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Abstract

Neutrino masses can be determined by measuring how released energies in electron
capture decay of 163Ho are distributed between created Neutrino and daughter atom.
Therefore, theoretical calculations of the energy spectrum are necessary and are per-
formed in this thesis by means of ab initio methods.

Using techniques from core-level spectroscopy like exact diagonalization and con-
figuration interaction, these calculations are capable of explaining and reproducing
experimentally observed spectral features including dominant resonances, multiplet
structures and energy-dependent, asymmetric line-broadening due to the Auger-Meit-
ner effect. While multiplets and resonances can be described by bound states, broad-
ening is treated in terms of a self-energy describing coupling between those bound
states and unbound states having continuous energy spectrum. Calculations are
compared to experimental data and the totally released energy, or Q-value, is deter-
mined using Bayesian parameter estimation. A different approach to determine Q is
Penning-trap mass-spectroscopy. There, the mass difference between ionized mother
and daughter atom is measured, which needs to be corrected for binding energies
of the ions to determine the Q-value of neutral atoms. A scheme for binding energy
determination is presented and applied to 187Re29+ and 187Os29+ which may serve as
a system for accuracy bench-marking of calculations and measurements.

Zusammenfassung

Durch das Messen der bei Elektroneneinfang in 163Ho freigesetzten Energie und deren
Verteilung zwischen erzeugtem Neutrino und Tochteratom ist es möglich Neutrino-
Massen zu bestimmen. Dafür sind Berechnungen des Energiespektrums notwendig
und werden in dieser Arbeit mittels ab initio Methoden durchgeführt.

Unter Verwendung von Techniken aus der core-level Spektroskopie, wie exakter
Diagonalisierung und Konfigurationswechselwirkung, können diese Rechnungen die
experimentell beobachteten spektralen Merkmale – insbesondere dominante Reso-
nanzen, Multiplets und energieabhängige, asymmetrische, durch den Auger-Meitner
Effekt entstandene Linienverbreiterung – reproduzieren und erklären. Während ge-
bundene Zustände Multiplets und Resonanzen beschreiben, wird die Linienverbre-
iterung durch eine Selbstenergie bestimmt, welche die Kopplung zwischen jenen
gebundenen Zuständen und ungebundenen Zuständen mit kontinuierlichem Energie-
spektrum beinhaltet. Die Berechnungen werden mit experimentell gewonnenen Daten
verglichen und die gesamte, beim Zerfall freigesetzte Energie, der Q-Wert, wird mit-
tels bayesscher Parameterbestimmung ermittelt. Eine weitere Methode zur Bestim-
mung von Q ist Massenspektroskopie mittels Penningfalle, wobei die Massendif-
ferenz von ionisiertem Mutter- und Tochteratom gemessen wird. Diese muss bezüg-
lich der Bindungsenergie der Ionen korrigiert werden, um den Q-Wert neutraler Atome
zu erhalten. Eine Methode zur Bestimmung der Bindungsenergie wird präsentiert
und auf 187Re29+ und 187Os29+ angewandt, welche zur Genauigkeitsbestimmung von
Theorie und Experiment verwendet werden können.
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1. Introduction

Nowadays, Neutrinos are the only fundamental particles with unknown masses.
Hence, it is of great interest of particle physics and cosmology to determine these.
Besides many different other methods, electron capture spectroscopy is one approach
to tackle this quest. What kind of spectrum does this technique observe? How is it
related to masses of Neutrinos? To understand what experimentalists from diverse
collaborations are measuring, how this spectrum can be explained with the aid of
theoretical calculations and how to infer information about Neutrino masses from
the combined experimental and theoretical data, we need to study nuclear decay and
atomic relaxation processes. At the heart of this thesis there is the calculation of the
electron capture spectrum of 163Ho from first principles, i. e. starting from the funda-
mental physical laws we know. This calculation shall support the experimental search
for Neutrino masses by providing an unbiased description of the spectral shape.

Electron capture is a nuclear decay process in which an electron, bound to an atom,
is captured by the atom’s nucleus thereby transforming a proton into a neutron. This
changes the atom’s nuclear charge by one unit of elementary electric charge and cre-
ates a hole in the inner atomic shell from which the electron has been captured. In the
case of 163Ho this implies the transition from the Ho ground state to an excited state
of the 163Dy daughter atom. The daughter atom can de-excite into its ground-state
by filling the created hole with an electron from its valence shell and releasing the
energy of the latter. If only mother and daughter atom were involved in this process,
the energy released by the daughter would always be the same, namely the difference
between the masses of mother and daughter, which is called Q-value. However, elec-
tron capture is a decay mediated by the weak force and hence a neutrino is involved.
This particle is created during the decay and carries some amount of the totally re-
leased energy Q. The remaining energy is stored in the excitation of the daughter
and can be measured when the atom de-excites. In section 1.2 we describe how such
measurements are performed.

As the neutrino can obtain an arbitrary energy larger than its rest-mass mν and
smaller than the Q-value, the de-excitation energy assumes values between zero and
Q− mνc2. If electron capture decay is observed multiple times, one can make a his-
togram of the observed energies, which resembles the so-called electron capture spec-
trum.

From this discussion it is clear that the endpoint of the electron capture spectrum
depends on the created neutrino’s mass. However, neutrinos are not simply created
in a state with definite mass. Instead they are in a superposition of at least three
mass-states which oscillate in time. As a consequence the full spectrum is given by
the sum of multiple spectra, one for each mass-state. While this affects the electron
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Figure 1.1.: Electron capture decay of 163Ho results in an excited daughter 163Dy atom.
Excitations are due to single holes in electronic shells as a result of electron
capture or due to multiple holes as a result of relaxation processes subse-
quent to electron capture. Experimentally a spectrum can be obtained by
measuring these excitation energies from multiple decays. Resonances
are labeled according to holes in inner shells of the corresponding excited
state of Dy. Taken from [3].

capture spectrum only marginally, the observation of neutrino oscillations lead to
the discovery of neutrinos being massive particles as we will outline in section 1.1.
There we give a brief historical overview of discoveries concerning neutrinos. This is
meant to demonstrate how neutrinos have been involved in the development of our
understanding of particle physics and thereby motivates the experimental search for
their masses. The mechanism of neutrino flavor oscillations is discussed in section
2.3.

While the decay itself is subject to nuclear physics, the following de-excitation is
governed almost purely by atomic dynamics. Coulomb interaction between the re-
maining electrons leads to interesting spectral features as shown in figure 1.1.

One observes sharp and broad resonances, satellite structures close to the N1 (4s)
edge, as well as large wings on the side towards higher energies of peaks. To re-
produce these features and predict further excitations which are hidden in the ex-
perimental data due to the given detector resolution, accurate electronic structure
calculations have to be performed.

In section 1.3 we summarize approaches for calculating the electron capture spec-
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1.1. Neutrinos guiding towards new physics

trum by different authors and outline differences to this work. The mathematical
framework on which all calculations in this thesis are based is presented in chap-
ter 2 and the applied numerical methods can be found in chapter 3. Calculated
electron capture spectra, results and further methodological details related to pub-
lications [1–3] are presented in chapters 4 and 5. While chapter 4 deals with those
spectral features which can be attributed to locally bound states, line-broadening of
resonances due to unbound states is studied in chapter 5.

To show that the methods developed in these chapters have a broader range of
application, we apply them to x-ray spectroscopy of Nickel oxide in chapter 6. At the
end of the chapter an outlook describes how to improve calculations of both x-ray
and electron capture spectra by inclusion of the chemical environment in which the
probed atom resides.

Precise determination of the Q-value is also important to infer neutrino masses
from an electron capture spectrum and can be done using Penning trap mass-spectros-
copy [5]. This method determines the Q-value for highly charged ions instead of neu-
tral atoms. To obtain Q of the latter, one has to correct for the binding energy of the
removed electrons. Hence, in chapter 7 we present a method to estimate this energy
as well as the uncertainties accompanying the involved calculations.

In chapter 8 we present a group-theoretic proof that a basis for atomic orbitals,
corresponding to any irreducible representation of the group of rotations SO(3), can
always be chosen such that the basis-orbitals have the same shape and differ in ori-
entation only.

A summary of this thesis can be found in chapter 9.

1.1. Neutrinos guiding towards new physics

From the beginning of the last century and until today neutrinos have been and are
being involved in discoveries of physical phenomena and developments of theoret-
ical models. In 1914, eighteen years after Henry Becquerel, Marie and Pierre Curie
discovered nuclear decay, James Chadwick provided the first experimental evidence
showing that the energy spectrum of an electron emitted in β-decay is continuous [6].
This posed a great enigma, since conservation of energy and momentum requires
that the decay of one nucleus into another via emission of a single particle leads to a
discrete energy-spectrum of the latter, as it has been observed for α-decay. Further-
more, it has been found that certain nuclei change their angular momentum by an
integer multiple of Planck’s constant h̄ during β-decay, although the outgoing elec-
tron has half-integer angular momentum. Apparently, also conservation of angular
momentum seems to be violated [7].

Different solutions for these observations have been developed, where Wolfgang
Pauli’s suggestion was the successful one. He proposed the existence of a new par-
ticle that participates in β-decay, thereby allowing for a continuous energy-spectrum
alongside the validity of the conservation laws mentioned above [7]. In 1934 Enrico
Fermi acted on Pauli’s idea and developed a mathematical description of β-decay,
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1. Introduction

which used the concept of second quantization and creation of particles out of en-
ergy. Not only did he coin the name of Pauli’s particle as neutrino, he also took the
first step in the development of a theory of weak interaction and outlined how to infer
the neutrino’s mass from a β-spectrum [8], which is nowadays the basis of modern
neutrino-mass experiments [9–15].

From here, it took 22 years until in 1956 Clyde Cowan and coworkers finally de-
tected the neutrino [16]. The reason it took so long is in the feint nature of weak-
interaction. The Neutrino, being an electrically neutral particle, interacts via weak-
processes only, making experimental detection difficult. However, until its detection
the neutrino and Fermi’s theory of β-decay sparked further research - both experi-
mental and theoretical.

After nuclear β+-decay via emission of a positron had been discovered, in 1934
Gian-Carlo Wick proposed an extension of Fermi’s theory that predicts nuclear decay
via capture of an electron of the decaying atom [17]. The experimental confirma-
tion followed only three years later. Luis Alvarez produced radioactive Vanadium
48V by deuterium-bombardment of Titanium. The former decays both via electron
capture and β+ decay. Hence, he was able to measure the ratio of created γ-rays
from produced positrons and created x-rays from electron capture of K electrons. The
agreement of this ratio with theoretical predictions proved the existence of decay via
electron capture [18].

Ettore Majorana raised a problem in 1937 that remains unsolved until today. He
provided a new quantization scheme describing Fermions which are their own anti-
particles, so called Majorana-Fermions, and claimed that there is no reason to dis-
tinguish between neutrino and anti-neutrino [20]. So far there is no experimental
evidence proving or contradicting the hypothesis of neutrinos being their own anti-
particles. However, the consequences of this are testable via the ongoing search for
neutrinoless double β-decay. If neutrinos are Majorana-Fermions, it should be possi-
ble to detect nuclear decay where two neutrons decay into two protons while emit-
ting two electrons and no neutrinos. Such processes have half-lives larger than 1025

years [21–24] and violate conservation of lepton-number as there are two more lep-
tons after the decay than before.

The violation of lepton-number conservation manifests itself in many other hy-
potheses different from Majorana’s one. After the muon neutrino had been discov-
ered in pion decays π± → µ± + νµ/ν̄µ [25], Bruno Pontecorvo discussed the pos-
sibility of neutrino-flavor oscillations νe ↔ νµ as mechanism leading to violation of
lepton-number conservation in 1967, noting that these oscillations would lead to a re-
duced flux of solar electron-neutrinos compared to the total flux of neutrinos created
in our sun [26].

The next year Raymond Davis Jr. and his team of the Homestake experiment dis-
covered a puzzle for which Pontecorvo has already provided the solution. In an un-
derground goldmine they investigated the reaction 37Cl+ νe → 37Ar+ e− to measure
the solar-neutrino flux and found it to be smaller than predicted from the solar stan-
dard model [27]. However, experimental verification of neutrino-flavor oscillations
to be the cause for the observed deviation took 33 years.
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1.2. Determination of Neutrino masses

In 2001 the collaboration of the Sudbury Neutrino Observatory published measure-
ments of the total neutrino flux from the sun and of the solar electron-neutrino flux
[28]. While the latter has been determined via a deuterium reaction d + νe → 2p + e−

which is sensitive to electron-neutrinos only, the former has been estimated via elastic
scattering νx + e− → νx + e−. Observing that the total flux is larger than the one of
electron-neutrinos confirmed that neutrinos of different flavors are present, although
not created within the carbon-nitrogen-oxygen (CNO) cycle of the sun. Furthermore,
the total flux agreed with calculations from the solar standard model, thereby solving
the solar neutrino problem.

The above and further experiments [29–31] established flavor oscillations which
are only possible if neutrinos are massive particles and their flavor-eigenstates are
not eigenstates of the Hamiltonian. This raises questions concerning which absolute
values the neutrino masses take, whether they are of Dirac or Majorana nature and
whether there are additional massive sterile neutrinos.

The latter have been and are still investigated in different experiments with neu-
trinos from nuclear reactors and serve as possible explanation for observed reduc-
tion of anti-neutrinos [32] or neutrinos [33–35] compared to theoretical predictions.
The appearance of anti-electron-neutrinos from anti-muon-neutrino beams created
in accelerators may also be attributed to sterile neutrinos [36–38]. However, statis-
tical analyses show that for certain classes of sterile neutrino models there are ten-
sions in the models’ parameter spaces between data from reactor- and accelerator-
neutrinos [39, 40]. Furthermore, improved calculations reduced the discrepancy be-
tween observed and predicted neutrinos in reactor experiments based on Gallium
detectors [41, 42]. This demonstrates how neutrinos do not only indicate physics be-
yond established models, as we saw in their history of more than a century, but also
challenge the precision of calculations and approximations within these models.

The latter aspect is crucial for most of the former, current and future neutrino ex-
periments as they rely on precise calculations within well tested atomic, molecular,
solid-state, nuclear or cosmological models. It is the aim of this thesis to study how
well existing methods from atomic and condensed matter physics can be applied to
describe the spectral shape of electron capture decay in 163Ho and how insights from
these methods affect the determination of the neutrino masses.

1.2. Determination of Neutrino masses

The previous section outlined discoveries around neutrinos as well as open questions
which include the mass-eigenvalues {mνi | i = 1...3} of the neutrino mass-eigenstates.
Obtaining these values is not only important from the metrological viewpoint, but
also impacts observations in other fields of physics as Cosmology for instance. Neu-
trinos interact gravitationally and hence affect structure formation [44, 45]. Thus, it is
possible to infer upper bounds for the sum of the neutrino masses ∑3

i=1 mνi < 0.172
eV at 95% confidence level from cosmological data [46].

Another approach to estimate bounds for the neutrino masses is given by neutri-
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1. Introduction

noless double beta decay. There are nuclei A
Z X with even numbers of protons (Z) and

neutrons (A− Z) which undergo normal double beta decay A
Z X → A

Z−2 Y + 2e− + 2ν̄e
instead of single beta decay, because due to pairing forces the former is energetically
favorable while the latter is not [47]. Here two neutrinos are created as opposed to
neutrinoless double beta decay. The energy difference between the groundstates of
mother and daughter nucleus – called Q-value – is divided between those created
neutrinos, electrons and the remaining nucleus. The energy spectrum of the electrons
is continuous. If however, Majorana’s hypothesis is true such that neutrinos are their
own anti-particles, double beta decay is possible without creation of neutrinos. In that
case the electrons’ energy spectrum would be a peak around the Q-value [49]. Hence,
one could distinguish between normal double beta decay and neutrinoless double
beta decay. The decay rate of the latter is proportional to mββ ≡

∣∣∣∑3
i=1 mνiU

2
ei

∣∣∣ [47],
where U denotes the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [97]. Re-
cent studies have set an upper limit mββ < 0.15 eV at 90% confidence level [50].

While this method to determine neutrino masses necessarily assumes Majorana’s
hypothesis to be true, cosmological results are dependent on models of the early uni-
verse. However, model independent studies of neutrino masses are possible, too.
These are based on determining kinematic properties of the created neutrinos.

One proposed approach is to measure the time of flight of neutrinos created in a
supernova. Together with the neutrinos’ energies and the distance to the exploding
star it would in principle be possible do determine neutrino masses [51,52]. A further
study claims that with detectors currently in development it will be possible to reach
a sensitivity that allows to probe the neutrinos’ mass hierarchy [53].

Further kinematics based approaches rely on measuring energy spectra, i.e. differ-
ential decay rates, from nuclear decay. One of these is electron capture spectroscopy.
In this thesis we are calculating the electron capture spectrum of 163Ho. Hence, in the
following section we outline how this can be used to determine the neutrino masses.

1.2.1. Determination of neutrino masses from nuclear decay

Neutrinos are created as products of weak decay. Especially important for the deter-
mination of neutrino masses are β-decay A

Z X → A
Z+1Y + e− + ν̄e and electron capture

A
Z X + e− → A

Z−1Y + νe. In the former channel, nucleus X with Z protons and atomic
number A decays to nucleus Y via transforming a neutron into a proton and emitting
an electron together with its anti-neutrino. The latter channel describes how a proton
in the nucleus of an atom captures an electron out of one of the inner atomic shells
(core shells) and becomes a neutron while emitting an electron-neutrino.

For these processes to occur in nature the energy difference, or Q-value Q = E0(
A
Z X)−

E0(
A

Z±1Y), between the ground-states of mother and daughter atom has to be positive.
This released energy is distributed between the decay products. In the case of elec-
tron capture the only products are neutrino and daughter atom which is in an excited
state and releases its energy in further relaxation processes via emission of photons
or Auger-Meitner electrons.

6
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Figure 1.2.: Calculated electron capture spectrum of 163Ho for vanishing and non-zero
neutrino masses. The lower axis describes the excitation energy of the
Dy daughter atom, which can be measured with a calorimeter and the
upper axis denotes the energy of the neutrino created during EC which
is determined by the difference between the Q-value and the excitation
energy. Most dominant resonances belong to excitations of single holes
which have been created by electron capture from the labeled orbitals.
The spectral endpoint region is strongly affected by neutrino masses.

Measuring the energy ω of all products except the neutrino allows to calculate the
neutrino energy Eν = Q − ω. Performing such measurements multiple times, one
can estimate the differential decay rate dΓ

dω (ω), i.e the number of decays per energy ω

per unit of time. dΓ
dω (ω) is also often referred to as the energy spectrum of β-electrons

in the case of β-dacay, or as the electron capture spectrum of the mother atom.
This quantity is proportional to the number of states ∝ Eν pν available for the cre-

ated neutrino with energy Eν and momentum pν =
√

E2
ν −m2

νc2/c. Therefore the
differential decay rate is sensitive to the neutrino mass near ω = Q−mνc2 [8]. In par-
ticular the mass determines the endpoint of the differential decay rate beyond which
no decays can occur, since out of the totally available energy Q at least the amount of
the neutrinos rest-mass has to be put into the creation of the neutrino and thus cannot
be assigned to the other decay products. This is illustrated in figure 1.2

Hence, neutrino masses can be determined by measuring differential decay rates,
or energy spectra, of such decays and compare them to theoretical predictions of the
corresponding spectral shape [8, 61]. This can be done for instance by fitting a cal-
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1. Introduction

culated spectral shape with neutrino mass and Q-value as free parameter to experi-
mental data. Besides high statistics and high energy resolution in experimental decay
rates, one also needs highly accurate numerical calculations of the spectral shape in
order to be sensitive to neutrino masses below 1 eV/c2 [14].

This is challenging since the spectrum has many different features as shown in fig-
ure 1.2. These include major peaks which emerge from states with a hole in one of
the inner shells created by the nucleus capturing an electron. Further smaller struc-
tures are present due to relaxation processes subsequent to electron capture. These
involve the created core hole to scatter between different orbitals and can even lead
to shake up of other electrons into unoccupied orbitals yielding states with multiple
core holes. Ionization can occur when an electron is removed from the Dy daughter
atom via the Auger-Meitner effect. This leads to line-broadening of the resonances as
well as the observed increased, high energy tails.

All these spectral features have to be well understood, especially their impact on
the endpoint region in order to extract the neutrino masses from such a spectrum. We
will discuss them in chapters 4 and 5.

In practice, the neutrino is not created in one of the mass-eigenstates, but in a flavor-
eigenstate instead, as described in section 1.1. The latter is a superposition of the
former and hence one does not measure a single spectrum, but the sum of three spec-
tra, each weighted with the corresponding phase space factor for a neutrino of mass
mνi , i = 1...3, and the overlap between mass- and flavor eigenstate |Uei|2. The math-
ematical aspects of neutrino masses and oscillations are described in section 2.3, the
spectral shape in the endpoint region is discussed in section 2.5 and 5.4.

