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Prefa
e

This work originated in 1999 when my advisor Professor Dr. Matthias Kre
k

had the idea that a generalization of Alain Connes' result about the Ho
h-

s
hild and 
y
li
 homology of the algebra of smooth fun
tions on a smooth

manifold 
ould also hold in the 
on
ept of his previously de�ned stratifolds.

These stratifolds, whi
h he invented and sin
e then have gone through various

stages of development, are some kind of singular spa
es. We will introdu
e

stratifolds in detail in 
hapter 1 but should mention so far, that they belong

to the 
lass of strati�ed spa
es. Roughly spoken a strati�ed spa
e is a spa
e

whi
h is de
omposed into smooth manifolds, the so 
alled strata. To su
h

spa
es one 
an asso
iate some kind of algebra of smooth fun
tions. The most

naive way is to say, that a fun
tion on a strati�ed spa
e is smooth, if the

restri
tion to any of the strata is smooth. It will turn out, that this is not

enough for our purposes, but it gives us a �rst idea. In se
tion 1.3 we will in-

trodu
e the algebra C

1

(X) of smooth fun
tions on a stratifold in detail. The

analyti
al properties of this algebra is where the 
on
ept of stratifolds di�ers

from other 
on
epts of singular spa
es. The standpoint of this work is the

analyti
al one, that is we 
onsider the algebra C

1

(X) as our starting point

and all other 
onstru
tions and methods will evolve from it.Nevertheless, we

keep things as geometri
 as possible.

One 
an say, that from the analyti
 standpoint the theory of smooth

manifolds is quite well developed. This means, that there are 
on
epts like

di�erential forms, di�erential operators, geometri
 
onstru
tions like 
urva-

ture and 
onne
tions and so on. Sin
e around 1960 when strati�ed spa
es

�rst appeared in the literature ( see [Whitney℄ and [Thom℄ ) people tried to

generalize these 
on
epts to strati�ed spa
es. In the 
ontext of di�erential

forms and de Rham 
ohomology one should mention Verona �rst of all ( see

[Verona71℄ ). He introdu
ed di�erential forms and proved some kind of de

Rham theorem for strati�ed spa
es whi
h 
ome together with some kind of

tubular neighbourhoods around the strata. His approa
h di�ers from ours

I



in the sense that he 
onsiders di�erential forms strata by strata, satisfying


ertain 
ompatibility 
onditions, whereas our start point is the spa
e X itself

and the algebra C

1

(X) of smooth fun
tions on X. In his work about inter-

se
tion homology (see [Brasselet91℄) Brasselet used the ideas of Verona to

give a des
ription of interse
tion homology of so 
alled pseudo manifolds in

terms of di�erential forms with 
ertain extra 
onditions. Pseudo manifolds

are 
losely 
onne
ted to what we 
all lo
ally 
oned stratifolds. A good sum-

mary of the a
tual state of resear
h on strati�ed spa
es in general has been

given by P
aum in his \Habilitationss
hrift" ( see [P
aum℄ ). His work is

mostly based on so 
alled Whitney strati�ed spa
es. How these spa
es are

related to stratifolds is a work in progress by Anna Grinberg. P
aum also

ta
kles the problem of Ho
hs
hild homology for these spa
es and gives some

partial answers. In a quite di�erent 
ontext, namely the 
ontext of rational

homotopy theory, di�erential forms on simpli
ial 
omplexes have been intro-

du
ed by Quillen [GriÆths℄. Quillen also proves a de Rham theorem in this


ontext. In his work [Teleman98℄ Teleman 
laims (but doesn't proof) that

Quillen's ideas together with his result about lo
alization of the Ho
hs
hild


omplex will work to generalize Connes' result mentioned in the beginning to

simpli
ial 
omplexes. Our two main results 
on
ern the de Rham 
ohomology

and the Ho
hs
hild homology of stratifolds. The �rst one 
an be summarized

as follows.

Theorem 1. Let X be a 
ompa
t stratifold. Then there is a natural isomor-

phism

H

n

dR

(X)! Hom(H

n

(X);R)

for all n 2 N given by integration of di�erential forms on 
lasses in the

integral homology of X.

We will prove this theorem in 
hapter 4, where we also prove an analogous

statement when X is non
ompa
t. Our se
ond theorem has a more analyti



hara
ter and is a generalization of [Connes87℄.

Theorem 2. Let X be a lo
ally 
oned stratifold. Then there is a natural

topologi
al isomorphism

�




n

�

C

1

(X)

! HH

n

(

�

C

1

(X))

for all n 2 N.

In Theorem 2 the left hand side stands for some 
ompleted version of

di�erential forms on a stratifold whereas the right hand side stands for the
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ontinuous Ho
hs
hild homology of a 
ompleted version of C

1

(X). These

obje
ts will be 
onstru
ted in 
hapters 5 and 6. We will prove Theorem 2 in


hapter 7. Sin
e in the manifold 
ase Ho
hs
hild and 
y
li
 homology is 
lo-

sely 
onne
ted to what is 
alled index theory, we hope that this result is one

step forward in generalizing this theory to some 
lasses of singular spa
es.

Sin
e I was always fas
inated by the intera
tions between analysis, algebra

and topology I must thank my advisor Prof. Dr. Matthias Kre
k that he

gave me the right task as a theme for my do
toral thesis. His idea about

how smooth fun
tions on stratifolds should look like showed all its strength

when proving Theorem 2. I must also thank Prof. Bru
e Bla
kadar from

the University of Nevada, Reno who gave me advi
e on some of the more

analyti
al parts of this work. Also I thank Prof. Don Pfa� and his wife for

giving me a

ommodation during my stay in Reno. From the department of

mathemati
s in Heidelberg I thank Anna Grinberg for many mathemati
al

and nonmathemati
al dis
ussions. From the department of mathemati
s in

Mainz I thank Frank Baldus. Also I thank Anna Warze
ha for our interesting

dis
ussions, our ni
e walks in the Odenwald and some other things. Of 
ourse

I have to thank my parents too.
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Kapitel 1

Introdu
tion to Stratifolds

In this 
hapter we will introdu
e a 
lass of topologi
al spa
es, we 
all strati-

folds. These spa
es have been invented by Matthias Kre
k in 1998 to serve

as the right obje
ts, to give a very 
on
rete geometri
 des
ription of ordinary

integral homology as a bordism theory. Sin
e then there have been various

versions of these obje
ts. The one we use here, in parti
ular the version of

stratifolds with boundary is the one whi
h suits our purposes best.

We will present our version of stratifolds and study some basi
 properties

of this 
lass of spa
es. Stratifolds are in some kind 
onstru
ted similar to

CW-
omplexes, but have a mu
h �ner stru
ture. Constru
tions known from

di�erential topology 
an be generalized to a 
ertain 
lass of stratifolds. In

fa
t, spe
ial 
lasses of them form bordism 
ategories. In one 
ase the asso-


iated homology theory is ordinary integral homology. This des
ription of

singular homology is due to Kre
k and will be of major importan
e in the

later 
hapters. Our main sour
e for this 
hapter is [Kre
k00℄.

1.1 The Class of 
-Manifolds

Roughly spoken, stratifolds will be obtained by gluing together a 
ouple of

smooth manifolds. To do this gluing pro
ess in a ni
e and organized way and

also for stru
tural properties of the asso
iated algebra of smooth fun
tions

on a stratifold the introdu
tion of a 
ertain 
lass of manifolds, we 
all 
-

manifolds has been proven su

essful.From the 
ollar theorem in di�erential

topology (see [Hirs
h℄,page 113) it follows, that every smooth manifold W

with boundary possesses a 
ollar, whi
h is given by an embedding


 : �W � [0; �)!W

1



for some � > 0. In general many 
hoi
es of the map 
 are possible. Two su
h


ollars 


1

,


2

on W will be 
alled equivalent, if there is an open neighbour-

hood U of �W in W su
h that 


1

and 


2


oin
ide on 


�1

1

(U) = 


�1

2

(U) �

�W � [0; �). We denote the equivalen
e 
lass of a 
ollar 
 with [
℄. As one


ould expe
t, the \
" in \
-manifold" stands for 
ollared manifold.

De�nition 1.1.1. A 
-manifold is a pair (W; [
℄), where W is a smooth

manifold with boundary and [
℄ is an equivalen
e 
lass of a 
ollar on W .

Often we write W when in fa
t we mean (W; [
℄) and just speak of a

manifold when we really mean 
-manifold. In situations, when emphasize is

made on, that the manifold in question is not treated as a 
-manifold, we

will speak of a manifold in the naive sense. Also all 
onstru
tions whi
h are

based on manifolds in the naive sense will be referred to as that.

Two 
-manifolds (W

1

; [


1

℄) and (W

2

; [


2

℄) will be 
alled di�eomorphi
 and

treated as equal, if there is a di�eomorphism f : W

1

! W

2

, su
h that the

indu
ed 
ollar f

�




1

:= f Æ


1

Æ(f

�1

j�W

2

�id) and 


2

are equivalent. This notion of

di�eomorpha
y of 
-manifolds seems very natural, though it is very stri
t and

not so well suited for our purposes. We will de�ne a 
ategory of 
-manifolds

using the following de�nition of smooth fun
tions on a 
-manifold as a start

point.

De�nition 1.1.2. Let (W; [
℄) be a 
-manifold. By de�nition a map

g :W ! R

belongs to C

1

(W; [
℄) if g is smooth on W and there exists an open neigh-

bourhood U of �W in �W � [0; �) su
h that the following diagram 
ommutes

U � �W � [0; �)

gÆ
 //

p

''O

O

O

O

O

O

O

O

O

O

O

O

R

�W

g

OO

Here p denotes the proje
tion on the �rst 
oordinate.

In other words a fun
tion on (W; [
℄) is smooth, if it is smooth in the

naive sense and has the property that in a small neighbourhood of the boun-

dary it is 
onstant along the 
ollar, i.e. in dire
tion of the paths t 7! 
(x; t)

for x 2 �W . It should be 
lear that C

1

(W; [
℄) indeed only depends on the

equivalen
e 
lass of the 
ollar. Later we will often write C

1

(W ) instead of

2



C

1

(W; [
℄) to shorten the notation. There should be no misunderstandings,

sin
e if we treat W as a manifold in the naive sense we use the symbol

C

1

naive

(W ).

Of 
ourse the algebra C

1

(W; [
℄) di�ers from the algebra C

1

naive

(W ). This

will show best when studying the lo
al situation. The following proposition

gives an answer to that.

Proposition 1.1.1. Let (W; [
℄) denote a 
-manifold, let x 2 W be a point

and and let O

W;x

= lim

�!

x2U

C

1

(U; [i

U

�


℄)) denote the algebra of germs at

x. Here U runs through the open neighbourhoods of x 2 W and ea
h U is


onsidered as a 
-manifold itself using the in
lusion map i

U

: U ! W and

the indu
ed 
ollar i

U

�


. Let n denote the dimension of W . Then there are two


ases.

1. If x lies in the interior W

Æ

of W we have O

W;x

�

=

O

R

n

;0

.

2. If x lies in the boundary �W of W we have O

W;x

�

=

O

R

n�1

;0

.

Proof. In the �rst 
ase, 
hoosing lo
al 
oordinates will prove that O

W;x

�

=

O

R

n

;0

. In the se
ond 
ase one 
an 
hoose 
oordinates around x as follows.

Take as a �rst 
oordinate the 
oordinate t whi
h is given by 
(y; t) 7! t

8(y; t) 2 �W � [0; �) in a small neighbourhood of x and for the remaining

n�1 
oordinates x

1

; :::x

n�1

take a set of 
oordinates y

1

; :::y

n�1

of �W de�ned

in a neighbourhood of x in �W and de�ne x

i

(
(y; t)) := y

i

(y). Using these


oordinates the 
ondition on g : W ! R to belong to C

1

(W; [
℄) is not to

depend on t for t small. On the other side, there is no restri
tion on the other

n� 1 
oordinates. This of 
ourse shows O

W;x

�

=

O

R

n�1

;0

.

Let us now introdu
e smooth maps between 
-manifolds

De�nition 1.1.3. Let (W

1

; [


1

℄) and (W

2

; [


2

℄) be 
-manifolds and let

f : W

1

!W

2

be a map. We say that f is smooth if for any g 2 C

1

(W

2

; [


2

℄) the 
ompositi-

on g Æ f : W

1

! R lies in C

1

(W

1

; [


1

℄). We denote the set of these fun
tions

by C

1

((W

1

; [


1

℄); (W

2

; [


2

℄)).

We 
an now setup our 
ategory of 
-manifolds as follows. Obje
ts are


-manifolds and morphisms are smooth maps between 
-manifolds. In this


ontext an isomorphism between two 
-manifolds is a smooth map

3



f : (W

1

; [


1

℄) ! (W

2

; [


2

℄) su
h that the inverse map f

�1

exists and is 
on-

tained in C

1

((W

2

; [


2

℄); (W

1

; [


1

℄)). The 
-manifolds (W

1

; [


1

℄) and (W

2

; [


2

℄)

are then 
alled isomorphi
. We should mention that there is a real di�eren
e

between isomorphisms and di�eomorphisms of 
-manifolds. An isomorphism

allows some kind of reparametrization in dire
tion along the 
ollar whi
h

a di�eomorphism doesn't. We admit, that the name di�eomorphism in this


ontext might be a little bit 
onfusing, sin
e for most topologists a di�eo-

morphism is a smooth map whi
h has a smooth inverse. In our sense this


orresponds exa
tly to an isomorphism. We should keep that in mind.

1.2 Stratifolds

In this se
tion we introdu
e stratifolds in its most general form. We should

remind again that the word manifold here stands for 
-manifold. Though this

is not of importan
e in this se
tion, it will be 
ru
ial in the next one.

De�nition 1.2.1. Let X be a topologi
al spa
e, � � X be a subspa
e and R

be a manifold. Let R

Æ

= R��R denote the interior part of R. Let ' : R! X

be a map, su
h that

'(R

Æ

) � X � �

'(�R) � �

and ' indu
es a homeomorphism

R [

'

� � X:

We 
all X � � the regular part of X and � the singular part of X. We

refer to ' as a singular 
hart of the pair (X;�). The pair (X;�) is 
alled

a singular spa
e.

Let us approa
h our �rst de�nition of a stratifold.

De�nition 1.2.2. A topologi
al spa
e X together with proper maps

'

i

: R

i

! X;

where i runs through an index set I � N, is 
alled a stratifold if these data

satisfy the following 
onditions :

1. For any i 2 I the spa
e R

i

is a manifold of dimension i.

4



2. For any pair i 6= j 2 I

'

i

(R

Æ

i

) \ '

j

(R

Æ

j

) = ;

and X =

S

i2I

'

i

(R

Æ

i

).

3. For any i 2 I '

i

is a singular 
hart of the pair (X

i

; X

i�1

), where

X

i

=

S

j2f0;::ig\I

'

j

(R

Æ

j

) and X

i

is 
losed in X.

Though the 
harts belong to the de�nition of a stratifold, we do most

times only speak of the stratifold X, keeping the 
harts in mind.

We 
all

dim(X) = supfi 2 IjR

i

6= ;g (1.1)

the dimension of X. If the dimension of X is n, we refer to � = X

n�1

as

the singular part of X and X � � � R

Æ

n

as to the regular part. Clearly

(X;�) be
omes a singular spa
e with singular 
hart '

n

. More general, we


all

S

i

= X

i

�X

i�1

(1.2)

the i-th stratum of X, and it is 
lear, that by 
hoosing these sets as strata

X be
omes a strati�ed spa
e. Clearly

S

i

� R

Æ

i

and sometimes the R

i

will be referred to as the full strata of X. We should

also mention, that under this de�nition stratifolds of in�nite dimensions are

allowed, and some of our results are also valid in this 
ase. X

i

is 
alled the

i-skeleton of X and 
learly is itself a stratifold and will be 
onsidered as this

throughout the whole work. We should mention that in bordism theory of

stratifolds a di�erent de�nition of dimension has been used by Kre
k, de�ning

the dimension of X as sup(I).We will denote this dimension as Dim(X).

Clearly we have that

dim(X) � Dim(X):

If more than one stratifold o

urs at the same time, we use symbols like

R

i

(X),S

i

(X) et
. to denote the 
orresponding data.

5



From the 
onstru
tion of stratifolds, it should arise, that they are built

similar to CW 
omplexes. Instead of 
ells, we atta
h arbitrary manifolds. In

parti
ular, any CW 
omplex 
an be given the stru
ture of a stratifold, by


hoosing all of the R

i

as dis
s. The atta
hing maps then indu
e 
harts. On

the other hand, any manifold, hen
e any of the strata R

i


an be given a

CW stru
ture. These stru
tures 
an be used to de�ne a CW stru
ture on the

stratifold. Though, there is no 
anoni
al way to do this, and it's 
ompletely

un
lear, how this CW stru
ture 
orresponds to the stru
ture as a stratifold.

Other questions, like triangulation of stratifolds and pie
ewise linear stru
-

tures have to be seen in the same 
ontext and so far, haven't been ta
kled.

As topologi
al spa
es stratifolds will turn out to be para
ompa
t. This

will follow from the existen
e of a partition of unity ( see Corollary 1.7.1

). Moreover they are lo
ally 
ompa
t, even in the in�nite 
ase. This follows

similar as in the 
ase of CW 
omplexes, sin
e we 
onsider the weak topology


orresponding to the de
omposition into strata. The empty set ; will be


onsidered as a stratifold of any spe
i�ed dimension. Let us give some less

trivial examples.

Example 1.2.1. 1. Given a manifold M without boundary and let m be

its dimension. We get a stratifold of dimension m by 
hoosing

I = fmg; R

m

=M

and ' : R

m

!M as the identity. This is the way we 
onsider manifolds

as stratifolds if nothing else is said. Clearly dim(M) = m is the same

as the dimension of M , if M is 
onsidered as a manifold.

2. Given two topologi
al manifolds W;S of dimension r respe
tively s,

where s < r and a proper map f : �W ! S. Then the topologi
al spa
e

X =W [

f

S

is 
onsidered as a stratifold by 
hoosing I = fs; rg,

R

r

=W;R

s

= S

and '

r

respe
tively '

s

as the natural proje
tions of W respe
tively S

on the quotient spa
e X. Clearly dim(X) = r. If the map f : �W ! S

is surje
tive, X 
an be 
onsidered as a manifold with singularities in

the set S, hen
e the notation S for singularities. The whole 
on
ept of

stratifolds is a generalization of this.

6



3. If in the last example we 
hoose S to 
onsist only of points, we speak of

manifolds with isolated singularities. In algebrai
 geometry many

people are interested in the resolution of su
h singularities. The reso-

lution of isolated singularities in the world of topologi
al stratifolds has

been studied in [Grinberg00℄.

At the end of this 
hapter we should try to give at least one motivation

for the name that has been 
hosen to denote our 
lass of spa
es. The name

stratifold just seems right to indi
ate that this 
lass of spa
es 
onsists of

strati�ed spa
es where spe
ial emphasize has been made on the role of the

strata and the way how they are glued (folded) together.

1.3 Smooth Stru
tures on Stratifolds

We will now assign an extra stru
ture to stratifolds, whi
h we 
all smoo-

thness. This stru
ture will help us, to 
arry over 
onstru
tions known from

di�erential topology of manifolds to the world of stratifolds.Sin
e so far, we

have only allowed smooth manifolds for the strata, the reader might think,

we already have something, we 
ould 
all smooth stratifold. This, let's say

smoothness on the strata, turns out to be unsatisfying. The strata 
an be

glued together in a very wild way, so the right notion of smoothness should

re
e
t, that the gluing pro
ess is done in a fairly ni
e and smooth way. This

will lead us to the de�nition of a smooth stratifold.

Let X be a stratifold. We 
all a fun
tion

f : X ! R

smooth, if for any i 2 I the 
omposition

R

i

'

i

//
X

f //
R

de�nes an element in C

1

(R

i

), where C

1

(R

i

) is the algebra of fun
tions on

R

i

de�ned in De�nition 1.1.2. Clearly these maps build an R algebra, whi
h

we denote with C

1

(X).

De�nition 1.3.1. A stratifold X is 
alled a smooth stratifold if for any

i 2 I the image of the indu
ed map

'

�

i

: C

1

(X

i�1

)! C(�R

i

)

7



is 
ontained in C

1

(�R

i

). If X and Y both are smooth topologi
al stratifolds

we 
all a map f : X ! Y smooth if the image of the indu
ed map

f

�

: C

1

(Y )! C(X)

is 
ontained in C

1

(X). We denote the set of these fun
tions with C

1

(X; Y ).

The 
ondition on X to be a smooth stratifold 
an now simply be re-

stated as that for any i 2 I the restri
tion of the 
hart '

i

to �R

i

lies in

C

1

(�R

i

; X

i�1

) in other words, the atta
hing maps are smooth.

Example 1.3.1. If we require W;S and f : �W ! S as in Example 1.2.1

to be smooth, we end up with a smooth stratifold sin
e the map

'

�

m

: C

1

(X

m�1

)! C(�R

m

)

is pre
isely the map indu
ed by f .

From this point on, we will only 
onsider smooth stratifolds and usually

omit the word smooth in front of stratifold. When we write stratifold, we

always mean smooth stratifold.

The following 
ategory of stratifolds is the 
ategory we work with.

Obje
ts are stratifolds and morphisms are smooth maps between stratifolds.

In this 
ontext an isomorphism between stratifolds is a smooth map whi
h

has a smooth inverse.In this 
ase the algebras of smooth fun
tions are iso-

morphi
. Hen
e isomorphi
 stratifolds are indistinguishable by the methods

presented in this work, and will therefore be treated as equal. We should

mention, that other 
ategories of stratifolds so far appeared in di�erent 
on-

texts, as for example in [Grinberg00℄ and [Minatta01℄. We should mention

one spe
ial 
ase, sin
e it o

urs in the de�nition of lo
ally 
oned stratifolds.

We 
all two stratifolds X and Y di�eomorphi
, if there is a homeomor-

phism f : X ! Y whi
h is indu
ed by di�eomorphisms f

i

: R

i

(X)! R

i

(Y )

of 
-manifolds on all full strata. As in the 
ase of 
-manifolds, there is a real

di�eren
e between di�eomorphisms and isomorphisms. Nevertheless, a dif-

feomorphism is always an isomorphism in our 
ategory. We will keep that in

mind.

We 
lose this se
tion by studying the lo
al pi
ture, in equal how smooth

fun
tions on a stratifold X behave in a small neighbourhood of some point

8



x 2 X. The following proposition states that the algebra of germs of fun
-

tions at some point x 2 X, whi
h we brie
y de�ne as

O

X;x

= lim

�!

x2U

C

1

(U) (1.3)

is 
ompletely determined by restri
ting these fun
tions to the stratum S

k

.

Here U runs through the open neighbourhoods of x 2 X and the limit is

taken by restri
tion. It is not 
lear at this point, what exa
tly we mean with

C

1

(U) for an open subset U � X. Brie
y, we 
an say, that U inherits the

stru
ture of a stratifold, so that we 
an speak of C

1

(U). How this is done

in more detail is presented in se
tion 1.4. We nevertheless think it might

be helpful for understanding how C

1

(X) is built up, to state the following

proposition at this point.

Proposition 1.3.1. Let X be a stratifold and x 2 S

k

be a point in the k-

stratum of X. Then the map indu
ed by restri
tion

O

X;x

! O

S

k

;x

is an isomorphism.

In other words, the proposition says that we 
an somehow interpret the

algebra C

1

(X) as built up of the algebras C

1

(S

k

) put together in a ni
e

way. As we will see in the proof, the reason for this to be true lies in the use

of the 
on
ept of 
-manifolds ( 
ompare Proposition 1.1.1) .

Proof. Let i � k. We will �rst show

O

X

i+1

;x

�

=

O

X

i

;x

;

where the map is given by restri
tion. To see this let f 2 O

X

i+1

;x

be an

element in the kernel of the restri
tion map. That is f is de�ned on some

open neighbourhood U � X

i+1

and f

jU\X

i

= 0. Sin
e S

i+1

\ S

i

= ; we have

'

�1

i+1

(U \X

i

) � �R

i+1

:

Here '

i+1

denotes the i-th 
hart of the stratifoldX. Sin
e U\X

i

is open inX

i

we have that '

�1

i+1

(U \X

i

) is open in �R

i+1

. Sin
e f Æ'

i+1

2 C

1

(R

i+1

) must

approa
h the boundary 
onstant along the 
ollar in a small neighbourhood V

of �R

i+1

in R

i+1

it vanishes on an open neighbourhood

~

U of '

�1

i+1

(U \X

i

) in

R

i+1

su
h that the image '

i+1

(

~

U) of

~

U is an open neighbourhood of x in X

i+1

on whi
h f vanishes. This proves inje
tivity for O

X

i+1

;x

! O

X

i

;x

: A similar

argument, where we extend a fun
tion given on an open subset of �R

i+1

on

9



an open subset of R

i+1


onstant along the 
ollar will prove surje
tivity of the

latter map. Clearly we have that

O

X;x

= lim

�!

k�i

O

X

i

;x

:

Sin
e all maps in the dire
t limit are isomorphisms we have

O

X;x

= O

X

k

;x

Sin
e the k-stratum S

k

is open in the k-skeleton X

k

, we also have

O

X

k

;x

�

=

O

S

k

;x

;

where the isomorphism is again given by restri
tion. Hen
e the proposition

follows.

