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1 Introduction

In this thesis we consider II{ class, which can roughly be defined as the sets
of infinite paths through computable trees. Historically, TIY classes have first
been considered by Shoenfield ([Sho60]) in an investigation of the complexity
of complete extensions of computably axiomatizable first-order theories, such as

Peano arithmetic.

We aim for a comprehensive access to the notion of ITY classes. First of all we
motivate the notion of tree used in the context of I1Y classes, which is a special case
of the common graph-theoretic notion. We find, that while formally a special case,
its definition is reasonable, since it captures all considered structural phenomena.
Also, we do not only consider I1{ classes in 2, but in all of w*. However, we
restrict ourselves to ITY classes that are bounded in some sense. For this purpose,
we investigate different notions of boundedness before identifying two somewhat
universal classes of bounded ITY classes, then simply called bounded and computably
bounded IT? classes, and a nice way of representing them. After that, we turn to
the core of the thesis.

That is, we investigate what spectra of degrees the members of a II{ class of a
given kind can bear. On the one hand, we try to find members of particularly low
complexity in some sense. In order to do this, we establish basis theorems that tell
us, that any ITY class of a class C has a member of a class of functions B, called
basis. On the other hand, we showcase some I1{ classes, which by example show

that any according basis, in return, has to contain a member of some property.

Returning to the initial motivation for our consideration, we apply the results
to logical theories, and Peano arithmetic in particular, thereby nourishing the
findings of Godel’s Incompleteness Theorem. An important result is that the class
of complete extensions of Peano arithmetic form a universal computably bounded
I19 class. That means that every such extension computes some member of every

computably bounded 1Y class. The degrees of theses extensions, called PA degrees,
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can even be characterized by this property. We assemble other characterizations

and results on PA degrees.

A notable feature of this thesis is the generalization of Shoenfield’s construction
for the improvement of the Kreisel Basis Theorem. This generalization seems not
to have been done yet. The originally resulting Kreisel-Shoenfield Basis Theorem
is properly weaker than the Low Basis Theorem of Jockusch and Soare, but the
generalization has more ramifications than just that theorem. For one, it implies
that one can delete any maximal elements of a wide range of bases for any of the
considered classes of TTY classes. This then shows that there are chains of low degrees
of arbitrary finite length. The same is implied for hyperimmune-free degrees. As
another application, the generalization of Shoenfield’s construction sharpens
Solovay’s characterization of the PA degrees. By this tightened characterization,
it provides an immediate alternative proof of Scott and Tennenbaum’s result that
there is no minimal degree that is PA. And in fact, it implies the apparently novel

result that there is an infinite chain of PA degrees below every PA degree.



2 Preliminaries

First of all, we agree on some notation in order for this thesis to be accessible for
readers of other texts on recursion theory. Readers not familiar with recursion
theory are referred to the comprehensive introductory book [Odi92]. After that,
we list some basic results of recursion theory that will be required in later chapters.
If not specified differently, these can be found in [Odi92].

As it is general convention in recursion theory, we will not explicate the effective
parts of every proof by means of, say, defining a specific Turing machine. Rather,
we will outline an algorithm or an argument that such an algorithm exists, and

refer to the Church-Turing thesis.

We assume familiarity with the basics of recursion theory, especially relative

computability, Turing degrees and the arithmetical and analytical hierarchies.

2.1 Notation and definitions

Most of the following notions are ubiquitous and we will only give little concrete

specification and properties.

w, N the set of natural numbers
Natural numbers will usually be denoted by
lower-case Latin letters e, 1, 5, k,[,m,n,s,t
and sets of natural numbers by upper-case
Latin letters A, B,C, M

ca: N—{0,1} the total characteristic function of a set A
xa: N— {1} the partial characteristic function of a set A
o= (ko,...,ky,) €W Cw* a string consisting of n natural numbers

Finite strings of length greater zero
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|0|:|(k0a"'7kn> =n+1

.T:(k‘o,kl,...)eww
w¥

2 = {0,1}*

ooT

ooXx

olg,xly

I(o) = {z €w |2 [ |o| = o)

O <lex T

T<0

will usually be denoted by p, o, 7.

the empty string

Sets of strings, especially trees (to be defined)
will usually be denoted by S, T.

the length of a string

the 7th number of the string o € w*

an infinite string or sequence

Infinite strings will also be denoted by f, g

as they will often be identified with functions.
Baire space

Cantor space

concatenation of strings o, 7 € w*
concatenation of a string ¢ € w* with

an infinite string z € w®

the prefix of length j of a string o (z);

(o lj=ciflo] <j)

The term initial segment may be used
interchangeably with prefiz

the interval of infinite strings extending o
lexicographical (linear) order on strings

of a fixed length; o, 7 € N**!
0<j<nolj—l=71]j-1A0()<7()

o is a prefix of o

Pref(S) = {7 |30 € S 1 < o}the set of prefixes of a set of strings S C w*

7: N2 > N

m, T N— N

():N* =N

a binary bijective primitive recursive

coding function

7(z,y) = div(z? + 2xy + y* + = + 3y, 2)

the associated primitive recursive

projection functions:

Vm,n € Nm = mo(1(m,n)) An =m(r(m,n))
a binary bijective coding function for

arbitrary long finite strings

(o) =71(lo] = 1,7(c(0), 7(c(1),7...0(lo| = 1)...



2.1 Notation and definitions

(A =0
We may by (-) sometimes identify sets of
strings with sets of natural numbers, when

conventient and appropriate.

We assume a standard enumeration of the partial computable functions by Turing

machines. Thereby, we may clearly speak of the computation of a partial function

on a given input for a number of steps. We will identify oracle Turing machines

with ordinary Turing machines, as in [DH10].

Pe
©e(T) 1, @e()[t] |
@e() T, @el)[t] T
We ={z | e(z) I}
! (x)

ol
07 (x)

K ={e|wpcle)}} =0
A= {e|pie) I}
fr=Ael¢l(e) I}

<r

<

—m

a<b
AdB={2n|ne A}
uU{2n+1|n € B}
avb

the eth partial computable function

convergence on input z (after ¢ many steps)
divergence on input x (after ¢ many steps)

the eth computably enumerable set

the eth computation with oracle f € w“ on input x
the eth partial f-computable function

We may also define sets of natural numbers as oracles
by identifying them with their characteristic function.
the eth computation with finite oracle o € w* on input x
A computation with finite oracle also diverges, when
it makes such a request that the oracle is too short.
the (diagonal) halting problem

the jump of a set A

the jump of a function f

Turing reducibility, arbitrarily between sets and functions
m-reducibility

In this thesis, when we speak of degrees, we will
always mean Turing degrees. They will be denoted by
boldface lower-case Latin letters a, b, c,d, p.

the partial order of T-degrees, induced by <r

the join of two sets A, B

the join of two T-degrees, induced by @



2 Preliminaries

Remark. Note that Baire space stands for two different notions; one topologic
and applicable to many spaces, while the other one is set-theoretic and is just the

name for w®. It is also a Baire space in the topologic sense.

The Baire space NV is often considered a topological space. Although in this thesis
most of the time we do not need that, at times it proves very useful. One does
not equip the space with just any topology, of course, but with a very natural
one. It can be defined equivalently in at least three ways. The most economic
definition of that topology is that it is the product topology of NY, where N has
the discrete topology.

By defining d: NN x NN — R, d(x,y) := 27", where n = max{|o| | z,y € I(0)},
one gets what easily can be verified to be a metric for NV, which induces the same

topology.

And finally, the family ({z|z(m) = n})mnen, when used as a sub-basis for a
topology, makes the family (I(0)),en+ a basis of that topology. But that is exactly
the family of open balls of the above metric. So this sub-basis induces also the

same topology.

2.2 The notion of tree

In this section we take a look at the notion of tree, which is crucial in the treatment
of TI? classes. We will discuss its specific definition in the context of II{ classes in

contrast to the more common graph-theoretic definition.

Definition 2.2.1. A set T' C N* is a tree if it is closed under initial sequences,
i.e. if for all strings o € T', all initial segments 7 < ¢ are also members of that set:
7 € T. The empty string A is the root of T', and we call elements o € T' nodes of
T.

Note the difference between this definition and the more general and more common

definition of a tree as a simple acyclic connected (countable) undirected graph.



2.2 The notion of tree

A tree in our sense may of course also be considered an undirected graph. We

define an appropriate edge relation:

Definition 2.2.2. For a tree T we define the edge relation Er := {(o,7)|3k €
No=r1okVook=r}

It is (o,7) € Er iff (1,0) € Ep, so Er is undirected. Also, (0,0) ¢ Er for any o,
i.e. (T, Er) is a simple graph.

Throughout this thesis, we will only consider undirected simple graphs and when-
ever we speak of graphs or trees in the graph-theoretical sense, we will hence

always mean only undirected simple graphs or trees.
We define some basic notions for graphs we want to consider in trees.

Definition 2.2.3. In a graph (V| F), a walk is a sequence of vertices v, ..., v, €
V', so that any two successive vertices are adjacent, i.e. connected by an edge:
For all 0 < i < n, (v;,v;41) € E. Here, n is the length of the walk vy, ..., v,. A
path is a walk so that its vertices are mutually different, v; # v; for all i # j. An

infinite path with one or without any end-point, respectively, is an infinite sequence

Vg, U1, V2,... O ..., V_1,0g,V1,... SO that every subsequence v;, v;11, ..., Vi1, IS
a path. In the first case, vy is the end-point. A cycle is a walk v, v, ..., v,, v with
n > 0, such that v, vy, ..., v, is a path.

Although our definition of a tree T" with the according edge relation Er satisfies
also the graph-theoretical definition - as we will see now -, a general graph need
not have a node defined as a root. But our main interest will be in infinite paths
with one end-point through trees. Most of the time, we will be interested only in
their complexity in terms of Turing-degrees. And because this notion is robust
against finite differences, we may as well define that any such infinite path should

have a certain node defined as the root of the tree as its end-point.

We will now observe that our definition of a tree is a special case of the more

general definition, but already captures all relevant phenomena.

Lemma 2.2.1. Fvery tree T is also a countable tree in the graph-theoretical

sense.
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Proof. Let T be a tree. Since T' C N*, T" is countable. Using the coding function
() we can even consider it a subset of N. Note that this is a recursive operation

in both ways.

Because T' is closed under initial segments, for every node there is a path to the
root . Adjoining these paths one to the other accordingly, one sees that there is

a path from every node to any other node, i.e. T" is connected.

Suppose, there were two different strings p, 7 € T connected by two different
paths p,01,...,0,, 7 and p, 07, ...,0.,, 7. Then oy # o/, without loss of generality;
otherwise set p as 0; so that 0 = o’ forall 1 < j <i <min(n,n’) and 0,41 # 074,
and rename the vertices appropriately. If no such ¢ exists, then o; = 0’; for all
1 < j < min(n,n), with min(n,n’) = n’ without loss of generality. But then

T,00 = Opiy Opiil, ..., 0n, T 1S a cycle.

Since both are paths and the direct predecessor of a string is unique, either oy < p
and p < o, or p < 01 and 0] < p, or p < o7 and p < of. In any case, one of
the two strings o1 and o7 is a direct successor of p. Let it be o1 without loss of

generality.

Since p < o7 and the direct predecessor of a string is unique and in a path there
are no repeated nodes, o1 < 0. By induction, 0; < 0,11 forall 1 <7 <n —1 and
o, < 7. The same argumentation works for the other path, if p < ¢]. But, again,
since the direct predecessor of a string is unique, a path with given end-node
T going successively over the direct predecessors is unique and then both paths

would be identical. So, o} < p.

There must be 2 < j < n’ so that o}, < 07, because otherwise the length of the
o} would always decrease. And that cannot be, because |p| < |7| which is shown
by the first path. Then, like above, o < 0j,, for all j —1 <7 <n’ — 1. But then,
again because the predecessors of 7 of given length are unique, o, = p for some

i>j.And so 7,0%,...,0/,, 7 cannot be a path.

So, there are no cycles in 7" and therefore 7' is a tree in the graph theoretic

sense. ]



2.2 The notion of tree

Now, consider the inverse direction. Since we are concerned with computability,
we assume G not only to be computable, but also that the nodes of G form a

subset of N, without loss of generality.

Lemma 2.2.2. For any graph-theoretical tree G = (V, E), G C N, there is a tree

that is isomorphic to G as a graph.

Proof. If G is empty, the claim is true. Otherwise, choose r € G. Define d, : G — N
as the length of the unique path from a given node of G to r. Since G is connected,
d, is well-defined.

Define
T:={ceNNO<i<|o|d(o(i))=i,YV0<j<|o|—=1(o(j),0(j+1)) € E}
T is obviously a tree, since the defining condition holds for a string if it holds for

a Successor.

Together with the relation Er := {(o,7) € T xT|3k e No=70kVook =1},

T then also is a graph-theoretical tree, as we have seen in Lemma 2.2.1.

Now the isomorphism f works as follows: f: G — T, f(v) := o with ¢ =

(r,vo, ..., vk, v) as the unique path from the root r to v.
Because T consists of all paths from the root r to the other nodes, f is well-defined.

And f is obviously injective, since the reverse image is equal to the last entry of

the image.
Also, f is surjective, because every path in a tree is unique.

Finally, f is a graph-isomorphism.

Let (v,w) € E and let 7, vy, ..., vg, v and 7, wo, . .., w;, w be the respective paths
from the root. If v € {w,, ..., w;}, then w; = v, because otherwise there would be a
shorter path from r to w. Analogously, if w € {vy, ..., v}, then v, = w. If neither
v € {w,,...,w} nor w € {vg,..., v}, then r vy, ..., v, v and r,wo, ..., w;,w,v

are different paths from r to v, which contradicts the assumption that G be
acyclic.
It follows that w; = v, without loss of generality, and therefore (f(v), f(w)) =

((r,vo, ..., vk, 0), (1w, ..., w;,w)) € Ep.
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Reversely, let for two vertices v, w € G, their images be adjacent: (f(v), f(w)) €
Er. Then either f(w) = (r,v, ..., v, v,w) or f(v) = (r,wp,...,w,w,v). Either
way, it holds that (v,w) € F. ]

In conclusion, we see that a general tree (with root) can be replaced by a tree
in the sense of our definition. This is still true, when we shift our interest to

computable trees.

Definition 2.2.4. A tree T € N* is called computable if it is a computable set.

In the more general case of graph-theoretical trees this translates to graphs
G = (V,E),V € N with V| E computable sets, because when we consider a
computable tree T" a graph-theoretic tree, both T" and E7r are computable. Consider
again the embedding of a - now computable - graph-theoretic tree into N* like
above. Because paths are unique in any tree, that isomorphism f was in fact
effective, in the sense, that one can effectively decide the membership of a node
in the isomorphic tree T'. Hence, for a computable graph G, its isomorphic image

T is also computable. The edge relation Fr is always computable.

At last, we have to make sure that we get the same complexity results when we
restrain ourselves to infinite paths from the root through trees instead of abitrary

infinite paths through graph-theoretical trees.

To this end, let (vg, vq,...) be an infinite path through some graph-theoretic tree
G with root r. If r = v; for some i € N then (v;,v;41,...) is a path of same
Turing-degree, since they differ only in finitely many places. If r ¢ {v;|i € N}, then
choose i € N such that the path (r, po, ..., pg,v;) from r to v; is the shortest. Then
there is no v; with 7 < j on that path, otherwise its path to r would have been
shorter. Therefore, (7, p, ..., Po, Vi, Vis1, ... ) is an infinite path and has the same
degree as the original path, because they have only different initial segments. Note,
that the equivalent path beginning at r can in any case be uniformly computed

from the original path.

So let us consider a graph-theoretic tree G with root r, an infinite path through G

starting at r, and the isomorphic image of G that is a tree in our sense. Then the

10



2.3 Definition and characterizations of TIY classes

corresponding infinite path has the same degree: One can compute the infinite
path through G with its image T" as an oracle by mapping to the last entry of each
of its node. And one can compute the infinite path through T with the reverse

image as an oracle by mapping each node to the path from r to that node.

