
,

where pkn is the predicted probability map for the kth pair of image In. Finally,
we compute the final mask Mn for image In as

Mn(x, y) = median{pkn(x, y)} > σ. (5.2)

where σ is the acceptance threshold. In this work, we set σ = 0.5. We use the
median to make our approach more robust to groups with outliers.

5.4 Experiments

5.4.1 Datasets

Training a CNN requires a lot of data. However, existing co-segmentation
datasets are either too small or have a limited number of object classes. The
MSRC dataset [173] was first introduced for supervised semantic segmentation,
then a subset was used for object co-segmentation [139]. This subset of MSRC
only has 7 groups of images and each group has 10 images. The iCoseg dataset,
introduced in [140], consists of several groups of images and is widely used to
evaluate co-segmentation methods. However, each group contains images of the
same object instance or very similar objects from the same class. The Internet

63

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

dataset [141] contains thousands of images obtained from the Internet using
image retrieval techniques. However, it only has three object classes: car, horse
and airplane, where images of each class are mixed with other noise objects. In
[174], Faktor and Irani use PASCAL dataset for object co-segmentation. They
separate the images into 20 groups according to the object classes and assume
that each group only has one object. However, this assumption is not common
for natural images.

Inspired by [174], we create an object co-segmentation dataset by adapt-
ing the PASCAL dataset labeled by [175]. The original dataset consists of 20
foreground object classes and one background class. It contains 8, 498 train-
ing and 2, 857 validation pixel-level labeled images. From the training images,
we sampled 161, 229 pairs of images, which have common objects, as a new
co-segmentation training set. We used PASCAL validation images to sample
42, 831 validation pairs and 40, 303 test pairs. Since our goal is to segment the
common objects from the pair of images, we discard the object class labels and
instead we label the common objects as foreground. Fig. 5.1(d) shows some
examples of image pairs of our object co-segmentation dataset. In contrast
to [174], our dataset consists of image pairs of one or more arbitrary common
classes.

5.4.2 Implementation Details and Runtime

We use the Caffe framework [50] to design and train our network. We use
our co-segmentation dataset for training. We did not use any images from the
MSRC, Internet or iCoseg datasets to fine tune our model. The conv1-conv5
layers of our Siamese encoder (VGG-16 net [171]) are initialized with weights
trained on the Imagenet dataset [176]. We train our network on one GPU for
100K iterations using Adam solver [177]. We use small mini-batches of 10 image
pairs, a momentum of 0.9, a learning rate of 1e−5, and a weight decay of 0.0005.

Our method can handle a large set of images in linear time complexity O(N).
As mentioned in Sec. 5.3.5 in order to co-segment an image, we pair it with K
(K ≤ N − 1) other images. In our experiments, we used all possible pairs to
make the evaluations comparable to other approaches. Although in this case
our time complexity is quadratic O(N2), our method is significantly faster than
others.

Number of images Others time Our time
2 8 minutes [153] 0.1 seconds
30 4 to 9 hours [153] 43.5 seconds
30 22.5 minutes [178] 43.5 seconds

418 (14 categories, ∼ 30 images per category) 29.2 hours [174] 10.15 minutes
418 (14 categories, ∼ 30 images per category) 8.5 hours [179] 10.15 minutes

To show the influence of number of pairs K, we validate our method on the
Internet dataset w.r.t. K (Table 5.1). Each image is paired with K random
images from the set. As shown, we achieve state-of-the-art performance even
with K = 10. Therefore, the complexity of our approach is O(KN) = O(N)
which is linear with respect to the group size.

64

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

Table 5.1: Influence of number of pairs K.

Internet K=10 K=20 K=99(all)
(N=100) P J P J P J

Car 93.93 82.89 93.91 82.85 93.90 82.81
Horse 92.31 69.12 92.35 69.17 92.45 69.44

Airplane 94.10 65.37 94.12 65.45 94.11 65.43
Average 93.45 72.46 93.46 72.49 93.49 72.56

5.4.3 Results

We report the performance of our approach on MSRC [173, 142], Internet [141],
and iCoseg [140] datasets, as well as our own co-segmentation dataset.

Metrics.

For evaluating the co-segmentation performance, there are two common metrics.
The first one is Precision, which is the percentage of correctly segmented pixels
of both foreground and background masks. The second one is Jaccard, which is
the intersection over union of the co-segmentation result and the ground truth
foreground segmentation.

PASCAL Co-Segmentation.

As we mentioned in Sec 5.4.1, our co-segmentation dataset consists of 40, 303 test
image pairs. We evaluate the performance of our method on our co-segmentation
test data. We also tried to obtain the common objects of same classes using a
deep semantic segmentation model, here FCN8s [143]. First, we train FCN8s
with the PASCAL dataset. Then, we obtain the common objects from two
images by predicting the semantic labels using FCN8s and keeping the segments
with common classes as foreground. Our co-segmentation method (94.2% for
Precision and 64.5% for Jaccard) outperforms FCN8s (93.2% for Precision
and 55.2% for Jaccard), which uses the same VGG encoder, and trained with
the same training images. The improvement is probably due to the fact that our
DOCS architecture is specifically designed for the object co-segmentation task,
which FCN8s is designed for the semantic labeling problem. Another potential
reason is that generating image pairs is a form of data augmentation. We would
like to exploit these ideas in the future work. Fig. 5.4 shows the qualitative
results of our approach on the PASCAL co-segmentation dataset. We can see
that our method successfully extracts different foreground objects for the left
image when paired with a different image to the right.

65

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

Figure 5.4: Our qualitative results on PASCAL Co-segmentation
dataset. (odd rows) the input images, (even rows) the corresponding object
co-segmentation results.

MSRC.

The MSRC subset has been used to evaluate the object co-segmentation per-
formance by many previous methods [142, 141, 174, 178]. For the fair com-
parison, we use the same subset as [142]. We use our group co-segmentation
method to extract the foreground masks for each group. In Table. 5.2, we show
the quantitative results of our method as well as four state-of-the-art methods
[139, 141, 174, 178]. Our Precision and Jaccard show a significant improvement
compared to previous methods. It is important to note that [139] and [178] are
supervised methods, i.e. both use images of the MSRC dataset to train their
models. We obtain the new state-of-the-art results on this dataset even without
training or fine-tuning on any images from the MSRC dataset. Visual examples
of object co-segmentation results on the subset of the MSRC dataset can be
found in Fig. 5.5.

Internet.

In our experiment, for the fair comparison, we followed [141, 180, 147, 157] to use
the subset of the Internet dataset to evaluate our method. In this subset, there
are 100 images in each category. We compare our method with five previous

66

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

Figure 5.5: Our qualitative results on the MSRC dataset (seen
classes). (odd rows) the input images, (even rows) the corresponding object
co-segmentation results.

Figure 5.6: Our qualitative results on the Internet dataset (seen
classes). (odd rows) the input images, (even rows) the corresponding object
co-segmentation results.

67

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

Table 5.2: Quantitative results on the MSRC dataset (seen classes).
Quantitative comparison results of our DOCS approach with four state-of-
the-art co-segmentation methods on the co-segmentation subset of the MSRC
dataset.

MSRC [139] [141] [178] [174] Ours

Precision 90.2 92.2 92.2 92.0 95.4
Jaccard 70.6 74.7 - 77.0 82.9

Table 5.3: Quantitative results on the Internet dataset (seen classes).
Quantitative comparison of our DOCS approach with several state-of-the-art co-
segmentation methods on the co-segmentation subset of the Internet dataset.
‘P’ is the Precision, and ‘J’ is the Jaccard.

Internet [153] [141] [180] [147] [157] Ours

Car
P 58.7 85.3 87.6 88.5 90.4 93.9
J 37.1 64.4 64.9 66.8 72.0 82.8

Horse
P 63.8 82.8 86.2 89.3 90.2 92.4
J 30.1 51.6 33.4 58.1 65.0 69.4

Airplane
P 49.2 88.0 90.3 92.6 91.0 94.1
J 15.3 55.8 40.3 56.3 66.0 65.4

Average
P 57.2 85.4 88.0 89.6 91.1 93.5
J 27.5 57.3 46.2 60.4 67.7 72.6

approaches [153, 180, 141, 147, 157]. Table 5.3 shows the quantitative results
of each object category with respect to Precision and Jaccard. We outperform
most of the previous methods [153, 180, 141, 147, 157] in terms of Precision
and Jaccard. Note that [157] is a supervised co-segmentation method, [180]
trained a discriminative Latent-SVM detector and [147] used a CNN trained on
the ImageNet to extract semantic features. Fig. 5.6 shows some quantitative
results of our method. It can be seen that even for the ‘noise’ images in each
group, our method can successfully recognize them. We show the ‘noise’ images
in the last column.

iCoseg

To show that our method can generalize on unseen classes, i.e. classes which
are not part of the training data, we need to evaluate our method on unseen
classes. Batra et al. [140] introduced the iCoseg dataset for the interactive co-
segmentation task. In contrast to the MSRC and Internet datasets, there are
multiple object classes in the iCoseg dataset which do not appear in PASCAL
VOC dataset. Therefore, it is possible to use the iCoseg dataset to evaluate

68

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

Figure 5.7: Our qualitative results on iCoseg dataset (unseen classes).
Some results of our object co-segmentation method, with input image pairs in
the odd rows and the corresponding object co-segmentation results in the even
rows. For this dataset, the object classes were not known during training of our
method (i.e. unseen).