1.4 Substratifolds

Let X be a stratifold with strata R

k

(X) and 
harts '

k

. For a subset A � X

we 
an 
onsider the sets

'

�1

k

(A) � R

k

(X):

Let's assume that ea
h of the '

�1

k

(A) is a submanifold of R

k

(X). Then we


an de�ne

R

j

(A) =

a

dim('

�1

k

(A))=j

'

�1

k

(A)

to get a strati�
ation of A. We also get maps

 

j

: R

j

(A)! A

by restri
ting the 
harts '

k

to the 
orresponding 
omponents of R

j

(A). We


all these data the indu
ed data on A. The following is our de�nition of a

substratifold.

De�nition 1.4.1. With the notation from above A � X is 
alled a sub-

stratifold, if the '

�1

k

(A) are submanifolds of the R

k

(X) and A together with

the indu
ed data has the stru
ture of a stratifold.

The following examples are easy, nevertheless they are important.

Example 1.4.1. 1. Any open subset U of a stratifold X 
an, and will

throughout this work be 
onsidered as a substratifold of X.

2. For any number i 2 N the i-skeleton X

i

is a substratifold of X. We

have a natural sequen
e

; = X

�1

� X

0

� ::: � X

n

= X

where ea
h in
lusion means as a substratifold.

10



1.5 Stratifolds with Boundary

As in the world of manifolds there is also a 
on
ept of stratifolds with boun-

dary. In fa
t, there is more than one 
on
ept of stratifolds with boundary.

All 
on
epts of 
ourse have in 
ommon that they are generalizations of the


on
ept of stratifolds in the way that a stratifold with boundary the empty

set is the same as a stratifold. Furthermore they have in 
ommon, that some


ategories of stratifolds with boundary form bordism 
ategories. The latter

fa
t will be exploited later. For this work the following 
on
ept is suited best.

It was also the original 
on
ept (see [Kre
k99℄).

De�nition 1.5.1. Let (X;�; �X) be a triple of topologi
al spa
es, su
h that

� � X and �X � X, and let R be a manifold with boundary �R smoothly

de
omposed as

�R = �

+

R [ �

�

R;

su
h that

�(�

+

R) = �

+

R \ �

�

R = �(�

�

R):

Furthermore let ' : R! X be a map whi
h satis�es the following 
onditions

1. '(R

Æ

) = X � (� [ �X)

2. '(�

+

R) � �

3. '(�

�

R) � �X:

If ' indu
es a homeomorphism

X = R [

'

j�

+

R

�

we 
all (X;�; �X) a singular spa
e with boundary and ' a singular


hart of (X;�; �X):

Now we pro
eed similar as in the de�nition of stratifolds without boun-

dary as follows.

De�nition 1.5.2. A pair of topologi
al spa
es (X; �X) together with proper

maps

'

i

: R

i

! X;

where i runs through an index set I is 
alled a stratifold with boundary

if the following 
onditions hold :

11



1. For any i 2 I the spa
e R

i

is a manifold of dimension i with boun-

dary �R

i

smoothly de
omposed as �R

i

= �

+

R

i

[ �

�

R

i

similar to the

de
omposition in De�nition 1.5.1.

2. For any i 2 I we have '

i

(�

�

R

i

) � �X and �X together with 
harts

 

i

:= '

i+1j�

�

R

i+1

and R

i

(�X) = �

�

R

i+1

is a stratifold.

3. For any pair i 6= j 2 I we have '(R

Æ

i

[ (�

�

R

i

)

Æ

)\'(R

Æ

j

[ (�

�

R

j

)

Æ

) = ;

and X =

S

i2I

'(R

Æ

i

[ (�

�

R

i

)

Æ

).

4. For any i 2 I the map '

i

is a singular 
hart of the singular spa
e with

(X

i

; X

i�1

; (�X)

i

) where X

i

=

S

j2f0;::;ig\I

'(R

Æ

i

[ (�

�

R

i

)

Æ

) and X

i

is


losed in X.

5. The maps '

ij�

+

R

i

: �

+

R

i

! X

i�1

and '

ij�

�

R

i

: �

�

R

i

! �X are smooth.

We 
onsider all stratifolds with boundary the empty set as stratifolds. A

substratifold of a stratifold with boundary is de�ned in pure analogy to

De�nition 1.4.1 , namely a set A � X su
h that A with the indu
ed data is

a stratifold with boundary. It is then 
lear that the sets X��X and �X are

substratifolds of X. The following example shows that any stratifold 
an be

realised as the boundary of a stratifold with boundary namely the 
one over

the stratifold.

Example 1.5.1. Let X be a stratifold without boundary. We give the 
one

CX over X the stru
ture of a stratifold with boundary as follows. Let I =

[0; 1℄ be the 
losed unit interval.

R

0

(CX) = pt

R

k

(CX) = R

k�1

(X)� I

�

+

R

k

(CX) = R

k�1

(X)� f0g [ �R

k�1

(X)� I

�

�

R

k

= R

k�1

(X)� f1g

 

k

: R

k

(CX) = R

k�1

(X)� I ! CX

(x; t) 7! ['

k�1

(x); t℄;

where the '

k

denote the 
harts of X. It 
an be veri�ed that CX together with

these data de�nes a stratifold with boundary, whi
h we 
all the 
one over X.

It is 
lear from the 
onstru
tion that �(CX) = X.

12



The example above has major 
onsequen
es for bordism theories based

on stratifolds ( see se
tion 1.9 ). If in the 
onstru
tion above, we ex
hange

I = [0; 1℄ by the half open interval [0; 1) the \-" part of �R

k

in the de�nition

above vanishes and we get a stratifold without boundary. We denote this

stratifold with 
X and 
all it the open 
one of X. We have


X = CX � �CX = CX �X:

1.6 Lo
ally Coned Stratifolds

In this se
tion we will introdu
e lo
ally 
oned stratifolds. They are in 
lose


onne
tion to so 
alled pseudo manifolds, see for example [Borel87℄ for the

de�nition. The idea behind the de�nition is, that lo
ally ea
h singularity has

a neighbourhood whi
h is a 
one over a stratifold of smaller dimension. More

pre
isely we have the following de�nition.

De�nition 1.6.1. We 
all an n dimensional stratifold lo
ally 
oned, if for

ea
h k 2 I and x 2 S

k

there exists a neighbourhood U

x

in X and a stratifold

L

x

of dimension n� k � 1 together with a di�eomorphism of stratifolds

U

x

�

=

B

k

� 
L

x

;

where 
L

x

denotes the open 
one over the stratifold L

x

and B

k

the open unit

ball in eu
lidean k-spa
e. L

x

will be referred to as the link at x and U

x

will

be 
alled a 
one neighbourhood of x.

Repla
ing 
L

x

in the de�nition above by a produ
t of 
ones yields to a


lass of stratifolds whi
h is 
alled lo
ally produ
t 
oned stratifolds.

It 
an easily be seen that the stratifolds L

x

o

urring in the de�nition

above, are also lo
ally 
oned ( see [Weber01℄ ). Our results 
on
erning de

Rham 
ohomology of stratifolds are valid for general stratifolds, whereas our

results on Ho
hs
hild homology of stratifolds are only valid for lo
ally 
oned,

or more general lo
ally produ
t 
oned stratifolds. The reason for this is, that

when we know the algebra C

1

(X), we know the algebra C

1

(
X) almost

as well. Hen
e the lo
al situation is far easier and obtainable by indu
tive

methods, than in the general 
ase of a stratifold. Another ni
e aspe
ts of

lo
ally 
oned stratifolds is that the introdu
tion of some ni
e 
onditions on

the links 
an also yield to interesting new homology theories. This 
an also

be found in [Weber01℄.
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1.7 Some Properties of Stratifolds

In this se
tion, we establish some properties of stratifolds whi
h will be useful

in later 
hapters.

Lemma 1.7.1. Let X be a stratifold and x 2 X. Let U be an open neigh-

bourhood of x. Then there is a smooth fun
tion � : X ! [0;1), su
h that

supp(�) � U and �(x) > 0.

Proof. This is Lemma 4.2. of [Kre
k00℄. The proof presented there works also

in the 
ase of in�nite dimensional stratifolds.

The existen
e of a smooth partition of unity, subordinated to a 
ertain

open 
overing is established by the following 
orollary.

Corollary 1.7.1. Let X be a stratifold and (U

j

)

j2J

be an open 
overing of

X. Then there is a smooth partition of unity (f

j

)

j2J

subordinated to the


overing, in equal f

j

2 C

1

(X) su
h that

X

j2J

f

j

� 1

X

with supp(f

j

) � U

j

and 8x 2 X the set fj 2 J jf

j

(x) 6= 0g is �nite.

Proof. see [Kre
k00℄.

As a 
onsequen
e of the existen
e of partitions of unity we get the follo-

wing result.

Corollary 1.7.2. Let X be a stratifold, then X is para
ompa
t as a topolo-

gi
al spa
e.

1.8 Stratifolds and Orientation

Sin
e we have seen, that any stratifold is the boundary of its 
one, the bor-

dism 
ategory of all stratifolds is not parti
ularly interesting. To get some-

thing more interesting, we will introdu
e orientations on stratifolds. Before

we pro
eed, the reader should be reminded at the di�eren
e between dim(X)

and Dim(X) (see (1.1) and page 7).

De�nition 1.8.1. A stratifold X of dimension Dim(X) = n is said to be

Z=2- oriented if R

n�1

(X) = ;. We say that X is Z- oriented, if in addition

the top stratum R

n

(X) is an oriented manifold.

The fa
t that the se
ond highest stratum of an oriented stratifold is empty

will be 
ru
ial, when proving a generalisation of Stokes' Theorem in 
hapter

4 .
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1.9 Bordism Theory based on Stratifolds

One intention of the 
onstru
tion of stratifolds was to give a 
on
rete bor-

dism like des
ription of singular homology. In this se
tion we brie
y outline

the 
onstru
tion of Kre
k given in [Kre
k99℄.

Let X; Y be Z oriented, 
ompa
t stratifolds of some given dimension n.

We say X and Y are bordant, if there is a Z oriented n + 1 dimensional


ompa
t stratifold W with boundary

�W = X + (�Y );

where �Y denotes Y with orientation reversed. We 
all W a bordism bet-

ween X and Y .

Now let Z be a topologi
al spa
e. We 
onsider 
lasses [f : X ! Z℄, where

two 
lasses [f : X ! Z℄ and [g : Y ! Z℄ are 
alled equivalent if X and

Y are bordant via a bordism W and there is a map h : W ! Z su
h that

h

jX

= f and h

jY

= g. This indeed de�nes an equivalen
e relation. The set of

equivalen
e 
lasses of these obje
ts be
omes a group with addition indu
ed

by the topologi
al sum.

In the situation above we let n run through the natural numbers and end

up with a fun
tor

H

�

: Top! GrAb

from the 
ategory of topologi
al spa
es to the 
ategory of graded abelian

groups. Moreover it 
an be shown, that this fun
tor is a homology theo-

ry. This remains valid if one redu
es the 
ategory of stratifolds involved by

assuming some ni
e extra 
onditions, for example on the strata of some gi-

ven dimensions et
. In this 
ontext interesting new questions in the study

of homology theories arise. Some of them have been studied by Le
ibyll in

[Le
ibyll00℄. In our 
ase the question whi
h homology theory arises from this


onstru
tion is 
ompletely answered by the following theorem.

Theorem 1.9.1. The homology theory given by bordism of Z oriented strati-

folds is naturally isomorphi
 to ordinary integral homology. That means there

is a natural equivalen
e between the fun
tors H

�

and HZ

�

where the latter

means singular homology with integer 
oeÆ
ients.

Proof. [Kre
k99℄

15



Kapitel 2

Tools from Sheaf Theory

In this 
hapter we present some of the basi
 
on
epts of sheaf theory. The

reader who is familiar with things like sheaf theoreti
 
ohomology 
an skip

this 
hapter or may look up things later. By brutal for
e we 
ould have

avoided the use of sheaf theory entirely, but we think it makes proofs more

elegant. Sin
e this 
hapter only presents methods and tools, we skip almost

any proof, but say exa
tly where it 
an be found in the book of Bredon

[Bredon97℄. The reader who wants more detailed information about sheaves

should also 
onsult this book.

2.1 Basi
 De�nitions

Throughout this 
hapter X denotes a topologi
al spa
e.

De�nition 2.1.1. A presheaf A of abelian groups on X is a 
ontravariant

fun
tor from the 
ategory of open subsets of X and in
lusions as morphisms

to the 
ategory of abelian groups. This means to any open subset U � X there

is asso
iated an abelian group A(U) and if V � U is another open subset of

X, then there is a restri
tion map

r

U;V

: A(U)! A(V );

su
h that whenever W � V � U are three open subsets of X the equation

r

U;W

= r

V;W

Æ r

U;V

holds.

To simplify the notation we often write s

jV

instead of r

U;V

(s) for the re-

stri
tion of an element s 2 A(U) to a subset V � U:
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The following examples are fundamental in the sense, that all sheaves or

presheaves o

urring in this work, will be based on these.

Example 2.1.1. 1. Let G be any group and X a topologi
al spa
e. Then

we 
an asso
iate G to any open subset of X, in equal G(U) = G for

all open subsets U of X. This 
learly de�nes a presheaf on X whi
h we


all the 
onstant sheaf G with value G on X.

2. Let X be a stratifold. If we 
onsider an open subset U � X as a sub-

stratifold of X a

ording to Example 1.4.1, we 
an build C

1

(U). The

asso
iation

U 7! C

1

(U)

for all open subsets U of X is a presheaf on X. The restri
tion maps

are given by restri
tion of fun
tions. We denote this presheaf O

X

and

refer to it as the stru
ture sheaf on X.

The presheaves in the example above have more stru
ture, than it is

required for presheaves. Indeed, they are sheaves. This is our next de�nition.

De�nition 2.1.2. A presheaf A over a topologi
al spa
e X is 
alled a sheaf,

if it satis�es the following two 
onditions

1. If U =

S

�

U

�

is an open 
overing of an open subset U � X, and

s; t 2 A(U) are elements, su
h that s

jU

�

= t

jU

�

for ea
h of the U

�

, than

s = t.

2. If under the 
onditions above there are given s

�

2 A(U

�

) for ea
h of

the U

�

su
h that s

�

jU

�

\U

�

= s

�

jU

�

\U

�

for all indi
es � and �, then there

is an element s 2 A(U) su
h that s

jU

�

= s

�

for all � .

It is 
lear from the de�nition, that the 
onstant sheaf and the stru
ture

sheaf O

X

of a stratifold are indeed sheaves. On the other side there is a


anoni
al way to 
onstru
t sheaves out of presheaves. This pro
ess is 
alled

shea��
ation. For this let A be a presheaf on X. For ea
h x 2 X de�ne the

stalk of A at x to be

A

x

= lim

�!

x2U

A(U) (2.1)

where U runs through the open neighbourhoods of X. This group 
ontains

the lo
al stru
ture of A at the point x. An Element of A

x

is given by the

equivalen
e 
lass of some s 2 A(U). We denote this 
lass with s

x

. We give

S

x2X

A

x

the topology generated by the open sets

fs

x

2 A

x

jx 2 U; s 2 A(U)g; 8 U � X open:

17



We denote this spa
e with A. It 
omes together with a 
ontinuous map

� : A ! X;

whi
h is the proje
tion on the base point of the 
orresponding stalk. For an

open subset U � X let us denote the se
tions of A over U as �(U;A): Then

it is 
lear, that the asso
iation U 7! �(U;A) is a sheaf on X. Sometimes we

denote this sheaf by

Sheaf(U 7! A(U)):

The pro
ess of shea��
ation also shows, how one 
an imagine sheafs geome-

tri
ally as topologi
al spa
es. This is the 
ontent of the next proposition.

Proposition 2.1.1. Let A be a presheaf on X. Then the asso
iated topolo-

gi
al spa
e A has the following properties.

1. � : A! X is a lo
al homeomorphism.

2. Ea
h of the A

x

= �

�1

(x) is an abelian group, and will be 
alled the

stalk of A at x 2 X.

3. The group operations on the stalks are 
ontinuous. This means that the

map

� : f(�; �) 2 A�Aj�(�) = �(�)g ! A;

(�; �) 7! �� �

is 
ontinuous.

If A is already a sheaf the groups A(U) and �(U;A) are naturally isomorphi
.

So in the 
ase we are starting with a sheaf, shea��
ation yields to nothing

new.

The reader should be warned, that as topologi
al spa
es, sheaves in gene-

ral have no parti
ularly good topologi
al properties.For example they usually

la
k to be Hausdor�. It follows from the proposition above, that the �bres

are always dis
reet. As a 
onsequen
e, in some 
ases 
ontinuous se
tions 
an

look very obs
ure.

In the following 
alligraphi
 letters always 
orrespond to the related ro-

man letters, though a

ording to the proposition above we often identify a

18



sheaf A with its asso
iated topologi
al spa
e A. If Y � X denotes an arbi-

trary subspa
e, we 
an restri
t the sheaf A on Y whi
h is

A

jY

= �

�1

(Y )! Y: (2.2)

To get a 
ategory of sheafs, we have to say, what a morphism of sheaves

is.

De�nition 2.1.3. 1. Let A and B be presheaves on X. A morphism of

presheaves

h : A! B

is a 
olle
tion of group homomorphisms

h

U

: A(U)! B(U)

de�ned for all open subsets U � X, whi
h are 
ompatible with the

restri
tion maps. In the language of 
ategory theory h : A ! B is a

natural transformation between the fun
tors A and B.

2. Let A and B be sheaves on X. A morphism

h : A! B

is a 
ontinuous map h : A! B, su
h that

h(A

x

) � B

x

for all x 2 X and the restri
tions of h to the stalks are group homo-

morphisms.

These two de�nitions are related in the way, that a morphism of pres-

heaves h : A ! B indu
es a morphism of sheaves h : A ! B, where A and

B are 
onstru
ted out of A and B by the pro
ess of shea��
ation. This is

done by passing to dire
t limits. On the other side, any morphism of sheaves

h : A! B indu
es a morphism on presheaves, by passing to se
tions.

We will now pro
eed by de�ning subsheaves and quotient sheaves as well

as images and kernels. The 
ategory of sheaves in fa
t will turn out to be an

abelian 
ategory and methods from homologi
al algebra 
an be applied.

De�nition 2.1.4. 1. A subsheaf A of a sheaf B on X is an open sub-

spa
e of B, su
h that A

x

= A \ B

x

is a subgroup of B

x

for all x 2 X.

It is then 
lear, that A is a sheaf on X with its indu
ed stru
ture.

19



2. Let A be a subsheaf of B. We de�ne the quotient sheaf B=A as the

shea��
ation of the presheaf whi
h asso
iates to an open subset UofX

the abelian group B(U)=A(U).

De�nition 2.1.5. 1. Let h : A ! B be a morphism of sheaves. We de�ne

the kernel of h to be

ker(h) := f� 2 Ajh(�) = 0g:

This is a subsheaf of A. On the other side, it is 
lear that the image

of h

im(h) = fh(�)j� 2 Ag � B

is a subsheaf of B.

2. We 
all a sequen
e

A

f //
B

g //
C

of morphisms of sheaves exa
t , if im(f) = ker(g).

Given a sequen
e

A

f //
B

g //
C

of morphisms of presheaves, shea��
ation yields to a 
orresponding sequen
e

of sheafs. It 
an be seen, that this sequen
e is exa
t, if and only if the sequen
e

of presheaves above is exa
t on stalks. Sin
e passing to dire
t limits is exa
t

this for example is the 
ase, if for ea
h open subset U � X the sequen
e

A(U)

f

U //
B(U)

g

U //
C(U)

is exa
t. The latter 
ondition though is not a ne
essary 
ondition for a se-

quen
e of sheaves to be exa
t.

Now let X and Y be two topologi
al spa
es and f : X ! Y be a map.

Let A be a sheaf on X and B be a sheaf on Y . Given these data, one 
an


onstru
t two new sheaves as follows.

De�nition 2.1.6. 1. In the situation above we de�ne the dire
t image

of A under f to be the sheaf on Y whi
h asso
iates to ea
h open subset

U � X the abelian group A(f

�1

(U). The two 
onditions in De�nition

2.1.2 
an be easily veri�ed. We denote this sheaf with fA.
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2. We de�ne the inverse image of B under f to be the sheaf on X, given

by the pullba
k

f

�

B = f(x; b) 2 X � Bjf(x) = �(b)g:

It is easy to 
he
k, that this is indeed a sheaf.

2.2 Supports

In this se
tion we dis
uss supports of se
tions in sheaves. For most of our

purposes, we 
an restri
t our attention to arbitrary in equal 
losed supports

or 
ompa
t supports. In two 
ases though the situation is more deli
ate and

we will give a general treatment here. Let X be an arbitrary topologi
al

spa
e.

De�nition 2.2.1. A family of supports on X is a family � of 
losed subsets

of X su
h that

1. Any 
losed subset of a member of � is again a member of �.

2. The family � is 
losed under �nite unions.

A family of supports � is 
alled para
ompa
tifying if ea
h element of

� is para
ompa
t and has a 
losed neighbourhood whi
h is in �. The two

most important families of supports are the family of 
losed and the family

of 
ompa
t supports on X. In general it is un
lear, whether these systems are

para
ompa
tifying. For the family of 
ompa
t supports, a suÆ
ient 
ondition

on the spa
e is to be lo
ally 
ompa
t. Sin
e stratifolds are by 
onstru
tion

lo
ally 
ompa
t and by Corollary 1.7.2 para
ompa
t and furthermore 
losed

subsets of para
ompa
t spa
es are para
ompa
t the following proposition

holds.

Proposition 2.2.1. Let X be a stratifold. Then the family of 
losed as well

as the family of 
ompa
t supports are para
ompa
tifying.

Let Y � X be a subset and � a system of supports on X. Then we de�ne

a system of supports on Y

�

jY

= fK � Y jK 2 �g: (2.3)

Now let A be a sheaf on X and s 2 A(X) be a global se
tion. We de�ne

the support of s as

supp(s) = fx 2 Xjs

x

6= 0g (2.4)
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and denote this set with jsj. This set is already 
losed, sin
e it's 
omplement

is open, whi
h 
an be veri�ed easily. Now let � be a family of supports. The

global se
tions of A with supports in � are denoted with �

�

(A). If � is the

family of 
ompa
t supports we also write �




(A) for the se
tion with 
ompa
t

supports. If � is the family of all 
losed subsets of X we simply write �(A).

The fun
tor

A! �

�

(A)

from the 
ategory of sheaves to the 
ategory of abelian groups is left exa
t.

In general this fun
tor is not right exa
t. In fa
t the right derived fun
tors

lead to sheaf theoreti
 
ohomology, whi
h will be treated in Se
tion 2.3 .

De�nition 2.2.2. Let � be a family of supports. A sheaf A on X is 
alled

�-soft, if the restri
tion map A(X) ! A(K) for any K 2 � is surje
tive.

Here A(K) is de�ned as

A(K) = lim

�!

K�U

A(U):

The importan
e of the following proposition will only show up in the next


hapter. Nevertheless we think it might be helpful to state it at this pla
e,

sin
e it also delivers a good example for a soft sheaf.

Proposition 2.2.2. Let X be a stratifold. And let � be either the family of

all 
losed subsets or the family of all 
ompa
t subsets of X. Then the stru
ture

sheaf O

X

of X is �-soft.

Proof. Let A � X be a 
losed subset and f 2 O

X

(K) be de�ned on an open

neighbourhood U of A. Sin
e by Corollary 1.7.2 as a spa
e X is para
ompa
t,

we 
an �nd an open neighbourhood V � U of A su
h that the 
losure

�

V of

V is still 
ontained in U . This follows for example from [Bredon97℄ page 20

applied to the open 
overing X = U [ (X � A) of X. Now by applying

Corollary 1.7.1 we 
an �nd a partition of unity subordinated to the open


overing of X given by

X = U [ (X �

�

V ):

In this way we get smooth fun
tions � and � on X, su
h that

� + � � 1;

supp(�) � U; supp(�) � X �

�

V :
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From this, it is 
lear that �

jV

� 1 and hen
e

�

f = f � �

is a well de�ned smooth fun
tion on X su
h that

�

f

jV

= f

jV

, wi
h shows the


laimed surje
tivity in the de�nition above.