Currently there are two isotopes under investigation for neutrino mass determina-
tion. One is tritium 3

1H which undergoes β-decay and the other is Holmium 163
67Ho

decaying via electron capture. While the underlying principle to determine neutrino
masses are the same in both cases, the methods of measuring the energy spectra are
quite different.

The Mainz experiment [9], the Troitsk experiment [10] and KATRIN [11] measure
integrated β-spectra of molecular tritium with the help of MAC-E-Filters (Magnetic
Adiabatic Collimation combined with an Electrostatic Filter). Project 8 uses Cyclotron
radiation emission spectroscopy to obtain a differential β-spectrum of atomic tritium
[12]. HOLMES uses transition edge sensors [13] and ECHo uses metallic magnetic
calorimeters [14] to measure the electron capture spectrum in 163Ho, i. e. the decay
energy stored in atomic excitations of the daughter atom.

163Ho is chosen for electron capture spectroscopy due to its good properties. It has
a low electron capture Q-value among those isotopes with half-lives that are long
enough to perform precise measurements of the spectrum. On the other hand the
half-life of 163Ho is not too long such that it is possible create Ho samples with high
activities. These properties assure that the measured electron capture spectrum has
high statistics in the endpoint region which is most sensitive to neutrino masses [14].

Since this work is part of the ECHo project, we briefly describe it in the following
section. However, our calculations are independent of the measurement principle
and can be equally well applied to other experiments that measure electron capture
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1.2. Determination of Neutrino masses

Figure 1.3.: Simplified scheme of a metallic magnetic calorimeter taken from [43].

spectra.

1.2.2. Measurement principle for the electron capture spectrum in
163Ho performed by ECHo

The electron capture spectrum, or differential decay rate dΓ
dω , of 163Ho is defined as

the number of decays per energy per unit of time. Experimentally it can be ob-
tained by measuring the energy ω of the excited decay-product 163Dy for multiple
decays and counting how many of these decay-events fall into a certain energy win-
dow [ω, ω + dω]. This way one obtains a histogram which resembles the differential
decay rate in the limit of infinite number of measurements and infinitesimally small
binning dω.

Hence, every experimental setup, that aims to be sensitive to the neutrino masses,
needs a good energy resolution, in order not to smear out the spectral endpoint re-
gion, as well as a 163Ho source with high activity. Furthermore, at high activities it is
crucial to resolve two events in time, that occur almost simultaneously, to avoid that
the sum of the energies of these events is assigned to a single event at higher energies.
This is called unresolved pile-up and can be circumvented by a good time resolution
of the detector.

As the energy of the excited daughter atom is released in relaxation processes, sub-
sequent to electron capture, via photons or Auger-Meitner electrons, it is necessary to
have a detector with high quantum efficiency, to avoid energy loss which can occur
by not detecting portions of the released photons or Auger-Meitner electrons.

The metallic magnetic calorimeters designed by the ECHo collaboration fulfill these
properties to good extent [14]. The operational principles are described in [14] and
will be briefly summarized here. A simplified scheme of the detector is shown in
figure 1.3.
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1. Introduction

Using ion implantation, the radioactive 163Ho source can be embedded within gold.
The latter serves as an absorber for all of the released energy from the decay process
which is not distributed to the neutrino. It is connected to a paramagnetic sensor
made of gold (Au) or silver (Ag) doped with erbium (Er) and is enclosed by a super-
conducting coil. This system is coupled to a thermal bath via a weak thermal link. Ev-
ery release of energy within the absorber material results in a change of its tempera-
ture which is approximately proportional to the released energy. Applying a constant
magnetic field leads to magnetization of the Ag:Er sensor, which depends on the ab-
sorber’s temperature according to Curie’s law. If the induced change in temperature
is small compared to the temperature of the heat bath, the change in magnetization
is approximately proportional to the change in temperature and hence energy. This
results in an induced current within the superconducting coil which in turn is induc-
tively coupled to a superconducting quantum interference devise (SQUID) that turns
the induced current into a change in voltage. As the latter change is approximately
proportional to all the former changes in current, magnetization, temperature and
energy, one can determine the deposited energy from decaying Ho in the absorber by
measuring the voltage change of the SQUID. In practice there are small non-linearities
in these steps from energy to voltage, such that the functional dependence between
the latter two is calibrated with a polynomial of second order [14].

The thickness of the absorber determines the quantum efficiency of the detector,
which is nearly 1 in the ECHo experiment [14]. This implies that all of the daugh-
ter atom’s excitation energy can be measured without losses and consequently the
obtained spectrum is insensitive to the type of de-excitation channel, whether via
photons, or Auger-Meitner electrons. For calculations of the differential decay rate
this is a welcome simplification as there is no need to consider branching ratios of
different relaxation channels of the daughter atom.

The next section gives an overview how such calculations have been performed
by different authors in the past and outlines some of the differences between their
approaches and the one pursued in this work.

1.3. Theoretical descriptions of the electron capture
spectrum in 163Ho

Alvaro De Rújula proposed to determine neutrino masses by calorimetric measure-
ment of the electron capture spectrum of 163Ho in 1981 [61]. The next year he pub-
lished a theoretical calculation of the spectral shape [62]. Years later he [63, 64] and
further authors like Amand Fäßler [65–68] or Hamish Robertson [69] developed this
calculation further with the aim of reaching higher accuracy and better agreement
with experimental data. This section describes these approaches, their differences
and results, and thereby relates them to the calculations of this work.

All these previous calculations have in common that they describe the electron cap-
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1.3. Theoretical descriptions of the electron capture spectrum in 163Ho

ture spectrum, or differential decay rate dΓ/dω, by Fermi’s golden rule [19]

dΓ
dω

∝ (Q−ω)
3

∑
i=1
|Uei|2

√
(Q−ω)2 −m2

νi ∑
f

γ f

∣∣∣〈 f |∑j ψj(R)ej|g〉
∣∣∣2(

ω− E f
)2

+
γ2

f
4

. (1.1)

The Q-value Q is the energy difference between the ground-states of Ho and Dy. ω
denotes the energy deposited in the calorimeter, i.e. the difference between Q and the
energy of the created neutrino. Together with the PMNS matrix U and the masses mνi
of the neutrino mass-eigenstates, which will be introduced in section 2.3, they form
the neutrino phase-space factor in front of the sum over all final states | f 〉 of the Dy
daughter atom. It has been assumed that every final state contributes to the spectrum
with a lorentzian peak of width γ f at energy E f . These latter two parameters are
usually taken from experimental data, which is the first difference compared to this
work, where we aim to calculate the resonant energies and line-broadenings of exci-
tations from first principles. To illustrate the discussion in the following, we present
our calculations of the electron capture spectrum in figure 1.4

Differences between the authors from above are in their selection of final states,
taken into account to the sum in (1.1), and in approximations of the matrix-elements
〈 f |∑j ψj(R)ej|g〉. Here ej denotes an annihilation operator that removes an electron
in orbital ψj(x) from the Ho ground-state |g〉. The sum runs over all orbitals from
which electron capture is most likely, which includes the 3s to 6s and 3p1/2 to 5p1/2
atomic orbitals. In these matrix-elements the wavefunctions ψ(R) of the orbitals are
evaluated at either the nuclear radius R or at the origin, depending on the choice of
the authors.

In De Rújula’s first description of the electron capture spectrum [62] he considers
only final states that involve a single hole in one of the core-orbitals {3s, ..., 6s, 3p1/2, ...,
5p1/2}. He approximates the matrix-elements of these final states 〈 f |∑j ψj(R)ej|g〉 ≈
ψ f (0) by the wavefunction, corresponding to the orbital in which the hole has been
created, evaluated at the origin. In this framework he calculates the relative intensi-
ties of the major resonances and draws conclusions on the sensitivity of calorimetric
electron capture experiments with respect to Q-value and neutrino masses.

In a paper from 2014 [65] Amand Fäßler and coworkers calculated the spectrum
from the same set of final states, but included overlap and exchange corrections.
Therefore, they described ground- and final states by single Slater-determinants. For
each final state’s electronic configuration they ran a self-consistent, full relativistic
Dirac-Fock calculation to obtain the single particle wave-functions from which the
corresponding final state Slater-determinant was created. On this basis, they cal-
culated the matrix elements 〈 f |∑j ψj(R)ej|g〉 where the orbital wavefunctions have
been evaluated at the nuclear radius R. Apart from their claim that overlap and ex-
change corrections ”have a large effect on the form of the spectrum” [65], the au-
thors make the important remark, that configuration interaction leads to additional
satellite-structures. This is intensively studied in chapter 4 of this work.

Since satellite-structures were observed in experiment on top of the high energy
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Figure 1.4.: Calculated electron capture spectrum of 163Ho with different levels of the-
ory described in chapter 4 (blue) and chapter 5 (orange). The most dom-
inant resonances belong to excitations of single holes which have been
created by electron capture from the labeled orbitals. Relaxation processes
can scatter these holes and create smaller resonances corresponding to fi-
nal states with holes in different orbitals like 4d for instance. The satellite
structure to the right of 4s corresponds to final states with two core holes
in 4p4d, created by Coster-Kronig transitions subsequent to electron cap-
ture. Literature refers to these peaks as shake-up features. While the blue
curve assumes lorentzian broadening of all resonances, the orange curve
includes shake-off effects – or Auger-Meitner transitions, which lead to
energy dependent, asymmetric line-broadening. Taken from [3].

tail of the N1 (4s) resonance (compare figure 1.4), they necessarily had to be included
in the calculations. Thus Robertson [69] and Fäßler [66] added final states with two
holes in core shells to the sum in (1.1) and even states with three core-holes [67].
The latter publication concluded that three-hole states have a negligible impact on
the spectral shape; the former two publications demonstrated that two-hole states
cannot be omitted.

Two problems emerged. First, the predicted two-hole excitations of Robertson [69]
and Fäßler [66] disagree as was shown in figure 1 of the latter reference. Second, nei-
ther of the calculations were able to explain the observed N1 (4s) satellite-structure.
As shown in figure 1.4 and explained in chapter 4, these satellites are due to final
states with two holes – one in 4p and one in the 4d shell – which emerge from the
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1.3. Theoretical descriptions of the electron capture spectrum in 163Ho

scattering of one 4d electron into the 4s hole created by electron capture and simul-
taneously scattering a 4p electron into the 4f valence shell. The above publications
strongly underestimated the intensities of these final states or did not include them
and hence could not explain the satellite-structure.

The cause for the discrepancy between the two calculations themselves may be in
the different approaches used to calculate the matrix elements of the two-hole states
in (1.1). Robertson used an approximation within the shake-up and shake-off theory
of Carlson and Nestor [70]. Fäßler on the other hand calculated the matrix-elements
using single Slater-determinants obtained analogously to [65] as outlined above.

The latter approach becomes problematic if ground- or final state are not repre-
sentable by a single Slater-determinant. Since this is the case for the Ho ground-state
and many excited Dy states, as will be discussed in chapter 3 and 4, we here briefly
outline this problem.

Consider two atomic configurations of electrons Ωg and Ω f , where the former is a
set of N quantum numbers describing state |g〉 = Πn∈Ωg e†

n|0〉 and the latter contains
N − 1 quantum numbers describing state | f 〉 = Πn∈Ω f e

†
n|0〉 after electron capture.

These states are described in second quantization where e†
n creates an electron with

quantum numbers n out of the vacuum |0〉. The matrix-element then yields

|〈 f |∑
j

ψj(R)ej|g〉|2 =

{
|ψi(R)|2 if ∃ i ∈ {3s, ..., 6s, 3p1/2, ..., 5p1/2} : Ω f ∪ {i} = Ωg
0 otherwise

(1.2)
Therefore, all matrix-elements where the configuration Ω f differs in more than one
quantum number from Ωg vanish. Hence, two-hole states can only contribute to
the spectral shape if either | f 〉 = Πn′∈Ω′f

e†
n′ |0〉 is given by a different basis of single-

particle wavefunctions which are not orthogonal to the basis in which |g〉 is given,
or | f 〉 and |g〉 are linear combinations of different configurations in the same basis.
The former solution is employed by [66], but as soon as ground- or final states are not
single Slater-determinant representable, this can lead to errors and hence the states
have to be of multi-configurational nature.

So far only final states have been included where electrons were in bound orbitals.
However, De Rújula [63, 64] and Fäßler [68] also considered the possibility of Auger-
Meitner, or shake-off processes, where, during atomic relaxation after electron cap-
ture, electrons are scattered into unbound states, leaving an ionized atom behind. De
Rújula uses an approximation analogous to [69, 70] for the calculation of the matrix
elements 〈 f |ej|g〉 for final states with two core-holes and one electron either shaken
up to a previously unoccupied bound level, or shaken off into the continuum. In this
framework he concludes that ”theoretical predictions of the two-hole probabilities do
not agree with the data” [64]. Especially the N1 (4s) satellite-structure cannot be re-
produced, probably because the configurations with two holes in 4p and the 4d shell
are missing. Furthermore, he remarks that his calculations predict a M1 N4/5 peak
(one hole in 3s and one in 4d) which is not seen in experiment.

Fäßler [68] discusses the sensitivity of shake-up probabilities in the framework
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1. Introduction

used by De Rújula, and comes to the conclusion that small errors in single-particle
wavefunctions may lead to an overestimation of peak heights by two orders of mag-
nitude. This might explain the too high intensity of th M1 N4/5 peak calculated by De
Rújula, however, our results from [1] and chapter 4 show that configuration interac-
tion also has an effect on the intensities of two-hole states, which is not negligible.

Another conclusion of Fäßler [68] claims that the contribution of final states where
one electron is no longer bound (i. e. has been shaken off) does not affect the spectral
shape significantly ”and thus can probably not affect the determination of the electron
neutrino mass” [68].

In frameworks that treat states as single Slater-determinants and neglect configura-
tion interaction, this may be a valid conclusion. However, in chapter 5 we will show
that Auger-Meitner (i. e. shake-off) processes do not only significantly modify the
spectral shape, but also increase intensity in the end point region of the spectrum,
which implies higher statistics for the determination of the neutrino mass. Further-
more, we will see that these processes determine the shape of the wings of the reso-
nances, thereby allowing for a better understanding of the spectral shape in the end
point region. As an outlook this is already presented in figure 1.4 and can be noticed
when comparing the different line-shapes of the two spectral curves.

Note that in this work we are not pursuing the above approach (1.1), but are cal-
culating response functions as described in section 2.1. However, there we will show
that both approaches are equivalent and we can map one approach onto the other.
Differences emerge from different approximations made to calculate the spectrum.
This justifies the above comparisons between the work of different authors and ours.

In summary the previous work of different authors described above relies on find-
ing a set of final states that most accurately describe the spectral shape and to opti-
mize the single particle wave functions which serve as a basis for the single Slater-
determinant final states. The single-particle basis used in this work is described in
section 2.4.1. We will go beyond the single Slater-determinant approximation and in-
clude configuration interaction. In this framework, described in chapters 2 - 5, there
will be no need to select final states and perform the corresponding sum in (1.1), as
our algorithm automatically includes the most dominant electronic configurations,
which is outlined in sections 2.1 and 3.2.

1.4. Electron capture in medicine

Besides chemical therapy and surgery, radio therapy is a widely used tool in can-
cer treatment. Different types of radiation are used to destroy cancerous cells via
DNA double strand breaking (DSB). Isotopes that undergo nuclear decay via elec-
tron capture have promising properties to be used as radiotherapeutic agents [54–56].
They can be transported into cancerous cells via carrier molecules such that they de-
posit the energy released during decay in the nucleus of the cell, thereby breaking the
DNA double strand and killing the tumor. The deposited energy is often released via
Auger-Meitner electrons, created in relaxation processes subsequent to the nuclear
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1.4. Electron capture in medicine

decay. These have low kinetic energies and hence a large stopping power in tissue.
Thus, almost all of their energy is deposited within the cancerous cell reducing dam-
age within healthy tissue. The dose of deposited energy in the tumor can be up to
four orders of magnitude higher than from an external radiation source [57].

The dose itself is an important quantity when studying biological effects due to
radiation in a cell. Hence, computational models have been developed to calculate
such doses for a large variety of electron capture isotopes [58–60]. These rely, amongst
others, upon methods from atomic, molecular and condensed matter physics to de-
termine transition rates, excitation energies and the Auger electron yield.

The methods described in chapters 2 - 5 are developed to determine the differential
decay rate of electron capture in 163Ho, which is insensitive to whether the deposited
energy comes from Auger electrons or X-rays. However, these methods are equally
well suited to calculate the Auger electron yield and excitation energies for other elec-
tron capture isotopes. Hence, besides the search for the neutrino masses this work can
also be motivated from the need of accurate models and algorithms in radio therapy.
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2. Theory of electron capture
spectroscopy

In this chapter the mathematical framework is described which forms the basis of this
thesis. An expression for the electron capture spectrum is derived in section 2.1 and
the Hamiltonian governing the dynamics of electron capture and atomic de-excitation
is introduced in section 2.2. As neutrino masses and mixing of mass eigen-states
are central for the endpoint region of the electron capture spectrum, we discuss one
possible way of extending the standard model of particle physics to include massive
neutrinos and how this leads to oscillations in section 2.3. Before we can present
the final form of the spectral function used in numerical calculations and discuss
how mixing of mass eigen-states affects the spectral shape in section 2.5, we express
the Hamiltonian on a basis of Kohn-Sham orbitals, which is suitable for numerical
implementation, in section 2.4.

Throughout this thesis we will use natural units such that the speed of light c
Planck’s quantum h̄ and the vacuum permittivity ε0 are unity.

2.1. Calculating spectra: Fermi’s golden rule vs Kubo’s
formula

As described in the introduction, electron capture experiments are measuring the
differential electron capture nuclear decay rate dΓ

dω (ω). It is defined as the number
of decays per time dΓ(ω) within a window [ω, ω + dω] of deposited energy in the
micro-calorimeter divided by window size dω. Thus, ω is the excitation energy of
the daughter atom after electron capture, or to put it differently, the difference be-
tween the totally released energy Q and the neutrino’s energy Eν.

Electron capture is governed by weak interaction HW . Treating it as perturbation,
there are two common ways to calculate the differential decay rate. The first uses
Fermi’s golden rule [19] where the asymptotic decay rate for a transition from the Ho
ground-state ΨHo to a final state Ψ f is given by

RΨHo→Ψ f ∝ δ(E f − E0)
∣∣〈ΨHo|HW |Ψ f (E f )〉

∣∣2 . (2.1)

The Dirac δ(E f − E0) ensures that initial ground-state energy E0 and final state energy
E f are conserved. The final state Ψ f contains a neutrino, the nuclear wave-function
of the daughter atom and its many-body electronic wave-function. To obtain the
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2. Theory of electron capture spectroscopy

experimentally measured spectrum, we have to sum over all final states, where the
excitation energy of the daughter atom lies within a window [ω, ω + dω] of deposited
energy in the micro-calorimeter

dΓ
dω

∝ ∑
Ψ f

δ(ω− EDy∗)RΨHo→Ψ f (2.2)

where EDy∗ = E f −Eν denotes the excitation energy of the daughter atom. Final states
can be expressed as direct products Ψ f = ΨDy∗ ⊗Ψν, since the neutrino interacts via
weak force only and is consequently to very good approximation a free particle in the
final state. Hence, we separate the sum over final states in neutrino states and atomic
states

dΓ
dω

∝ ∑
Ψν

δ(Q− w− Eν) ∑
ΨDy∗

δ(ω− EDy∗)
∣∣〈ΨHo|HW |Ψ f (E f )〉

∣∣2 . (2.3)

The sum over the neutrino final states ∑Ψν
involves an integral over the neutrino’s

momentum, or equivalently its energy Eν. Performing this integral and using a
lorentzian representation of the second δ-function directly results in (1.1). As men-
tioned earlier, we can choose a second way to calculate the differential decay rate,
namely via Kubo’s formula. To show that these approaches are equivalent, we now
recast the above expression until we arrive at the latter.

Considering that the second sum runs over a complete basis of eigenfunctions of
the Hamiltonian H which governs the dynamics of the Dy daughter atom, we can
express it as

∑
ΨDy∗
〈ΨHo|HW |Ψ f (E f )〉δ(ω− EDy∗)〈Ψ f (E f )|HW |ΨHo〉 = (2.4)

〈ΨHo|(H′W)†δ(ω− H)H′W |ΨHo〉 .