Table 5.4: Quantitative results on the iCoseg dataset (unseen classes).
Quantitative comparison of our DOCS approach with four state-of-the-art co-
segmentation methods on some object classes of the iCoseg dataset, in terms of
Jaccard. For this dataset, these object classes were not known during training
of our method (i.e. unseen).

iCoseg [141] [181] [174] [179] Ours

bear2 65.3 70.1 72.0 67.5 88.7
brownbear 73.6 66.2 92.0 72.5 91.5
cheetah 69.7 75.4 67.0 78.0 71.5
elephant 68.8 73.5 67.0 79.9 85.1
helicopter 80.3 76.6 82.0 80.0 73.1
hotballoon 65.7 76.3 88.0 80.2 91.1
panda1 75.9 80.6 70.0 72.2 87.5
panda2 62.5 71.8 55.0 61.4 84.7

average 70.2 73.8 78.2 74.0 84.2

the generalization of our method on unseen object classes. We choose eight
groups of images from the iCoseg dataset as our unseen object classes, which are
bear2, brown bear, cheetah, elephant, helicopter, hotballoon, panda1 and panda2.
There are two reasons for this choice: firstly, these object classes are not included
in the PASCAL VOC dataset. Secondly, in order to focus on objects, in contrast
to stuff, we ignore groups like pyramid, stonehenge and taj-mahal. We compare
our method with four state-of-the-art approaches [181, 141, 174, 179] on unseen

69

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

objects of the iCoseg dataset. Table 5.4 shows the comparison results of each
unseen object groups in terms of Jaccard. The results show that for 5 out of
8 object groups our method performs best, and it is also superior on average.
Note that the results of [181, 141, 174, 179] are taken from Table X in [179].
Fig. 5.7 shows some qualitative results of our method. It can be seen that our
object co-segmentation method can detect and segment the common objects of
these unseen classes accurately.

Furthermore to show the effect of number of PASCAL classes on the per-
formance of our approach on unseen classes, we train our network on partial
randomly picked PASCAL classes, i.e. {5, 10, 15}, and evaluate it on the iCoseg
unseen classes. As it is shown in Table 5.5, our approach can generalize to
unseen classes even when it is trained with only 10 classes from PASCAL.

Table 5.5: Analyzing the effect of number of training classes on unseen classes.
iCoseg P(5) P(10) P(15) P(20)

average 75.5 83.9 83.7 84.2

5.4.4 Ablation Study

To show the impact of the mutual correlation layer in our network architecture,
we design a baseline network DOCS-Concat without using mutual correlation
layers. In detail, we removed the correlation layer and we concatenate fA and
fB (instead of CAB) for image IA and concatenate fB and fA (instead of CBA)
for image IB . In Table 5.6, we compare the performance of different network
designs on multiple datasets. As shown, the mutual correlation layer in DOCS-
Corr improved the performance significantly.

5.5 Discussion

In this work, we presented a new and efficient CNN-based method for solving
the problem of object class co-segmentation, which consists of jointly detecting
and segmenting objects belonging to a common semantic class from a pair of
images. Based on a simple encoder-decoder architecture, combined with the mu-
tual correlation layer for matching semantic features, we achieve state-of-the-art

Table 5.6: Impact of mutual correlation layer.
DOCS-Concat DOCS-Corr

Precision Jaccard Precision Jaccard

Pascal VOC 92.6 49.9 94.2 64.5
MSRC 92.6 72.0 95.4 82.9

Internet 91.8 62.7 93.5 72.6
iCoseg(unseen) 93.6 78.9 95.1 84.2

70

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

performance on various datasets, and demonstrate good generalization perfor-
mance on segmenting objects of new semantic classes, unseen during training.
To train our model, we compile a large object co-segmentation dataset consisting
of image pairs from PASCAL dataset with shared objects masks.

71

CHAPTER 5. DEEP OBJECT CO-SEGMENTATION

72

Chapter 6

Split-Merge Pooling

6.1 Introduction

Convolutional neural networks (CNNs) are the method of choice for image clas-
sification [182, 183, 171, 184, 176]. CNNs capture multi-scale contextual in-
formation in an image via subsampling the intermediate features through the
network layers [182, 185]. This approach is successful due to the expansion of
the receptive fields, which are large enough to capture the context of the image
for classification.

In this work, we consider dense prediction tasks, which are popular in com-
puter vision [186]. One desideratum of dense prediction tasks is to have pixel-
accurate predictions, for example in semantic segmentation [184, 28, 161, 144,
187] or depth estimation [30, 32]. Even small inaccuracies, such as missing a
small object lying on the street, may lead to an accident of an autonomous
vehicle.

Most state-of-the-art approaches for dense prediction adapt existing CNNs
which were originally designed for image classification. However, these adapted
CNNs lose a vast amount of spatial information due to subsampling. As a re-
sult this reduces the prediction performance, mostly because of missing small
objects or predicting coarse and inaccurate object boundaries. In order to miti-
gate this problem, other methods are proposed, such as progressive upsampling
[30, 32, 28], deconvolution (or transpose convolutions) [161], skip connections
[144, 187, 169], utilizing multiple scales of features [1, 188], and attention mech-
anism [189]. Another line of work preserves the resolution by replacing subsam-
pling layers with dilated convolution layers [190, 162, 191] and widely used in
other approaches [188, 189, 192, 193]. In theory, it is possible to design a dilated
convolution network without using any subsampling operation to obtain an out-
put with the same size as the input. Unfortunately, for large input sizes the
training and inference of the resulting CNN is extremely slow or even sometimes
intractable due to limited amount of memory on a GPU, hence subsampling is
still needed in practice.

73

CHAPTER 6. SPLIT-MERGE POOLING

Split Merge

A

0 1

6 7

2 3

8 9

14 15

20 21

12 13

18 19

16 17

22 23

4 5

10 11

C

0 1

6 7

2 3

8 9

14 15

20 21

12 13

18 19

16 17

22 23

4 5

10 11

7 9

2119 23

11

B(0,0)

B(1,0)

B(1,1)

B(0,1)

6 8

2018 22

10
1 3

1513 17

5
0 2

1412 16

4

B

Figure 6.1: Split and Merge Pooling. The illustration of split and merge
pooling layers with a window size of 2× 2. The advantage of splitting the input
into batches is to make it possible to process each part of the input (i.e. each
split batch) independently. In this example, after splitting A into batches in B,
we can send each batch B(i,j) to a different GPU and continue the forward pass
from this point onward on multiple GPUs, or process one batch at a time on a
single GPU. This enables us to execute dense prediction tasks with very deep
networks and for large images, while always preserving the spatial information.

In this work, we propose novel pooling layers called Split-Merge Pooling
(SMP). The split pooling layer splits (re-arranges) a feature tensor along its spa-
tial dimension and treats the resulting splits as individual batches (see Fig. 6.1).
The split pooling reduces the spatial size with a fixed scaling factor, related to
the size of the non-overlapping pooling window. The merge layer acts as the re-
verse of split pooling operation, i.e., it receives the split batches and re-arranges
the elements of the batches to their original locations. In our experiments, we
replace all subsampling layers of standard ResNet networks by our split pool-
ing. Finally, we merge the resulting split batches using merge pooling layers
to output full resolution prediction. In this way, we do not lose any spatial
information since it is preserved in the split batches. The batches are processed
independently after the split, which has the major advantage that after the split
each batch can be processed on a different GPU. This enables us to perform
dense prediction tasks with very large networks on large images, while always
preserving the spatial information. Furthermore, to increase training speed, we
introduced the Shrink and Expand pooling layers as a batch-subsampling of the
split and merge pooling.
In summary, our contributions are as follows:

• We propose a novel pooling method called Split-Merge Pooling (SMP)
which enables the unique mapping of each input element to one output
element, without losing any spatial information.

• We propose a batch-subsampling variant of SMP, termed Shrink-Expand
Pooling, to make the training efficient and tractable for very deep net-
works.

• To show the effectiveness of SMP on dense prediction tasks, we choose
semantic segmentation and apply SMP to ResNet networks with varying
depths. We chose ResNet as our baseline since it is used as the backbone
in state-of-the-art approaches. For semantic segmentation of large images

74

CHAPTER 6. SPLIT-MERGE POOLING

from Cityscapes [194] and GTA-5 [195] datasets, our SMP networks out-
perform the corresponding ResNet networks by a significant margin, with
up to 6.8% in IoU score.

• We even observe that a SMP version of a shallow ResNet (ResNet18) out-
performs the original ResNet101 by 2.8% in IoU score, although ResNet101
is 3.8 times deeper than ResNet18.

6.2 Related Work

Utilizing CNNs for image classification became very popular with the introduc-
tion of the Imagenet challenge [176] and after some popular network architec-
tures such as Alexnet [183], VGG [171] and ResNet [184] emerged. Pooling lay-
ers in CNNs were originally introduced for image classification tasks on MNIST
dataset [182]. The aim of pooling layers is to summarize the information over a
spatial neighborhood.

Dense prediction tasks. Most of the dense prediction models are based on
adapted versions of image classification networks. Eigen et al. [30, 32] adapt
the Alexnet [183] for single image depth estimation. Since the output of such
networks is very coarse, they upsample the output progressively and combine
it with local features from the input image. Long et al. [28] introduce the first
fully covolutional network (FCN) for semantic image segmentation by adapting
VGG network [171] for this task. They map intermediate features with higher
resolution to label space and combine them with the coarse prediction of the
network in order to recover the missing spatial information. Noh et al. [161]
introduce more parameters in a decoder consisting of transpose convolutions
(Deconvolution layers) to upsample the coarse output of the encoder. However,
it is still difficult to recover the missing information from the coarse output
with this approach. Furthermore, other approaches [144, 187, 169] use skip
connections between encoder and decoder to obtain more detailed information
from lower level features.

Yu et al. introduced the concept of dilated convolutions [162] and later devel-
oped the dilated residual network (DRN) [191], which uses dilated convolutions
to preserve the spatial information. However, they still use three subsampeling
layers to reduce the spatial resolution to make training feasible, i.e. to fit the
model into memory. Therefore, DRNs lose spatial information and need upsam-
pling to obtain the full size output prediction. In contrast, our approach does
not lose any spatial information. The batch-based design of our split pooling
gives us the flexibility of distributed processing of batches on multiple GPUs
or sequential processing of batches on one GPU during inference time (see Sec
6.3.1). Furthermore, for training, we learn our network weights using only one
subsampled split batch to make the training faster and tractable (see Sec 6.3.2).