Proposition 2.2.3. Let � be a para
ompa
tifying family of supports and let

0!A

0

!A! A

00

! 0

be an exa
t sequen
e of sheaves. Suppose that A

0

is soft. Then the sequen
e

of global se
tions with support in �

0! �

�

(A

0

)! �

�

(A)! �

�

(A

00

)! 0

is also exa
t.

Proof. [Bredon97℄ page 67.

Similar to sheafs with values in the 
ategory of graded abelian groups

one 
an 
onsider sheafs with values in the 
ategory of rings, algebras et
. .

Almost any algebrai
 
onstru
tion 
an be 
arried over to sheaves. We start

with the notion of a module.

De�nition 2.2.3. Let A be a sheaf of rings on X. We 
all a sheaf B over

X a module over A, if for ea
h open set U � X the abelian group B(U) is

equipped with a module stru
ture over A(U) su
h that the restri
tion maps

are module homomorphisms.

Example 2.2.1. Let M be a smooth manifold. Then the stru
ture sheaf O

M

is a sheaf of rings. The sheaf 


n

M

of di�erential forms on M is a module over

O

M

.

The following proposition is very important, when we 
onsider the sheaf

of di�erential forms on a stratifold. For a proof see [Bredon97℄ page 69.

Proposition 2.2.4. Let � be a para
ompa
tifying family of supports, then

any module over a �-soft sheaf is again a �-soft sheaf.
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2.3 Sheaf Theoreti
 Cohomology Theory

Sheaf theoreti
 
ohomology is a very important tool in algebrai
 geometry

and some other parts of mathemati
s. For a given sheaf we give an expli
it

resolution to de�ne its 
ohomology. Thus we avoid homologi
al algebra terms

and don't bother to de�ne things like inje
tive sheafs et
. Throughout this

se
tion let � be a family of supports

Let A be a sheaf on X. For an open subset U � X let

C

0

(U;A) := ff : U 9 9 KAj� Æ f = idg (2.5)

denote the set of not ne
essarily 
ontinuous se
tions from U into A.Su
h not

ne
essary 
ontinuous se
tions are 
alled serrations. An alternative way is

to say

C

0

(U;A) =

Y

x2U

A

x

:

The asso
iation

U ! C

0

(U;A)

de�nes a sheaf on X whi
h we denote with C

0

(X;A). Sin
e ea
h 
ontinuous

se
tion 
an also be 
onsidered as a serration we have an in
lusion

A(U)! C

0

(U;A) = C

0

(X;A)(U)

and hen
e a natural monomorphism

� : A ! C

0

(X;A):

We de�ne

Z

1

(X;A) = 
oker(� : A ! C

0

(X;A)):

In this way we get an an exa
t sequen
e

0

//
A

� //
C

0

(X;A)

� //
Z

1

(X;A)

//
0

:

Indu
tively we de�ne

C

n

(X;A)) = C

0

(X;Z

n

(X;A)) (2.6)
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Z

n+1

(X;A) = Z

1

(X;Z

n

(X;A)): (2.7)

In this way we get exa
t sequen
es of the form

0

//
Z

n

(X;A)

� //
C

n

(X;A)

� //
Z

n+1

(X;A)

//
0

:

By spli
ing these sequen
es together we get a long exa
t sequen
e

0

//
A

� //
C

0

(X;A)

d //
C

1

(X;A)

d //
C

2

(X;A)

d //
:::

;

where d = � Æ �. It is an easy exer
ise to show that this sequen
e is exa
t. So

we end up with what we 
all the 
anoni
al resolution of the sheaf A. Any

other exa
t sequen
e of the form above, where C

i

(X;A) is repla
ed by some

sheaves L

i

is 
alled a resolution of A.

Let us pro
eed with 
onstru
ting a 
hain 
omplex from this resolution.

We de�ne

C

n

�

(X;A) := �

�

(C

n

(X;A)) (2.8)

and 
an now present the de�nition of sheaf theoreti
 
ohomology

groups of a spa
e X with 
oeÆ
ients in the sheaf A:

De�nition 2.3.1. Let X be a topologi
al spa
e and let A be a sheaf over X.

The 
ohomology groups of X with 
oeÆ
ients in the sheaf A and supports in

� are de�ned as

H

n

�

(X;A) =

ker(d : C

n

�

(X;A)! C

n+1

�

(X;A))

im(d : C

n�1

�

(X;A)! C

n

�

(X;A))

:

In general we suppress the index � if � denotes the system of 
losed supports.

In fa
t the homology groups above are the right derived fun
tors of the

left exa
t fun
tor �

�

and to de�ne sheaf 
ohomology, we 
ould have 
hosen

any inje
tive resolution of A instead of the 
anoni
al resolution. The resul-

ting 
ohomology groups would have been the same. This would require more

homologi
al algebra though, so we stay with this very 
on
rete de�nition.

Sin
e �

�

is left exa
t, we have an exa
t sequen
e

0! �

�

(A)! �

�

(C

0

(X;A))! �

�

(C

1

(X;A));

so by de�nition of the 
ohomology groups and (2.8) there is a natural iso-

morphism

�

�

(A)

�

=

H

0

�

(X;A):
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Hen
e we see that the 
ohomology 
lasses of dimension 0 are pre
isely the

global se
tions of the sheaf with support in �.

From the de�nition of C

n

�

(X;A) it 
an easily be seen, that as a fun
tor on

sheaves C

n

�

(X;�) is exa
t. So if we start with an exa
t sequen
e of sheaves

0! A

0

!A! A

00

! 0;

we get a long exa
t sequen
e of 
ohomology groups

:::! H

p

�

(X;A

0

)! H

p

�

(X;A)! H

p

�

(X;A

00

)

!

H

p+1

�

(X;A

0

):::;

from whi
h things like the Mayer-Vietoris sequen
e and ex
ision 
an be

followed.

The most famous example for sheaf theoreti
 
ohomology is probably the

�

Ce
h-
ohomology of a spa
e X, whi
h in 
ase X is a ni
e spa
e 
oin
ides

with the singular 
ohomology.

Example 2.3.1. Let X be a topologi
al spa
e and G an abelian group.Let

G be the 
onstant sheaf with value G on X. Then H

p

�

(X;G) are 
alled the

�

Che
h-
ohomology groups of X.

2.4 A
y
li
 Sheaves

A
y
li
 sheaves over a spa
e X are obje
ts with trivial 
ohomology. More

pre
isely we say :

De�nition 2.4.1. Let A be a sheaf over some spa
e X and � a family of

supports. We 
all A �-a
y
li
 if

H

p

�

(X;A) = 0; 8p > 0:

The following proposition will be fundamental in 
hapter 4 when proving

de Rham's theorem for stratifolds. There it will be applied on the 
omplex

of sheaves 


�

X

of di�erential forms on a stratifold X.

Proposition 2.4.1. Let X be a topologi
al spa
e and

0

//
A

� //
L

0

d //
L

1

d //
L

2

d //
:::

be a resolution of A by �-a
y
li
 sheaves, then there is a natural isomorphism

H

p

(�

�

(L

�

); d)

�

=

H

p

�

(X;A):
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Proof. The proof is very easy and follows dire
tly from the last part of se
tion

2.2. The proof 
an also be found in the book of Bredon [Bredon97℄ page

47.

For our purposes the following proposition is of major importan
e. The

proof 
an be found in [Bredon97℄ page 68 but uses the 
on
ept of 
abby

sheaves, whi
h we don't introdu
e here.

Proposition 2.4.2. Let � be a para
ompa
tifying system of supports and X

be a topologi
al spa
e. Furthermore let A be a �-soft sheaf over X. Then A

is �-a
y
li
.

2.5 Relative Sheaf Cohomology

As in almost any 
ohomology theory, there is also a relative version of sheaf

theoreti
 
ohomology. Let Y be a subspa
e of the topologi
al spa
e X and

let

i : Y ! X

be the in
lusion. This indu
es a morphism of sheaves

i

�

: C

�

(X;A)! iC

�

(Y;A

jY

);

where the right hand side denotes the dire
t image under i.We de�ne a new


omplex of sheaves as

C

�

(X; Y;A) = ker i

�

:

From this we get a 
hain 
omplex de�ning

C

�

�

(X; Y;A) = �

�

(C

�

(X; Y;A)); (2.9)

for any family of supports �, where the di�erential is given by the the re-

stri
tion of the di�erential on C

�

�

(X;A). The relative version of homology is

now de�ned as follows.

De�nition 2.5.1. Let A be a sheaf over the topologi
al spa
e X, � a family

of supports on X, and let Y � X be a subspa
e. Then 8n 2 N we de�ne

H

n

�

(X; Y;A) =

ker(d : C

n

�

(X; Y;A))! C

n+1

�

(X; Y;A))

im(d : C

n�1

�

(X; Y;A))! C

n

�

(X; Y;A))

:
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As usual there are some strong relations between absolute and relative


ohomology, though in general one has to be 
areful on the 
hoi
e of systems

of supports. We will only use the following exa
t sequen
e of pairs and some

version of ex
ision in sheaf 
ohomology, whi
h we will state afterward.

Proposition 2.5.1. Let � be a para
ompa
tifying family of supports. Under

the assumptions above there is a long exa
t sequen
e of 
ohomology groups

:::! H

p

�

(X; Y;A)! H

p

�

(X;A)! H

p

�

(Y;A

jY

)! H

p+1

�

(X; Y;A)! :::

Proof. The proof is easy, nevertheless uses the 
on
ept of 
abby sheaves. It


an be found in [Bredon97℄ page 84.

Proposition 2.5.2. If in addition to the assumptions above, the spa
e Y is

a 
losed subspa
e of X, then there is a natural isomorphism

H

p

�

(X; Y;A)

�

=

H

p

�

jX�Y

(X � Y;A):

Proof. The proof of this statement 
an be found in [Bredon97℄ on page 87.
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Kapitel 3

Constru
tions from Algebra

In this short 
hapter we present some of the algebrai
 tools we use in the

later 
hapters. Probably most of the readers are well a
quainted to things

like lo
alization or the lo
al global prin
iple. Not so well known are algebrai


di�erential forms. Throughout the 
hapter R denotes a 
ommutative ring.

In general we do not suppose that this ring R has a unit. If so we denote

this unit with 1

R

. If R has also the stru
ture of an algebra over a �eld k,

we swit
h symbols and denote it with A. Again we do not suppose that A

has a unit but we 
on
entrate on the 
ase, where the underlying �eld k has


hara
teristi
 zero. Later A will be the algebra C

1

(X) of smooth fun
tions

on a stratifold X or some related algebra and k will be the real or 
omplex

numbers.

3.1 Lo
alization

Let S � R be a multipli
ative subset of the ring R, that is S is 
losed under

multipli
ation. Let M be a module over R. We de�ne the lo
alization ofM

at S, denoted M

S

, as the set of equivalen
e 
lasses

(m; s) 2M � S

under the equivalen
e relation

(m; s) � (m

0

; s

0

);

whenever there is an element t 2 S su
h that

t � (s

0

m� sm

0

) = 0:
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The equivalen
e 
lass of (m; s) will be denoted with

m

s

. Su
h equivalen
e


lasses build an abelian group with addition given by

m

s

+

m

0

s

0

=

s

0

m+ sm

0

ss

0

:

Appli
ation on M = R will give us a ring R

S

with multipli
ation

r

s

�

r

0

s

0

=

rr

0

ss

0

:

M

S

then be
omes a module over R

S

in a natural way. Furthermore let

� :M ! N

be a homomorphism of R-modules, then we get an homomorphism of R

S

-

modules

�

S

:M

S

! N

S

;

m

s

7!

�(m)

s

:

It is not hard to see that

M

S

�

=

R

S




R

M:

In pra
ti
e lo
alisations are often done at maximal ideals. For example let

P � R be a maximal ideal of R, then

S = R� P

is a multipli
ative subset of R. We 
all M

P

= M

S

the lo
alization of M at

P .

The following lemma gives a ni
e example of lo
alization and in addition

shows how lo
alization helps to understand the lo
al situation, for example

in 
ase of a stratifold X.

Lemma 3.1.1. Let X be a 
ompa
t stratifold and C

1

(X) its algebra of

smooth fun
tions. Every maximal ideal P in C

1

(X) is of the form

P = ker(ev

x

: C

1

(X)! R);

where ev

x

denotes the evaluation map at some point x 2 X. Furthermore

C

1

(X)

P

�

=

O

X;x

:
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Proof. Clearly for any x 2 X we have that ker(ev

x

) is a maximal ideal. Now

let P be any maximal ideal in C

1

(X). Assume that P is not of the kind

des
ribed in the proposition. Then for any x 2 X there exists f

x

2 P su
h

that f

x

(x) 6= 0. Clearly we 
an assume f

x

(x) > 0. It is not hard to see,

that by 
ompa
tness of X one 
an use a �nite number of these fun
tions

and paste them together with a partition of unity to get a fun
tion f 2 P

su
h that f(x) > 0 8x 2 X. But then we have that 1=f is a well de�ned

fun
tion in C

1

(X) and sin
e P is an ideal 1 = (1=f) � f 2 P , whi
h is a


ontradi
tion to P being a maximal ideal. For the se
ond assertion let f=g

denote an element in C

1

(X)

P

. Then there is a neighbourhood U of x su
h

that g

jU

has no zeroes. Hen
e the fun
tion f=g is well de�ned on U and we


an 
onsider its equivalen
e 
lass [f=g℄ 2 O

X;x

. The asso
iation f=g 7! [f=g℄

is 
learly surje
tive. It is also inje
tive. If f=g maps to zero, then for some

open neighbourhood V of x we have f

jV

= 0. It follows from Proposition

1.7.1 that we 
an �nd � 2 C

1

(X) su
h that �(x) 6= 0 and supp(�) � V .

Hen
e in C

1

(X)

P

we have

f=g = 1=� � � � f=g = 1=� � (� � f)=g = 0

sin
e � � f is identi
al zero.

In some 
ases, the lo
alization of a module is mu
h easier to handle,

be
ause it has some good properties. For example it might turn out that

some lo
alization of a module is a free module over the lo
alized ring. The

following de�nition is a spe
ial 
ase of this.

De�nition 3.1.1. Let M be a module over the ring R. We 
all M a lo
ally

free module, if for any maximal ideal P of R the lo
alization M

P

is free over

R

P

.

In our 
ase it will turn out that 
ertain modules of di�erential forms will

be lo
ally free over the algebra of smooth fun
tions on a stratifold.

3.2 The Lo
al Global Prin
iple

The lo
al global prin
iple is somehow a bridge between the lo
al and the

global pi
tures. If we know a ring lo
alized at any maximal ideal P it should

somehow be possible to identify the ring itself. In some sense this is what the

following proposition states.

Proposition 3.2.1. Let � :M ! N be a homomorphism of R-modules su
h

that for any maximal ideal P of R the lo
alized map �

P

: M

P

! N

P

is a

mono-, respe
tively epi-, respe
tively isomorphism , then � itself is a mono-,

respe
tively epi-, respe
tively isomorphism.
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Proof. The Proof of this proposition 
an be found in [Eisenbud95℄ page 68.

3.3 Adjun
tion of a Unit

Some of our algebras doesn't 
ome with a unit element, in equal an element

1

A

2 A whi
h satis�es 1

A

� a = a � 1

A

= a 8a 2 A. For any k algebra A we


an 
onsider

A

+

:= A� k (3.1)

as a ve
torspa
e over k and de�ne a multipli
ation on this ve
torspa
e via

(a; r) � (b; s) := (ab + rb+ sa; rs): (3.2)

Together with this multipli
ation A

+

is a 
ommutative k-algebra with unit

given by the element (0; 1). We get the following short exa
t sequen
e of

k-algebras

0

//
A

' //
A

+

� //
k

//
0

;

where the maps are given as

'(a) := (a; 0); 8a 2 A

�(a; r) := r; 8(a; r) 2 A

+

:

In general this sequen
e is not a split exa
t sequen
e of algebras. In the 
ase

we already started with a unital algebra there is a splitting given by the map

Æ : A

+

! A

Æ(a; r) := a + r � 1

A

:

In this 
ase we have an isomorphism of algebras A

+

= A�k. Identifying a and

(a; 0) for all a 2 A we 
onsider A as a subset of A

+

. Using this identi�
ation

we have that A is a maximal ideal in A

+

.
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3.4 Derivations

Sin
e derivations play a major role in the following 
hapters, we brie
y re-


ount the de�nition and some elementary properties. For this let M be a

bimodule over A whi
h is also a ve
torspa
e over k su
h that multipli
ation

with elements of A and of k is asso
iative. If A has a unit, M inherits the

k-ve
torspa
e stru
ture from A using the map

r 7! r � 1

A

; 8r 2 k:

De�nition 3.4.1. We denote the set of k-linear maps

D : A!M;

whi
h satisfy the Leibniz rule

D(ab) = (Da)b+ a(Db)

with Der(A;M) and 
all it derivations of A with values inM . In 
aseM = A

is the regular module over A, we write Der(A) = Der(A;A).

In the unital 
ase, we always assume that the unit 1

A

a
ts as the identity

on M . The Leibniz rule then implies that D(1

A

) = 0, hen
e be
ause of k-

linearity

D(� � 1

A

) = 0; 8� 2 k: (3.3)

Later when we deal with Ho
hs
hild and Cy
li
 Homology, topologi
al alge-

bras will o

ur. It then makes sense to speak of 
ontinuous derivations. We

don't use an extra symbol, but say so, if we require derivations to be 
onti-

nuous. Anyway, in the end it will turn out that in the 
ase we are interested

in, that is A = C

1

(X) = M , there are no non-
ontinuous derivations. The

situation there is similar to the manifold 
ase, where any derivation 
an be

represented by a smooth ve
tor�eld, hen
e is 
ontinuous.

3.5 Di�erential Forms for Algebras

In this se
tion we generalize the 
on
ept of di�erential forms, as known in

the world of smooth manifolds, to arbitrary 
ommutative algebras. In this

se
tion, for a matter of simpli
ity we assume all algebras to be unital. Unlike

for Ho
hs
hild homology there is not mu
h about di�erential forms for nonu-

nital algebras in the literature. Nevertheless nonunital versions of the stu�

presented in this se
tion are possible, though a little bit te
hni
al. There are

also versions working in the non
ommutative 
ase (see [Loday91℄, page 82).
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De�nition 3.5.1. Let A be a 
ommutative, unital algebra over k. We denote

with F (A) the free A-module generated in symbols da 8a 2 A and with R(A)

the submodule whi
h is generated by the elements of the form

d(ab)� adb� bda 8a; b 2 A:

We de�ne the A-module of di�erential 1-forms or Kaehler di�erentials on

A as




1

A

= F (A)=R(A):

This A module has a universal property whi
h is 
losely 
onne
ted to

what we have done in the previous se
tion.

Proposition 3.5.1. Let M be a bimodule over A and let D : A ! M be

any M valued derivation on A. Furthermore let d : A! 


1

A

denote the map,

whi
h asso
iates to a 2 A the 
lass of da in 


1

A

. Then there is unique A-linear

map f : 


1

A

!M su
h that the following diagram 
ommutes

A

d

��

D //
M




1

A

f

>>||||||||

:

Hen
e there is an isomorphism

Der(A;M)

�

=

Hom

A

(


1

A

;M):

Proof. This is 
lear from the 
onstru
tion of 


1

A

.

We will now give a se
ond 
onstru
tion of 


1

A

. Its strength will show up,

when de�ning topologi
al versions of the stu� presented in this se
tion (see


hapter 5). Let us 
onsider the multipli
ation map

A
 A! A

a
 b! ab:

We denote the kernel of this map with I and 
onsider it as a module over A.

Let us also 
onsider the ideal I

2

and �nally the quotient I=I

2

. This will be

our 
andidate for 


1

A

. Clearly, as an A-module I is generated by elements of

the form

1

A


 a� a
 1

A

8a 2 A: (3.4)
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Let us denote 
lasses of elements of the form (3.4) modulo I

2

as

[1

A


 a� a
 1

A

℄:

The following proposition gives answer on how this is related with 


1

A

.

Proposition 3.5.2. Let A be a unital 
ommutative algebra. Then there is a

natural isomorphism




1

A

! I=I

2

da 7! [1

A


 a� a
 1

A

℄:

Proof. [Loday91℄ page 26.

We 
an now de�ne higher di�erential forms by using the exterior algebra


onstru
tion.

De�nition 3.5.2. For a unital 
ommutative algebra A, let




n

A

= �

n

A




1

A

be the A module of di�erential n- forms over A.

This module has a universal property, whi
h 
an simply be obtained by


omposing the two universal properties of the exterior produ
t 
onstru
tion

and di�erential 1-forms and has something to do with alternating forms on

derivations. We don't go into this in detail.

As the following proposition shows. The pro
ess of building di�erential

forms is 
ompatible with the pro
ess of lo
alization. This fa
t proves very

useful in 
al
ulations.

Proposition 3.5.3. Let A be a unital 
ommutative algebra and P be a ma-

ximal ideal in A. Then there is a natural isomorphism of modules over A

P




n

A

P

�

=

(


n

A

)

P

:

Proof. Sin
e the pro
ess of building alternating algebras is 
ompatible with

lo
alization, we 
an assume n = 1. In this 
ase, it is not hard to see, that

(


n

A

)

P

has the universal property of Proposition 3.5.1. for A

P

from whi
h the

proposition follows. See also [Weibel95℄ page 307 .
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That algebrai
ally de�ned di�erential forms are in fa
t a generalization of

the 
on
ept of di�erential forms on manifolds as one 
an �nd in [Bredon91℄

on page 261 for example, is the 
ontent of the following proposition.

Proposition 3.5.4. Let M be a 
ompa
t smooth manifold and A = C

1

(M)

denote the algebra of smooth fun
tions on M . Furthermore let 


n

(M) denote

the module of di�erential n-forms on M Then there is a natural isomorphism




n

C

1

(M)

�

=




n

(M):

Proof. Clearly there is a well de�ned map




n

C

1

(M)

! 


n

(M)

f

0

df

1

:::df

n

7! f

0

df

1

:::df

n

;

where the left hand expressions is understood as an algebrai
 di�erential

form, whereas the right hand expression stands for the alternating n-fold

produ
t of the n di�erential one forms df

1

; :::df

n

and the smooth fun
tion f

0

.

This map is an isomorphism. To 
he
k this, using the lo
al global prin
iple

( Proposition 3.2.1 ) together with Proposition 3.5.3 and Lemma 3.1.1 one


an assume that M = R

k

. In this 
ase the proposition is 
learly true.
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Kapitel 4

de Rham Theory of Stratifolds

In this 
hapter we will generalize 
on
epts like ve
tor�elds and de Rham


ohomology whi
h are well known in the world of smooth manifolds to the

world of stratifolds. The main result of this 
hapter is the generalization of

de Rham's theorem to the 
ase of stratifolds, namely that the de Rham 
o-

homology with 
ompa
t support of a stratifold X is naturally isomorphi
 to

its real valued singular 
ohomology with 
ompa
t support. We present a very


on
rete and geometri
 isomorphism, whi
h is given by integrating di�eren-

tial forms over homology 
lasses.

4.1 Tangentspa
es

Let X be a stratifold. As before, we denote with O

X

the stru
ture sheaf of X.

Let x 2 X be a point and O

X;x

the stalk of O

X

at x. The following de�nition

of the tangent spa
e of X at the point x has to be seen in 
omplete analogy

to the 
ase of a smooth manifold.

De�nition 4.1.1. We de�ne the tangent spa
e of the stratifold X at some

point x 2 X as

T

x

X = Der(O

X;x

;R):

Clearly T

x

X is a ve
torspa
e over the real numbers. From Proposition

1.3.1 it follows, that if x lies in the k-th stratum S

k

of X, we have

O

X;x

�

=

O

S

k

;x

;

where O

S

k

denotes the stru
ture sheaf of the k stratum. The isomorphism is

given by restri
tion of germs to the k-stratum. We follow that

Der(O

S

k

;x

;R)

�

=

Der(O

X;x

;R)
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indu
ed by the in
lusion of the k-stratum. So we have proven the following

easy, but nevertheless important proposition.

Proposition 4.1.1. Let X be a stratifold and x 2 S

k

� X. Then the in
lu-

sion of the k-th stratum indu
es an isomorphism

T

x

S

k

�

=

T

x

X:

In parti
ular the dimension of T

x

X is equal to k.

