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Zusammenfassung 

Lissenzephaly ist eine kortikale Entwicklungsstörung, die durch ein glattes Gehirn und einen 

unstrukturierten Cortex charakterisiert ist. Mutationen im LIS1 Gen wurden als häufigste 

Ursache für diese Erkrankung identifiziert. LIS1-Lissenzephaly zeichnet sich dadurch aus, dass 

Betroffene unterschiedlich schwer erkrankt sind. Einige haben verbreitete kortikale 

Einfaltungen, sogenannte Gyri und zeigen milde Krankheitsverläufe, andere wiederum sind 

schwer betroffen und haben ein glattes Gehirn ohne Gyri. Analysen in murinen Systemen 

konnten bislang nicht die Gesamtheit der Erkrankung widerspiegeln, zeigten jedoch, dass die 

Dosierung von LIS1 für die Schwere der Erkrankung relevant ist. Dennoch konnte die Frage, 

warum eine spezifische Mutation im LIS1 Gen, wie sie bei den Erkrankten identifiziert wurden, 

zu unterschiedlichen Ausprägung der Erkrankungen führt, durch das Fehlen von adäquaten 

Modellsystem, bisher nicht beantwortet werden. Das gleiche gilt für die Frage, ob die 

unterschiedlichen Mutationen human-spezifische Entwicklungsprozesse differenziert 

beeinflussen. Aus diesem Grund habe ich zusammen mit meinen Kollegen ein Protokoll für die 

Generierung von zerebralen Organoiden entwickelt und dessen Fähigkeit untersucht, 

verschiedene Schweregrade von LIS1-Lisenzephaly widerzuspiegeln. Hierfür wurden 7 

unterschiedlich schwer erkrankte (mild, moderate und schwer) Lissenzephaly Patienten aus 

einer 63 Patienten Kohorte ausgewählt, bei welchen die Erkrankung durch eine molekular 

charakterisierte heterozygote Mutation im LIS1 Gen hervorgerufen wird. Um die 

Konsequenzen der einzelnen Patienten-spezifischen Mutationen auf die humane 

Gehirnentwicklung zu untersuchen, wurden von jedem Patienten somatische Zellen zu 

Stammzellen zurückprogrammiert, um 3D zerebrale Organoide zu generieren. Diese in vitro 

Gewebe zeigten krankheits-assoziierte phänotypische Veränderungen, die in ihrer 

Ausprägungsstärke mit den Schweregrad der Patienten korrelierten. Entwickelte 

Quantifizierungsprotokolle zeigten mit zunehmenden Schweregrad eine progressive 

Veränderung der kortikalen Ventrikular-Struktur-Dimensionen sowie verfrühte Neurogenese. 

Um die direkte Konsequenz der Patienten-spezifischen Mutationen auf die LIS1 Mikrotubuli-

stabilisierende Funktion zu untersuchen, wurde das astrale Zytoarchitekutur-stabilisierende 

Zytoskelett analysiert und ein progressiver Zusammenbruch mit zunehmender Schwere der 

Erkrankung festgestellt, was zu einer zellulären Unordnung innerhalb des in vitro Gewebes 

führte. Die Behandlung der zerebralen Organoide mit EpothiloneD, ein Mikrotubuli-

stabilisierendes FDA-genehmigtes Medikament, konnte die Zytoarchitektur stabilisieren und 

somit partiell die zelluläre Ordnung wiederherstellen. Darüber hinaus zeigte die Untersuchung 
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der Teilungsorientierung von apikalen Radialgliazellen, dass es in Organoiden, die von Zellen 

von schwer (weniger von moderat und mild) Erkrankten generiert wurden, eine spezifische 

Umorientierung von proliferativer zu neurogener Zellteilung gibt, was zu verfrühter 

Neurogenese und kleineren Ventrikular-Strukturen führte. Bei mild und moderat Erkrankten 

zeigten die Zellen dagegen überwiegend eine unspezifische Fehlorientierung der 

Zellteilungsebene, die ebenfalls, jedoch weniger stark ausgeprägt, im Vergleich zu schweren 

Bedingungen, zu verfrühter Neurogenese führte.  Als molekulare Ursache für die spezifische 

Umorientierung der Zellteilungsebene konnte eine Störung der WNT Signalübertragung 

ermittelt werden, so dass der Zellteilungsstörung mit GSK3ß Inhibierung (WNT 

Signalübermittlungsaktivierung) entgegengewirkt werden konnte.  

Meine Forschung zeigt, dass zerebrale Organoide sensitiv genug sind, um unterschiedliche 

Schweregrade einer Erkrankung widerzuspiegeln, eine zuvor nicht bewiesene große 

Herausforderung des in vitro Systems. Die Daten zeigen, dass die verschiedenen Patienten-

spezifischen Mutationen im LIS1 Gen die Mikrotubuli-stabilisierende Funktion von LIS1 direkt 

unterschiedlich beeinflussen, was direkt (zelluläre Unordnung) oder indirekt (WNT-

Signalübermittlungsstörungen) zu einer gestörten Entwicklung des Gehirn führt. Damit konnte 

diese Arbeit den bisher fehlenden Zusammenhang zwischen Patienten-spezifischen Mutationen 

und klinischen Schweregrad aufklären. Des Weiteren konnten involvierte Pathomechanismen 

spezifisch für den Schweregrad aufgedeckt und therapeutische Substanzen identifiziert werden, 

die den Krankheitsverläufen in vitro entgegenwirkten. Der zukünftige Einsatz von Organoiden 

für die Untersuchung von individuellen Krankheitsverläufen könnte personalisierte Medizin 

verbessern und zu einem tieferen Verständnis von Patienten-spezifischen Pathologien für 

personalisierte Therapien führen. 
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RNA ribonucleic acid 

RNAi RNA interference 
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SG stress granular 
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Figure Legends 

Figure 1: Illustration of the developing cortex. The developing cortex consists of distinctive 

developmental regions including the proliferative ventricular zone (VZ) containing the apical 

radial glia cells (aRG cell), the in primates highly expanded subventricular zone (SVZ) defined 

by intermediate progenitors (IP) and basal radial glia cells (bRG), the cell-poor intermediate 

zone (IZ) as wells as the cortical plate, which is migrated by differentiating neurons forming 

the developing 6-layered cortex. .............................................................................................. 28 

Figure 2: Illustration of the canonical WNT-signaling cascade. (A) In the absence of WNTs 

the destruction complex composed of AXIN, ADENOMATOSIS POLYPOSIS COLI (APC), 

GLYCOGEN SYNTHASE KINASE 3ß (GSK 3ß) and CASEIN KINASE 1a (CK 1a) primes 

the phosphorylation of ß-CATENIN (ß-CAT) by GSK 3ß and CK 1a leading to the 

ubiquitination and subsequent proteolytic destruction by the proteasomal machinery. (B) In the 

presence of WNTs FRIZZLED (FZD) and LOW-DENSITY LIPOPROTEIN RECEPTOR-

RELATED PROTEIN (LRP 5/6) are forming a complex, which induces the membrane 

translocation of AXIN. GSK 3ß and CK 1a leading to the phosphorylation of LRP 5/6, which 

promotes the binding of AXIN together with the destruction complex to the co-receptor. 

Furthermore, WNT activation leads to the recruitment of DISHEVELLED (DSH), which is 

also known to bind to AXIN and FZD to inhibit GSK 3ß. This complex formed at the membrane 

at FZD/ LRP 6 prevents the degradation of ß-CAT and consequently leads to the stabilization 

and accumulation in the cytoplasm enabling a translocation into the nucleus to active WNT 

target genes including TRANSCRIPTIONFACTOR (TCF)/ LYMPHOID ENHANCER-

BINDING FACTOR (LEF). ß-CAT is also positive regulated by AKT signaling through direct 

phosphorylation at residue Serine 552 or through the inhibition of the negative regulator GSK 

3ß, by phosphorylation at Serine 9. In addition, there is recent evidence that N-CADHERIN 

(N-CAD) is involved in the canonical WNT-signaling pathway. ............................................ 31 

Figure 3: Scheme of maturing organoid and timepoint depend cytoarchitecture. At the 

timepoint of matrix embedding and differentiation the organoid mainly consists of apical radial 

glia (aRG) cells. In the next 10 days aRG cells divide symmetrically and increase their 

progenitor pool, so that the organoid ventricular zone structures expand and consist at day 20 

mainly of aRG cells. Between day 20 and day 50 aRG cells start to divide asymmetrically, 

leading to the generation of intermediate progenitors (IP) and neurons, which form the 

subventricular-like zone (SVZ) and the cortical plate-like structure (CP). The human-specific 

basal radial glia (bRG) cells start to emerge around day 50 within the SVZ. Prolonged 
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differentiation leads to organoid ventricular structures containing deep and upper layer neurons.

 .................................................................................................................................................. 34 

Figure 4: Scheme of the wildtype LIS1 protein dimer conformation. The N-terminal 

homology motif is important for dimerization and the C-terminal 7 blade 𝛽-propeller structure 

is indispensable for protein interactions. .................................................................................. 36 

Figure 5: Scheme of the lissencephalic severity spectrum. The healthy primate brain is 

characterized by multiple folds, so called gyri and sulci. This gyrification developed evolutive 

by the expansion of the neocortex. One of the main phenotypes of lissencephalic brains is a 

reduction of gyrification, which occurs in different severities. The milder phenotypes are 

characterized by broader gyri. Moderate lissencephalic brains show often a gradient of severity 

from anterior to posterior with anterior pachygyria and posterior agyria. The most severe 

lissencephalic phenotypes are characterized by the complete absents of gyrification (smooth 

brain). ....................................................................................................................................... 39 

Figure 6: Protocol outline for cortical forebrain-type organoid generation. The organoid 

generation is initiated by embryoid body formation, which are restricted to the ectodermal fate 

by neural induction through dual SMAD and WNT inhibition. The outgrowth of neuroepithelial 

ventricular structures is supported by extracellular matrix proteins and mechanical scaffold 

provided by Geltrex (GT) embedding. To ensure good nutrient delivery into the tissue, 

organoids are cultured on a shaker. For further maturation growth factors including Ascorbic 

acid (AA), LM 22 A, LM 22 B and GT are added into the differentiation medium (maturation 

medium) from day 35 on. ......................................................................................................... 74 

Figure 7: Immunocytochemical analysis of iPS cell pluripotency. All generated iPS cell 

lines (2 clones per line) were quality controlled for pluripotency including 

immunocytochemical staining`s for the pluripotency markers SOX 2 and OCT 3/4, which a 

transcription factors crucial for self-renewal of undifferentiated stem cells, NANOG, a 

transcription factor important for the maintenance of pluripotency through the suppression of 

cell determination factors, and SSEA 3, a glycosphingolipid, which is specifically on the cell 

surface of pluripotent stem cells. Scale bars, 50 µm. ............................................................... 87 

Figure 8: Assessment of tripotente differentiation capacity into the 3 germ layers 

endoderm, mesoderm and ectoderm. (A-C) Representative brightfield recordings of 4 weeks 

differentiated iPS cells without morphogenic cues from 1 mild LIS1-patient patient line (P2.1) 

(A), 1 moderate LIS1-patient patient line (P4.2) (B) as well as from 1 severe LIS1-patient line 

(P5.2) (C). (D-F) Representative immunocytochemical recordings for the mesoderm marker 
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smooth muscle actin (SMA) (D), the endoderm marker α-fetoprotein (AFP) (E) and the 

ectoderm marker ß-III-tubulin (TUBB3) (F). Scale bars 20 µm. ............................................. 88 

Figure 9: Validation of karyotypic integrity. All generated iPS cell lines were high resolution 

single-nucleotide polymorphism (snp) analyzed for chromosomal integrity. The graphs 

illustrate the B allele frequents (BAF) and the Log R ratio (LRT) for every chromosome. BAF 

is an allelic intensity ratio, the value should be around 0,5. When a deletion chromosomal copy 

number variation (CNV) occurred the value clusters around 0 or 1. When a duplication is 

present the values are around 0, 0,33, 0,67 and 1. The LRR is a normalized measurement of 

total signal intensity. When a deletion CNV happened the LRR values for snp markers in this 

region decrease and when a duplication is present the values increase. .................................. 91 

Figure 10: Validation of the respective patient-specific LIS1 mutation in the generated 

iPS cell lines. (A-G) Electropherograms generated by sanger sequencing. The mild LIS1-

patient lines P1 and P2 carry a point mutation at c.569-10 T>C (A,B), the moderate LIS1-patient 

P3 have a deletion at position 13 in the coding sequencing causing a frameshift in the following 

sequence (C), the moderate LIS1-patient P4 has a deletion of exon 11 (D), the severe LIS1-

patient P5 a point mutation at c.1002+1G>A (E), the severe LIS1-patient P6 a point mutation 

at c.531 G>C (F) and severe LIS1-patient P7 a point mutation at c.445 C>T (G). The sequencing 

for mild 1, 2 and moderate 1, 2 was done by Camille Maillard at the hospital Neckar Enfants 

Malades in France explaining the different illustration when comparing A-D with E-G (Sanger 

sequencing method was performed in the same way, except the exon 11 deletion of 732 was 

validated by whole exome sequencing).................................................................................... 92 

Figure 11: Schematic overview of the organoid protocol and illustration of 'go' and 'no-

go' criteria. (A) Schematic overview of the protocol. CI medium: cortical induction medium; 

CD: cortical differentiation medium. (B-C) Image of an optimal 90% confluent iPS cells 

monolayer culture (B) and a non-suitable iPS cell culture exhibiting differentiation (C). (D-E) 

An iPS cells aggregate optimal in size, cell density, and surface appearance (D) and two 'no-go' 

cell aggregates exhibiting either cell spares cavities (E, upper aggregate) or irregular edges (E, 

lower aggregate) 2 days following cell aggregation. (F-G) Cell aggregates exhibiting 

translucent and smooth edges (F) and cell aggregates lacking optical clearing (G). The yellow 

line is visualizing the area of interest. (H-K) An optimal organoid with continuous 

neuroepithelial ventricular zone structures (H, J) and an organoid that failed to develop radially 

organized neuroectoderm (I, K) imaged at day 15 and day 20, respectively. Scale bars, (B-C) 

500 μm; (D-K) 200 μm. Figure published in JoVE (Krefft et al., 2018). ................................ 94 



                                                       Unraveling the pathology of different disease severities  

 

 
 

20 

Figure 12: Homogeneity and reproducibility of the forebrain-type organoid protocol. (A-

B) Representative bright-field images of organoids from 1 batch at day 15 (A) and day 26 (B). 

(C) Quantitative analyzes of organoids at day 20. Organoids which display at the outer surface 

a neuroepithelium, recognizable in bright-field as optically clear superficial tissue with a clear 

border and evidence of radial cellular architecture were quantified (n = 3 per iPS cell line with 

at least 16 organoids per experiment). Scale bars, A, B 500 μm. Error bars ± SD. Figure 

published in JoVE (Krefft et al., 2018). ................................................................................... 95 

Figure 13: Validation of forebrain-type organoids at day 20. (A-F) Immunocytochemical 

characterization of organoids. Organoids organize in multiple neuroepithelial ventricular zone 

structures (A, counterstained with DAPI). Stratified organized cells within the neuroepithelial 

ventricular zone structures express the neural stem cell marker SOX 2 (B, D), the forebrain 

markers PAX6 (C, D) and Otx2 (E), as well as the dorsal forebrain marker Emx1 (F). (K) RT-

PCR analysis for the region-specific transcription factors at day 20 of 2 independent sets of 

organoids derived from 2 different iPS cell lines, performed by Ammar Jabali. FB: fetal brain 

control; AB: adult brain control. Scale bars, A-D 200 μm; E-I 10 μm. Figure published in JoVE 

(Krefft et al., 2018). .................................................................................................................. 96 

Figure 14: Schematic illustration of ventricular zone structure parameters. (A-F) Each 

ventricular zone (VZ) structure contains important information about the cytoarchitectural 

development of each neural tube-like structure. The VZ structure diameter is determinant by 3 

length measurements (µm) forming a right-angle fan area pointing to the nearest pial surface, 

at 0, 45 and 90 degree (A). The apical (B) and basal (C) membrane length are determined by 

the diameter of VZ structure and ventricle-like structure. The other 3 parameters are area 

measurements (µm2) for the VZ structures including the ventricle-like area (D), the VZ 

structure tissue area (E) and the total VZ structure (F). All parameters taken together enable a 

reliable assessment of VZ structure dimensions and consequently a detailed comparison 

between organoid batches, patients and severities. .................................................................. 98 

Figure 15: Quantification protocol of acetylated -TUBULIN strand density. Organoid 

slices are stained for ACETYLATED -TUBULIN (AC-TUB) and the signal plot profile is 

drawn into the apical and basal ventricular zone (VZ) region using FIJI. The Plot profile is 

pasted into a self-designed Excel file, which contains mathematical formulas to calculate the 

mean strand density. In the first step the measurements of every second pixel are considered, 

because every strand is about 2 pixels wide. Then the background signal is determined and the 

file automatically gives the number of signals on the plot profile line, which are above the 
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background signal. The number is normalized by the total length of the plot profile resulting in 

a mean density of strands crossing the line (*100=%). Scale bar, 20 μm. ............................... 99 

Figure 16: Apical membrane diameter quantification. Organoid slices are stained for DAPI 

for ventricular zone structure tissue visualization and N-CADHERIN (N-CAD) to analyze the 

apical membrane. The membrane thickness is measured at 90°, 180°, 270° and 360° to the 

ventricular zone structure center using FIJI. Scale bar, 20 μm. ............................................... 99 

Figure 17: Organoid morphology is specific for LIS1-patient`s severity. (A) LIS1-patient 

MRI recordings provided from Dr. Nadja Bahi-Buisson from the hospital Neckar Enfants 

Malades (mild LIS1-patient patient 1, moderate LIS1-patient patient 1 and severe LIS1-patient 

3). (B) Representative brightfield field (BF) recordings of control C1.2, mild LIS1-patient P1.1, 

moderate LIS1-patient P3.1 and severe LIS1-patient P5.1 patient derived organoids at day 20. 

(C) Representative light sheet microcopy (LSM) recordings of whole-tissue cleared control 2.1, 

mild LIS1-patient P1.1, moderate LIS1-patient P3.2 and severe LIS1-patient P5.1 derived 

organoids at day 20 stained for ß-III Tubulin (TUBB3). (D) Representative TUBB3 recordings 

of control C4.1, mild LIS1-patient P2.1, moderate LIS1-patient P4.1 and severe LIS1-patient 

P5.2 patient derived organoids at day 20. (E) Representative DAPI recordings of ventricular 

zone structures of control C1.2, mild LIS1-patient P1.1, moderate LIS1-patient P3.1 and severe 

LIS1-patient P5.1 patient derived organoids at day 20. Scale bars, (A) 5 cm, (B, C) 200 µm (D, 

E) 50 µm. ................................................................................................................................ 102 

Figure 18: Ventricular zone parameter quantification reveals a gradually decrease of 

tissue dimensions with increasing LIS1-patient severity. (A-F) Quantification of ventricular 

zone (VZ) structure diameter, ventricle area, length of apical membrane, length of basal 

membrane, VZ structure tissue and total VZ structure area in control- and LIS1-patient derived 

organoids at day 20. control C1.2 N=38, control C4.2 N=33, mild P1.1 N=33, mild P1.2 N=19, 

mild P2.1 N=13, mild P2.2 N=17, moderate P3.1 N=20, moderate P3.2 N=19, moderate P4.1 

N=20, moderate P4.2 N=18, severe P5.1 N=61, severe P5.2 N=49, severe P6.1 N=23, severe 

P6.2 N=48, severe P7.1 N=58. Error bars, ±SD. *p < 0.05, **p < 0.01, ***p < 0.001. ........ 103 

Figure 19: Gradually breakdown of cell stabilizing astral tubulin with increasing LIS1-

patient severity. (A, B) Representative recordings of cleared and cryo-sectioned organoids 

from control C4.1, mild P1.1, moderate P3.2 and severe P5.2 LIS1-patient derived organoids 

stained for acetylated-α tubulin (AC-TUB) at day 20. (C) Representative recordings of ARl13b, 

a cilia marker, in control C4.1, mild P1.1, moderate P3.2 and severe P5.2 LIS1-patient derived 

organoids at day 20. (D) High magnification recordings of AC-TUB stained VZ structures in 

control C4.1, mild P1.1, moderate P3.2 and severe P5.2 LIS1-patient derived organoids at day 
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20. (E) Quantification of apical and basal AC-TUB strand density in control, mild-, moderate- 

and severe LIS1-patient derived organoids. control C1.2 N=12, control C2.1 N=12, control 

C4.2 N=20, mild P1.1 N=13, mild P1.2 N=13, mild P2.1 N=13, mild P2.2 N=15, moderate P3.1 

N=13, moderate P3.2 N=12, moderate P4.1 N=12, moderate P4.2 N=14, severe P5.1 N=22, 

severe P5.2 N=20, severe P6.1 N=13, severe P6.2 N=13, severe P7.1 N=12). (F) Western blot 

analyzes of AC-TUB protein level in controls (C1.2, C2.1, C4.1, C4.2 and C5.2), mild- (P1.1, 

P2.1, and P2.2), moderate- (P3.1) and severe (P5.1, P5.2 and P7.1) LIS1-patient derived cortical 

progenitor cells. Scale bars, (A) 200 µm, (B) 20 µm. Error bars, ±SD. *p < 0.05, **p < 0.01, 

***p < 0.001. .......................................................................................................................... 106 

Figure 20: Progressive disruption of cellular organization with LIS1-patient severity. (A) 

Representative recordings of hematoxylin-eosin (HE) recordings of control C4.1, mild LIS1-

patient P1.2, moderate LIS1-patient P3.1 and severe LIS1-patient P5.1 derived organoids. (B) 

Representative recordings of cryo-cut organoids from control 3.1, mild LIS1-patient P2.1, 

moderate LIS1-patient P3.2 and severe LIS1-patient P5.1 derived organoids stained for N-

CADHERIN (N-CAD) at day 20. (C) Quantification of apical disruption diameter in control, 

mild, moderate and severe LIS1-patient derived organoids at day 20. Schematic illustration of 

how the disruption diameter was quantified is illustrated on the right side of the diagram. control 

C1.2 N=12, control 2.1 N=12, control 4.2 N=20, mild P1.1 N=13, mild P1.2 N=13, mild P2.1 

N=13, mild P2.2 N=15, moderate P3.1 N=13, moderate P3.2 N=12, moderate P4.1 N=12, 

moderate P4.2 N=14, severe P5.1 N=22, severe P5.2 N=20, severe P6.1 N=13, severe P6.2 

N=13, severe P7.1 N=12. Scale bars 20 µm. Error bars, ±SD. *p < 0.05, **p < 0.01, ***p < 

0.001. ...................................................................................................................................... 108 

Figure 21: Epothilone D treatment in part rescues LIS1-associated microtubule 

instabilities stabilizing ventricular zone structure architecture. (A) Representative 

acetylated ALPHA-TUBULIN (AC-TUB) recordings of control C3.1, mild- P1.1, moderate- 

P1.2 and severe P5.1 patient derived organoids treated with DMSO or 1nM EpothiloneD. (B) 

Quantification of apical and basal AC-TUB strand density in DMSO and EpothiloneD treated 

control C3.1 (N=9), control C4.1 (N=9), mild P1.1 (N=9), mild P2.2 (N=9), moderate P3.2 

(N=9), severe P5.1 (N=9), severe P6.1 (N=9) and severe P7.1 (N=9) LIS1-patient derived 

organoids at day 15. (C) Representative N-CADHERIN (N-CAD) recordings of control C3.1, 

mild P1.1, moderate P3.2 and severe P5.1 LIS1-patient derived organoids treated with DMSO 

or 1nM EpothiloneD. (D) Quantification of N-CAD diameter expansion in DMSO and 

EpothiloneD treated control C3.1 (N=10), control C4.1 (N=10), mild LIS1-patient P1.1 (N=10), 

mild LIS1-patient P2.2 (N=10), moderate LIS1-patient P3.2 (n=6), severe LIS1-patient P5.1 
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(N=6), severe LIS1-patient P6.1 (N=6) and severe LIS1-patient P7.1 (N=6) patient derived 

organoids at day 15. Scale bars (A) 200 µm, (A, C) 20 µm. Error bars, ±SD. *p < 0.05, **p < 

0.01, ***p < 0.001. ................................................................................................................. 111 

Figure 22: Microtubule array stabilization by Epothilone D partially rescues ventricular 

zone structure dimensions in LIS1-pateint derived organoids. (A) Representative DAPI 

recordings of control C3.1, mild- P1.1, moderate- P1.2 and severe- P1.1 LIS1-patient derived 

organoids treated with 1nM Epothilone D (EpothiloneD) and DMSO control. (B) Ventricular 

structure (VZ) parameter quantification of EpothiloneD and DMSO control treated control- 

C3.1, control- C4.1, mild- P1.1, mild- P2.2, moderate- P3.2, severe- P5.1, severe- P6.1 and 

severe- P7.1 LIS1-patient- derived organoids at day 15. control C3.1 DMSO N=16, control 

C3.1 CHIR N=21, control C4.1 DMSO N=10, control C4.1 CHIR N=18, mild P1.1 DMSO 

N=16, mild P1.1 CHIR N=24, mild P2.2 DMSO N=12, mild P2.2 CHIR N=11, moderate P3.2 

DMSO N=14, moderate P3.2 CHIR N=12, severe P5.1 DMSO N=14, severe P5.1 CHIR N=11, 

severe P5.2 DMSO N=16, severe LIS1-patient P5.2 CHIR N=11, severe P6.1 DMSO N=10, 

severe P6.1 CHIR N=10, severe P7.1 DMSO N=11, severe P7.1 CHIR N=11. Scale bars (A) 

200 µm. Error bars, ±SD. *p < 0.05, **p < 0.01, ***p < 0.001. ........................................... 113 

Figure 23: Organoids derived from LIS1-patients display niche-dependent WNT-

signaling disruption leading to altered aRG cell division specific for the disease condition. 

(A) Representative WNT-GFP recordings of WNT-GFP reporter control C3.1, P1.1 mild- and 

P5.1 severe LIS1-patient derived organoids at day 20. (B) Quantification of mean grey value 

of WNT-GFP signal in VZ structures (control C3.1 N=10, control C4.1 N=10, mild P1.1 N=10, 

mild P2.2 N=10, moderate P3.2 N=10, severe P5.1 N=10). (C) Representative recordings of 

vertical-, horizontal and oblique division planes by marking dividing cells with p-VIMENTIN 

(p-VIMENTIN) and the mitotic spindle by TPX 2 in control- (C4.1) and severe LIS1-patient 

(P1.1) patient-derived organoids. (D) Quantification of orientation of plane of cell division in 

control and mild LIS1-patient, moderate LIS1-patient and LIS1- severe patient-derived 

organoids. (control C1.1 N=20, control C2.2 N=20, control C4.2 N=14, mild P1.1 N=15, mild 

P1.2 N=15, mild P2.1 N=15, mild P2.2 N=11, moderate P1.1 N=11, moderate P1.2 N=9, 

moderate P2.1 N=10, moderate P2.2 N=13, severe P1.1 N=17, severe P1.2 N=14, severe P2.1 

N=9, severe P2.2 N=10, severe P3.1 N=11). Scale bars (A) 50 µm, (B) 10 µm, (C) 20 µm. Error 

bars, ±SD. *p < 0.05, **p < 0.01, ***p < 0.001. ................................................................... 116 

Figure 24: WNT activation changes aRG cell division pattern in iPS cell derived organoids 

from severe disease. Quantification of vertical, horizontal and oblique division planes of 

dividing aRG cells in control C3.1 (N=9), mild P1.1 (N=9), moderate P1.2 (N=9) and severe 
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P1.1 (N=9) patient derived organoids in the absence (DMSO) and presence of GSK 3ß inhibitor 

CHIR at day 15. ...................................................................................................................... 117 

Figure 25: CHIR treatment-related rescue of aRG cell division orientation improves 

organoid ventricular zone structure dimensions. (A, B) Representative DAPI recordings of 

control C3.1, mild P1.1, moderate P4.2 and severe P6.1 LIS1-patient derived organoids treated 

with DMSO or 1 µM CHIR. (C-H) Loop parameter quantification of CHIR and DMSO control 

treated organoids (control C3.1 DMSO N=16, control C3.1 CHIR N=21, control C4.1 DMSO 

N=10,control C4.1 CHIR N=18, mild P1.1 DMSO N=16, mild P1.1 CHIR N=24, mild  2.2 

DMSO N=12, mild P2.2 CHIR N=11, moderate P3.2 DMSO N=14, moderate P3.2 CHIR 

N=12, severe P5.1 DMSO N=14, severe P5.1 CHIR N=11, severe P5.2 DMSO N=16,severe 

P5.2 CHIR N=11, severe  2.1 DMSO N=10, severe P6.1 CHIR N=10, severe P7.1 DMSO 

N=11, severe P7.1 CHIR N=11. Scale bars 200 µm. Error bars, ±SD. *p < 0.05, **p < 0.01, 

***p < 0.001. .......................................................................................................................... 119 
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Abstract 

The human neocortex is greatly expanded and exhibits a highly organized and extensively 

folded (gyrencephalic) structure. Model systems gave a fundamental understanding about 

how the cortex is generated although the applied models often involve species with a smooth 

(lissencephalic) brain surface, such as mice. Thus, key cellular events that impact human-

specific brain expansion and our understanding of how disease-linked mutations disrupt 

human cortical development remains elusive. Lissencephaly is a malformation of cortical 

development which is characterized by a smooth brain and a disorganized cortex. Heterozygous 

deletions or mutations in the LIS1 gene, encoding a microtubule-associated protein in humans, 

were identified to cause lissencephaly with diverse clinical phenotypic variations ranging from 

mild pachygyria (broad gyri) to severe agyria (no gyri) resulting in epilepsy and intellectual 

disabilities. While the clinical severity generally correlates with the degree of agyria, the 

location and type of mutation in the LIS1 gene does not. From LIS1 mouse models we know 

that LIS1 regulates the microtubule motor cytoplasmic dynein and by that dynein-dependent 

processes such as neuronal migration, nucleokinesis, interkinetic nuclear migration and 

mitotic spindle orientation. Even though the observed LIS1-deficiency-associated phenotypes 

appeared drastically milder in murine systems compared to humans these studies suggest that 

LIS1 gene dosage is relevant for the phenotypic severities. However, why a specific mutation 

within the LIS1 gene as identified in LIS1-lissencephalic patients (LIS1-patients) leads to 

different disease severities and whether human-specific processes during cortical 

development are differentially affected by the specific mutations could, due to a lack of 

adequate model systems, so far not been investigated. Here, I explore the ability to 

recapitulate different disease severities of LIS1-lissencephaly using LIS1-patient-specific 

iPS cells and thereof derived forebrain-type cerebral organoids. To do so, I selected from a 

LIS1-patient cohort comprising 63 cases 7 patients who cover the whole spectrum of 

gyrification alterations of LIS1-lissencephaly ranging from Dobyns grade 5 (mild) to 1 

(severe). Each patient harbors a different molecular characterized heterozygous mutation in the 

LIS1 gene. To analyze the consequences of each LIS1 mutation on human brain development 

a 3D cell culture forebrain-organoid protocol was developed. Following reprogramming of 

patient-derived somatic cells and basic characterization (2 clones each) the iPS cells were 

applied to the organoid protocol. Organoids reproduced, in correlation with the patient’s 

severity, alterations in organoid cytoarchitecture and premature neurogenesis. To assess the 

direct consequences of the patient-specific mutations on LIS1 microtubule stabilizing function 

I investigated the stability of the cytoskeleton of apical (a) RG cells within the cortical 
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ventricular-like zone (VZ) structures and found a progressive collapse of tubulin strand stability 

with increasing patient disease severity leading to a disruption of cellular organization. These 

phenotypic alterations could in part be reversed by stabilizing the microtubule array using the 

FDA-approved drug EpothiloneD. In addition, organoids from individuals with severe but not 

mild disease showed a non-random aRG cell division switch from proliferative to neurogenic 

division. As an underlying molecular cause, WNT-signaling alterations were identified, most 

prominently in severe conditions. To test to what extend perturbed WNT-signaling contributes 

to the observed patient-specific alterations, organoids were exposed to the GSK3ß inhibitor 

CHIR99021 leading to a significant rescue of non-random aRG cell division switch in severe 

organoids and to enlarged VZ diameters as well as reduced neurogenesis in all patient derived 

organoids.  

