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Summary 

Microbiome research continues to move from purely descriptive approaches towards 

translation of findings into clinical applications. Microbiomics is a very active research field 

and the microbiome is now firmly established as an important factor in human health and 

disease, although mechanistic understanding currently remains limited. In this dissertation, I 

present two distinct studies which aim to (i) develop a microbiome-based screening approach 

for Colorectal Cancer (CRC), and (ii) investigate the microbiome of multiple body sites in 

Pancreatic Ductal Adenocarcinoma in order to describe a key microbiome signature that can be 

used for screening purposes.  

First, I developed a qPCR-based method for the early detection of CRC named 

Microbial Abundance-based Stool Test (MAST), which, after optimization and selection, is 

based on the quantification of seven selected microbial species from fecal samples. MAST 

showed a high predictive power and accuracy (AUC = 0.88) in a first screening cohort (77 

controls, 56 CRC) and was further validated on an independent cohort of 344 individuals (272 

controls, 72 CRC). To assess the potential usage of MAST in clinical applications, I compared 

MAST with established CRC detection method gFOBT which targets occult blood presence in 

stool. The combination of gFOBT and MAST resulted in increased specificity in the validation 

cohort owing to the complementarity of the captured signature (i.e., microbiome species 

abundance vs. occult blood presence). In summary, my work establishes MAST as a promising 

tool towards the early detection of CRC, and as a significant step in taking microbiome-based 

diagnostics towards the clinic. 

In my second project, I investigated the microbiome of multiple body sites of 57 

Pancreatic Ductal Adenocarcinoma (PDAC) patients, 50 healthy controls and 29 chronic 
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pancreatitis patients by using 16S rRNA gene sequencing, metagenomic sequencing and 

fluorescent in-situ hybridization with the aim of establishing characteristic microbiome 

signatures of pancreatic cancer. While the overall microbiome community composition was not 

shifted between cases and controls in either saliva, stool or pancreatic tissue, the stool 

microbiome carried strong PDAC-specific signatures, distinguishing cancer patients from 

controls with high accuracy (AUC = 0.84 based on 22 microbiome species). The salivary 

microbiome, in contrast, showed only a weak signal overall. I validated the specificity of the 

fecal-based prediction model on external cohorts (3468 metagenomes) including healthy 

controls and patients affected by diseases such as type 1 or type 2 diabetes, liver cirrhosis, 

inflammatory bowel disease, and CRC. Moreover, pancreatic tumor and adjacent normal tissue 

showed markedly different microbiome profiles. Lastly, the presence of stool-related 

species/genera in both tumor and healthy tissue were validated by sequencing and in-situ 

hybridization methods. 

In summary, I describe a novel screening test for CRC, and advance the understanding 

of the microbiome in Pancreatic Cancer across several body sides.  
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Zusammenfassung 

Die Mikrobiomforschung bewegt sich weiterhin von rein deskriptiven Ansätzen in 

Richtung der Translation von Erkenntnissen in klinische Anwendungen. Die Mikrobiomik ist 

ein sehr aktives Forschungsgebiet: das Mikrobiom ist mittlerweile als wichtiger Faktor sowohl 

für die menschliche Gesundheit, als auch bei diversen Krankheiten etabliert, obwohl das 

mechanistische Verständnis vieler Zusammenhänge derzeit noch weitgehend begrenzt ist. In 

dieser Dissertation stelle ich zwei verschiedene Studien vor, die darauf abzielen, (i) einen 

mikrobiombasierten Screening-Ansatz für Darmkrebs (CRC) zu entwickeln und (ii) das 

Mikrobiom mehrerer Organe beim duktalen Pankreas-Adenokarzinom zu untersuchen, um eine 

wesentliche Mikrobiomsignatur zu beschreiben, die für Screeningzwecke verwendet werden 

kann. 

Zunächst entwickelte ich eine qPCR-basierte Methode zur Früherkennung von CRC mit 

dem Namen Microbial Abundance-based Stool Test (MAST), die auf der Quantifizierung von 

sieben ausgewählten mikrobiellen Spezies aus Stuhlproben basiert. MAST zeigte in einer ersten 

Screening-Kohorte (77 Kontrollen, 56 CRC) eine hohe Vorhersagekraft und Genauigkeit (AUC 

= 0,88) und wurde in einer unabhängigen Kohorte von 344 Personen (272 Kontrollen, 72 CRC) 

weiter validiert. Um die potenzielle Verwendung von MAST in klinischen Anwendungen zu 

beurteilen, habe ich MAST mit der etablierten CRC-Nachweismethode gFOBT verglichen, die 

auf das Vorhandensein von okkultem Blut im Stuhl abzielt. Die Kombination von gFOBT und 

MAST führte aufgrund der Komplementarität der erfassten Signatur (d.h. das Messen der 

Häufigkeit von Mikrobiomspezies gegenüber okkultem Blut) zu einer erhöhten Spezifität in der 

Validierungskohorte. Zusammenfassend lässt sich sagen, dass meine Arbeit MAST als 
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vielversprechendes Instrument zur Früherkennung von CRC und als wichtigen Schritt für die 

mikrobiombasierte Diagnostik in der Klinik etabliert. 

In meinem zweiten Projekt untersuchte ich das Mikrobiom mehrerer Körperstellen von 

57 Patienten mit duktalem Pankreas- Adenokarzinom (PDAC), 50 gesunden Kontrollpersonen 

und 29 Patienten mit chronischer Pankreatitis mithilfe von 16S-rRNA-Gensequenzierung, 

metagenomischer Sequenzierung und fluoreszierender In-situ-Hybridisierung mit dem Ziel, 

charakteristische Mikrobiom-Signaturen von Bauchspeicheldrüsenkrebs zu etablieren. 

Während die Gesamtzusammensetzung des Mikrobioms weder in Speichel-, Stuhl- noch im 

Pankreasgewebe zwischen PDAC und Kontrollen verschoben war, wies das Stuhlmikrobiom 

starke PDAC-spezifische Signaturen auf, wodurch Krebspatienten von Kontrollen mit hoher 

Genauigkeit unterschieden werden konnten (AUC = 0,84 basierend auf 22 Mikrobiomspezies). 

Das Speichelmikrobiom zeigte dagegen insgesamt nur ein schwaches Signal. Ich habe die 

Spezifität des fäkalen Vorhersagemodells für externe Kohorten (> 3000 Metagenome) validiert, 

einschließlich gesunder Kontrollen und Patienten, die von Krankheiten wie Typ 1 oder Typ 2 

Diabetes, Leberzirrhose, entzündlicher Darmerkrankung und CRC betroffen sind. Darüber 

hinaus zeigten der Pankreastumor und das angrenzende normale Gewebe deutlich 

unterschiedliche Mikrobiomprofile. Schließlich wurde das Vorhandensein von Stuhl-

verwandten Arten / Gattungen sowohl im Tumor als auch im gesunden Gewebe durch 

Sequenzierungs- und In-situ-Hybridisierungsmethoden validiert. 

Zusammenfassend beschreibe ich einen neuartigen Screening-Test für CRC und 

verbessere das Verständnis des Mikrobioms bei Bauchspeicheldrüsenkrebs über mehrere 

Körperseiten hinweg. 
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1. Microbiome in human health and disease: 

 

This chapter presents an overview of the current knowledge in the fast-paced field of 

microbiome and the relationship of it with cancer progression and detection. It is written by me 

as a result of literature search.  
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Recent technological advances have transformed classical microbiology towards more 

high throughput studies and allowed us to investigate more complex communities. Microbiota 

is a general term to summarize a community of organisms in a given region, such as an 

environment or a specific body site. The genomes and functional complements of all organisms 

in a microbiota are collectively referred to as microbiome. 

The microbiome plays an essential role in maintaining human health, via multiple direct 

and indirect ways. The microbiome residing in the gastrointestinal tract (GIT), the organ with 

the highest bacterial load, is in particular known to be involved in nutrient adsorption, 

metabolite synthesis, detoxification and immune system modulation and regulation (Jandhyala 

et al. 2015; O’Hara & Shanahan 2006).  

The gastrointestinal microbiome is dominated by bacteria, but also contains archaea, 

protists, viruses and fungi, creating a very complex and diverse community. Microbiome 

composition is affected by several factors that can be roughly classified in four main groups: 

host-intrinsic factors (host genetics, gender, immune system, BMI), host-extrinsic factors (diet, 

geography, transit time, medication, birth delivery mode), environmental (local environment 

and its interaction with host) and microbiome-intrinsic factors (age, disease status, confounding 

and stochastic effects) (Thomas S B Schmidt et al. 2018). These factors altogether create a 

complex system of variables, in which some are more interconnected than others, and make 

each individual unique. This inter-individual compositional variation in the gut may underlie 

differential responses to external stimuli, including for example some cancer therapies 

(Gharaibeh & Jobin 2018; Gopalakrishnan et al. 2018; Matson et al. 2018; Roberts et al. 2013; 

Routy et al. 2018; Wallace et al. 2015). 

The gut microbiome is stable over time in terms of dominant phyla, which include 

Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria, provided that lifestyle and diet 

remains constant and no antibiotic is administered (Martinez-Guryn et al. 2019; Rodríguez et 
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al. 2015). However, despite the continuous efforts in the last decade, mostly via large-scale 

microbiome projects such as The Human Microbiome Project (HMP) and the Metagenomics 

of the Human Intestinal Tract (MetaHIT) (The MetaHIT Consortium & Ehrlich 2011; 

Turnbaugh et al. 2007), the precise definition of a healthy microbiome remains elusive. Since 

a myriad of factors influence the composition of the gut microbiome (see above), the high 

variability among individuals remains the biggest challenge to the identification of “health-

specific” microbial signatures.  

Several diseases including inflammatory bowel diseases (IBD), (Chong et al. 2019; 

Halfvarson et al. 2017), obesity (Maruvada et al. 2017; Wellen & Hotamisligil 2005), type 1 

and type 2 diabetes mellitus (Jamshidi et al. 2019; Sharma & Tripathi 2019; Turnbaugh et al. 

2009), several neurodegenerative disorders (Jangi et al. 2016; Shen & Ji 2019), cardiovascular 

diseases (Ahmadmehrabi & Tang 2017; Czesnikiewicz-Guzik & Müller 2018), rheumatoid 

arthritis (Konig 2020) and several malignancies (Schwabe & Jobin 2013; Scott et al. 2019; 

Sears & Garrett 2014) such as colorectal (Marchesi et al. 2011), liver (Schwabe & Greten 2020), 

stomach (Rajilic-Stojanovic et al. 2020), pancreas cancers (R. M. Thomas & Jobin 2020) have 

been associated with gut microbiome composition. Similarly, microbial communities in the 

human oral cavity have been linked with several diseases (Hall et al. 2017; Schwabe & Jobin 

2013).    

Cancer is a multifactorial disease affected by both genetic and environmental 

components. There is increasing evidence that commensal microbes may be a contributing 

factor to cancer development. Several studies found a strong association between microbial 

dysbiosis and cancer, suggesting that specific bacterial species can directly and indirectly 

modulate tumorigenesis (Bose & Mukherjee 2019; Clemente et al. 2012; Gentile & Weir 2018; 

Helmink et al. 2019; Kåhrström et al. 2016; Kamada et al. 2013; Lynch & Pedersen 2016; 

Sekirov et al. 2010; Shreiner et al. 2015), by producing toxins or tumorigenic molecules and by 
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causing severe inflammation or immune suppression (Cani & Jordan 2018; Garrett 2019; 

Zitvogel et al. 2015, 2018). However the gut microbiome can also increase the host anti-tumor 

immunity via the production of short chain fatty acids (SCFA) like butyrate and 

lipopolysaccharides (LPS) (Zitvogel et al. 2017).  

Most of the mentioned microbiome studies have reported associations rather than 

causation (Thomas S B Schmidt et al. 2018). This is due to the limitations of technical and 

biological knowledge. For instance, human studies are much more valuable than animal ones, 

given the considerable dissimilarities at the anatomical level (Nguyen et al. 2015). In human 

studies, detailed longitudinal or interventional designs are essential to establish causes and 

effects, but this kind of study design is costly and not widely adopted. Additional limiting 

factors include a lack of fine-grained functional annotations for most known species and limited 

taxonomic resolution (D’Argenio 2018). Moreover, focusing only on community-wide 

compositional changes may provide limited information, since microbial signatures can be 

limited to a small number of species or genes instead of the entire community (Zeller 2014).  

Some species are notoriously linked with specific types of cancer; for example, H. pylori 

can cause gastric cancer by producing cytotoxins (Meng et al. 2015; Peek & Blaser 2002). 

Another organ routinely exposed to bacteria is the liver, with fundamental functions such as 

filtering blood, metabolizing drugs, detoxifying chemicals and also secreting bile acids to the 

gut. The liver is also directly linked with the gut via the so-called gut-liver axis. In some 

individuals, this connection may lead to inflammation and hepatotoxicity, important risk factors 

for carcinogenesis (Gupta et al. 2019; L.-X. Yu & Schwabe 2017). For instance, secondary bile 

acid conversion in liver sourced by some bacteria might cause DNA damage in liver cells 

leading to cancer (Yoshimoto et al. 2013). Colorectal cancer (CRC) has been associated with 

community-wide changes in gut microbiome composition, and for some species there is 

evidence of causal effects (Alhinai et al. 2019; Pleguezuelos-Manzano et al. 2020). Such 
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community-wide shifts (in this case in both in the oral cavity, pancreas and gut) have been 

described also in pancreatic cancer (PC) (R. M. Thomas & Jobin 2020) 

During my PhD, I have investigated the association between the human microbiome, in 

particular oral cavity and gut, and different types of cancer and the identification of cancer-

specific markers for early diagnostic purposes. In particular, my efforts have been towards the 

study of colorectal and pancreatic cancer. The next two chapters will be based on those projects 

leaded by me.  
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2. The Fecal Microbiome as a Colorectal Screening 

Tool: MAST: Microbial Abundance-based Stool Test 

This chapter discusses one of my main projects during the PhD and describes follow up 

analyses to understand to which extent bacterial species could be used for early detection and 

screening of colorectal cancer. Based on these analyses, I developed a qPCR-based test for early 

CRC detection, which we have termed Microbial Abundance-based Stool Test (MAST). I have 

received support from collaborators, specifically Dr. Georg Zeller, Dr. Vladimir Benes, and Dr. 

Marja Driessen (all from EMBL). Most of the wet lab work and analyses reported here are 

unpublished and performed by me. A manuscript is currently under preparation based on this 

chapter. 

I also contributed to a sub-project which resulted in to a paper, in collaboration with Dr. 

Georg Zeller and Jakob Wirbel and a review with Tilman Kühn and Solomon A Sowah (see 

below). 