That is why it is legitimate and reasonable to only consider trees in our restrictive
sense and to only consider infinite paths with end-point through these trees that
begin at the root A. And from here on, we will denote with (infinite) path through
a tree only the infinite paths with end-point A, if not stated otherwise. As one
easily observes, for every infinite path through a tree, there is a unique function
x € NV such that the path is equal to (A\,z | 1,z | 2,...). Because of this great
redundance, we will further identify every infinite path with this corresponding

function.

2.3 Definition and characterizations of I\

classes

Let us capture the previous observations and conventions in an important defini-

tion.

Definition 2.3.1. Let T be a tree. Then [T]:={f € w’|Vn € w f [n €T} is
the class of infinite paths through T'.

Definition 2.3.2. P C w* is called a II{ class if there is a computable tree T
such that P = [T]. If P C 2¥, we may speak of a class of sets, otherwise of a class

of functions. If P contains no computable functions, it is a special 119 class.

Remark. The notion of special 1Y class is due to Jockusch and Soare. The paper
[JST2a] is denoted to special ITY class exclusively. Kreisel and Shoenfield historically
achieved the first results on II classes, captured in [Sho60], but the pathbreaking
works were done by Jockusch and Soare in the 1970s ([JS72al, [JS72b] amongst
others).

11
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The following observation explains why II{ classes are often called effectively
closed sets. That way, I1{ classes can be considered part of the effective version
of the Borel hierarchy of w®. In contrast to the general Borel hierarchy, one uses
lightface characters to denote the classifications. That is why the effective version

is also called lightface Borel hierarchy.

Theorem 2.3.1. A subset C of NN is closed if and only if C = [T] for a tree
T C N*.

Proof. Suppose C' C NN is closed. Then the complement U := C relative to NV is
open. Because (I(0))qsen- is a basis for the topology of NN, there is some I C N*,

such that U = | J I(c). Now we can assume, without loss of generality, that I is
oel
chosen to be maximal, i.e. for all 0 € N* if I(0) C U, then ¢ € I. But that means,

that [ is closed under successors, because (o) C I(7), if 7 < . By contraposition,

this shows that the complement 7" := T relative to N* is closed under predecessors,
i.e. atree. Sothen C =U = |J (o) ={z| Ik €Nz | kel} ={z|Vk € Nz |

keT) =[T). "

Now suppose C' = [T] for some tree " C N*.

Then C = [T] = {2|Vk €Nz [ ke T} ={z| Ik e Nz [ k ¢ T} = |J I(0),
o¢T

which is clearly open. So C' is closed.

We will now observe that we can vary the complexity of trees involved in the
definition of TI{ classes in two directions, i.e. more complex or less complex, while
conserving the same notion. That makes it possible to better get a handle on the
notion on the one hand, e.g. when trying to introduce an index for ITY classes.
This can be done by an effective enumeration of primitive recursive sets. And
on the other hand, that makes it easier to show that some class is a II{ class.
Also, the equivalent notion of a class defined via a formula with one universal
quantifier over the natural numbers and a computable matrix finally explains the

name 77 class.

For results on index sets for II{ classes, see for instance [CR03], [CJ99] or chapter
VI of [Cenl0).

12



2.3 Definition and characterizations of TIY classes

Lemma 2.3.2 ([CR98]). For a class P C NY| the following are equivalent:
i) Pis a 119 class

it) P = [T, for some recursive tree T

iii) P =[T], for some primitive recursive tree T

iv) P =[T], for some 119 tree T

v) P ={z|Vn R(n,x)}, for some recursive relation R

Proof. By definition, i) and ii) are equivalent.

Now suppose, P = [T'] for some recursive tree T'. Then there is a total computable
{0, 1}-valued function ¢, such that ¢y = ¢..

Define S := {o|Vn < |o|p.(c | n)[|o|] # 0}, which is a primitive recursive tree.
Obviously, all strings in T satisfy the condition to be member of S, so T' C S and
hence [T'] C [S]. Assume conversely that = ¢ [T]. Then there is a prefix z [ n ¢ T.
So the according computation converges at some time t: @ .(z [ n)[t] = 0.
But then ¢¢(z | (max{n,t} + 1)) ¢ S, and therefore = ¢ [S]. This shows the

implication ii) = iii), while the converse is obviously true.

Let now P = [T] with T a II{ tree. So there is a recursive relation R, such that
o €T & Vn R(n,o).

Define the set S by 0 € S < Vm,n < |o| R(n,o | m). If o € T, then Vn R(n, o),
especially Vn < |o|,m = |o| R(n,o | m). But since T is a tree, it also holds that
Vn < |o|,m < |o| R(n,o [ m). So, o € S, and therefore 7" C S and [T'] C [S]. Now
let x € [S]. Then Vkx | k € S. By definition of S and because (z [ k) [m=x [ m
for m < k, it holds that VkVYm,n < k R(n,z [ m). By choosing k = max(m,n),
we get Vm,n R(n,z | n). And finally by choosing m = n, Vn R(n,z [ n) and

hence x € [T]. This shows the nontrivial direction of ii) < iv).

Suppose P = [T] for a recursive tree T'. Then define the relation R by
R(n,z) < z | n € T, which is recursive.
Then z € [T) & Vna [ n €T < VYn R(n,z). That shows ii) = v).

13



2 Preliminaries

Finally, suppose that P = {z|¥n R(n,z)} for some recursive relation R. Then
there is a recursive functional p, such that R(n,z) < ¢*(n) =1 and =R(n,z) &
pe(n) = 0.

Then define T := {o|Vnp?(n)[n] J— ¢7(n) = 1}. One easily sees that T is a T}
tree. If z € P, then obviously ¢2'¥(n) = 1 for all n, so P C [T]. Now let = € [T).
This means that for all numbers k and n, if ¢2'¥(n) converges after n steps, then
%% (n) = 1. But since ¢? is a total function, there is, for every n, a use u and a
time ¢, such that the corresponding computation with oracle x | v with input n
halts after ¢,, many steps. So for all n, ¢*(n) = 1, and therefore x € P. By this

argument, v) = iv).

By transitivity, all five statements are equivalent. O

There are other interesting ways of characterizing the I1{ classes. When considering
problem classes arising in combinatorics, one often sees that solvability of finite
instances extend to solvability of infinite instances by some compactness argument.
But these extended results cannot always be effectivized. For example, [Cenl0]
mentions a 3-colorable, computable, connected graph which has no computable

k-coloring for any k.

But solution sets of infinite instances of combinatorial problem classes can often
be represented by I1¢ classes and the degrees of those solutions can hence be
explored with the results of Chapter 4. Some of these problem classes already
characterize the (bounded, computably bounded) II{ classes, in the sense that
each (bounded, computably bounded) II{ class can be represented that way. So,
by other results in Chapter 4, the existence of particularly pathological problem
instances can be shown. We will define the notion of (computably) bounded 19

classes at the end of the next chapter.

Our consideration of the two notions of trees can be seen as such a representation
result providing a characterization. It was introduced to narrow down our notion
of trees and infinite paths to a reasonably simple, but comprehensively representa-
tional class. For an overview over other representation results, see [CR98], [CJ99]

and Part B of [Cenl0].

14



2.3 Definition and characterizations of TIY classes

Finally, like in the Chomsky Hierarchy for formal languages, there are also machine
characterization for languages of words of infinite length, so-called w-languages.
The first approach to automata accepting sets of infinite strings was done by Biichi
in the 1960s. Later, other authors considered different acceptance modes. There
is a treatment in [CR03]. There, the authors find that the class of w-languages
accepted by a strictly computable deterministic automaton via e-acceptance,
is exactly the class of TI? classes. It is also possible to define grammars that
generate w-languages. However, both approaches are not very handy and are only

mentioned to offer a more comprehensive view.
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3 Notions of boundedness

3.1 The partial order of notions of boundedness

for trees

Now let us consider the following notions of boundedness for trees. We will
investigate which ones of them are really different and which ones in fact coincide.
This will be done for general trees and for computable trees in parallel. That is
for economic reasons and because one notion is identical for both general and
computable trees, i.e. every tree bounded in the sense of that notion is already

computable.
Definition 3.1.1 (Notions of boundedness for trees). Let T" be a tree.

i) T is finitely branching if there is a function f: N* — N, such that for every

oin T,
Hi|ooieT} < flo).

T is computably finitely branching if f is computable.

ii) T is bounded by a function g: N* — N if for every o in 7" and every i € N,
cgoieT =1i<g(o).
T is computably bounded if g is computable.

iii) T is uniformly bounded by a function h: N — N if for all ¢ € T and all
i <lo|
o(i) < h(7).

T is computably uniformly bounded if h is computable.

17



3 Notions of boundedness

iv) T is stagewise enumerable by a function k: N* — N if for each o0 € T
k(o) = (i1, ... im),

where iy, ..., i, are exactly the successors of o: {i1,... i} ={i:00i € T}.
T is computably stagewise enumberable if k is computable. This function k is

unique, if it exists.

Remark. Note that stagewise enumerability is stronger than general enumerability,
since every tree T' C N* is enumerable. Also, stagewise enumerability by a
computable function is stronger than computably enumerability. In fact, it is
an easy observation that computably stagewise enumerable trees are already

computable, which will be part of our following investigation.
Lemma 3.1.1. For any tree T, the following are equivalent:
1) T is finitely branching
i) T is bounded
iii) T is uniformly bounded

i) T is stagewise enumberable

Proof. Let T be a finitely branching tree. Then, for every o € T, there are only
finitely many successors. So there is a function k£ that maps each node o € T' to

the tuple of its successors.

The other directions follow from Lemma 3.1.3 below. [
Almost every tree we will be considering is bounded and infinite. And for infinite
bounded trees, the important Konig’s Lemma applies.

Lemma 3.1.2. (Kénig’s Lemma) Every infinite, finitely branching tree has an

infinite path.

18



3.1 The partial order of notions of boundedness for trees

Proof. Let T be an infinite tree. Then A € T', because T is not empty and closed

under initial segments. Define z(0) := A.

By Lemma 3.1.1, T" is bounded, and therefore there is a function g : w* — w, such
that if coi € T, then i < g(0), for all ¢ € T,i € w. By applying the pigeonhole
principle to the infinitely many successors of ¢ = A and their finitely many
mutually distinct initial segments bounded by ¢(o), there must be at least one
number i, such that (i) € T has infinitely many successors. Define x(1) := i as the
least such number 7. And then, inductively for each n, define 2(n+1) to be the least
number ¢ such that 7" has infinitely many elements with (x(0),z(1),...,z(n),1?)
as an initial segment. Again, you see that such a number exists, by applying the
pigeonhole principle to the infinitely many successors of o = (z(0),...,z(n)) that
exist by the induction hypothesis and the bound g(o) for the number of possible

initial segments of length n + 1 extending o. O]

Remark. In this proof of Kénig’s Lemma we use some form of the axiom of
choice, but Kénig’s Lemma is strictly weaker than the axiom of choice, in terms of
provability in a subsystem of second order arithmetic over RCA,. Kénig’s Lemma
is equivalent to what is called arithmetic comprehension ([Cen10]). RCA, together
with arithmetic comprehension is called ACAy. The same statement for infinite
trees in 2¢ is called Weak Ko6nig’s Lemma (WKA(). For an elaboration of the
relations of these axioms to others, see chapter VII about reverse mathematics of

[Cenl10] or section three of [CJ99].

A recursive version of Kénig’s Lemma stating Fvery infinite computably finite
branching computable tree has an infinite computable path does not hold. An
investigation of II{ classes without computable members, so-called special 19

classes, will be done in Section 4.2.7.

Remark. In section 4.2 (Basis Theorems), we will revisit the idea of the proof of
Koénig’s Lemma and effectivize it, to obtain, amongst others, the Kreisel Basis

Theorem.
Lemma 3.1.3. Let T be any tree.

If T is stagewise enumerable by a function k, T is also uniformly bounded by a

function h, which is computable from k.
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3 Notions of boundedness

If T is uniformly bounded by a function h, it is also bounded by a function g,
which is computable from h.
And if T is bounded by a function g, T is also finitely branching by a function f,

which is computable from g.

Proof. Let the function k(o) = (i1, ..., ;) enumerate the successors of the nodes
of T, define

h(1) :=max{i|3j € NE(A) = (i1,...,im) N1 < j<mAi=1i;} and

h(n+1) := max(h(n),max{i | 3o € [[{0,...,h(k)}3j € Nk(c) = (i1,...,im) A

k=1
1 <j<mAi=i;}) for all 0 < n. Then T is uniformly bounded by h, by

construction, and h is computable from k.

Given a uniform bound h for T, T is bounded by ¢(o) := h(|o| 4+ 1), which can

be computed from h.

Suppose T is bounded by the function g. Then T is also finitely branching with
the bound f(o) := g(¢) + 1 computable from g. ]

Remark. Note that Lemma 3.1.1 does not hold for computable bounding functions.
In fact, for arbitrary trees, all these effective boundedness notions are strictly

different and stronger than noncomputable boundedness.

Lemma 3.1.4. There is a tree that is finitely branching, but not computably
finitely branching.

There is a tree that is computably finitely branching, but not computably bounded.
There is a tree that is computably bounded, but not computably uniformly bounded.
There is a tree that is computably uniformly bounded, but not computably stagewise

enumerable.

Proof. Let K = {e: p.(e) 4} = {ko, k1, ...} be the diagonal halting problem with

k; < k;yq for every i. This is not a computable enumeration, of course.

This tree is finitely branching, but not computably finitely branching. Suppose, f
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3.1 The partial order of notions of boundedness for trees

was a computable function with |{i | coi € T1}| < f(o) for every o € T;. Compute
t(e) := max{f(07) : 0 < j < e}. Since e is not larger than the (e + 1)th index
ker1 € K in the halting problem, e € K iff p.(e)[t(e)] 4, which is computable.

This would be a contradiction and so f cannot be computable.

Ty = {0} U{0%0 (s + 1) | we(e)[s] | &pele)[s — 1] 1}

The tree T, is effectively finitely branching (f = 2), but not computably bounded.
Suppose, there were a computable function g such that i < g(o) if o0 0@ € Ty, one
could compute the halting problem: K = {e | ¢.(€)[g(0%)] }. This tree is also

computable, which will be relevant in the upcoming Lemma 3.1.6.

To define the next example, we first define the following:
Ts = {(s0,---,8) | 1 € N&VO < j < opy; (k) [s5] L & opu; (k) [s5 — 1] THU{A}
Let p be a computable function s.t. p. = @, and p(e) > e; i.e. a padding

function.

Then define

Ty={pcw |o€TiATETs AV <i<l|o| =27 (p(2i) = (i) AVO < j <
7| =[] (p(25 +1) = 7()}-

This tree is computably bounded, but not computably uniformly bounded. Any
string in T3 consists of the indices in the halting problem, ordered by size, and
the times by which their respective computations halt, alternately. This is a
computable bound for Tj:

g(o) ==

p[%](eo) +1 ,if |o| even

min{s : @ogo1-2)(o(lo] ~2)ls] 4} +1 .if |o] odd,
where pl" = po-..op denotes the nth composition of p with itself. For the
—_——

n times
verification, observe that pll(eg) is in fact greater or equal than e;. Because for

every e € K, also p(e) € K. Further e < p(e). But e;;; is defined as the lowest
such number, i.e. both in K and greater than e;. For strings of odd length the
bound works obviously.

But T3 is not computably uniformly bounded. Suppose that T was computably
uniformly bounded by h. Then you would be able to derive from it an effective

decision method for the halting problem. If e € K, then it is among the first e + 1
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3 Notions of boundedness

indices ko, ... k. € K. To decide whether e € K, it is hence sufficient to compute
s(e) == max{h(2i +1) | 0 <i < e}, because then K = {e | p.(e)[s(e)] }}. So the
halting problem would be computable, which is a contradiction. So there is no

uniform computable bound h for 7.

And finally, T is an example of a computably uniformly bounded tree that is not
computably stagewise enumerable. It is computably bounded, as can be argued
similarly to above. And since there is exactly one string in Tk of any given length,
it is obviously also computably uniformly bounded. A computable uniform bound
is, for example, h(i) := pl!(eg) + 1. But it is an easy observation that every tree,
that is computably stagewise enumerable, is already computable. Let T" be a tree
that is computably stagewise enumerable by the function k. Then clearly o € T'
iff o(i) is a number encoded in k(o [ ¢), which is computable. Thus, since T is

not computable, it cannot be computably stagewise enumerable. O

Remark. Some of these separation results are easy corollaries of theorems in
Chapter 4, but we choose to do our investigation in a bottom-up manner. Also,

one might find the employed miniature examples illustrative.