75

CHAPTER 6. SPLIT-MERGE POOLING

19 23

51 55

(1,0)

Shrink

(1,1)

Shrink

(1,1)

Expand

(1,0)

Expand

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

1 3 5 7

17 19 21 23

33 35 37 39

49 51 53 55

19 23

51 55

19 23

51 55

Pairs

Figure 6.2: Shrink and Expand Pooling example. The illustration of two
pairs of shrink and expand pooling layers with window size of 2×2 and sampling
location of (1, 0) and (1, 1). During training the expand pooling layers back-
propagate the error of sparse elements.

6.3 Method

The goal of this work is to design a set of pooling layers that preserve spatial
information, in contrast to subsampling operations such as max-pooling and
striding convolutions. Additionally, the new pooling layers have to be applicable
to very deep networks. Losing spatial information caused by subsampling is a
prevalent problem for dense prediction tasks, such as object detection, semantic
segmentation, instance segmentation, or depth estimation. Small objects in the
input image can get lost completely with subsampling. Moreover, recovering
precise object boundaries in an image becomes challenging due to missing spatial
information. These problems, caused by losing spatial information, obviously
reduced prediction accuracy. However, simply storing all the information with
the original spatial resolution is not a practical option since it causes storage
issues, in particular for training on large image datasets.

Our idea is to preserve all the spatial information by splitting the feature
tensor into multiple downsampled batches (see Fig. 6.1) instead of preserving it
inside the original spatial resolution. In this way, we have both advantages of
large receptive fields due to standard downsampling, as well as keeping all the
available spatial information for obtaining precise dense predictions.

6.3.1 Split-Merge Pooling

The split pooling layer splits an input feature tensor along spatial dimensions
and outputs each split as a batch. The number of output batches depends on
the window size of split pooling, e.g. a split pooling with a window size of 2× 2
splits the input into 4 batches (see Fig. 6.1). The purpose of the split pooling
is to downsample the input while preserving the whole information. Hence,
the pooling window covers each element of the input once, without any gap or
overlap.

The merge pooling layer acts as the inverse of split pooling, i.e., it takes the
split batches and merges them into one batch. For dense prediction tasks, we
apply the same number of merge pooling layers on the final output of network as

76

CHAPTER 6. SPLIT-MERGE POOLING

the number of split pooling layers in a network. The result will be a one-to-one
mapping between the input and output pixels of the network.

Formally, given an input AW×H , a split pooling with window size of w × h
splits A into w ∗ h batches

B = {B(k,l) | 0 ≤ k < w ∧ 0 ≤ l < h }.

The elements of A are assigned to batch B(k,l) as follows

b
(k,l)
i,j = ai∗w+k,j∗h+l (6.1)

for all 0 ≤ i < W/w and 0 ≤ j < H/h. The spatial size of each batch will be
W/w × H/h. If the input to the split pooling consist of multiple batches, the
split pooling splits each input batch separately and returns all resulting splits
as a set of batches.

The merge pooling performs the inverse of Eq. 6.1, i.e., if B is the input and
A is the output, the elements of B are assigned to A as follows

ai∗w+k,j∗h+l = b
(k,l)
i,j (6.2)

for all 0 ≤ k < w, 0 ≤ l < h, 0 ≤ i < W/w and 0 ≤ j < H/h.
Although preserving the spatial information is beneficial, it increases the

number of elements to store during the forward pass. The advantage of splitting
the inputs into batches is that we can distribute the computation of batches on
multiple GPUs or processing them sequentially on one GPU. This is ideal for
inference. However, in contrast to inference, training phase additionally requires
to compute and store the gradients. This makes the training of very deep
networks intractable for large batches of inputs with high resolution images.
We handle this issue by introducing Shrink-Expand pooling layers.

6.3.2 Shrink-Expand Pooling

The batch-based design of the split pooling layer makes the forward process
of each part (split batch) of the input independent of the other parts (split
batches). Furthermore, the one-to-one mapping between the elements of input
and output gives a clear path between these elements in both forward and
backward direction. Giving these two properties, it is possible to train a network
using a subset of split batches produced by each split pooling layer. If we reduce
the size of the batch subset to one, the space complexity will be the same as
the space complexity of the max pooling and striding convolutions. Also, the
training time complexity stays the same.

Giving this reasoning, we introduce the shrink and expand pooling layers,
which are the batch-subsampled versions of the split and merge pooling layers.
The shrink pooling samples one element at a fixed location within the pooling
window, and the corresponding expand pooling uses the same fixed location to
perform the reverse of the shrink pooling (see Fig. 6.2). Hence, the output of
expand pooling is sparse. In other words, the shrink pooling is the same as split
pooling except it samples only one of the split batches and returns it.

77

CHAPTER 6. SPLIT-MERGE POOLING

M
a

x
P

o
o

lin
g

S
p

lit
 P

o
o

lin
g

C
o

n
v:

 s
tr

id
e

 2
x2

S
p

lit
 P

o
o

lin
g

B
a

tc
h

 N
o

rm

R
e

L
U

C
o

n
v:

 s
tr

id
e

 1
x1

B
a

tc
h

 N
o

rm

R
e

L
U

(a) ResNet (b) SPM ResNet

Replace by

Replace by

Figure 6.3: Applying split pooling to ResNet. For applying split pooling to
ResNet, we replace the max pooling layer with split pooling (top). Furthermore,
we add a split pooling layer after batch normalization layer of convolutional
blocks with the stride of 2× 2 and set the stride to 1× 1 (bottom).

The sampling location (i, j) is set randomly in each forward pass during
training to avoid overfitting to part of the training data. For each pair of shrink
and expand pooling in the network, we sample only two numbers (i, j). Fig. 6.2
shows an example of using a sequence of shrink and expand pooling layers.
During training, the expand layers only backpropagate the error of sparse valid
elements.

6.4 Experiments

We evaluate the effectiveness of our approach for the semantic segmentation
task. To examine the impact of our pooling layer, we modify the ResNet and
then compare the performance of the modified version and the original one.

6.4.1 Experimental Setup

Baseline FCN32s. Our experimental models are based on FCN32s [28] with
a variant of ResNet [184] as backbone. We adapt the ResNet for semantic seg-
mentation task by removing the average pooling and fully connected layer and
replacing them by a 1× 1 convolutional layer which maps the output channels
of last layer (layer4) to the number of semantic classes. We refer to this model
as FCN32s and use it as baseline. FCN32s predictions are 32 times smaller than

78

CHAPTER 6. SPLIT-MERGE POOLING

the input image to the network; thus, the coarse predictions are upsampled to
full resolution using bilinear interpolation.

SMP-{18, 34, 101}. As illustrated in Fig. 6.3, in order to apply SMP to
ResNet backbone of FCN32s, we simply replace the max pooling layer with a
split pooling layer and add a split pooling layer after the batch normalization
layer of convolutional blocks (Conv-BN-ReLU) with a stride of 2 × 2 and set
their strides to 1×1. In our experiments, the window size of split pooling layers
is 2×2. We call the resulting model, according to the type of backbone ResNet,
SMP-18, SMP-34 and SMP-101. The output of SMP-X consist of 1024 batches,
since we always have 5 SMP layers each giving 4 batches. We merge the output
split batches by performing merge pooling five times. The final result has the
same resolution as the input. During training phase, we replace split and merge
pooling layer by shrink and expand layers.

FCN8s. Furthermore, we compare our models to the FCN8s model with orig-
inal ResNet backbone. The main difference between FCN32s and FCN8s is that
FCN8s has two extra 1 × 1 convolution layers to map the features channel of
layer2 and layer3 outputs of ResNet to the number of semantic classes. Then,
the output of the network and these new convolutions are resized to the same
size and are added together. The final output of FCN8s is 8 times smaller
than the input image and should be upsampled to full resolution using bilinear
interpolation.

(a) Image (b) Ground-truth (c) FCN8s (d) Ours

Figure 6.4: An example of a slightly inaccurate annotation in
Cityscapes dataset. Although the trunk of the tree in the image (a) is visi-
ble through bicycles, it is labeled as bicycle in ground truth (b). Our method
can obtain detailed boundaries (d) while FCN8s with max pooling cannot (c).
Hence, to fully validate the full potential of our method we need a pixel-accurate
ground-truth, such as GTA-5.

6.4.2 Implementation Details

Data Augmentation. For all the models we used random crop of size 512×
512 and horizontal flip data augmentation. We used a fixed seed for data aug-

79

CHAPTER 6. SPLIT-MERGE POOLING

mentation for all the experiments.

Training. We initialize the ResNet backbones with pretrained models from
Imagenet. We optimize the parameters using Adam solver [135] with learning
rate of 1e− 5 and weight decay of 5e− 4. We use the batch size of 10 for all the
experiments.

Table 6.1: Cityscapes quantitative results. Please note that the architecture
of SMP-X networks is the same as the FCN32s. The FCN8s architecture has
two extra 1× 1 convolutions.

Backbone Pooling IoU Size

FCN32s ResNet34 MP 64.5 21.29M
FCN8s ResNet34 MP 67.8 21.30M
SMP-34 (ours) ResNet34 SMP 68.8 21.29M

FCN32s ResNet101 MP 65.5 42.54M
FCN8s ResNet101 MP 69.1 42.56M
SMP-101 (ours) ResNet101 SMP 69.2 42.54M

Table 6.2: Quantitative results for GTA-5. Please note that the architecture
of SMP-X networks is the same as the FCN32s, while the FCN8s has two extra
1× 1 convolutions.

Backbone Pooling IoU Size

FCN32s ResNet18 MP 71.1 11.186M
FCN8s ResNet18 MP 74.2 11.193M
SMP-18 (ours) ResNet18 SMP 77.5 11.186M

FCN32s ResNet34 MP 73.1 21.29M
FCN8s ResNet34 MP 76.7 21.30M
SMP-34 (ours) ResNet34 SMP 80.2 21.29M

FCN32s ResNet101 MP 74.6 42.54M
FCN8s ResNet101 MP 76.7 42.56M
SMP-101 (ours) ResNet101 SMP 80.3 42.54M

6.4.3 Cityscapes

The Cityscapes dataset [194] consists of images with the size of 2048×1024. The
images are annotated with 19 semantic classes. We evaluate the performance
of our SMP-34 and SMP-101 on Cityascapes validation set and compare it with
FCN32s and FCN8s with ResNet34 and ResNet101 backbone networks. The
full size images are used for evaluation, i.e. without downsampling or cropping.

