
DISSERTATION

submitted to the

Combined Faculty of Natural Sciences and Mathematics

of the

Ruprecht–Karls University
Heidelberg

for the degree of

Doctor of Natural Sciences

put forward by

M.Sc. Felix Zahn

born in
Mannheim, Baden-Württemberg

Heidelberg, 2020

Energy-Efficient Interconnection
Networks for High-Performance

Computing

Advisor: Professor Dr. Holger Fröning

Date of oral exam:

Abstract

In recent years, energy has become one of the most important factors for de-
signing and operating large scale computing systems. This is particularly true
in high-performance computing, where systems often consist of thousands of
nodes. Especially after the end of Dennard’s scaling, the demand for energy-
proportionality in components, where energy is depending linearly on utilization,
increases continuously. As the main contributor to the overall power consump-
tion, processors have received the main attention so far. The increasing energy
proportionality of processors, however, shifts the focus to other components such
as interconnection networks. Their share of the overall power consumption is
expected to increase to 20% or more while other components further increase
their efficiency in the near future. Hence, it is crucial to improve energy propor-
tionality in interconnection networks likewise to reduce overall power and energy
consumption. To facilitate these attempts, this work provides comprehensive
studies about energy saving in interconnection networks at different levels.

First, interconnection networks differ fundamentally from other components in
their underlying technology. To gain a deeper understanding of these differences
and to identify targets for energy savings, this work provides a detailed power
analysis of current network hardware.

Furthermore, various applications at different scales are analyzed regarding
their communication patterns and locality properties. The findings show that
communication makes up only a small fraction of the execution time and networks
are actually idling most of the time. Another observation is that point-to-point
communication often only occurs within various small subsets of all participants,
which indicates that a coordinated mapping could further decrease network
traffic.

Based on these studies, three different energy-saving policies are designed,
which all differ in their implementation and focus. Then, these policies are

v

evaluated in an event-based, power-aware network simulator. While two policies
that operate completely local at link level, enable significant energy savings
of more than 90% in most analyses, the hybrid one does not provide further
benefits despite significant additional design effort. Additionally, these studies
include network design parameters, such as transition time between different link
configurations, as well as the three most common topologies in supercomputing
systems.

The final part of this work addresses the interactions of congestion manage-
ment and energy-saving policies. Although both network management strategies
aim for different goals and use opposite approaches, they complement each other
and can increase energy efficiency in all studies as well as improve the performance
overhead as opposed to plain energy saving.

Zusammenfassung

In den letzten Jahren ist Energie zu einem der wichtigsten Faktoren für En-
twurf und Betreiben großer Rechensysteme geworden. Dies gilt insbesondere
für das Hochleistungsrechnen, wo Systeme oft aus Tausenden von einzelnen
Rechenknoten bestehen. Besonders nach dem Ende des Dennard Scaling steigt
der Bedarf an energieproportionalen Komponenten, bei denen die Energie lin-
ear von der Auslastung abhängt, kontinuierlich an. Als hauptverantwortliche
Komponente für den Gesamtstromverbrauch haben die Prozessoren bisher die
größte Aufmerksamkeit erhalten. Die zunehmende Energieproportionalität von
Prozessoren verlagert jedoch den Schwerpunkt auf andere Komponenten wie zum
Beispiel Verbindungsnetzwerke. Es wird erwartet, dass ihr Anteil am Gesamt-
stromverbrauch auf 20% oder mehr ansteigt, während andere Komponenten in
naher Zukunft ihre Effizienz weiter steigern werden. Daher ist es von entschei-
dender Bedeutung, die Energieproportionalität in Verbindungsnetzwerken zu
verbessern, um den Gesamtleistungs- und Energieverbrauch ebenfalls zu senken.
Diese Arbeit trägt zu dieser Aufgabe bei, indem sie Energieeinsparungen in
Verbindungsnetzwerken auf verschiedenen Ebenen umfassend analysiert.

Verbindungsnetzwerke unterscheiden sich in ihrer zugrunde liegenden Tech-
nologie elementar von anderen Komponenten. Um ein tieferes Verständnis dieser
Unterschiede zu gewinnen und Ziele für Energieeinsparungen zu identifizieren,
bietet diese Arbeit eine detaillierte Leistungsanalyse der aktuellen Netzwerk-
Hardware.

Darüber hinaus werden verschiedene Anwendungen unterschiedlicher
Skalierung hinsichtlich ihrer Kommunikationsmuster und Loakalitätseigen-
schaften analysiert. Die Ergebnisse zeigen, dass die Kommunikation nur einen
kleinen Bruchteil der Ausführungszeit ausmacht und die Netzwerke die meiste
Zeit tatsächlich ungenutzt bleiben. Eine weitere Beobachtung ist, dass Ende-
zu-Ende-Kommunikation oft nur innerhalb verschiedener kleiner Teilmengen

vii

aller Teilnehmer stattfindet, was darauf hindeutet, dass ein maßgeschneidertes
Zuordnen von Prozessen auf physikalische Rechenkerne die Netzwerkauslastung
weiter verringern könnte.

Auf der Grundlage dieser Studien werden drei verschiedene Energiesparstrate-
gien entworfen, die sich alle in ihrer Umsetzung und ihrem Schwerpunkt unter-
scheiden. Diese Strategien werden dann in einem ereignisbasierten Netzwerksim-
ulator mit integriertem Energiemodell evaluiert. Während zwei Strategien, die
vollständig lokal auf Linkebene arbeiten, in den meisten Analysen signifikante
Energieeinsparungen von mehr als 90% ermöglichen, bietet die hybride Strategie
trotz erheblichen zusätzlichen Designaufwands keine weiteren Vorteile. Darüber
hinaus umfassen diese Studien Netzwerkdesignparameter, wie z.B. die Transi-
tionzeit zwischen verschiedenen Linkkonfigurationen, sowie die drei häufigsten
Topologien, die genutzt werden um Supercomputer zu entwerfen.

Abschließend werden im letzten Teil der Arbeit Wechselwirkungen von Con-
gestion Management und Energiesparmaßnahmen thematisiert. Obwohl beide
Netzmanagementstrategien unterschiedliche Ziele verfolgen und entgegengesetzte
Ansätze verwenden, ergänzen sie sich gegenseitig und können die Energieeffizienz
in allen Studien erhöhen und Performanzindikatoren im Gegensatz den reinen
Energiesparstrategien verbessern.

Table of contents

1 Introduction 1

2 Background: Interconnection Networks 9
2.1 Switch Level Architecture . 11

2.1.1 Data Transmission . 11
2.1.2 Network Interface . 12
2.1.3 Links . 12
2.1.4 Switches . 14
2.1.5 Message Switching . 15

2.2 System Level Network Design 18
2.2.1 Topologies . 19
2.2.2 Routing . 24

2.3 Message Passing Interface . 29

3 Energy Proportionality in Interconnection Networks 31
3.1 Power Consumtion . 32

3.1.1 CMOS . 33
3.1.2 CML . 35

3.2 Switch Core Power . 36
3.2.1 Frequency Scaling . 37
3.2.2 Radix Scaling . 38

3.3 Link Power . 40
3.3.1 Design . 41
3.3.2 Power Scaling . 41

3.4 Optical Links . 44
3.4.1 Overview . 44
3.4.2 Limitations . 44

4 Application Analyses 47
4.1 SONAR . 48

4.1.1 Metrics . 48
4.1.2 Concept . 50

4.2 Locality and Selectivity in Exascale Proxy Miniapps 51
4.2.1 Metrics . 52
4.2.2 Methodology . 56
4.2.3 Hardware Parameters . 57
4.2.4 Results . 60

5 Simulation Tools 73
5.1 Network Simulator . 73

5.1.1 SAURON Simulator . 74
5.2 Energy-Aware Simulations . 78

5.2.1 Energy Features . 79
5.2.2 Traffic Pattern . 80

5.3 MPI Traces . 81
5.3.1 DUMPI Traces . 82
5.3.2 VEF Traces . 83

6 Energy Saving in Interconnection Networks 87
6.1 Approach . 88

6.1.1 Energy Saving Management 88
6.1.2 Power State Granularity 90

6.2 Energy Saving Policies . 92
6.2.1 On/Off . 92
6.2.2 High/Low . 96
6.2.3 Awake . 98

6.3 Evaluating Policies . 98
6.3.1 Applications . 99
6.3.2 Methodology . 101
6.3.3 Evaluation . 105

6.4 Combining Energy Saving Policies and Congestion Management 110
6.4.1 Congestion Management 111
6.4.2 Methodology . 112
6.4.3 Evaluation . 115

7 Discussion 125
7.1 Related Work . 125
7.2 Workload Analysis . 128

7.2.1 Locality and Selectivity 128
7.2.2 Topology Effects . 129
7.2.3 Network Utilization . 130

7.3 Energy Savings . 131
7.3.1 Policies . 131
7.3.2 Energy-Saving Parameters 132
7.3.3 Topologies . 133

7.4 Congestion Management . 134
7.5 Outlook . 136

8 Conclusion 139

List of figures 145

List of tables 149

References 155

1

C
h

a
p

t
e

r

Introduction

Historically, the steady increase of computational power was driven by the
decreasing size of integrated circuits and rising clock rates, described by Moore’s
law. This performance increase was facilitated by Dennard’s scaling [1], which
states that decreasing feature sizes also result in a proportional decrease in
power consumption so that the power consumption per area remains constant.
Additionally, pipelining and Instruction-Level Parallelism (ILP) ensured further
performance scaling within a single Central Processing Unit (CPU). With
mitigating clock rate growth in the 2000s, parallelism ensured further performance
scaling. At about 2005, multi-core processors began to take over from single-core
processors, which means multiple cores were integrated into one die. In order to
take advantage of these parallel cores, software engineers followed this trend by
shifting to Thread-Level Parallelism (TLP).

While Moore’s law remains still valid, Dennard’s scaling has come to an end
[2]. Hence, the number of transistor devices per chip is still increasing, but power
density for chips has reached its limit. As a result, chips have to operate within
a strict power budget. This leads to more specialized functional units on a chip,
which can efficiently perform narrower tasks. However, not all of these functional
units can operate simultaneously to ensure compliance with the power budget.
Transistors or areas on the chip that are not used because of power capping are
referred to as dark silicon. Consequently, power and energy efficiency are some
of the main drivers for the performance of today’s computing systems. Figure 1.1
depicts the trends of these different design features over time. It can be clearly

1

Introduction

seen that performance steeply rises until 2006. At the end of Dennard’s scaling
(indicated by the vertical line), the increase of clock rates ends, which finally
leads to a flattening of the performance trend.

1980 1990 2000 2010

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Dates

R
el

at
iv

e
sc

al
in

g

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●●
●

●●

●

●
●●●●●●●
●●●●●

●●●●

●●●●●●●●
●
●●●●●●

●

●

●●●
●●●●●●●
●●●●●

●●

●

●

●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●●
●

●●

●

●

●●

●●

●●

●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●● ●
●
●
●●●●●●●●●●●●●●●●●●

●●●●

●

●

●●●●

●

●●●

●

●●●
●●●●●●●
●●●●
●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●

●

●
●

●

●●●●●●●●●●●●

●●●
●●●●

●●

●

●●

●●●●
●●●●●●●●●●●

●●●●●●●●

●●●●●●●

●●

●●●●●●●●
●●

●

●

●

●

●

●●●●●●●●

●●●●●●●●

●●●●●●

●●●●●●
●●●●●●
●●

●

●●●●●●

●●●●●
●

●

●

●

●

●

●

●●●●●●●●●●

●
●
●
●●●●
●●
●

●
●
●
●

●●●●●●●

●●
●●●●●●●●
●●

●
●
●

●

●●●
●

●●●
●

●
●

●

●

●
●
●●

●
●●●●●●●●●●

●●

●●
●

●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●
●●●●●●●
●

●
●
●●

●

●●●●●●●●●●●

●●

●●

●●●●●●●●●

●●●●●●●●

●●●●●●●●●

●

●●●

●●●●
●●●●●
●●●●

●

●●●●●●

●●●●

●

●

●

●●
●●●

●
●

●

●

●

●

●
●

●

●●●●●●●●
●●●●

●●
●●
●
●●●
●●●
●●

●●

●●●●●●●●

●

●

●●●●

●

●
●

●●

●●

●

●

●

●
●

●

●●

●●●●

●●●
●●●●●●●
●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●

●
●

●●●●

●●
●●

●●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●
●●
●●

●●●●●
●●●●
●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●

●●
●●
●●
●●●
●●
●●●●●●●●●●

●●
●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●
●●

●●
●●●●●●

●●

●●●●●●●●●●
●●
●●
●●●●●●
●●●●●●●●

●

●

●

●
●●
●
●

●

●

●

●●●

●●●

●

●●●●

●
●●●●●

●●●

●
●

●
●●●●●●●●●●●

●

●
●

●
●

●

●

●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●

●

●●
●
●●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●●●
●

●
●
●
●●

●●●●

●●
●

●

●
●●●●●●

●

●
●●●●●
●●●
●

●

●●

●●

●

●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

●●
●●●●●●●●●●

●●●
●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●

●

●
●

●

●

●

●

●●●●●●●●●

●●

●●

●●●

●●●●●●●
●●●●●●●●●●●
●●●●

●●●●●●●

●

●

●●

●

●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●
●●

●

●●
●

●

●

●

●

●●●

●●●●
●●●
●

●●●●●●●●●
●●
●●●●●●●●●●●●●●●●
●●●

●
●●●

●

●

●●
●

●

●
●
●●●

●●●●

●
●
●●●

●

●

●

●●●

●

●●●●●●●●●●●●●
●

●
●
●

●●●

●

●

●●●●●●●●●●●

●
●

●

●

●●●
●●

●●
●●
●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●
●●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●●●●●
●●
●●

●●●

●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●
●
●●●

●●

●●
●●●●●●
●

●

●
●
●
●
●

●

●●●
●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●

●●

●
●
●

●

●●

●

●
●

●
●

●
●

●
●●●●●
●●

●

●

●

●

●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●

●
●
●●

●

●●
●●●
●

●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●
●●●
●●

●
●
●●●
●●

●●●●●●●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●●●●●●

●

●
●
●●●
●●

●

●
●●●

●

●

●

●

●●

●●●●

●
●

●●

●
●

●

●

●●

●●

●●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

● ●

●

●
●
●

●

●

●
●

●

●
●●●●●
●●
●●●●●●

●

●

●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●
●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●

●

●
●

●●
●

●

●●●●

●●●

●

●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●

●●

●●

●●●●●●●●●●●●●●

●

●
●●●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●

●●

●
●

●

●

●●

●

●
●●●●●●●

●●

●

●●●●

●●●●●●●

●

●
●●●●

●

●

●

●

●
●

●
●
●

●

●

●
●
●●
●●●

●
●

●

●

●

●

●

●●●●●

●

●

●

●

●●
●

●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●

●
●

●

●●●●●●
●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●
●

●●●●●
●
●

●●●●●●

●

●

●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●
●

●●●●●●●●●
●●●●
●●●●●●●
●●

●

●

●

●●●●●●●●

●●
●●
●●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●●
●

●

●

●

●

●●

●●

●
●●●●
●
●

●●●●
●

●
●

●

●
●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●
●
●●

●
●
●●●●
●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●

●●●●
●

●●●●●●●●●●●●●●
●●●

●●

●●

●

●
●●

●
●

●
●
●●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●●
●●
●●●●●●

●
●●

●

●

●●

●●

●●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●●

●●●●●●
●●

●●

●

●
●
●
●

●
●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●

●

●
●

●

●

●

●●
●●

●
●●●

●

●

●●

●

●

●
●
●

●

●●●●●●●●●●●●●●●●●●●●

●
●

●●

●
●●
●
●

●●●●●

●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●

●●●

●

●

●●
●
●
●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●

●●●●●

●●●●●
●●●●●●
●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●

●●●●●●●●●●●●●●●●●

●

●

●●●●

●
●●
●●●●●●●

●

●●●

●●

●

●

●

●

●
●

●

●

●●●●

●

●●

●
●
●
●●
●

●
●●
●●●●
●
●
●
●●

●

●●●●●●●●

●

●●●●●
●

●
●

●
●

●●●●

●

●●

●
●
●●

●
●

●●
●
●●●

●
●●●
●●

●

●

●

●

●

●

●
●
●●●●
●
●●●

●

●
●
●

●●●
●
●
●●●●●
●

●●

●

●

●

●
●
●

●

●

Transistors
Clock
Power
Performance
Performance/W

End of Dennard scaling

Fig. 1.1 Technology scaling trends for various features.

Beyond specialized on-chip functional units and the increase of the number
of cores per die, parallelization also includes the introduction of accelerators.
The most common example for such an accelerator is a Graphics Processing
Unit (GPU), which are highly parallel vector processors.

The growing number of parallel units in one system raises the demand for
communication and data exchange between them. At the node level, different
cores or functional units use an on-chip network (communication between parallel
cores) or system networks, such as NVLink or Peripheral Component Intercon-
nect Express (PCIe), (communication with accelerating units) to communicate
and transfer data. Communication between distinguished nodes, however, is
performed on interconnection networks. Furthermore, multiple nodes are clus-
tered together to meet the demand for more computational power by further
increasing the parallelism of a system. Hence, the performance requirements for
these networks are rather challenging.

2

High-Performance Computing

High-Performance Computing (HPC) describes systems that are designed for
maximal computing performance using cutting edge technology. It takes up a
predestined position in the field of computational science and is mostly performed
on a supercomputer. The prime targets of these systems are often compute-
intensive, scientific workloads. These applications cover a wide range of different
scientific applications, including weather forecasts, physical simulations, molecular
modeling, nuclear research, quantum mechanics, and artificial intelligence.

Great efforts are made to meet the increasing demand for higher computational
power of these compute-intensive applications, and promising new hardware and
concepts are often tested in these systems. Hence, HPC is playing a pioneering
role in the area of computational performance and is possibly affecting almost all
other kinds of computing systems. HPC systems were the first to rely extensively
on parallelization and were also heavily affected by the end of Dennard’s scaling.
While further performance scaling is now rather based on additional hardware
accelerators, power supply, and heat dissipation remain the main challenges of
high-performance computing at both chip- and system-level.

Adding specialized acceleration units affects the system’s overall power con-
sumption. Not only do these added components contribute through their re-
spective power consumption but they also increase the need for additional data
movements. This trend becomes even more important with the increasing number
of compute nodes in HPC systems. Hence, the growing demand for more and
more computing power also leads to special requirements on the interconnection
network, such as high bandwidth and low latency. The continuing optimization
of hardware and network protocols lead to highly specialized networks, which
differ from general-purpose networks. For example, networks in HPC systems
are commonly lossless. This means, that the network guarantees that no packets
are dropped on their way from sender to receiver, which can be exploited to
reduce performance overhead in the network protocols significantly.

The next milestone for HPC to be taken in the near future is a system that
enables exascale computing (1018 FLOP/s). Although computational power can
be easily increased by adding more parallel units, the main challenge remains
to build such a system at reasonable acquisition and operational costs. The US
Department of Energy (DoE) has set the goal to design such a system within

3

Introduction

a power budget of 20 MW1. Hence, energy-efficiency is one of the main design
goals in new HPC systems.

Energy Proportionality

Operating an exascale system with current technologies and a strict power budget
becomes even more challenging due to the lack of energy proportional hardware
components. The concept of energy proportionality, which was first introduced
by Barroso et al. [3], means that the power consumption of each component
should be proportional to its utilization. For instance, if a CPU is working half
the time and idling for the other half, the effective energy consumption of a
perfect energy-proportional CPU would also be halved.

This approach originates from data centers and cloud installations, which
usually operate at low utilization but are designed to handle peak loads. Although
HPC installations commonly operate at higher utilization, not all components
are evenly utilized. While great efforts have been made to increase energy-
proportionality in processing units as the main contributors to the overall power
consumption, other components rather operate constantly at peak power. As
a result, the remaining components increase their impact on the overall power
consumption, although their contribution is rather low at Thermal Design Power
(TDP). This effects particularly interconnection networks, which are expected
to become one of the main power-consuming components as the development
of energy-proportional processing units progresses. Multiple analyses show that
their share of the overall power consumption will increase in the near future to
up to 30% [4], [5]. Furthermore, the 2015 International Technology Roadmap for
Semiconductors (ITRS) report predicts that soon data center power consumed
by networking and switching will exceed the aggregated power consumed by
storage and cooling [6].

The situation is further complicated by the fact that well-established power
saving mechanisms from other components cannot be simply adopted due to
fundamental design differences. In contrast to most other CMOS-based com-
ponents, interconnection networks heavily rely on Current Mode Logic (CML),
which enables higher frequencies and stronger drivers at a given power budget.

1https://science.osti.gov/-/media/ascr/ascac/pdf/reports/Exascale_
subcommittee_report.pdf , accessed: 2020-02-05

4

https://science.osti.gov/-/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf
https://science.osti.gov/-/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf

As its name suggests, CML relies on a static current which makes its power
consumption robust against frequency scaling. To gain further insights about the
power consumption of interconnection networks and which energy-saving mecha-
nisms are suitable are analyzed in Chapter 3. These energy-saving capabilities
are also affected by the applications running on these systems. Generally, HPC
applications tend to utilize system resources much more in opposed to common
cloud workloads. However, our studies in Chapter 4 show that HPC workloads
are also suitable for energy savings, particularly in interconnection networks.
These analyses demonstrate that there is no perfect overlap of computation
and data movements in a huge variance of different HPC and exascale proxy
applications [7], [8].

Although few related works aim to tackle these problems, they rather focus
on optimizations of particular settings. This includes a given interconnect
technology/provider, such as Energy-Efficient Ethernet (EEE) [9] or Mellanox’
InfiniBand [10], or single topologies, in particular fat trees [11]. None of these
works study the interactions with other network management strategies, for
example, congestion management.

To draw a comprehensive picture of energy-saving in the interconnection
network, this work follows a technology-independent approach, which is evaluated
in a variety of different scenarios. In Chapter 6, three simple energy-saving
policies are introduced, which reflect different trade-offs between performance
and aggressiveness in energy-saving [12], [13]. To evaluate these policies, they
are tested in a cycle-accurate simulator in different settings, including multiple
topologies, applications, and scales. While using a simulator enables technology-
independent testing of policies, the parameter set is derived from different kinds
of real-world network technologies and is inside the scope of what is technically
feasible. Overall, all configurations show high capabilities for energy saving and
the introduced policies are able to reduce link energy by 92.7% on average by
only increasing the execution time by an average of 5.7%. However, there are
also few configurations that seem not to be suitable for energy saving. Although
energy can still be saved their execution time is significantly increased.

Building on top of these first studies, the interaction of the power-saving
policies with congestion management is investigated in Section 6.4. The main
challenge for a possible synergy is that they are pursuing fundamentally different
goals. While energy-saving policies benefit from few traffic flows that highly

5

Introduction

utilize links, congestion management aims for evenly split traffic flows over the
entire network. Despite the combination of both has not been studied before,
they both seem to complement each other and work well together [14].

Contributions

This work makes the following major contributions:

1. Network power analyses - a detailed analysis of various components of a
modern interconnection network is performed. The different components
of a switch fabric are studied at different scales, and the main contributors
to the overall power consumption are identified. As a result, sweet spots
for energy saving in the design and possible power-saving approaches are
identified. The insights of this analysis are elaborated in Chapter 3.

2. Application analyses to identify energy-saving capabilities - a large variety of
different communication patterns of exascale proxy applications is studied
regarding their suitability for energy saving. Especially sparse communica-
tion and long computation phases are highly suitable since these patterns
cause long idling periods in the network. Furthermore, new metrics are
introduced to indicate locality in these patterns, which can be exploited to
further reduce network traffic. Details are found in Chapter 4.

3. Energy-aware discrete event-based simulation of interconnection networks -
an existing OMNeT++-based, cycle-accurate simulator is extended with
energy features. These include the power consumption of all major com-
ponents according to their particular configuration, which enables the
introduction of discrete power states. These power states are used for
energy measurements as well as comprehensive energy and power state
analyses. More details are provided in Chapter 5.

4. Introduction of energy-saving policies - based on the previous analyses,
different energy-saving policies are introduced. These policies, which fo-
cus either on aggressive power saving or better performance, are easy to
implement and show promising results regarding their energy-saving capa-
bilities. Thereby, a decentralized approach is used to reduce management
overhead. Furthermore, their interference with congestion management,

6

another traffic flow management system, is investigated. While congestion
management is essential for HPC interconnection networks, both techniques
follow contrary approaches and present a potential for conflicts. These
studies are presented in Chapter 6.

Dissertation Outline

The remainder of this work is structured as follows:

• Chapter 2 provides an overview of the structure of interconnection networks.
This includes the hardware architecture of common switches, switching
and routing schemes, as well as a brief introduction into message passing.

• Chapter 3 provides a power analysis of different components inside a
switch fabric. Based on these insights and considering underlying design
technologies, the best approaches for energy savings are identified.

• In Chapter 4, a wide range of HPC applications is analyzed regarding their
energy-saving opportunities. The selected applications are based on the
DoE’s exascale mini-applications, representing a wide range of common
workloads and communication patterns.

• Chapter 5 provides an overview of the methodology and tools that are used
to determine the energy consumption and savings of different approaches.
The majority of the energy studies are based on a network simulator that is
capable of replaying Message Passing Interface (MPI) traces or generating
synthetic traffic patterns.

• In Chapter 6 three different energy-saving policies are introduced and
analyzed regarding their energy-saving potential and impact on the overall
performance on exemplary HPC applications. Also, the interaction of these
policies with often-used congestion management strategies is studied on
synthetic traffic patterns.

• Chapter 7 provides an overview of related works and discusses the findings
of the previous chapters. Finally, a brief outlook about future research
directions is given.

• Chapter 8 summarizes and concludes this work.

7

Introduction

Publications

This section provides the works in context of this dissertation that have been
published in international conferences and journals with peer review.

• F. Zahn, P. Yebenes, S. Lammel, P. J. Garcia, and H. Fröning, “Analyzing
the energy (dis-) proportionality of scalable interconnection networks,” in
2nd IEEE International Workshop on High-Performance Interconnection
Networks in the Exascale and Big-Data Era (HiPINEB), 2016, pp. 25–32.

• S. Lammel, F. Zahn, and H. Fröning, “Sonar: Automated communication
characterization for hpc applications,” in High Performance Computing, M.
Taufer, B. Mohr, and J. M. Kunkel, Eds., Cham: Springer International
Publishing, 2016, pp. 98–114

• F. Zahn, S. Lammel, and H. Fröning, “Early experiences with saving energy
in direct interconnection networks,” in IEEE 3rd International Workshop on
High-Performance Interconnection Networks in the Exascale and Big-Data
Era (HiPINEB), Feb. 2017, pp. 33–40.

• F. Zahn, A. Schäffer, and H. Fröning, “Evaluating energy-saving strategies
on torus, k-ary n-tree, and dragonfly,” in IEEE 4th International Workshop
on High-Performance Interconnection Networks in the Exascale and Big-
Data Era (HiPINEB), Feb. 2018, pp. 16–23.

• F. Zahn, S. Lammel, and H. Fröning, “On link width scaling for energy-
proportional direct interconnection networks,” Concurrency and Computa-
tion: Practice and Experience, vol. 31, no. 2, e4439, 2019.

• F. Zahn, P. Yebenes, J. Escudero-Sahuquillo, P. J. Garcia, and H. Frön-
ing, “Effects of congestion management on energy saving techniques in
interconnection networks,” in International Workshop of High-Perfomance
Interconnection Networks in the Exascale and Big-Data Era (HiPNEB),
Feb. 2019, pp. 9–16.

• F. Zahn and H. Fröning, “On network locality in mpi-based hpc appli-
cations,” in 49th International Conference on Parallel Processing - ICPP
(ICPP ’20), Edmonton, AB, Canada: ACM, New York, NY, USA, Aug.
2020, p. 11.

8

2

C
h

a
p

t
e

r

Background: Interconnection Networks

With the increasing size of parallel systems, the importance of networks increases
likewise. Thereby, networks are used for various connection purposes, ranging
from small distance connections between functional units up to long distances,
spanning the world wide web. This wide range of networks can be clustered into
four major groups of networks [15]:

1. Network on Chip (NoC): They are used to connect multiple functional units
of a System on Chip (SoC), such as processor cores, caches, or register files.
Although their connection distances are limited to the order of centimeters,
they provide multiple advantages over traditional buses, such as increased
energy efficiency, better scaling, or support for asynchronous clock domains.

2. System Area Networks (SAN): This type of network is usually used to
connect multiple processors or processor to memory in multicomputer
systems. These networks can include several thousands of such devices
and are usually used in the context of data centers or supercomputers.
Since these systems have to meet ambitious performance requirements and
computation tended to be a bottleneck, customized hardware is often used
in the context of these systems [16], such as the Infiniband standard [17]
or Intel’s Omnipath [18].

3. Local Area Network (LAN): LANs are designed to cover small geographical
areas, reaching from buildings over few adjacent buildings up to campus

9

Background: Interconnection Networks

Node

PU

NIC

Memory

Node

PU

NIC

Memory

Node

PU

NIC

Memory...

Interconnection Network

Fig. 2.1 Design scheme for parallel SAN systems.

areas [19]. Most commonly, Ethernet is used to connect autonomous
computing systems in this type of network [15].

4. Wide Area Network (WAN): WANs are distributed over large geographical
areas, which scale up to thousands of kilometers, and can include many
millions of computers. Because of the large distances and amount of trans-
ferred data, today’s WANs are usually composed of fast optical connections.
The Internet WAN is probably the most prominent representative of this
network class.

There are no sharp lines between these types of networks and some examples
are overlapping two types. However, interconnection networks in HPC systems
are generally located in the area of SANs.

Figure 2.1 depicts the schematic set-up a parallel HPC system. These systems
consist of a variety of nodes that are equipped with one or more processing and
memory units. Additionally, every node has an interface, which is called Network
Interface Controller (NIC), that enables communication via the interconnection
network with other nodes. Although Uniform Memory Architecture (UMA)
shared-memory systems, in which the network connects several processing units
with external memory, are also representatives of SANs, they do not scale well
and are limited to rather small systems. Therefore, these studies focus on
large-scale, distributed shared-memory systems equipped with specialized custom
interconnection networks.

10

2.1 Switch Level Architecture

2.1 Switch Level Architecture

Transferring data on the network requires interactions of multiple protocols,
software stacks, and different hardware components. To enable a better under-
standing of these processes the Open Systems Interconnection (OSI) project
developed a model that describes networks as a series of layers. These layers ease
the understanding of processes in the network and responsibilities of particular
units or protocols. The focus on this section is on different designs and processes
in the two lowest layers, the link and physical one.

2.1.1 Data Transmission

When data is exchanged between network clients (processors or memory), they
communicate in units of messages [20]. These messages are created in the
application layer (layer 7) and contain additional metadata, such as memory
addresses and receiver information, and the actual data that a client wants to
transfer. These messages do not limit the amount of data that can be sent and
can have an arbitrary length. Since the physical interface demands for a uniform
format, the messages are further processed in the NIC. Regarding the OSI model,
this takes place in the transport layer (layer 4).

Here, the messages are partitioned into packets. These packets start with a
specified header format, which contains information about the sender, receiver,
length, and other data that is required by the routing unit, followed by a payload
with the actual data or parts of it. Packets end with a tail, that includes an
error-detection check, such as Cyclic Redundancy Check (CRC). Although
payload length in today’s interconnection networks can have a volatile length,
their maximum is often limited to a few megabytes. If the message length exceeds
the maximum payload length, the message is split up into the resulting number
of packets.

In layer 3, the network layer, addresses are handled, routing information
is added, and generally routing decisions are made. The lowest layers, (link
and physical layer) are responsible for the actual data transmission and error
detection and recovery [19]. In this layer, packets are split again into smaller parts
for performance reasons. First, they are divided into Flow Control Unit (FLIT)
frames. These units are determined by the flow control and buffer structures. In

11

Background: Interconnection Networks

the physical layer, FLITs can further be sliced into Physcial Units (PHIT) which
corresponds to the physical width of a link [21]. However, data transmission in
the context of this work is observed at packet granularity, since it focuses on the
network layer. At the receiving side, each message is reversely processed in the
opposite order of all layers.

2.1.2 Network Interface

The NIC is the host interface that connects a node to the interconnection network
to source and sinks packets. One the host side, the NIC is directly connected
to the internal bus of the host node and on the network side either to a switch
or another NIC. Since the NIC has to handle this two-way traffic, its particular
architecture is highly dependent on the network and the host [22].

Essentially, the NIC contains an embedded processor to format packets, which
includes splitting up messages and creating a header with all necessary routing
and control information, and perform end-to-end error checks [23]. Furthermore,
it may be equipped with substantial input and output buffer compared to
switches.

2.1.3 Links

Links or channels are physical connections between two network entities. They
are either composed of one or more electrical wires or optical fiber and connectors
at both ends [23]. Although a wide range of different standards and designs exist,
they all share the same purpose of transmitting analog signals from a sender to
the receiver, where the original digital data stream is obtained. Links can be
either uni- or bidirectional. In HPC systems bidirectional links are widely used
and, therefore, all links are assumed to be bidirectional in the context of this
work.

Links can vary in length, clocking scheme, and width [23]. Electrical links
are capable of transmitting data over distances of up to about 100m [24], but
since the RC delay in wires increases square of the length, longer cable length
demand for stronger, more power-consuming drivers [23]. Additionally, losses
due to skin effect, dielectric losses, etc. in these cable increase with cable length,
whereas losses in optical fibers are rather small. However, the optical cable
requires connectors to transform the digital electrical data stream to an optical

12

2.1 Switch Level Architecture

signal. Clocking in the interconnection link can either be synchronous and
asynchronous. While asynchronous links obtain a simpler design and interface,
they result in lower frequencies and produce significant power overhead to
achieve specific bandwidths [25]. Therefore, asynchronous links are not suitable
for HPC systems. Synchronous links, however, require constant clock recovery,
for example via Phase-Locked Loop (PLL) and Clock and Data Recovery (CDR).
As a consequence, synchronous links are sending idle pattern when no data is
transmitted to ensure word alignment. The width of links is determined by the
number of parallel wires or lanes inside one link. Although increasing the number
of lanes is a sophisticated way to improve bandwidth at a given frequency, only
limited scaling is possible. The two main restrictions that limit the link width
are crosstalk inside the cable and a more important pin count limitation due to
the spatial extent of the backplane [15].

This limit of link width also drives the need for serialization and deserialization
(ser/des) technology at both ends of the links. On the transmitting side (TX),
the parallel data stream that arrives at the NIC is usually wider than the link.
Hence, this data stream needs to be serialized according to the link width. Since
transmission on the interconnection network aims to at least provide the same
bandwidth as internal data paths, the transmitting frequency has to be higher by
the same factor as the ratio between the bus and link widths. On the receiving
side (RX), this faster serial analog data stream is checked for correctness and
deserialized back to a parallel data stream.

Operating data streams at different frequencies also requires buffers to store
data that cannot be processed immediately. These buffers can be designed in
different ways. Typically, links are equipped with either input or output buffers,
or both. Output buffered links have the advantage of head of line blocking
prevention, which is explained more detailed in chapter 6, since all packets obtain
the same status. However, all incoming packets have to be directly processed
and stored in the respective output buffer. This requires an internal speedup of
switches of the same factor as there are parallel lanes inside one link. Therefore,
this very expensive solution is rarely implemented in lossless networks [15]. In
the following, the part of the NIC or switch, which contains the ser/des and
buffers for one link, is referred to as linkport.