Now let us consider computable trees. As with arbitrary trees, the notion of

computably finitely branching is stronger than that of general finitely branching.

Lemma 3.1.5. There is a computable tree, which is finitely branching, but not

computably finitely branching.

Proof. Consider T :={0}* U{0%0 (t + 1) | we(e)[t] I &pele)[[t/2]] 1}

T is computable and is bounded by a function g, because for every index e in
the halting problem, there are only finitely many steps, for which ¢.(e) does not
converge. But T is not effectively finitely branching. Suppose, f would give a
computable bound on the number of successors for 0¢ in 7. If ¢, (e) converges first
at step s, then 0°ot € T forall s < ¢t < 2s—1. So f(0°) > 2s—1—s—1 = s—2. Then
one would be able to decide whether e € K, depending on ¢.(e)[f(0°) + 1] |. O

Apart from that, the situation with computable trees is different:
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3.1 The partial order of notions of boundedness for trees

Lemma 3.1.6. For computable trees, the notions of computably stagewise enumer-
ability, computably uniformly boundedness and computably boundedness coincide.
The notion of computably finite branching is still properly weaker with respect to

computable trees.

Proof. Let T be a computable tree. Because of Lemma 3.1.3, for the first statement
it suffices to show that you can effectively enumerate the children of a node of T,
given a computable bound for T'. Let g be such a bound and o € T'. Simply decide
for every ¢ < g(o) whether o o4 € T'. This can effectively be done since 7" and ¢
are computable. So it is obvious that the successor function, which enumerates

the children of a given node of T', is computable.

To see that the class of computable trees that are computably finitely branching
is strictly greater, consider example 7T, from Lemma 3.1.4. That tree T5 was

computable although this was not required there. O]

Definition 3.1.2. The class of computable trees that are computably bounded
is called highly computable trees.

Since all of the effective versions of boundedness notions (except for computably
finitely branching) coincide for computable trees, these notions indicate exactly

the highly computable trees.

Combining the above results about boundedness notions we get the partial order

of boundedness notions for trees.
Corollary 3.1.7. The 16 formal definitions using computable/noncomputable

trees and the effective or general version of the boundedness definitions collapse

into 7 mutually distinct notions as follows:
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3 Notions of boundedness

highly computable

/ comp. unif. bounded

/

comp. & comp.l f- branching }

( comp. bounded
comp. € bounded )
\\ comp. f. branching

bounded

In this graphical representation of the partial order of notions of boundedness,
exactly the shown inclusions and their transitive closure are valid. Fvery edge

directed generally upwards indicates an inclusion.

Proof. Here is an overview how this corollary follows from the above lemmas: First
of all, there are three notions which represent four equivalent notions, respectively.
That is, boundedness is equivalent to the notion finitely branching and is equivalent
to uniformly boundedness and is equivalent to stagewise enumerability. This holds
by Lemma 3.1.1 for general trees on the one hand and computable trees on the
other. Further, the class of highly computable trees can be equivalently character-
ized as the class of trees that are either computably stagewise enumerable (and
hence automatically computable as in the proof of Lemma 3.1.4) or computable
and either computably uniformly bounded or computably bounded. This follows
from the Lemmata 3.1.3 and 3.1.6.

Then there are 16 — 3 — 3 — 3 = 7 remaining classes that we see in the figure. So,
there are (;) -2 =17-6 = 42 possible inclusive relations between classes. We will

now account for the validity of the respective implications.

There are 8 implications displayed in the figure. There are 8 other implications
that follow via transitivity and therefore need not be considered. Three of the
shown implications follow by mere formal restriction, that is: Every computable

bounded tree is bounded; every computable and computably finitely branching
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3.1 The partial order of notions of boundedness for trees

tree is computably finitely branching; and every computable and computably
uniformly bounded tree (i.e., highly computable tree) is computably uniformly
bounded. Another two follow by formal restriction when applying Lemma 3.1.1:
Every computable tree that is computably finitely branching is computable and

bounded and every computably finitely branching tree is bounded.

Lemma 3.1.3 gives us the remaining three valid implications. Every highly com-
putable tree is computable and computably finitely branching; every computably
uniformly bounded tree is computably bounded; and every computably bounded

tree is computably finitely branching.
Now for the 42 — 16 = 26 invalid implications.

By considering the tree of all initial segments of an noncomputable string in 2%,
one sees that some computably uniformly bounded trees are not computable.
And by transitivity and contraposition, this shows that neither of the four classes
of computably uniformly bounded, computably bounded, computably finitely
branching or bounded trees is a generalization of any of the three different notions

for computable trees. That shows that 12 implications are not valid.

Lemma 3.1.4 separates the four notions for general trees. Note, that the most
restrictive one, computably stagewise enumerability, already implies that the tree
is computable and hence highly computable. This gives us proof for the invalidity
of four implications directly, one of which we already have proved in the last
paragraph. And for four other implications, the invalidity follows by transitivity
and contraposition from Lemma 3.1.4, one of which has already been accounted

for. So, Lemma 3.1.4 shows that another 6 implications do not hold.

From Lemma 3.1.6, we know that there are computable trees that are computably
finitely branching, but not computably bounded. That shows that the class of
computable trees that are computably finitely branching is neither a generalization
of the highly computable trees nor of the classes of general trees with an effective
boundedness of some kind other than computably finitely branching. And then,
by transitivity and contraposition, the same holds for computable, bounded trees.
These are immediate proofs for the invalidity of 6 more implications, that have

still been unaccounted for.
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3 Notions of boundedness

Finally, by Lemma 3.1.5, we know that there are trees that are computable and
bounded, but not computably bounded, which shows the invalidity of the two

remaining implications. [

3.2 Considering boundedness for I1! classes

Now, that we understand which different boundedness notions there really are, we
focus on computable trees, since they can serve to define our objects of interest,

the T1Y classes.

Definition 3.2.1. If P = [T] for some highly computable tree T', P is a computably
bounded T1{ class.

Analogously, we may speak of bounded or computably finitely branching TI{ classes.

Remark. Here lies the source of a possible misunderstanding due to linguistic
ambiguity. This definition of computably bounded and bounded only applys to
I10 class, as it relates to the trees generating the elements of the class. This is
quite obvious in the case of computably finitely branching. Out of the context of
trees, bounded or computably bounded may be mistaken as a notion relating to the
members of the class themselves only. That is, they would be uniformly bounded
by some function. In the case of computably boundedness, these two notions
even coincide. The members of a computably bounded I class are obviously
uniformly bounded by a computable function. And conversely, one can add to
the definition of a computable tree a constraint that bounds the strings by a
computable function. That disguises only the subtle difference of the two notions.
In the case of boundedness, the notion unrelated to trees is properly weaker.
In [Cenl0], the author calls it topological boundedness and gives an example

separating the two notions.
We find, that the three different boundedness notions for computable trees do not

collapse into one or two classes of IIY classes when we look at the infinite paths

through the trees in these classes. Let us rephrase this in the following Lemma.
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3.2 Considering boundedness for I1{ classes

Lemma 3.2.1. There is a bounded 11{ class that is not a computably finitely
branching 119 class.
There is a computably finitely branching 11 class that is not a computably bounded

119 class.

Proof. For the first part, consider this tree, which is a variant of that in Lemma
3.1.5:

T = {0 Vi < Jo 0(i) = 0V (o) = t+ 1 Ai(@)[t] 4 Ai(D[1£/2]] )}
Obviously, T is computable and bounded. Suppose now, there is a computable
tree T, that is finitely branching with the bound f, so that [T] = [T]. The trees
T and T have a common subtree Ext(T) of the initial segments of [T]. But that
tree is equal to T', because every node in T is extendible. Hence, one can apply
the argument of Lemma 3.1.5 to show that one can compute K from f. Therefore

f cannot be computable.

For the second part, consider a slight variation of 75 in Lemma 3.1.4:
T :={o:Vi<|o|o@i) =0V (c(i) =t Nei(i)[t] 4 Np;(i)[t — 1] 1)} Similar to
above, a computable bound ¢ on the children of the nodes of T" especially works

for the tree of infinite paths through 7', such as this one:

0 ,e¢ K
Zo(e) =
tec kK, pele)[t] L &ee(e)lt —1] 1
So e € K iff p.(e)[g(e — 1)] J. Hence g cannot be computable. O

Remark. Note that the separation of computably bounded I1 classes from bounded
IV classes is implied by the upcomping Theorem 4.2.4 in combination with
the Kreisel Basis Theorem (4.2.3). The separation of bounded 19 class from
computably finitely branching I1Y classes, however, cannot be done in such a way,
because we will find in Corollary 4.1.8 that every computably finitely branching
I1Y class has the same degree spectrum as some bounded ITY class. That means,
when reduced to their degree spectra, the three notions of boundedness for I19

classes do collapse into two; bounded and computably bounded II{ classes.

A very natural and common example for computably bounded ITY classes are

classes of separating sets.
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3 Notions of boundedness

Definition 3.2.2. Let A, B be infinite c.e. sets, that are mutually disjoint.
S(A,B) = {C C N|A C C,BNC = 0} is the class of separating sets for the
pair A, B. When S(A, B) contains no computable set, the pair A, B is called

recursively inseparable.

Note that there is also a definition of effectively inseparable sets, which is properly
stronger. See [0di92] for details.

The following statement is to be understood by identifying sets with their charac-

teristic functions.

Proposition 3.2.2. Let A, B be infinite c.e. sets, that are mutually disjoint.
Then the class of separating sets S(A, B) is a nonempty computably bounded 19

class.

Proof. Because A and B are disjoint, A € S(A, B) and so S(A, B) is nonempty.

Since A and B are c.e. sets, there are partial computable functions with indices
ea and ep such that A and B coincide with their respective domains, i.e. A =
We,,A=W.,.

Define the set
T:={0€2|V0<i<|o| ((ges(@)[[o]] =0 —=0(i) =1) A (pe(D)[Jo]] =1 —
o(i) =0))}.

This set T is a tree, because for longer strings, only longer computations are
considered, and once a computation yields a result, this result is fixed. This tree
is obviously computable. So [T is a 19 class bounded by the computable function

g=2.

And finally, any infinite path through T has to satisfy all requirements that its
finite initial segments meet. So, if z € [T], then ¢ € W, = A implies x(i) = 1.
And i € W,.,, = B implies z(i) = 0. So there is a separating set S such that
x = c¢g. And since there are no further constraints on the paths, the characteristic

function to every separating set in S(A, B) is in [T]. O
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In this chapter we want to take a general look at the degree spectra of certain
kinds of TIY classes. The degree spectrum of a class of functions is the class of
degrees of elements of the class; that is T-degrees in our context. As we consider
I19 class in this thesis, we might also speak in short of the degree spectrum of
a tree. Thereby, we refer to the degree spectrum of the class of infinite paths
through that tree.

In computability theory, it is common practice to regard a set or function as a
representative of a degree, because one is interested in its complexity, not its
specific form. Similarly, we wish to consider II{ classes mere representatives of
their respective degree spectra. Note, that in articles like [KL10], where this notion
is actually defined and not just implied, degree spectra are a collection of degrees
without multiplicity. This is reasonable when discussing basis results. But that
also means that you can only infer little information about the cardinality of a
I19 class by its degree spectrum; see one result in section 4.2.7. However, it is
impossible to separate, say, a II{ class with a single element, which is computable,
from a IIY class consisting of computable functions with any other countable

cardinality.

The first section can be thought of as an ansatz to find, for a given 1Y class, a
somewhat nicer IIY class representing the same degree spectrum. Jockusch and
Soare have coined the term degree isomorphic for the concept of I1? classes with
the same degree spectrum. Then, in section two, we shed light on the bounding
conditions for degree spectra. That is, what kinds of degrees can always be found

in the degree spectrum of some kind of I1{ class and which cannot.

For a treatment of the structure of degree spectra of II{ classes in 2* ordered by
inclusion, see [KL10] and [Cenl0]. The authors prove, amongst other results, that
the partial order of degree spectra of computably bounded IIY classes, ordered

by inclusion, is a lattice. Note that the observation, that this structure is an
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4 Degree spectra of I1{ classes

uppersemilattice is trivial. For computable trees T, T bounded by computable
functions g, g, respectively, the tree {\} UOoT Ulo T is bounded by the function
gu(loa):=g(o),gu(loo) = g(o),gu(A) := 2 and has a path of same degree for
any member in the union [7] U [T).

4.1 Reduction of II} classes with respect to

degree spectra

The aim will be to construct, for a given I1? class of a certain kind, a degree-
preserving bijection to a different TI{ class of a nicer kind representing the same
degree spectrum. Sometimes we will only be able to construct an embedding
which is not onto. But this will still be useful to generalize results in the upcoming

section 4.2 about basis theorems.

Theorem 4.1.1. Let T C w® be an abitrary tree, P = [T]. Then there exists a
tree T C 2* and an effective, degree-preserving functional S : P — P = [T] such
that:

T is computably enumerable from T and S is a one-to-one correspondence between
the noncomputable paths in P and P.

If T is bounded by a function g, T is even computable from the join of T and g,

and S is even a one-to-one correspondence between all of P and P.

Proof. To define T', we use the function f that gives us the rest of a division by 2:

f:N—={0,1}, f(n) =

and a function s, which encodes nodes of T":

s:w* — {0,1}%,
o — OU(O)+1 o) 1‘7(1)""1 O+--0 f(Z)o'(l)""l O+-+-0 f(’0'| _ 1)J(|U|_1)+1

30



4.1 Reduction of TI? classes with respect to degree spectra

Then T consists of all the images of nodes in 7', and prefixes of these, i.e. T :=

Pref(S(T))

Obviously, T is closed under initial segments, i.e., a tree. Since it is sufficient for
a node 7 to have one witness o € T to be a member of T, it follows that T is

computably enumerable in 7T'.

To develop a complete decision procedure for the membership of a string 7 in T,

we have to make two observations.

Firstly, when 7 has got a witness o for its membership in 7', it has a minimal
one. The reason for this is, that any witness ¢ of 7 remains a witness for 7 if you

extend it by one number ¢ to o o 1.

Secondly, if there is any witness, the minimal ones are identical in length, and
may only differ in their last entry. This is due to the manner in which ¢ encodes
nodes: If 7 is of the form 1o p, it cannot be in T, because all of these nodes begin
with a zero, except for A\. And if 7 is of the form 01Tt o 12+l o0t 0. .. 0 pivF! for
be{0,1},k € Nand iy,...,ix € N, any possible witness for 7 obviously would
begin with 7145 ...4;_1 and its next entry would need to be greater or equal than

ir.

Taking this in consideration, one can easily see, that one simply has to exhaust
all nodes of T' of length k + 1 with that given prefix. And for finitely branching
T, there are only finitely many such nodes,. Then one can give a negative answer

for the membership of 7 in 7', when all of them fail to be witnesses for 7.

So if T is finitely branching, 7 is computable in the join of 7" and its boundary

function g.

Now let us look at the injective functional between the infinite paths through T
and those through 7.

By extending the function s to the domain of infinite strings with a range in the
infinite binary strings, one gets the desired functional. This works in the obvious

way:
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S:w? — [T] C {0,1}¥,
o 00O+ o 19WHL oo F(f)e@H o

The functional S is well-defined, since s is order-preserving in the sense, that the
prefix relation is respected by s. That way, for any infinite path x through 7', s
maps all of its finite initial segments to such finite strings, that there is at most
one of any length and one is the prefix of another, if and only if it is shorter than

the other. So these segments result in an infinite path through 7', which is exactly
S(x).

S is injective, as one easily checks. If x and Z are different infinite paths through
T, they differ at a least position n; z(n) < Z(n), without loss of generality. But
then the nth change of ones and zeros in S(Z) happens later than in S(x). So,

S(z) # S().

Also, S is a computable functional. That is, you can uniformly compute an infinite
path through 7', given an infinite path through 7" as an oracle. This is obvious
from the definition of S.

And not only can you compute S(x) uniformly from z, for a given image y €
S([T]) you can also compute its reverse image uniformly. Therefore, S is degree-

preserving.