Table 6.1 summarizes the comparison of different methods with respect to
their setups, performances and number of parameters (size). Each SMP model

80

CHAPTER 6. SPLIT-MERGE POOLING

Table 6.3: Performance on Cityscapes for small and thin objects.

p
o
le

tr
affi

c
li

gh
t

tr
affi

c
si

g
n

p
er

so
n

ri
d

er

m
ot

o
rc

y
cl

e

b
ic

y
cl

e

IoU
FCN32s-Res34 35.4 51.5 63.0 70.4 50.3 51.8 68.4 55.8
FCN8s-Res34 53.5 57.6 69.9 77.1 53.6 51.0 72.2 62.1
SMP-34(ours) 60.5 63.7 74.5 78.8 54.1 52.9 73.9 65.5

FCN32s-Res101 39.2 58.1 66.9 71.9 51.4 53.9 70.6 58.9
FCN8s-Res101 56.1 63.1 72.2 78.2 55.4 52.8 74.7 64.6
SMP-101(ours) 63.3 68.7 75.8 79.9 56.1 52.9 76.6 67.6

Table 6.4: Performance on GTA-5 for small and thin objects

p
ol

e

tr
affi

c
li

gh
t

tr
affi

c
si

gn

p
er

so
n

ri
d

er

m
ot

or
cy

cl
e

b
ic

y
cl

e

IoU
FCN32s-Res18 44.6 45.3 60.7 69.3 64.5 59.8 38.5 54.7
FCN8s-Res18 54.0 52.7 63.8 74.4 70.4 66.5 40.3 60.3
SMP-18(ours) 72.7 69.2 73.6 76.8 67.8 69.3 46.5 68.0

FCN32s-Res34 46.0 47.7 63.0 70.0 67.9 63.9 49.5 58.3
FCN8s-Res34 55.6 57.2 68.3 76.3 74.0 65.8 51.3 64.1
SMP-34(ours) 74.3 71.4 73.7 81.0 70.5 73.7 58.5 71.9

FCN32s-Res101 47.3 50.3 68.7 70.3 63.9 66.2 58.1 60.7
FCN8s-Res101 57.1 59.0 70.8 75.5 67.1 70.6 62.4 66.1
SMP-101(ours) 76.8 74.9 78.9 79.0 69.2 69.6 67.8 73.7

outperforms the corresponding FCN32s and FCN8s with the same ResNet back-
bone significantly. SMP-34 even outperforms FCN32s-ResNet101 by 3.3%, al-
though the latter is almost 2 times larger. The performance of our approach
on objects from small and thin classes is reported in Table 6.6. As we can
see in the table, SMP models outperforms their corresponding original models
on small and thin objects. Both SMP models outperform their corresponding
FCN32s models for pole by 24%, for traffic light by more than 10%, for traffic
sign by more than 9%, and for person by 8%. As it is shown in Fig. 6.5, the
improvement of these classes can be noticed visually as well. The performance
for the remaining objects is mostly better, or sometimes slightly worse.

Qualitative results are shown in Fig. 6.5. For the sake of improved visibil-
ity we have cropped the results. The full size output images can be found in
supplementary material.

81

CHAPTER 6. SPLIT-MERGE POOLING

6.4.4 GTA-5

Cityscapes is one of the most accurately annotated semantic segmentation datasets,
however it is still not pixel-accurate (see Fig. 6.4). Obtaining pixel-accurate an-
notations from real data is extremely challenging and expensive. Therefore, for
analysing the full potential of our method, we evaluate our method on GTA-5
[195], which is a synthetic dataset with the same semantic classes as Cityscapes.
Since GTA-5 is a synthetic, the annotations are pixel-accurate and ideal for our
purpose. The GTA-5 dataset [195] consist of 24,999 realistic synthetic images
with pixel-accurate semantic annotations. We randomly select 500 images as
validation set, which we did not use for training.

Table 6.1 summarizes the comparison of different methods with respect to
their setups, performances and number of parameters (size). As we can see, due
to the pixel-accurate annotations of GTA-5 dataset, the improvement of our pro-
posed models, over their baselines, is more significant compared to Cityscapes.
Each SMP model outperforms the corresponding FCN32s and FCN8s with the
same ResNet backbone significantly. Particularly, our SMP-18 even outperforms
its FCN32s-ResNet101 and FCN8s-ResNet101 counterparts, although it has 4
times fewer parameters. The performance of our approach on objects from small
and thin classes is reported in Table 6.7. As we can see, similarly to Cityscapes,
SMP models outperforms their corresponding original models on small and thin
objects. Compared to FCN32s models, our corresponding SMP models improve
the categories pole by more than 28%, traffic light by more than 23%, traffic
sign by more than 10%, and person by more than 7%. The improvement over
these classes is also visually significant (see Fig. 6.6).

6.4.5 Run-time Analysis

For analyzing the time complexity of the Split-Merge pooling, we designed small
networks to just focus on the proposed pooling layers instead of analyzing the
time complexity of them on a particular task with specific network architecture.
As it is shown in Fig. 6.7, we consider three networks with (a) max pooling, (b)
dilated convolution, and (c) Split pooling. We choose to compare our proposed
pooling setup (c) with dilated convolutions (b) due to the success of the dilated
convolution in dense prediction tasks. Almost all state-of-the-art approaches
in dense prediction tasks (such as semantic segmentation, depth estimation,
optical flow estimation) are using dilated convolutions in their architectures to
achieve a detailed output.

In Table 6.5, we show the Giga floating-point operation (GFLOP) of each
component of each setup for an input tensor of size 1 × 3 × 256 × 256. As
we can see, the dilated convolution setup and split pooling setup have the
same GFLOPs which means dilated convolution layers can be replaced with
our proposed pooling layers in an arbitrary architecture without changing the
complexity of the network. However, our split pooling layer has two advantages:

1. faster training time using shrink-expand layers
2. faster inference time by parallelizing the forward-computation of split

82

CHAPTER 6. SPLIT-MERGE POOLING

FCN32s FCN8s SMP (ours)
Image /

Ground Truth

R
e
s
N
e
t
1
0
1

R
e
s
N
e
t
3
4

R
e
s
N
e
t
1
0
1

R
e
s
N
e
t
3
4

R
e
s
N
e
t
1
0
1

R
e
s
N
e
t
3
4

R
e
s
N
e
t
1
0
1

R
e
s
N
e
t
3
4

Figure 6.5: Cityscapes qualitative results. In each block, the top row is
related to models with ResNet34 backbone and the bottom row to ResNet101.
The last column of each block shows the input image (top) and the ground-truth
(bottom). To enhance the visual comparison of the results, we have cropped
the output labelling. Further results, also in full resolution, can be found in
supplementary material.

83

CHAPTER 6. SPLIT-MERGE POOLING

FCN32s FCN8s SMP (ours)
Image /

Ground Truth
R
e
s
N
e
t
1
0
1

R
e
s
N
e
t
3
4

R
e
s
N
e
t
1
8

R
e
s
N
e
t
1
0
1

R
e
s
N
e
t
3
4

R
e
s
N
e
t
1
8

R
e
s
N
e
t
1
0
1

R
e
s
N
e
t
3
4

R
e
s
N
e
t
1
8

Figure 6.6: GTA-5 qualitative results. In each block, the top row is related
to ResNet18 backbone, middle row to ResNet34, and bottom row to ResNet101.
The last column of each block shows the input image (top) and the ground-truth
(bottom). To enhance the visual comparison of the results, we have cropped
the output labelling. Further results, also in full resolution, can be found in
supplementary material.

84

CHAPTER 6. SPLIT-MERGE POOLING

(a) Max pooling

m
a

x
p

o
o

lin
g

K: 3x3
Pad: 1

conv2

K: 3x3
Pad: 1

conv1

(b) Dilated

K: 3x3
Pad: 2

Dilation: 2

conv2

K: 3x3
Pad: 1

conv1

(c) Split Pooling

sp
lit

 p
o

o
lin

g

K: 3x3
Pad: 1

conv2

K: 3x3
Pad: 1

conv1

Figure 6.7: Architectures used for runtime analysis. conv2 in (c) is identical to
conv2 in (a) while conv2 in (c) is dilated convolution with padding 2.

layer output batches (in this example setup computation of conv2, see
Table 6.5)

Table 6.5: GFLOPs of the models calculated on the input size of 1×3×256×256.
Note that the number of batches are increased after split pooling.

batches conv1 pooling batches conv2 total
(a) Max Pooling 1 0.23 0 1 2.42 2.65
(b) Dilated Conv. 1 0.23 - 1 9.68 9.92
(c) Split Pooling 1 0.23 0 4 4x2.42 (9.68) 9.92

6.4.6 Detailed Quantitative Results

Table 6.6 and Table 6.7 show the detailed quantitative results of our proposed
models on Cityscapes and GTA-5 datasets respectively.

6.5 Conclusion

We proposed a novel pooling method SMP with the goal of preserving the spa-
tial information throughout the entire network. SMP can be used instead of
any subsampling operations in a network architecture. We show that by replac-
ing subsampling operations with SMP in ResNet, we achieved two important
properties for any dense prediction task at the same time: i) the network has
a large receptive field, ii) the network provides a unique mapping from input
pixels to output pixels. Furthermore, the computation of a network with SMP
can be distributed to multiple GPUs due to batch-based design of SMP. We
show experimentally that the resulting network outperforms the original one
significantly.

85

CHAPTER 6. SPLIT-MERGE POOLING

T
ab

le
6.6:

C
ity

sc
a
p

e
s

-
d

e
ta

ile
d

.
S

M
P

m
o
d

els
o
u

tp
erfo

rm
s

th
eir

co
rresp

o
n
d

in
g

o
rig

in
al

m
o
d

els
on

sm
all

an
d

th
in

ob
jects.

