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I 

Summary – English 
 

 

The usage of single cell sequencing techniques has grown extensively over the last years. One 

commonly utilized platform to conduct these experiments is the one from 10X Genomics. The 

applied workflow enables the detection of gene expression in single cells. Importantly, standard 

analysis tools count the gene but do not consider its exact mapping position within the 

transcript. This can be considered as a missed opportunity since mRNAs are captured by 

oligo(dT) primers and sequenced from the most 3’ position of the transcript (3’ capturing or 

tagging). These 3’ends are biologically relevant as one gene can have 3’ untranslated regions 

(3’UTRs) of alternative lengths, also referred as alternative polyadenylation (APA). From 

multiple polyadenylation singles within one gene, one signal is selected by the cleavage and 

polyadenylation machinery terminating mRNA transcription. This process yields mRNAs with 

shorter and longer 3’UTRs but the same protein coding sequence. In order to make use of this 

information I developed a bioinformatical pipeline to call 3’peaks in sequencing data with 

single cell resolution and analyzed alterations in APA by multinomial regression (MNR). 

 I applied this method on the neural stem cell (NSC) lineage of the adult mouse. This 

system resembles the differentiation process from a quiescent stem cell into a neuroblast. 

Interestingly, genes altering their poly(A) site choice with lineage progression were enriched 

for risk genes in neurodevelopmental disorders, amongst others, Autism spectrum disorder 

(ASD). Analyzing 3’UTR usage in ASD patients and a control group revealed a trend for 

3’UTR lengthening in individuals diagnosed with ASD compared to controls. 

 Motif analysis in the murine and the human sequencing data further pointed to an 

enrichment of the cytoplasmic and polyadenylation element (CPE) in 3’UTRs. These motifs 

are recognized by CPE binding proteins. RNA immunoprecipitation showed that CPEB4 can 

bind this motif. Proteomics as well as ribosomal profiling data was utilized to estimate the 

effects of CPEB4 binding and 3’UTR shortening on mRNA translation. 

Intriguingly, co-expression of CPEB4 and amyloid beta precursor-like protein 1 

(APLP1), a synaptic adhesion molecule which can bind CPEBs, was observable in the mouse 

and the human single cell sequencing data. Finally, comparing APLP1 knockout to wildtype 

mice revealed CPE-dependent alterations in 3’UTR usage between both genotypes. 

In summary, the results of the here developed method for 3’UTR calling shows that 

3’peaks, single poly(A) signals, can be successfully detected in 10X Genomics data. In addition, 

the downstream analysis suggests a link between APA, neuronal differentiation, CPEB4 and 

the neurodevelopmental disorder ASD.   
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Summary – German 
 

Die Verwendung der Methoden einzelne Zellen zu sequenzieren hat im Laufe der letzten Jahre 

stark zugenommen. Eine häufig verwendete Plattform um diese Experimente durchzuführen ist 

die von 10X Genomics. Diese erlaubt es, die Expression von Genen in einzelnen Zellen zu 

detektieren. Allerdings quantifiziert die standardmäßig verwendete Software nur die Gene aber 

berücksichtigt nicht deren exakten positionelle Zuordnung im Transkript. Dies kann als 

verschwendete Gelegenheit gesehen werden, da die mRNAs mit Oligo(dT)-Primern gebunden 

und aus Richtung der 3’Enden der Transkripte sequenziert werden (3’Capturing oder Tagging). 

Diese 3’Enden sind von biologischer Relevanz, weil ein Gen 3‘ untranslatierte Regionen 

(UTRs) mit unterschiedlichen Längen haben kann, auch bekannt als alternative Poly-

adenylierung, oder kurz APA. Von mehreren Polyadenylierungssignalen in einem Gen wird 

eines von der Polyadenylierungs-Maschinerie erkannt, welche die Transkription der mRNA 

beendet. Dieser Vorgang erzeugt mRNAs mit kürzeren und längeren 3’UTRs aber der gleichen 

codierenden Sequenz. Um diese Information verwenden zu können, habe ich eine bio-

informatische Methode entwickelt, welche sogenannte 3’Peaks basierend auf Einzelzell-

Sequenzierungsdaten identifizieren kann und Änderungen in APA mittels multinominaler 

Regression (MNR) analysiert. 

 Besagte Analysemethode habe ich auf neurale Stammzellen der adulten Maus an-

gewendet. Dieses Tiermodell stellt den Differenzierungsprozess einer quieszenten Stammzelle 

zu einem Neuroblasten dar. Interessanterweise zeigten Gene, die ihre Polyadenylierung mit 

fort-schreitender Differenzierung ändern, eine Überrepräsentation von Risikogenen für neuro-

logische Entwicklungsstörungen, unter anderem Autismus-Spektrum-Störung (ASS). Ein 

Vergleich der 3’UTRs in ASS-Patienten zeigte, dass 3’UTRs tendenziell länger sind in Autisten 

relativ zur Kontrollgruppe. 

 Motivanalysen in den Maus- und humanen Sequenzierungsdaten deuteten weiterhin auf 

eine Überrepräsentation des cytoplasmatischen Polyadenylierungselements (CPE) hin. Diese 

Motive werden von CPE-Bindeproteinen (CPEBs) erkannt. RNA Immunoprezipitierung ergab, 

dass CPEB4 dieses Motiv binden kann. Proteomik sowie Ribosome-Profiling wurden 

herangezogen, um den Einfluss der Binding durch CPEB4 und das Verkürzen der 3’UTRs auf 

die mRNA-Translation abzuschätzen. 

Erstaunlicherweise war eine Koexpression von CPEB4 und dem CPEB-bindenden, 

synaptischen Adhäsionsmolekül Amyloid-Beta-Precursor-like Protein 1 (APLP1) in den Maus-
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sowie den humanen Datensätzen zu beobachten. Zudem zeigten APLP1-defiziente Mäuse vom 

wildtyp-abweichende alternative Polyadenylierung. 

Als Zusammenfassung ist zu sagen, dass die hier entwickelten Methode mit dem Ziel 

3’UTRs-Signale zu bestimmen, also einzelne poly(A)-Signale, diese in 10X-Genomics-Daten 

erfolgreich detektieren kann. Zusätzlich deutete die Auswertung der Daten auf eine Verbindung 

von APA, neuronaler Differenzierung, CPEB4 und der neurologischen Entwicklungsstörung 

ASS hin. 
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(v)SVZ (ventricular) subventricular zone 

APA alternative polyadenylation 

APLP1/Aplp1 amyloid beta precursor like protein 1  

ASD autism spectrum disorder 

CPE Cytoplasmic Polyadenylation Element  

CPEB4 Cytoplasmic Polyadenylation Element Binding Protein 4 

GESA gene set enrichment analysis 

GLM generalized linear model 

LRT log-likelihood ratio test 

MNR multinomial regression 

NSC neural stem cell  

PAS polyadenylation signal 

RBPs RNA binding proteins  
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Chapter 1 
 

 

Introduction 
 

 

 

In this chapter I will introduce the neural stem cell lineage and reason why this system 

is a suitable model to study neurodevelopmental disorders (1.1). Next, I will give a 

background on the biology of alternative polyadenylation and motivate why it is highly 

relevant in the context of neurodevelopmental disorders and stem cells (1.2). In addition, 

I will explain why the two genes CPEB4 and APLP1 are of specific interest for this 

work (1.3 and 1.4). Also, I will introduce single-cell sequencing techniques, explain 

their applications, analysis (1.5) and reason why these methods are of specific interest 

for the analysis of alternative polyadenylation (1.6). Finally, I will summarize the 

scientific goals of this study (1.7). 
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1.1 Neurogenesis and Neural Stem Cells in the subventricular zone 
 

The brain is considered to be the most complex organ and its tasks are executed by 

myriads of neurons transmitting signals through chemical synapses in highly 

interconnected circuits. Neuroglial cells like astrocytes fulfill supportive functions, for 

instance, the maintenance of water and ion homeostasis (Jäkel S. & Dimou L., 2017). 

In order to set this network in place the brain needs to generate millions of neurons from 

few progenitor cells. This process is also known as neurogenesis. It was shown that 

radial glia cells are the main players in embryonic neurogenesis and that some radial 

glia cells are kept in the adult brain (Kriegstein A. & Alvarez-Buylla A., 2011). These 

cells are also referred to as neural stem cells (NSCs). In adult mice, neurogenesis only 

takes place at certain regions of the brain (Ming G.L. & Song H., 2011). The two most 

important ones are the lateral walls in the ventricular-subventricular zone (vSVZ) and 

the sub granular zone (SGZ) in the dentate gyrus of the hippocampus (Ming G.L. & 

Song H., 2011). While the stem cell niche of the SGZ produces dentate granule cells, 

the vSVZ functions as a source of neuroblasts which migrate through the rostral 

migratory stream (RMS) into the olfactory bulb (OB) and eventually mature into 

interneurons (Ming G.L. & Song H., 2011). As a result, the animal can adopt and fine-

tune odor discrimination throughout lifetime (Lledo P.M. et al., 2016). Most vSVZ 

NSCs reside in a state of quiescence and show high similarity to astrocytes, in their 

morphology as well as their gene expression program (Linnarsson S., 2015). In literature 

they are termed quiescent NSCs (qNSCs) or B1q-cells (Kriegstein A. & Alvarez-Buylla 

A., 2011). The maintenance of this population was shown to depend on signals and 

factors outside the stem cell niche (Bond A.M. et al., 2015). In addition, the presence of 

interferons which increase with aging plays a role (Kalamakis G. et al., 2019). Upon 

activation, qNSCs switch their gene expression program and become active NSCs 

(aNSCs) and eventually transient-amplifying progenitors (TAPs) that differentiate into 

neuroblasts (NBs) (Llorens-Bobadilla E. et al., 2015). This lineage progression is 

depicted in Figure 1. Utilizing single cell sequencing techniques, the studies from 

Llorens-Bobadilla E. et al., 2015 and Kalamakis G. et al., 2019 described the 

transcriptomic changes throughout the NSC lineage progression. Here, the transition 

from qNSCs to neuroblasts was described as a continues process, meaning that inter-

mediate states are represented by the transcriptomes of single cells. 
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Figure 1: Schematic depiction of neurogenesis in the subventricular zone of the adult 

mouse, modified from Llorens-Bobadilla E. et al., 2015, neural stem cell (NSC) activation: 

qNSC à aNSC à TAPs; transit-amplifying progenitors (TAPs), neuroblasts (NBs) and 

differentiation: TAPs à NBs.  

 
 

For the human brain, multiple studies reported evidence of adult neurogenesis 

(Eriksson P., et al. 1998; Ernst A. et al., 2014; Boldrini M. et al., 2018; reviewed by 

Kempermann G. et al., 2018). The study from Ernst A. et al., 2014 suggested the human 

orthologues of vSVZ-NSCs to be located in the striatum and linked a reduction in the 

number of postnatally generated neurons to the onset of Huntington's disease. This 

finding can be seen as a hint that the neurogenesis taking place in the vSVZ resembles 

a feasible model to study neurodevelopmental disorders. Apart from this aspect, vSVZ-

NSCs are experimentally accessible as a mouse model. In particular, NSCs can be kept 

in cell cultures where they are in their active state and treated with the ligand BMP4 to 

shift them to a more quiescent state (Mira, H. et al., 2010; Martynoga, B. et al., 2013). 

In summary and most importantly, vSVZ-NSCs enable insights into the differentiation 

process from a glia-like cell (qNSC) into a neuron. 

 

 
1.2 Why study Alternative Polyadenylation  
 

The central dogma of molecular biology states that genes are transcribed into messenger 

RNAs (mRNAs) from their genomic templates and subsequently translated into proteins 

(Koonin E.V., et al., 2015). However, the amount of proteins produced per mRNA 

greatly varies as regulatory elements in untranslated regions (UTRs) can control with 

which rate an mRNAs is translated (Sandberg, R. et al., 2008). This is also referred as 

posttranscriptional regulation. 
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A relevant player in this regulation is the length of 3’UTRs. The process in which 

alternative 3’UTR lengths are created is termed alternative cleavage and 

polyadenylation (or short: APA). Among several polyadenylation signals (PASs) in the 

genomic template, one is selected (Figure 2). Around two-thirds of all mammalian genes 

bear multiple PASs and therefore can be subject to APA (Chen, C.-Y., et al. 2012; Miura 

P. et al., 2014). 

 Mechanistically, during the termination phase of mRNA transcription, the 

polyadenylation machinery is recruited. Cleavage and polyadenylation specificity 

factors (CPSFs) recognize the PAS, most commonly the hexamer AAUAAA, or a slight 

variation of this motif. Cleavage can also occur at non-canonical sites and depend less 

on the hexamer AAUAAA but more on auxiliary factors. Cleavage stimulation factors 

(CSTFs) bind to downstream elements (DSEs). The pre-mRNA is then cleaved and 

polyadenylated 10 to 30 nucleotides downstream of the PAS. If a proximal (upstream) 

PAS is selected the 3’UTR will be shorter and if a distal (downstream) one is selected 

it will be longer (Figure 2, Miura P. et al., 2014). 
 

 

 
Figure 2: Schematic depiction of alternative polyadenylation, modified from 

Miura et al. 2014, the assembled factors (polyadenylation specificity factors, CPSFs 

& Cleavage stimulation factors, CSTFs) either cut and polyadenylate the nascent 

mRNA at a proximal polyadenylation signal (PAS) or at a distal one. 

 

PAS selection depends on various conditions, like the expression of polyadenylation 

factors (Miura P. et al., 2014; Lackford B. et al., 2014), other binding proteins (Miura 

P. et al., 2014, Bava F.-A. et al., 2013), genetic variations (Mariella E. et al., 2019) and 

the sequence composition around the cleavage site. As an example, it was shown that 
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reduction of CPSF5 levels (also known as NUDT21 and CFIM25) affects APA in 

numerous genes (Alcott, C. E. et al., 2020). 

Notably, APA can not only occur in terminal exons but also in introns resulting 

in mRNAs with truncated coding regions (Miura P. et al., 2014). This is most likely to 

happen in genes bearing a strong PAS in combination with a weak splice-site in an intron 

(Tikhonov M. et al., 2013). More commonly, mRNAs with the same coding region can 

have alternative 3’UTR lengths. Therefore, regulatory elements that are present in 

longer UTRs are absent in shorter ones (Miura P. et al., 2014). These elements can 

influence mRNA stability, the rate of mRNA translation and intracellular location of 

mRNAs (Miura P. et al., 2014). As the majority of these elements rather repress mRNA 

translation, shorter 3’UTRs tend to have a higher protein production (Gruber, A.R. et 

al., 2014). It was suggested that 3’UTR shortening in hundreds of genes impacts stem 

cells differentiation (Brumbaugh, J. et al., 2012; Lackford B. et al. 2014) and that even 

the 3’UTR length of a single gene like Pax3 can be critical for the fate decision of stem 

cells (De Morree A. et al., 2019). In addition, Sommerkamp P., et al. 2020 reported 

global 3’UTR shortening with stem cell activation and differentiation. In summary, this 

points to the importance of 3’UTR length regulation in stem cells. 

From an evolutionary perspective, 3’UTR length was found to correlate with the 

complexity of organisms (Chen, C.-Y. et al. 2012). In the brain, expression of transcripts 

with ultra-long 3’UTRs was reported in neurons (Wang L. & Yi R., 2013; Miura P. et 

al., 2013). In general, 3’UTRs are longer in neurons compared to other cell-types 

(Guvenek A. & Tian, B., 2017; Guvenek A. & Tian B., 2018). The role of alternative 

3’UTR lengths in neurons was studied in greater detail for single genes (Miura P. et al., 

2014), like brain-derived neurotrophic factor (BDNF). In hippocampal neurons, the 

BDNF-transcript bearing the long 3’UTR is transported to dendrites, there stimulating 

dendritic outgrowth while the short isoform localizes to the soma (An J.J. et al., 2008). 