And lastly, let us investigate under which circumstances S would map [T'] onto

7).

An infinite path through 7T is mapped by S to a path through 2*. More precisely,
its image is a binary path, which changes from zero to one infinitely often (and
vice versa). But there may still be paths through T that do not change forever, but
become constant eventually. Consider such a path y = po ¥, with b € {0,1} and
p(lpl — 1) # 1 — b, without loss of generality. This is the case if and only if there
are T €T :7=po0 foralli € N. And because T = {7 € 25|30 € T': 7 < s(0)},
this holds iff there are o = 0 o k with s(0) = p and k >=i for all n € N. In other
words, there are infinite paths through 7 that are eventually constant, iff some
node in 7 branches infinitely wide. So there are no infinite paths through 7" that
are not being mapped to by S, iff T is finitely branching.
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4.1 Reduction of TI? classes with respect to degree spectra

So S is a one-to-one correspondence between [T] and [T7] if and only if 7" is finitely

branching.

However, in the general case, the relation S is still a one-to-one correspondence be-
tween the noncomputable infinite paths through the two trees, since any eventually

constant path is computable. [

Corollary 4.1.2. If T' is a tree which is highly computable in some degree d,
then it has the same degree spectrum as some tree T C 2* computable in d.
There is even an effective degree-preserving one-to-one correspondence between

the respective infinite paths.

Corollary 4.1.3. If T is a highly computable tree, then it has the same degree
spectrum as some computable tree T C 2*. There is even an effective degree-

preserving one-to-one correspondence between the respective infinite paths.

In [JST72a], Jockusch and Soare show the following result on special TI? classes.

Theorem 4.1.4 ([JST72a]). For any special 11 class P, there is a special com-
putably bounded 119 class P such that for every member f € P there is a member
fe P with f = f.

Theorem 4.1.5 ([JLRI1]). For every tree T that is highly computable in 0’ there
exists a computably finitely branching computable tree T such that there is an

effective, degree-preserving 1:1 correspondence between [T] and [T).

Proof. At first, we use Corollary 4.1.2 to reduce the general case to trees in 2*

that are computable in 0’. So, let T' C 2* be a tree computable in 0'.

Since T is computable in 0, its total characteristic function c¢r is computable in
0’. By the Shoenfield Limit Lemma (see [0di92], e.g.) we know there exists a total
computable function g : N x N — N such that Jim g(x,s) exists for all x € N and
is equal to the characteristic function of 7: Vx € N ¢p(z) = leIEO g(x,s). Based on
that, we define the computable function

H9(<T>,8), x = (o) for some o € 2%,
g(x,s) = =0
0, otherwise
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4 Degree spectra of I1{ classes

By construction, §(-, s) is the total characteristic function of a tree T C 2*, for
every s. We now show, that it has also the limit property that g has, characterized
above. In a formula, that is
Ve e Nds(x) e NVs € Ns > s(z) — ep(z) = g(z, )
By defining 3(x) = max{s((7)) | T < o}, x = (o) for some o € 2*

0, otherwise
we get the analogous result for g:

Ve e NVs € Ns > §(x) — er(z) = g(x, s).
The reason for this is, that for s above the threshold §({c}), for every input y = (1)
with 7 < o all the computations ¢(y, s) must return the same value. That is, also

the value of ] g((7),s) becomes constant.

T<0

The limit value lim g(x, s) is therefore everywhere defined. And it equals that of
g, because for whatever input x = (o) the value of g(z, s) becomes constantly 0,

the product ] ¢({r), s) also becomes 0, at the latest at the same point in time.

T<0

And wherever the value of g(z, s) becomes eventually 1, the product [] g((7), s)
T<0
also becomes 1, because the limit of ¢ is the characteristic function of a tree.

So we can assume, without loss of generality, that g(z,s) is the characteristic

function of a computable tree in 2%, say Ty, for every s.

Now, we define the tree T
T:={rcw |VneNVieNn<|r| = ((2|n— 7(n) € {0,1})
A2 n—=(n<71(n) Ag({r(0),7(2),...,7(n—=1)),7(n)) =1A(n<i<7(n) —

9({r(0),7(2),...,7(n = 1)),i) = 0))))}

In words, T" consists of all the nodes which have arbitrary values in {0,1} at even
positions and at odd positions n = 2i 4+ 1 they have the first number y bigger
than ¢ so that the values at the first 7« + 1 even positions 0,2,4,...,2: form a
node of the tree T;. The relation that defines T is obviously computable. Since
the relation puts only restraints on the values at odd positions which depend
exclusively on the values at lower positions, and lets the other values be arbitrary

in {0,1}, T is closed under initial segments and is hence a computable tree.

Also, every node has at most two successors, since at odd positions the value
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4.1 Reduction of TI? classes with respect to degree spectra

is uniquely defined by the values at the positions below, and at even positions,
only the values 0 and 1 occur. So, T is computably finitely branching with the

constant upper bound 3 on the number of successors of nodes.

We now define the one-to-one correspondence between T and T as the computable
functional S : w* — w*, S(x)(7) := x(27), hence mapping an infinite path through

T to the sequence of values at the even positions.

Note that S maps to 2¥ since any node in 7" has only values in {0,1} at even
positions. In fact, S maps infinite paths through 7 to infinite paths through 7.
To understand that, one has to observe that paths through 7" have the property,
that every value at an odd position shows that the binary string of values at even
positions below form a node of some T;. Let us call the binary string of values at
even positions of a string the even part. Considering the prefix = | 2¢ + 2 of an
infinite path x through 7', we then see that the even part of z | 2i 4+ 2 is a node
on Ty2i+1)- By the definition of T, z(2i + 1) has the unbounded linear function
n — n as a lower bound. Since the characteristic functions ¢y, = g(-, s) of the
trees Ty converge for all nodes, the even part of 7 is in every tree T, with s > s
for some sy. This means, the even part of 7 is in 7" itself. Since this holds for all
initial segments 7 of z, all initial segments of the even part of z, i.e. S(z), are in
T and hence S(z) is an infinite path through 7.

Now let us consider the inverse relation. That is, show how to effectively reconstruct
an inverse image for some infinite path y through 7" and proving that it is unique,

thereby showing that S is in fact onto, one-to-one, and degree-preserving.

Let y be an infinite path through 7. Then every inverse image x would have to
start with y(0). The next value would be uniquely determined by that. It is the
least number s; > 0 such that (y(0)) is a node of the tree Tj,. For all values at
higher positions n, z is uniquely determined as well. If n is even, n = 2¢, every
inverse image x must satisfy x(2i) = y(i). If n is odd, n = 2i + 1, x(n) is bound to
be the least number greater than ¢ such that (y(0),y(1),y(2),...,y(7)) is a node
of the tree T (,). So, an infinite path x that meets these requirements exists, is

uniquely defined by y and uniformly computable in y. O]
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4 Degree spectra of I1{ classes

The inverse also holds. For this, we do not even have to construct any new tree

and consequently no computable correspondence:

Lemma 4.1.6. Fvery finitely branching computable tree T is highly computable

in 0.

Proof. Every computable tree is computable in 0'. So it is sufficient to show that
for a computable tree T', which is bounded by g, there is a function g computable

in 0, so that T is also bounded by g.
Let g : w* — w be any function such that for all o € T'it holds coi € T' = i < g(0).

Consider the following algorithm IsBoundBy:

IsBoundBy (o ,m) :

Fort=m, m+1,...:

Check whether co 1€ 7. If it does not hold, continue.
If it does hold, exit the loop and return 1.

Note that this algorithm halts always never. Now fix a ¢ € w* and consider the

following algorithm which may ask the halting problem H.

Bound (o) :

If o i T, stop and return 0, otherwise continue.

For m=1,2,...:

Ask H whether IsBoundBy(c,m) converges. If it does, continue.

Else, exit the loop and return m.

Bound does always halt eventually, because T is finitely branching. It computes a
function g relative to 0'. This is a bound for T, because if ¢ € T and g(o) = m,
it means that Bound must have halted at stage m of its loop, which means that
IsBoundBy (o, m) does not halt. This means that there is no number n greater
or equal than m so that o on € T. In fact, g is even the minimal bound by

construction. O
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4.1 Reduction of TI? classes with respect to degree spectra

Equivalently, but less instructively, you can prove this in the following way:

Proof. By defining R(o,m) :=Vn>m:con ¢ TVm' € w(¥n' >m/ :con’ ¢
T) — m < m’ you have a I1Y relation, which turns to be a well-defined function:
Vo € w*dlm € w : R(o,m), because T is bounded, so there is always an upper
bound, and the second condition rules out all but the lowest one. Call this function

g. By Post’s Theorem, ¢ is computable in 0'. [

Combining Corollary 4.1.2 with Lemma 4.1.6, we get the following result.

Corollary 4.1.7. Every finitely branching computable tree has the same degree

spectrum as some tree in 2* that is computable in 0.

Finally, by combining Theorem 4.1.5 with Lemma 4.1.6, we get the following.

Corollary 4.1.8. Every finitely branching 11 class has the same degree spectrum

as some computably finitely branching T19 class.

That means, that while there are properly more computably finitely branching
19 classes than bounded ITY classes, as pointed out in Lemma 3.2.1, they do not

yield any new degree spectra.

In a nutshell, Corollaries 3.1.7 and 4.1.8 tell us, that it is sufficient to study bounded
and computably bounded II{ class, as long as we are only interested in degree
spectra of infinite paths through trees bounded in any sense defined in Chapter 3.
And by Corollary 4.1.2 and Lemma 4.1.6, this is equivalent to studying infinite

paths through trees in 2* that are computable in 0" or computable, respectively.

Therefore, many results about degree spectra for computably bounded TIV classes
can be transformed into similar results about degree spectra of bounded II{ class
by relativization. See pp. 691-692 of [JLR91] and Theorem 2.7 of [CR98| for

examples.

In [0di92], the author points out that the study of unbounded ITY class is radically
different, but can be developed analogously in many aspects, when replacing

the notion of computable sets with that of hyperarithmetic sets and considering
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4 Degree spectra of I1{ classes

hyperdegrees instead of Turing degrees. The treatment of unbounded IIY classes

is promised to be done in the yet-to-be-published third volume of the series.

4.2 Basis theorems

Basis theorems tell us that any nonempty I19 class of a certain class of I1{ classes

contains at least one member of some class of functions.

Definition 4.2.1. A class of functions B is a basis for (a class C of) IIY classes if
every nonempty I1{ class (of C) contains an element of B. Analogously; a class of
degrees is a basis if so is the union of all of its degrees. If a class of functions or

degrees is not a basis, we call it a nonbasis.

Observe that {f} is a IIY class for every computable function f. Therefore, every
basis for the class of all IIY classes has to be a superset of the class of computable
functions. But the class of computable functions itself is not a basis for the class
of all TI? classes, because there are I classes without computable members, i.e.

special TI{ classes. We devote Section 4.2.7 to these classes.

Note furthermore that whenever we prove a basis result for computably bounded I19
classes, these also apply for II{ classes containing a computably bounded function,

because theses classes have nonempty computably bounded I1{ subclasses.

4.2.1 Kreisel Basis Theorem

For our first basis result, we introduce the notion of extendible nodes.

Definition 4.2.2. A node o of a tree T' is extendible if I(o)N[T] # 0; i.e., there is
an infinite path through 7" with o as initial segment. Fxt(T) := {o|I(o)N[T] # 0}
is the set of extendible nodes of 7T'.

Theorem 4.2.1. Let T be a computable tree. Then the following holds.

a) Ext(T) is 3.
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4.2 Basis theorems

b) If T is bounded, then Ext(T) is II5.
c¢) If T is computably bounded, then Ext(T) is I10.

The results in b) and c) are sharp in the arithmetical hierarchy.

Proof. In the general case, the formula just reflects our definition of Ext(T):
o€ Ext(T) < (Fr)jo<xAN(Vn)x [neT|

Now, let T" be a bounded computable tree.

o€ Ext(T) < (Vn)(3r € w)[|7|=nAooT eT]

The necessary direction follows by choosing = € [T] such that o < x, which exists,
because 0 € Ext(T). Then 7 := x | n meets the requirement in the formula for
any given n € N. The reverse direction easily follows from Kénig’s Lemma for the
tree {p| T €W Ap<TAooT e T} Itisindeed a tree, by construction. It is
also infinite by assumption and bounded, because T is bounded. So there is an

infinite path through this tree, which hence extends o in 7'

Note that this direction does not hold already for computable trees that are
computably bounded everywhere but the first level. A formal definition of such

notions of almost boundedness can be found in [Cenl0]. Consider for example
T ={ U J{(n)o0" |0<i<n}

new
For this tree, ) is a node that meets the above IS condition. But if A were an

extendible node, [T}] would be nonempty, which is not the case.

Further, this result for bounded trees cannot be improved in terms of the arithmeti-
cal hierarchy, because there is a bounded computable tree whose set of extendible

nodes is IT5-complete.

T, :=0"U0" o (1)U

{0°c (1) o (t1,...,tn) | V1 <z <npe(x—1)[t.] I Ape(z — D)[t, — 1] T}

Then Ext(Ty) =0*U{0°0 (1) |e € TOTAL}U{0°0 (1) o (t1,...,t,) | VI <z <
n e()lt] | Age(o)[te — 1]  Ae € TOTAL},

where TOTAL is the index set of the total computable functions.
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4 Degree spectra of I1{ classes

€o ,O'GOﬂ<
So, Ext(13) <, TOTAL via f 1w = w,0=> e AT cw :0=00 (1)o7

e; ,otherwise,
where eg € TOTAL is the index of some total computable function and e; ¢

TOTAL is not. Further, TOTAL is II3-complete and m-reducible to Ext(T).
Therefore Ext(T5) is I15-complete.

e € TOTAL & Va3t p.(z)[t] |, so TOTAL is TI9.

Let R be a computable ternary relation and A = {n € w|Vz3y R(n,z,y)} the
corresponding I3 set. Then A <,, TOTAL via f : w — w, where f computes for
every n an index of a computable function that, given z, searches for such a y via
dove-tailing, that R(n,z,y) holds and terminates iff it finds such a number y.
Finally, for the reduction TOTAL <,,, Ext(T5) consider ¢ : w — w, g(e) = 00 (1).

For a computable tree T', bounded by some computable function g, Kénig’s Lemma
implies

o€ Ext(T) &

(Vn)(3r € w™)(c < TATET) < (Vn)(37 € TT{0, ..., 2max(i)}) (0 < TAT € T)),

ieN
where Ty (0) := g(A) and Tpax (i + 1) := max{g(7) | |7] = i AT <jex Tmax | 1}
The part behind the universal quantifier of the latter formula represents a predicate

computable in n and o. So, Ezt(T) is IIY.

Again, this result for computably bounded trees cannot be improved in terms of
the arithmetical hierarchy, because there is a computably bounded computable

tree whose set of extendible nodes is TI%-complete.

Ty :=0*U{0°0 (1) 0 0%|p.(z)[] T VO < x <4}

Then Ext(T3) = 0* U{0°0 (1) o 0']i € NAe € EMPTY},

where EMPTY is the index set of the nowhere defined function. EMPTY is
[19-complete and m-reducible to Ext(T3). And therefore Ext(T3) is TI%-complete.
e € EMPTY & Vz ¢ (mo(x))[mi(z)] 1, so EMPTY is ITY.

Let R be a computable binary relation and A = {n € w|Vx R(n,z)} the corre-
sponding TI{ set. Then A <,, EMPTY via f : w — w, where f computes, for
every n, an index of the computable function that terminates with the output 0

if R(n,z) does not hold, and never terminates, otherwise.
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4.2 Basis theorems

Finally, for the reduction EMPTY <,, Ezt(T3) consider g : w — w, g(e) =
0°o (1). O

From Theorems 4.2.2 and 4.2.4 we can derive, that the result a) cannot be

improved in terms of the analytical hierarchy.

Theorem 4.2.2 (Kleene). For every tree T" with nonempty set of infinite paths
[T], [T] contains a member computable in Ext(T).