B
oth

S
M

P
m

o
d

els
ou

tp
erform

th
eir

corresp
o
n

d
in

g
F

C
N

3
2
s

m
o
d

els
fo

r
po

le
b
y

2
4
%

,
fo

r
tra

ffi
c

ligh
t

b
y

m
ore

th
an

10%
,

for
tra

ffi
c

sign
b
y

m
ore

th
an

1
0%

,
a
n
d

for
perso

n
b
y

8
%

.

road

sidewalk

building

wall

fence

pole

traffic light

traffic sign

vegetation

terrain

sky

person

rider

car

truck

bus

train

motorcycle

bicycle

IoU
F

C
N

32s-R
es34

9
7.2

78
.5

88.5
4
0.1

48.5
3
5
.4

5
1
.5

6
3
.0

8
8
.9

5
6
.5

8
9
.3

7
0
.4

5
0
.3

91.2
48.3

64.9
43.5

51.8
68.4

64.5
F

C
N

8s-R
es3

4
9
7
.3

80.0
8
9.6

3
7
.2

49.5
5
3
.5

5
7
.6

6
9
.9

9
0
.9

5
7
.7

9
2
.4

7
7
.1

5
3
.6

92.5
4
9
.9

69.4
4
6
.6

51.0
72.2

67.8
S

M
P

-3
4(o

u
rs)

9
7
.3

8
0
.6

9
0
.5

4
2
.2

5
0
.6

6
0
.5

6
3
.7

7
4
.5

9
1
.4

5
8
.7

9
2
.8

7
8
.8

5
4
.1

9
2
.9

48.5
7
0
.6

32.3
5
2
.9

7
3
.9

6
8
.8

F
C

N
32s-R

es101
9
7.3

79
.6

88.9
3
8.3

51.3
3
9
.2

5
8
.1

6
6
.9

8
9
.4

5
5
.4

9
1
.3

7
1
.9

5
1
.4

91.8
43.0

65.1
41.3

53.9
70.6

65.5
F

C
N

8s-R
es1

01
9
7.5

81
.2

90.3
4
1
.0

4
9
.9

5
6
.1

6
3
.1

7
2
.2

9
1
.4

5
9
.8

9
2
.8

7
8
.2

5
5
.4

92.9
4
9
.9

6
8
.6

4
4
.7

52.8
74.7

69.1
S

M
P

-1
01(ou

rs)
9
7
.5

8
2
.7

9
0
.6

3
9
.6

48.4
6
3
.3

6
8
.7

7
5
.8

9
1
.9

6
1
.0

9
3
.4

7
9
.9

5
6
.1

9
3
.2

41.5
61.2

40.0
5
2
.9

7
6
.6

6
9
.2

86

CHAPTER 6. SPLIT-MERGE POOLING

T
ab

le
6.

7:
G

T
A

-5
-

d
e
ta

il
e
d

.
S

M
P

m
o
d

el
s

ou
tp

er
fo

rm
s

th
ei

r
co

rr
es

p
o
n

d
in

g
o
ri

g
in

a
l

m
o
d

el
s

o
n

sm
a
ll

a
n

d
th

in
o
b

je
ct

s
fo

r
G

T
A

-5
as

w
el

l.
C

om
p

ar
e

to
F

C
N

32
s

m
o
d

el
s,

ou
r

co
rr

es
p

o
n

d
in

g
S

M
P

m
o
d

el
s

im
p

ro
ve

th
e

ca
te

g
o
ri

es
po

le
b
y

m
o
re

th
a
n

2
8
%

,
tr

a
ffi

c
li

gh
t

b
y

m
or

e
th

an
23

%
,

tr
a
ffi

c
si

gn
b
y

m
or

e
th

a
n

1
0
%

,
a
n

d
pe

rs
o
n

b
y

m
o
re

th
a
n

7%
.

road

sidewalk

building

wall

fence

pole

trafficlight

trafficsign

vegetation

terrain

sky

person

rider

car

truck

bus

train

motorcycle

bicycle

Io
U

F
C

N
32

s-
R

es
18

95
.4

81
.8

87
.3

62
.9

54
.8

44
.6

45
.3

6
0
.7

7
9
.9

7
0
.0

9
3
.3

6
9
.3

6
4
.5

8
8
.3

8
3
.9

8
7
.8

8
2
.6

5
9
.8

3
8
.5

7
1
.1

F
C

N
8s

-R
es

18
96

.1
84

.6
88

.6
66

.6
5
6
.4

54
.0

52
.7

6
3
.8

8
3
.3

7
2
.5

9
4
.8

7
4
.4

7
0
.4

8
9
.5

8
0
.7

9
0
.4

8
5
.1

6
6
.5

4
0
.3

7
4
.2

S
M

P
-1

8(
ou

rs
)

9
6
.5

8
5
.6

8
9
.6

6
7
.2

55
.7

7
2
.7

6
9
.2

7
3
.6

8
8
.4

7
5
.0

9
7
.9

7
6
.8

6
7
.8

9
0
.6

8
2
.3

8
0
.8

8
6
.1

6
9
.3

4
6
.5

7
7
.5

F
C

N
32

s-
R

es
34

96
.5

85
.2

88
.0

64
.2

55
.4

46
.0

47
.7

6
3
.0

8
0
.9

7
2
.4

9
3
.5

7
0
.0

6
7
.9

8
9
.2

8
6
.2

8
5
.1

8
4
.2

6
3
.9

4
9
.5

7
3
.1

F
C

N
8s

-R
es

34
97

.0
87

.6
89

.5
68

.9
5
9
.4

55
.6

57
.2

6
8
.3

8
3
.9

7
4
.4

9
4
.9

7
6
.3

7
4
.0

9
0
.5

8
6
.8

9
0
.4

8
4
.9

6
5
.8

5
1
.3

7
6
.7

S
M

P
-3

4(
ou

rs
)

9
7
.3

8
8
.1

9
1
.4

6
9
.6

58
.3

7
4
.3

7
1
.4

7
3
.7

8
9
.1

7
7
.1

9
8
.2

8
1
.0

7
0
.5

9
2
.6

8
8
.3

8
3
.7

8
7
.6

7
3
.7

5
8
.5

8
0
.2

F
C

N
32

s-
R

es
10

1
96

.6
86

.0
89

.2
70

.4
59

.3
47

.3
50

.3
6
8
.7

8
1
.6

7
2
.6

9
3
.7

7
0
.3

6
3
.9

8
9
.6

8
8
.2

8
9
.1

7
7
.1

6
6
.2

5
8
.1

7
4
.6

F
C

N
8s

-R
es

10
1

96
.6

86
.6

89
.2

61
.7

60
.6

57
.1

59
.0

7
0
.8

8
4
.5

7
3
.9

9
5
.1

7
5
.5

6
7
.1

9
0
.0

8
8
.6

8
6
.0

8
1
.9

7
0
.6

6
2
.4

7
6
.7

S
M

P
-1

01
(o

u
rs

)
9
7
.3

8
8
.7

9
1
.7

7
1
.0

6
2
.2

7
6
.8

7
4
.9

7
8
.9

8
9
.6

7
9
.0

9
7
.8

7
9
.0

6
9
.2

9
0
.6

8
6
.0

7
1
.9

8
4
.3

6
9
.6

6
7
.8

8
0
.3

87

CHAPTER 6. SPLIT-MERGE POOLING

88

Chapter 7

Conclusion

In this thesis, we addressed several subtasks of scene understanding as follows:

• We designed a modular CNN for training and refining tasks of semantic
segmentation and depth estimation jointly. We introduced a setup for
analyzing the cross modality effect between these two tasks, and using
this analysis we found a desirable architecture design that improved both
tasks and achieved state of the art performance at the time of publication.

• We utilized the object detection and instance segmentation tasks for im-
proving the scene flow estimation and object 6D pose estimation tasks by
focusing on target objects.

• We introduced the first novel deep learning approach for object co-segmentation
and achieved state of the art performance.

• We introduced a new pooling layer Split-Merge pooling for preserving
the spatial information while increasing the receptive field. This pooling
layer can work with normal convolution layers, and its batch-based design
makes it possible to parallelize the computation of batches on multiple
GPUs.

One of the main focuses of this thesis was to study the interaction between
different subtasks of scene understanding. Jointly training multiple tasks with
the same final goal of understanding the scene is crucial and is actively being
studied recently [186, 196]. As we discussed in this thesis, it can be done either
by restricting the search-space of one task using the outcome of another one or
by sharing part of the learning parameters between multiple tasks to achieve a
consistent and efficient system.

7.1 Future work

In this section, we discuss some possible directions for further improving the
following works from this thesis:

89

CHAPTER 7. CONCLUSION

Multi task learning: In chapter 2, we designed a modular network for im-
proving two tasks of semantic segmentation and depth estimation. We analyze
different numbers of channels and different operations to fuse the features. One
possible direction for further analysis is to perform the fusion in different depths
of the networks. Another interesting future work is to consider more tasks; this
is especially interesting in applications like autonomous driving.

Instance-aware scene flow estimation: In chapter 3, we introduced a
pipeline for estimating scene flow. For performing object detection and in-
stance segmentation, we used MNC, which was the best instance segmentation
approach at the time. One direction to further improve our proposed method
is to use MaskRCNN, which is a better approach for instance segmentation.

iPose: In chapter 4, we proposed an instance-aware object 6D pose estimation
method for partially occluded objects. In this approach, we generated synthetic
training images from real samples. One way to improve the performance of our
approach is to generate a dataset by rendering the objects in a synthetic scene.
Afterwards, for removing the domain gap between real images during test and
training images, we can apply domain adaptation techniques. This could help
significantly to improve the quality of object coordinate predictions.

Another direction for improving the object coordinate estimation is to re-
design its encoder-decoder network by applying the Split-Merge pooling layers
(i.e. introduced in this thesis in chapter 6). In this case there is no need to have
a decoder since the output of the encoder has the same resolution as the input.
This can improve the object coordinate predictions by keeping all the details on
the surface of objects.

Object co-segmentation: In chapter 5, we introduced a novel deep learning
approach to address the problem of object co-segmentation. This task segments
all instances of common objects as foreground. Therefore, it is not possible to
separate different instances of common classes. One future work direction for
this work can be to extend it to an object instance co-segmentation task. As
another direction, it would be interesting to train the model in an unsupervised
manner. To this end, one may use an unsupervised clustering approach instead
of a cross-entropy loss. In this case, there is no need to use any binary mask
annotation for training categories.