This local translation of mRNAs is relevant for the connection of neurons. A study by 

Jereb, S. et al., 2018 identified differential 3’UTR usage across different neuronal cell 

types. Also, the 3’UTRome was suggested as a hub of potential pathological variations 

relevant for neurodevelopmental disorders (Wanke K. et al., 2018).  
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1.3 The CPE motif affects translation and poly(A)-site selection 
 

As described in the previous section, 3’UTRs can contain a variety of regulatory 

elements like binding sites for micro RNAs (miRNAs) or RNA binding proteins (RBPs), 

which can be critical for posttranscriptional regulation (Miura P. et al., 2014). A family 

of motifs that are of specific interest for this study are cytoplasmic polyadenylation 

elements (CPEs) with the core motif UUUUAU. In terms of intracellular localization, 

CPE-containing mRNAs were reported to be transported to dendrites in neurons 

(Fernandez-Moya S.M. et al., 2014, Groisman I. et al., 2006). The protein family of 

RNA binding proteins recognizing CPE motifs is termed CPEB, consisting of four 

members (Weill L. et al., 2012; Richter J.D., 2007), one of them being CPEB1. Although 

CPEB’s have cytoplasmic functions as implied by their name, CPEB1 was shown to 

also have a nuclear one; it can influence poly(A)-site choice (Bava F.-A. et al., 2013). 

With regards to its role in mRNA translation, the presence of CPE motifs usually 

enhances protein outcome, meaning CPE-mRNAs are favored for translation over non-

CPE-mRNAs (Weill L. et al., 2012; Richter J.D., 2007). However, CPEs can also 

repress translation mainly in non-neuronal cell types (Groisman I. et al., 2006). 

Lengthening of poly(A)-tails by CPEB4 was implied in ASD and CPEB4 binding 

targets are enriched for autism risk genes (Parras A. et al., 2018). In addition, in CPEB4 

knockout mice autistic phenotypes were reported (Parras A. et al., 2018). Whether 

CPEB4 (not only CPEB1) can also influence PAS selection in the nucleus remains 

unclear but will be addressed in this work. 

 
 
1.4 APLP1 binds CPEB and affects polyadenylation 
 

APLP1 (amyloid beta precursor like protein 1) is a synaptic adhesion molecule 

(Schilling, S., et al. 2017) and belongs to the family of amyloid beta proteins, together 

with APP and APLP2 (Müller U.C., 2017). Amyloid beta proteins are a critical factor 

in Alzheimer, a neurodegenerative disease leading to dementia (Schilling, S., et al. 

2017). In mice, most combinations of double knockouts for these proteins are lethal (von 

Koch, C. S., 1997; Schilling, S., et al. 2017). The molecular function of amyloid-beta 

proteins is not fully known (Müller U.C., 2017). It was suggested that APLP1 is 

important in maintaining dendritic splines and in synaptic signal transmission (Schilling, 
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S., et al. 2017). A different study showed that Aplp1 can mediate poly(A) induced 

translation via binding to CPEB1 with its intracellular domain in neurons (Cao Q. et al., 

2005). This protein-protein interaction was identified in a yeast two-hybrid screen and 

confirmed utilizing co-immunoprecipitation and glutathione S-transferase (GST) 

pulldowns (Cao Q. et al., 2005). Combining the results from Bava F.-A. et al., 2013 

about CPEB4 and Cao Q. et al., 2005, one can hypothesize that APLP1 can indirectly 

impact APA by enriching CPEB’s at the membrane thus altering their activity on PAS 

selection in the nucleus. 

 

 

1.5 History and analysis of single cell sequencing and other “omics” 

techniques 
 

The development of high-throughput RNA sequencing techniques enabled the 

transcriptome-wide comparison of gene expression levels and found wide usage in 

medicine and biology (Hwang, B., et al. 2018). Microarrays were the first instance of 

this technique and quantified gene expression based on reverse-transcribed mRNAs 

(cDNA) as input (Hwang, B., et al. 2018). This platform is limited in the number of 

detected genes by predefined probes and also by the fact that expression could only be 

compared relative to a control sample. Next generation sequencing (NGS) techniques 

overcame these hard limitations (Hwang, B., et al. 2018). cDNA is clustered on flow-

cells and sequenced as optical read-out when a matching base is incorporated. In NGS 

samples, the number of detected genes increases with sequencing depth and expression 

is quantified since gene counts enable the comparison to all other samples (Hwang, B., 

et al. 2018). Over many years NGS was restricted to bulk or cell population averages. 

Further technical developments in mRNA capturing and amplification facilitated 

sequencing the transcriptomes of single cells (Eberwine, J. et al. 1992, Hwang, B., et al. 

2018). For the first time, scientists were able to study the heterogeneity in gene 

expression of single cells (Hwang, B., et al. 2018). This led to the discovery of unknown 

dynamics in gene expression and new cell-types that could not be isolated or observed 

by other techniques before (Hwang, B., et al. 2018, Llorens-Bobadilla E. et al., 2015). 

The restrictions on the other hand are mainly poor recovery of genes per single cell 

compared to bulk sequencing (Hwang, B., et al. 2018). Two main RNA sequencing 
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strategies had been established in the single cell sequencing field: full-coverage RNA 

approaches like the Smart-seq2 protocol (Picelli, S., et al. 2014) and droplet-based 

approaches (Zheng G., 2017). The latter one captures single cells in small droplets, binds 

mRNAs with oligo-(dT) sequences on beads and adds single cell barcodes and unique 

molecular identifiers (UMIs) to the reads (Figure 1.4). This workflow allows the 

detection of single mRNA molecules in single cells. Compared to full-coverage single-

cell sequencing, the droplet-based tagging sequencing technique usually has a higher 

output in the number of single cells (Hwang, B., et al. 2018). One of the most commonly 

used platforms for droplet based single-cell RNA sequencing is the one from 10X 

Genomics (Zheng G., 2017).  
 

 
 

Figure 1.4: Droplet based single-cell sequencing, modified from Hwang, B., et 

al. 2018 for each cell: mRNAs are captured by oligo-(dT) sequences, UMI and cell 

barcodes are added, mRNAs are reverse transcribed and sequenced (not shown), 

gene counting per single cell and further down-stream analysis approaches. 

 

A common analysis approach for single cell sequencing experiments are 

dimensionality reduction techniques like principle component analysis and UMAP, 

short for Uniform Manifold Approximation and Projection (Becht, E., et al. 2019). Both 

algorithms approximate the distance of single cells in the realm of gene expression and 

project them into a two-dimensional space. The UMAP algorithm tries find the 

neighbors of a given cell and then extends these local neighborhoods. For this purpose, 

highly variable genes are selected (Hwang, B., et al. 2018). Based on the result novel 

clusters of rare cell populations can be assigned and established marker genes are used 

to identify known cell-types (Hwang, B., et al. 2018). In the last years, a number of 
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dimensionality reduction algorithms centered around the idea to fit single cells onto 

trajectories – and therefore to model differentiation – had been introduced (Hwang, B., 

et al. 2018). One of these algorithms is reversed graph embedding (Trapnell C. et al., 

2014). Its objective is to find structures (or trajectories) in high-dimensional data, i.e. 

high number of features and observations. From the learned embedding a latent variable 

can be derived referred as “pseudotime”. The prefix “pseudo” is used because it is not 

a real time but rather a smooth transition from one state in gene expression to another 

(Trapnell C. et al., 2014; Hwang, B., et al. 2018). Assigning cells to discrete cell clusters 

or using a continues variable like “pseudotime” represent two solutions to describe cell 

states. Which one to use highly depends on the underlyng biology and further analysis. 

As single cell sequencing data has a high number of observations and features, reverse 

or feature-centered analyses are also feasible. For instance, signaling pathways, ligand-

receptor interactions as well as other gene-to-gene interactions can be predicted based 

on the expression patterns in single cells (Hwang, B., et al. 2018). For the common task 

of computing differential expression in single cells, some scientists used modified 

versions of tools developed for bulk sequencing like DESeq2 (Love M.I. et al., 2014) 

while others applied solutions from established single cell analysis software packages 

(Hwang, B., et al. 2018). Here, it has to considered that counts from classical bulk 

sequencing and those from single cells are quite distinct. Single cell counts represent 

unique molecules while bulk samples mostly have cDNA amplification biases (no 

unique molecular identifiers). Moreover, single cells are not independent observations, 

they describe the heterogeneity within an organism. Commonly, bulk RNA sequencing 

experiments are designed in such a way that they contain multiple replicates in order to 

represent the biological variability within a population (Robles, J.A., et al. 2012).  

To summarize, the main objectives in single cell analysis are cell clustering and 

differential expression (Hwang, B., et al. 2018). But the pool of possible applications is 

way broader and not necessarily restricted to expression levels alone. For instance, the 

tool velocyto separates between spliced and unspliced RNAs based on the mapping to 

intronic regions and models the dynamics of mRNA degradation and splicing in single 

cells (La Manno G., et al. 2018). Another layer of gene regulation are the features of 

genes: coding regions, 5’ and 3’ untranslated regions. The same gene can be expressed 

in multiple isoforms having alternative compositions of exons and different 5’ or 3’ 

UTR lengths as already introduced in section 1.2. Standard single-cell analysis methods 

do not account for this complexity and rather treat genes as invariant functional units.  



10 

In contrast to single cell sequencing, many other “omic” methods which 

generally speaking try to quantify a high number of features still depend on high 

amounts of input materials from bulk samples. Some techniques, like DNA methylation, 

ATAC sequencing (Clark, S. J., et al. 2018) and proteomics (Kelly R.-T., 2020) have 

already been successfully applied on single cells but also have drawbacks in terms of 

covered features per cell and in the total number of cells (low throughput). Such 

experiments can be crucial for functional gene studies and be designed as follow-ups on 

findings from single cell sequencing studies. For instance, proteomics and ribosomal 

profiling were applied before to see how mRNA translation and therefore protein 

outcome changes with alterations in gene expression or across cell-types (Baser A. et 

al., 2019). In biology, this is highly critical as the functions of cells are carried out by 

proteins. Proteomics typically utilizes mass spectrometry methods: proteins are isolated 

for cells, digested into smaller peptides and detected on the spectrometer. The readouts 

for these peptides are then compared against databases and quantified as normalized 

intensities per protein (Cox J. et al., 2011; Cox J. et al., 2014). Ribosomal profiling is 

an RNA sequencing method and involves an isolation step to capture ribosome protected 

RNAs and for this reason provides a picture of which genes are actively translated and 

can be seen as an approximation of proteomics (Faye M.D. et al., 2014). Another useful 

method to study the function of a class of proteins, namely RNA binding proteins, is 

RNA immunoprecipitation (Wheeler, E. C., et al. 2018). Here, RNAs are pulled-down 

with an antibody against the protein of interest. The fraction containing the antibody 

will enrich for the RNA substrates of the binding protein. Next, this fraction is compared 

to control fractions to account for unspecific binding (Wheeler, E. C., et al. 2018).   

To conclude this section, the big discrepancy in molecular biology consists of 

two experimental and analytic strategies. The rather classical approach aims for the 

comparison of features like gene expression across predefined conditions. Single cell 

sequencing provided a new approach focusing more on the unsupervised detection of 

novel cell clusters (Hwang, B., et al. 2018). Both strategies have a high synergy, for 

instance, in bulk sequencing one might observe differentially expressed genes. Single 

cell sequencing can then clarify whether this is due to the fact that either in one of the 

conditions a specific cell-type is overrepresented or whether the dysregulation of genes 

affects all cells in one condition. Ideally, additional “OMICs” like ribosomal profiling 

or proteomics can then address, for example, whether the changes in gene expression 

result in changes in protein levels.  
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1.6 Detection and analysis of alternative polyadenylation in high-

throughput sequencing data 

 
As described in section 1.2, alternative polyadenylation is critical for posttranscriptional 

regulation and therefore its detection is of high interest for biologists. In general, 

alternative polyadenylation can be quantified using next generation sequencing. The aim 

of such experiments is to compare multiple cell-types, conditions or treatments against 

each other. This is also called differential 3’UTR usage (Miura P. et al. 2014). Full 

coverage RNAseq data has been applied for such analyses (like in Szkop K. J. et al., 

2017) but normally does not always allow the detection of distinct PASs (Miura P. et al. 

2014). To overcome this limitation, software tools like DaPars (Xia Z. et al., 2014) fit 

functions to the 3’UTR read coverage vectors. These methods will approximate a center 

of gravity or a comparable measure and compare these estimates across conditions, 

gene-by-gene (Figure 1.5, upper panel). One reason why full-coverage RNAseq data is 

limited in this regard, can be explained by the cDNA fragmentation step, for instance in 

Smart-seq protocols (Picelli, S., et al. 2014). This protocol makes it hard to decide 

whether a part of a 3’UTR sequence is absent either because the cell expressed the gene 

with a shorter 3’UTR (proximal PAS) or because the distal 3’UTR was lost in the 

fragmentation step (missing at random). However, sequencing RNAs as fully covered 

sequences provides confidence that the whole mRNA was detected (Miura P. et al., 

2014) and which exons are present. 

As an alternative, 3’RNAseq techniques (Miura P. et al., 2014) were designed to 

read the transcript from the most 3’end (from the poly-A tail) and therefore to provide 

higher resolution and statistical power (Miura P. et al., 2014). In other words: the 3’ends 

are tagged. One recent study applying (low-input) bulk 3' sequencing is the one from 

Sommerkamp P., et al. 2020. Counting the most 3’ positions of reads yields distinct 

3’peaks reflecting the different PASs in genes (Figure 1.5, lower panel). Another 

representative study to name here is the one from Jereb, S. et al., 2018 in which the 

authors identified 3’peaks and compared them across different types of neurons. In 

contrast to the full-coverage approach, usually no information of the rest of the gene like 

its exon composition is available. The narrower the 3’peaks (meaning the smaller the 

peak sizes) the more likely it is to resolve PASs which are very close to each other. 
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Figure 1.5: Detection of alternative 3’UTR usage, modified from Miura P. et al., 

2014, the (fictitious) gene x is shorter in group A and hence longer in group B. 

Lower panel: the two 3’peaks mark the two PAS in the 3’UTR region of the gene, 

the y-axis represents the number of reads mapped per position (read coverage), 

upper panel: the same but for full-coverage RNAseq. 

 

After assigning PASs by a peak calling algorithm the fractions of reads in each PAS can 

be directly compared across treatment conditions or cell-types. This is performed using 

suitable statistical methods assessing odds ratios like Fisher’s Exact or Chi-Square tests. 

Importantly, these statistics will only be relevant if variation is estimated on biological 

replicates. An exception would be, for example, if the aim is to describe the 

heterogeneity across single cells in one sample. A statistical test to examine the 

confidence in odds ratios that works with replicates would be the Cochran–Mantel–

Hänszel test (Agresti A., 2002). As an alternative, multinomial or ordinal models could 

be applied (Agresti A., 2002; see also Venables W.N. & Ripley B.D., 2002; Bohning 

D.,1992; Begg C.B. & Gray R., 1984). The applications of these models cover a wider 

range as diverse predictor variables can be fitted to the multinomial distributions 

allowing one to state how 3’UTR usage changes with the variable of interest (Figure 

1.6). Importantly, these models will not fit alterations in total expression like the 

DESeq2 tool, but compare (local) odds ratios in 3’UTR usage. 

