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Preface

This work originated in 1999 when my advisor Professor Dr. Matthias Kreck
had the idea that a generalization of Alain Connes’ result about the Hoch-
schild and cyclic homology of the algebra of smooth functions on a smooth
manifold could also hold in the concept of his previously defined stratifolds.
These stratifolds, which he invented and since then have gone through various
stages of development, are some kind of singular spaces. We will introduce
stratifolds in detail in chapter 1 but should mention so far, that they belong
to the class of stratified spaces. Roughly spoken a stratified space is a space
which is decomposed into smooth manifolds, the so called strata. To such
spaces one can associate some kind of algebra of smooth functions. The most
naive way is to say, that a function on a stratified space is smooth, if the
restriction to any of the strata is smooth. It will turn out, that this is not
enough for our purposes, but it gives us a first idea. In section 1.3 we will in-
troduce the algebra C*°(X) of smooth functions on a stratifold in detail. The
analytical properties of this algebra is where the concept of stratifolds differs
from other concepts of singular spaces. The standpoint of this work is the
analytical one, that is we consider the algebra C*°(X) as our starting point
and all other constructions and methods will evolve from it.Nevertheless, we
keep things as geometric as possible.

One can say, that from the analytic standpoint the theory of smooth
manifolds is quite well developed. This means, that there are concepts like
differential forms, differential operators, geometric constructions like curva-
ture and connections and so on. Since around 1960 when stratified spaces
first appeared in the literature ( see [Whitney] and [Thom] ) people tried to
generalize these concepts to stratified spaces. In the context of differential
forms and de Rham cohomology one should mention Verona first of all ( see
[VeronaT71] ). He introduced differential forms and proved some kind of de
Rham theorem for stratified spaces which come together with some kind of
tubular neighbourhoods around the strata. His approach differs from ours



in the sense that he considers differential forms strata by strata, satisfying
certain compatibility conditions, whereas our start point is the space X itself
and the algebra C*°(X) of smooth functions on X. In his work about inter-
section homology (see [Brasselet91]) Brasselet used the ideas of Verona to
give a description of intersection homology of so called pseudo manifolds in
terms of differential forms with certain extra conditions. Pseudo manifolds
are closely connected to what we call locally coned stratifolds. A good sum-
mary of the actual state of research on stratified spaces in general has been
given by Pflaum in his “Habilitationsschrift” ( see [Pflaum] ). His work is
mostly based on so called Whitney stratified spaces. How these spaces are
related to stratifolds is a work in progress by Anna Grinberg. Pflaum also
tackles the problem of Hochschild homology for these spaces and gives some
partial answers. In a quite different context, namely the context of rational
homotopy theory, differential forms on simplicial complexes have been intro-
duced by Quillen [Griffiths]. Quillen also proves a de Rham theorem in this
context. In his work [Teleman98] Teleman claims (but doesn’t proof) that
Quillen’s ideas together with his result about localization of the Hochschild
complex will work to generalize Connes’ result mentioned in the beginning to
simplicial complexes. Our two main results concern the de Rham cohomology
and the Hochschild homology of stratifolds. The first one can be summarized
as follows.

Theorem 1. Let X be a compact stratifold. Then there is a natural isomor-
phism

H}n(X) - Hom(H,(X),R)

for all n € N given by integration of differential forms on classes in the
integral homology of X.

We will prove this theorem in chapter 4, where we also prove an analogous
statement when X is noncompact. Our second theorem has a more analytic
character and is a generalization of [Connes87].

Theorem 2. Let X be a locally coned stratifold. Then there is a natural
topological 1somorphism

Voo () — HH,(C™(X))

for all n € N.

In Theorem 2 the left hand side stands for some completed version of
differential forms on a stratifold whereas the right hand side stands for the
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continuous Hochschild homology of a completed version of C*°(X). These
objects will be constructed in chapters 5 and 6. We will prove Theorem 2 in
chapter 7. Since in the manifold case Hochschild and cyclic homology is clo-
sely connected to what is called index theory, we hope that this result is one
step forward in generalizing this theory to some classes of singular spaces.

Since I was always fascinated by the interactions between analysis, algebra
and topology I must thank my advisor Prof. Dr. Matthias Kreck that he
gave me the right task as a theme for my doctoral thesis. His idea about
how smooth functions on stratifolds should look like showed all its strength
when proving Theorem 2. I must also thank Prof. Bruce Blackadar from
the University of Nevada, Reno who gave me advice on some of the more
analytical parts of this work. Also I thank Prof. Don Pfaff and his wife for
giving me accommodation during my stay in Reno. From the department of
mathematics in Heidelberg I thank Anna Grinberg for many mathematical
and nonmathematical discussions. From the department of mathematics in
Mainz I thank Frank Baldus. Also I thank Anna Warzecha for our interesting
discussions, our nice walks in the Odenwald and some other things. Of course
I have to thank my parents too.
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Kapitel 1

Introduction to Stratifolds

In this chapter we will introduce a class of topological spaces, we call strati-
folds. These spaces have been invented by Matthias Kreck in 1998 to serve
as the right objects, to give a very concrete geometric description of ordinary
integral homology as a bordism theory. Since then there have been various
versions of these objects. The one we use here, in particular the version of
stratifolds with boundary is the one which suits our purposes best.

We will present our version of stratifolds and study some basic properties
of this class of spaces. Stratifolds are in some kind constructed similar to
CW-complexes, but have a much finer structure. Constructions known from
differential topology can be generalized to a certain class of stratifolds. In
fact, special classes of them form bordism categories. In one case the asso-
ciated homology theory is ordinary integral homology. This description of
singular homology is due to Kreck and will be of major importance in the
later chapters. Our main source for this chapter is [Kreck00].

1.1 The Class of c-Manifolds

Roughly spoken, stratifolds will be obtained by gluing together a couple of
smooth manifolds. To do this gluing process in a nice and organized way and
also for structural properties of the associated algebra of smooth functions
on a stratifold the introduction of a certain class of manifolds, we call c-
manifolds has been proven successful.From the collar theorem in differential
topology (see [Hirsch],page 113) it follows, that every smooth manifold W
with boundary possesses a collar, which is given by an embedding

v:OW x[0,¢) > W



for some € > 0. In general many choices of the map ~ are possible. Two such
collars v;,7, on W will be called equivalent, if there is an open neighbour-
hood U of W in W such that ; and 7, coincide on ;' (U) = 5 ' (U) C
OW x [0,¢€). We denote the equivalence class of a collar v with [y]. As one
could expect, the “c¢” in “c-manifold” stands for collared manifold.

Definition 1.1.1. A c-manifold is a pair (W,[y]), where W is a smooth
manifold with boundary and [7y] is an equivalence class of a collar on W.

Often we write W when in fact we mean (W, [y]) and just speak of a
manifold when we really mean c-manifold. In situations, when emphasize is
made on, that the manifold in question is not treated as a c-manifold, we
will speak of a manifold in the naive sense. Also all constructions which are
based on manifolds in the naive sense will be referred to as that.

Two e-manifolds (W7, [y1]) and (W5, [1»]) will be called diffeomorphic and
treated as equal, if there is a diffeomorphism f : W; — W, such that the
induced collar f,y; := foy 0 f|511/V2 xid) and 9 are equivalent. This notion of
diffeomorphacy of c-manifolds seems very natural, though it is very strict and
not so well suited for our purposes. We will define a category of c-manifolds
using the following definition of smooth functions on a c-manifold as a start
point.

Definition 1.1.2. Let (W, [vy]) be a c-manifold. By definition a map
g:W—=>R

belongs to C°(W, [v]) if g is smooth on W and there exists an open neigh-
bourhood U of OW in OW X [0, €) such that the following diagram commutes

UcCow x[0,e) =">R

]

ow
Here p denotes the projection on the first coordinate.

In other words a function on (W, [y]) is smooth, if it is smooth in the
naive sense and has the property that in a small neighbourhood of the boun-
dary it is constant along the collar, i.e. in direction of the paths t — ~(x, )
for z € OW. It should be clear that C*° (W, [y]) indeed only depends on the
equivalence class of the collar. Later we will often write C°°(W) instead of

2



C*°(W,[7]) to shorten the notation. There should be no misunderstandings,
since if we treat W as a manifold in the naive sense we use the symbol
C e ().

naive

Of course the algebra C* (W, [y]) differs from the algebra C2%,, (). This

will show best when studying the local situation. The following proposition
gives an answer to that.

Proposition 1.1.1. Let (W, [v]) denote a c-manifold, let x € W be a point
and and let Ow, = lim,epC™(U, [iU~])) denote the algebra of germs at
x. Here U runs through the open neighbourhoods of v € W and each U 1is
considered as a c-manifold itself using the inclusion map iV : U — W and
the induced collar i¥~. Let n denote the dimension of W. Then there are two
cases.

1. If x lies in the interior W*° of W we have Ow,y = Opn .
2. If x lies in the boundary OW of W we have O,y = Opn-1.

Proof. In the first case, choosing local coordinates will prove that Oy, =
Opno. In the second case one can choose coordinates around z as follows.
Take as a first coordinate the coordinate ¢ which is given by ~(y,t) — ¢t
V(y,t) € OW x [0,¢€) in a small neighbourhood of z and for the remaining
n—1 coordinates x1, ...z, _; take a set of coordinates ¥, ...yy,_1 of OW defined
in a neighbourhood of = in OW and define z;(y(y,t)) := v;(y). Using these
coordinates the condition on g : W — R to belong to C*°(W,[v]) is not to
depend on t for ¢ small. On the other side, there is no restriction on the other
n — 1 coordinates. This of course shows Oy, = Ogn-1 .

U

Let us now introduce smooth maps between c-manifolds

Definition 1.1.3. Let (Wy,[n]) and (W, [7s]) be c-manifolds and let
f W — W,

be a map. We say that f is smooth if for any g € C°(Ws, [y2]) the compositi-
ongof:W; — R lies in C®(Wy,[v1]). We denote the set of these functions

by Coo((Wla [71])7 (W27 [72]))

We can now setup our category of c-manifolds as follows. Objects are
c-manifolds and morphisms are smooth maps between c-manifolds. In this
context an isomorphism between two c-manifolds is a smooth map
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I (Wi, [m]) = (Wa,[12]) such that the inverse map f~! exists and is con-
tained in C°((Wa, [12]), (W1, [11])). The c-manifolds (W7, [y1]) and (W, [2])
are then called isomorphic. We should mention that there is a real difference
between isomorphisms and diffeomorphisms of c-manifolds. An isomorphism
allows some kind of reparametrization in direction along the collar which
a diffeomorphism doesn’t. We admit, that the name diffeomorphism in this
context might be a little bit confusing, since for most topologists a diffeo-
morphism is a smooth map which has a smooth inverse. In our sense this
corresponds exactly to an isomorphism. We should keep that in mind.

1.2 Stratifolds

In this section we introduce stratifolds in its most general form. We should
remind again that the word manifold here stands for c-manifold. Though this
is not of importance in this section, it will be crucial in the next one.

Definition 1.2.1. Let X be a topological space, ¥ C X be a subspace and R
be a manifold. Let R° = R—OR denote the interior part of R. Let ¢ : R — X
be a map, such that

p(RP)C X —X%

@(OR) C X
and ¢ induces a homeomorphism
RU,Y ~ X.

We call X — X the regular part of X and X the singular part of X. We
refer to ¢ as a singular chart of the pair (X,X). The pair (X,X) is called
a singular space.

Let us approach our first definition of a stratifold.
Definition 1.2.2. A topological space X together with proper maps
@ - Rz — X,

where © runs through an index set I C N, is called o stratifold if these data
satisfy the following conditions :

1. For any i € I the space R; is a manifold of dimension i.

4



2. For any pairi # j €1
(R N (R = 0
and X = J;c; 0i(R5).

3. For any i € I ¢; is a singular chart of the pair (X;, X; 1), where
Xi = Ujeqo,.ipnr 9i(B5) and X; is closed in X.

Though the charts belong to the definition of a stratifold, we do most
times only speak of the stratifold X, keeping the charts in mind.

We call
dim(X) = sup{i € I|R; # 0} (1.1)

the dimension of X. If the dimension of X is n, we refer to ¥ = X,,_; as
the singular part of X and X — ¥ ~ R, as to the regular part. Clearly
(X,3) becomes a singular space with singular chart ¢,. More general, we
call

S = Xi— Xy (1.2)

the i-th stratum of X, and it is clear, that by choosing these sets as strata
X becomes a stratified space. Clearly

Sl%R:

and sometimes the R; will be referred to as the full strata of X. We should
also mention, that under this definition stratifolds of infinite dimensions are
allowed, and some of our results are also valid in this case. X; is called the
i-skeleton of X and clearly is itself a stratifold and will be considered as this
throughout the whole work. We should mention that in bordism theory of
stratifolds a different definition of dimension has been used by Kreck, defining
the dimension of X as sup([).We will denote this dimension as Dim/(X).
Clearly we have that

dim(X) < Dim(X).

If more than one stratifold occurs at the same time, we use symbols like
R;(X),S;(X) etc. to denote the corresponding data.



From the construction of stratifolds, it should arise, that they are built
similar to CW complexes. Instead of cells, we attach arbitrary manifolds. In
particular, any CW complex can be given the structure of a stratifold, by
choosing all of the R; as discs. The attaching maps then induce charts. On
the other hand, any manifold, hence any of the strata R; can be given a
CW structure. These structures can be used to define a CW structure on the
stratifold. Though, there is no canonical way to do this, and it’s completely
unclear, how this CW structure corresponds to the structure as a stratifold.
Other questions, like triangulation of stratifolds and piecewise linear struc-
tures have to be seen in the same context and so far, haven’t been tackled.

As topological spaces stratifolds will turn out to be paracompact. This
will follow from the existence of a partition of unity ( see Corollary 1.7.1
). Moreover they are locally compact, even in the infinite case. This follows
similar as in the case of CW complexes, since we consider the weak topology
corresponding to the decomposition into strata. The empty set () will be
considered as a stratifold of any specified dimension. Let us give some less
trivial examples.

Example 1.2.1. 1. Given a manifold M without boundary and let m be
its dimension. We get a stratifold of dimension m by choosing

I={m},R,=M

and ¢ : R,, — M as the identity. This is the way we consider manifolds
as stratifolds if nothing else is said. Clearly dim(M) = m is the same
as the dimension of M, if M is considered as a manifold.

2. Given two topological manifolds W, S of dimension r respectively s,
where s < r and a proper map f : OW — S. Then the topological space

X =W Uy S
is considered as a stratifold by choosing I = {s,r},
R, =W,R, =S

and p, respectively ¢ as the natural projections of W respectively S
on the quotient space X . Clearly dim(X) = r. If the map f: OW — S
1s surjective, X can be considered as a manifold with singularities in
the set S, hence the notation S for singularities. The whole concept of
stratifolds is a generalization of this.



3. If in the last example we choose S to consist only of points, we speak of
manifolds with isolated singularities. In algebraic geometry many
people are interested in the resolution of such singularities. The reso-
lution of isolated singularities in the world of topological stratifolds has
been studied in [Grinberg00)].

At the end of this chapter we should try to give at least one motivation
for the name that has been chosen to denote our class of spaces. The name
stratifold just seems right to indicate that this class of spaces consists of
stratified spaces where special emphasize has been made on the role of the
strata and the way how they are glued (folded) together.

1.3 Smooth Structures on Stratifolds

We will now assign an extra structure to stratifolds, which we call smoo-
thness. This structure will help us, to carry over constructions known from
differential topology of manifolds to the world of stratifolds.Since so far, we
have only allowed smooth manifolds for the strata, the reader might think,
we already have something, we could call smooth stratifold. This, let’s say
smoothness on the strata, turns out to be unsatisfying. The strata can be
glued together in a very wild way, so the right notion of smoothness should
reflect, that the gluing process is done in a fairly nice and smooth way. This
will lead us to the definition of a smooth stratifold.

Let X be a stratifold. We call a function
f: X—=R

smooth, if for any ¢ € I the composition
¢’ f

defines an element in C*°(R;), where C*°(R;) is the algebra of functions on
R; defined in Definition 1.1.2. Clearly these maps build an R algebra, which
we denote with C*(X).

Definition 1.3.1. A stratifold X is called a smooth stratifold if for any
1 € I the image of the induced map



is contained in C®(0OR;). If X and Y both are smooth topological stratifolds
we call a map f: X — 'Y smooth if the image of the induced map

[f:0°(Y) = C(X)
is contained in C*°(X). We denote the set of these functions with C*(X,Y).

The condition on X to be a smooth stratifold can now simply be re-
stated as that for any ¢ € I the restriction of the chart p; to OR; lies in
C*®(0R;, X;_1) in other words, the attaching maps are smooth.

Example 1.3.1. If we require W, S and f : OW — S as in Example 1.2.1
to be smooth, we end up with a smooth stratifold since the map

or, : C®( X 1) = C(ORy,)
is precisely the map induced by f.

From this point on, we will only consider smooth stratifolds and usually
omit the word smooth in front of stratifold. When we write stratifold, we
always mean smooth stratifold.

The following category of stratifolds is the category we work with.
Objects are stratifolds and morphisms are smooth maps between stratifolds.
In this context an isomorphism between stratifolds is a smooth map which
has a smooth inverse.In this case the algebras of smooth functions are iso-
morphic. Hence isomorphic stratifolds are indistinguishable by the methods
presented in this work, and will therefore be treated as equal. We should
mention, that other categories of stratifolds so far appeared in different con-
texts, as for example in [Grinberg00] and [Minatta01]. We should mention
one special case, since it occurs in the definition of locally coned stratifolds.
We call two stratifolds X and Y diffeomorphic, if there is a homeomor-
phism f: X — Y which is induced by diffeomorphisms f; : R;(X) — R;(Y)
of c-manifolds on all full strata. As in the case of c-manifolds, there is a real
difference between diffeomorphisms and isomorphisms. Nevertheless, a dif-
feomorphism is always an isomorphism in our category. We will keep that in
mind.

We close this section by studying the local picture, in equal how smooth
functions on a stratifold X behave in a small neighbourhood of some point



x € X. The following proposition states that the algebra of germs of func-
tions at some point x € X, which we briefly define as

O = ling e C(U) (1.3)

is completely determined by restricting these functions to the stratum Sg.
Here U runs through the open neighbourhoods of x € X and the limit is
taken by restriction. It is not clear at this point, what exactly we mean with
C*(U) for an open subset U C X. Briefly, we can say, that U inherits the
structure of a stratifold, so that we can speak of C*°(U). How this is done
in more detail is presented in section 1.4. We nevertheless think it might
be helpful for understanding how C*°(X) is built up, to state the following
proposition at this point.

Proposition 1.3.1. Let X be a stratifold and x € Sy be a point in the k-
stratum of X. Then the map induced by restriction

OX,I — OSk,x
1S an isomorphism.

In other words, the proposition says that we can somehow interpret the
algebra C°(X) as built up of the algebras C*°(S;) put together in a nice
way. As we will see in the proof, the reason for this to be true lies in the use
of the concept of c-manifolds ( compare Proposition 1.1.1) .