Wirbel, J., Pyl, P.T., Kartal, E. et al. Meta-analysis of fecal metagenomes reveals 

global microbial signatures that are specific for colorectal cancer. Nature Medicine 25, 679–

689 (2019). https://doi.org/10.1038/s41591-019-0406-6 

 

Solomon A Sowah, Lena Riedl, Antje Damms-Machado, Theron S Johnson, Ruth 

Schübel, Mirja Graf, Ece Kartal, Georg Zeller, Lukas Schwingshackl, Gabriele I Stangl, 

Rudolf Kaaks, Tilman Kühn, Effects of Weight-Loss Interventions on Short-Chain Fatty Acid 

Concentrations in Blood and Feces of Adults: A Systematic Review, Advances in Nutrition, 

Volume 10, Issue 4, July 2019, Pages 673–684, https://doi.org/10.1093/advances/nmy125 
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2.1. Introduction 

Colorectal cancer (CRC) is the third most common cancer in westernized societies, with 

2.5 million new cases and 1.2 million deaths expected worldwide by 2030 

(https://gco.iarc.fr/tomorrow/). The genetic component is less than 20% (Carethers & Jung 

2015). In addition to moderate genetic factors, such as mutations in the Adenomatous Polyposis 

Coli (APC) gene, an altered Wnt-signalling and DNA mismatch repair system (Loktionov 

2020), there are other risk factors including inflammatory bowel diseases like CD or UC, 

obesity, alcohol consumption, tobacco usage, lack of physical activity and dietary intake 

(Moskal et al. 2016). 

CRC progression is a multi-step progress which may take more than 10 years from 

normal epithelium to adenoma/carcinoma, so that early detection has a large impact on 

treatment opportunities and patient survival. Diagnosis at an early stage of the tumorigenesis 

results in a 5-years survival rate of >80%, however this decreases dramatically to < 20% as the 

disease advances (Siegel et al. 2017). Change in bowel habit, rectal bleeding, fatigue, weakness, 

weight loss, discomfort, pain or gas in bowel are some of CRC symptoms; however, they appear 

late during the disease’s progression, emphasizing the importance of population screening.  

Currently, colonoscopy is the “golden standard” with very high specificity, but the 

procedure is invasive, time-consuming, expensive and might cause distraction on gut 

microbiome and severe complications as well, limiting its wider usage (Rutter et al. 2014). 

Intense research on CRC biomarkers based on DNA, RNA, proteins, metabolites and the gut 

microbiome has accelerated recently (Coghlin & Murray 2015; Loktionov 2020). So far, guaiac 

fecal occult blood test (gFOBT), fecal immunochemical test (FIT/iFOBT) and multitarget stool 

test marketed as Cologuard are the most common and accepted non-invasive screening tests. 

gFOBT and iFOBT target heme of hemoglobin in stool which is an indicator of inflammation 
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in gut and these are not suitable to detect early lesions and their sensitivity (0.13-0.79 and 0.69-

0.86, respectively) and specificity (0.86-0.98 and 0.92-0.95, respectively) are still low (Lee et 

al. 2014; Robertson et al. 2017). Cologuard detects abnormal DNA in stool and it is an enhanced 

version of iFOBT, however it is very expensive, requires sophisticated lab equipment and 

technical challenges still remains to be solved (Loktionov 2020). The prevalence of CRC, the 

benefits of early testing, and the limitations of current tests all highlight the importance of 

developing more sensitive and affordable screening tests for CRC. 

 

Figure 2.1 “Despite study differences, meta-analysis identifies a core set of gut microbes 

strongly associated with CRC. 

a. The meta-analysis significance of gut microbial species derived from blocked Wilcoxon tests (n = 574 
independent observations) is given by the bar height (FDR = 0.005) AT, Austria; CN, China; DE, Germany; FR, 
France; US, United States. c. For a core of highly significant species, association strength is quantified by the 
AUROC across individual studies, and the 95% confidence intervals are indicated by the gray lines. Family-level 
taxonomic information is color-coded above the species names.” This figure is published in Wirbel et al., 2019 
which I was also an author and it was produced by Jakob Wirbel. 
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Changes in the gut microbiome may create a microenvironment favorable for 

carcinogenesis (Gagnière et al. 2016; Kostic et al. 2013; Sheng et al. 2020; Tjalsma et al. 2012; 

Wang et al. 2012). Several studies confirmed the differential enrichment of bacteria between 

tumor and nontumor tissue (Allali et al. 2015; Flemer et al. 2017; Gao et al. 2017) and explored 

the CRC tumor virome and mycobiome (Coker et al. 2019; Nakatsu et al. 2018), however due 

to the challenges in targeting these biomes, their limited taxonomic resolution and their lower 

abundance relative to bacteria, research groups have mostly focused on role of bacteria and 

archaea. 

Even though the fecal microbiome is only a proxy for gut microbiome, the possibility 

of non-invasive screening test has favored fecal-based research (Konstantinov et al. 2013; 

Rezasoltani et al. 2018; J. Yu et al. 2017). Numerous studies have compared fecal microbiome 

differences between CRC cases and controls. Though there was generally no overall community 

shift observed, significantly enriched or depleted species showed a link with CRC status (Ahn 

et al. 2013; Dai et al. 2018; Drewes et al. 2017; Feng et al. 2015; Marchesi et al. 2011; Mira-

Pascual et al. 2015; Saito et al. 2019; N. Wu et al. 2013; Zeller et al. 2014) (Table 2.1, Figure 

2.1). Fecal microbiome analysis showed increased levels of specific bacterial species in CRC 

cases, including Fusobacterium nucleatum, Enterococcus faecalis, Escherichia coli, 

Bacterioides fragilis, Peptostreptococcus stomatitis and Parvimonas micra, whereas other taxa 

were depleted, such as Clostridiales, Faecalibacterium, Blautia, and Bifidobacterium (Wong 

et al. 2017; J. Yu et al. 2017; Zeller et al. 2014; Zhang et al. 2019; Zou et al. 2018) (Table 2.1, 

Table 2.2). 

Though these results are promising, the identified discriminative species varied by 

study. This variance is possibly due to cohort differences (e.g. due to geography, diet) as well 

as technical noise (e.g. sample quality, storage, extraction method, sequencing, choice of 

bioinformatics tools) (Paul I Costea et al. 2017; Duvallet et al. 2017; Villéger et al. 2018). To 
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diminish the effect of study-specific and background noise, a meta-analysis of publicly 

available CRC cohorts was performed and showed that there is a core set of CRC-associated 

microbes, independent of study effects, diet, geography or other factors, which have an impact 

on gut microbiome (Dai et al. 2018; Shah et al. 2018; A. M. Thomas et al. 2019; Wirbel et al. 

2019).  

The aim of this project in my PhD was to narrow down previously reported microbiome 

signals to target CRC by a non-invasive, cheap and fast method. It was mainly based on 

previous work (Zeller et al. 2014), which showed that a combination of 22 species gives a more 

accurate classification than any single taxon. This classifier supports the hypothesis that 

community composition is important to CRC development. Of these 22 species, four contribute 

disproportionately to the classifier, these being two Fusobacterium species, Porphyromonas 

asaccharolytica and Peptostreptococcus stomatis, which are patented under the EP2955232A1 

number (https://patents.google.com/patent/EP2955232A1) (Zeller et al. 2014). Based on these 

findings, I have developed a quantitative PCR (qPCR) based non-invasive, rapid and low-cost 

CRC screening method, the Microbial Abundance-based Stool Test (MAST). 

 



Table 2.1 Summary of CRC-related microbiome studies 

 

 

Study Country Cohort size Specimen Method Microbial change 

Scanlan 2008 Belgium  
20 CRC/ 20 Polyp/ 20 
CTR Stool   

16s rRNA 
sequencing 

↑ diversity of the C. leptum and C. coccoides 
subgroups 

Sobhani 2012 France  60 CRC / 119 CTR  Stool   
16s rRNA 
sequencing 

↑ Bacteroides, Prevotella 

Castellarin 2012 Canada  11 CRC with normal tissue  Tissue  RNA sequencing  ↑ Fusobacterium 

Kostic 2012 USA  95 CRC with normal tissue  Tissue  
16s rRNA 
sequencing 

↑ Fusobacterium 

Sanapareddy 2012 USA  33 Adenoma / 38 CTR  Tissue  
16s rRNA 
sequencing  

↑ bacteria from 87 taxa 

Chen 2012 
China  46 CRC/ 56 CTR 

Tissue, 
stool, swab 

16s rRNA 
sequencing  

 ↑ B. fragilis, Lactobacillales, Fusobacterium,  
Porphyromonas, Peptostreptococcus, Mogibacterium 

Wang 2012 
 ↓ diversity, Bifidobacterium, Faecalibacterium,  
Blautia butyrate-producing bacteria 

Ahn 2013 USA  47 CRC/ 94 CTR Stool   
16s rRNA 
sequencing  

↓ diversity, Clostridia;  
↑ Fusobacterium, Porphyromonas 

Dejea 2014 USA  
23 CRC/ 2 Adenoma /  
22 CTR 

Tissue  
16s rRNA 
sequencing  

↑ Fusobacterium; difference by biofilm status 

Zackular 2014 USA  
30 CRC/ 30 Adenoma/ 
30 CTR  Stool   

16s rRNA 
sequencing  

↑ Bacteroides fragilis, Fusobacterium, 
Porphyromonas  
↓ butyrate-producing bacteria 

Zeller 2014 France  
91 CRC/ 42 Adenoma /  
358 CTR 

 Stool   
Metagenomic 
sequencing 

↑ Bacteroidetes, Fusobacteria and Proteobacteri;  
↓ Actinobacteria and Firmicutes 

Burns 2015 USA  44 CRC  Tissue  
16s rRNA 
sequencing  

↑ diversity, Fusobacterium and Providencia 
↑ virulence-related genes 
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Feng 2015 Canada 
41 CRC/ 42 Adenoma/ 55 
CTR Stool   

Metagenomic 
sequencing 

↑ B dorei, B vulgatus, E coli, Fusobacterium;  
↓ Lactobacillus and Bifidobacterium 

Lu 2016 China 31 Adenoma / 20 CTR Tissue 
16s rRNA 
sequencing 

↑ diversity, Lactococcus and Pseudomonas 
↓ Enterococcus, Bacillus and Solibacillus 

Vogtmann 2016 USA, France 52 CRC/ 52 CTR Stool   
Metagenomic 
sequencing 

↑ Fusobacterium, Porphyromonas, Clostridia 

Baxter 2016 USA, Canada 
120 CRC/ 198 Adenoma / 
172 no colonic lesions 

 Stool   
16s rRNA 
sequencing  

↑ P. assaccharolytica, P. stomatis, P. micra, F. 
nucleatum  
↓ Lachnospiraceae 

Hale 2017 USA  233 Adenoma /547 CTR  Stool   
16s rRNA 
sequencing  

↑ Bilophila, Desulfovibrio, Mogibacterium;  
↓ Veillonella, Clostridia  

Yu 2017 
Denmark, 
France, Austria 

74 CRC / 54 CTR  Stool   
Metagenomic 
sequencing 

↑ P. stomatis, F. nucleatum, P. micra, S. moorei 

Liang 2017 China 203 CRC / 236 CTR  Stool   
16s rRNA 
sequencing  

↑ F. nucleatum, Clostridium hathewayi  
↓ B. clarus 

Flemer 2018 Ireland 43 CRC / 37 CTR  Stool, tissue   
16s rRNA 
sequencing  

↓ L. incertae sedis and Coprococcus 

Nakatsu 2018 
Hong Kong, 
Austria, France, 
Germany 

248 CRC/ 241 CTR  Stool   
Shotgun 
sequencing 

↑ Orthobunyavirus 

Sheng 2019 China 67 CRC/ 30 CTR  Stool   
16s rRNA 
sequencing  

↑ Prevotella, Collinsella, Peptostreptococcus  
↓ Escherichia-Shigella 

Coker 2019 Hong Kong  
184 CRC/ 197 Adenoma/ 
204 CTR 

 Stool   
Shotgun 
sequencing 

↑ Malasseziomycetes  
↓ Saccharomycetes, Pneumocystidomycetes 

Yackida 2019 Japan 54 CRC/ 127 CTR  Stool   
Shotgun 
sequencing 

55 bacterial markers 

Sarhadi 2020 Iran, Finland 83 CRC/ 60 CTR  Stool   
16s rRNA 
sequencing  

↑ Prevotella, Clostridium, Ruminococcus  
↓ Bacteroides 

Liu 2020 China 
59 Polyp/ 54 Adenoma/ 51 
CRC/ 42 CTR   Stool   

16s rRNA 
sequencing  ↓ Bacteroidetes, Firmicutes 



Table 2.2 The role of intestinal bacteria in CRC. 

 
Bacteria 

 

Epidemiologic Evidence 

 

Potential mechanisms  

 

References 

Associated with higher risk of CRC   

Fusobacterium 

nucleatum 

↑ tumor tissue and fecal samples of 

patients  
Tumor-permissive 

microenvironment 

(Kostic et al. 2013; 

Rubinstein et al. 

2013)  

lower infiltration by T cells  

higher risk of recurrence Modulation of Ecadherin/β-

catenin 

 

poorer patient survival  

Enterotoxigenic 

Bacteroides fragilis 

(ETBF) 

↑ tumor tissue and fecal samples of 

patients  
DNA damage 

(Goodwin et al. 2011; 

S. Wu et al. 2003) 

associated with advanced cancer 

stage and proximal colon tumor. 
 

pks+ Escherichia 

coli 

↑ tumors than in normal flanking 

tissue Intestinal inflammation 

(Pleguezuelos-

Manzano et al. 2020) 

↑ late-stage tumors  

Associated with lower risk of CRC   

SCFA-producing 

bacteria 

↓ CRC patients than controls 

Modulation of SCFAs  

 

↑ Native Americans with a low CRC 

incidence 

(Richard et al. 

2018) 
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2.2. Results 

We developed a microbial abundance-based stool test (MAST) for early detection of 

CRC; which targets selected species and strains based on previous knowledge (Zeller et al. 

2014). We received fecal samples collected at the German Cancer Research Center (DKFZ) 

including 56 CRC patients from the ColoCare cohort and 77 gender- and age-matching healthy 

controls from the PRÄVENT cohort. Based on the ridge regression model we developed, we 

obtained an AUC of 0.87 when discriminating CRC patients from healthy controls.  

To further validate our findings, we included another independent cohort collected at 

the same institute, composed of 37 CRC patients and 272 healthy individuals from the 

‘Begleitende Evaluierung innovativer Testverfahren zur Darmkrebs-Früherkennung’ (BLITZ) 

study and an additional 35 CRC cases from the ‘Darmkrebs: Chancen der Verhütung durch 

Screening’ (DACHS) study (Brenner et al. 2014). Validation of the MAST qPCR model on this 

combined cohort (DE2) showed high accuracy as well. Moreover, we have tested the 

combination of gFOBT and MAST results in the DE2 cohort since gFOBT results were 

available only in this cohort. The combination increased accuracy and sensitivity, 

demonstrating that microbiome and gFOBT signals are partly complementary. 