As already stated before, the benefit of bulk (3’) sequencing approaches lies in 

the high sequencing depth which can be obtained with relatively low costs. Their 

downside, however, is that these approaches will reflect an average measure across cell 

populations and do not provide the resolution of single-cell sequencing. 
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Figure 1.6: Illustration of multinomial regression models, the (fictitious) gene 

y has three polyadenylation signals. These are treated as categories j having 

probabilities p(j) to be selected, hence they are multinomially distributed. For n 

observations these counts (response) can be fitted against predictor variables (in 

this example, one continues predictor variable). 

 

In single cells, 3’UTR usage is an understudied field. Velten L. et al., 2015 reported that 

single cells show greater heterogeneity in their PAS selection than expected by chance. 

A recently developed tool termed Sierra aims to call peaks in single-cell sequencing 

data and compares proximal to distal 3’peaks using Wilcoxon rank sum tests with single 

cells as statistical units (Patrick, R., et al., 2020, Discussion). 

In this doctoral thesis, I will introduce a bioinformatical pipeline developed to 

call 3’peaks based on single-cell sequencing data from the 10X Genomics platform 

(Zheng G., 2017). Although mRNAs are captured by oligo(dT)-beads and sequenced 

from the most 3’ position, the default 10X analysis pipeline cellranger (Zheng G., 2017) 

does not provide an output with the exact positional information. This can be considered 

a missed opportunity since the discrimination between shorter and longer 3’UTRs as 

well as alternative terminal exons is of high biological relevance (Miura P. et al. 2014). 

The benefit of using single cell sequencing data over bulk methods in the first place 

consists in its high resolution; different cell-types can be separated based on their 



14 

transcriptomic profiles as well as representations of lineages and trajectories reflecting 

differentiation processes (as introduced in the last section, Trapnell C. et al., 2014). 

From the two main approaches, how to analyze single cell sequencing data, namely the 

feature-centered approach like differential expression and the cell-centered approach 

like dimensionality reduction and clustering I will focus more on the first one. Doing 

so, I will be able to study the biology of alternative polyadenylation in the context of 

neuronal differentiation. In the next section I will explain he specific goals of this work. 

 
 
1.7 Goals of this study 
 

Based on the findings from Baser A. et al., 2019 that posttranscriptional regulation is 

crucial for the onset of NSC differentiation we intended to follow this up by focusing 

our studies on 3’UTR usage in NSCs. The first milestone of my PhD was to developed 

a bioinformatical pipeline to detect PASs in single cell RNAseq data by 3’peak calling. 

Next, 3’UTR alterations along the NSC lineage progression can be described applying 

motif detection and gene set enrichment analyses. One question was whether these genes 

with 3’UTR changes would show an intersection with risk genes for human diseases. 

To strengthen such a claim, it would be of interest to detect differential 3’UTR usage in 

human data by comparing a cohort of patients against a control group. 

As reasoned in section 1.1 our model of the murine NSC lineage enables us to 

study neurogenesis and therefore neurodevelopmental disorders. Subsequently, we 

aimed of connecting the 3’UTR changes in NSCs and human disease (here: ASD, as we 

will show later) by a motif in 3’UTR sequences and its respective binding protein. 

Moreover, we also aimed of showing the impact of 3’UTR changes and the binding 

protein (here: CPEB4, as will show later) on protein outcome. I will use single cell RNA 

sequencing data of neural stem cells and neuroblasts collected from Aplp1 knockout 

mice and wildtype controls to see whether CPE-dependent PAS selection is altered 

when APLP1 is absent.  

In summary, the goal was to link neurodevelopmental disorders, neurogenesis 

and an RNA binding protein to alternative polyadenylation based on different data types 

by developing and applying computational methods.  
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Chapter 2 
 

 

Methods 
 

 

 

This chapter will comprise the development of a bioinformatical workflow designed to 

call 3’ peaks in single cell sequencing data. The goal of this method is to quantify how 

the usage of these 3’peaks – representing different poly(A) signals and therefore 

different 3’UTR lengths – changes across various conditions. I developed this method 

together with Dr. Simon Anders and Dr. Wolfgang Huber. Moreover, I will describe the 

methods for down-stream analyses (gene set and motif enrichments), differential plus 

co-expression as well as a comparison of 3’UTR usage to protein outcome. 
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2.1 Overview of datasets and general analysis strategy 

 

The first milestone for me was to explore the 10X genomics data and to assess whether 

the exact 3’ ends of genes can be detected. If yes, the question was how good the quality 

of these 3’peaks is (average peak width and positional correlation with the known PAS: 

AAUAAA). After having established this pipeline, I applied it on four datasets (see also 

Supplementary Table 1): 
 

1 (wildtype) NSC lineage progression (data from Kalamakis G. et al. 2019) 

2 NSCs from APLP1-/- vs. wildtype (data from: Nikhil Oommen George)   

3 Human neurons: ASD vs. controls (data from: Velmeshev D. et al., 2019) 

4 in vitro NSC lineage (from: Nikhil Oommen George) 
 

The biological questions were how does APA change with NSC lineage progression (1), 

is APA different in APLP1-/- compared to wildtype (2) and different in human neurons 

from ASD patients compared to controls (3). Are the genes altering their 3’UTR usage 

enriched for specific gene sets and regulatory motifs? Since multiple follow-up assays 

(like proteomics, RNA immunoprecipitation and ribosomal profiling) were generated 

from in vitro NSCs, I also compared differential 3’UTR usage from active to quiescent 

NSCs as in vivo vs. in vitro (4). Other questions were whether polyadenylation factors 

are differentially expressed (mainly 1 and 3), what is the effect of CPBE4 binding to 

mRNAs (5) and how does differential 3’UTR usage as well as CPEB4 influence mRNA 

translation (6 and 7). 
 

5 CPEB4 RNA immunoprecipitation in in vitro NSCs 
(data from: Ana Domingo Muelas, Alex Bizyn & Rosa Pascual) 

6 Proteomics of in vitro active and quiescent NSCs 
(data from: Nikhil Oommen George & Daria Fijalkowska)   

7 Ribosomal profiling in vitro NSCs 
(data from: Maxim Skabkin & Damian Carvajal Ibanez)   

 

To summarize the general strategy, datasets 1 to 4 were used to establish the 3’peak 

calling pipeline and to derive biological clues on differential 3’UTR usage. Datasets 5 

to 7 were utilized to answer further biological questions as a follow-up. 
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2.2.1 Mapping of single cell 3’UTR peaks (with long reads) 

 
As a first step, I mapped the reads from the 10X Genomics FASTQ-files to the mouse 

genome (mm10). Most importantly, the alignments should provide the positional 

information of transcript ends. I figured that running the mapper bowtie2 (version 

2.3.5.1, Langmead B. & Salzberg, S.L., 2012) with the option --very-sensitive-local and 

in paired-end mode (and not single end as in cellranger) would achieve this. In 

particular, cell barcodes and UMIs will be soft-clipped, the most 3’ position of read 1 

will represent the most 3’ position in the mRNA and read 2 will map downstream to 

read 1. Figure 2.1.1 depicts this mapping strategy. In order to enable efficient processing 

of the alignments they were sorted by genomic region using samtools. 

 
 

 
 

Figure 2.1.1: Mapping strategy for 3’peaks in scRNAseq data. Step 1: mapping 

reads in paired end mode to the human genome, step 2: count the most 3’ position 

in the CIGAR string of read 1. The blue line represents a genomic region annotated 

as 3’UTR when the gene is transcribed from the forward strand (5’ to 3’). 
 

 
 
2.2.2 Calling 3’UTR peaks in single cell sequencing data 
 

The following processing steps I carried out in an R/Bioconductor environment. Firstly, 

I extracted the 3’UTR regions of transcripts from ENSEMBL (GenomicFeatures and 

TxDb.Mmusculus.UCSC.mm10.knownGene, Lawrence, M. et al., 2013). Subsequently, 

I resolved overlapping transcripts so that every entry in the obtained gene annotation 

stores unique (non-overlapping) genomic coordinates. This was done to avoid counting 

the same transcript multiple times. 
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 Next, I loaded the alignments (with GenomicAlignments) that map to these 

3’UTR regions considering only reads reported as primary alignment and mapped as 

proper pairs. Per region, the most 3’ mapping position of read 1 was translated from 

CIGAR strings to local coordinates in transcripts (Figure 2.1.1). Over duplicated reads 

that were called by the unique molecular identifier (UMI) median mapping positions 

were computed. Additionally, the single cell barcode was added to each entry. The 

reason to process the data like this was to assign single transcript lengths to single cells. 

To ensure that this pipeline runs at reasonable speed I processed multiple regions at once 

with BiocParallel (Lawrence, M. et al., 2013; Huber W., 2015).  

   

 

 
 

Figure 2.1.1: Workflow: calling 3’peaks in single cell sequencing data. After 

genomic mapping (shown in more detail in the previous Figure 2.1.1), for each 
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gene: most 3’ positions of reads are counted and assigned with respect to 3’peaks 

and single cells. 

 

The next objective was to call 3’UTR peaks. For such tasks common peak calling 

algorithms like MACS2 (Zhang, Y., et al., 2008) were applied before. Due to the low 

mapping background (detection of sharp 3’UTR peaks) I decided to implement peak 

calling by clustering the non-zero positions, i.e. UMI counts of 3’UTR ends, (R 

functions hclust and cutree). A 3’tail peak was called if it was supported by at least 3 

UMIs and had a distance to other peaks of at least 50 bp considering a mean 3’peak 

width of around 20 to 30 bp. 

 As a validation for the 3’ mapping, the distance of peak centers to the closest 

canonical poly(A) signal (AAUAAA) in the 3’UTR reference sequence was computed. 

The results (single cell 3’ mapping positions: count table and read coverage) were stored 

in a gene ordered list (S4 object structure). Moreover, the output inherits the single cell 

annotation as well as the gene annotation like the genomic coordinates (GRanges object, 

see Lawrence, M. et al., 2013) and sequence information of 3’UTRs. This structure 

enables easy-to-implement ‘per-gene’-downstream analyses utilizing R’s apply 

functionality as every entry contains the information for one gene and an index matching 

the single cell annotation. Another benefit is the sparsity of the object since empty 

entries are not contained in the object. A classical count matrix if needed can be easily 

reconstructed. 
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2.2.3 Inferring NSC lineage progression as pseudotime 
 

As a next step in this project, a reversed graph embedding algorithm was applied to 

single cell RNAseq (Trapnell C. et al., 2014) data in order to obtain a latent variable that 

resembles NSCs lineage progression in silico. A commonly applied implementation for 

this task is available in the R package monocle2 (Trapnell C. et al., 2014). In this work, 

pseudotime was computed following monocle2’s standard workflow. Genes used as 

input for the reversed graph embedding algorithm were selected by choosing those with 

the highest dispersion (variance) in the respective dataset. Importantly, pseudotime was 

computed separately for each sequencing experiment: in-vivo NSCs (young & old), in-

vitro NSCs (EGF & BMP4) and APLP1 (WT & APLP1-/-). As a sanity check, marker 

genes for the different NSC states were explored (Kalamakis G. et al., 2019). The result 

of this method was already published in Kalamakis G. et al., 2019. 

 

 

2.2.4  Correlation analysis of single cell 3’UTR usage with NSC 

lineage progression 
 
As a first approach to see how 3’UTR lengths change with NSC lineage progression, 

we considered a correlation analysis. Explicitly, Pearson’s correlation test and 

coefficient were computed inputting for every gene the variables pseudotime t (previous 

section) and average 3’UTR lengths l of single cells i denoted in (I): 
 

(I) ρ = 𝑐𝑜𝑟𝑟(	𝑡,, 𝑙,)	with	single	cells	being	observations	𝑖 = 1, 2,… 𝑛 
 

Extreme correlation coefficients will indicate shortening or lengthening of 3’UTRs with 

NSC lineage progression. As pseudotime t per definition increases with maturation 

(from qNSCs to NBs), negative coefficients correspond to shortening and positive ones 

to lengthening.  
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2.2.5.1 Inference of differential 3’UTR usage along lineage    

progression with MNR  
 

As a second approach we applied multinomial regression on the 3’UTR mapping results. 

Here, my aim was to quantify how the fractional usage of poly(A) signals change with 

NSC lineage progression (quantified as pseudotime variable t in 2.23). For every gene 

detected with two or more 3’peaks, a matrix can be defined as: 
 

(I)  𝑈(D	,E	) ∈ 	 ℤH,I given as [UMI counts] 
 

In (I) every row represents a single cell assigned a unique pseudotime value t and non-

zero expression of the given gene. Column entries j correspond to 3’peaks ordered from 

most proximal to most distal. Since these data is multinomially distributed we define U 

as the (polytomous) response and pseudotime as the predictor variable hypothesizing 

that the choice which PAS is used depends on the NSC maturation state (t). The most 

proximal 3’peak will be treated as reference category (j = 0) from C possible categories 

in total and probabilities π as: 
 

(II)  𝜋K
(H), 𝜋K

(L), …	𝜋K
(MNL) with single cells being observations 𝑖 = 1, 2, …𝑛 

 

In order to describe local changes in log-odd-ratios between the 3’peaks (categories j) a 

logit-function can be modelled with beta-parameters (β) learned by fitting the model in 

(III, see Agresti A., 2002; see also Venables W.N. & Ripley B.D., 2002; Bohning 

D.,1992; Begg C.B. & Gray R., 1984): 
 

(III)  logOPQ
(R)

PQ
(S)T = 𝛼(E) + 𝛽L

(E)𝑈L + ⋯+ 𝛽D
(E)𝑈DK 		 

 

Since it is of interest to model the trend of 3’UTR usage over t as an approximation of 

3’UTR usage, beta-parameters should be estimated as a basis spline (Hastie T.J., 1992) 

matrix with three degrees of freedom (dof) as a total of 3 times (C-1) beta-parameters: 
 

(IV)  𝛽 → 𝛽Z   
[K\]^_
⎯̀⎯⎯b  

  logOPQ
(R)

PQ
(S)T = 	𝛼Z(E) + 𝛽L

Z(E)𝜑(𝑈, 𝑡) + 𝛽d
Z(E)𝜑(𝑈, 𝑡) + 𝛽e

Z(E)𝜑(𝑈, 𝑡)  

with 𝜑() as B-spline kernel function and thus a matrix of beta-parameters:  



22 

В^gh,E = i
𝛼ZH ⋯ 𝛽eZH
⋮ ⋱ ⋮

𝛼Z(MNL) ⋯ 𝛽e
Z(MNL)

l 

 

To obtain curves depicting for each 3’peak (categories j) their fractional usage the B-

splined pseudotime was multiplied by the transposed beta-parameter matrix from (IV). 

Next, the log-transformation was removed applying the exponential function to the 

result: 
 

(V) Т,,E∗ = 	𝜑(𝑡,			𝑑𝑜𝑓 = 3)			   𝑤𝑖𝑡ℎ	Т	𝑛,𝑗0 = 1	(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)	  obtain:  𝑒𝑥𝑝(	Т	𝑥	В{) 
 

In terms of implementation, the R package nnet was deployed as it is the recommended 

software for multinomial regression models (Venables W.N. & Ripley B.D., 2002). As 

an alternative I also considered the VGAM package which gave comparable results (not 

shown). In nnet, beta-parameters are learned using feed-forward neural network with a 

single hidden layer and in this case UMI counts are treated as weights for each 

observation (Venables W.N. & Ripley B.D., 2002).  