Here we used a representation of unity 1 = ∑ΨDy∗ |ΨDy∗〉〈ΨDy∗ | and that Ψ f = ΨDy∗⊗
Ψν. Hence, we introduced the shorthand notation H′W = (1⊗ |Ψν〉〈Ψν|)HW . We can
further exploit

1
ω + i0

≡ lim
η→0+

1
ω + iη

= P 1
ω
− iπδ(ω) (2.5)

where P denotes Cauchy-Principal value. Therefore, the differential decay rate reads

dΓ
dω

∝ −Im ∑
Ψν

δ(Q− w− Eν)〈ΨHo|(H′W)† 1
ω + i0− H

H′W |ΨHo〉 . (2.6)

The above equation (2.6) contains the Fourier transform of a transition rate and
from Quantum Field Theory we know that these violate causality [71]. To cure this
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2.2. An effective Hamiltonian

problem one subtracts a second propagator

dΓ
dω

∝ −Im ∑
Ψν

δ(Q− w− Eν) (2.7)

×
(
〈ΨHo|(H′W)† 1

ω + i0− H
H′W |ΨHo〉 − 〈ΨHo|H′W

1
ω + i0 + H

(H′W)†|ΨHo〉
)

.

The term in brackets is precisely the Fourier-transformed causal response function
obtained in linear response theory from Kubo’s formula [74] for an instantaneous
decay via electron capture

GR(t) = −iΘ(t)〈ΨHo|
[
(H′W)†(t), H′W(0)

]
|ΨHo〉 . (2.8)

This shows that, as mentioned in the beginning of this section, there are actually
two equivalent ways of calculating the differential decay rate, i.e. the electron capture
spectrum. Approach (2.7) using the causal response function has another advantage
besides not violating causality as compared to Fermi’s golden rule (2.3). The latter in-
volves the evaluation of an infinite sum ∑ΨDy∗ over excited final states of the daugh-
ter atom. These involve a countably infinite number of electronic configurations in
bound states as well as an un-countably infinite number of configurations involving
unbound states each of which carry an infinitesimal spectral weight contributing to
the differential decay rate. This difficulty has now been reduced to evaluating the
Hamiltonian’s resolvent (z − H)−1 slightly above the real axis, which can be done
with numerical methods described in chapter 3.

Hence, we will use (2.7) for our calculations. In the next section we will study the
Hamiltonian that governs the dynamics of electron capture and subsequent relax-
ation of the daughter atom.

2.2. An effective Hamiltonian

An electrically neutral 163Ho atom consists of 67 electrons and protons each as well as
96 neutrons. In order to do an ab initio calculation of the EC spectrum in Ho one has
to consider all these particles and their mutual interactions. Although these interac-
tions are well known and described by the electro-weak sector of the standard model
of particle physics, the many-body-aspect and quantum mechanical nature of such
systems hinder a solution. It is therefore essential to obtain an effective Hamiltonian
which allows for a solution of the quantum many-body problem, but still governs
all relevant dynamics such that quantitative predictions and comparisons to exper-
imental data are possible. In this section we discuss such an effective Hamiltonian
which will be used throughout this thesis. We introduce Dirac’s Hamiltonian HD,
which describes kinematics of fermions. Dynamics are included in a low-energy ef-
fective electron-electron interaction Ueff containing Coulomb repulsion and static, un-
retarded Breit interaction. Attraction between electrons and the nucleus is accounted
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2. Theory of electron capture spectroscopy

for in the Coulomb potential VC and the electron capture process is governed by an ef-
fective weak-interaction Hamiltonian HW . See [95] for a good introduction to electro-
weak interactions in the standard model from which the effective Hamiltonians in
this section can be derived.

Weak interaction conserves charge but not particle number. Hence, electron cap-
ture is a process that changes the numbers of electrons, protons, neutrons and neu-
trinos. It is therefore natural to use second quantization to formulate the many-body
problem with the help of fields, which can be expanded on creation and annihilation
operators.

In this formulation the kinematics of the electrons are encoded in Dirac’s Hamilto-
nian [71]

HD =
∫

ψ†
e (x)

(
−iγ0γk∂k + γ0m

)
ψe(x)d3x . (2.9)

ψe(x) is a four component Dirac-spinor field whose excitations are electrons. The
partial derivative with respect to the k-th spatial coordinate xk is denoted ∂k, m is
the electron’s mass, i the imaginary unit. Sum convention is implied and (γµ)µ=0...3
denote a representation of Dirac’s matrices, which satisfy the anti-commutation rela-
tion {γµ, γν} = ηµν with η the Minkowsky metric with signature (+,-,-,-). For explicit
calculations in later sections we choose Dirac’s representation of the γ-matrices

γ0 =

(
12 0
0 12

)
γk =

(
0 σk

−σk 0

)
. (2.10)

12 is the two-dimensional identity matrix and σk are Pauli’s matrices.
Dirac’s Hamiltonian (2.9) describes non-interacting, relativistic fermions with mo-

mentum k and dispersion relation Ek =
√

k2 + m2. However, all fermions involved
in electron capture are interacting via the electro-weak force which is mediated by
gauge bosons. During electron capture a charged W± boson is exchanged between
proton and electron, which can be expressed with a tree-level Feynman-diagram

p+ n

W±

e− νe

= −i
∫ ηµν−qµqν/m2

W
q2−m2

W+i0
e−iq(x1−x2) d4q

(2π4)
≡ GW

µν(x1 − x2) [72].

(2.11)
The mass of the W± gauge boson is mW = 80.379± 0.012 GeV [90] which is much
larger than the electron capture Q-value of 2.838± 0.014 keV [2]. Hence, for the pur-
pose of calculating the electron capture spectrum, the low energy regime q2 � m2

W is
most relevant in which the propagator GW

µν(x1 − x2) becomes proportional to Dirac’s
δ-distribution GW

µν(x1 − x2) ∝ ηµνδ(x1 − x2). Thus, the effective weak interaction is
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point-like and can be expressed by [93]

HW =
GW√

2

∫
ψ̄νe(x)γ

µ
(

1− γ5
)

ψe(x)ψ̄n(x)γµ

(
1− λγ5

)
ψp(x)d3x + h.c. (2.12)

As the weak interaction does not couple to right-chiral (also called right-handed) lep-
tons, the projection operator (1 − γ5)/

√
2 enters the above expression, with γ5 =

iγ0γ1γ2γ3. This operator projects onto the sub-space of left-chiral leptons. For pro-
tons and neutrons the situation is different. There the weak interaction has different
strengths of vector GV and axial coupling GA [93]. This is accounted for by introduc-
ing the phenomenological parameter λ ≡ |GA/GV | = 1.250± 0.009 [94].

The weak interaction Hamiltonian HW (2.12) is responsible for creation of an elec-
tronic hole in the Ho ground-state, creating an electron neutrino and transforming a
proton of the Ho nucleus into a neutron of the Dy daughter nucleus during electron
capture. The subsequent relaxation processes, that determine intensities and posi-
tions of spectral resonances, are governed by electromagnetic interaction which is
mediated by photons and can also be expressed in terms of a similar tree-level Feyn-
man diagram

e− e−

γ

e− e−

= −i
∫ ηµν

q2+i0 e−iq(x1−x2) d4q
(2π4)

≡ Gγ
µν(x1 − x2) [71].

(2.13)

Here Gγ
µν(x1 − x2) describes the propagation of a mass-less photon, leading to a dif-

ferent interaction in the low-energy regime as compared to (2.12). In this regime the
propagator becomes Gγ

µν(x1− x2) ∝ ηµν
δ(t1−t2)
|x1−x2| [71] such that one obtains an effective

interaction

Ueff =
1
2

∫
ψ̄e(x1)γ

µψe(x1)
α

|x1 − x2|
ψ̄e(x2)γµψe(x2)d3x1d3x2 . (2.14)

The fine-structure constant is denoted by α = e2

4πε0h̄c . As opposed to the weak interac-
tion, the above expression contains both interacting left- and right-chiral particles on
equal footing. The effective electro-magnetic interaction includes Coulomb and un-
retarded Breit-interaction. The former will become especially important for satellite-
features in the EC spectrum. The latter only yields minor corrections to the spectrum
as discussed in [1].

Note further that (2.14) contains a non-physical self-interaction of the electrons at
x1 = x2 where the potential diverges. To remove this divergent self-interaction, we
expand (2.14) on atomic orbitals in section 2.4.3 and re-order creation and annihilation
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2. Theory of electron capture spectroscopy

operators. This expansion also has the advantage that its numerical evaluation is
efficient.

For the electro-magnetic interaction between bound electrons and protons in the
nucleus we can use the same expression as in (2.14) and further simplify it. In 163Dy
nuclear excitation energies are far above the Q-value. Hence, neither the EC process
nor subsequent relaxation will excite the nucleus. Thus we can treat the nucleons
as being always in their Ho/Dy nuclear ground-state. Furthermore, the electronic
wavelengths will largely exceed the protons’ wavelengths such that we can express
the effective electron-proton interaction by the well known Coulomb potential

VC = −α
∫

ψ†
e (x)

Z
|x|ψe(x)d3x (2.15)

where Z =
∫

ψ†
p(x)ψp(x)d3x is the total number of protons.

Within these approximations the effective Hamiltonian that governs electron cap-
ture and subsequent relaxation dynamics reads

Heff = HD + VC + Ueff + HW + Hν . (2.16)

It includes the kinematics of the electrons in terms of Dirac’s Hamiltonian HD (2.9),
the Coulomb potential VC (2.15) of the nucleus, an effective, inter-electronic, electro-
magnetic interaction Ueff (2.14) and the weak-interaction HW (2.12). The Hamiltonian
Hν for massive neutrinos cannot be deduced from the standard model of particle
physics, since only left-chiral neutrinos are present. In the next section we discuss one
possible extension of the standard model that includes three massive Dirac-neutrinos.
However, further extensions exist that are consistent with current observations [96].

2.3. Neutrino masses and oscillations

In the standard model of particle physics there are three flavors {e, µ, τ} of mass-
less, left-chiral neutrino fields corresponding to electron-neutrino, muon-neutrino
and tauon-neutrino respectively [95,96]. Due to their masslessness, the energy-eigen-
values of differently flavored, non-interacting neutrinos with common momentum
are degenerate. Hence, oscillations between different flavors are impossible and
one is forced to go beyond the standard model to describe experimentally observed
neutrino-flavor-oscillations. The most straight-forward way to do this is to include
right-chiral neutrino fields and a Yukawa-coupling to the Higgs-doublet via a flavor-
non-diagonal matrix. After spontaneous symmetry-breaking this adds a mass-matrix
Mll′ to the Hamiltonian of neutrinos, thereby mixing different neutrino-flavors

Hν = ∑
l,l′∈{e,µ,τ}

∫
ψ̄νl(x)

(
−δll′ iγµ∂µ + Mll′

)
ψνl′ (x)d3x . (2.17)

Here, we assumed that M is hermitian and thus we can diagonalize it by a uni-
tary transformation UMU† = diag(m1, m2, m3), where U is the Pontecorvo-Maki-
Nakagawa-Sakata matrix [97]. Introducing the fields ψνa(x) = ∑l∈{e,µ,τ}Ualψνl(x) we
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2.3. Neutrino masses and oscillations

obtain a mass-diagonal Hamiltonian for free neutrinos

Hν =
3

∑
a=1

∫
ψ†

νa(x)
(
−iγ0γk∂k + γ0ma

)
ψνa(x)d

3x . (2.18)

This describes three massive, fermionic fields which extremize action when obeying
Dirac’s equation (i/∂ − m)ψ = 0. Thus we can expand the fields in terms of plane
waves times creation and annihilation operators

ψνa(x) =
1
2

∑
s=− 1

2

∫
ua(p, s)νa(p, s)e−ipx + va(p, s)ν̄†

a (p, s)eipxd3p p0 =
√

p2 + m2
a .

(2.19)
The operator νa(p, s) is an operator that annihilates a neutrino in mass-eigenstate a
with four momentum p and spin s. ν̄†

a (p, s) creates an anti-neutrino respectively. The
four-component spinors ua(p, s) and va(p, s) obey (γµ pµ−ma)u = 0 = (γµ pµ + ma)v
[71].

From the above expression we can directly read off the time evolution of a non-
interacting flavor eigen-state

|νe, p, t = 0〉 =
3

∑
a=1

Uaeν
†
a (p)|0〉 ⇒ |νe, p, t〉 =

3

∑
a=1

Uaeei
√

p2+m2
at|νa, p〉 . (2.20)

As the flavor eigenstates are not eigenstates of the non-interacting neutrino Hamilto-
nian (2.18), one observes oscillations between neutrino flavors.

Let’s assume during the CNO cycle of the sun an electron neutrino is created at
t = 0 in a flavor eigenstate. We can ask how probable it is to detect such neutrinos
at t > 0 via the channel νe + n → p+ + e−. Of course, this depends on the neutrino
capture probability of the detector material, but more importantly it also depends on
the probability that the neutrino can be found to be in the electron-flavor eigenstate

|〈νe, p, t = 0|νe, p, t〉|2 =

∣∣∣∣∣ 3

∑
a=1
|Uae|2 e−i

√
p2+m2

at

∣∣∣∣∣
2

(2.21)

=
3

∑
a,b=1
|Uae|2 |Ube|2 e−i

(√
p2+m2

a−
√

p2+m2
b

)
t .

Expanding the exponent for small neutrino masses√
p2 + m2

a −
√

p2 + m2
b ≈

m2
a −m2

b
2|p| ≡ ∆m2

ab
2|p| (2.22)

reveals an oscillation of the probability with frequency ∆m2
ab

2|p| [98]. Hence, the detection
probability of a neutrino in an electron-flavor eigenstate depends on the time differ-
ence between creation and detection or equivalently the distance between source and
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2. Theory of electron capture spectroscopy

detector. Thus, in the example of solar neutrinos from the CNO cycle the electron-
neutrino flux detected on earth is reduced compared to the predicted flux close to its
origin. The total neutrino-flux however is conserved due to unitarity of the PMNS
matrix which reflects that the neutrino oscillates between different flavors. These two
observations were made by SNO [28] as mentioned in the introduction and they veri-
fied neutrino oscillations. The frequency of these oscillations would vanish if all neu-
trino mass-eigenvalues were degenerate. Hence, from observations one concludes
that at least two neutrino masses are different from zero [92].

Note that (2.20) only approximately describes the state of the created neutrino at
t = 0 [73]. The reason for this can be found in the weak Hamiltonian (2.12) which in
our example governs the creation of the electron neutrino. On the basis of massive
neutrino fields expression (2.12) reads

HW =
GW√

2

3

∑
a=1

Uae

∫
ψ̄νa(x)γ

µ
(

1− γ5
)

ψe(x)ψ̄n(x)γµ

(
1− λγ5

)
ψp(x)d3x + h.c.

(2.23)
where ∑3

a=1 Uaeψ
†
νa creates the electron neutrino. In terms of creation and annihilation

operators it can be expressed as

3

∑
a=1

Uaeψ
†
νa(x) = ∑

a,s

∫
u†

a(p, s)Uaeν
†
a (p, s)e−ipx + v†

a(p, s)Uaeν̄a(p, s)eipxd3p (2.24)

6= ∑
s

∫
u†(p, s)

(
∑

a
Uaeν

†
a (p, s)

)
e−ipx + v†(p, s)

(
∑

a
Uaeν̄a(p, s)

)
eipxd3p .

The last inequality demonstrates that this process does not simply involve the cre-
ation operator ν†

e ≡ ∑a Uaeν
†
a as assumed in (2.20). However, if |p| � ma ∀a the

spinor ua(p, s) becomes independent of ma and the above in-equality turns into an
approximate equality. As the neutrino masses are tiny, this approximation will be
valid in many cases. However, this subtlety can be circumvented by directly working
with the massive fields and (2.23) , which we will do in this work.

This completes the derivation of the effective Hamiltonian represented by fields. In
the next section we discuss how to represent the Hamiltonian on a Fock-space basis,
which is more suited for numerical implementation.

2.4. From fields to bound atomic orbitals

In the previous sections all operators have been expressed in terms of fields. These
are suitable for analytic calculations, for computation of scattering amplitudes and
cross-sections involving asymptotically free particles. However, the resonances of
the electron capture spectrum correspond to locally bound states and are calculated
numerically. Therefore, expanding these fields on a basis of bound atomic orbitals

ψe(x) = ∑
τ

φτ(x)eτ ψ†
e (x) = ∑

τ

φ†
τ(x)e

†
τ. (2.25)

24



2.4. From fields to bound atomic orbitals

is practical and allows for a more efficient numerical implementation. τ denotes
quantum numbers that characterize the atomic orbitals φτ(x) from which e†

τ and eτ

create/annihilate an electron. As the fields are four-component spinors, the atomic
orbitals have to be the same.

When calculating the electron capture spectrum, we need to truncate the formally
infinite sum over quantum numbers τ in the above expansion. Hence, we need to
find a basis of atomic orbitals which allows for a truncation that introduces only a
small error in the spectrum and alongside contains manage-ably few terms. One way
of finding such a basis is density functional theory (DFT) which we briefly describe
in the following.

2.4.1. Kohn-Sham orbitals as single particle basis

Density functional theory is based on two theorems found by Pierre Hohenberg and
Walter Kohn [76]. For a system of interacting electrons moving in a potential V(x)
the first theorem states that this potential is uniquely determined by the density
ρGS ≡ 〈ϕGS|ψ†

e (x)ψe(x)|ϕGS〉 of the system’s ground-state ϕGS. Thus, knowledge
of ρGS implies knowledge of the system’s Schrödinger equation and hence of the full
system itself - at least in principle.

The second theorem states that for such systems there exists a functional defined
on the space of v-representable densities ρ

E[ρ] ≡ T[ρ] +
∫

V(x)ρ(x)d3x + F[ρ] (2.26)

which has a global minimum at ρ = ρGS and its value equals the system’s ground-
state energy. A density ρ is called v-representable if and only if there is a potential
V(x) such that ρ is the ground-state density of the system of interacting electrons
moving in V(x). Mel Levy [77] showed that such a functional can be extended to
the space of N-representable densities which are those densities that can be obtained
from anti-symmetric wavefunctions of a fixed number of electrons. With this exten-
sion one could in principle minimize (2.26) if T[ρ] and F[ρ] were known. The former
denotes the kinetic energy as a functional of density and the latter represents the in-
teraction energy of the electrons. However, so far the latter is unknown and hence
one has to rely on approximations to F[ρ]. In this work we choose the approximation
developed by Perdew and Wang [78]. For an introduction and overview of further
approximations see [79].

To find the minimum of the energy functional (2.26), we set its variation to zero

δE[ρ] =
∫ (

δT[ρ]
δρ(x)

+ V(x) +
δF[ρ]
δρ(x)

)
δρ(x)d3x !

= 0 ∀ δρ(x) . (2.27)

Kohn and Sham [80] argued that this expression is similar for a system of non-inter-
acting particles moving in the effective potential Veff(x) ≡ V(x) + δF[ρ]

δρ(x) . Instead of

25



2. Theory of electron capture spectroscopy

solving (2.27) directly, one solves a one particle Schrödinger equation(
−∇

2

2m
+ Veff(x)

)
φτ(x) = ετφτ(x), (2.28)

which is called Kohn-Sham equation, and obtains the density as

ρ(x) = ∑
τ

nτ|φτ(x)|2 ∑
τ

nτ = N (2.29)

where the occupation numbers nτ ∈ {0, 1} sum to the total number of electrons N.
As Veff depends on the density, this scheme has to be self-consistent, i.e. one starts
with an estimated density, calculates Veff for this density and solves (2.28) to obtain a
new density. This procedure is repeated until some convergency criterion is reached.
Possible criteria are to stop when the change in density (2.29) or ground-state energy
(2.26) is below a given accuracy threshold. When this is reached, one does not only
have a good estimate on ground-state energy and density, but has also obtained a set
of Kohn-Sham orbitals {φτ} which spans the one-particle Hilbert-space.

In a relativistic calculation the kinetic energy term in (2.28) is of course replaced by
Dirac’s Hamiltonian

HKS φτ(x) ≡
(
−iγ0γk∂k + γ0m + Veff(x)

)
φτ(x) = ετφτ(x) . (2.30)

If Veff(x) has spherical symmetry, the Kohn-Sham Hamiltonian HKS commutes with
total angular momentum operator J = L + S such that solutions of the Kohn-Sham
equation (2.30) can be labeled by quantum numbers τ = (n, j, l, m). n denotes prin-
cipal quantum-number, j total angular momentum, l orbital angular momentum and
m is the projection of total angular momentum on the z-axis. The solutions are of the
form [75]

φτ(x) =

(
Gτ(r)Ym

jl
iFτ(r)Ym

jl̄

)
where Ym

jl =
1/2

∑
ms=−1/2

〈l, 1/2, m−ms, ms|j, m〉Ym−ms
l ξms .