2.2.1. qPCR results per species  

To quantify the relative abundances of selected species/strains to total DNA amount in 

a given samples, qPCR was performed in triplicates targeting genomic DNA (gDNA) for all 

selected species and 16S rRNA gene as proxy of total DNA. A universal primer for the 16S 

rRNA gene (Ritalahti et al. 2006), which was suitable for qPCR method was used to normalize 

cycle threshold (Ct) values. The SPUD assay was implemented as an inhibitor indicator. All 

primer and probe pairs shown in Table 2.3 had positive and negative controls in the same plate 
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to judge the reaction efficiency and to detect any potential contamination. We furthermore used 

a plate calibrator to detect pipetting errors caused by manual handling or the liquid handler. The 

detailed workflow is shown in Figure 2.2. 

 

Figure 2.2 MAST workflow step by step. 

Sample collection is first step of the process which can be done in either way. DNA extraction is done by boiling 
extraction method (see method section 2.4) as a next step after receiving the fecal material in the lab which 
requires S2 lab conditions. Normalized dCt values are used to perform machine learning approach and each 
patient receives a classification score based on their microbiome profile. This figure was produced by myself. 

 

To assess the discriminative power of each species, we first calculated delta Ct (dCt) 

value based on the difference between a given species’ Ct value and 16S rRNA gene. Receiver 

operating characteristic (ROC) analysis was based on dCt values of each species. We also had 

shotgun metagenomics data available for most of the individuals from DE1 cohort (Zeller et al. 

2014; Wirbel et al. 2019).  Some species were showed a very good area under the curve (AUC) 

score in agreement with both MAST and shotgun metagenomics sequencing, while species 

enriched in control samples did not have a high AUC for one or both methods (Figure 2.3). This 

figure also presents that qPCR approach is much more sensitive than shotgun metagenomics 

approach, especially detection of low abundant species/strains.  
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Figure 2.3 Comparison of qPCR and shotgun metagenomics sequencing showed that 

qPCR approach is more sensitive. 

pROC package from R was used to produce ROC plots for each species. Green represents dCt value from 
MAST qPCR test, while blue shows relative abundance from shotgun metagenomics data for same samples. 
All shotgun metagenomics data was published in Zeller et al 2014 and Wirbel et al. 2019. This figure is part of 
the manuscript which is under preparation and all panels were produced by myself. 
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2.2.2.  Combined model performs better than single species  

To combine the power of different species information and see the total discriminative 

power, we applied a ridge regression model. Since our data had more observations (individuals) 

than predictors (targeted bacteria/strain), ridge regression was selected. The combined model 

differentiated CRC cases from controls with an AUC of 0.87 based on MAST of 13 species 

(Figure 2.5). The z-score normalized dCt values across all tested samples in DE1 cohort are 

shown as heatmap in Figure 2.4.  

 

Figure 2.4 Heatmap showing the abundance of species among individuals across DE1 

cohort. 

z-score normalized dCt values of 13 species in DE1 cohort is shown for 56 CRC and 77 control samples. The left 
panel represents the main contribution of each selected feature to the overall model and below panel shows the 
classification score of model for each individual. This figure is part of the manuscript which is under preparation 
and it was produced by myself 
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We further decided to lower the number of potential species to decrease handling time 

and cost of the test in a clinical setup. We removed the species with lower weight contribution 

to model and we ended up with 7 species with the highest differentiation power, mostly CRC-

enriched (Figure 2.5).  

When we compared the current model with gFOBT theoretical sensitivity and 

specificity scores, our model performance was better (Figure 2.5). Regrettably, we did not have 

the information of gFOBT or iFOBT for our DE1 cohort. 

 

 

Figure 2.5 ROC curve based on MAST results of DE1 cohort. 

Ridge regression model of DE1 cohort based on 13 species is represented by orange, while seven species model 
Ridge regression model of DE1 cohort based on 13 species is represented by orange, while seven species model 
is red. Models were trained on z-score normalized dCt values with 10 resampling followed by 10 cross validation. 
Validation of seven species model on DE2 cohort is displayed with blue line. The theoretical specificity and 
sensitivity of gFOBT test is shown with light green. 95% confidence intervals of true-positive rate are shaded 
accordingly. This figure is part of the manuscript which is under preparation and it was produced by myself. 
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2.2.3. Validation of MAST classifier using DE2 external cohort 

To evaluate the accuracy of MAST model, we performed MAST qPCR in an 

independent cohort (DE2), which consists of 272 controls and 72 CRC cases. The same data 

generation and normalization procedures were applied. The AUC of 7 species-based MAST 

model performance on DE2 cohort was 0.75 (Figure 2.5). We also tested 13 species model and 

the performance of both models was very similar.  

Since half of the CRC cases were from another study (BLITZ) in DE2 cohort, we further 

tested if those samples were different based on their profile, but effects were negligible 

(AUC=0.6), confirming that there is no difference between those 2 different study cohort 

(Figure S2. 1).  

 

Figure 2.6 Combination of MAST and gFOBT results improves sensitivity in DE2 cohort. 

Light blue line represents the model only based on normalized MAST results on DE2 cohort; while dark blue 
represents the combination of MAST and gFOBT for same cohort. Ridge regression model was trained on 
normalized dCt values with 10 resampling followed by 10 cross validation. This figure is part of the manuscript 
which is under preparation and it was produced by myself. 
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2.2.4. Testing complementary power of gFOBT and MAST results on DE2 study 

gFOBT information was only available for the DE2 study. To determine the 

complementary effect of gFOBT with MAST, we first used only MAST data on DE2 cohort as 

predictor and then we added gFOBT results as predictor as well (Figure 2.6). Combined model 

achieved higher accuracy as measured by AUC of mean predictions score (0.84). This supports 

the previous observations about gFOBT and microbiome signals as capturing different signals 

and combination increases specificity (Zeller et al. 2014). 

 

 

Figure 2.7 Heatmap showing results of MAST and gFOBT across DE2 cohort. 

MAST results for selected seven species and gFOBT combination captured different signals which increased 
sensitivity. Feature weights are shown in left panel and heatmap represents the normalized dCT as abundance of 
seven species and gFOBT results. The below panel displays metavariables that we checked for potential 
confounder affect. This figure is part of the manuscript which is under preparation and it was produced by myself. 
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2.3. Discussion and Perspectives 

Colorectal cancer (CRC) is a growing challenge in societies worldwide, and after lung 

cancer the second most deadliest cancer as measured by the total number of deaths per year 

worldwide (Keum & Giovannucci 2019). Thus, it is particularly important to improve early 

detection and strategies for monitoring, understanding and stabilizing disease progression. 

Here we propose a microbiome-based screening technique called MAST that is low-

cost, rapid and simple to process. It builds upon recent research that revealed a specific 

microbiome composition for CRC with some significantly abundant species when compared to 

healthy controls. For MAST, we initially selected 13 species/strains and used qPCR to target 

the species in the DE1 cohort (56 control and 77 CTR cases). The discriminative power of each 

species is shown in Figure 2.3. Reassuringly, species enriched in CRC mostly showed high 

accuracy to distinguish cancer cases from controls. A combination of those 13 species 

performed very promising in the differentiation of CRC cases from healthy controls with an 

AUC of 0.87. 

Based on the results, we optimized the model and narrowed down the minimum number 

of species that still retain the signal from 13 to seven including Clostridium symbiosum, 

Parvimonas micra, Peptostreptococcus stomatis, Porphyromonas asaccharolytica, 

Solobacterium moorei, Fusobacterium nucleatum and Streptococcus salivarius. This allowed 

us to process more samples, decrease costs and handling time and in addition even have a better 

performance (AUC = 0.88). Next, we validated the accuracy of our seven species-based MAST 

model on an independent cohort DE2 (DE: 272 control vs. 72 CRC cases) with an AUC of 0.75 

(Figure 2.5).  

To determine the potential usage of MAST in clinics, in combination with 

gFOBT/iFOBT as shown in Zeller et al 2014, we wanted to compare and combine MAST 
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performance with gFOBT and iFOBT. gFOBT and iFOBT are simple and economical options 

while lacking sensitivity and specificity. Additionally, Cologuard performs better than gFOBT 

and iFOBT in CRC detection, yet its complexity, required laboratory equipment and high cost 

makes its usage limited in practice (Loktionov 2020). However, we did not yet have any of 

these test results available for the DE1 cohort and only got access to the gFOBT results for the 

DE2 cohort. When we built the models based on the DE2 cohort with and without gFOBT, we 

noted a big increase in specificity when the gFOBT results were included (AUC= 0.84, Figure 

2.5). This strongly indicates that those two tests capture different types of signatures that 

complement each other (bacterial abundance and occult blood in stool, respectively) and the 

combination increases overall specificity of CRC detection.  

Moreover, we hypothesize that including iFOBT results may even further increase AUC 

and also specificity more than either iFOBT or MAST alone. To test this in the future, we will 

conduct more external validation cohorts with gFOBT and/or iFOBT results to have a broader 

view of MAST applications and overall potential.  

Potential improvements include further decreasing its current costs of just below 60 

Euro by multiplexing primers to decrease labor costs and consumables or using a liquid handler 

to reduce overall handling time. Possible combination with gFOBT/iFOBT would also decrease 

the shipping cost and handling time.  

Our study has a number of potential limitations. First, as with all studies, more and 

bigger external validation cohorts, preferably from different countries and continents to 

improve understanding of geographic signatures, are required to further evaluate and improve 

specificity and sensitivity of MAST. The used cohorts are from Germany only, and the 

possibility of geographic effect cannot be excluded. However, since meta-analyses of several 

available metagenomics data also demonstrated that CRC-related microbiome signal is present 

across all compared cohorts independent of geography, diet or technical differences (Dai et al. 
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2018; Shah et al. 2018; A. M. Thomas et al. 2019; Wirbel et al. 2019), this may not even be a 

limiting factor. Therefore, the developed early CRC screening method based on fecal 

microbiome may be used worldwide. Second, iFOBT results are yet missing in both cohorts as 

well as gFOBT results in the first cohort. Third, the in-silico model may also be further 

improved by adding or changing the species composition, generally more data to allow a better 

training of the data and estimation of parameters. In addition, since the current model is only 

based on species abundance, adding potential functional information such as the absence or 

presence of particular marker genes or their expression levels as well as merging taxonomic 

information may boost the model even further. Fourth, MAST currently targets only general 

CRC signatures but not individual subtypes. With more data, it may be possible to detect 

subtype-specific signatures such as those arising from MSI (CMS1), CIN (CMS2, CMS3, 

CMS4). However, the microbiome of the various subtypes has not been studied extensively 

either. In addition, stage-specific signatures may be detected with the availability of more data 

in order to build the model. Both extensions would significantly enhance the applicability and 

scope of the MAST test. 

In summary, we aimed to develop an assay that can be used in clinics to predict early 

CRC cases and that has advantages over the current methods. Indeed, our results collectively 

suggest that MAST may be generally used in clinics in combination with gFOBT/iFOBT to 

increase detection accuracy of CRC. 

§  
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2.4. Methods 

2.4.1. Overview of the samples and dataset included 

Written informed consent was obtained from all CRC patients and healthy controls. The 

study was approved by the institutional review board (EMBL Bioethics Internal Advisory 

Board) and the ethics committee of the Medical Faculty at the University of Heidelberg. The 

study agrees with the WMA Declaration of Helsinki and the Department of Health and Human 

Services Belmont Report. 

The first German (DE1) cohort consist of 56 CRC patients, recruited for ColoCare study 

(DKFZ, Heidelberg, (Böhm et al. 2017; Liesenfeld et al. 2015); 38 of which were published in 

(Zeller et al. 2014) with ENA accession ERP005534. All fecal samples were collected after 

colonoscopy. 77 gender- and age-matched participants of the PRÄVENT study from same 

institute were included as healthy controls; however, those individuals did not have 

colonoscopy examination, so the presence of undiagnosed carcinomas cannot be completely 

excluded. Considering the low prevalence of preclinical CRC in the general population, we still 

considered those individuals as healthy (Pox et al. 2012). 60 fecal metagenome of control 

samples were published with ENA accession (Wirbel et al. 2019) 

We included a second cohort used as external validation recruited by same investigators 

(DKFZ, Heidelberg). 35 CRC patients were recruited from a population based study called 

Darmkrebs: Chancen der Verhütung durch Screening (DACHS) study (Brenner et al. 2014). 

272 control and 37 CRC fecal samples were received from a screening cohort named 

Begleitende Evaluierung innovativer Testverfahren zur Darmkrebs-Früherkennung 

(BLITZ), which fecal samples were collected before colonoscopy 

(https://www.dkfz.de/en/imed/BLITZ.html).  
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2.4.2. DNA extraction procedure 

DNA was extracted using 0.1 mg/20µl of stool by boiling extraction method, which has 

been also tested internally at EMBL. All the samples were thawed and 2ml saline solution 

(0,15M NaCl) was added after vortexing. After centrifugation at 20000 rpm for 2 min, liquid 

part was discarded and we added 500µl saline solution to bring pellet back. Biomixer with 

stirring rods was used to homogenize and then we used 70µM cell strainer to filter sample. 

200µl solution was taken from filtered material and 800µl H2O was added before vortexing. 

After mixing and dissolving pellet completely, samples were incubated at 99°C for 15 min to 

break all the cells. This extracted material was kept at -20°C until processing time. All samples 

were measured by Qubit fluorometer (Thermo Fisher) and diluted to 5ng/µl concentration to be 

able to use liquid handler for next steps. All prepared dilutions were measured again to be 

precise about concentration.  

2.4.3. Species selection and primer design protocol 

Species selection was based on a previous study (Zeller et al. 2014) which proposed 22-

species metagenomic classifier for CRC prediction and also literature search for CRC related 

bacteria. In total, we selected 13 species as target species and we used Bacteroides vulgatus as 

internal control (Table 2.3). Primer design was aiming to target 10 marker genes and we used 

Primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/) and the National Center for 

Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/tools/primer-blast/) primer 

designing tools in combination and all designed primers were sequenced by sigma 

(https://www.sigmaaldrich.com/). Probes were also design by those tools or PrimerQuest tool 

(https://www.idtdna.com/pages/tools/primerquest) and were sequenced by IDT company. All 
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probes were 5′ nuclease probes with a fluorescent reporter dye and quencher FAM/ZEN/3' 

IBFQ. All the primer and probes were then diluted to 5NM/µl concentration. 

 
Table 2.3 The list of targeted species, primer pairs and probe sequence. 