Split-Merge pooling: In chapter 6, we presented the Split-Merge pooling
layer that preserves the spatial information and improves the performance of
dense prediction tasks. We applied it to basic Resnet networks for semantic
segmentation task. One future work could be to apply this pooling layer on
more advanced network architectures and see the impact of this pooling layer
with respect to accuracy and time complexity. Another suggestion for future
work is to apply it to other dense tasks such as depth estimation or instance
segmentation.

90

CHAPTER 7. CONCLUSION

Finally, the Split-Merge pooling layer is completely invertible, i.e. merge
layer is the invert operation for the split pooling layer. Therefore, this pooling
layer can be used in invertible networks and it is another interesting direction
for future work.

91

CHAPTER 7. CONCLUSION

92

Bibliography

[1] O. Hosseini Jafari, O. Groth, A. Kirillov, M. Ying Yang, and C. Rother,
“Analyzing modular cnn architectures for joint depth prediction and se-
mantic segmentation,” in ICRA, 2017.

[2] A. Behl, O. Hosseini Jafari, S. K. Mustikovela, H. Abu Alhaija, C. Rother,
and A. Geiger, “Bounding boxes, segmentations and object coordinates:
How important is recognition for 3d scene flow estimation in autonomous
driving scenarios?” in ICCV, 2017.

[3] O. Hosseini Jafari, S. K. Mustikovela, K. Pertsch, E. Brachmann, and
C. Rother, “ipose: instance-aware 6d pose estimation of partly occluded
objects,” in ACCV, 2018.

[4] W. Li, O. Hosseini Jafari, and C. Rother, “Deep object co-segmentation,”
in ACCV, 2018.

[5] O. H. Jafari and C. Rother, “Split-merge pooling,” 2020.

[6] O. Hosseini Jafari and M. Ying Yang, “Real-time rgb-d based template
matching pedestrian detection,” in ICRA, 2016.

[7] W. Li, O. Hosseini Jafari, and C. Rother, “Semantic-aware image smooth-
ing,” in VMV, 2017.

[8] W. Li, O. Hosseini Jafari, and C. Rother, “Localizing common objects
using common component activation map,” in CVPR Workshops, 2019.

[9] C. Li, A. Kowdle, A. Saxena, and T. Chen, “Toward holistic scene un-
derstanding: Feedback enabled cascaded classification models,” PAMI,
vol. 34, no. 7, pp. 1394–1408, 2012.

[10] V. Vineet, C. Rother, and P. Torr, “Higher order priors for joint intrinsic
image, objects, and attributes estimation,” in NIPS, 2013, pp. 557–565.

[11] J. T. Barron and J. Malik, “Shape, illumination, and reflectance from
shading,” PAMI, 2015.

[12] D. Marr, Vision. Freeman, 1982.

93

BIBLIOGRAPHY

[13] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from rgbd images,” in ECCV, 2012.

[14] A. Saxena, A. Ng, and S. Chung, “Learning Depth from Single Monocular
Images,” in NIPS, 2005.

[15] A. Saxena, M. Sun, and A. Y. Ng, “Make3d: Learning 3d scene structure
from a single still image,” PAMI, vol. 31, no. 5, pp. 824–840, 2009.

[16] B. Liu, S. Gould, and D. Koller, “Single image depth estimation from
predicted semantic labels,” in CVPR, 2010, pp. 1253–1260.

[17] M. Liu, M. Salzmann, and X. He, “Discrete-continuous depth estimation
from a single image,” in CVPR, 2014, pp. 716–723.

[18] C. Hane, L. Ladicky, and M. Pollefeys, “Direction matters: Depth esti-
mation with a surface normal classifier,” in CVPR, 2015.

[19] W. Zhuo, M. Salzmann, X. He, and M. Liu, “Indoor scene structure anal-
ysis for single image depth estimation,” in CVPR, 2015.

[20] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost for image
understanding: Multi-class object recognition and segmentation by jointly
modeling texture, layout, and context,” IJCV, vol. 81, no. 1, pp. 2–23,
2009.

[21] L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr, “Associative hierar-
chical random fields,” PAMI, vol. 36, no. 6, pp. 1056–1077, 2014.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–1105.

[23] N. Zhang, J. Donahue, R. B. Girshick, and T. Darrell, “Part-based r-cnns
for fine-grained category detection,” in ECCV, 2014, pp. 834–849.

[24] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik, “Learning rich features
from RGB-D images for object detection and segmentation,” in ECCV,
2014, pp. 345–360.

[25] P. Agrawal, R. B. Girshick, and J. Malik, “Analyzing the performance of
multilayer neural networks for object recognition,” in ECCV, 2014, pp.
329–344.

[26] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring
mid-level image representations using convolutional neural networks,” in
CVPR, 2014, pp. 1717–1724.

[27] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in CVPR,
2014.

94

BIBLIOGRAPHY

[28] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in CVPR, 2015.

[29] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep
neural networks,” in CVPR, 2014, pp. 1653–1660.

[30] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a single
image using a multi-scale deep network,” in NIPS, 2014, pp. 2366–2374.

[31] F. Liu, C. Shen, G. Lin, and I. Reid, “Learning depth from single monoc-
ular images using deep convolutional neural fields,” PAMI, 2016.

[32] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture,” in ICCV,
2015.

[33] P. Pinheiro and R. Collobert, “Recurrent convolutional neural networks
for scene labeling,” in ICML, 2014.

[34] M. Bleyer, C. Rother, P. Kohli, D. Scharstein, and S. Sinha, “Object
stereo - joint stereo matching and object segmentation,” in CVPR, 2011,
pp. 3081–3088.

[35] J.-Y. Guillemaut and A. Hilton, “Joint multi-layer segmentation and re-
construction for free-viewpoint video applications,” IJCV, vol. 93, no. 1,
pp. 73–100, 2011.

[36] L. Ladicky, P. Sturgess, C. Russell, S. Sengupta, Y. Bastanlar,
W. Clocksin, and P. Torr, “Joint optimization for object class segmenta-
tion and dense stereo reconstruction,” IJCV, vol. 100, no. 2, pp. 122–133,
2012.

[37] J. Yao, S. Fidler, and R. Urtasun, “Describing the scene as a whole:
Joint object detection, scene classification and semantic segmentation,”
in CVPR, 2012, pp. 702–709.

[38] Z. Zhang, A. G. Schwing, S. Fidler, and R. Urtasun, “Monocular object
instance segmentation and depth ordering with cnns,” in ICCV, 2015.

[39] L. Ladicky, J. Shi, and M. Pollefeys, “Pulling things out of perspective,”
in CVPR, 2014.

[40] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. L. Yuille, “Towards
unified depth and semantic prediction from a single image,” in CVPR,
2015.

[41] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal
deep learning,” in ICML, 2011.

[42] N. Srivastava and R. R. Salakhutdinov, “Multimodal learning with deep
boltzmann machines,” in NIPS, 2012, pp. 2222–2230.

95

BIBLIOGRAPHY

[43] S. Chandar, M. M. Khapra, H. Larochelle, and B. Ravindran, “Correla-
tional neural networks,” Neural Computation, 2015.

[44] Z. Obrenovic and D. Starcevic, “Modeling multimodal human-computer
interaction,” Computer, vol. 37, no. 9, pp. 65–72, 2004.

[45] A. Jaimes and N. Sebe, “Multimodal human-computer interaction: A
survey,” CVIU, vol. 108, no. 1-2, pp. 116–134, 2007.

[46] K. von Kriegstein, D. Ozgr, M. Grter, A.-L. Giraud, C. A. Kell, T. Grter,
A. Kleinschmidt, and S. J. Kiebel, “Simulation of talking faces in the hu-
man brain improves auditory speech recognition,” PNAS, vol. 105, no. 18,
pp. 6747–6752, 2008.

[47] S. Schall, S. J. Kiebel, B. Maess, and K. von Kriegstein, “Early auditory
sensory processing of voices is facilitated by visual mechanisms,” Neu-
roImage, vol. 77, pp. 237 – 245, 2013.

[48] H. Hotelling, “Relations between two sets of variates,” Biometrika, vol. 28,
pp. 321–377, 1936.

[49] G. Andrew, R. Arora, J. Bilmes, and K. Livescu, “Deep canonical corre-
lation analysis,” in ICML, 2013, pp. 1247–1255.

[50] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[51] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driv-
ing? The KITTI vision benchmark suite,” 2012.

[52] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,”
2015.

[53] C. Vogel, K. Schindler, and S. Roth, “3d scene flow estimation with a
piecewise rigid scene model,” vol. 115, no. 1, pp. 1–28, 2015.

[54] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via
multi-task network cascades,” 2016.

[55] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother, “Learning 6d object pose estimation using 3d object coor-
dinates,” 2014.

[56] E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold, and
C. Rother, “Uncertainty-driven 6d pose estimation of objects and scenes
from a single rgb image,” 2016.

[57] J. P. C. Valentin, M. Nießner, J. Shotton, A. W. Fitzgibbon, S. Izadi, and
P. H. S. Torr, “Exploiting uncertainty in regression forests for accurate
camera relocalization,” 2015.

96

BIBLIOGRAPHY

[58] F. Michel, A. Krull, E. Brachmann, M. Y. Yang, S. Gumhold, and
C. Rother, “Pose estimation of kinematic chain instances via object coor-
dinate regression,” 2015.

[59] J. Taylor, J. Shotton, T. Sharp, and A. W. Fitzgibbon, “The vitruvian
manifold: Inferring dense correspondences for one-shot human pose esti-
mation,” 2012.

[60] U. Franke, C. Rabe, H. Badino, and S. Gehrig, “6D-Vision: fusion of
stereo and motion for robust environment perception,” 2005.

[61] A. Wedel, C. Rabe, T. Vaudrey, T. Brox, U. Franke, and D. Cremers,
“Efficient dense scene flow from sparse or dense stereo data,” 2008.