13

Background: Interconnection Networks

2.1.4 Switches

Switches are network entities with a set of input ports, output ports, and an
internal crossbar that connects every input to every output port [23]. Additionally,
a switch is equipped with control units, such as an arbiter or routing unit.
Figure 2.2 depicts the scheme of an exemplary switch, introducing all relevant
components. On the left side, there are input ports (RX), including input buffers,
and on the right side the output ports (TX) along with output buffers. As
previously mentioned, the actual buffer structure may include input or output
buffer, or a combination of both, depending on the network implementation.
Note that for bidirectional links the input and output ports are located in the
same physical linkport. For most switches applies that the number of input
ports equals the number of output ports and this number is referred to as
the switch’s radix or degree. The core of the switch is the crossbar and the
corresponding control units. A n×m crossbar connects n inputs to m outputs
without intermediate stages [20]. By definition, each output must be connected
to at most one input port, which has to be ensured by the control unit, namely
arbiter, and routing unit. The former schedules the order in which packets are
processed and forwarded. The latter makes the routing decision for each packet,
for example, based on routing tables, and configures the crossbar in a way that
the input port of the current packet connects to the right output port. When
the packet has passed the crossbar, the arbiter selects the next packet and the
routing unit configures the crossbar accordingly to the new routing information.
The complexity of these control units depends on the routing and scheduling
algorithm [23].

Although crossbars are non-blocking, they are not suitable for larger networks
due to their poor scalability [20]. Not only do costs increase as n2 for an n×n

crossbar but also the pin count limitation and scheduling problems become
prohibitive. These scaling issues affect the performance of high-radix switches so
that low diameter switched provide lower latencies, fewer contention, and higher
throughput at the same bisection bandwidth [26]. Therefore, modern high-radix
switches are internally composed of multiple smaller crossbars that are connected
in a hierarchical pattern, which improves latency significantly and reduces area
by almost half [27].

14

2.1 Switch Level Architecture

Crossbar

Control unit (Scheduling & Routing)

Input
buffer

Output
buffer TXRXInput

ports
Output
ports

Fig. 2.2 Switch blueprint with essential components.

2.1.5 Message Switching

The last major domain of the link and data layer, and already interfering
with the network layer, is message or packet switching. This includes the
switching techniques that are implemented in the network and different flow
control mechanisms [16]. However, this does not include routing decisions or
network paths but message processing inside the switch or the network in general.

Message Switching Techniques

The message switching policy controls how packets are routed inside a switch, e.g.
the procedure that happens between the arrival of a packet at the input port and
the departure of the same packet at the output port. The time between these two
events is referred to as routing delay and is mainly driven by the time it takes
to process routing information and set up the internal logic [16]. Depending on
various factors, such as application types, vendors, or timing constraints, multiple
different message switching techniques exist.

The first and one of the simplest message switching techniques is circuit
switching [20]. In this approach, two nodes establish a permanent physical link
between them, which is reserved exclusively for communication of this node pair.
In the beginning, the source node sends a header packet to the destination, which
establishes the path along with all switches in between. Once this header packet
arrives at the destination node, this node acknowledges the source node that the
path is set up. After the path is established all data can be transmitted directly

15

Background: Interconnection Networks

to the destination node and it sinks there. At the end of the data stream, a footer
indicates the end of the message, and the path is released along the way. Circuit
switching is especially sufficient for application with sparse communication and
long messages. Note that networks that rely on circuit switching require almost
no buffers since they only have to store other header packets, and no flow control.
However, this is not feasible for most systems, since these established paths
prohibit other network flows that are sharing the same resources. Additionally,
long set up times cause a significant overhead for smaller messages. The impact
of this overhead decreases with increasing message size.

Packet switching [16] refines the idea of circuit switching. Instead of sending all
data at once, messages are split up into packets of a pre-defined maximum length.
Each packet is equipped with its header and can be transmitted independently. In
the simplest version, each packet is stored entirely in each intermediate network
node or switch, before it is forwarded to the next node (store and forward).
This technique is much more suitable for frequent smaller messages since only
segments (e.g. single links) are occupied by a single packet, which enables more
simultaneous traffic flows in the networks. But this also increases the overhead.
The amount of data that is transferred on the network increases, since each packet
got its header instead of one header per message. Furthermore, the routing delay
might increase since each packet is routed individually, and also the demand for
buffers increases, since packets have to be stored entirely after each hop.

In order to tackle some of these disadvantages, virtual cut-through switching
[16] was introduced. This technique is also based on packet switching but
represents an alternative to the store and forward approach. In the store and
forward approach, a packet is stored completely before it is routed to the next
node. That implies that the header, which arrives first, is first evaluated when
the tail of the packet is stored in the buffer. Virtual cut-through switching aims
to minimize this delay. In this technique, the header is evaluated instantly when
it arrives and, consequently, routing decisions and configurations can be made
simultaneously the arrival of the residual packet. Hence, the header might leave
the switch, before the packet is stored completely, and the remaining parts are
just routed the same way. This effective pipelining of packets does not only
reduce the routing delay inside each switch but also dispense the need for output
buffers since packets can be routed right away. If there is heavy traffic on the
network and packets have to wait before the can be forwarded to the next node,

16

2.1 Switch Level Architecture

the header is blocked and the packet drops back to the packet switching case,
where the packet is stored completely in the input buffer.

The last message switching technique in the context of this work is wormhole
switching [16]. This technique is similar to virtual cut-through switching but
aims to reduce buffer requirements. Packet switching and virtual cut-through
switching require large buffer sizes to temporarily store packets in the worst
case when the network is highly utilized. Therefore, the wormhole switching
technique further splits packets up in smaller pieces (FLIT). The size of a FLIT
is determined by the flow control and buffers are usually dimensioned to store
a few FLITs simultaneously. This scheme basically increases the number of
pipeline stages by potentially spreading a single packet over multiple switches
and buffers, respectively. While on low traffic virtual cut-through and wormhole
switching are very similar, they behave significantly differently on higher loads.
The smaller transfer units decrease the probability of blocking other traffic flows.
Thus, wormhole switching significantly reduces average message latency and
buffer requirements [16].

Flow Control

The flow control mechanism manages the available resources in a network, such
as buffer capacities, bandwidth, or control states [20]. To avoid high latencies
caused by dropped packets, HPC interconnection networks are usually lossless.
This means, that packets are not dropped by the network and the receiver does
not have to acknowledge the reception of the packet. Especially in lossless HPC
networks, a good flow-control is crucial to avoid the losses of packets due to
overflowing buffers on the one hand and ensuring efficient utilization of available
network resources on the other hand.

The most basic flow control mechanisms are bufferless [20]. This means that
packets are not stored if a certain resource is not available but either routed
differently or simply dropped. While this is easy to implement and they are not
sufficient for lossless networks. The majority of flow control schemes are buffered
and rely on some version of a request/acknowledgment protocol.

The simplest implantation of buffered flow control is a link-level handshake
[23]. Here, the source sends a request to the destination, when a FLIT is ready
to be sent. Then, the destination acknowledges the receipt of this flit and the
sender can request a link for the next FLIT. More sophisticated flow control

17

Background: Interconnection Networks

schemes aim to reduce synchronization overhead. The most commonly used
approaches are Xon/Xoff (Stop&Go) and credit-based flow controls [15]. The
former assumes low buffer levels at the receiver and sends packets whenever they
reach the linkport. When the buffers on the receiving side obtain high occupancy
levels, the receiver notifies the sender with a stop message and a go message,
respectively, when the buffer occupancy has decreased. These notifications are
usually either transmitted on additional control wires or encoded in control
packets [15]. In a credit-based flow control, the sender obtains a credit count that
represents the number of FLITs that can be stored in the destination’s input
buffer [20]. Then, the flow control is throttling network traffic injection when
the buffer on the receiving side fill up [15]. To keep track of the buffer levels at
the receiving side, the credit counter is reduced every time a FLIT is sent. If
the counter reaches zero, this means the input buffer on the receiving side is full
and the sender stalls until new credits are available. On the receiving side, the
destination sends a credit back, when a FLIT is further processed and its buffer
space is freed.

Both techniques are used in modern interconnection networks, depending on
the purpose, vendor, etc. Credit-based flow controls usually cause more overhead
than a Xon/Xoff, since every processed FLIT causes a credit message, where
the latter only needs notifications at high buffer occupancy levels. However,
Xon/Xoff requires more than the double buffer size compared to credit-based
systems because they need enough buffer size to prevent overflows before the stop
notification arrives at the sender side [15]. Since the sender stops sending when
it runs out of credits, overflows are impossible with credit-based flow controls.
Generally, both techniques can only provide full link bandwidth, when the buffers
are well-dimensioned for the distance between the source and destination [15].

2.2 System Level Network Design

Besides the technical features of switches and channels, which are part of layers
one and two in the OSI model, the second main domain corresponds to layer
three, the network layer. This includes the physical layout, e.g. the pattern in
which single compute nodes are connected, and routing of the interconnection
network.

18

2.2 System Level Network Design

2.2.1 Topologies

The topology describes the layout in which compute nodes are connected. For-
mally, they are described by a graph G(N,C) with a set of nodes (compute
nodes or switches) N and a set of links that connects graph nodes [16]. Multiple
features are used to characterize topologies [16], including:

• Node degree: it is a measure for direct topology, which describes the number
of directly connected neighbor nodes.

• Diameter: is defined by the maximum shortest path in the network.

• Regularity: indicates whether all nodes have the same degree or not.

• Symmetry: describes if the network looks the same from every node’s
perspective.

• Bisection bandwidth: The minimum bandwidth that is achieved when
dividing the network into two halves.

The layout also impacts significantly a network’s performance in terms of latency
and bandwidth as well as costs in terms of hardware expenses, cooling, and
spatial design.

While there are plenty of different topologies for general-purpose networks,
HPC systems consist of thousands of nodes and require additionally good scala-
bility. In general, three different classes of topologies are distinguished. In direct
topologies, each NIC has an integrated switch [20]. This limits the switch radix
due to spatial reasons but reduces latency for network accesses. The group of
indirect topologies, in which nodes are always connected through external switch-
ing devices, is further divided into two classes: hierarchical and non-hierarchical
indirect topologies. Hierarchical networks are composed of discrete layers, where
each distinct layer is designed with individual functions to accomplish its purpose.
A non-hierarchical indirect topology can often be described as Multistage Inter-
connection Networks (MIN). In order to overcome the crossbar scaling problem,
MINs are used by organizing smaller switches in multiple stages in a way that
connectivity between every source/destination pair is ensured [15].

To cover all of these classes, one representative each is used in the following
studies.

19

Background: Interconnection Networks

3D Torus

In the context of network topologies, tori exist in multiple dimensionalities. A
torus refers to a grid, which is equipped with wraparound links at the edge of
every dimension. Hence, a torus forms a ring in every dimension, which halves
the diameter by two compared to a regular grid. In off-chip networks, the most
common one is the 3D torus, which corresponds to an enhanced mesh and is
usually designed as direct topology. Figure 2.3 depicts a 2x2x2 torus with the
characteristic wrap-around links in every dimension.

Fig. 2.3 Example 2x2x2 3D torus topology.

This regular and symmetric topology provides multiple advantages. First, as
in all direct topologies, is the integration of the switch inside the NIC reduces
the latency. This layout is only feasible because each node is only connected
to its small set of neighbors. The switch radix that can be integrated into the
NIC is limited by the dimensions of the slot in the backplane. However, this
modular design enables good scalability and easily allows for expansions with
additional nodes without the need to fully reconfigure the entire system. In
terms of hardware costs, the neighbor-based connection pattern allows the torus
to get along with a relatively large amount of short and cheaper electrical cables
up to a certain scale. On the downside, this design results in a fast increasing
diameter and the comparatively low bisection bandwidth. Table 2.1 compares
the basic aspects of the other topologies used in context if this work.

20

2.2 System Level Network Design

3D Torus Fat Tree Dragonfly
Diameter x+y + z 2(logk/2 N) 3 or 5
Regularity + + +
Symmetry + - -

of switches N N/k × (2 logk/2 N −1) N/p

of links 3N N(logk/2 N) N(a+h
2p +1)

Table 2.1 Properties of the studied topologies. N indicates the total number of
end nodes, k the switch radix, and x,y,z, the number of nodes per dimension in
the torus. The parameter a,p,andh are design parameters of the Dragonfly and
are described further in the respective section.

Fat Tree

The next studied topology is tree-based and, therefore, a representative of non-
hierarchical indirect topologies. For a small set of end nodes, it is sufficient
to connect these nodes through only one switch. However, as the number of
nodes increases, the crossbar scaling problem prohibits a further switch radix
scaling. MINs provide a solution to this problem. They consist of multiple
smaller switches that are connected in specific patterns to emulate larger radices.
Generally, tree-based graphs are suitable patterns for MINs, and form a subset
of these. However, some designs are more suitable than others. For instance,
a regular binary tree provides very poor bisection bandwidth since the root
becomes the bottleneck for most of the traffic.

A tree-based topology that aims to tackle this disadvantage is the fat tree,
which provides the same bisection bandwidth at every stage [28]. To achieve this,
the branches become thicker at the same scale as there are leaves connected to a
switch. An exemplary configuration of eight nodes is illustrated in Figure 2.4.
However, this is only a schematic depiction, as fixed switch radices require a
more advanced connection pattern.

Formally, to remain a constant bandwidth at all stages, the switch ports
(k) for each vertex at stage i grow by ki, except for the root stage, which is
only equipped with downward links. This is usually accomplished by using
ki−1 switches per vertex. Therefore, each stage consists of 2N/k switches, which
results in 2N/k ×(logk/2 N) total switches (minus N/k switches at the root stage)
[15]. In particular, this configuration is a special instance of a clos network.

Besides regularity and good bisection bandwidth, fat trees can be scaled

21

Background: Interconnection Networks

Node Node Node Node Node Node Node Node

Switch Switch Switch Switch

Switch

Switch

Switch

Fig. 2.4 Example k-ary n-tree topology.

simply by adding additional stages. However, it is almost impossible to extend
an existing configuration due to the complex connection pattern between single
switches and stages. Therefore fat tree systems are not as adaptable to new
requirements as for e.g. tori networks. Furthermore, larger configurations demand
an increasing amount of more expensive optical cables, as they are used to connect
stages close to the root. Overall the fat tree is widely used in HPC system for
its beneficial properties. The top 3 of the fastest supercomputers in 2019 are
equipped with fat tree-based interconnection networks, namely Summit, Sierra,
and Sunway TaihuLight.

Dragonfly

The last class of hierarchical indirect topologies is represented by the dragonfly
[29]. The design goal of this rather new topology was to minimize the number
of optical channels in order to reduce hardware costs. Besides, this also results
in an overall low diameter. Like all hierarchical networks, the dragonfly is
composed of different levels. Sets of compute nodes are organized to groups,
with originally one group located in one cabinet. The compact spatial distances
enable the usage of short and cheap electrical channels. These groups are then
connected at the global level using long optical links between different cabinets.
An exemplary dragonfly structure is depicted in Figure 2.5. The particular design
is then determined by the three core parameters p (the number of compute nodes
connected to each switch), a (the number of switches per group), and h (the
number of global links in each switch). The remaining design then results from
these parameters, such as the total number of groups (g = ah+1) or compute

22

2.2 System Level Network Design

nodes (N = ap(ah + 1)). Kim et al. do not provide a strict rule on how to
select these parameters particularly. However, they recommend to follow the
rule a ≥ 2h and 2p ≥ 2h to ensure a balanced network.

Fig. 2.5 Example of a dragonlfy topology with nine groups.

Applying this rule results in a maximum ratio from global to local links of
1/3. Additionally, the dragonfly uses generally fewer channels than the other
investigated topologies. This comparable low number of links in addition to a
remaining amount of network traffic rises the risk of congestions. To prevent
these, special requirements must be met by the routing in order to balance
the traffic evenly over the network. Furthermore, depending on the number of
groups and the number of global links, it is not ensured that all groups are fully
interconnected. While the original paper does not provide any information about
this layout, various schemes for global links exist. Palm tree is one commonly
used scheme and is also applied in the context of this work. In this pattern
the nth global link of a group connects to the nth group, the (n+1)th link to
ne (n +1)th group, etc. Formally, port i with i ∈ (0, ..., s − 2) of switch j with

23

Background: Interconnection Networks

j ∈ (0, ..., s − 1) is connected to group (i + j + 1) mod s, where s is the total
number of switches [30].

Derived from this topology, there exist other topologies that aim to tackle
particular limits of the dragonfly, such as slimfly that aims to ensure better
resiliency than the dragonfly [29] and dragonfly+, which increases scalability [31].
However, the focus of this work remains on the original dragonfly topology.

2.2.2 Routing

While protocols in the data link layer define the procedure of data exchange
between two distinguished nodes connected by one link and topologies define
the physical layout of the interconnection network, the routing provides the
formal description of the route a message is traversing along in the network. In
particular, the routing algorithm reduces the set of possible paths to a limited
set of legal paths [23], whereby legal paths must not be necessarily the shortest
path between two nodes. Usually, routing algorithms are tailored to particular
topologies or classes of topologies. They can exploit certain topology properties
to provide different guarantees or to make certain performance trade-offs [23].
For example, some commonly used routing algorithms depart from the shortest
path in order to achieve a load balancing over the network and reduce the
probability of occurring congestions. Although there exists a large variance in
routing algorithms, the ones used in the context of this work are introduced here.

Generally, there are two major classes of routing algorithms: deterministic
and adaptive routing. The former are statically computed and there is one
deterministic path between every source and destination pair. This allows the
network to initialize the routing during set up time and store the calculated
results in a fast Look Up Table (LUT). Therefore, there are no further routing
computations during execution time necessary. The second advantage of one
predefined path between source and destination is the guaranteed packet ordering
since all buffer structures are First In First Out (FIFO)s.

The latter class, by contrast, makes it routing decisions during execution
time. The ability to adjust routes dynamically to current conditions can provide
significant performance advantages, especially in congested situations. For
example, if there is a hot spot in the network, where many traffic flows combine,
the routing can adjust to this situation and redirect single paths. However,

24

2.2 System Level Network Design

this comes at the price of additional computing resources in the routing unit
and higher complexity to observe certain guarantees, such as packet order or
livelock freedom. Hereby, livelocks refer to the situation in which paths that have
an unbounded number of allowed non-minimal hops from packet sources, for
instance, may result in packets never reaching their destinations [15]. Particularly
adaptive routing algorithms are susceptible to livelocks since different switching
instances in the network can make contrary decisions which cause a packet to
swing between continuously.

Deadlock

A network anomaly that commonly needs to be prevented by the routing is
the deadlock. A deadlock occurs, when some packets cannot advance towards
their destination because the buffers requested by them are full [16]. If multiple
packets block and request mutual resources, they or locked forever. In particular,
a deadlock arises, when the following necessary conditions are met [19]:

• Mutual exclusion: At least one resource must be held in a non-shareable
mode; that is, only one process at a time can use the resource. If another
process requests that resource, the requesting process must be delayed until
the resource has been released. For instance, a packet is stored in the buffer
is holding the memory space exclusively.

• Hold and wait: A process must be holding at least one resource and
waiting to acquire additional resources that are currently being held by
another process. For example, if the packet in the buffer is ready to be
sent, but the flow control has no credits.

• No preemption: Resources cannot be preempted; that is, a resource can
be released only voluntarily by the process holding it after that process has
completed its task. The output buffer in which the packets were stored is
only released when the packet was transmitted successfully.

• Circular wait: A set {P0,P1, . . . ,Pn} of waiting processes must exist such
that P0 is waiting for resource held by P1, P1 is waiting for a resource held
by P2, ..., Pn−1 is waiting for a resource held by Pn and Pn is waiting for a
resource held by P0.

25

Background: Interconnection Networks

Packet_0
Packet_1

...
Packet_n

Packet_0
Packet_1

...
Packet_n

Packet_0
Packet_1

...
Packet_n

Packet_0
Packet_1

...
Packet_n

Fig. 2.6 Schematical Illustration of a deadlock. Each buffer is completely filled
and requesting to send packet to the next node.

Figure 2.6 depicts a deadlock it the network schematically. In this four-node
ring, each buffer is filled with packets and the packets are addressed to the next
node. Since the buffers are full, the flow control does not allow to send any
packet and the whole network stays in this state forever.

Commonly, there are two main strategies to handle deadlocks: deadlock
avoidance and recovery. In the former approach, the routing algorithm avoids
deadlocks by breaking one of the four conditions. Although all conditions are
evenly effective to avoid deadlocks, usually the routing algorithm selects paths in
a way that they cannot form a cyclic dependency [15]. The latter approach starts
from the premise that deadlocks are only exceptions and occur rarely, and there
is no prevention necessary. If a deadlock situation arises, it is then identified
and resolved by the routing algorithm. Two common approaches to resolve a
deadlock situation are dropping certain packets, that are causing the deadlock or
redirecting them to special deadlock recovery resources [15].

Dimension Order Routing

Dimension order routing is a deterministic routing algorithm that is most com-
monly used in mesh and tori networks. The procedure of this routing algorithm is
to route packets by crossing dimensions in a particular order, nullifying the offset

26

2.2 System Level Network Design

in one dimension before routing to the next one [16], as depicted in Figure 2.7.

1 2 3 4

6 8 9

10 11 12 14

Source

Destination

0

13

75

Fig. 2.7 Schematic illustration of dimension order routing.

The order in which the dimensions are run through is usually indicated by a
short extension of the algorithm name, such as xyz-dimension order routing. This
algorithm is easy to implement and results in a shortest-path routing, which also
prevents livelocks. However, there are also some downsides. While dimension
order routing guarantees deadlock-freedom for mesh topologies, this does not
hold true for tori networks, since their wrap-around links cause a ring in each
dimension. One simple way of deadlock prevention in dimension order routing is
the introduction of Virtual Channel (VC)s [32]. The usage of multiple virtual
channels on the same physical channel brakes up the circular wait condition and
guarantees deadlock freedom. Another problem of dimension order routing is
load balancing. One major goal of a routing algorithm is to split up the traffic
evenly over the network. The dimension ordering approach of this algorithm,
however, causes an imbalanced load between single dimensions. In particular,
the majority of the traffic traverse to the first dimension and decreases at every
following dimension.

Up-Down Routing

This routing algorithm is commonly used in tree-based topologies, such as the fat
tree. This shortest-path routing algorithm routes a packet in an upward direction
until the source and destination share the same parent node or switch. Then
the packet is routed downward until it reaches its destination[23]. Since there is
only one turn in this routing pattern no circular dependencies exists here, which
ensures this routing algorithm to be deadlock-free and since no path-diversity
exists also livelock free. However, this algorithm provides poor load balancing
properties, due to the limited path diversity.

27

Background: Interconnection Networks

DESTRO

Deterministic Destination and Stage-based Routing (DESTRO) aims to improve
load balancing and further exploit special features of fat-tree topologies [33].
Although the algorithm tries to balance the link utilization over the entire
network, it also determines one distinguished out of multiple valid paths for
each source/destination pair. To achieve this, packets are routed adaptively or
randomly in the upward direction until they reach the root state and then follow
a deterministic path along with the descending links to the destination leave
node. While DESTRO does not ensure shortest-path routing, it results in an
evenly balanced network and still provides guaranteed deadlock and livelock
freedom.

Minimal Routing Dragonfly

The minimal or shortest-path routing [29] varies from two hops if the source and
destination node are connected to the same router, to a maximum of five hops.
When a sender S connected to switch SS in the group GS sends a message to
destination D connected to switch SD in the group GD, the following scenarios
are possible:

1. If SS = SD, both S and D are connected to the same switch, and packets
have to traverse two hops.

2. If SS ̸= SD and GS = GD, both are in the same group but not connected
to the same switch, which results in a distance of three hops.

3. SS ̸= SD and GS ̸= GD the number of hops depends on whether both
switches or groups are connected by a global link which results in three
and four hops, respectively. If both groups are not connected with a global
link, packets have to traverse through a third switch SA (five hops).

While this algorithm works well for load-balanced traffic patterns, performance
worsens significantly for scattered, interfering traffic flows.

UGAL Routing

To improve performance for non-uniform traffic, the Valiant’s algorithm[34] can
be applied to the dragonfly topology. Load balancing is achieved by selecting

28

2.3 Message Passing Interface

4 5

G2 VC1

0 1

G0 VC0

2 3

G1 VC2

VC1

VC1
VC1

VC2

minimal

non-minimal

VC0

Fig. 2.8 Dragonfly routing algorithms and VC selection.

another group randomly for a packet’s first hop, before it is routed to destination
regularly [29]. An example of this non-minimal routing is illustrated by the red
route in Figure 2.8.

Universal Globally Adaptive Load-balancing (UGAL) [35] dynamically
chooses between the minimal routing and Valiant’s algorithm, depending on the
network delay. This delay is calculated for every packet by taking queue length
and hop count into account. In an ideal version of this routing algorithm, the
buffer levels for all global links are considered for the routing decision (UGAL-G).
While this perfect knowledge of the network results in a completely balanced
network, it can hardly be implemented, since all routers have to exchange their
buffer levels permanently. A more feasible approach is UGAL-L, which only
considers information provided by the local router.

Generally, both algorithms do not guarantee deadlock freedom. As in dimen-
sion order routing, VCs are used to avoid circular dependencies [32]. For the
minimal routing, two VCs and three VCs for Valiant’s algorithm are sufficient to
prevent deadlocks [29]. Thereby, the VC changes every time the packets were
transmitted on a global link.

2.3 Message Passing Interface

At the application layer, MPI is an abstract interface for transmitting data and
synchronization purposes in distributed memory systems [22]. Especially in
parallel HPC applications, it is today’s de-facto communication standard.

When an application starts, multiple simultaneously running processes (ranks)

29

Background: Interconnection Networks

are initialized, which are communicating via MPI messages. These ranks can
either be located at one node or spread over multiple nodes in a cluster. While the
former allows to communicate via shared memory, the latter uses communication
through interconnection networks. At the application level, however, MPI does
not distinguish between both types.

Generally, there are two different types of messages: Point-to-Point (P2P)
and collectives. The data exchange between two ranks in a point-to-point fashion
is represented by an MPI_Send() and an MPI_Recv() call, respectively, that
contains detailed information about the transmitting data, such as size (i.e. data
type and number of elements), source and destination memory addresses, and
a communicator. The communicator, hereby, describes the set of eligible ranks
that take part in the communication. Additionally, P2P communication can
blocking or non-blocking. The latter is especially useful to overlap computation
and communication. In particular, on the receive-side and MPI_Irecv() is used
to register memory for the incoming message. The rank can continue executing
its code until the incoming data gets essential. This moment is indicated by an
MPI_Wait() or MPI_Waitall() call. If the data has already arrived, the rank
moves on, if not, the rank is blocked until the data has arrived.

In addition to point-to-point communication, MPI provides also collective
operations for communication between a group of ranks. These collective oper-
ations are often used for synchronization purposes (MPI_Barrier()) , but also
allow for shared data processing (e.g. MPI_Allreduce() or MPI_Gather()) or
data distribution (MPI_Alltoall() or MPI_Bcast()). In the context of collec-
tive operations, the participating ranks are determined by the communicator.
Generally, there is a variety of specialized collective operations that can speed
up the execution and help to simplify the programming of multicomputer [16].
In order to gain further speed-ups, various vendors of HPC interconnection
networks provide special hardware support for some collective operations. In
particular, tree-based multicast and broadcast support are widely implemented,
while many-to-one and many-to-many communication are difficult to implement
since multiple senders my start at different times [16].

30

3

C
h

a
p

t
e

r

Energy Proportionality in Interconnection
Networks

The idea of energy proportional systems was first introduced by Barroso et
al. [3] and then applied to interconnection networks later by Abts et al. [4].
It means that a system component, or the system itself, consumes only the
same share of power as it is utilized. For example, if a particular component is
idling half the time, the power consumption should also decrease during this idle
period and the effective energy consumption should also be halved. Following
recent trends, compute-intensive applications are shifted increasingly into cloud
installations. Since these systems are used by many users with many diverse
workloads, their actual utilization can vary a lot. Although it is rather a corner
case, these systems are provisioned to handle bursts of heavy load. However,
this leads to idling components in the average case with a mediocre utilization.
Traditionally, the power consumption of interconnection networks tended to be
rather negligible compared to other components, such as CPUs or GPUs. In
order to reduce operating costs in periods of low utilization, such heavy power-
consuming components became increasingly energy-proportional, which raised
the relative share to the overall energy consumption of all remaining components.
Accordingly, Abts et al. conclude that in the near future energy consumption of
interconnection networks could amount up to 50% for data centers. Therefore,
interconnection networks are mandatory to investigate to increase the energy
proportionality of large-scale systems and reduce operating costs.

31

Energy Proportionality in Interconnection Networks

3.1 Power Consumtion

In order to reduce energy consumption and increase energy proportionality, it
is essential to gain an accurate understanding of all power consuming units.
A detailed power analysis was performed on the EXTOLL Tourmalet switch.
This switch is produced using a Taiwan Semiconductor Manufacturing Company
(TSMC) 65nm process, and is representative of a high-performance direct network
switch. It includes a core router, six links towards the network, and a 16-bit wide
PCIe G3 interface. Figure 3.1 depicts the internal structure of the Tourmalet
switch [36].

Introduction

5

- The EXTOLL core logic part, which contains both the FUs (functional units) that
make up EXTOLL’s basic functionality and assisting units that are needed to support
all features of EXTOLL

- The network interface part which includes the switching functionality as well as the
control logic to interface to the outside world

The block diagram in figure 1.4 gives an overview of the design blocks inside EXTOLL that
will be shortly described in the following.

HT
PHY

PCIe
PHY

HT3 16x

PCIe
Gen3
x16

HT3
Core

PCIe
Core
(EP/
RP)

PCIe
Bridge

HTAX
Bridge

HTAX

VELO

RMA

SMFU

ATU

RF

NP

NP

NP

NP
EXTOLL

Xbar

LP

LP

LP

LP

LP

LP

LPSNQ
Debug-

port

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

12x

I2 C

S
P

I

12x

12x

12x

12x

12x

12x

Figure 1.4 EXTOLL Block Diagram

1.3.1 Host Interface

One of the supported host interfaces is HyperTransport (HT) [8] that is specific to AMD
based systems. The HT3 core [9] inside of EXTOLL is a standard compliant implementation
of the protocol supporting all required features to directly connect to modern AMD
processors. The HT3 core is connected to the HT PHY that takes care of the physical layer
implementation of the HT links similar to the PHY implementations in the CPU [10] [11].
With a link width of 16 bit and supported transfer rates of up to 2.6 GT/s the link is able to
sustain a raw bandwidth of 10.8 GB/s.

Besides HyperTransport EXTOLL also supports PCI Express (PCIe) [12] as a host interface.
Both the PCIe PHY that handles the physical layer and the PCIe core that implements the

1

2

3

Fig. 3.1 EXTOLL Tourmalet block diagram. [36].

This rather complex scheme can be divided into three major parts, illustrated
with red boxes in Figure 3.1. The links, which include all components that
are part of the data exchange between multiple NICs, including linkports, link
controller, and buffer, are the first major part (1). The second one (2) is the PCIe
interface, which is the host interface and provides access to the host system. Last,
all other functional units, such as crossbar, Remote Memory Access (RMA) unit,
routing unit, etc., form the core logic (3). In this power analysis, all measurements
are performed with the integrated functionality of an LTM4600 power supply

32

3.1 Power Consumtion

controller1. The results at top level granularity are shown in Table 3.1.

Core PCIe Links (6)
absolute share 4.3 W 4.6 W 19.2 W
relative share 15% 16% 68%

Table 3.1 Power share of different functional components.

Transmitting components, such as the PCIe interface and links, are the main
driver for the network’s power consumption. Hence, links and especially serializa-
tion technology can be identified as a sweet spot for power saving. However, these
components are also crucial for the network’s performance. A feasible approach
for power saving in these parts has the difficult task of balancing between these
two concerns. This is also aggravated by fundamental design differences be-
tween serialization technology and most other components in computing systems.
Therefore, a detailed understanding of their architecture and design process is
necessary to gain more insights about their power consumption and energy-saving
capabilities. Two fundamentally different design processes play an important
role here, which are Complementary Metal-Oxide-Semiconductor (CMOS) and
CML.

3.1.1 CMOS

The first and most commonly used technology to design Integrated Circuit (IC)
chips is CMOS [37], [38]. The CMOS circuits are composed of N-Type Metal-
Oxide-Semiconductor (NMOS) and P-Type Metal-Oxide-Semiconductor (PMOS)
logic. This combination enables high noise robustness as well as low static power
consumption. Generally, CMOS power consumption can be divided into a static
part or constant leakage power and a dynamic part, which dissipates when
current transitions.

Ptotal = Pstatic +Pdynamic (3.1)

Figure 3.2 depicts the design of an exemplary CMOS inverter. As shown here,
the output in CMOS circuits connects to one of the power supplies [39]. Hence,
the voltage oscillates between the two extremes, which results in large charge

1https://www.analog.com/media/en/technical-documentation/data-sheets/4600fd.pdf, ac-
cessed: 2019-12-14

33

Energy Proportionality in Interconnection Networks

and discharge times. These times depend on the capacity respectively transistor
size and are a limiting factor for switching frequencies. In particular, if a gate
has a capacitance of CL, the capacitor is charged to VDD and then discharged
to VSS at each cycle and, therefore, the dissipated energy for both processes
corresponds to:

E = CL(VDD −VSS)2

2 (3.2)

Vss

Vdd

Vin Vout

Fig. 3.2 Exmplary logic of a CMOS inverter.

Given an operating frequency f and the switching activity a (probability of a
charge and discharge process per cycle), the resulting dynamic power dissipation
share is:

Pdynamic = aCL(VDD −VSS)2f (3.3)

Since the dynamic part is dominating the overall power dissipation, CMOS
power consumption is approximately proportional to frequency. Hence, frequency
scaling does apply well as a power-saving mechanism for this technology. Based
on this assumption, Dennard et al. [1] observed that voltage and current scale
linearly with the dimensions of a transistor, which means the power density
remains constant. As a result, the voltage per transistor decreases, and transistors
can operate at higher frequencies within the same power budget. This observation
was the main drive for raising clock frequencies in the past. However, this rule
does not consider leakage power, which becomes an increasing issue with shrinking
feature size, and classic Dennard scaling ended at a feature size of about 130nm
[40].

34

3.1 Power Consumtion

3.1.2 CML

Another approach to design logic gates is CML. It consists of a pull-up network,
a pull-down network that implements the logic function, and a constant current
source. An exemplary CML buffer/inverter is depicted in Figure 3.3. Depending
on the value of VIN current flows either through the left or the right branch of the
network and the signal level on that side gets pulled down while the opposite side
gets pulled up by the resistor, thus creating a differential output with opposite
levels. Depending on the location of OUT and OUT the circuit can work as
either a buffer or an inverter.

Vdd

Vss

Vbn

Vin

Vout

Fig. 3.3 Exmplary logic of a CML inverter/buffer.

Its design has several advantages in terms of noise immunity and emitted
interference that makes CML preferable for transmission of signals over longer
distances. While the differential signaling suppresses common-mode interference
the lower output voltage swing also reduces capacitive coupling to other signals
[38]. The power consumption of CML is mostly static and only depends on the
voltage and the drawn current:

pstatis = VDDISS (3.4)

Figure 3.4 [39] summarizes the power consumption of both technologies.
While CMOS shows a proportional dependency between current and frequency,
CML operates at almost static current, which increases only slightly at higher

35

Energy Proportionality in Interconnection Networks

Fig. 3.4 Current/frequency relation for CML and CMOS [39].

frequencies. This means that a CMOS implementation is usually more efficient
in terms of power in areas that do not require high frequencies. Since CMOS
power consumption is also dependent on the toggle rate of the signals it is
well suited for digital implementation where the switching probability is far
from 100%. CML, on the contrary, is better suited for high-speed applications
such as SerDes circuits. Its power consumption is not only independent of the
operating frequency, but it is also not affected by high toggle rates that are
typical for serializers which aim for an even distribution of ones and zeros during
transmission.

3.2 Switch Core Power

The switch core includes multiple functional units, such as arbiter, routing
unit, and the crossbar. Although the transmitting units are dominating power
consumption in the previous example, this ratio can vary in other configurations.
While the power consumption of linkports and periphery simply scale linearly
with the radix, this section takes a closer look at the more complex power scaling
of the core logic.