Clearly, if we have a smooth map f : X ! Y between two stratifolds, we

get an indu
ed map O

Y;f(x)

! O

X;x

. This map then indu
es a map

f

�

: Der(O

X;x

;R) ! Der(O

Y;f(x)

;R);

whi
h is the same as a map

f

�

: T

x

X ! T

f(x)

Y: (4.1)

We 
all f

�

the tangential of f at the point x. It is 
lear that f

�

is a ve
tor-

spa
e homomorphism.

In the proposition above no restri
tions on the dimension of the stratifold

are needed. So, even an in�nite dimensional stratifold has �nite dimensional

tangentspa
es. The dimension of the tangentspa
e depends on the stratum

whi
h 
ontains the point. In anyway the dimension of the tangentspa
es

varies. This is one major di�eren
e to the world of manifolds. It makes it

somehow diÆ
ult to de�ne something as the tangentbundle by pasting to-

gether the tangentspa
es in a 
ertain way. We don't bother to de�ne some

alternative of the tangentbundle and 
ome right away to ve
tor�elds. In the

manifold 
ase, smooth se
tions of the tangentbundle are in one to one 
or-

responden
e to the derivations of the algebra of smooth fun
tions. This will

be our start point in the next se
tion.

4.2 Derivations and Ve
tor�elds

De�nition 4.2.1. For a stratifold X we denote with Der(X) the derivations

of the algebra C

1

(X).

So far nothing has been said about the topology of C

1

(X) and derivati-

on here just means derivation, we don't require anything as 
ontinuous here.

Later we will introdu
e a topology on C

1

(X) and in analogy to the mani-

fold 
ase it will be
ome 
lear, that any derivation of C

1

(X) is automati
ally
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ontinuous.

We should begin with a property ofDer(X) we 
all lo
ality, whi
h means

that for any D 2 Der(X) and f 2 C

1

(X) the value of Df at some point

x 2 X only depends on the behaviour of f in a small neighbourhood of x.

We all know this behaviour of derivations from the world of manifolds, and

the reason this is valid for stratifolds as well is Lemma 1.7.1

Proposition 4.2.1. Let D 2 Der(X) and f; g 2 C

1

(X). Let x 2 X be

some point and U be an open neighbourhood of x in X su
h that f

jU

= g

jU

.

Then

Df(x) = Dg(x):

Proof. We have (f � g)

jU

� 0. A

ording to Lemma 1.7.1 we 
an 
hoose

� 2 C

1

(X) su
h that �(x) = 1 and supp(�) � U . Then 0 � � � (f � g) on

the whole of X, hen
e

0 = D(� � (f � g)) = D� � (f � g) + � �D(f � g):

Evaluation at x shows that Df(x) = Dg(x).

We will give an expli
it des
ription of Der(X) in form of ve
tor�elds on

the strata R

k

of the stratifold X. Let us denote the ve
tor�elds on R

k

with

�(R

k

). We should remind the reader at this point, that sin
e we are working

with 
-manifolds, for x 2 �R

k

we have from Proposition 1.1.1 that

O

R

k

;x

�

=

O

�R

k

;x

:

Clearly this isomorphism 
arries over when we 
onsider derivations on O

R

k

;x

.

So we have a natural isomorphism

T

x

R

k

�

=

T

x

�R

k

:

This isomorphism is given by forgetting the 
omponent orthogonal to the

boundary. One might think that this is a loss of information. It isn't, when

we 
onsider ve
tor�elds on R

k

, sin
e then, the 
omponent orthogonal to the

boundary does have an impa
t on germs, when 
onsidered arbitrary 
lose to

the boundary, but not on the boundary. Sin
e all our ve
tor�elds are assu-

med to be smooth, the behaviour 
lose to the boundary uniquely determines

the behaviour on the boundary. Another point to keep in mind is that an

arbitrary ve
tor�eld on R

k

in general won't deliver a derivation of C

1

(R

k

).
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This is be
ause fun
tions in C

1

(R

k

) have to satisfy that extra 
ondition to

be 
onstant along the 
ollar 
lose to the boundary. To get derivations from

ve
tor�elds on R

k

, we must require some 
ondition on the 
omponents ortho-

gonal to the boundary, whi
h guarantees the 
ondition to be 
onstant along

the 
ollar. This will be expressed in 
ondition 2. of De�nition 4.2.2 .

De�nition 4.2.2. Let X be a stratifold with 
harts '

k

and strata R

k

for

k 2 I. We de�ne

�(X) � f
 = (


k

)

k2I

j


k

2 �(R

k

)g;

to be those sequen
es of ve
tor�elds whi
h satisfy the following two 
onditions.

1. For any pair x 2 R

k

and y 2 R

j

su
h that '

k

(x) = '

j

(y) = z 2 X

'

k�

(


k

(x)) = '

j�

(


j

(y)) 2 T

z

X:

2. For any k let p

k

: �R

k

� [0; �) ! �R

k

denote the proje
tion from the


ollar of R

k

to the boundary. Then for any y 2 �R

k

the fun
tion

[0; �)! T

y

�R

k

t 7! p

k�


(y; t)

is 
onstant in a small neighbourhood of zero.

�(X) has a natural stru
ture as a module over C

1

(X) and will be 
alled the

module of ve
tor�elds on the stratifold X.

We will now re
ognize Derivations on C

1

(X) as ve
tor�elds on X. This

is the 
ontent of the following theorem.

Theorem 4.2.1. There is an isomorphism of modules over C

1

(X)

Der(X)

�

=

�(X):

Proof. Let D 2 Der(X) be a given derivation and let R

k

denote the full

strata of X. We de�ne 


k

2 R

k

as follows. Let x 2 R

k

and f

jx

2 O

R

k

;x

be

de�ned on an open subset U of R

k

. The set V := U \ R

Æ

k

is also open and

be
ause of the properties of the 
harts '

k

, we have that '

k

(V ) is an open

subset of S

k

.Then

g := f Æ '

�1

kj'

k

(V )
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is a smooth fun
tion de�ned on an open subset of S

k

. As in the proof of

Proposition 1.3.1 there is a unique way to extend g on an open subset of X.

We 
an then further extend g to the whole of X. De�ne




k

(x)(f

jx

) := (Dg)('

k

(x)):

This is well de�ned by the property of lo
ality ofD and the expli
it extension

in a small neighbourhood of '

k

(V ). To 
he
k 
ondition 2 from De�nition

4.2.2, we identify x = (y; t) 2 �R

k

� [0; �) in a small neighbourhood of the

boundary. Let f 2 O

�R

k

;y

and let p : �R

k

� [0; �) be the proje
tion on the

�rst 
oordinate. Then the fun
tion f Æ p on R

k

is 
onstant in the se
ond

variable whi
h means the germ f

j(y;t)

remains 
onstant when t is 
hanged.

This allows us to take one single fun
tion g 2 C

1

(X) as above whi
h suits

all these germs. We then get

p

�




k

(y; t)(f

jy

) = 


k

(y; t)(f Æ p

j(y;t)

) = (Dg)('

k

(y; t)):

The latter fun
tion is 
onstant in t for small t, sin
e D is a derivation on

C

1

(X) and hen
e Dg 2 C

1

(X). If f

1jx

and f

2jx

are two elements in O

R

k

;x

both de�ned on U , then we have extensions g

1

respe
tively g

2

and g

1

� g

2


oin
ides with the 
anoni
al extension of f

1jx

� f

2jx

in a small neighbourhood

of '

k

(V ). Hen
e




k

(x)(f

1jx

� f

2jx

) = D(g

1

� g

2

)('

k

(x)) = (Dg

1

� g

2

+ g

1

�Dg

2

)('

k

(x));

whi
h shows that 


k

(x) is a derivation, hen
e 


k

(x) 2 T

x

R

k

. This 
onstru
tion

gives us ve
tor�elds 


k

on R

k

. These ve
tor�elds also satisfy the 
ompatibility


ondition, whi
h 
an be seen as follows. Let z 2 X and f

jz

2 O

X;z

, x 2 R

k

y 2 R

j

su
h that '

k

(x) = '

j

(y) = z. Then by de�nition of 


k

and 


j

we have




k

(x)(f Æ '

kjx

) = (Df)('

k

(x)) = (Df)('

j

(y)) = 


j

(y)(f Æ '

jjy

):

Hen
e 


D

= (


k

)

k2I

is a well de�ned element in �(X). The asso
iation D 7!




D


learly is a homomorphism of modules over C

1

(X). On the other side

let there be given a ve
tor�eld 
 = (


k

)

k2I

2 �(X) and let f 2 C

1

(X) be a

smooth fun
tion on X.Let x 2 X be a point and y an arbitrary point in the

preimage of x under some '

k

. We de�ne

D




f(x) := 


k

(x)(f Æ '

kjy

):

By the 
ompatibility 
ondition of the 


k

this value doesn't depend whether

on the 
hoi
e of k 2 I nor on the spe
ial 
hoi
e of y 2 R

k

. The 
ontinuity of

the fun
tion

D




f : x 7! D




f(x)
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is 
lear from the topology of X as a quotient spa
e (see De�nition 1.2.1 and

De�nition 1.2.2). It remains to 
he
k that D




f is smooth in our sense. To

show this let '

k

be a 
hart of X. Then

x 7! (D




f Æ '

k

)(x) = D




f('

k

(x)) = 


k

(x)(f Æ '

kjx

)


learly varies smoothly on x 2 R

k

. Let x = (y; t) 2 �R

k

� [0; �) be a point in

the 
ollar of R

k

. Then

(y; t) 7! (D




Æ '

k

)(y; t) = 


k

(y; t)(f Æ '

kj(y;t)

);

doesn't depend on t for small t be
ause the germ f Æ'

kj(y;t)

remains 
onstant

when the se
ond variable is 
hanged for small t and 


k

satis�es 
ondition 2 of

De�nition 4.2.2. Hen
e we have proven that D




f 2 C

1

(X) and by a trivial

argument D




2 Der(C

1

(X)). By 
onstru
tion it is 
lear that the maps


 7! D




D 7! 


D

are inverse to ea
h other. Hen
e the statement of the theorem follows.

To get a better feeling of how ve
tor�elds or equally derivations on a

stratifold look like, we should give an example.This is the most easy example

one 
ould think of, nevertheless re
e
ts the situation very well.

Example 4.2.1. We 
onsider S

1

= [0; 1℄ [

'

pt: as a two strata stratifold,

where '(0) = '(1) = pt. In this 
ase both 
onditions of De�nition 4.2.2 are

empty, hen
e V e
t(S

1

) = V e
t([0; 1℄). The latter 
an then be identi�ed with

smooth fun
tions on the unit interval. This has to be 
onsidered as a module

over

C

1

(S

1

) = ff : [0; 1℄! R; f(0) = f(1); f
onstant around f0; 1gg:

So, as we 
an easily see, V e
t(S

1

) is not �nitely generated over C

1

(S

1

).

This situation 
arries over to any stratifold whi
h has singularities. It makes

life harder, when one is trying to use theorems of 
ommutative algebra to

establish results for ve
tor�elds (or later di�erential forms), 
ause most of

them only work in the �nitely generated 
ase.
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4.3 Di�erential Forms on Stratifolds

In se
tion 3.5 we already introdu
ed di�erential forms for arbitrary 
ommu-

tative unital algebras. This of 
ourse works for the algebra A = C

1

(X) for

a stratifold X. On the other side, this 
onstru
tion is somehow abstra
t and

ungeometri
. For this reason we 
hoose the following approa
h, whi
h is mo-

delled as 
lose as possible on the manifold 
ase. We will later show, that in

the 
ompa
t 
ase both versions of di�erential forms 
oin
ide.

On a manifold M , a di�erential form is given as a smooth se
tion

! :M !

a

x2M

�

n

T

�

x

M =

a

x2M

Alt

n

(T

x

M;R);

where the two right hand expressions have been given an appropriate to-

pology and Alt

n

denotes the alternating n-forms.. For a stratifold X we

mentioned that it is not easy, to give

`

x2X

�

n

T

�

x

X any natural topology. It

is well known, that in the manifold 
ase a not ne
essary 
ontinuous se
tion

of �

n

T

�

M is a di�erential form if and only if it 
an lo
ally be represented as

a sum of forms

f

0

df

1

^ ::: ^ df

n

;

where the f

i

are smooth fun
tions onM . This is the start point for our de�ni-

tion of di�erential forms on stratifolds. Usually we skip the ^ in our notation.

Given fun
tions f

0

; :::f

n

on a stratifold X, we de�ne f

0

df

1

:::df

n

as the

se
tion

f

0

df

1

:::df

n

: X !

a

x2X

�

n

T

�

x

X =

a

x2X

Alt

n

(Der(O

X;x

);R) (4.2)

(f

0

df

1

:::df

n

)(x)(D

1

; :::; D

n

) =

X

�2�

n

(�1)

sign�

f

0

(x)D

1

f

�(1)jx

:::D

n

f

�(n)jx

; (4.3)

where �

n

denotes the permutations of f1; 2; :::ng and D

i

2 Der(O

X;x

;R) are

derivations. For 
omparison to the manifold 
ase see for example [Bredon91℄

page 262. We 
an now de�ne di�erential forms on stratifolds.

De�nition 4.3.1. Let X be a stratifold. A se
tion

! : X !

a

x2X

�

n

T

�

x

X
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is 
alled a di�erential n-form, if for any x 2 X there is an open neigh-

bourhood U � X and �nitely many smooth fun
tions f

j

i

de�ned on U su
h

that

!

jU

=

X

j

f

j

0

df

j

1

:::df

j

n

as de�ned in (4.2),(4.3) We denote with 


n

(X) the set of di�erential n-forms

and 
onsider 


n

(X) as a module over C

1

(X).

When working with non 
ompa
t stratifolds, we have to pay attention

on the supports of 
ertain di�erential forms. This yields to the following

de�nition.

De�nition 4.3.2. Let ! 2 


n

(X) be a di�erential n-form on a stratifold X.

We 
all the 
losure of

fx 2 Xj!(x) 6= 0g

the support of X and denote it supp(!). We further de�ne




n




(X) := f! 2 


n

(X)jsupp(!) is 
ompa
t g

to be the module over C

1

(X) of di�erential n-forms on X with 
ompa
t

support.

By de�nition it is 
lear that 


0

(X) = C

1

(X) and 


0




(X) = C

1




(X)

where the latter denotes smooth fun
tions on X with 
ompa
t support.The

geometri
 meaning of higher order di�erential forms be
omes 
learer, when

we study the lo
al pi
ture in form of sheaves in se
tion 4.5.

4.4 Fun
torial Properties of Di�erential Forms

Sin
e we de�ned the tangential g

�

of a smooth map g : X ! Y between

stratifolds it is very easy to see that the asso
iation

X 7! 


n

(X)

is fun
torial. In fa
t this is 
ompletely analogous to the manifold 
ase. The

map g indu
es maps

g

�

: T

x

X ! T

g(x)

Y:
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Let ! 2 


n

(Y ) then we de�ne g

�

! 2 


n

(X) as

g

�

!(x)(D

1

; :::; D

n

) = !(g(x))(g

�

D

1

; :::; g

�

D

n

):

If ! is lo
ally represented by a sum

!

jU

=

X

j

f

j

0

df

j

1

:::df

j

n

;

so is g

�

! by

g

�

!

jg

�1

(U)

=

X

j

(f

j

0

Æ g)d(f

j

1

Æ g):::d(f

j

n

Æ g):

4.5 Sheaves of Di�erential Forms

By the de�nition of di�erential forms, it is 
lear that the asso
iation

U 7! 


n

(U)

for open subsets U of a stratifold X de�nes a sheaf on X. We denote this

sheaf by 


n

X

and 
all it the sheaf of di�erential forms on X.

Proposition 4.5.1. Let � be either the system of 
ompa
t or 
losed sup-

ports. Then the sheaf 


n

X

of di�erential n-forms on a stratifold X is �-soft.

In parti
ular it is �-a
y
li
.

Proof. This is an appli
ation of Propositions 2.2.1, 2.2.2 and 2.2.4 on the

module 


n

X

over O

X

We should now study the lo
al pi
ture in form of the germs 


n

X;x

of the

sheaf of di�erential n-forms at some point x 2 X. The following proposition

is a generalisation of Proposition 1.3.1.

Proposition 4.5.2. Let S

k

be the k-stratum of the stratifold X and x 2 S

k

.

Then the in
lusion

i : S

k

! X

indu
es an isomorphism




n

X;x

�

=




n

S

k

;x

;

where the right hand side denotes the germ of di�erential n-forms on the

smooth manifold S

k

.
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Proof. The reason for this to be true is the fa
t that lo
ally, di�erential forms

are representable by the exterior produ
t of di�erentials of smooth fun
tions

and smooth fun
tions in a 
lose neighbourhood of a stratum are identi�ed by

their restri
tion to the stratum.The latter is the 
ontent of Proposition 1.3.1

. To be more pre
ise, we let n = 1, x 2 X be some point in the k-stratum S

k

and dg 2 


1

X;x

su
h that

i

�

dg = d(g Æ i) = 0 2 


1

S

k

;x

:

Then sin
e S

k

is a smooth manifold, we have that g is 
onstant in a small

neighbourhood V of x in S

k

. By Proposition 1.3.1 there is also a small neigh-

bourhood U of x in X, su
h that g restri
ted to U is 
onstant. Hen
e, by

de�nition of dg and (3.3) we have that dg

jU

= 0 so that dg = 0 2 


1

X;x

whi
h

proves inje
tivity in the 
ase n = 1. Surje
tivity is also 
lear from Proposition

1.3.1 . For general n the proposition follows from the fa
t, that




n

X;x

�

=

�

n

O

X;x




1

X;x

;




n

S

k

;x

�

=

�

n

O

S

k

;x




1

S

k

;x

;

and last but not least

O

X;x

�

=

O

S

k

;x

;

where in general �

�

R

denotes the exterior algebra over the ring R.

We should mention at this point, that the same te
hnique used in Lemma

3.1.1 
an be used to show that




n

X;x

= 


n

(X)

P

; (4.4)

where P = ker(ev

x

: C

1

(X) ! R) indi
ates lo
alization at P . This for

example shows that for a 
ompa
t stratifold X as a module over C

1

(X) we

have that 


n

(X) is lo
ally free, and the lo
al rank is given by

�

n

k

�

for x 2 S

k

.

Sin
e 


n

(X) is not �nitely generated as a module over C

1

(X) one 
an not

follow from this, that it is proje
tive as a module over C

1

(X). In fa
t it is

not, sin
e in this 
ase, the lo
al rank would be 
onstant.

Sin
e we know, how 


n

(X) lo
ally looks like, we 
an establish the gene-

ralization of Proposition 3.5.4 for stratifolds.
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Proposition 4.5.3. Let X be a 
ompa
t stratifold and A = C

1

(X) the

algebra of smooth fun
tions on X. Then there is a natural isomorphism




n

C

1

(X)

�

=




n

(X):

Proof. The proof is the same as in Proposition 3.5.4 using the lo
al global

prin
iple, Proposition 4.5.2 and the remark above.

4.6 de Rham Cohomology of Stratifolds

To build a version of de Rham 
ohomology for stratifolds, absolute or sheaf

theoreti
, we have to de�ne an operator d, whi
h is known as exterior deriva-

tion in the manifold 
ase. With our de�nition of di�erential forms, to de�ne

d be
omes very easy.

De�nition 4.6.1. Let X be a stratifold and ! 2 


n

(X) a di�erential form

su
h that lo
ally

!

jU

=

X

j

f

j

0

df

j

1

:::df

j

n

:

De�ne d! 2 


n+1

(X) as the di�erential form whi
h is lo
ally represented as

(d!)

jU

=

X

j

df

j

0

df

j

1

:::df

j

n

:

That d! is indeed a well de�ned di�erential form is 
lear from the de�ni-

tion. To show that d! doesn't depend on the lo
al representation is somehow

te
hni
al, and only uses algebrai
 properties of 


n

(X). This 
an be looked

up in the book [Weibel95℄, page 349. So we get an operator

d : 


n

(X)! 


n+1

(X): (4.5)

We 
all this operator exterior derivation in analogy to the manifold 
ase,

where it 
an be de�ned via the same method used here. Sin
e d(1

X

) = 0,

where 1

X

denotes the 
onstant fun
tion with value 1 on X, it follows from

the de�nition of d that d Æ d = 0. hen
e we get a 
hain 
omplex (


�

(X); d)

whi
h we 
all the de Rham 
omplex of X.

The following lemma states that d is also well de�ned, when working with


ompa
t supports.
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Lemma 4.6.1. The exterior di�erential

d : 


n

(X)! 


n+1

(X)

maps 


n




(X) into 


n+1




(X).

Proof. Let 


n




(X). We have to show that supp(d!) is 
ompa
t. Sin
e we know

that supp(!) is 
ompa
t, we 
an �nd a �nite number of open sets U

1

; :::; U

k

in X su
h that ! is lo
ally representable on ea
h of the U

j

and

supp(!) �

k

[

i=1

U

i

:

Sin
e X is lo
ally 
ompa
t, we 
an 
hoose ea
h U

i

to be relative 
ompa
t.

By de�nition of d, d! is zero outside this union, hen
e

supp(d!) �

k

[

i=1

U

i

�

k

[

i=1

�

U

i

:

This proves that supp(d!) is 
ompa
t.

One 
an even show, that d de
reases supports, but we won't need this.

We are now able to de�ne the de Rham 
ohomology groups.

De�nition 4.6.2. Let X be a stratifold. For n 2 N we 
all

H

n

dR

(X) =

ker(d : 


n

(X)! 


n+1

(X))

im(d : 


n�1

(X)! 


n

(X))

the de Rham 
ohomology groups of X. We also de�ne

H

n

dR;


(X) =

ker(d : 


n




(X)! 


n+1




(X))

im(d : 


n�1




(X)! 


n




(X))

to be the de Rham 
ohomology groups with 
ompa
t support.

Both groups of 
ourse 
oin
ide if the stratifold X is 
ompa
t. If X is non


ompa
t, we're mostly interested in the de Rham 
ohomology groups with


ompa
t support. We don't present any theorems for non 
ompa
t supported


ohomology in this 
ase.

For our sheaf theoreti
 approa
h it is very useful to see the de Rham


omplex not only as a 
hain 
omplex, but as a 
omplex of sheaves. Sin
e the
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exterior di�erential d as de�ned in (4.5) is 
learly natural with respe
t to

in
lusions it indu
es a morphism of sheaves

d : 


n

X

! 


n+1

X

8n 2 N (4.6)

Again we have d Æ d = 0. Hen
e we get a 
omplex of sheaves

0

//
R

� //
O

X

= 


0

X

d //



1

X

d //



2

X

d //
:::

We 
all this 
omplex a

ording to the previous de�nition the de Rham


omplex of X. The following proposition 
an be seen as a generalisation of

the Poin
are lemma for manifolds.

Proposition 4.6.1. Let X be a stratifold and � be either the family of 
om-

pa
t supports or the family of 
losed supports then the de Rham 
omplex is a

resolution of the 
onstant sheaf R by �-a
y
li
 sheafs.

Proof. By Proposition 4.5.1 the sheaves 


n

X

are �-a
y
li
 and we are left to

show that the de Rham 
omplex is exa
t. Exa
tness has to be 
he
ked on

the stalks, so let x 2 X be some point. Then x lies in some stratum S

k

and

sin
e by Proposition 4.5.2




n

X;x

�

=




n

S

k

;x

the 
omplex on stalks is pre
isely the 
omplex

0

//
R

� //
O

S

k

;x

= 


0

S

k

;x

d //



1

S

k

;x

d //



2

S

k

;x

d //
:::

The exa
tness of this 
omplex follows from the Poin
are Lemma applied to

the smooth manifold S

k

. Hen
e we have proven the proposition.

The last proposition has the following immediate 
onsequen
e whi
h we

state as a theorem be
ause it 
al
ulates the de Rham groups.

Theorem 4.6.1. Let X be a stratifold, then its de Rham 
ohomology groups

with 
ompa
t support are isomorphi
 to its real valued singular 
ohomology

groups with 
ompa
t support, i.e.

H

�

dR;


(X)

�

=

H

�




(X;R)

Proof. By proposition 4.6.1 above the de Rham 
omplex is a resolution of

the 
onstant sheaf R by a
y
li
 sheaves. A

ording to Proposition 2.4.1 this

resolution indu
es an isomorphism

H

�

(�




(


�

X

))

�

=

H

�




(X;R):
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On the left side of the last equation we have the de Rham 
ohomology groups

of X with 
ompa
t support, whereas on the right side by de�nition we have

the 
ompa
t supported 
ohomology groups of X with 
oeÆ
ients in the 
on-

stant sheaf X. The latter groups are for ni
e spa
es, in parti
ular for strati-

folds, isomorphi
 to the 
ompa
t supported singular 
ohomology groups with

real 
oeÆ
ients. Hen
e, we have proven the theorem.