The dependence of pseudotime (t) and 3’UTR choice can be further assessed by 

log-likelihood-ratio tests (LRTs). In general, LRTs (Agresti A., 2002) will report high 

values for the test statistic if the inclusion of the critical predictor variable (here 

pseudotime t) yields model parameters for the full model that strongly deviate from the 

reduced model. Formally, this can be expressed in a likelihood chi-squared statistic 

(Agresti A., 2002) as: 
 

(VI) 𝐺d = 	−2𝑙𝑜𝑔Λ	  (𝑤ℎ𝑒𝑟𝑒	Λ	represents	the	deviation	between	both	models) 
 

To this end, the model was fitted as in IV and compared to a reduced model with a 

constant predictor (VII) utilizing the corresponding S3 method in R: anova.multinom. 
 

 

(VII)  𝑀𝑁𝑅(	𝑈(D	,E	)	~	𝜑(𝑡,			𝑑𝑜𝑓 = 3)	)		     as full model 

    𝑀𝑁𝑅(	𝑈(D	,E	)	~	1	)		      as reduced model 
 

On the one hand LR statistics are useful to evaluate whether alterations in APA usage 

with pseudotime are supported by the raw data, on the other hand these statistics may 

not represent a classical p-values since observations (single cells) are not independent 

of each other.  
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2.2.5.2 Inference of differential 3’UTR usage between genotypes with 

MNR 
 

Apart from 3’UTR alterations in NSC lineage progression it is also of interest to quantify 

differences in 3’UTR usage between two genotypes. In this work, we will address the 

hypothesis that 3’UTRs are altered in APLP1-/- compared to wildtype. Given matrix 

𝑈(D	,E	) (I, as the previous section) for both genotypes: wildtype and APLP1-/- plus the 

assignment of cells to biological replicates (next section), we may consider summing 

UMIs over biological replicates for each 3’peak: 
 

(VIII)  𝑈(D	,E	) à 𝑈(_	,E	)    s	=	observation	per	genotype	and	replicate 
 

Doing so will facilitate the computation of (classical) p-values based on independent 

statistical units. However, we assume that pseudotime t is equally represented in both 

genotypes which we can base on the fact that both samples were FACS sorted the same 

way. With multinomial regression we can notate this problem as follows: 
 

(IX)  𝑀𝑁𝑅(	𝑈(_	,E	)	~	𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒	)		    as fully model 

    𝑀𝑁𝑅(	𝑈(_	,E	)	~	1	)		     as reduced model 

 

As a metric of differential 3’UTR usage between APLP1-/- and wildtype, the Earth 

Mover’s distance (EMD, Levina E. & Bickel P., 2001) was defined as follows: 
 

(𝑋)										∆e��{�,� 	
𝑈�{(E	)

∑ 𝑈�{(E	)MNL
K�H

−
𝑈����LN/N(E	)

∑ 𝑈����LN/N(E	)MNL
K�H

 

(𝑋𝐼)																			𝐸𝑀𝐷 = 	� 	�𝐶𝑈𝑀𝑆𝑈𝑀(∆e��{�)�
MNL

K�H
 

𝑈(E	)	~	𝑎𝑙𝑙	𝑈𝑀𝐼𝑠	𝑠𝑢𝑚𝑚𝑒𝑑	𝑜𝑣𝑒𝑟	𝑠𝑖𝑛𝑔𝑙𝑒	𝑐𝑒𝑙𝑙𝑠	𝑝𝑒𝑟	3Z𝑈𝑇𝑅	𝑝𝑒𝑎𝑘	𝑗	𝑓𝑜𝑟	𝑜𝑛𝑒	𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 
 

As an alternative to the Earth Mover’s distance, Agresti’s generalized odds ratio 

(Agresti A., 1980) could be considered, a solution to quantify odds ratios if there are 

more than 2 categories (	𝑗 > 2). Here, EMD was favored as we considered it to be more 

intuitive: it can be thought of the cost to shift the 3’UTR distribution observed in 

APLP1-/- to the one of the WT. Phrased in other words: EMD is the difference between 

the probability of mass function (PMF) of PAS counts between both genotypes. As 

defined in (X) indices j of PAS go from proximal to distal and the APLP1-/- distribution 
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in PAS is subtracted from WT one, hence EMD < 0, the gene is shorter in APLP1-/- vs. 

WT and EMD > 0, the gene is longer in APLP1-/- vs. WT. If one or more middle PASs 

show alterations between the genotypes the gene will get a low p-value by MNR and 

EMD ≈ 0. 

 

 
Figure 2.2: Earth Mover’s Distance applied on 3’peak distributions, schematic 

depiction, comparison of 3’UTR usage between two genotypes. 

 

2.2.5.3 Assignment of single cells to biological replicates (cell-hashing) 
 

For the APLP1-/- sequencing experiment, single cells were assigned to biological 

replicates (mice) using hash-tag-oligos (HTOs), antibodies that bind to cell surface 

proteins (MHC1 and CD45) and are tagged with a small DNA sequence that can be 

captured by oligo-d(T) primers. Per genotype (APLP1-/- and WT control) n = 3 hash-

tag-oligos were used (meaning every cell belonging to one mouse will have the same 

hash-tag-oligo sequence). Hash-tag-oligo sequences were detected in read 2 (ShortRead 

package) allowing one mismatch to the reference hash-tag-oligo sequences. The single 

cell barcodes from read 1 were compared to those from the 10X genomics output. Each 

cell was assigned to an individual mouse (biological replicate) in case the cell had an 

over-representation of one hash-tag that was higher than 1.5-fold of the median hash-

tag count detected within one cell (overrepresentation of one hash-tag-oligo).  
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2.2.6.1 Preprocessing and 3’UTR mapping positions in single cell 

 sequencing data of human neurons 
 

A central hypothesis of this work was the question whether 3’UTR usage differs 

between ASD patients and controls. Of note, 3’UTR lengthening in ASD vs. controls 

was already suggested by Szkop K. J. et al., 2017 based on bulk RNAseq data. Here, I 

reanalyzed the single cell sequencing data from Velmeshev D. et al., 2019. In this study, 

samples were taken post-mortem from individuals diagnosed with ASD and control 

group (Figure 2.x). These samples were extracted from two locations within the brain: 

the prefrontal cortex (PFC) and the anterior cingulate cortex (ACC). Importantly, 

samples were processed with a NucSeq protocol, hence all observations will reflect 

changes in nuclear mRNAs.  
 

 
Figure 2.3: Experimental layout of the study from Velmeshev D. et al., 2019 

comparing ASD to controls, schematic depiction. The presentation of the n = 41 

samples is: n = 22 (ASD), n = 19 (Control), n = 23 (PFC), n = 18 (ACC), n = 32 

(male), n = 9 (female), average age = 14.6 years (15 in ASD and 14.1 in Control). 

 

To start the analysis for 3’UTR usage, I downloaded the FASTQ-files from the gene 

expression omnibus (accession number: PRJNA434002) and subsequently processed 

with the 10X genomics pipeline (cellranger count, version 2.2.0). Reads were mapped 

against the human genome hg38 (GRCh38). In contrast to the 3’UTR mapping strategy 

described in this chapter before, the human scRNAseq data (Velmeshev D. et al., 2019) 

was sequenced with a shorter read 1 (c.f. Figure 2.2) providing the information of cell 

barcode and UMI but not about exact 3’ends. For this reason, the most 3’ position from 
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read 2 instead of read 1 was calculated. Gene annotations (3’UTR regions) were derived 

from ENSEMBL as for the mouse data (TxDb.Hsapiens.UCSC.hg38.knownGene). As 

this method will give broader 3’peaks compared to the paired-end mapping strategy (c.f. 

Figure 2.2) I decided not to call 3’peaks, but instead use average 3’UTR lengths for 

further down-stream analyses (see also Discussion of this chapter).  

 

2.2.6.2 Differential 3’UTR usage in in single cell sequencing data 

comparing ASD diagnosed patients to controls 
 

Firstly, an average or meta-gene 3’UTR length 𝐿(¦,§D) was computed as in (I) for every 

combination of patients (p) and cell-types (ct), respectively. The cell-type annotation 

was adopted from the original paper (Velmeshev D. et al., 2019). The detected cell-

types comprise a variety of neurons (N), interneurons (IN), glia-cells and potential 

progenitor cells (Neu-mat).    
 

(𝐼)																					𝐿(¦,§D) 	=
1
𝑚	�

¨
1
𝑛�𝑙(¦,§D)

,

K�L

©
ª

«�L

		 

𝑙	=	3’UTR	length		 	 p	=	patient	 	 ct	=	cell-type,	

genes	g	=	1,	2,	3,	…	m										 single	cells	i	=	1,	2,	3	…	n	

	

Multiple t-tests were calculated on the result comparing for every cell-type meta-gene 

3’UTR lengths 𝐿(¦,§D) between ASD and control samples. In detail, the R function 

pairwise.t.test was utilized for this purpose (two-sided, Benjamin-Hochberg correction 

for multiple testing and assuming that standard deviations are not equal with: pool.sd = 

FALSE). Next, per gene, linear models were fitted in II with the predictor variables 

Location (PFC or ACC), Sex (male or female) and Diagnosis (ASD or control). This 

was done to block for confounding effects of these variables, for instance if the gene is 

missing (not captured) in some samples and it would appear different between ASD and 

control although the difference would be due to an unequal representations of sexes or 

brain regions (see also Discussion of this section). The test statistics for II (ANOVA on 

linear model) will be high if 3’UTR length differs between ASD and control, 

consistently across samples. 
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(𝐼𝐼)																					 𝐿𝑒𝑛𝑔𝑡ℎ�e��{�	� 	= 	
1
𝑛�𝑙(¦,§D)

,

K�L

		 

𝐿𝑀(	𝐿𝑒𝑛𝑔𝑡ℎ�e��{�	�	~	𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + 	𝑆𝑒𝑥 + 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠	)		  as fully model 

  𝐿𝑀(	𝐿𝑒𝑛𝑔𝑡ℎ�e��{�	�		~	𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑆𝑒𝑥		)		            as reduced model 
 

 

 

2.3.1 Gene set enrichment analysis for differential 3’UTR usage  
 

As a biological interpretation of alterations in 3’UTR length, I computed gene set 

enrichment analyses based on the statistics to measure differential 3’UTR (introduced 

in the previous sections). Gene set enrichment analysis (GSEA) can assess whether 

reference gene sets are over-represented at the top or bottom of a ranked gene list (Yu 

G., 2012; Schriml L. M. et al., 2019). In this work I used the gene annotations from 

Gene Ontology (GO), Disease Ontology (DO), Disease Gene Network (DGN) and the 

Reactome Pathway database. For this, purpose I used the implementation 

ClusterProfiler and its extensions DOSE and ReactomePA (Yu G., 2012). Significance 

of enrichments is computed by permutation tests according to the GSEA method with 

p-value adjustment for multiple testing (i.e. multiple categories). A normalized 

enrichment score (NES) is reported since this value includes the mean of all 

permutations and accounts for correlations to other gene sets (Yu G., 2012). Input gene 

lists were ranked either by the multinomial regression statistics (multinomial regression 

statistics representing evidence for 3’UTR changes) as well as 3’UTR lengthening 

trends for the human data (linear models). For Disease Ontology (DO), Disease Gene 

Network (DGN), mouse gene identifiers were translated to human orthologues using the 

getLDS function from the biomRt package. For the translation, duplicated gene 

identifiers were removed, non-translatable ones not considered and all multi-match 

identifiers were used. This was done to estimate whether 3’UTR changes affect human 

disease risk genes reported in previous studies. 
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2.3.2 Motif enrichment analysis applied on differential 3’UTR usage  
 

Apart from gene sets, regulatory elements (and their motifs) in 3’UTRs are of interest 

as they can impact posttranscriptional regulation of mRNAs. I performed motif analysis 

utilizing the tool homer2 (v4.9) for de-novo motif detection (Heinz S. et al., 2010). This 

method detects the overrepresentation of k-mers in a list of foreground sequences over 

background sequences and subsequently combines enriched k-mers to optimize a motif 

probability matrix (Heinz S. et al., 2010). For the mouse data, I used sequences flanking 

the 3’peaks from genes with only one 3’peak (constant 3’UTR) as background. As 

foreground, 3’peaks from APA that show clear variation in the UMI fraction with 

pseudotime were considered, irrespective whether they increase or decrease. For the 

human data, the top 500 lengthening (longer in ASD vs. control) to the top 500 

shortening genes were compared (ranked by p-value from the linear models). For this 

comparison the distal regions in 3’UTRs (most 3’ 250 bp in the 3’UTR) were used as 

input. To describe the effect of CPEB4 binding on 3’UTR length choices, a CPE motif 

(as regular expression: TTTTGT|TTTTGAT|TTTTAGT) was used if the 3’peak had at 

least one occurrence of this motif in a distance of 1 to 50 bp upstream (in its 3’UTR 

sequence) it was classified as CPE flanking 3’peak. The same motif was used to cluster 

the 3’UTRs in human genes, whether they contain this motif in their distal part (most 3’ 

250 bp of a 3’UTR), in a proximal/middle part or not all. A Chi-Square test (Agresti A., 

2002) was used to determine whether the location of the CPE motif differs between the 

3’UTRs that get shorter and those get longer in ASD vs. controls. 
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2.4 Analysis of differential expression and co-expression 
 

Based on the observation that APA is different between ASD patients and 

controls it was of interest to see whether polyadenylation factors are differentially 

expressed. To this end, UMIs were summed per gene over single cells with respect to 

samples and cell-types in the human single cell RNA sequencing data from Velmeshev 

D. et al., 2019. This pseudo-bulk approach was chosen in order to avoid pseudo-

replication as the intention of this analysis is to estimate the biological variation across 

the ASD and the control cohort (see also the Discussion section of this chapter). Per 

cell-type, DESeq2 was fitted with the model: ~	Location	+	Sex	+	Diagnosis to estimate 

p-values and log2-fold-changes between ASD and controls. Dispersion was fitted using 

the “local” option and DESeq2’s default FDR correction was used. In addition, co-

expression of genes was computed over single cells using Pearson’s method. These 

correlation coefficients were estimated for each sample interpedently to see whether 

they are reproducible across the individuals of the cohort. 

For the APLP1-/- sequencing in mice, differential expression was assessed in a 

similar way as for the human data, summing over cells assigned by hash-tags-oligos (as 

shown in the previous chapter). Accordingly, the DESeq2 model was: ~	Genotype. 

Another question was how the gene expression patterns of cultured NSCs 

compare to freshly isolated NSCs. To this end, single cells from both systems were 

matched by (randomly) subsampling in-vitro NSCs. This way, every in-vivo cell has an 

in-vitro counterpart in pseudotime. For the gene-wise correlation tests (Pearson’s 

moment correlation, one-sided), the expression of genes between pseudotime ordered 

cells (in-vivo vs. in-vitro) were computed. Importantly, pseudotime was computed 

independently for in vivo and in vitro to demonstrate reproducibility. In order to 

visualize the result, dimensionality reduction (UMAP) was performed on an integrated 

data set. Both datasets were inputted into the single cell batch correction algorithm 

mutual nearest neighbors (MNN, Haghverdi L. et al., 2018) for single cell batch 

correction. Distances of single cells in expression space were visualized with the 

sleepwalk tool (Ovchinnikova S. & Anders S., 2020) as Euclidean distances. The 

purpose of this was to see whether in vitro qNSCs are more similar to in vivo qNSCs 

than to in vivo aNSCs.  
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2.5 Analysis of CPEB4-RNA immunoprecipitation results   
 

To assess the binding of CPEB4 to mRNAs, a CPEB4-RNA immunoprecipitation (RIP) 

from cultured NSCs was analyzed as follows: Reads were mapped to the mm10 genome 

(single reads, 50 bp) with the bowtie mapper and counted from BAM files applying the 

R/Bioconductor (Huber W. et al., 2015) workflow (function SummarizeOverlaps with 

mode ‘Union’). Duplicated reads were removed. DESeq2 was applied to compute the 

log2-fold-changes (LFCs) between the IP fraction and controls. Lowly expressed genes 

(less than 25 counts) on average were excluded. The dispersion trend as fitted in the 

mode ‘local’ and DESeq’s default FDR correction was applied. In this analysis CPEB4-

IP, immunoglobulin (IgG) and input fractions were used (for each fraction: n = 2). The 

LFCs were interpreted as the affinity of CPEB4 to mRNAs: the higher the LFC for a 

gene, the higher its affinity/binding to CPEB4. 