Species Size Primer Taqman probe 

Bacteroides 
vulgatus 91 

F-CAAGCTGAGAAAAGCAGCCAAA 
AGTGGCAGTAGCCGGAGGGGTATCAGCCA 

R-GAATGAGTTACGAAGCCCGTTG 

Clostridium 
symbiosum 204 

F-GTGAGATGATGTGCCAGGC 
CACGCAAATATGATGCTGAAACCGGTG 

R-TACCGGTTGCTTCGTCGATT 

Eubacterium 
hallii 164 

F-CGGCGTTGCTTCAAACTCTTC 
CGCGCGCAGATGGAAGAAGCCTGCCG 

R-CCCAGCCATCACGAATACCTT 

Eubacterium 
rectale 180 

F-CTCACACGCAGTACAGGAGG 
AGCATGAGGAGCAGGACGGCTTCTTCTGGCA 

R-CCTTCCTCGCCAACTACAGG 

Eubacterium 
ventiosum 81 

F- GTCGGACGCTAATTGCACA 
AGATGCAATAGGTGTTACATATGGACCGG 

R-ACCAATAAGGCTCCAACTAAGC 

Fusobacterium 
nucleatum 101 

F-AGTGCAGGTGATACATTTAGAG 
TGCCCATTCTTCAAGTTGTTCAACTGC 

R-GATCAGCTCCTTCTCTTCCTTT 

Gemella 
morbillorum 101 

F-CGTCGTAGTCTTCTTGTTGAGG 
ACCGCAATTTCTTCACTACGTTTGTTGC 

R-TCAGTAGCATCTTCACGCTTAC 

Parvimonas 
micra 110 

F-CAGAGCCAGCTTGGGAAA 
AGACCCGGATGGCATCTTGAATGT 

R-ACCCGCATGAATGTCTATTGTA 

Peptostreptococcus 
stomatis 99 

F-CAGAGGATGTCTGTGCATCTT 
AGTCAAGACATCTACAACCGCGGC 

R-GGGTTATAGTCTTGTAGCCCTTATC 

Porphyromonas 
asaccharolytica 96 

F-ACTGCTTCTTCCACCAAATAGA 
ATACATCGACCGCAACGTGAGCT 

R-AAAGCGACTGAGCGAAGAA 

Porphyromonas 
uenonis 110 

F-AGGCCACTGCACGTATCAAG 
TCGACCTGACCCGTCCTGCGGTGCCT 

R-ATGACGAGAGCCTAGCGGA 

Roseburia 
intestinalis 132 

F-TCTGTCTGCAGTCCCACTAT 
ACTGACCAAACGAATCGCAGAATTAAAGGA 

R-TATCCTGCTGTACTGTTCCCT 

Solobacterium 
moorei 189 

F-ATTAGAGGGTGTCAATGGCTCG 
GCAGCGGACACATTCCGTGCTGGTGCG 

R-GGGTCACCGTTTTCTATTCCCT 

Streptococcus 
salivarius 166 

F-AATACCCACAGTCTTCCGTTG 
TGACGCCTTCCAAGAAGCTATGGA 

R-CGGTTTGATCATAATTGCCTGAAT 

16S rRNA 337 
F-ATGGYTGTCGTCAGCT 

CAACGAGCGCAACCC 
R-ACGGGCGGTGTGTAC 

SPUD spike-in 101 
F-AACTTGGCTTTAATGGACCTCCA 

GCACAAGCTATGGAACACCACGT 
R-ACATTCATCCTTACATGGCACCA 
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A universal primer for the 16S rRNA gene is used to normalize Ct values (Ritalahti et 

al. 2006). The SPUD amplicon is spiked as an inhibitor indicator to all the test samples after 

dilution preparation (Nolan et al. 2006) (5- AACTTGGCTTTAATGGACCTCCAATT 

TTGAGTGTGCACAAGCTATGGAACACCACGTAAGACATAAAACGGCCACATATG

GTGCCATGTAAGGATGAATGT-3). This artificial amplicon is part of potato genome which 

is lacking homology with any other known animal including human sequence. Presence of any 

inhibitor will increase quantification cycle (Cq) of SPUD assay, and absence of inhibitor will 

result by identical Cq.  

2.4.4. Testing sensitivity and specificity of primers and probes 

All primer pairs were tested against the main target species, sister species in same genus, 

human genome and E.coli to see potential mismatches or unspecific products Figure S2. 3. The 

primers which passed the specificity criteria were tested with probe and also sensitivity 

purposes. 1:10 DNA dilutions of main target were used to detect sensitivity of primers and 

probes. 

2.4.5. Quantitative PCR  

A DNA dilution of 5 ng/µl is used for processing stool samples; nuclease free water was 

used for all dilutions and reactions. All reactions were placed in triplicates. We used 384 well 

plates and QuantStudio 6 Flex Real time PCR SX was used to perform qPCR. The qPCR 

reaction was performed in 10µl volumes with 450nM primer and 300nM probe concentration. 

The one step cycling conditions consisted of an initial template denaturation of 95ºC for 10 

min, followed by 40-cycles of denaturation at 95ºC for 15 sec, annealing, extension and reading 

fluorescence signal at 60ºC for 60 sec. 
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2.4.6. Quality control  

We had several internal controls during the reaction. First of all, the primer pairs had a 

positive and negative control in the assay. SPUD, which is an artificial amplicon, was spiked 

in all samples during the reaction and used to see any potential inhibition in the given sample.  

 
Table 2.4 Bacterial strains used as positive target to test primer and probes.  

Species/strain Reference Tax id 

Eubacterium halii VPI B4-27, type strain DSMZ-3353 411469 

Eubacterium rectale A1-86 DSMZ-17629 657318 

Clostridium symbiosum WAL-14163 HM-309  742740 

Clostridium symbiosum WAL-14673 HM-319  742741 

Eubacterium ventriosum DSMZ-3988 411463 

F. nucleatum subsp. animalis D11 HM-75  997347 

F. nucleatum subsp. animalis F0419 HM-758  997347 

F. nucleatum subsp. nucleatum 1612A DSMZ-15643 190304 

F. nucleatum subsp. polymorphum DSMZ-20482 393480 

F. nucleatum subsp. vicentii DSMZ-19508 209882 

Gemella morbillorum M424 HM-240  29391 

Parvimonas micra 3024A, VPI 5464 DSMZ-20468.  411465 

Peptostreptococcus stomatis DSMZ-17678 596315 

Porphyromonas asaccharolytica DSMZ-20707 879243 

Porphyromonas uenonis DSMZ-23387 281920/1122976 

Roseburia intestinalis L1-82 DSMZ-14610 536231 

Solobacterium moorei DSMZ-22971 102148/1123263 

Streptococcus salivarius-275 DSMZ-20560 1304 
 

 

We furthermore used a plate calibrator to detect pipetting errors caused by manual 

handling or the liquid handler. We prepared calibrator reaction for each screening batch (DE1 

and DE2) and only used that calibrator. Any seen difference would mean an error during the 

liquid handler process. Finally, we used B. vulgatus species which in present in all fecal 
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microbiome samples to monitor potential inhibitions as well. All primer and probe pairs have 

positive and negative controls in the same plate to judge the reaction efficiency and to detect 

contamination. All positive controls used in this assay is listed in Table 2.4 and they were 

ordered from Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures 

(https://www.dsmz.de/collection/catalogue) or Biodefense and Emerging Infections Research 

Resources Repository (BEI Resources, https://www.beiresources.org/) according to specified 

strain info.   

2.4.7. Normalization of Ct value and model building 

We used 16S rRNA gene between 1055-1392 to normalize mean Ct value. Delta Ct 

value was calculated based on the difference of 16s rRNA gene and the given primer Ct value 

Figure S2. 2. ROC curves per species was based on dCt values and pROC packages was used 

to perform ROC analysis.  

After first normalization, we performed z-score normalization (z = ((x – µ) / σ); x = Ct; 

µ = mean; σ = standard deviation) to be able to use Ct values for machine learning approach. 

Z-score normalization is based on the standard deviations from their mean.  

To assess the discriminate power of combined bacterial information, we have performed 

L2 regularization ridge linear regression model. Ridge regression modelling was chosen due to 

the characteristics of our dataset, which has a smaller number of predictors/features (targeted 

species) and more observations (individuals). Ridge regression includes all predictors, and does 

not perform predictor selection. Data were split into 80% training and 20% test set for 10 times 

repeat 10-fold cross validation ending up with 100 models in total. For each split, ridge linear 

regression was trained on the training set, and that model was then used to predict the test set. 

Models were then evaluated by checking the area under the Receiver Operating Characteristics 

curve (AUROC) based on the known CRC status in the metadata (Figure 2.5). 
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To test the gFOBT contribution to qPCR-based classifier, gFOBT status of all 

individuals was included to modelling and the same procedure described above was repeated 

(Figure 2.6).  
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“Biology enables, Culture forbids.” 

Yuval Noah Harari 
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3. The Potential of the Fecal Microbiome as a Novel 

Detection Approach for Pancreatic Cancer 

This chapter discusses my second project during the PhD and details of how we 

identified fecal microbiome signature to detect Pancreatic Ductal Adenocarcinoma in 

collaboration with Dr. Nuria Malats and her team from CNIO, Spain. The text from following 

chapter has been mostly taken from a manuscript (close to submission) which has been 

originally written by myself. Parts of the text were also extended to include the analysis, method 

and literature details. 

 

The sections including results from collaborators are explicitly stated and mostly 

involve Thomas Sebastian Schmidt, Georg Zeller and Jakob Wirbel from EMBL and Nuria 

Malats and her team from CNIO, Spain. Sections 3.2.5 and 3.2.6 are from Thomas Sebastian 

Schmidt and data of section 3.2.5 is provided by Sandra Rodriguez from Nuria Malats’ team. 

All these findings are currently under preparation to be published as an original article, with the 

title: 

“The Fecal Microbiome as a Novel Detection Approach for Pancreatic Ductal 

Adenocarcinoma” 
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3.1. Introduction 

Pancreatic cancer (PC) is a disease on the rise worldwide, ranking seventh as leading 

cause of cancer-related deaths, with a higher incidence in developed countries (2.2-7.7 per 

100,000 people) and a further increase predicted for the next decade (Rahib et al. 2014). PC 

mortality is almost as high as incidence rate and the 5-year survival rate is only 8% on average; 

however, survival rate for people with metastatic diagnosis is only 2% (Ferlay et al. 2018). 

Overall, the high mortality rate of PC is mostly due to the absence of characteristic symptoms, 

as early disease stages are usually asymptomatic or unspecific, and lack of routine screening 

methods (Kamisawa et al. 2016). Only a small subset of patients is eligible for surgical resection 

and most of the standard therapy options are not effective (Bracci 2017). The term ‘pancreatic 

cancer’ is an umbrella that encompasses several distinct types of disease origins, progressions 

and prognoses, categorized at both the anatomical (tumor site) and molecular level (patterns of 

mutations and chromosome rearrangements, (Collisson et al. 2019). Pancreatic ductal 

adenocarcinoma (PDAC), as a histological subtype, accounts for 85% of all pancreatic cancer 

cases (Hidalgo et al. 2015). 

Population-scale screening programs could potentially alleviate the PDAC disease 

burden, but affordable, sensitive and non-invasive clinical tools for the early detection of PDAC 

are currently not yet available (Hasan et al. 2019). Because of the above, there is an urgent need 

to identify potential biomarkers for screening of high-risk groups, including familial pancreatic, 

ovarian, and breast cancers, hereditary pancreatitis, Peuts Jeghers Syndrome, and diabetes 

(Chang et al. 2014). Currently, the only Food and Drug Administration (FDA) approved 

biomarker for PDAC is based on carbohydrate antigen (CA) 19-9 protein (an antigen released 

in pancreas), which is mostly used for disease monitoring rather than diagnosis due to moderate 

sensitivity (72-86%) and specificity (68-80%) (Xing et al. 2018). 



Table 3.1 Detailed list of current microbiome related studies in PDAC. 

Study Population Cohort Specimen Method Microbial change 
Jandhyala 
2017 

Human CP vs control Feces 
16S 
sequencing 

↑ Firmicutes 
↓ Bacteroidetes 

Isaiah Canine EPI vs control Feces 16S 
sequencing 

↑ Lactobacillaceae and Streptococcaceae 
↓ Lachnospiraceae and Ruminococcaceae 

Hamada Human CP vs AIP Feces 16S 
sequencing 

↑ Bacteroides, Streptococcus and Clostridium spp. 

Zhang Human AP vs control Feces 
16S 
sequencing 

↑ Bacteroidetes and Proteobacteria 
↓ Firmicutes and Actinobacteria 

Beger Human AP Pancreas Culture NA 
Büchler Human AP Pancreas Culture NA 
Isenmann Human AP Pancreas Culture NA 

Thomas Human CP vs control Pancreas 16S 
sequencing NA 

Wen Mouse DM Feces NA NA 

Kostic Human DM Feces 16S 
sequencing NA 

de Goffau Human DM vs control Feces 
16S 
sequencing 

↑ Bacteroides 
↓ Bifidobacterium adolescentis and Bifidobacterium 
pseudocatenulatum 

Endesfelder Human DM vs control Feces 16S 
sequencing 

NA 

Mejía-León Human DM vs control Feces 16S 
sequencing 

↑ Bacteroides 
↓ Prevotella, Megamonas and Acidaminococcus 

Davis-
Richardson 

Human DM vs control Feces 16S 
sequencing 

↑ Bacteroides dorei and Bacteroides vulgatus 
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Alkanani Human DM vs control Feces 16S 
sequencing 

↓ Lactobacillus and Staphylococcus 

Vatanen Human DM vs control Feces 16S 
sequencing 

NA 

Hu Mouse Pre-DM vs control Feces 16S 
sequencing 

↑ Gram-negative and Gram-positive 
↓ Bacteroidetes and Erysipelotrichaceae 

Torres Human PDAC (8) vs control (22) Feces 16S 
sequencing 

↑ Leptotrichia 
↓ Porphyromonas Neisseria 

Farrell Human PDAC (38), CP (27), 
control (38) 

Oral 16S 
microarray 

↓ Neisseria elongata and Streptococcus mitis 

Michaud Human PDAC (405) vs control 
(410) 

Plasma Antibiotics to 
oral bacteria 

↑ Porphyromonas gingivalis (ATTC 53978) 

Ren Human PDAC vs control Feces 16S 
sequencing 

↑ Bacteroidetes 
↓ Firmicutes and Proteobacteria 

Pushalkar Human PDAC vs control Feces 16S 
sequencing 

↑ Proteobacteria, Synergistetes and Euryarchaeota 

Thomas Human PDAC vs control Pancreas 16S 
sequencing 

NA 

Riquelme Human PDAC LTS vs  
PDAC STS 

Pancreas 16S 
sequencing 

↑ Alpha diversity; 
↑ Saccharopolyspora, Pseudoxanthomona, Streptomyces 

Half Human PDAC (15) vs  
control (15) 

Feces 16S mRNA ↑ Bacteroides and Verrucomicrobia 
↓Firmicutes and Actinobacteria  

Lin Human PDAC (13), CP (3)  
vs control (12) 

Oral 16S mRNA ↑ Bacteroides  
↓Corynebacterium and Aggregatibacter lower  

Fan Human PDAC (361) vs control 
(371) 

Oral 16S 
sequencing 

↑ Porphyromonas gingivalis and Aggregatibacter 
actinomycetemcomitans 

Michaud Human PDAC (405) vs control 
(416) 

Plasma Antibody Porphyromonas gingivalis ATTC 53978 

Olson Human PDAC (40) IPMN (39), 
control (58) 

Oral 16S 
sequencing 

↑ Firmicutes ↓ Proteobacteria 
 



Like other cancers, pancreatic cancer also has only around 10% of hereditary 

contribution (Petersen 2016). Established non-hereditary risk factors include age, smoking, 

diabetes mellitus, chronic pancreatitis, periodontal diseases, obesity, alcohol consumption and 

dietary factors (Midha et al. 2016; Rawla et al. 2019). There have been several population 

studies showing increased risk for pancreatic cancer in pancreatitis patients with a standardized 

incidence ratio (SIR) of 19.0-26.7 (Malka et al. 2002). A Danish population-based study 

reported that people who were diagnosed with acute pancreatitis had a higher risk of developing 

pancreatic cancer 0.68% (95% CI 0.61-0.77) risk for 2-year and it increases to 0.85% (95% CI 

0.76-0.94) at 5th year (Kirkegård et al. 2019). 