Scaling switch radices affects the complexity of certain functional units inside
the switch core. Hence, there are no basic models available to evaluate the
detailed impact of certain design parameters on overall power consumption. In
order to perform these evaluations, it is necessary to implement a design for these

36

3.2 Switch Core Power

components. Prototyping of a chip is very time consuming and the implementa-
tion in an Field-Programmable Gate Array (FPGA)s or an Application-Specific
Integrated Circuit (ASIC)s is costly as well. Therefore, this analysis is based on
a pre-existing design of the High Throughput Advanced X-Bar (HTAX) chip [41],
which is parameterized in order to allow an easy way of synthesizing different
combinations in the design space. While the HTAX design does not provide
exceeding functionality, it contains all main components of a common switch
core.

The core logic is mainly designed using digital standard cells and, therefore,
consists of CMOS technology. Early power estimation is already possible during
synthesis with Register-Transfer Level (RTL) code as input, e.g. a Verilog design.
At this stage, the numbers only give a first indication and mainly drive the
cost function of the optimization step during synthesis. More accurate power
numbers can be derived during physical implementation. The synthesis tool has
transformed the RTL into a Gate-Level Netlist (GTL) that consists of standard
logic cells for the specific technology. The power consumption for these cells
has been accurately modeled by the cell library vendor. Although later steps
in the design flow will add additional cells into the design (e.g. during clock-
tree-insertion, timing optimization), the initial power estimation during the
floorplan stage is a reasonable indication of the final power consumption and is
also used for power-grid dimensioning. While feeding simulation data into the
power simulation will give more accurate results because it simulates normal
operating conditions another common approach is using switching probabilities
and signal propagation through the design. This usually overestimates the power
consumption but provides a good upper bound for power budgeting.

To gain a detailed understanding of how different design aspects affect the
power consumption, frequency, and radix scaling are analyzed in the following.

3.2.1 Frequency Scaling

The first study investigates the impact of frequency scaling on power consumption.
Scaling up the operating frequency enables not only a latency reduction when
processing and forwarding data, but can also be essential to meet certain timing
restrictions, e.g. ensuring signal integrity, when scaling switch sizes. Figure 3.5
depicts the power consumption of the HTAX core of a four-port switch operating

37

Energy Proportionality in Interconnection Networks

at five different frequencies from 400 MHz up to one GHz.

200 400 600 800 1000

2
3

4
5

6
7

Frequency [MHz]

D
yn

am
ic

 p
ow

er
 [m

W
]

Fig. 3.5 Power consumption of 4-port HTAX core operating at different frequen-
cies.

As Equation 3.3 suggests, the power consumption scales linearly with the
operating frequency as the dynamic power share is proportional to the frequency.
Whereas the static or leakage power is almost independent of the frequency
and forms a static offset. While lower frequencies indicate a decreased power
consumption, higher frequencies might be necessary to meet timing criteria.
However, the absolute amount of power reduction equals only 5 mW, which
corresponds to a frequency reduction of 60%, which suggests that the switch core
only contributes negligibly to the overall power consumption and is not suitable
for significant energy savings.

3.2.2 Radix Scaling

The second and more significant part is radix scaling. The power analyses in
section 3.1 show, that transmission technology dominates the power consumption
of a NIC. However, the used sample hardware has a comparatively low radix of
only six linkports. Since an increase in the number of linkports also increases
the complexity of the core logic significantly, this ratio of power consumptions
changes, too.

38

3.2 Switch Core Power

Note that larger radices have a considerable impact on the complexity of the
core logic. In particular, this increases the effort to ensure signal integrity. The
most common obstacle is a negative timing slack, which means the difference
between actual and required arrival time results in a negative value. All solutions,
including increasing driver strengths or physical size of the gate, and introducing
additional pipeline stages, result in increasing floor space or additional power
consumption [42]. Therefore, high-radix switches are usually internally composed
in a hierarchical layout of multiple smaller switches. While all samples in this
study are based on a single crossbar, the three largest configurations, e.g. 72, 96,
and 124 ports, produce a negative timing slack, which results in a further increase
of power consumption for the actual functional layout. Figure 3.6 depicts the
power consumption for different radix configurations in the 28nm HTAX design.
To determine further scaling, a quadratic (red) and cubical (blue) model are
applied Based on statistical parameters, a cubical model fits best to describe
power consumption at different scales due to a R2 = 0.9997 and a p-value of
7.65∗10−11.

0 20 40 60 80 100 120

0
20

0
40

0
60

0
80

0

#Ports

P
ow

er
 [m

W
]

Quadratical model
Cubical model

Fig. 3.6 Power consumption of switch radices at scale.

To gain a better understanding of this power consumption Figure 3.7 depicts
the static leakage power (red) and the dynamic share of the power consumption
(blue). Again, for both power components, the cubical model fits best, which
is plotted here. Although both are increasing cubical with more linkports,

39

Energy Proportionality in Interconnection Networks

the dynamic exceeds the static share by almost a factor of 20 in absolute
measures. However, even in the largest configuration of 124 ports, the total
power consumption of the core logic is less than a watt. Even considering the
additional effort that has to be made to address the negative slack in the static
timing analysis when implementing this design, the increase in power is within
the same magnitude as the original design.

0 20 40 60 80 100 120

0
20

0
40

0
60

0
80

0

#Ports

D
yn

am
ic

 p
ow

er
 [m

W
]

0
10

20
30

40
S

ta
tic

 P
ow

er
 [m

W
]

Static power
Dynamic power

Fig. 3.7 Switch core power for different radices divided in a static and a dynamic
part.

In summary, although switch radix scaling has an exponential impact on the
power consumption, the absolute power consumption of the core logic remains
significantly smaller than the power consumed by the serialization logic in the
linkports. Due to design obstacles, a further radix scaling would potentially be
driven by hierarchical designs that keep the same port/core ratio than further
scaling a single-core logic. Hence, linkports are the main contributors to a NIC’s
power consumption and are key for energy savings.

3.3 Link Power

As the analysis in section 3.1 describes, are links the main contributor to the
overall power consumption of a NIC and, therefore, provide the highest potential
for energy savings. However, they are mostly designed in CML technology, which

40

3.3 Link Power

is why frequently used energy savings mechanisms from other CMOS components
may not apply for them.

3.3.1 Design

Although there are a variety of different interconnection technologies available,
the basic design of a link applies to all of them. A design scheme of a link from
the investigated hardware is presented in Figure 3.8.

0
1
2
3
4
5
...
...
...

n-2
n-1
n

SER 0 1 2 Lane/Channel DES
0
1
2
3
4
5
...
...
...

n-2
n-1
n

NIC NIC

Buffer

SER 3 4 5 DES Buffer

SER DES Buffer

SER n-
2

n-
1 n DES Buffer

 Lane/Channel

 Lane/Channel

 Lane/Channel

LINK

Fig. 3.8 Design example of interconnection link.

The left side shows the transmitting and the right side the receiving parts
of a link cross-section. At the most left part, there is a parallel data stream
coming in from the NIC, which is split according to the number of parallel lanes
or channels inside one link. For each lane, this (still parallel) data stream is then
processed by the serializer to a serial data stream at a higher frequency. Although
the sender and receiver operate at the same frequency, it is not assured that
there is no phase shift between their clocks. Therefore, the PLL or Delay-Locked
Loop (DLL) at both sides align these phases and create a uniform clock domain
for both sides. After being serialized, the data stream is then transferred on the
lanes or channel to the receiving side, where the data is checked for correctness,
synchronized again, and stored at the input buffer.

3.3.2 Power Scaling

As the largest contributor to the overall power consumption, links are the best
starting point for reducing energy consumption. Due to CML, links differ funda-
mentally from other components, such as processors. Therefore, energy-saving
approaches for these components do not necessarily apply for interconnection

41

Energy Proportionality in Interconnection Networks

networks. Based on the experimental setting in described in Section 3.1, the
most effective approach is analyzed.

Without fundamental changes in the hardware design of NICs, energy savings
are based on a trade-off between power and performance. Since components in a
computing system are usually never fully utilized the entire time, the performance
can be adjusted to the current requirements and this performance reduction
can then be translated to reduced power consumption. For interconnection
networks, there are two different approaches to reduce performance in terms of
bandwidth, which enable power saving: frequency and link width scaling. The
effects of both on power consumption are depicted in Figure 3.9. The values at
the x-axis illustrate the number of active lanes, different curves indicate different
operating frequencies and the y-axis shows the respective power consumption for
each configuration. The links in this EXTOLL design consists of twelve parallel
lanes, but they are grouped into three quads á four lanes. This pooling allows
to reduce overhead in terms of space and power due to the replication of all
units at lane granularity. Although these lanes work independently, they are
only manageable at quad granularity since they share the same PLL for instance.
However, these limitations only apply for this analysis and do not pose a general
technical constraint.

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Link width

P
ow

er
 c

on
su

m
pt

io
n

[n
or

m
al

iz
ed

]

4 lanes 8 lanes 12 lanes

2.5 GHz
5 GHz
10 GHz

Fig. 3.9 Effects of frequency and link width scaling on power consumption.

42

3.3 Link Power

Frequency Scaling

The first approach, frequency scaling, which is also often used in other CMOS-
based components, appears to be less effective. The amount of saved power
is indicated by the difference between the lines at one particular spot on the
x-axis. The savings are expectedly small and vary from 18% to 24% per link
when operating at a quarter of the base bandwidth. While the underlying CML
technology operates mostly frequency-independent, the minor power changes are
based on the residual CMOS parts.

Link Width Scaling

The more effective approach is link width scaling, indicated by different positions
at the x-axis. The idea is to adjust bandwidth to the current utilization and,
thereby, power consumption, by switching on and off single parallel lanes inside
one link. In this clock-gating technique, switched off lanes are removed from the
clock tree and do not consume power while being in this state. This enables
power savings of 64% to 66% per link when reducing bandwidth to one third.

Transition Time

However, all bandwidth changes impact the performance because of their set up
time. The only change that is performed almost immediately is switching off
lanes. Every other adjustment to the bandwidth causes the link to be retrained.
This training process is required to ensure word alignment and PLL and DLL
locking. PLL and DLL are necessary to provide a high frequency, low jitter
reference clock for the transmitting and receiving side. The training is performed
by sending training patterns (predefined sequences of characters) and, therefore,
links are not able to transfer any data during this process. The time it takes
for a link to finish the training and adjust to a new bandwidth, is referred to
as transition time and potentially harms the performance of an application.
This is not only costly in terms of performance, but a higher execution time
also increases energy consumption and can undo all savings by reduced power
consumption.

43

Energy Proportionality in Interconnection Networks

3.4 Optical Links

The previous studies take only electrical links and networks into consideration.
Recently, a transition from electrical to optical networks is a common trend.
This trend will also affect the power consumption of interconnection networks.
Optical interconnects provide multiple advantages over traditional electrical
interconnects, such as lower power consumption, higher bandwidth, and wider
distances.

However, this is only true for full optical networks. While optical cables are
already widely used in HPC to bridge longer distances between multiple racks,
for instance, there are no commercial optical switches available yet. Optical
switches are difficult to realize because the optical signal, i.e. light, must be
stored in a buffer-like structure until the header is evaluated and the switching
decision has been made [43].

3.4.1 Overview

In today’s photonic technologies, all required network components can be fab-
ricated as part of a chip using CMOS technology, which not only results in a
small device footprint but also in better energy efficiency than common network
technologies [43]. The most common approaches use multi-wavelength laser
sources. This laser source is filtered by its wavelength using modulators, such as
microrings [44] or Mach-Zehnder modulators [45]. Using multiple rings enables
separating multiple wavelengths from the light source and transmitting them on
the same optical fiber [46], [47], similar to multiple lanes inside one electrical
cable.

At the receiving side, there is a wavelength-selective filter, e.g. such as
presented by Cheung et al. [48], to split the signal again and guide the single
wavelengths to the respective detector [49]. Transmitting multiple signals on
the same physical fiber not only reduces hardware costs but also eliminates the
pin-limitation problems of electrical chips and cables [50].

3.4.2 Limitations

While there are multiple benefits from photonic interconnection networks, they
also provide numerous technical challenges. The most important one is the

44

3.4 Optical Links

missing ability to buffer messages. Currently available network designs require
routing decisions at each switch. The interpretation of the header and the
switching the internal logic takes at least a few cycles in which the optical packet
needs to be stored. Therefore, buffering packets and messages is crucial for
switches. However, this requires either conversion into electrical signals or a new
storage medium since light, unlike current, is constantly moving. Congestions
and interference of different packets inside one switch are especially challenging
because of variations in the time it takes to resolve them. Although there are
multiple approaches for fully optical switches introduced in academia, e.g. [51]–
[53], they all face technical challenges and none of them has gained acceptance in
industrial implementations yet. Hence, currently it is not sure which technique
will prevail.

The lack of optical switches makes it necessary to follow hybrid approaches
and transform the optical signal into an electrical one on the receiving side and
vice versa at the transmitting side. Instead of decreasing power consumption
by eliminating power-intensive serialization hardware, the power consumption
increases, due to additional optical/electrical converter at the link level.

Optical interconnection networks are becoming increasingly important for
future networks. However, they also benefit from improving electrical links, since
these networks are building on top of electrical logic. Therefore, optical links are
not separately considered in the context of this work.

45

4

C
h

a
p

t
e

r

Application Analyses

Network utilization is highly dependent on the communication pattern of the
executed application. While CPUs and memory are utilized more frequently,
interconnection networks are accessed in a rather sparse pattern. As shown in the
previous analysis, idle times in the network are most suitable for link width scaling,
particularly when they are long enough to compensate transition times during
link reconfiguration. Hence, analyzing the characteristics of communication
patterns is key to a deeper understanding of the way interconnects are used and
how to exploit this usage in order to reduce energy consumption.

These studies can be performed at various detail levels, where greater details
result in higher complexity. However, the more measurements are included,
the more complex are not only the analyses but also the measuring itself. For
instance, it is not sufficient to record traces and measure CPU utilization at the
same time, since measuring the one affects also the other. While clock rates
and utilization are measured via performance counter on system-level, traces are
usually recorded through code instrumentation. This instrumentation causes a
runtime overhead and affects also the CPU utilization. In order to gain valid
results, metrics that interfere with each other have to be recorded in distinguished
runs, which not only increases the complexity for recording but also can blur the
results, if effects such as scheduling decisions or third party effects between the
certain executions appear.

In the first part of this chapter, the SONAR tool is introduced. It is used for
common evaluations of network traffic as well as verbosity which additionally

47

Application Analyses

relies on processor performance counter. These analyses are only performed on a
small scale due to the measurement complexity of these performance counter.
Furthermore, public available network traces at different scales are analyzed for
their locality properties and energy-saving potential in the latter part.

4.1 SONAR

Simple Offline Network AnalyzeR (SONAR) [54] is a tool, which is able to
derive network performance metrics from communication traces and performance
counter of HPC applications offline. The tool was designed in the context of this
work to evaluate HPC applications for their energy-saving potential and to be
able to easily implement possible extensions with new metrics.

4.1.1 Metrics

An important step to develop an energy-saving approach for interconnection
networks is to understand how applications that run on these systems utilize the
network. Likely the most important factor for these studies is an application’s
communication pattern. Typically, communication patterns are characterized by
abstract metrics, such as density plots, communication calls, and volume [55]–
[57]. Beyond that, there are few other approaches for communication patterns
characterization. Chodnekar et. al. [58] introduce message generation frequency,
spatial distribution of messages, and message length. This statistical regression
analysis works only for workloads that perform distinct communication and
computation phases. Kim et al. [59] analyze communication event locality,
message size locality, and message destination locality. However, these metrics
are oblivious to variations in system configuration or problem size.

For the SONAR tool the following metrics are implemented to provide useful
qualitative and quantitative insight into the communication behavior of HPC
applications.

Network Activity Map: This metric visualizes all point-to-point and collec-
tive messages by size and the temporal occurrence in a graph. Each network
event is represented by a data-point in the plot, which can be recorded per
rank or application. Different types of communication are illustrated in different

48

4.1 SONAR

(a) Network activity map (b) Message Size Distribution Map

Fig. 4.1 Examples of the visual metrics SONAR derives from an application
trace.

colors. Figure 4.1a depicts the network activity map of an exemplary workload
(AMG2013).

MPI idle time: This metric focuses rather on the idle time periods than on
the total idle time and SONAR determines the minimum, maximum and average
periods a rank does not spend in a MPI routine. These values are indicated by
the white spots in the message activity map in Figure 4.1a.

Message Distribution: SONAR uses a Cumulative Distribution Function
(CDF) graph to indicate the message sizes that occur in a trace. The resulting
graph depicts the probability of a message having a particular size or smaller.
Figure 4.1b shows the CDF graph of the exemplary AMG2013 workload.

Message Rate: An application’s message rate indicates how many messages
are sent by one node in a given time interval. This metric can be interpreted as
a single-value approximation of the network activity map.

Verbosity: This metric is not part of the common traffic pattern characteristics
and was introduced by Rumley et al. [60]. A workload’s verbosity indicates
the ratio of the amount of data, sent over the interconnect, to the work that
is computed. Where the work is quantified by the number of Floating Point
Operations (FLOP) issued, as many HPC applications are depending on floating-
point arithmetic. The FLOPs can be derived from CPU hardware performance

49

Application Analyses

Application
(Compile/Link/Install)

Vampir Trace
(Recording w/ wrappers)

CPU Measurment
(Performance Counter)

SONAR
(Analyses)

Plots, results, etc.

Fig. 4.2 Schematic workflow of acquiring metrics with SONAR.

counters. However, this requires independent trace recording and performance
measurements since both methods interfere with each other.

All the described metrics are MPI based, which means that no conclusions
about actual link or switch utilization can be drawn. However, they provide a
good overview and allow to find possible sweet spots for further studies.

4.1.2 Concept

The development of SONAR is motivated by the need to comprehensively analyze
previous gathered application data and the ability to easily implement new metrics
if needed. Depending on the number of nodes, the complexity of the underlying
problem, the communication characteristics, and other factors, these analyses
become very complex and time-consuming. Hence, an efficient structure is key
for the design of such a tool.

Figure 4.2 depicts the abstract concept of a SONAR analyses and the steps
that are performed to acquire metrics from an application. In the first step,
traces and other performance data are recorded.

The Tuning and Analysis Utilities (TAU) and the VampirTrace frameworks
are evaluated for this tool. Both provide the possibility to run existing binaries
without any instrumentation, for the price of a reduced amount of information.
Since all information regarding MPI and communication are retained when
running an existing application with run-wrappers, this method is sufficient for
SONAR. However, the VampirTrace framework provides advantages in data
compression and storage of collective communication, and, therefore, is selected

50

4.2 Locality and Selectivity in Exascale Proxy Miniapps

for SONAR. Furthermore, the Open Trace Format (OTF) library is used for
storage and internal processing.

Once a trace has been obtained with VampirTrace, it contains the enter and
leave timestamp of each MPI call, as well as additional information regarding
each event, such as message length, type, and communicator. SONAR then
uses the OTF library to access and filter the trace file before the data is further
processed and examined for the various metrics. For more details, the code is
publicly available1.

Since there are no input data for SONAR publicly available, the traces and
processor performance data have to be recorded by the user. Due to limited
access to large scale systems, SONAR is evaluated with only a limited set of
small scale traces. Because of these constraints and the limited significance of
small configurations, the results are not further discussed here. However, more
details on SONAR and its results are provided in the work of Lammel et al. [54].

4.2 Locality and Selectivity in Exascale Proxy
Miniapps

The amount of input data for SONAR eventually requires to record data on
a system since most public available data lack either trace or performance
information. To gain deeper insights on network utilization, it is essential to
collect data from different types of applications and systems at a different scale.
These insights can be exploited to increase energy efficiency without affecting
performance by an advanced system design or provide useful insights for energy-
saving mechanisms. To draw a comprehensive picture of different communication
aspects in HPC, exascale proxy applications, for which a sizeable amount of
traces at different scales are publicly available, are classified. Communication
patterns are the most important characteristic as provided by the SONAR tool.
While density plots are suitable for their visualization, they do not provide a
quantitative description and are less useful for objective comparisons. To address
this issue and to provide potential input data for network models, this work
proposes locality and selectivity as further metrics to describe communication
patterns [8]. Locality is particularly useful to gain insights about actual network

1https://github.com/UniHD-CEG/sonar

51

Application Analyses

utilization since not only the communication volume but also network distances
can be taken into account. Equivalent to velocity and the traveled distance,
this allows to determine the time the data is moving on the network. Although
locality studies already exist, do these studies focus rather on memory locality
than on network locality aspects [61]–[64].

4.2.1 Metrics

Locality in communication patterns can be applied at the application level and
refers to the distance between distinguished ranks, as well as at the system level,
which indicated the distance in the network in terms of actual network hops.
However, both can be derived directly from MPI traces by emulating system
configurations in simple models. These configurations include different topologies
and a study on multi-core scaling. Besides common MPI metrics, the proxy
applications are studied for the following metrics:

Locality: Locality represents the distance of communication at the MPI level
and rather describes a virtual distance between two distinguished MPI ranks
than an actual spatial distance between nodes. This new introduced metric can
formally be described as: given a rank sourcing the communication ranksource, a
rank sinking the communication rankdest, and based on a linearization of the
different rank IDs according to their numerical ID, the distance between two
ranks and the respective locality are defined as

dist = |ranksource − rankdest| (4.1)

locality = 1
dist

(4.2)

As Equation 4.2 shows, a higher locality describes lower distances and vice
versa, where a distance of one (i.e. communication with direct neighbors) results
in a locality of 100%. To minimize distortions, locality is defined as the minimal
distance in which 90% of the overall traffic is communicated. This abstract
metric neglects network layer effect, such as topology and or mapping, and can
be evaluated based on traces, with no replay necessary.

Also note that only point-to-point communication is taken into account since
global collective communication is distributed evenly over the network. However,

52

4.2 Locality and Selectivity in Exascale Proxy Miniapps

1 4 16 5 17 20 21
rank

0
10

20
30

40
re

la
tiv

e
sh

ar
e

of
 to

ta
l n

et
wo

rk
 tr

af
fic

 [%
]

90% of total traffic

Fig. 4.3 Illustration of selectivity metric. For an exemplary rank (LULESH, rank
0), the communication volume (y-axis) to every other communication partner
(x-axis) is shown.

when including more diverse collective patterns and non-global communicators,
this type of communication should also be included.

Selectivity: Selectivity is the second newly introduced metric that is com-
pletely derived from the application layer and considers only point-to-point
communication. Contrary to the distance of locality, selectivity describes the
number of communication partners one particular rank is communicating with
independent of their location in the network.

To calculate the selectivity of a given source rank, all destination ranks are
determined and sorted by data volume exchanged between this pair of ranks. As
locality, selectivity has a threshold of 90% of a rank’s total communication volume
to describes how many destination ranks participate in the communication set.
This threshold is introduced because many workloads establish at least little
communication across all ranks, but there are significantly fewer ranks that
contribute to the majority of overall communication.

Figure 4.3 depicts the schematic illustration of the selectivity for an exemplary
rank. The y-axis indicates the communication volume that is sent to particular
ranks and the x-axis shows the corresponding receiving ranks.

53

Application Analyses

(Average) Packet Hops: Considering locality at the network layer instead
of the application layer provides additional insights about the effects of network
parameters, such as mapping, topologies, or routing, on communication patterns.
This work defines the network locality as the distance in number of hops between
the source rank and the destination rank. Non-temporal models are used for
different topologies, including a shortest-path routing algorithm each, to calculate
these distances. This means that the entire metric is based on these models and
no replay in a simulator is needed. However, these plain models come at the price
of non-temporal data as opposed to simulations. This means that there is no
information about traffic flows or interaction between messages can be derived.
Although these models are simplified, the derived metrics are accurate and the
results are not affected by these abstractions.

Another function of the network layer is dividing messages in packets that
can be processed by NICs. Hence, MPI messages from the traces are split in the
according number of packets, with a maximum payload size of 4kB. 2. Afterward,
the number of hops a particular packet has to traverse is calculated by the
respective minimal routing algorithm. Due to the non-temporal character of this
model and resulting in the abstinence of congestions and load balancing, shortest-
path routing for all topologies is selected to provide fairness and emphasize the
impact of a particular topology. Formally, packet hops are described as:

packethops =
∑

p∈packets

#hops(p) (4.3)

It is easy to see, that the number of packet hops is highly dependent on the
injection rate of a given application, respectively its communication intensity.
Therefore, it is more appropriate to investigate the average number of hops one
packet has to be transmitted in order to gain locality insights:

hops = packethops

#packets
(4.4)

This metric is particularly helpful to compare different topology/application
combinations. Furthermore, it can be used to determine how good a particular
topology, mapping or routing algorithm exploits locality in the communication

2According to Infiniband standard: https://www.mellanox.com/pdf/whitepapers/
IB_Intro_WP_190.pdf , accessed: 2020-02-16

54

https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf

4.2 Locality and Selectivity in Exascale Proxy Miniapps

pattern, where a lower value indicates a better locality.

Network Utilization/Energy: From the number of packet hops another
metric can be derived, the network utilization. The network utilization indicates
the share of execution time in which links are busy sending, respectively the
compliment share represents the idle time of the network. Another use case is
an estimation of the probability of congestions, including different increments
in hierarchical topologies. However, without exact timing information, this can
only be an indicator and no absolute measure for congestions.

Furthermore, to provide fairness for all topologies, only links and switches
are considered that are transmitting data, when the number of ranks does not
match the number of nodes. This is necessary since not all topologies can be
configured in every size.

Network utilization is formally defined as:

utilization = datavolume

BW · texecution ·#links
(4.5)

Where the data volume can be calculated as:

datavolume =
∑

p∈packets

#hops(p) · size(p) (4.6)

A bandwidth of BW = 12GB/s is assumed, as this is also used in all further
studies in this work. The number of links is a topology property and can easily
be calculated for each topology by the product of diameter and number of nodes.
As a result, the torus has three links per node, assuming switches are integrated
into the NIC, and the fat-tree has a total number of links of #nodes ·#stages

(only half the links for the last stage). The balanced dragonfly is configured with
the same amount of global links as there are nodes are connected to each router
and twice as many routers per group. This results in 3.5 to 3.8 links per node in
the configurations used for these analyses.

While the non-temporal character of these analyses prevents performance
or energy-saving predictions, it enables estimations for the upper bound for
energy-saving possibilities. As in Equation 4.7, the total network is the product
of a link’s power consumption, the execution time, and the number of links.

Etotal = Plink · texecution ·#links (4.7)

55

Application Analyses

The upper bound, however, represents energy saving in an ideal network.
This means, that whenever data is injected into the network, it is transferred at
full network speed, which provides also the highest energy efficiency in terms of
joule per byte, and links are consuming no power when idling. Additionally, this
assumes that links can adjust their link width immediately, which represents a
transition time of 0. The actual usage of the network is determined the network
utilization, which means that the minimal network energy can be calculated as:

Emin = Plink · texecution ·#links ·utilization (4.8)

Emin = Etotal ·utilization (4.9)

Although this metric does not reveal results of any real energy-saving mecha-
nisms, it is an accurate measure for the minimum energy that is required by the
network and represents the upper bound for network energy savings.

4.2.2 Methodology

This section provides an overview of the analyzed applications and the hardware
model that is required to determine the metrics that focus on the network layer.
These simple models enable a fast and in context of these metrics accurate
evaluation without the need of complex and protracted simulations.

4.2.2.1 Applications

Exascale proxy mini-applications aim to represent the most common kinds of
workloads that are expected to be run on exascale systems. This collection
provided by the DoE includes climate models, fluid dynamics, molecular dynamic
simulation, or other compute-intensive scientific applications. The goal of this
selection is to provide information and guidance for designing hardware or even
systems that are expected to run these applications. One benefit of this broad
selection is the variety of different communication patterns that are used on
future HPC systems. A large online repository of proxy mini-application traces at
different scales and problem size are provided by the Sandia National Laboratories
3.

3https://portal.nersc.gov/project/CAL/doe-miniapps.htm, accessed: 2019-11-20

56

4.2 Locality and Selectivity in Exascale Proxy Miniapps

Although this repository provides a huge amount of different traces, several
obstacles exclude particular applications or scales for these analyses. The main
issues are custom communicators, such as particularly custom-created carts of
ranks (i.e. by using MPI_Cart_create) or changes in the communicator size
(MPI_Cart_sub). These changes in the communicator during execution time
can affect identifier and it can not be ensured that ranks have still the same
identifier as they had before the communicator shift. The link of a particular
node to its identifier is crucial for consistent results in all studied metrics. Hence,
traces with these types of collectives are not considered in the context of this
work.

The selection of traces that is used for the following analyses is shown in
Table 4.1. Table 4.1 also provides a brief overview of the fundamental MPI
characteristics, such as communication volume (Vol.) of collective and point-
to-point communication, total execution time, and the respective throughput
(Vol./t). Applications that are marked with a star (*) make use of MPI Derived
Data Types (DDT). The size of DDT is set in the code and needs to be stored
as additional information in the traces. Because the used traces do not provide
this information, the size of the used data type is set to one byte. Although MPI
DDTs appear to have bigger data sizes, this enables scaling results easily to the
actual size if needed.

4.2.3 Hardware Parameters

The number of hops refers to the distance a certain message has to travel
from its source to destination. This distance can be determined with a formal
definition of a particular network topology as well as a routing algorithm. Three
different topologies, each with a minimal routing algorithm, are assumed to be
representative. The first one is a 3D torus, that is equipped with six-port NICs,
which are directly integrated into nodes. Furthermore, a fat-tree that is composed
of 48-port switches and the dragonfly topology are selected. Configurations of
the latter are selected accordingly to the load balancing suggestions by J.Kim et
al. [29], with a = 2h = 2p.

While all trace can be mapped on the torus correspondingly to their size,
configurations for fat-tree and dragonfly cannot always be chosen accordingly
to the number of ranks. To provide fairness in the topology comparisons, only

57

Application Analyses

Time Vol. P2P Coll. Vol./t
Application Ranks [s] [MB] [%] [%] [MB/s]

AMG

8 0.03 3.0 100.0 0.00 116.3
27 0.16 13.6 100.0 0.00 86.98

216 0.30 136.9 100.0 0.00 461.5
1728 2.92 1208 100.0 0.00 413.7

AMR
Miniapp

64 12.93 3106 99.66 0.34 240.3
1728 42.69 96969 99.45 0.55 2271

BigFFT
(Medium)

9 0.18 299.2 0.00 100.0 1659
100 0.50 3169 0.00 100.0 6340

1024 1.89 32064 0.00 100.0 17003

Boxlib CNS
large (*)

64 572.19 9292 100.0 0.00 16.24
256 169.05 15227 100.0 0.00 90.08
256 150.92 15227 100.0 0.00 100.9

1024 67.54 34131 100.0 0.00 505.4

Boxlib
MultiGrid C

64 231.42 23742 99.94 0.06 102.6
256 62.01 44535 99.95 0.05 718.2
256 60.28 44535 99.95 0.05 738.8

1024 20.88 75181 99.94 0.06 3600.9

CESAR
MOCFE (*)

64 0.38 19.0 5.01 94.99 50.3
256 1.10 81.6 5.51 94.49 74.11

1024 3.95 686.2 6.96 93.04 173.9

CESAR
Nekbone (*)

64 11.83 5307 100.0 0.00 448.8
256 3.17 1272 50.66 49.34 401.8

1024 5.15 13232 99.98 0.02 2568.8

Crystal Router
10 0.14 133.8 100.0 0.00 930.3

100 0.71 3439.9 100.0 0.00 4854
1000 1.28 115521 100.0 0.00 90491

EXMATEX
CMC 2D
Multinode

64 842.80 16.0 0.00 100.0 0.0190
256 208.44 16.1 0.00 100.0 0.077

1024 58.85 16.4 0.00 100.0 0.279

EXMATEX
LULESH

64 54.14 3585 100.0 0.00 66.23
64 44.03 3585 100.0 0.00 81.43

512 50.24 33548 100.0 0.00 667.8

FillBoundary 125 2.32 10209 100.0 0.00 4393
1000 5.26 92323 100.0 0.00 17549

MiniFE
18 59.70 1615 100.0 0.00 27.06

144 61.06 16586 99.99 0.01 271.63
1152 84.75 147264 99.96 0.04 1737.7

MultiGrid_C 125 0.77 374 100.0 0.00 4889.0
1000 3.57 2973 100.0 0.00 832.83

PARTISN (*) 168 2.2E+6 42123 99.96 0.04 0.02
SNAP (*) 168 1.2E+6 128561 100.0 0.00 0.11

Table 4.1 Overview of MPI-based exascale proxy applications.

58

4.2 Locality and Selectivity in Exascale Proxy Miniapps

actually used links are considered in this model. For all topologies exist a
variety of different routing algorithms that differ significantly in their complexity.
However, since traffic flows and load balancing are not considered here, shortest
path routing is used for all topologies in order to emphasize their particular
locality features. An overview of all different configurations is shown in Table 4.2
(rad being radix, st being number of stages).

Torus fat-tree Dragonfly
Size (x,y,z) Nodes (rad, st) Nodes (a,h,p) Nodes

8 (2,2,2) 8 (48,1) 48 (4,2,2) 72
9 (3,2,2) 12 (48,1) 48 (4,2,2) 72
10 (3,2,2) 12 (48,1) 48 (4,2,2) 72
18 (3,3,2) 18 (48,1) 48 (4,2,2) 72
27 (3,3,3) 27 (48,1) 48 (4,2,2) 72
64 (4,4,4) 64 (48,2) 576 (4,2,2) 72
100 (5,5,4) 100 (48,2) 576 (6,3,3) 342
125 (5,5,5) 125 (48,2) 576 (6,3,3) 342
144 (6,6,4) 144 (48,2) 576 (6,3,3) 342
168 (7,6,4) 168 (48,2) 576 (6,3,3) 342
216 (6,6,6) 216 (48,2) 576 (6,3,3) 342
256 (8,8,4) 256 (48,2) 576 (6,3,3) 342
512 (8,8,8) 512 (48,2) 576 (8,4,4) 1056
1000 (10,10,10) 1000 (48,3) 13824 (8,4,4) 1056
1024 (16,8,8) 1024 (48,3) 13824 (8,4,4) 1056
1152 (12,12,8) 1152 (48,3) 13824 (10,5,5) 2550
1728 (12,12,12) 1728 (48,3) 13824 (10,5,5) 2550

Table 4.2 Configurations for different topologies at scale.

As shown in Table 4.2, about one quarter of the investigated applications
heavily rely on collective communication. The execution of collective operations
in HPC systems can differ between network technologies or vendors, due to
custom implementations, such as special broad- and multicast support. Since
this work follows a technology-independent approach, non of these customized
solutions is implemented.

The model in this work implements a simpler and robust approach: collec-
tives are translated to point-to-point messages, which then map the pattern
of the particular operation. For example, an all-to-all call is performed by all
ranks sending a p2p message to every other rank. In particular, there are no
hardware-implemented tree structure or similar, which allow distributing data

59

Application Analyses

more efficiently. Although this pattern does not represent today’s hardware,
it ensures that the network is maximally utilized to give a stable estimate for
utilization and network energy. Additionally, due to the non-temporal character
of these studies, the overhead does not affect performance, since interactions
between messages, e.g. congestions, are not considered here.

4.2.4 Results

Locality can be investigated at different levels. Thus, the studied metrics differ
also in their level of abstraction. The newly introduced metrics are analyzed in
the application layer, which allows to extract information directly from the traces.
The remaining metrics are located in the network layer and demand for additional
network information, which are here provided by a simple, non-temporal network
model. In addition to the introduced metrics, the network layer analyses contain
another brief study about multi-core effects on network traffic. Both categories
are presented in the following. More details about the trace format and the
analyses are provided in Chapter chapter 5.

4.2.4.1 Application Layer

Rank locality and selectivity studies can be directly performed on traces without
any additional information needed. Also, this first analysis focuses only on point-
to-point communication. Because only global communicators are considered,
collectives can be assumed as a constant bias on the network, while communication
variations in distance and number of partners occur from point-to-point messages.