As a validation that CPEB4 can bind the CPE-like motif (TTTTGT, TTTTGAT, 

TTTTAGT) the positional information in this data was used in the following manner: 

per 3’UTR region of a given gene a generalized linear model (GLM) with the “poisson” 

family distribution was fitted to the read coverage vectors as: 

 

(I)  𝐺𝐿𝑀�	𝑣(¶�	)	~	𝑣(·¸) +	𝑣(¶«¹	)	�	 

𝑣 ∈ 	ℤH,I given	as	read	coverage	vector	(n	=	2	for	each	condition)	

	

From these fits (one fit per expressed gene) the residuals were used for further down-

stream analysis. The motivation why to analyze the RIP data like this can be illustrated 

by the following example (Figure 2.1). The residuals will be positive at a given position 

in the 3’UTR if the read coverage is relatively higher in the IP fraction than in the 

controls (here IgG and CPEB4-/- IP fractions). Next, the strategy is to observe these 

residuals in defined windows centered around the CPE-like motif (its occurrence in 

3’UTR sequences). Averaged over the transcriptome, the residuals will be positive 

around the motif. As statistical control, to show that this is not an artifact coming from 

a bias in read coverage vectors, a random position instead of the CPE motif can be used. 

If the signal (average residuals) is positive for the CPE motif but not for a random motif 

we will interpret that CPEB4 can bind the motif. 
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Figure 2.4: Deriving positional information of CPEB4 binding based on RNA 

immunoprecipitation (RIP), read coverage in 3’UTRs of example gene Hmgb1, 

RIP samples (in black, upper panels), fitting a GLM model yields residual read 

coverage (in red, lower panel) representing the signal from the RIP assay. 

 

 
 
2.6 Analysis of proteomics (in cultured NSCs) 
 

Proteins in cultured NSCs were isolated by Nikhil Oommen George and quantified as 

well as analyzed for differential abundance in NSCs treated with EGF (active) and 

BMP4 (quiescent) by Daria Fijalkowska using the tool Perseus45 (version 1.5.3.0, 

Tyanova S. et al., 2016). Subsequently, I used these proteomic results in order to 

estimate posttranscriptional regulation. To this end, I combined the protein mRNA 

expression levels into a single value referred as translation index (TI). For each 
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condition (EGF, BMP4), LFQ values were divided by summed UMIs and subsequently 

logarithmized and centered around 0. In order to show the impact of 3’UTR shortening 

on protein outcome, translation index values were averaged over genes getting shorter 

and non-shortening genes whenever the change in protein abundance was significant 

(FDR < 5%). These average TI values were fitted in a linear model to estimate the 

biological variation in the proteomics samples given as triplicates: ~	Treatment	+	

UTR_Trend	+	Treatment:UTR_Trend	with treatment (EGF, BMP4) and UTR_Trend 

(gets shorter, no effect) and an ANOVA test applied to the interaction term 

Treatment:UTR_Trend. The biological variation in mRNA levels could not be included 

since the single RNA sequencing samples contained one pool of three mice for each 

treatment (EGF and BMP4) but no hash-tag-oligos to separate the replicates. 
 

 
2.7 Ribosomal profiling 
 

Ribosomal profiling was assayed by Dr. Maxim Skabkin and Damian Carvajal Ibanez. 

Briefly, ribosome protected RNA (Faye M.D. et al., 2014) as well as total RNA fractions 

were extracted from cultured (active) NSCs. I processed the data as follows: Reads were 

trimmed applying the tool TrimGalore version 0.4.4_dev. The adaptor sequence 

‘AGATCGGAAGAGC’ (Illumina TruSeq, Sanger iPCR; auto-detected) as well as 3 bp 

from the 5’end of and 15 bp from the 3’end were removed. In addition, sequences that 

became shorter than 18 bp (after quality trimming) were removed using TrimGalore’s 

default settings. After trimming reads had a length of 33 bp on average. Subsequently, 

reads were mapped to the mm10 transcriptome build GRC38.93 from ENSEMBL using 

bowtie version 0.12.7 with its standard options. Reads falling into genes were counted 

from BAM files applying a suitable R/Bioconductor workflow (using the function 

SummarizeOverlaps with mode ‘Union’). Duplicated reads were removed. For 

ribosomal profiling samples, reads in the coding part of genes (CDS) were counted, for 

total RNA samples reads in the whole gene body were counted. Next, to get an 

estimation of the translation efficiency (TE) per gene, log-fold-changes between 

ribosome protected reads and total RNA samples were computed applying DESeq2. The 

higher the log-fold-changes the higher a gene is translated. I interpreted this as a 

translation efficiency over the transcriptome.   
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Chapter 3 
 

 

Results 
 

 

 

In this chapter I will demonstrate that sharp 3’peaks can be obtained in single cell 

sequencing data utilizing the introduced 3’peak calling pipeline. Next, I will show how 

3’UTR usage changes throughout NSC lineage progression, in APLP1-/- vs. wildtype 

and in ASD vs. controls. These results I will further use as input for a motif analysis and 

link 3’UTR changes in murine neurogenesis and human ASD to the CPE-motif. I will 

analyze the trends of polyadenylation signals flanked by the CPE-motif in the NSC 

lineage and in APLP1-/-. Analyzing an RNA immunoprecipitation suggests that CPEB4 

can bind this CPE element (its consensus motif). Eventually, comparing the outcome of 

proteomics and ribosomal profiling to 3’UTR changes and CPEB4 binding to mRNAs, 

I show that genes undergoing 3’UTR shortening tend to produce more protein and that 

genes with a high affinity for CPEB4 tend to have a high translation efficiency. These 

analyses were concepted and developed together with Dr. Simon Anders and Dr. 

Wolfgang Huber.  

  



34 

3.1 Differential 3’UTR usage 
 

In this section I will show the mapping results for 3’peaks in single cell sequencing data 

(human and mouse), quantify differential 3’UTR usage and apply gene set as well as 

motif enrichment analyses on the results.  

 

3.1.1 Detection of 3’ peaks in single cell sequencing data  
 

Applying the developed pipeline to call 3’UTR peaks on 10X genomics data yielded 

sharp 3’peaks with an average width of 20 to 30 bp. Over two-third of genes were 

detected with multiple 3’peaks (APA genes). As illustrative example of the mapping 

results, Figure 3.1.1 depicts the 3’peaks detected in the gene Pea15a. 
 

 
Figure 3.1.1: Mapping example gene for 3’peaks in scRNAseq data. Gene 

Pea15a, y-axis represents stacked UMI counts (over single cells), x-axis shows the 

local mapping position (3’UTR length of this gene), peak annotations added (from 

the implemented algorithm), 3’peaks with more than 10 UMIs considered for 

further downstream analysis.  

 

On the transcriptome-wide level I observed agreement between the 3’peaks detected by 

the devloped pipeline and gene annotations. Figure 3.1.2a depicts the anticipated 

positional correlation as an average distance of around 20 bp from PAS to 3’UTR end 

(Miura P. et al. 2014). In addition, annotated distal 3’peaks agree with the 3’ends from 

Ensembl (Figure 3.1.2b). 
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a 

  a                              b 

 
Figure 3.1.2: Annotated 3’peaks correlate with ENSEMBL gene annotations 

and the canonical PAS. a, Relative position of most distal 3’ peak centers 

annotated with the applied peak calling algorithm to 3’UTR ends from the 

ENSEMBL database (at pos. 0), shown as meta-gene analysis i.e. summed for 

expressed genes, position < 0 upstream of 3’UTR ends, positive position > 0 

downstream. b, Density profile of 3' mapping positions, relative to the AAUAAA 

hexamer (PAS), shown as meta-gene analysis i.e. summed for expressed genes. 

 
3.1.2 Correlation of 3’UTR length and NSC lineage progression  
 

To illustrate the analysis, Figure 3.2.1 shows the correlation of 3’UTR length vs. 

pseudotime for an example gene, Pea15a (same as in Figure 3.1.1) which gets shorter 

with NSC lineage progression (data from Kalamakis G. et al., 2019). 
 

 
 

(Figure caption on the next page) 
Figure 3.2.1: Example gene Pea15a getting shorter with lineage progression,  
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a, ordering cells in pseudotime (purple/blue: qNSCs, orange/brown: aNSCs, green: 

TAPs, yellow: neuroblasts) representing lineage progression, upper subpanel: 

schematic representation of the lineage, lower sub-panel: two-dimensional 

representation created with monocle2. b, gene Pea15a, left sub-panel: UMI counts 

and their respective 3’ mapping positions. (summed over cells), right sub-panel: 

mean mapping pos. per cell (y axis) versus pseudotime (NSC lineage progression, x 

axis), linear regression line (in red). 

 

Computing these correlations for over 8,000 (APA) genes reveals roughly 800 genes (Figure 

3.2.2a) that undergo either lengthening or shortening with NSC lineage progression. These 

correlations were reproducible in the two samples of the NSC lineage from Kalamakis G. et al., 

2019 (Figure 3.2.2b). (More gene examples can be found in Supplementary Figure 1.) 

 

 
 

Figure 3.2.2: Several hundred of genes become longer or shorter with NSC 

lineage progression. For every gene with multiple PAS (APA genes): a, summed 

expression (x-axis) against correlation of mean 3’UTR length per cell vs. pseudotime 

(y-axis), 3’UTR shortening or lengthening marked as magenta and blue points 

respectively. b, Correlations as in section 2.23 (Figure 8), computed independently 

for both biological replicates as scatter plot, colored points indicate nominally sig. 

genes, separate color scales for shortening (magenta) and lengthening (blue). 
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3.1.3 Differential 3’UTR usage along the NSC lineage progression 

multinomial regression and gene set enrichment analysis 
 

As an example, how the fractional usage for the PASs in the 3’UTR of Pea15a changes 

over pseudotime, I binned its PASs over pseudotime (Figure 3.3.1). The approximation 

using the multinomial spline regression approach (dof = 3) is shown in the lower panel. 

The relative usage of the proximal PAS increases over pseudotime (from qNSC to NBs) 

from roughly 20% to 70%.  
 

 
Figure 3.3.1: Multinomial splines approximate 3’UTR usage over pseudotime, 

example gene  Pea15a, upper panel:  fraction  of  different  PASs  per  pseudotime  

window  for  Pea15a  (blue  = distal PAS,  magenta  =  proximal PAS),  lower  

panel:  approximation  of  changes  in 3’UTR  usage  over  pseudotime  utilizing  

multinomial  regression  splines, same 3’peaks as in Figure 3.1.1. 

 

Testing for differential 3’UTR usage over NSC lineage progression with multinomial 

regression yielded LR statistics that were reproducible in both samples from Kalamakis 

G. et al., 2019 (Figure 3.3.2). As these statistics represent how strong a 3’UTR changes 

APA with lineage progression I ranked the genes accordingly and found enrichment of 
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various gene sets from GO (Figure 3.3.3a) and also neurodevelopmental risk genes, 

amongst others, autism risk genes (Figure 3.3.3b). 
 

 
Figure 3.3.2: Regression results (MNR) agree across biological samples. Log-

likelihood statistic (LR stat.) for MNR (see also section 2.24), computed 

independently for both samples of the NSC lineage called “sample 1” and “sample 

2”, the statistic will be high if 3’UTR usage changes with lineage progression. 
 

 
Figure 3.3.3: Gene set enrichment analysis of 3’UTR changes along the NSC 

lineage. Genes ranked by the strength of 3’UTR changes with NSC lineage 

progression (LR stat. from Figure 23 used as score), a, gene ontology (GO), 

biological process, b, disease ontology, a high normalized enrichment score (NES) 

indicates association of GO term/disease with 3’UTR changes.  
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3.1.4 Differential 3’UTR usage between APLP1-/- and wildtype 

multinomial regression and gene set enrichment analysis 
 

As for the single cell sequencing of the NSC lineage from Kalamakis G. et al., 2019, I 

fitted psuedotime to the APLP1 sequencing data (APLP1-/- and wildtype) shown in 

Figure 3.4.1a and in addition assigned single cells to indvidual mice Figure 3.4.1b. This 

was done as preprocessing steps. Next, I will demonstarate that APLP1-/- and wildtype 

mice show differential 3’UTR usage. 

 

 
 

Figure 3.4.1: APLP1 single cell sequencing. a, comparison of pseudotime (NSC 

lineage progression as in Figure  21) between Aplp1-/- and WT, b, ternary plots for 

hash-tag-oligo sequencing, upper sub-panel WT sample, lower sub-panel APLP1-/-

, each HTO marks one biological replicate, relative distribution of all three HTOs 

per single cell, as local density (dark = high, bright = low). 

 

Applying the multinomial test statistic (Figure 3.4.2a) comparing the 3’peaks in the 

knockout and the wildtype called over 900 genes with differential 3’UTR usage (Figure 

3.4.2b).   

a 

b 
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Figure 3.4.2: Differential 3’UTR usage in APLP1-/- vs. wildtype mice. a, Scheme 

showing the idea behind the sequencing experiment: quantifying differential 3’UTR 

usage APLP1-/- vs. wildtype mice, individual mice (replicates) assigned to 

biological replicates by hash tag oligos (see previous Figure), b, for every gene with 

multiple 3’peaks (APA genes), differential 3’UTR usage in APLP1-/- mice vs. 

wildtype controls (NSCs and neuroblasts), x-axis: total expression summed over 

single cells, y-axis: earth mover’s distance showing 3’UTR trend (longer or shorter 

in APLP1-/-), non-grey points indicate FDR < 5% (multinomial test statistic). 

 

The difference in 3’UTR usage between both genotypes was also visible in the raw data, 

the 3’mapping positions (Figure 3.4.3). More visualization of genes showing strong 

effects (comparison: APLP1-/- vs. WT) is provided in Supplementary Figure 3. 
 

 
Figure 3.4.3: Differential 3’UTR usage in APLP1-/- shown on three example 

genes. Raw mapping positions in 3’UTRs (stacked UMIs over single cells), right 

sub-panels depict these for APLP1-/- (red) and left ones for WT (black) mice, 

respectively, arrows highlight 3’peaks differing between genotypes. 
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Since I averaged the 3’peaks over all cells (the NSC lineage) to use the biological replicates as 

statistical units (not the single cells) one could ask at which NSC state (pseudotime) the effect 

is strongest. Figure 3.4.4 depicts an example gene (Ywhaz, marked in Figure 3.4.2) to illustrate 

this. In APLP1-/-, the fraction of its distal PAS is around 25% in qNSCs and increases in 

the neuroblasts up to 45%, whereas in the wildtype it does not increase. 
 
 

 
 

Figure 3.4.4: Multinomial spline regression comparing 3’UTR usage between 

genotypes. Gene: Ywhaz, fractional usage of its distal PAS over NSCs lineage 

progression (pseudotime) fitted for APLP1-/- (red) and WT (black). 

 
Performing gene set enrichment analysis on the multinomial regression statistic 

(deviance explained by genotype) showed enrichment for genes localized to axons and 

dendrites and also for neurodevelopmental risk genes (Figure 3.4.5).  
 
 

 
Figure 3.4.5: Gene set enrichment analysis (GSEA), genes ranked by APLP1-/- vs. 

wildtype 3’UTR changes, multinomial regression as LR statistic, genotype effect, 

normalized enrichment score (NES), upper panel: gene ontology, lower panel: 

disease ontology.  