Proof. Let ¢ > k. We will first show

Ox

~
i+1,x i OXi,xa

where the map is given by restriction. To see this let f € Ox,,,, be an
element in the kernel of the restriction map. That is f is defined on some
open neighbourhood U C X, and fynx, = 0. Since S;41 N S; = () we have

gO;_l_ll(U N XZ) C aRHl.

Here ¢;,1 denotes the i-th chart of the stratifold X. Since UNX; is open in X;
we have that ¢; .5 (UNX;) is open in OR;41. Since fop; 1 € C™(R,;;1) must
approach the boundary constant along the collar in a small neighbourhood V'
of R;41 in R;.; it vanishes on an open neighbourhood U of goijrll(U NX;) in
R;,1 such that the image ;41 (U) of U is an open neighbourhood of z in X, 4
on which f vanishes. This proves injectivity for Oy, , , — Ox, ;. A similar
argument, where we extend a function given on an open subset of OR;,; on



an open subset of R; ;1 constant along the collar will prove surjectivity of the
latter map. Clearly we have that

OX,:E = hﬂ kgiOXi,:r-

Since all maps in the direct limit are isomorphisms we have

OX,J} = OXk,x
Since the k-stratum Sy is open in the k-skeleton X, we also have

OX]C,I g OSk,xa
where the isomorphism is again given by restriction. Hence the proposition
follows. O

1.4 Substratifolds

Let X be a stratifold with strata Rj(X) and charts ¢;. For a subset A C X
we can consider the sets

r (4) C Ri(X).

Let’s assume that each of the o, '(A) is a submanifold of Ry(X). Then we
can define

Ri(A)= [ w&'@
dim(py; ' (A))=j
to get a stratification of A. We also get maps
v Ri(A) — A

by restricting the charts ¢; to the corresponding components of R;(A). We
call these data the induced data on A. The following is our definition of a
substratifold.

Definition 1.4.1. With the notation from above A C X is called a sub-
stratifold, if the ;' (A) are submanifolds of the Ry(X) and A together with
the induced data has the structure of a stratifold.

The following examples are easy, nevertheless they are important.

Example 1.4.1. 1. Any open subset U of a stratifold X can, and will
throughout this work be considered as a substratifold of X.

2. For any number i € N the i-skeleton X; is a substratifold of X. We
have a natural sequence

l=X,cXy,Cc..cX,=X

where each inclusion means as a substratifold.
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1.5 Stratifolds with Boundary

As in the world of manifolds there is also a concept of stratifolds with boun-
dary. In fact, there is more than one concept of stratifolds with boundary.
All concepts of course have in common that they are generalizations of the
concept of stratifolds in the way that a stratifold with boundary the empty
set is the same as a stratifold. Furthermore they have in common, that some
categories of stratifolds with boundary form bordism categories. The latter
fact will be exploited later. For this work the following concept is suited best.
It was also the original concept (see [Kreck99]).

Definition 1.5.1. Let (X,3,0X) be a triple of topological spaces, such that
Y C X and 0X C X, and let R be a manifold with boundary OR smoothly
decomposed as

OR=0"RUO™R,
such that
O(0TR)=0"TRNO R =0(0"R).

Furthermore let ¢ : R — X be a map which satisfies the following conditions

1. p(R°) =X — (X UIX)

2. p(0tR) C X

3. p(0"R) C 0X.
If ¢ induces a homeomorphism

X=RU Y

Po+r

we call (X,3,0X) a singular space with boundary and ¢ a singular
chart of (X,3,0X).

Now we proceed similar as in the definition of stratifolds without boun-
dary as follows.

Definition 1.5.2. A pair of topological spaces (X,0X) together with proper
maps

C,OiIRZ'—)X,

where 1 runs through an index set I is called a stratifold with boundary
if the following conditions hold :
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5.

. For any i € I the space R; is a manifold of dimension i with boun-

dary OR; smoothly decomposed as OR; = 0T R; U 0~ R; similar to the
decomposition in Definition 1.5.1.

For any i € I we have ¢;(0"R;) C 0X and 0X together with charts
Vi i= Yiv1jo- Ry, ond R;i(0X) = 07 Riy, is a stratifold.

For any pair i # j € I we have (R U (07 R;)°) Np(R; U (0™ R;)°) =0
and X = ;e; (R U (0 I:)°).

. For any i € I the map ¢; is a singular chart of the singular space with

(X, Xi—1, (0X):) where X; = Ujcqo, nnr (17 U (07 R:)°) and X; is
closed in X.

The maps @;jp+r, - 0YR; — X1 and p;9-g, : 0 R; = 0X are smooth.

We consider all stratifolds with boundary the empty set as stratifolds. A
substratifold of a stratifold with boundary is defined in pure analogy to
Definition 1.4.1 , namely a set A C X such that A with the induced data is
a stratifold with boundary. It is then clear that the sets X —dX and 90X are
substratifolds of X. The following example shows that any stratifold can be
realised as the boundary of a stratifold with boundary namely the cone over
the stratifold.

Example 1.5.1. Let X be a stratifold without boundary. We give the cone
CX over X the structure of a stratifold with boundary as follows. Let I =
[0, 1] be the closed unit interval.

Ro(CX) = pt
Re(CX) = Ry (X) x T
0" Ri(CX) = Ry_y(X) x {0} UOR,_ (X) x I
0 Ry, = Ry (X) x {1}
Uit Re(CX) = Ry (X) x T — CX

(33, t) = [9016*1(‘77)7 t]a

where the . denote the charts of X. It can be verified that C X together with
these data defines a stratifold with boundary, which we call the cone over X.
It is clear from the construction that 0(CX) = X.

12



The example above has major consequences for bordism theories based
on stratifolds ( see section 1.9 ). If in the construction above, we exchange
I =10, 1] by the half open interval [0, 1) the “-” part of Ry in the definition
above vanishes and we get a stratifold without boundary. We denote this
stratifold with ¢X and call it the open cone of X. We have

cX=0X-0CX =CX - X.

1.6 Locally Coned Stratifolds

In this section we will introduce locally coned stratifolds. They are in close
connection to so called pseudo manifolds, see for example [Borel87] for the
definition. The idea behind the definition is, that locally each singularity has
a neighbourhood which is a cone over a stratifold of smaller dimension. More
precisely we have the following definition.

Definition 1.6.1. We call an n dimensional stratifold locally coned, if for
each k € I and x € Sy there exists a neighbourhood U, in X and a stratifold
L, of dimension n — k — 1 together with a diffeomorphism of stratifolds

U, = B* x cL,,

where cL, denotes the open cone over the stratifold L, and B* the open unit
ball in euclidean k-space. L, will be referred to as the link at x and U, will
be called a cone neighbourhood of x.

Replacing cL, in the definition above by a product of cones yields to a
class of stratifolds which is called locally product coned stratifolds.

It can easily be seen that the stratifolds L, occurring in the definition
above, are also locally coned ( see [Weber(01] ). Our results concerning de
Rham cohomology of stratifolds are valid for general stratifolds, whereas our
results on Hochschild homology of stratifolds are only valid for locally coned,
or more general locally product coned stratifolds. The reason for this is, that
when we know the algebra C*°(X), we know the algebra C'°(cX) almost
as well. Hence the local situation is far easier and obtainable by inductive
methods, than in the general case of a stratifold. Another nice aspects of
locally coned stratifolds is that the introduction of some nice conditions on
the links can also yield to interesting new homology theories. This can also
be found in [Weber01].

13



1.7 Some Properties of Stratifolds

In this section, we establish some properties of stratifolds which will be useful
in later chapters.

Lemma 1.7.1. Let X be a stratifold and x € X. Let U be an open neigh-
bourhood of x. Then there is a smooth function p : X — [0,00), such that
supp(p) C U and p(x) > 0.

Proof. This is Lemma 4.2. of [Kreck00]. The proof presented there works also
in the case of infinite dimensional stratifolds. O

The existence of a smooth partition of unity, subordinated to a certain
open covering is established by the following corollary.

Corollary 1.7.1. Let X be a stratifold and (Uj);cs be an open covering of
X. Then there is a smooth partition of unity (f;);cs subordinated to the
covering, in equal f; € C*®°(X) such that

> fi=1x
jeJ
with supp(f;) C U; and Vx € X the set {j € J|f;j(x) # 0} is finite.
Proof. see [Kreck00]. O

As a consequence of the existence of partitions of unity we get the follo-
wing result.

Corollary 1.7.2. Let X be a stratifold, then X is paracompact as a topolo-
gical space.

1.8 Stratifolds and Orientation

Since we have seen, that any stratifold is the boundary of its cone, the bor-
dism category of all stratifolds is not particularly interesting. To get some-
thing more interesting, we will introduce orientations on stratifolds. Before
we proceed, the reader should be reminded at the difference between dim(X)
and Dim(X) (see (1.1) and page 7).

Definition 1.8.1. A stratifold X of dimension Dim(X) = n is said to be
Z/2- oriented if R,,_1(X) = 0. We say that X is Z- oriented, if in addition
the top stratum R,(X) is an oriented manifold.

The fact that the second highest stratum of an oriented stratifold is empty
will be crucial, when proving a generalisation of Stokes’ Theorem in chapter
4.

14



1.9 Bordism Theory based on Stratifolds

One intention of the construction of stratifolds was to give a concrete bor-
dism like description of singular homology. In this section we briefly outline
the construction of Kreck given in [Kreck99].

Let X,Y be Z oriented, compact stratifolds of some given dimension n.
We say X and Y are bordant, if there is a Z oriented n + 1 dimensional
compact stratifold W with boundary

oW =X + (-Y),

where —Y denotes Y with orientation reversed. We call W a bordism bet-
ween X and Y.

Now let Z be a topological space. We consider classes [f : X — Z], where
two classes [f : X — Z] and [¢g : Y — Z] are called equivalent if X and
Y are bordant via a bordism W and there is a map h : W — Z such that
hix = f and hjy = g. This indeed defines an equivalence relation. The set of
equivalence classes of these objects becomes a group with addition induced
by the topological sum.

In the situation above we let n run through the natural numbers and end
up with a functor

H, :Top — GrAb

from the category of topological spaces to the category of graded abelian
groups. Moreover it can be shown, that this functor is a homology theo-
ry. This remains valid if one reduces the category of stratifolds involved by
assuming some nice extra conditions, for example on the strata of some gi-
ven dimensions etc. In this context interesting new questions in the study
of homology theories arise. Some of them have been studied by Lecibyll in
[Lecibyll00]. In our case the question which homology theory arises from this
construction is completely answered by the following theorem.

Theorem 1.9.1. The homology theory given by bordism of Z oriented strati-
folds is naturally isomorphic to ordinary integral homology. That means there
is a natural equivalence between the functors H, and HZ, where the latter
means singular homology with integer coefficients.

Proof. [Kreck99] O
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Kapitel 2

Tools from Sheaf Theory

In this chapter we present some of the basic concepts of sheaf theory. The
reader who is familiar with things like sheaf theoretic cohomology can skip
this chapter or may look up things later. By brutal force we could have
avoided the use of sheaf theory entirely, but we think it makes proofs more
elegant. Since this chapter only presents methods and tools, we skip almost
any proof, but say exactly where it can be found in the book of Bredon
[Bredon97]. The reader who wants more detailed information about sheaves
should also consult this book.

2.1 Basic Definitions

Throughout this chapter X denotes a topological space.

Definition 2.1.1. A presheaf A of abelian groups on X is a contravariant
functor from the category of open subsets of X and inclusions as morphisms
to the category of abelian groups. This means to any open subset U C X there
is associated an abelian group A(U) and if V' C U is another open subset of
X, then there is a restriction map

royv : A(U) = A(V),
such that whenever W C V. C U are three open subsets of X the equation
rvw =Trvw oTuyv
holds.

To simplify the notation we often write s, instead of ryy(s) for the re-
striction of an element s € A(U) to a subset V' C U.
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The following examples are fundamental in the sense, that all sheaves or
presheaves occurring in this work, will be based on these.

Example 2.1.1. 1. Let G be any group and X a topological space. Then
we can associate G to any open subset of X, in equal G(U) = G for
all open subsets U of X. This clearly defines a presheaf on X which we
call the constant sheaf G with value G on X.

2. Let X be a stratifold. If we consider an open subset U C X as a sub-
stratifold of X according to Example 1.4.1, we can build C*(U). The
association

U C™(U)

for all open subsets U of X is a presheaf on X. The restriction maps
are giwen by restriction of functions. We denote this presheaf Ox and
refer to it as the structure sheaf on X.

The presheaves in the example above have more structure, than it is
required for presheaves. Indeed, they are sheaves. This is our next definition.

Definition 2.1.2. A presheaf A over a topological space X is called a sheaf,
if it satisfies the following two conditions

1. If U = |, U, is an open covering of an open subset U C X, and
s,t € A(U) are elements, such that sy, = ty, for each of the U,, than
s =t.

2. If under the conditions above there are given s, € A(U,) for each of
the U, such that Saqranry = SBvanu, for all indices o and (3, then there

is an element s € A(U) such that sy, = sa for all o .

It is clear from the definition, that the constant sheaf and the structure
sheaf Oy of a stratifold are indeed sheaves. On the other side there is a
canonical way to construct sheaves out of presheaves. This process is called
sheafification. For this let A be a presheaf on X. For each x € X define the
stalk of A at = to be

Ay = ling e AU) (2.1)

where U runs through the open neighbourhoods of X. This group contains
the local structure of A at the point z. An Element of A, is given by the
equivalence class of some s € A(U). We denote this class with s,. We give
U,ex Ax the topology generated by the open sets

{s, € Azlx € U,s € A(U)}, YU C X open.
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We denote this space with A. It comes together with a continuous map
m: A= X,

which is the projection on the base point of the corresponding stalk. For an
open subset U C X let us denote the sections of A over U as I'(U, A). Then
it is clear, that the association U + I'(U, A) is a sheaf on X. Sometimes we
denote this sheaf by

Sheaf(U — A(U)).

The process of sheafification also shows, how one can imagine sheafs geome-
trically as topological spaces. This is the content of the next proposition.

Proposition 2.1.1. Let A be a presheaf on X. Then the associated topolo-
gical space A has the following properties.

1. m: A— X is a local homeomorphism.

2. Each of the A, = 7 () is an abelian group, and will be called the
stalk of A at x € X.

3. The group operations on the stalks are continuous. This means that the
map

—{(a,B) e Ax Alm(a) =7(B)} — A,

(Oé, 5) = o — B
18 continuous.

If A is already a sheaf the groups A(U) and T'(U, A) are naturally isomorphic.
So in the case we are starting with a sheaf, sheafification yields to nothing
new.

The reader should be warned, that as topological spaces, sheaves in gene-
ral have no particularly good topological properties.For example they usually
lack to be Hausdorff. It follows from the proposition above, that the fibres
are always discreet. As a consequence, in some cases continuous sections can
look very obscure.

In the following calligraphic letters always correspond to the related ro-
man letters, though according to the proposition above we often identify a

18



sheaf A with its associated topological space A. If Y C X denotes an arbi-
trary subspace, we can restrict the sheaf A on Y which is

Ay =771 (Y) > Y. (2.2)

To get a category of sheafs, we have to say, what a morphism of sheaves
is.

Definition 2.1.3. 1. Let A and B be presheaves on X. A morphism of
presheaves

h:A— B
is a collection of group homomorphisms

defined for all open subsets U C X, which are compatible with the
restriction maps. In the language of category theory h : A — B is a
natural transformation between the functors A and B.

2. Let A and B be sheaves on X. A morphism
h:A—B
is a continuous map h : A — B, such that
h(A;) C B,

for all x € X and the restrictions of h to the stalks are group homo-
morphisms.

These two definitions are related in the way, that a morphism of pres-
heaves h : A — B induces a morphism of sheaves h : A — B, where A and
B are constructed out of A and B by the process of sheafification. This is
done by passing to direct limits. On the other side, any morphism of sheaves
h : A — B induces a morphism on presheaves, by passing to sections.

We will now proceed by defining subsheaves and quotient sheaves as well
as images and kernels. The category of sheaves in fact will turn out to be an
abelian category and methods from homological algebra can be applied.

Definition 2.1.4. 1. A subsheaf A of a sheaf B on X is an open sub-
space of B, such that A, = AN B, is a subgroup of B, for all x € X.
It is then clear, that A is a sheaf on X with its induced structure.

19



2. Let A be a subsheaf of B. We define the quotient sheaf B/ A as the
sheafification of the presheaf which associates to an open subset Uof X
the abelian group B(U)/A(U).

Definition 2.1.5. 1. Let h : A — B be a morphism of sheaves. We define
the kernel of h to be

ker(h) := {a € Alh(a) = 0}.

This is a subsheaf of A. On the other side, it is clear that the image
of h

im(h) = {h(a)|a € A} C B
s a subsheaf of B.

2. We call a sequence
A-L-pt-c
of morphisms of sheaves exact , if im(f) = ker(g).

Given a sequence

A-t-p-toc
of morphisms of presheaves, sheafification yields to a corresponding sequence
of sheafs. It can be seen, that this sequence is exact, if and only if the sequence
of presheaves above is exact on stalks. Since passing to direct limits is exact
this for example is the case, if for each open subset U C X the sequence

fu

AU) > B(U) 2> C(U)

is exact. The latter condition though is not a necessary condition for a se-
quence of sheaves to be exact.

Now let X and Y be two topological spaces and f : X — Y be a map.
Let A be a sheaf on X and B be a sheaf on Y. Given these data, one can
construct two new sheaves as follows.

Definition 2.1.6. 1. In the situation above we define the direct image
of A under f to be the sheaf on'Y which associates to each open subset
U C X the abelian group A(f~"(U). The two conditions in Definition
2.1.2 can be easily verified. We denote this sheaf with fA.

20



2. We define the inverse image of B under f to be the sheaf on X, given
by the pullback

f*B = {(z,b) € X x B|f(x) = 7(b)}.

It is easy to check, that this is indeed a sheaf.

2.2 Supports

In this section we discuss supports of sections in sheaves. For most of our
purposes, we can restrict our attention to arbitrary in equal closed supports
or compact supports. In two cases though the situation is more delicate and
we will give a general treatment here. Let X be an arbitrary topological
space.

Definition 2.2.1. A family of supports on X is a family ¢ of closed subsets
of X such that

1. Any closed subset of a member of ¢ is again a member of ¢.

2. The family ¢ is closed under finite unions.

A family of supports ¢ is called paracompactifying if each element of
¢ is paracompact and has a closed neighbourhood which is in ¢. The two
most important families of supports are the family of closed and the family
of compact supports on X. In general it is unclear, whether these systems are
paracompactifying. For the family of compact supports, a sufficient condition
on the space is to be locally compact. Since stratifolds are by construction
locally compact and by Corollary 1.7.2 paracompact and furthermore closed
subsets of paracompact spaces are paracompact the following proposition
holds.