Alterations in human microbiome composition including oral, fecal and organ-specific 

microbiota have also been associated with increased PC risk (Aykut et al. 2019; Del Castillo et 

al. 2019; Fan et al. 2018; Farrell et al. 2012; Half et al. 2019; Michaud et al. 2013a, 2013b; 

Pushalkar et al. 2018; Ren et al. 2019; Riquelme et al. 2019; Sethi et al. 2018; R. M. Thomas 

et al. 2018; Vogtmann et al. 2020). Some studies identified that poor oral microbiota and/or 

changes in bacterial composition are related with the increased risk of pancreatic cancer. For 

instance, periodontitis is a potential risk factor for pancreatic cancer which is an inflammation 

of oral cavity and it has an elevated risk of 1.5-2 (Maisonneuve et al. 2017). Porphyromonas 

gingivalis is major contributor of periodontitis and it has an increased risk for PDAC. 

PDAC-associated dysbiosis of the salivary microbiome has been studied extensively. 

Global associations of the oral microbiome to PDAC have so far remained elusive; since 

previous studies are inconsistent and sometimes contradictory. One of the first studies was 

based on salivary microbiota of a small cohort, showing a significant decrease in the abundance 

of Neisseria elongata and Streptococcus mitis, through microarrays analysis. These findings 

were verified in an independent cohort via qPCR (28 pancreatic cancers, 27 chronic pancreatitis 

and 28 controls) (Farrell et al. 2012). Another study analyzed the blood serum antibody levels 

of 25 bacterial species in 405 cases and 416 controls and reported that an enrichment inn 
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Porphyromonas gingivalis is associated with an increased risk of PDAC (Michaud et al. 2013b). 

A study with a very small group of 8 cancer and 22 controls found high levels of Leptotrichia 

and low levels of genus Porphyromonas and Neisseria (Torres et al. 2015). A more recent 

study, in a prospective cohort, characterized the oral microbiota composition with 16S 

ribosomal sequencing of 361 carcinoma patients and 371 matched controls (Fan et al. 2018). In 

this study, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were 

linked with the high risk of pancreatic cancer while the phylum Fusobacteria and its genus 

Leptotrichia were associated with a decreased risk. Oral microbiome of 40 newly diagnosed 

cancer, 39 Intraductal papillary mucinous neoplasm (IPMN) and 58 normal individuals showed 

high level of Firmicutes in cancer patients and IPMN patients were similar to controls based on 

microbiome data (Olson et al. 2017).  

Pancreas itself was believed to be a sterile organ, since pancreatic juice contains 

numerous proteases and is highly alkaline, which would prevent microbial growth (Maekawa 

et al. 2018). Yet a number of studies recently demonstrated the presence of microbes in the 

pancreas at healthy and diseased status via different techniques including 16S rRNA gene 

sequencing, qPCR, culturing and microscopy (Pushalkar et al. 2018; Sethi et al. 2018; R. M. 

Thomas et al. 2018). There is not yet a consensus to define a healthy or diseased pancreas 

microbiome; since each study reported slightly different results and could not confirm previous 

findings. This is mostly due to low-biomass of tissue samples, which makes contamination 

unavoidable and small cohort size that leads to statistical limitations. One study reported genus 

Brevibacterium and order Chlamydiales in diseased pancreas showed increased relative 

abundance (Pushalkar et al. 2018); while another study found an increase of Acinetobacter and 

Pseudomonas abundance in PDAC tissue compared with healthy specimen (R. M. Thomas et 

al. 2018). Even though the role of microbes in the pancreas remains unknown, it was also 

reported that, bacterial load had an effect not only on the survival time of PDAC but also the 
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response to some chemotherapy agents used in clinics (Sivan et al. 2015; Vétizou et al. 2015). 

Pancreas of long-term survivors harbors a different tumor microbiota with higher alpha 

diversity including high relative abundance of genus Saccharopolyspora, Pseudoxanthomonas 

and Streptomyces than short-term survivors (Riquelme et al. 2019). Presence of 

Gammaproteobacteria in PDAC tissue specimens showed a link with gemcitabine resistance 

(Geller et al. 2017). 

Since several diseases have been associated with changes of the gut microbiome 

(Gharaibeh & Jobin 2018; Gopalakrishnan et al. 2018; Matson et al. 2018); the possible effect 

of gut microbiome on the progression PDAC has been recently investigated as well. A 

prospective study analyzed fecal microbiome of 85 PDAC patients before surgical resection 

and 57 healthy controls via 16S amplicon sequencing. Gut microbiome of PDAC patients was 

reported to be significantly different when compared with controls with lower alpha diversity 

measures, but not between different pancreatic sections (Ren et al. 2017). Another fecal 

microbiome study of 30 PDAC patients, 6 patients with pre-cancerous lesions, 13 healthy 

subjects and 16 with non-alcoholic fatty liver disease reported fourteen species to be 

discriminative between cancer and controls but only a small subset was shared with pre-

cancerous individuals.  

Moreover, another study reported that fungi can translocate from the gut to the pancreas, 

and genus Malassezia was enriched in diseased cancerous tissue followed by 

Parastagonospora, Saccharomyces, and Septoriella (Aykut et al. 2019). They proposed that 

ablation of mycobiome was slowing down the PDAC progression and repopulation with only 

Malassezia species promotes oncogenesis via Mannose-binding lectin (MBL)-C3 cascade 

activation. They also reported that the fungal composition of the gut and pancreas differs 

between healthy and diseased mice and anecdotally validated this in human patients as well. 
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All these studies demonstrate that the microbiome may have a role not only in carcinogenesis, 

but also on survival and probably response to PC therapy. Although mechanistic insight into 

putative gut-pancreas microbiome links remains limited, the possibility to use microbiome 

signature as a PDAC specific biomarker is promising. No effective screening methods for 

pancreatic cancer are currently available, so there is an urgent need to identify potential 

biomarkers. The implementation of effective early diagnosis tools will contribute to improve 

the treatment, prognosis, life expectancy and eventually prevention of PDAC. Even though we 

do not know yet the ultimate role of microbiome on PDAC, its potential as a biomarker needs 

to be further investigated. 

Here, we conducted a study comparing oral, fecal and pancreas microbiome of newly 

diagnosed 57 PDAC patients, 29 with chronic pancreatitis (CP) and 50 healthy controls via 16S 

rRNA amplicon sequencing, shotgun metagenomics sequencing and fluorescence in situ 

hybridization (FISH) microscopy, to investigate the potential of microbiota as an early 

detection tool for PDAC.   

3.2. Results  

We observed several differentially abundant taxa between PDAC and controls in stool 

samples including several species from genus Veillonella, but not in saliva samples. We could 

not reproduce previous reports on individual oral taxa in our cohort, even when tested 

supervised. Modelling of fecal microbiome demonstrated a PDAC specific taxonomic 

microbial composition with AUC of 0.84. We applied the fecal-based prediction model to 

available external validation cohorts including healthy controls and some diseases as seen risk 

groups for PDAC like type 1 diabetes (T1D), type 2 diabetes (T2D), liver cirrhosis (LC), 

Crohn’s Disease (CD), inflammatory bowel disease (IBD), UC, CRC to evaluate the specificity 
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of fecal signal. We also found different ASVs between healthy and diseased pancreas via 16S 

rRNA gene sequencing and further validation of those ASVs via microscopy proven that similar 

species which were present in stool samples were also present in different pancreatic tissue 

specimens. 

3.2.1. Cohort details 

 

Figure 3.1 Cohort overview.  

Strip bands on the bar plots represent the samples which have matching body sites. This figure is part of the 
manuscript which is under preparation and it was produced by myself. 

 

We recruited 57 newly diagnosed, treatment-naïve PDAC patients, 29 CP patients and 

50 age, gender-matched controls from Barcelona and Madrid, Spain (see Figure 3.1 for cohort 

overview, see Table 3.2). We obtained fecal shotgun metagenomes for all subjects, salivary 

metagenomes for a subset (45 PDAC, 12 CP and 43 controls), as well as matched 16S rRNA 

amplicon data from all available samples (see Methods). The analysis workflow is detailed in 

Figure 3.8. 
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Table 3.2 Demographic features of the PDAC cohort. 

  Total N=136 
 

PDAC N=57 Control N=50 CP N=29 

Sex 87M + 49F 36M +21F 31M+19F 20M + 9F 

Cholesterol 46 25 13 8 
Diabetes 41 17 5 19 

Age Mean 69.9 71.5 71.3 64.1 

Smoking 79 28 26 25 
Alcohol 105 40 39 26 

Periodontitis 41 17 11 13 

Jaundice 37 32 2 3 

Obesity 36 16 13 7 
 

 

3.2.2. Diversity measures and confounder analysis 

Several environmental factors including smoking, alcohol consumption or diabetes have 

a direct effect on microbiome composition (Thomas S B Schmidt et al. 2018). Due to this 

knowledge, we tested potential confounders of microbial data in our cohort, in order to stratify 

the analyses accordingly. For a total of 22 demographic and clinical variables, we quantified 

marginal effects on microbiome community-level diversity (Figure S3. 1, Table S3. 1, Table 

S3. 2). Fecal and salivary microbiome species richness (as a proxy for alpha diversity) were not 

univariately associated with any tested variable including PDAC status after accounting for the 

most common PDAC risk factors and applying false discovery rate (FDR) correction (Figure 

3.2a).  

Microbiome community composition, in contrast, varied with diagnosed symptoms of 

jaundice (Permutational multivariate analysis of variance (PERMANOVA) on Bray-Curtis 

dissimilarities, R2=0.02, p=0.009) and age (R2=0.01, FDR-corrected p=0.03), diabetes 

(R2=0.01, p=0.04) in feces, and recruitment age (R2=0.02, p=0.04) and subject sex (R2=0.02, 

p=0.05) for saliva samples, with very low effect sizes (Figure 3.2b, Table S3. 2). After 
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stratification for those confounders, diagnosis was mildly but significantly associated with fecal 

(R2 = 0.02, p= 0.001), but not salivary (R2=0.01, p=0.5) (Figure S3. 2, Figure S3. 1) community 

composition.  

3.2.3. Fecal metagenomic classifier identifies microbiome signatures of PDAC 

Univariate tests showed nine differentially abundant taxa between cases and controls, 

even though the overall community composition shift was mild (Wilcoxon test on relative 

abundances, Benjamini-Hochberg-corrected p < 0.05; see Figure 3.2c). Most prominently, 

several Veillonella atypica, Fusobacterium hwasookii nucleatum and Alloscardovia 

omnicolens were enriched in feces of PDAC patients, whereas Bacteroides coprocola, 

Romboutsia timonensis, Faecalibacterium prausnitzii and Bifidobacterium bifidum were 

depleted. Those taxa were moderately predictive of PDAC state (Figure 3.3, Figure S3. 3).  

Contrary to feces, we did not detect any species in the salivary microbiome with 

significantly differential abundance when correcting for multiple hypothesis tests, including 

Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans (Fan et al. 2018), 

Neisseria elongata or Streptococcus mitis (Farrell et al. 2012) for which such associations were 

previously reported (Figure S3. 4). We hypothesized that this may be due to technical or 

geographical variation between datasets, yet we were unable compare our data to published 

sets, as raw and clinical data for these was not publicly available. 

To combine individual signals into an accurate classifier, we next built multi-species 

metagenomic models, using L1-regularized LASSO regression with 10 resampling and 10-fold 

cross validation. The model discriminated PDAC cases and controls with AUROC of 0.85 

(“model-1”; Figure 3.4). 
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Figure 3.2 Community analysis of fecal microbiome data. 

a. Different alpha diversity measures for both fecal and saliva metagenomics data. b. Bray-Curtis distance-based 
redundancy analysis (dbRDA) of PDAC and control fecal microbiome data. PDAC samples are shown as red 
colored circles and controls as blue. Richness, exponential Shannon (exp(Shannon)) and inverse Simpson 
(inv(Simpson)) diversity measures are also visualized with arrows similarly like tested metadata variables. The 
distance of meta-variable from the center represents the confounding effect size (see Methods). c. Wilcoxon test 
results of fecal microbiome data to test enriched taxa between PDAC and control cases (see Methods). Y-axis is 
FDR corrected p values and x-axis is log2 (fold change). Pink dots represent the significantly abundant 
species/strains in either group, while black dots show non-significant presence of species after FDR correction. 
Green and brown coded species are selected in metagenomic model-1 to predict PDAC. This figure is part of the 
manuscript which is under preparation. All panels were produced by myself. 
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The PDAC-related marker species in the model were Methanobrevibacter smithii, 

Alloscardovia omnicolens, Veillonella atypica, Bacteroides finegoldii and Akkermansia 

muciniphila; however, we note that by selection of machine learning model, LASSO regression 

procedure selects representatives for different species with highly similar abundance profiles. 

Despite that, models to detect CP patients from controls or PDAC cases had no predictive power 

and similarly, no robust PDAC signature was detected for the salivary microbiome in any group 

comparison (AUROC < 0.5, Figure S3. 4). 

  

 

Figure 3.3 Metagenomics signature of PDAC-associated species. 