(2.31)
G(r) and F(r) are radial wave-functions. They are multiplied by eigenstates of J2 and
Jz which are spin-weighted spherical harmonics Ym

jl where 〈l, 1/2, m − ms, ms|j, m〉
denote Clebsh-Gordan Coefficients, Ym−ms

l normalized spherical harmonics and ξms

are two-component spinors.
Dirac’s Hamiltonian does not commute with the orbital angular momentum oper-

ator L [75]. Instead it relates the angular momentum l̄ of the spinor’s lower part to
the upper part’s l via l̄ = l ± 1 iff j = l ± 1/2. This allows us to label orbitals with l
of the upper component, as the angular momentum of the lower component is then
uniquely defined for a given j. Therefore, relativistic particles do not have definite or-
bital angular momentum, but in the non-relativistic limit the upper component of the
Dirac-spinor dominates [75]. Hence, an interpretation of particles with definite l be-
comes possible for electrons bound in an atom. However, in section 2.4.4 we will see
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2.4. From fields to bound atomic orbitals

that the mixing of different l within one spinor has drastic effects on electron capture
probabilities.

For relativistic particles like the electron neutrino it is more natural to introduce the
quantum-number κ = −l − 1 iff j = l + 1/2 and κ = l iff j = l − 1/2. This quantum
number is conserved under Dirac’s Hamiltonian and one can infer both j and upper
component’s l of any state from it, since this information is encoded in its absolute
value and sign [75]

j =
2|κ| − 1

2
l =

{ j− 1/2 κ < 0
j + 1/2 κ > 0 . (2.32)

Thus, states are uniquely determined by specifying τ = (n, κ, m) and fields can be
expanded according to (2.25) using the Kohn-Sham orbitals φτ (2.31).

In this work we are using the full-potential local-orbital minimum-basis code FPLO
[81–83] to construct a basis of atomic Kohn-Sham orbitals. The many-body Hamilto-
nian is expressed in this basis as shown in the following sections.

2.4.2. Dirac Hamiltonian on a Kohn-Sham basis

The effective Hamiltonian (2.16) contains two operators HD and VC that are quadratic
in the electronic fields

HD + VC =
∫

ψ†
e (x)H(x)ψe(x)d3x where H(x) = −iγ0γk∂k + γ0m− α

Z
|x| .

(2.33)
If the fields are expanded in atomic Kohn-Sham orbitals according to (2.25), we obtain

HD + VC = ∑
ττ′
Hττ′e†

τeτ′ where Hττ′ =
∫

φ†
τ(x)H(x)φτ′(x)d

3x . (2.34)

In spherical coordinates, the angular integral in the above equation can be performed
analytically, reducing the task of computing the Hamiltonian’s matrix element to
evaluating numerically [75]

Hττ′ = δκκ′δmm′

∫
(g∗τ(r), f ∗τ (r)))

(
m− α Z

r
(

κ
r − ∂r

)(
κ
r + ∂r

)
−m− α Z

r

)(
gτ′(r)
fτ′(r)

)
dr . (2.35)

We introduced Kronecker’s δκκ′ as well as g(r) = rG(r) and f (r) = rF(r) which
are zero at the origin allowing for a numerically stable implementation of the radial
integral.

2.4.3. Mutual electronic interactions on a Kohn-Sham basis

The effective electro-magnetic interaction (2.14) can be expressed as

Ueff =
1
2

∫
Jµ(x1)

1
|x1 − x2|

Jµ(x2)d3x1d3x2 ≡ UC + UB (2.36)
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where the four-current
Jµ(x) =

e√
4π

ψ†
e (x)γ

0γµψe(x) (2.37)

has been introduced. The zeroth component J0 ∼ eρ(x) corresponds to charge den-
sity and the spatial components Jk ∼ evk resemble a charged current with velocity
v. Hence, the effective interaction splits into a density-density interaction UC of or-
der e2ρ2 and a current-current interaction UB of order e2v2 [84]. While the former
resembles Coulomb interaction

UC =
1
2

∫
ψ†

e (x1)ψe(x1)
α

|x1 − x2|
ψ†

e (x2)ψe(x2)d3x1d3x2 , (2.38)

the latter is known to be the un-retarded part of Breit interaction [84]

UB =
1
2

∫
ψ†

e (x1)α
kψe(x1)

α

|x1 − x2|
ψ†

e (x2)αkψe(x2)d3x1d3x2 (2.39)

where αµ = γ0γµ. In a non-relativistic regime (v/c)2 � 1. Hence, the contribution
from Coulomb interaction UC � UB will dominate Breit interaction. From numerical
calculations for Ho, we also see that the latter only shifts atomic excitation energies
by ∼ 0.5 eV which is an order of magnitude below the accuracy we can currently
reach with the methods detailed in chapter 3. This confirms the assumption that
Breit interaction is negligible for the moment and hence we will focus on Coulomb
interaction in the remainder of this section.

As the Coulomb potential is singular at the origin, the above integral is best eval-
uated in a spherically symmetric basis. Hence, we follow the same route as in the
previous section and expand the fields in atomic Kohn-Sham orbitals.

UC =
1
2 ∑

τ′1τ′2τ1τ2

Uτ′1τ′2τ1τ2
e†

τ′1
e†

τ′2
eτ2eτ1 (2.40)

Uτ′1τ′2τ1τ2
=
∫

φ†
τ′1
(x1)φτ1(x1)

α

|x1 − x2|
φ†

τ′2
(x2)φτ2(x2)d3x1d3x2 . (2.41)

Here we removed the aforementioned un-physical self-interaction by bringing cre-
ation and annihilation operators into normal order. The two-particle matrix-elements
Uτ′1τ′2τ1τ2

contain two radial and two angular integrals. The angular integrals can be
calculated analytically with the help of Wigner-Eckart’s theorem [85]

Uτ′1τ′2τ1τ2
=

∞

∑
K=0

K

∑
M=−K

(−1)M+j′1+j′2−m′1−m′2

(
j′1 K j1
−m′1 −M m1

)(
j′2 K j2
−m′2 M m2

)
×〈κ′1||YK||κ1〉〈κ′2||YK||κ2〉 FK(τ

′
1, τ′1, τ1, τ2) . (2.42)

The expressions in large brackets denote Wigner-Three-J symbols [86] and 〈κ′1||YK||κ1〉
denotes a reduced matrix-element that only depends on κ′1, K and κ1. It vanishes if
l′1 + l1 + K is odd and otherwise yields [85]

〈κ′1||YK||κ1〉 = (−1)j′1+1/2
√
(2j′1 + 1)(2j1 + 1)

(
j′1 j1 K
−1/2 1/2 0

)
. (2.43)
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The coefficient FK(τ
′
1, τ′1, τ1, τ2) is called relativistic Slater-integral and has the form

[85]

FK(τ
′
1, τ′1, τ1, τ2) =

∫ min(r1, r2)
K

max(r1, r2)K+1

(
g∗τ′1(r1)gτ1(r1) + f ∗τ′1(r1) fτ1(r1)

)
(2.44)

×
(

g∗τ′2(r2)gτ2(r2) + f ∗τ′2(r2) fτ2(r2)
)

dr1dr2 .

To evaluate these integrals numerically, two quadrature schemes have been imple-
mented. The first uses midpoint-rule [88] which allows for fast evaluation of multi-
ple integrals. The second scheme has been developed by Yanghui Qiu and Charlotte
Froese Fischer [89]. It achieves much higher accuracy than the midpoint-rule.

2.4.4. Weak Hamiltonian

So far we constructed the Hamiltonian describing the mutual electronic interactions
between relativistic electrons moving in a Coulomb potential determined by the nu-
clear charge of an atom. To describe the electron capture spectrum, the final missing
ingredient is the part of the Hamiltonian that governs the electron capture process
itself. In the case of 163Ho the energy released during this decay is about Q = 2.838
keV [2]. Hence, to very good approximation we can use the effective, low-energy
Hamiltonian for weak interactions (2.23) derived in section 2.2

HW =
GW√

2

3

∑
a=1

Uae

∫
ψ̄νa(x)γ

µ
(

1− γ5
)

ψe(x)ψ̄n(x)γµ

(
1− λγ5

)
ψp(x)d3x + h.c.

(2.45)
Similar to the previous sections we expand the fields according to (2.25). However,
while the electrons are expanded on bound atomic orbitals, the created neutrino is in
an unbound state. Hence we employ an expansion of the neutrino’s radial wavefunc-
tion on spherical Bessel functions

gq,κ,a(r) = Na r jl(qr) (2.46)

fq,κ,a(r) = Na sign(κ)
q

Eq + ma
r jl̄(qr) (2.47)

Na =

√
2q√

π

[
1 +

(
q

Eq+ma

)2
] Eq =

√
q2 + m2

a (2.48)

jl(qr) denotes the l-th spherical Bessel function as function of neutrino absolute mo-
mentum q and distance from the origin r. Eq is the energy dispersion for a relativistic
particle of mass ma and the normalization Na is chosen such that∫

gq,κ,a(r)gp,κ,a(r) + fq,κ,a(r) fp,κ,a(r)dr = δ(q− p) . (2.49)
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2. Theory of electron capture spectroscopy

Therefore, we can describe a single-particle neutrino mass-eigenstate by quantum
numbers τν ≡ (q, κν, mν, a), where the index a specifies the neutrino’s mass-eigenstate.
The sum over neutrino quantum numbers reads ∑τν

≡ ∑3
a=1 ∑κν,mν

∫ ∞
0 q2dq. In this

basis the Hamiltonian is

HW =
GW√

2
∑

τnτpτντe

Uaen†
τn ν†

τν
eτe pτp

∫
φ†

nγ0γµ
(

1− λγ5
)

φpφ†
νγ0γµ

(
1− γ5

)
φed3x + h.c.

(2.50)
The creation operators n†

τn and ν†
τν

create a neutron and neutrino in a state with quan-
tum numbers τ. The annihilation operators pτp and eτe annihilate a proton and elec-
tron respectively. Thus, the Fock-space on which these operators act can be divided
into four disjoint sectors corresponding to the different particle species.

We want to span the sectors of the nucleons by a set of nuclear many-body states
|ψi

nuc, Ii, Mi〉, where Ii denotes total nuclear angular momentum and Mi the corre-
sponding projection on the z-axis. Therefore, we multiply the weak Hamiltonian by
unity 1 = 1lep ⊗∑nuc |ψnuc, I, M〉〈ψnuc, I, M| from left and right. ∑nuc ≡ ∑ψnuc,I,M ab-
breviates the sum over all quantum numbers characterizing the nuclear many-body
state. Finally, we apply the Wigner-Eckhart theorem [154] to separate angular and
radial dependencies, such that the Hamiltonian reads

HW = ∑
τν,τe

Uae ∑
nuci

∑
nuc f

∑
JM

(−1)
jν−mν+I f−MI f

+M

× p
Ii I f
J (τν, τe)

(
I f J Ii
−MI f −M MIi

)(
jν J je
−mν M me

)
× ν†

τν
eτe ⊗ |ψ

f
nuc, I f , M f 〉〈ψi

nuc, Ii, Mi| . (2.51)

The terms in brackets denote Wigner-3j symbols [86] and assure that total angular
momentum is conserved in the electron capture process. A detailed derivation of this
expression can be found in appendix A, where the precise form of the electron capture

probability p
Ii I f
J (τν, τe) is also given. While its structure is quite complex in general,

we can make some approximations for low energy processes as in the case of electron
capture in Ho.

The 163Ho nucleus has an average charge radius rnuc = 5.1907 ± 0.0313 fm [91].
Typical wavelengths of electrons bound in an atom are a few Ångström. Hence,

relative capture probabilities, i.e. p
Ii I f
J (τν, τe)/p

Ii I f
J (τν, 1s1/2) ≡ pJ(τν, τe), are rather

insensitive to the actual nuclear wavefunction. Therefore, we approximate these as

pJ(τν, τe) ≈ (2.52)∫ rnuc

0
(gτν gτe + fτν fτe) 〈Yjνlν ||YJ ||Yjele〉 − i (gτν fτe − fτν gτe) 〈Yjνlν ||YJ ||Yje l̄e〉dr .

The terms in brackets denote reduced matrix elements and are described in appendix
A. When calculating the spectral function in the next section, we will make use of
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this approximation. However, we can already infer which electrons are most likely
captured. Since radial wavefunctions with s-orbital character have a larger amplitude
within the nuclear charge radius as compared to other orbitals, the capture probabil-
ities of the former will be most dominant. These include the large parts g(r) of s1/2
and the small parts f (r) of p1/2 orbitals. Here it becomes important to treat electrons
fully relativistically and incorporate the mixture of different orbital angular momenta
l in the components of a Dirac-spinor. In a classical or semi-relativistic frame-work,
where the small part f (r) is neglected, capture from p shells would be heavily sup-
pressed as they have little overlap with the nucleus.

The orbital wave-functions of electrons with j > 1
2 do not have components with

s-orbital character and consequently a small relative capture-probability. This is the
reason why in this work and in the work of others, described in section 1.3, electron
capture is restricted to s1/2 and p1/2 orbitals only.

2.5. Spectral function

We derived the general form of the differential decay rate (2.7) in section 2.1 and
obtained expressions of the Hamiltonian governing the full Ho system in a form suit-
able for numerical implementation in section 2.4. Now we are putting these pieces
together and present the final form of the spectral function as used in this work.

To simplify notation we introduce the propagators

G−(ω) ≡ 〈ΨHo|(H′W)† 1
ω + i0− H

H′W |ΨHo〉 (2.53)

G+(ω) ≡ 〈ΨHo|H′W
1

ω + i0 + H
(H′W)†|ΨHo〉 (2.54)

such that the differential decay rate reads

dΓ
dω

∝ −Im ∑
τν

δ(Q− w− Eν)
(
G−(ω)− G+(ω)

)
(2.55)

where the sum ∑τν
≡ ∑3

a=1 ∑κν,mν

∫ ∞
0 q2dq runs over the neutrino’s mass-eigenstate

a, κν, angular momentum in z-direction mν and absolute momentum q. The Hamilto-
nian H ≡ HD + VC +UC is given by Dirac’s Hamiltonian (2.34) and the Coulomb op-
erator (2.40). From the derivation in section 2.1 we infer that H′W = (1⊗ |τν〉〈τν|)HW
is given by a projection onto the subspace with a single neutrino with quantum num-
bers τν applied to the weak interaction Hamiltonian (2.51).

H′W acts on the Ho ground-state |ΨHo〉 thereby creating an electronic hole in the
inner shells and reducing the nuclear charge by one, as a proton is transformed into a
neutron. Therefore, |ΨHo〉 needs to describe 67 electrons, 67 protons and 96 neutrons.
From rotational invariance of the Hamiltonian Heff (2.16) we know that the total an-
gular momentum F and its projection onto the z-Axis MF of all these particles have
to be conserved. If we assume that also the total angular momenta of the electrons
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2. Theory of electron capture spectroscopy

Je and of the nucleons Ii are conserved, we conclude that the full Ho ground-state
can be expressed with the help of angular momentum coupling and Clebsch-Gordan
coefficients 〈JeMe, Ii Mi|F, MF〉

|ΨHo〉 ≡ |163Ho, F, MF〉 = ∑
Me, Mi

〈JeMe, Ii Mi|F, MF〉 |ψe, Je, Me〉 ⊗ |ψi
nuc Ii Mi〉 . (2.56)

|ψe, Je, Me〉 denotes the 2Je + 1-fold degenerate, lowest energy-eigenstates of H in-
cluding 67 electrons and |ψi

nuc Ii Mi〉 represents the degenerate, initial nuclear ground-
states with 163 nucleons before the electron capture event has occurred.

To calculate the propagtors G−(ω) and G+(ω), we multiply the groundstate with
the weak Hamiltonian (2.51) and project onto the subspace that includes one neutrino
with quantum numbers τν ≡ (q, κν, mν, a)

H′W |ΨHo〉 = Uae ∑
τe

∑
ψ

f
nuc

∑
JM

∑
Me, Mi

(−1)
jν−mν+I f−MI f

+M〈JeMe, Ii Mi|F, MF〉

× p
Ii I f
J (τν, τe)

(
I f J Ii
−MI f −M Mi

)(
jν J je
−mν M me

)
× eτe |ψe, Je, Me〉elec ⊗ |ψ f

nuc, I f , M f 〉 ⊗ |τν〉ν . (2.57)

From this we obtain for the propagator

G−(ω) = |Uae|2 ∑
ψ

f
nuc

∑
τ1

e ,τ2
e

∑
J1 M1

∑
J2 M2

∑
M1

e , M2
e

∑
M1

i , M2
i

(−1)M1+M2

×
[

p
Ii I f
J1

(τν, τ1
e )
]∗ ( I f J1 Ii

−MI f −M1 M1
i

)(
jν J1 j1e
−mν M1 m1

e

)
× p

Ii I f
J2

(τν, τ2
e )

(
I f J2 Ii
−MI f −M2 M2

i

)(
jν J2 j2e
−mν M2 m2

e

)
× 〈JeM1

e , Ii M1
i |F, MF〉〈JeM2

e , Ii M2
i |F, MF〉

× 〈ψe, Je, M1
e |e†

τ1
e
(ω + i0− H)−1 eτ2

e
|ψe, Je, M2

e 〉 (2.58)

and a similar expression for G+(ω). The Wigner-3j symbols and Clebsch Gordan
coefficients can be calculated using the Racah formula [87]. Numerically challenging
is the electronic Green’s function

G−e (ω) ≡ 〈ψe, Je, M1
e |e†

τ1
e
(ω + i0− H)−1 eτ2

e
|ψe, Je, M2

e 〉 . (2.59)

Here we have to first determine the Ho groundstate |ψe, Je, Me〉 including 67 electrons
and then invert the Hamiltonian H on the space with 66 electrons, since one has
been annihilated by electron capture. The corresponding numerical procedures are
described in the next chapter.
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2.5. Spectral function

Even more challenging is the calculation of the exact electron capture probabilities

p
Ii I f
J1

(τν, τ1
e ), since this involves knowledge of nuclear wave-functions as outlined in

section 2.4.4. There we already introduced relative capture probabilities pJ(τν, τe)
(2.52) in which one has approximately removed dependencies on the nuclear wave-
function. Now we need to apply further simplifications to the propagator G−(ω)
(2.58) until we can replace the exact capture probabilities with the relative ones.

From our previous discussion in section 2.4.4 and (2.52) it is reasonable to consider
electronic orbitals with s and p1/2 character only, as these have largest overlap with
the nucleus. The same reasoning applies to the created neutrinos such that we can
restrict the sums in the propagator to include terms with je = 1

2 = jν (or equivalently
κe = ±1 = κν) only. Hence, J1 and J2 can assume the values zero or one. Processes
with angular momentum exchange larger than one are called ”higher order forbid-
den” [93] and are much more unlikely than processes with J ∈ {0, 1} because of the
aforementioned argument about wavefunction-overlap with the nucleus.

Next we assume that only a single final nuclear state ψ
f
nuc – namely the nuclear

163Dy ground-state – contributes to the propagator. This assumption is reasonable,
since the energies of nuclear excitations typically exceed the Q-value of 2.8 keV by a
few MeV. Thus I f =

5
2 and Ii =

7
2 are fixed by the total nuclear spin of the 163Dy and

163Ho ground-states respectively. Due to conservation of angular momentum it holds
that J1 ≥ 1 and equally for J2. Hence, we include terms with J1 = 1 = J2 only and
neglect all others.

Furthermore, the maximal energy of the neutrino is restricted between zero and

the Q-value. In this energy range the exact capture probability p
Ii I f
J1

(τν, τe) is approx-
imately independent of the neutrino’s energy. Because of this independence and the
fact that we could set J1, J2, Ii, I f and jν to fixed values, a replacement of the exact
capture probability with the relative capture probability (2.52) alters the spectrum
by a constant scaling factor only. This factor can be eliminated by normalizing the
spectrum with respect to its integral.

Furthermore, we neglect the coupling between angular momenta of nucleus Ii and
electrons Je to total angular momentum F. Instead we evaluate G±e (ω) (2.59) for a
fixed value of M1

e = M2
e . Then the spectrum is independent of Me and we choose

Me = Je, as this is numerically most efficient due to the smaller number of Slater
determinants as compared to states with lower |Me|. However, we discuss angu-
lar momentum coupling between electrons and nucleus in section 4.3 as an outlook,
where we will see that it introduces temperature dependence to the spectrum.

To summarize, the final form of the differential decay rate is given by

dΓ
dω

∝ −Im
3

∑
a=1
|Uae|2(Q−ω)

√
(Q−ω)2 −m2

a ∑
τ1

e τ2
e

p∗1(τ
1
e )p1(τ

2
e )
(
G−e (ω)− G+

e (ω)
)

(2.60)
where we omitted τν in p1(τe, τν) to indicate the aforementioned approximate inde-
pendence of the relative capture probabilities on neutrino quantum numbers for fixed
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2. Theory of electron capture spectroscopy

κν = ±1. The normalization is chosen such that the integral over the full spectrum
equals 1

2 , which implies that the dimension of the differential decay rate is ”counts
per half-life per atom per energy”. This choice allows for an easy comparison to ex-
perimental data.