An overview of all applications and their rank distance and selectivity is
shown in Table 4.3. Klenk and Fröning [65] introduced the peers metric, which
describes the peak number of peer ranks any rank is addressing via point-to-point
communication in a given application, and found that the number of peers
is often significantly smaller than the total amount of ranks. This metric is
particularly interesting in comparison to the selectivity, which excludes ranks
that only contribute in a minor way to the overall communication. However, even
the relatively small number of peers for most workloads indicates point-to-point
communication only happens between subset of ranks instead of being distributed
over all ranks.

60

4.2 Locality and Selectivity in Exascale Proxy Miniapps

Workload Ranks Peers Rank distance (90%) Selecitivity (90%)

AMG

8 7 3.7 2.8
27 26 8.7 4.2

216 127 35.8 5.2
1728 293 143.8 5.6

AMR_Miniapp 64 39 27.1 8.3
1728 490 348.3 13.0

Boxlib CNS
large (*)

64 63 35.1 5.7
256 255 109.2 5.4
256 255 109.2 5.4

1024 1023 661.5 20.8

Boxlib
MultiGrid C

64 26 27.1 4.4
256 26 54.3 4.4
256 26 54.3 4.4

1024 26 109.1 4.9

CESAR
MOCFE (*)

64 12 51.3 8.9
256 20 195.3 14.0

1024 20 771.8 13.3

CESAR
Nekbone (*)

64 27 15.8 4.8
256 15 28.4 5.4

1024 36 127.9 10.2

Crystal
Router

10 4 6.4 3.0
100 8 44.3 5.8

1000 11 334.3 8.9

EXMATEX
LULESH

64 26 15.7 4.5
64 26 15.7 4.5

512 26 63.7 5.0

FillBoundary 125 26 42.3 4.8
1000 26 219.1 5.3

MiniFE
18 8 7.4 3.4

144 22 31.5 4.6
1152 22 91.8 5.1

MultiGrid_C 125 22 59.7 5.5
1000 22 392.0 5.4

PARTISN (*) 168 167 13.8 3.4
SNAP (*) 168 48 139.1 9.8

Table 4.3 Workload characteristics in different application-layer metrics.

Rank Locality

Rank locality and distance indicate the average communication distance between
ranks weighted by the transmitted data volume. The results for rank distances

61

Application Analyses

at all scales are provided in Table 4.3. Rank locality, however, is the reciprocal
of the rank distance, which means a higher locality indicates a closer distance.
Although there is no obvious correlation between rank distance and the number of
ranks or peers, this metric allows to draw conclusions about the communication
pattern and problem structure, respectively. For instance, nearest neighbor
communication is widely used in scientific applications and provides good locality
properties. Assumed this corresponds to communication with a distance of two
or less, which remains constant at all scales, this pattern could be identified by
a locality of more than 50%. This is also true for scattered messages to other
ranks since only the nearest 90% of data volume are considered.

0 1 2 3 4

(a)

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

(b)

Fig. 4.4 Nearest neighbors (green) of a particular node (blue) for one dimensional
problem (a) and two dimensional problem (b).

However, this reflects only a one-dimensional perspective. A spatial distance
of one in all other dimensions results in a much low locality. This problem is shown
in Figure 4.4, which depicts nearest neighbor schemes in one (Figure 4.4a) and
two (Figure 4.4b) dimensions. In the former, the linear numbering matches the
spatial setting of neighbors, the latter shows longer distances between neighbor
ranks in the y-dimension, for instance from rank seven to twelve. As a result,
additional dimensions cause a constant offset that is determined by the number
of nodes per dimension. This can be used to evaluate the dimensionality of a
given workload by analyzing rank locality in different dimensions.

As shown in Table 4.3, the rank distance increases with the number of ranks for
all workloads, which suggests that there is no application with a one-dimensional
structure. The evaluations of more dimensions are shown in Table 4.4 for an
exemplary selection of applications. CNS and MultiGrid_C show no particular
correlation to one of the dimensions, which indicates that these workloads do
not have a nearest neighbor communication pattern. This also coincides with
the heat map depicted in Figure 4.5a. One example of an application with a

62

4.2 Locality and Selectivity in Exascale Proxy Miniapps

two-dimensional character is PARTISN, which has a 2D rank locality of 100%.
The same pattern is also shown in Figure 4.5b. Last, LULESH and AMG have
a three-dimensional structure, as indicated by Figure 4.5c and Figure 4.5d and
quantified by a rank locality of 100%.

Rank Locality
Workload Ranks 1D 2D 3D

AMG 216 3% 17% 100%
1728 1% 8% 100%

Boxlib CNS
large

64 3% 13% 21%
256 1% 8% 13%

1024 0% 3% 7%
EXMATEX

LULESH
64 6% 24% 100%

512 2% 6% 100%

MultiGrid_C 125 2% 6% 17%
1000 0% 3% 9%

PARTISN 168 7% 100% 22%

Table 4.4 Exemplary workloads for different dimensionalities in rank locality.

Selectivity

The selectivity metric indicates the number of ranks that make up the largest
part (i.e. 90%) of the overall point-to-point communication of a particular rank.
This metric neglects positions and ranks are sorted by their exchanged data
volume. Figure 4.6 depicts the trends for each application at one exemplary size.
The x-axis indicates the number of ranks and the y-axis the relative amount of
communication volume. In particular, selectivity equals the intersection in which
a curve cuts the 90% traffic share. Although the number of ranks varies between
18 and 168, in every application 90% of the communication is exchanged between
only small subsets of ten or even fewer ranks. Looking at larger scales that
are shown in Table 4.3 only five configurations (AMR (1728 ranks), CNS (1024
ranks), MOCFE (256 and 1024 ranks), and Nekbone (1024 ranks)) exceed this
threshold. However, even the largest configuration of 1728 ranks has a selectivity
of only 13.

Additionally, the overall trend indicates that selectivity slightly increases
with the number of ranks but is also slowing down, indicating a saturation.
An example of this scaling trend is depicted in Figure 4.7. The curves of the

63

Application Analyses

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54
57

60
63 0.0

0.4

0.8

1.2

1.6

2.0

1e7

(a) CNS

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

16
1

0
7

14
21
28
35
42
49
56
63
70
77
84
91
98

105
112
119
126
133
140
147
154
161

0.0

1.5

3.0

4.5

6.0

1e7

(b) PARTISN

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54
57

60
63 0.00

0.25

0.50

0.75

1.00

1e7

(c) LULESH

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

20
8

0
9

18
27
36
45
54
63
72
81
90
99

108
117
126
135
144
153
162
171
180
189
198
207

0

25000

50000

75000

100000

(d) AMG

Fig. 4.5 Communication patterns in heat maps (a lighter color indicates more
communication in Bytes).

four AMG application’s sample sizes are shifting to the right with an increasing
number of ranks. Although the slope varies for other applications, the general
trend remains the same. There are only three workloads (CNS, MOCFE, and
MultiGrid_C) that slightly decrease selectivity when increasing the number of
ranks, which seems to be a variation caused by different partitioning than a
particular trend.

Furthermore, all applications can be divided into two classes: The first one,
including Boxlib MultiGrid C, Crystal Router, LULESH, and Multigrid_C,
have a constant ratio between their selectivity and number of peers at all scale.
The remaining applications do not show any correlation between selectivity and
number of ranks or peers.

64

4.2 Locality and Selectivity in Exascale Proxy Miniapps

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ●

2 4 6 8 10 12 14

0
20

40
60

80
10

0

ranks

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

re
la

tiv
e

sh
ar

e
of

 to
ta

l n
et

w
or

k
tr

af
fic

 [%
]

●

●

MOCFE (64)
MiniFE (18)
Lulesh (64)
Multigrid_C (125)

Nekbone (64)
Boxlib CNS (64)
AMR (64)
Partisn (168)

AMG (27)
Boxlib MutliGrid (64)
Fillboundary (125)
SNAP (168)

Fig. 4.6 Selectivity trends for all workloads.

4.2.4.2 Network Layer

After looking at the application layer, network layer effects, including the impact
of different hardware configurations on locality, are analyzed in the following.
However, this requires a framework of a particular network that includes network
properties, such as mapping and topology, which are used as input for a non-
temporal model. This model provides precise results about the distances in
terms of hops and traffic volume in the network. This input is particularly useful
during a system’s design stage since these metrics can be directly translated into
minimal network energy consumption or minimal packet latency. Here, traffic
includes both point-to-point and collective messages.

Multi-Core Effects

The first study focuses on the impact of multi-core systems on network traffic.
In particular, this study investigates how the traffic scales with different ratios of
cores to network endpoints. This study is topology-independent and indicates the
traffic volume that is transmitted on the network, independent of the distance

65

Application Analyses

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

2 4 6 8 10 12 14

0
20

40
60

80
10

0

ranks

re
la

tiv
e

sh
ar

e
of

 to
ta

l n
et

w
or

k
tr

af
fic

 [%
]

● 8 ranks 27 ranks 216 ranks 1728 ranks

Fig. 4.7 Scalability of selectivity (example: AMG).

between source and destination. The number of cores per socket increases
continuously, which allows to execute more ranks on the same node and, thereby,
reducing the amount of data that has to be exchanged on the interconnection
network.

The scaling trends are shown in Figure 4.8. To sustain network traffic and
avoid sophisticating scaling effects, only applications that have a configuration
of at least 512 ranks are considered here. These ranks are mapped consecutively
to one node, according to the number of cores. The x-axis indicates the number
of cores per socket, where one core executes one rank. The y-axis shows the
amount of inter-node traffic relative to the one-rank-per-node configuration.

The general trend for all applications shows a varying degree of network
traffic decrease between one to eight cores per socket and then reaches a plateau.
Note that the variations in the course of the scaling are caused by mapping
effects. As shown in the selectivity studies, there are subsets of ranks that heavily
communicate with each other. A particular configuration can locate this subset
into one node or splits it up into multiple nodes, which causes some fluctuation.

66

4.2 Locality and Selectivity in Exascale Proxy Miniapps

●

●

● ● ● ● ● ●

0 10 20 30 40

0
20

40
60

80
10

0

cores/die

●

● ● ●

● ● ● ●

re
la

tiv
e

sh
ar

e
of

 to
ta

l n
et

w
or

k
tr

af
fic

 [%
]

●

●

MiniFE (1024)
Boxlib Multigrid_C (1024)
Fillboundary (1000)
AMG (1728)

BigFFT (1024)
Lulesh (512)
Multigrid_C (1000)
Nekbone (1024)

Boxlib_CNS (1024)
Crystal Router (1000)
AMR (1728)

Fig. 4.8 Network traffic for different cores/socket configurations.

It is rather surprising that all applications reach saturation of inter-node traffic
at 8-16 cores per socket. Although the level of saturation differs among them,
this seems to be the optimum for minimizing network traffic and there are no
evident improvements when further scaling, as long as the application’s scale is
much larger than the number of cores. Notably, the Fillboundery application
reaches its saturation close to zero inter-node traffic, .

Topological Locality

Topological locality refers to actual distances in the network in terms of hops.
The following studies focus on how topologies affect this network locality. To
provide more realistic results for network overhead, large messages are split up
into packets with a maximum payload of 4kB, and each packet in the network is
expanded with a 48B header. Although the header size is small compared to the
maximum payload size, its impact on the overall traffic can sum up especially if
an application uses many small messages. Besides the total number of packet
hops, the average number of hops (hops) is provided to ensure comparability

67

Application Analyses

3D Torus fat-tree Dragonfly
Packet Packet Packet

Workload Ranks Hops hops Hops hops Hops hops

AMG

8 4.2E+03 1.57 5.7E+03 2.00 8E+03 2.83
27 2.9E+04 1.74 3.5E+04 2.00 7E+04 4.01

216 5.5E+05 2.36 8.2E+05 3.41 1E+06 4.14
1728 6.0E+06 2.62 8.5E+06 3.62 1E+07 4.28

AMR_Miniapp 64 5.9E+06 2.93 6.6E+06 3.20 9E+06 4.19
1728 8.9E+09 8.97 4.9E+09 4.86 5E+09 4.74

BigFFT
(Medium)

9 1.0E+06 1.56 1.2E+06 1.78 2E+06 2.91
100 7.7E+07 3.40 2.7E+08 3.52 3E+08 4.36

1024 6.4E+10 8.00 3.5E+10 4.35 4E+10 4.69

Boxlib CNS
large (*)

64 5.7E+06 2.99 6.5E+06 3.23 9E+06 4.23
256 1.5E+07 4.93 1.2E+07 3.75 2E+07 4.49
256 1.5E+07 4.93 1.2E+07 3.75 2E+07 4.49

1024 1.1E+08 7.97 6.4E+07 4.35 7E+07 4.68

Boxlib
MultiGrid C

64 2.6E+07 2.92 3.0E+07 3.19 4E+07 4.19
256 3.9E+08 4.94 3.0E+08 3.76 4E+08 4.50
256 3.9E+08 4.94 3.0E+08 3.76 4E+08 4.50

1024 8.9E+09 7.96 4.9E+09 4.33 5E+09 4.67

CESAR
MOCFE (*)

64 2.4E+06 2.96 2.7E+06 3.28 3E+06 4.24
256 6.2E+07 4.96 4.7E+07 3.80 6E+07 4.53

1024 3.2E+09 7.98 1.7E+09 4.36 2E+09 4.69

CESAR
Nekbone (*)

64 4.0E+07 2.92 4.6E+07 3.25 6E+07 4.24
256 1.2E+09 4.99 9.0E+08 3.80 1E+09 4.53

1024 2.5E+10 7.96 1.4E+10 4.35 1E+10 4.69

Crystal
Router

10 2.4E+05 1.74 2.7E+05 2.00 4E+05 3.18
100 1.4E+06 2.41 7.4E+06 2.76 1E+07 3.61

1000 2.8E+08 4.69 1.9E+08 3.26 2E+08 3.82
EXMATEX

CMC 2D
Multinode

64 7.9E+05 3.00 8.4E+05 3.28 1E+06 4.25
256 5.2E+06 5.00 4.0E+06 3.81 5E+06 4.54

1024 3.4E+07 8.00 2.0E+07 4.36 2E+07 4.69

EXMATEX
LULESH

64 2.3E+06 2.70 3.8E+06 3.17 5E+06 4.18
64 2.3E+06 2.70 3.8E+06 3.17 5E+06 4.18

512 1.7E+08 5.80 1.3E+08 3.88 2E+08 4.60

FillBoundary 125 6.6E+06 3.27 6.9E+06 3.32 9E+06 4.13
1000 9.9E+07 7.13 6.6E+07 4.15 8E+07 4.55

MiniFE
18 8.9E+05 1.82 1.1E+06 1.90 2E+06 3.69

144 4.5E+07 3.97 4.2E+07 3.62 5E+07 4.40
1152 4.6E+09 7.98 2.6E+09 4.47 3E+09 4.71

MultiGrid_C 125 1.2E+06 3.52 1.3E+06 3.57 2E+06 4.33
1000 1.0E+08 7.43 6.0E+07 4.31 7E+07 4.66

PARTISN (*) 168 8.0E+07 2.70 1.0E+08 3.04 1E+08 3.88
SNAP (*) 168 1.6E+08 3.85 1.5E+08 3.74 2E+08 4.41

Table 4.5 Network locality aspects in torus, fat-tree, and dragonfly.

68

4.2 Locality and Selectivity in Exascale Proxy Miniapps

between applications. The results for all configurations are provided in Table 4.5.

3D Torus

Due to its high modularity, the 3D torus can be configured to every problem
size in this study. For small problem sizes (<256 ranks) the torus shows better
locality in terms of a lower number of average hops than the other topologies. The
only exception is the SNAP application for which the fat-tree provides the best
locality. In larger configurations, however, the hops in the torus scale stronger
with the number of ranks than in both other topologies. This is caused by the
also stronger scaling diameter of a torus. The only application to which this does
not apply is AMG. Applications that have a nearest-neighbor communication
patter, and a rank locality of close to 100% in a 2D or 3D grid respectively, are
generally a good fit for the torus, but can also result in a larger hops due to
their share of collective communication, which is spread evenly over the entire
network.

fat-tree

All fat-trees here are composed of 48-port switches, which is a common radix
size to set up large systems with only a few stages. This radix results in only
three different configurations that are sufficient to map all configurations onto
this topology. Since the ranks are mapped consecutively to the nodes, the
unused parts of the fat-tree can be ignored without affecting the results. For all
applications, the fat-tree seems to be robust against scaling effects, since there is
only a slight increase in hops with an increasing number of ranks. The maximum
average hop distance is 4.47 for MiniFE at 1152 ranks. Surprisingly, except for
AMR (1728 ranks), the fat-tree provides always a smaller number of packet hops
than the low-diameter dragonfly.

Dragonfly

Although four different configurations are sufficient for the dragonfly to cover
all applications, the incremental mapping seems to have a higher impact here
as opposed to the fat-tree. Since minimal routing is used, the number of hops
can vary from two in the best case (destination is connected to the same switch)
to five in the worst case (destination is part of another group and the switches

69

Application Analyses

are not directly connected). Hence, these are also the boundaries for the hops.
Although the dragonfly is known as a low diameter topology, the hops is close to
the maximum in most cases. Only for the AMG (8 ranks) workload, the hops
remains below three hops on average, since this configuration consists of only
one group. This is most likely causes by a relatively small group size, which
originates from the load balance rule and low switch radices. The small group
size caused a large amount of global traffic and increases the number of hops. In
particular, 95% of all messages over all applications use the global inter-group
link. However, non-minimal adaptive routing algorithms are commonly used in
the dragonfly topology, which further increases the number of hops.

Network Utilization/Energy Impacts

Network utilization is a useful parameter to gain insights about the dimensioning
of the network and the probabilities of congestion, respectively, as well as an
estimation about the minimal energy demand. A smart mapping or a good
fitting topology is most suitable to improve utilization for a particular application.
The utilization results are shown in Table 4.6. Surprisingly, there is only one
application (BigFFT) that utilizes the network for more than 1%. Looking
at topologies, most applications follow a trend in which the fat-tree shows the
highest utilization, while especially for a large number of ranks, a torus’ utilization
exceeds the one of both fat-tree and dragonfly. The trend is correlated to the
link/node ratio and the hops. While the former remains more or less the same,
the latter shows a similar trend as the utilization.

Another important use case for network utilization is an estimation for the
upper bound of energy-saving potentials. Although the non-temporal approach of
these studies is not suitable to evaluate actual energy-saving mechanisms, network
utilization can be directly correlated to the minimum energy consumption, as
shown in Equation 4.8. This minimal energy does not only consider the data
volume but also takes spatial locality, e.g. number of hops per packet, into
account. The complement of this minimal energy equals the upper bound
for energy-saving potentials and allows to compare topologies regarding their
(theoretical) energy efficiency. However, the utilization and, thereby, the minimal
energy is too low to provide useful comparisons, which might also be caused by
a sparser communication volume of proxy applications compared to actual HPC
applications.

70

4.2 Locality and Selectivity in Exascale Proxy Miniapps

Network utilization
[%] [%] [%]

Workload Ranks 3D Torus fat-tree Dragonfly

AMG

8 0.0052 0.0303 0.0116
27 0.0012 0.0034 0.0034

216 0.0008 0.0032 0.0021
1728 0.0001 0.0004 0.0002

AMR_Miniapp 64 0.0034 0.0058 0.0048
1728 0.0278 0.0229 0.0119

BigFFT
(Medium)

9 0.6721 3.0725 1.2943
100 7.4849 10.5544 7.6985

1024 47.2317 38.4346 22.1491

Boxlib CNS
large (*)

64 0.0002 0.0003 0.0003
256 0.0004 0.0005 0.0004
256 0.0005 0.0006 0.0004

1024 0.0012 0.0010 0.0006

Boxlib
MultiGrid C

64 0.0011 0.0020 0.0017
256 0.0035 0.0045 0.0032
256 0.0036 0.0046 0.0033

1024 0.0106 0.0092 0.0054

CESAR
MOCFE (*)

64 0.0498 0.0769 0.0605
256 0.1216 0.1368 0.0895

1024 0.4495 0.3656 0.2108

CESAR
Nekbone (*)

64 0.0027 0.0090 0.0081
256 0.3447 0.3882 0.2541

1024 0.0029 0.0057 0.0035

Crystal
Router

10 0.0469 0.1938 0.0882
100 0.0408 0.0637 0.0490

1000 0.1475 0.1531 0.0959
EXMATEX

CMC 2D
Multinode

64 2.0E-05 3.0E-05 2.4E-05
256 0.0001 0.0001 0.0001

1024 0.0008 0.0007 0.0004

EXMATEX
LULESH

64 0.0004 0.0013 0.0011
64 0.0004 0.0016 0.0013

512 0.0005 0.0020 0.0012

FillBoundary 125 0.0319 0.0466 0.0351
1000 0.0245 0.0248 0.0160

MiniFE
18 0.0008 0.0031 0.0015

144 0.0017 0.0025 0.0017
1152 0.0039 0.0037 0.0022

MultiGrid_C 125 0.0038 0.0056 0.0041
1000 0.0013 0.0013 0.0008

PARTISN (*) 168 7.4E-08 1.6E-07 1.2E-07
SNAP (*) 168 4.2E-07 6.2E-07 4.0E-07

Table 4.6 Network utilization for different topologies.

71

5

C
h

a
p

t
e

r

Simulation Tools

This chapter provides a summary of different tools and frameworks that are used
to analyze different approaches and perform the evaluation of various power-
saving strategies. Hardware design is a costly process regarding both money and
time. Hence, it is not feasible to evaluate every new approach in real hardware.
As a consequence, the standard procedure is to test new features in simulators to
determine their impact. Following this approach, all experiments are performed
in the SAURON network simulator [66], which can either simulate synthetic
traffic patterns or use recorded application traces.

5.1 Network Simulator

In order to analyze the impact of hardware features without actually imple-
menting them, there are two different possibilities: an analytical model or a
simulation. While the former calculates static results depending on its input
parameters, simulations are imitating the behavior of systems over time. This
time-dependency allows taking snapshots of the system. Afterward, these snap-
shots can help to fully retrace and understand the processes going on in different
parts of the system. However, simulations are usually more costly in terms of
computations and time compared to an analytical model. But since a detailed
understanding of internal processes is key to derive a model, the focus of this
work is on detailed hardware simulations.

73

Simulation Tools

Simulations can be performed at different levels of accuracy. The more details
implemented in a simulator, the more accurate are the simulated results. But
greater accuracy is gained to the expenses of decreased performance since a
higher detail-level results in increasing computation time.

In order to evaluate approaches for saving energy in interconnection networks,
it is crucial to provide a high level of accuracy because there are not only multiple
parameters that can be tuned for better results but these parameter tunings
also impact various processes and effects in the network. For example, does a
reduced bandwidth in certain links consume less power. But it can also decrease
performance which leads to increased energy consumption. Furthermore, a locally
decreased bandwidth can cause congestion in the network and, therefore, impact
other traffic flows and slow down the entire network.

5.1.1 SAURON Simulator

SAURON (“Simulador de ArqUitecturas de Red en OmNet++”, Spanish for "sim-
ulator of network architectures in OMNeT++") is a cycle-accurate, OMNeT++-
based network simulator, developed by Pedro Yébenes at the Universidad Castilla-
La Mancha in Albacete, Spain [66].

OMNeT++

OMNeT++ is a C++-based simulation framework for modular network architec-
tures. An OMNeT++ simulation model usually consists of multiple modules, that
can be either "simple" or "compound". Compound modules are always composed
of at least two or more simple modules or, again, compound modules. This allows
the developer to introduce various levels of hierarchy. The framework provides
certain interfaces for simple modules that allow, for example, communication
between different modules via message passing.

To define the structure of a network model, OMNeT++ uses a declarative
Network Description (NED) language. Features of different modules are defined
as parameters, while connections for message and information exchange between
different modules are defined as gates in the respective NED file. The network
parameters itself are defined in Initialization (INI)-files. This structure allows
running different simulations without re-compiling the simulator code and to
define a set of values for each parameter. If one or more parameters are defined

74

5.1 Network Simulator

with a set of values, OMNeT++ creates a configuration for every possible
combination of these parameters and runs them independently while output
data is stored in separate output files. Besides the hardware description in the
network layer, a complex simulation model in OMNeT++ also has an application
layer. This application layer is used to generate traffic, which is injected into the
network. Usually, this can either be synthetically generated traffic patterns or
input data from real application traces.

HCA[0]

SW[0]

HCA[1]

SW[1]

HCA[2]

SW[2]

HCA[3]

SW[3]

HCA[4]

SW[4]

HCA[5]

SW[5]

HCA[6]

SW[6]

HCA[7]

SW[7]

HCA[8]

SW[8]

powerConf

system

Torus3D_energy

Fig. 5.1 Top-level view of a 3x3 torus system structure.

SAURON

The top part of SAURON’s network layer shows the system view of the network
and is the core of the network model. It contains all essential components, in
particular all instances of links, switches, and Host Channel Adapter (HCA)s.
HCAs model the interface between the host node and the network. The network
model also shows the connections in the network and, therefore, depicts the
underlying network topology, defined in the INI file. An example network layer
layout of a 3x3 torus in the OMNeT++ Graphical User Interface (GUI) is shown
in Figure 5.1. Each switch is equipped with a HCA to source and sink packet.

75

Simulation Tools

This emulates a direct network, where switch and HCA are integrated into the
NIC. Furthermore, the topology has a system module, in which are general
network parameters defined and statistics recorded. The powerConf module
provides all energy and power-related functionality at the system level and also
records energy-based statistics. Note that, the OMNeT++-GUI draws the line
in the shortest distance, so the wrap-around links are overlapping with other
links.

Both the switch and the HCA module are compound models. The design of the
HCA module is depicted in Figure 5.2. Packets that are injected into the network
by the application layer are inserted into the injection queue. Additionally, if
multiple applications are running in the simulator, each application has its queue
to avoid interactions between different applications. Once a packet is in the
injection queue, the crossbar register and arbiter handle these packets and send
them to the port which forwards them into the oppositely connected switch.
When packets traverse over the network and reach their final destination, they
arrive at the port, then they are forwarded to the sink. There, the packets are
deleted and the system is notified that the packet arrived at its destination.

port

arbiter crossbar

sink

injQ

HCA module

Fig. 5.2 Structure of the HCA interface in SAURON.

The other major compound module is the switch module. Its structure
is shown in Figure 5.3. Similar to the HCA module, arriving and outgoing
packets are handled in the port modules. Furthermore, this module performs the
routing, packets are assigned to their respective Virtual Output Queue (VOQ)

76

5.1 Network Simulator

inside the input buffers, and feature a VC-level credit-based flow control. The
actual switching logic is modeled in the crossbar register and arbiter. Once
a packet has got an assigned output port, it is stored in the crossbar register
and wait to be processed. The decision about the order in which packets are
sent through the crossbar is made in the arbiter. Additionally, the arbiter
also tracks available credits and includes logic to assign packets to VCs and
VOQs. The basic switching method used in this simulation model is virtual
cut-through switching, which requires only the header information to make all
routing decisions. Payload packets are then forwarded the same way. Switches
in SAURON are input-queue-based switches which means that the buffers are
located only at the input port. Depending on the number of VCs, the buffers
are partitioned in the same way, and packets are stored in the buffer according
to their VC.

The SAURON simulator provides a variety of different topologies, such as
different tori, dragonflies, slim-flies, or k-ary n-trees, each with multiple suitable
routing algorithms to choose from. The topology defines the switch radices as
well as the rules in which way the switch modules are connected. The setting
for each simulation, which also includes the number of nodes, buffer sizes, and
message sizes, for instance, are defined in the .ini-file. Another part of SAURON
is the system manager, which collects the statistics of all packets in the network
to generate performance statistics at the end of the simulation.

Besides the network layer, there is the application layer, which models an
application running on the system and contains the following modules: the
application manager module and one or more application modules. Further on,
these application modules can either be a synthetic application module or a
trace-based application module.

Generally, messages are generated inside the application module and forwarded
to the application manager for further processing. The application manager is
also used for a statistical recording of predefined messages or network properties.
The actual instance of the application module depends on the underlying traffic
pattern. As the name suggests, the synthetic application generates synthetic
traffic which can follow different patterns. These patterns vary from uniform
traffic, which utilizes the network evenly to more sophisticated patterns that allow
controlling of traffic flows in all areas of the network. On the contrary, the trace
application module does not generate its pattern. It uses traces files, which are

77

Simulation Tools

port[HCA]

port[0] port[1] port[2] port[3] port[4] port[5]

Arbiter Crossbar

SW[0]

Fig. 5.3 Schematical blueprint of a SAURON switch.

previously recorded from actual applications on real systems, to set up messages
for the simulator. This allows testing problems and possible solutions that are
tailored to a certain configuration including hardware and a special traffic pattern.
It is especially useful when the impact of new features on current systems are
evaluated. The SAURON simulator has included an existing TraceLib [67] that
uses VEF traces as input data. Once a message is generated in the application
module, it is sent to the application manager. There, the message is split into
the resulting number of packets and these packets are then forwarded to the
injection queue in the HCA module of the respective sending node. Additionally,
most of the performance statistics for the entire network are recorded here.

For more details about the introduced modules and their actual implementa-
tion, see [68].

5.2 Energy-Aware Simulations

Although SAURON provides a wide range of statistics, these statistics do not
include power and energy at all levels. Besides energy-awareness of the simulation
tool, the right setting is also key to investigate the potentials and impact of
power saving in interconnection networks correctly. The following section provides

78

5.2 Energy-Aware Simulations

information about the implementation of these subjects in the context of this
work.

5.2.1 Energy Features

As explained in chapter 3, the power consumption of interconnection networks
is mainly driven by serialization technology inside linkports. Therefore, this is
the obvious choice for reducing energy consumption. Power saving can either be
achieved by frequency or link width scaling. While frequency can be adjusted by
the clock multiplier, link width can be scaled by switching on and off parallel
lanes inside one link. Therefore, both scaling methods are restricted to discrete
values instead of continuous scaling, independent of the applied technique. Based
on these discrete values, different power states can be derived. Each power state
represents a certain frequency/link width combination and features a resulting
bandwidth and a measured energy efficiency. An overview of all possible power
states from the analysis in chapter 3 is shown in Table 5.1.

Index # lanes Frequency [GHz] BWs [Gbit/s] Energy/Data [nJ/bit]
0 0 0 0 0
1 4 2.5 8 688
2 4 5 16 350
3 4 10 32 178
4 8 2.5 16 394
5 8 5 32 203
6 8 10 64 106
7 12 2.5 24 296
8 12 5 48 154
9 12 10 96 82

Table 5.1 Power states implemented in the SAURON simulator.

These power states are implemented into the simulator by adding them as
properties of the link module. In order to set the right power state for each
link, the system manager module was extended to a power system manager.
This power system manager collects all statistics measured in the entire system.
Besides pre-existing performance data, the power system manager also takes
track of the current power state of every link, the time spent in each power
state, which is necessary to calculate the overall energy consumption, and the
utilization of each link. The utilization is decisive for choosing the right power

79

Simulation Tools

state. Based on these statistics, the link modules can change their power states
and adjust them to their current utilization, for example. Although it looks
like a centralized management unit, the decisions are made decentralized inside
each port and are only based on its statistics. Collecting all information in one
module reduces overhead and it allows easily introducing an additional energy
management unit, which could be used to adjust power states of certain links
based on network information. This could be especially useful to implement
advanced central managed global policies, which try to remain connectivity or to
cap the maximum latency caused by the energy-saving mechanisms. However,
this work focuses on a technology agnostic, decentralized approach.

5.2.2 Traffic Pattern

Another topic that is crucial for reliable results is the traffic pattern used in
the simulator. SAURON generally includes two approaches to simulate network
traffic: synthetic patterns and application traces.

Synthetic Traffic Pattern

Messages, send in the simulation from one node to another, are generated in
the application module. The most simple approach is using synthetic traffic
patterns, generated by the synthetic application module. This approach is widely
used when simulations aim for certain levels of network utilization, but the
actual utilization of a particular link can be neglected. Two common pattern are
uniform random traffic and hot spot traffic. Uniform random patterns generate
messages with a pseudo-random source and destination and aim to split the total
traffic evenly over the network. Contrary to the balanced uniform pattern, hot
spot patterns aim to stress particular regions of the network. In this pattern,
multiple nodes send messages to one single node to generate a congestion tree.
Additionally, all nodes that are not sending to the hot spot node generate a
uniform random pattern again. For both patterns, the exact parameters, such
as network utilization or the number of nodes participating in the congestion
tree can be configured in the simulator. The pseudo-randomness of the source-
destination pair ensures that simulations with the same input parameters deliver
the same results.

80

5.3 MPI Traces

Trace-Based Pattern

Besides the synthetic application module, SAURON includes a trace application
module, which generates messages from traces. MPI traces are previously
recorded traffic patterns of applications running on actual existing systems. To
read traces, SAURON uses a tracelib [67], which processes traces in the VEF
format. In this format, traces are self-related, i.e. trace entries contain task-
based dependencies. Periods between two sending activities are assumed as
computation time in the simulator, which enables the overlapping of computation
and communication in simulations.

The most common approach to save energy is exploiting idle times to reduce
energy consumption when the resource is not working. In the context of inter-
connection networks, these idle periods are the duration in which there is no
traffic on a certain link. Therefore, the feasibility and quality of energy-saving
mechanisms depend heavily on the traffic pattern. Naturally, synthetic traffic pat-
terns are developed by the developer and can be designed in each way. However,
evaluations should be objective and show the actual potential for interconnection
networks in HPC systems. Thus, actual HPC traces are assumed as the most
suitable benchmark to evaluate energy saving potentials.

5.3 MPI Traces

Energy saving in interconnection networks is based on a trade-off between
performance and reduced power consumption in situations of underutilization.
Therefore, it is mandatory to create a realistic simulation environment that
reflects patterns of real systems. MPI traces are the best way to provide an
underlying traffic pattern that generates a realistic utilization behavior of network
links. Furthermore, traces can be statically analyzed in order to extract more
generic and abstract information about different classes of workloads and their
pattern.

Because there are many different use cases for communication traces, there
are a variety of different trace formats available. They differ a lot in the scope of
recorded information and, consequently, in size. Depending on the communication
density, even applications with rather short execution times can result in traces
of multiple gigabytes or even terabytes, especially at large scale systems. Hence,

81

Simulation Tools

different trace formats try to avoid overhead and compress the collected data to
fit their purpose.

In the context of this work, two formats are used. The VEF format as
input data for the SAURON simulator and the more detailed DUMPI format for
detailed trace analysis.

5.3.1 DUMPI Traces

The main purpose of introducing the DUMPI trace format was gathering more
detailed information about MPI calls than other available trace formats 1. The
traces are recorded during runtime by linking the DUMPI profiling library. This
library replaces all MPI calls with the according to DUMPI routines which store
all information of the MPI call in a binary format to reduce trace size 2. Besides
CPU and wall time, DUMPI stores all parameters of the MPI call per rank. The
DUMPI library also provides an ASCII converter, which allows for easy further
processing and analysis. Listing 5.1 depicts an example MPI_Isend call from
the LULESH workload. It was developed as part of the SST/macro simulator
and is maintained by the U.S. Sandia National Laboratories [69].

1 MPI_Isend entering at walltime 2187576.976228167 , cputime

↪→ 0.410076794 seconds in thread 0.

2 int count =2601

3 MPI_Datatype datatype =14 (MPI_DOUBLE)

4 int dest =4

5 int tag =1024

6 MPI_Comm comm =2 (MPI_COMM_WORLD)

7 MPI_Request request =[10]

8 MPI_Isend returning at walltime 2187576.976234828 , cputime

↪→ 0.410083486 seconds in thread 0.

Listing 5.1 Example Isend call in the DUMPI Format.

Given the wealth of information provided by the DUMPI traces, this format
suits well for meta-analysis. Hence, it was used in the context of this work to

1https://github.com/sstsimulator/sst-dumpi/blob/master/docs/traceformat.dox, accessed
2019-10-21

2https://portal.nersc.gov/project/CAL/trace.htm, accessed: 2019-11-20

82

5.3 MPI Traces

characterize workloads by different features and derive basic underlying traffic
patterns from them.