Proposition 2.2.1. Let X be a stratifold. Then the family of closed as well
as the family of compact supports are paracompactifying.

Let Y C X be a subset and ¢ a system of supports on X. Then we define
a system of supports on Y

oy ={K CY|K € ¢}. (2.3)

Now let A be a sheaf on X and s € A(X) be a global section. We define
the support of s as

supp(s) = {z € X|s, # 0} (2.4)
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and denote this set with |s|. This set is already closed, since it’s complement
is open, which can be verified easily. Now let ¢ be a family of supports. The
global sections of A with supports in ¢ are denoted with I',(A). If ¢ is the
family of compact supports we also write I'.(A) for the section with compact
supports. If ¢ is the family of all closed subsets of X we simply write I'(.A).
The functor

A — F¢(A)

from the category of sheaves to the category of abelian groups is left exact.
In general this functor is not right exact. In fact the right derived functors
lead to sheaf theoretic cohomology, which will be treated in Section 2.3 .

Definition 2.2.2. Let ¢ be a family of supports. A sheaf A on X is called
¢-soft, if the restriction map A(X) — A(K) for any K € ¢ is surjective.
Here A(K) is defined as

A(K) = lim e g A(U).

The importance of the following proposition will only show up in the next
chapter. Nevertheless we think it might be helpful to state it at this place,
since it also delivers a good example for a soft sheaf.

Proposition 2.2.2. Let X be a stratifold. And let ¢ be either the family of
all closed subsets or the family of all compact subsets of X. Then the structure
sheaf Ox of X 1is ¢-soft.

Proof. Let A C X be a closed subset and f € Ox(K) be defined on an open
neighbourhood U of A. Since by Corollary 1.7.2 as a space X is paracompact,
we can find an open neighbourhood V' C U of A such that the closure V' of
V' is still contained in U. This follows for example from [Bredon97] page 20
applied to the open covering X = U U (X — A) of X. Now by applying
Corollary 1.7.1 we can find a partition of unity subordinated to the open
covering of X given by

X=UuU(X-V).
In this way we get smooth functions a and 5 on X, such that

a+ =1,

supp(a) C U, supp(f) € X — V.
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From this, it is clear that a;;y = 1 and hence

f=1-a
is a well defined smooth function on X such that f|v = fiv, wich shows the
claimed surjectivity in the definition above. O

Proposition 2.2.3. Let ¢ be a paracompactifying family of supports and let
0—-A—>A—>A"—0

be an exact sequence of sheaves. Suppose that A’ is soft. Then the sequence
of global sections with support in ¢

0— Ly(A) = Ty(A) = Ty(A") =0
18 also exact.

Proof. [Bredon97] page 67. O

Similar to sheafs with values in the category of graded abelian groups
one can consider sheafs with values in the category of rings, algebras etc. .
Almost any algebraic construction can be carried over to sheaves. We start
with the notion of a module.

Definition 2.2.3. Let A be a sheaf of rings on X. We call a sheaf B over
X a module over A, if for each open set U C X the abelian group B(U) is
equipped with a module structure over A(U) such that the restriction maps
are module homomorphisms.

Example 2.2.1. Let M be a smooth manifold. Then the structure sheaf Oy
is a sheaf of rings. The sheaf Q7 of differential forms on M is a module over

Owu.

The following proposition is very important, when we consider the sheaf
of differential forms on a stratifold. For a proof see [Bredon97] page 69.

Proposition 2.2.4. Let ¢ be a paracompactifying family of supports, then
any module over a ¢-soft sheaf is again a ¢-soft sheaf.
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2.3 Sheaf Theoretic Cohomology Theory

Sheaf theoretic cohomology is a very important tool in algebraic geometry
and some other parts of mathematics. For a given sheaf we give an explicit
resolution to define its cohomology. Thus we avoid homological algebra terms
and don’t bother to define things like injective sheafs etc. Throughout this
section let ¢ be a family of supports

Let A be a sheaf on X. For an open subset U C X let
COULA) == {f:U > Alro f = id} (2.5)

denote the set of not necessarily continuous sections from U into A.Such not
necessary continuous sections are called serrations. An alternative way is
to say

U, A) =[] A4

zeU

The association
U— C°U,A)

defines a sheaf on X which we denote with C°(X, .A). Since each continuous
section can also be considered as a serration we have an inclusion

A(U) = C°(U, A) = C°(X, A)(U)
and hence a natural monomorphism
e: A—C'X,A).
We define
ZNX, A) = coker(e: A — C*(X, A)).
In this way we get an an exact sequence
0—> A——>C"X, A) 2> Z(X, A) —=0.

Inductively we define

C"(X,A)) =C"X,Z2"(X,A)) (2.6)
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Z"HX,A) = ZH X, 2"(X, A)). (2.7)
In this way we get exact sequences of the form
0—= 2"(X, A) ——=C"(X, A) 2> Z2nt (X, A) — 0.
By splicing these sequences together we get a long exact sequence
0—>A—>C%X,A) = CY(X, A) L= C2(X, A) L e

where d = eo 0. It is an easy exercise to show that this sequence is exact. So
we end up with what we call the canonical resolution of the sheaf A. Any
other exact sequence of the form above, where C*(X, .A) is replaced by some
sheaves L' is called a resolution of A.

Let us proceed with constructing a chain complex from this resolution.
We define

Cy (X, A) :==Ty(C"(X, A)) (2.8)

and can now present the definition of sheaf theoretic cohomology
groups of a space X with coefficients in the sheaf A.

Definition 2.3.1. Let X be a topological space and let A be a sheaf over X.
The cohomology groups of X with coefficients in the sheaf A and supports in
¢ are defined as

ker(d : C3(X,A) = Cy* (X, A))

Hy (X, A) = im(d: C H(X, A) = C2(X,A)

In general we suppress the index ¢ if ¢ denotes the system of closed supports.

In fact the homology groups above are the right derived functors of the
left exact functor I'y and to define sheaf cohomology, we could have chosen
any injective resolution of A instead of the canonical resolution. The resul-
ting cohomology groups would have been the same. This would require more
homological algebra though, so we stay with this very concrete definition.

Since T'y is left exact, we have an exact sequence
0 — Ty(A) = Ty(CO(X, A)) = Ty(C'(X, A)),

so by definition of the cohomology groups and (2.8) there is a natural iso-
morphism

Ty(A) = Hi(X, A).
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Hence we see that the cohomology classes of dimension 0 are precisely the
global sections of the sheaf with support in ¢.

From the definition of Cg(X, A) it can easily be seen, that as a functor on
sheaves C§ (X, —) is exact. So if we start with an exact sequence of sheaves

0—-A A4 =0,
we get a long exact sequence of cohomology groups
.= HY(X, A') — HL(X, A) — HY(X, A" HI P (X, A,

from which things like the Mayer-Vietoris sequence and excision can be
followed.

The most famous example for sheaf theoretic cohomology is probably the
Cech-cohomology of a space X, which in case X is a nice space coincides
with the singular cohomology.

Example 2.3.1. Let X be a topological space and G an abelian group.Let
G be the constant sheaf with value G on X. Then H}(X,G) are called the

Chech-cohomology groups of X .

2.4 Acyclic Sheaves
Acyclic sheaves over a space X are objects with trivial cohomology. More
precisely we say :

Definition 2.4.1. Let A be a sheaf over some space X and ¢ a family of
supports. We call A ¢p-acyclic if

HY(X, A) =0, Vp > 0.

The following proposition will be fundamental in chapter 4 when proving
de Rham’s theorem for stratifolds. There it will be applied on the complex
of sheaves 2% of differential forms on a stratifold X.

Proposition 2.4.1. Let X be a topological space and
d

d d

0 A—= 0

be a resolution of A by ¢p-acyclic sheaves, then there is a natural isomorphism

HP(Ty(L%), d) = HE(X, A).

c! L?
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Proof. The proof is very easy and follows directly from the last part of section
2.2. The proof can also be found in the book of Bredon [Bredon97] page
47. O

For our purposes the following proposition is of major importance. The
proof can be found in [Bredon97] page 68 but uses the concept of flabby
sheaves, which we don’t introduce here.

Proposition 2.4.2. Let ¢ be a paracompactifying system of supports and X
be a topological space. Furthermore let A be a ¢-soft sheaf over X. Then A
1 ¢p-acyclic.

2.5 Relative Sheaf Cohomology

As in almost any cohomology theory, there is also a relative version of sheaf
theoretic cohomology. Let Y be a subspace of the topological space X and
let

1:Y - X
be the inclusion. This induces a morphism of sheaves
i CH(X,A) = iCH (Y, Ay,

where the right hand side denotes the direct image under i.We define a new
complex of sheaves as

C*(X,Y, A) = ker i".
From this we get a chain complex defining
(X, Y, A) = Dy(C* (X, Y, A)), (2.9)

for any family of supports ¢, where the differential is given by the the re-
striction of the differential on C;(X, .A). The relative version of homology is
now defined as follows.

Definition 2.5.1. Let A be a sheaf over the topological space X, ¢ a family
of supports on X, and let Y C X be a subspace. Then ¥Yn € N we define

ker(d: Cy(X,Y,A)) — CgH(X, Y, A))
im(d: C37 (XY, A)) = C(X, Y, A))

HE(X, Y, A) =
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As usual there are some strong relations between absolute and relative
cohomology, though in general one has to be careful on the choice of systems
of supports. We will only use the following exact sequence of pairs and some
version of excision in sheaf cohomology, which we will state afterward.

Proposition 2.5.1. Let ¢ be a paracompactifying family of supports. Under
the assumptions above there is a long exact sequence of cohomology groups

= HY(X, Y, A) = HY(X, A) = HO(Y, Ay) — HSH(X, Y, A) =

Proof. The proof is easy, nevertheless uses the concept of flabby sheaves. It
can be found in [Bredon97] page 84. O

Proposition 2.5.2. If in addition to the assumptions above, the space Y is
a closed subspace of X, then there is a natural isomorphism

HY(X, Y, A) 2 H, (XY, A).

Proof. The proof of this statement can be found in [Bredon97] on page 87. O
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Kapitel 3

Constructions from Algebra

In this short chapter we present some of the algebraic tools we use in the
later chapters. Probably most of the readers are well acquainted to things
like localization or the local global principle. Not so well known are algebraic
differential forms. Throughout the chapter R denotes a commutative ring.
In general we do not suppose that this ring R has a unit. If so we denote
this unit with 1g. If R has also the structure of an algebra over a field k,
we switch symbols and denote it with A. Again we do not suppose that A
has a unit but we concentrate on the case, where the underlying field k£ has
characteristic zero. Later A will be the algebra C*°(X) of smooth functions
on a stratifold X or some related algebra and k will be the real or complex
numbers.

3.1 Localization

Let S C R be a multiplicative subset of the ring R, that is S is closed under
multiplication. Let M be a module over R. We define the localization of M
at S, denoted Mg, as the set of equivalence classes

(m,s) € M xS
under the equivalence relation

(m, s) ~ (m', s"),
whenever there is an element ¢ € S such that

t-(s'm—sm')=0.
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The equivalence class of (m,s) will be denoted with ™. Such equivalence
classes build an abelian group with addition given by

m m' s'm+sm
s s ss'
Application on M = R will give us a ring Rg with multiplication

ror e
s s ss

Mg then becomes a module over Rg in a natural way. Furthermore let
¢o: M — N

be a homomorphism of R-modules, then we get an homomorphism of Rg-
modules

¢s: Mg — Ng,

—

m_ ., o(m)

It is not hard to see that
Mg¢ = Rs @ M.

In practice localisations are often done at maximal ideals. For example let
P C R be a maximal ideal of R, then

S=R-P

is a multiplicative subset of R. We call Mp = Mg the localization of M at
P.

The following lemma gives a nice example of localization and in addition
shows how localization helps to understand the local situation, for example
in case of a stratifold X.

Lemma 3.1.1. Let X be a compact stratifold and C*(X) its algebra of
smooth functions. Every mazimal ideal P in C®(X) is of the form

P = ker(ev, : C*(X) — R),
where ev, denotes the evaluation map at some point x € X. Furthermore

C®(X)p = Ox,-

30



Proof. Clearly for any = € X we have that ker(ev,) is a maximal ideal. Now
let P be any maximal ideal in C*°(X). Assume that P is not of the kind
described in the proposition. Then for any z € X there exists f, € P such
that f,(z) # 0. Clearly we can assume f,(z) > 0. It is not hard to see,
that by compactness of X one can use a finite number of these functions
and paste them together with a partition of unity to get a function f € P
such that f(z) > 0 Vx € X. But then we have that 1/f is a well defined
function in C*°(X) and since P is an ideal 1 = (1/f) - f € P, which is a
contradiction to P being a maximal ideal. For the second assertion let f/g
denote an element in C*°(X)p. Then there is a neighbourhood U of x such
that g;; has no zeroes. Hence the function f/g is well defined on U and we
can consider its equivalence class [f/g] € Ox .. The association f/g — [f/g]
is clearly surjective. It is also injective. If f/g maps to zero, then for some
open neighbourhood V' of  we have fi;y = 0. It follows from Proposition
1.7.1 that we can find p € C*(X) such that p(z) # 0 and supp(p) C V.
Hence in C*°(X)p we have

fla=1/p-p-flg=1/p-(p-f)/g=0
since p - f is identical zero. O

In some cases, the localization of a module is much easier to handle,
because it has some good properties. For example it might turn out that
some localization of a module is a free module over the localized ring. The
following definition is a special case of this.

Definition 3.1.1. Let M be a module over the ring R. We call M a locally
free module, if for any mazimal ideal P of R the localization Mp is free over
Rp.

In our case it will turn out that certain modules of differential forms will
be locally free over the algebra of smooth functions on a stratifold.

3.2 The Local Global Principle

The local global principle is somehow a bridge between the local and the
global pictures. If we know a ring localized at any maximal ideal P it should
somehow be possible to identify the ring itself. In some sense this is what the
following proposition states.

Proposition 3.2.1. Let ¢ : M — N be a homomorphism of R-modules such
that for any mazimal ideal P of R the localized map ¢p : Mp — Np is a
mono-, respectively epi-, respectively isomorphism , then ¢ itself is a mono-,
respectively epi-, respectively isomorphism.
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Proof. The Proof of this proposition can be found in [Eisenbud95] page 68.
U

3.3 Adjunction of a Unit

Some of our algebras doesn’t come with a unit element, in equal an element
14 € A which satisfies 14-a =a-14 = a Ya € A. For any k algebra A we
can consider

as a vectorspace over k and define a multiplication on this vectorspace via
(a,r) - (b,s) := (ab+ rb+ sa,rs). (3.2)

Together with this multiplication A, is a commutative k-algebra with unit
given by the element (0,1). We get the following short exact sequence of
k-algebras

0 A—2= AL s 0,

where the maps are given as

v(a) :=(a,0),Va € A

e(a,r) :==mrY(a,r) € A,

In general this sequence is not a split exact sequence of algebras. In the case
we already started with a unital algebra there is a splitting given by the map

§: AL — A

da,r) :=a+r-1a.

In this case we have an isomorphism of algebras A, = A®k. Identifying a and
(a,0) for all a € A we consider A as a subset of A,. Using this identification
we have that A is a maximal ideal in A .
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3.4 Derivations

Since derivations play a major role in the following chapters, we briefly re-
count the definition and some elementary properties. For this let M be a
bimodule over A which is also a vectorspace over k such that multiplication
with elements of A and of k is associative. If A has a unit, M inherits the
k-vectorspace structure from A using the map

rer-14,Vr € k.
Definition 3.4.1. We denote the set of k-linear maps
D:A— M,
which satisfy the Leibniz rule
D(ab) = (Da)b + a(Db)

with Der(A, M) and call it derivations of A with values in M. In case M = A
is the regular module over A, we write Der(A) = Der(A, A).

In the unital case, we always assume that the unit 14 acts as the identity
on M. The Leibniz rule then implies that D(14) = 0, hence because of k-
linearity

D(X-14) =0,V € k. (3.3)

Later when we deal with Hochschild and Cyclic Homology, topological alge-
bras will occur. It then makes sense to speak of continuous derivations. We
don’t use an extra symbol, but say so, if we require derivations to be conti-
nuous. Anyway, in the end it will turn out that in the case we are interested
in, that is A = C*°(X) = M, there are no non-continuous derivations. The
situation there is similar to the manifold case, where any derivation can be
represented by a smooth vectorfield, hence is continuous.

3.5 Differential Forms for Algebras

In this section we generalize the concept of differential forms, as known in
the world of smooth manifolds, to arbitrary commutative algebras. In this
section, for a matter of simplicity we assume all algebras to be unital. Unlike
for Hochschild homology there is not much about differential forms for nonu-
nital algebras in the literature. Nevertheless nonunital versions of the stuff
presented in this section are possible, though a little bit technical. There are
also versions working in the noncommutative case (see [Loday91], page 82).
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Definition 3.5.1. Let A be a commutative, unital algebra over k. We denote
with F(A) the free A-module generated in symbols da Ya € A and with R(A)
the submodule which is generated by the elements of the form

d(ab) — adb — bda VYa,b € A.

We define the A-module of differential 1-forms or Kaehler differentials on
A as

QL = F(A)/R(A).

This A module has a universal property which is closely connected to
what we have done in the previous section.

Proposition 3.5.1. Let M be a bimodule over A and let D : A — M be
any M wvalued derivation on A. Furthermore let d : A — QY denote the map,
which associates to a € A the class of da in QY. Then there is unique A-linear
map f: QY — M such that the following diagram commutes

A—L= .
[«
d
0y
Hence there is an isomorphism
Der(A, M) =2 Hom (Y, M).
Proof. This is clear from the construction of QY. O

We will now give a second construction of Q. Its strength will show up,
when defining topological versions of the stuff presented in this section (see
chapter 5). Let us consider the multiplication map

ARA— A

a®b— ab.

We denote the kernel of this map with I and consider it as a module over A.
Let us also consider the ideal I? and finally the quotient I/I?. This will be
our candidate for !|. Clearly, as an A-module I is generated by elements of
the form

1a®a—a® 1, Va € A. (34)
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Let us denote classes of elements of the form (3.4) modulo I? as
[1A®a—a®1A].
The following proposition gives answer on how this is related with QY.

Proposition 3.5.2. Let A be a unital commutative algebra. Then there is a
natural isomorphism

Q= I/I?

da—[1y®a—a® 1y

Proof. [Loday91] page 26. O

We can now define higher differential forms by using the exterior algebra
construction.

Definition 3.5.2. For a unital commutative algebra A, let
= AL,
be the A module of differential n- forms over A.

This module has a universal property, which can simply be obtained by
composing the two universal properties of the exterior product construction
and differential 1-forms and has something to do with alternating forms on
derivations. We don’t go into this in detail.

As the following proposition shows. The process of building differential
forms is compatible with the process of localization. This fact proves very
useful in calculations.