The here demonstrated research underlines the capability of cerebral organoids to sensitively 

model individual disease severities, a so far not addressed major challenge of the system. My 

data show that different patient-specific mutations in the LIS1 gene have divergent direct 

impact on microtubule stability, which directly and/or indirectly lead to perturbed human 

corticogenesis providing the missing link between the patient-specific LIS1 mutation and the 

clinical severity grade. Future applications analyzing individual diseases have the potential to 

advance personalize medicine and improve the understanding of individual pathology for 

personalized therapy. 
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1. Unraveling the pathology of different disease severities in human cortical organoid 

models of LIS1-lissencephaly 

To follow the here presented research, this chapter provides detailed information about the 

development of the human neocortex, including cytoarchitectural aspects as well as 

fundamental cell identities forming the 6-layered cortex. Furthermore, information about the 

essential WNT-signaling pathway, the cutting-edge organoid technology, the LIS1 protein and 

lissencephaly are given. Additionally, an overview of existing studies elucidating the question 

why a specific mutation within the LIS1 gene as identified in LIS1-patients leads to different 

disease severities is provided. At the end, the aims and objectives of this thesis are postulated 

in summary. 

1.1. The developing cortex – cytoarchitecture and cell types 

A precise choreography of progenitor proliferation, neurogenesis, neuronal migration and 

synaptogenesis forms the basis of human cortical development. The performance starts with a 

thin sheet of neural stem cells (NSC) founding the neuroepithelium. In the process of 

neuroepithelial thickening due to cell proliferation, the NSCs exceedingly elongate and transit 

to so called aRG cells (Bystron, Blakemore, and Rakic 2008). The next chorographical step 

comprises the formation of defined developmental zones distinctive by their cell types (Figure 

1). Adjacent to the ventricle-forming lumen is the proliferative ventricular zone containing the 

bipolar aRG cells, which undergo internuclear migration (INM). The apical processes are 

anchored in the apical membrane and form adherent junctions, which are crucial for transducing 

morphogen signals from the cerebrospinal fluid. The basal processes of aRG cells are send to 

the pial surface to stabilize the radial organization of the developing cortex. Early in 

development aRG cells self-renew by symmetric cell division at the apical membrane, therefore 

increasing the aRG cells progenitor pool causing the expansion of the VZ. Later in development 

these progenitors start to divide asymmetrically, which can result in the direct generation of 

neurons or the production of intermediate cell populations including intermediate progenitors 

(IP) or bRG cells (also called outer RG cells) (Fietz et al. 2010; Hansen et al. 2010; Johnson et 

al. 2017). This precise orchestration of proliferation leads to the formation of the subventricular 

zone (SVZ), the intermediate zone (IZ) and the cortical plate (CP) (Figure 1). The SVZ contains 

the IPs and primate-specific bRG cells and is striking elaborated in primate cortical 

development (De Juan Romero and Borrell 2015; Borrell 2019). In contrast to aRG cells, bRG 

cells lack apical processes and are therefore not important for signal transduction at the apical 

membrane. These RG cell types may generate the majority of cortical neurons having a 
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tremendous proliferative potential (Lewitus, Kelava, and Huttner 2013). The IZ is a cell-poor 

region, which needs to be traversed by migrating neurons on their way to the CP to build up the 

6-layered cortex in an inside-outer manner. This choreography of cortical development is choir 

mastered by distinctive signaling pathways, which regulate the self-renewal and differentiation 

of neuronal progenitors specifying their cell fates. One major signaling event is the evolutionary 

highly conserved WNT pathway.  

 

Figure 1: Illustration of the developing cortex. The developing cortex consists of distinctive developmental 

regions including the proliferative ventricular zone (VZ) containing the apical radial glia cells (aRG cell), the in 

primates highly expanded subventricular zone (SVZ) defined by intermediate progenitors (IP) and basal radial glia 

cells (bRG), the cell-poor intermediate zone (IZ) as wells as the cortical plate, which is migrated by differentiating 

neurons forming the developing 6-layered cortex. 

1.2. WNT-signaling – a major choirmaster during embryogenesis 

The WNT pathway is a major choirmaster in orchestrating embryogenesis including cell fate 

determination, cell migration, cell polarity, neural patterning, organogenesis and stem cell 

renewal (Komiya and Habas 2008). Discrete signaling centers release in a tightly regulated and 

spatially specific manner morphogens establishing regional identities. During forebrain 

development WNT-signaling from the cortical hem regulates the expansion and cell type 
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specification of the aRG cells and controls dorsal-ventral forebrain patterning in conjunction 

with BMP, FGF and SHH signaling (Harrison-Uy and Pleasure 2012). Subsequently, WNTs 

are crucial determinants for aRG cells division mode switch from self-renewing symmetric cell 

division to asymmetric cell proliferation leading to neurogenesis. Several signaling branches 

downstream of the WNT receptors have been identified including the canonical ß-CATENIN 

(ß-CAT) dependent) pathway as well as the non-canonical (ß-CAT independent) pathway. This 

project is focused on the canonical WNT pathway, where the secreted WNT ligands bind to the 

FRIZZLED (FZD)/ LOW-DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN 

(LRP 5/6) leading to the accumulation and translocation of adherents-junction associated-

protein ß-CAT into the nucleus (Figure 2). In the absence of WNT morphogens, a so-called 

destruction complex composed of AXIN, ADENOMATOSIS POLYPOSIS COLI (APC), 

GLYCOGEN SYNTHASE KINASE (GSK 3) and CASEIN KINASE 1a (CK 1a) leads to the 

degradation of ß-CAT (Gordon and Nusse 2006). The phosphorylation of ß-CAT by GSK 3ß 

and CK 1a leads to the ubiquitination and subsequent proteolytic destruction by the proteasomal 

machinery (He et al. 2004; Aberle et al. 1997). The presence of WNTs leads to FZD and LRP 

5/6 complex formation, which induces the membrane translocation of AXIN, a key negative 

regulator of WNT-signaling. GSK 3ß and CK 1a phosphorylate LRP 5/6 promoting the binding 

of AXIN to the co-receptor. Furthermore, WNT activation leads to the recruitment of another 

negative regulator, the phosphoprotein DISHEVELLED (DSH), which is also known to bind 

to AXIN and FZD to inhibit GSK 3ß. It is still unresolved how DSH is activated (Kishida et al. 

1999).  This complex formed at the membrane at FZD/ LRP 5/6 prevents the degradation of ß-

CAT and consequently leads to the stabilization and accumulation in the cytoplasm enabling a 

translocation in the nucleus to activate WNT target genes (Figure 2). ß-CAT signaling leads for 

example to the expansion of the cerebral precursor population and cortical surface area 

enlargement (Woodhead G., Mutch C. A., Olson E. C 2006). Additionally, to remark is that 

there is recent evidence that cell adherent-junctions protein N-CADHERIN (N-CAD) impacts 

WNT/ß-CAT signaling. Adherent junctions have an important role in signal transduction from 

the cerebrospinal fluid into the aRG cells during cortical development. It has been shown that 

N-CAD interacts with AXIN and LRP 5/6 to negatively regulate WNT/ß-CAT signaling in 

osteoblasts by decreasing the soluble cytoplasmic tool through binding ß-CAT at the membrane 

(Hay et al. 2009; Marie and Hay 2013). In addition, cadherins are also required for augmented 

activation of the WNT/ß-CAT pathway during epithelial-mesenchymal transition (Howard et 

al. 2011). Furthermore, Zhang et al. showed that AKT activation by N-CAD impacts ß-CAT 

and neuronal differentiation during cortical development in a cell-autonomous fashion (J. 
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Zhang et al. 2013). AKT signaling is crucial for multiple organ developmental processes. How 

N-CAD promotes the phosphorylation of AKT remains largely unknown, there is evidence that 

N-CAD adhesion cause phosphatidylinositol 3-kinase (PI3K)-mediated activation of AKT 

(Tran et al. 2002). Downstream signaling of AKT includes direct phosphorylation of ß-CAT at 

residue Serine 552, which stabilize the soluble cytosolic form. Moreover, AKT inhibits the 

negative regulator of ß-CAT, GSK 3ß, by phosphorylation at Serine 9 leading also to 

stabilization and nuclear accumulation of ß-CAT. How exactly AKT and WNT-signaling are 

regulated during neural development and the underlying mechanisms through which AKT and 

WNT mediate cortex development remains elusive. To shed more lights on the complex 

signaling choreography during corticogenesis further intensive research needs to be done. To 

face such human developmental questions the young field of 3D organoid cell culture has 

emerged as very promising tool. 
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Figure 2: Illustration of the canonical WNT-signaling cascade. (A) In the absence of WNTs the destruction 

complex composed of AXIN, ADENOMATOSIS POLYPOSIS COLI (APC), GLYCOGEN SYNTHASE 

KINASE 3ß (GSK 3ß) and CASEIN KINASE 1a (CK 1a) primes the phosphorylation of ß-CATENIN (ß-CAT) 

by GSK 3ß and CK 1a leading to the ubiquitination and subsequent proteolytic destruction by the proteasomal 

machinery. (B) In the presence of WNTs FRIZZLED (FZD) and LOW-DENSITY LIPOPROTEIN RECEPTOR-

RELATED PROTEIN (LRP 5/6) are forming a complex, which induces the membrane translocation of AXIN. 

GSK 3ß and CK 1a leading to the phosphorylation of LRP 5/6, which promotes the binding of AXIN together with 

the destruction complex to the co-receptor. Furthermore, WNT activation leads to the recruitment of 

DISHEVELLED (DSH), which is also known to bind to AXIN and FZD to inhibit GSK 3ß. This complex formed 

at the membrane at FZD/ LRP 6 prevents the degradation of ß-CAT and consequently leads to the stabilization 

and accumulation in the cytoplasm enabling a translocation into the nucleus to active WNT target genes including 

TRANSCRIPTIONFACTOR (TCF)/ LYMPHOID ENHANCER-BINDING FACTOR (LEF). ß-CAT is also 

positive regulated by AKT signaling through direct phosphorylation at residue Serine 552 or through the inhibition 

of the negative regulator GSK 3ß, by phosphorylation at Serine 9. In addition, there is recent evidence that N-

CADHERIN (N-CAD) is involved in the canonical WNT-signaling pathway. 

1.3. Cerebral organoids – cutting edge technology 

Human developmental processes have always been most challenging to understand due to 

fetal tissue inaccessibility and the lack of in vitro model systems. Early human corticogenesis 

and its precise choreography remains largely elusive. Within the last decade the field of 3D 

cell cultures have emerged as a promising tool to model organ development in vitro 

facilitating completely new perspectives in understanding embryogenesis. Since the pioneer 

work from Yoshiki Sasai (Eiraku et al. 2008) paved the way, organoid technology has made 

one of the most rapid advances in the field of cell biology. Potential applications can not 

only include embryogenesis, the field of tissue regeneration as well as drug screening can 

also be covered by organoid research. Here, I focus on brain organoids of cortical identity to 

analyze malformation of cortical development (MCD). Cortical organoid development 

started in 2008 when Eiraku et al. (Eiraku et al. 2008) differentiated iPS cells aggregates 

under serum free conditions, so called SFEBq (short for: serum-free floating cultures of 

embryoid body-like aggregate with quick reaggregation) showing apico-basally polarized 

cortical tissue with spatially organization including VZ, SVZ and a CP-like regions. The real 

organoid hysteria started in 2013, when Madeline Lancaster and coworkers from the 

Knoblich laboratory (M. Lancaster et al. 2013) described cerebral organoids containing 

multiple brain regions like retina, choroid plexus, midbrain, hindbrain and forebrain tissue. 

At the same time also the Saisai laboratory (Kadoshima et al. 2013) contributed to the 

organoid publicity by further improving the SFEBq approach and introducing the rolling 
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morphogenesis of region-specific cortical organoids. From that time on various of 

publications aimed to improve organoid culture protocols to faithfully recapitulate specific 

aspects of human brain development, all using the self-organizing capacity of iPS cells 

(Paşca et al. 2015; Camp et al. 2015; X. Qian et al. 2016; Watanabe et al. 2016; Iefremova 

et al. 2017; Renner et al. 2017; Karzbrun et al. 2018). My coworkers and me also developed 

a reproductible forebrain-type organoid protocol leading to highly homogenous cultures 

within and across organoid batches (Krefft et al. 2018; Iefremova et al. 2017) (outlined in 

Figure 6). Like most of the cortical region-specific organoid protocols, it is based on an iPS 

cell aggregation phase, followed by a cortical induction phase by small molecule pathway 

modulators including SMAD signaling inhibitors to counteract mesoderm and endoderm 

differentiation and WNT-signaling inhibitors to evade posterization (Chambers SM, Fasano 

CA, Papapetrou EP, Tomishima M, Sadelain M 2009). Further differentiation includes 

stabilization and enhancement of the organoids cortical VZ structure architecture by 

extracellular matrix (ECM) embedding. The nutritive support and the oxygen exchange are 

enriched through constant agitation on a shaker. Additionally, at later timepoints, further 

molecules and growth factors are implanted to promote the formation of the developmental 

zones distinctive by their cell types over a time course up to 100 days (Figure 3). After 20 

days of differentiation, organoids show remarkable similarities in cell composition and 

cytoarchitecture to its in vivo counterparts including an aRG cell pool with apico-basal 

polarity and few IPs representing early gestation period (Figure 3). Prolonged differentiation 

leads to cortical structures including a VZ with aRG cells, SVZ containing IPs and bRG cells 

as well as a cortical-plate like regions showing diverse layer-specific neurons denoting the 

first to second gestation trimester (Figure 3). Important to consider is that organoids are still 

an artificial system missing for example cells form other germ layers such as endothelia cells 

or microglia. It still needs to be addressed to what extend organoids have the same degree of 

complexity as their in vivo organs. Impressively, single-cell transcriptomics revealed 

significant resemblances in cell composition in accordance to different developmental stages 

with impressive intersection of their transcription profile comparing to in vivo brain cells 

(Camp et al. 2015; Kanton et al. 2019). In the future, the innovative single-cell sequencing 

technique will hopefully provide a depth understanding of spatiotemporal gene expression 

trajectories in cortical organoids shedding more light on the degree of correlation between 

organoids and in vivo organs (Marsoner, Koch, and Ladewig 2018). It is undeniable that 

organoids already enormously improved in vitro research. The advantage of in vivo-like cell-

cell interactions as well as human-specific cell populations such as bRG cells already 
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elevates in vitro research in terms of mimicking physiological cell behavior on a completely 

different level compared to 2D cell culture. Previously inaccessible aspects of human 

corticogenesis can be elucidated in vitro without the need of fetal tissue. Not only in health 

but also in disease. The complexity of the human brain has made it difficult to study many 

MCDs in model organisms like mice. MCD-associated phenotypes often show a reduction 

or absence of gyrification limiting the use of natural lissencephalic brains  and suggesting 

that MCD causing human genes might have gained new functions compared to their mouse 

orthologs. We, and also the Kriegstein laboratory modeled the Miller-Dieker Syndrome 

(MDS), a severe lissencephaly, in cortical organoids to address pathophysiological changes 

(Bershteyn et al. 2016; Iefremova et al. 2017). We could identify human-specific non-cell 

autonomous disruption in WNT-signaling, leading to perturbations in aRG cells division 

modes (Iefremova et al. 2017). The Kriegstein laboratory (Bershteyn et al. 2016) showed 

MDS pathophysiological defects in bRG cells in the SVZ. Moreover, cortical organoids 

displayed a useful tool to model the impact of infectious disease on cortical development 

like the relatively recent outbreak of the ZIKA virus leading to microcephaly (X. Qian et al. 

2016; Cugola et al. 2016; H. et al. 2018; Janssens et al. 2018; Dang et al. 2016; Garcez et al. 

2016; Wells et al. 2016).  The sensitivity of cortical organoids to model different disease 

severities and analyze individual pathologies has not been examined yet. This project 

explored the ability to recapitulate different disease severities of LIS1-lissencephaly using 

mild, moderate and severe affected LIS1-patient specific iPS cells and thereof derived 

forebrain-type cerebral organoids. 
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Figure 3: Scheme of maturing organoid and timepoint depend cytoarchitecture. At the timepoint of matrix 

embedding and differentiation the organoid mainly consists of apical radial glia (aRG) cells. In the next 10 days 

aRG cells divide symmetrically and increase their progenitor pool, so that the organoid ventricular zone structures 

expand and consist at day 20 mainly of aRG cells. Between day 20 and day 50 aRG cells start to divide 

asymmetrically, leading to the generation of intermediate progenitors (IP) and neurons, which form the 

subventricular-like zone (SVZ) and the cortical plate-like structure (CP). The human-specific basal radial glia 

(bRG) cells start to emerge around day 50 within the SVZ. Prolonged differentiation leads to organoid ventricular 

structures containing deep and upper layer neurons. 
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1.4. Lissencephaly – a rare second group MCD 

MCDs were first grouped in 1996 as disorders resulting from disturbance of the normal 

developmental processes of the human cerebral cortex causing a wide range of developmental 

disorders (Barkovich A.J., Kuzniecky R.I., Dobyns W.B., Jackson G. D. 1996). Depending on 

the appearance of the first developmental abnormalities, these disorders were classified into 3 

major classes (Barkovich et al. 2005, 2012a; Desikan and Barkovich 2016). The first group 

includes those disorders thought to be caused by abnormal progenitor cell proliferation or 

apoptosis such as microcephaly (reduced brain size) and macrocephaly (abnormal large brain), 

while the second group is compost of those cases believed to be largely caused by alterations 

in neuronal migration including lissencephaly (smooth brain) as well as heterotopia (abnormal 

displaced neurons leading to cytoarchitecture alterations). The third described group includes 

malformations secondary to abnormal postmigrational development, such as polymicrogyria 

(overfolding and abnormal lamination of the cortex). This project focuses on lissencephaly, a 

heterogenous spectrum of MCDs associated with a smooth brain and a disorganized 

thickened cortex (Francis et al. 2006; Barkovich et al. 2012b). Patients suffer from mental 

retardation and untreatable epilepsy (Aronica, Becker, and Spreafico 2012; Guerrini and 

Dobyns 2017). Continuous advancement of molecular genetics has led to the identification 

of many lissencephaly-related genes, most are related to microtubule structural proteins 

(tubulin) or microtubule-associated proteins (MAPs). LIS1 was the first gen associated with 

this MCD (Dobyns et al. 1993; Reiner et al. 1993). 

1.4.1. LIS1 – an indispensable protein  

Sporadic heterozygous mutations in the human LIS1 gene, also called PAFAH1B1 (short for: 

platelet-activating factor acetylhydrolase isoform1B, α subunit) cause lissencephalic brains 

with different severe gyrification alterations. The protein is a homodimer, made of a N-terminal 

dimerization domain and a C-terminal ß-propeller structure, which is important for protein 

interactions (Figure 4). 
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Figure 4: Scheme of the wildtype LIS1 protein dimer conformation. The N-terminal homology motif is 

important for dimerization and the C-terminal 7 blade 𝛽-propeller structure is indispensable for protein 

interactions. 

LIS1 is assigned to 2 main cellular functions. Originally, it was identified as a stoichiometric 

component of PAFAH1b functioning as enzyme in the deactivation of the lipid messenger 

platelet-activating factor. However, mice null for the catalytic subunit of PAFAH1b showed 

normal brain development (Koizumi et al. 2003; Yan et al. 2003). Consequently, there had to 

be an additional function of LIS1 causing lissencephaly. Because of the lethality of LIS1 null 

mice, it became precipitously clear that LIS1 is an essential gene during brain development 

(Hirotsune, Gambello, et al. 1998; Cahana et al. 2001). The reduction of LIS1 dosage led to 

migration defects in mice causing dosage-depended cellular disorganization of cortical layers, 

hippocampus, cerebellum and olfactory bulb (Hirotsune, Fleck, et al. 1998; Gambello, Darling, 

Yingling, Tanaka, Gleeson, and Wynshaw-boris 2003; Tanaka et al. 2004). The necessity of 

LIS1 for correct neuronal migration has been also shown by direct examination of neuronal 

migration in mouse embryonic brain slice cultures, which were in utero transfected with green 

fluorescent protein to label migrating neurons (Shu et al. 2004). Using RNAi knockdown of 

LIS1 undoubtfully demonstrated that LIS1 is required of neuronal migration and that LIS1 

deficiency leads to neuronal migration defects associated with lissencephaly (Shu et al. 2004; 

Tsai J, Chen Y, Kriegstein A 2005; Youn et al. 2009). Consequently, LIS1-lissencephaly was 

long time considered to be a neuronal migration disorder. However, to date it is known that the 

underlying disease triggers are characterized by a broader spectrum of disease-causing 

pathology also including progenitor abnormalities like mitotic spindle formation as well as 

perturbed radial glial cell proliferation (Tsai J, Chen Y, Kriegstein A 2005; Tanaka et al. 2004; 
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N. E. Faulkner et al. 2000; Yingling et al. 2008). Extended mouse studies showed an additional 

role of LIS1 in cell proliferation during neurogenesis as well as for neuronal survival 

(Gambello, Darling, Yingling, Tanaka, Gleeson, and Wynshaw-Boris 2003). LIS1 knock-down 

was associated with impaired neural stem cell division (Tsai J, Chen Y, Kriegstein A 2005). 

Already Tanaka et al. (Tanaka et al. 2004) showed that LIS1 is required for nuclear movement 

during neuronal migration by coupling the nucleus to the centrosome. In fact, to date there are 

multiple publications confirming the function of LIS1 as  important DYNEIN regulator (Nicole 

E Faulkner et al. 2000; Smith et al. 2000; Huang et al. 2012; Toropova et al. 2014; Mi Moon 

and Wynshaw-boris 2013; DeSantis et al. 2017; Sasaki et al. 2000). Tai and colleagues (Tai et 

al. 2002) showed that the interaction is substoichiometric and occurs through 3 distinct sites 

within DYNEIN’s cargo binding domain and the motor domain. Moreover, Faulkner et al. 

found (N. E. Faulkner et al. 2000) that LIS1 is co-localized with cytoplasmic DYNEIN at the 

mitotic kinetochores indicating a role of LIS1 in chromosomal behavior. Microinjections of 

anti-LIS1 antibody caused delay in mitotic progression as well as chromosomal defects at the 

metaphase during mitosis (N. E. Faulkner et al. 2000; Moon et al. 2014). Additionally, it was 

shown that LIS1 is also localized at the marginal area of the developing cortex in NES cells. 

The overexpression led to mitotic spindle disorganization potentially caused by reduction of 

DYNEIN distribution pointing out the importance of DYNEIN/ LIS1 interactions for the 

regulation of spindle orientation (N. E. Faulkner et al. 2000). It was also shown that LIS1 

deficient mice had 80 % thinner and severely disorganized cortices due to reduced numbers of 

progenitors, potentially caused by a failure of mitotic spindle function (Pawlisz et al. 2008). 

This was further shown by Yingling et al. (Yingling et al. 2008) by using a Cre-loxP strategy 

to induce a complete loss of LIS1 in defined spatial-temporal patterns in NES- and RG cells. 

The loss of LIS1 in NES cells completely diminished those cell population, whereas loss of 

LIS1 in RG cells resulted in depletion of progenitors without catastrophic loss. They proposed 

a model to explain these findings, saying, that the cleavage planes early in development in the 

NES cells are tightly controlled to a vertical (symmetric) division to produce daughter cells 

both becoming progenitor cells. Explaining the massive cell loss when LIS1 deficiency leads 

to incorrect spindle orientation. Whereas in RG cells later in development, when more spindle 

planes are orientated horizontally (asymmetric) LIS1 deficiency leads to the reduction of 

progenitors and the decrease of neuron production resulting in a smaller brain size, but without 

catastrophic consequences (Yingling et al. 2008). Moreover, they postulated that due to the 

LIS1 function of cortical microtubule capture and stability resulting from its function in 

DYNEIN regulation, LIS1 stabilizes microtubules by plus-end capture at the cell cortex via 
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localization of DYNEIN components, providing an explanation for the spindle orientation 

defects in LIS1 deficient NES and RG cells (Yingling 2008). It is also to add that LIS1-

lissencephlic mouse models also helped to elucidate the question how LIS1 deficiency results 

in defects of cortical DYNEIN localization. It is postulated, that LIS1 mediates anterograde 

transport of cytoplasmic DYNEIN to the plus-end of cytoskeletal microtubules as a complex 

on transportable microtubules (Masami Yamada et al. 2013). Consequently, LIS1 deficiency 

would lead to impaired plus-end directed DYNEIN transport and accumulation around the 

centrosome associated with peripheral depletion leading to nucleokinesis defects displayed by 

migrating neurons  (Tanaka et al. 2004). In addition, one mouse study rescued cortical DYNEIN 

localization and phenotypic LIS1 mutant defects by inhibiting LIS1 degradation by intra-

peritoneal injection of ALLN, a calpain inhibitor, rescuing apoptotic neuronal cell death, 

reduction of brain weight as well as neuronal migration defects (M. Yamada et al. 2009). 

Important interaction partners of LIS1 to regulate cytoplasmic Dynein are NUDE (also known 

as NDE1) and its isoform NUDEL (also known as NDEL1) (Kitagawa et al. 2000; Niethammer 

et al. 2000; Morris et al. 1998) also found in Aspergillus through the ortholog interaction of 

NUDF (Efimov and Morris 2000). The physiological necessity for such a complex interaction 

network is poorly understood. It can be assumed that the complexity in interactions relates to a 

precise control of DYNEIN activity, which plays a role in all microtubule-depend processes, 

but how exactly LIS1 regulates DYNEIN is not known yet. Mesngon and colleagues (Mesngon 

et al. 2006) reported that LIS1 causes some stimulation of DYNEIN ATPase activity. 

Concluded it is to say that LIS1-lissencephaly is not just, as traditionally considered, an 

isolated neuronal migration disorder (Mi Moon and Wynshaw-boris 2013). LIS1 is 

imperative for microtubule-dynamic processes, which are fundamental important for the 

correct function of neuronal progenitor dynamics during cortical development (Bizzotto and 

Francis 2015). Recent data clearly highlights an important role of LIS1 in various progenitor-

depended processes like mitotic progression, altered spindle orientation and consequently 

defects in aRG cells division mode leading to incorrect timing of neurogenesis (Tsai J, Chen 

Y, Kriegstein A 2005; Yingling et al. 2008; Francis et al. 2006). 

1.4.2. LIS1-lissencephaly – a disorder displaying multiple faces 

Heterozygous deletions or mutations in the LIS1 gene are most common to cause 

lissencephaly in humans (Kato M. 2003). LIS1-lissencephaly includes isolated lissencephaly 

sequence (ILS, also known as classical or type I lissencephaly), MDS and very rarely 

subcortical band heterotopia (SBH) (Dobyns and Das 2014). This study focuses on ILS, which 
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is caused by de novo mutations in the LIS1 gen, including small intragenic deletions or 

insertions as well as point mutations. Common MRI LIS1 phenotypes include an anomalous 

thickened cortex of 12-20 mm (normal 3-4mm) and absent or abnormally broad cerebral gyri 

(Barkovich, Koch, and Carrol 1991). Those phenotypes are seen in vastly different severe 

manifestations (Figure 5). Dobyns and Truwit (Dobyns and Truwit 1995) established a grading 

system of gyral malformation including agyria (grade 1), mixed agyria-pachygyria (grades 2 

and 3) and pachygyria (grades 4 to 6) to better define several recognized subtypes according to 

their MRI phenotype (Pilz et al. 1998; Dobyns and Truwit 1995) (outlined in Figure 5). 

   

Figure 5: Scheme of the lissencephalic severity spectrum. The healthy primate brain is characterized by multiple 

folds, so called gyri and sulci. This gyrification developed evolutive by the expansion of the neocortex. One of the 

main phenotypes of lissencephalic brains is a reduction of gyrification, which occurs in different severities. The 

milder phenotypes are characterized by broader gyri. Moderate lissencephalic brains often show a gradient of 

severity from anterior to posterior with anterior pachygyria and posterior agyria. The most severe lissencephalic 

phenotypes are characterized by the complete absents of gyrification (smooth brain). 