In se
tion 4.10. we give a geometri
al meaning to this isomorphism whi
h

is given by integration. Integration of forms on stratifolds will be introdu
ed

in the next se
tion.

4.7 Integration of Di�erential Forms on Stra-

tifolds

We assume the reader is familiar with the pro
ess of integrating di�erential

forms on manifolds. Integration of forms on the full strata R

k

(X) ofX 
an be

done using a Riemannian square density asso
iated to a Riemannian metri


on R

k

(X) as it is done in [Lang99℄,pages 466-470. The reader who doesn't

know how to work with densities 
an also think of integration via a volume-

form on the top stratum. Of 
ourse this only works for the top stratum of Z

oriented stratifolds, but in the end, this will be the only 
ase where we need

integration. Nevertheless, here is the general version.

We let X be a stratifold and ! 2 


k




(X) be a di�erential form on X. Let

'

k

: R

k

! X be the 
hart of the k-dimensional stratum. Then '

�

k

! whi
h is

de�ned by it's lo
al representations

'

�

k

!

jU

=

X

j

(f

j

0

Æ '

k

)d(f

j

1

Æ '

k

):::d(f

j

k

Æ '

k

)

is a di�erential form with 
ompa
t support on the smooth manifold R

k

.

De�nition 4.7.1. Let X be a stratifold and ! 2 


k




(X) a di�erential k-form

on X, then we de�ne

Z

X

! :=

Z

R

k

'

�

k

!:

There is one major di�eren
e to the manifold 
ase, that is, that integrati-

on of k forms whi
h have smaller degree than the dimension of the stratifold

may yield nontrivial results. This e�e
t is indeed very interesting and 
an be

used to de�ne 
ertain sub
omplexes of di�erential forms whi
h might lead to
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interesting new 
ohomology theories. But so far this is only spe
ulation, and

as we mentioned earlier in this work only integration over the top stratum

plays a role.

In the following se
tion we present a version of Stokes Theorem for di�e-

rential forms on stratifolds.

4.8 Stokes' Theorem for Di�erential Forms

on Stratifolds

When integration of di�erential forms is de�ned, a natural question is, whe-

ther there is a Stokes' like theorem su
h as

Z

X

d! =

Z

�X

i

�

!;

where i : �X ! X denotes the in
lusion. In general this will not be true. As

the proof of the theorem below will show, su
h a formula 
an only hold in

general, if the se
ond highest stratum of X is empty. This 
ondition is satis-

�ed by Z and Z=2 oriented stratifolds, whi
h we are parti
ularly interested

in, sin
e they are the building blo
ks of integral respe
tively Z=2 homology.

Theorem 4.8.1. Let X be a Z or Z=2 oriented stratifold and let n = Dim(X).

Let ! 2 


n�1




(X) be a di�erential form on X and let i : �X ! X denote the

in
lusion. Then we have

Z

X

d! =

Z

�X

i

�

!:

Proof. Of 
ourse we will use Stokes' theorem for manifolds. By de�nition of

the integral on the left side we have

Z

X

d! =

Z

R

n

'

�

n

d! =

Z

R

n

d'

�

n

! =

Z

�R

n

j

�

'

�

n

!

=

Z

�R

+

n

j

�

'

�

n

! +

Z

�R

�

n

j

�

'

�

n

!;

where j : �R

n

! R

n

denotes the in
lusion and '

n

: R

n

! X is the n-th


hart of X. On the other side we have again by de�nition of the integral and

the top stratum of �X that

Z

�X

i

�

! =

Z

�R

�

n

j

�

'

�

n

!:
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So we have proven the theorem, when we show that

Z

�R

+

n

j

�

'

�

n

! = 0:

Sin
e by the orientability assumption on X we have X

n�1

= X

n�2

and for

dimensional reasons ( see Proposition 4.5.2 )

!

jX

n�1

= !

jX

n�2

= 0:

We also have that i

�

! = !

jX

n�1

and hen
e the theorem follows from the

following 
ommutative diagram

�R

+

n

'

n //

'

n

##GGGGGGGG
X

X

n�1

i

OO :

4.9 Relative de Rham Cohomology

As in almost any 
ohomology theory there is also a relative version of de

Rham 
ohomology of stratifolds. This relative version 
an be 
ompared to

the absolute one by a long exa
t sequen
e, similar to the exa
t sequen
e of

pairs known from singular 
ohomology. This will be done in this se
tion.

Let X be a stratifold and Y � X be a substratifold. The in
lusion map

i : Y ! X

indu
es a morphism of sheaves over X

i

�

: 


n

X

! i


n

Y

;

where i


n

Y

denotes the dire
t image of 


n

Y

under i (see De�nition 2.1.6). This

map is given by restri
tion.

Lemma 4.9.1. Let Y be a 
losed substratifold of X. Then i

�

: 


n

X

! i


n

Y

is

surje
tive.
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Proof. We have to prove surje
tivity of the maps on stalks

i

�

x

: 


n

X;x

! (i


n

Y

)

x

for all x 2 X. This is 
lear for x 2 X � Y sin
e then (i


n

Y

)

x

= 0. So let

us assume that x 2 Y . There is a stratum S

k

(X) of X 
ontaining x. Let

S

i

(Y ) = S

k

(X)\Y be the 
orresponding stratum of Y whi
h 
ontains x. By

de�nition of substratifold in se
tion 1.4. S

i

(Y ) is a submanifold of S

k

(X). By


hoosing a tubular neighbourhood for example, we 
an see that the indu
ed

map

i

�

x

: 


n

S

k

(X);x

! 


n

S

i

(Y );x

is surje
tive. By Proposition 3.4.2 we also have




n

X;x

�

=




n

S

k

(X);x




n

Y;x

�

=




n

S

i

(Y );x

from whi
h the proposition follows.

We de�ne a new sheaf on X by




n

X;Y

:= kern(i

�

: 


n

X

! i


n

Y

): (4.7)

This sheaf is given by the asso
iation

U 7! ker(i

�

: 


n

X

(U)! 


n

Y

(U \ Y )):

In parti
ular we have




n

X;Y

(X) = ker((i

�

: 


n

(X)! 


n

(Y )):

Clearly the di�erential d on 


�

X

indu
es a di�erential also denoted by d on




�

X;Y

, so that we get a 
omplex of sheaves over X.

The de�nition of relative de Rham 
ohomology is as follows.

De�nition 4.9.1. Let X be a stratifold and Y � X be a substratifold. We

de�ne the relative de Rham groups with 
ompa
t support of the pair

(X; Y ) as

H

k

dR;


(X; Y ) :=

ker(d : �




(X;


k

X;Y

)! �




(X;


k+1

X;Y

))

im(d : �




(X;


k�1

X;Y

)! �




(X;


k

X;Y

))

:
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Sin
e 


n

X;Y

is a module over O

X

it is also a � soft sheave for � either the

family of 
losed or 
ompa
t supports. In this 
ontext we will only use the

latter system. This fa
t enables us to prove the following proposition.

Proposition 4.9.1. Let X be a stratifold and Y � X be a 
losed substrati-

fold, then there exist a long exa
t sequen
e of de Rham 
ohomology groups

::! H

k

dR;


(X; Y )! H

k

dR;


(X)! H

k

dR;


(Y )! H

k+1

dR;


(X; Y )! :::

Proof. Consider the short exa
t sequen
e of sheaves over X

0

//



n

X;Y

//



n

X

i

�

//
i


n

Y

//
0

:

Sin
e 


n

X;Y

is soft it follows from Proposition 2.2.3 that we have an exa
t

sequen
e

0

//
�




(X;


n

X;Y

)

//
�




(X;


n

X

)

i

�

//
�




(X; i


n

Y

)

//
0

for all n. These sequen
es add up to a short exa
t sequen
e of 
hain 
om-

plexes. By appli
ation of a fundamental lemma of homologi
al algebra this

sequen
e indu
es the sequen
e from the proposition.

Besides the long exa
t sequen
e above, there is another way to 
ompare

the relative groups with the absolute ones. This is in general known as ex-


ision. Again let X be a stratifold and Y be a 
losed substratifold. Then

X�Y is an open subset of X, and by Example 1.4.1 a stratifold itself. Hen
e

we 
an 
ompare the relative de Rham 
ohomology groups of the pair (X; Y )

with the absolute ones of the stratifold X � Y . The following proposition

says that they are isomorphi
.

Proposition 4.9.2. Let X be a stratifold and Y � X be a 
losed substrati-

fold, then we have a natural isomorphism

H

k

dR;


(X; Y )

�

=

H

k

dR;


(X � Y ); 8k:

Proof. We apply Proposition 2.5.2 to the 
ase A = 


k

X;Y

and p = 0.Then it

follows that

�




(X;


k

X;Y

)

�

=

�




(X � Y;


k

X;Y

):

Sin
e i


k

Y jX�Y

= 0 we have




k

X;Y jX�Y

�

=




k

XjX�Y

:

Sin
e also 


k

XjX�Y

�

=




k

X�Y

we get a natural isomorphism

�




(X;


k

X;Y

)

�

=

�




(X � Y;


k

X�Y

)

from whi
h the proposition follows.
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4.10 de Rham's Isomorphism for Stratifolds

In this se
tion we assume that X is a 
ompa
t stratifold. We have already

stated by using sheaf 
ohomology that de Rham 
ohomology of X is the

same as its singular 
ohomology with real 
oeÆ
ients. This has been done

by a more or less abstra
t isomorphism. In this se
tion, we will see, that

similar as in the world of manifolds there is a ni
e geometri
 des
ription of

this isomorphism, given by integrating forms over 
y
les and identifying

H

�

(X;R)

�

=

Hom(H

�

(X);R):

Instead of using singular simpli
es as representatives for 
y
les in integral ho-

mology we use singular stratifolds and the des
ription of integral homology

as a bordism theory as presented in se
tion 1.9. This approa
h is far better

suited for our situation.

Assume we have an element in H

n

(X) represented by a singular stratifold

f : Y ! X;

where Y is a stratifold with Dim(Y ) = n. Without loss of generality we 
an

assume that f is smooth. Let ! 2 


n

(X) be a di�erential form on X. Then

we 
an de�ne

!(f) :=

Z

Y

f

�

!;

where the integral on the right side is de�ned as in the previous se
tion. We

will now establish that the asso
iation

! 7! (f 7! !(f))

indu
es a well de�ned homomorphism

H

�

dR

(X)! Hom(H

�

(X);R):

To show this we have to verify that this map doesn't depend on the various


hoi
es made above.This follows from the following two lemmas.

Lemma 4.10.1. Let f

1

: Y

1

! X respe
tively f

2

: Y

2

! X represent the

same 
lasses in H

n

(X) and let ! 2 


n

(X) be a 
y
le, in equal d! = 0 . Then

with the de�nition above !(f) = !(g).
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Proof. Sin
e f

1

and f

2

represent the same 
lasses in homology, there is a

bordism g : W ! X. This means �W = Y

1

t �Y

2

and g

jY

1

= f

1

respe
tively

g

jY

2

= f

2

. From our version of Stokes' theorem it follows that

0 =

Z

W

g

�

d! =

Z

W

dg

�

! =

Z

�W

i

�

g

�

! =

Z

Y

1

f

�

1

! �

Z

Y

2

f

�

2

!

= !(f

1

)� !(f

2

):

Lemma 4.10.2. Let d! 2 


n

(X) be a 
oboundary and let f : Y ! X

represent an element in H

n

(X). Then d!(f) = 0.

Proof. Sin
e �Y = ;, Stokes' Theorem implies

d!(f) =

Z

Y

f

�

d! =

Z

Y

df

�

! =

Z

�Y

f

�

! = 0:

It is 
lear that the map de�ned above is indeed a homomorphism. We 
all

this homomorphism de Rham homomorphism and denote it by

� : H

�

dR

(X)! Hom(H

�

(X);R): (4.8)

The next Theorem is a geometri
al version of Theorem 4.6.1.

Theorem 4.10.1. The de Rham homomorphism � of (4.8) is an isomor-

phism.

Proof. We use the de Rham Theorem for smooth manifolds as one 
an �nd

it in [Bredon97℄ for example. Let n = dim(X). The theorem follows via

indu
tion on the skeleta of X, by applying the pair sequen
e on the pair

(X;X

n�1

) and identifying H

k

dR

(X;X

n�1

) via Proposition 4.9.2 with the or-

dinary k-th 
ompa
t supported de Rham 
ohomology group of the smooth

manifold X �X

n�1

from the �ve lemma and the 
ommutative diagram

H

k�1

dR

(X

n�1

) ! H

k

dR

(X

n

;X

n�1

) ! H

k

dR

(X

n

) ! H

k

dR

(X

n�1

) ! H

k+1

dR

(X

n

;X

n�1

)

# # # # #

H

k�1

(X

n�1

;R) ! H

k

(X

n

;X

n�1

;R) ! H

k

(X

n

;R) ! H

k

(X

n�1

;R) ! H

k+1

(X

n

;X

n�1

;R)

56



Kapitel 5

Some Constru
tions on

Topologi
al Ve
torspa
es and

Algebras

In this 
hapter we present some more or less elementary things from analysis,

whi
h are 
ru
ial to understand the part on Ho
hs
hild homology of strati-

folds. Sin
e the analysis of topologi
al ve
torspa
es over the real numbers

is not parti
ularly well developed, from now on we work over the 
omplex

numbers. This means that from now on, whenever we write C

1

(X) for a

stratifold or C

1

naive

(M) for a manifold treated in the naive sense, we mean


omplex valued fun
tions. Those 
an be obtained by simply tensoring the

real valued versions with C . All information in this 
hapter has been taken

either from the book \Topologi
al Ve
torspa
es, Distributions and Kernels\

[Treves℄ or the book \The Homology of Bana
h and Topologi
al Algebras"

[Helemskii℄.

5.1 Fr�e
hetspa
es

All ve
torspa
es here are 
onsidered over the 
omplex numbers. A topolo-

gi
al ve
torspa
e is simply a ve
torspa
e together with a topology whi
h

is 
ompatible with the linear stru
ture, that is addition and s
alar multipli-


ation are 
ontinuous. In addition to the properties of a topologi
al ve
tor-

spa
e a topologi
al algebra has a 
ontinuous multipli
ation. Most times

we 
onsider Hausdor� topologi
al ve
torspa
es and algebras. In 
hapter 6

though, when we dis
uss Ho
hs
hild homology, we will see, that in general

the Ho
hs
hild homology groups la
k the Hausdor� property. A topologi-


al ve
torspa
e E is 
alled metrizable if there exists a metri
 on E whi
h
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generates the topology. Any metrizable topologi
al ve
torspa
e possesses a

translation invariant metri
. We then think of this spa
e as equipped with

su
h a metri
. E is 
alled 
omplete, if any Cau
hy sequen
e in E 
onverges

in E. There is a pro
ess 
alled 
ompletion whi
h 
onstru
ts a 
omplete to-

pologi
al ve
torspa
e

�

E out of a topologi
al ve
torspa
e E, together with a

topologi
al embedding

E !

�

E

with dense image. Sin
e we only 
onsider metrizable ve
torspa
es, we don't

have to bother about �lters. A topologi
al ve
torspa
e is 
alled lo
ally 
on-

vex if there is a basis of neighbourhoods of 0 2 E 
onsisting of 
onvex sets.

A seminorm p on E is a norm, whi
h la
ks the property of de�niteness, in

equal there might be ve
tors x 6= 0 2 E su
h that p(x) = 0. Any seminorm

p on E indu
es a topology on E. We are now ready to de�ne Fr�e
hetspa
es.

De�nition 5.1.1. A Fr�e
hetspa
e is a topologi
al ve
torspa
e E whi
h is


omplete, metrizable and lo
ally 
onvex.

Let us dis
uss the following for our purposes fundamental example. Let 


be an open subset of R

n

and denote with x

1

; :::; x

n

the 
anoni
al 
oordinates.

For a multi-index I = (i

1

; :::; i

n

) of nonnegative integers, we shall write

�

I

�x

I

= (

�

�x

1

)

i

1

:::(

�

�x

n

)

i

n

:

Let's denote with jIj = i

1

+ ::: + i

n

the length of I whi
h is the same as the

order of the di�erential operator

�

I

�x

I

. Let us now 
onsider the ve
torspa
e

C

1

(
) of 
omplex valued smooth fun
tions on 
. For any integer m 2 N

and any 
ompa
t subset K of 
 we de�ne a seminorm by setting

jf j

m;K

= sup

jIj�m

(supfj

�

I

f

�x

I

(x)j; x 2 Kg): (5.1)

These seminorms indu
e a lo
ally 
onvex topology on C

1

(
). Convergen
e

in this topology means uniform 
onvergen
e on 
ompa
t subsets in all deri-

vatives. Hen
e it is not hard to see, that this spa
e is 
omplete. By 
hoosing

a 
ountable subfamily fp

n

g of the family of seminorms above, su
h that the

family fp

n

g still generates the topology on C

1

(
), we 
an de�ne a metri


on C

1

(
) by setting

d(f; g) =

X

n2N

p

n

(f � g)

2

n

(1 + p

n

(f � g))

: (5.2)
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This indeed de�nes a metri
 on C

1

(
) and it is not so hard to see, that the

topology de�ned by the metri
 is the same as the topology de�ned by the

seminorms. So we have more or less shown, that C

1

(
) is a Fr�e
het spa
e.

More details 
an be found in [Treves℄ pages 86-89. For a smooth manifold

M treated in the naive sense we 
an endow the ve
torspa
e C

1

naive

(M) of all

smooth fun
tions with a Fr�e
hetspa
e stru
ture using lo
al 
harts in the sa-

me way, as it was done above. In the following, when we speak of C

1

naive

(M)

we mean smooth fun
tions on M together with this Fr�e
hetspa
e stru
ture.

In general to any lo
ally 
onvex topologi
al ve
torspa
e one 
an 
onstru
t

a family of seminorms whi
h generates the topology. See [Treves℄ pages 62-63

for example. We need this fa
t in the next se
tion, when de�ning tensorpro-

du
ts on topologi
al ve
torspa
es.

In the topologi
al 
ontext, two topologi
al ve
torspa
es are 
onsidered as

equal, if there is a topologi
al isomorphism between the two of them. In

general it is not so easy to de
ide, given a 
ontinuous bije
tive linear map,

whether it is a topologi
al isomorphism or not, or equivalently, whether its al-

gebrai
ally de�ned inverse is 
ontinuous. In the world of Fr�e
hetspa
es things

are easier, sin
e we have the following proposition, whi
h is also known as

the open mapping theorem. We will use that proposition several times in


hapters 6 and 7. For a proof see [Treves℄ page 170.

Proposition 5.1.1. Let E and F be Fr�e
hetspa
es and � : E ! F a 
onti-

nuous linear and bije
tive map. Then � is a topologi
al isomorphism, in equal

�

�1

is 
ontinuous.

5.2 Tensorprodu
ts of Topologi
al Ve
torspa
es

Let us denote with E and F two lo
ally 
onvex topologi
al ve
torspa
es. We

will de�ne two kind of tensorprodu
ts E
F , namely the �- and the �- tensor-

produ
t. The latter is also 
alled the proje
tive tensorprodu
t. We denote

with E

0

�

and F

0

�

the 
ontinuous duals of E and F together with its weak

topologies. Weak topology means, that a sequen
e of 
ontinuous linearforms

on E 
onverges, if and only if it 
onverges point wise. We do now 
onsider

the ve
torspa
e B(E

0

�

; F

0

�

) of 
ontinuous bilinear forms on E

0

�

respe
tively

F

0

�

. We give B(E

0

�

; F

0

�

) a topology by embedding it in a slightly larger spa
e.

This spa
e will be denoted with B

�

(E

0

�

; F

0

�

) and 
onsists of the bilinear forms

whi
h are 
ontinuous in ea
h variable provided with the topology of uniform
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onvergen
e on sets whi
h are produ
ts of an equi
ontinuous subset of E

0

with an equi
ontinuous subset of F

0

. Clearly

B(E

0

�

; F

0

�

) � B

�

(E

0

�

; F

0

�

):

This in
lusion indu
es a topology on B(E

0

�

; F

0

�

). Let us now 
onsider the

algebrai
 tensorprodu
t E 
 F and the algebrai
 isomorphism

E 
 F

�

=

B(E

0

�

; F

0

�

):

This isomorphism indu
es a topology on E
F whi
h we 
all the �-topology.

We denote the spa
e E
F together with this topology as E


�

F and denote

its 
ompletion with

E

^




�

F: (5.3)

The latter spa
e is a 
omplete, lo
ally 
onvex ve
torspa
e and is 
alled the

�-tensorprodu
t of E and F .

There is another way to de�ne a natural topology on E 
 F using se-

minorms. This 
onstru
tion will result in the so 
alled �- or proje
tive ten-

sorprodu
t. For given seminorms p and q on E respe
tively F we de�ne a

seminorm p
 q on E 
 F as follows. For � 2 E 
 F let

(p
 q)(�) = inff

X

j

p(x

j

)q(y

j

)j� =

X

j

x

j


 y

j

g (5.4)

where the in�mum is taken over all �nite sets of pairs (x

j

; y

j

) su
h that

� =

X

j

x

j


 y

j

:

Now let p

i

; i 2 I respe
tively q

j

; j 2 J be families of seminorms generating

the topologies of E respe
tively F . By the 
onstru
tion above we get a family

of seminorms p

i


 q

j

. This family then indu
es a lo
ally 
onvex topology on

E 
 F , whi
h is 
alled the �- or proje
tive topology. E 
 F together with

this topology will be denoted as E


�

F . Its 
ompletion will be denoted with

E

^




�

F (5.5)

and is 
alled the �- or proje
tive tensorprodu
t of E and F . It is a 
omplete,

lo
ally 
onvex topologi
al ve
torspa
e.

The methods above also work in the 
ase, where more then two ve
tor-

spa
es are involved. The proje
tive tensorprodu
t has the following universal

property (see proposition 4.9, 
hapter 2 in [Helemskii℄).
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Proposition 5.2.1. Let E,F ,G be Fr�e
hetspa
es and � : E � F ! G a


ontinuous, bilinear map. Let

i : E � F ! E

^




�

F

(e; f)! e

^


f

the 
anoni
al map, then there exists a unique 
ontinuous homomorphism �̂ :

E

^




�

F ! G su
h that the following diagram 
ommutes

E � F

� //

i

��

G

E

^




�

F

�̂

<<xxxxxxxxx

The following proposition gives an expli
it des
ription of the elements

in the proje
tive tensorprodu
t of two Fr�e
hetspa
es. This shows up to be

useful in 
al
ulations.

Proposition 5.2.2. Let E and F be two Fr�e
hetspa
es and � 2 E

^




�

F be

an element in the proje
tive tensorprodu
t. Then � has the form

� =

1

X

n=0

�

n

x

n

^


y

n

;

where (�

n

) is a sequen
e of real respe
tively 
omplex numbers su
h that

P

1

n=0

j�

n

j <

1 and (x

n

) and (y

n

) are zero sequen
es in E respe
tively F .

Proof. This is Theorem 45.1 on page 459 in [Treves℄.

5.3 Nu
lear spa
es

In general the �- and the proje
tive tensorprodu
t doesn't 
oin
ide. On the

other hand there is a large 
lass of topologi
al ve
torspa
e where they do


oin
ide. These spa
es are 
alled nu
lear spa
es. More pre
isely we have the

following de�nition.

De�nition 5.3.1. A lo
ally 
onvex topologi
al ve
torspa
e E is said to be

nu
lear if for every lo
ally 
onvex topologi
al ve
torspa
e F the 
anoni
al

map

E

^




�

F ! E

^




�

F

is a topologi
al isomorphism.
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For nu
lear spa
es E and F we simply write E

^


F meaning any of the

two isomorphi
 tensorprodu
ts above.

Let us list some of the properties of nu
lear spa
es.

1. A lo
ally 
onvex topologi
al ve
torspa
e E is nu
lear, if and only if its


ompletion

�

E is nu
lear.

2. A linear subspa
e of a nu
lear spa
e is nu
lear.

3. The quotient of a nu
lear spa
e modulo a 
losed linear subspa
e is

nu
lear.

4. Any produ
t of nu
lear spa
es is nu
lear.

5. A 
ountable topologi
al dire
t sum of nu
lear spa
es is nu
lear.

6. A Hausdor� proje
tive limit of nu
lear spa
es is nu
lear.

7. A 
ountable indu
tive limit of nu
lear spa
es is nu
lear.

8. If E and F are nu
lear , then E

^


F is also nu
lear.