5.3.2 VEF Traces

Contrary to the DUMPI format, which aims for gathering as much information
as possible, the VEF format was developed as input data for network simulators
and aims to minimize the stored information to reduce overhead. The VEF
format does not provide any framework for trace recording, but it can be
converted from other common trace formats. The traces are self-related,
which means single trace entries do not contain an absolute timestamp but
a predecessor event and the relative time. These time intervals are assumed
as computation time in simulations and allow to simulate an overlapping of
computation and communication [70] [67]. A short sample trace file is shown in
listing 5.2 and usually consists of the following parts:

1 VEF 4 5 2 3 10 0 // Trace Header

2 C0 0 1 2 // Communicators

3 G0 C0 0 0 4 0 0 0 -1 // Collective communications

4 G0 C0 0 1 0 4 0 0 -1 // (independent records)

5 G0 C0 0 2 0 4 0 0 -1

6 0 0 1 16 3 300 G0 // Point to point messages

Listing 5.2 Example trace file in VEF Format.

Header: The first line contains the trace header that provides general
information about the recorded traces in the following order:

VEF nTasks nMsgs nCOMM nCollComm nLocalCollComm nRecvDep

Listing 5.3 Header in the VEF format.

Which is translated to:

• VEF: Initial world which flags the header line.

• nTasks: Number of MPI tasks recorded.

• nMsgs: Number of traced point-to-point messages.

83

Simulation Tools

• nCOMM: Number of communicators used by the application.

• nCollComm: Number of global collective operations.

• nLocalCollComm: Resulting number of local collective messages. (This
means the number of global collectives times the number of tasks partici-
pating in the communicator.)

• nRecvDep: Optimization flag which indicates whether or not dependen-
cies between point-to-point messages exists.

Communicators: Following the header, the next one or more lines contain
the different communicators used by the application. The first entry is the
communicator id, starting with a "C" and then followed by an integer number.
After the ID all ranks participating in the communicator are attached. An
example of this structure is presented in listing 5.2 line 2.

Point-to-point message: Next to the Communicator starts the actual trace
body with collective and/or point-to-point messages, which are defined in
different patterns. The format of P2P trace entries in the VEF format is
depicted in listing 5.4.

ID src dst length Dep dTime IDdep

Listing 5.4 Point-to-point message in the VEF format.

The different fields contain the following information:

• ID: Unique ID in order to identify every message in the traces globally.

• src: MPI taks that sends the message.

• dst: MPI taks that receives the message.

• length: Size of the message in bytes. E.g. the product of send count and
size of the according data type.

• dep:Dependency type.

• dTime: Relative time stamp of the message in nanoseconds.

• IDdep: ID of previous message, which this messages is depending on.

84

5.3 MPI Traces

Collective Operations: Although there is some overlap, collective operations
are represented differently, shown in listing 5.5.

ID comm op task sendBytes recvBytes Dep dTime IDdep

Listing 5.5 Collective message in the VEF format

While some parameters equal the P2P ones, there are various other:

• ID: Unique ID. In order to determine it is a collective operation, all
collective IDs start with the letter ”G”, followed by an integer.

• comm: Global communicator ID in which this collective operation is
executed.

• op: Collective type.

• task: Rank that is performing this collective.

• sendBytes: Data volume that is send by this rank in context of this
collective operation.

• recvBytes: Data volume that is received by this rank.

• dep: Dependency type.

• dTime: Relative time stamp of the message in nanoseconds.

• IDdep: ID of previous message, which this messages is depending on.

Note that, following the example in listing 5.2, every rank participating in the
collective operation has one trace entry with the same collective ID. Furthermore,
details of these different trace entries and parameters can be found in [70].
Particularly regarding collective operations, there are some limits regarding the
supported types and various other rules for valid values for send and receive size,
respectively. Other issues, which affect both collectives and P2P messages, are
the different dependency types and their repercussions on the trace procedure.

85

6

C
h

a
p

t
e

r

Energy Saving in Interconnection Networks

The studies in the previous chapters have shown that interconnection hardware
as well as the applications running on HPC systems have enormous potential
for energy savings. As in most components, reduced power consumption is often
accompanied by decreased performance. However, interconnection networks differ
from most other components in their underlying design. In NICs, the CML-
based serialization technology, especially used in linkports, dominates the power
consumption. Hence, CML-based parts qualify best for energy optimizations.
The most effective approach is to adjust bandwidth to the current utilization by
switching between distinguished power states, which represent a particular link
width/frequency combination and the resulting power consumption. Furthermore,
scaling link-width by turning single lanes on and off has proven to be the more
efficient approach compared to scaling clock frequency, since CML’s power
consumption is current-driven.

The studies in this chapter assume a network, which is based on the data
measured in section 3.1; particularly the power states provided in Table 5.1 are
considered here. These power states do not only differ in their bandwidth and
resulting energy consumption but also their degree of efficiency. Therefore, this
chapter addresses multiple topics, including the best granularity of power states
to adjust bandwidth most efficiently as well as how to determine which is the
best power state for a given situation.

87

Energy Saving in Interconnection Networks

6.1 Approach

Energy as a physical quantity is time and power dependant. Therefore, re-
duced power consumption can only be effective in combination with reasonable
performance. To maintain performance while operating with reduced network
bandwidth requires a method which determines the most suitable power state
for every individual link in the network. It is crucial to have a management
mechanism or unit, which measures network-related data, such as utilization for
instance and adjusts power states in every link accordingly.

6.1.1 Energy Saving Management

Generally, there are two fundamental approaches for such a management. The first
one is a centralized network/energy management unit, which collects statistics
from all essential network components and decides then which are the best
settings. Second, in a decentralized approach, every component selects its setting
based on its locally available data.

Centralized Power Management

The main advantage of a centralized approach is the wealth of information
about the entire network. This allows for a high degree of power-saving while
maintaining connectivity and the opportunity to react quickly to changing
amounts of network traffic. A network can be configured in a way that all nodes
remain connected but not all links are used. For example, in a torus topology
could every second link per dimension switched off to reduce power consumption
on low utilization periods. This would obtain full connectivity by slightly reduced
latency and increased distance. If the load on the remaining links increases, links
in a lower power state can be switched to a higher one again. In order to develop
the full potential of this approach, the network could use a fully adaptive routing
algorithm, since routing paths can change dynamically while a packet is already
propagating on the network.

However, there are some disadvantages to this approach. The first and
most important one is overhead in both, hardware and network traffic. The
hardware overhead is caused by the management unit itself, which has to be
attached to the network and to be able to evaluate all network statistics and

88

6.1 Approach

calculate the resulting settings. Although this is highly dependent on the actual
implementation and complexity of the power saving mechanism, it requires
presumably significant additional computing power. The network traffic increases
since all statistical data have to be collected from the entire network, which
causes a constant overhead of network traffic. This is especially problematic for
non-hierarchical, direct topologies, such as tori. The management unit has to
be part of the network and these constant traffic streams to one entity cause
a hotspot traffic pattern in the network which raises the risk of congestions.
Furthermore, an additional load on the network reduces the opportunities for
energy saving. Associated with the traffic overhead is also the update rate for
network statistics. While a low update rate could help to reduce this overhead,
it also increases the time to react to unexpected appearing traffic bursts. But
even at high update rates, detecting and quickly resolving hotspots is difficult,
especially at larger network distances. The management unit has to detect
a change in the network traffic, calculate a solution, and has to update the
respective devices.

Decentralized Management

The opposite approach includes multiple decentralized management units that
work independently. The granularity of these units can differ from a view in the
network, managing certain regions to link or switch granularity. While the last
one is the most common approach, the first one represents a hybridized form of
centralized and decentralized management.

The high degree of locality is the most significant benefit of this approach.
The management units are rather small and can be integrated inside the switch
or even the linkports. Although this requires a hardware integration the actual
overhead remains low. The management decisions are only are made locally,
based on local statistics, which leads to quick adjustments. For example, a link
could clutch its bandwidth to its utilization, without taking global effects, such
as remaining connectivity into account. Such solutions are easy to implement in
existing NIC-hardware with only small overhead. Another benefit is the short
reaction time of these units. All statistics are collected and evaluated locally and
do not have to propagate over the network. A filling buffer, for instance, can
trigger a change of the power state.

Contrary to centralized management, it is not possible to implement an

89

Energy Saving in Interconnection Networks

advanced network administration. This is especially problematic when a packet
can take multiple routes and at least one link in each of these routes decides to
switch off. This could eliminate connectivity for nodes or even entire regions in
the network and cause high latencies since the network has to reconfigure first.
An additional problem occurs when multiple links along one path are switched
off. While central management could switch all of them simultaneously, in the
decentralized case, all these links have to be triggered one by one, which further
increases latency.

Although both approaches provide multiple benefits, this work focuses mainly
on the decentralized approach. A central management unit can be very useful
in certain configurations, but it is highly tailored to the special circumstances,
such as network technology, topology, or running applications. Since this work
tries to analyze a wide range of configurations in a technology-agnostic approach,
power management at the link level is more applicable and fairer for comparing
the effect of various parameters. Furthermore, this enables the usage of the same
energy-saving policies through all experiments without adjusting them.

6.1.2 Power State Granularity

An important factor for power saving management is the granularity of power
states. The concept of power states is well-known and broadly used in most
other components. For example canCPUs operate at different power states,
which are distinguished as discrete values resulting from Dynamic Frequency
Scaling (DFS), Dynamic Voltage Scaling (DVS), or their combination Dynamic
Voltage Frequency Scaling (DVFS). Modern chips do not have to operate
holistically at certain power states but can apply different power states to
different regions or components according to their current utilization. This
segmentation is particularly useful to cap the power consumption of some units
when others are highly utilized. As a consequence, this allows complex chips to
operate within strict power budgets.

Contrary to interconnection networks, changing power states in these units
can be achieved very fast. When using DFS, it requires only about 20 cycles.
However, switching power states by using DVS can take up to milliseconds [71].
While modern CPUs can select from three or more power states, McLaughlin
et.al. [72] conclude that more fine-grained power states in processors could

90

6.1 Approach

improve energy efficiency for irregular workloads. Beyond that, there is little
research on the benefits of power state granularities.

Although this work is designed in a technology-agnostic way, the designs of
the energy-saving policies are based on the power measurements introduced in
section 3.1. As Table 5.1 indicates, there are multiple configurations resulting in
the same bandwidth. Although all configurations are valid, they differ regarding
their energy efficiency indicated in the last column. Since a better efficiency
provides more potential for energy saving, only the most efficient one is taken
into consideration if there are multiple configurations for the same bandwidth.

Furthermore, the differences in the efficiency of all power states show that
today’s hardware is not energy-proportional yet. In an ideal energy-proportional
network, in which all power states provide the same efficiency, a fine-grained
granularity works best. For example, if there is a 50% load on the network it
could be more efficient to delay the data by selecting half the bandwidth, than
operating half the time at full speed and switching the links off for the other half.
Due to transition times, this could result in even longer execution times and,
therefore, in higher energy consumption. To utilize these fine granular power
states, a deep understanding of the running application, and the ability to predict
traffic patterns precisely is necessary. Without this knowledge, it is most efficient
to operate in a more coarse-grained way. Furthermore, long transition times in
interconnection networks prohibit permanent fine-grained adjustments of the
bandwidth. Therefore, the analyses of this work are based on the following three
power states shown in Table 6.1.

Index # lanes Frequency [GHz] BW [Gbit/s] Energy/Data [nJ/bit]
0 0 0 0 0
1 1 10 8 82
2 12 10 96 82

Table 6.1 Actual used power states for the power saving policies.

First, if a link is not used, it can be switched off completely (state 0). Since
a switched-off link consumes no power, this is the most efficient power state
for this situation. Second, if there is data available to send, the most efficient
way in terms of energy consumption per data is to send it as fast as possible.
In this case, power state 2 is selected. Third, if the link is idling, but has to
stay available, for instance, to ensure connectivity, power state 1 is used. This

91

Energy Saving in Interconnection Networks

power state cannot actually be configured in the switch from which the power
states origin from, because lanes can only be configured at a granularity of four.
However, these are no technical limitation and the management could easily
be expanded to lane granularity. It is important to operate the last remaining
lane at the same frequency, even if a smaller frequency would further reduce the
power consumption, since changing the operating frequency results in a new link
training, which prevents the link from data transmission. Switching off particular
lanes does not require the link to perform this training.

6.2 Energy Saving Policies

After determining which power states are effective to use, the network needs to
decide which state applies best to a particular situation. In view of the fact that
changing power states and especially changing frequency and switching on lanes,
stalls the link, frequent transitions between power states have a negative impact
on performance. Hence, pondering when and how often power states are changed
is key to save the energy within a reasonable performance.

To perform studies about energy savings, three different policies are developed
and evaluated. The first two operate at link granularity in which every link
decides independently which power state to choose. The third one follows a
hybrid approach in which links can also affect other links around them to overlap
transition times.

6.2.1 On/Off

The first policy (on/off), is the most simple one and is introduced in [73]. As the
name suggests, links are in the high power state (2), when they are active and
switched off (power state 0), when they are idling. Switching off only one direction
in a bi-directional link, would not provide any benefits in terms of performance,
since the backward direction has to transmit credit and acknowledge messages.
Therefore, switching the power state at one link includes both directions. In an
ideal network, which means power states can be changed immediately without
performing the reconfiguration training, this policy would result in minimal
energy consumption for a given technology. Provided that, links are switched off
if there is no traffic on the network and switched on again if new data need to

92

6.2 Energy Saving Policies

be transmitted. This set up can be used to define the maximum power saving
potential for a certain configuration. However, since this is just an ideal scenario,
actual evaluations have to consider performance decreases due to transition times.

While links are switched off, no data can be transmitted on the link. To
minimize potential performance losses, links are switched on immediately when
the routing unit decides to route a packet through a link that is in power state
0. A different approach could be to wait until output buffers are filled to a
certain threshold level before links are switched on again. This ensures a better
utilization but causes a significant increase in tail latencies. Although some
systems, such as cloud installations, are suitable for this concept, HPC systems
are not among them since low latencies and shorter execution times are more
important.

To determine when to switch off a link is more complex. On the one hand,
an aggressive approach that switches links off immediately after the output
buffer is empty, exploits the maximal idle period. However, this could also affect
performance negatively, because the link has to reconfigure every time a new
packet arrives. This is particularly harmful if a link is frequently used with only
short idle periods between two packets. On the other hand, waiting too long
before switching links off reduces the total amount of energy that can be saved.
Therefore, a parameter ∆t is defined that represents the period a link is idling
before it is switched off.

This parameter integrates two goals: to maintain a good performance and to
maximize the energy savings. A. Venkatesh et al. [74] introduce an approach
to cap the maximum performance loss. While their work focuses on MPI
optimizations in the application layer for a network with different power levers,
this approach can partly be adapted to the network layer. The authors introduce
a parameter ρ for the maximum performance loss or increase of execution time,
the system operator can tolerate. For instance, ρ = 0.1 would result in a maximum
increase in execution time of 10%. To derive a ∆t from ρ, the authors define a
worst-case scenario, in which a packet arrives immediately every time a link is
switched off. Hence, the idling period ∆t is followed by the transition time tt.
Therefore, the performance loss can be described as:

tt

∆t
= ρ => ∆t = tt

ρ
(6.1)

93

Energy Saving in Interconnection Networks

Since the transition time tt is a system property defined by the implemented
hardware, the time ∆t is inversely proportional to ρ. Figure 6.1, 6.2, and 6.3
depict schematically the operating principle of the on/off policy.

time

IDLELink state SEND IDLE IDLESEND

∆ t

SEND

packet packet

Fig. 6.1 Operating principle of the on/off policy: link is used and stays active.

Figure 6.1 shows the impact of the on/off policy on a moderately used link.
The x-axis depicts the temporal progress and the state of an example link is
shown inside the bar. In the beginning, the link idles until a packet arrives. After
transmitting the packet, the link idles again and starts the internal ∆t timer.
But before the timer expires, which would put the link to a different power state,
a new packet arrives. This packet is directly transmitted and the ∆t timer is
reset. As long as the link does not idle contiguously for the period ∆t, the policy
does not affect the link and it provides permanently full bandwidth.

time

IDLELink state SEND IDLE OFF

∆ t

packet

Fig. 6.2 Operating principle of the on/off policy: link is idling and switched off.

In Figure 6.2 the impact of the policy on low utilized links is illustrated. The
process starts like the one in Figure 6.1 with an arriving and processed packet.
However, this time it is not followed by a second one; the timer expires and the
link is triggered to switch to power state 0 to safe power.

94

6.2 Energy Saving Policies

time

IDLELink state SEND IDLEOFF

packet

TRAINING

unable to transmit

Fig. 6.3 Operating principle of the on/off policy: switched off link is switched on.

Following the switch-off, Figure 6.2 depicts the arrival of a new packet. If the
routing unit decides to use a link that is switched off, this triggers the link to
change to a transmitting power state. The link performs its training for a period
of tt to ensure word alignment and DLL and PLL locking. Once this training is
finished, the packet can be transmitted on this link.

Accumulated Transition Times

Contrary to the original approach introduced in [74], the actual performance loss
applied to the network can indeed exceed the previously defined maximum. This
is due to the fact that the maximum performance loss is only calculated from a
node’s perspective. Considering the network’s view, packets can have to perform
more than one hop on their path from one node to another and the transition
times can sum up along this path. This case is depicted in Figure 6.4. Analog to
Figure 6.1 - 6.3, the two bars contain the states of two neighbouring links and
the temporal progress is illustrated on the x-axis.

At t = 0, both links are switched off due to their previous idling periods.
When a new packet arrives at node 0, link 1 changes its power state to transmit
it. After the transition time, the packet is transmitted on link 1 and arrives at
node 1. This arrival triggers link 2 to change into an active power state and
starts the same process as before in link 1. As a consequence, the delay in terms
of the transition time can accumulate in every hop of a packet’s path. To adjust
the previously introduced maximum performance loss, the parameter ρ needs to
be multiplied by the topology’s diameter, which equals the longest path a packet
could take, assuming minimal routing.

95

Energy Saving in Interconnection Networks

time

IDLELink 1 SEND IDLEOFF TRAINING

transition time

SEND IDLEOFF

packet

TRAINING

transition time

Link 0 OFF

∆ t

Node
0 Link 0

Node
2

Node
1 Link 1

Fig. 6.4 A packet performs multiple hops and observe multiple delays due to
transition time.

6.2.2 High/Low

While the on/off policy enables most energy-saving potential, the performance
can be significantly harmed, when an application uses many small messages in a
coarse-grained pattern. The second policy (high/low) aims to tackle this problem
and to ensure reasonable performance. Instead of switching links completely off
(power state 0), they are set to the power state with the lowest power consumption
that is still able to transmit data (power state 1) in which only one out of twelve
parallel lanes remains active. This obtains permanent connectivity at the costs of
a decreased maximum energy-saving potential since the low power state produces
a higher power overhead for unused links than switching them completely off.

At low utilization, switching to power state 1 follows the same procedure as
the previous policy. The timer ∆t is calculated the same way and once this timer
expires, the link decreases its power state. Regarding switching back to the fast
power state (2), this approach differs from the previous one. The procedure of
this policy is shown in Figure 6.5 and 6.6.

In the first example in Figure 6.5 the exemplary link starts in the high power
state. When a packet arrives (1), it is transmitted with maximum bandwidth
(2). Then, the link idles until the ∆t timer expires (3) and the link is set to the
lower power state. When the next packet arrives (4), the link remains in this

96

6.2 Energy Saving Policies

time

IDLELink state SEND IDLE SLOW

∆ t

SEND IDLE

54321

Fig. 6.5 An example of packet forwarding using the high/low policy in the fast
and slow power state.

lower power state and transmits the packet at reduced bandwidth which results
in a longer sending process (5). However, sending at this lower speed remains
faster than switching the link to the higher power state and accepts the delay
due to the transition time.

time

Link state SENDSLOW SEND

54321

SEND

6

SEND SEND SEND

Fig. 6.6 Link at high/low policy switching back to high power state.

This procedure is only beneficial as long as the transmission at lower band-
width is faster than reconfiguring the link and sending it at a higher bandwidth.
The break-even point when a higher power state becomes more advantageous is
determined by the buffer fill level and the bandwidths of the slow and fast states,
as the sending time is the quotient of the amount of data and the respective
bandwidth. Therefore, the threshold buffer fill level can be calculated as:

data

BWlow
>

data

BWhigh
+ tt => data >

tt
1

BWlow
− 1

BWhigh

(6.2)

This situation is illustrated in Figure 6.6. IN the beginning, the link is already
in a slow power state because it was idling previously. Alike in Figure 6.5, when
the first packet arrives (1), it is sent directly to the destination node. The
same procedure applies for the second packet, which arrives while the link is
still transmitting the first packet (2). However, while the link is transmitting
the second packet, multiple packets arrive at the output queue (3-6) and the

97

Energy Saving in Interconnection Networks

buffer fill level begins to rise and exceeds the threshold. Once the second packet
has completed the sending process, the link switches to the higher power state
performs its training, and can then process the remaining packets at the high
bandwidth.

6.2.3 Awake

The last policy leaves the scope of a single linkport and allows to links to affect
power states of other links as well. The idea of the policy is to exploit a packet’s
routing information and to overlap transition times in order to further improve
performance compared to the high/low policy. This can be particularly useful
for large messages that exceed the threshold size for switching to the high power
state.

Analog to the buffer level threshold, there is a message size threshold that
triggers an awake message:

size >
tt

1
BWlow

− 1
BWfast

(6.3)

If a message exceeds this size is injected into the network, the first NIC generates
an awake message with the same destination. This small message is similar to
a credit but has priority over other messages. If it arrives at a linkport that
is operating at low bandwidth, the awake message is first transmitted slowly
and then the link is triggered to change its power state, by the notification of
a large message approaching. In the best case, this reduces the delay due to
link reconfiguration from the number of hops to one, because the entire path is
put in a high power state before the message traverses along this path. Note
that large messages are divided into multiple packets when they are injected
into the network layer. However, all packets are routed the same path assuming
deterministic routing, which is a necessary condition for this policy.

6.3 Evaluating Policies

The best way to evaluate these energy-saving policies and gain deeper insights
about their effects on execution time, energy consumption, and other metrics, is to
run them under practical circumstances. Firstly, since implementing experimental

98

6.3 Evaluating Policies

concepts in hardware is prohibitively costly in terms of time and money, a
highly detailed simulator is the best approach for first evaluations. Besides an
environment that simulates all major process in the network, realistic conditions
also include traffic patterns. A common way for network simulation is the usage
of synthetic generated traffic, which usually represents some basic patterns such
as uniform or hotspot traffic. However, since energy-saving policies exploit idle
periods in traffic patterns, the results are directly related to the input patterns
of the network traffic. Therefore, using traces of actual HPC applications is key
to enable comprehensive comparisons and realistic insights.

6.3.1 Applications

Although the selection of proxy application in Chapter 4 represent a broad cross-
section of many different communication patterns, they are less suitable for these
analyses since these mini-application are too small and short in terms of execution
time for comprehensive studies. Hence, traces of actual HPC applications are
more suitable here. Another important factor is the availability of large traces
compatible with the simulator. To provide fairness between all applications 512
ranks are selected as the largest configuration in which traces of all applications
are available.

The following five applications are selected to draw a diverse picture of the
effects of energy-saving policies on the performance and energy consumption
under realistic conditions. Table 6.2 depicts their basic parameters as provided
for the proxy mini-applications.

Parameter LULESH NAMD Graph500 WRF HPL
Vol. [MB] 94829 18304 262221 87246 26599
P2P [%] 100 99.99 0 99.89 99.99
Peers 26 511 N/A 4.00 22.00
Locality 63.71 319.28 N/A 15.84 223.11
Selectivity 3.66 23.26 N/A 2.37 7.89
Torus 5.38 2.47 6.00 5.82 3.59
Fattree 3.55 1.84 3.81 3.71 3.53
Dragonfly 4.31 2.27 3.81 4.51 4.35

Table 6.2 Communication characteristics of HPC applications.

99

Energy Saving in Interconnection Networks

LULESH (Livermore Unstructured Explicit Shock Hydrodynamics)

LULESH [75] is the only exascale proxy mini-application provided by the United
States DoE that is used to evaluate energy-saving policies. However, these traces
differ from the ones that are analyzed in Chapter 4 in their respective problem size.
LULESH is a hydrodynamic simulation, which uses a stencil code to calculate
the physical forces. The traces used here are generated with a problem size of
100 and 50 iterations, which results in roughly one million elements per rank.

NAMD (Nanoscale Molecular Dynamics program)

NAMD [76] simulates dynamic biomolecular systems by performing n-body
particle calculations. The underlying n-body calculations are typically compute-
bound and based on all-to-all communication. As shown in Table 6.2, NAMD is
performing almost only point-to-point communication, however in an all-to-all
pattern, as indicated by the number of peers (511). This occurs due to ring-based
communication optimizations, long-range force optimizations, and load balancing
of the CHARM++1 parallel objects runtime. The input molecule for these traces
is the Satellite Tobacco Mosaic Virus (STMV), which is consists of about one
million atoms and is one of the most frequently used molecules.

Graph500

Graph5002 is a benchmark with a data-driven communication that performs a
breadth-first search (BFS) graph traversal. The resulting communication pattern
is entirely based on collective operations, which are dominated by all-to-all
communication. This application is also used to benchmark the Graph500 list,
which is an alternative to the TOP500 list. These traces are generated with
replicated-CSR implementation, an edge factor of 16, and a scale factor of 20.

WRF (Weather Research and Forecasting)

As its name suggests, WRF3 focuses on atmospheric research, including op-
erational weather forecasting and climate research. It is based on numerical
simulations. WRF performs a two-dimensional nearest-neighbor communication

1http://charm.cs.illinois.edu/research/charm, accessed: 2020-03-22
2https://www.graph500.org/, accessed: 2020-03-22
3https://www.mmm.ucar.edu/weather-research-and-forecasting-model, accessed: 2020-03-

22

100

6.3 Evaluating Policies

pattern, which coincides with the peer, selectivity, and locality metrics. While
four peers are the four nearest neighbors, the locality of 15.8 is caused by the
2D underlying problem, which results in distances of one and 16, depending
on the orientation. This benchmark is also often used for comparing various
aspects of computing systems, including CPUs, Interconnects, and MPI library
performance.

HPL (High-Performance Linpack)

HPL [77] is widely used and most known as a benchmark for the Top500 list and
solves a dense N ×N system of linear equations. The problem size and software
optimizations allow the user to tune the performance for a given system. The
communication pattern of the Linpack benchmark, which consists of frequent
small messages and rare large messages to distant ranks [78], is rather unique.
Additionally, HPL does not fit well with the dragonfly topology in terms of average
network hops, compared to 3D torus and fat-tree. The traces are generated with
the following parameters: row-mapping, N = 9984, P = 16, Q = 32, threshold =
16, NBs = 192.

6.3.2 Methodology

The evaluations of the energy-saving policies are performed on a cycle-accurate,
OMNeT++-based network simulator, described in Chapter 5. This simulation
environment provides high degrees of freedom to configure network architectures.
Hence, the particular network configurations for all evaluations are presented in
the following.

6.3.2.1 Network Simulation

The goal of these studies is to gain detailed insights about the functionality
and effects of the introduced energy-saving policies, as a technology-agnostic
approach. These effects are based on a wide range of different parameters and the
focus is on a detailed understanding of these parameters. The residual network
configurations are based on commonly used state-of-the-art interconnection
networks.

101

Energy Saving in Interconnection Networks

Simulation Parameters

Network parameters that have minor relevance for the energy-saving are provided
in Table 6.3.

Parameter Value

Flow control credit-based

Cable length 5m

Header size 48B

Payload size 2000B

Credit size 64B

Credits 4096

Xbar datarate 200 Gbps

Table 6.3 Simulation parameters.

Notably is the credit-based flow control, which is commonly used in HPC
systems and a wide range of other data center networks. With this flow control
mechanism, network traffic in bidirectional links is only possible, if both directions
are available. Hence, links cannot be switched off unidirectional to preserve this
functionality. Also note that although eight MB buffer size is rather large, this
buffer size includes all input buffers per switch and not per linkport.

Topologies

To study how different categories of network topologies affect energy saving, one
representative of each of the three classes is selected. The 3D Torus represents the
class of direct topologies, the k-ary n-tree, a fat-tree version, serves as example for
non-hierarchical indirect networks, and the dragonfly topology is a representative
for hierarchical indirect networks. The structure of these topologies has to follow
certain design rules, which can prevent them to configure particular sizes. To
provide fairness in the analyses, the power consumption of unused links and

102

6.3 Evaluating Policies

switches are ignored and not considered in the results. For the simulations, these
topologies are configured as:

3D Torus The 512 nodes are split evenly over the three dimensions with eight
nodes each. Typically for tori, x-y-z dimension order routing is used.

K-ary n-tree This topology is highly depending on the switch radix and the
number of stages. To investigate potential impacts, two different configurations
are examined: three stages with a switch radix of 16 resulting in 512 nodes and
two stages with a switch radix of 64 resulting in 1024 nodes. Both configurations
are using the destro routing algorithm.

Dragonfly The dragonfly topology provides high degrees of freedom to the
system designer without providing strict rules on how to organize the groups
and global connections. However, Kim et al. [29] provide some guidelines to
ensure load balancing for example. Following these rules, the dragonfly here is
equipped with 28-port switches and a fully global interconnect, resulting in 756
nodes. UGAL is used a the respective routing algorithm.

6.3.2.2 Comprehensive Energy Saving

Besides the comparisons between the different energy-saving policies, the contrast
to other technology-specific energy-saving mechanisms is investigated. For further
comparisons with a topology specific energy-saving policy the one introduced
by M. Alonso et al. is selected, which is particularly tailored to k-ary n-trees
[11], [79]. The policy is further simply referred to as Alonso. Similar to the
on/off policy introduced in this work, their policy also switches links on and off
depending on the current router utilization. However, the authors introduce a
dynamic threshold, which depends on he remaining number of active outgoing
links and determines if links are switched on or off. This threshold is continuously
updated at runtime. Another difference is the pattern in which links are switched
off. While the on/off policy only operates at the link level and does not consider
the big picture of the entire network, Alonso’s policy defines a subset of links and
switches that is needed to ensure connectivity between all nodes. This minimal
subtree cannot be switched off and, therefore, reduces the maximum of power
that can be saved. To define this subset of k-ary n-tree specific properties are

103

Energy Saving in Interconnection Networks

considered, including the link direction (up or down) and the respective stage.
Hence, it is rather difficult to adapt this approach to other topologies, which
limits its scope.

To fit the simulator in this evaluation, the policy was slightly adjusted.
Instead of switching links completely off, they are set to the lowest power state,
analog to the high/low policy. This is necessary due to bidirectional links and the
credit-based flow control which was not part of the original work. However, the
slow links can only be used for credits and do not contribute to the overall power
consumption, in order to be as close as possible to the original work. Although
Alonso’s policy additionally requires adaptive routing, the adaptive part in the
upward direction of the destro routing algorithm is sufficient and is also used
here.

6.3.2.3 Energy Saving Parameters

Two major parameters impact the energy-saving policies: transition time and
maximum performance loss. Both have a direct impact on the maximum amount
of energy that can be saved as well as increases in the execution time. Therefore,
the selection of these parameters is key to a comprehensive analysis.

Transition Time

The transition time is a hardware parameter, which determines the time a link
needs to reconfigure after changing its frequency or switching on additional lanes.
Regarding energy saving, this is the most important network property since the
transition times determine how switching power states affect the execution time
and, therefore, how aggressive energy saving can be approached within a given
performance.

However, since energy-saving policies do not exist yet in today’s hardware and
reconfigurations during runtime are not common, it is difficult to ascertain realistic
numbers. The IEEE 802.3az standard specifies multiple different transition times
ranging from single-digit to 182µs [80]. Dickov et al. [81] use a transition time
of 10µs and Kim et al. [82] 1µs for their studies. Abts et al. also assume a
transition time for 1µs to 100µs to be feasible in today’s hardware [4]. Hence,
the evaluations in this work also assume transition times in this range.

104

6.3 Evaluating Policies

Performance Loss

The other important parameter is the maximum performance loss ρ. This
parameter can freely be selected and determines the idle time after which links
are moved to a lower power state. Also depending on an interconnect’s transition
time, ρ can be translated to tidle following Equation 6.1.

To illustrate the impact of this parameter, Figure 6.7 depicts the energy
consumption (green) and the execution time (blue) for multiple combinations of
ρ and ttrans. With no loss of generality, the analyses are performed with 64 rank
NAMD-apoa1 traces. As stmv, apoa1 is a molecule that serves as input data for
NAMD. However, apoa1 is significantly smaller, which facilitates the simulations
of this variety of different configurations. The same trends can be observed for
all other workloads.

105

Energy Saving in Interconnection Networks

0 5 10 15 20 25 3010
0.

00
0

10
0.

00
4

10
0.

00
8

Rho

re
la

tiv
e

ex
ec

ut
io

n
tim

e
[%

]

20
40

60
80

10
0

re
la

tiv
e

ne
tw

or
k

en
er

gy
 [%

]

Execution time
Network Energy

(a) ttrans = 1µs

0 5 10 15 20 25 3010
0.

00
10

0.
05

10
0.

10
10

0.
15

Rho

re
la

tiv
e

ex
ec

ut
io

n
tim

e
[%

]

20
40

60
80

10
0

re
la

tiv
e

ne
tw

or
k

en
er

gy
 [%

]

Execution time
Network Energy

(b) ttrans = 10µs

0 5 10 15 20 25 30

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Rho

re
la

tiv
e

ex
ec

ut
io

n
tim

e
[%

]

40
60

80
10

0
re

la
tiv

e
ne

tw
or

k
en

er
gy

 [%
]

Execution time
Network Energy

(c) ttrans = 100µs

Fig. 6.7 Energy consumption (green) and execution time (blue) for different
transition times and ρs (NAMD apoa1).

106

6.3 Evaluating Policies

As an overall trend, the energy savings reach a plateau at about ρ = 10%, with
a flattening curve for longer transition times. The increase of execution time is also
flattening, however, slower than the energy saving. As a result, a performance loss
of 10-15% provides good results, within a reasonable performance. Additionally,
the flattening of both curves allows to investigate the effects of a more aggressive
energy-saving approach for instance ρ = 90% and a resulting shorter tdown. For
the comprehensive studies, the policy of Alonso et al. has also thresholds that
work in a similar way. Therefore, a conservative utilization threshold for powering
a link on is set to 0.15 and an aggressive one of 0.9.

6.3.3 Evaluation

The design of the energy-saving policies entails a large set of parameters that
impact their results. The goal of these evaluations is to determine the impact of
these parameters. Furthermore, analyses about the practical energy savings that
can be achieved and their impacts on execution time provide useful insights that
help to implement energy-proportional interconnection networks.

6.3.3.1 Awake

Firstly, the benefits of the awake policy are evaluated, since this policy differs
from the other ones with their strict local approach. The awake policy on the
other side allows individual linkports to change power states throughout the
network by sending awake messages. For their functionality, it is crucial to have
one unique path between every sender/destination pair because this approach
is based on the assumption that all packets of a single message traverse the
same path from their injection to their sink. Since the implemented routing
algorithms for k-ary n-tree (destro) and dragonflies (ugal) are partly adaptive,
these topologies and their respective routing algorithms are not suitable for the
awake policy. Hence, this first analysis is limited to the 3D torus and with no
loss of generality to the three applications Graph500, NAMD, and LULESH.

Tori are flat, direct networks, which are widely used in large scale systems
due to their good scaling behavior. In order to provide favorable conditions for
the energy-saving policies, a network with a transition time tt = 1µs is assumed,
which is within the range of technical possible transition times but close to the
lower limit. For the maximally allowed performance loss, ρ = 50% was selected,

107

Energy Saving in Interconnection Networks

which represents a middle course between a conservative energy saving and a very
aggressive approach. Furthermore, this first evaluation includes a best case study,
which assumes a perfect network that can switch links on and off immediately
and, therefore, enables maximum energy saving without any performance loss.