[62] E. Herbst, X. Ren, and D. Fox, “RGB-D flow: Dense 3D motion estimation
using color and depth.” 2013.

[63] M. Hornacek, A. Fitzgibbon, and C. Rother, “SphereFlow: 6 DoF scene
flow from RGB-D pairs,” 2014.

[64] J. Quiroga, T. Brox, F. Devernay, and J. L. Crowley, “Dense semi-rigid
scene flow estimation from RGB-D images,” 2014.

[65] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade, “Three-
dimensional scene flow,” 1999.

[66] S. Vedula, P. Rander, R. Collins, and T. Kanade, “Three-dimensional
scene flow,” vol. 27, no. 3, pp. 475–480, 2005.

[67] T. Basha, Y. Moses, and N. Kiryati, “Multi-view scene flow estimation:
A view centered variational approach,” vol. 101, no. 1, pp. 6–21, 2013.

[68] F. Huguet and F. Devernay, “A variational method for scene flow estima-
tion from stereo sequences,” 2007.

[69] J.-P. Pons, R. Keriven, and O. Faugeras, “Multi-view stereo reconstruc-
tion and scene flow estimation with a global image-based matching score,”
vol. 72, no. 2, pp. 179–193, 2007.

[70] L. Valgaerts, A. Bruhn, H. Zimmer, J. Weickert, C. Stoll, and C. Theobalt,
“Joint estimation of motion, structure and geometry from stereo se-
quences,” 2010.

[71] A. Wedel, T. Brox, T. Vaudrey, C. Rabe, U. Franke, and D. Cremers,
“Stereoscopic scene flow computation for 3D motion understanding,”
vol. 95, no. 1, pp. 29–51, 2011.

[72] C. Vogel, K. Schindler, and S. Roth, “3D scene flow estimation with a
rigid motion prior,” 2011.

97

BIBLIOGRAPHY

[73] K. Yamaguchi, D. McAllester, and R. Urtasun, “Robust monocular epipo-
lar flow estimation,” 2013.

[74] K. Yamaguchi, D. McAllester, and R. Urtasun, “Efficient joint segmenta-
tion, occlusion labeling, stereo and flow estimation,” 2014.

[75] C. Vogel, K. Schindler, and S. Roth, “Piecewise rigid scene flow,” 2013.

[76] C. Vogel, S. Roth, and K. Schindler, “View-consistent 3D scene flow esti-
mation over multiple frames,” 2014.

[77] M. Menze, C. Heipke, and A. Geiger, “Joint 3d estimation of vehicles and
scene flow,” 2015.

[78] Z. Lv, C. Beall, P. Alcantarilla, F. Li, Z. Kira, and F. Dellaert, “A contin-
uous optimization approach for efficient and accurate scene flow,” 2016.

[79] F. Gney and A. Geiger, “Displets: Resolving stereo ambiguities using
object knowledge,” 2015.

[80] J. Hur and S. Roth, “Joint optical flow and temporally consistent semantic
segmentation,” 2016.

[81] L. Sevilla-Lara, D. Sun, V. Jampani, and M. J. Black, “Optical flow with
semantic segmentation and localized layers,” 2016.

[82] D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black, “A fully-
connected layered model of foreground and background flow,” 2013.

[83] M. Menze, C. Heipke, and A. Geiger, “Discrete optimization for optical
flow,” 2015.

[84] M. Bai, W. Luo, K. Kundu, and R. Urtasun, “Exploiting semantic infor-
mation and deep matching for optical flow,” 2016.

[85] A. Krull, F. Michel, E. Brachmann, S. Gumhold, S. Ihrke, and C. Rother,
“6-dof model based tracking via object coordinate regression,” 2014.

[86] L.-C. Chen, S. Fidler, A. L. Yuille, and R. Urtasun, “Beat the mturkers:
Automatic image labeling from weak 3d supervision,” 2014.

[87] M. Tatarchenko, A. Dosovitskiy, and T. Brox, “Multi-view 3d models from
single images with a convolutional network,” 2016.

[88] R. Zabih and J. Woodfill, “Non-parametric local transforms for computing
visual correspondence,” 1994.

[89] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” vol.
1607.02565, 2016.

[90] R. A. Newcombe, S. Lovegrove, and A. J. Davison, “DTAM: dense track-
ing and mapping in real-time,” 2011.

98

BIBLIOGRAPHY

[91] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: large-scale direct
monocular SLAM,” 2014.

[92] V. Kolmogorov, “Convergent tree-reweighted message passing for energy
minimization,” vol. 28, no. 10, pp. 1568–1583, 2006.

[93] N. Mayer, E. Ilg, P. Haeusser, P. Fischer, D. Cremers, A. Dosovitskiy, and
T. Brox, “A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation,” in CVPR, 2016.

[94] J. Žbontar and Y. LeCun, “Stereo matching by training a convolutional
neural network to compare image patches,” vol. 17, no. 65, pp. 1–32, 2016.

[95] M. Neoral and J. ochman, “Object scene flow with temporal consistency,”
2017.

[96] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” 2014.

[97] R. B. Girshick, “Fast R-CNN,” 2015.

[98] D. G. Lowe, “Local feature view clustering for 3D object recognition,”
CVPR, 2001.

[99] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab,
and V. Lepetit, “Multimodal templates for real-time detection of texture-
less objects in heavily cluttered scenes,” in ICCV, 2011.

[100] F. Michel, A. Kirillov, E. Brachmann, A. Krull, S. Gumhold, B. Savchyn-
skyy, and C. Rother, “Global hypothesis generation for 6D object pose
estimation,” CVPR, 2017.

[101] S. Hinterstoisser, V. Lepetit, N. Rajkumar, and K. Konolige, “Going fur-
ther with point pair features,” in ECCV, 2016.

[102] M. Rad and V. Lepetit, “BB8: A scalable, accurate, robust to partial oc-
clusion method for predicting the 3D poses of challenging objects without
using depth,” ICCV, 2017.

[103] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “SSD-6D:
Making RGB-Based 3D Detection and 6D Pose Estimation Great Again,”
in ICCV, 2017.

[104] B. Tekin, S. N. Sinha, and P. Fua, “Real Time Seamless Single Shot 6D
Object Pose Prediction,” in CVPR, 2018.

[105] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother, “Learning 6D object pose estimation using 3D object coor-
dinates,” in ECCV, 2014.

99

BIBLIOGRAPHY

[106] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C.
Berg, “SSD: single shot multibox detector,” in ECCV, 2016.

[107] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in CVPR, 2016.

[108] K. He, G. Gkioxari, P. Dollr, and R. Girshick, “Mask r-cnn,” in ICCV,
2017.

[109] E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold, and
C. Rother, “Uncertainty-driven 6D pose estimation of objects and scenes
from a single RGB image,” in CVPR, 2016.

[110] D. Huttenlocher, G. Klanderman, and W. Rucklidge, “Comparing images
using the Hausdorff distance,” IEEE Trans. on PAMI, 1993.

[111] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,
and N. Navab, “Model based training, detection and pose estimation of
texture-less 3D objects in heavily cluttered scenes,” in ACCV, 2012.

[112] R. Rios-Cabrera and T. Tuytelaars, “Discriminatively trained templates
for 3D object detection: A real time scalable approach,” in ICCV, 2013.

[113] T. Hodaň, X. Zabulis, M. Lourakis, Š. Obdržálek, and J. Matas, “Detec-
tion and fine 3D pose estimation of texture-less objects in RGB-D images,”
in IROS, 2015.

[114] W. Kehl, F. Tombari, N. Navab, S. Ilic, and V. Lepetit, “Hashmod: A
hashing method for scalable 3D object detection,” in BMVC, 2016.

[115] Y. Konishi, Y. Hanzawa, M. Kawade, and M. Hashimoto, “Fast 6D pose
estimation from a monocular image using hierarchical pose trees,” in
ECCV, 2016.

[116] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and
V. Lepetit, “Gradient response maps for real-time detection of texture-less
objects,” IEEE Trans. on PAMI, 2012.

[117] A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim, “Latent-class Hough
forests for 3D object detection and pose estimation,” in ECCV, 2014.

[118] C. Zach, A. Penate-Sanchez, and M.-T. Pham, “A dynamic programming
approach for fast and robust object pose recognition from range images,”
in CVPR, 2015.

[119] A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T. Kim, “6D ob-
ject detection and next-best-view prediction in the crowd,” in CVPR,
2016.

100

BIBLIOGRAPHY

[120] W. Kehl, F. Milletari, F. Tombari, S. Ilic, and N. Navab, “Deep learning
of local RGB-D patches for 3D object detection and 6D pose estimation,”
in ECCV, 2016.

[121] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match locally:
Efficient and robust 3D object recognition,” in CVPR, 2010.

[122] A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A convolutional net-
work for real-time 6-DoF camera relocalization,” in ICCV, 2015.

[123] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold,
and C. Rother, “DSAC-Differentiable RANSAC for camera localization,”
CVPR, 2017.

[124] A. Krull, E. Brachmann, F. Michel, M. Y. Yang, S. Gumhold, and
C. Rother, “Learning analysis-by-synthesis for 6D pose estimation in
RGB-D images,” ICCV, 2015.

[125] A. Behl, O. Hosseini Jafari, S. K. Mustikovela, H. A. Alhaija, C. Rother,
and A. Geiger, “Bounding boxes, segmentations and object coordinates:
How important is recognition for 3D scene flow estimation in autonomous
driving scenarios?” in ICCV, 2017.

[126] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for
multi-object tracking analysis,” in CVPR, 2016.

[127] H. A. Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and C. Rother,
“Augmented reality meets deep learning for car instance segmentation in
urban scenes,” in BMVC, 2017.

[128] C. Li, M. Z. Zia, Q. Tran, X. Yu, G. D. Hager, and M. Chandraker, “Deep
supervision with shape concepts for occlusion-aware 3D object parsing,”
in CVPR, 2017.

[129] W. Kabsch, “A solution for the best rotation to relate two sets of vectors,”
Acta Crystallographica, 1976.

[130] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. W. Fitzgib-
bon, “Scene coordinate regression forests for camera relocalization in
RGB-D images,” in CVPR, 2013.