Note that (2.59) has poles at the eigenvalues of H. Thus the imaginary part of
G−e (ω) contributes with a Dirac-δ peak for each pole to the electron capture spectrum.
If we replace the infinitesimally small imaginary part by a finite line-broadening γ/2,
the δ peaks turn into Lorentzians and can be computed numerically. In section 1.3
we discussed that other authors also used lorentzian line-shapes and up to chapter
4 we will follow this procedure. However, in chapter 5 we will show that this ap-
proximation has to be refined. Since H is unbounded from above, G−e (ω) does not
have isolated poles only, but also involves branch cuts along the real axis. These will
determine the actual line-shape.

Even without explicitly calculating the electronic propagator, we can already in-
fer qualitatively what the endpoint region will look like. Therefore, we assume that
the endpoint region is dominated by a single, lorentzian resonance, i.e. the M1 (3s)
resonance. Hence we can describe the spectrum (2.60) close to the endpoint approxi-
mately as

dΓ
dω

∣∣∣∣∣
ω≈Q

∝
3

∑
a=1
|Uea|2 (Q−ω)

√
(Q−ω)2 −m2

νa

γ3s

(ω− E3s)2 + γ2
3s/4)

. (2.61)

Figure 2.1 shows a plot of the spectral endpoint, where we divided by the phase-
space factor of massless neutrinos to make the effect of three neutrino masses more
apparent. For vanishing neutrino masses, this is almost constant over a small energy
window. However, for non-vanishing masses, one obtains the sum of three spectra
with endpoints at ω = Q−mνa c2 respectively. The relative strengths of these spectra
are determined by |Uae|2. Therefore, we obtain three kinks with different heights
according to the PMNS matrix elements |Uae|2.

In practice we need to calculate the full spectrum – not the endpoint region only –
in order to assure that calculations are reliable and no feature is missing which may
affect the end-point. Therefore, efficient numerical methods are necessary to calculate
ground-state and resolvent of Hamiltonian H. This implies solution of the eigenvalue
problem in a large Hilbert-space. In the next chapter we describe how this can be
achieved by combining Lanczos’ algorithm and configuration interaction.
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Figure 2.1.: Differential decay rate (2.61) divided by the phase-space factor of mass-
less neutrinos. The spectrum is shown in its endpoint region for mas-
sive (black) and massless (red) neutrinos. The PMNS matrix elements
and squared differences of the three neutrino masses have been taken
from [92]. Normal mass hierachy and m1 = 10−5 eV/c2 have been as-
sumed. The labels inside mark the kinks at ω = Q−mνa c2 above which
not enough energy is available to create a neutrino in an eigen-state of
mass mνa .
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3. Numerical Methods

The aim of this chapter is to describe numerical methods that allow for a solution
of the eigenvalue-problem given by the Hamiltonian H ≡ HD + VC + UC and a
fixed number of ne electrons. This Hamiltonian consists of Dirac’s Hamiltonian plus
Coulomb’s potential (2.34) and inter-electronic Coulomb repulsion UC (2.40). The lat-
ter is the reason why an eigen-state cannot be expressed as a single Slater-determinant
in general.

This leads to a major numerical problem in quantum many-body systems which
is the size of the associated Hilbert-space. There are infinitely many one-particle
states a single electron can occupy and infinitely many possible Slater-determinants
that can be formed from combinations of these one-particle states. To reduce size,
it is common practice to treat electrons as independent particles moving in an effec-
tive mean-field potential thereby reducing the many-body problem of ne electrons to
ne identical single-particle problems in the form of a partial differential eigen-value
problem. While this does not alter the size of the one-particle space which is still
infinite, ground and excited states are now approximated by one Slater-determinant
each. To solve the single-particle problem numerically – with a method as described
in section 2.4.1 for instance – it is necessary to discretize the one-particle Hilbert-space
by either choosing a finite set of functions serving as basis for a properly chosen, fi-
nite dimensional sub-space, or by using finite-elements methods. An overview of
different techniques can be found in [101].

After such a discretization we are in a place with a finite set of N1P one-particle
states and a finite number of ne electrons, where eigen-states are described by single
Slater-determinants. We pointed out in section 1.3 that this is insufficient to calculate
the electron capture spectrum with all its features. Electrons in an open shell can be
aligned in different ways to form states with different total angular momentum J2.
Coulomb repulsion between electrons conserves total angular momentum and splits
the energies of these states which are linear combinations of Slater-determinants and
are not unitarily equivalent to a single-determinant state in general. Consequently,
this so called multiplet-splitting of energies cannot be found in a spectrum which
is calculated with single-determinant states only. Furthermore, if there are multi-
ple open shells – for instance due to holes in core orbitals – different configurations
can hybridize to form states which are energetically favorable as compared to single-
determinant states and are also a much better approximation to the true eigen-states.

Hence, we have to consider linear combinations of Slater-determinant states, which
results in an effective Hilbert-space of dimension equal to the binomial coefficient of
N1P over ne. In practice this can be very large, thereby challenging even modern
computers as the following example shows.
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3. Numerical Methods

In (2.59) we have seen that one needs to determine the many-electron groundstate
of Ho and the resolvent of the Hamiltonian H in order to obtain the electron capture
spectrum. Therefore, we restrict the one-particle basis to orbitals which are fully or
partially occupied according to the Aufbau-principle. As the 4f shell is the Ho va-
lence shell, we have N1P = 70 one-particle states, which are populated by ne,Ho = 67
indistinguishable electrons obeying Fermi-Dirac statistics. The resolvent is projected
onto the subspace with ne,Dy = 66 electrons. Hence, the dimensions of these two
sub-spaces are (

N1P
ne,Ho

)
= 54 740 and

(
N1P
ne,Dy

)
= 916 895 . (3.1)

Thus, the resolvent in (2.59) is a matrix with 8 · 1011 entries which require 6.4 TB of
RAM when stored in double precision. This is far too large for practical purposes,
even with the restriction on the fully and partially occupied orbitals. One could think
of further reducing the Hilbert-space by only considering the partially occupied 4f
orbitals, but the electron capture spectrum involves excitations with holes in the fully
occupied orbitals and furthermore, configurations with holes in 4d orbitals contribute
to the Ho groundstate due to Coulomb interaction. Hence, further restrictions on the
one-particle basis are no option and methods have to be used that reduce computa-
tional cost. In section 3.1 we describe how the configuration interaction (CI) method
handles the large number of states by ordering them in a hierarchy that can be system-
atically shortened or extended. Lanczos’ algorithm that is employed for the solution
of the still large eigen-value problem is detailed in section 3.2 and how we actually
combine algorithm and CI in this work can be found in section 3.3.

3.1. Configuration interaction

The method of configuration interaction (CI) starts from a single Slater-determinant
reference-state

|Ω〉 = ∏
τ∈Ω

e†
τ|0〉 (3.2)

that is described by a set Ω of one-particle quantum numbers and creation opera-
tors e†

τ acting on the vacuum |0〉. Typically this state is ground- or excited state of
a Hartree-Fock or density functional theory approximation [103, 104] as pointed out
in the beginning of this chapter. Additional Slater-determinants can be constructed
from Ω by replacing the occupied quantum numbers with others that are not occu-
pied in |Ω〉. This yields new configurations which we label Ωµ

τ if τ ∈ Ω is replaced
by µ /∈ Ω, Ωµ1µ2

τ1τ2 if τ1, τ2 are replaced by µ1, µ2 respectively, and so on. Thus every
state |ψ〉 can be expressed as linear combination of these configurations [104]

|ψ〉 = C|Ω〉+∑
τµ

Cµ
τ |Ωµ

τ〉+ ∑
τ1µ1τ2µ2

Cµ1µ2
τ1τ2 |Ω

µ1µ2
τ1τ2 〉+ . . . + ∑

τ1...τne ,µ1...µne

Cµ1...µne
τ1...τne

|Ωµ1...µne
τ1...τne

〉 .

(3.3)
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3.2. Lanczos’ algorithm

This enables us to define a hierarchy of states according to the amount of changed
quantum numbers [104]. The zeroth order is the reference state itself, at first order are
all states with a single hole in the occupied orbitals of the reference state, on second
order all states with two holes and so on.

While expansion (3.3) of an eigen-state is exact on the Hilbert-space of ne electrons
and N1P single-particle orbitals, any truncation at some order of the CI hierarchy in-
troduces an error, but still obeys the variational principle in the sense that the lowest,
approximate eigen-value is an upper bound on the true ground-state energy [102].
This bound can be improved by going to higher orders in CI hierarchy. Hence, al-
ready at first order – which is called CIS where ”S” stands for single hole – one ob-
tains improvements as compared to mean-field theory. In the introduction 1.3 we
noted that two-hole states are important for the electron capture spectrum, hence at
least we need to include both single- and double-hole configurations which is referred
to as CISD in literature.

When choosing any truncation – any order of the CI hierarchy – there is always
a contest between reducing computational cost and increasing accuracy. While the
former prefers truncation at lower orders, the latter needs inclusion of higher orders.
However, having fixed the accuracy goal, one can reduce computational cost by fur-
ther means – other than going to lower orders – which do not affect accuracy. It is
possible to optimize the single-particle basis in such a way that the Hamiltonian de-
couples odd and even orders. Then one can use states of even order only, which in
case of double-hole states is called CID. Furthermore, symmetries can be utilized to
include only states that belong to a certain irreducible representation (irrep) of the
corresponding symmetry-group. This can be achieved by application of projection
operators, which project states not belonging to the irrep onto zero and keep the oth-
ers [102].

Instead of choosing a single reference state, one can choose multiple from which
the CI hierarchy is constructed. This method is called multi-reference configuration
interaction (MRCI). In this work we are doing something similar, because multiple
references allow for a reduction of numerical uncertainties due to number-losses as is
pointed out in the next section. There we describe an efficient eigen-problem solver
that is used often in CI calculations [102], since the reduced Hilbert-space is still large
even after application of all the mentioned methods.

3.2. Lanczos’ algorithm

From the previous discussion in this chapter it became apparent that the large size
of the many-body Hilbert-space leads to high computational costs when solving the
eigenvalue problem for a given Hamiltonian. Storage in RAM of matrix elements may
not be possible and computing a large number of eigenvalues is time-consuming.
However, Lanczos’ algorithm [105] allows us to calculate the Ho groundstate and
the propagator (2.59) by neither storing all matrix elements of the Hamiltonian, nor
exploring the full Hilbert-space to find every eigenvalue.
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3. Numerical Methods

In this section we will sketch a block-variant of this algorithm, which is used in this
work, and outline its important properties that make it especially useful for calculat-
ing the electron capture spectrum of Ho.

Let H denote some Hilbert-space. Lanczos’ algorithm takes a linear, self-adjoint
map A : H → H and a starting vector ψ0 ∈ H as input and iteratively constructs an
orthonormal set of vectors Ψ 3 ψ0 which contains the starting vector. The projection
of A onto the sub-space spanned by Ψ can then be represented by a tri-diagonal n× n
matrix T, where n = #Ψ is the number of constructed vectors. The set Ψ is called a
Krylov basis.

The block variant takes a set of nb (orthonormal) starting vectors ψ0 ≡
(
ψ1

0, ..., ψ
nb
0
)
,

where ψk
0 ∈ H, and iteratively constructs a Krylov basis Ψ = ∪nk

i=0ψi that spans a sub-
space in which A can be represented by a block-tri-diagonal matrix

T =


A0 B†

1
B1 A1 B†

2
B2 A2 B†

3

B3
. . . . . .
. . . . . .

 (3.4)

where the entries (Ai)mn = 〈ψm
i |Aψn

i 〉 and (Bi)mn = 〈ψm
i |Aψn

i−1〉 are nb× nb matrices.
The iteration scheme for the construction of ψi is given by [99]

ψ̃n
i+1 = Aψn

i − ψm
i (Ai)mn − ψm

i−1(B†
i )mn (3.5)

ψi+1 = Orthonormalize
[
ψ̃1

i+1, ..., ψ̃
nb
i+1

]
. (3.6)

Sum convention over double indices is implied and in the following we will drop
indices and imply matrix multiplication to clean up notation.

A proof by induction shows that a Krylov basis Ψ = ∪nk
i=0ψi constructed this way

is orthonormal. A being representable by T on the Krylov sub-space directly follows
from (3.5).

The above procedure is not unique. Different orthonormalization schemes can be
implemented, leading to different forms of T. If for instance one uses a QR decompo-
sition, the off-diagonal blocks Bi become upper triangular matrices, giving T a very
compactly banded structure [99, 106]. However, in the many-body script language
Quanty [107–109] a different orthonormalization scheme is implemented which as-
sures hermiticity of the off-diagonal blocks [110]. If we understand ψ̃i = (ψ̃1

i , ..., ψ̃
nb
i )

as row vector with entries ψ̃n
i ∈ H which are vectors themselves, we can apply a

singular value decomposition by diagonalizing the overlap matrix

ψ̃†
i ψ̃i = VDV† D =

(
Σ 0
0 0

)
V =

(
VΣ V0

)
. (3.7)

Here Σ is a diagonal r × r matrix (r ≤ nb) containing the squared singular values
that are non-zero. The r columns of VΣ are the right singular vectors corresponding
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3.2. Lanczos’ algorithm

to non-zero singular values and V0 contains the right singular vectors corresponding
to the vanishing singular values. Define

ψi ≡ ψ̃iVΣΣ−
1
2 V†

Σ ⇒ ψ†
i ψi = VΣV†

Σ . (3.8)

If r = nb, i. e. all singular values are non-zero, VΣ is unitary and hence the vectors
contained in ψi are orthonormal. In this case we can show that the off-diagonal blocks
of T are hermitian

Bi = ψ†
i Aψi−1

(3.5)
= ψ†

i

(
ψ̃i + ψi−1Ai−1 + ψi−2B†

i−1

)
= ψ†

i ψ̃i = VΣΣ
1
2 V†

Σ . (3.9)

Hermiticity directly follows from Σ† = Σ. If however the ψ̃i are not linearly inde-
pendent, one has to remove some vectors until linear independence is restored before
continuing with the next iteration step. In this case VΣ is an nb × r matrix containing
orthonormal vectors and VΣV†

Σ thus is the projection onto the sub-space spanned by
the columns of VΣ. We remove the nb − r vectors of ψi that have the smallest norm.
These are then orthonormalized with the same procedure until one arrives at a set of
linearly independent Krylov vectors.

If in some step i = N all singular values are zero, one has found a sub-space which
is invariant under A and spanned by Ψ = ∪N−1

i=0 ψi. In this case the eigenvalues of T
are exact eigenvalues of A and so are the eigenvectors. However, in practice the di-
mension ofH is too large to fully explore an invariant sub-space. Hence, the iteration
is aborted after nk steps. Then eigenvalues and eigenvectors of T are approximations
to the eigenvalues and eigenvectors of A. Furthermore, the n-th eigenvalue of T is an
upper bound for the n-th eigenvalue of A, since the approximate eigenstates obey the
variational principle [111].

These approximations are especially good for eigenvalues aj with large magnitude
and their corresponding eigenvectors φj, since in every iteration we apply A to the
previously constructed states. After nk iterations the newly created states have con-
tributions of ∼ ank

j φj thereby implying the larger the magnitude of an eigenvalue, the
larger the contribution of the corresponding eigenvector.

However, we are interested in finding the ground-state of the Hamiltonian and
therefore apply Lanczos’ algorithm multiple times. To find the nb lowest eigenstates
one picks nb linearly independent starting vectors and constructs a Krylov basis acord-
ing to the procedure described above. The iteration stops after nk steps, where nk
should be choosen to be not too large in order to avoid numerical loss of orthogonal-
ity of the Krylov vectors [111]. In this basis one determines the nb lowest eigenvalues
of T together with their eigenvectors and uses the latter as new starting vectors for
a further application of Lanczos’ routine. This is repeated until some convergency
criterion is fulfilled. Then the nb lowest eigenvalues and corresponding eigenvectors
from the last iteration can be used to approximate the true eigenvalues and eigen-
vectors of the Hamiltonian. As convergency criterion we choose the variances of the
Hamiltonian with respect to the approximate eigenvectors to be below a given accu-
racy threshold. This reflects that the variance vanishes if, and only if calculated with
respect to a true eigenvector.
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With this procedure we obtain a good approximation to the Ho ground-state. To
calculate the spectral function (2.59), we need to evaluate the resolvent projected on
the sub-space spanned by {eτ|ψe〉 | τ ∈ ΩEC} only, where ΩEC = {1s, ..., 6s, 2p1/2, ...,
5p1/2}. Therefore, we pick these states as starting vectors for Lanczos’ algorithm and
calculate

G−e (ω) ≈
[
(ω + i0− T)−1

]
00

(3.10)

where the subscript reminds us that the electronic Green’s function (2.59) is by con-
struction encoded in the first block on the diagonal of the resolvent. The rows and
columns of this block are labeled by τ1

e and τ2
e in (2.59), but we dropped these in-

dices here for the sake of cleaner notation. Since T is block-tri-diagonal, the above
expression can be evaluated by a continued fraction [111]. However, a spectral de-
composition of T leads to a much more efficient numerical implementation than using
continued fractions. As T is block-tri-diagonal, the decomposition is fast.

To judge the accuracy of approximation (3.10), we can look at the moments of the
spectral function

− 1
π

∫ ∞

−∞
Im
[
G−e (ω)

]
ωmdω =

∫ ∞

−∞
〈ψe|e†

τ1
e
δ (ω− H) eτ2

e
|ψe〉ωmdω = 〈ψe|e†

τ1
e

Hmeτ2
e
|ψe〉

(3.11)

If m = 2n + 1 this is the projection of H on span({Hneτ|ψe〉 |τ ∈ ΩEC}). Thus, if
m ≤ 2nk + 1, this projection of H is fully determined by T and

− 1
π

∫ ∞

−∞
Im
[
G−e (ω)

]
ωmdω = [Tm]00 . (3.12)

Consequently, after nk iteration steps, the first 2nk + 1 moments of the spectral func-
tion are exact [111]. This property is not present in approaches using Fermi’s golden
rule as described in section 1.3.

A further advantage of the above choice of starting vectors and using the block-
variant of Lanczos’ routine is a separation of energy scales. Each starting vector has a
hole in a different core orbital. These states have average energies which are the diag-
onal entries of the first block T00 and range from 60 keV for the 1s hole down to a few
eV for the 6s hole . If on the other hand one would use a single starting vector, the first
entry of the tri-diagonal matrix would be an average over these energies and hence
numerical accuracy would be reduced due to number-loss. The same reasoning ap-
plies for further diagonal blocks/entries. Hence, the block-variant separates energy
scales and reduces number-loss as compared to the standard, non-block-variant.

3.3. Lanczos and CI

If a CI reference state is chosen as starting vector of Lanczos’ algorithm and the
Hamiltonian acts on it to create the next Krylov vector, the latter becomes a linear
combination of states with single and double holes with respect to the reference state.
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3.3. Lanczos and CI

While Dirac’s Hamiltonian creates single holes, Coulomb interaction is responsible
for double holes. However, this also implies that not every single or double hole con-
figuration is included. Only those are present in the first step, which can be reached
from the starting configuration by one- and two-body scattering processes encoded in
the Hamiltonian. These processes respect all symmetries of the Hamiltonian, which
becomes important in a moment. In the next iteration step further single and double
hole configurations are added, but also three and four hole states. If the iteration was
continued until the Krylov basis either spans the whole Hilbert-space or an invariant
sub-space, all configurations are included and the eigen-states are given by the CI
expansion (3.3).

If the Hamiltonian is invariant under certain symmetries, only those terms in the
expansion have non-vanishing coefficients if they belong to the same irreducible rep-
resentation of the symmetry-group as the reference state. One great advantage of
Lanczos’ algorithm is that all terms with vanishing coefficient should not appear in
the calculation as long as the starting vector belongs to the same irreducible represen-
tation as the desired eigen-vectors. As pointed out in section 3.1, application of pro-
jection operators to a mean-field single-determinant state achieves this condition and
consequently reduces the number of configurations included in the calculation [102].
However, in practice these configurations, that should vanish, can obtain small but
non-zero coefficients due to numerical instabilities. Hence, modifications of the algo-
rithm would be necessary to avoid this.

For many systems – as in the case of the Ho electron capture spectrum – even an
invariant sub-space is too large to be spanned completely by a Krylov basis. Similarly
the full CI expansion (3.3) isn’t feasible either. If it is truncated at a certain order, it
may be possible to use Lanczos’ algorithm to explore the full sub-space spanned by
all configurations up to this order. The results will be different from directly applying
the algorithm without restriction to a certain CI order and then stopping the iteration
after a fixed number of steps nk before the whole space is explored. The latter case in-
volves terms of higher CI order as compared to the former case, if nk is large enough.
On the other hand, the latter case does not necessarily include all terms of a given CI
order. Hence, both approaches have many similarities, but may differ in their final
results.