The results for these studies are depicted in Figure 6.8a and Figure 6.8b.
The former indicates the network energy that is consumed relative to a regular
network without any energy-saving, that runs the same applications. Here,
the network energy includes power consumed by all links as well as the power
consumed by the switch core logic. The latter shows the changes in execution
times relative to the regular network without energy saving.

LULESH NAMD Graph500

no
rm

ai
lz

ed
 e

ne
rg

y
co

ns
um

pt
io

n
[%

]

0

5

10

15

20

25

30

Best case On/Off High/Low Awake

(a) Energy consumption

LULESH NAMD Graph500

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

[%
]

0.0

0.1

0.2

0.3

0.4

0.5

Best case On/Off High/Low Awake

(b) Execution time

Fig. 6.8 3D Torus: Energy saving results for all policies including a best case
study and the awake policy (normalized to energy and execution time without
energy saving).

Overall, the first setup provides very promising results regarding the energy-
saving potentials and effects on the execution time. The difference in bandwidth
from 1 and 12 GB/s between the high and low power state result in an 8.3%
offset that represents the lower bound for energy savings. Therefore, a small
transition time of 1µs facilitates the on/off and high/low policies, so that they

108

6.3 Evaluating Policies

are operating close to the theoretical optimum.
This does not hold true for the awake policy. The energy consumption for this

policy is even slightly higher than high/low for all workloads and the execution
time is also slightly longer than for the other policies. This holds also true for
other transition times, as presented in [12]. Although the results are similar
compared to the other policies, the complexity of implementation for the awake
policy is significantly increased. The concept of hiding latency and improving
execution time does not translate to further advantages over both other policies.
As a consequence, the following studies are refrained from adapting this policy
to other topologies, since there no additional benefits compared to the high/low
policy.

6.3.3.2 Topology-aware energy saving

In the following, different topologies are evaluated with the two local-based
policies: on/off and high/low. Furthermore, the k-ary n-tree is used to compare
these technology-agnostic policies to a highly specialized one. All evaluations
are performed with a rather conservative and an aggressive approach. The
former means a smaller parameter ρ of 10%, which translates to a tdown of 1ms,
the letter indicated ρ = 90% and tdown = 0.1ms, assuming a transition time
tt = 100µs. This transition time is selected as an upper bound of commonly
assumed transition times to gain more insights about how it affects energy saving.

Contrary to the previous study, the energy consumption of these evaluations
is only based on link power. Link power makes up the largest part of the overall
network power consumption and scales linearly with the number of links. Switch
core power has an exponential scaling scheme, however, in absolute measures the
link power exceeds the switch core power by far. Since the power measurements,
which build the basis for this power analysis, are only evaluated for one particular
radix, the effects of switch core scaling can hardly be estimated. Accordingly, it
is fairer to compare only link power, since all topologies use switches at different
radices.

3D Torus

The first evaluations of the remaining on/off and high/low policy are also per-
formed on the 3D torus and the resulting energy consumptions are depicted in

109

Energy Saving in Interconnection Networks

Figure 6.9a. The graph shows the relative link energy consumption for each
workload and policy combination. The results are normalized to the network
energy consumption that is consumed by running the same application on a
system without energy-saving capabilities. Analog Figure 6.9b shows the relative
changes in the execution time compared to a run without power savings.

Graph500 LULESH NAMD WRF HPL

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

0

3

6

9

0.0

2.5

5.0

7.5

0

5

10

15

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

10.0

re
l.

lin
k

 e
ne

rg
y

 c
on

su
m

pt
io

n
[%

]

aggressive conservative

(a) Link energy consumption
Graph500 LULESH NAMD WRF HPL

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

0

2

4

6

0.0

0.2

0.4

0.6

0.8

0

5

10

15

0.000

0.005

0.010

0.015

0.020

0

5

10

15

re
l.

ex
ec

ut
io

n
tim

e
[%

]

aggressive conservative

(b) Execution time

Fig. 6.9 3D Torus: Link energy saving results (normalized to energy and execution
time without energy saving).

Among all applications and both policies, link energy is significantly reduced
by more than 90%, where the combination of Lulesh and the on/off policy
provides the best result by saving almost 99% energy. As expected, the on/off
policy enables more energy savings than high/low, whose purpose is to provide
better performance with slightly higher energy consumption. For all workloads,
the aggressive approach with a smaller tdown provides better results in terms
of lower energy than the conservative approach. A larger time tdown ensures
that links remain in an active state when multiple small messages are on the
network. This results indeed in shorter execution time since links have less
often to be reconfigured, but also in higher energy consumption. As intended,
the high/low policy provides a lower execution time for all applications and
even keeps the performance loss within 1% for three out of five. Also regarding
energy saving, the high/low policy provides good results, considering the minimal
energy consumption of 8.3%, which is caused by the inability to switch links
completely off. Surprisingly, there is almost no difference between the aggressive

110

6.3 Evaluating Policies

and conservative approach of the high/low policy for energy as well as execution
time. This indicates, that power states are seldom changed and most links remain
in the low power state.

K-Ary N-Tree

The k-ary n-tree is a special implementation of the fat-tree. Compared to other
topologies, the fat-tree and the k-ary n-tree in particular have been in the focus
for network energy savings so far. This includes studies of Alonso et al. [11],
[79], which are used here to compare with the two topology agnostic ones. Since
the number of stages and the switch radix have a considerable impact on the
network behavior, both two and three stages configurations are implemented.

Two Stages

This configuration is composed of 64-port switches, which results in 1024 nodes
following the design rules of a k-ary n-tree. However, the unused half of the
network is not considered in energy consumption to ensure fair and comprehensive
comparisons. The resulting relative link energy consumption and the execution
time are depicted inFigure 6.10.

Graph500 LULESH NAMD WRF HPL

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

re
l.

lin
k

 e
ne

rg
y

 c
on

su
m

pt
io

n
[%

]

aggressive conservative

(a) Link energy consumption
Graph500 LULESH NAMD WRF HPL

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

0

1

2

3

4

0.0

0.5

1.0

1.5

0

2

4

6

0.00

0.01

0.02

0.03

0

10

20

30

re
l.

ex
ec

ut
io

n
tim

e
[%

]

aggressive conservative

(b) Execution time

Fig. 6.10 K-ary n-tree (two stages): Link energy saving results (normalized to
energy and execution time without energy saving).

111

Energy Saving in Interconnection Networks

For all applications, the same trend emerges regarding energy savings. On/off
provides the best energy-saving capabilities, followed by the high/low policy,
which is again close to its optimum of 8.3% and a significantly higher energy
consumption of Alonso’s policy. Again, the aggressive approach enables higher
energy-saving possibilities for the on/off policy than the conservative one, while
both approaches do not differ for high/low and Alonso. The signification higher
energy consumption of Alonso’s policy is caused by the minimal connection tree,
that establishes guaranteed fast connectivity between all nodes. This reflects
also in the execution time. While on/off and high/low increase the execution
time notably, the effects of Alonso’s policy on the execution time are almost
neglectable.

The Graph500 workload is the only exception to this. While the increase of
execution time is less than five percent for all polices and remaining workloads,
this increase ranges from almost 30% to 2.5% and 5%, respectively for the
Graph500. Surprisingly, in three out five applications (Graph500, WRF, and
HPL) on/off does not only provide higher energy-saving capabilities but also a
better performance than high/low, which is in complete contrast to the torus
results and its design goal. This can be attributed to the semi adaptive routing
algorithm, which favors the on/off policy since the upwards direction is selected
randomly between all available possibilities.

Three stages

A three-staged k-ary n-tree consists of more links than the two previous topologies.
With the constant amount of traffic specified by the traces, the overall utilization
here is lower than compared to the two previous topologies. Nevertheless, this
does not affect the overall trends, as shown in Figure 6.11.

Compared to the two-staged k-ary n-tree there are only slight differences
between these two setups and almost all trends remain the same here. While for
HPL and on/off the execution time gets slightly worse with the additional stage,
the relative execution time increase almost doubles for the NAMD workload.
On the other hand, the performance of high/low and at the Graph500 workload
increases by almost 10%.

112

6.3 Evaluating Policies

Graph500 LULESH NAMD WRF HPL

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

re
l.

lin
k

 e
ne

rg
y

 c
on

su
m

pt
io

n
[%

]

aggressive conservative

(a) Link energy consumption
Graph500 LULESH NAMD WRF HPL

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

O
n/

O
ff

H
ig

h/
Lo

w

Al
on

so

0

2

4

6

0.0

0.5

1.0

1.5

0.0

2.5

5.0

7.5

10.0

12.5

0.00

0.02

0.04

0

5

10

15

20

re
l.

ex
ec

ut
io

n
tim

e
[%

]

aggressive conservative

(b) Execution time

Fig. 6.11 K-ary n-tree (three stages): Link energy saving results (normalized to
energy and execution time without energy saving).

Dragonfly

Dragonfly networks and variations, such as the dragonfly+ and slimfy, are
becoming increasingly popular due to their low diameter and overall lower
hardware costs. Compared to the previous network configurations, the dragonfly
is equipped with the lowest number of total links as well as the lowest number of
potentially costly optical links. The letter assumes, global links in the dragonfly,
wrap-around links in the torus, and last-stage links in the fat-tree to be longer
optical links.

Following the design rules for load balancing, the dragonfly is composed of
28 port switches, which form a 756 node network. As in the previous k-ary
n-tree, all unused parts of the network are not considered for energy consumption.
The relative energy consumption and relative execution time increases for this
topology are depicted in Figure 6.12a and Figure 6.12b, respectively.

Throughout all combinations, the previous trends are continuing. On/off
enables more energy-saving than high/low, except the conservative approach
for NAMD, and the aggressive approach causes less energy consumption than
the conservative one. The trends for execution time remains also the same.
While high/low provides the best and the aggressive on/off approach the worst
performance. The conservative on/off approach is right in between the other two.

113

Energy Saving in Interconnection Networks

Graph500 LULESH NAMD WRF HPL

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

0

5

10

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

10.0

12.5
re

l.
lin

k
 e

ne
rg

y
 c

on
su

m
pt

io
n

[%
]

aggressive conservative

(a) Link energy consumption
Graph500 LULESH NAMD WRF HPL

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

O
n/

O
ff

H
ig

h/
Lo

w

0

2

4

6

0.00

0.25

0.50

0.75

0

2

4

6

0.00

0.01

0.02

0.03

0

10

20

30

re
l.

ex
ec

ut
io

n
tim

e
[%

]

aggressive conservative

(b) Execution time

Fig. 6.12 Dragonfly: Link energy saving results (normalized to energy and
execution time without energy saving).

The only exception is, similar to the k-ary n-tree, the graph500 which results
in larger execution times for the high/low policy, compared to on/off. Besides
the overall trends, all policies provide the best absolute energy savings in the
dragonfly. The only exception, again, is the graph500, in which high/low results
in slightly higher energy consumption than the torus. This is probably caused
by the longer execution time, which also impacts energy consumption.

6.4 Combining Energy Saving Policies and
Congestion Management

While the on/off and the high/low policy show promising results, the previously
shown studies focus on these policies as the only network management entity.
However, there are other commonly used network management mechanisms that
are operating on interconnection networks. Probably the most common one
is congestion management, which aims to avoid or resolve congestions in the
network to ensure low latency and high throughput in the entire network.

There are no studies available that investigate the effects of congestion manage-
ment and energy-saving mechanisms on each other and the overall performance.
A mutual use could provide benefits, especially for energy saving. The reduced

114

6.4 Combining Energy Saving Policies and Congestion Management

bandwidth for energy-saving purposes can resemble a congested network. If both
strategies complement each other, it can help to further improve performance
while reducing network energy. However, both strategies follow fundamentally
different approaches to reach their respective goals. While energy-saving policies
aim to bundle traffic flows to utilize few links as much as possible, congestion
management aims to split up traffic flows evenly over the network to reduce
potentially harmful interaction between them.

6.4.1 Congestion Management

Congestion consists of intense traffic that clogs paths within the network [83]. This
slows down traffic and degrades network performance. The origin of congestion
is contention, which occurs when several packet flows simultaneously request
access to the same output port in a switch. Moreover, congestion also occurs
when a destination node is not able to remove packets from the network at the
same speed they are received. In these cases and assuming lossless networks,
any packet stored in a switch or NIC remains blocked in the buffer until there
are enough resources available for its transmission. These blocked packets delay
the advance of other packets in the same buffer. If this situation persists in
time, the buffers fill up and finally, the flow-control backpressure propagates
this congestion to other switches. Eventually, congestion may spread throughout
the network reaching the source nodes, increasing packet latency, and degrading
network performance.

In a congestion situation, not only the flows contributing to congestion (hot
flows) are affected by the traffic jam. The flows not contributing to congestion
(cold flows) end up advancing at the same speed as the hot ones because both
share the same buffers. This situation is a particular case of the Head-of-Line
Blocking (HoL) effect. HoL blocking occurs when a packet, which requests a busy
port is blocked. This prevents other packets stored behind it in the same buffer
from advancing, even if these packets are requesting free ports [20]. Therefore,
in a congestion situation hot flows may pass the HoL blocking to cold flows if a
hot packet is blocked at the head of a queue containing cold packets.

Currently, there exist two main approaches to deal with congestion. The
first one is injection throttling [84], which is also included in the InfiniBand
specification [17]. When switches detect congestion, they inform the source nodes

115

Energy Saving in Interconnection Networks

contributing to congestion to reduce their injection rates. Once congestion is
removed, its derived problems, such as HoL blocking, are removed too. However,
this technique does not scale with network size, as notifications may be too slow.
Therefore, there are situations in which the source nodes are warned to throttle
the injection, but the congestion information is obsolete [85] or the congestion
has become irreversible.

The second approach is known as queueing schemes. They prevent HoL
blocking by allocating packet flows to different queues or virtual channels (VCs)
[20]. There are two different families following this idea. On the one hand, some
techniques explicitly identify hot flows and isolate them in dynamically-allocated
VCs, such as the mechanism described for ATLAS [86], the RECN mechanism
[87], or EcoCC [85]. However, they require additional and expensive resources
that are not supported by current commercial interconnection networks. On
the other hand, other techniques allocate packets from different flows to VCs
according to a static mapping policy, independently of the traffic conditions, the
topology, or the routing algorithm. Proposals such as VOQnet [88], VOQsw
[89] or DBBM [90] follow this idea. Although most of these techniques use
resources available in commercial networks, they only prevent HoL blocking
partially or they are not feasible in large networks (e.g. VOQnet). By contrast,
other solutions are specially designed to be aware of the topology and the routing
algorithm, so that HoL blocking is reduced more efficiently and/or by using
fewer resources. For instance, queueing schemes such as OBQA [91] and vFTree
[92] have been devised for fat-tree topologies [16] using the DESTRO [93] and
D-MOD-K routing algorithms [94], respectively. IODET [95] considers the torus
topology [16] and its dimension order routing algorithm. BBQ [96] is designed
for the KNS topology [97] with the Hybrid-DOR routing algorithm. H2LQ [98]
is tailored to Dragonfly topology using its minimal routing [29]. SF2LQ [99] is
intended for Slim Fly networks with its minimal routing [100].

6.4.2 Methodology

Similar to the previous evaluations, there is a huge design space from which simu-
lation settings can be elaborated. The goal of these analyses is to investigate how
energy-saving policies and queueing schemes interact with each other. Although
both techniques can be tuned by multiple parameters, evaluations in this work

116

6.4 Combining Energy Saving Policies and Congestion Management

are performed with default parameters. The main difference is the usage of a
synthetic traffic pattern instead of application traces.

Network Simulator and Traffic Pattern

As the previous analyses, all evaluations are performed on the cycle-accurate
SAURON network simulator. The traffic in the simulated network, however, is
synthetically generated and not trace-based any more. The reason for this change
is that congestion management needs a high network utilization to show impacts
on networks performance. On the other hand, energy-saving policies exploit idle
periods which are often caused by computing periods, to reduce energy and the
synthetic pattern predetermines energy-saving efficiency. But since the following
evaluations focus on the relative effects of both mechanisms on each other, the
character of the traffic pattern has only minor effects as long as both mechanisms
are utilized. Hence, synthetic hotspot traffic is used to stress the network enough
to evaluate the impact of different queuing schemes: This means, 25% of all
nodes, which are randomly selected, send messages to a single "hot spot" node.
The remaining nodes generate evenly random traffic on the network. The fixed
load is set to 40%, which equals a 40% utilization of the input bandwidth.

Analog to the previous studies, these evaluations are performed on the same
three topologies, but in a larger size of 1024 and 1056 nodes, respectively. The
3D torus is composed of 1056 (12x11x8) nodes, the k-ary n-tree is configured
in 5 stages and a switch radix of 8, resulting in 1024 nodes, and the dragonfly
consists of 33 groups with switches with a radix of 15, resulting in 1056 nodes.
The routing algorithms remain the same as in the previous studies.

Energy Saving

The on/off and high/low policy are used here to evaluate the energy-saving
capabilities. Contrary to the previous trace-based studies, the synthetic traffic
pattern used here is rather disadvantageous for the policies. The increased load
on the network leads to high utilizations on the path to the hot spot node, while
the even random traffic prohibits long idling periods. In order to get deeper
insights into the interaction of energy-saving policies and congestion management,
the policies are configured for rather aggressive power saving. The transition time
tt = 10µs is shorter than in the previous study to enable energy-saving despite

117

Energy Saving in Interconnection Networks

the rather high utilization. An overview of the used parameters is depicted in
Table 6.4.

Parameter Value

tt 10µs

ρ 90%

tdown 11.1µs

Table 6.4 Energy saving parameters for congestion management studies.

Congestion Management

Multiple queuing schemes are also evaluated for congestion management. This
includes topology-agnostic ones (VOQsw and DBBM) as well as one queuing
scheme that is specially tailored to each topology. The particular queuing schemes
are:

VOQsw Virtual Output Queues at switch level [89] can reduce HoL
blocking produced by a congestion tree in all topologies. Each input port has one
virtual queue for every output port in which packets according to their requested
output port are stored.

DBBM Destination Based Buffer Management[90] is also applicable for
all topologies. In this scheme, packets are with destination D are mapped to D
modulo number of VOQs per port. Here, four virtual output queues are used.

IODET In-Order DETerministic routing[95] is a queueing scheme tailored
to direct topologies. It assigns packets to VCs according to the dimension for
the next hop.

Flow2SL This technique[101] is a topology- and routing-aware queuing scheme,
specially tailored to fat-trees using deterministic routing. Flow2SL defines groups
of end nodes and maps flows that have the same source group and the same
destination group to the same queue (or VC), while flows that have the same
source group but are addressed to different groups are mapped to different queues.

118

6.4 Combining Energy Saving Policies and Congestion Management

H2LQ Hierarchical Two-Level Queuing [98] is designed for dragonfly
networks, in which it reduces HoL blocking and guarantees deadlock freedom.
It splits traffic flows up in a standard virtual network (SVN) and an escape
virtual network (EVN). The mapping to different VCs in the SVN depends on
the destination, while the VCs of the EVN are used to prevent deadlocks. Six
VCs for the SVN and two VCs for the EVN are selected for the evaluations.

6.4.3 Evaluation

While hot spot traffic patterns are commonly used to evaluate queueing schemes,
it rather not suitable for energy-saving which exploits network idling periods.
Hence, congestion management effects might dominate compared to energy-
saving policies. Another difference to the previous studies is the usage of different
metrics. Throughput and packet latency are the typical metrics to evaluate
congestion management and they are also used in this context. Since synthetic
traffic has no determined execution time but rather a fixed simulation time, this
is no sufficient metric in these evaluations. Although there are no changes in
the execution time due to transition times during link reconfiguration, there are
differences in the amount of data that is injected into the network at this time.
Therefore, the metric energy/data is introduced to evaluate the energy-saving
policies.

The baseline for all topologies is one input queue (1q), which means there is
basically no congestion management. Additionally, two topology-independent
schemes (VOQsw and DBBM) and one scheme tailored to the respective topology
are used. All simulations are performed with synthetic hotspot traffic, generating
40% load.

3D Torus

Figure 6.13 depicts the results for throughput, latency, and energy/data in the
3D torus. For the torus, IODET is used as the topology-specific queueing scheme.

Overall, VOQsw provides the worst results regarding performance and energy
efficiency, respectively, which are even a decline to the default case without
congestion management. These setbacks are caused by the poor fit of VOQsw
and the employed xyz-dimension-order routing algorithm, which routes messages
firstly in the x-dimension. VOQsw, however, also divides flows in virtual channels

119

Energy Saving in Interconnection Networks

1Q DBBM IODET VOQSW

av
g.

 th
ro

ug
hp

ut
 [%

]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Throughput

1Q DBBM IODET VOQSW

av
g.

 p
ac

ke
t l

at
en

cy
 [n

s]

0e+00

1e−05

2e−05

3e−05

4e−05

5e−05

6e−05

7e−05

Packet latency

1Q DBBM IODET VOQSWE
ne

rg
y/

D
at

a
M

ov
em

en
t [

nJ
/b

it]

0.0

0.5

1.0

1.5

2.0

2.5

No Power Saving On/Off High/Low

Energy/Data

Fig. 6.13 Results for 3D torus.

according to the respective dimension, which deteriorates the situation since
buffer size is effectively reduced to only 1/#ports. The remaining queuing
schemes provide good results without many deferences between them.

Across all configurations, the energy-saving policies follow the same trend.
Regarding throughput and latency, there are only little differences between the
policies. Only at the 1q and VOQsw configuration does high/low provide slightly
worse performance values. However, this results in also better energy efficiency.
The reason for these unusual effects is the random nature of synthetic traffic.
Because on/off can only switch links on completely, even if only for a small
message, there are more links in the network that are in "on" state, providing
high bandwidth but also high power consumption. On the other side, the absence
of traffic bursts prohibits high/low to switch back to a higher power state, after

120

6.4 Combining Energy Saving Policies and Congestion Management

a link is set to the lower power state. Overall this results in lower bandwidth
and better energy efficiency.

Another finding is that congestion management seems to affect energy effi-
ciency even more than the energy-saving policies. Again, this is likely caused by
the unfavorable traffic patterns for the energy-saving policies. Key insights are
also the results for DBBM and IODET, which both provide the best performance
results and show no significant differences between the different policies. This
suggests that a favorable combination of queueing scheme and energy-saving
policy can improve performance even in adverse conditions.

K-ary N-tree

1Q DBBM FLOW2SL VOQSW

av
g.

 th
ro

ug
hp

ut
 [%

]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Throughput

1Q DBBM FLOW2SL VOQSW

av
g.

 p
ac

ke
t l

at
en

cy
 [n

s]

0e+00

1e−05

2e−05

3e−05

4e−05

5e−05

Packet latency

1Q DBBM FLOW2SL VOQSWE
ne

rg
y/

D
at

a
M

ov
em

en
t [

nJ
/b

it]

0

1

2

3

4

No Power Saving On/Off High/Low

Energy/Data

Fig. 6.14 Results for k-ary n-tree.

121

Energy Saving in Interconnection Networks

For the k-ary n-tree with the respective topology-specific queueing scheme
Flow2SL, the results for performance and energy efficiency are depicted
inFigure 6.14. Unlike the k-ary n-tree configurations in the previous stud-
ies, this configuration consists of many small switches (radix = 8) in five stages.
While all queueing schemes show good results in terms of throughput, the latency
of the Flow2SL is worse than without congestion management. A reason for
this variation could be the Flow2SL mapping policy, which smartly balances
flows among available queues or VCs in the upwards stages of the fat-tree. All
flows that are addressed to the same group are mapped together in the same VC,
although they are addressed to different destinations. Therefore, the mapping in
the downward stages introduces delays as congested flows may share queues with
not congested ones if both of them are addressed to the same group. As in the
torus, the on/off policy provides better performance, but high/low shows better
results in terms of energy efficiency. Overall it seems that the 3D torus provides
better energy efficiency, while the k-ary n-tree results in lower packet latency.

Dragonfly

The topology-specific scheme for the dragonfly is H2LQ queueing. All results
for this topology are depicted in Figure 6.15. This time all queuing schemes
improve performance in terms of throughput and latency compared to the 1q
configuration. VOWsw enables the highest throughput and the lowest latency
and, therefore, performs slightly better than H2LQ and DBBM. Furthermore,
congestion management is increasing link utilization to the effect that there
are no significant differences between different energy-saving policies anymore.
This effect is also amplified by the design of the dragonfly, which is equipped
with few but highly utilized links between different groups. Still, even though
energy-saving policies do not improve energy efficiency significantly, they also do
not harm performance. Comparing all three topologies, the dragonfly enables the
highest energy efficiency among all configurations. This matches the previous
studies that focus exclusively on energy saving.

122

6.4 Combining Energy Saving Policies and Congestion Management

1Q DBBM H2LQ VOQSW

av
g.

 th
ro

ug
hp

ut
 [%

]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Throughput

1Q DBBM H2LQ VOQSW

av
g.

 p
ac

ke
t l

at
en

cy
 [n

s]

0.00000

0.00005

0.00010

0.00015

0.00020

Packet latency

1Q DBBM H2LQ VOQSWE
ne

rg
y/

D
at

a
M

ov
em

en
t [

nJ
/b

it]

0.0

0.5

1.0

1.5

2.0

No Power Saving On/Off High/Low

Energy/Data

Fig. 6.15 Results for dragonfly.

123

7

C
h

a
p

t
e

r

Discussion

This chapter provides an overview of related works that deal with a similar
research question or partial aspects of this work. Furthermore, the previous
findings are further evaluated and discussed. Last, this chapter concludes with a
short outlook about future work and open research questions.

7.1 Related Work

Although energy efficiency is a hot topic in almost all computing systems, in-
cluding especially HPC systems and cloud installations, energy-efficient networks
are rather a special topic. While there exist several works on energy saving
in on-chip networks, there are fundamental design differences and completely
different technical constraints, such as physical distances and other signaling
issues, or different kinds of topologies compared to interconnection networks.
However, they aim to tackle similar problems. Most approaches, including the
works of Samih et al. [102], Parikh et al. [103] and Chen et al. [104], [105], rely
on power gating to switch routers completely on or off to reduce energy in their
network, which is not suitable for interconnection networks.

Of particular inspiration from the NoC-domain is the work of Soteriou and
Peh [106]. Although they are also analyzing energy aspects and optimizations
for networks at different scale and integration, their methods can be adapted to
networks at every scale. Especially the methodology of link idle time distributions
and the detailed description of their approach is very helpful.

125

Discussion

In regards to interconnection networks, Abts et al. [4] demonstrate the growing
need for more energy-proportional networks. The work identifies opportunities
for optimization by determining the power consumption analytically. However, a
detailed power model or other solutions are not provided

Additionally, Mahadevan et.al. [107] provide a survey and description of
network power consumption for a variety of devices. While the authors do not
attempt to explain their observations, they completely back up our results, in
particular regarding the impact of utilization and number of links to power
consumption.

A new approach for gaining deeper insights on the power consumption of
interconnection networks is presented by Wang et al. [108], [109]. They developed
an activity-based power model for fundamental switch components. This helps
to further broaden the understanding of switch power consumption at a lower
level and to potentially identify additional sweet spots for energy saving.

Taylor Groves et.al.[110] provide a static performance and power analysis for
large dragonfly networks. While they focus only on one topology at another scale,
they observe also a very low utilization in interconnection links. Additionally,
they scale down underutilized links statically to reduce bandwidth and, thereby,
save 6-10% of total system power.

Another approach to reducing energy consumption in interconnection networks
is adapting software that runs on a system. Dickov et al. [111] are using MPI
data compression to reduce the overall network traffic. The authors argue that a
slower and, therefore, more energy-efficient network is sufficient for the reduced
load. In another work, Dickov et al. [81] adapt PMPI, the MPI profiling layer, to
intercept MPI calls in order to hide transition times when changing power state.
While in this approach links are always available when needed, the overhead
is shifted to PMPI. Similarly, Hendry [112] proposes Asynchronous Circuit
Programming (ACP), which allows the programmer to closely interact with the
underlying hardware through a high-level interface to establish communication
channels and additional features for HPC applications. Such an approach can
guarantee near-optimal state selection as explicit knowledge about application
behavior is present, however, the responsibility is shifted from architecture to
the programmer with substantial implications on programming complexity.

Also, in [74] Venkatesh et al. introduce an energy-efficient MPI runtime.
While the authors focus on optimizations regarding the MPI layer, this work

126

7.1 Related Work

rather optimizes power consumption at the link level and independent of a
particular programming language. However, the here introduced energy-saving
policies adapt their algorithm to calculate the threshold for switching network
links into a low-power state.

On the hardware side, Kim et. al [82] introduce traffic consolidation for
energy-proportional high-radix networks (TCEP). This concept, which relies
on path diversity, and defines a minimal set of links that are needed to ensure
connectivity, uses management software that centralizes traffic to the selected
links. The remaining links can be switched on and off or set to a "shadow state"
in which the link is physically on, but not available for traffic. However, this
approach relies heavily on high-radix networks with high path diversity, full
adaptive routing, and global network management. In contrast, this work’s
policies function technology agnostic and use local information that is available
in each link port.

Principally, different techniques including ACP, continuous clock locking
for improved transition time, traffic consolidation, and technology-dependent
features can be combined. In particular, link-level power saving is naturally
compatible with high-level power-saving methods. Similarly, the combination of
energy-saving and congestion management combines also low-level methods with
higher-level network management.

Saravanan and Cerpente [5] explore the impacts of Energy Efficient Ethernet
(EEE) on HPC applications and introduce an approach similar to our on/off
policy. The authors also propose a concept in which power-downed links are
regularly woken up to ensure continuous clock locking and word alignment. In
[9], Saravanan and Cerpente extend their studies by investigating energy-saving
possibilities using an additional EEE sleep state "Fast-Wake". In contrast to this
work, these works focus on specific EEE features. Furthermore, topology-pending
effects, such as congestion along a certain routing path due to switched off links
on this path, are not considered in these studies.

Closely related to our work is the work introduced by Alonso et al. [10]. The
authors propose two different energy-saving techniques for regular interconnection
networks, which include all networks that are connected by high-degree switches.
First, they save energy by switching links between different switches or nodes on
and off. Second, they adjust their strategy by a dynamic bandwidth reduction
instead of instantly switching links completely off. In order to implement this

127

Discussion

gradual reduction, they use several parallel links for every dimension that can be
switched on and off individually. This very hardware-specific set-up is also the
main difference between their and our approach. Instead of proposing a solution
for a specific technology (InfiniBand), this work rather explores fundamental
technology aspects and constraints. However, their solution is effective and
inspiring. Furthermore, the same authors propose a policy for on/off links
specifically tailored to fattrees [11], [79]. Their policy is also used in this work to
compare with the topology agnostic ones.

Andujar et al. [113] introduce a new power-aware routing algorithm for fat-
tree and torus networks. This routing algorithm is an addition to energy-saving
policies. It takes into account which links are in a low power state by utilizing
other links instead and thereby reducing impacts on performance. This is a very
useful extension that increases the usability of power states in hardware, such as
EEE.

7.2 Workload Analysis

Analyses of exascale proxy-applications regarding their communication patterns
are important to understand the energy-saving potential of HPC applications.
Although these are static analyses that do not provide any temporal information,
they reveal useful insights about traffic flows and idle times.

7.2.1 Locality and Selectivity

At the application level, the new metrics rank locality and selectivity are intro-
duced. They are particularly useful to quantify common traffic density plots,
which enables their usage as an input parameter for abstract models.

Overall, most applications show a rather low selectivity even compared to their
number of peers. Then again, rank locality decreases significantly with the number
of ranks. This indicates that although there are just a few distinct communication
partners, these communication partners are often not direct neighbors. Instead,
the segmentation of ranks follows a multi-dimensional pattern in which ranks
with distant IDs are co-located. This finding coincides with the study about the
dimensionality of the underlying problem, in which many applications show 2D

128

7.2 Workload Analysis

or 3D characteristics. Furthermore, this explains why a large share of inter-node
traffic remains when modeling a multi-core system with up to 48 cores/node.

However, these results and especially the low selectivity indicate that an
optimized mapping could decrease inter-node traffic significantly. To identify such
a mapping and profit from faster on-chip communication, a deeper understanding
of communication pairs is necessary. Another approach to reduce network traffic
and to shorten long network paths is tailoring a network topology to a given
application, as the dimensionality analyses suggest. If the topology matches the
underlying problem, the nearest neighbor communication could be exploited even
if communication pairs are distributed between all ranks. Still, the best approach
and the degree of possible optimization is highly depending on the application.

7.2.2 Topology Effects

Following the application-level analyses, the behavior of the proxy-applications
in three different topologies is modeled.

Surprisingly, the dragonfly shows the highest average hops for most appli-
cations. This is particularly unexpected since the dragonfly is often considered
as a low-diameter topology. Especially, the division of nodes in many different
groups prevents it from exploiting locality that is present at the application
level. However, the design rules for load balancing result in rather small groups,
another design with larger groups would probably not harm traffic flows but
improve locality effects. Furthermore, as the maximum distance for a dragonfly
is bound to five hops, further scaling the number of ranks would benefit this
topology.

Despite its large diameter, the 3D torus provides the best locality properties
for many applications at a different scale. This might be due to the structure of
underlying problems. As shown in the dimensionality study, many applications
have a three-dimensional character, which can be perfectly mapped into a 3D
torus. Nonetheless, at larger scales of 256 ranks or more the increasing diameter
exceeds these dimensional benefits and becomes dominant. The fattree proves to
be a solid fit that ranks right in the middle between both other topologies for
most applications and scales.

Another finding is that there is no explicit correlation between application-
level and system-level locality. Deriving topology effects directly from the MPI

129

Discussion

level would provide many benefits and help to improve network performance and
energy savings easily. One of the few trends that can be recognized is that a low
selectivity and rank distance often indicate a 3D torus to be the best fit, but even
this finding does not hold true for all applications. Overall, it is hardly possible to
drive absolute findings for all cases, even if there are some indications. One way
to improve this situation could be the division of applications in distinguished
subclasses. However, one goal of the section of exascale proxy applications was
to cover all kinds of different communication and computation behaviors. It is
reasonable to assume that they also differ significantly regarding their locality
properties. Hence, further studies with different subsets of similar applications
could be useful to identify correlations between these metrics.

7.2.3 Network Utilization

The analyses show, that over all combination of scale, application, and topology,
the network utilization is very low. This emphasizes the huge energy saving
potentials in interconnection networks. Although they are only sparsely used
compared to the entire execution time, they are projected to consume 20%-30%
of the system power in the near future.

Taking a closer look at the different topologies, it shows that the fattree has
the highest utilization of all topologies for most applications. The dragonfly
and the torus show a two-folded trend. While at a small scale the dragonfly
has higher utilization, the torus exceeds the dragonfly on higher scales. The
reason for this trend the links/node ratio of the different topologies: with as
many global links as nodes and twice as many switches per group, the ratio of
links/node in the dragonfly varies from 3.5 to 3.8 for the used configurations,
while a torus has a constant ratio of 3 and a fat tree one of below three. The turn
around in the trend at particular scales for the dragonfly and torus is further
based on their particular locality properties. While the link/node ratio favors
the torus for a higher utilization, its good locality reduces the number of hops,
resulting in lower network utilization. With increasing diameter locality worsens
and consequently packet hops and utilization, respectively, increase. However,
the absolute numbers are too low to enable reasonable comparisons. Also note,
that this study considers shortest-path routing, while in practice usually adaptive
routing is used in dragonfly networks, which often results in even longer paths.

130

7.3 Energy Savings

7.3 Energy Savings

Next, in Chapter 6, energy-saving policies are introduced and evaluated. The
key findings and different aspects of energy-saving are discussed in the following
section. This includes the three energy-saving policies, as well as important
parameters and the setup they are running at, e.g. topology aspects.

7.3.1 Policies

Three different energy-saving policies are introduced in the context of this work.
Two of them operate entirely on link-level, where the on/off policy aims for
optimizing energy savings and the high/low policy intent to equilibrate energy
savings and good performance. The third one (awake) is located between a
link-level and system-level approach and targets to further improve performance.