Proposition 3.5.3. Let A be a unital commutative algebra and P be a ma-
zimal ideal in A. Then there is a natural isomorphism of modules over Ap

Proof. Since the process of building alternating algebras is compatible with
localization, we can assume n = 1. In this case, it is not hard to see, that
(Q%) p has the universal property of Proposition 3.5.1. for Ap from which the
proposition follows. See also [Weibel95] page 307 . O
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That algebraically defined differential forms are in fact a generalization of
the concept of differential forms on manifolds as one can find in [Bredon91]
on page 261 for example, is the content of the following proposition.

Proposition 3.5.4. Let M be a compact smooth manifold and A = C*(M)
denote the algebra of smooth functions on M. Furthermore let Q"(M) denote
the module of differential n-forms on M Then there is a natural isomorphism

Qoo (ary = Q" (M).
Proof. Clearly there is a well defined map

Qoo (ary = Q" (M)

Jodfr...dfn = fodfi...dfy,

where the left hand expressions is understood as an algebraic differential
form, whereas the right hand expression stands for the alternating n-fold
product of the n differential one forms df, ...df,, and the smooth function f.
This map is an isomorphism. To check this, using the local global principle
( Proposition 3.2.1 ) together with Proposition 3.5.3 and Lemma 3.1.1 one
can assume that M = R¥. In this case the proposition is clearly true. O
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Kapitel 4

de Rham Theory of Stratifolds

In this chapter we will generalize concepts like vectorfields and de Rham
cohomology which are well known in the world of smooth manifolds to the
world of stratifolds. The main result of this chapter is the generalization of
de Rham’s theorem to the case of stratifolds, namely that the de Rham co-
homology with compact support of a stratifold X is naturally isomorphic to
its real valued singular cohomology with compact support. We present a very
concrete and geometric isomorphism, which is given by integrating differen-
tial forms over homology classes.

4.1 Tangentspaces

Let X be a stratifold. As before, we denote with Ox the structure sheaf of X.
Let z € X be a point and Oy, the stalk of Ox at x. The following definition
of the tangent space of X at the point x has to be seen in complete analogy
to the case of a smooth manifold.

Definition 4.1.1. We define the tangent space of the stratifold X at some
point x € X as

T,X = Der(Ox 4, R).

Clearly T, X is a vectorspace over the real numbers. From Proposition
1.3.1 it follows, that if x lies in the k-th stratum Sy of X, we have

OX,x = OSk,xa

where Og, denotes the structure sheaf of the k stratum. The isomorphism is
given by restriction of germs to the k-stratum. We follow that

Der(0Os, », R) = Der(Ox,, R)
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induced by the inclusion of the k-stratum. So we have proven the following
easy, but nevertheless important proposition.

Proposition 4.1.1. Let X be a stratifold and x € S, C X. Then the inclu-
sion of the k-th stratum induces an isomorphism

TS, =2 T,X.
In particular the dimension of T, X s equal to k.

Clearly, if we have a smooth map f : X — Y between two stratifolds, we
get an induced map Oy, ;) — Ox 5. This map then induces a map

fi : Der(Ox 4, R) = Der(Oy,f), R),
which is the same as a map
f* : TIX — Tf(z)y (4.1)

We call f, the tangential of f at the point x. It is clear that f, is a vector-
space homomorphism.

In the proposition above no restrictions on the dimension of the stratifold
are needed. So, even an infinite dimensional stratifold has finite dimensional
tangentspaces. The dimension of the tangentspace depends on the stratum
which contains the point. In anyway the dimension of the tangentspaces
varies. This is one major difference to the world of manifolds. It makes it
somehow difficult to define something as the tangentbundle by pasting to-
gether the tangentspaces in a certain way. We don’t bother to define some
alternative of the tangentbundle and come right away to vectorfields. In the
manifold case, smooth sections of the tangentbundle are in one to one cor-
respondence to the derivations of the algebra of smooth functions. This will
be our start point in the next section.

4.2 Derivations and Vectorfields

Definition 4.2.1. For a stratifold X we denote with Der(X) the derivations
of the algebra C*°(X).

So far nothing has been said about the topology of C*°(X) and derivati-
on here just means derivation, we don’t require anything as continuous here.
Later we will introduce a topology on C*°(X) and in analogy to the mani-
fold case it will become clear, that any derivation of C*°(X) is automatically
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continuous.

We should begin with a property of Der(X) we call locality, which means
that for any D € Der(X) and f € C*(X) the value of Df at some point
x € X only depends on the behaviour of f in a small neighbourhood of z.
We all know this behaviour of derivations from the world of manifolds, and
the reason this is valid for stratifolds as well is Lemma 1.7.1

Proposition 4.2.1. Let D € Der(X) and f,g € C®(X). Let x € X be
some point and U be an open neighbourhood of x in X such that fiy = gu.
Then

Df(x) = Dg(x).

Proof. We have (f — g)jy = 0. According to Lemma 1.7.1 we can choose
p € C*(X) such that p(z) = 1 and supp(p) C U. Then 0 = p- (f — g) on
the whole of X, hence

0=D(p-(f—9)=Dp-(f—g)+p-D(f—9g).

Evaluation at x shows that D f(z) = Dg(z).
U

We will give an explicit description of Der(X) in form of vectorfields on
the strata Ry of the stratifold X. Let us denote the vectorfields on R; with
['(Ry). We should remind the reader at this point, that since we are working
with c-manifolds, for z € ORy we have from Proposition 1.1.1 that

ORk,x g OBRk,:z:-

Clearly this isomorphism carries over when we consider derivations on Og, ;.
So we have a natural isomorphism

T, Ry = T,0Ry,.

This isomorphism is given by forgetting the component orthogonal to the
boundary. One might think that this is a loss of information. It isn’t, when
we consider vectorfields on Ry, since then, the component orthogonal to the
boundary does have an impact on germs, when considered arbitrary close to
the boundary, but not on the boundary. Since all our vectorfields are assu-
med to be smooth, the behaviour close to the boundary uniquely determines
the behaviour on the boundary. Another point to keep in mind is that an
arbitrary vectorfield on Ry, in general won't deliver a derivation of C'®(Ry).
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This is because functions in C*°(Ry) have to satisfy that extra condition to
be constant along the collar close to the boundary. To get derivations from
vectorfields on Ry, we must require some condition on the components ortho-
gonal to the boundary, which guarantees the condition to be constant along
the collar. This will be expressed in condition 2. of Definition 4.2.2 .

Definition 4.2.2. Let X be a stratifold with charts ¢ and strata Ry for
ke I. We define

I'(X) € {7 = (w)rerlm € T(Ri)},
to be those sequences of vectorfields which satisfy the following two conditions.

1. For any pair x € Ry and y € R; such that pp(x) = ¢j(y) =2 € X
e ((7)) = 054 (75(y)) € T.X.

2. For any k let py : ORy X [0,€) — ORy denote the projection from the
collar of Ry, to the boundary. Then for any y € ORy, the function

[0, 6) — TyaRk

t = Py (Y, 1)
s constant in a small neighbourhood of zero.

['(X) has a natural structure as a module over C*°(X) and will be called the
module of vectorfields on the stratifold X.

We will now recognize Derivations on C*°(X) as vectorfields on X. This
is the content of the following theorem.

Theorem 4.2.1. There is an isomorphism of modules over C*(X)
Der(X) =2T'(X).

Proof. Let D € Der(X) be a given derivation and let Ry denote the full
strata of X. We define v, € Ry as follows. Let x € Ry, and f; € Og, , be
defined on an open subset U of Rj. The set V := U N R}, is also open and
because of the properties of the charts g, we have that (V) is an open
subset of S;.Then

L —1
9= f o ¢k
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is a smooth function defined on an open subset of Si. As in the proof of
Proposition 1.3.1 there is a unique way to extend g on an open subset of X.
We can then further extend ¢ to the whole of X. Define

(@) (fie) = (Dg) (#x ().

This is well defined by the property of locality of D and the explicit extension
in a small neighbourhood of ¢;(V). To check condition 2 from Definition
4.2.2, we identify = = (y,t) € ORy x [0,€) in a small neighbourhood of the
boundary. Let f € Opg, , and let p : OR; x [0,€) be the projection on the
first coordinate. Then the function f o p on Ry is constant in the second
variable which means the germ f|, ;) remains constant when ¢ is changed.
This allows us to take one single function g € C*°(X) as above which suits
all these germs. We then get

p*’Yk(yat)(fLy) = Vk(yvt)(f Op|(y,t)) = (Dg)((lpk(yvt))

The latter function is constant in ¢ for small ¢, since D is a derivation on
C*(X) and hence Dg € C*(X). If fi, and f5, are two elements in Op, ,
both defined on U, then we have extensions g, respectively g and ¢, - ¢o
coincides with the canonical extension of fi|, - fo, in a small neighbourhood
of ¢, (V). Hence

V() (fi1a - foiz) = D(g1 - 92)(px(2)) = (Dg1 - g2 + g1 - Dgo) (7)),

which shows that () is a derivation, hence 7y, (z) € T, Ry. This construction
gives us vectorfields v, on Rj. These vectorfields also satisfy the compatibility
condition, which can be seen as follows. Let z € X and f, € Ox ., v € Ry
y € R; such that ¢ (z) = ¢;(y) = z. Then by definition of v, and ~; we have

V() (f o @r) = (Df)(pr(x)) = (DF)(9i(y) =7 (y)(f o @ijy)-

Hence vp = (k)rer is a well defined element in T'(X). The association D +—
vp clearly is a homomorphism of modules over C*(X). On the other side
let there be given a vectorfield v = (yi)rer € I'(X) and let f € C°(X) be a
smooth function on X.Let x € X be a point and y an arbitrary point in the
preimage of x under some ;. We define

D, f(x) = () (f o Pryy)-

By the compatibility condition of the 7, this value doesn’t depend whether
on the choice of k£ € I nor on the special choice of y € R;. The continuity of
the function

D.,f:x~— D,f(z)
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is clear from the topology of X as a quotient space (see Definition 1.2.1 and
Definition 1.2.2). It remains to check that D, f is smooth in our sense. To
show this let ¢, be a chart of X. Then

z = (Dyf o pi)(x) = Dy f(pr(2)) = 7 (2)(f © Prpz)

clearly varies smoothly on = € Ry. Let x = (y,t) € ORy, x [0,¢€) be a point in
the collar of Rj. Then

(y, 1) = (Dy o wr)(y,t) = V(Y t) (f © Oriy))

doesn’t depend on ¢ for small ¢ because the germ f oy, ) remains constant
when the second variable is changed for small ¢ and ~;, satisfies condition 2 of
Definition 4.2.2. Hence we have proven that D, f € C*°(X) and by a trivial
argument D, € Der(C*(X)). By construction it is clear that the maps

v D,

D|—>’)/D

are inverse to each other. Hence the statement of the theorem follows. O

To get a better feeling of how vectorfields or equally derivations on a
stratifold look like, we should give an example.This is the most easy example
one could think of, nevertheless reflects the situation very well.

Example 4.2.1. We consider S' = [0,1] U, pt. as a two strata stratifold,
where p(0) = (1) = pt. In this case both conditions of Definition 4.2.2 are
empty, hence Vect(S') = Vect([0,1]). The latter can then be identified with
smooth functions on the unit interval. This has to be considered as a module
over

C>®(S"Y)y = {f:[0,1] = R, £(0) = f(1), fconstant around {0,1}}.

So, as we can easily see, Vect(S!) is not finitely generated over C*°(S1).
This situation carries over to any stratifold which has singularities. It makes
life harder, when one is trying to use theorems of commutative algebra to
establish results for vectorfields (or later differential forms), cause most of
them only work in the finitely generated case.
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4.3 Differential Forms on Stratifolds

In section 3.5 we already introduced differential forms for arbitrary commu-
tative unital algebras. This of course works for the algebra A = C*°(X) for
a stratifold X. On the other side, this construction is somehow abstract and
ungeometric. For this reason we choose the following approach, which is mo-
delled as close as possible on the manifold case. We will later show, that in
the compact case both versions of differential forms coincide.

On a manifold M, a differential form is given as a smooth section

w:M— [ ATy M = [] Alt™(T, M, R),
reEM zeEM
where the two right hand expressions have been given an appropriate to-
pology and Alt" denotes the alternating n-forms.. For a stratifold X we
mentioned that it is not easy, to give [,y A"T;X any natural topology. It
is well known, that in the manifold case a not necessary continuous section

of A»T*M is a differential form if and only if it can locally be represented as
a sum of forms

fodft A ... Adfy,

where the f; are smooth functions on M. This is the start point for our defini-
tion of differential forms on stratifolds. Usually we skip the A in our notation.

Given functions fy,...f, on a stratifold X, we define fydf;...df, as the
section

fodfv.dfn: X = [T ATy X = [ Alt"(Der(Ox,),R) (4.2)

zeX zeX

(fodfi--dfu) @) (Dy, ooy Dn) = > (=1 fo () Dy fr(yjoer- Do frmpas (4:3)

TEYn

where ¥,, denotes the permutations of {1,2,...n} and D; € Der(Ox,, R) are
derivations. For comparison to the manifold case see for example [Bredon91]
page 262. We can now define differential forms on stratifolds.

Definition 4.3.1. Let X be a stratifold. A section

w: X = [[ATx

zeX
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is called o differential n-form, if for any x € X there is an open neigh-
bourhood U C X and finitely many smooth functions f} defined on U such
that

wr =Y fdfi...df}]
J
as defined in (4.2),(4.3) We denote with Q™(X) the set of differential n-forms
and consider Q" (X) as a module over C*°(X).

When working with non compact stratifolds, we have to pay attention
on the supports of certain differential forms. This yields to the following
definition.

Definition 4.3.2. Let w € Q"(X) be a differential n-form on a stratifold X .
We call the closure of

{r € X|w(z) # 0}
the support of X and denote it supp(w). We further define
QNX) :={w € Q"(X)|supp(w) is compact }

to be the module over C*(X) of differential n-forms on X with compact
support.

By definition it is clear that Q°(X) = C®(X) and Q%(X) = C>(X)
where the latter denotes smooth functions on X with compact support.The
geometric meaning of higher order differential forms becomes clearer, when
we study the local picture in form of sheaves in section 4.5.

4.4 Functorial Properties of Differential Forms

Since we defined the tangential g, of a smooth map ¢ : X — Y between
stratifolds it is very easy to see that the association

X — Q"(X)

is functorial. In fact this is completely analogous to the manifold case. The
map ¢ induces maps

gy : T.X — Tg(x)y

44



Let w € Q"(Y) then we define g*w € Q"(X) as

§"w(@)(Di, e, D) = w(g(2)) (9. D, s 9. D).

If w is locally represented by a sum
wr = fAdfi...df],
J
so is g*w by

g wg-ry = > (£ 0 g)d(fi 0 g)-.d(f] 0 g).

J

4.5 Sheaves of Differential Forms

By the definition of differential forms, it is clear that the association
Uw— Q")

for open subsets U of a stratifold X defines a sheaf on X. We denote this
sheaf by 2% and call it the sheaf of differential forms on X.

Proposition 4.5.1. Let ® be either the system of compact or closed sup-
ports. Then the sheaf Q% of differential n-forms on a stratifold X is ®-soft.
In particular it is ®-acyclic.

Proof. This is an application of Propositions 2.2.1, 2.2.2 and 2.2.4 on the
module Q% over Ox O

We should now study the local picture in form of the germs Q% , of the
sheaf of differential n-forms at some point x € X. The following proposition
is a generalisation of Proposition 1.3.1.

Proposition 4.5.2. Let S, be the k-stratum of the stratifold X and x € Sy.
Then the inclusion

1: Sk — X

induces an isomorphism
n ~Y n
QX,x - QSk,am

where the right hand side denotes the germ of differential n-forms on the
smooth manifold Sy.
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Proof. The reason for this to be true is the fact that locally, differential forms
are representable by the exterior product of differentials of smooth functions
and smooth functions in a close neighbourhood of a stratum are identified by
their restriction to the stratum.The latter is the content of Proposition 1.3.1
. To be more precise, we let n = 1, x € X be some point in the k-stratum S
and dg € QY , such that

i*dg=d(goi)=0¢€ Qékm
Then since Si is a smooth manifold, we have that g is constant in a small
neighbourhood V' of x in Si. By Proposition 1.3.1 there is also a small neigh-
bourhood U of x in X, such that g restricted to U is constant. Hence, by
definition of dg and (3.3) we have that dg;y = 0 so that dg = 0 € Q% , which
proves injectivity in the case n = 1. Surjectivity is also clear from Proposition
1.3.1 . For general n the proposition follows from the fact, that

n ~ AT 1
X,x — Ox,ZQX,zv

n ~ AT 1
Skax - Osk,z Skzx’
and last but not least
Ox. = Og, 2,

where in general A%, denotes the exterior algebra over the ring R.

We should mention at this point, that the same technique used in Lemma
3.1.1 can be used to show that

Q% = Q"(X)p, (4.4)

where P = ker(ev, : C*®°(X) — R) indicates localization at P. This for
example shows that for a compact stratifold X as a module over C*°(X) we
have that Q"(X) is locally free, and the local rank is given by (Z) for x € S.
Since 2"(X) is not finitely generated as a module over C'*°(X) one can not
follow from this, that it is projective as a module over C*°(X). In fact it is

not, since in this case, the local rank would be constant.
O

Since we know, how Q"(X) locally looks like, we can establish the gene-
ralization of Proposition 3.5.4 for stratifolds.
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Proposition 4.5.3. Let X be a compact stratifold and A = C*(X) the
algebra of smooth functions on X. Then there is a natural isomorphism

Qe ) = Q" (X).

Proof. The proof is the same as in Proposition 3.5.4 using the local global
principle, Proposition 4.5.2 and the remark above. O

4.6 de Rham Cohomology of Stratifolds

To build a version of de Rham cohomology for stratifolds, absolute or sheaf
theoretic, we have to define an operator d, which is known as exterior deriva-
tion in the manifold case. With our definition of differential forms, to define
d becomes very easy.

Definition 4.6.1. Let X be a stratifold and w € Q"(X) a differential form
such that locally

wo =Y fdfl...df).
J
Define dw € Q"Y(X) as the differential form which is locally represented as

(dw) = S dfjdfi...dfi.
J

That dw is indeed a well defined differential form is clear from the defini-
tion. To show that dw doesn’t depend on the local representation is somehow
technical, and only uses algebraic properties of Q"(X). This can be looked
up in the book [Weibel95], page 349. So we get an operator

d: Q"(X) — Q"TH(X). (4.5)

We call this operator exterior derivation in analogy to the manifold case,
where it can be defined via the same method used here. Since d(1x) = 0,
where 1y denotes the constant function with value 1 on X, it follows from
the definition of d that d o d = 0. hence we get a chain complex (2*(X), d)
which we call the de Rham complex of X.

The following lemma states that d is also well defined, when working with
compact supports.
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Lemma 4.6.1. The exterior differential
d: Q"(X) = Q"(X)
maps Q7 (X) into QP (X).