Normalized abundance of 27 selected species in fecal microbiome across all samples shown as heatmap. The right 
panel represents the main contribution of each selected feature to the overall model-1 and robustness of each 
feature is presented in percentage. Classification scores from cross validation of each individual and condition for 
tested meta-variables are displayed at the bottom of the panel. This figure is part of the manuscript which is under 
preparation and it was produced by myself. 
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The initial gut microbiome-based classifier included species like F. prausnitzii, B. 

coprocola, Bifidobacterium bifidum or Romboutsia timonensis which were depleted in PDAC 

relative to controls (Figure 3.3). For some of these species, it was previously suggested that 

depletion is linked to intestinal inflammation in general, rather than to specific diseases 

(Duvallet et al. 2017) and also our experience from colorectal cancer shown similar patterns. 

We therefore re-trained a classifier preferentially that selected microbial features which were 

enriched in PDAC cases. The enrichment constrained model (“model-2”) distinguished PDAC 

cases with an accuracy of AUROC=0.72, the difference with the unconstrained model-1 mostly 

due to a penalty on sensitivity (Figure 3.4).  

 

 

Figure 3.4 Internal cross validation. 

The results are shown as receiver operating characteristic (ROC) curve with a 95% confidence interval shaded in 
grey. The area under the (ROC) curve (AUROC) is used to show the performance of lasso_ll model based on fecal 
microbiome data of PDAC and control samples with 10 times resampling and 10 cross validation (see Methods). 
The sensitivity and specificity of CA19-9 marker is shown in pink (Xing et al. 2018). This figure is part of the 
manuscript which is under preparation and it was produced by myself. 
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We also tested the prediction value of the 22 demographic and clinical variables 

describing our cohort, and none were selected as predictive features by the model and the 

microbiome signature was stronger than any other feature. The classifier captured a predictive 

gut microbiome signature of PDAC that is independent of other disease risk factors and 

potential confounders. 

3.2.4. Specificity of metagenomic classifier 

To confirm specificity to PDAC, we validated our classifiers against external cohorts in 

total 3,468 publicly available gut metagenomes from 15 studies across 7 countries, including 

subjects diagnosed by T1D or T2D, CRC, LD or IBD as well as healthy controls (Figure 3.5, 

Table S3. 3). The unconstrained model-1 showed moderate specificity, predicting PDAC state 

for <20% of subjects in all controls, however Crohn’s disease (37%) or liver diseases (43%) had 

higher false positive rate (fpr). We partly attributed this signal to technical variations, given that 

only Chinese IBD and LD patient cohorts showed high fpr. Furthermore, IBD has been 

associated with similar depletion signatures as observed in our model-1 in particular of F. 

prausnitzii (Cao et al. 2014), whereas liver diseases share some physiological characteristics 

with impaired pancreas function. In contrast, the enrichment-constrained model-2 was highly 

specific for PDAC, at 0-5% PDAC predictions in almost all external cohorts, at a maximum of 

10-17% predictions among one of LD and IBD patient cohorts. In particular, the detected 

microbiome signatures were also robust against misclassification of type 2 diabetes patients – 

with relevance to potential screening applications, as these are a major PDAC risk group. 
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Figure 3.5 External validation of PDAC fecal microbiome models. 

a. False positive rate (FPR) of metagenomic model-1 in 15 external test cohorts with 90% specificity cut-off 
(see Supplementary Table X for list of all studies included). Test cohorts were profiled and normalized in the 
same way as initial dataset (see Methods). Each study was stratified according to health status and model-1 was 
tested to predict in given group. FPR is displayed as a grey bar and the number of the cohort in color coded 
circles. b. False positive rate (FPR) of metagenomic model-2 in 15 external test cohorts with 90% specificity 
cut-off (see Table S3. 3 for list of all studies included). CTR: controls, CRC: colorectal cancer, CP: chronic 
pancreatitis, T1D: type-1 diabetes, T2D: type-2 diabetes, IBD: inflammatory bowel disease, LD: liver disease. 
This figure is part of the manuscript which is under preparation and both panels were produced by myself. 
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3.2.5. PDAC tumors harbour characteristic bacteria, with links to the oral and gut 

microbiome 

Alterations in pancreatic secretion, as a consequence of tumor growth in the pancreatic 

duct, may plausibly underlie characteristic gut microbiome signatures, such as described above. 

This would imply that PDAC development indirectly causes microbiome shifts. Yet the 

pancreatic duct also provides a direct anatomical link between the gastrointestinal tract and the 

pancreas that may be traversed by bacteria (Pushalkar et al. 2018; R. M. Thomas et al. 2018) 

and fungi (Aykut et al. 2019) with a putative role in carcinogenesis (Riquelme et al. 2019). 

 

Table 3.3 The tested genus and used FISH probes list. 

Target species/genus Sequence Probe Dye 

Bifidobacterium (genus) 5'- GATAGGACGCGACCCCAT -3' Bif228 Cy3 

Veillonella (genus) 5'- AGACGCAATCCCCTCCTT -3' Veil223 FITC 

Akkermansia (species) 5'-CCTTGCGGTTGGCTTCAGAT-3' MUC1437 FITC 

Lactobacillus (genus) 5'- ACATGGAGTTCCACT -3' Lact663 FITC 

Bacteroides (genus) 5'- CCAATGTGGGGGACCTT -3' Bac303 Cy3 

Streptococcus (genus) 5' TTTAGCCGTCCCTTTCTGG -3' Strc493 Cy3 
 

We therefore expected that several microbial taxa with specific gut associations to 

PDAC should be detectable in pancreatic tumors. We taxonomically profiled biopsies of tumors 

(n=23) and adjacent healthy pancreatic tissue (n=20) in our cohort using 16S rRNA amplicon 

sequencing, applying strict filters against putative reagent contaminants as are frequently 

observed in low bacterial biomass samples (de Goffau et al. 2019; Salter et al. 2014) (see 
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Methods). We observed a surprisingly rich and diverse pancreas microbiome, with at least 13 

bacterial genera present in ≥25% of samples, prominently including taxa with characteristic 

PDAC signatures in the fecal microbiome (Figure 3.6a, Figure S3. 5, Figure S3. 6).  

Among these, Lactobacillus sp., Akkermansia muciniphila and Bacteroides sp. were 

enriched in tumors relative to unaffected pancreatic tissue by relative abundance (Wilcoxon 

test, FDR-corrected p<0.006). In a subset of five tumor and two pancreatic tissue samples, we 

verified the presence/absence of Lactobacillus sp., Bifidobacterium sp., Veillonella sp., 

Bacteroides sp., Akkermansia sp. and Streptococcus sp. using in-situ hybridization with genus-

specific primers (Figure 3.6a-c & Table 3.3). Akkermansia sp., though observed by amplicon 

sequencing in 26/30 subjects, were not detectable using FISH in six tested samples. This 

showed that depending on observations based on one method can be misleading due to the 

complications of low biomass samples.  

To establish the provenance of tumor- and tissue-dwelling bacteria, we next traced exact 

16S rRNA Amplicon Sequence Variants (ASVs) across salivary, fecal, tissue and tumor 

samples within subjects (Figure 3.7). Veillonella sp., characteristically enriched in stool among 

PDAC patients, were highly prevalent in both salivary (100% of subjects) and fecal (87.5%) 

samples across the entire cohort, while oral and fecal types also matched to tumor and tissue 

ASVs, implying that pancreas-dwelling Veillonella populations may be sourced from both the 

mouth and the gut. Interestingly, we found no intra-individual match in Veillonella ASVs 

between tumor and adjacent tissue samples, indicating that tumor-dwelling Veillonella sp. may 

be distinct from those in healthy tissue. In contrast, Lactobacillus sp., Bifidobacterium sp. and 

A. muciniphila ASVs were matched between tumor and healthy tissue samples in several 

subjects. Pancreas-dwelling A. muciniphila populations moreover matched fecal types, 

suggesting that they may have originated from the gut. In Lactobacillus sp. and Bifidobacterium 
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sp., tissue and tumor types corresponded to both oral and fecal ASVs, but with divergent links, 

indicating that distinct pancreatic sub-populations may be linked to the mouth and the gut. 

 

Figure 3.6 Presence of microbiome in different sections of pancreas with different 

conditions.  

a. Presence of each genus in four different body sites including fecal, saliva, pancreatic tumor and healthy tissue 
samples. The number of the individuals is presented by circle size and matching pairs with connecting lines. 
The first column always presents the total number of cohort and the rest shows all combinations. b. Selected 
pancreatic tissue samples (five tumor and two non-tumor) to show bacterial presence with both 16S amplicon 
and FISH methods. The validation of bacterial presence with both 16S amplicon sequencing and in-situ 
hybridization is shown with blue color. The samples that showed bacterial presence via 16S; however, were not 
present according to FISH displayed in green. Bacterial presence validated only by FISH is shown by orange 
and samples that were not able for FISH validation due to lack of tissue material is shown by purple. The 
percentage is calculated by the number of samples divided by total number of tested samples (seven) and 
converted to percent. c. Representative microscopy images for Bacteroides, Bifidobacterium, Lactobacillus, 
Streptococcus, Veillonella. FITC fluorescent dye is used for green and Cy3 dye is used for red color labelling. 
This figure is part of the manuscript which is under preparation. Panel A was generated by Thomas Sebastian 
Schmidt, panel b was produced by myself and c was in collaboration with Nuria Malats from CNIO. 
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3.2.6. Several PDAC-associated species in the gut may be sourced from the oral cavity 

Many microbial species traverse the gastrointestinal tract to form overlapping 

populations between the oral cavity and intestine, with increased levels of intra-individual strain 

transmission associated to diseases like colorectal cancer (T. S. Schmidt et al. 2019). Indeed, 

several prominent marker taxa with fecal enrichment signatures in PDAC are common oral 

commensals, such as Veillonella sp., Streptococcus sp. or Fusobacterium sp.. We therefore 

hypothesized that intestinal populations of these PDAC-associated species were primarily of 

oral origin, with generally enhanced levels of autologous oral-intestinal strain exchange in 

PDAC patients.  

We quantified oral-to-gut transmission based on the intra-individual overlap of 

microbial Single Nucleotide Variants (SNVs) for species prevalent in both the mouth and the 

gut, as a proxy for oral and intestinal strain populations (see Methods). We found that viewed 

across all subjects and species, PDAC was associated with increased levels of oral-intestinal 

strain overlap (Cohen’s d = 0.33; Analysis of variance (ANOVA) p<10-3 when stratifying for 

species-level effects and technical, demographic and clinical variables). This observation 

extended to individual PDAC-associated species, with enhanced levels of autologous 

transmission in several Veillonellaceae sp. (V. dispar, d=0.71; V. atypica, d=0.6; V. parvula, 

d=0.2; Megasphaera micronuciformis, d=2.47) and Streptococcus sp. (S. salivarius, d=0.51; S. 

vestibularis, d=0.49; S. parasanguinis, d=0.36). The situation was more nuanced among 

Bifidobacteriaceae sp., with enhanced transmission in B. longum (d=2.16) and A. omnicolens 

(d=1.24), but less strain overlap in B. dentium (d=-0.89).  
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Figure 3.7 Oral-fecal transmission scores differ between PDAC cases and controls. 

x-axis show the oral-fecal transmission score for each individual, while y-axis shows the prediction score of 
unconstrained model-1 per person. This figure is part of the manuscript which is under preparation and it is 
produced by Thomas Sebastian Schmidt. 
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However, due to limits in metagenomic coverage and species prevalence, our cohort 

size did not allow for sufficient statistical power to significantly discern these trends for 

individual species with confidence, in particular when stratifying for putative confounders and 

correcting for multiple hypothesis tests. Nevertheless, our data indicates that PDAC patients 

showed overall enhanced levels of oral-intestinal transmission, and that intestinal strain 

populations of PDAC signature species may be sourced autologously, from the oral cavity. 

3.2.7. Functional profiling based on PDAC metagenomes 

We also profiled KEGG modules to assess potential of them to distinguish PDAC from 

healthy controls. Feature selection was based on minimum redundancy maximum relevance 

(mRMR, http://home.penglab.com/proj/mRMR/) to choose only top 200 predictors, since the 

data by nature is very noisy with high number of features. We first performed univariate 

analysis between cases and controls and observed some differentially abundance functions 

(Figure S3. 7) and then build an L1-regularized lasso regression model with 10 resampling and 

10 cross validation (Figure S3. 8). There are currently limitations to work with functional data, 

such as poor annotations of functions, noisy data which makes modelling very challenging due 

to high number of predictors than observations.  
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3.3. Discussion and Perspectives 

The early detection of PDAC remains a formidable challenge, at the heart of ongoing 

efforts to mitigate the disease burden of pancreatic cancer. Currently, the only available 

biomarker for PDAC is CA19-9, with moderate sensitivity and specificity (Goonetilleke and 

Siriwardena 2007; Gui et al. 2014; Xing et al. 2018). There are several prediction studies 

including gene-carrier, absolute risk and also high-risk groups (Baecker et al. 2019; Hsieh et al. 

2018; Muhammad et al. 2019; Nakatochi et al. 2018; Săftoiu et al. 2008). Pilot-scale studies 

have moreover explored urine and serum for suitable markers; however, most of these 

predictions are based on previous knowledge, not validated properly and none of them are 

adopted in clinics yet (Hasan et al. 2019).  

Based on a cohort of newly diagnosed, treatment-naïve cases and clinically matched 

controls for which oral, fecal and tissue microbiomes were analyzed (Figure 3.1a), we 

developed a metagenomic classifier that robustly and accurately predicts PDAC, solely based 

on characteristic fecal microbial species (Figure 3.2). The PDAC signature captured by our 

multi-species model was orthogonal to clinical and demographic variables, including well-

established PDAC risk factors. This suggests that in practice, the fecal microbiome may be used 

to screen for PDAC and may be complementary to other testable markers, with added accuracy 

in combined tests, as is the case e.g. for colorectal cancer (Zeller et al. 2014). 

Enriched species in PDAC cases included several Veillonella sp., Alloscardovia 

omnicolens, Methanobrevibacter smithii (Figure 3.3). Veillonella sp. are common oral and gut 

commensals; however there are reports showing an enrichment in cystic fibrosis, several 

infections including meningitis, lung and oral carcinomas and even potential as a biomarker 

(Bhatti & Frank 2000; Nagy et al. 1998; Pustelny et al. 2015; Yan et al. 2015). The role of 
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Methanobrevibacter smithii, a prevalent methanogenic archaeon, in the human gut remains 

poorly understood. M. smithii has been associated with both health and disease status including 

anorexia and irritable bowel disease (Armougom et al. 2009; Chaudhary et al. 2018; Ghavami 

et al. 2018; Sogodogo et al. 2019). 