The clinical severity generally correlates with the degree of agyria, but not with the LIS1 gene 

mutation (Saillour et al. 2009). Much of our knowledge about LIS1-lissencephaly comes from 

post-mortem analyzes of patient’s brains, which provided valuable insight into 

neuropathological condition. However, such tissue represents the final stage of disease and 

cannot be used to analyze the development of MCD or causative mechanisms. Pre- and prenatal 

imagine might provide more detailed information on disease progression, however, not permit 

functional studies. The translation into mouse models has generated fundamental insight into 

the pathological mechanisms associated to the disease phenotype (Collins et al. 2019; Uzquiano 

et al. 2019; Chevassus-Au-Louis et al. 1999; Mi Moon and Wynshaw-boris 2013). The basic 

sequence of events during corticogenesis are commonly shared across species making mouse 
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models a well-suited system to unravel neurodevelopmental disorders. Transgenic mice 

represent a powerful tool for examining genetic mechanisms. Consequently, several mouse 

models of lissencephaly were created based on LIS1 protein dosage variations, leading to the 

identification of many molecular functions of the LIS1 protein (see 1.4.1). However, many 

phenotypes observed in humans are not recapitulated in non-human models, highlighting severe 

difference in development, the structure of the brain and gene function between human and 

non-human models. One example is the healthy lissencephalic mouse brain, which is an 

imperative restriction when analyzing lissencephalic disorders, failing to recapitulate the 

severity of human-specific phenotypes. Even though these studies could show that LIS1 gene 

dosage is relevant for the phenotypic severities. However, the impact of specific mutations 

within the LIS1 gene as identified in LIS1-patients on alterations of human-specific 

processes during cortical development was so far not investigated. Therefore,  to overcome 

those structural and technical hurdles iPS cells derived cerebral organoids have emerged as 

an attractive tool to model and study human-specific aspects of MCDs recapitulating the 3D 

cytoarchitecture, cell composition and spatial organization reminiscing of early human brain 

development (M. A. Lancaster et al. 2017; Camp et al. 2015; Kanton et al. 2019). This study 

elucidates whether cerebral organoids are sensitive to recapitulate variable disease severities to 

analyze individual pathologies for personalized medicine.  

1.5. The variable phenotypic manifestations of LIS1-lissencephaly – an unsolved 

phenomenon 

To date little is known about the underlying pathologies leading to the diverse LIS1-

lissencephalic severities. Mouse models have unraveled many molecular pathologies but failed 

to capture disease severity. Therefore, studies utilizing human and patient-specific model 

systems are needed for severity cause elucidation. A more in-depth understanding is important 

as it may lead to more specific approaches to comfort and help affected children. Multiple 

clinical case studies describe that there is no correlation between disease causing LIS1 mutation 

and patients disease severity. Neither the mutation type nor the location of the mutation within 

the LIS1 gene were found to predict the severity grade of LIS1-lissencephaly (Saillour et al. 

2009; Uyanik et al. 2007; Philbert et al. 2017; Pilz et al. 1998). There are known cases were the 

same mutation leads to different disease severities (oral communication, Nadja Bahi-Buisson). 

That raises the question in how far the genetic plays into pathology. Are environmental factors 

or any by-chance effects involved or is it mainly the degree of LIS1-function disruption which 

determines disease severity. Initially, one publication suggested a putative correlation with the 
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mild lissencephaly associated missense mutations and truncating mutations localized at the 3’ 

end of the LIS1 gene (Cardoso et al. 2000). Although more recent studies did not confirm this 

relationship (Uyanik et al. 2007; Saillour et al. 2009). Saillour et al. (Saillour et al. 2009) 

analyzed a large LIS1-patient cohort including 40 patients carrying LIS1 mutations (75%) or 

small deletions (20%). They tried unsuccessfully to correlate the severity of the disease in terms 

of epileptic seizures, radiological findings, and body movement impairments with the LIS1 

mutations. Moreover, Uyanik et al. (Uyanik et al. 2007) revealed 21 intragenic mutations 

distributed over the entire LIS1 gene. Except 2 mutations in the LIS1 homology domain and 2 

in the region encoding the coiled-coil domain were all found in one of the seven WD40 repeat 

domains. But neither the type nor the position of the mutation correlated with a particular 

phenotype. Rather, they found that the clinical severity correlates only with the degree of agyria 

and cortical thickening, which supports the statement of Barkovich and colleagues already in 

1991 (Barkovich, Koch, and Carrol 1991). Due to the lack of accessibility of patient’s brain, it 

is difficult to analyze molecular pathologies in living cells. Post-mortem analyzes show the 

final stage of disease but are not suitable for functional studies or disease progression analysis 

leading to disease heterogeneity.  To date there are only a few studies analyzing LIS1-

lissencephalic severity cause in human in vitro models. Early on, in 1999, Fogli et al. (Fogli et 

al. 1999) did genotype-phenotype correlations of 7 patients with classical lissencephaly 

carrying a heterozygous LIS1 splice-site or truncation mutation. The patient harboring a splice-

site mutation suffered from more severe disease than the patients with LIS1 truncation 

mutation. Using lymphoblastoid cell lines of those patients, they found that patient cells 

containing the splice-site mutation were suggestive of partial protein synthesis from the mutated 

allele, whereas cells harboring truncation LIS1 mutation did not show detectable protein 

translation. Consequently, their data propose that the intracellular dosage of the LIS1 protein 

correlates with the severity, which was also shown by murine studies (Y. H. Youn et al. 2009; 

Gambello, Darling, Yingling, Tanaka, Gleeson, and Wynshaw-Boris 2003). Caspi et al. 

(Caspi et al. 2003) analyzed different LIS1 point mutations by examining protein stability, 

folding, intracellular localization and protein-protein interactions by utilizing in vitro 

models. Their data suggest that the mutated proteins were affected at different levels and no 

single assay could be used to predict the lissencephalic phenotype. They found that the 

cellular phenotype of cells, expressing mutant proteins that retain partial folding and 

interactions may be modified by overexpression of specific LIS1 interacting proteins. These 

findings implicate that there are probably different biochemical and cellular mechanisms 

obstructed in each patient yielding the varied lissencephaly phenotypes. Our collaboration 
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partners (Philbert et al. 2017, Camille Maillard, unpublished Data) analyzed fibroblasts of 4 

LIS1-patients including 2 patients characterized by mild disease, grade 4-5, as well as 2 patients 

suffering from severe disease, grade 1-2. The analysis of LIS1 mRNA levels in patient 

fibroblasts showed that wildtype transcript levels from those 4 patients (mild and severe) are 

reduced by approximately half compared to controls due to the heterozygous mutations. But 

only the mutant transcript levels from patients with mild disease, carrying a frameshift, are 

degraded by non-sense mediated decay (NMD), as shown by inhibition of NMD by Emetine. 

In contrast, mutant transcripts of patients with severe disease, with in-frame missense mutation, 

are not degraded, so that the missense mutation would lead to misfolded proteins in the severe 

patients, which might be degraded by the proteasome. By proteasomal inhibition they (Philbert 

et al. 2017, Camille Maillard, unpublished Data) found clusters of LIS1 in cells from patients 

with severe disease, in which mutant transcripts are not degraded. Cells from patients with mild 

disease did not show this phenomenon supporting the assumption that only cells from severe 

patients contain misfolded protein variants. They further hypothesized that the observed LIS1 

clusters in severe conditions might be stress granules (SG), which are cytosolic membrane-less 

organelles that form temporarily, allowing the cell to bear a cellular stress by stalling mRNA 

translation and enhancing the synthesis of cytoprotective proteins (J.-Y. Youn et al. 2019). This 

hypothesis was supported by fibroblast treatment with sodium arsenate, a cellular stressor, and 

co-labeling of LIS1 and G3BP1, a SG marker. Moreover, they found that LIS1 clusters are 

observed only after MG132 treatment, suggesting LIS1 mutant proteins are misfolded and then 

degraded by proteasome. These findings suggest that the wildtype transcript reduction by 50 % 

together with the 50 % of misfolded proteins are more harmful to the cell physiology than only 

the 50 % wildtype transcripts as found in cells from patients with mild disease. To further 

elucidate potential underlying pathologies leading to disease severity heterogeneity in neuronal 

progenitors and during brain development, fibroblasts (and lymphocytes) of the 4 patients 

(mild, severe) named above as well as cells from 2 additional patients suffering from moderate 

disease were send to me for reprogramming into iPS cells and 3D in vitro disease modelling. 
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1.6. Aims and research objectives  

MCDs are the consequence of alterations in the precise choreography of progenitor 

proliferation, neurogenesis and neuronal migration during corticogenesis. LIS1-lissencephaly 

is a heterogeneous MCD. To date little is known about the molecular origin for such 

lissencephalic heterogeneity and no effective treatment is available. LIS1 mouse models show 

that LIS1 gene dosage is relevant for the phenotypic severities. However, the impact of 

specific mutations within the LIS1 gene as identified in LIS1-patients on alterations of 

human-specific processes during cortical development was so far not investigated. 

Therefore, the here presented project had the main aim to shed light on the underlying 

pathology leading to different lissencephalic disease severities caused by LIS1 mutations. 

To do so 7 patients were selected from a LIS1-patient cohort comprising 63 cases who cover 

the whole spectrum of gyrification alterations of LIS1-lissencephaly ranging from Dobyns 

grade 5 (mild) to 1 (severe). Somatic cells of those patients (all harboring heterozygous 

mutation in the LIS1 gene) were reprogrammed and 2 clones for each LIS1-patient iPS cell line 

characterized. To analyze specific early human developmental aspects in the different 

lissencephalic conditions a reproducible protocol for the generation of homogenous human 

cerebral forebrain-type organoids was developed. Furthermore, to analyze the mutational 

consequences on human cortical development the ability of my 3D organoid models to 

sensitively recapitulate different disease severities of LIS1-lissencephaly should be 

explored. To that end, I also planned to develop precise quantitative assessment protocols to 

detect phenotypic differences sensitively and accurately in the developed 3D in vitro model 

systems. Moreover, I had the intention to use my 3D organoid models for unraveling molecular 

pathologies, which might be specific for the different disease severities. The last major aim was 

to identify substances, which counteract in vitro disease phenotypes as potential candidates for 

disease therapy.  

Summarized, to shed more light on lissencephalic disease heterogeneity following aims arise:  

I. To generated and characterize a large LIS1-patient iPS cell cohort which covers the 

whole spectrum of gyrification alterations of LIS1-lissencephaly. 

II. To develop an in vitro cortical forebrain-type organoid protocol to reconstruct cortical 

stem cell niche and analyze corticogenesis in health and disease. 

III. To design quantitative 3D organoid assessment protocols to precisely compare healthy 

and different disease severity conditions. 
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IV. To test the sensitivity of the established 3D organoid system to mirror different disease 

severities and reflect LIS1-lissencephaly associated phenotypes. 

V. To investigate underlying molecular pathology in the LIS1-patient derived organoids 

from different disease severities.  

VI. To identify substances, which counteract LIS1-lissencephlic associated phenotypic 

alterations. 
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2. Materials 

This study was completed at the Hector Institute of Translational Brain Research (HITBR) 

headed by Prof. Dr. Philipp Koch. All used cell lines, technical equipment, consumables as well 

as chemicals, cell culture media, enzymes, buffers, solutions, primers, antibodies and software 

are listed in this section. The entire experiments were completed in compliance with Germany’s 

legal provisions and ethical guidelines and the ‘Declaration of Helsinki – Ethical Principles for 

Medical Research Involving Human Subjects’ from the World Medical Association. The 

employment of all human cell lines was in full ethical agreement with institutional regulations. 

2.1. Cell lines 

The cell lines used in this study included fibroblasts, peripheral blood mononuclear cells 

(PBMCs) and iPS cells. Control skin fibroblasts were obtained from Coriell Biorepository 

(control 1, 2-year-old female, catalog ID GM00969; control 2, 5-month old male donor, catalog 

ID GM08680). LIS1-patient fibroblasts and lymphocytes were collected and send from Nadja 

Bahi-Buisson from the Necker Enfants Malades university hospital in France (mild LIS1-

patient 1, 8-year old male donor, c.569-10T>C LIS1 mutation; mild LIS1-patient 2, 5-years old 

male donor, c.569-10T>C LIS1 mutation; moderate LIS1-patient 1, 6-years old female donor, 

c.13del LIS1 mutation; moderate LIS1-patient 2, 13-year old female donor, delEx11 LIS1 

mutation; severe LIS1-patient 1, 4-year old female donor, c.1002+1G>A; severe LIS1-patient 

2, 18-year old female donor, c.531G>C LIS1-mutation; severe LIS1-patient 3, 3-year old 

female donor, c.445>T LIS1 mutation, see table 1). iPS cell lines were generated with patient 

consent, and this study was ethically approved. In additional 4 control iPS cell lines were 

received from Dr. Sandra Horschitz (Ethics Committee II of Medical Faculty Mannheim of 

Heidelberg University approval no. 2014-626N-MA, control 3, 21-years old female donor; 

control 4, 44-year old female donor; control 5, 25-year old female donor; control 6, 26-year old 

female donor). 

Table 1: Overview of LIS1-lissencephaly patients including age, sex, mutation and severity grade. 

 mild P1 mild P2 moderate P3 moderate P4 severe P5 severe P6 severe P7 

age 8 5 6 13 4 18 3 

sex male male female female female female female 

mutation c.569-

10T>C 

c.671-

10T>G 

c.13del delEx11 c.1002+1G>A c.531G>C c.445>T 

severity 

grade 

4-5 4-5 3 3 1-2 2 1-2 
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Table 2: Generated LIS1-patient iPS cell lines and utilized control iPS cell lines 

Cell line Source 

control C 1.1 Coriell Biorepository, catalog.ID GM00969 (2-year-old female donor) 

control C 1.2 Coriell Biorepository, catalog.ID GM00969 (2-year-old female donor) 

control C 2.1 Coriell Biorepository, catalog.ID GM08680 (5-month-old male donor) 

control C 2.2 Coriell Biorepository, catalog.ID GM08680 (5-month-old male donor) 

control C 3.1 Sandra Horschitz, HITBR Mannheim (21-year-old female donor) 

control C 3.2 Sandra Horschitz, HITBR Mannheim (21-year-old female donor) 

control C 4.1 Sandra Horschitz, HITBR Mannheim (44-year-old female donor) 

control C 4.2 Sandra Horschitz, HITBR Mannheim (44-year-old female donor) 

control C 5.1 Sandra Horschitz, HITBR Mannheim (25-year-old female donor) 

control C 5.2 Sandra Horschitz, HITBR Mannheim (25-year-old female donor) 

control C 6.1 Sandra Horschitz, HITBR Mannheim (26-year-old female donor) 

control C 6.2 Sandra Horschitz, HITBR Mannheim (26-year-old female donor) 

mild LIS1-patient P1.1 Olivia Krefft, HITBR Mannheim, Germany (8-year-old male donor) 

mild LIS1-patient P1.2 Olivia Krefft, HITBR Mannheim, Germany (8-year-old male donor) 

mild LIS1-patient P2.1 Olivia Krefft, HITBR Mannheim, Germany (5-year-old male donor) 

mild LIS1-patient P2.2 Olivia Krefft, HITBR Mannheim, Germany (5-year-old male donor) 

moderate LIS1-patient P3.1 Olivia Krefft, HITBR Mannheim, Germany (6-year-old female donor) 

moderate LIS1-patient P3.2 Olivia Krefft, HITBR Mannheim, Germany (6-year-old female donor) 

moderate LIS1-patient P4.1 Olivia Krefft, HITBR Mannheim, Germany (13-year-old female donor) 

moderate LIS1-patient P4.2 Olivia Krefft, HITBR Mannheim, Germany (13-year-old female donor) 

severe LIS1-patient P5.1 Olivia Krefft, HITBR Mannheim, Germany (4-year-old female donor) 

severe LIS1-patient P5.2 Olivia Krefft, HITBR Mannheim, Germany (4-year-old female donor) 
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severe LIS1-patient P6.1 Olivia Krefft, HITBR Mannheim, Germany (18-year-old female donor) 

severe LIS1-patient P6.2 Olivia Krefft, HITBR Mannheim, Germany (18-year-old female donor) 

severe LIS1-patient P7.1 Olivia Krefft, HITBR Mannheim, Germany (3-year-old female donor) 

severe LIS1-patient P7.2 Olivia Krefft, HITBR Mannheim, Germany (3-year-old female donor) 

2.2. Technical equipment 

All used technical equipment is listed in this section. 

Table 3: Technical equipment 

Device Manufacture 

10X Vortex Adapter 10X Genomics (San Francisco, USA) 

10X Magnetic Separator 10X Genomics (San Francisco, USA) 

2100 Bioanalyzer Laptop Bundle  Agilent (Waldbronn, Germany) 

4200 Tape station Agilent (Waldbronn, Germany) 

Analytical Balance BP121-S 
Sartorius Stedim Biotech S. A. (Aubagne 

Cedex, France) 

Centrifuge 5415D Eppendorf AG (Hamburg, Germany) 

Centrifuge Z 216 MK 
HERMLE Labortechnik GmbH (Wehingen, 

Germany) 

Chromium Controller 10X Genomics (San Francisco, USA) 

Chromium Next GEM Secondary Holder 10X Genomics (San Francisco, USA) 

CO2 Incubator HERAcell 150i 
Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

Confocal Microscope Leica TCS SP5II 
Leica Microsystems GmbH, (Mannheim, 

Germany) 

Electrophoresis Power Supply EPS 301 
Amersham Pharmacia Biotech (Little 

Chalfont, UK) 

Extraction hood mc6® das Laborsystem Waldner GmbH & Co (Wangen, Germany) 

Fluorescence Microscope Axioskop 2 plus 
Zeiss Microscopy GmbH (Oberkochen, 

Germany) 
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Fluorescence Microscope Celldiscoverer 7 
Zeiss Microscopy GmbH (Oberkochen, 

Germany) 

Fluorescent Lamp ebq 100 
Lighting & Electronics Jena GmbH, (Jena, 

Germany) 

Fragment Analyzer Automated CE System 12, 

and 48/96 cap 

Advanced Analytical Technologies (Heidelberg, 

Germany) 

Heraeus Sorvall Four Place Swinging Bucket, 

Rotor 6445 

Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

Heraeus® Herasafe™ 2030i Biological Safety 

Cabinet 

Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

Heraeus® Labofuge® 400R Centrifuge 
Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

HiSeq 4000 Sequencing system Illumina (San Diego, USA) 

Illumina Nova Seq 6000 system Illumina (Berlin, Germany) 

Inverted Leica DMIL LED Microscope 
Leica Microsystems GmbH, (Mannheim 

Germany) 

Light-Sheet-Microscope Leica Microsystems GmbH, (Mannheim 

Germany) 

LUNA™ Automated cell counter Logos Systems (Weilerswist, Germany) 

Micro Balance iso9001 
Sartorius Stedim Biotech S. A. (Aubagne 

Cedex, France) 

MilliQ Integral Water Treatment System 
Merck Millipore (Burlington, Massachusetts, 

USA) 

MJ Research PTC-200 Thermal Cycler 
Biozym Diagnostik GmbH (Oldendorf, 

Deutschland) 

Nanodrop™ ND-1000 Spectrophotometer 
Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

Neurolog System Stimulator Module Digitimer LLC (Ft. Lauderdale, Florida, USA) 

NovaSeqTM 6000 sequencing system Illumina (San Diego, USA) 

Odyssey Imaging System 
Li-Cor Bioscience (Bad Homburg vor der Höhe, 

Germany) 

Orbital shaker KS 250 basic 
IKA Labortechnik ® GmbH, staufen 

(Germany) 
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2.3. Plastic ware 

All used plastic ware is listed in this section. 

Table 4: Plastic ware 

Product Manufacturer 

Cell Scrapper 16 cm SARSTEDT AG & Co. KG, (Nümbrecht, 

Germany) 

Coverslips 12, 15 mm Ø VWR International (Radnor, Pennsylvania, 

USA) 

CryoPure Tubes 1 ml SARSTEDT AG & Co. KG (Nümbrecht, 

Germany) 

pH-Meter Profi Lab WTW pH597 
SIGMA-ALDRICH (St. Louis, Missouri, 

USA) 

Quant Studio 7 Flex 
applied Biosystems by Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

Qubit 4.0 Fluorometer 
Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

Sunlab Roll Mixer SU 1400 Sustainable lab instruments (Heidelberg, Germany) 

Thermal Cycler C1000 Touch (with 96-deep well 

reaction module) 
Bio-Rad Laboratories (Essen, Germany) 

Thermal MasterCycler Pro Eppendorf AG (Hamburg, Deutschland) 

Thermal Cycler MJ Research PTC-200  
Biozym Scientific GmbH (Hessisch Oldendorf, 

Germany) 

Termal Cycler Veriti (96-well) 
Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

Thermomixer comfort 5355 Eppendorf AG (Hamburg, Deutschland) 

UV lamp GeneFlash Syngene (Cambridge, UK) 

Vortex Reax control 
Heidolph Instruments GmbH & CO. KG, 

Schwabach (Germany) 

Warm bath ED-17 
JULABO Labortechnik GmbH (Seelbach, 

Deutschland) 

Warm bath for cell culture 
Köttermann GmbH & Co. KG 

(Uetze/Häningsen, Germany) 
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Disposable bag SARSTEDT AG & Co. KG (Nümbrecht, 

Germany) 

DNA LoBind Tubes 1,5 and 2 ml Eppendorf (Hamburg, Germany) 

Eppendorf tubes 0,1, 0,5, 1,5 and 2 ml SARSTEDT AG & Co. KG, (Nümbrecht, 

Germany) 

Falcons 15, 50 ml SARSTEDT AG & Co. KG, (Nümbrecht, 

Germany) 

Flowmi Strainer P1000 Pipette Tip, 40 uM Bel-Art SP SciencewareTM (New jersey, USA) 

Frame Star 96 well semi-skirted PCR Plate  4titude (Wotton, UK) 

Glass Pasteur pipettes Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

Imaging 35 mm Ø dish, polymer coverslipbottom Ibidi GmbH (Martinsried, Germany) 

MicroAmp 8-Tube Strip 0,2 ml Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

MicroAmp 8-Cap Strip, clear Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

Micropipettes 1000, 200, 100, 20, 10, 2 µl ABIMED GmbH (Langenfeld, Deutschland) 

Microscope slides 76x26 mm Carl Roth GmbH & Co. KG (Karlsruhe, 

Deutschland) 

Nitrile Powder-Free Gloves ABENA®, Culver City (USA) 

Parafilm M Pechiney Plastic Packaging (Chicago, USA) 

Pasteur pipettes Alpha Laboratories Limited (Hampshire, UK) 

PCR Seal 4titude (Wotton, UK) 

PCR Single Cap 8-Soft Strips, 0,2 ml Biozym Scientific GmbH (Hessisch 

Oldendorf, Germany) 

PCR Tubes 0,2 ml 8-tube stripes Eppendorf (Hamburg, Germany) 

Petri-dishes 60x15 mm and 100x15mm with Nocken SARSTEDT AG & Co. KG (Nümbrecht, 

Germany) 

Pipet tips 1000, 200, 20, 10 µl SARSTEDT AG & Co. KG, (Nümbrecht, 

Germany) 

Serological Pipets, 50, 25, 10, 5 ml SARSTEDT AG & Co. KG, (Nümbrecht, 

Germany) 
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TC 6, 12, 24, 96 Well-Cell Culture Plate, Standard F SARSTEDT AG & Co. KG, (Nümbrecht, 

Germany) 

TempAssure PCR 8-tube strip USA Scientific (Ocala, USA) 

Ultralow Cluster, 96-well plate, ultra-low attachment round 

bottom with lid 

Costar® by SIGMA-ALDRICH (St. Louis, 

Missouri, USA) 

2.4. Cell culture consumables 

This section contains all information what cell culture consumables have been used within this 

study including compounds, chemicals and media compositions. 

2.4.1. Cell culture compounds and chemicals 

All used compounds and chemicals are listed in this section. 

Table 5: Cell culture compounds and chemicals 

Product Manufacturer 

A83-01 Tocris (Wiesbaden, Germany) 

B27® Supplement (50X) Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

BSA solution (7.5%) SIGMA-ALDRICH (St. Louis, Missouri, USA) 

BDNF Peprotech (Hamburg, Germany) 

cyclisches adenosin-monophosphat (cAMP) SIGMA-ALDRICH (St. Louis, Missouri, USA) 

CHIR99021 Cell Guidance Systems Ltd (Cambridge, UK) 

D-Glucose SIGMA-ALDRICH (St. Louis, Missouri, USA) 

DMEM (1X) + GlutaMAX™-I Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

DMEM/F-12 (1:1) (1X) + L-Glutamine Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

DMEM/F-12 (1:1) (1X) + L-Glutamine + 

HEPES 

Gibco® Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

DMSO SIGMA-ALDRICH (St. Louis, USA) 

Dorsomorphin Stem Cell Technologies (Cologne, Germany) 

Dulbecco´s Phosphate Buffered Saline SIGMA-ALDRICH (St. Louis, Missouri, USA) 



                                                       Unraveling the pathology of different disease severities  

 

 
 

52 

EDTA SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Epothilone D SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Fetal bovine serum (FBS) Invitrogen (Waltham, Massachusetts, USA) 

FLT3 Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

GDNF Cell Guidance Systems Ltd (Cambridge, UK) 

Gelantine SIGMA-ALDRICH (St. Louis, Missouri, USA) 

GelTrex™ (GT) Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

GlutaMAX™-I (100X) Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

Heparin SIGMA-ALDRICH (St. Louis, Missouri, USA) 

HEPES Carl Roth GmbH & Co. KG (Karlsruhe, Deutschland) 

Human FGF-2 (154) Cell Guidance Systems Ltd (Cambridge, UK) 

Human recombinant bFGF Invitrogen (Waltham, Massachusetts, USA) 

Human Recombinant Insulin SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Human TGF-β1 Cell Guidance Systems Ltd (Cambridge, UK) 

Interleukin 3 (IL-3) Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

Interleukin 6 (IL-6) Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

Knockout™-Serum Replacement (KOSR) Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

L-Ascorbic Acid Cell Guidance Systems Ltd (Cambridge, UK) 

L-Ascorbic Acid 2-Phosphate (LAAP) SIGMA-ALDRICH (St. Louis, Missouri, USA) 

L-Tryptophan SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Laminin Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

LDN-193189 StemMACSTM (Bergisch Gladbach, Germany) 

LM22A SIGMA-ALDRICH (St. Louis, Missouri, USA) 

LM22B 10 Tocirs (Wiesbaden, Germany) 

MEM Non-Essential Aminoacids (NEAA), Gibco® Thermo Fisher Scientific Inc. 
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(100X) (Waltham, Massachusetts, USA) 

2-Mercaptoethanol  Invitrogen (Waltham, Massachusetts, USA) 

Natrium chloride (NaCl) SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Natrium selenite (NaSe) SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Penicillin Streptomycin 10,000 units/ml Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

PluriPro Cell Guidance Systems Ltd (Cambridge, UK) 

Pluronic SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Poly-L-ornithine SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Progesterone SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Purmorphamine Cell Guidance Systems Ltd (Cambridge, UK) 

Puromycin PAA (Pasching, Austria) 

Putrescine SIGMA-ALDRICH (St. Louis, Missouri, USA 

Rho-Kinase-Inhibitor  

Y-27632 (Rock Inhibitor) 

Cell Guidance Systems Ltd (Cambridge, UK) 

Stem cell factor (SCF) Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

Transferrin SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Trypan blue Invitrogen (Waltham, Massachusetts, USA) 

TrypLE Express Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

Trypsin-EDTA (10X) Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

Trypsin inhibitor (TI) Gibco® Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

UltraPure™ EDTA Invitrogen (Waltham, Massachusetts, USA) 

XAV 939 Enzo (Lörrach, Germany) 
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2.4.2. Cell culture media composition 

All base media were ordered from Life Technologies (Karlsruhe) and supplemented with 1X 

Penicillin/Streptomycin (Pen/Strep). The compounds and small molecules where added 

according to the listed concentrations. The complete cell culture media were stored at 4°C and 

used within 4 weeks. Directly after cell passaging all media were supplemented with 5mM 

Rock inhibitor Y-27632 (Rock inhibitor) for 1 day. 

Table 6: Cell culture media 

Medium Composition Concentration 

Freezing medium KOSR  70% 

Cytobuffer  
20% 

DMSO 
10% 

E8 base medium DMEM/F-12 (1:1) (1X) + L- Glutamine + HEPES  

LAAP 
0,64 mg/ml 

NaSe 
28 nM 

E8 complete medium E8 base medium   

Human recombinant insulin 
10 µg/ml 

FGF-2 (154) 
1 ng/ml 

H-Transferrin 
2 µg/ml 

TGF-β1 
10 ng/ml 

HBS solution (2X) NaCl 280 mM 

 HEPES 50 mM 

 Na2HPO*7H2O (pH 7,05) 1,42 mM 

 add 10 M NaOH to pH 7,05 add 

Human ES cell medium Knockout™-Serum Replacement (KOSR) 

KOSR 1:5000, 

NEEA 1X 

GlutaMax 1X 

β-Mercaptoethanol 55 µM 

bFGF 4 ng/ml 

Pen/Strep 1X 

Maturation medium Neuronal differentiation medium 
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LM22A 1µM 

LM22B 1µM 

GDNF 10 nM 

Ascorbic acid 0,2 mM 

GelTrex 1:500 

Mouse Embryonic Fibroblast 

(MEF) medium 

DMEM (1X) + GlutaMAX™-I 

FCS 10 % 

Pyruvat 1 % 

NEEA 1% 

Pen/Strep 1X 

N2/B27 base medium DMEM/F-12 (1:1) (1X) + L-Glutamine 

 N2 supplement 1X 

 B27® Supplement 1X 

 β-Mercaptoethanol 0,1 nM 

 cAMP 1,5 µg /ml 

 D-Glucose 0,4 µg/ml 

 NEEA 1X 

 GlutaMax 1X 

 Pen/Strep 1X 

N2 Supplement DMEM (1X) + GlutaMAX™-I  

H-Transferrin  2 mg/ml 

Human recombinant insulin  0,5 mg/ml 

Putrescine 1,6 µg/ml 

Progesterone 
0,6 µm/ml 

NaSe 
0,5 µg/ml 

Neuronal differentiation medium N2/B27 base medium  

KOSR  

Human recombinant insulin 

1:50 

2,5µg/ml 

Neuronal induction medium 
N2/B27 base medium  

Heparin 
10 µg/ml 
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LDN 
180 nM 

A83 
500 nM 

XAV 
10 µg/ml 

PBMC medium StemPro34 medium  

 SCF 100 ng/ml 

 FLT3 100 ng/ml 

 IL-3 20 ng/ml 

 IL-6 20 ng/ml 

PluriPro (PP) medium PluriPro 99 % 

 Pen/Strep 1% 

PP/E8 medium PP 50 % 

 E8 complete medium 50 % 

StemPro34 medium DMEM (1X) + GlutaMAX™-I  

 StemPro Supplement (50X) 1X 

 BSA (25%) 2% 

 GlutaMax 1X 

 β-Mercaptoethanol 55 µM 

 bFGF 4 ng/ml 

Wash medium DMEM (1X) + GlutaMAX 99 % 

 Pen/Strep 1 % 

2.5. Molecular biology consumables 

This section contains all information what molecular biology consumables have been used 

within this study including compounds, chemicals and solution compositions. 