5.4 Further Examples

At this point we should at least give some examples of nu
lear spa
es and

some appli
ations of the tensorprodu
ts dis
ussed above. Others will follow.

In the last se
tion we introdu
ed a topology on the algebra C

1

naive

(M) of

smooth fun
tions on a manifold M , whi
h made it into a Fr�e
hetalgebra.

For reasons of simpli
ity we assume that M has no boundary, so C

1

(M) =

C

1

naive

(M). It is not so easy to see, but nevertheless true, that C

1

(M) is

nu
lear. Let E be any Fr�e
hetspa
e. Then it follows from [Treves℄ Theorem

44.1 on page 449, that the natural map

C

1

(M)
 E ! C

1

(M;E);

f 
 e 7! (x 7! f(x) � e);

where f denotes a smooth 
omplex valued fun
tion on M and e an arbitrary

ve
tor in E, indu
es a topologi
al isomorphism

C

1

(M;E)

�

=

C

1

(M)

^




�

E:
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Sin
e C

1

(M) is a nu
lear spa
e, the right side is isomorphi
 to C

1

(M)

^




�

E.

In parti
ular for a se
ond manifold M

0

let's 
hoose E = C

1

(M

0

) and we

have a natural series of isomorphisms

C

1

(M �M

0

)

�

=

C

1

(M;C

1

(M

0

))

�

=

C

1

(M)

^


C

1

(M

0

); (5.6)

where the right side denotes either one of the tensorprodu
ts. The map on

the left side is given by �xing the �rst 
oordinate in the produ
t. The 
ase

when M will be repla
ed by a stratifold will be dealt with in se
tion 5.7.

5.5 Tensorprodu
ts and Alternating Produ
ts

of Fr�e
hetmodules over Fr�e
hetalgebras

In the algebrai
 
ase, tensorprodu
ts do not only work in the 
ase of ve
-

torspa
es over a �eld, but also in the 
ase of modules over some ring. The

situation in the Fr�e
het world is similar. For a matter of simpli
ity, we assu-

me that all Fr�e
hetspa
es in this se
tion are also nu
lear, so we don't have

to worry whi
h tensorprodu
t we take.

De�nition 5.5.1. Let A be a Fr�e
hetalgebra andM be a Fr�e
hetspa
e, whi
h

is also a module over A, su
h that addition and multipli
ation with elements

of A is 
ontinuous, then we 
all M a Fr�e
hetmodule over A

Now letM

1

;M

2

and N be Fr�e
hetmodules over the Fr�e
hetalgebra A, and

let

� :M

1

�M

2

! N

be a 
ontinuous A-bilinear map. By the universal property of the tensorpro-

du
t of Fr�e
hetspa
es, � indu
es a 
ontinuous map ~� : M

1

^


M

2

! N su
h

that the following diagram 
ommutes

M

1

�M

2

� //

i

��

F

M

1

^


M

2

~�

::vvvvvvvvvv

;

where i is the 
anoni
al map from the produ
t into the tensorprodu
t ( see

Proposition 5.2.1 ). Sin
e � is not only bilinear, but A-bilinear, we see that

elements like

am

1

^


m

2

�m

1

^


am

2

8a 2 A;m

1

2 M

1

; m

2

2M

2
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are 
ontained in the kernel of ~�. Hen
e if we de�ne M

1

^




A

M

2

to be the

quotient of M

1

^


M

2

by the 
losure of the module generated by elements of

the form above, we get an A-linear, 
ontinuous map �̂ : M

1

^




A

M

2

! F . We

de�ne

j :M

1

�M

2

!M

1

^




A

M

2

as the 
omposition of i with the natural map onto the quotient. From what

we have done so far, it is 
lear that our 
onstru
tion satis�es the following

universal property.

Proposition 5.5.1. Let M

1

^




A

M

2

be as de�ned above and � : M

1

�M

2

!

N be a 
ontinuous A-bilinear map, where N is another Fr�e
hetmodule over

the Fr�e
hetalgebra A. Then there is a unique 
ontinuous A-linear map �̂ :

M

1

^




A

M

2

! N su
h that the following diagram 
ommutes

M

1

�M

2

� //

j

��

F

M

1

^




A

M

2

�̂

::uuuuuuuuuu

:

Using this kind of tensorprodu
t, we are able to de�ne alternating pro-

du
ts, and hen
e an exterior algebra. M still denotes a Fr�e
hetmodule over

a Fr�e
hetalgebra A. We 
an then build the n-fold tensorprodu
t M

^




n

A

and

divide out the 
losure of the submodule whi
h is generated by elements of

the form

m

1

^


:::

^


m

i

^


:::

^


m

j

^


:::

^


m

n

�m

1

^


:::

^


m

j

^


:::

^


m

i

^


:::

^


m

n

:

The result is again a Fr�e
hetmodule over A and will be denoted with

�

�

n

A

M .

From the 
onstru
tion it is 
lear that it satis�es the following universal pro-

perty.

Proposition 5.5.2. Let

�

�

n

A

M be as de�ned above and let

� :M � :::�M ! N

be a 
ontinuous multilinear alternating map, where N denotes another Fr�e
hetmodule

over the Fr�e
hetalgebra A. Then there is a unique 
ontinuous A-linear map

�̂ :

�

�

n

A

M ! N making the following diagram 
ommutative

M � :::�M

� //

i

��

N

�

�

n

A

M

�̂

99rrrrrrrrrrr

:
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Here i is de�ned as the 
omposition of the natural map into the tensorprodu
t

and the proje
tion onto the quotient.

As in the purely algebrai
 
ase, one 
an show, that if M and N are both

Fr�e
hetmodules over A, there is a natural topologi
al isomorphism

�

�

n

A

(M �N)

�

=

X

p+q=n

�

�

p

A

M

^




�

�

q

A

N: (5.7)

5.6 Di�erential Forms for Nu
lear Fr�e
hetalgebras

In this se
tion we will modify the ideas presented in se
tion 3.5. to suit the


ase of a topologi
al algebra, or more pre
isely a unital 
ommutative nu
le-

ar Fr�e
het algebra. The modi�
ations are ne
essary to 
ompare di�erential

forms with Ho
hs
hild homology, as we do in 
hapters 6 and 7. As in the al-

gebrai
 
ase, nonunital and non
ommutative versions of the ideas presented

in this se
tion are possible.

To start with, let J denote the kernel of the multipli
ation map

A

^


A! A

a

^


b! ab:

Clearly J is an A-Fr�e
het bimodule. Let

�

J

2

denote the 
losure of the submo-

dule J

2

. Let us de�ne

�




1

A

= J=

�

J

2

: (5.8)

An appli
ation of the properties of nu
lear Fr�e
hetspa
es listed in se
tion 5.3

shows that

�




1

A

is a Fr�e
het bimodule over A. There is a 
anoni
al map i of

A into

�




1

A

given by

a 7! [a

^


1� 1

^


a℄ =: da:

As in se
tion 3.5. it 
an be seen that this map is a derivation and

�




1

A

has the

following universal property.

Proposition 5.6.1. Let

�




1

A

be as de�ned above andM any Fr�e
het bimodule

over A. Let further D : A!M be a 
ontinuous derivation. Then there exists
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a unique 
ontinuous A-linear map f :

�




1

A

! M , whi
h makes the following

diagram 
ommutative

A

D //

i

��

M

�




1

A

f

>>||||||||

:

Let us now de�ne higher di�erential forms. Applying the methods of the

previous se
tion, we are able to make the following de�nition.

De�nition 5.6.1. Let A be a unital 
ommutative nu
lear Fr�e
hetalgebra.

We de�ne the module of di�erential n-forms over A to be

�




n

A

:=

�

�

n

�




1

A

:

This is a Fr�e
hetmodule over A.

Using the des
ription of 


1

A

in Proposition 3.5.2 and De�nition 3.5.2 we

get a natural map




n

A

!

�




n

A

:

The following proposition states, that

�




n

A


an be 
onsidered as the 
ompletion

of 


n

A

.

Proposition 5.6.2. Let A be a unital 
ommutative nu
lear Fr�e
hetalgebra.

Then the natural map 


n

A

!

�




n

A

is inje
tive and has dense image.

Proof. Without loss of generality we 
an assume n = 1. Let us denote the

kernel of the multipli
ation map A
A! A with I and let J be the kernel of

the multipli
ation map A

^


A! A. Clearly I � J . In fa
t, J is the 
losure of

I in A

^


A. From this it follows that the image is dense. Further I

2

= I \

�

J

2

,

from whi
h inje
tivity follows.

The following identity will later be useful to identify di�erential forms on

Stratifolds whi
h are produ
ts.

Proposition 5.6.3. Let A and B be unital 
ommutative nu
lear Fr�e
hetalgebras.

Then there is a natural topologi
al isomorphism

�




n

A

^


B

�

=

X

p+q=n

�




p

A

^




�




q

B

:
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Proof. Let us �rst show, that there is a 
anoni
al isomorphism

�




1

A

^


B

�

=

�




1

A

^


B � A

^




�




1

B

:

Clearly there is a derivation on A

^


B with values in the right hand side given

by

d(a

^


b) = da

^


b + a

^


db:

The universal property of the left hand side hen
e gives us a well de�ned

map

�




1

A

^


B

!

�




1

A

^


B � A

^




�




1

B

d(a

^


b) 7! da

^


b + a

^


db:

This map has an inverse given by

da

^


b 7! d(a

^


1)(1

^


b)

a

^


db 7! (a

^


1)(1

^


db):

Clearly all these maps are 
ontinuous. We do now use the identity at the end

of the last se
tion and get

�




p

A

^


B

�

=

�

�

n

A

^


B

(

�




1

A

^


B � A

^




�




1

B

)

�

=

X

p+q=n

�




p

A

^




�




q

B

:

5.7 The Case of a Stratifold

In this se
tion we 
onsider the algebra C

1

(X) of smooth 
omplex valued

fun
tions on a stratifold as de�ned in se
tion 1.3 in more detail. At this

point, we should remind the reader, that for a 
-manifoldW with boundary,

the algebra C

1

(W ) as de�ned in se
tion 1.1 slightly di�ers from what is


lassi
al known to be the algebra of smooth fun
tions on W . To distinguish

these two algebras, we write C

1

naive

(W ), when we treat W in the naive sense,

in equal, when we make no 
onditions along the 
ollar. We already know

that for ea
h stratum R

k

of X the algebras C

1

naive

(R

k

) are nu
lear Fr�e
het

algebras. We 
onsider

C

1

(X) �

Y

k

C

1

naive

(R

k

)
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as a subalgebra. In this way C

1

(X) inherits a lo
ally, 
onvex, metrizable

topology. Unfortunately C

1

(X) la
ks one desirable property. It is not 
om-

plete. This e�e
t is due to the fa
t, that for a 
-manifold W with boundary

the algebra C

1

(W ) is in
omplete as a subspa
e of C

1

naive

(W ). For example

it is not hard to 
onstru
t a sequen
e in C

1

(W ) whi
h 
onverges to a fun
-

tion, whi
h is not 
onstant along the 
ollar for any given neighbourhood of

the boundary. On the other side any limit f of fun
tions in C

1

(W ) has the

property, that

(

�

�t

)

k

f

j�W

= 0; 8k > 0

where t is the 
ollar parameter. This means that all derivatives of f ortho-

gonal to the boundary at the boundary are zero. That this is indeed true

follows from the fa
t, that one 
an 
hange the order of di�erentiation and

building the limit if the 
onvergen
e is strong enough. At this point it is not

hard to see, that the 
ompletion

�

C

1

(W ) of C

1

(W ) is pre
isely given by

�

C

1

(W ) = ff 2 C

1

naive

(W )j(

�

�t

)

k

f

j�W

= 0 8k > 0g: (5.9)

The spa
e above is now a 
omplete, metrizable and lo
ally 
onvex spa
e,

hen
e a Fr�e
hetspa
e. Sin
e C

1

naive

(W ) is nu
lear it follows from the list of

statements in se
tion 5.3 that

�

C

1

(W ) is also a nu
lear spa
e. In 
ase of a

stratifold X we get for the 
ompletion

�

C

1

(X) of C

1

(X) the spa
e

�

C

1

(X) = ff 2 C(X)jf Æ '

k

2

�

C

1

(R

k

) 8kg; (5.10)

where the maps '

k

denote the 
harts of X. The algebra

�

C

1

(X) then is a

nu
lear Fr�e
hetalgebra. Using this and Proposition 5.6.2 implies that

�




n

�

C

1

(X)


an be identi�ed with the 
ompletion of 


n

(X). It is not hard to show, that

the algebrai
ally de�ned exterior derivation d on 


n

(X) ( see (4.5) ) genera-

lizes to give an exterior derivation d on

�




n

�

C

1

(X)

. Hen
e one also gets de Rham


ohomology groups in this 
ase. If we assume, that X has �nite dimensional

homology groups we have that the de Rham 
ohomology groups in both 
ases


oin
ide be
ause of denseness and �nite dimensionality.

Now 
onsider the 
ase, where we are given two stratifolds X and Y . We

let

�

C

1

par

(X � Y ) = ff 2 C(X � Y )jf Æ i

x

2

�

C

1

(Y ); f Æ i

y

2

�

C

1

(X); 8x 2 X; y 2 Y g;

68



where

i

x

: Y ! X � Y;

y 7! (x; y)

and respe
tively

i

y

: Y ! X � Y;

x 7! (x; y)

denote the in
lusion of the fa
tors into the produ
t. The subindex par in

�

C

1

par

(X � Y ) stands for partial di�erentiable. The reader should noti
e that

the algebra

�

C

1

par

(X � Y ) di�ers from the algebra

�

C

1

(X � Y ), where the

latter algebra denotes the 
ompletion of the algebra of smooth fun
tion on

the produ
t stratifold X � Y (see [Kre
k00℄) Nevertheless in the 
ase when

one of the two stratifolds is in fa
t a smooth manifold (in the naive sense) the

two algebras above 
oin
ide. The algebra of partial di�erentiable fun
tions

on a produ
t is important be
ause of the following proposition.

Proposition 5.7.1. Let X and Y be stratifolds, then there is a natural iso-

morphism

�

C

1

par

(X � Y )

�

=

�

C

1

(X)

^




�

C

1

(Y )):

If either X or Y is a smooth manifold the subs
ript par 
an be omitted.

Proof. It is 
lear how to generalize the 
on
ept of smooth 
omplex valued

fun
tions on a stratifold X to smooth ve
tor valued fun
tions, at least when

the domain is itself a Fr�e
hetspa
e ( see [Treves℄ page 412 ). For a Fr�e
het

spa
e E let us denote this algebra with

�

C

1

(X;E). There is a 
anoni
al

isomorphism

�

C

1

(X;E)

�

=

�

C

1

(X)

^




�

E:

This fa
t is proven in [Treves℄ on page 449 in the 
ase where

�

C

1

(X) has been

repla
ed by C

1

(
) where 
 is a domain in R

n

. The proof works 
ompletely

analogous in our 
ase. Now, we 
an use the identi�
ation

�

C

1

par

(X � Y )

�

=

�

C

1

(X;

�

C

1

(Y ))
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given by

f 7! (x 7! f(x;�)):

From this we get

�

C

1

par

(X � Y )

�

=

�

C

1

(X)

^




�

�

C

1

(Y )

and sin
e all the spa
es involved are nu
lear, this tensorprodu
t 
oin
ides

with the proje
tive tensorprodu
t and we are done with the proof.

The following 
orollary of Proposition 5.7.1. will be of major importan
e

when we will study the Ho
hs
hild homology of lo
ally 
oned stratifolds.

Corollary 5.7.1. Let X be a stratifold and denote with 
X the open 
one

over X. Further let

�

C

1

0

(
X) := ker(ev

pt

:

�

C

1

(
X)! R)

be the kernel of the evaluation map at the 
one point, whi
h is denoted by pt.

Then there is a natural topologi
al isomorphism

�

C

1

0

(
X)

�

=

�

C

1

(X)

^




�

C

1

0

([0; 1));

where the half open interval [0; 1) is 
onsidered as a 1 dimensional 
-manifold.

Proof. Consider the following exa
t sequen
e

0!

�

C

1

0

([0; 1))! C

1

((�1; 1))! C

1

((�1; 0));

where the right hand map is given by restri
tion. Sin
e all spa
es in the

sequen
e above are nu
lear, tensoring this with

�

C

1

(X) remains exa
t (see

[Brodzki,Lykova99℄). This leads to the following exa
t sequen
e

0!

�

C

1

(X)

^




�

C

1

0

([0; 1))!

�

C

1

(X)

^


C

1

(�1; 1)!

�

C

1

(X)

^


C

1

(�1; 0):

This sequen
e embeds in the following 
ommutative diagram, where the lower

row is also exa
t and all verti
al maps are given by multipli
ation in the

standard way.

0

//
�

C

1

(X)

^




�

C

1

0

([0; 1))

//

��

�

C

1

(X)

^


C

1

(�1; 1)

//

��

�

C

1

(X)

^


C

1

(�1; 0)

��

0

//
�

C

1

0

(
X)

//
�

C

1

(X � (�1; 1))

//
�

C

1

(X � (�1; 0))

:

From Proposition 5.7.1 it follows that both verti
al maps on the right side

are isomorphisms. A short diagram 
hase will then show, that the left verti
al

map is also an isomorphism.
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In general it is un
lear, if a short exa
t sequen
e of nu
lear Fr�e
hetalgebras

0! A! B ! C ! 0

indu
es a short exa
t sequen
e of the form

0!

�




n

A

!

�




n

B

!

�




n

C

! 0:

In the purely algebrai
 
ase there are some theorems about when su
h a

short exa
t sequen
e exists (see [Loday91℄ and [Weibel95℄ ). The situation in

our 
ase, 
on
erning the algebra

�

C

1

(
X) is far easier. We have the following

proposition where we treat the 1-manifold with boundary (�1; 0℄ in the naive

sense.

Proposition 5.7.2. For n > 0 the short exa
t sequen
e of nu
lear Fr�e
hetalgebras

0!

�

C

1

0

(
X)!

�

C

1

(X � (�1; 1))!

�

C

1

(X � (�1; 0℄)! 0

indu
es a short exa
t sequen
e of di�erential forms

0!

�




n

�

C

1

(
X)

!

�




n

�

C

1

(X�(�1;1))

!

�




n

�

C

1

(X�(�1;0℄)

! 0:

Proof. Using the natural topologi
al isomorphisms

�

C

1

(X � (�1; 1))

�

=

�

C

1

(X)

^


C

1

(�1; 1);

�

C

1

(X � (�1; 0℄)

�

=

�

C

1

(X)

^


C

1

(�1; 0℄

and the result of Proposition 5.6.3 we get the following 
ommutative diagram

�




n

�

C

1

(X�(�1;1))

��

�

= // �



n

�

C

1

(X)

^



C

1

(�1; 1)�

�




n�1

�

C

1

(X)

^




�




1

C

1

(�1;1)

��
�




n

�

C

1

(X�(�1;0℄)

�

= // �



n

�

C

1

(X)

^


C

1

(�1; 0℄�

�




n�1

�

C

1

(X)

^




�




1

C

1

(�1;0℄

; (5.11)

where all horizontal maps are isomorphisms and the verti
al maps are given

by restri
tion. Sin
e the unitization of

�

C

1

0

(
X)

�

=

�

C

1

(X)

^




�

C

1

0

([0; 1)) is

�

C

1

(
X) we 
an use Proposition 5.2.2 to represent any element f in

�

C

1

(
X)

as

f =

1

X

i=0

�

i

g

i

^


h

i

+ 
;
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su
h that g

i

2

�

C

1

(X), h

i

2

�

C

1

0

([0; 1)) and 
 2 C is the value of f at the


one point. Sin
e we 
an negle
t 
onstants when 
al
ulating di�erential forms

of degree higher than zero it follows again from Proposition 5.6.3 that the


anoni
al map

�




n

�

C

1

(
X)

!

�




n

�

C

1

(X)

^




�

C

1

0

([0; 1))�

�




n�1

�

C

1

(X)

^




�




1

�

C

1

0

([0;1))

(5.12)

df = d(

1

X

i=0

�

i

g

i

^


h

i

) 7!

1

X

i=0

�

i

dg

i

^


h

i

�

1

X

i=0

�

i

g

i

^


dh

i

is a topologi
al isomorphism. Let us now show, that the right hand side of

the expression (5.12) is exa
tly the kernel of the right hand restri
tion map

in the 
ommutative diagram (5.11). For this reason we tensor the short exa
t

sequen
e

0!

�

C

1

0

([0; 1))! C

1

((�1; 1))! C

1

((�1; 0℄)! 0

with

�




n

�

C

1

(X)

and the short exa
t sequen
e

0!

�




1

�

C

1

0

([0;1))

!

�




1

C

1

((�1;1))

!

�




1

C

1

((�1;0℄)

! 0

with

�




n�1

�

C

1

(X)

and add those two sequen
es. The resulting sequen
e is exa
t

again (see [Brodzki,Lykova99℄) and that �nally proves the proposition.
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Kapitel 6

Ho
hs
hild Homology

In this 
hapter we give a short introdu
tion to what in general is known as

Ho
hs
hild homology. There are various versions of Ho
hs
hild Homology,

depending on how mu
h stru
ture of the underlying algebras is taken into

a

ount. The two most important 
ases are Ho
hs
hild homology of gene-

ral algebras, whi
h we 
all algebrai
 Ho
hs
hild homology and Ho
hs
hild

homology of nu
lear Fr�e
hetalgebras, whi
h we 
all 
ontinuous Ho
hs
hild

homology. These two versions will be presented in the following two se
tions.

6.1 Algebrai
 Ho
hs
hild Homology

Algebrai
 Ho
hs
hild Homology is the most elementary version of Ho
hs
hild

homology. It is de�ned for arbitrary not ne
essarily unital algebras. Throug-

hout this se
tion we assume that A is an asso
iative algebra over a �eld

k of 
hara
teristi
 zero. The �eld k will also be referred to as the ground

�eld. Algebrai
 Ho
hs
hild Homology has many appli
ations in algebra and

algebrai
 geometry. It was the �rst version to be de�ned and resembles the

underlying ideas best. Also we think it is helpful to know the algebrai
 
ase,

before any topologi
al stru
ture is taken into a

ount. This is, why we pre-

sent this version here, though we a
tually won't apply it to the algebras we

are interested in.

Most of what we present in this se
tion has been taken out of the book

\Cy
li
 Homology" from Loday [Loday91℄. Of 
ourse we restri
t ourselves to

the basi
 de�nitions and just give some examples for 
omputations in Ho
h-

s
hild homology. The tensor produ
t 
 always stands for the tensorprodu
t




k

over the ground �eld k.
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For ea
h n 2 N we asso
iate to A the group

C

n

(A) := A


(n+1)

: (6.1)

We de�ne operators b

n

and b

0

n

as follows.

b

0

n

: C

n

(A)! C

n�1

(A) (6.2)

b

0

n

(a

0


 :::
 a

n

) =

n�1

X

i=0

(�1)

i

a

0


 :::
 a

i

a

i+1


 :::
 a

n

b

n

: C

n

(A)! C

n�1

(A) (6.3)

b

n

(a

0


 :::
 a

n

) = b

0

n

(a

0


 :::
 a

n

) + (�1)

n

a

n

a

0


 a

1


 :::
 a

n�1

:

Sin
e b

n�1

Æ b

n

= 0 = b

0

n�1

Æ b

0

n

= 0 we get two 
hain 
omplexes C

�

(A) =

(C

n

(A); b

n

) and C

bar

�

(A) = (C

n

(A); b

0

n

). The �rst 
omplex is 
alled theHo
h-

s
hild 
omplex, the se
ond 
omplex is 
alled the bar-
omplex. Both 
om-

plexes give rise to homology groups. Let us �rst 
onsider the 
ase when the

algebra A is unital. In this 
ase the maps

s

n

: C

n

(A)! C

n+1

(A)

s

n

(a

0


 :::
 a

n

) = 1

A


 a

0


 :::
 a

n

de�ne a 
ontra
tion of the 
omplex C

bar

�

(A). So the bar-
omplex is not par-

ti
ularly interesting in the unital 
ase. We 
all the homology groups of the

Ho
hs
hild 
omplex the Ho
hs
hild homology groups.

De�nition 6.1.1. Let A be a unital algebra. We de�ne the n-th Ho
hs
hild

homology group of A as

HH

n

(A) =

ker(b

n

: C

n

(A)! C

n�1

(A))

im(b

n+1

: C

n+1

(A)! C

n

(A))

:

Dire
t 
al
ulation yields to the following examples.