Proof. Define such an infinite path through 7' inductively by letting x(0) :=
pk((k) € Ext(T)) and x(n + 1) := pk((z(0),...,2(n), k) € Ext(T)), for each
new. [

Corollary 4.2.3. Let P be any nonempty I10 class.
a) P has a member computable from some %1 set (Kleene Basis Theorem).

b) If P is bounded, then P has a member of £9 degree, which hence is computable

from 0",

c) If P is computably bounded, then P has a member of c.e. degree (C.E.
Basis Theorem, [JST2al), which hence is computable from 0’ (Kreisel Basis

Theorem).

d) If P = [T] for a computable tree T such that T = Ext(T), then P has a

computable member.

Proof. The results a) and d) are immediate when combining the Theorems
4.2.1 and 4.2.2. As for part b) and c¢), Theorems 4.2.1 and 4.2.2 combined with
Post’s Theorem convey only the weaker result, i.e. computability from 0" and 0",
respectively, that are implied in the above formulation. More precisely, any function
that is computable from some II° set is also computable from its complement in
N, which is X2, and Post’s Theorem tells us that P is ¥0_complete.

But looking closely at the particular path constructed in the proof of Theorem
4.2.2, we will see that it also meets the stronger requirement, i.e., it is not only

computable from a X9 or X9 set, respectively, but shares its degree with it.
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Let P = [T] like in the proof of Theorem 4.2.2. The infinite path in question is the
leftmost infinite path = through 7. Consider the set B of non-extendible nodes of

T, that are lexicografic predecessors of the initial segment of x of same length.
B:={o|ImVreNVpeNoecTANTeTN|T|=|0| AT <iex 0 —TOp & T)}

All strings in B are obviously not extendible and in particular, B consists of exactly
those non-extendible stings, that are left of the leftmost infinite path x through T,
because B is closed under lexicografic predecessors. The number m can in fact be
chosen uniformly, because there are only finitely many strings 7 that precede o
lexicografically. Further, B is X9 by definition. If 7" is computably bounded, both
universal quantifiers can be replaced by bounded ones; cp. according argument
in the proof for Theorem 4.2.1. So, then B is X!, or in other words, computably

enumerable.

For the initial segments of x the following holds:

o<zifc e TAVT €T(|7| = 0| AT <jex 0 = T € B)

Since the lexicografic predecessors of o are only finitely many and can effectively be
exhausted, the right-hand side represents a predicate computable in B. Therefore,
z <r B.

Conversely, one finds that
ceBiffc e TNo <jex x | |0]
This is obviously decidable from = and therefore, B < z. So, z =1 B. O]

We will revisit the observations made in this theorem in Section 4.2.6.

To show that the previous basis theorems are not improvable in regard to the
arithmetical and analytical hierarchies, Cenzer and Remmel present in [CRIS|
some particular TI{ classes proving the following theorem, whose proof we omit.

Part a) is due to Kleene.

Theorem 4.2.4. a) There is a nonempty 1Y class with no A} (hyperarith-

metic) member.

b) There is a nonempty bounded 1Y class with no member computable from 0’

([JLR91)).
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4.2 Basis theorems

c) There is a nonempty computably bounded T1° class with no computable

member, i.e. there is a nonempty special computably bounded 1Y class.

Note that the recursively inseparable sets from Chapter 3 suffice to show statement
c). Note further, that by the upcomping Theorem 4.2.24, none of these examples
can have an isolated member. And by Theorem 4.2.23, they can hence not be

countable TTY classes.

4.2.2 The Shoenfield construction

Shoenfield improved the Kreisel Basis Theorem from <y to <z in [Sho60] to obtain
what is now called the Kreisel-Shoenfield Basis Theorem. Though, in [JS72b]
Jockusch and Soare proved the Low Basis Theorem (4.2.13), which is properly
stronger than that theorem. Accordingly, Shoenfield’s construction does not seem
to have received much attention since then. In this section, we first provide a
lemma that implements a generalized version of Shoenfield’s construction. Then
we derive several interesting results that the author of this thesis did not find in

the present literature.

Recall that by 7y and 7; we denote the projection functions to the bijective binary

coding function 7: N2> — N.

Lemma 4.2.5. Let C be a class of TIY classes closed against 119 subclasses, such
that {f|(f omy) € P AVx m(f(x)) <mo(f(x))+ 1} € C for all P €C.

If {d; | i € I} is a class of mutually incomparable degrees such that the class
BC{a|Jdiela<d;} isa basis for C, then already B\ {d; | i € I} is a basis
for C.

Proof. The basic idea stems from [Sho60], where the special case of I = {0}, the
Kreisel basis B = {ala < do}, do = 0', and C equal to the class of computably

bounded TIY classes is treated.

Define for a function f : N — N the functions fy, f1 by fi :=m o f, i.e. fi(x):=
mi(f(z)) for all z € N;7 € {0,1}. Then clearly, fo <r f and f; <7 f. Define
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similarly for a string o € N* the strings 0,01 by o;(z) := m(o(z)) for all
0<z<|o|,i€{0,1}.

Now let ) # P = [T] € C, with T' a computable tree.

Define T':= {o|oy € T A o1(n) < og(n) + 1 V0 < n < |o|}. This is obviously a
computable tree and by assumption [T] € C.

Define further S :=

{oloo € TAV0 < e < |o| (01(e) < oo(e) + LA (e)[o]] 1= o1(e) # ©°(e))}-
This set is obviously computable. It is also a tree, since ©7°(e)|[o|] terminates for
extensions of a finite oracle if it terminates for the oracle itself, and the result of

a converging computation stays the same when extending an oracle.

Since [S] C [T] and C is closed against 19 subclasses, it holds that [S] € C. Since
P = [T7] is nonempty, there is p € P. But then also [S] is nonempty, since p € [5],
0, AON

L= (div(g2(e).2)). @hle) L

For all i € I, let d; be some function of degree d;. Now let f € [S] and k € T
such that f <r d. That is possible, because [S] is nonempty and B C {a | 3i €
I a < d;} is a basis for C. It holds that f; ﬁT fo because S is constructed in

a way to make sure that f; is different from any total function reducible to fo,

defined by p(n) := 7(p(n), q¢(n)), with ¢(n) :=

diagonalizing by the reduction index. Then, by transitivity, fo <r di and f; < dp.
Since fi €7 fo, it follows that fo Zr di. Suppose, fo =r d; for some j € I, j # k.
Then d; =r fo <r dj, which contradicts the assumption that d; and dj, be Turing
incomparable. So fo Zr d; for all ¢ € I. But fj is indeed a member of P = [T] by

construction of S. O

The condition that C be closed against I19 subclasses together with the other
condition is sufficient, but not necessary, because in the proof we only require
one specific subclass to be in C. Yet, the lemma is general enough to enclose the

following important cases.

Definition 4.2.3. Define the following names for classes of TIY classes. We define

P as the class of all TI{ classes,
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Py, as the class of bounded ITY class,
P, as the class of computably bounded TI classes,
P, as the class of special I} classes,
Py as the class of special bounded I1Y classes and

Pebs as the class of special computably bounded H? classes.

Theorem 4.2.6. Let {d; | i € I} be a class of mutually incomparable degrees and
C € {P, Py, Pev, Ps, Pos, Peos}- Then the following statements are true:

a) If BC {a|3i€la<d;} isabasis for C, then so is B\ {d; | i € I}.

b) The class D ={d; | i € I} is not a basis for C.

Proof. The classes P, Py, Peb, Ps are obviously closed against H(l) subclasses. Then

also any intersection is.

If Pis a II9 class bounded by a function g, then P := {f|(f om) € P A
Vo m(f(z)) < mo(f(z)) + 1} is bounded by the g-computable function § defined
by g(o) = div(g(0)*+2-g(c)(g(0) + 1)+ (g(0) +1)* +g(0) +3(g(0) +1),2) +1 =
div(4 - (g(0))? + 7 g(o) +4,2) + 1. This works because the tree T is defined in
such a way that the relationship between nodes in 7" and T reflect the relationship
between functions f € [T] = P and fom € [T] = P.

Now let P be a special T1Y class and h € P. Then h computes h o my, which is

noncomputable, because it is a member of P. So P is also a special I19 class.

That means, that P inherits any of the three properties boundedness, computably
boundedness, having no computable member that P might have. So if P is a

member of C, then P is, as well.

So any basis B for the class C satisfies all conditions for Lemma 4.2.5 and the

claim a) holds.

Suppose by way of contradiction, b) would not hold, i.e. D was a basis for C. Then
by a), also () would be a basis for C, which is a contradiction. Hence, b) holds as
well. =
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Corollary 4.2.7 (Kreisel-Shoenfield Basis Theorem, [Sho60]). {ala < 0’} is a

basis for the computably bounded 119 classes.

Proof. Let C = Pu,. Then B := {ala < 0'} is a basis for C, according to the
Kreisel Basis Theorem. Applying Theorem 4.2.6.a gives us the desired result. [J

Note that the following result cannot be derived from the Kreisel-Shoenfield Basis

Theorem by mere relativization because of the existence of high sets.

Corollary 4.2.8. {ala < 0"} is a basis for the bounded 119 classes.

Proof. Let C = Py,. Then B := {aJa < 0"} is a basis for C, according to Corollary
4.2.3.b. We conclude the proof by applying Theorem 4.2.6.a. [

However, the upcoming Low Basis Theorem (Theorem 4.2.13) is a properly
stronger result than the Kreisel-Shoenfield Basis Theorem, and by relativization

also implies this corollary.

Remark. In these two corollaries, the bases we are starting with are the downward
closure of one singleton class of degrees, while Lemma 4.2.5 works for any subclass
of the downward closure of a class of incomparable degrees. In [DDS10], basis is
defined in such a way that it is always a downward closed basis in the sense of
our definition. The authors do not use the term in the actual statement of their
basis theorems, however. Also, the more general definition we use seems to be the

standard one.

Theorem 4.2.9. Let C € {P, Py, Peb, Ps: Poss Pevs - For every basis B of C and
every n € N, there are degrees by, ..., b, € B satisfying by < --- < b,,.

Proof. Assume that B is a basis for C and n € N a number such that there are no
degrees by, ..., b, € B with by < --- < b,,. We will show that this assumption

will lead to a contradiction.

First of all, we observe that then there is, for all b € B, a degree ¢ € B maximal
in B such that b < c. For if there were a degree b € B such that every degree

c € B,b < ¢ would not be maximal, one could find for such a degree c a degree
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¢ € B properly above c, which could not be maximal itself, because it then would
also be above b. So, by induction, there would be an infinite sequence of properly
increasing degrees, which then contained chains of arbitrary length. But that

would contradict the assumption.

For every class of degrees A C B and every degree d € A define the rank
rka(d) :==max{k € N|3d;,...,dp € Ad<d; <--- <di}of din A Note that
this rank is well-defined, according to our previous assumption. More precisely,
rk4(d) < n for all A C B with d € A, for the number n from the assumption.
Define then, for every class of degrees A C B the subclass of all maximal in
A degrees M(A) := {d € A | tka(d) = 0} and the subclass of degrees with
a positive rank N(A) := A\ M(A). Then observe that for every A C B the
following holds.

AC{ae A|Ime M(A) a<m} (4.1)

Of course, M(A) C {a € A| 3m € M(A) a < m} holds vacuously. For a
degree d with rk4(d) = k > 0, there are degrees d;,...,d; € A such that
d <d; <--- <dg. Then d; must be an element of M(A), because otherwise

there were still more degrees to prolong the chain starting with d. So also
N(A)C{aeA|3m e M(A)a<m} and hence (4.1) holds.

Furthermore, the degrees in M (A) are mutually incomparable. For if they were
not, there were two distinct degrees d,d € M(A) such that d < d. But then
rk 4(d) > 1, which would be a contradiction.

Let A C B such that N(A) # (). Then the following holds.
max{rk4(d) | d € A} > max{rky4)(d) |d € N(A)} +1 (4.2)

In fact, even equality holds in (4.2), but that is not required for our proof. Let d €
N(A) such that rk4(d) = max{rky(a) |a € N(A)} =k and let dy,...,d; €
N(A) be the degrees of a chain witnessing it: d < d; < -+ < dj. Since d;, € N(A),
there is some djy1 € A such that dj < dgy1. Then this extended chain witnesses
that rtka(d) > k+ 1.

So combining all of the observations, we see that for all A C B statement (4.1)
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holds, while M (A) is a class of mutually incomparable degrees. So if A is a basis
for C, we can apply Theorem 4.2.6.a that tells us, that N(.A) also is a basis for
C. But we have also seen, that max{rk4(d) | d € A} < n for every A C B
and this value strictly decreases when we apply the operation N, as seen in
(4.2). So particularly, since B is a basis for C and B C B there is k € Nk <n
such that max{rkyu s (d) | d € N¥(B)} = 0 and N¥(B) is also a basis for
C. But then N™(B) = M(N¥(B)), which implies that the degrees in N (B)
are mutually incomparable, as observed. But then, N*/(B) cannot be a basis
according to Theorem 4.2.6.b, which is a contradiction. So, reversely, the original
claim holds. 0

Corollary 4.2.10. Let C € {P, Py, Pev, Ps, Po.s, Pevs}- Then there is no finite
basis for C.

Proof. Obviously, the length of any chain in a finite class of degrees B is bounded
by |B|. Hence, no finite class of degrees B is able to satisfy the condition for bases

of a class C € {P, Py, Peb, Ps, Poss Pebs} expressed in Theorem 4.2.9. O

In Chapter 5, we will show other interesting and even new results that are implied
by Theorem 4.2.6.

4.2.3 Forcing with II} classes

Next, we want to show two classical results of Jockusch and Soare ([JS72b]) - the
Low Basis Theorem and the Hyperimmune-free Basis Theorem. Their proofs can
be put in the context of a general construction framework known as forcing with
117 classes or Jockusch-Soare forcing. This technique will also be used in the proof
of the Minimal Pair Basis Theorem. See [DDS10] for a very abstract and modular

approach to this kind of forcing and a range of derived basis theorems.

In this forcing-technique one makes use of the fact that by the upcoming Com-
pactness Theorem all of the TTIY classes of a descending sequence of nonempty
I1Y classes contain a common member. That provides the instrument of forcing

any such common element to meet infinitely many requirements, by defining the
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classes of the sequence to each ensure some requirement for its members while
being nonempty. So any member common to all of those I1{ classes will meet all

requirements.

To establish the required Compactness Theorem, we first prove a version for

general topological spaces.

Theorem 4.2.11. Let P be a compact space, and (C;);en a Sequence of closed

subsets of P such that C; 2 Cipq and C; # 0 for alli € N. Then () C; # 0.

=0

Proof. First, define U; := P\ C; = C; the complements of the C;. Theses sets are
open in P, because the C; are closed. Then U; C U;y; and U; # P for all 7 € N.

x

Now assume that U U; = P. Then the family (U;);en is an open cover of P and
i=0

since P is a compact space, there is a finite subcover. That is, there is n € N

such that U U; = P. But since U; C U;;, for all © € N, it already holds that
i=0

U, = P. But then C,, = U, = (), which contradicts the assumption. So U U, # P,

i=0
or conversely, [ C; # 0. O
i=0
Theorem 4.2.12 (Compactness Theorem, [DDS10]). Let (T,)cen be a sequence
of infinite trees such that T, O T.1 and Ty is bounded. Then N.en|Te] # 0.

Proof. For a sequence of trees (T;)een scuh that T, D T, 1, we have [T.] D [To44].
Furthermore, because Ty is bounded, T, is bounded for every e € N. And since T,
is infinite for every e € N, [T.] # () according to Kénig’s Lemma. Also, every [T]
is a closed set, since Theorem 2.3.1 states that the closed sets in NY are exactly

the sets of infinite paths through trees in N*.

So to apply Theorem 4.2.11, we need yet to prove that [Tp] is a compact subspace
of N¥. This can easily be done by applying Tychonoff’s theorem. We need
only to observe that if Tj is bounded by a function g : N* — N, then [Ty] C

H{O, ey Tmax (1) }, where . (0) := g(A\) and @pax(i + 1) := max{g(7) | |7| =
ieN
i AT <iex Tmax | 1}. Tychonoff’s theorem states that an arbitrary product of
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compact topological spaces is compact. And {0, ..., n} with the discrete topology
is obviously compact for all n € N. Therefore, [[{0, ..., Zmax(i)} is compact. And
ieN
since [Tp] is a closed subset of H{O7 ey Tmax(1) }, it is also compact.
ieN

But since we do not prove Tychonoft’s theorem in this thesis, we provide another,
more direct, proof for the compactness of [Tp]. It uses the notion of sequentially
compactness which is equivalent to compactness for metric spaces. Since we have
defined the metric d : N¥ x NN¥ — R for Baire space, that induces the topology
we are using, we only need to show that every sequence (z,)neny € [Tp] has a
convergent subsequence. For the rest of the proof, the construction in a way

resembles a construction of nested intervals.