Proof. Let Q7(X). We have to show that supp(dw) is compact. Since we know
that supp(w) is compact, we can find a finite number of open sets Uy, ..., Uy
in X such that w is locally representable on each of the U; and

k
supp(w) C U Us.

i=1

Since X is locally compact, we can choose each U; to be relative compact.
By definition of d, dw is zero outside this union, hence

k k
supp(dw) C U U; C U Us.
i=1 i=1
This proves that supp(dw) is compact. O

One can even show, that d decreases supports, but we won’t need this.
We are now able to define the de Rham cohomology groups.

Definition 4.6.2. Let X be a stratifold. For n € N we call

n oy Rer(d: Q"(X) = QX))
Hir(X) = S o0 = (X))

the de Rham cohomology groups of X. We also define

. _ker(d: Q2(X) — QX))
Hip(X) = im(d: Qr1(X) — Qr(X))

to be the de Rham cohomology groups with compact support.

Both groups of course coincide if the stratifold X is compact. If X is non
compact, we're mostly interested in the de Rham cohomology groups with
compact support. We don’t present any theorems for non compact supported
cohomology in this case.

For our sheaf theoretic approach it is very useful to see the de Rham
complex not only as a chain complex, but as a complex of sheaves. Since the
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exterior differential d as defined in (4.5) is clearly natural with respect to
inclusions it induces a morphism of sheaves

d: Q% — Qv vneN (4.6)
Again we have d o d = 0. Hence we get a complex of sheaves

0—>R%OX:Q% d Q%( d 92)( d

We call this complex according to the previous definition the de Rham
complex of X. The following proposition can be seen as a generalisation of
the Poincare lemma for manifolds.

Proposition 4.6.1. Let X be a stratifold and ® be either the family of com-
pact supports or the family of closed supports then the de Rham complex is a
resolution of the constant sheaf R by ®-acyclic sheafs.

Proof. By Proposition 4.5.1 the sheaves Q% are ®-acyclic and we are left to
show that the de Rham complex is exact. Exactness has to be checked on
the stalks, so let x € X be some point. Then x lies in some stratum Sj and
since by Proposition 4.5.2

n o~ On

X,z — °%Sp,x

the complex on stalks is precisely the complex

€ — 0 d 1 d 2 d
0 —_— R% OSk,x - st_,x st,x st,x

The exactness of this complex follows from the Poincare Lemma applied to
the smooth manifold S;. Hence we have proven the proposition. O

The last proposition has the following immediate consequence which we
state as a theorem because it calculates the de Rham groups.

Theorem 4.6.1. Let X be a stratifold, then its de Rham cohomology groups
with compact support are isomorphic to its real valued singular cohomology
groups with compact support, i.e.

H;R,C(X) = HZ(Xa R)

Proof. By proposition 4.6.1 above the de Rham complex is a resolution of
the constant sheaf R by acyclic sheaves. According to Proposition 2.4.1 this
resolution induces an isomorphism

HY(T.(2)) = HI (X, R).
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On the left side of the last equation we have the de Rham cohomology groups
of X with compact support, whereas on the right side by definition we have
the compact supported cohomology groups of X with coefficients in the con-
stant sheaf X. The latter groups are for nice spaces, in particular for strati-
folds, isomorphic to the compact supported singular cohomology groups with
real coefficients. Hence, we have proven the theorem. O

In section 4.10. we give a geometrical meaning to this isomorphism which
is given by integration. Integration of forms on stratifolds will be introduced
in the next section.

4.7 Integration of Differential Forms on Stra-
tifolds

We assume the reader is familiar with the process of integrating differential
forms on manifolds. Integration of forms on the full strata Ry(X) of X can be
done using a Riemannian square density associated to a Riemannian metric
on Ri(X) as it is done in [Lang99],pages 466-470. The reader who doesn’t
know how to work with densities can also think of integration via a volume-
form on the top stratum. Of course this only works for the top stratum of Z
oriented stratifolds, but in the end, this will be the only case where we need
integration. Nevertheless, here is the general version.

We let X be a stratifold and w € QF(X) be a differential form on X. Let
¢k : R — X be the chart of the k-dimensional stratum. Then ¢jw which is
defined by it’s local representations

WZMU = Z(fg © @k)d(ff © @k)---d(fiz ° )

J

is a differential form with compact support on the smooth manifold Rj.

Definition 4.7.1. Let X be a stratifold and w € QF(X) a differential k-form

on X, then we define
/ W= / ORW.
X Ry,

There is one major difference to the manifold case, that is, that integrati-
on of k£ forms which have smaller degree than the dimension of the stratifold
may yield nontrivial results. This effect is indeed very interesting and can be
used to define certain subcomplexes of differential forms which might lead to
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interesting new cohomology theories. But so far this is only speculation, and
as we mentioned earlier in this work only integration over the top stratum
plays a role.

In the following section we present a version of Stokes Theorem for diffe-
rential forms on stratifolds.

4.8 Stokes’ Theorem for Differential Forms
on Stratifolds

When integration of differential forms is defined, a natural question is, whe-
ther there is a Stokes’ like theorem such as

/dw:/ 7w,
X e

where ¢ : 0X — X denotes the inclusion. In general this will not be true. As
the proof of the theorem below will show, such a formula can only hold in
general, if the second highest stratum of X is empty. This condition is satis-
fied by Z and Z/2 oriented stratifolds, which we are particularly interested
in, since they are the building blocks of integral respectively Z/2 homology.

Theorem 4.8.1. Let X be a Z or Z/2 oriented stratifold and let n = Dim(X).
Let w € Q" Y(X) be a differential form on X and let i : 0X — X denote the

wnclusion. Then we have
/dw:/ 7w,
X ax

Proof. Of course we will use Stokes’ theorem for manifolds. By definition of
the integral on the left side we have

/dw:/ cpfldw:/ dcpflw:/ 7 orw
X . Ry, ORy,
=/ j*¢2w+/ I W,
OR;} R,

where j : OR, — R, denotes the inclusion and ¢, : R, — X is the n-th
chart of X. On the other side we have again by definition of the integral and
the top stratum of 90X that

/ i*w:/ Jrprw.
ax OR;
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So we have proven the theorem, when we show that

/ J prw = 0.
ORY

Since by the orientability assumption on X we have X,,_; = X,,_5 and for
dimensional reasons ( see Proposition 4.5.2 )

W‘Xn_l = W\Xn_2 = 0

We also have that i*w = w)x,_, and hence the theorem follows from the
following commutative diagram

ORT 2"~ x

]

Xn—l

4.9 Relative de Rham Cohomology

As in almost any cohomology theory there is also a relative version of de
Rham cohomology of stratifolds. This relative version can be compared to
the absolute one by a long exact sequence, similar to the exact sequence of
pairs known from singular cohomology. This will be done in this section.

Let X be a stratifold and Y C X be a substratifold. The inclusion map
1:Y - X
induces a morphism of sheaves over X
QY — QY

where i€} denotes the direct image of Qf- under ¢ (see Definition 2.1.6). This
map is given by restriction.

Lemma 4.9.1. Let Y be a closed substratifold of X. Then 1* : Q% — 1§} s
surjective.
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Proof. We have to prove surjectivity of the maps on stalks

for all z € X. This is clear for x € X — Y since then (iQ}), = 0. So let
us assume that x € Y. There is a stratum Si(X) of X containing z. Let
S;(Y) = Sk(X)NY be the corresponding stratum of Y which contains z. By
definition of substratifold in section 1.4. S;(Y") is a submanifold of Si(X). By
choosing a tubular neighbourhood for example, we can see that the induced
map

izt Qx50

T

is surjective. By Proposition 3.4.2 we also have

Q% = Q8 (x)

,T

~JS

o = Vs
from which the proposition follows. O
We define a new sheaf on X by

O y = kern(i* : Q% — i€Qy.). (4.7)

This sheaf is given by the association
U= ker(i*: Q% (U) =» Qu(UNY)).
In particular we have
Q% y(X) = ker((i* : Q"(X) — Q"(Y)).

Clearly the differential d on Q% induces a differential also denoted by d on
%y, so that we get a complex of sheaves over X.

The definition of relative de Rham cohomology is as follows.

Definition 4.9.1. Let X be a stratifold and Y C X be a substratifold. We
define the relative de Rham groups with compact support of the pair
(X,Y) as

ker(d : To(X, Q%) — Do(X, Q5H)

HY (X,)Y) = .
el ) im(d:FC(X,Q’)“g}l,)—>FC(X,Q’§(’Y))
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Since Q% - is a module over Ox it is also a ® soft sheave for ® either the
family of closed or compact supports. In this context we will only use the
latter system. This fact enables us to prove the following proposition.

Proposition 4.9.1. Let X be a stratifold and Y C X be a closed substrati-
fold, then there exist a long exact sequence of de Rham cohomology groups

Rt H§R’C(X, V) — H§R’C(X) — HgR,C(Y) — Hgg}c(x, Y) — ...

Proof. Consider the short exact sequence of sheaves over X

0 0%y O~ Q0 0.

Since (2% y- is soft it follows from Proposition 2.2.3 that we have an exact
sequence

00— FC(XJ Q},Y) - Fc(Xa Q}) L Fc(Xa ZQ?/) —0

for all n. These sequences add up to a short exact sequence of chain com-
plexes. By application of a fundamental lemma of homological algebra this
sequence induces the sequence from the proposition. O

Besides the long exact sequence above, there is another way to compare
the relative groups with the absolute ones. This is in general known as ex-
cision. Again let X be a stratifold and Y be a closed substratifold. Then
X —Y is an open subset of X, and by Example 1.4.1 a stratifold itself. Hence
we can compare the relative de Rham cohomology groups of the pair (X,Y)
with the absolute ones of the stratifold X — Y. The following proposition
says that they are isomorphic.

Proposition 4.9.2. Let X be a stratifold and Y C X be a closed substrati-
fold, then we have a natural isomorphism

Hip,o(X,Y) 2 Hip (X = Y), Yk,

Proof. We apply Proposition 2.5.2 to the case A = Q’)“(,Y and p = 0.Then it
follows that

Pe(X, Qy) = To(X =Y, 0% ).
Since iQ’{quY =0 we have
Qs vix—y = Wgx_y-
Since also Q’)“q vy = 0% o we get a natural isomorphism
Pe(X, Q%) 2 Te(X Y. 0% )

from which the proposition follows. O
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4.10 de Rham’s Isomorphism for Stratifolds

In this section we assume that X is a compact stratifold. We have already
stated by using sheaf cohomology that de Rham cohomology of X is the
same as its singular cohomology with real coefficients. This has been done
by a more or less abstract isomorphism. In this section, we will see, that
similar as in the world of manifolds there is a nice geometric description of
this isomorphism, given by integrating forms over cycles and identifying

H*(X,R) & Hom(H,(X),R).

Instead of using singular simplices as representatives for cycles in integral ho-
mology we use singular stratifolds and the description of integral homology
as a bordism theory as presented in section 1.9. This approach is far better
suited for our situation.

Assume we have an element in H,, (X) represented by a singular stratifold
f:Yy—=X,

where Y is a stratifold with Dim(Y) = n. Without loss of generality we can
assume that f is smooth. Let w € Q"(X) be a differential form on X. Then
we can define

w(f) = /Y fw,

where the integral on the right side is defined as in the previous section. We
will now establish that the association

w = (f = w(f))
induces a well defined homomorphism
Hjp(X) — Hom(H.(X),R).

To show this we have to verify that this map doesn’t depend on the various
choices made above.This follows from the following two lemmas.

Lemma 4.10.1. Let fi : Y7 — X respectively fo : Yo — X represent the
same classes in H,(X) and let w € Q"(X) be a cycle, in equal dw =0 . Then
with the definition above w(f) = w(g).
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Proof. Since f, and f, represent the same classes in homology, there is a
bordism g : W — X. This means W =Y; U —Y; and gy, = fi respectively
gy, = f2. From our version of Stokes’ theorem it follows that

0:/ g*dw:/ dg*w:/ iFgw = flw— fow
w w oW Yi Ya

= w(fi) —w(f2).
O

Lemma 4.10.2. Let dw € Q"(X) be a coboundary and let f :' Y — X
represent an element in H,(X). Then dw(f) = 0.

Proof. Since 0Y = (), Stokes’ Theorem implies

dw(f) = /Yf*dw = /Ydf*w = - ffw=0.

O

It is clear that the map defined above is indeed a homomorphism. We call
this homomorphism de Rham homomorphism and denote it by

p: Hjp(X)— Hom(H.(X),R). (4.8)
The next Theorem is a geometrical version of Theorem 4.6.1.

Theorem 4.10.1. The de Rham homomorphism p of (4.8) is an isomor-
phism.

Proof. We use the de Rham Theorem for smooth manifolds as one can find
it in [Bredon97| for example. Let n = dim(X). The theorem follows via
induction on the skeleta of X, by applying the pair sequence on the pair
(X, X,_1) and identifying H%,(X, X,,_;) via Proposition 4.9.2 with the or-
dinary k-th compact supported de Rham cohomology group of the smooth
manifold X — X,,_; from the five lemma and the commutative diagram

HEN(XnY) s HEL(XM XY o HER(X™) - HEL (XML o HEEN(Xm X7

HF=Y(X"~1R) — HFX",X""LR) - HFX",R) — HFX"LR) — HFI(X" X" R)

O
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Kapitel 5

Some Constructions on
Topological Vectorspaces and
Algebras

In this chapter we present some more or less elementary things from analysis,
which are crucial to understand the part on Hochschild homology of strati-
folds. Since the analysis of topological vectorspaces over the real numbers
is not particularly well developed, from now on we work over the complex
numbers. This means that from now on, whenever we write C*°(X) for a
stratifold or C%2. (M) for a manifold treated in the naive sense, we mean
complex valued functions. Those can be obtained by simply tensoring the
real valued versions with C. All information in this chapter has been taken
either from the book “Topological Vectorspaces, Distributions and Kernels“
[Treves| or the book “The Homology of Banach and Topological Algebras”

[Helemskii].

5.1 Fréchetspaces

All vectorspaces here are considered over the complex numbers. A topolo-
gical vectorspace is simply a vectorspace together with a topology which
is compatible with the linear structure, that is addition and scalar multipli-
cation are continuous. In addition to the properties of a topological vector-
space a topological algebra has a continuous multiplication. Most times
we consider Hausdorff topological vectorspaces and algebras. In chapter 6
though, when we discuss Hochschild homology, we will see, that in general
the Hochschild homology groups lack the Hausdorff property. A topologi-
cal vectorspace E is called metrizable if there exists a metric on £ which
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generates the topology. Any metrizable topological vectorspace possesses a
translation invariant metric. We then think of this space as equipped with
such a metric. F is called complete, if any Cauchy sequence in E converges
in E. There is a process called completion which constructs a complete to-
pological vectorspace E out of a topological vectorspace F, together with a
topological embedding

E > E

with dense image. Since we only consider metrizable vectorspaces, we don’t
have to bother about filters. A topological vectorspace is called locally con-
vex if there is a basis of neighbourhoods of 0 € E consisting of convex sets.
A seminorm p on FE is a norm, which lacks the property of definiteness, in
equal there might be vectors 2z # 0 € E such that p(z) = 0. Any seminorm
p on E induces a topology on E. We are now ready to define Fréchetspaces.

Definition 5.1.1. A Fréchetspace is a topological vectorspace E which is
complete, metrizable and locally convex.

Let us discuss the following for our purposes fundamental example. Let 2
be an open subset of R” and denote with z, ..., x,, the canonical coordinates.
For a multi-index I = (iy, ..., 4,) of nonnegative integers, we shall write

o' 0 i 0 Jin

axl (8:1:1 (axn

Let’s denote with |I| =iy + ... + i, the length of I which is the same as the
order of the differential operator 63—;. Let us now consider the vectorspace
C*>(Q) of complex valued smooth functions on €. For any integer m € N

and any compact subset K of 2 we define a seminorm by setting

orf
[flmxc = supin<m(sup{| -5 (2)], 2 € K}). (5.1)

These seminorms induce a locally convex topology on C°°(Q2). Convergence
in this topology means uniform convergence on compact subsets in all deri-
vatives. Hence it is not hard to see, that this space is complete. By choosing
a countable subfamily {p,} of the family of seminorms above, such that the
family {p,} still generates the topology on C*(2), we can define a metric
on C®(Q) by setting

100 =SB 62
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This indeed defines a metric on C*°(£2) and it is not so hard to see, that the
topology defined by the metric is the same as the topology defined by the
seminorms. So we have more or less shown, that C*°(Q) is a Fréchet space.
More details can be found in [Treves| pages 86-89. For a smooth manifold
M treated in the naive sense we can endow the vectorspace C22, (M) of all
smooth functions with a Fréchetspace structure using local charts in the sa-
me way, as it was done above. In the following, when we speak of C%. (M)
we mean smooth functions on M together with this Fréchetspace structure.

In general to any locally convex topological vectorspace one can construct
a family of seminorms which generates the topology. See [Treves] pages 62-63
for example. We need this fact in the next section, when defining tensorpro-
ducts on topological vectorspaces.

In the topological context, two topological vectorspaces are considered as
equal, if there is a topological isomorphism between the two of them. In
general it is not so easy to decide, given a continuous bijective linear map,
whether it is a topological isomorphism or not, or equivalently, whether its al-
gebraically defined inverse is continuous. In the world of Fréchetspaces things
are easier, since we have the following proposition, which is also known as
the open mapping theorem. We will use that proposition several times in
chapters 6 and 7. For a proof see [Treves] page 170.

Proposition 5.1.1. Let E and F be Fréchetspaces and o : E — F a conti-
nuous linear and bijective map. Then a is a topological isomorphism, in equal

a~ ! is continuous.

5.2 Tensorproducts of Topological Vectorspaces

Let us denote with £ and F' two locally convex topological vectorspaces. We
will define two kind of tensorproducts F® F', namely the e- and the 7- tensor-
product. The latter is also called the projective tensorproduct. We denote
with E! and F] the continuous duals of E' and F' together with its weak
topologies. Weak topology means, that a sequence of continuous linearforms
on E converges, if and only if it converges point wise. We do now consider
the vectorspace B(E., F.) of continuous bilinear forms on E! respectively
F!. We give B(E!, F!) a topology by embedding it in a slightly larger space.
This space will be denoted with B.(E’, F.) and consists of the bilinear forms
which are continuous in each variable provided with the topology of uniform
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convergence on sets which are products of an equicontinuous subset of E’
with an equicontinuous subset of F’. Clearly

B(Ey, Fy) C Be(Ey, Fy).

This inclusion induces a topology on B(E!, F!). Let us now consider the
algebraic tensorproduct £ ® F' and the algebraic isomorphism

E®F =~ B(E",F.).

This isomorphism induces a topology on £ ® F' which we call the e-topology.
We denote the space E® F' together with this topology as F ®, F' and denote
its completion with

E®.F. (5.3)

The latter space is a complete, locally convex vectorspace and is called the
e-tensorproduct of £ and F.