The PDAC fecal microbiome signature stood out against high risk groups of different 

diseases such as T1D, T2D, LD, IBD, CRC and controls from 15 different studies and on more 

than 3,600 samples (Figure 3.5). We validated the specificity of our models and confirmed that 

the detected signature was PDAC specific, with low false positive rates among other diseases. 

Yet among PDAC risk groups, and specifically against type 2 diabetes patients, our model-1 

and 2 were highly specific with 90% specificity. We note that between-studies, technical 

variation can often exceed biological differences in microbiome composition (Paul I Costea et 

al. 2017), and some false positive predictions might be due to technical variations as well. Meta-

studies of multiple geographically and ethnically diverse PDAC cohorts may be required to 

further establish globally consistent PDAC microbiome signatures, as has been successfully 

shown for colon cancer (A. M. Thomas et al. 2019; Wirbel et al. 2019) 

In the case of saliva and oral-microbiome markers, the existing controversy between 

oral microbiome studies and unavailable raw data makes the comparison of this studies 

challenging (Fan et al. 2018; Farrell et al. 2012; Michaud et al. 2013b; Olson et al. 2017; Torres 

et al. 2015). Several previously reported univariate PDAC associations including P. gingivalis, 

A. actinomycetemcomitans, S. thermophilus and Fusobacterium species of oral taxa were not 

confirmed in our cohort (Figure S3. 4). Indeed, we did not observe any salivary PDAC signature 

either for individual species or for multi-species models when stratifying for common 

demographic and clinical confounders. In fact, we found evidence for a strong, although 

indirect, association between PDAC and the oral microbiome, as levels of oral-intestinal 
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transmission were increased in PDAC, in particular for several PDAC signature taxa in the fecal 

microbiome. 

While our data is strictly observational, there are strong indications that the observed 

characteristic fecal microbiome shifts are not merely a consequence of impaired pancreatic 

function and systemic effects thereof. Rather, several taxa could be traced between the gut and 

pancreas, with several univariate enrichment signals in tumors relative to adjacent healthy 

tissue. We confirmed previous observations (Pushalkar et al. 2018; Riquelme et al. 2019; R. M. 

Thomas et al. 2018) that the human pancreas harbors a microbiome, both by amplicon 

sequencing (accounting for putative contaminants to which low bacterial biomass samples are 

prone (Salter et al. 2014), and by performing in situ hybridization (FISH) for several genus 

(Figure 3.6). There is not yet a clear evidence for what represents a healthy or diseased pancreas 

microbiome; since each study reported slightly different results and could not confirm previous 

findings. This is mostly due to low-biomass of tissue samples, which makes contamination 

unavoidable and small cohort size that leads to statistical limitations. Getting conclusion based 

on one method for low biomass samples might be misleading due to technical issues, therefore, 

we confirmed presence of enriched genus in fecal samples (Veillonella, Streptococcus, 

Akkermansia) and also differentially abundant genus between healthy and tumor tissues 

(Bacteroides, Lactobacillus, Bifidobacterium) by FISH for validation. 

For several taxa, we observed an intra-individual overlap of exact Amplicon Sequence 

Variants (ASVs) between oral, fecal and tissue samples, thus confirming links at the highest 

attainable taxonomic resolution for amplicon data. Given that fecal populations of several gut-

enriched PDAC-associated taxa could thus be traced to pancreatic tumors, and in view of 

previous reports on microbe-mediated pancreatic carcinogenesis in murine models (Pushalkar 

et al. 2018; Riquelme et al. 2019; Sethi et al. 2018; R. M. Thomas et al. 2018), we believe that 
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the presented panel of PDAC-associated species in the gut may be relevant beyond merely 

diagnostic purposes. 

The causal role of microbiome in PDAC is yet to be explored and with more prospective 

cohorts, we may improve our understanding of PDAC etiology and progression and the ulterior 

link with the gut microbiome. We should extend our knowledge not only on bacterial but also 

fungal and viral microbiome effect on PDAC progression. Based on the tumor, oral and fecal 

microbiome data, we could not make any causal links. However, the fecal microbiome provides 

promising knowledge for earlier detection of PDAC. The development of fecal microbiome-

based, cost-effective assays for PDAC screening and progression opens new areas to explore. 

Yet, based on the demonstrated links to microbial populations in the tumor, oral and gut 

microbiome may also provide promising future entry points for therapeutic intervention.  
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3.4. Methods 

3.4.1. Subject recruitment and sample collection 

Subjects were recruited from two hospitals in Barcelona and Madrid in Spain by using 

same standard operating procedures (SOPs) for biological sample collection, processing and 

storage conditions. PDAC cases were identified early in their diagnostic process prior to any 

cancer treatment, while controls are age- and gender-matched hospitalized patients carefully 

selected with conditions from a list of selected pathologies known not to be associated with any 

PDAC risk factor.  

Stool and saliva (mouthwash) samples were preserved in RNALater and immediately 

stored in at 4ºC, after ~12 hours, the sample was stored in an ultra-freezer at -20ºC, and 24 

hours later at -80ºC until DNA extraction. Moreover, tumor and non-affected tissue samples 

were collected during the surgery for a subset of individuals and immediately flash-frozen 

onsite and preserved at -80℃. All the samples were shipped with dry ice to keep the temperature 

stable. Information about lifestyle habits and medical history was surveyed with questionnaire 

and all the available information was stored through the web application EPIQuest developed 

by the Spanish National Institute of Bioinformatics (IBN-CNIO). 

3.4.2. Sample processing 

Fecal and salivary samples were thawed on ice, aliquoted and genomic DNA was 

extracted using the Qiagen Allprep PowerFecal DNA/RNA kit as per the manufacturer’s 

instructions (Qiagen, Hilden, Germany). Genomic DNA from pancreatic tumoral and non-

tumoral tissue samples was extracted using the Qiagen DNeasy blood and tissue kit in a protocol 

modified (Del Castillo et al. 2019): cells were lysed mechanically (with 5mm stainless steel 
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beads at 25Hz for 150s), followed by lysozyme treatment (20 mg/ml) and protease and RNAse 

digestion (56°C for 2h). All samples were randomly assigned to extraction batches. To account 

for potential bacterial contamination of extraction, PCR and sequencing kits. negative controls 

Each tissue DNA extraction batch included negative controls. 

 

Figure 3.8 Analysis pipeline.  
This pipeline shows quality controls we have done and the analysis we have performed. This figure is part of 
the manuscript which is under preparation and it was produced by myself. 
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3.4.3. 16S rRNA amplicon sequencing 

Pancreatic tissue DNA was enriched for 16S rRNA in a pre-amplification PCR using 

primers 331F (5’-TCCTACGGGAGGCAGCAGT-3’) (Nadkarni et al. 2002) and 979R (5’-

GGTTCTKCGCGTTGCWTC-3’) (Kramski et al. 2011). The cycling conditions consisted of 

an initial template denaturation of 98ºC for 2 min, followed by 30-cycles of denaturation at 

98ºC for 10 sec, annealing at 65ºC for 20 sec, extension at 72ºC for 30 sec, and a final extension 

at 72ºC for 10 min. This was followed by a size-selective cleanup using SPRIselect magnetic 

beads (0.8 left-sized; Beckman Coulter, Brea, CA, USA). Fecal and salivary DNA were not 

pre-amplified. 

Targeted amplification of the 16S rRNA V4 region (primer sequences F515 5’-

GTGCCAGCMGCCGCGGTAA-3’ and R806 5’-GGACTACHVGGGTWTCTAAT-3’ 

(Caporaso et al. 2011), was performed using the KAPA HiFi HotStart PCR mix (Roche, Basel, 

Switzerland) in a two-step barcoded PCR protocol (NEXTflex™ 16S V4 Amplicon-Seq Kit; 

Bioo Scientific, Austin, TX, USA) with minor modifications from the manufacturer’s 

instructions. PCR products were pooled, purified using size-selective SPRIselect magnetic 

beads (0.8 left-sized) and then sequenced at 2x250bp on an Illumina MiSeq (Illumina, San 

Diego, CA, USA) at the Genomics Core Facility, European Molecular Biology Laboratory, 

Heidelberg. 

3.4.4.  16S rRNA amplicon data processing 

Raw reads were quality trimmed, denoised and filtered against chimeric PCR artefacts 

using DADA2 (Callahan et al. 2016). The resulting exact Amplicon Sequence Variants (ASVs) 

were taxonomically classified and mapped to a reference set of Operational Taxonomic Units 

(OTUs) at 98% sequence similarity using MAPseq (Matias Rodrigues et al. 2017). Reads that 
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did not confidently map to the reference were aligned to bacterial and archaeal secondary 

structure-aware SSU rRNA models using Infernal (Nawrocki & Eddy 2013) and clustered into 

OTUs with 98% average linkage using hpc-clust (Matias Rodrigues & von Mering 2014), as 

described previously (Thomas S B Schmidt et al. 2015). As a result, we obtained taxa tables at 

two resolutions: 100% identical ASVs and 98% open-reference OTUs; unless otherwise 

indicated, analyses in the main text refer to OTUs. 

Count tables were filtered by removing samples retaining less than 500 reads and taxa 

observed in less than 5 samples; this removed 2.5% of total reads from the dataset. For 18 

salivary samples, technical replicates were merged after confirming that they strongly 

correlated in community composition. For pancreatic tissue and tumor samples, ASVs observed 

in negative control samples, as were reads mapping to known reagent kit contaminants (Salter 

et al. 2014). After these steps, we retained 298 samples 16S rRNA amplicon samples from 143 

subjects for further analyses (130 salivary, 118 fecal, 25 of unaffected pancreatic tissue, 25 of 

tumor tissue with 17 matching PDAC tissue samples). 

3.4.5. Shotgun metagenomic sequencing  

Metagenomic libraries for 136 fecal and 100 salivary samples were prepared using the 

NEB Ultra II and SPRI HD kits depending on the concentration of starting material with a 

targeted insert size of 350, and sequenced on an Illumina HiSeq 4000 platform (Illumina, San 

Diego, CA, USA) in 2x150bp paired-end setup at the Genomics Core Facility, European 

Molecular Biology Laboratory, Heidelberg.  
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3.4.6. Metagenome data processing 

Metagenomic data was processed using established workflows in NGless v2.5 (Coelho 

et al. 2019). Raw reads were quality trimmed (≥45bp at Phred score ≥25) and filtered against 

the human genome (version hg19, mapping at ≥90% identity across ≥45bp). The resulting 

filtered reads were mapped against representative genomes of 5,306 species-level genome 

clusters obtained from the proGenomes database v1 (Mende et al. 2020). 

Taxonomic profiles were obtained using the mOTU profiler v2.5 (Milanese et al. 2019) 

and filtered to retain only species observed at a relative abundance ≥10^-5 in ≥5% of samples. 

Gene functional profiles were obtained from read counts by eggNOG v4.5 (Huerta-Cepas et al. 

2016) annotations to orthologous groups and KEGG modules. Features with a relative 

abundance of ≥10^-6 in ≥15% of samples and a variance ≥10^-3 across all samples were 

retained for further analyses. We also used on minimum redundancy maximum relevance 

(mRMR, http://home.penglab.com/proj/mRMR/) approach to decrease the number of features. 

3.4.7. Microbiome data statistical analyses 

All data analyses were conducted in the R Statistical Computing framework v3.4 or 

higher. Rarefied per-sample taxa diversity (‘alpha diversity’, averaged over 100 rarefaction 

iterations) was calculated as effective number of taxa with Hill coefficients of q=0 (i.e., taxa 

richness), q=1 (exponential of Shannon entropy) and q=2 (inverse Simpson index), and 

evenness measures as ratios thereof. Unless otherwise stated, results in the main text refer to 

taxa richness. Differences in alpha diversity were tested using ANOVA followed by post hoc 

tests and Benjamini-Hochberg correction, as specified in the main text. 
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Between-sample differences in community composition (‘beta diversity’) were 

quantified as Bray-Curtis dissimilarity on raw or square-root transformed counts, abundance-

weighted Jaccard index, and abundance-weighted and unweighted TINA index, as described 

previously (Thomas Sebastian Benedikt Schmidt et al. 2017). Trends between these indices 

were generally consistent; unless otherwise stated, results are reported for Bray-Curtis 

dissimilarities on non-transformed data. Associations of community composition to 

microbiome-external factors were quantified using the ‘adonis2’ implementation of 

PERMANOVA and distance-based Redundancy Analysis in the R package vegan v2.5 

(Oksanen et al. 2010). To quantify potentially confounding univariate links between the 

abundance of individual taxa and subject clinical factors (see main text), we performed either 

ANOVA or non-parametric Kruskal-Wallis tests, depending on abundance distributions (Figure 

S3. 1, Table S3. 1, Table S3. 2) 

3.4.8. Multivariable statistical modeling and model evaluation 

In order to train multivariable statistical models for the prediction of pancreatic cancer, 

we first removed taxa with low overall abundance and prevalence (abundance cutoff: 0.001, 

prevalence cutoff: 0.05). Then, features were normalized by log10-transformation (to avoid 

infinite values from the logarithm, a pseudo-count of 1e-05 was added to all values) followed 

by standardization as z-scores. Data were randomly split into test and training sets in a 10 times 

repeated 10 fold cross-validation. For each test fold, the remaining folds were used as training 

data to train an L1-regularized (LASSO) logistic regression model (Tibshirani 1996) using the 

implementation within the LiblineaR R package (Helleputte & Gramme 2017). The trained 

model was then used to predict the left-out test set and finally, all predictions were used to 

calculate the Area Under the Receiver-Operating-Characteristics curve (AUROC). 
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In a second approach, features were filtered within the cross-validation (that is, for each 

training set) by first calculating the single-feature AUROC and then removing features with an 

AUROC < 0.5, thereby introducing a preferential selection of features enriched in PDAC 

(‘enrichment-constrained’ model). 

All steps of data preprocessing (filtering and normalization), model training, 

predictions, and model evaluation were performed using the SIAMCAT R package v.1.5.0 

(https://siamcat.embl.de/). 

3.4.9. External validation of the metagenomic classifiers 

To assess the disease specificity of the trained models, we obtained predictions for 

samples from other gut metagenomic datasets (Table S3. 3 for the full list including accession 

numbers). We performed a literature search to identify publicly available datasets of fecal 

metagenomes in case-control or cohort studies for PDAC-related diseases. For a total set of 15 

studies covering 3468 samples across 6 disease states, raw sequencing data was downloaded 

from the European Nucleotide Archive (ENA) and taxonomically profiled as described above.  