2.5.1. Molecular biology compounds and chemicals 

This section provides information about molecular compounds and chemicals used within this 

study. 
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Table 7: Molecular compounds and chemicals 

Product Manufacture 

30% Acryl-bisacryl-amide SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Agarose SIGMA-ALDRICH (St. Louis, Missouri, USA) 

AmmershamTM HybondTM 0,2µm  

PVDFB Blotting Membrane 

Healthcare Life Science (Freiburg, Germany) 

Ammoniumperoxodisulfat (APS) SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Calcium chloride (CaCl2) SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Cell staining buffer for Cell Hashing BioLegend (Koblenz, Germany) 

Chloroform SIGMA-ALDRICH (St. Louis, Missouri, USA) 

DAPI SIGMA-ALDRICH (St. Louis, Missouri, USA) 

ddH2O Merck Millipore (Burlington, Massachusetts, USA) 

DNA 100 bp ladder New England Biolabs (Ipswich, New England, USA) 

dNTPs Peqlab GmbH (Erlangen, Germany) 

Eosin G-Lösung 0,5% wässrig  Carl Roth GmbH & Co. KG (Karlsruhe, Deutschland) 

Ethanol ≥99.8 % SIGMA-ALDRICH (St. Louis, Missouri, USA) 

FCS Invitrogen (Waltham, Massachusetts, USA) 

Galantine  SIGMA-ALDRICH (St. Louis, Missouri, USA) 

U-shaped 2.5 mm glass capillaries Hilgenberg (Malsfeld, Germany) 

Glucose Carl Roth GmbH & Co. KG (Karlsruhe, Deutschland) 

Glycerol Merck (Burlington, Massachusetts, USA) 

Hämalaunlösung sauer nach Mayer Carl Roth GmbH & Co. KG (Karlsruhe, Deutschland) 

HEPES Carl Roth GmbH & Co. KG (Karlsruhe, Deutschland) 

Horse serum Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

Human TruStain FcX Blocking Solution 

for Cell Hashing 

BioLegend (Koblenz, Germany) 

Isopropanol SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Loading Dye New England Biolabs (Ipswich, New England, USA) 

Low melting agarose Cambrex Bio Science (Wiesbaden, Germany) 

Low TE Buffer (10 mM Tris-HCl pH 8,0, Thermo Fisher Scientific Inc. 
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0,1 mM EDTA) (Waltham, Massachusetts, USA) 

Mowiol SIGMA-ALDRICH (St. Louis, Missouri, USA) 

N,N,N’,N’-Tetrakis(2-

hydroxypropyl)-ethylenediamine 

TCl Chemicals (Eschborn, Germany) 

Nuclease-free H2O Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

PeqGreen Peqlab GmbH (Erlangen, Germany) 

Paraformaldehyde (PFA) SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Potasium Chloride (KCl) AppliChem GmbH (Darmstadt, Germany) 

Phosphatase inhibitor Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

Protease inhibitor Thermo Fisher Scientific Inc. 

(Waltham, Massachusetts, USA) 

Qiagen Buffer EB Qiagen (Hilden, Germany) 

RNASE Away Molecular Bioproducts Inc. (Leicestershire, UK) 

Saponin SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Sodium chloride (NaCl) SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Sodium citrate (Na3C6H5O7) SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Sucrose SIGMA-ALDRICH (St. Louis, Missouri, USA) 

TAE Buffer (10X) SIGMA-ALDRICH (St. Louis, Missouri, USA) 

ThermoPol® Reaction Buffer Pack New England Biolabs (Ipswich, New England, USA) 

TriFast peqGOLD Peqlab GmbH (Erlangen, Germany) 

Tris-Tricine-SDS Buffer (10X) SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Triton X-100 SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Tween 20 Bio-Rad Laboratories (Hercules, California, USA) 

Type F Immersion Oil Leica Microsystems GmbH, (Mannheim, Germany) 

Urea SIGMA-ALDRICH (St. Louis, Missouri, USA) 

WypAll X60 Wipes Kimberly-Clark ProfessionalTM (Koblenz, Germany) 
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2.5.2. Molecular biology buffer and solution compositions 

All used molecular buffers and solutions are listed in this section. 

Table 8: Molecular buffer and solution composition 

Buffer Composition Concentration 

3M Tris-HCl/ SDS Buffer Tris base 182 g 

 HCl to pH 8.45 add 

 dH2O to 500 ml add 

 SDS 1,5 g 

6X SDS-PAGE Sample Buffer Tris 375 mM, pH 6,8 25 ml 

 10 % SDS solution 60 ml 

 Glycerol 6% 6 ml  

β-Mercaptoethanol 9 % 9 ml  

Bromphenol-blue-solution 9 % 0,03 g  

10% APS Ammonium persulfate 1 g 

 dH2O to 10 ml add 

10X Anode buffer Tris base 1M 242 g 

 add HCl to pH 8,8 add 

 dH2O to 1000 ml add 

10X TBS NaCl (150mM) 87,6 g 

 Tris (50mM) 60,5 g 

 add HCl to pH 7,4 add 

 dH2O to 1000 ml add 

50x Tris-acetate-EDTA-buffer 

(TAE) 

Tris 242 g  

EDTA solution (0.5M; pH 8.5) 100 ml  

Water-free acetic acid (100%) 57.1 ml  

dH2O to 1000ml add 

Blotting Transfer buffer  Glycine 
2,9 g 

 Tris 
5,8 g 
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SDS 
0,37 g 

 Methanol 
200 ml 

 dH2O to 1000ml 
add 

Clearing blocking solution Horse serum 
10% 

 Gelantine 
0,2% 

 Triton X-100 
0,1% 

 PBS 
add 

Cryo-embedding medium PBS 
82,5 % 

 Sucrose 
10 % 

 Gelantine 
7,5 % 

dNTP Mix dATP 
25 mM 

 dTTP 
25 mM 

 dCTP 
25 mM 

 dGTP 
25 mM 

HBS solution (2X) NaCl 
280 mM 

 HEPES 
50 mM 

 Na2HPO*7H2O (pH 7,05) 
1,42 mM 

 add 10 M NaOH to pH 7,05 
add 

Immuno-blocking solution PBS 
89,9 % 

FCS 
1 % 

Triton X100 (only for intracellular epitopes) 
0,1 % 

Lysis buffer Tris HCl  
50 mM 

 NaCl  
50 mM 
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EDTA  1 mM 

TritonTM X-100 1% 

HCl to 7.4 add 

 
Protease inhibitor  1 tablet/ ml 

 
Phosphatase inhibitor 1 tablet/ ml 

Mounting solution Tris solution (0.2 M; pH 8.5) 12 ml  

 H2O 6 ml  

Glycerol 6 g  

Moviol 2.6 g  

DABCO 0.1 g  

PCR master mix solution 
Taq Buffer 2,5 µl 

 
MgCl2 0,75 µl 

 
dNTPs (100mM, 25mM each dNTP) 0,2 µl 

 
Primer (1:10) 1,0 µl 

 
DNA 1,0 µl 

 
GoTaq G2 Flexi DNA polymerase 0,2 µl 

 
dH2O to 25 µl add 

PFA fixation solution (4%) 
PFA 40 g 

 
dH2O 1000 ml 

Protein loading buffer 
Tris solution (0.1 M; pH 6.8) 75.75%     

 
Glycerol 20%         

SDS 4%            

 
Bromphenol blue 0.25%       
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ScaleCUBIC-1 solution N,N,N’,N’-Tetrakis(2-hydroxypropyl)-

ethylenediamine 

25% 

 Triton X-100 15% 

 Urea 25% 

 in dH2O add 

SDS-PAGE separation gel 

solution (10%) 

3M Tris-HCl/ SDS, pH 8.45 13,33 ml 

 30% acrylamide 13,33 ml 

50% glycerol 8,00 ml 

10% ammonium perlsulfat (APS) 112 µl 

TEMED 37µl 

 dH2O to 40 ml  add 

SDS-PAGE stacking gel solution 

(4%) 

3M Tris-HCl/ SDS, pH 8.45 4,96 ml 

 30% acrylamide 2,56 ml 

10% ammoniumperlsulfat (APS) 134,4 µl 

TEMED 44,8 µl 

 dH2O to 20 ml  add 

SDS-PAGE gel solution buffer Tris solution (1.5M; pH 6.8) 99.6%  

 SDS 0.4%  

TBST-buffer 10X TBS 100 ml 

 Tween 100X 1 ml 

 H2O to 1000 ml add 
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2.6. Enzymes 

All used enzymes are listed in this section. 

Table 9: Molecular enzymes 

Enzyme name Manufacturer 

Alkaline Phosphatase, Shrimp  Roche Diagnostics (Penzberg, Germany) 

Dnase I (molecular biology) Invitrogen (Karlsruhe, Germany) 

Go Taq G2 Flexi DNA polymerase Promega (Mannheim, Germany) 

Phusion High Fidelity DNA Polymerase  New England Biolabs (Frankfurt, Germany) 

T4 DNA Ligase  New England Biolabs (Frankfurt, Germany) 

Taq DNA Polymerase, recombinant  Invitrogen (Karlsruhe, Germany) 

2.7. Plasmids 

All used plasmids are listed in this section. 

Table 10: Molecular plasmids 

Plasmid name Source  

Lentiviral-TOP-dGFP-reporter Addgene plasmid #14715; Reya et al Nature. 2003 May 22. 

423(6938):409-14. 

Viral packing vector psPAX2 Addgene plasmid #12260 

Viral packing vector pMD2.G Addgene plasmid #12259 

2.8. Kits 

All used kits are listed in this section. 

Table 11: Molecular kits 

Kit Manufacturer 

CTS™ CytoTune™-iPS 2.1 Sendai 

Reprogramming Kit 

Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

DNase I Amplification Grade SIGMA-ALDRICH (St. Louis, Missouri, USA) 

Dneasy Blood and Tissue Kit  Qiagen (Hilden, Germany) 

Go Tag G2 Flexi DNA Polymerase Kit Promega (Mannheim, Germany) 

https://www.addgene.org/browse/article/1337/
https://www.addgene.org/browse/article/1337/
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High Sensitivity D1000 ScreenTape Kit Agilent (Waldbronn, Germany) 

High Sensitivity D5000 ScreenTape Kit Agilent (Waldbronn, Germany) 

High Sensitivity NGS Fragment Analysis 

Kit 

 Advanced Analytical Technologies (Heidelberg, Germany) 

High Sensitivity RNA ScreenTape Kit Agilent (Waldbronn, Germany) 

iScript cDNA Synthesis Kit  Bio-Rad Laboratories (Hercules, California, USA) 

KAPA Library Quantification Kit for 

Illumina platforms 

KAPA Biosystems (Amsterdam, Netherlands) 

peqGOLD Gel Extraction Kit  Peqlab Biotechnologie (Erlangen, Germany) 

peqGOLD Plasmid Miniprep Kit I  Peqlab Biotechnologie (Erlangen, Germany) 

Pierce BCA Protein Assay Kit Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

PureYield Plasmid Maxiprep System  Promega (Mannheim, Germany) 

Qubit ds DNA HS Assay Kit Thermo Fisher Scientific Inc. (Waltham, 

Massachusetts, USA) 

Rneasy Kit  Qiagen (Hilden, Germany) 

SPRIselct Reagent Kit Beckman Coulter (Krefeld, Germany) 

2.9. Primers 

All used primers are listed in this section. 

Table 12: Primers for LIS1-mutation validation and regional identity control 

Primer Forward Reverse 

18s attccttggaccggcgcaa gccgcatcgccggtcgg 

Emx1 agacgcaggtgaaggtgtgg caggcaggcaggctctcc 

FoxA2 ccaccaccaaccccacaaaatg tgcaacaccgtctccccaaagt 

FoxG1 ccctcccatttctgtacgttt ctggcggctcttagagat 

HoxA4 ttcagcaaaatgccctctct taggccagctccacagttct 

HoxB2 tttagccgttcgcttagagg cggatagctggagacaggag 

HoxB4 acacccgctaacaaatgagg gcacgaaagatgagggagag 

HoxB6 gaactgaggagcggactcac ctgggatcagggagtcttca  

LIS1 exon 1 gagccagttcagaagggg gtggaggagacagaggggag 
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LIS1 exon 2 
ggttaacatgattgggagtggg agaagagacctcccaaagctg 

LIS1 exon 3 
ggttgctgtcacagagccat agttcagtaccaagtagaccaca 

LIS1 exon 4+5 
attccagctgtcagcccttg tgaacccagtcagcaactcc 

LIS1 exon 6 agacagggagcggactatgt 
gcaagagaatctgggctcgt 

LIS1 exon 7 gctttgacatagtgaaacccca tcgaagtgactgcaacacca 

LIS1 exon 8 tgtctgttagcttattgttcctact tcagaattgctggatgcagat 

LIS1 exon 9 ctgagtccttcctgtgtagcat agcatctccccctcaaacac 

LIS1 exon 10 aacagaactgctgcgacagg ggcgtacatacccaaggagg 

Nkx2.1 ccggaggcagtgggaag ccctccatgcccactttctt 

Otx2 tgcaggggttcttctgtgat agggtcagagcaattgacca  

Pax5 aggatgccgctgatggagtac tggaggagtgaatcagcttgg 

TUBB3 gagcggatcagcgtctacta ggttccaggtccaccagaa 

2.10. Antibodies 

All used antibodies are listed in this section. 

Table 13: Molecular primary antibodies 

Antibody Host Dilution Manufacturer 

Acetylated α-tubulin (AC-TUB) Rabbit 1:500 Cell Signaling 

AFP  Mouse 1:200 Hölzel 

ARL13B Mouse 1:50 DSHB 

ß-ACTIN  Mouse 1:5000 Millipore 

β-Catenin Mouse 1:1000 Cell Signaling 

ß-III-TUBULIN (TUBB3)  Mouse 1:2000 Sigma-Aldrich 

TUBB 3  Rabbit 1:2000 Cell Signaling 

FOXG 1  Rabbit 1:300 TebuBio 

EMX 1 Rabbit 1:500 Sigma-Aldrich 
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LIS1 Mouse 1:500 Sigma-Aldrich 

N-CADHERIN (N-CAD) Mouse 1:500 BD 

NANOG Mouse 1:200 DSHB 

PAX 6  Rabbit 1:500 DSHB 

OCT 3/4 Rat 1:500 R&D Systems 

OTX 2  Goat 1:500 R&D Systems 

phospho-VIMENTIN (p-VIM) mouse 1:500 Novus Biologicals 

TPX 2  Rabbit 1:500 Novus Biologicals 

SMA  Rabbit 1:400 Abcam 

SSEA 3 Rabbit 1:500 Abcam 

SOX 2  Rat 1:500 Santa Cruz 

ZO-1  Rabbit 1:100 DSHB 

Table 14: Molecular secondary antibodies 

Antibody Host Anti Dilution Manufacturer 

488 Goat Rabbit 1:10,000 Invitrogen  

488 Goat Mouse 1:10,000 Invitrogen 

555 Donkey Rabbit 1:10,000 Life technologies  

555 Goat Guinea pig 1:10,000 Invitrogen  

568 Goat Mouse 1:10,000 Invitrogen 

647 Donkey Mouse 1:10,000 Invitrogen 

DyLightTM 680 

Conjugate 

Goat Mouse 1:1000 Cell Signaling 

DyLightTM 680 

Conjugate 

Goat Rabbit 1:1000 Cell Signaling 

DyLightTM 800 

Conjugate 

Goat Mouse 1:1000 Cell Signaling 

DyLightTM 800 

Conjugate 

Goat Rabbit 1:1000 Cell Signaling 
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2.11. Software 

All used software is listed in this section. 

Table 15: Computational software programs 

Software Manufacturer 

ApE v2.0.47 M. Wayne Davis 

AxioVision 40 4.5.0.0 Zeiss Microscopy GmbH (Oberkochen, Germany) 

FIJI (ImageJ) National Institutes of Health (Rockville, Maryland, USA) 

Leica Application Suite 2.3.1 Leica Microsystems GmbH (Wetzlar, Germany) 

Microsoft Excel 2010 Microsoft Corporation (Redmond, Washington, USA) 

Microsoft PowerPoint 2010 Microsoft Corporation (Redmond, Washington, USA) 

Microsoft Word 2010 Microsoft Corporation (Redmond, Washington, USA) 
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3. Methods 

To approach the in section 1.6 listed aims multiple methods were used, which are in detail 

described in this section. 

3.1. Cell culture  

The cell culture was completed at the HITBR in Mannheim. Employing the standard of the art, 

iPS cells were cultured under feeder-free condition as colonies in Essential 8 (E8) medium or 

Pluripro (PP) medium (Cell guidance) at a constant temperature of 37ºC and 5% CO2. The in 

this study incorporated gender matched control lines were received as iPS cell lines (see 2.1), 

the LIS1-patient fibroblasts and PBMCs were reprogrammed by non-integrative delivery of 

OCT 4, SOX 2, KLF 4, and c-MYC using CytoTune-iPS 2.1 Sendai Reprogramming Kit 

(Thermo Fisher) (for more information to the LIS1-patient material see table 1). 

3.1.1. Culture and maintenance of fibroblasts 

Fibroblast cells were cultured on galantine-coated cell culture plates in MEF medium with 

daily medium change at 37ºC and 5% CO2. When cell cultures reached 70-100% confluency, 

cells were dissociated and passaged. Before adding the dissociation reagent 0,05% Trypsin-

EDTA (Gibco) (500μl) for 10 min, the cells were washed with PBS. The single-cell 

suspension was transferred into a 15 ml tube containing 5 ml of DMEM (1X) + GlutaMAX™-

I and centrifugated at 800 rpm for 5 min. After the aspiration of the supernatant, the cell pellet 

was resuspended in fresh MEF medium (2 ml per well of a 6-well plate) without Rock inhibitor. 

The splitting ratio can be up to 1:5 depending on the required cell density. 

3.1.2. Culture of peripheral blood mononuclear cells 

PBMCs consist mainly of lymphocytes and monocytes and do not significantly proliferate 

in vitro (especially monocytes). The addition of mitogens can help expanding those cells, 

but the reprogramming should be performed closely after blood isolation. For this study, the 

LIS1-patient PBMCs were immediately frozen after isolation and send from the pediatric 

neurology, Necker Enfants Malades university hospital in France. Directly after arrival, the 

PBMCs were thawed in 2 ml StemPro34 medium, counted and centrifugated for 10 min at 

300g (swinging bucket rotor needed). In the following 500,000 cells/well were seeded in 1 

ml PBMC medium in one well of a 24-well plate. For the next 3 days half of the media was 

changed daily. At day 4 reprogramming was performed (see 4.1.3). 
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3.1.3. Generation of induced pluripotent stem cell cultures 

The discovery in 2007 of Shinya Yamanaka to convert human somatic cells back to stem cells 

revolutionized the research field and received 2012 the noble price. The molecular basis relays 

on the reintroduction of 4 transcription factors including human OCTAMER BINDING 

PROTEIN 3/4 (hOCT 3/4), human SEX DETERMINING REGION Y-BOX 2 (hSOX2), 

human KRÜPPEL-LIKE FACTOR 4 (hKLF 4) and cMYC. To date different protocols for the 

cellular reinstatement of pluripotency exist. In this study, the highly efficient Sendai-virus 

approach was used. It is important to mention that no matter what somatic cell type is subjected, 

it is important to use young passages to ensure good reprogramming efficiency and a normal 

karyotype. Fibroblasts and PBMCs were reprogrammed by non-integrative delivery of OCT 4, 

SOX 2, KLF 4 and cMYC using the CSTTM- iPS 2.1 Sendai reprogramming kit (Thermo 

Fisher). 

3.1.3.1. Sendai virus-based reprogramming of fibroblasts 

The reprogramming of the fibroblasts was performed according to the manufacture’s 

description (CTSTM CytoTuneTM-iPS 2.1 Sendai Reprogramming Kit User Guide). All 

fibroblast lines had a young culture passage (P) (P<10) and were tested negative for 

mycoplasmas. 1 day before transduction 2 wells with each 40% confluency were seeded on 1 

well of a 6-well plate. 1 of the 2 wells was used to count the cells to calculate the needed virus 

amounts, which are determined by the MOI (CIU/cell) times the number of PBMCs divided by 

the titer of the virus (CIU/ml) times 0,010. The viruses were thawed at 37°C for 10 to 20 seconds 

(sec), placed at room temperature (RT) for complete thawing and then immediately placed on 

ice. In the next step, the calculated virus amounts of all 3 Sendai viruses were supplemented to 

1 ml prewarmed MEF medium and added into the fibroblast well. It followed an incubation at 

37°C overnight. The next day the medium was changed to MEF medium without virus. It 

followed further culturing for 6 more days with medium change every other day. At day 7 the 

fibroblasts were spitted in a 1:3 ratio. As soon as the first iPS cells clonal colonies appeared the 

medium was changed to hES medium (approximately 3 weeks later). When the iPS cell colonies 

were clearly visible by eye without using a microscope, they were clonal expanded (see 4.1.3.3). 

3.1.3.2. Sendai virus-based reprogramming of PBMCs 

The reprogramming of the PBMCs was performed according to the manufacture’s description 

(CTSTM CytoTuneTM-iPS 2.1 Sendai Reprogramming Kit User Guide). 4 days after thawing the 

suspension PBMCs were counted to calculate the needed volumes of the viruses to reach the 
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target MOI. Virus amount calculation and virus thawing was performed as described in 3.1.3.1. 

In the next step, the calculated virus amounts of all 3 Sendai viruses were added to 1 ml PBMC 

medium. For each cell line 500,000 cells were pipetted into an 1,5 ml reaction tube and the 

virus containing PBMC medium was added. It followed a centrifugation step at 1000 xg for 30 

min at RT. Afterwards an additional 1 ml of PBMC medium was added and the whole mixture 

was plated in 1 well of a 12-well plate for incubation at 37°C overnight. The next day the cell 

suspension was transferred into a 15 ml tube and centrifugated at 200 xg for 10 min to aspire 

the supernatant and resuspend in 0,5 ml of PBMC medium per well of a 24-well plate. For the 

next 2 days no medium change was performed. At day 3 after transduction the cells were 

centrifugated at 200 xg for 10 min to aspire the supernatant and resuspended in Stempro34 

medium. 10,000, 50,000 and the rest of the cells were each plated on 1 well of a GT-coated 6-

well plate. The next day and on day 6 half of the medium was changed. On day 7 half of the 

medium was replaced by hES medium and on day 8 the medium was completely changed to 

hES medium. From this timepoint the hES media was changed daily until iPS cells clones were 

ready to be clonal expanded (approximately 1 week later). 

3.1.3.3. Clonal expansion of iPS cell lines 

To generate monoclonal iPS cell lines, appearing clones were separated and expanded. Only 

cell dense colonies with sharp borders were selected and transferred into 1 well of a 24-well 

plate using a cut 100 µl pipette tip to scratch the clonal colonies from the GT-coated wells. The 

first passage was plated on 1 well of a 12-well plate, the second passage on 1 well of a 6-well 

plate and the third passage was placed on 2 wells of a 6-well plate (see 3.1.5 for passaging 

procedure). Next, 1 well was further passaged and the second well was cryo-conserved. At least 

10 cryo-vials for each generated iPS cell line were generated. All iPS cell lines were quality 

controlled. 

3.1.4. Quality control of iPS cell lines 

Following iPS cell clonal expansion, 2 clones for each cell line were characterized using 

tripotente differentiation, immunochemical staining for pluripotency markers and whole-

genome single nucleotide polymorphism (snp) analysis for chromosomal integrity control. In 

addition, the LIS1 mutations were validated via polymerase chain reaction (PCR) and sanger 

sequencing. 
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3.1.4.1. Whole-genome single nucleotide polymorphism genotyping 

The snp analysis was performed at the Institute of Human Genetics at the University in Bonn. 

Genomic DNA was prepared using the DNeasy Blood & Tissue Kit (Qiagen) and 50 ng/ml was 

used for whole-genome amplification. In the following, the amplified DNA was fragmented 

and hybridized to sequence specific oligomers bound to beads on an Illumina Human610-Quad 

chip or a HumanCytoSNP-12 chip. The Data was analyzed by Josef Frank from the Genetic 

Epidemiology Department headed by Prof. Rietschel using Illumina Bead Studio. 

3.1.4.2. Germ layer differentiation 

To test the pluripotent capacity of the generated iPS cell lines, cells were tested for the ability 

to spontaneously differentiate into the 3 germ layers including endoderm, mesoderm and 

ectoderm. To achieve a 3D-like dense cell population, iPS cells were dissociated into single-

cells using TrypLE Express (Gibco) and plated in a pluronic-coated U-bottom 96-well plate 

(6000 cells/well) in PP/E8 medium supplemented with 50 μM Rock inhibitor to induce 

embryoid body (EB) formation. After 2 days EBs were plated onto GelTrex (GT)-coated dishes 

in mouse embryonic fibroblast (MEF) medium and cultured for 4 weeks. In the following, 

differentiated cell cultures were fixed with 4 % PFA and then subjected to immunocytochemical 

analysis using the antibodies against α-1-fetoprotein (AFP) for endodermal cells, smooth 

muscle actin (SMA) for mesodermal lineage and bIII-tubulin (TUBB3) for ectodermal cells. 

3.1.4.3. Validation of LIS1 genotype 

The LIS1-patient iPS cell cohort is characterized by diverse LIS1 mutations in the different 

patient lines. To confirm the mutations 1 well of a 6-well plate of each LIS1-patient iPS cell 

line was harvested and used for DNA isolation using the DNeasy Blood & Tissue Kit (Qiagen). 

To amplify the mutation containing DNA regions specific primers for each iPS cell line were 

designed (see table 12) and PCR for target sequence amplification was performed (see 4.3.3). 

The PCR fragments were separated using DNA electrophoresis and extracted from the agarose 

gel using the Gel Extraction Kit (peqGOLD). The in water diluted PCR fragments were 

subjected to sanger sequencing by Microsynth-Seqlab. 

3.1.5. Maintenance of iPS cell cultures 

The iPS cell cultures can be grown in colony or monolayer formation determinant by the 

feeding medium used. For this project, the iPS cells were mainly cultured as monolayer cultures 

using the monolayer PP medium, which had a beneficial effect on the LIS1-patient cell vitality 
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especially when generating 3D cell cultures. One disadvantage of monolayer cultures is the 

need for daily medium change and a higher passaging frequency when comparing to colony 

cultures, which can lead to a faster accumulation of chromosomal abnormalities. Due to this, it 

is important to perform snp analysis on regular basis and to thaw young, snp analyzed cells. 

Colony culturing was induced by the usage of E8 medium and was implemented for the new 

reprogrammed iPS cell lines for backup generation and quality control. To transform the colony 

cultures to monolayer growth, 2 cell-dense wells of a 6-well plate were dissociated using TrpLE 

(Gibco) for 10 min, then transferred to a 15 ml tube and centrifugated at 800 xg for 4 min. The 

cell pellet was resuspended in 2 ml of half PP, half E8 (PP/E8) medium (1:1) supplemented 

with 5 μM Rock inhibitor (Cell guidance systems) and plated into 1 well of a 6-well plate. 50% 

of PP medium was sufficient to induce monolayer growth. The next day the medium was 

changed to PP medium. 

3.1.5.1. Maintenance of iPS cell colony cultures 

The iPS cell colonies were maintained on GT-coated cell culture plates in E8 medium with 

daily medium change. Colonies were passaged when reaching 70 % – 80 % confluency. First, 

cells were washed with 0,5 mM EDTA (Gibco) (1:1000 dilution in PBS) and then incubated 

with 0,5 mM EDTA (Gibco) for 4 min at RT. After EDTA aspiration cultures were gently 

dissociated into smaller fragments by gently washing them of the well with a 1000 μl pipette 

containing E8 medium supplemented with 5 μM Rock inhibitor (Cell guidance systems). The 

passaging ratio can vary between 1:4 to 1:6 depending on the cell line used. All human iPS cell 

lines were regularly checked and confirmed negative for mycoplasma. 

3.1.5.2. Maintenance of iPS cell monolayer cultures 

The iPS cell monolayers were maintained on GT-coated cell culture plates in PP medium with 

daily medium change. iPS cells were dissociated to single-cells by TrypLE Express (Gibco) 

treatment for 10 min when cultures reached 100% confluency and split in a 1:2 – 1:4 ratio 

depending on the proliferative capacity of the cell lines used. Following dissociation to single-

cells, suspension was diluted in 5 ml DMEM (1X) + GlutaMAX™-I (Gibco) and transferred to 

a 15 ml tube. Following centrifugation at 800 xg for 4 min and supernatant aspiration, the cell 

pellet was diluted in PP medium supplemented with 5 μM Rock inhibitor Y-27632 (Cell 

guidance systems) to promote single-cell survival. All human iPS cell lines were regularly 

checked and confirmed negative for mycoplasma. 
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3.1.6. Generation of WNT-GFP reporter lines 

For examining the level of WNT-signaling activation in control- (control 2.1, control 3.1) and 

LIS1-patient- (mild P1.1, mild P2.2, moderate P3.1, severe P5.1 and severe P7.1) derived 

organoids, iPS cells were transduced with a lentivirus (see 4.3.1 for virus production) 

expressing GFP under activation of WNT-signaling (lentiviral-top-dGFP reporter, Addgene 

plasmid #14715, Reya et al., 2003). Puromycin (1 μg/ml, Sigma-Aldrich) selection was initiated 

48h following transduction. The iPS cell WNT-GFP reporter lines were used for cortical 

organoid generation (3.1.9). 