There is another way to define a natural topology on E ® F' using se-
minorms. This construction will result in the so called 7- or projective ten-
sorproduct. For given seminorms p and ¢ on E respectively F' we define a
seminorm p ® g on F ® F as follows. For © € F® F let

(P®q)(O) = Z'nf{z: p(x;)q(y;)|© = Z T ® yi} (5.4)

where the infimum is taken over all finite sets of pairs (z;,y;) such that
O = Z T ® Yj.
J

Now let p;,i € I respectively ¢;,j € J be families of seminorms generating
the topologies of E respectively F'. By the construction above we get a family
of seminorms p; ® ¢;. This family then induces a locally convex topology on
E ® F, which is called the 7- or projective topology. F ® F' together with
this topology will be denoted as E ®, F'. Its completion will be denoted with

E®.F (5.5)

and is called the 7- or projective tensorproduct of F and F'. It is a complete,
locally convex topological vectorspace.

The methods above also work in the case, where more then two vector-
spaces are involved. The projective tensorproduct has the following universal
property (see proposition 4.9, chapter 2 in [Helemskii]).
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Proposition 5.2.1. Let E,F,G be Fréchetspaces and o« : E X F — G a
continuous, bilinear map. Let

i:ExF— E®,F

(e, f) = e f

the canonical map, then there exists a unique continuous homomorphism & :
E®,F — G such that the following diagram commutes

Ex F*—@
d
E®,F
The following proposition gives an explicit description of the elements

in the projective tensorproduct of two Fréchetspaces. This shows up to be
useful in calculations.

Proposition 5.2.2. Let E and F be two Fréchetspaces and © € ER,F be
an element in the projective tensorproduct. Then © has the form

©= i )\nxn®yna

n=0

where (\,) is a sequence of real respectively complex numbers such that > > | An| <
1 and (z,) and (y,) are zero sequences in E respectively F.

Proof. This is Theorem 45.1 on page 459 in [Treves]. O

5.3 Nuclear spaces

In general the e- and the projective tensorproduct doesn’t coincide. On the
other hand there is a large class of topological vectorspace where they do
coincide. These spaces are called nuclear spaces. More precisely we have the
following definition.

Definition 5.3.1. A locally convez topological vectorspace E is said to be
nuclear if for every locally convex topological vectorspace F the canonical
map

E®,F - EQ.F

s a topological isomorphism.

61



For nuclear spaces F and F we simply write EQF meaning any of the
two isomorphic tensorproducts above.

Let us list some of the properties of nuclear spaces.

1. A locally convex topological vectorspace E' is nuclear, if and only if its
completion E' is nuclear.

2. A linear subspace of a nuclear space is nuclear.

3. The quotient of a nuclear space modulo a closed linear subspace is
nuclear.

4. Any product of nuclear spaces is nuclear.

5. A countable topological direct sum of nuclear spaces is nuclear.
6. A Hausdorff projective limit of nuclear spaces is nuclear.

7. A countable inductive limit of nuclear spaces is nuclear.

8. If E and F are nuclear , then EQF is also nuclear.

5.4 Further Examples

At this point we should at least give some examples of nuclear spaces and
some applications of the tensorproducts discussed above. Others will follow.
In the last section we introduced a topology on the algebra Co°. (M) of
smooth functions on a manifold M, which made it into a Fréchetalgebra.
For reasons of simplicity we assume that M has no boundary, so C*°(M) =

2 ve(M). It is not so easy to see, but nevertheless true, that C*°(M) is

nuclear. Let E' be any Fréchetspace. Then it follows from [Treves| Theorem
44.1 on page 449, that the natural map

C*(M)® E — C®(M, E),

f@em (x> fz)-e),

where f denotes a smooth complex valued function on M and e an arbitrary
vector in F/, induces a topological isomorphism

C>(M,E) = C®(M)&.E.
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Since C*°(M) is a nuclear space, the right side is isomorphic to C*®(M)&®, E.
In particular for a second manifold M’ let’s choose E = C*(M’') and we
have a natural series of isomorphisms

C®(M x M') = C®°(M,C*(M")) =2 C™(M)®C>®(M'"), (5.6)

where the right side denotes either one of the tensorproducts. The map on
the left side is given by fixing the first coordinate in the product. The case
when M will be replaced by a stratifold will be dealt with in section 5.7.

5.5 Tensorproducts and Alternating Products
of Fréchetmodules over Fréchetalgebras

In the algebraic case, tensorproducts do not only work in the case of vec-
torspaces over a field, but also in the case of modules over some ring. The
situation in the Fréchet world is similar. For a matter of simplicity, we assu-
me that all Fréchetspaces in this section are also nuclear, so we don’t have
to worry which tensorproduct we take.

Definition 5.5.1. Let A be a Fréchetalgebra and M be a Fréchetspace, which
s also a module over A, such that addition and multiplication with elements
of A is continuous, then we call M a Fréchetmodule over A

Now let My, M5 and N be Fréchetmodules over the Fréchetalgebra A, and
let

a: M x My - N

be a continuous A-bilinear map. By the universal property of the tensorpro-
duct of Fréchetspaces, a induces a continuous map & : M;®M, — N such
that the following diagram commutes

M1XMQQ—>F,

7

My @M,

where i is the canonical map from the product into the tensorproduct ( see
Proposition 5.2.1 ). Since « is not only bilinear, but A-bilinear, we see that
elements like

am,®my — mi®@ams Ya € A,my € My, my € M,
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are contained in the kernel of &. Hence if we define M;®4M> to be the
quotient of M;®M, by the closure of the module generated by elements of
the form above, we get an A-linear, continuous map & : M@ 4 M, — F. We
define

j:Ml X M2 — M1®AM2

as the composition of ¢ with the natural map onto the quotient. From what
we have done so far, it is clear that our construction satisfies the following
universal property.

Proposition 5.5.1. Let Mi®4 M, be as defined above and o : My x My —
N be a continuous A-bilinear map, where N is another Fréchetmodule over
the Fréchetalgebra A. Then there is a unique continuous A-linear map & :
M ® 4 My — N such that the following diagram commutes

M, x My, —2>F.

b
My & 4 M,
Using this kind of tensorproduct, we are able to define alternating pro-
ducts, and hence an exterior algebra. M still denotes a Fréchetmodule over
a Fréchetalgebra A. We can then build the n-fold tensorproduct M®4 and

divide out the closure of the submodule which is generated by elements of
the form

The result is again a Fréchetmodule over A and will be denoted with A% M.
From the construction it is clear that it satisfies the following universal pro-

perty.
Proposition 5.5.2. Let A\ M be as defined above and let

a:Mx...xM-—N

be a continuous multilinear alternating map, where N denotes another Fréchetmodule
over the Fréchetalgebra A. Then there is a unique continuous A-linear map
a: ANiM — N making the following diagram commutative

Mx...x?N.
AN M
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Here i is defined as the composition of the natural map into the tensorproduct
and the projection onto the quotient.

As in the purely algebraic case, one can show, that if A and N are both
Fréchetmodules over A, there is a natural topological isomorphism

A(Ma@N)= > ALMOAN. (5.7)

p+q=n

5.6 Differential Forms for Nuclear Fréchetalgebras

In this section we will modify the ideas presented in section 3.5. to suit the
case of a topological algebra, or more precisely a unital commutative nucle-
ar Fréchet algebra. The modifications are necessary to compare differential
forms with Hochschild homology, as we do in chapters 6 and 7. As in the al-
gebraic case, nonunital and noncommutative versions of the ideas presented
in this section are possible.

To start with, let J denote the kernel of the multiplication map

ARA — A

a®b — ab.

Clearly .J is an A-Fréchet bimodule. Let J2 denote the closure of the submo-
dule J?. Let us define

QY = J/J2 (5.8)

An application of the properties of nuclear Fréchetspaces listed in section 5.3
shows that QY is a Fréchet bimodule over A. There is a canonical map i of
A into Q! given by

a+ [a®1 — 1®a] =: da.

As in section 3.5. it can be seen that this map is a derivation and 2} has the
following universal property.

Proposition 5.6.1. Let QY be as defined above and M any Fréchet bimodule
over A. Let further D : A — M be a continuous derivation. Then there exists
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a unique continuous A-linear map f : QY — M, which makes the following
diagram commutative

Let us now define higher differential forms. Applying the methods of the
previous section, we are able to make the following definition.

Definition 5.6.1. Let A be a unital commutative nuclear Fréchetalgebra.
We define the module of differential n-forms over A to be

O = AT
This s a Fréchetmodule over A.

Using the description of QY in Proposition 3.5.2 and Definition 3.5.2 we
get a natural map

Qn— Q.
The following proposition states, that Q% can be considered as the completion
of 7.

Proposition 5.6.2. Let A be a unital commutative nuclear Fréchetalgebra.
Then the natural map Q7 — Q7 is injective and has dense image.

Proof. Without loss of generality we can assume n = 1. Let us denote the
kernel of the multiplication map A® A — A with I and let .J be the kernel of
the multiplication map A®A — A. Clearly I C J. In fact, .J is the closure of
I in A®A. From this it follows that the image is dense. Further 12 = I N J2,
from which injectivity follows. O

The following identity will later be useful to identify differential forms on
Stratifolds which are products.

Proposition 5.6.3. Let A and B be unital commutative nuclear Fréchetalgebras.
Then there is a natural topological isomorphism

Mep > e0%.

p+q=n
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Proof. Let us first show, that there is a canonical isomorphism

Q. = Q8B & A0,
Clearly there is a derivation on A®B with values in the right hand side given
by

d(a®b) = da®b + a®db.

The universal property of the left hand side hence gives us a well defined
map

~1 Al 3 Yol
Ol., — QOB ® AGQY

d(a®b) — da®b + a@db.
This map has an inverse given by

da®b s d(a®1)(1b)

a®db — (a®1)(1®db).
Clearly all these maps are continuous. We do now use the identity at the end
of the last section and get

QP

non = Miap(UOB ® AQQE) = ) 04605,

5.7 The Case of a Stratifold

In this section we consider the algebra C'*°(X) of smooth complex valued
functions on a stratifold as defined in section 1.3 in more detail. At this
point, we should remind the reader, that for a c-manifold W with boundary,
the algebra C'°(W) as defined in section 1.1 slightly differs from what is
classical known to be the algebra of smooth functions on W. To distinguish
these two algebras, we write C2. (W), when we treat W in the naive sense,
in equal, when we make no conditions along the collar. We already know
that for each stratum Ry of X the algebras C2. (Ry) are nuclear Fréchet

naive
algebras. We consider

C*(X) C [ [ Coaine (Be)
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as a subalgebra. In this way C°°(X) inherits a locally, convex, metrizable
topology. Unfortunately C°(X) lacks one desirable property. It is not com-
plete. This effect is due to the fact, that for a c-manifold W with boundary
the algebra C°°(W) is incomplete as a subspace of C%. (W). For example
it is not hard to construct a sequence in C*°(W) which converges to a func-
tion, which is not constant along the collar for any given neighbourhood of
the boundary. On the other side any limit f of functions in C'°(W) has the

property, that

0

(a)’“ﬁaw =0, Vk >0

where t is the collar parameter. This means that all derivatives of f ortho-
gonal to the boundary at the boundary are zero. That this is indeed true
follows from the fact, that one can change the order of differentiation and
building the limit if the convergence is strong enough. At this point it is not
hard to see, that the completion C° (W) of C>®(W) is precisely given by

0

C(W) = {f € Ce(W)(;

) flow = 0 Yk > 0}. (5.9)
The space above is now a complete, metrizable and locally convex space,
hence a Fréchetspace. Since C5,,.(W) is nuclear it follows from the list of
statements in section 5.3 that C'*°(W) is also a nuclear space. In case of a
stratifold X we get for the completion C'°(X') of C*°(X) the space

C®(X) = {f € C(X)|f o pr € CZ(Ry) VK, (5.10)

where the maps ¢, denote the charts of X. The algebra C>°(X) then is a
nuclear Fréchetalgebra. Using this and Proposition 5.6.2 implies that Q%m( x)
can be identified with the completion of Q"(X). It is not hard to show, that
the algebraically defined exterior derivation d on Q™(X) ( see (4.5) ) genera-
lizes to give an exterior derivation d on Q%w( X Hence one also gets de Rham
cohomology groups in this case. If we assume, that X has finite dimensional
homology groups we have that the de Rham cohomology groups in both cases
coincide because of denseness and finite dimensionality.

Now consider the case, where we are given two stratifolds X and Y. We
let

Crar(X xY)={f € O(X xY)|foi, € C®(), foi, € C®(X),Vz € X,y € Y},

par
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where

iyt Y > X XY,

y = (2,y)
and respectively

iy Y > X xY,

z i+ (2,y)

denote the inclusion of the factors into the product. The subindex par in
C> (X x Y) stands for partial differentiable. The reader should notice that

par

the algebra Cpe (X x Y) differs from the algebra C™°(X x V), where the
latter algebra denotes the completion of the algebra of smooth function on
the product stratifold X x Y (see [Kreck00]) Nevertheless in the case when
one of the two stratifolds is in fact a smooth manifold (in the naive sense) the
two algebras above coincide. The algebra of partial differentiable functions

on a product is important because of the following proposition.

Proposition 5.7.1. Let X and Y be stratifolds, then there is a natural iso-
morphism

CP (X xY) 2 C®(X)RC™(Y)).

par
If either X or'Y is a smooth manifold the subscript par can be omitted.

Proof. Tt is clear how to generalize the concept of smooth complex valued
functions on a stratifold X to smooth vector valued functions, at least when
the domain is itself a Fréchetspace ( see [Treves] page 412 ). For a Fréchet
space E let us denote this algebra with C°°(X, E). There is a canonical
isomorphism

C®(X,E) 2 C®°(X)®E.

This fact is proven in [Treves] on page 449 in the case where C*(X) has been
replaced by C*°(Q) where €2 is a domain in R". The proof works completely
analogous in our case. Now, we can use the identification

0% (X x Y) 2 C°(X,C®(Y))

par
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given by
[ (@ flz,-))

From this we get
Cro(X xY) 2 C®(X)RL%(Y)

and since all the spaces involved are nuclear, this tensorproduct coincides
with the projective tensorproduct and we are done with the proof. O

The following corollary of Proposition 5.7.1. will be of major importance
when we will study the Hochschild homology of locally coned stratifolds.

Corollary 5.7.1. Let X be a stratifold and denote with ¢X the open cone
over X. Further let

Ce(cX) := ker(evy : C°(cX) — R)

be the kernel of the evaluation map at the cone point, which is denoted by pt.
Then there is a natural topological isomorphism

C5 (eX) = C*(X)®C5([0,1)),
where the half open interval [0,1) is considered as a 1 dimensional c-manifold.
Proof. Consider the following exact sequence
0 — C3°([0,1)) = C*((=1,1)) = C*((~1,0)),

where the right hand map is given by restriction. Since all spaces in the
sequence above are nuclear, tensoring this with C'*°(X) remains exact (see
[Brodzki,Lykova99]). This leads to the following exact sequence

0 — C®(X)®CP([0,1)) = C*(X)RC>®(—1,1) = C*(X)®C>®(-1,0).

This sequence embeds in the following commutative diagram, where the lower
row is also exact and all vertical maps are given by multiplication in the
standard way.

0 — C®(X)®C([0,1)) —= C®(X)®C®(—1,1) —= C®°(X)®C>(-1,0) .

l |

0 C®(X x (—1,1)) C*®(X x (—1,0))

From Proposition 5.7.1 it follows that both vertical maps on the right side
are isomorphisms. A short diagram chase will then show, that the left vertical
map is also an isomorphism. O
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In general it is unclear, if a short exact sequence of nuclear Fréchetalgebras
0>A—-B—-C—=0
induces a short exact sequence of the form
0— Q% — Q% — Q% — 0.

In the purely algebraic case there are some theorems about when such a
short exact sequence exists (see [Loday91] and [Weibel95] ). The situation in
our case, concerning the algebra C>(cX) is far easier. We have the following
proposition where we treat the 1-manifold with boundary (—1, 0] in the naive
sense.

Proposition 5.7.2. Forn > 0 the short exact sequence of nuclear Fréchetalgebras
0— C(cX) = C®(X x (=1,1)) = C™(X x (=1,0]) = 0
induces a short exact sequence of differential forms
0 = Ve (oxry = Lo (xn(-1,1)) = Loz (1) — O-
Proof. Using the natural topological isomorphisms

C®(X x (—1,1)) 2 C™(X)®C™®(~1,1),

C®(X x (=1,0]) = C®(X)®C*®(-1,0]
and the result of Proposition 5.6.3 we get the following commutative diagram

on = 0On S\ (100 An—1 5 A
QCf’°°(X><(—1,1)) - QC’OO(X)®C (—1, 1) D Qcoo(X)®Ql o (=1,1) s (5.11)

N |

= on Sy 100 ~n—1 50
Goo(xx(—1,0) — Yoo () ®CF (=1, 0] @ QFL 1 ®Qe (1

R

where all horizontal maps are isomorphisms and the vertical maps are given
by restriction. Since the unitization of C§°(cX) = C*®(X)®CF([0,1)) is
C>°(cX) we can use Proposition 5.2.2 to represent any element f in C'*°(cX)
as

f= Z Nigi®h; + ¢,
i=0
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such that g; € C*(X), h; € Cg°([0,1)) and ¢ € C is the value of f at the
cone point. Since we can neglect constants when calculating differential forms
of degree higher than zero it follows again from Proposition 5.6.3 that the
canonical map

df = d(z Aigi®h;) Z Nidg;®h; ® Z \igi®@dh;

=0 =0 1=0

is a topological isomorphism. Let us now show, that the right hand side of
the expression (5.12) is exactly the kernel of the right hand restriction map
in the commutative diagram (5.11). For this reason we tensor the short exact
sequence

0 — C2([0,1)) — C®((=1,1)) = C=((—1,0]) = 0

with Q%m (x) and the short exact sequence

0 = Qo po,1)) = Qoo (1,17 = Qoeo(1,0p = 0

with Qg;l( x) and add those two sequences. The resulting sequence is exact
again (see [Brodzki,Lykova99]) and that finally proves the proposition.

O
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Kapitel 6

Hochschild Homology

In this chapter we give a short introduction to what in general is known as
Hochschild homology. There are various versions of Hochschild Homology,
depending on how much structure of the underlying algebras is taken into
account. The two most important cases are Hochschild homology of gene-
ral algebras, which we call algebraic Hochschild homology and Hochschild
homology of nuclear Fréchetalgebras, which we call continuous Hochschild
homology. These two versions will be presented in the following two sections.

6.1 Algebraic Hochschild Homology

Algebraic Hochschild Homology is the most elementary version of Hochschild
homology. It is defined for arbitrary not necessarily unital algebras. Throug-
hout this section we assume that A is an associative algebra over a field
k of characteristic zero. The field £ will also be referred to as the ground
field. Algebraic Hochschild Homology has many applications in algebra and
algebraic geometry. It was the first version to be defined and resembles the
underlying ideas best. Also we think it is helpful to know the algebraic case,
before any topological structure is taken into account. This is, why we pre-
sent, this version here, though we actually won’t apply it to the algebras we
are interested in.