Overall, all policies provide surprisingly good results. Energy savings of more
than 90% are achieved in the majority of set-ups. Furthermore, they suggest that
especially on/off and high/low operate quite well according to their respective
purpose. In nearly all set-ups, on/off enables more energy savings, but increase
the execution time more than high/low does and vice versa.

Regarding high/low, the results show that also this policy is operating close
to its optimum. Since links are never switched off completely by this policy,
there remains a constant energy consumption of the low power state that cannot
be undercut. In the low power state, only one out of twelve parallel lanes inside
one link remains active, which means that a baseline of 1/12 or 8.33% of the
overall power consumption represents the upper bound for energy-saving by this
policy. The multitude of results that are close to this optimum suggests, that
many links that are put to the lower power state are never utilized enough, that
the link switches back to the high power state. This affirms that networks are
usually over-provisioned if a bandwidth reduction of 91.66% only shows little
to no impact on the overall execution time. On the other hand, the threshold
when a link is switched back to a high power state only relies on the bandwidth
difference between both states. Hence, studies with even slower low states would
provide interesting results about the optimum distribution of power states.

While both policies at link-level work well, the awake policy falls short of its
expectations. The purpose of this policy was to further improve performance

131

Discussion

compared to the high/low policy. The resulting energy consumption and execution
times are comparable to the other policy but do not exceed their results. However,
the implementation of this policy involves considerable additional effort, due
to its awake mechanisms and the introduction of the new awake message type.
The cost-benefit analysis states that both other policies are preferable over this
one. In addition, this policy requires a strict deterministic routing, which is
usually not used in fat-tree and dragonfly topologies. The absent performance
improvements are presumably due to the lack of coordination between different
awake messages and unintentional interactions among them. This suggests that
a hybrid approach between a link- and system-level management is difficult to
implement without a central management unit, especially if it only relies on local
information.

7.3.2 Energy-Saving Parameters

Since the awake policy did not provide the expected results, further studies focus
on the two remaining policies. Note, that these studies only took link power
into account due to the variations in switch radices. Overall, both policies show
good results in their respective domain. Especially the differences between the
aggressive and conservative approaches stand out. The on/off policy with an
aggressive approach enables more energy savings than the conservative one but
at the costs of a further increased execution time. While this behavior was
to be expected, the significant differences between both approaches are rather
surprising. As depicted in Figure 6.7, the energy consumption reaches a plateau
quickly with an increasing ρ, the execution time, however, continues to increase.
Hence, ρ should be selected as small as possible after energy-saving have reached
the plateau. This indicates that in some configurations the parameter ρ = 10%
was two low and a sightly higher selection could enable even more energy savings
at nearly the same performance. The opposite trend is shown for high/low.
Here, the aggressive and conservative approach have almost identical results,
which suggests that in both policies links are mainly operating at the low power
state. As discussed previously, this indicates that the network utilization never
or seldom exceeds the threshold to switch links back to the high power state and
that overall the network is over-provisioned for this application.

Another important parameter for energy saving is the transition time.

132

7.3 Energy Savings

Through the course of the evaluation, different transition times are used. As
expected, it shows that smaller transition times facilitate energy-saving poli-
cies. Thereby, smaller transition times do not only reduce the overhead while
changing power states but also increase the energy-saving opportunities. In both
policies, tdown, which determines the time an idling link remains active before it
is switched off or to the low power state, is proportional to the transition time
and, therefore, smaller transition times enable exploiting smaller idle periods in
the traces. These findings are also backed up by further studies [73].

7.3.3 Topologies

Regarding the 3D torus, both policies provide expected results. The only
exceptions are the NAMD and HPL workload, for which the on/off policy
in the conservative setting result in fewer energy savings than the high/low
policy. As discussed previously, a larger ρ would probably be beneficial here.
However, also the aggressive approach enables only slightly more energy-savings
than high/low. This can is caused by higher execution times, which also affect
energy consumption. Additionally, the high execution time increases for both
policies while running the Graph500 are notable. Since this trend continuous in
all other topologies, it suggests, that the Graph500 traffic pattern is adverse for
energy-saving policies. If this is particularly Graph500 specific or rather caused
by traffic patterns that heavily rely on collective operations in general, remains
to be analyzed in further studies.

The k-ary n-tree topology was evaluated in two different designs (two and
three stages) and the energy-saving policies are compared to another policy that
is tailored specifically to this topology. Regarding the number of stages, both
set-ups show overall similar results and there are only slight differences in the
absolute numbers. However, the results focus only on link power consumption,
and fewer stages are required for higher radix switches. Therefore, the rising core
power consumption of these switches could further affect energy consumption.

Surprisingly, for the Graph500, WRF, and HPL, the high/low policy results
in larger execution times that on/off. This performance is likely caused by
the routing algorithm, which is particularly designed for load balancing. The
adaptive character in the upward direction of this algorithm is able to use few
fast links that remain active by the on/off policy, where traffic flows are spread

133

Discussion

evenly over the links in low power states while operating at high/low. This
impacts particularly patterns that continuously send messages instead of bursts
in a global communication phase.

The comparisons between Alonso’s policy and the two newly introduced ones
provide contrary results. Both on/off and high/low provide significantly higher
energy savings (about 60% for Alonso and more than 90% for on/off), however,
Alonso’s policy results in almost no increase in execution time. Both can be
attributed to the design of this policy, which includes a minimal set of links, that
remain at full bandwidth in order to provide full connectivity. On the one hand,
this limits the total amount of power that can be saved, on the other hand, there
is always an available path for traffic flows and if this minimal set of links is
over-utilized, additional links can be switched on. While both approaches provide
advantages and drawbacks, the implementation of Alonso’s policy could solve
the problems of potential performance issues that are particular to be avoided
in HPC systems. However, a combination of both approaches could potentially
bring the benefits of both together.

Last, the policies in the dragonfly topology, show the same overall trends as
in the 3D torus, including the better energy-saving for high/low compared to the
conservative approach of on/off while running the NAMD workload. However,
the dragonfly outperforms the torus in total numbers for execution time and
energy savings. This back ups the overall trend that dragonfly provides not only
good performance results but is also highly suitable for energy saving in the
interconnection network.

7.4 Congestion Management

Last, the interactions of the energy-saving policies and congestion management
as another important network management unit are studied. Potential obstacles
are the contrary goals of both techniques. While energy-saving is based on
the concept that traffic flows should be combined to switch off unused links,
congestion management contrarily aims to split traffic flows across the entire
network.

Generally, the studies provide positive results, which suggests that congestion
management and energy-saving policies work well together. In all evaluated
setups there is no significant negative effect on performance and energy efficiency.

134

7.4 Congestion Management

The only exceptions are minor increases in latency in few configurations. However,
there is always a combination of an energy-saving policy and a queueing scheme
for every topology which provides almost the baseline packet latency.

Another finding that might surprise on the first sight is that the queue-
ing schemes provide more benefits for energy efficiency that the energy-saving
techniques. This can be explained by the synthetic traffic pattern that is disad-
vantageous for the energy-saving policies. The rather high network utilization,
which is necessary to see the effects of congestion management, prohibits the
energy-saving policies from reaching their potential that they have shown previ-
ously. Despite the rather obstructive traffic patter, the energy-saving policies
show little improvements regarding energy efficiency in most cases. Additionally,
even in other configurations in which they do not impact energy efficiency, they
have also no impact on performance.

The uniform traffic has also an unexpected effect on the high/low policy that
usually aims to provide better performance for the cost of fewer energy savings.
However, this behavior is turned around in these studies. While high/low shows
in most cases a slightly worse latency and throughput, it enables the highest
energy efficiency in all configurations. The reason for this is the evenly distributed
network traffic. While there are idling periods that are long enough to switch
in the lower power state, the absence of traffic bursts prevents the buffers from
filling up and, therefore, the links remain in the low power state for the residual
execution time.

Overall, these results suggest that advanced queueing schemes can maximize
the utilization of congested links. Especially in a dragonfly network, queueing
schemes are able to increase the average link utilization from 11.2% up to
28.1%. This is backed up by the small differences between the energy-saving
policies: the increased link utilization causes a decreasing potential for energy
savings since links are significantly less idling, resulting in almost no power
state changes. Therefore, more realistic workloads based on application traces
should be evaluated to analyze if these initial insights that both policies are
compatible holds in more realistic scenarios and to gain a comprehensive and
deeper understanding.

Last, it should be noted, that both techniques are tested in their default
configuration. It stands to reason that coordination between both would enable
further benefits such as energy efficiency. Compared to hardware properties (42.7

135

Discussion

nJ
bit at 100% network utilization), measured efficiency is worse by one order of
magnitude in the best case. Therefore, further studies on actual data movement
costs in terms of energy under realistic conditions would be useful to evaluate
sustained energy efficiency.

7.5 Outlook

This work has shown that there is a wide range of opportunities for energy
savings in interconnection networks. Hence, it is important to further exploit
these opportunities to shift future interconnection networks to more energy-
proportionality. Considering the increasing impact of the network on the overall
energy consumption predicted by the IRTS and Abts et al. [4], there needs to
be a change in the focus of new hardware designs. Several works have studied
energy aspects in networks and proposed multiple solutions, ranging from large
savings if tolerating longer execution times to moderate savings without notable
performance decreases. Although, many new interconnection hardware is lacking
respective features, some vendors or standards, such as EEE enable different
power states to improve energy efficiency.

One remaining research question is the best granularity for power states.
As long as they do significantly vary in their efficiency, coarse-grained power
states seem to be sufficient to operate in few distinguished configurations and
exploit long idle periods and low utilization. On the other hand, an almost full
energy-proportional network would enable fine-grain adjustments correlated to
the actual utilization.

Another hardware-specific topic is transition time optimization. The studies
in this and a previous work [12] have shown, that shorter transition times improve
energy saving significantly. Besides the obvious performance improvements, this
would also enable the possibility of more aggressive energy saving that can exploit
even short idle periods.

Regarding energy-saving mechanisms, this work has shown, that even simple
link-level-based approaches provide good results. Furthermore, especially the
studies about the collaboration of energy-saving policies and congestion manage-
ment suggest that the combination of high- and low-level energy-saving methods
could be beneficial for the overall efficiency. However, global distribution of net-
work statuses in real-time remains a key challenge for these high-level concepts.

136

7.5 Outlook

While code instrumentation is a good approach, in theory, it shifts the duty
from the interconnection hardware to software engineers. Especially against the
background that many HPC applications are based on scientific models that run
on rather ancient code, it is hard to imagine that many of these applications
would be instrumented to improve energy efficiency. Other approaches, however,
such as global guiding of traffic flows to improve utilization of particular links
[82] or the introduction of new routing algorithms that are tailored to improve
energy-saving properties [113] would be promising targets for such combinations.
Adaptive routing could generally be beneficial for energy saving mechanisms,
since links that are currently not available due to being switched off or being in
reconfiguration, could be bypassed spontaneously. However, the clash of three
network management techniques (including congestion management) has the
potential for conflicts, if they are not coordinated. Further studies about different
combinations would be interesting and potentially yield improvements for both,
performance and energy efficiency.

Last, a wider range of application analyses could also contribute to reducing
network energy. On the one hand, a more detailed understanding of communica-
tion patterns and especially temporal manner of traffic flows would form the basis
for more advanced and aligned energy-saving techniques. On the other hand,
applications themselves could provide the potential for energy reduction in the
network design. For instance, many applications try to overlap communication
latencies with computation. This could be exploited by lowering the overall
bandwidth so that data arrive just in time when they are needed. This MPI
slackness could be determined by statically analyzing the leeway this overlapping
produces.

137

8

C
h

a
p

t
e

r

Conclusion

Energy is a key factor in the design and operation of HPC systems. In addition
to economical motivations, energy consumption is also limited by technical
constraints, including cooling capabilities and power distribution, as well as
ecological reasons, such as the minimization of carbon footprints. With processors
and memory becoming increasingly energy-proportional, interconnection networks
increase their share of the total power consumption and rise to the focus for
further energy-saving capabilities. However, networks fundamentally differ in
their underlying technology and access patterns from other components. Hence, a
comprehensive and complete study of energy-saving capabilities is key to further
increasing energy-efficiency.

One major difference between interconnection networks and other components
that are CMOS-based is the underlying CML technology. This logic is widely used
in the design of serialization technology and dominates the power consumption of
networks. However, established power-saving approaches from other components,
such as DVFS, cannot be applied here due to the constant current of CML. As
a result, when only hardware is considered, energy-saving in interconnection
networks can be best achieved by adjusting link width to the current utilization.
Another important performance issue is the transition time, in which the link
training is performed after every power state change. This delay prevents messages
from being sent, which likely increases the execution time of an application, and,
therefore, limits the potential number of link width adjustments.

To address this issue, this work performs further analyses of application

139

Conclusion

executions, which provide insights about the frequency of required adjustments
from the perspective of the software. Commonly, interconnection networks have
a reputation as a performance bottleneck, since inter-node data movements are
much more expensive in terms of time compared to local data access. This
work provides broad studies about the actual communication patterns and the
locality effects in a wide range of exascale proxy-applications. In addition, two
new metrics (locality and selectivity) are introduced to obtain objective and
comparable results. Although there are partly intensive communication phases,
the overall network utilization is lower than 1% for all but one application
and long idle periods occur between communication phases. Furthermore, the
new selectivity metric identifies that ranks send 90% of their overall point-
to-point communication to only a small subset of other ranks. This suggests
that an advanced, coordinated mapping could further reduce network traffic.
Overall, all studied applications have shown a sizeable potential for energy saving;
extensive non-communication periods require only a moderate number of link
width adjustments.

Based on these insights, three different energy-saving policies are introduced
and studied for their effects on energy consumption and performance. All three
policies are implemented for evaluations in an existing event-based, cycle-accurate
network simulator that is further extended with energy features. With this
simulator, the impacts of various design parameters are studied. These policies
are each based on two different power states, a fast state and a slow state, where
the fast power state is implemented as a link operating at maximum bandwidth.
The first policy (on/off) switches links on and off, depending on their current
utilization. The second policy (high/low) uses a slow power state that provides
only a low bandwidth for the benefits of reduced power consumption instead
of switching links entirely off. This low power state enables the possibility to
transfer small messages without link reconfiguration and ensures full connectivity
throughout the entire network. The awake policy is based on high/low but shifts
from a strict local approach to a hybrid local/system one, in which all nodes can
configure far links in a network. However, the last policy does not provide further
improvements over the first two and demands a significant additional expenditure
in the hardware design. On/off and high/low provide overall promising results and
enable significant energy savings of more than 90% in almost all configurations
with only a moderate increase in execution time. The results of both policies

140

correspond to their respective design goals; on/off provides more energy savings
at the costs of higher energy consumption, and vice versa when using high/low.

As expected, a shorter transition time is preferred for both energy saving
and performance since power states can be changed more quickly and shorter
idle periods can be exploited. As link reconfigurations in networks are not
usually intended during runtime, link training protocols can take up to multiple
milliseconds, but leave plenty of room for optimizations. However, there are also
technical constraints that provide a lower bound for feasible transition times.
Regarding topologies, the dragonfly provides the best results for energy saving.
This is based on the smallest link/node ratio and the concept of few highly used
global links and the majority of rarely used local links.

In addition to potential energy-saving policies, most interconnection networks
are also equipped with additional management strategies. In such networks,
congestion management is the most prominent example represented in nearly all
networks. This work analyzes the interactions of these two network management
strategies and shows that they complement each other, despite following contrary
approaches. For all three evaluated topologies, the energy efficiency increases for
the combination of congestion management and energy-saving policies. Conges-
tion management improves performance metrics for the energy-saving policies
compared to the baseline without congestion management, except of is a slightly
increased latency in the k–ary n-tree.

This work contributes comprehensive studies of energy-saving capabilities in
HPC interconnection networks. These studies include a detailed power analysis
of network hardware, a study of energy-saving capabilities in HPC software, and
introduce two new metrics to quantitatively compare locality in communication
patterns. This work further introduces multiple policies that exploit these findings
to reduce energy consumption. The policies are evaluated in an energy-aware
simulator and studied for their interaction with congestion management. The
results of this work provide valuable insights for hardware designers as well as
system architects that need guidelines to design their systems in a more efficient
way. However, not all issues have been conclusively addressed. Further workload
analyses provide a deeper understanding of the concurrency of messages in the
network and could help to predict messages. This would allow the network to
adjust links before a message is injected in the network and avoid overhead due
to transition time. Additional studies on central-managed policies could provide

141

Conclusion

further benefits if such a policy could rely on additional information as opposed
to a local link.

142

Acknowledgements

First and foremost I wish to express my deepest gratitude to my parents, Barbara
and Matthias Zahn, for always believing in me and encouraging me. They have
constantly provided me their unconditional and endless support and I will always
be grateful for being blessed with such amazing parents.

I am deeply indebted to my supervisor, Prof. Dr. Holger Fröning, Faculty of
Mathematics and Computer Science at Heidelberg University, for his encourage-
ment, guidance, invaluable feedback on my work, and countless discussions. His
way of approaching research, and in particular of identifying relevant questions
has had a profound impact on me.

I wish to express my sincere appreciation to Prof. Dr. Ulrich Brüning, the
Computer Architecture Group, and the employees of the EXTOLL GmbH, who
provided guidance and assistance in the course of this work. In particular, I want
to thank Dr. Maximilian Thürmer and Dr. Sven Kapferer for their continued
support. Additionally, I want to thank Steffen Lammel and Armin Schäffer,
who also contributed with their master theses to this work. I also appreciate
the fruitful discussions with my colleagues Lorenz Braun, Bernhard Klein, and
Günther Schindler.

Parts of this work originates from a stay at the Universidad Castilla La-
Mancha in Albacete. I am grateful to this institution and all members of the
RAAP group for their hospitality. Especially, I want to express my thanks to
Pedro Yébenes for providing his network simulator and endless support at the
beginning of this work, and Francisco J. Andújar for his support in all trace-
related issues. Furthermore, I would like to pay my special regards to Jesús
Escudero-Sahuquillo and Pedro Javier García for their consistent support and
guidance during this work.

I gratefully acknowledge financial support from the Carl-Zeiss Foundation in
the form of a full Ph.D. scholarship as well as the travel grant from the HIPEAC

143

Conclusion

organization.
A very special thank you to Benjamin Klenk for his generous support and for

always being supportive of me and my work. You are a wonderful friend and I
wish you all the best. Furthermore, I wish to express my deepest gratitude to
Alexander Matz for being there whenever I needed a friend and for his invaluable
advice and feedback through the course of this work. I am also very grateful to
Christine Harvey and Etienne Dilocker who both helped me in numerous ways
during various stages of my Ph.D. All of them have accompanied me through
this work and were always beside me during the happy and hard moments to
push me and motivate me.

Some special words of gratitude go to my friends and my roommate who have
always been a major source of support when things would get a bit discouraging,
in particular Juli Xhixho, Sophie Bossert, and Steffen Sikora.

144

List of figures

1.1 Technology scaling trends for various features. 2

2.1 Design scheme for parallel SAN systems. 10
2.2 Switch blueprint with essential components. 15
2.3 Example 2x2x2 3D torus topology. 20
2.4 Example k-ary n-tree topology. 22
2.5 Example of a dragonlfy topology with nine groups. 23
2.6 Schematical Illustration of a deadlock. Each buffer is completely

filled and requesting to send packet to the next node. 26
2.7 Schematic illustration of dimension order routing. 27
2.8 Dragonfly routing algorithms and VC selection. 29

3.1 EXTOLL Tourmalet block diagram. [36]. 32
3.2 Exmplary logic of a CMOS inverter. 34
3.3 Exmplary logic of a CML inverter/buffer. 35
3.4 Current/frequency relation for CML and CMOS [39]. 36
3.5 Power consumption of 4-port HTAX core operating at different

frequencies. 38
3.6 Power consumption of switch radices at scale. 39
3.7 Switch core power for different radices divided in a static and a

dynamic part. 40
3.8 Design example of interconnection link. 41
3.9 Effects of frequency and link width scaling on power consumption. 42

4.1 Examples of the visual metrics SONAR derives from an application
trace. 49

4.2 Schematic workflow of acquiring metrics with SONAR. 50

145

4.3 Illustration of selectivity metric. For an exemplary rank (LULESH,
rank 0), the communication volume (y-axis) to every other com-
munication partner (x-axis) is shown. 53

4.4 Nearest neighbors (green) of a particular node (blue) for one
dimensional problem (a) and two dimensional problem (b). . . . 62

4.5 Communication patterns in heat maps (a lighter color indicates
more communication in Bytes). 64

4.6 Selectivity trends for all workloads. 65
4.7 Scalability of selectivity (example: AMG). 66
4.8 Network traffic for different cores/socket configurations. 67

5.1 Top-level view of a 3x3 torus system structure. 75
5.2 Structure of the HCA interface in SAURON. 76
5.3 Schematical blueprint of a SAURON switch. 78

6.1 Operating principle of the on/off policy: link is used and stays
active. 94

6.2 Operating principle of the on/off policy: link is idling and switched
off. 94

6.3 Operating principle of the on/off policy: switched off link is
switched on. 95

6.4 A packet performs multiple hops and observe multiple delays due
to transition time. 96

6.5 An example of packet forwarding using the high/low policy in the
fast and slow power state. 97

6.6 Link at high/low policy switching back to high power state. . . . 97
6.7 Energy consumption (green) and execution time (blue) for different

transition times and ρs (NAMD apoa1). 118
6.8 3D Torus: Energy saving results for all policies including a best

case study and the awake policy (normalized to energy and execu-
tion time without energy saving). 119

6.9 3D Torus: Link energy saving results (normalized to energy and
execution time without energy saving). 119

6.10 K-ary n-tree (two stages): Link energy saving results (normalized
to energy and execution time without energy saving). 120

146

6.11 K-ary n-tree (three stages): Link energy saving results (normalized
to energy and execution time without energy saving). 120

6.12 Dragonfly: Link energy saving results (normalized to energy and
execution time without energy saving). 121

6.13 Results for 3D torus. 122
6.14 Results for k-ary n-tree. 123
6.15 Results for dragonfly. 124

147

List of tables

2.1 Properties of the studied topologies. N indicates the total number
of end nodes, k the switch radix, and x,y,z, the number of nodes
per dimension in the torus. The parameter a,p,andh are design
parameters of the Dragonfly and are described further in the
respective section. 21

3.1 Power share of different functional components. 33

4.1 Overview of MPI-based exascale proxy applications. 58
4.2 Configurations for different topologies at scale. 59
4.3 Workload characteristics in different application-layer metrics. . . 61
4.4 Exemplary workloads for different dimensionalities in rank locality. 63
4.5 Network locality aspects in torus, fat-tree, and dragonfly. 68
4.6 Network utilization for different topologies. 71

5.1 Power states implemented in the SAURON simulator. 79

6.1 Actual used power states for the power saving policies. 91
6.2 Communication characteristics of HPC applications. 99
6.3 Simulation parameters. 102
6.4 Energy saving parameters for congestion management studies. . 114

149

ASIC Application-Specific Integrated Circuit . 37

CDF Cumulative Distribution Function . 49

CDR Clock and Data Recovery . 13

CML Current Mode Logic . 4

CMOS Complementary Metal-Oxide-Semiconductor . 33

CPU Central Processing Unit . 1

CRC Cyclic Redundancy Check . 11

DDT Derived Data Types . 57

DoE US Department of Energy . 3

DESTRO Deterministic Destination and Stage-based Routing 28

DFS Dynamic Frequency Scaling . 90

DVFS Dynamic Voltage Frequency Scaling . 90

DVS Dynamic Voltage Scaling. .90

DLL Delay-Locked Loop . 41

150

EEE Energy-Efficient Ethernet . 5

FLOP Floating Point Operations . 49

FIFO First In First Out . 24

FLIT Flow Control Unit . 11

FPGA Field-Programmable Gate Array . 37

GPU Graphics Processing Unit . 2

GTL Gate-Level Netlist . 37

GUI Graphical User Interface . 75

HCA Host Channel Adapter . 75

HoL Head-of-Line Blocking. .111

HPC High-Performance Computing . 3

HTAX High Throughput Advanced X-Bar . 37

IC Integrated Circuit . 33

ILP Instruction-Level Parallelism . 1

151

INI Initialization . 74

ITRS International Technology Roadmap for Semiconductors 4

LAN Local Area Network . 9

LUT Look Up Table . 24

MIN Multistage Interconnection Networks. .19

MPI Message Passing Interface . 7

NED Network Description. .74

NIC Network Interface Controller . 10

NMOS N-Type Metal-Oxide-Semiconductor . 33

NoC Network on Chip. .9

OSI Open Systems Interconnection . 11

OTF Open Trace Format . 51

PCIe Peripheral Component Interconnect Express . 2

PHIT Physcial Units . 12

152

PLL Phase-Locked Loop. .13

PMOS P-Type Metal-Oxide-Semiconductor . 33

P2P Point-to-Point . 30

RMA Remote Memory Access .32

RTL Register-Transfer Level .37

SAN System Area Networks . 9

SoC System on Chip . 9

SONAR Simple Offline Network AnalyzeR . 48

TAU Tuning and Analysis Utilities . 50

TDP Thermal Design Power .4

TLP Thread-Level Parallelism . 1

TSMC Taiwan Semiconductor Manufacturing Company 32

UGAL Universal Globally Adaptive Load-balancing . 29

UMA Uniform Memory Architecture . 10

153

VC Virtual Channel . 27

VOQ Virtual Output Queue . 76

WAN Wide Area Network. .10

154

References

[1] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and
A. R. LeBlanc, “Design of ion-implanted mosfet’s with very small physical
dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–
268, Oct. 1974, issn: 1558-173X. doi: 10.1109/JSSC.1974.1050511 (cit. on
pp. 1, 34).

[2] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D.
Burger, “Dark silicon and the end of multicore scaling,” in 2011 38th
Annual International Symposium on Computer Architecture (ISCA), Jun.
2011, pp. 365–376 (cit. on p. 1).

[3] L. A. Barroso and U. Hölzle, “The case for energy-proportional computing,”
Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007, issn: 0018-9162. doi:
10.1109/MC.2007.443. [Online]. Available: https://doi.org/10.1109/MC.
2007.443 (cit. on pp. 4, 31).

[4] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy
proportional datacenter networks,” SIGARCH Comput. Archit. News,
vol. 38, no. 3, pp. 338–347, Jun. 2010, issn: 0163-5964. doi: 10.1145/
1816038 .1816004. [Online]. Available: http ://doi .acm.org/10 .1145/
1816038.1816004 (cit. on pp. 4, 31, 104, 126, 136).

[5] K. P. Saravanan, P. M. Carpenter, and A. Ramirez, “Power/performance
evaluation of energy efficient ethernet (eee) for high performance com-
puting,” in 2013 IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS), Apr. 2013, pp. 205–214. doi:
10.1109/ISPASS.2013.6557171 (cit. on pp. 4, 127).

[6] The international technology roadmap for semiconductors 2.0 - executive
report, https://www.semiconductors.org/wp-content/uploads/2018/06/
0_2015-ITRS-2.0-Executive-Report-1.pdf, Accessed: 2020-05-19, 2015
(cit. on p. 4).

[7] F. Zahn, P. Yebenes, S. Lammel, P. J. Garcia, and H. Fröning, “Analyzing
the energy (dis-) proportionality of scalable interconnection networks,”
in 2016 2nd IEEE International Workshop on High-Performance Inter-
connection Networks in the Exascale and Big-Data Era (HiPINEB), Mar.
2016, pp. 25–32. doi: 10.1109/HIPINEB.2016.13 (cit. on p. 5).

155

https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1145/1816038.1816004
https://doi.org/10.1145/1816038.1816004
http://doi.acm.org/10.1145/1816038.1816004
http://doi.acm.org/10.1145/1816038.1816004
https://doi.org/10.1109/ISPASS.2013.6557171
https://www.semiconductors.org/wp-content/uploads/2018/06/0_2015-ITRS-2.0-Executive-Report-1.pdf
https://www.semiconductors.org/wp-content/uploads/2018/06/0_2015-ITRS-2.0-Executive-Report-1.pdf
https://doi.org/10.1109/HIPINEB.2016.13

[8] F. Zahn and H. Fröning, “On network locality in mpi-based hpc applica-
tions,” in 49th International Conference on Parallel Processing - ICPP
(ICPP ’20), Edmonton, AB, Canada: ACM, New York, NY, USA, Aug.
2020, p. 11. doi: 10.1145/3404397.3404436 (cit. on pp. 5, 51).

[9] K. P. Saravanan, P. M. Carpente, and A. Ramirez, “Exploring multiple
sleep modes in on/off based energy efficient hpc networks,” in 2015 33rd
IEEE International Conference on Computer Design (ICCD), Oct. 2015,
pp. 54–61. doi: 10.1109/ICCD.2015.7357084 (cit. on pp. 5, 127).

[10] M. Alonso, S. Coll, J. M. Martinez, V. Santonja, P. Lopez, and J. Duato,
“Power saving in regular interconnection networks,” Parallel Computing,
vol. 36, no. 12, pp. 696–712, 2010, issn: 0167-8191. doi: https://doi.org/
10.1016/j.parco.2010.08.003. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167819110001109 (cit. on pp. 5, 127).

[11] ——, “Dynamic power saving in fat-tree interconnection networks using
on/off links,” in Proceedings 20th IEEE International Parallel Distributed
Processing Symposium, Apr. 2006. doi: 10.1109/IPDPS.2006.1639599
(cit. on pp. 5, 103, 108, 128).

[12] F. Zahn, S. Lammel, and H. Fröning, “On link width scaling for energy-
proportional direct interconnection networks,” Concurrency and Compu-
tation: Practice and Experience, vol. 31, no. 2, e4439, 2019, e4439 cpe.4439.
doi: 10.1002/cpe.4439. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/cpe.4439. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/cpe.4439 (cit. on pp. 5, 106, 136).

[13] F. Zahn, A. Schäffer, and H. Fröning, “Evaluating energy-saving strategies
on torus, k-ary n-tree, and dragonfly,” in 2018 IEEE 4th International
Workshop on High-Performance Interconnection Networks in the Exascale
and Big-Data Era (HiPINEB), Feb. 2018, pp. 16–23. doi: 10 . 1109 /
HiPINEB.2018.00011 (cit. on p. 5).

[14] F. Zahn, P. Yebenes, J. Escudero-Sahuquillo, P. J. Garcia, and H. Fröning,
“Effects of congestion management on energy saving techniques in intercon-
nection networks,” in 2019 International Workshop of High-Perfomance
Interconnection Networks in the Exascale and Big-Data Era (HiPNEB),
Feb. 2019, pp. 9–16. doi: 10.1109/HiPINEB.2019.00009 (cit. on p. 6).

[15] T. M. Pinkston and J. Duato, “Appendix f: Interconnection networks,”
Computer Architecture, Fifth Edition: A Quantitative Approach, 2011 (cit.
on pp. 9, 10, 13, 18, 19, 21, 25, 26).

[16] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection networks - an
engineering approach. IEEE, 1997, isbn: 978-0-8186-7800-4 (cit. on pp. 9,
15–17, 19, 25, 27, 30, 112).

[17] Infiniband architecture specification, https : //www. infinibandta .org/,
Accessed: 2020-03-24, 2015 (cit. on pp. 9, 111).

156

https://doi.org/10.1145/3404397.3404436
https://doi.org/10.1109/ICCD.2015.7357084
https://doi.org/https://doi.org/10.1016/j.parco.2010.08.003
https://doi.org/https://doi.org/10.1016/j.parco.2010.08.003
http://www.sciencedirect.com/science/article/pii/S0167819110001109
http://www.sciencedirect.com/science/article/pii/S0167819110001109
https://doi.org/10.1109/IPDPS.2006.1639599
https://doi.org/10.1002/cpe.4439
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4439
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4439
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4439
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4439
https://doi.org/10.1109/HiPINEB.2018.00011
https://doi.org/10.1109/HiPINEB.2018.00011
https://doi.org/10.1109/HiPINEB.2019.00009
https://www.infinibandta.org/

[18] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T.
Rimmer, K. D. Underwood, and R. C. Zak, “Intel® omni-path architecture:
Enabling scalable, high performance fabrics,” in 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects, Aug. 2015, pp. 1–9. doi:
10.1109/HOTI.2015.22 (cit. on p. 9).

[19] A. Silberschatz, G. Gagne, and P. B. Galvin, Operating System Concepts,
8th. Wiley Publishing, 2011, isbn: 1118112733 (cit. on pp. 10, 11, 25).

[20] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2003, isbn: 978-0-12-200751-4 (cit. on pp. 11, 14, 15, 17–19, 111, 112).

[21] N. E. Jerger, T. Krishna, and L.-S. Peh, On-Chip Networks: Second
Edition, 2nd. Morgan & Claypool Publishers, 2017, isbn: 1627059148
(cit. on p. 12).

[22] K. Hwang and Z. Xu, Scalable Parallel Computing: Technol-
ogy,Architecture,Programming. USA: McGraw-Hill, Inc., 1998, isbn:
0070317984 (cit. on pp. 12, 29).

[23] D. E. Culler, A. Gupta, and J. P. Singh, Parallel Computer Architecture:
A Hardware/Software Approach, 1st. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1997, isbn: 978-1-55860-343-1 (cit. on pp. 12,
14, 17, 24, 27).

[24] “Ieee standard for information technology–telecommunications and infor-
mation exchange between systems–local and metropolitan area networks–
specific requirements part 3: Carrier sense multiple access with collision
detection (csma/cd) access method and physical layer specifications,”
IEEE Std 802.3-2008 (Revision of IEEE Std 802.3-2005), pp. 1–2977,
2008 (cit. on p. 12).

[25] K. S. Stevens, P. Golani, and P. A. Beerel, “Energy and performance mod-
els for synchronous and asynchronous communication,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 3, pp. 369–
382, Mar. 2011, issn: 1557-9999. doi: 10.1109/TVLSI.2009.2037327
(cit. on p. 13).

[26] W. J. Dally, “Performance analysis of k-ary n-cube interconnection net-
works,” IEEE Trans. Comput., vol. 39, no. 6, pp. 775–785, Jun. 1990,
issn: 0018-9340. doi: 10.1109/12.53599. [Online]. Available: https://doi.
org/10.1109/12.53599 (cit. on p. 14).

[27] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta, “Microarchitecture
of a high radix router,” in 32nd International Symposium on Computer
Architecture (ISCA’05), 2005, pp. 420–431 (cit. on p. 14).

[28] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient
supercomputing,” IEEE Trans. Comput., vol. 34, no. 10, pp. 892–901,
Oct. 1985, issn: 0018-9340 (cit. on p. 21).

157

https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.1109/TVLSI.2009.2037327
https://doi.org/10.1109/12.53599
https://doi.org/10.1109/12.53599
https://doi.org/10.1109/12.53599

[29] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in 2008 International Symposium on Com-
puter Architecture, Jun. 2008, pp. 77–88. doi: 10.1109/ISCA.2008.19
(cit. on pp. 22, 24, 28, 29, 57, 103, 112).

[30] E. Hastings, D. Rincon-Cruz, M. Spehlmann, S. Meyers, A. Xu, D. P.
Bunde, and V. J. Leung, “Comparing global link arrangements for drag-
onfly networks,” in 2015 IEEE International Conference on Cluster Com-
puting, 2015, pp. 361–370 (cit. on p. 24).

[31] A. Shpiner, Z. Haramaty, S. Eliad, V. Zdornov, B. Gafni, and E. Zahavi,
“Dragonfly+: Low cost topology for scaling datacenters,” in 2017 IEEE 3rd
International Workshop on High-Performance Interconnection Networks
in the Exascale and Big-Data Era (HiPINEB), Feb. 2017, pp. 1–8. doi:
10.1109/HiPINEB.2017.11 (cit. on p. 24).

[32] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multipro-
cessor interconnection networks,” IEEE Trans. Comput., vol. 36, no. 5,
pp. 547–553, May 1987, issn: 0018-9340. doi: 10.1109/TC.1987.1676939.
[Online]. Available: https://doi.org/10.1109/TC.1987.1676939 (cit. on
pp. 27, 29).