3.1.7. Cryo-conservation of cells 

Fibroblasts and iPS cells were stored at -150°C or in liquid nitrogen for cryo-conservation. 

When iPS cell cultures reached 100% confluency, the cells of at least 2 wells of a 6-well plate 

were dissociated to single-cells by TrypLE Express (Gibco) treatment for 10 min and diluted in 

5 ml DMEM (1X) + GlutaMAX™-I (Gibco). Following centrifugation at 800 xg for 4 min and 

supernatant aspiration, the cell pellet (at least 1 million cells) was diluted in 1 ml of pause 

medium supplemented with 10 μM Rock inhibitor Y-27632 and then immediately transferred 

to a freezing container containing isopropanol at -80 ºC. After 24 hours (h) cells were transferred 

to minus 150°C or liquid nitrogen for long term storage. 

3.1.8. Generation of highly homogenous 2D cortical progenitor cultures 

Within the project highly homogenous 2D cortical progenitors were used for western blot 

analysis. Consequently, iPS cells were cultured in PP medium as monolayer in 1 well of a 6-

well plate until the cell culture reached 95% confluency. To initiate neural cortical induction 

the culture medium was changed to neural induction medium (see table 6). The medium 

composition was adopted from Chamber et al. 2009 and is based on the dual inhibition of 

SMAD signaling. The fate inducing small molecules were A83, a TGF signaling inhibitor, 

LDN, a BMP signaling inhibitor, and in addition XAV for WNT-signaling inhibition to avoid 

posterization to hindbrain fates. The very dense iPS cell cultures were kept on the same well 

for 10 days with daily medium change. After 10 days cells were harvested for molecular 

analysis or expanded by passaging in neural induction medium. The withdrawal of the small 

molecules after the passaging leads to the differentiation of the cortical progenitors to cortical 

neurons. 
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3.1.9. Generation of cerebral forebrain-type organoids 

Within Dr. Julia Ladewigs research group, me and my colleagues developed a protocol for 

highly homogenous cortical forebrain-type organoids (outlined in Figure 7, Krefft et al. 2018; 

Iefremova et al. 2017). Due to the rapid progress within the organoid field, the published 

protocol was constantly further advanced and brought up to standard of the art technology. It 

included EB formation, neural induction, GT embedding and organoid maturation. 

 

Figure 6: Protocol outline for cortical forebrain-type organoid generation. The organoid generation is initiated 

by embryoid body formation, which are restricted to the ectodermal fate by neural induction through dual SMAD 

and WNT inhibition. The outgrowth of neuroepithelial ventricular structures is supported by extracellular matrix 

proteins and mechanical scaffold provided by Geltrex (GT) embedding. To ensure good nutrient delivery into the 

tissue, organoids are cultured on a shaker. For further maturation growth factors including Ascorbic acid (AA), 

LM 22 A, LM 22 B and GT are added into the differentiation medium (maturation medium) from day 35 on. 

3.1.9.1. Embryoid body formation and neural induction 

Organoid generation is initiated by EB formation. The most important and crucial step during 

EB generation is the number of cells used. The optimal cell number is different for every cell 

line and needs to be tested. Most of the time less cells led to more compact EBs with clear and 

sharper borders, which led to highly homogenous organoids. Before starting EB generation, 

ultralow cluster 96-well plate ultra-low attachment round bottom with lid (Costar by Sigma-

Aldrich) were covered and incubated for 10-20 min at 37°C with pluronic solution (50 mg/ml, 

Sigma-Aldrich). To generate EBs, iPS cells were dissociated into single-cells using TrypLE 

(Gibco) for 10 min. Single cell suspension was transferred into a 15 ml tube containing DMEM 

(1X) + GlutaMAX™-I (Gibco) and counted using the automated cell counter, LUNA (Logos 

Biosystem). After centrifugation at 800 xg for 4 min cells were diluted in PP medium 

supplemented with 50 µM Rock inhibitor. In the next step 6000 cells per EB for control iPS 
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cell lines and 8000 cells per EB for LIS1-patient lines were seeded into 1 well of a pluronic-

coated 96-well plate ultra-low attachment round bottom with lid (Costar by Sigma-Aldrich). 

EBs were fed every other day for 4 days. On day 5 medium was changed to neural induction 

medium containing the dual SMAD inhibitors A83 and LDN as well as the WNT inhibitor 

XAV. For the next 5 days medium was changed every other day until the EBs developed 

translucent tissue at the edges. To promote the expansion of the neuroepithelium into cortical 

VZ structures, the EBs (now called organoids) are embedded into GT between day 8 and day 

10, depending on the iPS cell line used. 

3.1.9.2. Organoid embedding and differentiation 

The organoid GT embedding was done in 2 different ways. One technique is called the parafilm 

droplet embedding, which is more time consuming than the second embedding technique but 

ensures that every organoid is separately embedded in a GT droplet. This method should be 

preferred when single organoids are needed afterwards. The second organoid embedding 

method is named “cookie embedding”. This technique is faster and needs less GT because 

multiple organoids are embedded in the same GT droplet. The disadvantage is that organoid 

fusion happens more frequently. For both embedding procedures, GT was thawed on ice 2-3 h 

before starting organoid GT embedding. 

For the droplet embedding parafilm was cut into 4 cm x 4 cm pieces and placed over an empty 

tip tray for 100 µl tips to press dimples into the parafilm sheet, which was then sterilized with 

70% ethanol and irradiated with UV light (power: 15 watts, wavelength: 435 nm) under the 

closed sterile bench for 30 min. In the next step, each EB were transferred into 1 dimple using 

a cut 100 µl tip. The medium surrounding the EB was gently aspirated using an uncut 100 µl 

pipette tip. Then 20 µl of undiluted GT was added to each EB, which was then positioned in 

the middle of the drop using an uncut 100 µl pipette tip. The plastic parafilm sheet was carefully 

transferred using sterile forceps into a 10 cm dish, which was placed in the incubator for 20 min 

to allow GT solidification. Afterwards, the embedded organoids were transferred into a 

pluronic-covered low-attachment 6 cm dish containing 6 ml of neural induction medium. To do 

so the parafilm was gently pressed upside down onto the dish using sterile forceps, so that the 

GT was gently squeezed into the tilted 6 cm dish and then slowly lifted, so that the drops gently 

slide of the parafilm into the medium. Each 6 cm dish had a maximum of 16 EBs. The 6 cm 

dish was then placed in the incubator at 37ºC. 

For the cookie embedding the EBs of one batch (maximum 16) were all together transferred 

into a 1,5 ml Eppendorf tube. The medium was carefully aspired using an uncut 100 µl pipette 
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tip. In the following all EBs were diluted in 200 µl GT using a cut pipette tip and immediately 

transferred into a pluronic-covered low-attachment 6 cm dish, which was placed in the 

incubator for 25 min to allow GT solidification. In the following 6 ml of neural induction 

medium is added on top and then placed in the incubator at 37°C. 

At day 10 medium was changed to organoid differentiation medium and the dish was placed on 

a shaker with a tilting angle of 5º and 14 rpm for further agitation. For the next 15 days medium 

was changed every third day until the desired time point was reached. For this study organoids 

were mostly fixed at day d20 for immunochemical analysis and quantitative assessment. For 

single-cell RNA analysis organoids were cultured for 58±2 days. On day 35 the medium was 

changed to maturation medium containing Ascorbic acid (AA), LM 22 A, LM 22 B and GT to 

promote better tissue complexity. 

3.2.  Histology and immunocytochemistry 

A major part of this project was the immunocytochemical analysis of organoid cryo-sections 

and the quantitative assessment of cytoarchitectural parameters. The methodology from 

fixation, cryo-embedding, cryo-sectioning, tissue clearing and immunocytochemical- as 

well as hematoxylin-eosin staining are described in this section. 

3.2.1. PFA fixation 

For the preservation of cells and organoids after cultivation 4 % PFA fixation was used to 

reserve cell structures and crosslink proteins. Due to the toxicity of PFA the fixation was carried 

out under a chemical fume hood. First, organoids were transferred into a 24-well plate with a 

cut 1000 ul pipette and twice washed with PBS. iPS cells were directly fixed in the 3,5 cm 

culture dish and twice washed with PBS. After PBS aspiration, 4 % PFA (table 8) was added 

followed by a 10 min incubation at RT. Afterwards, 4 % PFA was carefully aspirated and 

organoids as well as iPS cells were washed 3 times with PBS. For tissue dehydration organoids 

were placed in 30 % sucrose solution and stored at 4 ºC overnight. Organoids can be stored up 

to 7 days until cryo-cutting or clearing. iPS cells can be stored for up to 4 weeks at 4 °C until 

further processing. 

3.2.2. Organoid cryo-embedding and cryo-sectioning 

To perform cryo-sectioning organoids were embedded in sucrose/galantine embedding solution 

(see table 8), which was stored at -20 °C. Before starting, the solution was liquified by warming 

to 75 ºC. The dehydrated organoids were transferred to 2 ml Eppendorf tubes. After aspirating 
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the 30 % sucrose solution, 1 ml embedding medium was added, and the tubes were placed at a 

heating plate (60 ºC). In the next step, embedding molds were covered with a layer of 

embedding solution and placed on ice to solidify. 1 to 4 organoids from the tube at the heating 

plate were placed on top and additional embedding medium was added to cover the organoids 

completely. Afterwards, the mold was hold in 100% ethanol/dry ice freezing bath (-30 to -50 

ºC) for at least 1 min to shock-freeze the tissues. The embedded organoids were stored at -80 

ºC for at least 30 min before cryo-cutting. 

The cryo-sectioning was performed at the cryostat. Sections were made with 20 µm thickness 

and sequential collected on microscope slides, so that every slide had sections from all organoid 

regions. The sections dried at RT for at least 1 h before being stored at -80 ºC or directly be 

used for immunocytochemical staining. 

3.2.3. Organoid clearing 

For whole tissue mounting organoids were fixed in 4 % PFA for 2 h at RT. Subsequently, 

organoids were washed 3 times with PBS at RT for 2 h. Optical clearing was performed 

according to Susaki et al. (Susaki et al. 2014) by immersion of samples in ScaleCUBIC-1 

solution for 48 h at 37 °C and subsequent washing in PBS 3 times for 2 h at RT. Following 

optical clearing samples were immersed in clearing blocking solution  for 24 h at 37°, followed 

by primary antibody incubation for 48 h at 37 °C, and subsequent washing in blocking solution 

3 times for 2 h at RT. Secondary antibody incubation was done for 48 h at 37°C, followed by 

washing samples 3 times for 4 h each in PBS at RT. Refractive index matching was performed 

by immersion of samples in an aqueous solution of glycerol (RI=1.457) for 48 h at RT. All 

incubations were carried out under protection of light and constant movement. Samples were 

mounted in U-shaped 2.5 mm glass capillaries by embedding in 0.1 % low melting agarose in 

ddH2O. For light sheet microscopy, glass capillaries were transferred into 35 mm glass bottom 

dishes, immobilized by agarose embedding and immersed in RI-matched glycerol solution. For 

temperature adjustment, samples were kept in the microscopy room for at least 24 h prior to 

image acquisition. Image acquisition was done using a Leica Microsystems TCS SP8 DLS, 

equipped with LAS X software, L 1.6x/0.05 DLS illumination objective, HC APO L 10x/0.30 

W DLS detection objective and 7.8 mm Glycerol DLS TwinFlect mirrors. Image stacks were 

acquired with a step size of 3.7 µm and fused with LAS X. Organoid clearing and whole tissue 

imaging was performed with the help of Elina Nürnberg. 
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3.2.4. Immunocytochemical staining 

To analyze the cytoarchitecture of cortical organoids and visualize specific proteins 

immunocytochemical staining`s were performed on 2D cells and 3D organoid sections. A 

liquid barrier pen was used to circle the sample material so that smaller amounts of antibody 

solutions were needed to cover the area of interest. After washing with PBS, an incubation 

with blocking solution (0,1 % Triton and 10% FCS) followed for 1 h at RT. For nuclear 

proteins the triton concentration was increased to 0,5% for a better nucleus 

permeabilization. Primary antibodies were diluted according to the manufacturer’s 

instructions (see table 13) and incubated over night at 4 °C. The next day samples were 

washed 3 times with PBS. The secondary antibodies were diluted according to the 

manufacturer’s instructions (see table 14) and incubated for 1 h at RT with subsequent 

washing. It followed 3 times washing with PBS and a 5 min incubation with DAPI (1X) 

staining solution (see table 14) with subsequent washing. The slides were then covered with 

mounting solution (see table 8) and enclosed with a cover slip. Immunocytochemically 

stained sections were stored at 4 °C and imaged using the Inverted Leica DMIL LED 

Microscope with Thunder imaging software (Leica), the confocal microscope TCS SP5II 

(Leica) or the Fluorescence Microscope Celldiscoverer 7 (Zeiss). 

3.2.5. Hematoxylin and eosin staining 

Hematoxylin-eosin staining was used to visualize cell morphology within the organoid cortical 

VZ structures to analyze cellular organization. Hematoxylin has a deep blue-purple color and 

stains nucleic acids while Eosin is pink and stains proteins nonspecifically resulting in blue 

nuclei and pinkish cytoplasm and extracellular matrix. In the first step organoid sections was 

placed in ddH2O for 10 sec, stained with hematoxylin solution (Carl Roth) for 10 min, shortly 

put in ddH2O and then rinsed under running tap water for 10 min. In the next step the slide was 

twice hold in 70% ethanol for 10 sec and then again rinsed in tap water for 10 min. Next, the 

slide was stained with 0,5% eosin solution (Carl Roth) for 5 min and afterwards shortly put in 

ddH2O. For dehydration and clearing, it followed an alcohol series incubation starting with 70 

%, 80 % and 90 % ethanol solution for 10 sec and then twice 100% ethanol incubation for 5 

min each. Afterwards the slide was dried and mounted with Mowiol. Slides were stored at 4 

°C and imaged using the inverted Leica DMIL LED Microscope with Thunder imaging 

software (Leica). 
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3.3. Molecular biology 

In addition to the histological investigations, molecular biological analysis played an 

important part within this project to decipher the molecular basis of observed LIS1-

associated phenotypes in 3D organoids and to understand the variable lissencephalic 

severities. 

3.3.1. Lentivirus production 

For the generation of WNT-GFP reporter iPS cell lines lentivirus was produced in 

HEK293T cells, which were received from Bettina Bohl. Prior to the virus transfection the 

medium was changed to MEF medium supplemented with chloroquine (25 µM; 0,129g in 

10 ml H20) to prevent autophagy and prevent DNA degradation. In the next step 7,9 µg of 

psPAX2 packing vector (coding for viral envelop proteins), 3,5 µg pMD2.G packing vector and 

10 µg of the transfer vector pRRL.sin-18.ppt (Addgene plasmid #14715) were mixed in 450 µl 

H2O. Additionally, 50 µl 2M CaCl2 solution was added to the vector mix. Next, 500 µl 2x HBS 

in 15 ml tube was prepared and fizzed by using a 5 ml pipette to blow air into the solution. 

During this fizzing process the DNA solution was added dropwise on the outside of the 5 ml 

plastic pipette into the HBS frizzed solution. It followed 30 min incubation at RT and then 

dropwise adding to the HEK293T cells. After 8 h fresh MEF medium was added. 2 days after 

the transduction the medium was collected and fresh medium added, which was again collected 

on day 3 after transduction. The conditioned medium from day 2 and 3 were pooled and 

centrifugated at 12,000 xg for 5 min. The supernatant (17 ml) was filtered through a 0,45 µm 

filter. It followed the addition of 4,2 ml 50% PEG-600 solution, 1,8 ml 4M NaCl and 1,9 ml 

PBS and mixing by inverting. Afterwards the solution was incubated for 1,5 h at 4 °C and 

inverted every 30 min during this incubation time. After centrifugation for 5000 xg for 20 min 

at 4 °C supernatant was discarded, and virus pellet was dissolved in 100 µl HBS/1 % BSA and 

stored at -80 °C. Virus production was performed together with Bettina Bohl. 

3.3.2. DNA isolation 

Genomic DNA was isolated from 2D iPS cells for LIS1 mutation validation using the 

Dneasy blood and tissue kit (Qiagen) to isolate high-quality DNA with great yields. The 

kit provides buffers, proteinase, collection tube and columns for isolation and provides a 

simple protocol with lysis and precipitation steps. 
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3.3.3. RNA isolation 

To analyze gene expression via PCR, RNA was isolated using peqGOLD TriFast 

(Peqlab). 3 to 4 organoids were transferred into a 2 ml Eppendorf tube and washed twice 

with PBS before adding 500 µl peqGOLD TriFast. Suspensions were resuspension until 

cell clumps were dissolved. 2D cells were washed twice with PBS and then scratched of 

the well using a cell scrapper. The cells were suspended in PBS and transferred into a 2 

ml Eppendorf tube for centrifugation at 800 xg for 4 min to pellet the cells. PBS was 

discarded and cells were resuspended in 1 ml of peqGOLD TriFast until no cell clumps 

were observable. The lysates were incubated for 10 min at RT and then 200 µl of 

chloroform was added. In the following the Eppendorf tubes were inverted for 15 sec 

and then incubated for 10 min at RT. In the next step lysates were centrifuged at 12,000 

xg for 5 min at 4 °C. The resulting pink phase containing the proteins was discarded and 

the clear phase containing the nucleic acid was transferred into a new Eppendorf tube 

and supplemented with 500 µl isopropanol (1:1 ratio). The RNA precipitation was done 

for 2-3 h on ice or overnight at -20 °C. After incubation the sample was centrifuged 15 

min at 12,000 xg at 4 °C. Supernatant was discarded and the pellet was washed twice 

with 1 ml of 75 % ethanol in DEPC water followed by a centrifugation step of 12,000 

xg for 10 min at 4 °C. In the last washing step, the 75% ethanol was thoroughly 

discarded, and the RNA pellet was left to air dry at RT for about 30 min. Once the pellet 

was dry, it was resolved in 20 µl of DEPC-H2O by 37 °C and shaking at 400 rpm in the 

heating block for 15 min. It followed DNA treatment to prevent DNA contamination 

using the DNase I Amplification Grade kit. For this the samples were supplemented with 

2,5 µl of DNase and 2,5 µl reaction buffer and incubated 15 min at RT. To stop the 

reaction 2,5 µl of STOP solution were added and another incubation for 10 min at 70 °C 

was performed. Concentration (ng/ µl) was measured with the nanodrop and RNA was 

stored at -80 °C. 

3.3.4. Reverse transcription 

To qualitatively study gene expression, the isolated RNA needed to be reversed 

transcript back to DNA to perform PCR or qPCR. Consequently, the iScript cDNA 

synthesis kit from Bio-Rad systems was used. Following the manufactures instruction 1 

µg RNA was added to 4 µl 5X iScript reaction mix and supplemented with 1 µl iScript 

reverse transcriptase enzyme. The reaction mix was added to 20 µl with nuclease free 

H2O. The reverse transcription was done using the MJ Research PTC-200 Thermal 
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Cycler (Biozym Diagnostics) using the steps shown in table 16. Afterwards cDNA 

concentration (ng/µl) was measured using the nanodrop and diluted in H2O to 250 ng/µl. 

The samples were stored at -20 °C. 

Table 16: Steps and condition of the iScript program 

Cycle Step Temperature Time 

Priming 

Reverse Transcription 

Inactivation 

25 °C 

46 °C 

95 °C 

10 minutes 

20 minutes 

1 minute 

3.3.5. PCR and DNA electrophoresis 

The PCR was used to amplify specific gen regions of interest. For the validation of mutated 

genome sequences genomic DNA (gDNA) was isolated from the cells (see 3.3.2). To analyze 

the presence and quantity of gene expression for specific marker genes RNA was isolated, 

reverse transcription (RT) performed and cDNA generated (see 3.3.3). 1 PCR reaction mix 

contained 2,5 µl of tag polymerase buffer comprising 10mM MgCl2, 5 µl of dNTPs (100mM, 

25mM each dNTP, see table 8), 1 µl primer (see table 12), 1 µl DNA (250 ng/µl) and 0,25 µl 

tag polymerase added to 25 µl total volume with nuclease free H2O. The reaction was done 

using the MJ Research PTC-200 Thermal Cycler (Biozym Diagnostics) using the steps shown 

in table 17. 

Table 17: Reaction conditions RT PCR 

Cycle Step Temperature Time Cycles 

Initial denaturation 

Denaturation 

Annealing 

Extension 

95 °C 

95 °C 

55-65 °C 

72 °C 

30 seconds 

30 seconds 

1 minute 

30 seconds 

1 

35-45 

35-45 

35-45 

To separate the target DNA amplicons from other PCR components, electrophoresis was 

performed using a 1% Agarose gel containing 20,000X pegGreen DNA and RNA binding dye 

(Peqlab). The PCR products were mixed with 6X loading dye and pipette into the gel. To 

determine the DNA fragment size a 100 bp DNA ladder were loaded, and the gel was placed 

inside the electrophoresis chamber with 1X TAE buffer. To separate the fragments 100 V and 

400 mA were applied for 50 min. Afterwards PCR bands were revealed using the UV light lamp 

and if necessary isolated from the agarose gel using the Gel Extraction Kit (peqGOLD). 
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3.3.6. Quantitative protein assessment 

For the detection of LIS1 protein levels western blot analyzes were performed using the 

blotting system from Bio-Rad. 

3.3.6.1. Sample collection and lysis 

2D progenitors or iPS cells were washed with ice-cold PBS, scraped off into 1 ml PBS using a 

cell scrapper and collected via centrifugation at 800 xg for 4 min. The cell pellets were lysed in 

lysis buffer (50 mM Tris-HCl pH 7.4, 50 mM NaCl, 1 mM EDTA, 1% Triton X-100) containing 

pierce protease inhibitor mini tablet (1 tablet per 10 ml, Thermo Fisher) and pierce phosphatase 

inhibitor mini tablet (1 tablet per 10 ml, Thermo Fisher) for 1 h on ice. Subsequently, cell debris 

was pelleted by centrifugation at 12,000 xg for 10 min. The supernatant containing the proteins 

were transferred into a new 1,5 ml Eppendorf tube and used for protein concentration 

measurements using the Bicinchoninic acid (BCA) protein assay kit (ThermoFischer). 

3.3.6.2. BCA protein assay 

The BCA protein assay is a widely used method for protein concentration determination, which 

uses the reduction of copper (II) sulfate (Cu2+) to CU1+ by protein in an alkaline medium. The 

pierce BCA protein assay kit (Thermo Fisher) provides 2 components necessary to perform this 

reduction reaction and absorption measurements containing BCA, sodium carbonate, sodium 

bicarbonate, sodium tartrate and CU2+. The protein amount is proportional to the amount of 

reduced CU2+ and 2 molecules of BCA form with each CU1+ ion a purple colored complex that 

intensively absorbs light at a wavelength of 562nm. Concluded, can the protein concentration 

be measured by the absorption spectra. The exact steps were performed according to the 

manufacturer’s instructions (Thermo Fisher). 

3.3.6.3. SDS-PAGE 

To separate the proteins according to their mass sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis (SDS-PAGE) was performed. SDS acts as a surfactant covering the proteins 

intrinsic charge properties. For immunoblotting, 30-50 μg of protein were boiled in 6x SDS 

sample buffer for 5 min at 95 °C. Lysates were put on 12 % SDS-PAGE gels (see table 8 for 

information about the buffers used) and separated using the blotting system from Bio-Rad with 

the PowerPac HC power supply for SDS PAGE (40 V the first 10 min, then 120 V until loading 

dye runs out the gel). To transfer proteins from the gel on a membrane semi-dry western blotting 

was performed. 
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3.3.6.4. Semi-Dry western blotting and band detection 

The semi-dry western blot was done using the trans-blot turbo transfer system (Bio-Rad) for 45 

min at 20 V and 10 A. In between the electrodes the “blotting sandwich” was prepared from 

down to top as follows: 6 layers of wypall-hydroknit wipes (Kimberly-Clark), 0,2 µl 

nitrocellulose membrane (GE Healthacare Life Science), SDS-PAGE gel and again 6 layers of 

wypall-hydroknit wipes. All components were socked in blotting buffer (see table 8) for 10 sec 

before assembly. Following blotting the membrane was put into a 50 ml tube containing 2,5 ml 

of 5 % purified BSA (Sigma-Aldrich) in PBS for blocking on a rolling mixer (sustainable lab 

instruments) for 1 h. In the next step the membrane was incubated over night at 4 °C with the 

primary antibody diluted according to the manufacturer’s instructions (see table 13) in TBS 

(see table 8). The next day the membrane was washed 2 times with TBST for 10 min and 1 time 

with TBS for 10 min. Then the secondary antibody (DyLightTM Conjugate antibody) was 

diluted according to the manufacturer’s instructions (see table 14) in TBS. After subsequent 

washing the protein band detection was done using the odyssey imaging system from Li-cor. 

3.4. Quantification and statistics 

To have persuasive data and make conclusive assumptions it is necessary to put observed 

phenotypes in numbers and deliver trustworthy statistics. The organoid technology is a very 

young research field and reliable quantitative assessment protocols did not exist when I 

started my PhD project in 2017. Due to this, I developed complex quantification protocols 

for different organoid VZ structure parameters to precisely assess cortical development in 

a dish (published in Iefremova et al. 2017, see results 4.1). 

3.4.1. Plane of cell division analysis 

The orientation of the plane of cell division plays a crucial role during corticogenesis. 

Consequently, the mitotic planes were analyzed by marking dividing cells 

immunocytochemically for p-VIMENTIN (p-VIM) and the mitotic spindle with TPX2 in 20 

μm thick organoid sections. The orientation of the mitotic spindle of aRG cells were 

investigated in at least 5 different VZ structures per organoid in relation to the prospective VZ 

surface. This quantification method was established by Vira Iefremova and George Manikakis. 

3.4.2. Statistical analysis 

Quantitative data was generated in at least triplicates and tested for gaussian distribution using 

the Kolmogorov-Smirnov-Test. The Levene-test was applied to test for homogeneity of 
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variances. If the data was characterized by gaussian distribution one-way-Anova was used to 

determine whether a significant difference exists between groups and can be termed significant 

(*p < 0.05, **p < 0.01, ***p < 0.001). If the Kolmogorov-Smirnov-Test or the Levene-Test 

were significant, the assumption of homogeneity of variances and gaussian distribution was 

hurt and the significance was determined using Kruskal-Wallis-Test and Post-Hoc-Test (see 

appendix statistics). Means and standard deviation (s.d.) were computed. All results presented 

as bar graphs show mean +/- s.d.. 
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4. Results 

To decipher the consequences of the diverse LIS1 mutations on human corticogenesis and test 

the sensitivity of our 3D organoid in vitro cell culture system to mirror disease severities a 

LIS1-lissencephaly patient iPS cell cohort was established, a forebrain-type organoid protocol 

was developed and quantitative assessment protocols were designed to sensitively detect fine 

differences. Furthermore, molecular explorations were conducted to analyze severity-specific 

pathology and specific substances were identified to rescue observed phenotypic alterations. 

Moreover, the consequences of the particular mutations on LIS1 folding and stability were 

elucidated. To decipher pathological gene expression alterations at later developmental stages 

transcriptional profiling was performed. The results are presented within this section. 

4.1. Generation of a LIS1-lissencephaly patient iPS cell cohort covering the complete 

lissencephalic severity spectrum  

The LIS1-patient iPS cell cohort was established by Sendai virus-based reprogramming of 

fibroblasts and PBMCs (see 3.1). The cohort comprised female and male patients between the 

age of 3 and 18 years with different severe brain alterations ranging from Dobyns grade 5 to 1  

(Dobyns W.B., 1999) (see 2.1 and table 1). To quality control the generated iPS cell lines 

pluripotency stainings, snp-analysis and mutational validation by sequencing were performed. 

4.1.1. Generated iPS cell lines express pluripotency transcription factors 

In 2007 Takashi et al. (Takahashi et al. 2007) opened a completely new perspective for patient- 

and disease specific research by introducing the induction of pluripotent cells from adult human 

fibroblasts. The ability to manipulate and reverse cell fate to generate iPS cells relies on the 

defined mix of 4 transcription factors including OCT 3/4, SOX 2, KLF 4 and CMYC. Following 

the introduction of those 4 factors into the LIS1-patient PBMCs and Fibroblasts, the generated 

iPS cell lines were quality controlled for the expression of pluripotency factors by 

immunocytochemical analysis including SOX 2 and OCT 3/4, which are important 

transcription factors for the promotion of self-renewal of undifferentiated stem cells, NANOG 

(HOMEOBOX PROTEIN) a transcription factor important for the suppression of the 

expression of cell fate determining factors and STAGE-SPECIFIC EMBRYONIC ANTIGEN 

3 (SSEA3), a cell surface glycosphingolipid, which is important for cell signaling and specific 

for mammalian pluripotent stem cells. All generated iPS cell lines showed a positive 

immunofluorescence signal for SOX 2, OCT 3/4, NANOG and SSEA 3 (Figure 7). 
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Figure 7: Immunocytochemical analysis of iPS cell pluripotency. All generated iPS cell lines (2 clones per 

line) were quality controlled for pluripotency including immunocytochemical staining`s for the pluripotency 

markers SOX 2 and OCT 3/4, which a transcription factors crucial for self-renewal of undifferentiated stem cells, 

NANOG, a transcription factor important for the maintenance of pluripotency through the suppression of cell 

determination factors, and SSEA 3, a glycosphingolipid, which is specifically on the cell surface of pluripotent 

stem cells. Scale bars, 50 µm. 
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4.1.2. Generated iPS cell lines have tripotente differentiation capacity 

Pluripotency is defined by the ability of a cell to give rise to all cell types that make up the 

living body. To test the differentiation potential of the iPS cell lines in vitro into the 3 germ 

layers, EBs were generated and plated for spontaneous differentiation for 4 weeks without any 

fate determining signaling molecules. Figure 8 shows that the differentiation led to 

heterogenous cell populations containing a variety of cell identities. To identify the cell lineages 

immunocytochemical staining`s were performed for SMA, which is exclusively expressed by 

mesodermal lineage cells, AFP, a marker for endodermal cells and TUBB3 for the identification 

of ectodermal lineage cells. All generate iPS cell lines showed tripotente differentiation 

capacity (Figure 8 A-F). 