Most, of what we present in this section has been taken out of the book
“Cyclic Homology” from Loday [Loday91]. Of course we restrict ourselves to
the basic definitions and just give some examples for computations in Hoch-
schild homology. The tensor product ® always stands for the tensorproduct
®y, over the ground field k.
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For each n € N we associate to A the group
Cn(A) := A%, (6.1)

We define operators b, and b;, as follows.

b, : Cp(A) = Ch_q(A) (6.2)
n—1
b(ap®..Q0a,) =) (—1)ar® ... ® ;41 R ... ® ay,
=0
by : C(A) = C,1(A) (6.3)

bu(ag @ ... ® a,) = b, (ap @ ... ® a,) + (—1)" a0 @ a1 @ ... ® ay,_1.

Since b,y 0b, =0=10/, ;0b,, =0 we get two chain complexes C,(A) =
(Cn(A),b,) and CP*"(A) = (C,,(A),b.,). The first complex is called the Hoch-
schild complex, the second complex is called the bar-complex. Both com-
plexes give rise to homology groups. Let us first consider the case when the
algebra A is unital. In this case the maps

$pt Cp(A) = Crii(A)

Sp(ag® ... ®ap) =14 Q@ ay ... @ ay,

define a contraction of the complex C?"(A). So the bar-complex is not par-
ticularly interesting in the unital case. We call the homology groups of the
Hochschild complex the Hochschild homology groups.

Definition 6.1.1. Let A be a unital algebra. We define the n-th Hochschild
homology group of A as

ker (b, : Ch(A) — Ch_1(A))

im(byy1 : Cpi1(A) = Cp(A))

HH,(A) =
Direct calculation yields to the following examples.
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Example 6.1.1. 1. If we take A =k to be the ground field, we have

k ifn=0,

6.4
0 else (64)

HH, (k) = {

2. By definition the first boundary operator by in the Hochschild complex
maps a @ b to the commutator [a,b] = a ® b — b ® a. Hence we have

HHy(A) = A/[A, A]. (6.5)
In the case that A is commutative we have HHy(A) = A.

In general calculations of Hochschild homology groups using the Hoch-
schild complex turn out to be very complicated. As the following proposition
shows Hochschild homology groups can also be calculated by using certain
projective resolutions of A. Let A°? denote the algebra A with the opposite
multiplication.

Proposition 6.1.1. We consider A as a module over AQ A’ via (a®b)-c =
acb. Then

HH,(A) = Tor®4 (A, A).

In this way we can use any projective resolution of A over AQ A to calculate
the Hochschild homology groups of A.

Proof. see [Loday91] on page 12. O

Any homomorphism f : A — B of algebras induces a map in the same di-
rection between the Hochschild complexes. So, the association A — HH,,(A)
is a covariant functor. This of course is also clear from the Tor description of
the last proposition.

In the following we assume that A is commutative. In this case Hochschild
homology can be seen as a refinement of the concept of differential forms for
algebras, as constructed in chapter 3. The connection between those two con-
cepts is made by the antisymmetrization which we will consider next.

Let us denote with ¥, the group of permutations of the set {1,2,..n}.
There is an operation of ¥,, on C),(A) given by

o - (ag R...Q an) =09 ® Gy-1(1) @ ... & Cy=1(p)-
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k-linear extension induces an operation of the group algebra k[X,] of ¥, on
Cn(A). We let €, € k[X,] be the element

€n = Z sign(o)o.

Uezn

€, induces a map which we denote by ¢, again

€n: AR AN"A — C,(A)

Ay @ ar N . Nap — €, - (Ag ® ... ® ay,).

It is not hard to show (see [Loday91],page 27) that this map factors to a well
defined A-linear map

agday...da, — €, - (ag @ ... ® ay,).

We call this map the antisymmetrization map and denote it

€ Qy — HH,(A) (6.6)

We also have a natural map 7, : Cy,(A) — Q% in the other direction. 7,
is given by

Tn(a ® ... ® a,) = apday...day,.
One readily verifies, that m, o b = 0. So 7, induces a map
o HH,(A) — Q7 (6.7)
The maps 7, and ¢, are related in the following way.

Proposition 6.1.2. Let A be a unital, commutative algebra. Then the com-
position T, o €, is multiplication with n! on Q7. Since char(k) = 0, this is
an isomorphism. In particular €, s injective and 2} is a direct summand of
HH,(A).

Proof. This follows from
aodas—1(1y A ... N da,—1) = sign(o)agday A ... A day,

for all o € ¥,, and |X,| = nl. O
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In general the question remains whether the map ¢, is an isomorphism or
not. In the algebraic case, there is the Hochschild-Kostant-Rosenberg theo-
rem, which states that €, is an isomorphism, whenever the algebra A is
smooth (see [Loday91], page 102).

Let us now turn to the case where the algebra A is not necessarily unital.
We already mentioned that nonunital algebras play a role in our conside-
rations. The Hochschild complex of A is still defined and a natural thing
would be, as in the unital case to define the Hochschild homology groups of
A as the homology groups of the Hochschild complex. It turns out, that in
general this is not the right definition. From the topological point of view,
the situation should be compared to the case, where a homology theory on
the category of pointed topological spaces is transferred to a homology theo-
ry on the category of topological space by simply adding a base point and
then take the cokernel of the map, which is induced by the inclusion of this
base point. Homomorphism of unital algebras take the unit element into the
unit element, hence can be compared to morphisms in the category of poin-
ted spaces. Adding a base point can be compared to adding a unit element.
In this sense the following definition seems to be natural, at least from the
topological point of view.

Definition 6.1.2. Let A denote a not necessarily unital algebra and A, its
unitization. The n-th Hochschild homology group of A is defined as

HH,(A) = coker(i, : HH, (k) - HH,(A,)),
where © 1 k — A, denotes the inclusion.

In the case that A is unital, this definition coincides with Definition 6.1.1.
In the nonunital case we have that in general the Hochschild homology groups
as defined in Definition 6.1.2 doesn’t coincide with the homology groups of
the Hochschild complex. The latter groups are called the naive Hochschild
homology groups and will be denoted as HH"*"¢(A). The importance of
these groups will show up in the following. Let us denote the homology
groups of the bar-complex of A as H"(A). The following proposition relates
the three homology groups defined above.

Proposition 6.1.3. Let A be a not necessarily unital algebra. Then there is
a long exact sequence

o = HHM™(A) — HH,(A) — H! (A) — HH""(A) — ...
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Proof. see [Loday91], page 30 O

From the long exact sequence above one can deduce, that when the bar-
complex is acyclic, naive Hochschild homology and Hochschild homology
coincide. We mentioned earlier that in the unital case the bar-complex is
contractible, hence acyclic. So the following definition is a generalization of
being unital.

Definition 6.1.3. Let A be a not necessarily unital algebra. We call A H-
unital if the bar-complex of A is acyclic, in equal

H"(A) =0Vn €N

To decide, whether a nonunital algebra is H-unital or not in general can
be quite difficult. One can show ([Loday91],page 32) that an algebra with lo-
cal units is H-unital. So for example the algebra C§°(cX) of smooth functions
on the cone over a stratifold X which vanish at the cone point is H-unital.

The following proposition is of major importance. It tells us in which
cases Hochschild homology behaves like a homology theory for algebras, in
equal carries short exact sequences of algebras into long exact sequences of
Hochschild homology groups.

Proposition 6.1.4. Let A be a unital algebra and let I C A be an ideal
which 1s H-unital. Then there is a long exact sequence of Hochschild homology
groups

..~ HH,(I) - HH,(A) - HH,(A/I) - HH,_{(I) — ...

6.2 Continuous Hochschild Homology

The version of Hochschild homology we will use in chapter 7, to determine the
Hochschild homology of a locally coned stratifold is not the standard one, as
we discussed in the previous section, but a topological version. Most of what is
presented in this section can be seen as a suitable completion of the algebraic
case. A reference for this section is the original work of Connes [Connes87].
We also refer to the articles of Wodzicki [Wodzicki89] and Brodzki/Lykova
[Brodzki,Lykova99] about excision in continuous Hochschild homology. From
now on we assume that A is a nuclear Fréchetalgebra. For any natural number
n € N let

CH(A) _ A@(nJrl)
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be the (n + 1)-fold completed tensor product. Since A is nuclear by our
assumption, it doesn’t matter which of the two tensorproducts we use at
this point. Clearly, when considered on the Cartesian product the operators
b, and b/, in (6.2) respectively. (6.3) are multi linear and continuous. By
the universal property of ® they induce operators C,,(A) — C,,_1(A) again
denoted by b, and b,. We call

Ci(A) = (Cu(A), bn) (6.8)
the continuous Hochschild complex and
CLr(A) = (Cu(A), by) (6.9)

the continuous bar-complex. The complexes C,(A) and C?" (A) can be
considered as dense subcomplexes of the corresponding complexes.

Definition 6.2.1. Under the assumptions above the n-th continuous Hoch-
schild homology group of A is defined as the A module

ker (b, : Cn(A) — Cp_i(A))
im(bps1 : Cppr(A) = Co(A))

In the following we will sometimes omit the word continuous in front of
Hochschild homology. Whether we mean algebraic or continuous Hochschild
homology should then be clear from the context. As in the algebraic case,
these groups are modules over A. As quotient spaces of topological vector-
spaces, the Hochschild homology groups are also topological vectorspaces.
In fact they are topological modules over A. In general though, these vec-
torspace are non-Hausdorff. This often makes things difficult. For example a
Kuenneth like theorem for the Hochschild homology of A®B doesn’t seem
to appear in the literature. On the other side, if the continuous Hochschild
homology groups are Hausdorff , then they are automatically nuclear Fréchet
( see our list on section 5.3 ) and most constructions work. In our case, that
is A = C®(X) for a stratifold X the Hochschild homology groups will turn
out to be Hausdorff and we are on the safe side.

HH,(A) =

Using the definition one can compute the continuous Hochschild homo-
logy of C similar as in (6.4). For an arbitrary unital nuclear Fréchetalgebra
the same calculation as in (6.5) shows that HH,(A) = A/[A, A].

We will now show, that Hochschild homology can also be described as
a topological version of a particular torsionproduct. This will enable us to
calculate the Hochschild homology groups in certain cases by using projective
resolutions. Of course, we have to define these terms first.
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Definition 6.2.2. A locally convex topological vectorspace M is called a to-
pological module over A if M is a module over A and scalar multiplication
as well as addition is continuous. M 1is called topological projective if it is a
topological direct summand of a module of the form N = AQFE, where E is
a locally convex vectorspace.

Projectivity can also be characterized by a universal property which is
similar to the algebraic case, where homomorphisms are replaced by admis-
sible homomorphisms. For a general treatment of the category of nuclear
Fréchet algebras and admissible maps, the reader should consult the book of
Helemskii [Helemskii]. We come to what is called a projective resolution.

Definition 6.2.3. Let M be a topological module over A. A topological pro-
jective resolution of M is an exact sequence of topological projective A mo-
dules and A-linear maps

which admits an C-linear continuous contraction

si 0 My — My,

bi+18i + Si—lbi =1d Vi.

Now let A°? denote the algebra A with the opposite multiplication and
B = A®A. The algebra A itself becomes a topological B-module by setting

(a®b) - ¢ = ach.

The following proposition gives an answer to how to compute Hochschild
homology groups using projective resolutions.

Proposition 6.2.1. Let (M,,b,) be a topological projective resolution of A
over B. Then the Hochschild homology groups of A coincide with the homo-
logy groups of the complex

A b A b A b A
M3®BA — M2®BA — M1®BA — MU®BA .

There is a standard projective resolution of A over ARA called the
bar-resolution. This resolution is constructed similar to the bar-resolution
defined in (6.1),(6.2) though shouldn’t be confused with the latter, since it
is by construction a resolution over A® A% rather than k as in (6.1),(6.2). It
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can be obtained as follows. For n € N we take M, = A®(+2) We consider
this as a module over AQ A via

(a®b) - (ap®...Q0p11) = AGHR...Q0y41b.
From the isomorphism
M, = (ARAP)QA®"

it follows that M,, is projective in the sense of Definition 6.2.2. We define a
differential

b Mn — Mnfl

n
V(ap®...Qa, 1) = Z(—l)ia0®..®aiai+1®...®an+1.
i=0

It is not hard to verify that this complex is continuous and k-linear contrac-
tible via

Sp s My — My

50 (10®@..Rap11) = 1 1 ®0®... D41

Hence M, is a projective resolution of A over A®A. We call this resolution
the bar-resolution. To compute the Hochschild homology of A , we have to
tensor the bar-resolution with A over A®A?. Some easy calculation then

shows that the resulting complex is precisely (C.(A),b).

We do now use this proposition to calculate the Hochschild homology in
the case where A = C'°(B) consists of smooth complex valued functions on
the open unit disc B in R”. We will construct an explicit projective resolution
and show that

HH,(C®(B)) = QF(B),Vk € N.

Here the right hand side denotes complex differential forms on B. We will
later use this result to proof a similar result for locally coned stratifolds. For
each & € N we define modules over C*(B x B)

My, == C*®(B x B, A*(C™)).
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Here C™ denotes the space of linear forms on C". Clearly
My =2 C*(B x B)®A*(C™),

where completion is actually unnecessary, since the vectorspace A¥(C™) is
finite dimensional. Nevertheless, it follows that each M}, is free, hence pro-
jective. Further let v denote the difference function

v:BxB—R'"cC",

v(a,b) =b — a.
This map induces maps we denote with i,

byt Myy1 — My,

iw(a,b)(vy,...,v5) = w(a,b)(y(a,b), v, ...vx) = w(a,b)(b—a,v,..vg).

Here w € M}, denotes a form, a,b are points in B C R" and vy, ...v; are
elements of C" In other words i, is contraction with the vectorfield . Let us
now consider the following sequence

0~ C®(B) <2 C®(B x B) = My <" My <" My <2 ..,

where A : B — B x B denotes the diagonal map. To show that this sequence
defines a topological projective resolution of C*°(B) over C*°(B x B) we
have to give a continuous C-linear contraction. For this let s, : My — My,
be defined as follows. Let e],...,e; denote the dual basis of the standard

canonical basis of C*, and let w € M), be given as

w(a,b) = f(a,ble; N...Ne}

157

where f € C*°(B x B) is a smooth function on B x B and iy, ..., 7, € {1,...n}.
In this case we define

n 1 9
spw(a,b) == Z/O a_gj;(“’ a+t(b— a))tke;f Nej N ... Nej dt.
j=1

In the following we suppress the subscript k& and simply write sw. We have

(iysw)(a,b) = Z( g—f(a, a+t(b— a))tk

=1 Jo 9Y;
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D )T b —a)el el A Aep A Ael}+ (b—a)jel, A Ael).
From this we get the expression

(in5w)(a,b) = {Z/O g—;j(a, a+t(b—a)t*(b—a)je; A...Aej dt}

+{ZZ/ z+1 aa+t(b a)tF(b— a)ej Aef A A€ A .. Aej dt}.

=1 j=1

The chain-rule of differentiation applied to the first sum gives

1
d
iysw(a,b) = / gf(a, a+t(b—a))the; A...Aejdt
0

HZZ/ l“ aa+t(b—a))t’“(b— a)iej Nej N. /\e A ... Nej dt}.

=1 j=1

Now we perform partial integration with the first integral on the right side.
This yields us to the following expression

iysw(a,b) = f(a,a+t(b— a))t*|ge; A ... Aej,

1
—/0 fla,a+t(b—a)kt* el A...Aejdt

HZZ/ l“ (a,a+t(b—a))t"(b—a)ie; Ael, Ao Aej A ... Ae,dt}.

=1 j=1

Calculating the first term on the right side is easy and gives
iysw(a,b) = w(a,b) + R(a,b),

where R(a,b) denotes the rest, i.e. the integral and the double sum on the
right side.
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Now we calculate the expression si,w(a,b). The definition give us

si,w(a,b) = Z(—l)l{Z/O g—;(a, a+tb—a))(a+tb—a)—a)

I=1
—f(a,a+t(b—a))d;;t"'dt el Nef A€l A Nef ).

Reordering terms and evaluation of the Kronecker symbol 4, ;, yields to

k n 1
siaw(a,b) = Z(—l)l{ /0 g—;(a, a+t(b—a))(b—a)t*dt e; Nej A..ei N Nel}
=1 !

=1

1
—l—(—l)“’l/0 fla,a+t(b—a))t""dt e; Nej N Nep AN Nep

Shuffling e} from the first to the 4;-th position in €j Aej A... A eA;‘l N Nep
changes the sign by the factor (—1)""!. This cancels with the factor (—1)!*!
in front of the second term on the right side, and we see, that this term is ac-
tually independent of the summation index [. Hence for this term summation
over [ is just multiplication with k. Taking a close look on the summands we
can recognize, that we end up with —R(a,b), where R(a,b) was defined on
the previous page. So we get

siyw(a, b) +iysw(a, b) = —R(a,b) +w(a,b) + R(a,b) = w(a,b).
This proves
Siy + 1,5 = 1d.

It is not hard to see, that s is continuous and C-linear. So far we have
constructed a topological projective Resolution of C*°(B) over C*°(B x B).
We are now able to prove the following proposition.

Proposition 6.2.2. For any k € N we have
HH,(C*(B)) = Q*(B)

Proof. We calculate the Hochschild homology of C'*°(B) by tensoring the
topological projective resolution from above over C*°(B x B) with C*(B).
For any k € N we have

My ®cw(pxpyC™(B) = (C™(B x B)®A*(C™))®cwo x5 C™(B)
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= A (C™)®C™>(B) = Q%(B).

Since 7 as defined in the construction of our resolution is zero on the diagonal,
we have

i7®C°°(BXB)idC°°(B) - 0

Hence the tensored complex has zero differentials and we get QF(B) for the
k-th homology group of this complex. O

So far, the isomorphism above is more or less abstract. From the universal
properties of the various constructions involved, it follows that the maps €,
and m, as defined in the algebraic case in (6.6) and (6.7) induce corresponding
maps

€ Uy — HH,(A) (6.10)

T, t HH,(A) — Q7% (6.11)

for any unital,nuclear and commutative Fréchetalgebra and n € N. Here
HH,(A) stands of course for the continuous Hochschild homology of A. It is
not hard to see, that the isomorphism of Proposition 6.2.2 is given by these
maps. In general we have the following proposition, which is the continuous
counterpart to Proposition 6.1.2.

Proposition 6.2.3. Let A be a unital commutative nuclear Fréchetalgebra.
Then the composition T, o €, is multiplication with n! on Q. Hence 2 is a
topological direct summand of HH,(A) and €, is an embedding.

Proof. This is completely analogous as in Proposition 6.1.2 O

Let us briefly say something about the functorial properties of conti-
nuous Hochschild homology. Clearly a continuous homomorphism between
two nuclear Fréchet algebras

f:A—>B
induces a chain map between the Hochschild complexes and hence maps
f«: HH,(A) - HH,(B), Yn € N.