Let (zn)nen € [T0] and define the following descending sequence of subtrees, not
to be confused with the original one.

So = To, Sit1 =8 N I(xs4) [ 1),

where f is itself inductively defined by an induction codependent with that of the
sequence of trees.

Define f(0) = 0, therefore x () € [So]. For i > 0, f(i) shall be the least number
above f(i — 1) such that z; € [S;] and that there are infinitely many j € N
satisfying z; [ i = zy(;) [ 7. Note that, such a number exists, by applying the
pigeon-hole principle to the finitely many extensions of (z;—1) [ i — 1) of length
i in Sp and the infinitely many infinite extensions of (xy;_1) [ ¢ — 1) in S;_; that

exist among the (z;);en by induction.

Then (x4;))ien is a subsequence of (z;);en, because f(i) is strictly increasing.
Define the function () := x ;) (i) for all ¢ € N. Since this infinite string « shares
arbitrarily long initial segments with some x ;) € [So], all of its initial segments
are in Sy and therefore z € [Sp]. By construction, d(x,z ;) < 27'. So we have

found a convergent subsequence of (z;);en- O

This abstract setting lets one easily try and combine different kinds of require-
ments as to achieve more and, especially stronger, basis results. For a more formal

description and a variety of applications, consult [DDS10]. There, some of the

20



4.2 Basis theorems

forcing ideas are rolled out into separate forcing modules, which may be com-
bined. However, not all such results may be combined. This will be shown in
Corollary 4.2.22, where, amongst others, the intersection of the Low basis and

the Hyperimmune-free basis, both obtained by forcing, results in a nonbasis.

In our proofs, we will point out how to construct the descending sequence of trees
and what the corresponding requirements are that we are forcing; or in other

words, the invariant properties of the respective infinite paths.

4.2.4 Low Basis Theorem

We now implement the technique of forcing with I classes to accomplish the
most important basis theorem, the Low Basis Theorem. After the statement and
proof of the theorem, we will disuss its relation to the Kreisel-Shoenfield Basis

Theorem.

Definition 4.2.4. A set A is called low if A < (', and hence A = (/. Analo-

gously, a degree a is called low if a7 = 0.

Theorem 4.2.13 (Low Basis Theorem, [JS72b]). Every nonempty computably

bounded 119 class contains a low member.

Proof. Let P = [T] be a computably bounded IIY class, with 7' = Tj an infinite

computable tree, bounded by the computable function b.

First, define U, := {0 € N*|¢7(e)[|o|] T}. The set U, is a computable tree. It is
obviously computable, and the reason for it being a tree is that if the computation
uses any information of a string o, and diverges, then it will also diverge for
any prefix of o long enough to contain the numbers the computation was asking
for. For any shorter prefix, the oracle request will fail anyway and the respective

computation will diverge.

Now define
T, T, N U, is finite,

T.nU.,, T,NU, is infinite

TeJrl =
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4 Degree spectra of I1{ classes

This definition ensures, for every e, that T, is an infinite tree and that 7,,; C T..
According to the Compactness Theorem (4.2.12), [N.en Te) is nonempty, so choose
some f € [NeenTe)-

The forced property of [T.,1] is that either p9(e) T for all g € [T.4], or ¥(e) |
for all g € [Teq1).

We now determine the complexitiy of the jump of f. Just as for any function,

() < f'. For this function f, however, we will now prove that also f’ <7 () holds.

Observe that ¢/ (e) | if and only if T, N U, is finite: If T, N U, is finite, then for all
sufficiently large finite oracles in T, the respective relative computation converges,
and then obviously also for f € [Nyen 73] C [Tt] = [Tt41]. And if T, N U, is infinite,
then f € [Nien T3] C [Te +1] C [U.]. And because the computation diverges for all
finite subsequences of f as oracle, and there can only be finitely many requests to
the oracle in the case of convergence, it diverges also with f as an oracle: o/ (e) 1.
So it is sufficient to determine the complexity of deciding whether T, N U, is finite,
because f' = {e | ¢/ (e) |} = {e | T. N U, is finite}.

Furthermore, U, is obviously uniformly in e computable and 7, is uniformly in e
computable in (/. This can be shown by induction. An index iy for ' = T}, can be
hard-wired into the algorithm. Then, compute from indices of U, and 7T, an index
teyq for T, or for T, N U,, respectively. The decision which one 7., is, depends
on whether or not T, N U, is finite, by definition. To decide this, ask the halting

problem whether the following sentence is true:
n Vo (¢i.(0) =1 Aol =n— @l(e)o] 1) (4.3)

Note that ¢;, (0) = 1 implies that o(i) < b(o [ i) for all 0 < i < |o|, because i, is
an index of the tree T, bounded by b. Since b is computable, the formula following
the existential quantifier represents a computable predicate. The halting problem
)/ can answer this, since it is ¥{-complete. And this sentence indeed is true if
and only if T, N U, is finite. Because if the sentence is true, there are only finitely
many such oracles o € T, of a length bounded by some given n, such that the

respective relative computation diverges. And if T, N U, is finite, obviously every
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relative computation with sufficiently large oracles converge.

This result can finally be reused to show that {e|T. N U, is finite} <7 ('. For this
purpose, compute an index i, of the set T, from ()" like above, then once again
ask (', whether (4.3) holds. O

Remark. As mentioned before, the Low Basis Theorem is properly stronger than the
Kreisel-Shoenfield Basis Theorem, and hence the Kreisel Basis Theorem, because
for any low set A, )’ =r A" >7 A. Nevertheless, the Kreisel Basis Theorem is
worth proving, for its historical significance on the one hand, and because the
used construction also yields results for other I19 class than computably bounded
ones as well as the C.E. Basis theorem. And the Kreisel-Shoenfield Basis Theorem
is worth proving because of the beauty of its proof and because its generalization
leads to Theorem 4.2.6. This theorem improves the characterization of PA degrees.
That then leads to a new result about PA degrees and an easier proof for an

existing theorem. See Chapter 5 for these results.

Corollary 4.2.14. There are chains of low degrees of arbitrary finite length.

Proof. This follows immediately from the Low Basis Theorem and Theorem
4.2.9. m

It was not pointed out in [JS72b], but the constructed path is in fact truth-table-
reducible to the halting problem. This observation is due to Marcus Schaefer,
according to [DH10].

Definition 4.2.5. A set A is called superlow, if A <, (', and hence A = ('.

Theorem 4.2.15 (Superlow Basis Theorem). Every nonempty computably bounded

19 class contains a superlow member.

Proof. Let T,, U, be computable trees for every e and f € [N.enTe| as defined
in the proof for the Low Basis Theorem. Recall, that f’ = {e | ¢/(e) |} = {e |
T. N U, is finite} and that the finiteness of T, N U, can be decided by a request to
the halting problem, that involves the knowledge of an index of T.,. It is possible to
uniformly compute an index for U, = {o € N*|pZ(e)[|o|] 1}. And by definition of
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T..1, it is therefore possible to uniformly compute an index of 7T, ,; from an index
of T, by only one request to the halting problem. Inductively, one can uniformly

in e compute an index of T, with e many requests to the halting problem.

So to ask the final question that decides whether T, N U, is finite, and thereby
whether e € f’, one first has to ask e many consecutive other questions. And
moreover, the actual form of each question depends on every preceding question,
since it always involves an index of some tree T;. More precisely, the first question
can be computed in advance. The second question may have two different forms,
depending on the answer to the first question. So, by induction, the ¢th question
of the first e many questions required to compute an index for T,, may have
2¢=1 different actual forms, depending on the preceding answers. So the outlined
algorithm may compute any of as much as up to 2° many possible indices for T,
depending on the oracle. Not knowing in advance, which index one will be the
true one, one has to prepare to pose the final question, establishing the reduction,

in 2¢ different ways.

But it is not sufficient to know how many questions might be asked. For a truth-
table-reduction we need to uniformly in n compute a definite finite set of questions
to the oracle () that are sufficient to decide the membership of n in the set f’
we want to reduce to the oracle, and also a Boolean expression telling what the
decision is, depending on the answers. But that can clearly be done, as well. The
first request asks, in some encoded form, whether Ty N Uj is finite. According to
the answer, an index of 77 is computed, on which the actual form of the next
question depends. At any stage, however, either T;,; = T; or T;,, = T; N U;. By

induction, Tj4y =Ty (] Uj for every 0 < i < e, where 0;41 € 2! denotes the
oit1()=0
string of preceding answers in chronological order. So, by exhausting the 2¢ many

strings corresponding to possible ways of answering the e many first questions,
one can compute a truth table reflection the 2! many courses of questions and
answers. The according propositional statement has to be true if and only if the
answers correspond to any such computation that the according last question is

answered negatively.

We can also estimate the size of the truth table. In every computation, there are
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exactly e + 1 many requests to the oracle. And the ith request can have up to
2i=! many actual forms, for all 1 < i < e. So there would be up to 2! — 1 many
propositional variables. Their number can be properly lower, if U; O T; for some
0<i1<e. OJ

There is even a universal low set, in the sense that in any computably bounded
19 class one can find a function computable from that low set. This follows in a

straightforward way from the findings in Chapter 5.

Theorem 4.2.16 (Second Low Basis Theorem, [DDS10]). There is a low set A
such that every nonempty computably bounded 119 class has a member f such that

f<rA.

In fact, by Corollary 4.10 of [DDS10], there are countably many such sets that

are mutually Turing incomparable.

In the original paper [JS72b], where the Low Basis Theorem was first stated, the
authors point out, that the proof can easily be modified so that the jump of the
constructed path is in any given degree above 0'. Of course this does no longer
work for all computably bounded II{ classes, since there are some containing
only computable members. It is sufficient, however, to restrict the scope of the

statement to special TI{ classes. We omit the proof.

Theorem 4.2.17. For any nonempty computably bounded special 1Y class P and
any degree a > 0, there is a member of P of degree b such that b’ =b U0 = a.

4.2.5 Hyperimmune-free Basis Theorem

For the next classical Basis Theorem by Jockusch and Soare, we need to define
hyperimmune-free degrees. As the name suggests, the original definitions relates to
a notion of hyperimmunity. A hyperimmune-free degree is originally defined as a
degree containing no hyperimmune sets. But there is a property of hyperimmune-
free degrees that can be shown to be equivalent to that definition. And since

the notion of degrees with that property is better accessible and the definition
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is required nowhere else in this thesis, we take the liberty to instead define
hyperimmune-free degrees that way. Some authors (e.g. [DDS10]) use the term

computably dominated, which is closer to our definition.

Definition 4.2.6. A degree a is hyperimmune-free if for every function f and
set A with f <p A € a, there is a computable function g with f(z) < g(z) for all
r e N

Note, that while any member z of a computably bounded II{ class is of course
computably bounded, not every function computable from x must be bounded
by the same or any other computable function. The following theorem, however,

exactly states that there is always at least one such member.

Theorem 4.2.18 (Hyperimmue-free Basis Theorem, [JS72b]). Every nonempty

computably bounded T1Y class contains an element of hyperimmune-free degree.

Proof. Let P = [T] be a computably bounded II{ class with 7" an infinite com-
putable tree bounded by the computable function b.

As in the proof for the Low Basis Theorem, we define a sequence of trees we

would like to perform intersections with.

U2 = {o e N*|pZ(2)[|ol] T}
T T, T. NUY is finite for every x
e+1 - —
T.NUZ, T.NU? is infinite for some z, and z. is the least such
And U? is a tree, just as in the proof of the Low Basis Theorem. Also, T,; C T
for every e, T is bounded and the definition ensures that T, is an infinite tree

for every e. Again, by the Compactness Theorem, N cn[Te] # 0. So, we choose
f € ﬂeeN[TE] - [T]

The forced property of [T,41] is that either ¢ is total for all g € [T.4], or ¢ is
not total for all g € [T.,4].

We will now show that every total function that is Turing reducible to f can be

majorized by a computable function. A fortiori, this shows that every function
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in the degree of f can be majorized that way. Therefore, the degree of f is

hyperimmune-free.

Let g <7 f be a total function. So there is a number e € N, such that g = ¢/.
Suppose that T, N UZ was infinite for some z. Then f € [N;en T3] = Nien[Ti] €
[T.11] = [T.NUZ] and so ! (x) 1, similar to the observation in the previous proof.
So g would not be total, contradicting our assumption. Hence, T, N UY is finite
for all 2. Define the function k(x) := min{l € N|jo| =IlAo € T, = ¢I(z) |}. It
is well-defined, because T, N U7 is finite, and it is also computable, because 7, is

computable and bounded by the computable function b.

Then the following function is computable.

he(x) = max{pZ(z)|oc € T, A |o| = k(x)}

Since ! (x) = 7 (x) for some o with || = k(z), it holds that h, indeed majorizes
=

9= e L

Corollary 4.2.19. There are chains of hyperimmune-free degrees of arbitrary
finite length.

Proof. This follows immediately from the Hyperimmune-free Basis Theorem and
Theorem 4.2.9. [

Remark. Tt is shown in [DDS10], that the constructed path is low,. Though,
it is impossible to choose a low path with the same property. Neither can we
always find a member of a given computably bounded II{ class that satisfies both
statements of any other pair of bases of the previous basis theorems. This will be
stated more exactly in the following Corollary 4.2.22. We first state some results

we require for the proof of the corollary.

Theorem 4.2.20 ([JS72a]). There is a nonempty computably bounded 119 class
P such that O’ is the only c.e. degree of a member of P.

Proof. Jockusch and Soare showed in [JS72a], that there is a nonempty computably
bounded T1{ class P such that if a is the degree of any member of P and c is a
c.e. degree and a <, then ¢ = ¢’. According to the C.E. basis theorem, P has got

a member of c.e. degree. So that degree must then be 0. [
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Remark. We will find in the final chapter that the II? class of complete extensions
of Peano arithmetic has the property of both the statement of this theorem and

the stronger property used in the proof.

Interestingly, this theorem has a degree-theoretic ramification, as was pointed
out in [JS72a]. By the Low Basis theorem the mentioned T1Y class P has got a
member of low degree. Consequently, there is a low degree such that the only c.e.

degree above it is 0'.

The final ingredient to Corollary 4.2.22 is the following lemma, that we present

without proof.

Lemma 4.2.21 ([DDS10]). No degree 0 < d < 0’ is hyperimmune-free.

No we combine these observations to a corollary stating the incompatibility of
the three most important basis theorems. Some of the implications can be found

scattered across the literature.

Corollary 4.2.22. The intersection of any two of the Kreisel-Shoenfield basis,
the C.E. basis and the Hyperimmune-free basis is not a basis for the computably
bounded 119 classes. The same holds when replacing the Kreisel-Shoenfield basis

with the Low basis.

Proof. According to Theorem 4.2.4.c, {0} is not a basis for the computably
bounded TIY classes. And according to Theorem 4.2.20, neither is {d | d <
0’ Ad is a c.e. degree}.

Because of Lemma 4.2.21, the intersection of the Kreisel-Shoenfield basis with
the Hyperimmune-free basis equals {0}. Analogously, the intersection of the C.E.
basis with the Hyperimmune-free basis equals {0}. The intersection of the C.E.
basis with the Kreisel-Shoenfield basis equals {d | d < 0’ A d is a c.e. degree}.

Since the Low basis is a subclass of the Kreisel-Shoenfield basis, the according

statement holds for any intersection with the Low basis. O]
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4.2.6 Countable II{ classes, isolated paths

Definition 4.2.7. An isolated path x of a class of functions P C w® is an isolated
point in the sense of the topology of w“. This means, that there is an open set in

w* containing only x.