Often there are configurations with small coefficients and hence small impact on
the approximated eigenvalues. The Lanczos’ routine, as implemented in Quanty
[109] and used in this work, directly removes such configurations from the calculation
as soon as they are encountered in an iteration step and have a coefficient smaller than
a predetermined threshold. This reduces computational cost with only small accu-
racy losses and is another difference as compared to usual CI calculations. However,
terms with small coefficients can have an impact on the approximated eigenvalues if
there are many of them. Hence, it is necessary to verify that the removed terms do
not alter the eigenvalues within the desired accuracy. Therefore, one monitors how
eigenvalues change when lowering the threshold.

To summarize, in this work we are using a Block-Lanczos’ routine where multiple
starting vectors are chosen. This is comparable to a multi reference configuration
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3. Numerical Methods

interaction calculation, but with the differences that the starting vectors may differ
from the mean-field states, configurations with small coefficients are neglected and
not every configuration belonging to the iteratively included CI orders may appear
during construction of the Krylov basis.
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4. Bound state resonances in the
electron capture spectrum

Within the framework described in the previous chapters, we are now in a position
to do an ab initio calculation of the calorimetric electron capture spectrum of 163Ho.
Section 4.1 reviews results and computational details of publication [1]. We describe
how to apply the methods from chapter 2 and 3 to calculate the electron capture
spectrum. Our calculation is compared to experimental data and spectral features
are explained on the level of atomic relaxation involving bound states. In section 4.2
we describe how to determine the Q-value using calculations from 4.1 together with
experimental data and summarize the results of publication [2].

4.1. How to calculate the electron capture spectrum

We derived the form of the electron capture spectrum in (2.60), where we have to
evaluate G±e (ω) from (2.59). Therefore, we start a DFT calculation using FPLO as
described in section 2.4.1 to obtain the Kohn-Sham orbitals for a Ho atom. These
are used in Quanty [109] to construct the Hamiltonian H = HD + VC + UC which
is given by Dirac’s Hamiltonian (2.34) and Coulomb interaction (2.40). The nuclear
potential VC is constructed for Z = 66 (Dy) to calculate the resolvent in G±e (ω) and
for Z = 67 (Ho) to determine the Ho ground-state. To achieve the latter, we define a
set of random starting vectors that belong to the configuration [Xe]6s24f11 and apply
the Block-Lanczos’ algorithm described in section 3.2.

Since the Hamiltonian commutes with the total angular momentum operator Je,
the ground-state has a definite Je = 15

2 . Total orbital angular momentum L2 and to-
tal spin S2 are not conserved quantum numbers due to spin-orbit coupling. Hence,
an L-S coupling scheme is not applicable. Furthermore, the ground-state does not
only involve the [Xe]6s24f11 configuration. Instead it also contains small contribu-
tions from configurations with holes in core orbitals and additional electrons in the 4f
valence shell. These influence the relative intensities between different resonances in
the spectrum.

With the Ho ground-state |ψe〉 at hand, we apply the electron annihilation op-
erator to obtain a new set of starting vectors {eτ|ψe〉 | τ ∈ ΩEC}, where ΩEC =
{1s, ..., 6s, 2p1/2, ..., 5p1/2} denotes the orbitals from which electrons can be most
likely captured by the nucleus. The starting vectors can be understood as possible
states of the system at that very instant when an electron has been captured. They
are used in the Block-Lanczos’ routine to calculate the spectral function G±e (ω) (2.59)
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Figure 4.1.: Calculated electron capture spectrum (2.60) involving bound electronic
orbitals only. Resonances emerge from excitations of the Dy daughter
atom where holes have been created in the inner shells (labels). To test
convergence of Lanczos’ algorithm the number of iteration steps nk has
been successively increased. Multiplets and satellite structures are most
sensitive to the size of the Krylov basis as can be seen in the inset. To
resolve these small features, we calculated the spectrum with an overall
lorentzian broadening of 1 eV.

where the Hamiltonian H contains the nuclear potential of the Dy daughter atom
with Z = 66. We run the Block-Lanczos algorithm separately for captured electrons
with jz = −1

2 and jz = +1
2 , which is possible since the corresponding starting vec-

tors have different total angular momentum Jz and are hence in different subspaces
that are invariant under action of the Hamiltonian. Convergency is tested by increas-
ing the maximum number of Krylov-states step-wise until the spectral shape does no
longer change.

This results in the spectrum shown in figure 4.1. It includes multiple excitations
due to different relaxation mechanisms. The major resonances correspond to direct
excitation by electron capture from the s and p1/2 orbitals. In subsequent relaxation
processes, electrons can fill these orbitals and leave holes in d and p3/2 shells, or
can additionally scatter a further electron to the valence shell. Such processes create
excited states with valence configuration 4f12 and two holes in the inner shells as
labeled in figure 4.1.

Since the above processes are all encoded in the Hamiltonian H, Lanczos’ algo-
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4.1. How to calculate the electron capture spectrum

rithm automatically introduces the configurations emerging from relaxation in the
calculation. This happens when building the Krylov basis by acting with the Hamil-
tonian on the Krylov vectors from the previous iteration step. Thereby each con-
figuration is mapped onto the superposition of all possible configurations that are
reachable from this one by either scattering a single electron from its orbital into a
previously unoccupied orbital, or by scattering two electrons due to Coulomb inter-
action from their orbitals into two previously unoccupied orbitals. The coefficients
of the so created configurations in the new Krylov vector depend on the matrix ele-
ments of the Hamiltonian. In this way Lanczos’ algorithm selectively introduces the
most dominant configurations to the calculation. The resulting approximate eigen-
states are multi-configuration, Multi-Slater-determinant states, which are truly not
representable by a single Slater-determinant.

While the number of determinants (22) is relatively modest for the Ho ground-state,
the excited states of the Dy daughter involve up to 104 determinants. However, if
compared to the dimension of the Hilbert-space (9× 105), estimated in the beginning
of chapter 3, this is still smaller. Therefore, Lanczos’ algorithm is so efficient in this
application due to the automatic, selective inclusion of dominant determinants.

In order to monitor convergence of Lanczos’ algorithm, we plotted the spectrum for
multiple values of the number of iteration steps nk in figure 4.1. In every spectrum
nb · nk Krylov-vectors contribute, where nb = 20 is the number of starting vectors.
This determines the accuracy of the resolvent. From the inset we infer that satellite
structures and multiplets require a much larger Krylov basis than major resonances
in order to be converged. While the M1 (4s) resonance does not change visibly when
increasing nk from 100 to 500, the satellites do change until we reach nk = 800. Then
the spectrum involves 1.6 · 104 Krylov vectors, but much less resonances below the
Q-value. Here enters the problem that large eigenvalues of the Hamiltonian converge
more quickly than small ones as mentioned before, which explains the need for many
iteration steps to get an accurate spectrum in the range [0, Q].

Now we want to identify the different resonances and the relaxation processes that
create them. In a first step we analyze the first block T00 of the tri-diagonal repre-
sentation (3.4) of the Hamiltonian. This block contains the matrix elements of states
with a single core hole created by electron capture from the Ho ground-state. If we
calculate the spectrum from this block only, we obtain the major resonances ns and
np1/2 in figure 4.1. From these matrix elements we can deduce that there is mixing
between the different orbitals in which holes have been created, as the first block
itself has non-vanishing off-diagonal entries. This reflects that the Ho one-particle
orbitals, from which an electron has been captured, now hybridize in the presence
of the Dy nucleus. This is the reason we also included the K and L shell (1s, 2s, 2p)
in the calculation although electron capture from those orbitals is energetically above
the Q-value. However, these shells are important in terms of completeness of the
single-particle basis and the mentioned hybridization effects.

Since in the first block only configurations with a single core hole in the ns and
np1/2 are involved, only relaxation processes where a single particle is scattered con-
tribute. This involves scattering off the nuclear potential or off the remaining elec-
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4. Bound state resonances in the electron capture spectrum

trons without changing their quantum numbers. To put it differently, from the Hamil-
tonian H = HD + VC + UC only HD and VC have non-zero matrix elements in that
block, as well as the Hartree- and Fock-terms contained in UC. We denote these terms,
or the corresponding relaxation processes, by

τ1 τ2

and

τ1 τ2 (4.1)

This shows that we can also understand the calculation of the EC spectrum with Lanc-
zos’ algorithm as a diagrammatic expansion. Hence, the step-wise construction of a
Krylov basis and a block-tri-diagonal representation of the Hamiltonian is connected
to more intuitive Feynman diagrams. The latter can in turn be interpreted as relax-
ation processes, where the quantum numbers τ1 label the involved single-particle
orbital from which an electron is scattered into orbital τ2. Such a connection can be
best understood when explicitly writing the Krylov vectors as expansion in Slater-
determinants for given configurations, i.e. sets of quantum numbers Ω that define
occupied orbitals

|ψk
i 〉 = ∑

Ω
αk

i (Ω)

(
∏
τ∈Ω

e†
τ

)
|0〉 ≡∑

Ω
αk

i (Ω)|Ω〉 . (4.2)

The block elements of the tri-diagonal representation Ak,q
i = 〈ψk

i |H|ψ
q
i 〉 and Bk,q

i =

〈ψk
i |H|ψ

q
i−1〉 contain terms of the form

〈Ω1|UC|Ω2〉 = 〈0|
(

∏
τ∈Ω1

eτ

)
UC

(
∏

τ∈Ω2

e†
τ

)
|0〉 UC = ∑

τ1τ2τ3τ4

Uτ1τ2τ3τ4e†
τ1

e†
τ2

eτ4eτ3

(4.3)
which can be calculated using Feynman rules. Since in the n-th iteration step the
Krylov vector is ψn ∼ Hnψ0, the order of included diagrams is increased in every
step. In this way, the algorithm directly includes the interactions between differ-
ent configurations due to electronic Coulomb repulsion and goes beyond the single-
slater-determinant approximation to a configuration-interaction calculation.

Already in the second diagonal block T11 configurations with two holes in inner
shells are involved. In a diagrammatic language this means inclusion of scattering
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4.1. How to calculate the electron capture spectrum

diagrams with four external lines [1]

τ4 τ2

τ3 τ1

(4.4)

These lead to the creation of holes in previously closed shells. Either a state with a
single core hole or a state with two core holes can emerge.

In the first case an electron from a closed shell fills a hole created by electron cap-
ture. Thereby it scatters with the 4f valence electrons and can transfer angular mo-
mentum. This way resonances of figure 4.1 with holes in d and p3/2 orbitals appear.

In the second case the electron that fills the core hole transfers its energy to another
core electron which is scattered into the valence shell, leading to configurations with
two core holes and twelve electrons in 4f. We identify such states by restarting the
calculation and imposing restrictions on the allowed configurations. If we want to
see which resonances are dominated by single-hole states, we restrict the 4f orbital
to have eleven electrons and observe which peaks disappear and which remain. The
latter are the ones with single core holes. To identify in which shells the holes are
created, we restrict the orbitals, we want to test, to be completely filled and again
see which peaks disappear. For two-hole states we can do the same analogously.
Thereby we observe that three-hole states, which emerge from higher powers of H
in the Krylov basis, have a negligible contribution. Nonetheless, these higher powers
are needed for accurate peak intensities and positions.

Especially dominant are the 3p4d and 4p4d resonances in figure 4.1. They emerge
form Coster-Kronig and super Coster-Kronig transitions respectively,

4d 4s

3p 4f

and

4d 4s

4p 4f

(4.5)

which explains their high intensities compared to other resonances that are also cre-
ated by secondary processes subsequent to electron capture. Since the principal quan-
tum numbers of the electrons involved in the corresponding scatterings are (almost)
all the same, cross-sections of these processes are large, leading to high intensities of
the resonances.

Here, the advantage of Kubo’s formula against Fermi’s golden rule described in
section 2.1 becomes apparent. If Kubo’s response functions G±(ω) are evaluated
with Lanczos’ algorithm, the dominant multi-determinant states and configurations
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Figure 4.2.: Theoretical data [1] are the same as in figure 4.1, but with an overall
lorentzian broadening of 5 eV convoluted with a Gaussian to account for
detector broadening. Experimental data are taken from [2]. Comparison
shows that lorentzian broadening is insufficient to describe the region be-
tween 4s and 3s resonances.

enter the calculation automatically. Using Fermi’s golden rule, as done by other au-
thors described in section 1.3, involves an infinite sum over final states leading to the
problem that it might not be clear a priori which states, Slater-determinants, or con-
figurations are dominant and have to be included in the sum. Therefore, in works
of these other authors the 4s satellite structure has so far been unexplained, as the
corresponding two-hole states have either been neglected, or treated as single Slater-
determinants. In both cases it is impossible to obtain the observed multiplet structure
of the satellites.

It is even worse if resonances are hidden due to too low experimental resolution as
it is the case for the 3p4d edge or the 4p multiplets in figure 4.1. If existence of a reso-
nance is not known a priori, it is unlikely that it will be included in the sum in Fermi’s
golden rule. Thus, to fully understand the shape of the electron capture spectrum and
all its features, an ab-initio approach as presented in this work is important.

The results of this approach are compared to experimental data in figure 4.2. The
spectrum is calculated as described in this chapter and convoluted with a Gaussian of
10 eV full width at half maximum (FWHM) to account for detector broadening. Our
calculations reproduce the intensities of resonances and the 4p4d satellite structure
quite well.
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Although an overall constant lorentzian broadening of 5 eV has been assumed, we
obtain different apparent broadenings due to multiplet splitting. This is most promi-
nent when comparing the M2 (3p1/2) and the N2 (4p1/2) edge. The latter resonance is
much broader due to an accidental degeneracy with shake-up states. Such broaden-
ings indirectly affect the spectral shape in the wings of the resonances. If multiplets
are unresolved, due to low experimental resolution, a fit to data will overestimate
the natural line-broadening. This would affect the spectral shape close to the reso-
nance only marginally, but would lead to an increased error in the resonance’s wings.
Hence, a careful study of the M1 line-broadening is necessary for high sensitivities on
neutrino masses, which is done as part of chapter 5. Furthermore, calculations pre-
dict a small peak at the left side of M1 (3s) which is currently hidden in experimental
data with the given resolution.

The most prominent discrepancies between theory and experiment are observed
in the positions of the resonances and in the region between the N1 (4s) and M2 (3p)
edges. There the lorentzian line-broadening is insufficient to describe the asymmetric
high energy wing of the N1 (4s) edge and satellites. Since calculations have been re-
stricted to bound states only, it is not surprising that such continuous spectral features
cannot be reproduced. Processes that couple bound states to the continuous energy
spectrum of the Hamiltonian are necessary to account for such extended high en-
ergy wings. Inclusion of these processes will allow for a treatment of line-broadening
from first principles. The Auger-Meitner effect, fluorescence decay and interaction
with the chemical environment of Ho are probably the most important processes of
this kind. The former will be studied in chapter 5 where we show that, besides being
responsible for most of the spectral broadening and the extended high energy wings,
it also improves the resonances’ positions. The latter observation can be related to
an increase in the size of the active Hilbert space when including unbound Auger-
Meitner electrons. This demonstrates how any truncation of single particle basis or
many-body basis leads to deviations in calculated energies as compared to measured
ones. Hence, to improve agreement in the resonances’ positions, a larger basis set is
needed. On the other hand, an increased size of the active space drastically slows
down calculations. Consequently, different methods should be incorporated in our
approach as techniques from renormalization for instance.

4.2. Determination of the Q-value

The sensitivity on the neutrino masses also directly depends on the precision in the
knowledge of the Q-value, the energy difference between the 163Ho and 163Dy ground
states, since the difference between Q and the spectral endpoint is the lowest rest
mass of the neutrinos. In publication [2] we used Bayesian parameter estimation to
determine the Q-value from low background data in combination with the calculated
spectrum described in the previous section. This yields Q = 2.838± 0.014 keV in full
agreement with the value from Penning trap mass-spectrometry [5]. At the time of
publication our estimate of the Q-value has been the most precise so far. Here, we
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4. Bound state resonances in the electron capture spectrum

describe the Bayesian analysis in more detail.
In the expression for the differential decay rate (2.60) we see that the dependency of

the electron capture spectrum on the Q-value is encoded in the neutrino phase-space
factor. We could use the calculated Green’s functions G±(ω) and fit (2.60) to the
low background data with Q as fit-parameter. However, as outlined before the peak
positions differ from the experimental results by a few eV. Furthermore, lorentzian
broadening does not adequately describe the asymmetric line-shapes. These theoret-
ical uncertainties hinder a precise determination of the Q-value.

Instead we need to define quantities which are insensitive to these uncertainties
and can be obtained from both experiment and theory. The total spectral weight of
resonances is such a quantity. If resonances are clearly separated, one can integrate
the spectrum over an interval, containing (almost) the full spectral weight of this
resonance. Since one performs an integral over energies, the position of the resonance
only marginally affects this integral. Furthermore, the integrated spectral weight is to
good approximation independent of the exact line-shape, as broadening only shifts
weight in energy.

Let Iτ denote the interval that contains 99% of the spectral weight of resonance τ ∈
{4s, 4p1/2, 3s, 3p1/2}. In our theoretical calculation the spectral weight Ωτ contained
in a resonance is easily computed as

Ωtheo
τ =

∫
Iτ

dΓ(ω)

dω
dω . (4.6)

For the experimental data, it is difficult to resolve resonances which are close to each
other. Thus in order to separate the 3s and 3p1/2 resonances we fit a lorentzian to the
3p1/2 resonance and subtract the spectral weight of this lorentzian contained in I3s
from Ωexp

3s . Analogously the same can be done for Ωexp
3p1/2

.
The 4s/4p1/2 resonances are more complicated due to the satellite structure on the

high energy side of 4s. Therefore, we integrate the full intensity between 252 and 1500
eV, which contains 4s, 4p1/2 and the satellite structure, to obtain Ωexp

4 which has its
pendant

Ωtheo
4 = Ωtheo

4s + Ωtheo
4p1/2

+ ∑
σ∈satellites

Ωtheo
σ . (4.7)

Note that in theory 4s and 4p1/2 consist of multiple peaks – especially the latter –
which are not resolved by experimental data. This has been shown in figure 4.1 and
discussed in section 4.1.

The Ωtheo
τ (Q) are functions of the Q-value and hence the latter can be inferred by

fitting the theoretical data to the experimental ones Ωexp
τ . For the latter the uncer-

tainties can be obtained from Poissonian statistics underlying the raw data. The the-
oretical uncertainties due to approximations in the calculation of the EC spectrum
and due to the correction of experimental data for overlapping resonances are un-
known. Hence, we introduce these as nuisance parameters with a Jeffrey’s prior and
marginalize them when fitting. Assuming a constant prior for Q leads to a slightly
asymmetric posterior distribution with mean at 2.838 keV and a width of 14 eV.
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In [2] the obtained data are also compared to the calculations described in section
4.1 not only to dertermine Q, but also to discuss the effect of line-broadening. Thus
additionally to the lorentzian broadening the asymmetric Mahan broadening [112]
has been discussed. The findings confirm that lorentzian broadening is insufficient to
describe the spectral endpoint and that the line-shape is asymmetric with increased
spectral weight in the high energy tails of the resonances. This leads to an increase
in intensity in the endpoint region, which improves sensitivity to the neutrino mass
determination. To understand this increase and the spectral line-shape, an ab-initio
calculation of spectral broadening is desirable and we present such calculation in
chapter 5.

4.3. Outlook: Hyperfine interaction

Hyperfine interaction between electrons and nucleons couples angular momenta Je
and Ii to total angular momentum F and lifts the corresponding degeneracy of the
Hamiltonian without hyperfine interaction. This degeneracy is typically lifted at the
order of µeV [113], which raises the question to which extend this effect becomes
observable in the electron capture spectrum.

If we want to study the impact of hyperfine interaction on the spectrum, we have
to use (2.58) for calculations, which is more accurate than (2.60) and directly includes
coupling of angular momenta via Clebsch-Gordan coefficients. However, the sim-
plified expression (2.60) may already serve us to estimate the order of magnitude of
this impact. Therefore, we plotted the spectrum calculated according to (2.60) in fig-
ure 4.3. The black curve corresponds to capture of electrons with spin down, the red
curve corresponds to capture of spin up electrons. At the major resonances differ-
ences between the two spectra are clearly visible. For spin up capture one obtains a
single M1 (3s) peak, but for spin down capture there are two peaks at the M1 position.
The same holds for N1 (4s). Additionally the satellite structures on the right of N1
seem to depend strongly on the spin of the captured electron.