The trained metagenomic classifiers for PDAC were then applied to each external 

dataset after a frozen normalization which utilizes the same set of features and normalization 

parameters (for example the mean of a feature for standardization) as in the normalization 

procedure from the pancreatic cancer dataset. Then, predictions were assessed for disease 

specificity in that high predictions for other diseases would indicate that the classifier relies on 

general features of dysbiosis in contrast to signals specific to pancreatic cancer. For this 

analysis, the cutoff for the predictions was set to a FPR of 0.1 in the pancreatic cancer dataset 

(Figure 3.5).  
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3.4.10. Sub-species and strain-level analyses 

“Metagenomic reads were mapped against species representative genomes from the 

proGenomes v1 database (see above). Microbial single nucleotide variants (SNVs) were called 

from uniquely mapping reads using metaSNV (Paul Igor Costea et al. 2017) and within-species 

allele distances between samples were calculated as described previously. Associations 

between allele distance and PDAC disease state were quantified using PERMANOVA after 

stratifying for potential confounders (including sampled body site). 

Oral-intestinal transmission of strains was quantified as described previously (T. S. 

Schmidt et al. 2019). In short, the overlap between microbial SNVs in salivary and fecal 

samples within subjects was contrasted to a between-subject background to compute a 

quantitative oral-fecal transmission score and p value. Associations of species- and subject-

specific transmission scores with clinical factors were tested for using ANOVA and post hoc 

tests, followed by Benjamini-Hochberg correction for multiple tests.” 

3.4.11. Fluorescence in situ Hybridization Microscopy 

“FISH analyses were performed using probes specifically designed to a complementary 

16S rRNA sequence unique to a particular taxon of bacteria (Figure 3.6, Table 3.3). Pancreatic 

tumor and normal pancreas samples were obtained from the pathologist immediately after their 

excision and they were directly frozen in liquid nitrogen (LN2). All the process lasted 30 

minutes maximum. Sterile material was used to dissect the different samples. The minimum 

size of tissue for freezing was approximately 0.5 cm3 (0.5 x 0.5 x 0.5 cm). Samples were 

transferred from the temporary LN2 transport container to a locked –80°C freezer and kept until 

its analysis when they were transported with dry ice and put down in an OCT mould in LN2. 
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They were immediately cut with a cryostat to get 10 sections of 3-5 um each. All material was 

sterilized with ethanol after each sample handling. 

Tissue sections of 5µm thickness were mounted on positively charged slides 

(SuperFrost, Thermo Scientific). Briefly, tissues were post fixed in freshly prepared 4% 

paraformaldehyde. After enhancement of the bacteria wall permeabilization by lysozyme 

treatment (10g/L Tris HCl 6.5M), the samples were hybridized for 1 hour at 45°C in the 

presence of the specific probe in a hybridizer machine (DAKO). Hybridization was done in 20 

µl of hybridization buffer (20 nM Tris, pH 8.0. 0.9 M NaCl, 0.02% SDS, 30% formamide) 

added to 100 ng of the probe. Finally, the tissues were washed in washing solution (70% 

formamide, 10mM Tris pH7.2 and 01% BSA), dehydrated in a series of ethanol, air-dried and 

stained with 0.5 µg/ml DAPI/Antifade solution (Palex Medical). FISH images were captured 

using a Leica DM5500B microscope with a CCD camera (Photometrics SenSys) connected to 

a PC running the CytoVision software 7.2 image analysis system (Applied Imaging). Images 

were blinded analyzed to score for the number of FISH signals.” 
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A. Supplementary information for chapter 2 

 

Figure S2. 1 Comparison of CRC cases from BLITZ and DACHS studies. 

a. Same number of CRC cases were available from both studies. Heatmap shows the MAST and gFOBT results 
for both studies b. Ridge regression model with 10 resampling and 10 cross validation did not show a strong 
difference between two study groups based on MAST and gFOBT results. This figure is part of the manuscript 
which is under preparation and it was produced by myself. 
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Figure S2. 2 Mean Ct values of DE1 cohort shown for each bacterium. 

Mean Ct value was calculated based on the average of three reactions (triplicate) per samples. y-axis display 
the mean Ct value. This figure is part of the manuscript which is under preparation and it was produced by 
myself. 
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Figure S2. 3 Testing primer/ probe specificity and sensitivity. 

a. Primer specificity was tested against sister species in same genus, E.coli, other available strains and also human 
genome. b. 1:10 DNA dilutions were used to test the detection limits for primer and probe. This figure is part of 
the manuscript which is under preparation and it was produced by myself. 
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B. Supplementary information for chapter 3 

 

Figure S3. 1 Confounders analysis 

Differentially abundant species are shown in red and the rest in in black. The size of the dot represents the mean 
abundance of species/strain. Disease status and tested variable was used as explanatory variable in linear model 
for feature abundance. This figure is part of the manuscript which is under preparation and it was produced by 
myself. 
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Figure S3. 2 PCoA plot based on Bray-Curtis dissimilarity of saliva microbiome. 

PCoA plot based on Bray Curtis distance with the % explained by top two variance explained.  PDAC cases: red, 
chronic pancreatitis: orange, controls: blue. This figure is part of the manuscript which is under preparation and it 
was produced by myself. 

 

−0.2

0.0

0.2

0.4

−0.25 0.00 0.25
Axis 1 [15.1%]

Ax
is

 2
 [1

1.
8%

] Group

CTR

Pancreatitis

PC

Bray_Curtis Saliva PCoA Analysis



 

 95 

 

 

Figure S3. 3 Differential abundant species in fecal microbiome between PDAC cases 

and controls. 

First panel shows the differentially abundant strains/species between cases (red) and controls (blue). Middle 
panel displays fold change of given strain and last panel presents the AUC of each feature to distinguish cases 
from controls. This figure is part of the manuscript which is under preparation and it was produced by myself. 
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Figure S3. 4 Oral microbiome shows a weak power to distinguish cancer and control 

samples. 

a. Heatmap represents the selected metagenomic features in the lasso_ll regression between cases and controls 
in saliva microbiome data. b. ROC curve based on 10 resampling and 10 cross validation (see 3.4 methods). All 
panels are part of the manuscript which is under preparation and they were produced by myself. 
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Figure S3. 5 Detailed information of tested samples via in-situ hybridization (FISH).  

Rows displayed the tested sample IDs and columns shows the tested genus probes. The size of the dot represents 
relative abundance of genus in the given sample. Triangle shows that 16S was negative for given samples and 
color code show if FISH was positive or negative.  One sample which displayed in green was not available for 
FISH testing. This figure is part of the manuscript which is under preparation and it was produced by myself. 
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Figure S3. 6 Relative abundance of detected genus in pancreatic tumor and non-tumor 

tissue. 

Relative abundance of detected genus in pancreatic tumor (orange) and non-tumor (blue) tissue is shown as bar 
plot. This figure is part of the manuscript which is under preparation and it was produced by Thomas Sebastian 
Schmidt. 
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Figure S3. 7 Differential abundant KEGG modules between PDAC and controls. 

First panel shows the differentially abundant KEGG modules between cases (red) and controls (blue). Middle 
panel displays fold change of given module and last panel presents the AUC of each feature to distinguish cases 
from controls. This figure is part of the manuscript which is under preparation and it was produced by myself. 
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Figure S3. 8 Lasso_ll regression model based on top 200 KEGG modules. 

a. Heatmap represents the selected KEGG modules in the lasso_ll regression model. b. ROC curve based on 10 
resampling and 10 cross validation (see 3.4 methods). This figure is part of the manuscript which is under 
preparation and it was produced by myself. 
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Table S3. 1 Anova of richness diversity measure between PDAC cases and controls. 
 

Stool Saliva 
Meta Variable Sum sq p value adj p Sum sq p value p.adj 
Abmedication 7,40E+08 0.434882370 1.0 7,26E+07 0.726039062 1.0 
Age 5,57E+10 0.348999552 1.0 1,43E+10 0.992133250 1.0 
Alcohol 
Consumption 

3,28E+09 0.105017752 1.0 4,22E+07 0.796587916 1.0 

Acid Regurgitation 1,92E+09 0.215874045 1.0 2,05E+07 0.857472013 1.0 
Diabetes 1,47E+07 0.914256854 1.0 4,78E+08 0.387311299 1.0 
Heart Burn  7,20E+08 0.445550072 1.0 2,11E+09 0.059764110 1.0 
High Blood 
Pressure 

8,65E+06 0.934099012 1.0 4,70E+06 0.931832163 1.0 

Rheumatoid 
Arthritis 

7,36E+08 0.444113445 1.0 3,28E+07 0.821293457 1.0 

Antibiotic 6,18E+07 0.825159237 1.0 3,55E+08 0.455050912 1.0 
Aspirin/Paracetamol 1,36E+09 0.297843618 1.0 1,12E+09 0.181428572 1.0 
Asthma 1,76E+09 0.236597169 1.0 4,57E+08 0.395506158 1.0 
Center 4,90E+09 0.046953480 1.0 2,76E+06 0.947458361 1.0 
Cholesterol 1,72E+09 0.246154381 1.0 2,93E+08 0.493014836 1.0 
Cholesterol 
medication 

6,33E+05 0.982226159 1.0 1,48E+08 0.663216095 1.0 

Corticosteroids 2,24E+09 0.179684582 1.0 4,11E+08 0.406201881 1.0 
Cpy1 7,16E+10 0.825078663 1.0 2,39E+10 0.800141666 1.0 
Bilirirubin Direct 1,32E+11 0.543089087 1.0 5,08E+10 0.857634747 1.0 
Bilirubin Lab 1,30E+11 0.455465155 1.0 4,85E+10 0.802784617 1.0 
Fhpdac 2,40E+06 0.964420558 1.0 4,78E+08 0.383616587 1.0 
Gender 1,04E+09 0.362627665 1.0 5,98E+08 0.330808453 1.0 
Jaundice  9,45E+09 0.004406831 0.34373  4,30E+08 0.412200163 1.0 
Jaundice Imputed 8,32E+09 0.009192609 0.70783  4,41E+08 0.403644362 1.0 
Library Size 8,15E+09 0.086373435 1.0 1,55E+09 0.487294778 1.0 
Metformin Usage 3,98E+09 0.205930855 1.0 3,12E+08 0.783170829 1.0 
Obesity 8,37E+08 0.415414037 1.0 3,49E+08 0.450252695 1.0 
Paracetamol 4,49E+09 0.058802839 1.0 2,03E+09 0.072918539 1.0 
Periodontitis 1,73E+08 0.710712567 1.0 1,31E+09 0.136666489 1.0 
Probiotic 1,11E+07 0.925379621 1.0 1,09E+07 0.894062783 1.0 
Receding Gums 8,17E+08 0.415025012 1.0 2,69E+08 0.508708572 1.0 
Salicylic Acid 1,85E+09 0.227061461 1.0 1,94E+08 0.582723500 1.0 
Salicylic Acid 1,85E+09 0.227061461 1.0 1,94E+08 0.582723500 1.0 
Smoking 9,62E+07 0.782721018 1.0 2,24E+09 0.059311754 1.0 
Direct Bilirubin 2,75E+09 0.138132461 1.0 1,71E+09 0.102796407 1.0 
Total Bilirubin 7,13E+08 0.440177205 1.0 2,87E+09 0.031822359 1.0 
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Table S3. 2 Adonis2 test of Bray-Curtis dissimilarity matrix between PDAC cases 

and controls of both stool and saliva microbiome. 

 
Stool Saliva 

Meta Variable 

R2 Bray-

Curtis 
p value 

R2 Bray-

Curtis 
p value 

Status 0.023120267 0.0001 0.010468749 0.6507 

Center 0.011138008 0.2069 0.016751291 0.1285 

Age 0.013765355 0.0320 0.018667727 0.0680 

Gender 0.010546251 0.2884 0.017940759 0.0884 

Jaundice Imputed 0.015980165 0.0087 0.007371362 0.9560 

Diabetes 0.013610607 0.0396 0.008990599 0.8264 

Obesity 0.008734297 0.6915 0.016455787 0.1449 

Smoking 0.008943945 0.6466 0.015490596 0.1926 

Alcohol Consumption 0.009730450 0.4545 0.017867998 0.0929 

Periodontitis 0.009018863 0.6237 0.009449706 0.7709 

Cholesterol 0.007848892 0.8750 0.010637989 0.6368 

Metformin 0.008315828 0.7739 0.018288711 0.0898 

Salicylic 0.009192529 0.5749 0.008768629 0.8462 

Antibiotic 0.007858670 0.8685 0.006825246 0.9740 

Aspirin/Paracetamol 0.012544261 0.0847 0.020375695 0.0432 

Corticosteroids 0.010196054 0.3492 0.017140805 0.1277 

Asthma 0.008577892 0.7244 0.014670641 0.2412 

Acid Regurgitation 0.011797158 0.1335 0.006447749 0.9801 

Rheumatoid Arthritis 0.008798014 0.6747 0.011646596 0.5123 

Probiotic 0.009681840 0.4578 0.011088990 0.5759 

Paracetamol 0.010198223 0.3573 0.009887242 0.7242 

Heartburn 0.008810470 0.6760 0.013602585 0.3241 

High Blood Pressure 0.007920655 0.8614 0.010496978 0.6491 

Receding Gums 0.008765518 0.6873 0.007806693 0.9229 

Fhpdac 0.010506425 0.2887 0.012944276 0.3752 

Acid Med 0.010032433 0.3870 0.007517951 0.9390 
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Table S3. 3 Details of external validation cohorts. 

Study Diagnosis Cohort size Accession number 
Dudenhoeffer 2018 CTR 400 PRJNA473126 

FijiCOMP CTR 312 PRJNA217052 
Franzosa 2018 CTR 56 PRJNA400072 
Franzosa 2018 IBD 164 PRJNA400072 
Hall 2017 CTR 74 PRJNA385949 
Hall 2017 IBD 187 PRJNA385949 
Mardinoglu 2018 LD 48 PRJNA420817 
Qin 2012 CTR 185 PRJNA422434 
Qin 2012 T2D 183 PRJNA422434 
Vogtmann 2016 CTR 52 PRJEB12449 
Vogtmann 2016 CRC 51 PRJEB12449 
Qin 2014 CTR 114 PRJEB6337 
Qin 2014 LD 116 PRJEB6337 
He 2017 CTR 54 PRJEB15371 
He 2017 IBD 63 PRJEB15371 
Karlsson 2013 CTR 43 PRJEB1786 
Karlsson 2013 T2D 102 PRJEB1786 
Feng 2015 CRC 93 PRJEB7774 
Feng 2015 CTR 63 PRJEB7774 
HMP2/Price-Lloyd 
2019 

IBD 235 PRJNA398089 

HMP2/Price-Lloyd 
2019 

CTR 65 PRJNA398089 

Liu 2016 CTR 110 PRJNA328899 
Yu 2017 CRC 74 PRJEB10878 
Yu 2017 CTR 54 PRJEB10878 
Forslund 2015 CTR 372 

PRJEB4336 PRJEB5224 
PRJEB1220 PRJEB1786 
PRJEB2054 

Forslund 2015 T1D 31 
Forslund 2015 T2D 78 
Forslund 2015 IBD 229 
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