In contrast to generic members of a I1{ class, isolated members are particularly
simple to describe. That is why their complexity is lower in general. In contrast,
it is not necessary for a member of somewhat low complexity to be isolated, as
the tree 2* illustrates. It has members of any degree while none of its members is

isolated.

Theorem 4.2.23. Let P be a nonempty countable 11 class. Then P has an
isolated path. If P is finite, all of its members are isolated. If P is countably
infinite, the set of its isolated paths is infinite.

In short: For all 1Y classes P, if |P| < Ny, then |P| = [{x € P | x isolated in P}|.

Proof. At least the first statement can be proved in mere topological terms, as
it is true for every closed so-called Polish space. That is a topologic space with
a countable dense subset that is metrizable with a complete metric. That the
metric d on Baire space is complete, can be shown with a similar technique as
implemented in the proof of the Compactness Theorem (4.2.12). And the set of
almost everywhere constant functions is a countable dense subset, as one easily

checks.

But in this context, we give a specific proof for the Baire space w®, as it may be

more insightful to the considered structures.

If P is empty, |P| = [{x € P|z isolated in P}| holds vacuously. If P is finite, then
there cannot be any x € P and (x;);ey € P so that x [ i =z; | i,z # x; for all 4.
So there is a neighbourhood for each x € P that contains none but the point z

itself, i.e. all membes of P are isolated.

Now let P be a nonempty II{ class and T a computable tree, such that P = [T].

Assume for a proof by contraposition that P = [T] has no isolated member. We
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show that P then must be uncountable. We do that by identifying a subtree S of
Ext(T) such that 2* is embeddable in it, with respect to the relation 2 of being
proper predecessor. This done bottom-up, i.e. we look for some string to map A
to and then we consider two incompatible extensions oy and o7 to map 0 and 1
to. And then, inductively for every o, we map the two strings extending o to two
strings on two (even later) incompatible extensions. While the idea is simple, the

formal construction and the proof of its correctness turn out to be cumbersome.

The embedding shows that every nonempty countable I1{ class has at least one
isolated member. At the end of this proof, we show that this argument serves also
to show that the set of isolated points of a countably infinite ITY class P must

indeed be infinite. Let us now turn to the construction.

Since no member of P is isolated in P, there is a function f : P xw — P, such that
f(z,n) #zxand x | n = f(x,n) | n for all x € P,n € N. Define furthermore the
function s : NN x NN — NU {cc}, (z,y) — s(x,y) := min{n € N|z(n) # y(n)},
that tells us, what the first number is, two functions x and y disagree about. For

the sake of totality, s is defined to be oo on the diagonal.

Let x) € P # (). Define xy := ) and z; := f(z,0). Assume now, x, has already
been defined for all o of length shorter or equal to n € N. Then inductively
define 2,00 = To and Too1 = f(To, S(T(sj0|-1)00: T(ofjs|-1)01))- Finally define
b: 2" x N\ {0} = NU {oo},(0,7) = b(0,7) := 5(Z((500~)1i-1)00s T((0004)]i-1)o1)-
Then we can more compactly describe the relation between the infinite paths

assigned to successive finite strings: r,.0 = =, and x,01 = f(x4,b(0, |0])).

This means that the two incomparable strings o o0 and o o 1 are assigned two
infinite paths x,.o and x,.; that disagree for the first time at a number larger than
that of the previous least disagreement, i.e. that of the paths for (o [ |o| —1) 00
and (o | |o| — 1) o 1. More formally, this means that the z, are defined in such a
way that b(o, 7) is a strictly monotonic increasing function in the second argument:
According to the definition, b(c,7 4 1) = 5(Z(5004)1i00; T (000)io1 ) AN T (go0w) icd =
T(g002)1i- NOW €ither T(goow)ji = T(0002)[(i=1)00 OT T(so0=)i = T(go0w)[(i—1)o1- Hither

way, because T(go0w)[iol = f(if(aoow)ru S(x(aoow){(i—l)om x(aoO“){(i—l)ol))v it holds that

60



4.2 Basis theorems

b(0,i+ 1) = 5(T(5002)1i00> T(000)jio1) > S(T(5002)(i-1)005 T(oo0=)[(i-1)o1) = (0, 1) for
all 2 > 1.

Now define the embedding of 2* into Ext(T).
E : 2" — Ext(T),0 — E(0) :== z, | b(o,|o| + 1). This map is well-defined,
because every E(c) is an initial segment of some z,, which is an infinite path

through 7. The fact that E is injective follows from the following property.

The embedding E respects the relation 2 of proper predecessors, i.e. 7 2 0 <
E(r) 2 E(0). Let 7 2 0. Then |E(0)| = b(o, |o|+1) > b(o, |7|+1) = b(7, |7|+1) =
|E(7)|. So it is sufficient to show, that E(7) < z,.

z, is defined via z, in the inductive definition. If 7 o 0¥ = & for some k, then

T, = T, and so E(7) < z,.

So let us assume that o ¢ 70 0*. There must be a least 0 < j < |o| — |7| such
that o(|7| — 1+ j) = 1. This means that z,;-14; = 2,. Therefore, |E(7)| =
b(r,|T|) = b(t o0, |7]) < b(T oW, |T| + J) = $(Tro0s, Trogio1) = $(¥r,T,), hence
E(r) < z,.

Now show E(7) 2 E(0c) = 7 2 o by contraposition. The implication 7 = o =
E(1) = E(0) holds trivially. And 0 2 7 = E(7) £ E(0), because |E(0)| < |E(T)],
like above. So the only case left is 7|o. So assume that there are strings p, 7,6
such that, without loss of generality, 7 = po0o7,0 = polod,7 # X\, 6 # A. Then
s(xr,x5) = b(p, |p| +1) = |E(p)|. But |E(7)| > |E(p)| < |E(0)|, because p is a
proper predecessor of both 7 and o. Therefore, E(0)|E(0), especially E(1) 2 E(0).

Consequently, F' is an embedding of (2%, %) into (Ext(T"), ). This induces an
injective map of [2*] into [Ext(T)] = [T]. Therefore, |[2*]] = 2% < [T]. By
contraposition, this shows that every nonempty countable TI{ class has an isolated

member.

To show that every countably infinite I1{ class has already infinitely many isolated
members, one can reuse the above construction. Let P be a countably infinite
ITY class and assume that there are only finitely many isolated members. Then
there must be z € P that is not isolated. So there exist (y;);en € P such that
x [ 1=y |i,x # y; for every © € N. Let n € N be sufficiently large such that
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s(z, z) < s(z,y;) for all isolated z € P and all i > n. Define 0 := x | s(z, Ynt1)-
Then consider the IIY class P := P N I(0). By construction, this class P has
no isolated members and by the above part of the proof, is uncountable. But
since P C P, the class P must be uncountable as well, which contradicts the

assumption. ]

Cenzer and Remmel, in [CR98], attribute the following theorem to Kreisel ([Kre59]).
It strengthens the Kreisel-Shoenfield Basis Theorem to Corollary 4.2.25 in the

case of countable II{ classes.

Theorem 4.2.24 ([Kre59]). Let P be a 119 class and x € P an isolated member.
a) x is hyperarithmetic.
b) If P is bounded, then x is computable from 0.

c) If P is computably bounded, then x is computable.

Proof. Let T be a computable tree such that [T] = P. If P is bounded or
computably bounded, let T" be bounded or computably bounded, respectively.

Since x is isolated, there is a n € N such that z is the only element of P extending
z | n. Define the computable tree T := T'N Pref(I(x | n)) consisting of all
strings in 7' comparable to z | n. Then [T] = {z}. Observe, that if T is bounded,
that S is bounded by the same function. Therefore, we can assume, without loss

of generality, that T" has only one member .

But then clearly Ext(T) = {z [ i | i € N} and hence x = Ext(T). We recall now
the observations made in Theorem 4.2.1 and strengthen them, which is possible,
because = is now not only the leftmost member of P, but the also the rightmost,

and hence there is only one extendible node of any given length.

By Theorem 4.2.1, Ext(T) is 1. Also, the following statement holds.

o€ Ext(T) < (Vrew)((|7|=lo|AT#0) =1 ¢ Ext(T))

Because the quantifier is of first order, and Fzt(T) is X}, the above formula is
I1}. Therefore Ext(T) is both i and II}, it is A] and hence hyperarithmetic.
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Now suppose T is bounded. Then Theorem 4.2.1 states, that Ext(T) is II9.
Suppose, there were a m € N so that for all £ € N there were a 7 € T of length
|7| > k with 7 [ m # x [ m. Then these 7, together with all of their prefixes,
would form an infinite bounded tree S. Then from Kénig’s Lemma we know, that
there is an infinite path through S. As S is a subtree of T', that path must equal
x, which is a contradiction, because none of the strings in S extend x [ m. So, the
reverse statement holds and thus the initial segments of & can be characterized
as follows.

ceEBxt(T) = FkeN)(Vrew ) ((reTAN|T| > k) =0 <T)

So Ext(T) is also 3 and hence AJ. By Post’s Theorem, Ext(T) is computable

in 0.

Now suppose further, that T" is computably bounded. Then, by Theorem 4.2.1,
Ezt(T) is TIY. Also, it holds that

o€ Ext(T) < (Vr € w)((f bounds T AT # o) — 7 ¢ Ext(T)).

Because the complement of Ext(T') relative to w* is ¥.¢ and the universal quantifier
in the above formula is computably bounded, we can derive that Fxt(T') is also

¥ and hence A = AJ, i.e. computable. O

Corollary 4.2.25. Let P be a countable I19 class.
a) P has |P| many hyperarithmetic members.
b) If P is bounded, then P has |P| many members computable from 0'.

c) If P is computably bounded, then P has |P| many computable members.

Proof. Combine Theorems 4.2.23 and 4.2.24. Note that Lemma 4.2.5 is not
applicable, because {f|(f o m) € P AVz m(f(x)) < mo(f(z)) + 1} € C is not

countable. Also it would contradict c). O

One can generalize the notion of isolated points by the Cantor-Bendixson rank. For
a 119 class P, the rank of x in P, is the least ordinal « so that x € D*(P)\ D*"!(P),
where D denotes the removal of the isolated points from a set. Hence isolated
points can be characterized as elements of rank 0. For results achieved by this

approach, see [Cenl0] and [CR98].
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4.2.7 Special II{ classes, Minimal Pair Basis Theorem

In this section we examine, what can be said about the degree spectrum of a 19
class based on the fact that it has no computable member. Note that no statement
we derive here for special I1? classes is exclusive for these, since one can always
add the computable path 0% to a 19 class without changing the fact that it is a

I19 class or even any boundedness property.

Definition 4.2.8. A TI{ class is called special if it contains no computable

members.

Corollary 4.2.26. Every special computably bounded 119 class P is uncountable.
More precisely, |P| = 2%.

Proof. By Theorem 4.2.23, a countable I1{ class P contains an isolated member.
And if P is computably bounded, that isolated member is already computable,
by Theorem 4.2.24. So no countable computably bounded TI? class is special. Or
conversely, every special computably bounded I1{ class P is uncountable. Without
making use of the Continuum Hypothesis, the proof of Theorem 4.2.23 shows
that for such class P, in fact, |P| = 2%, O

Jockusch and Soare ([JS72a]) show some theoreoms, that are interesting in this

context. We omit some of the proofs.

Theorem 4.2.27 ([JST2a]). For any special 11 class P there is a c.e. degree

c > 0 such that P has no member of degree below or equal to c.

By the C.E. basis theorem, any nonempty computably bounded 1Y class P has a
member of c.e. degree b. If P has no computable member, however, the previous
theorem implies, that there is another c.e. degree c so that there is no member
of P of any c.e. degree d below or equal to c. So by the famous result of Sacks,
stating that the partial order of c.e. degrees is dense, every special I1{ class does
not only have no computable member, but lacks the members of infinitely many

c.e. degrees.

Further, Jockusch and Soare show the following.
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4.2 Basis theorems

Theorem 4.2.28 ([JS72al). For every c.e. degree c there is a computably bounded
19 class P such that the c.e. degrees of members of P are exactly the c.e. degrees

c and above.

The case ¢ = 0 is trivial. When choosing ¢ > 0, the according I class is hence
special. So for these particular special II{ classes, there are not only no members
of c.e. degrees below c, but also none of c.e. degrees incomparable to ¢, while all

of the other c.e. degrees are represented by some member.

Theorem 4.2.27 implies, that there is no ITY class with a degree spectrum consisting
exactly of the nonzero c.e. degrees. However, if one allows additional computable

paths, the according statement holds.

Theorem 4.2.29. There is a bounded I class P so that the degrees of members

of P are precisely the c.e. degrees.

Proof. The c.e. sets can be characterized as the domains of partial computable

functions.

Te = {o c w [ V0 < i < o] pe(i)[max{o(i), [o[}] 1= (0(i) > 0 A @e(i)o(D)] |
Ape(i)[o (i) — 1] 1)}

The defining formula holds for the values at any position of the string. The only
varying aspect is the parameter |o|. But for increasing |o|, the condition for the
implication changes only from false to true, not vice versa, so that T, is closed

under intial segments.

There is the following infinite path through 7.:
07 Spe(n) T?

Te(n) =
tn, pe(n) 4,
where t,, is the lowest number of steps, after which the computation of ¢.(n)

converges.

There is no other infinite path through T, because strings 7 with |7| > n+ 1 and
7(n) # x.(n) will not be extended to strings longer than ¢, — 1, if p.(n) |, or
even only |7], if ¢.(n) T.
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4 Degree spectra of I1{ classes

Further, W, <r z., where W, denotes the domain of ¢., because z.(n) > 0 iff
n € We. Also, z. <r W,, because one can uniformly compute t. in the case
©e(n) |, which is equivalent to n € W,, while z.(n) = 0 iff n € W,. So, x. =7 W..

Now simply consider the composite tree
T:=0"U0*01U UOeoloTe

eeN
Clearly, there is an infinite path Z. := 0° o 1 o z, through T for every e € N. Since
z. and Z. only differ in their initial segment, x. =7 Z.. The only infinite path

through T apart from the . is the computable path 0%. O

Note that by the Hyperimmune-free Basis Theorem combined with Lemma 4.2.21

the construced I class cannot be computably bounded.
Here is another interesting result from [JS72b]. We omit the proof.

Theorem 4.2.30. Let a > 0 be any noncomputable degree. There is a nonempty

special computably bounded T1Y class containing no member of any degree d > a.

That means, every basis of any of the classes P, Py, Peb, Ps, Pb.s, Peb,s must contain,

for every degree a > 0, a degree b such that either b < a or bla.

Definition 4.2.9. Let a,b > 0 be two nonzero degrees. We call a, b a minimal
pair if 0 is the only degree below or equal to both of them:

Ve(ec <aAc < b= c=0). Analogously, two noncomputable functions are called
a minimal pair if the only functions computable from both of them are already

computable.

The proof of the previous theorem uses the construction of a minimal pair of IT9
classes done by Jockusch and Soare in a different paper. A minimal pair of TI{
classes is a pair of IT? classes S, S, such that any pair of functions f € S, f € S
form a minimal pair. Since their particular S, S are classes of separating sets of
pairs of c.e. sets, the construction generalizes the result of Yates and Lachlan,

who independently proved the existence of a minimal pair of c.e. sets.

The following Minimal Pair Basis Theorem also deals with minimal pairs of

degrees. The proof of the theorem is adapted from [DJ09] and uses forcing with
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IT7 classes (see Section 4.2.3). Note that we here use the more common definition
of minimal pair, which requires both degrees to be noncomputable, contrary to

the cited paper.

There is an equivalent, but differently stated version of this theorem in [DDS10],
however, the proof given there is flawed, as was confirmed by one of the authors

in response to a counter-example ([Dzh12]).

Theorem 4.2.31 (Minimal Pair Basis Theorem, [JS72b]). Let B be some set of
degree b > 0. Every nonempty special computably bounded 119 class contains a

member of such degree a that a,b form a minimal pair.

Proof. We proof the theorem by forcing with I classes, introduced in Section
4.2.3. So let P be a computably bounded 1Y class and T' = T a computably
bounded computable tree such that P = [T].