[33] C. Gomez, F. Gilabert, M. E. Gomez, P. Lopez, and J. Duato, “Deter-
ministic versus adaptive routing in fat-trees,” in 2007 IEEE International
Parallel and Distributed Processing Symposium, Mar. 2007, pp. 1–8. doi:
10.1109/IPDPS.2007.370482 (cit. on p. 28).

[34] L. G. Valiant, “A scheme for fast parallel communication,” SIAM Journal
on Computing, vol. 11, no. 2, pp. 350–361, 1982. doi: 10.1137/0211027.
eprint: https ://doi .org/10.1137/0211027. [Online]. Available: https :
//doi.org/10.1137/0211027 (cit. on p. 28).

[35] A. Singh, “Load-balanced routing in interconnection networks,” PhD
thesis, Stanford University, 2005 (cit. on p. 29).

[36] S. Kapferer, “Hodology and ecosystem for the design of a complex network
asic,” https ://ub- madoc .bib .uni - mannheim.de/32961, PhD thesis,
University of Mannheim, 2012 (cit. on p. 32).

[37] A. S. Sedra and K. C. Smith, Microelectronic Circuits, fifth. Oxford
University Press, 2004 (cit. on p. 33).

[38] R. C. Jaeger and T. N. Blalock, Microelectronic circuit design /, 2nd ed.
Dubuque Iowa : McGraw-Hill, 2003 (cit. on pp. 33, 35).

[39] J. Rogers, C. Plett, and F. Dai, Integrated Circuit Design for High-Speed
Frequency Synthesis (Artech House Microwave Library). USA: Artech
House, Inc., 2006, isbn: 1580539823 (cit. on pp. 33, 35, 36).

158

https://doi.org/10.1109/ISCA.2008.19
https://doi.org/10.1109/HiPINEB.2017.11
https://doi.org/10.1109/TC.1987.1676939
https://doi.org/10.1109/TC.1987.1676939
https://doi.org/10.1109/IPDPS.2007.370482
https://doi.org/10.1137/0211027
https://doi.org/10.1137/0211027
https://doi.org/10.1137/0211027
https://doi.org/10.1137/0211027
 https://ub-madoc.bib.uni-mannheim.de/32961

[40] K. J. Kuhn, “Cmos scaling beyond 32nm: Challenges and opportunities,” in
Proceedings of the 46th Annual Design Automation Conference, ser. DAC
’09, San Francisco, California: Association for Computing Machinery,
2009, pp. 310–313, isbn: 9781605584973. doi: 10.1145/1629911.1629996.
[Online]. Available: https://doi.org/10.1145/1629911.1629996 (cit. on
p. 34).

[41] H. Litz, H. Fröning, and U. Brüning, “Htax: A novel framework for flexible
and high performance networks-on-chip,” Jan. 2010 (cit. on p. 37).

[42] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI Physical Design:
From Graph Partitioning to Timing Closure, 1st. Springer Publishing
Company, Incorporated, 2011, isbn: 9789048195909 (cit. on p. 39).

[43] S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and K. Bergman,
“Silicon photonics for exascale systems,” Journal of Lightwave Technology,
vol. 33, no. 3, pp. 547–562, Feb. 2015, issn: 0733-8724. doi: 10.1109/JLT.
2014.2363947 (cit. on p. 44).

[44] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon
electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.
doi: 10.1038/nature03569. [Online]. Available: https://doi.org/10.1038/
nature03569 (cit. on p. 44).

[45] J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu,
P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier-depletion mach-
zehnder silicon optical modulator,” Opt. Express, vol. 20, no. 7, pp. 7081–
7087, Mar. 2012. doi: 10.1364/OE.20.007081. [Online]. Available: http:
//www.opticsexpress.org/abstract.cfm?URI=oe-20-7-7081 (cit. on p. 44).

[46] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar
Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and
R. Baets, “Silicon microring resonators,” Laser & Photonics Reviews,
vol. 6, no. 1, pp. 47–73, 2012. doi: 10 . 1002/ lpor . 201100017. eprint:
https : / /onlinelibrary.wiley. com/doi /pdf /10 . 1002/ lpor . 201100017.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.
201100017 (cit. on p. 44).

[47] G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker,
X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators
in silicon for interchip photonic links,” IEEE Journal of Selected Topics
in Quantum Electronics, vol. 19, no. 6, pp. 95–113, Nov. 2013, issn:
1077-260X. doi: 10.1109/JSTQE.2013.2278885 (cit. on p. 44).

[48] S. T. S. Cheung, B. Guan, S. S. Djordjevic, K. Okamoto, and S. J. B. Yoo,
“Low-loss and high contrast silicon-on-insulator (soi) arrayed waveguide
grating,” in Conference on Lasers and Electro-Optics 2012, Optical Society
of America, 2012, CM4A.5. doi: 10 .1364/CLEO_SI.2012.CM4A.5.
[Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=
CLEO_SI-2012-CM4A.5 (cit. on p. 44).

159

https://doi.org/10.1145/1629911.1629996
https://doi.org/10.1145/1629911.1629996
https://doi.org/10.1109/JLT.2014.2363947
https://doi.org/10.1109/JLT.2014.2363947
https://doi.org/10.1038/nature03569
https://doi.org/10.1038/nature03569
https://doi.org/10.1038/nature03569
https://doi.org/10.1364/OE.20.007081
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-7-7081
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-7-7081
https://doi.org/10.1002/lpor.201100017
https://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.201100017
https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201100017
https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201100017
https://doi.org/10.1109/JSTQE.2013.2278885
https://doi.org/10.1364/CLEO_SI.2012.CM4A.5
http://www.osapublishing.org/abstract.cfm?URI=CLEO_SI-2012-CM4A.5
http://www.osapublishing.org/abstract.cfm?URI=CLEO_SI-2012-CM4A.5

[49] A. V. Krishnamoorthy, X. Zheng, D. Feng, J. Lexau, J. F. Buckwalter,
H. D. Thacker, F. Liu, Y. Luo, E. Chang, P. Amberg, I. Shubin, S. S.
Djordjevic, J. H. Lee, S. Lin, H. Liang, A. Abed, R. Shafiiha, K. Raj, R. Ho,
M. Asghari, and J. E. Cunningham, “A low-power, high-speed, 9-channel
germanium-silicon electro-absorption modulator array integrated with
digital cmos driver and wavelength multiplexer,” Opt. Express, vol. 22,
no. 10, pp. 12 289–12 295, May 2014. doi: 10.1364/OE.22.012289. [Online].
Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-22-10-
12289 (cit. on p. 44).

[50] M. Bahadori, S. Rumley, D. Nikolova, and K. Bergman, “Comprehensive
design space exploration of silicon photonic interconnects,” Journal of
Lightwave Technology, vol. 34, no. 12, pp. 2975–2987, Jun. 2016, issn:
0733-8724. doi: 10.1109/JLT.2015.2503120 (cit. on p. 44).

[51] K. Xi, Y.-H. Kao, and H. J. Chao, “A petabit bufferless optical switch for
data center networks,” in Optical Interconnects for Future Data Center
Networks, C. Kachris, K. Bergman, and I. Tomkos, Eds. New York, NY:
Springer New York, 2013, pp. 135–154, isbn: 978-1-4614-4630-9. doi:
10.1007/978-1-4614-4630-9_8. [Online]. Available: https://doi.org/10.
1007/978-1-4614-4630-9_8 (cit. on p. 45).

[52] S. Di Lucente, N. Calabretta, J. A. C. Resing, and H. J. S. Dorren, “Scaling
low-latency optical packet switches to a thousand ports,” IEEE/OSA
Journal of Optical Communications and Networking, vol. 4, no. 9, A17–
A28, 2012 (cit. on p. 45).

[53] J. Perelló, S. Spadaro, S. Ricciardi, D. Careglio, S. Peng, R. Nejabati,
G. Zervas, D. Simeonidou, A. Predieri, M. Biancani, H. J. S. Dorren,
S. D. Lucente, J. Luo, N. Calabretta, G. Bernini, N. Ciulli, J. C. Sancho,
S. Iordache, M. Farreras, Y. Becerra, C. Liou, I. Hussain, Y. Yin, L. Liu,
and R. Proietti, “All-optical packet/circuit switching-based data center
network for enhanced scalability, latency, and throughput,” IEEE Network,
vol. 27, no. 6, pp. 14–22, 2013 (cit. on p. 45).

[54] S. Lammel, F. Zahn, and H. Fröning, “Sonar: Automated communication
characterization for hpc applications,” in High Performance Computing,
M. Taufer, B. Mohr, and J. M. Kunkel, Eds., Cham: Springer International
Publishing, 2016, pp. 98–114, isbn: 978-3-319-46079-6 (cit. on pp. 48, 51).

[55] S. Sreepathi, E. D’Azevedo, B. Philip, and P. Worley, “Communica-
tion characterization and optimization of applications using topology-
aware task mapping on large supercomputers,” in Proceedings of the 7th
ACM/SPEC on International Conference on Performance Engineering,
ser. ICPE ’16, Delft, The Netherlands: Association for Computing Ma-
chinery, 2016, pp. 225–236, isbn: 9781450340809. doi: 10.1145/2851553.
2851575. [Online]. Available: https://doi.org/10.1145/2851553.2851575
(cit. on p. 48).

160

https://doi.org/10.1364/OE.22.012289
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-10-12289
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-10-12289
https://doi.org/10.1109/JLT.2015.2503120
https://doi.org/10.1007/978-1-4614-4630-9_8
https://doi.org/10.1007/978-1-4614-4630-9_8
https://doi.org/10.1007/978-1-4614-4630-9_8
https://doi.org/10.1145/2851553.2851575
https://doi.org/10.1145/2851553.2851575
https://doi.org/10.1145/2851553.2851575

[56] I. Lee, “Characterizing communication patterns of nas-mpi benchmark
programs,” in IEEE Southeastcon 2009, Mar. 2009, pp. 158–163. doi:
10.1109/SECON.2009.5174068 (cit. on p. 48).

[57] R. Riesen, “Communication patterns [message-passing patterns],” in Pro-
ceedings 20th IEEE International Parallel Distributed Processing Sympo-
sium, Apr. 2006. doi: 10.1109/IPDPS.2006.1639567 (cit. on p. 48).

[58] S. Chodnekar, V. Srinivasan, A. S. Vaidya, A. Sivasubramaniam, and
C. R. Das, “Towards a communication characterization methodology for
parallel applications,” in Proceedings Third International Symposium on
High-Performance Computer Architecture, Feb. 1997, pp. 310–319. doi:
10.1109/HPCA.1997.569693 (cit. on p. 48).

[59] J. Kim and D. J. Lilja, “Characterization of communication patterns
in message-passing parallel scientific application programs,” in Network-
Based Parallel Computing Communication, Architecture, and Applications,
D. K. Panda and C. B. Stunkel, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 1998, pp. 202–216, isbn: 978-3-540-69693-3 (cit. on p. 48).

[60] S. Rumley, R. P. Polster, S. D. Hammond, A. F. Rodrigues, and K.
Bergman, “End-to-end modeling and optimization of power consumption
in hpc interconnects,” in 2016 45th International Conference on Parallel
Processing Workshops (ICPPW), Aug. 2016, pp. 133–140. doi: 10.1109/
ICPPW.2016.33 (cit. on p. 49).

[61] R. Murphy, “On the effects of memory latency and bandwidth on su-
percomputer application performance,” in 2007 IEEE 10th International
Symposium on Workload Characterization, Sep. 2007, pp. 35–43. doi:
10.1109/IISWC.2007.4362179 (cit. on p. 52).

[62] R. Murphy, A. Rodrigues, P. Kogge, and K. Underwood, “The implications
of working set analysis on supercomputing memory hierarchy design,” in
Proceedings of the 19th Annual International Conference on Supercomput-
ing, ser. ICS ’05, Cambridge, Massachusetts: Association for Computing
Machinery, 2005, pp. 332–340, isbn: 1595931678. doi: 10.1145/1088149.
1088193. [Online]. Available: https://doi.org/10.1145/1088149.1088193
(cit. on p. 52).

[63] R. C. Murphy and P. M. Kogge, “On the memory access patterns of
supercomputer applications: Benchmark selection and its implications,”
IEEE Trans. Comput., vol. 56, no. 7, pp. 937–945, Jul. 2007, issn: 0018-
9340. doi: 10.1109/TC.2007.1039. [Online]. Available: https://doi.org/10.
1109/TC.2007.1039 (cit. on p. 52).

[64] K. Z. Ibrahim, S. Hofmeyr, and C. Iancu, “Characterizing the perfor-
mance of parallel applications on multi-socket virtual machines,” in 2011
11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, May 2011, pp. 1–12. doi: 10.1109/CCGrid.2011.50 (cit. on
p. 52).

161

https://doi.org/10.1109/SECON.2009.5174068
https://doi.org/10.1109/IPDPS.2006.1639567
https://doi.org/10.1109/HPCA.1997.569693
https://doi.org/10.1109/ICPPW.2016.33
https://doi.org/10.1109/ICPPW.2016.33
https://doi.org/10.1109/IISWC.2007.4362179
https://doi.org/10.1145/1088149.1088193
https://doi.org/10.1145/1088149.1088193
https://doi.org/10.1145/1088149.1088193
https://doi.org/10.1109/TC.2007.1039
https://doi.org/10.1109/TC.2007.1039
https://doi.org/10.1109/TC.2007.1039
https://doi.org/10.1109/CCGrid.2011.50

[65] B. Klenk and H. Fröning, “An overview of mpi characteristics of exascale
proxy applications,” in High Performance Computing, J. M. Kunkel, R.
Yokota, P. Balaji, and D. Keyes, Eds., Cham: Springer International
Publishing, 2017, pp. 217–236, isbn: 978-3-319-58667-0 (cit. on p. 60).

[66] P. Yebenes, J. Escudero-Sahuquillo, P. J. Garcia, and F. J. Quiles, “To-
wards modeling interconnection networks of exascale systems with om-
net++,” in 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, Feb. 2013, pp. 203–207. doi:
10.1109/PDP.2013.36 (cit. on pp. 73, 74).

[67] F. J. Andújar, J. A. Villar, J. L. Sánchez, F. J. Alfaro, and J. Escudero-
Sahuquillo, “VEF Traces: A Framework for Modelling MPI Traffic in
Interconnection Network Simulators,” in Proceedings of 2015 IEEE In-
ternational Conference on Cluster Computing, Sep. 2015, pp. 841–848
(cit. on pp. 78, 81, 83).

[68] P. Yébenes, “New queuing schemes to improve the efficiency of hybrid
and hierarchical high-performance interconnection network topologies,”
https : / / ruidera . uclm . es / xmlui / handle / 10578 / 19674, PhD thesis,
Universidad de Castilla-La Mancha, 2018 (cit. on p. 78).

[69] D. Dechev and G. Hendry, “A macroscale simulator for exascale soft-
ware/hardware co-design,” 2013 (cit. on p. 82).

[70] F. J. Andújar, J. A. Villar, J. L. Sánchez, F. J. Alfaro, and J. Escudero-
Sahuquillo, “An open-source family of tools to reproduce MPI-based
workloads in interconnection network simulators,” The Journal of Su-
percomputing, vol. 72, no. 12, pp. 4601–4628, Dec. 2016, issn: 1573-0484
(cit. on pp. 83, 85).

[71] Z. Lai, K. T. Lam, C.-L. Wang, and J. Su, “Latency-aware dvfs for
efficient power state transitions on many-core architectures,” The Journal
of Supercomputing, vol. 71, no. 7, pp. 2720–2747, Jul. 2015, issn: 1573-
0484. doi: 10.1007/s11227-015-1415-y. [Online]. Available: https://doi.
org/10.1007/s11227-015-1415-y (cit. on p. 90).

[72] A. McLaughlin, I. Paul, J. L. Greathouse, S. Manne, and S. Yalamanchili,
“A power characterization and management of gpu graph traversal,” 2014
(cit. on p. 90).

[73] F. Zahn, S. Lammel, and H. Fröning, “Early experiences with saving
energy in direct interconnection networks,” in 2017 IEEE 3rd International
Workshop on High-Performance Interconnection Networks in the Exascale
and Big-Data Era (HiPINEB), Feb. 2017, pp. 33–40. doi: 10 . 1109 /
HiPINEB.2017.10 (cit. on pp. 92, 133).

[74] A. Venkatesh, A. Vishnu, K. Hamidouche, N. Tallent, D. Panda, D.
Kerbyson, and A. Hoisie, “A case for application-oblivious energy-efficient
mpi runtime,” in SC ’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, Nov.
2015, pp. 1–12. doi: 10.1145/2807591.2807658 (cit. on pp. 93, 95, 126).

162

https://doi.org/10.1109/PDP.2013.36
https://ruidera.uclm.es/xmlui/handle/10578/19674
https://doi.org/10.1007/s11227-015-1415-y
https://doi.org/10.1007/s11227-015-1415-y
https://doi.org/10.1007/s11227-015-1415-y
https://doi.org/10.1109/HiPINEB.2017.10
https://doi.org/10.1109/HiPINEB.2017.10
https://doi.org/10.1145/2807591.2807658

[75] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. Still,
“Exploring traditional and emerging parallel programming models using
a proxy application,” in 27th IEEE International Parallel & Distributed
Processing Symposium (IEEE IPDPS 2013), Boston, USA, May 2013
(cit. on p. 100).

[76] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, “Scalable molecular
dynamics with namd,” Journal of Computational Chemistry, vol. 26,
no. 16, pp. 1781–1802, 2005. doi: 10 . 1002/ jcc . 20289. eprint: https :
//onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20289. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20289 (cit. on
p. 100).

[77] J. J. Dongarra, “Performance of various computers using standard linear
equations software,” SIGARCH Comput. Archit. News, vol. 20, no. 3,
pp. 22–44, Jun. 1992, issn: 0163-5964. doi: 10 .1145/141868 .141871.
[Online]. Available: https://doi.org/10.1145/141868.141871 (cit. on
p. 101).

[78] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi, and R. Rooholamini, “Perfor-
mance impact of process mapping on small-scale smp clusters - a case
study using high performance linpack,” in Proceedings of the 16th Inter-
national Parallel and Distributed Processing Symposium, ser. IPDPS ’02,
USA: IEEE Computer Society, 2002, p. 263, isbn: 0769515738 (cit. on
p. 101).

[79] M. Alonso, S. Coll, V. Santonja, J.-M. Martínez, P. López, and J. Duato,
“Power-aware fat-tree networks using on/off links,” in High Performance
Computing and Communications, R. Perrott, B. M. Chapman, J. Subhlok,
R. F. de Mello, and L. T. Yang, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 472–483, isbn: 978-3-540-75444-2 (cit. on pp. 103,
108, 128).

[80] P. Reviriego, J. A. Hernandez, D. Larrabeiti, and J. A. Maestro, “Per-
formance evaluation of energy efficient ethernet,” IEEE Communications
Letters, vol. 13, no. 9, pp. 697–699, Sep. 2009, issn: 1558-2558. doi:
10.1109/LCOMM.2009.090880 (cit. on p. 104).

[81] B. Dickov, M. Pericas, P. Carpenter, N. Navarro, and E. Ayguade,
“Software-managed power reduction in infiniband links,” in 2014 43rd
International Conference on Parallel Processing, Sep. 2014, pp. 311–320.
doi: 10.1109/ICPP.2014.40 (cit. on pp. 104, 126).

[82] G. Kim, H. Choi, and J. Kim, “Tcep: Traffic consolidation for energy-
proportional high-radix networks,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), Jun. 2018,
pp. 712–725. doi: 10.1109/ISCA.2018.00065 (cit. on pp. 104, 127, 137).

163

https://doi.org/10.1002/jcc.20289
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20289
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20289
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20289
https://doi.org/10.1145/141868.141871
https://doi.org/10.1145/141868.141871
https://doi.org/10.1109/LCOMM.2009.090880
https://doi.org/10.1109/ICPP.2014.40
https://doi.org/10.1109/ISCA.2018.00065

[83] P. J. Garcia, “Congestion management,” in Encyclopedia of Parallel
Computing, 2011, pp. 378–386. doi: 10.1007/978-0-387-09766-4_313
(cit. on p. 111).

[84] E. G. Gran, M. Eimot, S. Reinemo, T. Skeie, O. Lysne, L. P. Huse, and G.
Shainer, “First experiences with congestion control in infiniband hardware,”
in 2010 IEEE International Symposium on Parallel Distributed Processing
(IPDPS), Apr. 2010, pp. 1–12. doi: 10.1109/IPDPS.2010.5470419 (cit. on
p. 111).

[85] J. Escudero-Sahuquillo, E. G. Gran, P. J. Garcia, J. Flich, T. Skeie, O.
Lysne, F. J. Quiles, and J. Duato, “Efficient and cost-effective hybrid
congestion control for hpc interconnection networks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 1, pp. 107–119, Jan. 2015,
issn: 1558-2183. doi: 10.1109/TPDS.2014.2307851 (cit. on p. 112).

[86] M. Katevenis, D. N. Serpanos, and G. Dimitriadis, “ATLAS I: a single-chip,
gigabit ATM switch with HIC/HS links arid multi-lane back-pressure,”
Microprocess. Microsystems, vol. 21, no. 7-8, pp. 481–490, 1998. doi:
10.1016/S0141-9331(98)00041-6. [Online]. Available: https://doi.org/10.
1016/S0141-9331(98)00041-6 (cit. on p. 112).

[87] P. J. Garcia, F. J. Quiles, J. Flich, J. Duato, I. Johnson, and F. Naven,
“Efficient, scalable congestion management for interconnection networks,”
IEEE Micro, vol. 26, no. 5, pp. 52–66, Sep. 2006, issn: 1937-4143. doi:
10.1109/MM.2006.88 (cit. on p. 112).

[88] W. Dally, P. Carvey, and L. Dennison, “The avici terabit switch/router
architecture.,” in Proceedings of Hot Interconnects Symposium VI, 1998,
pp. 41–50 (cit. on p. 112).

[89] M. E. Gómez, J. Flich, A. Robles, P. López, and J. Duato, “VOQSW: A
methodology to reduce HOL blocking in infiniband networks,” in 17th
International Parallel and Distributed Processing Symposium (IPDPS,
2003), 22-26 April 2003, Nice, France, IEEE Computer Society, 2003,
p. 46. doi: 10.1109/IPDPS.2003.1213134. [Online]. Available: https:
//doi.org/10.1109/IPDPS.2003.1213134 (cit. on pp. 112, 114).

[90] T. Nachiondo, J. Flich, and J. Duato, “Buffer management strategies
to reduce hol blocking,” IEEE Transactions on Parallel and Distributed
Systems, vol. 21, no. 6, pp. 739–753, Jun. 2010, issn: 1558-2183. doi:
10.1109/TPDS.2009.63 (cit. on pp. 112, 114).

[91] J. Escudero-Sahuquillo, P. J. García, F. J. Quiles, J. Flich, and J. Duato,
“OBQA: smart and cost-efficient queue scheme for head-of-line blocking
elimination in fat-trees,” Journal of Parallel and Distributed Computing,
vol. 71, no. 11, pp. 1460–1472, 2011. doi: 10.1016/j.jpdc.2011.07.007.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2011.07.007 (cit. on
p. 112).

164

https://doi.org/10.1007/978-0-387-09766-4_313
https://doi.org/10.1109/IPDPS.2010.5470419
https://doi.org/10.1109/TPDS.2014.2307851
https://doi.org/10.1016/S0141-9331(98)00041-6
https://doi.org/10.1016/S0141-9331(98)00041-6
https://doi.org/10.1016/S0141-9331(98)00041-6
https://doi.org/10.1109/MM.2006.88
https://doi.org/10.1109/IPDPS.2003.1213134
https://doi.org/10.1109/IPDPS.2003.1213134
https://doi.org/10.1109/IPDPS.2003.1213134
https://doi.org/10.1109/TPDS.2009.63
https://doi.org/10.1016/j.jpdc.2011.07.007
https://doi.org/10.1016/j.jpdc.2011.07.007

[92] W. L. Guay, B. Bogdanski, S. Reinemo, O. Lysne, and T. Skeie, “Vftree -
a fat-tree routing algorithm using virtual lanes to alleviate congestion,”
in 2011 IEEE International Parallel Distributed Processing Symposium,
May 2011, pp. 197–208. doi: 10.1109/IPDPS.2011.28 (cit. on p. 112).

[93] C. G. Requene, “Low-memory techniques for routing and fault-tolerance
on the fat-tree topology,” https://riunet.upv.es/bitstream/handle/10251/
8856/tesisUPV3368.pdf, PhD thesis, Universidad Politécnica de Valencia,
2010 (cit. on p. 112).

[94] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang, “Optimized in-
finibandtm fat-tree routing for shift all-to-all communication patterns,”
Concurrency and Computation: Practice and Experience, vol. 22, no. 2,
pp. 217–231, Feb. 2010, issn: 1532-0626 (cit. on p. 112).

[95] R. Penaranda, C. Gomez, M. E. Gomez, P. Lopez, and J. Duato, “Iodet: A
hol-blocking-aware deterministic routing algorithm for direct topologies,”
in Proceedings of the 2012 IEEE 18th International Conference on Parallel
and Distributed Systems, ser. ICPADS ’12, Washington, DC, USA: IEEE
Computer Society, 2012, pp. 702–703, isbn: 978-0-7695-4903-3. doi: 10.
1109/ICPADS.2012.103. [Online]. Available: http://dx.doi.org/10.1109/
ICPADS.2012.103 (cit. on pp. 112, 114).

[96] P. Yebenes Segura, J. Escudero-Sahuquillo, C. Gomez Requena, P. J.
Garcia, F. J. Quiles, and J. Duato, “Bbq: A straightforward queuing
scheme to reduce hol-blocking in high-performance hybrid networks,” in
Euro-Par 2013 Parallel Processing, F. Wolf, B. Mohr, and D. an Mey,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 699–712,
isbn: 978-3-642-40047-6 (cit. on p. 112).

[97] R. Penaranda, C. Gomez, M. E. Gomez, P. Lopez, and J. Duato, “The
k-ary n-direct s-indirect family of topologies for large-scale interconnection
networks,” The Journal of Supercomputing, vol. 72, no. 3, pp. 1035–1062,
Mar. 2016, issn: 1573-0484. doi: 10.1007/s11227-016-1640-z. [Online].
Available: https://doi.org/10.1007/s11227-016-1640-z (cit. on p. 112).

[98] P. Yébenes, J. Escudero-Sahuquillo, P. J. Garcśa, and F. J. Quiles, “Effi-
cient queuing schemes for hol-blocking reduction in dragonfly topologies
with minimal-path routing,” in 2015 IEEE International Conference on
Cluster Computing, Sep. 2015, pp. 817–824. doi: 10.1109/CLUSTER.2015.
138 (cit. on pp. 112, 115).

[99] P. Yébenes, J. Escudero-Sahuquillo, P. J. García, F. J. Quiles, and T.
Hoefler, “An effective queuing scheme to provide slim fly topologies with
hol blocking reduction and deadlock freedom for minimal-path routing,”
in 2017 IEEE 3rd International Workshop on High-Performance Inter-
connection Networks in the Exascale and Big-Data Era (HiPINEB), Feb.
2017, pp. 25–32. doi: 10.1109/HiPINEB.2017.9 (cit. on p. 112).

165

https://doi.org/10.1109/IPDPS.2011.28
https://riunet.upv.es/bitstream/handle/10251/8856/tesisUPV3368.pdf
https://riunet.upv.es/bitstream/handle/10251/8856/tesisUPV3368.pdf
https://doi.org/10.1109/ICPADS.2012.103
https://doi.org/10.1109/ICPADS.2012.103
http://dx.doi.org/10.1109/ICPADS.2012.103
http://dx.doi.org/10.1109/ICPADS.2012.103
https://doi.org/10.1007/s11227-016-1640-z
https://doi.org/10.1007/s11227-016-1640-z
https://doi.org/10.1109/CLUSTER.2015.138
https://doi.org/10.1109/CLUSTER.2015.138
https://doi.org/10.1109/HiPINEB.2017.9

[100] M. Besta and T. Hoefler, “Slim fly: A cost effective low-diameter network
topology,” in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, ser. SC ’14, New
Orleans, Louisana: IEEE Press, 2014, pp. 348–359, isbn: 9781479955008.
doi: 10.1109/SC.2014.34. [Online]. Available: https://doi.org/10.1109/SC.
2014.34 (cit. on p. 112).

[101] J. Escudero-Sahuquillo, P. J. Garcia, F. J. Quiles, S.-A. Reinemo, T.
Skeie, O. Lysne, and J. Duato, “A new proposal to deal with congestion in
infiniband-based fat-trees,” Journal of Parallel and Distributed Computing,
vol. 74, no. 1, pp. 1802–1819, Jan. 2014, issn: 0743-7315. doi: 10.1016/j.
jpdc.2013.09.002. [Online]. Available: http://dx.doi.org/10.1016/j.jpdc.
2013.09.002 (cit. on p. 114).

[102] A. Samih, R. Wang, A. Krishna, C. Maciocco, C. Tai, and Y. Solihin,
“Energy-efficient interconnect via router parking,” in 2013 IEEE 19th
International Symposium on High Performance Computer Architecture
(HPCA), Feb. 2013, pp. 508–519. doi: 10.1109/HPCA.2013.6522345
(cit. on p. 125).

[103] R. Parikh, R. Das, and V. Bertacco, “Power-aware nocs through routing
and topology reconfiguration,” in 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC), Jun. 2014, pp. 1–6 (cit. on p. 125).

[104] L. Chen and T. M. Pinkston, “Nord: Node-router decoupling for effective
power-gating of on-chip routers,” in 2012 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, Dec. 2012, pp. 270–281. doi:
10.1109/MICRO.2012.33 (cit. on p. 125).

[105] L. Chen, D. Zhu, M. Pedram, and T. M. Pinkston, “Power punch: Towards
non-blocking power-gating of noc routers,” in 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
Feb. 2015, pp. 378–389. doi: 10.1109/HPCA.2015.7056048 (cit. on p. 125).

[106] V. Soteriou and L. Peh, “Exploring the design space of self-regulating
power-aware on/off interconnection networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 3, pp. 393–408, Mar. 2007,
issn: 1558-2183. doi: 10.1109/TPDS.2007.43 (cit. on p. 125).

[107] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “A power
benchmarking framework for network devices,” in Proceedings of the
8th International IFIP-TC 6 Networking Conference, ser. NETWORK-
ING ’09, Aachen, Germany: Springer-Verlag, 2009, pp. 795–808, isbn:
9783642013980. doi: 10.1007/978-3-642-01399-7_62. [Online]. Available:
https://doi.org/10.1007/978-3-642-01399-7_62 (cit. on p. 126).

[108] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A power-performance
simulator for interconnection networks,” in 35th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, 2002. (MICRO-35). Pro-
ceedings., Nov. 2002, pp. 294–305. doi: 10.1109/MICRO.2002.1176258
(cit. on p. 126).

166

https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1016/j.jpdc.2013.09.002
https://doi.org/10.1016/j.jpdc.2013.09.002
http://dx.doi.org/10.1016/j.jpdc.2013.09.002
http://dx.doi.org/10.1016/j.jpdc.2013.09.002
https://doi.org/10.1109/HPCA.2013.6522345
https://doi.org/10.1109/MICRO.2012.33
https://doi.org/10.1109/HPCA.2015.7056048
https://doi.org/10.1109/TPDS.2007.43
https://doi.org/10.1007/978-3-642-01399-7_62
https://doi.org/10.1007/978-3-642-01399-7_62
https://doi.org/10.1109/MICRO.2002.1176258

[109] H.-S. Wang, L.-S. Peh, and S. Malik, “A power model for routers: Modeling
alpha 21364 and infiniband routers,” in Proceedings 10th Symposium on
High Performance Interconnects, Aug. 2002, pp. 21–27. doi: 10.1109/
CONECT.2002.1039253 (cit. on p. 126).

[110] T. Groves, R. E. Grant, S. Hemmer, S. Hammond, M. Levenhagen, and
D. C. Arnold, “(sai) stalled, active and idle: Characterizing power and per-
formance of large-scale dragonfly networks,” in 2016 IEEE International
Conference on Cluster Computing (CLUSTER), Sep. 2016, pp. 50–59. doi:
10.1109/CLUSTER.2016.52 (cit. on p. 126).

[111] B. Dickov, M. Pericas, P. M. Carpenter, N. Navarro, and E. Ayguade,
“Analyzing performance improvements and energy savings in infiniband
architecture using network compression,” in 2014 IEEE 26th International
Symposium on Computer Architecture and High Performance Computing,
Oct. 2014, pp. 73–80. doi: 10.1109/SBAC-PAD.2014.27 (cit. on p. 126).

[112] G. Hendry, “Decreasing network power with on-off links informed by
scientific applications,” in 2013 IEEE International Symposium on Parallel
Distributed Processing, Workshops and Phd Forum, 2013, pp. 868–875
(cit. on p. 126).

[113] F. J. Andújar, S. Coll, M. Alonso, P. López, and J.-M. Martínez, “Powar:
Power-aware routing in hpc networks with on/off links,” ACM Transac-
tions on Architecture and Code Optimization, vol. 15, no. 4, Jan. 2019,
issn: 1544-3566. doi: 10.1145/3293445. [Online]. Available: https://doi.
org/10.1145/3293445 (cit. on pp. 128, 137).

167

https://doi.org/10.1109/CONECT.2002.1039253
https://doi.org/10.1109/CONECT.2002.1039253
https://doi.org/10.1109/CLUSTER.2016.52
https://doi.org/10.1109/SBAC-PAD.2014.27
https://doi.org/10.1145/3293445
https://doi.org/10.1145/3293445
https://doi.org/10.1145/3293445

	Table of contents
	1 Introduction
	2 Background: Interconnection Networks
	2.1 Switch Level Architecture
	2.1.1 Data Transmission
	2.1.2 Network Interface
	2.1.3 Links
	2.1.4 Switches
	2.1.5 Message Switching

	2.2 System Level Network Design
	2.2.1 Topologies
	2.2.2 Routing

	2.3 Message Passing Interface

	3 Energy Proportionality in Interconnection Networks
	3.1 Power Consumtion
	3.1.1 CMOS
	3.1.2 CML

	3.2 Switch Core Power
	3.2.1 Frequency Scaling
	3.2.2 Radix Scaling

	3.3 Link Power
	3.3.1 Design
	3.3.2 Power Scaling

	3.4 Optical Links
	3.4.1 Overview
	3.4.2 Limitations

	4 Application Analyses
	4.1 SONAR
	4.1.1 Metrics
	4.1.2 Concept

	4.2 Locality and Selectivity in Exascale Proxy Miniapps
	4.2.1 Metrics
	4.2.2 Methodology
	4.2.3 Hardware Parameters
	4.2.4 Results

	5 Simulation Tools
	5.1 Network Simulator
	5.1.1 SAURON Simulator

	5.2 Energy-Aware Simulations
	5.2.1 Energy Features
	5.2.2 Traffic Pattern

	5.3 MPI Traces
	5.3.1 DUMPI Traces
	5.3.2 VEF Traces

	6 Energy Saving in Interconnection Networks
	6.1 Approach
	6.1.1 Energy Saving Management
	6.1.2 Power State Granularity

	6.2 Energy Saving Policies
	6.2.1 On/Off
	6.2.2 High/Low
	6.2.3 Awake

	6.3 Evaluating Policies
	6.3.1 Applications
	6.3.2 Methodology
	6.3.3 Evaluation

	6.4 Combining Energy Saving Policies and Congestion Management
	6.4.1 Congestion Management
	6.4.2 Methodology
	6.4.3 Evaluation

	7 Discussion
	7.1 Related Work
	7.2 Workload Analysis
	7.2.1 Locality and Selectivity
	7.2.2 Topology Effects
	7.2.3 Network Utilization

	7.3 Energy Savings
	7.3.1 Policies
	7.3.2 Energy-Saving Parameters
	7.3.3 Topologies

	7.4 Congestion Management
	7.5 Outlook

	8 Conclusion
	List of figures
	List of tables
	References