 

Figure 8: Assessment of tripotente differentiation capacity into the 3 germ layers endoderm, mesoderm and 

ectoderm. (A-C) Representative brightfield recordings of 4 weeks differentiated iPS cells without morphogenic 

cues from 1 mild LIS1-patient patient line (P2.1) (A), 1 moderate LIS1-patient patient line (P4.2) (B) as well as 

from 1 severe LIS1-patient line (P5.2) (C). (D-F) Representative immunocytochemical recordings for the 

mesoderm marker smooth muscle actin (SMA) (D), the endoderm marker α-fetoprotein (AFP) (E) and the 

ectoderm marker ß-III-tubulin (TUBB3) (F). Scale bars 20 µm. 
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4.1.3. Generated iPS cell lines have a normal karyotype 

Since the reprogramming of somatic cells became a wide used tool to study development and 

disease, multiple studies have concentrated on the analysis of chromosomal stability during 

reprogramming and iPS in vitro cell culture using high-resolution genome-wide approaches 

(Chia et al. 2017; Taapken et al. 2011). Due to the high-frequent accumulation of genomic 

alterations in iPS cells, it is particularly important to continuously monitor the genomic integrity 

of generated and cultured iPS cells. Such genomic alterations may influence the developmental 

potential and can lead to non-disease-associated phenotypes as well to malignant capacity of 

the cell lines. Within this project high density snp analysis were performed to monitor the 

genomic status of the LIS1-patient iPS cell lines and detect possible chromosomal copy number 

variations (CNV) (Figure 9). Figure 9 shows for all generated iPS line the B allele frequents 

(BAF) and the Log R ratio (LRT) graph for every chromosome. To generate such graphs the 

allele-specific signal intensities from genotyping arrays were integrated with information on 

SNP spacing and SNP allele frequencies by a hidden Markov model (HMM) algorithm. BAF 

is a measurement of the allelic intensity ratio, the value should be around 0,5. The LRR is a 

normalized measurement of total signal intensity. All generated iPS cell lines showed BAF and 

LRR values in non-concerning ranges (Figure 9). The chromosomal integrity was given. When 

a deletion CNV would have occurred, the values would cluster around 0 or 1. In case of a 

duplication the values would have been around 0, 0,33, 0,67 and 1. The mathematical data 

integration and graph visualization was performed by Josef Frank from the Department of 

Genetic Epidemiology headed by Prof. Rietschel.  
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Figure 9: Validation of karyotypic integrity. All generated iPS cell lines were high resolution single-nucleotide 

polymorphism (snp) analyzed for chromosomal integrity. The graphs illustrate the B allele frequents (BAF) and 

the Log R ratio (LRT) for every chromosome. BAF is an allelic intensity ratio, the value should be around 0,5. 

When a deletion chromosomal copy number variation (CNV) occurred the value clusters around 0 or 1. When a 

duplication is present the values are around 0, 0,33, 0,67 and 1. The LRR is a normalized measurement of total 

signal intensity. When a deletion CNV happened the LRR values for snp markers in this region decreased and 

when a duplication is present the values increased. 

4.1.4. Generated iPS cell lines harbor the respective patient-specific LIS1 mutations  

One major goal of this project is to elucidate the consequences of patient-specific LIS1 

mutations. Consequently, it was mandatory to validate the different LIS1 mutations in the 

generated iPS cell lines. To do so, the gene regions of interest were amplified by PCR, purified 

by DNA electrophorese and Gel extraction and then sanger sequenced. Each LIS1-patient line 

harbored the respective patient-specific LIS1 mutation (Figure 10 A-G). The 2 mild LIS1-

patient lines (mild LIS1-patient P1 and P2) had a base exchange from cytosine to thymine 

(T>C) on position 569-10 in the coding sequence (c.569-10T>C) (Figure 11 A, B). The 

moderate line P3 had a deletion of nucleotide 13 in the coding sequence (c.13del) (Figure 10 

C) and the moderate line P4 was characterized by a deletion of exon 11 (del Ex11) (Figure 10 

D). Due to this deletion the validation of del Ex11 was done by whole exome sequencing. The 

3 severe LIS1-patient lines (severe LIS1-patient) had different point mutations in the coding 

sequence. The severe LIS1-patient line P5 had a base exchange from guanine to adenine at 

position 1002+1 in the coding sequence (c.1002+1G>A) (Figure 10 E). The second severe 

LIS1-patient line P6 had a base exchange at position 531 from guanine to cytosine in the coding 

sequence (c.531G>C) (Figure 10 F) and the third severe LIS1-patient line P7 had a base 

exchange at 445 from cytosine to thymine in the coding sequence (c.445C>T) (Figure 10 G). 

The sequencing of the 2 mild LIS1-patient lines and the 2 moderate LIS1-patient lines were 

performed at the pediatric neurology, Necker Enfants Malades university hospital/ institute 

imagine (INSERM) by Camille Maillard. 
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Figure 10: Validation of the respective patient-specific LIS1 mutation in the generated iPS cell lines. (A-G) 

Electropherograms generated by sanger sequencing. The mild LIS1-patient lines P1 and P2 carry a point mutation 

at c.569-10 T>C (A,B), the moderate LIS1-patient P3 have a deletion at position 13 in the coding sequencing 

causing a frameshift in the following sequence (C), the moderate LIS1-patient P4 has a deletion of exon 11 (D), 

the severe LIS1-patient P5 a point mutation at c.1002+1G>A (E), the severe LIS1-patient P6 a point mutation at 

c.531 G>C (F) and severe LIS1-patient P7 a point mutation at c.445 C>T (G). The sequencing for mild 1, 2 and 

moderate 1, 2 was done by Camille Maillard at the hospital Neckar Enfants Malades in France explaining the 

different illustration when comparing A-D with E-G (Sanger sequencing method was performed in the same way, 

except the exon 11 deletion of 732 was validated by whole exome sequencing). 
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4.2. Development of a 3D cerebral forebrain-type organoid protocol for the analyzes of 

early aspects of human brain development  

In order to test the capacity of cortical organoids to recapitulate disease severities a standardized 

organoid protocol was developed (outlined in Figure 11 A, puplished in Krefft et al. 2018 and 

Iefremova et al. 2017), which leads to highly homogenous cortical forebrain-type organoid 

cultures. During the time course of the protocol there were several opportunities to quality 

control the generated organoid batches, defined as 'go' (continue the differentiation process) 

and 'no-go' (suboptimal cultures, it is recommended to terminate the batch) criteria (Figure 11 

A-K). The first critical step in generating forebrain-type organoids was to start with high-quality 

monolayer iPS cell cultures without differentiated cells (Figures 11 B, C). In the second step, it 

was crucial to use the right cell number for EB formation (see 3.1.9), which was dependent on 

the cell line used. In general, a smaller cell number led to more vital organoids. The first detailed 

inspection of the iPS cells aggregates was performed on day 2. At this stage, the aggregates had 

formed compact cell buds with smooth edges ('go') whereas irregular appearing aggregates or 

aggregates with cavities were discarded ('no-go') (Figures 11 D, E). The next quality control 

step was performed at day 10 of the protocol. At this time point, the cell aggregates had smooth 

and optically translucent tissue on the outer surface representing induction of neuroectoderm 

('go') whereas the absence of such tissue indicates suboptimal neural induction ('no-go') 

(Figures 11 F, G). Only those aggregates that exhibit a translucent surface (Figure 11 F) were 

embedded into GT. Once embedded, the cortical organoids developed continuous 

neuroepithelial VZ structures, which expanded quickly over time Figure 11 H, J ('go'). In case 

the organoids did not develop polarized neural ectoderm ('no-go' as illustrated in Figure 11 K) 

3D cultures were discarded. Due to constant advances in the field of 3D cell culture the 

published protocol was in the following years further improved by adding specific substances 

for cell type maturation from day 35 on (see 3.1.9). 
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Figure 11: Schematic overview of the organoid protocol and illustration of 'go' and 'no-go' criteria. (A) 

Schematic overview of the protocol. CI medium: cortical induction medium; CD: cortical differentiation medium. 

(B-C) Image of an optimal 90% confluent iPS cells monolayer culture (B) and a non-suitable iPS cell culture 

exhibiting differentiation (C). (D-E) An iPS cells aggregate optimal in size, cell density, and surface appearance 

(D) and two 'no-go' cell aggregates, which exhibited either cell spares cavities (E, upper aggregate) or irregular 

edges (E, lower aggregate) 2 days following cell aggregation. (F-G) Cell aggregates exhibited translucent and 

smooth edges (F) and cell aggregates, which lacked optical clearing (G). The yellow line visualizes the area of 

interest. (H-K) An optimal organoid with continuous neuroepithelial ventricular zone structures (H, J) and an 

organoid that failed to develop radially organized neuroectoderm (I, K) imaged at day 15 and day 20, respectively. 

Scale bars, (B-C) 500 μm; (D-K) 200 μm. Figure published in JoVE (Krefft et al., 2018). 

The established protocol led to highly homogenous organoid batches (Figures 12 A-C), with ≥ 

90% homogeneity in polarized neural ectoderm formation within and across batches (Figure 12 

C). 
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Figure 12: Homogeneity and reproducibility of the forebrain-type organoid protocol. (A-B) Representative 

bright-field images of organoids from 1 batch at day 15 (A) and day 26 (B). (C) Quantitative analyzes of organoids 

at day 20. Organoids which display at the outer surface a neuroepithelium, recognizable in bright-field as optically 

clear superficial tissue with a clear border and evidence of radial cellular architecture were quantified (n = 3 per 

iPS cell line with at least 16 organoids per experiment). Scale bars, A, B 500 μm. Error bars ± SD. Figure published 

in JoVE (Krefft et al., 2018). 

To validate the telencephalic identity of the organoids immunofluorescence and PCR analysis 

were performed at day 20. Figure 13 shows that organoid neuroepithelial VZ structures 

expressed the neural stem cell marker SOX 2 (Figure 13 B, D), the forebrain markers PAX 6 

and OTX 2 (Figure 13 C, E) and the dorsal cortical marker EMX 1 (Figure 13 F). Cell death 

was present in the inside of the organoids, which was normal and did not affect the development 

of cortical tissue. In addition, 3 organoids were used to assess the homogeneity of the protocol 

by gene expression analyzes using RT-PCR (performed by Ammar Jabali). The forebrain-type 

organoids showed expression of the dorsal forebrain markers (FOXG 1, OTX 2, EMX 1), while 

expression of midbrain marker (FOX 2, PAX 5) and hindbrain marker (HOXB2, HOXA4, 

HOXB4 and HOXB6) were not detectable (Figure 13 K). 
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Figure 13: Validation of forebrain-type organoids at day 20. (A-F) Immunocytochemical characterization of 

organoids. Organoids organize in multiple neuroepithelial ventricular zone structures (A, counterstained with 

DAPI). Stratified organized cells within the neuroepithelial ventricular zone structures expressed the neural stem 

cell marker SOX 2 (B, D), the forebrain markers PAX6 (C, D) and Otx2 (E), as well as the dorsal forebrain marker 

Emx1 (F). (K) RT-PCR analysis for the region-specific transcription factors at day 20 of 2 independent sets of 

organoids derived from 2 different iPS cell lines, performed by Ammar Jabali. FB: fetal brain control; AB: adult 

brain control. Scale bars, A-D 200 μm; E-I 10 μm. Figure published in JoVE (Krefft et al., 2018). 

Taken together the established organoid protocol led to highly homogenous forebrain-type 

organoid cultures, which could be used to test the utility of 3D system to model different disease 

severities. To be able to sensitivity detect severity-dependent phenotypic differences 

quantitative assessment protocols were designed. 

4.3. Development of quantitative assessment protocols for 3D cerebral organoids 

To have persuasive data and make conclusive assumptions it is necessary to put observed 

phenotypes in numbers and deliver trustworthy statistics. The organoid technology is a 

young research field and reliable quantitative assessment protocols were not published 

when I started my PhD project in 2016. Due to this, I developed complex quantification 

protocols for different organoid VZ structure parameters to precisely assess cortical 

development in a dish and to compare organoids derived from different disease severities, 

patients and batches (published in Iefremova et al. 2017). 
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4.3.1. Analyzing ventricular zone structure dimensions 

Each organoid consists of many cortical VZ structures and each of those VZ structure is a model 

for cortical development mimicking neural tube-like morphology. Consequently, it can be said 

that each organoid VZ structure is a technical repeat when it comes to the quantitative 

assessment of cortical organoids and provides valuable information when analyzing 

corticogenesis in health and disease. To assess the structures in detail, I determined multiple 

parameters, which enabled thorough comparison of VZ dimensions between disease severities, 

patient iPS cell lines and organoid batches. The parameters included the VZ structure diameter 

(A), the length of apical (B) and basal membrane (C), the ventricle-like area (D), the VZ 

structure tissue area (E) and the total VZ structure area (F) (Figure 14 A-E). To perform the 

quantifications, organoid slices were stained with DAPI to visualize VZ structure dimensions. 

Images were acquired with the inverted Leica DMIL LED Microscope with the Thunder 

imaging software (Leica) and analyzed using FIJI. For the quantification of the VZ structure 

diameter 3 length measurements forming a right-angle fan area pointing to the nearest pial 

surface, at 0, 45 and 90 degree were pooled (Figure 14 A). The VZ structure tissue area was 

defined as the ratio of the total VZ structure minus the ventricle-like area (Figure 14 E). 

Calculations and data tablets were done in Microsoft Excel. 
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Figure 14: Schematic illustration of ventricular zone structure parameters. (A-F) Each ventricular zone (VZ) 

structure contained important information about the cytoarchitectural development of each neural tube-like 

structure. The VZ structure diameter was determinant by 3 length measurements (µm) forming a right-angle fan 

area pointing to the nearest pial surface, at 0, 45 and 90 degree (A). The apical (B) and basal (C) membrane length 

were determined by the diameter of VZ structure and ventricle-like structure. The other 3 parameters were area 

measurements (µm2) for the VZ structures including the ventricle-like area (D), the VZ structure tissue area (E) 

and the total VZ structure (F). All parameters taken together enabled a reliable assessment of VZ structure 

dimensions and consequently a detailed comparison between organoid batches, patients and severities. 

4.3.2. Quantification of astral tubulin strand densities 

For the determination of stabilizing astral α-tubulin density, organoid slides were stained with 

acetylated ALPHA-TUBULIN (AC-TUB). Images were acquired with the inverted Leica 

DMIL LED Microscope with the Thunder imaging software (Leica). To determine the signal 

to noise ratio a plot profile line (Figure 15 A, yellow lines) was drawn into the AC-TUB 

recordings into the apical (3third percentile, apical side) and basal (66th percentile, basal side) 

region of the VZ structure using FIJI (Figure 15 A-B). The plot profile was pasted into a self-

designed Excel file, which contained mathematical formulas to calculate the mean strand 

density. In the first step, the measurements of every second pixel were considered, because 

every strand was about 2 pixels wide. Then the background signal was determined, and the file 

automatically counted the signal peaks above the background signal (Figure 15 B, peaks above 

the red line). The number was normalized against the total length of the plot profile line 

resulting in a mean density of strands crossing the line (*100 = %). 
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Figure 15: Quantification protocol of acetylated -TUBULIN strand density. Organoid slices were stained 

for ACETYLATED -TUBULIN (AC-TUB) and the signal plot profile was drawn into the apical and basal 

ventricular zone (VZ) region using FIJI. The Plot profile was pasted into a self-designed Excel file, which 

contained mathematical formulas to calculate the mean strand density. In the first step the measurements of every 

second pixel were considered, because every strand was about 2 pixels wide. Then the background signal was 

determined, and the file automatically gave the number of signals on the plot profile line, which were above the 

background signal. The number was normalized by the total length of the plot profile resulting in a mean density 

of strands crossing the line (*100=%). Scale bar, 20 μm. 

4.3.3. Determination of apical membrane alignment diameter 

Each VZ structure is surrounded by the apical membrane, which contains many important 

proteins and is important for organoid niche integrity for correct morphogenic signaling. 

Consequently, a quantification protocol for the assessment of apical membrane disruption was 

established by measuring the membrane thickness at 90°, 180°, 270° and 360° to the VZ 

structure center using FIJI (Figure 16). The mean value of those 4 measurements were analyzed 

as the mean disruption diameter of apical membrane alignment. The membrane alignment was 

visualized by N-CAD staining. The data was analyzed using Microsoft Excel. 

 

Figure 16: Apical membrane diameter quantification. Organoid slices were stained for DAPI for ventricular 

zone structure tissue visualization and N-CADHERIN (N-CAD) to analyze the apical membrane. The membrane 

thickness was measured at 90°, 180°, 270° and 360° to the ventricular zone structure center using FIJI. Scale bar, 

20 μm. 



                                                       Unraveling the pathology of different disease severities  

 

 
 

100 

4.4. Cerebral organoids derived from LIS1-patients reflect disease severity in the 

degree of alterations in cytoarchitecture and neurogenesis 

The alteration of gyrification is one hallmark of lissencephalic brains. In terms of LIS1-

lissenephaly this hallmark is differentially pronounced without known cause. For this study 7 

patients were selected from a LIS1-patient cohort comprising 63 cases, which cover the whole 

spectrum of gyrification alterations of LIS1-lissencephaly ranging from Dobyns grade 5 (mild) 

to 1 (severe) (Barkovich et al. 2012a). Each patient harbors a different molecular characterized 

heterozygous mutation in the LIS1 gene (Table 1). One example magnetic resonance image 

(MRI) for control and each severity class (mild, moderate and severe) is depicted in Figure 17 

A. Health human brains are characterized by manifold gyri and sulci. Whereas mild LIS1- 

patients often have a reduced number of gyri and sulci (Figure 17 A, mild LIS1-patient patient 

P1). In contrast, moderate LIS1-patients often show a gradient of severity with anterior 

pachygyria and posterior agyria (Figure 17 A, moderate LIS1-patient patient P3) and LIS1-

patients suffering from severe disease are characterized by complete agyria (Figure 17 A, severe 

LIS1-patient P7). One major question which should be deciphered within this project was, 

whether the organoid system is sensitive enough to reflect those disease severities. To approach 

this question the generated LIS1-patient iPS cell cohort and 6 age and gender matched controls 

were subjected to the developed 3D cerebral organoid protocol and 3D tissues were analyzed 

with the designed quantitative assessment methods. The organoid morphology was specific for 

the LIS1-patients severity (Figure 17 B). While organoids from control and LIS1-patients with 

mild disease gradually developed smooth neuroepithelial loop-like structures which expanded 

over time, organoids from patients with moderate disease appeared to be generally smaller in 

size (Figure 17 B). In contrast, organoids from severe LIS1-patients did not seem to be smaller 

compared to control derived organoids but developed irregular edges with single cells growing 

out of the structures (Figure 17 B, magnification on the right). Following whole-tissue clearance 

and immunohistochemical staining I found that the organoids derived from patients with severe 

disease were covered by a large belt of neurons, which was less abundant in mild and moderate 

conditions and nearly absent in control derived organoids (Figure 17 C). This phenomenon was 

also apparent following cry-sectioning and immunohistochemical staining (Figure 17 D). Next, 

I analyzed the architecture of the neuroepithelial VZ structures within the organoids in detail. 

Organoids derived from healthy individuals exhibited multiple large cortical VZ structures at 

day 20. Whereas the LIS1-patient organoids displayed a size reduction of VZ structures (Figure 

17 E).  
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Figure 17: Organoid morphology is specific for LIS1-patient`s severity. (A) LIS1-patient MRI recordings 

provided from Dr. Nadja Bahi-Buisson from the hospital Neckar Enfants Malades (mild LIS1-patient patient 1, 

moderate LIS1-patient patient 1 and severe LIS1-patient 3). (B) Representative brightfield field (BF) recordings 

of control C1.2, mild LIS1-patient P1.1, moderate LIS1-patient P3.1 and severe LIS1-patient P5.1 patient derived 

organoids at day 20. (C) Representative light sheet microcopy (LSM) recordings of whole-tissue cleared control 

2.1, mild LIS1-patient P1.1, moderate LIS1-patient P3.2 and severe LIS1-patient P5.1 derived organoids at day 20 

stained for ß-III Tubulin (TUBB3). (D) Representative TUBB3 recordings of control C4.1, mild LIS1-patient P2.1, 

moderate LIS1-patient P4.1 and severe LIS1-patient P5.2 patient derived organoids at day 20. (E) Representative 

DAPI recordings of ventricular zone structures of control C1.2, mild LIS1-patient P1.1, moderate LIS1-patient 

P3.1 and severe LIS1-patient P5.1 patient derived organoids at day 20. Scale bars, (A) 5 cm, (B, C) 200 µm (D, 

E) 50 µm. 

To that end, the VZ diameter, ventricle area, length of the apical and basal membrane, total VZ 

area and VZ tissue area were quantified (Figure 18 A-F). Here I found a significant reduction 

of all parameters in organoids derived from patients with moderate and severe lissencephaly as 

well as a significant reduction in 3 out of the 6 parameters analyzed in organoids derived from 

patients with mild lissencephaly compared to controls (Figure 18 E).  
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Figure 18: Ventricular zone parameter quantification reveals a gradually decrease of tissue dimensions with 

increasing LIS1-patient severity. (A-F) Quantification of ventricular zone (VZ) structure diameter, ventricle 

area, length of apical membrane, length of basal membrane, VZ structure tissue and total VZ structure area in 

control- and LIS1-patient derived organoids at day 20. control C1.2 N=38, control C4.2 N=33, mild P1.1 N=33, 

mild P1.2 N=19, mild P2.1 N=13, mild P2.2 N=17, moderate P3.1 N=20, moderate P3.2 N=19, moderate P4.1 

N=20, moderate P4.2 N=18, severe P5.1 N=61, severe P5.2 N=49, severe P6.1 N=23, severe P6.2 N=48, severe 

P7.1 N=58. Error bars, ±SD. *p < 0.05, **p < 0.01, ***p < 0.001.  
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4.5. Molecular structure analyzes reveal a gradual breakdown of stabilizing astral 

tubulin and cellular organization 

To assess the direct consequences of the patient-specific LIS1 mutations on LIS1 microtubule 

stabilizing function, the stability of the cytoskeleton of aRG cells within the VZ was analyzed 

by acetylated ALPHA-TUBULIN (AC-TUB) staining. Microtubules are a highly dynamic 

system. The acetylation stabilizes the tubulin strands, making them more prone to remodeling. 

Analyzes were performed in cryo-cut and whole-tissue cleared organoids to carefully detect 

cutting artefacts (Figure 19 A-D). The cleared organoids show an overall reduction of AC-TUB 

positive labeled structures with increased disease severity (Figure 19 A). The AC-TUB staining 

in moderate and severe condition could barely be detected in basal regions of the VZ structures, 

whereas in control conditions the staining was sufficient to visualize apical and basal regions 

of cortical structures. When investigating the individual VZ-structures in more detail I found, 

that in control conditions the astral tubulin strands span aligned and in close proximity from the 

apical- (visualized by ARL13b, Figure 19 C) to the basal side (Figure 19 B-D). In organoids 

derived from patients with mild lissencephaly I found a small percentage (around 10 %) of 

tubulin strands not reaching the basal side of the VZ structure (Figure 19 E), whereas in 

organoids derived from patients with moderate disease the tubulin density at the basal side was 

reduced by more than 20% and in organoids derived from severe patients the reduction was 

even more drastic (up to over 50%; Figure 19 E). This collapse of stabilizing cytoskeleton was 

supported by western blot analysis of AC-TUB protein level, which was with increasing patient 

severity progressively reduced in LIS1-patient-derived progenitors. The most drastic reduction 

of AC-TUB protein level was observed in cells derived from severe LIS1-patients compared to 

controls (Figure 19 F). 
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Figure 19: Gradually breakdown of cell stabilizing astral tubulin with increasing LIS1-patient severity. (A, 

B) Representative recordings of cleared and cryo-sectioned organoids from control C4.1, mild P1.1, moderate P3.2 

and severe P5.2 LIS1-patient derived organoids stained for acetylated-α tubulin (AC-TUB) at day 20. (C) 

Representative recordings of ARl13b, a cilia marker, in control C4.1, mild P1.1, moderate P3.2 and severe P5.2 

LIS1-patient derived organoids at day 20. (D) High magnification recordings of AC-TUB stained VZ structures 

in control C4.1, mild P1.1, moderate P3.2 and severe P5.2 LIS1-patient derived organoids at day 20. (E) 

Quantification of apical and basal AC-TUB strand density in control, mild-, moderate- and severe LIS1-patient 

derived organoids. control C1.2 N=12, control C2.1 N=12, control C4.2 N=20, mild P1.1 N=13, mild P1.2 N=13, 

mild P2.1 N=13, mild P2.2 N=15, moderate P3.1 N=13, moderate P3.2 N=12, moderate P4.1 N=12, moderate 

P4.2 N=14, severe P5.1 N=22, severe P5.2 N=20, severe P6.1 N=13, severe P6.2 N=13, severe P7.1 N=12). (F) 

Western blot analyzes of AC-TUB protein level in controls (C1.2, C2.1, C4.1, C4.2 and C5.2), mild- (P1.1, P2.1, 

and P2.2), moderate- (P3.1) and severe (P5.1, P5.2 and P7.1) LIS1-patient derived cortical progenitor cells. Scale 

bars, (A) 200 µm, (B) 20 µm. Error bars, ±SD. *p < 0.05, **p < 0.01, ***p < 0.001. 

As a consequence of VZ destabilization, there was also a cellular disorganization observable 

by performing a hematoxylin-eosin (HE) staining of cryo-cut organoid slices at day 20 (Figure 

20 A). Especially the organoids derived from moderate and even more drastic in severe disease 

displayed random arranged cell bodies with gaps in between cells, whereas in control conditions 

aRG cells arrange well organized, stringed and densely packed within the VZ. In LIS1-patient 

derived organoids derived from mild disease the cellular orientation was predominantly 

comparable to control conditions (Figure 20 A). Together with this gradient of declining 

cellular organization with increasing LIS1-patient severity I also found a disturbed apical 

membrane alignment by performing immunohistochemical staining for N-CAD (Figure 20 B). 

Whereas control organoids exhibit a fine adherent junction belt at the most apical side of 1-3 

µm (measured by the accumulation of N-CAD), this organization was significantly altered in 

organoids derived from patients with severe lissencephaly (more than 10 times increased; 

Figure 20 C). A significant disturbed distribution of N-cadherin was also found in the moderate 

condition (around 20 µm) while in the mild condition a disruption could be detected although 

without significance (around 10 µm). 
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Figure 20: Progressive disruption of cellular organization with LIS1-patient severity. (A) Representative 

recordings of hematoxylin-eosin (HE) recordings of control C4.1, mild LIS1-patient P1.2, moderate LIS1-patient 

P3.1 and severe LIS1-patient P5.1 derived organoids. (B) Representative recordings of cryo-cut organoids from 

control 3.1, mild LIS1-patient P2.1, moderate LIS1-patient P3.2 and severe LIS1-patient P5.1 derived organoids 

stained for N-CADHERIN (N-CAD) at day 20. (C) Quantification of apical disruption diameter in control, mild, 

moderate and severe LIS1-patient derived organoids at day 20. Schematic illustration of how the disruption 

diameter was quantified is illustrated on the right side of the diagram. control C1.2 N=12, control 2.1 N=12, control 

4.2 N=20, mild P1.1 N=13, mild P1.2 N=13, mild P2.1 N=13, mild P2.2 N=15, moderate P3.1 N=13, moderate 

P3.2 N=12, moderate P4.1 N=12, moderate P4.2 N=14, severe P5.1 N=22, severe P5.2 N=20, severe P6.1 N=13, 

severe P6.2 N=13, severe P7.1 N=12. Scale bars 20 µm. Error bars, ±SD. *p < 0.05, **p < 0.01, ***p < 0.001. 

Taken together, the analysis of molecular structures revealed a progressive breakdown of VZ 

structure stabilizing astral tubulin and with that a gradual disruption of cellular organization. 

To determine whether the patient-specific LIS1 mutations impair the microtubule stabilizing 

function of LIS1 protein and by that directedly course the observed phenotypic changes I tested 

whether a microtubule stabilizing agent rescues observed alterations.  
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4.6. Microtubule array stabilization can in part rescue phenotypic alterations 

One major aim of in vitro models is to closely recapitulate in vivo development and associated 

malformations to identify molecular pathomechanisms. Such knowledge about malformation 

and disease-causing mechanisms can help to identify drugs, which counteract developmental 

mistakes. Within this project EpothiloneD, a food and drug administration (FDA)-approved 

macrolide binding to a common binding site on beta-tubulin for strand stabilization was tested 

(Fumoleau et al. 2007; Bollag et al. 1995; Giannakakou et al. 2000). Depending on the applied 

concentration there are 2 main objectives for EpothiloneD treatment. In high concentrations 

EpothiloneD binds in high doses to microtubules, completely stabilizing dynamic processes 

and preventing cell divisions. This utilization finds its relevance predominantly in cancer 

research, where malign cells divide abnormally, to stop harmful cell proliferation. The other 

objective acquires the usage of EpothiloneD in low dosage, to stabilize microtubules without 

affecting cell divisions. Based on LIS1 essentiality for microtubule stability I tested a low 

concentration of Epothilone D (1 nM). To determine whether the patient-specific LIS1 

mutations impair the microtubule stabilizing function of the LIS1 protein and by that directedly 

course the observed phenotypic changes I applied EpothiloneD to LIS1-patient and control 

derived organoids from the start of differentiation (d10) for 5 days. The exposer of patient 

derived organoids to EpothiloneD resulted a significant increase in AC-TUB strand density at 

the basal side of the VZ structures only in LIS1-patient derived organoids, most significant in 

moderate and severe conditions (Figure 21 A, B). In contrast, control organoids were not 

significantly affected by the drug treatment (Figure 21 A, B). This stabilization of VZ structure 

stabilizing astral tubulin also had a positively impact, at least in part, on the cellular organization 

and apical membrane alignment of the LIS1-patient derived cultures (Figure 21 C, D). All LIS1-

patient lines exhibited an alignment recovery of more than 10 % after 5 days of EpothiloneD 

treatment (Figure 21 D).  
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Figure 21: Epothilone D treatment in part rescues LIS1-associated microtubule instabilities stabilizing 

ventricular zone structure architecture. (A) Representative acetylated ALPHA-TUBULIN (AC-TUB) 

recordings of control C3.1, mild- P1.1, moderate- P1.2 and severe P5.1 patient derived organoids treated with 

DMSO or 1nM EpothiloneD. (B) Quantification of apical and basal AC-TUB strand density in DMSO and 

EpothiloneD treated control C3.1 (N=9), control C4.1 (N=9), mild P1.1 (N=9), mild P2.2 (N=9), moderate P3.2 

(N=9), severe P5.1 (N=9), severe P6.1 (N=9) and severe P7.1 (N=9) LIS1-patient derived organoids at day 15. (C) 

Representative N-CADHERIN (N-CAD) recordings of control C3.1, mild P1.1, moderate P3.2 and severe P5.1 

LIS1-patient derived organoids treated with DMSO or 1nM EpothiloneD. (D) Quantification of N-CAD diameter 

expansion in DMSO and EpothiloneD treated control C3.1 (N=10), control C4.1 (N=10), mild LIS1-patient P1.1 

(N=10), mild LIS1-patient P2.2 (N=10), moderate LIS1-patient P3.2 (n=6), severe LIS1-patient P5.1 (N=6), severe 

LIS1-patient P6.1 (N=6) and severe LIS1-patient P7.1 (N=6) patient derived organoids at day 15. Scale bars (A) 

200 µm, (A, C) 20 µm. Error bars, ±SD. *p < 0.05, **p < 0.01, ***p < 0.001.  