The following result is stated in [Karoubi] and can be seen as a Kuenneth
like theorem for chain complexes in the world of nuclear Fréchetspaces.
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Lemma 6.2.1. Assume we have two chain complexes

d d

0 My M, M,...

0 Ny <2

Ny Ns...

consisting of nuclear Fréchetspaces. Let us further assume, that all homology
groups of these two complexes are Hausdorff, in equal the boundary maps have
closed images. Then the completed tensorproduct (M,@N,, d®1+(—1)*1&d')
of both complexes is again a chain complex of nuclear Fréchetspaces and there
1S a natural isomorphism

H,(M.®N,) = > H,y H,(N,).

p+q=n

As an application of Lemma 6.2.1 we have the following proposition.
It will help us, to prove our main theorem about Hochschild homology of
stratifolds in chapter 7.

Proposition 6.2.4. Let X and Y be stratifolds and assume that Vn € N the
antisymmetrization maps

Qo) — HHL(C(X))

Q0% y — HH, (C*®(Y))
are topological isomorphzsms. Then the same s true for the antisymmetriza-
tion maps
e Qe () = HHo(Cpop(X X Y)).

n cse, par

Proof. Since we know from the assumption that the Hochschild homology
groups of C*®(X) and C*(Y) are Hausdorff and furthermore from Proposi-
tion 5.7.1 we have Cp2 (X x V) 2 C®(X)®C™(Y), we can apply Lemma
6.2.1 as well as Proposition 5.6.3 to get the following commutative diagram

where the horizontal maps are isomorphisms

IR

Qs (xxv) 2 pra=n oo () O6eo v

par

l‘{" \Lzzﬂrq—n »®eq
Ho(Coop(X X V) =30, HH,(C®(X))®HH,(C*(Y))

par p+q=n

That this diagram is indeed commutative follows from compatibility of the
antisymmetrization map with products (see [Weibel95], page 322).
U
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We should now consider the nonunital case. The unitization A, of a
possibly nonunital nuclear Fréchetalgebra A is as a vectorspace isomorphic
to A@C and hence has a natural nuclear Fréchet structure. As in the algebraic
case we define the continuous Hochschild homology of A as follows.

Definition 6.2.4. Let A be a not necessarily unital nuclear Fréchetalgebra.
We define its Hochschild homology by

HH,(A) := coker(i, : HH,(C) — HH,(A})),

where A, denotes the unitization of A and i, denotes the map which is in-
duced by the natural inclusion of C into A,.

Clearly, this definition coincides with the older one, in the case A already
was unital. Furthermore, we have

HHy= A, Jk=A

HH,(A) = HH,(A,),Yn > 0.

Nonunital nuclear Fréchetalgebras often occur as closed ideals in unital
nuclear Fréchetalgebras. The nonunital nuclear Fréchetalgebra we are mainly
interested in is given by the kernel of the evaluation map

ev, : C®°(X) - R

Analogous to the algebraic case, we have continuous versions of naive Hoch-
schild homology and bar homology which we again denote with H H"¢(A)
and H!"(A). The following definition is the continuous counterpart of Defi-
nition 6.1.3.

Definition 6.2.5. Let A be a possibly nonunital nuclear Fréchetalgebra. We
call A H-unital if the continuous bar-complex of A is acyclic, in equal

H""(A) =0Vn €N,

A continuous version of Proposition 6.1.3 can be found in [Brodzki,Lykova99].
In this work one can also find the following excision theorem which is the
continuous counterpart of Proposition 6.1.4.
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Proposition 6.2.5. Let 0 - I — A — A/I — 0 be an exact sequence of
nuclear Fréchetalgebras such that A is unital and I is H-unital. Then there
is a long exact sequence of continuous Hochschild homology groups

+—— HH,(I) —> HHy(A) —> HH,(A/T) —> HH,_y(I) —> -

As for continuous Hochschild homology there is also a description of con-
tinuous bar-homology as particular torsion product. To be more precise there
is a topological isomorphism

Hb"(A) = Tor.*(C,C), (6.12)

where Tor denotes the reduced tor groups ( see [Wodzicki89] ).

As one can possibly imagine, in general it turns out to be very difficult
to determine whether a closed ideal I in a unital nuclear Fréchetalgebra is
H-unital or not. In our case, we can use a technique introduced by Wodzicki
( see [Wodzicki89] ) and a result by Voigt (see [Voigt]) to prove the following
proposition.

Proposition 6.2.6. Let B be a unital nuclear Fréchet algebra and
Cee(10,1)) = ker(res : C*((—1,1)) — C*°(—1,0))

the completed algebra of smooth function on the c-manifold [0, 1) vanishing at
zero. Then the nonunital nuclear Fréchet algebra C5°([0,1))®B is H -unital.

Proof. Let

o =S N(fioth)6.B(fiGH,) € Cu(CR(0,1)SB)

1=0

be an element in the continuous bar complex. Here ); is a sequence of complex
numbers such that Y72 [A;] < 1 and f] respectively b converge to zero as i
goes to infinity ( see proposition 5.2.2 ). The factorization theorem of Voigt
(see [Voigt], Thm. 3.4) applied to C5°([0,1)) and the sequence (fE) gives us
functions g* € C$°([0,1)) for all i € N and h € C§°([0,1)) with the following
properties.

1. fi=h-¢g'V¥ieN

2. g € C5°([0,1)) - (fili € N)
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The expression in condition 2 denotes the closure of the ideal in C5°([0, 1))
which is generated by the functions fi. Let us define 8 € C,,(C$°(]0,1))®B)
as

8= N(g'EH)E..S(fidH).

1=0

From condition 2 on the previous page, it follows that

B e C([0,1))®B) - a C C\(C([0,1))®B). (6.13)

Here the term in the middle denotes the closure of the ideal generated by .
A simple calculation shows, that

a=V((h1p)®83) + (halp)xb'(B). (6.14)

Let us now assume that « is a cycle in the continuous bar complex. Then
V(o) = 0. Hence by continuity and C$°([0,1))®B linearity of ' it follows
from (6.13) that &'(8) = 0. Hence by (6.14) we have that

a="b((h®1p)®A)

is a boundary in the continuous bar complex and the bar complex is acyclic.
O

We will soon use the following corollary.

Corollary 6.2.1. Let X be a stratifold and let cX denote the cone over X.
Then the nuclear Fréchetalgebra C§°(cX) which consists of the smooth maps
on ¢X which vanish at the cone point 1s H-unital.

Proof. From Proposition 5.7.1. we have
Coo(eX) = C*(X)@C5°([0,1)).
The corollary now follows from Proposition 6.2.6 by setting B = C*(X). O

The next proposition shows, that when we know the antisymmetrization
map is an isomorphism for a stratifold X, it also is for the coned stratifold
cX. Besides the localization result in chapter 7, this is the main step towards
proving our general result about the Hochschild homology of locally coned
stratifolds in section 7.3.
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Proposition 6.2.7. Let X be a stratifold such that Vn € N the antisymme-
trization maps for X

€n + Qo) = HH,(C®(X))

are topological isomorphisms, then the same is true for the antisymmetriza-
tion maps for c¢X

n

e W oy = HH,(C™(cX)).

Proof. Since for n = 0 there is nothing to show we can assume n > 1. By
naturality of the antisymmetrization map and Proposition 5.7.2, H-unitality
of C§°(cX) induces the following commutative diagram with exact rows.

Q%oo(cx) Q%’“’(Xx(—l,l)) Q%oo(Xx(—Lo}) —0

| | o

.~ HH,(C®(cX)) —= HH,(C®(X x (~1,1))) —= HH,(C®(X x (—1,0])) == -

0

Here the half open interval (1,0] has been treated in the naive sense. The
vertical maps in this diagram are given by the various antisymmetrization
maps. The ones at the right side are isomorphisms by Proposition 6.2.6.Since
we have the diagram available Vn > 1 it follows that the connecting homo-
morphism 9§ is zero. Hence we can replace “...” in the diagram by 0 and the
proposition follows from the five lemma. O
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Kapitel 7

Hochschild Homology of
Stratifolds

In the case that M is a closed manifold, Alain Connes proved in [Connes87]
that the continuous Hochschild homology of the algebra C*°(M) is isomor-
phic to the module of differential forms on M, where both are considered as
modules over C*°(M).Using methods of Teleman it can be shown, that the
latter is true also for non compact manifolds with boundary. In this chapter
we will generalize this result to the case where X is a locally coned stratifold.
Not much is known about the algebraic Hochschild homology of C*°(M), so
we won’t say anything about the algebraic Hochschild homology of C'*°(X)
for a stratifold X.

7.1 The Hochschild Complex of a Stratifold

In this section, we will rewrite the Hochschild complex of a stratifold X, which
by definition is the continuous Hochschild complex of the algebra C°°(X) in
form of smooth functions on Cartesian products of X. This makes the Hoch-
schild complex more favourable to topological constructions such as partiti-
ons of unity etc. Since continuous Hochschild homology is only defined on
nuclear Fréchetalgebras, it is necessary to work with the completed version
C*®(X) of C*(X). To shorten the notation we write C,(X) for the Hoch-
schild complex of X.

In the following sections we use the natural isomorphism of Proposition
5.7.1 to identify the Hochschild complex with the following complex

Cp(X) = C2 (X" (7.1)

par
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n—1
(bF) (05 oo Tn1) = Y (=1)' F (0, ey i, Ty ooy Tn1) + (= 1) F (@0, ..., Ty, 2o,
=0

(7.2)

where F' denotes an n chain interpreted as a function on the (n + 1)-fold
Cartesian product of X. The subscript par is explained in Proposition 5.7.1.
This form of the Hochschild complex of X will be of particular importance
in the following section.

7.2 Localization of the Hochschild Complex

In this section we show, that the Hochschild complex of a stratifold X con-
tains a large acyclic subcomplex. This subcomplex consists of the Hochschild
chains

F: X" SR

which vanish in a neighbourhood of the diagonal A,,,; C X™*!. The methods
applied by Teleman in [Teleman98] to show this for the case of a smooth
manifold, also work in the case of a stratifold, once we have proven the
following lemma. For a matter of completeness we also illustrate Teleman’s
ideas.

Lemma 7.2.1. Let X be a stratifold, then there exists a metric d on X which
generates the topology and satisfies
d* € Cpe (X x X).

Proof. To show the existence of such a metric d on X, we will modify the
proof of the Urysohn metrization theorem, which states that every regular T}
space with countable base of topology is metrizable. During the discussion
of the basic properties of a stratifold in chapter 1, we mentioned that, for
any two disjoint and closed subsets A and B of X there is a function f4 5 €
C*(X) such that A C fﬁg(O) and B C fﬁg(l). This function also belongs to
C*(X). Let us now consider a complete family F of such function, that is for
any two disjoint and closed subsets A and B of X thereis f4 p € I as above.
We can assume that F is countable. Let [0, 1]" denote the space map(F, [0,1])
where [0, 1] denotes the unit interval and the topology is given by the product
topology. Let us assume that F' is given by the family {f,|n € N}. Then we
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can identify [0,1]F with the space of infinite sequences (z,,)nen With entries
in the interval [0, 1]. It is a standard exercise in analysis that

o0

a2 () = | D o o — 2

=1

is a metric on [0, 1] which generates the topology. Obviously this metric has
the property, that when fixing all but one coordinate, it’s square depends
smoothly on that free coordinate. Now, as one can see in the book [Kelley]
on page 125 for example, the map

v X —[0,1]F

v = (f(2) jer

is a topological embedding. Since all component functions are elements of
C>(X) it is clear that ¢ is also smooth. Here we consider a map on the
infinite dimensional space [0,1]" as smooth, if and only if it is partially
smooth. Since composition of smooth maps is smooth we find that

Vide X x X - R

(@) = doo(¥h(2),9(y))
has the property (¢*dy)? € C2.(X x X). Setting d := ¢*d,, will finish the

par

proof. O

We can now proceed with the Teleman method. Let A : [0,00) — [0, 1] be
a smooth function, such that supp(A) C [0,1] and Ajp,1/9) = 1. For t > 0 we
define

A 2 [0,00) — [0, 1],

A(8) = A(s/t).
These functions have the following properties :
1. supp(\y) < [0,1]

2. )\t‘[o’t/Q] =1
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Now for any k£ € N let us define functions p; as
pe s XFTY 10, 00)

(20, 21, oy 1) = d(wo, 21)? + d(w1,79)" + .+ d(g, 70)” (7.3)

Here d denotes a function on X x X such as in Lemma 7.2.1 . In words,

pr, measures the distance of a point in X k+1 from the diagonal. Clearly p;, €
Cpo (X**1). Let

Usk = {(@0, 21, s 1) 0k (10r s 7)< 1}

be the t-neighbourhood of the diagonal A, C X**1. Let C!(X) be the
subcomplex of the Hochschild complex C.(X) where C}(X) contains the
elements of Cy(X) vanishing on Uy . Let

CO(X) = lim C'(X)

where the limit goes as ¢ goes to zero. The complex C?(X) consists of the
chains vanishing in an arbitrary neighbourhood of the diagonal.

Proposition 7.2.1. Let X be a stratifold. The complex C°(X) is acyclic.

Proof. We define an operator

Ey 2 Cp(X) = Crar(X),

Ey(F)(x0, -, Trp1) = Ae(d(z0, 1)) - F(21, 00 w811), VE € Cp(X)

This operator maps C} into C’Zfl which can easily be verified. A calculation
also shows that

bOEt+EtOb: ]_—Nt,
where V; is defined as

Ny(F) (g, .. 2) = (=1)FN(d (20, 21)?) - {F (21, 29, .., 7o) — F (1, Ty ..vp, 21) }
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Direct calculation also shows that b o N, = N; o b. Let’s consider the k-th
power of N; that is (N;)*. For F' € C(X) we get

k1
(N)FF (g, ..., 7)) = H M(d(2g, 111)?) - G(zg, .., T8),
i=0

where G(zo, ..., x) is a linear combination of functions built out of F' by
restricting to certain diagonals and permutation of some arguments. For the
product in front of G to be not zero, we must have d(z;, z;11)? < t for each
0 <12 < k —1. The triangle equation shows that in this case we also have
d(wg, 1) < kt'/2. Hence we have

k—1

pk(xg, R xk) = Z d(xz, ZL’Z'+1)2 + d(fl?k, 11?0)2 < kt + th.
=0

Hence for F' € C,gk+k2)t(X) we have that (N;)¥(F) = 0. Let’s define another
operator

k—1
, 2 2)4—(k+1)
K : B Y (N2 CFFN(x) — o F T ),
r=0

By construction this operator satisfies
boK;+ K;ob=1,
which proves the theorem by taking the direct limit where ¢ goes to zero. [

From the previous proposition we know, that any Hochschild class in
HH,(C>®(X)) can now be represented by a cycle F' which has support ar-
bitrary close to the diagonal. One can now use a partition of unity and the
C*(X) module structure on H H,,(C*(X)) to see that the following corollary
is true.

Corollary 7.2.1. Let X be a stratifold and (U;li € I) be a locally finite
open covering of X, where I is some index set. Let further F € Cy(X) be
a Hochschild cycle. Then there are Hochschild cycles F; € C,(X) such that
supp(F;) € (U)"*' Vi e I and

FNZFZ-

i€l

are homologous.
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7.3 Hochschild homology of locally coned stra-
tifolds

In this section we will finally show that the Hochschild homology of the
algebra C°(X) of a locally coned stratifold X is isomorphic to the module
QZ—,OO (x) of differential forms. Besides the result on de Rham cohomology of
stratifolds this can be seen as the main result of this work. After all the work
we did in chapters 5 and 6 and in the beginning of chapter 7, the proof seems

to be quite easy.

Theorem 7.3.1. Let X be a locally coned stratifold. Then ¥n € N the anti-
symmetrization maps

€ Q%”(X) — HH,(C*(X))
are topological isomorphisms.

Proof. Let n € N. We have to show that the antisymmetrization map ¢, is
surjective in equal any Hochschild cycle in HH,(C*°(X)) is antisymmetric.
From Corollary 7.2.1. it suffices to show, that this is locally the case. Hence
we can assume that our stratifold is of the kind B* x ¢ where B* denotes the
open unit ball of dimension k£ and cL denotes the open cone over a stratifold
of dimension less than the dimension of X . Using induction on the dimension,
we can assume that the antisymmetrization maps €& for L are isomorphisms
Vn € N. From Proposition 6.2.7 it then follows that the antisymmetrization
maps for ¢L are also isomorphisms. From Proposition 6.2.2. it follows, that
the antisymmetrization maps for B* are isomorphisms. Hence the theorem
follows from Proposition 6.2.6. O

As we mentioned earlier, the same proof goes through for locally product
coned stratifolds.

7.4 Some Remarks on Cyclic Homology of
Stratifolds

This section is only informal, so we don’t give any proofs and don’t bother
to define things exactly.

If we divide out a cyclic action from the Hochschild complex (6.8), in
equal identifying cycles, which arise from another by cyclic permutation,

96



we get another complex, which is sometimes called Connes’ complex. The
homology groups of this complex are called cyclic homology groups and
will be denoted by

HC,(A).

These groups are related to the Hochschild homology groups by the so called
Connes’ exact sequence

HH,(A) L= HC,(A) —>> HC,,_»(A) 2= HH,_;(A) =

The operator S is the so called Connes periodicity operator and corre-
sponds via some identifications to the Bott periodicity operator in K-theory.
In the commutative case it is not hard to show, that via the antisymmetri-
zation map, up to a factor the operator

Bol:HH,(A) - HH,,1(A)
exactly corresponds to the operator
d: Q% — Qi

Using this and Connes’ exact sequence one can proceed exactly as in [Connes87]
to prove the following.

Proposition 7.4.1. Let X be a locally coned stratifold with finite dimensio-
nal homology groups. Then ¥n € N there is a natural topological isomorphism

HC(C¥(X)) & Oy fdU ) @ Hip*(X) @ Hj*(X)....

7.5 Closing Remarks

In the end, the reader has the right to ask, why it might be important to
know something about the Hochschild homology of locally coned stratifolds.
In the framework of index theory on manifolds as well as in the framework
of noncommutative geometry, Hochschild homology and in particular cyclic
homology have been proven successful. One could say that this door has been
opened by Connes’ work about the cyclic homology of the algebra C°° (M)
for a smooth manifold M. For example, people studied Hochschild and cyclic
homology of algebras consisting of pseudo differential operators on manifolds
(see [Schulze] ). Motivated by questions from theoretical physics, people be-
gan studying the analysis of singular spaces. In their considerations, some
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kind of differential operators on singular spaces play a role. One might now
hope to learn something about these, by studying their Hochschild homolo-
gy for example. Though we must clearly say, that the approach on singular
spaces, which we have taken in this work is probably to naive and not suita-
ble for more complicated analytic constructions ( like for example differential
operators, connections etc. ) it is to my knowledge the first complete result
about the Hochschild homology of some version of singular spaces. We hope
the reader thinks this is justification enough to have spent some of his time
reading this work.
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