42 

3.1.5 3’UTR mapping results in the human single cell sequencing data  
 

Exploring the human single cell sequencing data, I observed even though only read 2 

(not read 1) could be used to pinpoint 3’UTR mapping positions, distinct 3’UTR peaks 

were still visible. Figure 3.5.1 depicts the 3’UTR mapping positions obtained in this 

dataset for three representative genes. 
 

 
 

Figure 3.5.1: Example raw mapping positions in 3’UTRs in scRNAseq data 

from human neurons, from left to right: NTRK2, BDNF and NCAM2, raw 

mapping positions stacked over all samples (and all cell-types), red regression lines 

fitted for visualization. 

 

Sample correlation plots of 3’UTR lengths showed very high correlations (example 

scatterplot shown in Figure 3.5.3) of R > 0.95 indicating that the mapping positions are 

reproducible across samples.  
 

 

 
Figure 3.5.2: Comparison of 3’UTR lengths across human samples as scatter-

plot, every point: average 3’UTR length of a gene (over all cell types). 
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3.1.6 Differential 3’UTR usage in ASD vs. Control 
 

Based on the quality metric from the previous section (reproducible 3’mapping) I decided 

to proceed with the down-stream analysis comparing the 3’UTR lengths of ASD patients 

to controls. Averaged over the transcriptome, 3’UTRs tend be longer in individuals 

diagnosed with ASD vs. controls (Figure 3.5.3a). This effect was observed across all (glial 

and neuronal) cell-types. Since layer 2/3 excitatory neurons were reported to be of 

specific interest by Velmeshev D. et al., 2019 due to a high burden of differentially 

expressed genes I report this cell-type first. Figure 3.5.3b depicts the results of the linear 

model fits: more genes tend to be longer than shorter in ASD vs. controls (For the volcano 

plots for the other cell-types see Supplementary Figure 3). 
 

 
Figure 3.5.3: 3’UTRs tend to be longer in ASD vs. control. a, Meta-gene analysis 

of 3’UTR length, every point: mean 3’UTR length averaged over all expressed genes 

for one sample and one cell type (red for ASD, blue for healthy control, big points 

show group means), multiple t-tests for each cell-type with FDR control, two-sided 

(Benjamini-Hochberg). b, Volcano plot showing 3’UTR alterations in layer 2/3 

excitatory neurons comparing ASD patients to controls for each gene, 3’UTR length 

differences (x-axis), p-value estimated from linear models, over-plotting color scale 

applied to genes with uncorrected p-values < 0.05 to show the overall trend. 
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Figure 3.5.4 depicts the linear model fits for three genes. The distributions of 

3’UTR mapping positions differ between the ASD and the control group. 

 

 

 
Figure 3.5.4: Illustrative examples for results of linear models fitted to 3’UTR 

lengths, from left to right: BDNF, NCAM2 and FADS1, * uncorrected/raw p-values, 

excitatory L2/3 neurons, every point represents the observation from one individual. 

 

Applying gene set enrichment analysis on the linear model result (3’UTR lengthening 

trend in ASD) pointed to enrichments of genes involved in the pathways of axon 

guidance, translation and signal transduction (Figure 3.5.5).  
 

 
Figure 3.5.5: Gene set enrichment analysis ranking by 3’UTR lengthening in 

ASD vs. control, Reactome pathways, a high normalized enrichment score (NES) 

implies that genes of this pathway get longer in ASD vs. control. 
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3.1.7 Motif detection in 3’UTR changing in ASD vs. Control 
 

Comparing the distal parts of 3’UTRs that become longer in ASD diagnosed vs. controls 

pointed to an enrichment of motifs, amongst others, with high similarity to the CPE 

motif (Figure 3.6.1). CPE-like motifs were also detected in the mouse data when 

searching for motifs in the flanking sequences of PASs that change their usage with 

lineage progression (Supplementary Figure 4). 
 

 

No Motif log_p_value log_odds 

1 UAAAGUA 26 5,76 
2 UUUUUGU 20 6,39 

3 GUGUAGC 18 5,74 

4 GUUGUAA 16 6,02 

5 CUACCGA 14 6,55 

6 UGGUACG 13 6,91 

7 AUACACU 13 6,44 

8 UGCAUUA 13 7,28 

9 AUUUUAG 12 5,35 

10 ACCGUUU 11 2,16 

11 GUUGACU 10 8,41 

12 GAUCUCU 8 7,66 

13 AUUCCAU 8 6,85 

14 GCACUUG 8 8,16 

15 GCAUKUU 8 7,65 
 

 

Figure 3.6.1: Motif detection in 3’UTRs comparing ASD vs. controls in L2/3 

excitatory neurons, de-novo motif analysis, motifs enriched in distal 3’UTRs 

getting longer in ASD vs. controls compared to 3’UTRs getting shorter in ASD vs. 

controls, list of top 15 hits (enriched motifs) as table on the right-hand side (output 

from the tool homer2), c.f. motifs enriched in 3’UTRs that get shorter in ASD vs. 

controls, see Supplementary Figure 4. The motif logos (position frequency metrices) 

for the top 4 are plotted on the left panel. 
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3.1.8 Usage of PASs flanked by the CPE motif  
 

Interestingly, using the multinomial spline regression to assess whether single PAS 

increase or decrease their usage with the NSC lineage progression revealed a distinct 

pattern of PASs flanked by the CPE motif: These PAS increase in the transition from 

qNSCs to aNSCs and decrease from aNSCs to neuroblasts (Figure 3.6.2a). The same 

pattern was observed in wildtype samples, but not in APLP1-/- mice (Figure 3.6.2b).  
 

 
Figure 3.6.2: Selection of PASs flanked by the CPE motif, a, Comparison of PAS 

containing the CPE motif (red color) to other PAS (statistical control) depending on 

how the individual PAS usage changes from qNSC to aNSCs (left group) and aNSCs 

to NBs (right group), trend estimated by multinomial spline regression, ANOVA 

interaction test, two-sided. b, the same for the transition qNSCs to aNSCs in wildtype 

vs. APLP1-/- mice. 

 
3.1.9 Differential 3’UTR usage (in vivo vs. in vitro NSCs)  
 

Comparing the fold-changes in PASs from aNSCs to qNSCs showed that a considerable 

amount of these changes is reproducible in an in vitro system (R = 0.5, Figure 3.6.3). 

  

Figure 3.6.3: Comparison of in vitro to in vivo 

3’UTR changes in NSCs, log-fold-change, 

every point represents one PAS (summed over 

cells, positive LFCs = higher PAS usage in 

aNSCs, negative LFCs = higher PAS usage in 

qNSCs), x-axis as reference (in vivo NSCs), y-

axis for in vitro NSCs.  

 

b 
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3.2 Differential expression and co-expression of polyadenylation 

factors in ASD and along the NSC lineage 
 

Based on the previous findings that polyadenylation differs between ASD patients and 

controls, I anticipated to find differential expression of polyadenylation factors. As a 

summary of the DESeq2 analysis, Figure 3.7.1 indicates that across all cell-types 

NUDT21, CPSF1 and CSTF3 have the highest expressional changes.  
 

 
Figure 3.7.1: Differential expression of polyadenylation factors, log2-fold-

changes computed between ASD and controls separately for each cell-type, the x-

axis shows the average log2-fold-change (across cell-types). 

 

I selected these three genes as potential gene candidates and also considered APLP1 and 

CPEB4 as genes of interest. This is reasoned with the outcome of the previous analysis 

that the CPE-motif was associated with 3’UTR lengthening in ASD. Figure 3.7.2 depicts 

the changes in expression for these genes of interest per cell-type. In L2/3 excitatory 

neurons CPEB4 and NUDT21 are upregulated. (A complete list of differentially 

expressed genes in L2/3 excitatory neurons is provided in Supplementary Table 2). 

 The co-expression analysis revealed that the expression patterns of CPEB4 and 

APLP1 in mice as well as in humans are correlated across single cells (Figure 3.7.3). 

These correlations (Gillis J. & Paul P., 2012) might be interpreted as a hint that APLP1 

and CPEB4 operate on the same pathway (see also Discussion). 
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Figure 3.7.2: Differential expression of candidate genes in ASD vs. controls, fold-

changes from DESeq2, y-axis, per cell type, x-axis, log2-fold-change in gene 

expression, color code, p-value thresholds (FDR corrected) per cell-type, raw data 

for the expression of NUDT21 in L2/3 excitatory neurons shown on the right panel. 

 

 
 

 
 

Figure 3.7.3: Correlation analysis of genes acting on 3’UTR length, in mouse and 

in human. a, Expression trend of selected genes, upstream and co-regulators of APA 

or poly(A)-tail length (GO categories: GO:0006378 and GO:0031124), scRNA-seq 
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data, total expression summed over single cells (x-axis) against correlation of 

expression vs. pseudotime (y-axis), b, co-expression of Aplp1 and Cpeb4 along the 

NSC lineage, each point indicates a single cell regression line fitted for both genes 

to show the trend, c, correlations of CPEB4 vs. APLP1 expression per human sample 

(observed vs. permutation of cell assignment as statistical control), b, scatterplot for 

correlations across all cells in ASD and control group, red lines: linear regression. 

 

In addition, among all Cpeb genes, Cpeb4 is highest expressed in NSCs (Figure 3.7.4). 

As shown in Figure 3.7.3b Cpeb4’s expression is highest in quiescent NSCs, decreases 

in active NSCs and slightly increases in neuroblasts. 
 

 

 
Figure 3.7.4: Expression of Cpeb genes in NSCs (scRNAseq data), summed UMI 

counts for Cpeb genes with respect to cell types (activation states). 

 

Comparing the gene expression trends aNSCs vs. qNSC for in vivo to in vitro cells 

showed agreement, meaning genes that tend to undergo up-regulation from in vivo 

qNSCs to aNSCs also tend to be upregulated in in vitro aNSCs compared to qNSCs 

(Supplementary Figure 5). Another comparison was differential gene expressed in 

APLP1-/- vs. wildtype (listed in Supplementary Table 3). 
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3.4 CPEB4-RNA immunoprecipitation results  
 

Next, I identified transcripts enriched for CPEB4 binding in NSCs. The analysis 

indicated around 900 genes with high affinity to CPEB4 (Figure 3.8.1a). Furthermore, 

the RNA immunoprecipitation indicated that CPEB4 binds at the assumed CPE 

consensus motif (Figure 3.8.1b). The genes with affinity to CPEB4 were enriched for 

functions as transmembrane receptors and transporters (Figure 3.8.1c).  
 

 
Figure 3.8.1: CPEB4 immunoprecipitation a, detection of CPEB4 substrates 

(CPEB4 binds mRNAs) by RNA immunoprecipitation (RIP), y-axis log-enrichment 

in CPEB4 IP fraction, x-axis mean mRNA expression in Input and IgG control 

fractions, red and yellow points mark genes called significant by DESeq2 (for 

CPEB4 binding), n = 2 per fraction, b, signal from CPEB4-RNA immune-

precipitation (RIP) in cultured NSCs for the CPE motif (shown in red), mean residual 

coverage over RIP controls as meta-position, random position as statistical control 

shown as black curve, c, gene set enrichment analysis ranking by log-enrichment in 

CPEB4-IP fraction, high normalized enrichment score (NES) indicates enrichment 

of genes in categories for CPEB4 binding in NSCs. 

a 

c 
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Since I hypothesized that APLP1-/- can impact APA in NSCs in an CPEB4 dependent 

manner I also assessed CPEB4 binding to alternative 3’UTR usage in APLP1-/- vs. 

wildtype mice. First, I compared the APLP1-/- 3’UTR alterations to the list of CPEB1 

and CPEB4 binders in neurons identified in an immunoprecipitation by Parras A. et al., 

2018. Half of the genes with alterations in 3’UTRs (APLP1-/- vs. wildtype) bind CPEB4 

(Figure 3.8.2, left). Importantly, CPEB1 binders were not enriched with APLP1-

dependent 3’UTR changes. A corresponding enrichment in the NSC RIP assay was 

observed, however with a lower total number of CPEB4 binders (Figure 3.8.2, right). 

 

 
Figure 3.8.2: Genes with 3’UTR alterations in APLP1-/- vs. WT are enriched 

for CPEB4 binding. Left panel: Intersection of genes showing 3’UTR alterations 

in APLP1-/- with CPEB1 and CPEB4 binders from Parras A. et al., 2018, color code: 

genes bound by CPEB1, CPEB4, by both or neither of both, genes marked as 

significant (sig.) from Figure 37 (APLP1-/- vs. wildtype 3’UTR changes), Chi-

square test; right panel: the same comparison for CPEB4 binders from Figure 3.8.1a, 

Fisher’s exact test. 
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3.5 Protein detection in NSCs and comparison to 3’UTR alterations 

indicates higher protein outcome with 3’UTR shortening 
 

Having described differential expression of polyadenylation factors and binding of 

CPEB4 I intended to integrate these findings with proteomics. We identified over 2000 

proteins, observed a strong correlation to transcriptomic changes (Figure 3.9.1a) and 

found several hundred differentially expressed proteins in in vitro aNSCs vs. qNSCs 

(Figure 3.9.1b). As quality control of the proteomics results, sample correlation 

scatterplots are provided in Supplementary Figure 6. The results indicate that whenever 

the mRNA changes, protein levels tend to follow either the up- or down-regulation. In 

this context, however, I was rather interested in genes that deviate from this trend. 

 

 
Figure 3.9.1: Protein production in aNSC vs. qNSCs. a, Log fold-change, per 

gene: change in mRNAs levels (x-axis) against change in protein (y-axis) between 

aNSCs (EGF) and qNSCs (BMP4). b, Volcano plot, differential protein abundance 

in vitro between aNSCs (EGF) and qNSCs (BMP4), proteins marked in red and blue 

(FDR < 5%, Perseus tool). 

 

As described in the methods (and also depicted in Figure 3.9.2) I estimated post-

transcriptional regulation by dividing per gene protein by mRNA levels, for aNSCs and 

qNSCs, respectively. Comparing the change in this translation index between aNSCs 

and qNSCs to 3’UTR length changes between both NSC subpopulations revealed that 

3’UTRs getting shorter in aNSCs also tend to increase protein production in aNSCs 

(Figure 3.9.2). This tendency was more pronounced comparing 3’UTR lengths among 

significant proteins from Figure 3.9.1b. Fitting a linear model on the changes in 
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translation index (aNSCs vs. qNSCs) across samples indicated that this trend is 

consistent across samples (Supplementary Figure 7). 
 

 
Figure 3.9.2: Genes undergoing 3’UTR shortening tend to have higher protein 

outcome. Scatterplot, every point is a gene, difference in 3’UTR length aNSCs 

(EGF) and qNSCs (BMP4) on the x-axis vs. difference in translation index (TI: LFQ 

values by UMI counts) on the y-axis, boxplot on the left: comparison of other genes 

to 3’UTR shortening genes (c.f. Supplementary Figure 7). 

 

 
3.6 Binding of CPEB4 to mRNAs enhances protein production 
 

Based on the findings of previous studies that CPEB4 impacts mRNA translation I 

aimed for addressing this point by combining the CPEB4 immunoprecipitation results 

with ribosomal profiling and the proteomics data from the previous section. As initial 

quality check for the ribosomal profiling data, gene counts were reproducible across 

samples, counts in 3’UTRs depleted for the ribosome protected but not the total RNA 

fraction (Supplementary Figure 8). Next, I estimated the translation efficiency, per gene 

dividing ribosome protected read counts by total RNA counts. This translation score 

correlated with the estimated affinity of CPEB4 to mRNAs from Figure 3.9.3a. This 

result suggests that in NSCs, binding of CPEB4 enhances mRNA translation. In order 

to further strengthen the claim, I compared the alterations in protein production between 

aNSCs and qNSCs from Figure 3.9.3b to CPEB4 binders and non-binders. Higher 
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protein expression for CPEB4 binders was observed in qNSCs compared to aNSCs. This 

agrees with previous findings since CPEB4 is higher expressed in qNSCs, hence it 

would increase the translation of CPEB4 binders in qNSCs. 