The reason for the observed differences in the two spectra lies in the angular mo-
menta of the states after electron capture. If we start with the Ho ground-state having
Me = −15

2 (Je = 15
2 ), then the state after electron capture has a core hole with either

jz = 1
2 (spin up cature) or jz = −1

2 (spin down capture). In the former case the total
final angular momentum is Mfinal

e = −8 which implies that the excited states have
Jfinal
e = 8. In the latter case the total final angular momentum is Mfinal

e = −7 which
implies that the excited states have Jfinal

e = 8 or Jfinal
e = 7. Hence, in case of spin down

capture, states with two different Jfinal
e can be reached instead of only one as in the

case of spin up capture. Electronic Coulomb interaction is responsible for the energy
splitting of the Jfinal

e = 8 and Jfinal
e = 7 states. Therefore, these splittings are of the or-

der of a few electron Volts [114]. As a consequence the M1(3s) resonance is split into
two peaks for spin down capture and is a single peak for spin up capture. The same
reasoning applies for N1(4s) and its satellite structures. The satellites however, are
more complicated as they involve two holes due to relaxation processes subsequent
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Figure 4.3.: Electron capture spectrum (2.60) where an electron has been captured
with spin down (black) and spin up (red). The electronic propagator (2.59)
is calculated for M1

e = M2
e = −15

2 .

to electron capture.
An experimental measurement of the spectrum is insensitive to whether a spin up

or spin down electron hast been captured. Hence, the discussed differences cannot
be observed directly, but indirectly instead, which is where hyperfine interactions
become important. As outlined in section 2.5, these interactions couple angular mo-
menta of electrons and nucleus. The coupling strengths are determined by Clebsh-
Gordan coefficients in (2.58) and they will determine how spin up and spin down
capture spectra contribute to the total spectrum. As Clebsch-Gordan coefficients de-
pend on the total angular momentum F, we can expect that the full spectrum will also
depend on F. In this case, the differences between spectra of different F are related to
the differences in spin up and spin down capture spectra, and hence we expect them
to be at the same energy scale of a few electron Volts.

It is worth noting, that energy-shifts, which are directly related to hyperfine interac-
tions, are much smaller as compared to the aforementioned shifts related to Coulomb
interaction. Therefore, at finite temperature the system is in a mixed state where the
amount of admixture of a given F is determined by Boltzmann statistics. This induces
a temperature dependence of the electron capture spectrum [114].

To observe this dependence in experiment, detectors must be able to resolve spec-
tral shifts of the order of multiplet-splitting due to Coulomb interaction, which is
easier to achieve than spectral resolution down to hyperfine-splitting. To calculate
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the temperature dependent spectrum, one has to go beyond approximation (2.60)
and use (2.58) instead. However, this involves more computational resources, since
the propagator G±e (ω) (2.59) has to be calculated for all possible values of M1

e and
M2

e . Some of the corresponding states involve 16 times as many Slater-determinants
as the Me = −15

2 state used so far.
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5. Unbound states and line-broadening

So far we assumed that the line-shapes of the resonances in the electron capture spec-
trum are lorentzian, but we saw in the previous chapter that this is not an appropriate
description. The line-widths have been adjusted to match experimental data, how-
ever now we want to determine line-shapes from first principles. Therefore, we study
the Auger-Meitner effect [115,116] and its impact on the spectrum. As the effect trans-
fers electrons into unbound states with continuous energies, it is precisely what we
need to compute broadening of resonances.

The Auger-Meitner effect is introduced in section 5.1. To include it in our calcula-
tions, we extend the single particle basis functions by eigen-differentials, which are
capable of describing unbound states with continuous energy spectrum, in section
5.2. Combining this extended basis with our calculation for bound states from the pre-
vious chapter is made possible by introducing a self-energy in section 5.3. This allows
for a numerically efficient handling of the Hilbert-space which has become very large
after extending the single particle basis. Section 5.4 details the numerical calculations
and how the electron capture spectrum is calculated including line-broadening due
to the Auger-Meitner effect.

Methods and results from this chapter have been published in [3] and are reviewed
here in greater detail.

5.1. The Auger-Meitner effect

To improve our understanding of the spectral shape, we need to look at those pro-
cesses that are responsible for line-broadening. Broadening is encoded in the con-
tinuous spectrum of the Hamiltonian (2.16) which has so far been studied on the
sub-space of bound states. There the Hamiltonian has a discrete spectrum only.
Hence, we need to identify those interactions that couple the bound-state sub-space
to sub-spaces with unbound electrons. The latter can assume continuous energy-
eigenvalues. To put it differently, we need to identify those relaxation mechanisms
that allow a bound-state-resonance to decay into a continuum of states. Such decays
have life-times which are inversely proportional to the line-width of the decaying
resonance.

An example of such a process is the Auger-Meitner effect, which was discovered by
Lise Meitner in 1922 [115] and Paul Auger independently in 1923 [116]. The Auger-
Meitner effect is depicted schematically in figure 5.1. It can occur in an excited atom
if the excitation energy is higher than the atom’s ionization energy. In highly excited
atoms there is typically a hole in the inner shells. An electron from a higher shell can
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5. Unbound states and line-broadening

→

Figure 5.1.: Schematic view on the Auger-Meitner process. We see an excited atom
with one hole (white) in the inner shells. The atom de-excites when an
electron (blue) fills this hole by transferring its energy to another electron.
The latter escapes the Coulomb potential of the nucleus (red and yellow)
leaving an ionized atom behind.

fill up this hole and transfer the energy difference between those shells to another
electron via Coulomb interaction. If the transferred energy is large enough, the sec-
ond electron can escape the attractive potential of the nucleus and leaves the now
ionized atom as a free electron with a remaining kinetic energy. The values of this ki-
netic energy are continuous. Hence, Auger-Meitner scattering couples bound excited
states to the continuous spectrum of the Hamiltonian.

Since this effect is caused by electronic Coulomb repulsion, the relevant dynamics
are already encoded in the Coulomb operator (2.40) and the kinematics in Dirac’s
Hamiltonian (2.34). However, as these have been expanded on bound atomic orbitals,
we need to extend the single-particle basis in order to include unbound electrons
in the expansion. This is done in the next section where we see that the extension
drastically increases the number of single-particle states and consequently also the
Hilbert-space. To handle this, we develop an approximation in section 5.3 that allows
for an efficient numerical implementation.

5.2. A single-particle basis made of eigen-differentials

Different methods have been developed to deal with eigenfunctions of an operator
which are not square-integrable, as they belong to the operator’s continuous eigen-
values. Here we use the method of eigendifferentials invented by Herman Weyl [117]
and developed further by Olga Rubtsova and coworkers [118]. We closely follow the
latter reference.

While eigenfunctions φε(x) corresponding to the continuous spectrum ε ∈ [0, ∞)
of a self-adjoint operator h are typically not square-integrable, they obey an orthogo-
nality relation ∫

φ∗ε (x)φε′(x)dx = δ(ε− ε′) . (5.1)

58



5.2. A single-particle basis made of eigen-differentials

Plane waves e−iqx which are eigen-functions of the momentum operator and describe
free particles with momentum h̄q are a typical example.

We want to use these eigen-functions φε(x) to construct a countable, orthonormal
basis, on which the single-particle Hamiltonian h has a simple form. If we divide
the continuous spectrum [0, ∞) into disjoint intervals [εn, εn+1) of equal length ∆ =
εn+1 − εn, we can define wave-packets according to [118]

ψn(x) =
1√
∆

∫ εn+1

εn
φε(x)dε . (5.2)

These are orthonormal∫
ψ∗m(x)ψn(x)dx =

1
∆

∫ ∫ εm+1

εm
φ∗ε (x)dε

∫ εn+1

εn
φε′(x)dε′dx

=
1
∆

∫ εm+1

εm

∫ εn+1

εn
δ(ε− ε′)dεdε′ =

{
1 if ε ∈ [εn, εn+1)
0 otherwise = δmn

(5.3)

and using hφε(x) = εφε(x) we obtain for the matrix elements

hmn ≡
∫

ψ∗m(x)hψn(x)dx =
1
∆

∫ ∫ εm+1

εm
φ∗ε (x)dε

∫ εn+1

εn
ε′φε′(x)dε′dx

=
1
∆

∫ εm+1

εm

∫ εn+1

εn
ε′δ(ε− ε′)dεdε′ = δmn

ε2
m+1 − ε2

m

2∆
. (5.4)

If we take the limit of ∆ → 0 the wave-packets approach the eigen-functions corre-
sponding to the continuous spectrum ψn(x) → φεn(x) and hmn → δmnεn. Thus the
ψn(x) are called eigen-differentials and we can use them to approximate the continu-
ous spectrum to in principle arbitrary precision.

One can obtain similar sets of eigen-differentials with the same properties as above
via [118]

ψn(x) =
∫ εn+1

εn
f (ε)φε(x)dε with

∫ εn+1

εn
| f (ε)|2dε = 1 . (5.5)

We directly see that this generalizes (5.2) and the matrix elements become

hmn = δmn

∫ εn+1

εn
ε| f (ε)|2dε . (5.6)

Since, our one-particle basis of Kohn-Sham orbitals described in section 2.4.1 is
spherically symmetric, we want to retain this symmetry in our eigen-differentials.
Therefore, we start from the one-particle eigen-functions φτ,ε(x) of Dirac’s Hamilto-
nian (2.9) which are determined by (2.31) with radial parts g(r) = rG(r) and f (r) =
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rF(r) given as

gq,κ(r) = N r jl(qr) (5.7)

fq,κ(r) = N sign(κ)
q

εq + m
r jl̄(qr) (5.8)

N =

√
2q√

π

[
1 +

(
q

εq+m

)2
] εq =

√
q2 + m2 (5.9)

These are the same as for the free neutrino (2.46) but with the mass m of the elec-
tron. Hence, we can analogously label the single-particle states by quantum numbers
τε = {q, κ, mjz} where q is the absolute value of the electron’s momentum. As men-
tioned in (2.49) the normalization is chosen such that the radial wave-functions are
orthonormal in the sense of (5.1) and we can proceed as described above to construct
eigen-differentials by dividing the energy spectrum into disjoint intervals. The cor-
responding momenta can be obtained from the relativistic dispersion relation (5.9).
However, for the calculation of the electron capture spectrum in Ho the Q-value
is much smaller than an electron’s rest mass and hence the non-relativistic energy-
momentum relation q =

√
2ε/m can be used.

Since the experimental energy resolution of the spectrum shown in [2,3] is between
5.4 and 9.2 eV, we can choose to decompose the continuous energy spectrum into
intervals of length ∆ = 2 eV in order to be well below experimental resolution. Then
we can use the eigen-functions φτε(x) to construct eigen-differentials ψτε according to
(5.2). As Q = 2838 eV [2] and ∆ = 2 eV, it is sufficient to use the first Nε = 2000
eigen-differentials for each value of κ ∈ {±1, ±2, . . .± 5} to cover the energy range
of the electron capture spectrum and avoid boundary effects due to a truncated basis
of eigen-differentials. The latter aspect is assured since the eigen-differentials involve
eigen-functions with energies from 0 to 4 keV, thereby largely exceeding the spectral
endpoint.

Now we have eigen-differentials that we can use to extend our single-particle ba-
sis of bound, atomic orbitals constructed in chapter 4. However, the former are not
orthogonal to the latter. Hence, orthogonalization has to be done manually. As the
bound orbitals are already mutually orthogonal and optimized to describe bound
states, the orthogonalization scheme should not alter these. Thus we combine bound
orbitals φb,τ and eigen-differentials ψτε in one row vector Φ = (φb,1, . . . φb,Nb

, ψτ1
ε
, . . . ,

ψ
τNε

ε
) and calculate the overlap matrix S =

∫
Φ†Φd3x of bound orbitals and eigen-

differentials. A Cholesky-decomposition [119] is applied to the overlap matrix such
that S = LU, where L and U are lower and upper triangle matrices respectively
with L = U†. Defining Ψ = ΦU−1 we obtain

∫
Ψ†Ψd3x = L−1SU−1 = 1 implying

that Ψ is a set of orthonormal vectors. Since the Nb bound orbitals have been or-
thonormal already, the first Nb × Nb block of U is the Nb × Nb identity matrix. Thus,
the first Nb entries of Ψ are precisely the unchanged bound atomic orbitals. The re-
maining entries Ψε have contributions from both eigen-differentials and bound or-
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Figure 5.2.: The left panel shows a comparison between a bound 4d orbital (grey,
dashed) and eigen-differentials which are single-particle wave-functions
of unbound electrons (colors). The unbound electrons have different en-
ergies which are color-coded and marked in the right panel. The cross-
section for the release of an Auger-Meitner electron with energy ε via the
scattering e−4p + e−4d → e−4s + e−ε f depends on the Coulomb slater integral
shown in the right panel as a function of the Auger-Meitner electron’s
energy. The energy dependence directly corresponds to the overlap be-
tween bound and unbound wave-functions shown in the left panel. Taken
from [3]

bitals. Therefore, their matrix-elements of Dirac’s Hamiltonian are not simply given
by (5.4). It is impossible to achieve matrix-elements in the form (5.4) and orthogo-
nality to the bound orbitals simultaneously. As for our calculations the latter is more
important, we assure exact orthonormality by the algorithm just described and try
to reach the form (5.4) approximately. Thus we rotate the last Nε vectors from Ψ
(denoted Ψε) such that the projection of Dirac’s Hamiltonian onto the corresponding
sub-space is diagonal with entries εn. This results in the final single-particle basis,
which we use this chapter to calculate the line-broadening of bound resonances due
to the Auger-Meitner effect. As these basis vectors are linear combinations of bound
single-particle wave-functions and unbound eigen-differentials ψτε , their energies dif-
fer from (ε2

n+1 − ε2
n)/2∆ (5.4) slightly. To account for this hybridization effect, the di-

agonal entries εn are used to represent the unbound electrons’ kinetic energies (note
the difference between εn, obtained by diagonalizing Dirac’s Hamiltonian on the sub-
space spanned by Ψε, and εn which are the chosen energy discretizations).
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5. Unbound states and line-broadening

In figure 5.2 eigen-differentials describing unbound electrons at different energies
are shown. From plot a to c one observes an oscillatory behavior with decreasing
wave-length for increasing energy, which is typical of unbound electrons. Electrons
can be scattered into these states by the Auger-Meitner effect. For example a 4p elec-
tron can fall into the 4s hole previously created by electron capture and thereby scat-
ter a 4d electron into an unbound f state leaving the atom as Auger-Meitner electron
with remaining energy ε. We denote this process as e−4p + e−4d → e−4s + e−ε f . The cross-
section for this process depends on the Coulomb Slater integral Uε f ,4s,4d,4p which is
shown in the right panel of figure 5.2 as a function of the Auger-Meitner electron’s
energy. We see that the Slater integral rises quickly until it reaches a maximum and
descends slowly until hitting zero. From this point a second rise occurs which is less
pronounced.

This behavior can be understood by comparing the wave-functions of the electron
in its initially bound 4d orbital and in its final unbound state described by eigen-
differentials as shown in figure 5.2. At small ε – marked red – the overlap between
initial and final wave-function is small and therefore also the corresponding Slater
integral. Increasing ε leads to the shortening of wave-length and thus a larger overlap
with the bound 4d orbital. Hence, also the Slater integral increases. At the energy
marked blue the overlap is maximal and a further increase in ε leads to stronger
oscillations (orange) which in turn reduce the Slater integral of the Auger-Meitner
process. Slightly above 2 keV a point is reached where the oscillations completely
cancel the overlap and above this point overlap and Slater integral start to increase
again. However, the now strongly oscillating eigen-differentials do not yield Slater
integrals as high as the ones at larger wavelengths.

These observations explain the energy dependence of the Slater integrals. This
directly influences the spectral line-broadening as we will show in the following sec-
tions. We already saw that this energy dependence is a largely asymmetric function,
which will be reflected in the line-shape of the resonances.

5.3. Self-energy

The single-particle basis obtained in the previous section cannot simply be used to
construct the full Hamiltonian (2.16) and repeat the calculation from chapter 4. The
number of single-particle orbitals now exceeds 105 leading to a Hilber-space dimen-
sion of 10279 in the case of 66 electrons. Furthermore, the number of involved Slater
integrals is even too high to store the Hamiltonian in a sparse, second quantization
representation on RAM. Hence, we need to find a good approximation that includes
Auger-Meitner decay and the continuous spectrum.

If an excited state corresponding to one of the bound resonances decays via Auger-
Meitner processes, it is most likely that only a single Auger-Meitner electron is cre-
ated. The creation of multiple Auger-Meitner electrons is the more unlikely the more
electrons are created, as this is related to higher order processes in perturbation the-
ory. Thus, our first approximation is to restrict the Hilber-space to states that involve
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5.3. Self-energy

at most one Auger-Meitner electron. As a consequence we can neglect interactions
between multiple Auger-Meitner electrons completely, which greatly simplifies the
Hamiltonian.

Furthermore, we assume that all Hartree terms (e†
εe†

τ1
eτ1eτ2) involving eigen-differen-

tials can be absorbed into the one-particle energies εn of the eigen-differentials. Thus,
the only terms which are added to the Hamiltonian of bound states (2.16) in order to
include the continuous energy spectrum are kinetic energy

KA = ∑
εn,κ,mj

εn e†
εn,κ,mj

eεn,κ,mj ≡∑
ε

ε e†
εeε (5.10)

and Coulomb scattering terms which govern the Auger-Meitner process itself

UA = ∑
ε

∑
τ1 6=τ3

∑
τ2

Uετ1τ2τ3e†
εe†

τ1
eτ3eτ2 + h.c. ≡∑

ε

Uεe†
ε + h.c. (5.11)

Uετ1τ2τ3 are given by the Coulomb matrix-elements (2.42) where one single-particle
wave-function is an eigen-differential. Note that ∑τ1 6=τ3

assures no Hartree terms are
included as mentioned above. The total Hamiltonian is given by [3]

Heff = HD + VC + Ueff + HW + Hν + KA + UA . (5.12)

If we divide the Hilbert space into a sector without Auger-Meitner electrons and a
sector where states include one Auger-Meitner electron, we see that only UA couples
these two. On the other hand, the electron capture spectrum is obtained from (2.59)

G−e (ω) = 〈ψe, Je, M1
e |e†

τ1
e
(ω + i0− HD −VC −Ueff − KA −UA)

−1 eτ2
e
|ψe, Je, M2

e 〉
(5.13)

where the expectation value is taken with respect to states that involve bound elec-
trons only. Hence, we can insert a projection onto the corresponding subspace which
we denote Pb = ∑b |ψb〉〈ψb|. The sum runs over all many-body bound eigen-states of
HD + VC + Ueff with 66 electrons after electron capture. We already obtained a good
approximation of these in chapter 4 using Lanczos’ algorithm. This yields

G−e (ω) = 〈ψe, Je, M1
e |e†

τ1
e
(ω + i0− HB − Σ(ω))−1 eτ2

e
|ψe, Je, M2

e 〉 (5.14)

where we denoted the projection of the Hamiltonian onto bound eigen-states as

HB = ∑
b
|ψb〉〈ψb|HD + VC + Ueff|ψb〉〈ψb| ≡ Eb|ψb〉〈ψb| (5.15)

and introduced a self-energy

Σ(ω) = ∑
bb′
|ψb〉〈ψb|UA (ω + i0− HD −VC −Ueff − KA)

−1 UA|ψb′〉〈ψb′ | . (5.16)
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5. Unbound states and line-broadening

For a proof of (5.14) and (5.16) see the appendix of [3]. Inserting (5.11) and direct
calculation simplify the self-energy to

Σ(ω) = ∑
bb′
|ψb〉∑

ε

〈ψb|U†
ε (ω + i0− HD −VC −Ueff − ε)−1 Uε|ψb′〉〈ψb′ | . (5.17)

We denote the energy dependent matrix elements as

Σbb′(ω, ε) ≡ 〈ψb|U†
ε (ω + i0− HD −VC −Ueff − ε)−1 Uε|ψb′〉 . (5.18)

Thus we reduced the problem of inverting the full Hamiltonian in (5.13) to invert-
ing a projected Hamiltonian (5.15) plus self-energy, where the projected subspace is
given by those bound states we already treated in chapter 4. Hence, the remaining
most difficult task is the evaluation of (5.18). In section 5.4 we put this expression into
a format more suitable for numerical implementation. Here we want to discuss the
meaning of this self-energy instead and gain some intuitive understanding. There-
fore, we insert unity ∑En |n〉〈n| in terms of eigen-states of HD + VC + Ueff and use
(2.5) such that

Σbb′(ω, ε) = P∑
En

〈ψb|U†
ε |n〉〈n|Uε|ψb′〉

ω− En − ε
− iπ ∑

En

δ (ω− En − ε) 〈ψb|U†
ε |n〉〈n|Uε|ψb′〉 .