Define U,, := {o € T|pZ(n)[|o]|] 1},

T. N Uy, T, N U, is infinite for some n; ng is the least such
T., T.N U, is finite and for all n € N, o, 7 € Ext(T,),
Ty e if o7 (n) L AgZ(n) L AgE(n) §, then ¢7(n) = ¢{(n)
(T.Noow") T. N U, is finite for all n € N and
o Tili <lol}, @B(n0) 1 97 (n0) 4 9(n) 4 for some ng € N
and o, 7 € Ext(T.); (ng, (o), (7)) minimal

U, is a tree, similarly to the trees U,, U? in the Low and Hyperimmunefree
Basis Theorem, respectively. T, is well defined, because the cases are mutually
exclusive and some case applies for every e. T, is obviously a tree in all three
cases. It is also infinite, which is obvious in the first case and holds by induction
in the second. In the third case, this holds because o € Ext(T,) and T, consists

of all nodes of T, compatible with o.

By the Compactness Theorem (4.2.12), there is a function f € [Neen7e] =
NeenlZe] € [T]. So let us now check whether it meets the requirements of the
theorem. Consider an index e € N. We require ¢/ total A o total = (p! =
0B = ¢I computable).
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In the first case of the definition of 7,1, the tree consists only of nodes o € T,
such that ¢7(ng)[|o|] 1. Since f € Mien|Ti] C [Tes1], it also holds that ¢Z(ng) 1,

i.e. ¢ is not total.

We can assume that ©Z(n) | and ¢9(n) | for alln € N, o € Ext(T), in the second
case, because otherwise neither ©? nor ¢/ would be total and the requirement
would be met trivially. For the same reason, we can assume that ©Z(n) = ¢/(n)
for all n € N.

But then ¢/ is computable; here is how: Because U, is finite for every n, there is a
least stage [ such that ¢ (n)[|o]] | for all ¢ € (T, Nw'). And because T, = T, is
computably bounded, one can search for that stage effectively. The results of those
computations might still differ - although not for the extendible nodes - according
to the assumption. But the result of ¢?(n) | for a string p € T, stays the same
for any extension of p. This means that on every subsequent stage all the results
of computations with extendible nodes as oracle reoccur, while every different
result eventually disappears. Therefore, one can even effectively search for the
least stage, such that all ¢7(n)[|o|] | agree on some m € N. Then ¢/ (n) = m,
since f € Nien[1i] C [Te] and every initial segment of f is in Ext(T,).

In the third case, T.; is defined in such a way that ¢?(ng) J# pZ(ng) for all
p € T,, and consequently ©Z(no) # ! (ng), since f € Nien|Ti] € [T.). Therefore,

B £ ol

So, for every e € N such that ? and ¢/ are total and identical, this function
is computable. Or, in other words, g <r f A g <r B = ¢ computable, i.e. the

degrees of f and B form a minimal pair. O

Note, that the minimal degrees do not form a basis for the computably bounded
I19 classes. This is implied by Corollary 5.2.10.

In [JS72b], Jockusch and Soare prove an intricate theorem, which we want to

present here without proof.

Theorem 4.2.32 ([JS72b]). For any nonempty special computably bounded I1Y

class P and any sequence of moncomputable degrees (aj)ien, P has 280 many
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members, that are mutually Turing incomparable, such that the degree of any of

these members is incomparable to each degree a;.

From this result, it is easy to derive the Minimal Pair Basis Theorem. The authors
of [JS72b] give a corollary in that paper which is a bit weaker, since they only
consider a given function that is itself member of the IT{ class. But their proof
works for any other noncomputable function as well. That is why we attribute
it to [JS72b]. Here is the idea. Given a nonempty special computably bounded
I1Y class P and an noncomputable function f, define (aj);cy as the sequence of
degrees of noncomputable functions that are computable from f. You can gain
this by eliminating the computable sets from the f-computable functions given
by the standard enumeration of the according Turing reductions. Then the above
theorem states the existence of 2% many members of P such that their respective

degree forms a minimal pair together with the degree of f.

Another result in [JS72b] shows, that in addition to the above theorem, there are
particular TIY classes with the property that any two members of such a I19 class

are already mutually incomparable.

Theorem 4.2.33 ([JS72b)). There is a computably bounded T1Y class P such that
any two members of P are mutually Turing incomparable. In particular, P is

special and hence |P| = 280,
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5 Application to logical theories

In this last chapter we want to return to the problem that originally motivated
the study of degree spectra of I19 classes. That is, what degrees do the complete
extensions of a given consistent effectively axiomatizable first-order theory have?
Of course, by Godel’s Incompleteness Theorem, one cannot hope to find a com-
plete extension that is of computable degree, in general. Lindenbaum’s Theorem,

however, states that there is some complete extension at all.

At first, we want to fix some definitions. Although we will not go into logical
theories too far, we need to outline some technical terms. However, a basic
familiarity with first-order predicate calculus is helpful for the understanding of
some parts of this chapter. The exact knowledge of the statement of the axioms

of Peano arithmetic are obsolete here.

For our purposes, a language £ will always be a effective first-order language. That
is, the index sets to all families of non-logical symbols, i.e. relation, function and
constant symbols, are initial segments of N, and the two functions specifying the
arities of the relation and function symbols, respectively, are partial computable.
When we speak of computability theoretic properties of sets of L-sentences in
the following, we do this by identifying them with the according set of codes
for sentences of a fixed Goédel numbering. As underlying syntactical deduction
system we choose some adequate one such as the Shoenfield calculus, so that we

can define consistency as we do in the following.

Definition 5.0.10. The set of (first-order) sentences of L is denoted by Sent(L).
For ¥ C Sent(L), the set Con(X), the consequences of ¥, is the closure of X
under the syntactic deduction . The set Ref(X) consists of the negations of the
consequences of 3 and is called the set of refutations of . A set I' C Sent(L) is a
(first-order) logical (L-)theory if I' = Con(T"). A set ¥ of sentences is called a set
of azioms for T if T' = Con(X). A theory T is computably axiomatizable if there is

a computable set of axioms for I'. It is said to be consistent if for no L-sentence
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¥ both I' - ¢ and I' F —¢. It is called complete if for each L-sentence ¢ either
I'F¢or ' F—¢. An extension of a theory I is a theory A such that I' C A.

Note that we defined completeness as maximal consistency.

5.1 TI! classes as sets of extensions of theories

In [Sho60], Shoenfield supplements Lindenbaum’s Theorem by showing that,
for each consistent computably axiomatizable first-order theory, its complete
extensions form a nonempty I1{ class, without denoting it that way. The term
117 class seems to appear no earlier than in the works of Jockusch and Soare in
the 1970s. The L-theories in the statement of the theorem are to be understood
as identified with the charactistic functions of the set of Godel numbers of their

members, as suggested before.

Theorem 5.1.1. ([Sho60]) For any computably axiomatizable logical theory I' (of
L), both the class of consistent extensions of I' and the class of complete extensions
of T are computably bounded 119 classes. These are nonempty if and only if T is

consistent.

Remark. In [Sho60], Shoenfield mentions that a logical theory is c.e. iff it is
computably axiomatizable. So the above theorem can be restated accordingly.
Also, the statement can be specified for computable theories, in such a way that
the T1? class P of the consistent (complete) extensions of a computable theory is
decidable. That is, in that case a computable tree T representing P by P = [T
can be chosen such that T'= Ext(T).

Definition 5.1.1. A theory I' is called essentially undecidable if there is no
computable complete extension of I'. A theory I' is said to be (recursively)
separable if it is separable from its refutations by a computable set, in the sense

of Definition 3.2.2. Otherwise it is called (recursively) inseparable.

Every recursively inseparable theory is obviously essentially undecidable. The

converse statement does not hold, which was proved by Ehrenfeucht ([Ehr61]).
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Rosser improved Godel’s Incompleteness Theorem, that originally required the
stronger condition of so-called w-consistency, to a theorem that then implied
that Peano arithmetic is essentially undecidable. According to [CR98], he in fact

showed that Peano arithmetic is even recursively inseparable.

Theorem 5.1.1 implies, that all basis theorems for P., apply to the class of
consistent (complete) extensions of a computably axiomatizable consistent theory.
For example, every such theory has a complete extension that is low, by the Low
Basis Theorem. By the additional specification in the remark after the theorem,
every decidable consistent computably axiomatizable theory has a complete
decidable extension according to Corollary 4.2.3.d. And all basis theorems for Py, s
apply to consistent (complete) extensions of a consistent computably axiomatizable
theory that is essentially undecidable, for instance Peano arithmetic. That is, by
the Minimal Pair Basis Theorem, Peano arithmetic has two complete extensions

such that any function computable from both of them is already computable.

We will now state the theorem that establishes the converse of the previous

theorem.

Theorem 5.1.2. (/Ehr61],[JS72b]) Every computably bounded 119 class is equal

to the class of complete extensions of some computably axiomatizable theory.

By this result, also the existential theorems for II{ classes hold. That is, we
could derive from the existence of special computably bounded IT? classes the
existence of essentially undecidable computably axiomatizable consistent theories.
More precisely, by Theorem 4.2.30, there is for every degree a > 0 a consistent
computably axiomatizable theory having no complete extensions of any degree
d>a.

5.2 PA degrees, Scott Basis Theorem

We now turn to the special case of recursively inseparable theories. As we have
seen, Peano arithmetic is one example of such a recursively inseparable theory. In

[JST2b], others are pointed out: Zermelo-Fraenkel set theory and even the finitely
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axiomatized Robinson arithmetic, which is a subtheory of Peano arithmetic. But
we may take Peano arithmetic as a generic representative, because Jockusch and

Soare showed the following. We omit the proof.

Theorem 5.2.1. ([JS72b]) Let I and T be two consistent computably aziomatiz-
able recursively inseparable theories and let P and P be the respective classes of

complete extensions of T and T'. Then P and P have the same degree spectrum.

We now give this uniquely defined degree spectrum a name.

Definition 5.2.1. We define Dpa as the class of Turing degrees of complete

extensions of Peano arithmetic. A degree a is called PA degree if a € Dpy.

We state, without giving a proof, some theorems that we require for the proof of
the Theorem 5.2.5 that characterizes the PA degrees.

Theorem 5.2.2. (Scott Basis Theorem, [Sco62]) If ' is a consistent extension
of Peano arithmetic of degree g, the class {ala < g} is a basis for Pe,.

Theorem 5.2.3. (Solovay, [unpublished]) Dpa is closed upwards.

For a proof, see [0di92] or [DH10]. This gives a positive answer to the according
question in [JS72b].

Corollary 5.2.4. Dpy is an upper semilattice, but not a lattice.

Proof. By Theorem 5.2.3, Dp, is closed against the least upper bound for a pair
of degrees in the upper semilattice of all Turing degrees, which then must also be
the least upper bound among the PA degrees. But by applying the Minimal Pair
Basis Theorem to the computably bounded IIY class of complete extensions of
Peano arithmetic and any given PA degree a, we get a PA degree b such that
the only lower bound in the partial order of degrees is 0, wich is not PA, because

Peano arithmetic is essentially undecidable. O

Recall the definition of the class of separating sets for a pair of c.e. sets.
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5.2 PA degrees, Scott Basis Theorem

Definition 5.2.2. We define some particular class of separating sets.
Ko :={e | gc(e) = 0}

K= fe] gole) = 1}

U := S(K(), K1>

Obviously, Ky and K are disjoint c.e. sets, hence U is a computably bounded 19
class.

We now state some very interesting characterizations of the PA degrees. Item iv)
is added for the sake of completeness. For how that statement is to be understood,

see [JST2a]. We prove the most important implications.

Theorem 5.2.5. (Characterization of the PA degrees) Let a be any degree. Then

the following are equivalent.
i) a is a PA degree.
i1) a is the degree of a consistent extension of Peano arithmetic.
iti) a 1is the degree of a complete extension of Peano arithmetic.
iv) a is the degree of a countable non-standard model of Peano arithmetic.
v) {d|d < a} is a basis for Pep.
vi) {d|d < a} is a basis for Pe,.
vii) a computes a separating set for a recursively inseparable pair of c.e. sets.
viii) a is in the degree spectrum of the 119 class U.
Proof. By definition, i) and iii) are equivalent. Clearly, iii) implies ii). By the
Scott Basis Theorem, ii) implies v). The Shoenfield construction in Theorem 4.2.6
improves v) to vi). Because Dpy is the spectrum of a I1? class in P, and Dp, is
upward closed, vi) implies i). That establishes the equivalence of statements i), ii,
iii, v) and vi). For the exact meaning of iv) and its equivalence to v), see [JS72al.

The implication of viii) by vii) is trivial. Because every consistent extension

of Peano arithmetic is a separating set for the inseparable consequences and
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5 Application to logical theories

refutations of Peano arithmetic, ii) implies vii). A proof for the two remaining

implications can be found in [DH10]. O

Remark. Further characterization can be found in [DDS10] and [DH10]. A T19
class U with the property of equality of v) and viii) is called universal T1J class
by some authors ([DH10], [CJ99)]).

The equality of vi) to vii) and viii) provides a mere recursion theoretical approach

to the basis theorems in vi).
Corollary 5.2.6.
a) 0 ¢ Dpa
b) There is a low PA degree.
c) 0/ € Dpa
d) No incomplete c.e. degree is PA. ([ST60])
e) If d is a degree such that 0" < d, then d is PA. ([ST60])

f) There is a class of mutually incomparable PA degrees of cardinality 2.

Proof. The first item is implied by the (improved) Godel’s Incompleteness Theo-
rem. That there is a low PA degree follows from the Low Basis Theorem and that
Dpy is the degree spectrum of a computably bounded I1{ class. That implies the
weaker result that there are PA degrees below 0’, announced in [ST60]. Item d)
follows from Theorem 4.2.27 in combination with item v) of the characterization
of PA degres. Then item ¢) must hold, because of the C.E. Basis Theorem. The
statement in e) follows from item c¢) combined with Theorem 5.2.3. The last item
follows from 4.2.32. It implies that there is a PA degree that is imcomparable to

0, wich was announced in [ST60]. O
In [KL10], the authors prove that Dpy is minimal in the lattice of degree spectra

of computably bounded IT? classes ordered by inclusion. This can be restated in

our terms as follows. We omit the proof.
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5.2 PA degrees, Scott Basis Theorem

Theorem 5.2.7 ([KL10]). Every computably bounded 1Y class P is empty or has

a member of degree that is not PA or it already has a member of every PA degree.

Shoenfield’s construction has given us item vi) of the characterization of PA
degrees, which enforces item v). While the according amplification of the Kreisel
Basis Theorem to the Kreisel-Shoenfield Basis Theorem may be regarded as
somewhat insignificant ever since the Low Basis Theorem was proved, Shoenfield’s

construction has greater impact in the context of PA degrees.

Corollary 5.2.8. For every PA degree p there are PA degrees (pn)nen such that
Po < p and piy1 < p; for all i € N.

Proof. Let p be a PA degree. By Corollary 5.2.5.vi), {d|d < a} is a basis for the
computably bounded TI{ classes. Since the class of consistent extensions of Peano
arithmetic is itself a computably bounded II{ class, there must hence be another

PA degree properly below p. The claim follows by induction. O

This statement seems to be lacking in the present literature.

Together with Theorem 5.2.3 and Corollary 5.2.6.f, this gives a wide range of
degrees that are PA. But in [JS72b], the authors employ a measure for 2* and
show, that the measure of the union of all PA degrees is equal to 0. They also
find that this class is meagre in the topological sense. Note that we can consider

the PA degrees classes of sets.

Compare Corollary 5.2.8 to the following result, achieved by Jockusch and Soare

by much more intricate means. We omit the proof.

Theorem 5.2.9 ([JS72b]). If a is a PA degree, then any countable partially

ordered set is embeddable in the upper semilattice of degrees below a

This is much stronger on the one hand, as there is no constraint on the partial
order one wishes to embed below a given PA degree. But on the other hand, the
degrees involved in representing that partial order might not be chosen to be PA.

So, one can derive from Jockusch and Soare’s theorem the following.
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5 Application to logical theories

Corollary 5.2.10 ([ST60]). There is no minimal degree that is PA.

But one can not derive the following, stronger corollary from Theorem 5.2.9. It is

a result the author of this thesis was unable to find in the present literature.

Corollary 5.2.11. There is no minimal degree in the partial order of PA degrees.

Proof. This is immediate from Corollary 5.2.8. O]
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