74



Example 6.1.1. 1. If we take A = k to be the ground �eld, we have

HH

n

(k) =

(

k if n = 0;

0 else

(6.4)

2. By de�nition the �rst boundary operator b

1

in the Ho
hs
hild 
omplex

maps a
 b to the 
ommutator [a; b℄ = a
 b� b
 a. Hen
e we have

HH

0

(A) = A=[A;A℄: (6.5)

In the 
ase that A is 
ommutative we have HH

0

(A) = A.

In general 
al
ulations of Ho
hs
hild homology groups using the Ho
h-

s
hild 
omplex turn out to be very 
ompli
ated. As the following proposition

shows Ho
hs
hild homology groups 
an also be 
al
ulated by using 
ertain

proje
tive resolutions of A. Let A

op

denote the algebra A with the opposite

multipli
ation.

Proposition 6.1.1. We 
onsider A as a module over A
A

op

via (a
b)�
 =

a
b. Then

HH

�

(A) = Tor

A
A

op

�

(A;A):

In this way we 
an use any proje
tive resolution of A over A
A

op

to 
al
ulate

the Ho
hs
hild homology groups of A.

Proof. see [Loday91℄ on page 12.

Any homomorphism f : A! B of algebras indu
es a map in the same di-

re
tion between the Ho
hs
hild 
omplexes. So, the asso
iation A 7! HH

n

(A)

is a 
ovariant fun
tor. This of 
ourse is also 
lear from the Tor des
ription of

the last proposition.

In the following we assume that A is 
ommutative. In this 
ase Ho
hs
hild

homology 
an be seen as a re�nement of the 
on
ept of di�erential forms for

algebras, as 
onstru
ted in 
hapter 3. The 
onne
tion between those two 
on-


epts is made by the antisymmetrization whi
h we will 
onsider next.

Let us denote with �

n

the group of permutations of the set f1; 2; :::ng.

There is an operation of �

n

on C

n

(A) given by

� � (a

0


 :::
 a

n

) = a

0


 a

�

�1

(1)


 :::
 a

�

�1

(n)

:
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k-linear extension indu
es an operation of the group algebra k[�

n

℄ of �

n

on

C

n

(A). We let �

n

2 k[�

n

℄ be the element

�

n

=

X

�2�

n

sign(�)�:

�

n

indu
es a map whi
h we denote by �

n

again

�

n

: A
 �

n

A! C

n

(A)

a

0


 a

1

^ ::: ^ a

n

7! �

n

� (a

0


 :::
 a

n

):

It is not hard to show (see [Loday91℄,page 27) that this map fa
tors to a well

de�ned A-linear map

a

0

da

1

:::da

n

! �

n

� (a

0


 :::
 a

n

):

We 
all this map the antisymmetrization map and denote it

�

n

: 


n

A

! HH

n

(A) (6.6)

We also have a natural map �

n

: C

n

(A) ! 


n

A

in the other dire
tion. �

n

is given by

�

n

(a

0


 :::
 a

n

) = a

0

da

1

:::da

n

:

One readily veri�es, that �

n

Æ b = 0. So �

n

indu
es a map

�

n

: HH

n

(A)! 


n

A

(6.7)

The maps �

n

and �

n

are related in the following way.

Proposition 6.1.2. Let A be a unital, 
ommutative algebra. Then the 
om-

position �

n

Æ �

n

is multipli
ation with n! on 


n

A

. Sin
e 
har(k) = 0, this is

an isomorphism. In parti
ular �

n

is inje
tive and 


n

A

is a dire
t summand of

HH

n

(A).

Proof. This follows from

a

0

da

�

�1

(1)

^ ::: ^ da

�

�1

(n)

= sign(�)a

0

da

1

^ ::: ^ da

n

for all � 2 �

n

and j�

n

j = n!.
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In general the question remains whether the map �

n

is an isomorphism or

not. In the algebrai
 
ase, there is the Ho
hs
hild-Kostant-Rosenberg theo-

rem, whi
h states that �

n

is an isomorphism, whenever the algebra A is

smooth (see [Loday91℄, page 102).

Let us now turn to the 
ase where the algebra A is not ne
essarily unital.

We already mentioned that nonunital algebras play a role in our 
onside-

rations. The Ho
hs
hild 
omplex of A is still de�ned and a natural thing

would be, as in the unital 
ase to de�ne the Ho
hs
hild homology groups of

A as the homology groups of the Ho
hs
hild 
omplex. It turns out, that in

general this is not the right de�nition. From the topologi
al point of view,

the situation should be 
ompared to the 
ase, where a homology theory on

the 
ategory of pointed topologi
al spa
es is transferred to a homology theo-

ry on the 
ategory of topologi
al spa
e by simply adding a base point and

then take the 
okernel of the map, whi
h is indu
ed by the in
lusion of this

base point. Homomorphism of unital algebras take the unit element into the

unit element, hen
e 
an be 
ompared to morphisms in the 
ategory of poin-

ted spa
es. Adding a base point 
an be 
ompared to adding a unit element.

In this sense the following de�nition seems to be natural, at least from the

topologi
al point of view.

De�nition 6.1.2. Let A denote a not ne
essarily unital algebra and A

+

its

unitization. The n-th Ho
hs
hild homology group of A is de�ned as

HH

n

(A) = 
oker(i

�

: HH

n

(k)! HH

n

(A

+

));

where i : k ! A

+

denotes the in
lusion.

In the 
ase that A is unital, this de�nition 
oin
ides with De�nition 6.1.1.

In the nonunital 
ase we have that in general the Ho
hs
hild homology groups

as de�ned in De�nition 6.1.2 doesn't 
oin
ide with the homology groups of

the Ho
hs
hild 
omplex. The latter groups are 
alled the naive Ho
hs
hild

homology groups and will be denoted as HH

naive

n

(A). The importan
e of

these groups will show up in the following. Let us denote the homology

groups of the bar-
omplex of A as H

bar

n

(A). The following proposition relates

the three homology groups de�ned above.

Proposition 6.1.3. Let A be a not ne
essarily unital algebra. Then there is

a long exa
t sequen
e

:::! HH

naive

n

(A)! HH

n

(A)! H

bar

n

(A)! HH

naive

n�1

(A)! :::
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Proof. see [Loday91℄, page 30

From the long exa
t sequen
e above one 
an dedu
e, that when the bar-


omplex is a
y
li
, naive Ho
hs
hild homology and Ho
hs
hild homology


oin
ide. We mentioned earlier that in the unital 
ase the bar-
omplex is


ontra
tible, hen
e a
y
li
. So the following de�nition is a generalization of

being unital.

De�nition 6.1.3. Let A be a not ne
essarily unital algebra. We 
all A H-

unital if the bar-
omplex of A is a
y
li
, in equal

H

bar

n

(A) = 0 8n 2 N :

To de
ide, whether a nonunital algebra is H-unital or not in general 
an

be quite diÆ
ult. One 
an show ([Loday91℄,page 32) that an algebra with lo-


al units isH-unital. So for example the algebra C

1

0

(
X) of smooth fun
tions

on the 
one over a stratifold X whi
h vanish at the 
one point is H-unital.

The following proposition is of major importan
e. It tells us in whi
h


ases Ho
hs
hild homology behaves like a homology theory for algebras, in

equal 
arries short exa
t sequen
es of algebras into long exa
t sequen
es of

Ho
hs
hild homology groups.

Proposition 6.1.4. Let A be a unital algebra and let I � A be an ideal

whi
h is H-unital. Then there is a long exa
t sequen
e of Ho
hs
hild homology

groups

:::! HH

n

(I)! HH

n

(A)! HH

n

(A=I)! HH

n�1

(I)! :::

6.2 Continuous Ho
hs
hild Homology

The version of Ho
hs
hild homology we will use in 
hapter 7, to determine the

Ho
hs
hild homology of a lo
ally 
oned stratifold is not the standard one, as

we dis
ussed in the previous se
tion, but a topologi
al version. Most of what is

presented in this se
tion 
an be seen as a suitable 
ompletion of the algebrai



ase. A referen
e for this se
tion is the original work of Connes [Connes87℄.

We also refer to the arti
les of Wodzi
ki [Wodzi
ki89℄ and Brodzki/Lykova

[Brodzki,Lykova99℄ about ex
ision in 
ontinuous Ho
hs
hild homology. From

now on we assume that A is a nu
lear Fr�e
hetalgebra. For any natural number

n 2 N let

�

C

n

(A) = A

^


(n+1)
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be the (n + 1)-fold 
ompleted tensor produ
t. Sin
e A is nu
lear by our

assumption, it doesn't matter whi
h of the two tensorprodu
ts we use at

this point. Clearly, when 
onsidered on the Cartesian produ
t the operators

b

n

and b

0

n

in (6.2) respe
tively. (6.3) are multi linear and 
ontinuous. By

the universal property of

^


 they indu
e operators

�

C

n

(A) !

�

C

n�1

(A) again

denoted by b

n

and b

0

n

. We 
all

�

C

�

(A) = (

�

C

n

(A); b

n

) (6.8)

the 
ontinuous Ho
hs
hild 
omplex and

�

C

bar

�

(A) = (

�

C

n

(A); b

0

n

) (6.9)

the 
ontinuous bar-
omplex. The 
omplexes C

�

(A) and C

bar

�

(A) 
an be


onsidered as dense sub
omplexes of the 
orresponding 
omplexes.

De�nition 6.2.1. Under the assumptions above the n-th 
ontinuous Ho
h-

s
hild homology group of A is de�ned as the A module

HH

n

(A) =

ker(b

n

:

�

C

n

(A)!

�

C

n�1

(A))

im(b

n+1

:

�

C

n+1

(A)!

�

C

n

(A))

:

In the following we will sometimes omit the word 
ontinuous in front of

Ho
hs
hild homology. Whether we mean algebrai
 or 
ontinuous Ho
hs
hild

homology should then be 
lear from the 
ontext. As in the algebrai
 
ase,

these groups are modules over A. As quotient spa
es of topologi
al ve
tor-

spa
es, the Ho
hs
hild homology groups are also topologi
al ve
torspa
es.

In fa
t they are topologi
al modules over A. In general though, these ve
-

torspa
e are non-Hausdor�. This often makes things diÆ
ult. For example a

Kuenneth like theorem for the Ho
hs
hild homology of A

^


B doesn't seem

to appear in the literature. On the other side, if the 
ontinuous Ho
hs
hild

homology groups are Hausdor� , then they are automati
ally nu
lear Fr�e
het

( see our list on se
tion 5.3 ) and most 
onstru
tions work. In our 
ase, that

is A =

�

C

1

(X) for a stratifold X the Ho
hs
hild homology groups will turn

out to be Hausdor� and we are on the safe side.

Using the de�nition one 
an 
ompute the 
ontinuous Ho
hs
hild homo-

logy of C similar as in (6.4). For an arbitrary unital nu
lear Fr�e
hetalgebra

the same 
al
ulation as in (6.5) shows that HH

1

(A) = A=[A;A℄.

We will now show, that Ho
hs
hild homology 
an also be des
ribed as

a topologi
al version of a parti
ular torsionprodu
t. This will enable us to


al
ulate the Ho
hs
hild homology groups in 
ertain 
ases by using proje
tive

resolutions. Of 
ourse, we have to de�ne these terms �rst.
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De�nition 6.2.2. A lo
ally 
onvex topologi
al ve
torspa
e M is 
alled a to-

pologi
al module over A if M is a module over A and s
alar multipli
ation

as well as addition is 
ontinuous. M is 
alled topologi
al proje
tive if it is a

topologi
al dire
t summand of a module of the form N = A

^


E, where E is

a lo
ally 
onvex ve
torspa
e.

Proje
tivity 
an also be 
hara
terized by a universal property whi
h is

similar to the algebrai
 
ase, where homomorphisms are repla
ed by admis-

sible homomorphisms. For a general treatment of the 
ategory of nu
lear

Fr�e
het algebras and admissible maps, the reader should 
onsult the book of

Helemskii [Helemskii℄. We 
ome to what is 
alled a proje
tive resolution.

De�nition 6.2.3. Let M be a topologi
al module over A. A topologi
al pro-

je
tive resolution of M is an exa
t sequen
e of topologi
al proje
tive A mo-

dules and A-linear maps

:::M

2

b

2 //
M

1

b

1 //
M

0

b

0 //
M

;

whi
h admits an C -linear 
ontinuous 
ontra
tion

s

i

:M

i

!M

i+1

;

b

i+1

s

i

+ s

i�1

b

i

= id 8i:

Now let A

op

denote the algebra A with the opposite multipli
ation and

B = A

^


A

op

. The algebra A itself be
omes a topologi
al B-module by setting

(a

^


b) � 
 = a
b:

The following proposition gives an answer to how to 
ompute Ho
hs
hild

homology groups using proje
tive resolutions.

Proposition 6.2.1. Let (M

n

; b

n

) be a topologi
al proje
tive resolution of A

over B. Then the Ho
hs
hild homology groups of A 
oin
ide with the homo-

logy groups of the 
omplex

:::M

3

^




B

A

b

3 //
M

2

^




B

A

b

2 //
M

1

^




B

A

b

1 //
M

0

^




B

A

:

There is a standard proje
tive resolution of A over A

^


A

op


alled the

bar-resolution. This resolution is 
onstru
ted similar to the bar-resolution

de�ned in (6.1),(6.2) though shouldn't be 
onfused with the latter, sin
e it

is by 
onstru
tion a resolution over A

^


A

op

rather than k as in (6.1),(6.2). It
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an be obtained as follows. For n 2 N we take M

n

= A

^


(n+2)

. We 
onsider

this as a module over A

^


A

op

via

(a

^


b) � (a

0

^


:::

^


a

n+1

) = aa

0

^


:::

^


a

n+1

b:

From the isomorphism

M

n

�

=

(A

^


A

op

)

^


A

^



n

it follows that M

n

is proje
tive in the sense of De�nition 6.2.2. We de�ne a

di�erential

b

0

:M

n

!M

n�1

b

0

(a

0

^


:::

^


a

n+1

) =

n

X

i=0

(�1)

i

a

0

^


::

^


a

i

a

i+1

^


:::

^


a

n+1

:

It is not hard to verify that this 
omplex is 
ontinuous and k-linear 
ontra
-

tible via

s

n

:M

n

!M

n+1

s

n

(a

0

^


:::

^


a

n+1

) = 1

A

^


a

0

^


:::

^


a

n+1

:

Hen
e M

�

is a proje
tive resolution of A over A

^


A

op

. We 
all this resolution

the bar-resolution. To 
ompute the Ho
hs
hild homology of A , we have to

tensor the bar-resolution with A over A

^


A

op

. Some easy 
al
ulation then

shows that the resulting 
omplex is pre
isely (

�

C

�

(A); b).

We do now use this proposition to 
al
ulate the Ho
hs
hild homology in

the 
ase where A = C

1

(B) 
onsists of smooth 
omplex valued fun
tions on

the open unit dis
 B in R

n

. We will 
onstru
t an expli
it proje
tive resolution

and show that

HH

k

(C

1

(B))

�

=




k

(B); 8k 2 N :

Here the right hand side denotes 
omplex di�erential forms on B. We will

later use this result to proof a similar result for lo
ally 
oned stratifolds. For

ea
h k 2 N we de�ne modules over C

1

(B �B)

M

k

:= C

1

(B � B;�

k

(C

n�

)):
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Here C

n�

denotes the spa
e of linear forms on C

n

. Clearly

M

k

�

=

C

1

(B �B)

^


�

k

(C

n�

);

where 
ompletion is a
tually unne
essary, sin
e the ve
torspa
e �

k

(C

n�

) is

�nite dimensional. Nevertheless, it follows that ea
h M

k

is free, hen
e pro-

je
tive. Further let 
 denote the di�eren
e fun
tion


 : B � B ! R

n

� C

n

;


(a; b) = b� a:

This map indu
es maps we denote with i




i




:M

k+1

!M

k

;

i




!(a; b)(v

1

; :::; v

k

) = !(a; b)(
(a; b); v

1

; :::v

k

) = !(a; b)(b� a; v

1

; :::v

k

):

Here ! 2 M

k+1

denotes a form, a; b are points in B � R

n

and v

1

; :::v

k

are

elements of C

n

In other words i




is 
ontra
tion with the ve
tor�eld 
. Let us

now 
onsider the following sequen
e

0

C

1

(B)

oo
C

1

(B � B) =M

0

�

�

oo
M

1

i


oo
M

2

i


oo
:::

i


oo
;

where � : B ! B�B denotes the diagonal map. To show that this sequen
e

de�nes a topologi
al proje
tive resolution of C

1

(B) over C

1

(B � B) we

have to give a 
ontinuous C -linear 
ontra
tion. For this let s

k

: M

k

! M

k+1

be de�ned as follows. Let e

�

1

; :::; e

�

n

denote the dual basis of the standard


anoni
al basis of C

n

, and let ! 2M

k

be given as

!(a; b) = f(a; b)e

�

i

1

^ ::: ^ e

�

i

k

;

where f 2 C

1

(B�B) is a smooth fun
tion on B�B and i

1

; :::; i

k

2 f1; :::ng.

In this 
ase we de�ne

s

k

!(a; b) :=

n

X

j=1

Z

1

0

�f

�y

j

(a; a+ t(b� a))t

k

e

�

j

^ e

�

i

1

^ ::: ^ e

�

i

k

dt:

In the following we suppress the subs
ript k and simply write s!. We have

(i




s!)(a; b) =

n

X

j=1

(

Z

1

0

�f

�y

j

(a; a + t(b� a))t

k

82



�f

k

X

l=1

(�1)

l+1

(b� a)

i

l

e

�

j

^ e

�

i

1

^ ::: ^

b

e

�

i

l

^ ::: ^ e

�

i

k

g+ (b� a)

j

e

�

i

1

^ ::: ^ e

�

i

k

):

From this we get the expression

(i




s!)(a; b) = f

n

X

j=1

Z

1

0

�f

�y

j

(a; a+ t(b� a))t

k

(b� a)

j

e

�

i

1

^ ::: ^ e

�

i

k

dtg

+f

k

X

l=1

n

X

j=1

Z

1

0

(�1)

l+1

�f

�y

j

(a; a + t(b� a))t

k

(b� a)

i

l

e

j

^ e

�

i

1

^ ::: ^

b

e

�

i

l

^ ::: ^ e

�

i

k

dtg:

The 
hain-rule of di�erentiation applied to the �rst sum gives

i




s!(a; b) =

Z

1

0

d

dt

f(a; a+ t(b� a))t

k

e

�

i

1

^ ::: ^ e

�

i

k

dt

+f

k

X

l=1

n

X

j=1

Z

1

0

(�1)

l+1

�f

�y

j

(a; a + t(b� a))t

k

(b� a)

i

l

e

j

^ e

�

i

1

^ ::: ^

b

e

�

i

l

^ ::: ^ e

�

i

k

dtg:

Now we perform partial integration with the �rst integral on the right side.

This yields us to the following expression

i




s!(a; b) = f(a; a+ t(b� a))t

k

j

1

0

e

�

i

1

^ ::: ^ e

�

i

k

�

Z

1

0

f(a; a+ t(b� a))kt

k�1

e

�

i

1

^ ::: ^ e

�

i

k

dt

+f

k

X

l=1

n

X

j=1

Z

1

0

(�1)

l+1

�f

�y

j

(a; a + t(b� a))t

k

(b� a)

i

l

e

j

^ e

�

i

1

^ ::: ^

b

e

�

i

l

^ ::: ^ e

�

i

k

dtg:

Cal
ulating the �rst term on the right side is easy and gives

i




s!(a; b) = !(a; b) +R(a; b);

where R(a; b) denotes the rest, i.e. the integral and the double sum on the

right side.
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Now we 
al
ulate the expression si




!(a; b). The de�nition give us

si




!(a; b) =

k

X

l=1

(�1)

l

f

n

X

j=1

Z

1

0

�f

�y

j

(a; a+ t(b� a))(a + t(b� a)� a)

i

l

�f(a; a + t(b� a))Æ

j;i

l

t

k�1

dt e

�

j

^ e

�

i

1

^ :::

b

e

�

i

l

^ ::: ^ e

�

i

k

g:

Reordering terms and evaluation of the Krone
ker symbol Æ

j;i

l

yields to

si




!(a; b) =

k

X

l=1

(�1)

l

f

n

X

j=1

Z

1

0

�f

�y

j

(a; a+ t(b� a))(b� a)

i

l

t

k

dt e

�

j

^ e

�

i

1

^ :::

b

e

�

i

l

^ ::: ^ e

�

i

k

g

+(�1)

l+1

Z

1

0

f(a; a+ t(b� a))t

k�1

dt e

�

i

l

^ e

�

i

1

^ ::: ^

b

e

�

i

l

^ ::: ^ e

�

i

k

:

Shu�ing e

�

i

l

from the �rst to the i

l

-th position in e

�

i

l

^ e

�

i

1

^ ::: ^

b

e

�

i

l

^ ::: ^ e

�

i

k


hanges the sign by the fa
tor (�1)

l�1

. This 
an
els with the fa
tor (�1)

l+1

in front of the se
ond term on the right side, and we see, that this term is a
-

tually independent of the summation index l. Hen
e for this term summation

over l is just multipli
ation with k. Taking a 
lose look on the summands we


an re
ognize, that we end up with �R(a; b), where R(a; b) was de�ned on

the previous page. So we get

si




!(a; b) + i




s!(a; b) = �R(a; b) + !(a; b) +R(a; b) = !(a; b):

This proves

si




+ i




s = id:

It is not hard to see, that s is 
ontinuous and C -linear. So far we have


onstru
ted a topologi
al proje
tive Resolution of C

1

(B) over C

1

(B � B).

We are now able to prove the following proposition.

Proposition 6.2.2. For any k 2 N we have

HH

k

(C

1

(B))

�

=




k

(B)

Proof. We 
al
ulate the Ho
hs
hild homology of C

1

(B) by tensoring the

topologi
al proje
tive resolution from above over C

1

(B � B) with C

1

(B).

For any k 2 N we have

M

k

^




C

1

(B�B)

C

1

(B) = (C

1

(B �B)

^


�

k

(C

n�

))

^




C

1

(B�B)

C

1

(B)
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= �

k

(C

n�

)

^


C

1

(B) = 


k

(B):

Sin
e 
 as de�ned in the 
onstru
tion of our resolution is zero on the diagonal,

we have

i




^




C

1

(B�B)

id

C

1

(B)

= 0:

Hen
e the tensored 
omplex has zero di�erentials and we get 


k

(B) for the

k-th homology group of this 
omplex.

So far, the isomorphism above is more or less abstra
t. From the universal

properties of the various 
onstru
tions involved, it follows that the maps �

n

and �

n

as de�ned in the algebrai
 
ase in (6.6) and (6.7) indu
e 
orresponding

maps

�

n

:

�




n

A

! HH

n

(A) (6.10)

�

n

: HH

n

(A)!

�




n

A

(6.11)

for any unital,nu
lear and 
ommutative Fr�e
hetalgebra and n 2 N . Here

HH

n

(A) stands of 
ourse for the 
ontinuous Ho
hs
hild homology of A. It is

not hard to see, that the isomorphism of Proposition 6.2.2 is given by these

maps. In general we have the following proposition, whi
h is the 
ontinuous


ounterpart to Proposition 6.1.2.

Proposition 6.2.3. Let A be a unital 
ommutative nu
lear Fr�e
hetalgebra.

Then the 
omposition �

n

Æ �

n

is multipli
ation with n! on

�




n

A

. Hen
e

�




n

A

is a

topologi
al dire
t summand of HH

n

(A) and �

n

is an embedding.

Proof. This is 
ompletely analogous as in Proposition 6.1.2

Let us brie
y say something about the fun
torial properties of 
onti-

nuous Ho
hs
hild homology. Clearly a 
ontinuous homomorphism between

two nu
lear Fr�e
het algebras

f : A! B

indu
es a 
hain map between the Ho
hs
hild 
omplexes and hen
e maps

f

�

: HH

n

(A)! HH

n

(B); 8n 2 N :

The following result is stated in [Karoubi℄ and 
an be seen as a Kuenneth

like theorem for 
hain 
omplexes in the world of nu
lear Fr�e
hetspa
es.
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Lemma 6.2.1. Assume we have two 
hain 
omplexes

0

M

0

oo
M

1

doo
M

2

:::

doo

0

N

0

oo
N

1

d

0

oo
N

2

:::

d

0

oo


onsisting of nu
lear Fr�e
hetspa
es. Let us further assume, that all homology

groups of these two 
omplexes are Hausdor�, in equal the boundary maps have


losed images. Then the 
ompleted tensorprodu
t (M

�

^


N

�

; d

^


1+(�1)

�

1

^


d

0

)

of both 
omplexes is again a 
hain 
omplex of nu
lear Fr�e
hetspa
es and there

is a natural isomorphism

H

n

(M

�

^


N

�

)

�

=

X

p+q=n

H

p

(M

�

)

^


H

q

(N

�

):

As an appli
ation of Lemma 6.2.1 we have the following proposition.