 

 
 

Figure 3.9.3: CPEB4 binding to mRNAs correlates with translation and differs 

between qNSCs and aNSCs, a, every point represents a gene, x-axis: LFC in 

ribosome protected vs. total RNA reads (aNSCs), y-axis: log-enrichment of in 

CPEB4-IP fraction (aNSCs), Spearman rank correlation, b, Volcano plot, LFC in 

protein levels, CPEB4 binders as red points (upper panel), comparison of proteomics 

to CPEB4-RIP, density plot, x-axis fold-change in protein expression (aNSC vs. 

qNSC), groups colored in red if enriched in CPEB4 binding and grey depleted for 

CPEB4 binding (control gene set for low-CPEB4 binding), Wilcoxson rank sum test, 

two-sided (lower panel). 
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Chapter 4 
 

 

Discussion 
 

 

 

In this chapter I will discuss the applications and limitations of the 3’peak calling 

pipeline in single cells by covering both, technical and biological aspects (4.1). Next, I 

will extend on the statistical tests for differential 3’UTR usage and place these analyses 

in the context of computational methods used to study neurodevelopmental disorders 

(4.2). In section 4.3 I will reflect on differential and co-expression in single cells. Also, 

I will evaluate the proteomics, ribosomal profiling and immunoprecipitation results 

(4.4). To conclude this thesis, I will highlight the most crucial points of this work and 

give an outlook on the biological results (4.5). 
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4.1 The 3’peak calling pipeline 
 

Regarding the 3’ mapping, the here presented pipeline can call sharp 3’peaks in single 

cell sequencing data that correlate with the known PAS (as demonstrated in the chapter 

Results). When I started my PhD, I computed differential 3’UTR usage based read 

coverage obtained from single cell Smart-seq2 data (from Llorens-Bobadilla E. et al., 

2015). As explained in the introduction, full-coverage sequencing is less evident for 

3’UTR usage than the 10X Genomics 3’tagging strategy and for this reason not shown 

in this thesis. However, the 3’ tagging approach also has a number of limitations. For 

instance, potential false positive 3’peaks could arise from 3’UTR regions with either 

very low sequence complexity or long A-stretches in their sequences (also known as 

internal priming, see Miura P. et al., 2014). In general, such artifacts should be 

minimized by the confidence from the paired-end mapping strategy (50 bp mapped from 

read 1 and 100 bp mapped from read 2) and the oligo-d(T) capturing with the beads 

from 10X Genomics (25 bp anchoring/capturing sequence). Intronic sequences which 

can contain A-stretches are excluded from the analysis as only reads falling into 

annotated 3’UTR regions are considered. The restriction to annotated genes also 

excludes cases like unannotated ultra-long 3’UTRs. In such situations the assignment of 

the gene by 3’peaks can be deemed tricky, especially for overlapping genes. In this 

regard, my pipeline also checks for the mapping orientation of reads that matches to the 

strand (plus or minus) in which the gene is transcribed. Notably, in this work I focused 

on APA within the terminal exon of a gene. The alternative usage of multiple terminal 

exons could also be analyzed. Observed during the data exploration phase, but not 

reported here, are cases of alternative exon usage (roughly 10% of APA genes showed 

mapping to more than one terminal exon; in most cases the fraction of alternative exons 

was rather low compared to the main exon, not shown). However, it has to be considered 

that the developed 3’peak calling method also increases the dimensionality of the data 

as single isoforms in single cells are counted. On the one hand this workflow enables 

new analysis strategies but on the other hand the biological interpretability also has to 

be taken into account. Also, this pipeline could be easily modified to call instead of 3’ 

peaks 5’peaks since 5’ tagging became available on the 10X Genomics platform. This 

would enable the distinction of alternative 5’ start sites (alternative 5’UTR lengths) for 

genes with multiple transcription start sites. As for the 3’UTR, different 5’UTR length 
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and regulatory elements can also impact mRNA translation efficiency.  In addition, it 

also should be mentioned that the application of the developed pipeline is limited also 

in the number of datasets it can be applied on. This is due to the fact that most available 

datasets, like that from Velmeshev D. et al., 2019, were sequenced with a short read 1, 

meaning UMI and cell barcode are present, but not the part of the read mapping to the 

most 3’end. This is due to the intention to reduce costs and to only count the gene, not 

the exact 3’UTR position. For the sequencing of human neurons from Velmeshev D. et 

al., 2019, it could be considered to sequence these samples with longer reads in order to 

obtain sharp 3’peaks as for the mouse data. Most likely, doing so would improve the 

statistical analysis. The 3’peak calling pipeline itself could be further optimized by 

including C++ code for performance reasons (but runs at reasonable speed already) and 

published as an R package. Standardized workflows in packages also have multiple 

downsides as they need to cover many exceptions and provide the user with tools to 

ensure data quality. For non-standard analyses, this practice of applying ‘black-box’ 

workflows can also lead to wrong conclusions, one example being the estimation of p-

values in one biological replicate. In general, the main focus of this work, however, were 

rather the biological findings. Recently, an alternative pipeline named Sierra was 

published calling peaks in single cell sequencing data (Patrick, R., et al., 2020). 

However, the peaks obtained with this tool are way broader than the peaks reported with 

the here presented pipeline. In their publication the authors show examples of broad 

peaks and also assume a peak width of 600 bp in their implemented peak calling 

algorithm (c.f. Patrick, R., et al., 2020). This is however not sufficient to discriminate 

PASs when the signals are very close. In comparison, my pipeline using the paired-end 

mapping approach gives way sharper 3’peaks and has therefore higher resolution. Also, 

their emphases on UMAPs computed on peak counts could be criticized as a strong 

visualization with little biological indication. The only application this would be helpful 

I could think of based on my experience with differential 3’UTR usage could be 

clustering cells by isoform usage. But even in this case, I think it would be better to 

directly plot the fractions of isoforms for one gene across the cell-clusters. Since 

differential 3’UTR usage in single cells is a new approach, this field lacks established 

standards. In this work I show how a down-stream analysis could look like. I will discuss 

this in the following section. 
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4.2 Down-stream analysis: differential 3’UTR usage 
 

About the differential 3’UTR usage in NSCs, it has to be considered that the analysis 

can be limited, however, for lowly or for strongly differentially expressed genes (over 

pseudotime) as well as rather complex 3’UTR trends. The estimated correlation 

coefficients have a direct biological interpretation (i.e. the gene gets longer, shorter or 

does not change its length). The benefit of multinomial models over correlations and 

ordinal models which assume linear trends poses their sensitivity for non-linear changes. 

Figure 4.1 illustrates this for the example gene Sox4. Its middle PAS is more often 

selected in TAPs and NBs compared to qNSCs where proximal and distal PASs are 

predominant. A gene like this would receive a high MNR statistic but a low absolute 

correlation coefficient. 

 
 

 
 

Figure 4.1: Multinomial spline regression can detect complex 3’UTR trends, 

Sox4 left sub-panel, raw 3’ mapping pos. summed over cells, right sub-panel, 

approximation of changes in 3’UTR usage over pseudotime utilizing multinomial 

regression splines, color code as dark blue to red for most distal to most proximal 

PAS (color code corresponds to left sub-panel). 

 

Interestingly, the multinomial test comparing APLP1-/- vs. wildtype could also be 

carried out applying the Cochran–Mantel–Hänszel test (Agresti A., 2002), the extension 

of the Chi-Square test for repeated observations like biological replicates. Reassuringly, 

computing p-values on the same genes with both methods yields highly comparable 

results (Figure 4.2). Here, MNR was used instead of Cochran–Mantel–Hänszel as this 

would be more consistent with the spline regression introduced before. 
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Figure 4.2: MNR and an alternative Chi-Square test give comparable results, 

MNR regression applied on PAS count data (3’peaks) comparing the distributions 

of PASs per 3’UTR between genotypes (APLP1-/- vs. WT), scatterplot p-values 

computed with the CMH-test vs. MNR-LRT, thresholds for Benjamini Hochberg’s 

correction for multiple testing (FDR = 5%) added as red lines. 

 
Moreover, I would like to mention some details regarding the statistical analysis for 

differential 3’UTR usage in excitatory layer 2/3 neurons. As a statistical control for the 

linear models, it can be shown that a permutation of the variable Diagnosis (removal of 

assignment) yields uniformly distributed p-values supporting the reliability of the 

applied test statistic (ANOVA), shown in the right panel of Figure 4.3.  
 

 
Figure 4.3: Estimation of p-values for 3’UTR changes comparing ASD patients 

to controls, p-value histograms, linear models fitting 3’UTR lengths, ANOVA 

testing with predictor variable Diagnosis (left panel) and p-values computed when 

Diagnosis was randomly permuted. 
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Another hypothesis was whether males and females differ in the 3’UTR alterations 

observed between ASD vs. control. I addressed this by adding + Sex:Diagnosis as 

interaction term to the model and then testing for this interaction term as critical 

predictor. The comparison of 3’UTR length alterations in ASD vs. control between male 

to females did not yield significant result (not shown) hinting that the ASD-lengthening 

trend is not different between sexes. As mentioned in the foreword of this chapter 

differential 3’UTR usage in ASD was addressed before by Szkop K. J. et al., 2017 using 

the DaPars tool (Xia Z. et al., 2014) for full-coverage bulk RNAseq. In their study the 

authors reported 3’UTR lengthening in ASD patients compared to controls for most of 

the analyzed samples. The fact that the conclusion from this work and the one from the 

paper of Szkop (i.e. 3’UTR lengthening in ASD) agrees, strengthens this biological 

claim as both studies are completely independent of each other. However, it remains 

unclear whether the reported lengthening trend is a mere consequence of ASD or 

whether there is a causal link. The differential expression analysis pointed to NUDT21 

and CPEB4 (also with the motif analysis) as possible candidates. 

Another issue poeses the comparison of human and murine 3’UTRs. In the data 

I see that 3’UTRs are on average roughly 500 bp longer in human neurons compared to 

NSCs and neuroblasts from mice. Here, the evolutionary conservation of 3’UTR 

sequences between both species should be considered (Miura P. et al., 2013; Guffanti, 

G., 2018). A direct one-to-one comparison of human and mouse 3’UTRs like changes in 

ASD vs. controls to APLP1-/- vs. controls appears to be difficult but rather tends to 

agree (significant, but weak correlation, not shown). In general, 3’UTRs in the context 

of ASD are understudied. 

The more commonly used approaches how to address neurodevelopmental 

disorders with computational methods are differential expression, exome sequencing 

and genome-wide association studies (Wanke K. et al., 2018). These approaches are 

rather centered around the coding part of the genome. Wanke K. et al., 2018 suggest to 

also consider the non-coding parts like 3’UTRs and there to search for motifs of micro 

RNAs or RNA binding proteins. The here applied motif and gene set enrichment 

analyses demonstrate how to further interpret alterations in 3’UTRs and to generate 

biological hypothesis (like for the CPE motif in 3’UTRs that are longer in ASD 

patients). Also, it is difficult to predict what the contributions of alterations in expression 
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levels, 3’UTR length changes and single point mutations. For example, one commonly 

mutated gene in ASD is PTEN (Busch, R.M., 2019; c.f. Velmeshev D. et al., 2019). 

 

 

4.3 Differential expression and correlation analysis 
 

To evaluate differential expression, I used pseudo-bulk approaches, meaning gene 

expression is summed over single cells for each replicate, respectively. Applying this 

method, I intended to avoid pseudo-replication, an issue often seen in single cell 

sequencing analyses also in the paper from Velmeshev D. et al., 2019. Computing test 

statistics on single cells (and not biological replicates) can lead to a dramatic 

overestimation of confidence (overoptimistic p-values) as single cells of the same 

animal or individuum are not independent statistical units. Since single cell sequencing 

is an expensive technique usually one or few biological replicates are sequenced. This 

makes it per se difficult to decide whether a finding is significant and therefore 

reproducible or not. Assigning replicates by cell-hashing could be part of the solution. 

It might be a good idea to fit splines over cell trajectories or cell-types and to compare 

these spline fits across replicates and conditions to derive conclusions (Anders S., 

unpublished data). 

A major advantage of single cell sequencing over bulk sequencing techniques is 

its resolution. One can observe whether a difference in expression levels between 

conditions comes from few or many cells. Moreover, single cell sequencing data 

provides statistical power for gene-to-gene correlations as these correlation coefficients 

are computed over thousands of single cells. Pearson’s correlation is perhaps the most 

intuitive solution for this and easy to implement. These analyses enable the prediction 

of novel gene-gene interactions, which then need further validation. In this project for 

instance, further experiments are required to confirm the protein-protein interaction 

between APLP1 and CPEB4 by proximity ligation assay or co-immuno-precipitation. 

At the time of writing this thesis, Nikhil Oommen George and the Isabel Fariñas lab are 

working on these assays. Preliminary results from both labs suggest that there is an 

interaction between both proteins. Apart from these ongoing experiments and the mere 

co-expression, the pulldown of mRNAs with an antibody against CPEB4 and the 

position of the CPE motif could be linked to differential 3’UTR usage in APLP1-/- vs. 
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wildtype further supporting the hypothesis that APLP1 and CPEB4 interact. In principle, 

this part of the project can be seen as a follow-up study on the result of a correlation 

analysis. For this reason, it would be an example that analyzing co-expression in single 

cells can lead to the discovery of novel biological findings. 

 

 

4.4 Proteomics, ribosomal profiling and immunoprecipitation 
 

Next, I would also like to discuss the proteomics analysis. In general, quantifying total 

protein abundances provide an overview of the proteins produced in a cell and will 

change with alterations in mRNAs levels given enough time for the proteome to adopt. 

For the in vitro BMP4 (quiescent) experiment the treatment time was 3 days. An 

alternative to total protein levels would be to quantify newly synthesized proteins by 

incorporating heavy isotope labeled amino acids. Here, the high amounts of required 

input materials, in this case proteins isolated from NSCs, limit this method. To overcome 

this limitation, I estimated mRNA translation by the introduced translation index. This 

value will, however, reflect both, protein production and degradation. Also, the number 

of proteins that can be captured by mass spectrometry is limited (here roughly 2200 

proteins). For this reason, the impact of 3’UTR changes in lowly expressed genes cannot 

be captured. One technique to estimate protein outcome and to overcome these 

limitations, namely the static picture of protein levels and the limited number of genes 

poses ribosomal profiling (Faye M.D. et al., 2014) or ribosome immunoprecipitation 

(Baser A. et al., 2019). These techniques allow to compute a translation efficiency by 

comparing the fraction of ribosome protected reads to reads in total RNA fractions 

(Baser A. et al., 2019). In contrast to total proteomics, these values will reflect the 

dynamics of translation. As an example, the translational up-regulation of mRNAs will 

first be visible in their ribosome protected reads and later in proteomics since the 

ribosomes need some time to produce enough proteins. In this project it would also be 

of interest to carry out ribosomal profiling in qNSCs and in NSCs from APLP1-/- mice 

or to do proteomics and then to correlate the results to 3’UTR changes. In general, the 

strongest restriction in this project poses the link between 3’UTR length changes and 

protein production. Studying this is only feasible for single genes as the long and short 

3’UTR sequences needs to be cloned into vectors (Lackford B. et al., 2014). For this 
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reason, it remains unclear what the effect for a gene with 3’UTR alterations will be: 

either no effect, localization or a change in protein levels. By comparing the independent 

experiments like changes in proteomics to 3’UTR changes estimated by single cell 

sequencing, one can answer questions like what is the overall trend for 3’UTR 

shortening genes. Such data integration strategies highly depend on: 1. the intersection 

of genes/features in the assays, 2. low technical variability, 3. biological reproducibility 

of effect sizes and 4. the selection of comparison groups. To my knowledge, there are 

no standards available for these rather custom analyses. With the experience I gained 

during my time as PhD and also in the discussions with Dr. Simon Anders, I suggest: 

When comparing multiple high-throughput assays to first test whether the effect is 

reasonable strong and significant across genes and secondly, when possible, to test 

whether the effect – averaged over genes – is reproducible among replicates. 