Moreover, the recue effect on VZ structure cellular organization resulted in a much more clear 

and homogeneous generation of neuroepithelial loop structures and a marked decrease neuronal 

belt surrounding the structures (Figure 22 A). When quantitatively assessing the neuroepithelial 

structures following EpothiloneD treatment with the developed VZ structure dimension 

quantification protocol, an increase of nearly all VZ parameters in organoids from LIS1-patients 

was observed (Figure 22 B). Organoids from patients with severe disease exhibited a most 

significant enlargement of VZ structures in nearly all parameters most drastic for the VZ 

diameter. Organoids derived from mild and moderate disease show significant differences to 

the DMSO control in individual parameters while none of the parameters were significantly 

altered in control-derived organoids (Figure 22 B). Nonetheless, Epothilone D treatment was 

not sufficient to fully diminish the observed phenotypic alterations in LIS1-patient derived 

organoids, especially not in those derived from patients with severe disease. Consequently, I 

hypothesized that additional pathomechanisms had to play into disease pathology.  
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Figure 22: Microtubule array stabilization by Epothilone D partially rescues ventricular zone structure 

dimensions in LIS1-pateint derived organoids. (A) Representative DAPI recordings of control C3.1, mild- P1.1, 

moderate- P1.2 and severe- P1.1 LIS1-patient derived organoids treated with 1nM Epothilone D (EpothiloneD) 

and DMSO control. (B) Ventricular structure (VZ) parameter quantification of EpothiloneD and DMSO control 

treated control- C3.1, control- C4.1, mild- P1.1, mild- P2.2, moderate- P3.2, severe- P5.1, severe- P6.1 and severe- 

P7.1 LIS1-patient- derived organoids at day 15. control C3.1 DMSO N=16, control C3.1 CHIR N=21, control 

C4.1 DMSO N=10, control C4.1 CHIR N=18, mild P1.1 DMSO N=16, mild P1.1 CHIR N=24, mild P2.2 DMSO 

N=12, mild P2.2 CHIR N=11, moderate P3.2 DMSO N=14, moderate P3.2 CHIR N=12, severe P5.1 DMSO N=14, 

severe P5.1 CHIR N=11, severe P5.2 DMSO N=16, severe LIS1-patient P5.2 CHIR N=11, severe P6.1 DMSO 

N=10, severe P6.1 CHIR N=10, severe P7.1 DMSO N=11, severe P7.1 CHIR N=11. Scale bars (A) 200 µm. Error 

bars, ±SD. *p < 0.05, **p < 0.01, ***p < 0.001. 

My colleagues and me recently reported for MDS that alterations of the cortical cytoarchitecture 

can lead to non-cell-autonomous disturbance of WNT-signaling (Iefremova et al. 2017). Thus, 

I next questioned whether WNT-signaling might be also impacted in the LIS1-patient derived 

organoids. 

4.7. Only Organoids derived from LIS1-patients with severe disease display a non-

random aRG cell division switch due to niche-dependent WNT-signaling alterations 

WNT-signaling is a major choirmaster during corticogenesis. During forebrain development 

WNT-signaling from the cortical hem is important for the regulation of the expansion and cell-

type specification of aRG cells. My colleagues and me recently reported for MDS that 

alterations of the cortical cytoarchitecture can lead to a non-cell-autonomous disturbance of 

WNT-signaling (Iefremova et al. 2017). I thus wondered whether WNT-signaling might be also 

impacted in my LIS1 patient derived organoids. To monitor the onset and localization of WNT-

target gene activity in patient and control derived organoids WNT-GFP iPS cell reporter lines 

were generated (pRRL.sin-18.ppt, Addgene plasmid #14715, Reya et al. 203; for virus 

generation see 3.3.1; for virus transduction see 3.1.6). The reporter lines expressed GFP under 

activation of WNT-signaling. The GFP was cloned downstream of a LEF-1/ TCF responsive 

promotor containing 3 LEF-1/ TCF binding motifs and a TATA box. When WNT-signaling 

was active in aRG cells LEF-1/ TCF were expressed and activated the expressions of GFP in 

correlation with WNT-signaling activity. Organoids derived from controls exhibited VZ 

structures with a strong GFP signal along the apical lining (Figure 23 A). In contrast, the apical 

lining of VZ-structures from LIS1-lissencephaly patients showed a gradual decrease in WNT-

target gene activity with increased disease severity, most significant in organoids derived from 

severe patients (Figure 23 A, B). These WNT-signaling alterations were only observable within 
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the VZ structures, close to the apical membrane in patient derived organoids, but not in cells 

with neuronal morphology outside the VZ structures (Figure 23 A). I further speculated whether 

the perturbed niche-dependent WNT-signaling results in a premature non-random switch of 

aRG cell division from progenitor cell expansion to neurogenesis, as previously observed in 

organoids derived from MDS patients (Iefremova et al. 2017). Co-staining for p-VIM 

(phosphorylated by CDK 1 during mitosis and located in the nucleus marking all nuclei in the 

mitotic phase) and TPX 2 (microtubule associated protein that can visualize the mitotic spindle) 

were performed to analyze aRG cell division (Figure 23 C). When quantifying at least 3 

organoid batches, with at least 3 organoids per batch and at least 6-8 VZ structures per 

organoids, I found a non-random aRG cell switch only in organoids derived from severe 

disease. Whereas mild and moderate patient organoids exhibited predominantly random 

arranged mitotic spindles leading to an increase in oblique division planes (Figure 23 D) most 

likely related to LIS1 and its important role in mitotic spindle orientation (Pawlisz et al. 2008; 

N. E. Faulkner et al. 2000; Tsai J, Chen Y, Kriegstein A 2005; Yingling et al. 2008). 
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Figure 23: Organoids derived from LIS1-patients display niche-dependent WNT-signaling disruption 

leading to altered aRG cell division specific for the disease condition. (A) Representative WNT-GFP 

recordings of WNT-GFP reporter control C3.1, P1.1 mild- and P5.1 severe LIS1-patient derived organoids at day 

20. (B) Quantification of mean grey value of WNT-GFP signal in VZ structures (control C3.1 N=10, control C4.1 

N=10, mild P1.1 N=10, mild P2.2 N=10, moderate P3.2 N=10, severe P5.1 N=10). (C) Representative recordings 

of vertical-, horizontal and oblique division planes by marking dividing cells with p-VIMENTIN (p-VIMENTIN) 

and the mitotic spindle by TPX 2 in control- (C4.1) and severe LIS1-patient (P1.1) patient-derived organoids. (D) 

Quantification of orientation of plane of cell division in control and mild LIS1-patient, moderate LIS1-patient and 

LIS1- severe patient-derived organoids. (control C1.1 N=20, control C2.2 N=20, control C4.2 N=14, mild P1.1 

N=15, mild P1.2 N=15, mild P2.1 N=15, mild P2.2 N=11, moderate P1.1 N=11, moderate P1.2 N=9, moderate 

P2.1 N=10, moderate P2.2 N=13, severe P1.1 N=17, severe P1.2 N=14, severe P2.1 N=9, severe P2.2 N=10, severe 

P3.1 N=11). Scale bars (A) 50 µm, (B) 10 µm, (C) 20 µm. Error bars, ±SD. *p < 0.05, **p < 0.01, ***p < 0.001.   

4.8. GSK3ß inhibition rescues apical radial glia cell division in LIS1-patients with 

severe disease leading to improved ventricular zone structure dimensions 

To test to which extend perturbed niche-dependent WNT-signaling contributes to the observed 

non-random aRG cell division switch and to the observed phenotypic alterations, control and 

patient derived organoids were exposed to the GSK3ß inhibitor CHIR99021 (CHIR). CHIR is 

an aminopyrimidine derivative, which promotes self-renewal of stem cells by promoting 

symmetric cell divisions by inhibiting GSK-3ß activity and potentiating the upregulation of ß-

catenin. In addition, CHIR promotes self-renewal by modulating TGF-ß and upregulating the 

expression of CYCLIN A. The exposer to CHIR led to a significant rescue of non-random aRG 

cell division back to proliferative horizontal aRG cell division in severe disease conditions 

(Figure 24). While the impact of CHIR on control, mild and moderate LIS1-patient aRG cell 

divisions was insignificant, supporting the assumption of a greater impairment of canonical 

WNT-signaling in severe conditions. 
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Figure 24: WNT activation changes aRG cell division pattern in iPS cell derived organoids from severe 

disease. Quantification of vertical, horizontal and oblique division planes of dividing aRG cells in control C3.1 

(N=9), mild P1.1 (N=9), moderate P1.2 (N=9) and severe P1.1 (N=9) patient derived organoids in the absence 

(DMSO) and presence of GSK 3ß inhibitor CHIR at day 15. 

The rescue of proliferative aRG cell division led to much more clear and homogeneous 

generation of VZ-structures compared to the DMSO control (Figure 25 A) with an increase of 

VZ structure dimensions in all LIS1-patient organoids (Figure 25 B), most likely due to the 

proliferation enhancing effect of CHIR on aRG cells (C. Li et al. 2013; Pachenari, Kiani, and 

Javan 2017).  In addition, organoids from severe patients exposed to CHIR also exhibited a 

clearly reduced neuronal belt surrounding the VZ structures (Figure 25 A, indicated by errors).  
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Figure 25: CHIR treatment-related rescue of aRG cell division orientation improves organoid ventricular 

zone structure dimensions. (A, B) Representative DAPI recordings of control C3.1, mild P1.1, moderate P4.2 

and severe P6.1 LIS1-patient derived organoids treated with DMSO or 1 µM CHIR. (C-H) Loop parameter 

quantification of CHIR and DMSO control treated organoids (control C3.1 DMSO N=16, control C3.1 CHIR 

N=21, control C4.1 DMSO N=10,control C4.1 CHIR N=18, mild P1.1 DMSO N=16, mild P1.1 CHIR N=24, mild  

2.2 DMSO N=12, mild P2.2 CHIR N=11, moderate P3.2 DMSO N=14, moderate P3.2 CHIR N=12, severe P5.1 

DMSO N=14, severe P5.1 CHIR N=11, severe P5.2 DMSO N=16,severe P5.2 CHIR N=11, severe  2.1 DMSO 

N=10, severe P6.1 CHIR N=10, severe P7.1 DMSO N=11, severe P7.1 CHIR N=11. Scale bars 200 µm. Error 

bars, ±SD. *p < 0.05, **p < 0.01, ***p < 0.001. 

The aRG cell pool enlargement by CHIR did not lead to an improvement of AC-TUB strand 

spanning to basal VZ regions (Data not shown), distinctly separating phenotypic alterations 

directly caused by the disruption of LIS1 microtubule stabilizing function and those alterations, 

which are indirectly caused by the collapse of cellular organization. The hypothesis is that the 

different patient-specific mutations in the LIS1 gene have divergent direct impact on 

microtubule stability, which directly and/or indirectly (WNT-signaling impairments) lead to 

perturbed human corticogenesis providing the missing link between the patient-specific LIS1 

mutation and the clinical severity grade. 

 

 

  



                                                       Unraveling the pathology of different disease severities  

 

 
 

120 

5. Discussion 

The application of the generated LIS1-lissencephaly iPS cell cohort to the established 

reproducible forebrain-type organoid protocol (Krefft et al. 2018; Iefremova et al. 2017) and 

the utilization of the founded quantitative organoid assessment protocols revealed the capability 

of our organoid system to sensitively reflect different disease severities, a so far not addressed 

major challenge of the system. In this context, organoids reproduced in correlation with the 

patient’s severity, alterations in organoid cytoarchitecture and premature neurogenesis. 

Moreover, I showed that the patient-specific mutations have divergent direct impact on LIS1 

microtubule stabilizing function, which in turn directly or indirectly leads to perturbed human 

corticogenesis providing the missing link between the patient-specific LIS1 mutation and the 

clinical severity grade. The breakdown of cytoarchitectural stability led directly to a progressive 

cellular disorganization with increasing patient severity, which could in part be rescued by 

microtubule array stabilization by EpothiloneD. In addition, also indirectly caused niche-

depended WNT-signaling alterations played into pathology, most prominent in severe 

conditions leading to a non-random aRG cell division switch from proliferative to neurogenic 

cell division. This premature neurogenic division switch explains the observed large belt of 

neurons around the severe organoids, which was less abundant in milder conditions and mostly 

absent in controls. Organoid exposer to GSK3ß inhibitor CHIR99021 led to a significant rescue 

of non-random aRG cell division in severe organoids and to enlarged VZ diameters as well as 

reduced neurogenesis in all patient derived organoids.  

In the following I will discuss how the iPS cell technology opened the doors for in vitro disease 

modeling. The invention of cell reprogramming was a giant milestone for in vitro research.  The 

generation of a large LIS1-patient iPS cell cohort reflecting the lissencephalic severity spectrum 

formed the base for my study and enabled human 3D disease modeling. In the next section, I 

will discuss in how far my study complemented to the current understanding of LIS1-

lissencephly from in vivo functional mouse models and human in vitro cell culture models. 

Furthermore, I will discuss potential underlying pathologies for the diverse lissencephalic 

disease severities and point out to what extend this study contributed to the understanding of 

disease heterogeneity. In the last sections, I want to reflect whether future application of 

sensitive patient-specific organoid models can help to identify personalized therapy approaches 

and also discuss future considerations to improve organoid technology in terms of maturity, 

complexity as well as functional microenvironments. 
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5.1. The iPS cell technology – a tremendous milestone for stem cell research 

Stem cells have the unique hallmark property of pluripotency facilitating them to self-renewal 

and differentiate into any body cell (Weissman 2000). In 2007, a tremendous milestone within 

the field of stem cell research was reached by Takashi and Yamanaka by discovering the 

reprogramming potential of already differentiated somatic mouse cells by transferring 4 

transcription factors (OCT3/4, SOX 2, c-MYC and KLF 4) (Takahashi K, Okita K, Nakagawa 

M 2007). The translation to human cells in 2008 opened completely new perspectives for 

regenerative medicine and personalized disease modeling (Takahashi et al. 2007; Yu et al. 

2007). The high degree of similarity of iPS and ES cells, significantly diminished the need of 

ethic-controversial ES cells (Takahashi K, Okita K, Nakagawa M 2007). Moreover, with the 

advent of defined protocols for the guided differentiation of iPS cells into specific somatic cell 

types, it became more and more possible to study cell type specific disease progressions. 

Studies like the one from Rudolf Jaenisch`s labs (Hanna et al. 2007), where sickle cell anemia 

mice were rescued by treatment with hematopoietic progenitors obtained in vitro from 

autologous iPS cells demonstrate the potential of iPS technology for regenerative medicine 

approaches. Another example is the progress due to iPS cell approaches to treat Parkinson’s 

disease (Kriks et al. 2012), platelet deficiency (Tsujia et al. 2010) as well as macular 

degeneration (Okamoto and Takahashi 2011). Due to the advent of iPS cells, we now can 

generate patient-specific cells and generated diverse target organ-like tissues giving us the 

potential to unravel human-specific disease mechanisms as well as to identify potential new 

drug candidates. In the context of my study, the opportunity to model patient-specific disease 

progression helped to understand individual pathology leading to different disease severities 

and by that provided the missing link between clinical severity and disease severity.  

5.2. Unraveling LIS1-lissencephaly - in vivo functional mouse models and in vitro 

human stem cell models 

Lissencephaly is most caused by mutation in the LIS1 gene, which was correspondingly the 

first gene identified to trigger the disorder. With 1,2 cases per 100.000 birth it can be 

categorized as rare disease. Nonetheless, it is the best studied MCD. Before the emergence of 

the iPS technology and 3D organoid cell cultures many studies analyzing LIS1-lissencephaly 

were utilizing murine systems. The basic sequence of events during corticogenesis are 

commonly shared across species making mouse models a well-suited system to unravel 

neurodevelopmental disorders. In general, mice can be easily genetically manipulated, making 

them a powerful tool for examining genetic mechanisms. Consequently, several mouse models 
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of lissencephaly were created based on LIS1 protein dosage variations leading to the 

identification of many molecular functions of the LIS1 protein. Even though the observed 

LIS1-deficiency associated phenotypes appeared milder in murine systems compared to 

humans most likely due to the low proportion of bRG cells and the related lissencephalic nature 

of the mouse brain, these murine studies suggest that LIS1 gene dosage is relevant for the 

phenotypic severities (Y. H. Youn et al. 2009; Gambello, Darling, Yingling, Tanaka, 

Gleeson, and Wynshaw-Boris 2003). Nonetheless, even so the basic sequence of events during 

corticogenesis is commonly shared across species, there are existing species differences 

including developmental timing distinctions of events as well as cell populational variances, 

which make the translation to human brains challenging. Moreover, why a specific mutation 

within the LIS1 gene as identified in LIS1-lissencephalic patients leads to different disease 

severities and whether human-specific processes during cortical development are 

differentially affected by the specific mutations could not be investigated. Consequently, 

animal models alone cannot be sufficient to fully understand disease mechanisms and patient-

specific disease causing mutations explaining the hysteria when early human brain 

developmental aspects could be analyzed for the first time in vitro (M. Lancaster et al. 2013; 

Kadoshima et al. 2013). The advent of 3D human cell culture models revolutionized the study 

of human organ development and disease, it became possible to study human brain 

development in vitro. The development of defined protocols to differentiate iPS cells made it 

possible to study all human cell types outside the body without harming the living individuum. 

Within this project I, together with my colleagues, developed a reproductible 3D differentiation 

protocol leading to highly homogenous forebrain-type brain organoids (Krefft et al. 2018; 

Iefremova et al. 2017). To implant this protocol for the analysis of patient-specific LIS1-

lissencephaly causing mutations I established a LIS1-lissencephalic iPS cell patient cohort by 

Sendai virus-based reprogramming of fibroblasts and lymphocytes comprising 2 mild, 2 

moderate and 3 severe LIS1-patients reflecting the complete lissencephalic severity spectrum. 

By that I was able to study lissencephalic patient-specific genic backgrounds of living 

individuals in a dish and approach the question why a specific mutation within the LIS1 gene 

as identified in LIS1-lissencephalic patients leads to different disease severities and whether 

human-specific processes during cortical development are differentially affected by the 

specific mutations. When comparing the generated forebrain-type cerebral organoids from 

LIS1-patients and 6 age and gender match control iPS cell lines, it became clear that organoids 

from controls and patients with mild disease gradually develop smooth neuroepithelial loop-

like structures which expand over time, whereas organoids from patients with moderate and 
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severe disease appeared to be generally smaller in size. This observation of size reduction was 

also made by other studies utilizing 3D brain organoids and modeling the most severe form of 

lissencephaly, MDS, which is caused by a heterozygous deletion of chromosome 17p13.3 

involving LIS1 and YWHAE (coding for 14.3.3 epsilon, a LIS1 interaction partner). Bershteyn 

and colleagues (Bershteyn et al. 2016) and a former study of my colleagues and me (Iefremova 

et al. 2017) showed, that organoids derived from MDS patients are drastically smaller in size 

compared to controls. Interestingly, my organoids from severe LIS1-lissencephaly patients did 

show a drastic VZ size reduction, but not an overall organoid size decrease. Instead, these 

organoids were covered by a large belt of neurons, which was drastically less abundant in mild 

and moderate conditions and nearly absent in control derived organoids. Premature 

neurogenesis and defective neuronal migration have been described in many different studies 

analyzing lissencephaly in mouse and human model systems in the past. In mice did the 

reduction of LIS1 dosage lead to migration defects causing dosage-depended cellular 

disorganization of cortical layers, hippocampus, cerebellum and olfactory bulb (Hirotsune et 

al. 1998; Gambello, Darling, Yingling, Tanaka, Gleeson, and Wynshaw-boris 2003; Tanaka et 

al. 2004). Furthermore, was the necessity of LIS1 for correct neuronal migration also shown by 

direct examination of neuronal migration in mouse embryonic brain slice cultures, which were 

in utero transfected with green fluorescent protein to label migrating neurons (Shu et al. 2004). 

Using RNAi knockdown of LIS1 also undoubtfully demonstrated that LIS1 is required of 

neuronal migration and that LIS1 deficiency leads to neuronal migration defects associated with 

lissencephaly (Shu et al. 2004; Tsai J, Chen Y, Kriegstein A 2005; Y. H. Youn et al. 2009). 

With the development of the iPS cell technology the neuronal migration problem could also be 

shown in human cells. During 2D neural differentiation iPS cells undergo morphogenic changes 

characterized by the formation of so-called neural rosettes, which reflect every early neural 

tube-like formation by radially organized epithelial cells with apical-basal polarity (Elkabetz et 

al. 2008; S. Zhang et al. 2001). Bamba et al. (Bamba et al. 2016) utilized 2D neuronal cultures 

and demonstrated that lissencephaly patient derived neurons display abnormal neurite 

extensions, impaired migration and deficient neurite formation. Nonetheless, 2D systems have 

the disadvantage in contrast to 3D systems, that the capacity of cells to differentiate and self-

organize into epithelia reminiscing of the embryo is not given. Nonetheless, due to this variety 

of studies revealing migration defects, LIS1-lissencephaly was long time considered to be an 

isolated neuronal migration disorder. However, extended mouse studies showed that the 

underlying disease triggers are characterized by a broader spectrum of disease-causing 

pathology also including progenitor abnormalities like mitotic spindle formation as well as 
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perturbed radial glial cell proliferation (Tsai J, Chen Y, Kriegstein A 2005; Tanaka et al. 2004; 

N. E. Faulkner et al. 2000; Yingling et al. 2008). To assess the direct consequences of the 

patient-specific LIS1 mutations on LIS1 microtubule stabilizing function I applied my 3D 

organoid models to my LIS1-patient cohort and investigated the stability of the cytoskeleton of 

aRG cells within the 3D VZ cortical loop-like structures by AC-TUB staining. To avoid cutting 

artifacts, I analyzed cleared and sliced organoids and found an overall reduction of AC-TUB 

positive labeled tubulin strands with increased disease severity. The more drastic the disease 

severity was, the more extreme was the cytoskeleton malformed. In addition, in correlation with 

the degree of astral tubulin disruption, I also observed a cellular disorganization. Especially the 

organoids derived from moderate and severe disease displayed random arranged cell bodies 

with gaps in between cells, whereas in control conditions aRG cells arranged well organized, 

stringed and densely packed within the VZ. Together with this cellular disorganization I 

identified a disturbed apical membrane alignment. Similar observations of cellular 

disorganization Bershteyn et al. (Bershteyn et al. 2016) and our laboratory (Iefremova et al. 

2017) observed in organoids derived from MDS patients.  Furthermore, my colleagues and me 

found that the apical membrane disruption leads to non-cell-autonomous WNT-signaling 

disruption leading to a premature, non-random switch from vertical to horizontal cleavage 

planes of aRG cells, which leads to premature neurogenesis (Iefremova et al. 2017). These 

findings support the proposed model by Yingling et al. (Yingling et al. 2008) of spindle 

disorientation due to LIS1 deficiency in RG cells. As underling mechanisms, they found a 

perturbed DYNEIN localization due to LIS1 deficiency. Comparable to our study, additionally 

supporting Yingling et al. (Yingling et al. 2008) proposal, Bershteyn et al. (Bershteyn et al. 

2016) also described an increase in horizontal cell division associated with a premature shift to 

neurogenesis in MDS derived cerebral organoids. Interestingly, when investigating aRG cell 

division modes in my LIS1-patient derived organoids, I found a clear increase in horizontal 

division patterns only in cultures derived from severe patients compared to controls, explaining 

the large neuronal belt around organoids from severe disease. Whereas mild and moderate 

patient organoids exhibited predominantly random arranged mitotic spindles leading to an 

increase in oblique division planes most likely related to LIS1 and its important role in mitotic 

spindle orientation (Pawlisz et al. 2008; N. E. Faulkner et al. 2000; Tsai J, Chen Y, Kriegstein 

A 2005; Yingling et al. 2008).  In this context, further investigations analyzing DYNEIN 

dynamics in the LIS1- patient derived organoids need to be done. To test to what extend 

perturbed niche-dependent WNT-signaling contributes to the observed phenotypic changes in 

LIS1-patient derived organoids I exposed control and patient derived organoids to the GSK3ß 
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inhibitor CHIR99021, which led to much more clear and homogeneous generation of VZ-

structures compared to the DMSO control with a significant increase in VZ diameter in 

organoids derived from moderate and severe patients. In addition, organoids from severe 

patients exposed to CHIR also exhibit a clearly reduced neuronal belt surrounding the VZ 

structures and a significant rescue of the perturbed division mode. Concluded, it can be assumed 

that LIS1-disfunction leads directly to cytoskeleton breakdown, which in turn promotes cellular 

disorganization associated with apical membrane disruption leading to niche disintegration, 

which in turn might cause indirectly WNT-signaling alterations. This interplay of LIS1-

function-associated direct and indirect pathologies might explain why CHIR only partially 

rescues observed phenotypes. In addition to add is, that the utilization of MDS-organoids also 

revealed a mitotic delay of the human-specific bRG cells at later stages (Bershteyn et al. 2016). 

This human-specific cell type disease phenotype could be shown for the first time, due to the 

application of human model systems adding to the already unraveled knowledge about LIS1-

lissencephaly in murine systems. In my LIS1-patient derived organoids I observed a specific 

increase in the abundance of cells positive for human-specific bRG marker genes at day 58+/-

2 of organoid differentiation, which was most prominent in organoids derived from patients 

with moderate and severe disease. In addition, I also identified a decrease of cells positive for 

deep cortical layer marker and an increase of upper cortical layer marker with increase patient 

severity. Together, these data suggest a premature development of bRG cells accompanied by 

an accelerated generation of upper cortical layer neurons with increased LIS1-patient severity 

leading to the hypothesis that LIS1 might be involved in the development of human-specific 

bRG cell development. One more study is to mention in terms of analyzing human-specific 

disease parameters of LIS1-lissendephaly facilitating human in vitro 3D organoids. Orly and 

her laboratory (Karzbrun et al. 2018) were able to evaluate human explicit gyrification-like 

processes unraveling that decreased brain folding observed in LIS1-patients might partially 

result from differences in the physical properties of progenitor cells. To do so, they generated 

LIS1 mutant iPS cell lines and defined physical forces that regulate cortical fording. LIS1 

mutant organoids display reduced folding properties and a longer distance between folds when 

compared to wildtype organoid wrinkles. Moreover, they identified a reduction in the speed of 

nuclear migration from the outer to the inner fold surface, which could be endorsed to the 

cytoplasmic DYNEIN function. In addition, they found that the LIS1 mutant nuclei do not 

expand that drastically in the outer fold regions as wildtype nuclei do, resulting in a reduced 

differential expansion, coherent with the decreased wrinkles. Atomic force microscopy 

suggested that the LIS1 mutant cells display reduced elasticity. This study also shows the 
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capability of human in vitro systems to complement to the existing knowledge gained by animal 

models. Moreover, my work clearly demonstrate that organoids are applicable for the analyzes 

of different disease severities also including mild conditions, a so far not addressed challenge 

of the system. Former studies modeled most severe lissencephalic conditions (Iefremova et al. 

2017; Bershteyn et al. 2016). Furthermore, this study could, for the first time show that 

lissencephalic conditions can be in part rescued by microtubule-array stabilization, thereby 

identifying a potential drug to counteract disease progression (see 5.4).  

In summary, human brain organoid studies reproduced findings observed in murine systems 

and in addition strongly suggest, that the pathophysiology of lissencephaly is more complex 

than previously thought. It might be assumed that the smooth mouse brain without the high 

number of proliferative bRG cells misses human-specific features to reflect full disease 

severity. Nonetheless, transgenic mice serve as powerful tool to unravel disease mechanisms 

caused by the dysfunction of single genes. However, to analyze specific mutation within the 

LIS1 gene as identified in LIS1-lissencephalic patients human in vitro model systems are 

needed. Cerebral organoids opened up the possibility to study human organ developmental 

aspects outside the human body, which holds massive potential for the understanding of human-

specific disease pathology. This project aimed to shed light on the question why specific 

mutations within the LIS1 gene as identified in LIS1-lissencephalic patients leads to 

different disease severities and whether human-specific processes during cortical 

development are differentially affected by the specific mutations. 

5.3. Elucidating underlying pathology of the diverse LIS1-severities – LIS1 function, 

genetics, environmental factors and by-chance effects 

In the previous sections I specified and discussed how this project could complement to the 

current understanding of LIS1-lissencephaly by putting the findings in the context of former 

studies utilizing mouse and human model systems. This chapter focuses on how far this project 

could complement to the understanding of the underlying pathology of the different LIS1-

severities. Multiple publications describe that there is no correlation between mutation and 

severity. Neither the mutation type nor the location of the mutation were found to predict the 

severity grade of LIS1-lissencephaly (Saillour et al. 2009; Uyanik et al. 2007; Philbert et al. 