It will help us, to prove our main theorem about Ho
hs
hild homology of

stratifolds in 
hapter 7.

Proposition 6.2.4. Let X and Y be stratifolds and assume that 8n 2 N the

antisymmetrization maps

�

X

n

:

�




n

�

C

1

(X)

! HH

n

(

�

C

1

(X))

�

Y

n

:

�




n

�

C

1

(Y )

! HH

n

(

�

C

1

(Y ))

are topologi
al isomorphisms. Then the same is true for the antisymmetriza-

tion maps

�

X�Y

n

:

�




n

�

C

1

par

(X�Y )

! HH

n

(

�

C

1

par

(X � Y )):

Proof. Sin
e we know from the assumption that the Ho
hs
hild homology

groups of

�

C

1

(X) and

�

C

1

(Y ) are Hausdor� and furthermore from Proposi-

tion 5.7.1 we have

�

C

1

par

(X � Y )

�

=

�

C

1

(X)

^




�

C

1

(Y ), we 
an apply Lemma

6.2.1 as well as Proposition 5.6.3 to get the following 
ommutative diagram

where the horizontal maps are isomorphisms

�




n

�

C

1

par

(X�Y )

�

= //

�

n

��

P

p+q=n

�




p

�

C

1

(X)

^




�




q

�

C

1

(Y )

P

p+q=n

�

p

^


�

q

��

HH

n

(

�

C

1

par

(X � Y )

�

= //
P

p+q=n

HH

p

(

�

C

1

(X))

^


HH

q

(

�

C

1

(Y ))

:

That this diagram is indeed 
ommutative follows from 
ompatibility of the

antisymmetrization map with produ
ts (see [Weibel95℄, page 322).
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We should now 
onsider the nonunital 
ase. The unitization A

+

of a

possibly nonunital nu
lear Fr�e
hetalgebra A is as a ve
torspa
e isomorphi


to A�C and hen
e has a natural nu
lear Fr�e
het stru
ture. As in the algebrai



ase we de�ne the 
ontinuous Ho
hs
hild homology of A as follows.

De�nition 6.2.4. Let A be a not ne
essarily unital nu
lear Fr�e
hetalgebra.

We de�ne its Ho
hs
hild homology by

HH

n

(A) := 
oker(i

�

: HH

n

(C ) ! HH

n

(A

+

));

where A

+

denotes the unitization of A and i

�

denotes the map whi
h is in-

du
ed by the natural in
lusion of C into A

+

.

Clearly, this de�nition 
oin
ides with the older one, in the 
ase A already

was unital. Furthermore, we have

HH

0

= A

+

=k = A

HH

n

(A) = HH

n

(A

+

); 8n > 0:

Nonunital nu
lear Fr�e
hetalgebras often o

ur as 
losed ideals in unital

nu
lear Fr�e
hetalgebras. The nonunital nu
lear Fr�e
hetalgebra we are mainly

interested in is given by the kernel of the evaluation map

ev

x

:

�

C

1

(X)! R:

Analogous to the algebrai
 
ase, we have 
ontinuous versions of naive Ho
h-

s
hild homology and bar homology whi
h we again denote with HH

naive

n

(A)

and H

bar

n

(A). The following de�nition is the 
ontinuous 
ounterpart of De�-

nition 6.1.3.

De�nition 6.2.5. Let A be a possibly nonunital nu
lear Fr�e
hetalgebra. We


all A H-unital if the 
ontinuous bar-
omplex of A is a
y
li
, in equal

H

bar

n

(A) = 0 8n 2 N :

A 
ontinuous version of Proposition 6.1.3 
an be found in [Brodzki,Lykova99℄.

In this work one 
an also �nd the following ex
ision theorem whi
h is the


ontinuous 
ounterpart of Proposition 6.1.4.
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Proposition 6.2.5. Let 0 ! I ! A ! A=I ! 0 be an exa
t sequen
e of

nu
lear Fr�e
hetalgebras su
h that A is unital and I is H-unital. Then there

is a long exa
t sequen
e of 
ontinuous Ho
hs
hild homology groups

::

//
HH

n

(I)

//
HH

n

(A)

//
HH

n

(A=I)

Æ //
HH

n�1

(I)

//
::

:

As for 
ontinuous Ho
hs
hild homology there is also a des
ription of 
on-

tinuous bar-homology as parti
ular torsion produ
t. To be more pre
ise there

is a topologi
al isomorphism

H

bar

�

(A) = Tor

A

+

�

(C ; C ); (6.12)

where Tor denotes the redu
ed tor groups ( see [Wodzi
ki89℄ ).

As one 
an possibly imagine, in general it turns out to be very diÆ
ult

to determine whether a 
losed ideal I in a unital nu
lear Fr�e
hetalgebra is

H-unital or not. In our 
ase, we 
an use a te
hnique introdu
ed by Wodzi
ki

( see [Wodzi
ki89℄ ) and a result by Voigt (see [Voigt℄) to prove the following

proposition.

Proposition 6.2.6. Let B be a unital nu
lear Fr�e
het algebra and

�

C

1

0

([0; 1)) = ker(res : C

1

((�1; 1))! C

1

(�1; 0))

the 
ompleted algebra of smooth fun
tion on the 
-manifold [0; 1) vanishing at

zero. Then the nonunital nu
lear Fr�e
het algebra

�

C

1

0

([0; 1))

^


B is H-unital.

Proof. Let

� =

1

X

i=0

�

i

(f

i

0

^


b

i

0

)

^


:::

^


(f

i

n

^


b

i

n

) 2

�

C

n

(

�

C

1

0

([0; 1))

^


B)

be an element in the 
ontinuous bar 
omplex. Here �

i

is a sequen
e of 
omplex

numbers su
h that

P

1

i=0

j�

i

j < 1 and f

i

j

respe
tively b

i

j


onverge to zero as i

goes to in�nity ( see proposition 5.2.2 ). The fa
torization theorem of Voigt

(see [Voigt℄, Thm. 3.4) applied to

�

C

1

0

([0; 1)) and the sequen
e (f

i

0

) gives us

fun
tions g

i

2

�

C

1

0

([0; 1)) for all i 2 N and h 2

�

C

1

0

([0; 1)) with the following

properties.

1. f

i

0

= h � g

i

8i 2 N

2. g

i

2

�

C

1

0

([0; 1)) � (f

i

0

ji 2 N)
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The expression in 
ondition 2 denotes the 
losure of the ideal in

�

C

1

0

([0; 1))

whi
h is generated by the fun
tions f

i

0

. Let us de�ne � 2

�

C

n

(

�

C

1

0

([0; 1))

^


B)

as

� =

1

X

i=0

�

i

(g

i

^


b

i

0

)

^


:::

^


(f

i

n

^


b

i

n

):

From 
ondition 2 on the previous page, it follows that

� 2

�

C

1

0

([0; 1))

^


B) � � �

�

C

n

(

�

C

1

0

([0; 1))

^


B): (6.13)

Here the term in the middle denotes the 
losure of the ideal generated by �.

A simple 
al
ulation shows, that

� = b

0

((h

^


1

B

)

^


�) + (h

^


1

B

)

^


b

0

(�): (6.14)

Let us now assume that � is a 
y
le in the 
ontinuous bar 
omplex. Then

b

0

(�) = 0. Hen
e by 
ontinuity and

�

C

1

0

([0; 1))

^


B linearity of b

0

it follows

from (6.13) that b

0

(�) = 0. Hen
e by (6.14) we have that

� = b

0

((h

^


1

B

)

^


�)

is a boundary in the 
ontinuous bar 
omplex and the bar 
omplex is a
y
li
.

We will soon use the following 
orollary.

Corollary 6.2.1. Let X be a stratifold and let 
X denote the 
one over X.

Then the nu
lear Fr�e
hetalgebra

�

C

1

0

(
X) whi
h 
onsists of the smooth maps

on 
X whi
h vanish at the 
one point is H-unital.

Proof. From Proposition 5.7.1. we have

�

C

1

0

(
X)

�

=

�

C

1

(X)

^




�

C

1

0

([0; 1)):

The 
orollary now follows from Proposition 6.2.6 by setting B =

�

C

1

(X).

The next proposition shows, that when we know the antisymmetrization

map is an isomorphism for a stratifold X, it also is for the 
oned stratifold


X. Besides the lo
alization result in 
hapter 7, this is the main step towards

proving our general result about the Ho
hs
hild homology of lo
ally 
oned

stratifolds in se
tion 7.3.
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Proposition 6.2.7. Let X be a stratifold su
h that 8n 2 N the antisymme-

trization maps for X

�

X

n

:

�




n

�

C

1

(X)

! HH

n

(

�

C

1

(X))

are topologi
al isomorphisms, then the same is true for the antisymmetriza-

tion maps for 
X

�


X

n

:

�




n

�

C

1

(
X)

! HH

n

(

�

C

1

(
X)):

Proof. Sin
e for n = 0 there is nothing to show we 
an assume n � 1. By

naturality of the antisymmetrization map and Proposition 5.7.2, H-unitality

of

�

C

1

0

(
X) indu
es the following 
ommutative diagram with exa
t rows.

0

// �



n

�

C

1

(
X)

//

��

�




n

�

C

1

(X�(�1;1))

//

��

�




n

�

C

1

(X�(�1;0℄)

//

��

0

::

Æ //
HH

n

(

�

C

1

(
X))

//
HH

n

(

�

C

1

(X � (�1; 1)))

//
HH

n

(

�

C

1

(X � (�1; 0℄))

Æ //
::

Here the half open interval (1; 0℄ has been treated in the naive sense. The

verti
al maps in this diagram are given by the various antisymmetrization

maps. The ones at the right side are isomorphisms by Proposition 6.2.6.Sin
e

we have the diagram available 8n � 1 it follows that the 
onne
ting homo-

morphism Æ is zero. Hen
e we 
an repla
e \..." in the diagram by 0 and the

proposition follows from the �ve lemma.
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Kapitel 7

Ho
hs
hild Homology of

Stratifolds

In the 
ase that M is a 
losed manifold, Alain Connes proved in [Connes87℄

that the 
ontinuous Ho
hs
hild homology of the algebra C

1

(M) is isomor-

phi
 to the module of di�erential forms on M , where both are 
onsidered as

modules over C

1

(M).Using methods of Teleman it 
an be shown, that the

latter is true also for non 
ompa
t manifolds with boundary. In this 
hapter

we will generalize this result to the 
ase where X is a lo
ally 
oned stratifold.

Not mu
h is known about the algebrai
 Ho
hs
hild homology of C

1

(M), so

we won't say anything about the algebrai
 Ho
hs
hild homology of C

1

(X)

for a stratifold X.

7.1 The Ho
hs
hild Complex of a Stratifold

In this se
tion, we will rewrite the Ho
hs
hild 
omplex of a stratifoldX, whi
h

by de�nition is the 
ontinuous Ho
hs
hild 
omplex of the algebra

�

C

1

(X) in

form of smooth fun
tions on Cartesian produ
ts of X. This makes the Ho
h-

s
hild 
omplex more favourable to topologi
al 
onstru
tions su
h as partiti-

ons of unity et
. Sin
e 
ontinuous Ho
hs
hild homology is only de�ned on

nu
lear Fr�e
hetalgebras, it is ne
essary to work with the 
ompleted version

�

C

1

(X) of C

1

(X). To shorten the notation we write C

�

(X) for the Ho
h-

s
hild 
omplex of X.

In the following se
tions we use the natural isomorphism of Proposition

5.7.1 to identify the Ho
hs
hild 
omplex with the following 
omplex

C

n

(X) =

�

C

1

par

(X

n+1

) (7.1)

91



(bF )(x

0

; ::::; x

n�1

) =

n�1

X

i=0

(�1)

i

F (x

0

; :::; x

i

; x

i

; :::; x

n�1

) + (�1)

n

F (x

0

; :::; x

n�1

; x

0

);

(7.2)

where F denotes an n 
hain interpreted as a fun
tion on the (n+ 1)-fold

Cartesian produ
t of X. The subs
ript par is explained in Proposition 5.7.1.

This form of the Ho
hs
hild 
omplex of X will be of parti
ular importan
e

in the following se
tion.

7.2 Lo
alization of the Ho
hs
hild Complex

In this se
tion we show, that the Ho
hs
hild 
omplex of a stratifold X 
on-

tains a large a
y
li
 sub
omplex. This sub
omplex 
onsists of the Ho
hs
hild


hains

F : X

n+1

! R;

whi
h vanish in a neighbourhood of the diagonal �

n+1

� X

n+1

. The methods

applied by Teleman in [Teleman98℄ to show this for the 
ase of a smooth

manifold, also work in the 
ase of a stratifold, on
e we have proven the

following lemma. For a matter of 
ompleteness we also illustrate Teleman's

ideas.

Lemma 7.2.1. Let X be a stratifold, then there exists a metri
 d on X whi
h

generates the topology and satis�es

d

2

2

�

C

1

par

(X �X):

Proof. To show the existen
e of su
h a metri
 d on X, we will modify the

proof of the Urysohn metrization theorem, whi
h states that every regular T

1

spa
e with 
ountable base of topology is metrizable. During the dis
ussion

of the basi
 properties of a stratifold in 
hapter 1, we mentioned that, for

any two disjoint and 
losed subsets A and B of X there is a fun
tion f

A;B

2

C

1

(X) su
h that A � f

�1

A;B

(0) and B � f

�1

A;B

(1). This fun
tion also belongs to

�

C

1

(X). Let us now 
onsider a 
omplete family F of su
h fun
tion, that is for

any two disjoint and 
losed subsets A and B of X there is f

A;B

2 F as above.

We 
an assume that F is 
ountable. Let [0; 1℄

F

denote the spa
emap(F; [0; 1℄)

where [0; 1℄ denotes the unit interval and the topology is given by the produ
t

topology. Let us assume that F is given by the family ff

n

jn 2 Ng. Then we
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an identify [0; 1℄

F

with the spa
e of in�nite sequen
es (x

n

)

n2N

with entries

in the interval [0; 1℄. It is a standard exer
ise in analysis that

d

1

((x

n

); (y

n

)) :=

v

u

u

t

1

X

i=1

1

2

n

(x

n

� y

n

)

2

is a metri
 on [0; 1℄

F

whi
h generates the topology. Obviously this metri
 has

the property, that when �xing all but one 
oordinate, it's square depends

smoothly on that free 
oordinate. Now, as one 
an see in the book [Kelley℄

on page 125 for example, the map

 : X ! [0; 1℄

F

x 7! (f(x))

f2F

is a topologi
al embedding. Sin
e all 
omponent fun
tions are elements of

�

C

1

(X) it is 
lear that  is also smooth. Here we 
onsider a map on the

in�nite dimensional spa
e [0; 1℄

F

as smooth, if and only if it is partially

smooth. Sin
e 
omposition of smooth maps is smooth we �nd that

 

�

d

1

: X �X ! R

(x; y) 7! d

1

( (x);  (y))

has the property ( 

�

d

1

)

2

2

�

C

1

par

(X �X). Setting d :=  

�

d

1

will �nish the

proof.

We 
an now pro
eed with the Teleman method. Let � : [0;1)! [0; 1℄ be

a smooth fun
tion, su
h that supp(�) � [0; 1℄ and �

j[0;1=2℄

� 1. For t > 0 we

de�ne

�

t

: [0;1)! [0; 1℄;

�

t

(s) := �(s=t):

These fun
tions have the following properties :

1. supp(�

t

) � [0; t℄

2. �

tj[0;t=2℄

� 1
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Now for any k 2 N let us de�ne fun
tions �

k

as

�

k

: X

k+1

! [0;1)

�

k

(x

0

; x

1

; :::; x

k

) = d(x

0

; x

1

)

2

+ d(x

1

; x

2

)

2

+ ::: + d(x

k

; x

0

)

2

: (7.3)

Here d denotes a fun
tion on X �X su
h as in Lemma 7.2.1 . In words,

�

k

measures the distan
e of a point in X

k+1

from the diagonal. Clearly �

k

2

�

C

1

par

(X

k+1

). Let

U

t;k

:= f(x

0

; x

1

; :::; x

k

)j�

k

(x

0

; :::; x

k

) < tg

be the t-neighbourhood of the diagonal �

k+1

� X

k+1

. Let C

t

�

(X) be the

sub
omplex of the Ho
hs
hild 
omplex C

�

(X) where C

t

k

(X) 
ontains the

elements of C

k

(X) vanishing on U

t;k

. Let

C

0

�

(X) = lim

�!

C

t

�

(X)

where the limit goes as t goes to zero. The 
omplex C

0

�

(X) 
onsists of the


hains vanishing in an arbitrary neighbourhood of the diagonal.

Proposition 7.2.1. Let X be a stratifold.The 
omplex C

0

�

(X) is a
y
li
.

Proof. We de�ne an operator

E

t

: C

k

(X)! C

k+1

(X);

E

t

(F )(x

0

; :::; x

k+1

) = �

t

(d(x

0

; x

1

)

2

) � F (x

1

; :::; x

k+1

); 8F 2 C

k

(X)

This operator maps C

s

k

into C

s=4

k+1

whi
h 
an easily be veri�ed. A 
al
ulation

also shows that

b Æ E

t

+ E

t

Æ b = 1�N

t

;

where N

t

is de�ned as

N

t

(F )(x

0

; :::; x

k

) = (�1)

k

�

t

(d(x

0

; x

1

)

2

) � fF (x

1

; x

2

; :::x

k

; x

0

)� F (x

1

; x

2

; :::x

k

; x

1

)g

8F 2 C

k

(X):
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Dire
t 
al
ulation also shows that b Æ N

t

= N

t

Æ b. Let's 
onsider the k-th

power of N

t

that is (N

t

)

k

. For F 2 C

k

(X) we get

(N

t

)

k

F (x

0

; :::; x

k

) =

k�1

Y

i=0

�

t

(d(x

i

; x

i+1

)

2

) �G(x

0

; :::; x

k

);

where G(x

0

; :::; x

k

) is a linear 
ombination of fun
tions built out of F by

restri
ting to 
ertain diagonals and permutation of some arguments. For the

produ
t in front of G to be not zero, we must have d(x

i

; x

i+1

)

2

< t for ea
h

0 � i � k � 1. The triangle equation shows that in this 
ase we also have

d(x

0

; x

k

) < kt

1=2

. Hen
e we have

�

k

(x

0

; :::; x

k

) =

k�1

X

i=0

d(x

i

; x

i+1

)

2

+ d(x

k

; x

0

)

2

< kt + k

2

t:

Hen
e for F 2 C

(k+k

2

)t

k

(X) we have that (N

t

)

k

(F ) = 0. Let's de�ne another

operator

K

t

: E

t

�

k�1

X

r=0

(N

t

)

r

: C

(k+k

2

)t

k

(X)! C

(k+k

2

)4

�(k+1)

t

k+1

(X):

By 
onstru
tion this operator satis�es

b ÆK

t

+K

t

Æ b = 1;

whi
h proves the theorem by taking the dire
t limit where t goes to zero.

From the previous proposition we know, that any Ho
hs
hild 
lass in

HH

n

(

�

C

1

(X)) 
an now be represented by a 
y
le F whi
h has support ar-

bitrary 
lose to the diagonal. One 
an now use a partition of unity and the

�

C

1

(X) module stru
ture onHH

n

(

�

C

1

(X)) to see that the following 
orollary

is true.

Corollary 7.2.1. Let X be a stratifold and (U

i

ji 2 I) be a lo
ally �nite

open 
overing of X, where I is some index set. Let further F 2 C

n

(X) be

a Ho
hs
hild 
y
le. Then there are Ho
hs
hild 
y
les F

i

2 C

n

(X) su
h that

supp(F

i

) 2 (U

i

)

n+1

8i 2 I and

F �

X

i2I

F

i

are homologous.
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7.3 Ho
hs
hild homology of lo
ally 
oned stra-

tifolds

In this se
tion we will �nally show that the Ho
hs
hild homology of the

algebra

�

C

1

(X) of a lo
ally 
oned stratifold X is isomorphi
 to the module

�




n

�

C

1

(X)

of di�erential forms. Besides the result on de Rham 
ohomology of

stratifolds this 
an be seen as the main result of this work. After all the work

we did in 
hapters 5 and 6 and in the beginning of 
hapter 7, the proof seems

to be quite easy.

Theorem 7.3.1. Let X be a lo
ally 
oned stratifold. Then 8n 2 N the anti-

symmetrization maps

�

n

:

�




n

�

C

1

(X)

! HH

n

(

�

C

1

(X))

are topologi
al isomorphisms.

Proof. Let n 2 N . We have to show that the antisymmetrization map �

n

is

surje
tive in equal any Ho
hs
hild 
y
le in HH

n

(

�

C

1

(X)) is antisymmetri
.

From Corollary 7.2.1. it suÆ
es to show, that this is lo
ally the 
ase. Hen
e

we 
an assume that our stratifold is of the kind B

k

�
L where B

k

denotes the

open unit ball of dimension k and 
L denotes the open 
one over a stratifold

of dimension less than the dimension ofX. Using indu
tion on the dimension,

we 
an assume that the antisymmetrization maps �

L

n

for L are isomorphisms

8n 2 N . From Proposition 6.2.7 it then follows that the antisymmetrization

maps for 
L are also isomorphisms. From Proposition 6.2.2. it follows, that

the antisymmetrization maps for B

k

are isomorphisms. Hen
e the theorem

follows from Proposition 6.2.6.

As we mentioned earlier, the same proof goes through for lo
ally produ
t


oned stratifolds.

7.4 Some Remarks on Cy
li
 Homology of

Stratifolds

This se
tion is only informal, so we don't give any proofs and don't bother

to de�ne things exa
tly.

If we divide out a 
y
li
 a
tion from the Ho
hs
hild 
omplex (6.8), in

equal identifying 
y
les, whi
h arise from another by 
y
li
 permutation,
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we get another 
omplex, whi
h is sometimes 
alled Connes' 
omplex. The

homology groups of this 
omplex are 
alled 
y
li
 homology groups and

will be denoted by

HC

n

(A):

These groups are related to the Ho
hs
hild homology groups by the so 
alled

Connes' exa
t sequen
e

:::HH

n

(A)

I //
HC

n

(A)

S //
HC

n�2

(A)

B //
HH

n�1

(A)

I //
:::

:

The operator S is the so 
alled Connes periodi
ity operator and 
orre-

sponds via some identi�
ations to the Bott periodi
ity operator in K-theory.

In the 
ommutative 
ase it is not hard to show, that via the antisymmetri-

zation map, up to a fa
tor the operator

B Æ I : HH

n

(A)! HH

n+1

(A)

exa
tly 
orresponds to the operator

d :

�




n

A

!

�




n+1

A

:

Using this and Connes' exa
t sequen
e one 
an pro
eed exa
tly as in [Connes87℄

to prove the following.

Proposition 7.4.1. Let X be a lo
ally 
oned stratifold with �nite dimensio-

nal homology groups. Then 8n 2 N there is a natural topologi
al isomorphism

HC

n

(

�

C

1

(X))

�

=

�




n

�

C

1

(X)

=d

�




n�1

�

C

1

(X)

�H

n�2

dR

(X)�H

n�4

dR

(X)::::

7.5 Closing Remarks

In the end, the reader has the right to ask, why it might be important to

know something about the Ho
hs
hild homology of lo
ally 
oned stratifolds.

In the framework of index theory on manifolds as well as in the framework

of non
ommutative geometry, Ho
hs
hild homology and in parti
ular 
y
li


homology have been proven su

essful. One 
ould say that this door has been

opened by Connes' work about the 
y
li
 homology of the algebra C

1

(M)

for a smooth manifoldM . For example, people studied Ho
hs
hild and 
y
li


homology of algebras 
onsisting of pseudo di�erential operators on manifolds

(see [S
hulze℄ ). Motivated by questions from theoreti
al physi
s, people be-

gan studying the analysis of singular spa
es. In their 
onsiderations, some
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kind of di�erential operators on singular spa
es play a role. One might now

hope to learn something about these, by studying their Ho
hs
hild homolo-

gy for example. Though we must 
learly say, that the approa
h on singular

spa
es, whi
h we have taken in this work is probably to naive and not suita-

ble for more 
ompli
ated analyti
 
onstru
tions ( like for example di�erential

operators, 
onne
tions et
. ) it is to my knowledge the �rst 
omplete result

about the Ho
hs
hild homology of some version of singular spa
es. We hope

the reader thinks this is justi�
ation enough to have spent some of his time

reading this work.
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