 With regards to the CPEB4 RNA immunoprecipitation, using next generation 

sequencing instead of microarrays like in Parras A. et al., 2018 has the benefit that the 

signals from the IP fractions can be identified with nucleotide resolution. In contrast, 

microarrays only allow the estimation of log-enrichments per gene. On the other hand, 

Parras A. et al., 2018 also used an antibody against CPEB1 which poses a suitable 

control given that we would like to show that the alterations in APLP1-/- depend on 

CPEB4 and not CPEB1 in this work. An alternative idea was to fit per 3’UTR region 

the changes in 3’peaks between APLP1-/- vs. wildtype to the IP signal using generalized 

linear models. With this approach I observed agreement, meaning that CPEB4 binding 

and APLP1-/- dependent 3’UTR changes correlate. However, since this method would 

be less intuitive, we decided instead to compare the intersection of CPEB4 binding 

partners and genes with differential 3’UTR usage between APLP1-/- and wildtype mice. 

Considering the fact that RNA immunoprecipitation assays rather tend to be noisy, I 

think that combining the signal from multiple genes in a meta-gene analysis can provide 

a clearer picture than looking at individual genes. 
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4.5 Final summary and outlook 
 

In this doctoral thesis I demonstrated that sharp 3’peaks can be derived from single cell 

sequencing data. These 3’ peaks allow the distinction of different PAS, also when two 

PASs are as close as 50 bp. This data quality can be achieved with long reads and the 

paired-end mapping approach. The (multinomial) distributions of this peaks can then be 

fitted against a latent variable (like pseudotime representing NSC lineage progression) 

or compared across conditions. The future will show whether scientists will draw more 

attention to this isoform related approaches. 

Combining the results from the 3’UTR and the down-stream analyses, explicitly 

the gene set enrichments and motif analysis, pointed towards CPEB4 and a possible 

interaction with APLP1 in regulating 3’UTR isoform choice. The absence of APLP1 

impacted the selection of PASs flanked by the CPE motif. In addition, behavioral studies 

in APLP1-/- mice revealed that these mice have autistic-like traits compared to wildtype 

littermates (These studies were conducted by my project partner Nikhil Oommen 

George, not shown).  In the context of the findings from Parras et al. 2018 that CPEB4 

is an autism risk gene, our results imply that APLP1 can de-regulate CPEB4, perhaps 

its intracellular location, and this results in neuronal circuits that differ from wildtypes. 

In humans diagnosed with ASD, our data suggests that also CPEB4 plays a role. Here, 

these results should be seen as a starting point for further studies. For instance, one could 

try to rescue the behavioral phenotypes in established ASD mouse models or other 

mouse lines for neurodevelopmental disorders by modulation of CPEB4 or NUDT21. 

Such experiments could reveal a causal link between alternative 3’UTR usage and ASD. 

Overall, I am convinced that looking into the 3’UTRome in the brain will 

provide new insights into the molecular mechanisms underlying neurodevelopmental 

disorders.  
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Supplements 
 

 

Supplementary Figures 
 

 

 

 

 

Supplementary Figure 1: a-b, example genes for 3’UTR changes in NSCs, raw 3’ 

mapping positions summed over cells, mid sub-panels: mean mapping position per 

cell, linear regression lines fitted (in red), color code as dark blue to red for most 

distal to most proximal PAS (color code corresponds to left sub-panels), a, Rbx1 

(ring-box 1, also known as ROC1) example for 3’UTR lengthening, b, Hnrnpa2b1 

(heterogeneous nuclear ribonucleoprotein A2/B1) example for 3’UTR shortening. 
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Supplementary Figure  
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Supplementary Figure 2: 3’UTR lengthening in ASD vs. control group; each entry 

(volcano plot) represents one cell-type: x-axis depicts difference in 3’UTR length 

[bp] between ASD and controls; y-axis shows -log10 of p-values (estimated from 

linear models), over-plotting color scale applied to genes with uncorrected p-values 

< 0.05 to show the overall trend, extremely low p-values were restricted to the value 

of 1e-16. 

 

 

 

(Figure continuous on the next page) 

Supplementary Figure 3, example gene 

NTRK2 for 3’UTR lengthening in ASD vs. 

control in astrocytes (AST-FB), linear model 

fit on 3’UTR length. 
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(Figure continuous on the next page)  
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(Figure continuous on the next page) 
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(Figure caption on the next page) 
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Supplementary Figure 3: Differential 3’UTR usage in APLP1-/- vs. WT, examples 

for significant hits from the MNR model, every entry: one gene with its 3’peak 

distribution (left panels), total UMIs for this gene, annotated PAS as numbers from 

most proximal to most distal, right sub-panels: fraction of UMIs in each PAS (by 

color code from magenta to dark blue), plotted as pie charts for APLP1-/- and WT, 

respectively. 

 

 

  
 

Supplementary Figure 4: a, Motif detection in 3’UTRs (murine NSC lineage), De-

novo motif analysis utilizing the homer2 tool (Methods) in 3’UTRs that change 

along the NSC lineage, left result for in vivo and right for in vivo NSCs. b, Motif 

detection in 3’UTRs comparing ASD vs. controls in L2/3 excitatory neurons, de-

novo motif analysis, motifs enriched in distal 3’UTRs getting shorter in ASD vs. 

controls compared to 3’UTRs getting longer in ASD vs. controls 

 
 

b 
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Supplementary Figure 5: Comparison of expression trends (in in vitro vs. in vivo 

NSCs) Statistical test whether genes follow the same expression trend along the NSC 

lineage in in vitro NSCs as they do in vivo NSCs, outer panel, p-value histogram, 

inner panel, example gene Cst3 (Cystatin C), every point is a single cell, red 

regression line to show the trend, nominal p-value. c, 2-D projection of in vivo and 

in vitro NSCs on the same UMAP, plot split for visualization, batch correction by 

mutual nearest neighbors (MNN), color code: Euclidian distance of in vivo qNSCs 

(see cursor position) to all other cells (black/ blue if cells are similar) by the 

sleepwalk tool. 
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Supplementary Figure 6: Proteomics results, scatterplot matrix of biological 

replicates, protein quantification in cultured NSCs by mass spectrometry, upper row 

BMP4 (qNSCs), lower row EGF (aNSCs), quantified as LFQ values. 
 

 
Supplementary Figure 7: Comparison of translation index to shortening of 

3’UTRs, left sub-panel, per gene translation index: non-degraded protein [label free 

quantification (LFQ)] per non-degraded mRNA [UMIs], for aNSCs and qNSCs, 

shown for with significant protein changes comparing aNSC to qNSCs, shortening 

genes in magenta, right sub-panel, average translation index per gene cluster (UTR 

shortening vs. others), every point represents one replicate, ANOVA interaction test.    



84 

 

 

  5’UTR    CDS   3’UTR 

Total RNA (meta-read-coverage): 

 

Ribosomal profiling (meta-read-coverage): 

 
Supplementary Figure 8: Ribosomal profiling of in vitro active NSCs (EGF 

treated), n = 4 replicates, sample correlation scatter matrix, every point: ribosome 

protected reads mapping to the CDS (coding region) of a particular gene [counts 

shown as logarithmic scale] (upper panel), representative (same) sample with total 

RNA sequencing and ribosome protected reads (lower panels), meta-transcriptome 

coverage (y-axis), per binned position (x-axis). 
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6.2 Supplementary Tables 
 

Supplementary Table 1: Overview of scRNAseq datasets, species: Mus musculus, data 

generated in the Ana Martin-Villalba lab, sequenced at the DKFZ, 3’peak calling applied; 

mapping rate to the mm10 genome (bowtie2); ‘mice’ is the number of mice pooled in one 

sequencing run (sample); HTO = hash-tag-oligos were used to assign single cells to individual 

mice (see Methods), yes (TRUE) or not (FALSE). 
 

Sample_ID Experimenter Genotype NSC isolation Mapping 
Rate mice cells HTOs used 

old_NSC Kalamakis G WT freshly, FACS 95.55% 8 1716 FALSE 

young_NSC Kalamakis G WT freshly, FACS 95.45% 4 2035 FALSE 

EGF_NSC George N WT cultured 95.34% 3 1410 FALSE 

BMP4_NSC George N WT cultured 95.65% 3 887 FALSE 

APLP1_KO George N APLP1-/- freshly, FACS 96.04% 3 1879 TRUE 

APLP1_WT George N WT freshly, FACS 96.17% 3 2209 TRUE 

 
 
 
 
 

Supplementary Table 2: Differential expression in L2/3 neurons (ASD vs. control, FDR < 5%, 

pseudo-bulks, DESeq2), genes sorted by increasing LFC (from most downregulated in ASD to 

most upregulated)  
 

Gene LFC p.adjust UMI 

CXorf40B -1,04 0,02 645 

AL158154.2 -1,04 0,034 516 

AC008403.3 -0,9 0,036 554 

SLC25A45 -0,88 0,02 1019 

NANS -0,86 0,021 999 

SAT2 -0,84 0,02 15548 

SNHG12 -0,81 0,02 978 

PTRHD1 -0,8 0,046 1692 

FSIP1 -0,8 0,031 817 

VILL -0,79 0,029 931 

TRAPPC6A -0,78 0,028 777 

MRPL57 -0,74 0,047 4233 

RRP9 -0,71 0,02 692 

C16orf91 -0,69 0,046 1278 

MRPL9 -0,67 0,008 1587 

KMT5C -0,67 0,034 1701 
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UBXN1 -0,64 0,046 3244 

FASTKD3 -0,6 0,044 574 

NUDT22 -0,6 0,02 1613 

LRRC23 -0,6 0,044 978 

BICDL1 -0,6 0,022 4828 

SDHB -0,58 0,036 2236 

NELFE -0,58 0,044 2308 

HDDC3 -0,55 0,037 1543 

CORO7 -0,54 0,02 1364 

CIRBP -0,52 0,021 20761 

MRPS15 -0,51 0,044 2353 

CIAO1 -0,51 0,02 3430 

MBD4 -0,51 0,02 3293 

TSC2 -0,51 0,02 7285 

TCF25 -0,51 0,021 18242 

NOSIP -0,51 0,046 2235 

MRPS25 -0,5 0,021 4618 

SDR39U1 -0,5 0,011 2874 

COQ6 -0,47 0,028 1459 

RNF8 -0,46 0,046 3439 

SRA1 -0,45 0,046 1776 

DHPS -0,44 0,046 4106 

PSMG1 -0,43 0,046 1276 

SMARCA4 -0,36 0,046 5754 

NDUFA10 -0,29 0,036 10734 

YY1 0,32 0,046 7459 

PRRC2B 0,36 0,02 10656 

USP10 0,39 0,046 3234 

THRB 0,4 0,046 12087 

ZBTB4 0,4 0,01 5503 

DNAJC16 0,43 0,046 4208 

SSBP2 0,43 0,021 7153 

PRICKLE1 0,43 0,044 4389 

CIPC 0,43 0,046 2739 

AJAP1 0,45 0,049 5944 

HPCAL4 0,45 0,034 8629 

KLHL2 0,45 0,049 6409 

HERC3 0,47 0,048 2215 

GTF3C4 0,47 0,046 1823 

NR2C2 0,51 0,046 3060 

ZBTB44 0,51 0,036 6980 

PGAM5 0,51 0,046 1673 
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GLRA3 0,52 0,036 8300 

RYBP 0,53 0,046 3730 

ABLIM3 0,53 0,02 1320 

NOL4 0,53 0,046 6308 

MOB1B 0,54 0,049 4389 

PPP3CA 0,56 0,036 56807 

SLITRK4 0,56 0,044 14964 

RAPH1 0,57 0,046 7159 

TMED7 0,58 0,031 2399 

ZBTB6 0,59 0,034 1026 

ZNF770 0,59 0,02 5512 

RAB8B 0,59 0,036 1620 

TMEM151A 0,6 0,036 5376 

ZFY 0,61 0,046 789 

NFIA 0,65 0,044 2864 

ADGRF5 0,65 0,046 1978 

AL365361.1 0,67 0,044 2084 

ZMIZ1 0,69 0,046 4183 

SPATA2 0,69 0,044 1920 

ATP1B2 0,7 0,044 844 

GPR12 0,72 0,048 937 

DACH1 0,89 0,012 1071 

ZBTB34 1 0,011 1054 

WNT7B 1,21 0,02 674 

MT-ND3 1,21 0,046 84738 
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Supplementary Table 3: Genes differentially expressed in NSCs, Aplp1-/- vs. WT (DESeq2). 
 

Gene ENSEMBL ID LFC p.adjust UMI 
Pmpcb ENSMUSG00000029017 -2,23 0,05 122 
Lypd6 ENSMUSG00000050447 -2,13 0,05 112 
Ostc ENSMUSG00000041084 -1,95 0,03 142 
Tmem237 ENSMUSG00000038079 -1,94 0,09 129 
Sdc2 ENSMUSG00000022261 -1,93 0,04 175 
Cstf2 ENSMUSG00000031256 -1,89 0,08 103 
Phactr3 ENSMUSG00000027525 -1,89 0,10 122 
Rplp1 ENSMUSG00000007892 -1,88 0,03 145 
Mpc1 ENSMUSG00000023861 -1,87 0,10 121 
Selenos ENSMUSG00000075701 -1,83 0,01 251 
Acadm ENSMUSG00000062908 -1,82 0,09 130 
1110065P20Rik ENSMUSG00000078570 -1,80 0,07 165 
Pyroxd1 ENSMUSG00000041671 -1,75 0,08 137 
Ramp1 ENSMUSG00000034353 -1,69 0,04 282 
Slc39a12 ENSMUSG00000036949 -1,54 0,05 214 
Atp8a1 ENSMUSG00000037685 -1,52 0,08 214 
Ogdh ENSMUSG00000020456 -1,39 0,08 294 
Grm3 ENSMUSG00000003974 -1,34 > 0,01 777 
Tril ENSMUSG00000043496 -1,31 > 0.01 666 
Dbt ENSMUSG00000000340 -1,27 0,08 266 
Dynlrb1 ENSMUSG00000047459 -0,99 0,05 406 
Eno1b ENSMUSG00000059040 -0,81 0,07 1112 
Gnao1 ENSMUSG00000031748 -0,74 0,07 1537 
Usp22 ENSMUSG00000042506 0,76 0,07 852 
Psip1 ENSMUSG00000028484 1,28 0,01 321 
Zfp451 ENSMUSG00000042197 1,34 0,09 287 
Rlim ENSMUSG00000056537 1,42 0,07 174 
Pnn ENSMUSG00000020994 1,66 0,07 159 
Tpx2 ENSMUSG00000027469 1,71 0,01 209 
Ier2 ENSMUSG00000053560 1,87 0,07 127 
Ccnb2 ENSMUSG00000032218 1,89 0,01 159 
Scrib ENSMUSG00000022568 1,94 0,05 161 
Ubtf ENSMUSG00000020923 2,05 0,01 125 

 

 