2017; Pilz et al. 1998). There are known cases, were the same mutation leads to different disease 

severities (oral communication, Nadja Bahi-Buisson). That raises the question in how far the 

genetic plays into pathology. Are environmental factors or any by-chance effects involved or 

is it mainly the degree of LIS1-function disruption which determines severity? My data clearly 
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points out a direct relationship between LIS1-lissencephalic severity and LIS1-function-

associated cellular disruption. The more severe the disease the more drastic the LIS1-associated 

phenotypes like cytoskeleton breakdown, cellular disorganization, and apical membrane 

disruption in LIS1-patient derived organoids. Also, the WNT signaling impairment seems to be 

indirectly correlated with LIS1-function-associated apical membrane disruption caused by 

cellular disorganization triggered by cytoskeleton breakdown. The fact, that the severity can be 

mirrored with brain organoids excludes environmental factors playing into disease diversity as 

those are not present in my organoid models. Here, I only had access to 2 patients harboring 

the same mutation and suffering from the same disease severity. It would be interesting to 

generate organoids from patient cells with the same mutation and different disease severities to 

shed even more light on disease heterogeneity. Initially, one publication suggested a putative 

correlation with the mild lissencephaly associated missense mutations and truncating mutations 

localized at the 3’ end of the LIS1 gene (Cardoso et al. 2000). Although more recent studies did 

not confirm this relationship (Uyanik et al. 2007; Saillour et al. 2009). Saillour et al. (Saillour 

et al. 2009) analyzed a large LIS1-patient cohort including 40 patients carrying LIS1 mutations 

(75%) or small deletions (20%). They tried unsuccessfully to correlate the severity of the 

disease in terms of epileptic seizures, radiological findings, and body movement impairments 

with the LIS1 mutations. Moreover, Uyanik et al. (Uyanik et al. 2007) revealed 21 intragenic 

mutations distributed over the entire LIS1 gene. Except 2 mutations in the LIS1 homology 

domain and 2 in the region encoding the coiled-coil domain all were found in one of the seven 

WD40 repeat domains. Similar, also the mutations of the patients included in my study are 

localized within this WD40 repeat regions. But neither the type nor the position of the mutation 

correlated with a particular phenotype. Rather, they found that the clinical severity correlates 

only with the degree of agyria and cortical thickening, which supports the statement of 

Barkovich and colleagues already in 1991 (Barkovich, Koch, and Carrol 1991). In addition, 

also my study supports this observation. The more severe the brain folding’s alterations of the 

LIS1-patients, the more severe the clinical severity was of the here included patients. In 

addition, my study shows a strong correlation between clinical severity with the LIS1-function 

associated phenotypic alterations found in my LIS1-lissencepahly organoid models. My data 

hints towards the hypothesis that the degree of impairment of LIS1 function directly or 

indirectly (WNT-signaling) determines disease severity. The next logical question in line would 

be what determines the degree of impairment of LIS1 function? In line with the studies 

discussed above (Uyanik et al. 2007; Saillour et al. 2009) I also did not see a correlation to the 

mutations. The patients characterized by mild disease, grade 4-5, carry the same recurrent 
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mutation affecting a splice site (c.569-10T>C; LIS1-mild P1 und P2) leading to exon 7 skipping 

with an induced frameshift. The patients with moderate disease display either a small deletion 

(c.11delC, LIS1-moderate P3) leading to frameshift or a deletion of exon 11. The mutations 

leading to severe phenotypes, grade 1-2, have either a mutation leading to skipping of exon 9 

which is in-frame (c.1002+1G>T, LIS1-severe P5), or missense mutations (c.531G>C, LIS1-

severe P6; c.445C>T, LIS1-severe P7 ;). Concluded, the less severe mutation lead to severe 

disease, whereas the milder mutation lead to mild disease progressions. Our collaboration 

partners analyzed the impact of 4 specific mutations on LIS1 protein synthesis (Philbert et al. 

2017). They examined LIS1 mRNA levels of fibroblasts from mild LIS1-patient P1 and P2 

(c.569-10T>C) as well as from severe LIS1-patient P5 (c.1002+1G>T) and P7 (c.445C>T). 

Quantitative real-time qPCR showed that WT transcript levels from those 4 patients (mild and 

severe) are reduced by approximately half compared to controls due to the heterozygous 

mutation. But only the mutant transcripts levels from patients with mild disease (P1 and P2) 

carrying a frameshift are degraded by NMD, as shown by inhibition of NMD by Emetine. In 

contrast, mutant transcripts of patients with severe disease (P5 and P7), with in-frame missense 

mutation, are not degraded. Inhibition of the proteasome led to LIS1 clusters only in cells from 

patients P5 and P7 with severe disease severe. Cells from patients P1 and P2 did not show this 

phenomenon supporting the assumption that only cells from severe patients contain misfolded 

protein variants. Due to co-labeling of LIS1 and G3BP1, an SG marker, and fibroblast treatment 

with sodium arsenate, a cellular stressor, they found that LIS1 clusters are observed only after 

MG132 treatment, suggesting LIS1 mutant proteins are misfolded and then degraded by 

proteasome. These findings suggest that the wildtype transcript reduction by 50 % together with 

the 50 % of misfolded proteins are more harmful to the cell physiology than only the 50 % 

wildtype transcripts as found in cells from patients with mild disease, which might be associated 

with SG formation. The degradation by the proteasome seems to lead to more severe clinical 

symptoms, although by-chance effects are not ruled out. It would be interesting to further 

analyze SG formation in human 3D cortical organoids. One hypothesis could be, that the 

misfolded LIS1 proteins, which according to Philbert et al. (Philbert et al. 2017, Camille 

Maillard unpublished data) only appear in cells from patients with severe disease might 

negatively influence the complex interaction network of LIS1, explaining the direct correlation 

of disease severity and LIS1-disfunction-associated cellular disruption as observed in my LIS1-

organoid models.  

My data could show that different patient-specific mutations in the LIS1 gene have divergent 

direct impact on microtubule stability, which directly and/or indirectly lead to perturb human 
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corticogenesis providing the missing link between the patient-specific LIS1 mutation and the 

clinical severity grade. The application of this sensitive model allows the analyzes of disease 

severity specific pathomechanisms. In the next section it is discussed in how far the application 

of those sensitive in vitro models can elevate personalized medicine and may lead to a better 

understanding of individual disease progression for effective therapy. 

5.4. Patient derived organoids – unraveling individual disease progressions for the 

identification of personalized drug treatments 

This chapter discusses whether patient-specific organoid approaches can lead to an 

understanding of patient-specific disease progression as well as to the identification of 

personalized drug interventions.  Even though 3D organoid cultures are young scientific tools, 

they already have been used to identify possible drug targets (Nowakowski, et al. 2017) and 

therapeutic application against ZIKA virus infection (Li et al., 2017). Nonetheless, there are no 

published studies, which test the sensitivity of 3D systems to recapitulate different disease 

severities and understand individual’s disease progressions. My pioneer work raises hope that 

organoids can really unravel patient-specific disease progression and support personalized 

medicine approaches. The observed phenotypic differences correlated with patient disease 

severity. Moreover, the patient-specific disease severity modeling led to the identification of 

dissimilar degree of impact of specific pathways involved. In the mild and moderate LIS1-

patient derived organoids aRG cells displayed dominantly a non-planar random disorientation 

of mitotic spindle, which might be explained by LIS1-deficiency associated with DYNEIN 

delocalization (Yingling et al. 2008). Whereas, in the severe LIS1-patient organoids a planar 

switch from vertical to horizontal aRG cell division was most prominent, which might be 

associated with N-CAD disruption and disturbance of ß-CAT/WNT-signaling (Iefremova et al. 

2017). Adherents junctions have been associated with self-renewal control of aRG cells 

(Marthiens et al. 2010; Stocker and Chenn 2009). Moreover, data from mouse studies indicate 

that WNT/ß-CAT signaling is crucial for aRG cell proliferation (Chenn and Walsh 2008; 

Zechner et al. 2003) and that N-CAD is involved in WNT activity by controlling AKT 

phosphorylation, which in turn leads to phosphorylation and stabilization of ß-CAT (J. Zhang 

et al. 2010, 2013). Consequently, the protein level of important signaling proteins within the 

WNT-signaling cascade as well as their phosphorylated forms were analyzed in the different 

LIS1-patient lines (Data not shown). Despite a potential reduction of LRP 5/6 receptor in the 

severe LIS1-patient derived cells were no specific abnormalities detected. Nonetheless, based 

on the observed N-CAD/ WNT-signaling disruption the GSK 3b inhibitor CHIR was tested to 
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counteract observed phenotypes and indeed, the treatment rescued aRG vertical cell division 

planes in LIS1-patient derived organoids and consequently significantly decreased premature 

neurogenesis and increased cortical-like ventricular structure size. These findings go in line 

with former studies (Iefremova et al. 2017; Zechner et al. 2003; J. Zhang et al. 2013). The 

rescue effect specific for severe conditions confirmed the greater impact of LIS1-assocaited 

spindle disorientation rather than WNT-signaling disruption in the milder conditions. To 

counteract those LIS1-associated microtubule-destabilization triggered phenotypes, a second 

drug screen was performed testing the microtubule-stabilizing drug EpothiloneD, which is a 

macrolide compound binding to a common binding site on ß-tubulin (Giannakakou et al. 2000). 

Based on the applied concentration EpothiloneD can stabilize microtubes (low dosages) or 

block cell division by completely preventing microtubule depolymerization (high dosage) 

(Bollag et al. 1995). Applying higher dosages, EpothiloneD has been successful tested for 

hindering malign cell division and is currently subjected to clinical trials. For detailed 

information of EpothiloneD in cancer treatment see Fumoleau et al. (Fumoleau et al. 2007). In 

very low concentrations EpothiloneD has been applied to studies focusing on tauopathy-

associated disorders utilizing mouse models (B. Zhang et al. 2012; Cartelli et al. 2013; Penazzi 

et al. 2016). EpothiloneD treatment in aged tau transgenic mice with Alzheimer-like tau 

pathology and related behavioral deficits reduced axonal dystrophy and increased axonal 

microtubule density, which led to improved fast axonal transport and cognitive performance 

(B. Zhang et al. 2012). Also, Cartelli et al. (Cartelli et al. 2013) described the neuroprotective 

effect of EpothiloneD on mice mimicking experimental parkinsonism induced by 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP). Consequently, low-dosage EpothiloneD treatment 

was also tested on the LIS1-patient derived organoids. The experiments confirmed the 

microtubule-stabilizing properties of EpothiloneD displaying significant improvement in 

cytoarchitectural stability by astral tubulin strands spanning in VZ basal regions. This rescue 

of VZ architectural stability led to improved cellular organization. In summary, the discovery 

of severity-specific pathologies as well as the identification of specific drugs differential 

rescuing phenotypic alterations in mild, moderate and severe LIS1-patient derived organoids 

underlines the capacity of iPS cell derived 3D model systems to understand individual disease 

progressions. Consequently, brain organoids are a very promising tool for personalized disease 

understanding as well as patient-specific therapeutically intervention approaches. Nonetheless, 

the field remains young and there is capacity for further enhancement before it reliably can 

serve as robust model for therapy and regenerative medicine. The following chapter discusses 

possible improvements, which could enhance in vivo similarity and reduce system limitations.  



                                                       Unraveling the pathology of different disease severities  

 

 
 

131 

5.5. Brain organoids – future advances of complexity, maturity and functionality  

The here presented work displays that the organoid system serves as promising model to 

analyze human and severity-specific aspects of LIS1-associated MCD as well as related 

disorders and contributes to the identification of new therapeutic drugs. There are multiple 

studies verifying the capability of organoids to develop specific and discrete brain regions 

closely mimicking in vivo cell type compositions with gene expression profiles and epigenetic 

signatures reminiscing of human fetal corticogenesis (Kanton et al. 2019; Velasco et al. 2019; 

Quadrato et al. 2017; Camp et al. 2015). Nonetheless, they remain immature in nature only 

reflecting developmental processes of the first and second gestation semester. To make the 

organoid system mature, there are significant challenges and limitations to overcome especially 

in terms of complexity and maturity. It is undeniable that brain organoid systems have 

progressed substantially due to the development of diverse generation protocols closely 

mimicking in vivo development (M. a Lancaster et al. 2013; M. A. Lancaster et al. 2017; 

Kadoshima et al. 2013; Birey et al. 2017; X. Qian et al. 2016; Krefft et al. 2018). Depending 

on the differentiation protocol organoids differentiate spontaneously (without external 

morphogen supplementation) in an unpredictable fashion into brain regions of different identity 

(M. Lancaster et al. 2013) or with growth factor manipulation into regional specified 

homogenous brain tissue (Birey et al. 2017; Xuyu Qian et al. 2016; Kadoshima et al. 2013)(for 

review see Marsoner, Koch, and Ladewig 2018). Both differentiation approaches generate 

organoids, which face the limitation of missing tissue polarity without topographic organization 

illustrating that organoids are still a very reductionist model without body axes and morphogen 

signaling centers leading to the absence of morphogen gradients within the tissue. This 

limitation has been tackled by multiple studies with different approaches.  One approach is 

based on the guided differentiation of organoids into specific brain identities with subsequent 

fusion of those different regions (Bagley et al. 2017; Xiang et al. 2017). This approach does, 

however, not recapitulate the continuum of regional diversity found in the human brain (Krefft, 

Koch, Ladewig, in press by SDCB). Cederquist and colleagues (Cederquist et al. 2019) 

attempted to overcome the weakness of missing topographic organization by the 

implementation of morphogen-secreting cells, mimicking organizing centers, into the organoid 

tissue. Similar, also Orly Reiners laboratory (Karzbrun et al. 2018) tried to establish morphogen 

gradients by external selective morphogen exposure by microfluidic systems. All studies helped 

to direct organoid technologies into an advanced future, but still did not manage to develop 

topographic organized in vitro tissue. Another big limitation of organoids is the missing non-

neuroectodermal structures including blood vessel, meninges as well as cerebrospinal fluid. 
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Meninges have not only a brain protective role, but also establish unique microsystem for 

cellular waste disposal of the brain. In addition, they provide entry for blood vessel into the 

brain tissue. The in organoid present lumen do not contain physiological equivalent to blood 

(Wimmer et al. 2019) or cerebrospinal fluid (Kadoshima et al. 2013) limiting the nutritive 

supply of cells deep insight the tissue as well as the presence of signaling molecules for tissue 

polarity. Finally, to mention is the limitation of immune and glia cells. Studies coculturing 

organoids with microglia have started to approach this limitation (Ormel et al. 2018; Song et 

al. 2019) but further studies are needed to investigate the contribution of microglia in organoid 

tissue with respect to their role in developmental processes like synaptic pruning. Also, 

astrocytes and oligodendrocytes, which are important for synaptogenesis as well as 

myelination, are underrepresented in organoid cultures (Quadrato et al. 2017), probably due to 

the limited culture time of 3D organoids. Despite cell populational deficits, cytoarchitectural 

aspects of organoids also need to be critically reflected. The in human significantly enlarged 

and in inner and outer separated SVZ can be found in organoids, although in a limited extend 

(Watanabe et al. 2016). The same does account for the 6 cortical layers. Layer-related cell types 

can be detected in organoids, but only fragmentary without the distinct layer-specific 

orientation (Bhaduri et al. 2020). The folding of the outer cortical layers leads to the primate-

specific gyrification of the neocortex. Although organoids display wrinkles, it cannot be 

equated with gyri and sulci in human brains. The reported folding due to physical forces 

(Karzbrun et al. 2018) or genetic manipulation (Y. Li et al. 2019) mainly involves the inner 

germinal zone and not the outer layers of the cortex as it is true for gyrification (Lewitus, 

Kelava, and Huttner 2013). 

It remains elusive to what extent mature aspects of brain development can be achieved in 

organoid cultures. It is likely that there is a natural limitation of in vitro cultures to reproduce 

the incredible complexity of the human brain in a dish. Consequently, organoid data needs to 

be carefully evaluated with respect to the impact of the systems limitations. 
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6. Conclusion 

The here presented work demonstrates the great potential of recent technology advances 

including iPS cell- as well as organoid tools to revolutionize stem cell research and medicine.  

Impressively, human organ development can be analyzed outside the human body with healthy 

and patient-specific disease backgrounds. These advents open completely new perceptive for 

personalized medicine. The here demonstrated research underlines the capability of cerebral 

organoids to sensitively model individual disease severities, a so far not addressed major 

challenge of the system. My data show that different patient-specific mutations in the LIS1 gene 

have divergent direct impact on microtubule stability, which directly and/or indirectly lead to 

perturbed human corticogenesis providing the missing link between the patient-specific LIS1 

mutation and the clinical severity grade. Future applications analyzing individual diseases have 

the potential to advance personalized medicine and improve the understanding of individual 

pathology for personalized therapy. Nonetheless, intensive research still needs to overcome 

hurdles focusing on organoid complexity, maturity as well as functional microenvironments to 

faithfully model in vivo development. By accomplishing following aims this thesis 

demonstrated for the first time that 3D organoids already serve as promising tool to reflect 

different disease severities and to elucidate individual disease pathology: 

1. A large LIS1-patient iPS cell cohort reflecting the complete severity spectrum of LIS1-

lissencephaly was generated and fully characterized. 

2. An in vitro system to reconstruct cortical stem cell niche and analyze corticogenesis in 

healthy and patient-specific disease backgrounds was established. 

3. The sensitivity of organoid systems to model patient-specific disease progressions was 

shown. 

4. LIS1-associated phenotypes reflecting the individual LIS1-patient’s severity were 

unraveled. 

5. Potential severity-specific disease mechanisms were found, which are directly or 

indirectly caused by the impairment of LIS1 microtubule stabilizing functions.  

6. 2 potential drugs were identified, which counteracted specific mechanisms involved in 

LIS1-lissencephaly pathology.   
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Appendix 1, Overview of iPS cell lines included in this study and validation steps 

Table 18: Overview and validation steps of iPS cell lines included in this study.  

 Pluripotency maker 

expression 
Karyotyping 

Tripotente 

differentiation 

Validation of 

LIS1 mutation 

Control 1.1 yes yes yes no 

Control 1.2 yes yes yes no 

Control 2.1 yes yes yes no 

Control 2.2 yes yes yes no 

Control 3.1 yes yes yes no 

Control 4.1 yes yes yes no 

Control 4.2 yes yes yes no 

Control 5.1 yes yes yes no 

Control 6.1 yes yes yes no 

mild 1.1 yes yes yes yes 

mild 1.2 yes yes yes yes 

mild 2.1 yes yes yes yes 

mild 2.2 yes yes yes yes 

moderate 1.1 yes yes yes yes 

moderate 1.2 yes yes yes yes 

moderate 2.1 yes yes yes yes 

moderate 2.2 yes yes yes yes 

severe 1.1 yes yes yes yes 

severe 1.2 yes yes yes yes 

severe 2.1 yes yes yes yes 

severe 2.2 yes yes yes yes 

severe 3.1 yes yes yes yes 

severe 3.2 yes yes yes yes 
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Appendix 2, Statistics 

Table 19: Post-Hoc group comparison of Kruskal-Wallis-Test of VZ diameter analyzes for control- and LIS1-

patient derived organoids at day 20.  

Sample 1-Sample 2 sig. adj. sig.a 

control mild ,000 ,000 

control moderate ,000 ,000 

control severe ,000 ,000 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests 

Table 20: Post-Hoc group comparison of Kruskal-Wallis-Test of apical membrane length for analyzes for control- 

and LIS1-patient derived organoids at day 20.  

Sample 1-Sample 2 sig. adj. sig.a 

control mild ,066 ,393 

control moderate ,000 ,002 

control severe ,000 ,000 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests 

Table 21: Post-Hoc group comparison of Kruskal-Wallis-Test of total VZ area analyzes for control- and LIS1-

patient derived organoids at day 20.  

Sample 1-Sample 2 sig. adj. sig.a 

control mild ,441 1,000 

control moderate ,000 ,001 

control severe ,000 ,000 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests 

Table 22: Post-Hoc group comparison of Kruskal-Wallis-Test of ventricle-like area analyzes for control- and LIS1-

patient derived organoids at day 20. 

Sample 1-Sample 2 sig. adj. sig.a 

control mild ,066 ,393 

control moderate ,000 ,002 

control severe ,000 ,000 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests 

Table 23: Post-Hoc group comparison of Kruskal-Wallis-Test of basal membrane length analyzes for control- and 

LIS1-patient derived organoids at day 20.  

Sample 1-Sample 2 sig. adj. sig.a 

control mild ,003 ,019 

control moderate ,000 ,000 

control severe ,000 ,000 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests 

Table 24: Post-Hoc group comparison of Kruskal-Wallis-Test of VZ tissue area analyzes for control- and LIS1-

patient derived organoids at day 20.  

Sample 1-Sample 2 sig. adj. sig.a 

control mild ,671 1,000 

control moderate ,000 ,001 

control severe ,000 ,000 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests 

 



                                                       Unraveling the pathology of different disease severities  

 

 
 

151 

Table 25: Post-Hoc group comparison of Kruskal-Wallis-Test for AC-TUB strand density in basal regions 

quantification in control- and LIS1-patient derived organoids at day 20.  

Sample 1-Sample 2 sig. adj. sig.a 

control C 1.2-mild P1.1 ,413 1,000 

control C 1.2-mild P1.2 ,055 1,000 

control C 1.2-mild P2.1 ,057 1,000 

control C 1.2-mild P2.2 ,251 1,000 

control C 1.2-moderate P3.1 ,057 1,000 

control C 1.2-moderate P3.2 ,000 ,000 

control C 1.2-moderate P4.1 ,000 ,002 

control C 1.2-moderate P4.2 ,003 ,335 

control C 1.2-severe P5.1 ,000 ,001 

control C 1.2-severe P5.2 ,000 ,000 

control C 1.2-severe P6.2 ,000 ,000 

control C 1.2-severe P6.2 ,000 ,000 

control C 1.2-severe P7.1 ,000 ,000 

control C 1.2-severe P7.2 ,000 ,000 

control C 4.2-control C 1.2 ,407 1,000 

control C 4.2-mild P1.1 ,870 1,000 

control C 4.2-mild P1.2 ,340 1,000 

control C 4.2-mild P2.1 ,348 1,000 

control C 4.2-mild P2.2 ,822 1,000 

control C 4.2-moderate P3.1 ,362 1,000 

control C 4.2-moderate P3.2 ,000 ,030 

control C 4.2-moderate P4.1 ,001 ,144 

control C 4.2-moderate P4.2 ,047 1,000 

control C 4.2-severe P5.1 ,001 ,086 

control C 4.2-severe P5.2 ,000 ,000 

control C 4.2-severe P6.1 ,000 ,002 

control C 4.2-severe P6.2 ,000 ,011 

control C 4.2-severe P7.1 ,000 ,009 

control C 4.2-severe P7.2 ,000 ,010 

 

Table 26: Post-Hoc group comparison of Kruskal-Wallis-Test for N-CAD disruption diameter quantification for 

control- and LIS1-patient derived organoids at day 20.  

Sample 1-Sample 2 sig. adj. sig.a 

control C 2.1-mild P1.1 ,522 1,000 

control C 2.1-mild P2.1 ,087 1,000 

control C 2.1-mild P2.2 ,022 1,000 

control C 2.1-mild P1.2 ,002 ,296 

control C 2.1-moderate P3.1 ,035 1,000 

control C 2.1-moderate P4.1 ,000 ,005 
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control C 2.1-moderate P4.2 ,000 ,011 

control C 2.1-severe P5.1 ,000 ,004 

control C 2.1-severe P5.2 ,000 ,000 

control C 2.1-severe P6.1 ,000 ,000 

control C 2.1-severe P6.2 ,000 ,000 

control C 2.1-severe P7.1 ,000 ,000 

control C 4.2-mild P1.1 ,691 1,000 

control C 4.2-mild P1.2 ,011 1,000 

control C 4.2-mild P2.1 ,170 1,000 

control C 4.2-mild P2.2 ,057 1,000 

control C 4.2-moderate P3.1 ,084 1,000 

control C 4.2-moderate P3.2 ,000 ,029 

control C 4.2-moderate P4.1 ,000 ,053 

control C 4.2-moderate P4.2 ,001 ,106 

control C 4.2-severe P5.1 ,000 ,056 

control C 4.2-severe P5.2 ,000 ,000 

control C 4.2-severe P6.1 ,000 ,000 

control C 4.2-severe P6.2 ,000 ,001 

control C 4.2-severe P7.1 ,000 ,000 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests. 

 

Table 27: Kruskal-Wallis-Test for independent samples without Gaussian distribution for AC-TUB strand         

density quantification in basal VZ regions for EpothiloneD vs. DMSO control treated control- and LIS1-patient 

derived organoids at day 15.  

 control 

C 4.1 

control 

C 3.1 

mild 

P1.1 

mild 

2.2 

moderate 

P3.2 

severe 

P5.1 

severe 

P6.1 

severe 

P7.1 

asymptotic sig. 

(2-sided test) 

,892 0,743 0,003 0,003 ,771 0,008 0,004 ,012 

a. the test statistic is adjusted for ties. 

Table 28: Kruskal-Wallis-Tests for independent samples without Gaussian distribution for N-CAD disruption 

diameter quantification of EpothiloneD and DMSO control treated control- and LIS1-patient-organoids at day 20.  

 control C 

4.1 

control C 

3.1 

mild 

P1.1 

mild 

P2.1 

moderate P3.2 severe P5.1 severe P7.1 

asymptotic sig. 

(2-sided test) 

0,518 0,287 ,037 0,623 0,336 0,109 0,055 

a. the test statistic is adjusted for ties. 

 

 

Table 29: Kruskal-Wallis-Test for independent samples without Gaussian distribution for VZ diameter 

quantification of CHIR and EpothiloneD treated control- and LIS1-patient derived organoids at day 15.  

Asymptotic sig. (2-sided test) sig. DMSO vs EpoD 

control C4.1 ,398 

control C3.1 ,735 

mild P1.1 ,149 

mild P2.2 ,061 

moderate P3.2 ,010 
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severe P5.1 ,005 

severe P6.1 ,001 

severe P7.1 ,013 

a. The test statistic is adjusted for ties.  

Table 30: Kruskal-Wallis-Test for independent samples without Gaussian distribution for WNT-GFP 

quantification of control- and LIS1-patient derived organoids at day 20.  

Asymptotic sig. (2-sided test) sig. to C3.1 

control C4.1 0,182 

mild P1.1 0,449 

mild P2.2 0,4889 

moderate P3.2 0,009 

severe P5.1 0,000 

a. The test statistic is adjusted for ties.  

Table 31: Post-Hoc group comparison of Kruskal-Wallis-Test of horizontal aRG cell division percentage of 

control- and LIS1-patient derived organoids at day 20.  

Sample 1-Sample 2 sig. adj. sig.a 

vertical 

control C 4.2-mild P1.1 ,136 1,000 

control C 4.2-mild P1.2 ,788 1,000 

control C 4.2-mild P2.1 ,283 1,000 

control C 4.2-mild P2.2 ,587 1,000 

control C 4.2-moderate P3.1 ,106 1,000 

control C 4.2-moderate P3.2 ,067 1,000 

control C 4.2-moderate P4.1 ,039 1,000 

control C 4.2-moderate P4.2 ,137 1,000 

control C 4.2-severe P5.1 ,000 ,006 

control C 4.2-severe P5.2 ,039 ,054 

control C 4.2-severe P6.1 ,002 ,150 

control C 4.2-severe P6.2 ,000 ,020 

control C 4.2-severe P7.1 ,000 ,007 

horizontal 

control C 4.2-mild P1.1 ,030 1,000 

control C 4.2-mild P1.2 ,573 1,000 

control C 4.2-mild P2.1 ,196 1,000 

control C 4.2-mild P2.2 ,141 1,000 

control C 4.2-moderate P3.1 ,001 ,067 

control C 4.2-moderate P3.2 ,002 ,197 

control C 4.2-moderate P4.1 ,001 ,088 

control C 4.2-moderate P4.2 ,001 ,023 

control C 4.2-severe P5.1 ,000 ,003 

control C 4.2-severe P5.2 ,001 ,047 

control C 4.2-severe P6.1 ,000 ,020 
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control C 4.2-severe P6.2 ,002 ,015 

control C 4.2-severe P7.1 ,000 ,007 

oblique 

control C 4.2-mild P1.1 ,042 1,000 

control C 4.2-mild P1.2 ,295 1,000 

control C 4.2-mild P2.1 ,687 1,000 

control C 4.2-mild P2.2 ,148 1,000 

control C 4.2-moderate P3.1 ,037 1,000 

control C 4.2-moderate P3.2 ,036 1,000 

control C 4.2-moderate P4.1 ,033 1,000 

control C 4.2-moderate P4.2 ,043 1,000 

control C 4.2-severe P5.1 ,259 1,000 

control C 4.2-severe P5.2 ,013 1,000 

control C 4.2-severe P6.1 ,072 1,000 

control C 4.2-severe P6.2 ,358 1,000 

control C 4.2-severe P7.1 ,031 1,000 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests 

Table 32: Post-Hoc group comparison of Kruskal-Wallis-Test for plane of cell division quantification in CHIR 

and DMSO control treated control- and LIS1-patient derived organoids at day 15.  

DMSO-EpoD sig. adj. sig.a 

horizontal 

control C 3.1 ,687 1,000 

mild P1.1 ,639 1,000 

moderate P3.2 ,791 1,000 

severe P5.1 ,011 ,031 

vertical 

control C 3.1 ,958 1,000 

mild P1.1 ,892 1,000 

moderate P3.2 ,098 1,000 

severe P5.1 ,012 ,032 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests 

Table 33: Post-Hoc group comparison of Kruskal-Wallis-Test for VZ diameter quantification of CHIR and 

EpothiloneD treated control- and LIS1-patient derived organoids at day 15.  

condition sig. DMSO vs. CHIR 

control C4.1 ,722 

control C3.1 1,000 

mild P1.1 ,185 

mild P2.2 ,061 

moderate 3.2 ,011 

severe P5.1 ,000 

severe P6.1 ,001 

severe P7.1 ,054 
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