[131] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution
classification for the perspective-three-point problem,” IEEE Trans. on
PAMI, 2003.

[132] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPNP: An accurate O(n)
solution to the PNP problem,” IJCV, 2009.

[133] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor segmenta-
tion and support inference from rgbd images,” in ECCV, 2012.

101

BIBLIOGRAPHY

[134] R. Girshick, “Fast R-CNN,” in ICCV, 2015.

[135] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
ICLR, 2015.

[136] C. Rother, T. Minka, A. Blake, and V. Kolmogorov, “Cosegmentation of
image pairs by histogram matching-incorporating a global constraint into
mrfs,” in CVPR, 2006.

[137] A. Kowdle, D. Batra, W.-C. Chen, and T. Chen, “imodel: Interactive
co-segmentation for object of interest 3d modeling,” in ECCV workshop,
2010.

[138] T. Shen, G. Lin, L. Liu, C. Shen, and I. Reid, “Weakly supervised semantic
segmentation based on co-segmentation,” in BMVC, 2017.

[139] S. Vicente, C. Rother, and V. Kolmogorov, “Object cosegmentation,” in
CVPR, 2011.

[140] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen, “icoseg: Interactive
co-segmentation with intelligent scribble guidance,” in CVPR, 2010.

[141] M. Rubinstein, A. Joulin, J. Kopf, and C. Liu, “Unsupervised joint object
discovery and segmentation in internet images,” in CVPR, 2013.

[142] S. Vicente, V. Kolmogorov, and C. Rother, “Cosegmentation revisited:
Models and optimization,” in ECCV, 2010.

[143] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in CVPR, 2015.

[144] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in MICCAI, 2015.

[145] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. H. S. Torr, “Conditional random fields as recurrent
neural networks,” in ICCV, 2015.

[146] N. Xu, B. Price, S. Cohen, J. Yang, and T. S. Huang, “Deep interactive
object selection,” in CVPR, 2016.

[147] R. Quan, J. Han, D. Zhang, and F. Nie, “Object co-segmentation via
graph optimized-flexible manifold ranking,” in CVPR, 2016.

[148] T. Taniai, S. N. Sinha, and Y. Sato, “Joint recovery of dense correspon-
dence and cosegmentation in two images,” in CVPR, 2016.

[149] C. Lee, W.-D. Jang, J.-Y. Sim, and C.-S. Kim, “Multiple random walkers
and their application to image cosegmentation,” in CVPR, 2015.

[150] L. Mukherjee, V. Singh, and C. R. Dyer, “Half-integrality based algo-
rithms for cosegmentation of images,” in CVPR, 2009.

102

BIBLIOGRAPHY

[151] D. S. Hochbaum and V. Singh, “An efficient algorithm for co-
segmentation,” in ICCV, 2009.

[152] Y. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal bound-
ary & region segmentation of objects in nd images,” in ICCV, 2001.

[153] A. Joulin, F. Bach, and J. Ponce, “Discriminative clustering for image
co-segmentation,” in CVPR, 2010.

[154] J. C. Rubio, J. Serrat, A. López, and N. Paragios, “Unsupervised co-
segmentation through region matching,” in CVPR, 2012.

[155] H. Fu, D. Xu, S. Lin, and J. Liu, “Object-based rgbd image co-
segmentation with mutex constraint,” in CVPR, 2015.

[156] J. Carreira and C. Sminchisescu, “Constrained parametric min-cuts for
automatic object segmentation,” in CVPR, 2010.

[157] Z. Yuan, T. Lu, and Y. Wu, “Deep-dense conditional random fields for
object co-segmentation,” in IJCAI, 2017.

[158] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” IJCV, 2013.

[159] M. D. Collins, J. Xu, L. Grady, and V. Singh, “Random walks based multi-
image segmentation: Quasiconvexity results and gpu-based solutions,” in
CVPR, 2012.

[160] X. Dong, J. Shen, L. Shao, and M.-H. Yang, “Interactive cosegmentation
using global and local energy optimization,” IEEE Transactions on Image
Processing, 2015.

[161] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for se-
mantic segmentation,” in ICCV, 2015.

[162] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convo-
lutions,” in ICLR, 2016.

[163] G. Lin, A. Milan, C. Shen, and I. Reid, “Refinenet: Multi-path refinement
networks for high-resolution semantic segmentation,” in CVPR, 2017.

[164] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in CVPR, 2017.

[165] N. Xu, B. Price, S. Cohen, J. Yang, and T. Huang, “Deep grabcut for
object selection,” in BMVC, 2017.

[166] G. Li and Y. Yu, “Deep contrast learning for salient object detection,” in
CVPR, 2016.

[167] L. Wang, L. Wang, H. Lu, P. Zhang, and X. Ruan, “Saliency detection
with recurrent fully convolutional networks,” in ECCV, 2016.

103

BIBLIOGRAPHY

[168] S. D. Jain, B. Xiong, and K. Grauman, “Pixel objectness,”
arXiv:1701.05349, 2017.

[169] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for scene segmentation,” TPAMI,
2017.

[170] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully con-
nected crfs,” in ICLR, 2015.

[171] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[172] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical
flow with convolutional networks,” in ICCV, 2015.

[173] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost: Joint
appearance, shape and context modeling for multi-class object recognition
and segmentation,” in ECCV, 2006.

[174] A. Faktor and M. Irani, “Co-segmentation by composition,” in ICCV,
2013.

[175] B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik, “Semantic
contours from inverse detectors,” in ICCV, 2011.

[176] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR, 2009.

[177] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
ICLR, 2015.

[178] F. Wang, Q. Huang, and L. J. Guibas, “Image co-segmentation via con-
sistent functional maps,” in ICCV, 2013.

[179] K. R. Jerripothula, J. Cai, and J. Yuan, “Image co-segmentation via
saliency co-fusion,” IEEE Transactions on Multimedia, 2016.

[180] X. Chen, A. Shrivastava, and A. Gupta, “Enriching visual knowledge bases
via object discovery and segmentation,” in CVPR, 2014.

[181] K. R. Jerripothula, J. Cai, F. Meng, and J. Yuan, “Automatic image
co-segmentation using geometric mean saliency,” in ICIP, 2014.

[182] M. Ranzato, F. J. Huang, Y. Boureau, and Y. LeCun, “Unsupervised
learning of invariant feature hierarchies with applications to object recog-
nition,” in CVPR, 2007.

104

BIBLIOGRAPHY

[183] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th Inter-
national Conference on Neural Information Processing Systems - Volume
1, ser. NIPS’12, 2012.

[184] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[185] D. Scherer, A. C. Müller, and S. Behnke, “Evaluation of pooling operations
in convolutional architectures for object recognition,” in ICANN, 2010, pp.
92–101.

[186] A. R. Zamir, A. Sax, W. B. Shen, L. J. Guibas, J. Malik, and S. Savarese,
“Taskonomy: Disentangling task transfer learning,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.

[187] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik, “Hypercolumns for
object segmentation and fine-grained localization,” in The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2015.

[188] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in CVPR, 2017.

[189] H. Zhao, Y. Zhang, S. Liu, J. Shi, C. C. Loy, D. Lin, and J. Jia, “PSANet:
Point-wise spatial attention network for scene parsing,” in ECCV, 2018.

[190] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Se-
mantic image segmentation with deep convolutional nets and fully con-
nected crfs,” in ICLR, 2015.

[191] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in
Computer Vision and Pattern Recognition (CVPR), 2017.

[192] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representa-
tion learning for human pose estimation,” in CVPR, 2019.

[193] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu,
M. Tan, X. Wang, W. Liu, and B. Xiao, “Deep high-resolution represen-
tation learning for visual recognition,” CoRR, vol. abs/1908.07919, 2019.

[194] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic
urban scene understanding,” in Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016.

[195] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in European Conference on Com-
puter Vision (ECCV), ser. LNCS, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds., vol. 9906. Springer International Publishing, 2016,
pp. 102–118.

105

BIBLIOGRAPHY

[196] A. Zamir, A. Sax, T. Yeo, O. Kar, N. Cheerla, R. Suri, Z. Cao, J. Malik,
and L. Guibas, “Robust learning through cross-task consistency,” arXiv,
2020.

106

	List of Tables
	List of Figures
	Introduction
	Scene Understanding
	Semantic Tasks
	Geometric Tasks

	Scene Understanding Challenges
	Contribution
	Publications
	Thesis Outline

	Analyzing Modular CNN Architectures for Joint Depth Prediction and Semantic Segmentation
	Introduction
	Related Work
	Joint Refinement Network
	Network Architecture
	JRN Variants
	JRN Training
	Quantifying the Cross-Modality Influence

	Experiments
	Experimental setup
	Comparison of Results
	Performance Cross-Modality Influence Analysis

	Discussion

	Instance-aware Scene Flow Estimation
	Introduction
	Related Work
	Method
	2D Bounding Boxes and Instances
	3D Object Coordinates
	Scene Flow Model

	Experimental Evaluation
	Effect of recognition granularity
	Results on the KITTI Benchmark
	3D object coordinates prediction

	Discussion

	iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects
	Introduction
	Related Work
	Method
	Stage 1: Instance Segmentation
	Stage 2: Object Coordinate Regression
	Stage 3: Pose Estimation
	Data Augmentation

	Experiments
	Datasets and Implementation
	Pose Estimation Accuracy
	Instance Segmentation
	Object Coordinate Estimation

	Discussion

	Deep Object Co-Segmentation
	Introduction
	Related Work
	Method
	Siamese Encoder
	Mutual Correlation
	Siamese Decoder
	Loss Function
	Group Co-Segmentation

	Experiments
	Datasets
	Implementation Details and Runtime
	Results
	Ablation Study

	Discussion

	Split-Merge Pooling
	Introduction
	Related Work
	Method
	Split-Merge Pooling
	Shrink-Expand Pooling

	Experiments
	Experimental Setup
	Implementation Details
	Cityscapes
	GTA-5
	Run-time Analysis
	Detailed Quantitative Results

	Conclusion

	Conclusion
	Future work

	Bibliography