(5.19)
Thus, the negative imaginary part of the self-energy’s diagonal elements is precisely
the cross-section for Auger-Meitner scattering encoded in Uε where the bound state
ψb decays via emission of an Auger-Meitner electron with energy ε. To put it differ-
ently ∑ε Im [−Σbb(Eb, ε)] is the lorentzian line-width of the resonance in the electron
capture spectrum at Eb. Its inverse is the resonance’s life-time with respect to Auger-
Meitner decay. Hence, the self-energy includes the canonical line-width of bound
resonances, but also incorporates an energy dependent line-broadening for the full
spectrum. For every value of the Auger-Meitner electron’s energy ε the self-energy
has resonances at ω = En + ε each weighted with the matrix element |〈n|Uε|ψb〉|2.
In the limit of infinitesimally spaced ε the sum turns into an integral and Σ(ω) be-
comes a continuous function of the excitation energy ω. For numerical calculations
we replace the infinitesimal i0 in (5.18) by the energy spacing i∆, which leads to a
smooth self energy even before taking the limit ∆ → 0. This results in an overall,
energy-dependent line-broadening of the electron capture spectrum.

To illustrate this, we continue the example from the previous section, where the 4s
resonance couples to unbound states via e−4p + e−4d → e−4s + e−ε f . The imaginary part of
the corresponding self-energy’s diagonal entry is shown in figure 5.3. In this case the
Auger-Meitner effect creates two holes. One in 4p and one in 4d. Hence, at the energy
of this two-hole state the self-energy’s imaginary part, or cross-section, rises rapidly
and closely follows the shape of the corresponding Slater integrals shown in figure
5.2. Thus, the two particle scattering amplitudes influence the shape of the cross-
section most dominantly. However, its shape is slightly modified by the presence
of bound electrons in initial and final states, or to put it differently by many-body
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Figure 5.3.: The Auger-Meitner effect couples the 4s resonance to unbound states via
scattering e−4p + e−4d → e−4s + e−ε f . This can be described by a self-energy
(5.18) where ψb is the bound-state determining the 4s resonance. The left
panel shows the imaginary part of the corresponding self-energy’s diago-
nal entry. The right panel compares the spectral shape of the 4s resonance
asumming lorentzian broadening (grey) and broadening according to the
self-energy from the left panel (red). Taken from [3].

effects. This suppresses the self-energy at higher energies, which is most prominent
in the second rise above 2.5 keV.

The impact of the self-energy on the spectrum is shown in the right panel of figure
5.3. The resonance gets a small width and asymmetric tails. As the final states with
Auger-Meitner electron have to be at energies above the 4p4d-two-hole state, the high
energy wing of the resonance has much more intensity than the low energy wing. One
can observe a small bump at the corresponding ionization-energy threshold needed
to create the two-hole state and eject the 4d electron. A second bump can be found
above 2.5 keV which corresponds to the second rise in self-energy and Slater integrals.
However, it is further suppressed by the neutrino phase space factor. Comparing the
spectral shape due to self-energy and a lorentzian resonance in figure 5.3, shows that
the Auger-Meitner effect does not only lead to increased spectral weight on the high
energy side of the resonance, but also leads to line-shapes with different curvature.
Both effects become important in the endpoint regime, as the former implies more
counts in the region sensitive to the neutrino mass and the latter needs to be well
understood in order to extract neutrino masses from the spectrum [3]. We will discuss
this in section 5.4.

So far we have discussed the imaginary part of the self-energy. Its real part takes
into account that hybridization between bound states and states with Auger-Meitner
electrons shifts the energies of the resonances. Since states with Auger-Meitner elec-
tron are at higher energies than the corresponding initial state with bound electrons
only, the self-energy’s real part will shift the bound resonances to lower absolute en-
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5. Unbound states and line-broadening

ergies. However, it will also shift the ground-state energy. Thus the resonances’ po-
sitions relative to the ground-state energy can be shifted to both lower and higher
energies. In the following section we demonstrate that these shifts improve agree-
ment with experiment.

The off-diagonal elements of the self-energy will mix the bound resonances and
give rise to interference. There are multiple ways how different bound resonances
can decay into the same final state with Auger-Meitner electron. The coupling of
these resonances to the continuous spectrum comes with a phase and hence the dif-
ferent decay channels can interfere. In the next section we show that this interference
is constructive on the high energy side of a resonance and destructive on the low en-
ergy side. This comes in addition to the energy dependent line broadening discussed
above and leads to line-shapes as described by Fano [120].

5.4. How to calculate self-energy and spectrum

The most straightforward way to determine the self-energy would be to directly cal-
culate (5.18) using the Block-Lanczos algorithm described in section 3.2. For every ε
one can create a set {Uε|ψb〉} of starting vectors and apply the algorithm. However,
each of these calculations takes days and doing this for every ε is massively resource
intensive. Hence, a more sophisticated approach is necessary.

Therefore, we study the matrix-elements of the self-energy (5.18), which after inser-
tion of unity in terms of eigen-states of the bound-state Hamiltonian HD + VC + Ueff
read

Σbb′(ω, ε) = ∑
En

〈ψb|U†
ε |n〉〈n|Uε|ψb′〉

ω + i0− En − ε
. (5.20)

To evaluate this expression we first need to determine the eigen-states |n〉, which
can be done using the Block-Lanczos routine as described in section 3.2. To construct
starting vectors we pick bound-state eigen-vectors {|ψb〉} belonging to the most dom-
inant resonances of the spectrum calculated in chapter 4 and shown in figure 4.1.
These are 226 states. The starting vectors are then given as {Uε|ψb〉} for some fixed
ε and not for every ε as discussed above. This assures that every starting vector
contains exactly 65 electrons, since out of the initial 67 electrons in the Ho ground-
state one has been captured by the nucleus and another one escaped the atom via the
Auger-Meitner effect. In this way Lanczos’ algorithm provides us with an eigen-basis
of HD + VC + Ueff for the sub-space with 65 bound and one Auger-Meitner electron.

Now we have to evaluate 〈n|Uε|ψb〉 for every value of ε. This task can be sped up
by separating the dependence on ε as

〈n|Uε|ψb〉 = ∑
τ1 6=τ3

∑
τ2

Uετ1τ2τ3〈n|e†
τ1

eτ3eτ2 |ψb〉 . (5.21)

In this expression the most time-consuming task is the evaluation of 〈n|e†
τ1

eτ3eτ2 |ψb〉.
Hence, the separation of this expression from the energy dependent Uετ1τ2τ3 allows
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Figure 5.4.: Electron capture spectrum calculated including locally bound orbitals
(blue, fig. 4.1) and additionally relaxation due to Auger-Meitner scatter-
ing (green/orange). The blue curve assumes a constant lorentzian broad-
ening, the others obtain broadening due to the Auger-Meitner effect.
While the green curve uses the diagonal entries of the self-energy only, the
orange one includes the full self-energy matrix such that the bound reso-
nances are coupled to each other, which leads to constructive/destructive
interference on the high/low energy wings of resonances. Taken from [3].

to calculate 〈n|e†
τ1

eτ3eτ2 |ψb〉 once and reuse it for every ε. This gives an important
performance boost when calculating the full self-energy Σbb′(ω) = ∑ε Σbb′(ω, ε).

Having calculated the self-energy, we can easily plot the spectrum using (5.14).
The results are shown in figure 5.4. Comparison with the spectrum where lorentzian
line-widths have been assumed (blue curve) shows that our ab initio approach to
line-broadening predicts a different shape. Features of this shape are determined by
energy dependent broadening, which becomes most apparent when observing that
the resonances 3s and 4s have different widths and that their high energy tails carry
more spectral weight than the respective low energy tails.

Compared to the calculation including bound local orbitals only, resonances are
shifted in energy. These shifts are present due to the self-energy’s real part which
takes hybridization between bound and unbound states into account.

Fano’s effect [120] can be observed by comparing green and orange curves. The for-
mer involves the diagonal entries of the self-energy only, while the latter also includes
the off-diagonal ones which reflect that there are multiple decay channels which reach
the same unbound final state starting from different bound resonances. These chan-
nels interfere destructively or constructively as a function of energy depending on
the phases a final state acquires during relaxation. Thereby intensity is decreased in
the low energy wings and increased in the high energy wings of resonances.
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Figure 5.5.: Comparison of the electron capture spectrum obtained experimentally [2]
(grey), from calculations including only bound, local states under as-
sumption of lorentzian broadening [1] (blue) and including additionally
unbound states and energy-dependent broadening due to Auger-Meitner
effect [3] (orange). The orange curve improves agreement with experi-
ment as compared to the blue one in terms of shifted peaks and increased
intensity in high energy wings of resonances most notably for the 4s and
3s edges. Calculated curves are convoluted with a Gaussian to account
for detector broadening.

To show that all the above spectral modifications improve agreement between the-
ory and experiment, we plot the spectrum from chapter 4 including bound lorentzian
resonances together with the one from this chapter and experimental data [2] in fig-
ure 5.5. It becomes apparent that the energy shifts, due to the self-energy’s real part,
improve the positions of resonances most notably for those at higher energy like 3s
and 3p1/2. It is not surprising that there the shift is more pronounced compared to
4s, since at higher energies more unbound states are available for coupling to a res-
onance. In addition, we notice that more available unbound states lead to stronger
broadening at higher than at lower energies (compare 3s and 4s), since real and imag-
inary part of the self-energy are connected by Kramers-Kronig relation. This was not
present in the lorentzian description of resonances. It would have to be included
manually for every peak. Furthermore, in the region between 4s and 3s we see that
lorentzian broadening is not capable of explaining the intensity in the resonances’
tails. Here the asymmetry of self-energy broadening becomes important which ac-
counts for most of the experimentally observed spectral weight. Especially in the
endpoint region the Auger-Meitner effect leads to an increase in intensity which is
reproduced in our calculation, but cannot be described by a symmetric, lorentzian 3s
resonance.
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Figure 5.6.: Effect of finite neutrino masses on the endpoint region. The Auger-
Meitner effect leads to an exponentially decaying line-shape far off a res-
onance. Left: if the spectrum is divided by (Q − ω)2, one observes a
straight line for massless neutrinos (black). Finite neutrino masses modify
this line-shape (red). Right: to simulate detector resolution, the endpoint
regime has been convoluted with a Gaussian of width σ. Dashed lines de-
pict the spectral line-shape for massless neutrinos, full lines correspond
to massive neutrinos. The lightest neutrino mass has been assumed to be
mν1 = 0.5 eV and Q = 2.833 keV has been chosen according to [5].

However, one still observes differences compared to experimental data. Peak posi-
tions are still off, the width of 3s is too small and intensity is missing between reso-
nances. All of this indicates that further decay channels are important and have to be
included. Channels which couple bound resonances to further continua are needed
besides those involved in the Auger-Meitner effect. These could include Fluores-
cence decay, where electrons de-excite via emission of a photon, or interaction with
the chemical environment, since in the experimental setup the Ho atom is surrounded
by gold. This provides a band-structure in which electrons can scatter escaping their
Ho orbitals. Furthermore, the gold environment changes the valence configuration
of Ho which might open additional Auger-Meitner channels not yet included in our
calculation. Also double Auger-Meitner decay is in principle possible, where two
electrons are ejected simultaneously, but we expect this to be much less important
than the standard Auger-Meitner effect, as the Coulomb-matrix elements for emis-
sion of two electrons are smaller than those for emission of a single electron.

In the above discussion we saw that the Auger-Meitner effect and the associated
line-broadening dominate the high energy wings of resonances. Now we want to
study the impact of this on the spectral endpoint, which is shown in the left plot of
figure 5.6. The self-energy shows exponential decay for large values of the deposited
energy ω. Thus, a logarithmic plot of the spectrum divided by the phase space factor
of mass-less neutrinos yields a straight line (black) far from resonances. Finite neu-
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5. Unbound states and line-broadening

trino masses alter this straight line with kinks at each ω = Q− mνa c2 (red). This is
very similar to figure 2.1. However, the difference between these plots is the func-
tional dependence on ω. Far from a lorentzian resonance as in figure 2.1 the plot
log
[

dΓ
dω /(Q−ω)2

]
behaves as ∼ −2 log ω. On the other hand for an exponentially

decaying self-energy as in the left panel of figure 5.6 we have log
[

dΓ
dω /(Q−ω)2

]
∼

−ω. The latter dependence is not only simpler but also comes from a much more ac-
curate description of the spectral broadening. This again stresses the importance of a
precise understanding of line-shapes and furthermore demonstrates that the spectral
endpoint region has a simpler shape than expected. Hence, determination of neu-
trino masses from the electron capture spectrum appears to be very fruitful, given
experimental data with sufficiently high statistics and resolution.

To demonstrate how experimental resolution affects the capability of precisely de-
termining neutrino masses, we convolute the spectrum with Gaussians of different
widths to model detector-broadening. This is shown in the right plot of figure 5.6.
The separation between curves for massive (full lines) and massless (dashed lines)
neutrinos increases with improved resolutions and intensity. Thus, with a better res-
olution less counts are needed in order to distinguish between massive and massless
neutrinos.

5.5. Outlook: Fluorescence

A further relaxation mechanism leading to line-broadening is fluorescence decay. Af-
ter electron capture the excited states can decay via spontaneous emission of a pho-
ton. The energy spectrum of photons is continuous similar to Auger-Meitner elec-
trons. Hence, coupling bound states to the electro-magnetic field results in further
line-broadening.

To include spontaneous photo-emission, we need to quantize the electro-magnetic
field. This is done in Coulomb gauge. The Hamiltonian governing interactions be-
tween electrons and electro-magnetic field reads

HEM = e
∫

ψ̄e(x)γi Ai(x)ψe(x)d3x . (5.22)

Canonically quantizing the vector potential leads to

A(x) =
1√
2

2

∑
λ=1

1

(2π)
3
2

∫
ω
− 1

2
p ελ(p)

(
aλ(p)e−ipx + a†

λ(p)e
ipx
)

d3p (5.23)

where ελ(p) is a polarization vector fulfilling ελ(p) · p = 0 and ωp = c|p| is a pho-
ton’s dispersion relation. The operators a†

λ(p) and aλ(p) respectively create and an-
nihilate a photon with momentum p and polarization λ. They obey the canonical
commutation relation

[
aλ(p), a†

λ′(q)
]
= δλλ′δ(p − q). The photons’ kinetic energy
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reads

Hγ =
2

∑
λ=1

∫
ωpa†

λ(p)aλ(p)d3p . (5.24)

Now we introduce the transition operator

Tλ(p) =
∫

ψ̄e(x)γiεi,λ(p)eipxψe(x)d3x (5.25)

such that

HEM =
e√
2

2

∑
λ=1

1

(2π)
3
2

∫
ω
− 1

2
p

(
aλ(p)T†

λ(p) + a†
λ(p)Tλ(p)

)
d3p . (5.26)

In this form we directly see that HEM couples the sub-space of bound electronic states
without photons to the sub-space where a single photon is present. Spontaneous
emission of two or more photons simultaneously is a higher order process. If we
hence neglect this, we can include relaxation due to fluorescence in full analogy to
the Auger-Meitner effect via a self-energy

Σbb′(ω) = 〈ψb|HEM
1

ω + i0− H − Hγ
HEM|ψb′〉 (5.27)

with H = HD + VC + Ueff. Inserting (5.26) and simplifying yields

Σbb′(ω) =
e2

2(2π)3

2

∑
λ=1

∫ 1
ωp
〈ψb|T†

λ(p)
1

ω + i0− H −ωp
Tλ(p)|ψb′〉d3p . (5.28)

Once calculated numerically this self-energy can be added to its Auger-Meitner pen-
dant (5.18) and contributes to spectral broadening.

To get some insights into Σbb′ , we split it into its real and imaginary part

Re Σbb′(ω) =
e2

2(2π)3

2

∑
λ=1
P
∫ 1

ωp
〈ψb|T†

λ(p)
1

ω− H −ωp
Tλ(p)|ψb′〉d3p (5.29)

Im Σbb′(ω) = − e2π

2(2π)3

2

∑
λ=1

∫ 1
ωp
〈ψb|T†

λ(p)δ
(
ω− H −ωp

)
Tλ(p)|ψb′〉d3p . (5.30)

In dipole approximation Tλ(p) does not depend on the absolute value of momentum
p ≡ |p|. Hence, performing the integral over the latter in spherical coordinates yields
for the imaginary part

Im Σbb′(ω) = − e2π

2(2π)3

2

∑
λ=1

∫
〈ψb|T†

λ(p) (ω− H)Θ [ω− H] Tλ(p)|ψb′〉dΩp . (5.31)

Here the Heaviside Θ-function has been introduced. The above expression shows
that broadening due to dipole transitions becomes important for large ω. In the case
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5. Unbound states and line-broadening

of 163Ho the excitation energy ω is however restricted to be below the Q-value of
2.838 keV, which implies that we can expect the broadening to be small compared to
its Auger-Meitner pendant.

The self-energy’s real part involves a principle-value integral with integrand of
OrderO(p0) which is divergent. This shows that the classical multipole expansion of
the electro-magnetic field is not applicable if calculation of the real part is necessary to
determine shifts of resonant energies. Instead one could expand ελ(p)eipx in terms of
vector-spherical harmonics and spherical Bessel functions. This would also simplify
the calculation of the matrix elements of Tλ(p), since electronic fields are given on a
spherical basis.
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6. Broadening due to Auger-Meitner
effect in x-ray spectroscopy

An excited state can decay due to the Auger-Meitner effect regardless of how the ex-
citation has been created as long as its energy is above the ionization threshold of
the atom. X-ray spectroscopy uses photons to excite electrons in atoms, molecules or
crystals. Hence, we demonstrate in this chapter that the methods developed in chap-
ter 5 are also applicable to further spectroscopic techniques different from electron
capture spectroscopy.

Shooting x-rays onto matter can lead to absorption, elastic or in-elastic scatter-
ing and emission of photo-electrons. Recording spectral information of these pro-
cesses probes the electronic, chemical and geometric structure of materials under
study [121,122]. However, to infer properties from recorded spectra, theoretical mod-
els and calculations are necessary that can be compared to experimental data [123].
To understand spectral line-shapes, broadening due to the Auger-Meitner effect is
important as we already showed for electron capture spectroscopy and as we will
show here for x-ray absorption spectroscopy (XAS) and resonant in-elastic x-ray spec-
troscopy (RIXS) applied to Nickel oxide (NiO).

An XAS spectrum is recorded by measuring the absorption probability of photons
as a function of their energy. Different types of spectral features are observable in dif-
ferent energy regimes. As the principle structure of these regimes is similar for many
materials, one typically classifies spectroscopic techniques according to the regime
under study [122].

With highly energetic x-rays one can excite electrons from the 1s shell to the lowest
unoccupied p-shell and to the continuum. This is referred to as K-edge XAS, where
spectral features are dominated by a strong edge at the resonant energy of the 1s→
np transition [124–126].

Above the edge there are so called near edge structures (XANES) due to both bound
and un-bound states [127]. The broadening of these bound state structures involves
contributions from the Auger-Meitner effect, which is why our method has applica-
tions in this regime. At even higher energies the spectrum is dominated by so called
extended x-ray absorption fine structures (EXAFS) which correspond to states where
the 1s electron has directly been released as photo-electron. They show interference
patterns due to scattering off neighboring atoms [128].

At energies below the edge, a further peak, a pre-edge, can emerge if scattering
from 1s to a shell lower than the already lowest unoccupied p-shell is possible. In the
case of transition metals this can be the lowest d-shell with empty orbitals as 3d in Ni
for instance. However, this is a higher order transition and hence the corresponding
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6. Broadening due to Auger-Meitner effect in x-ray spectroscopy

edge is much smaller as compared to the main edge which results from a dipole tran-
sition [122]. Also main edge and pre-edge are broadened due to the Auger-Meitner
effect.

Using x-rays with lower energies it is possible to excite 2s or 2p electrons, which is
referred to as L-edge XAS. This is more sensitive to electronic structure as compared
to K-edge XAS [122]. Due to the lower energy, the contribution to the absorption
spectrum from photo-electrons is reduced and hence more spectral features can be
resolved. However, these features still obtain broadening due to the Auger-Meitner
effect. Therefore, we focus on a 2p→ 3d transition in NiO to demonstrate the capa-
bilities of our self-energy method from the previous chapter.

6.1. X-ray absorption spectroscopy

To calculate the x-ray absorption spectrum of NiO we can proceed in full analogy to
electron capture spectroscopy in Ho and use Kubo’s formula as in section 2.1. How-
ever, here we are interested in excitations due to coupling between electrons and the
electro-magnetic field, which promotes a core electron into the valence shell. Hence,
we need to apply some changes. The first change concerns the transition operator,
which in the case of EC was the weak Hamiltonian and now is the electro-magnetic
Hamiltonian HEM (5.26), we already encountered in section 5.5. For simplicity we
restrict HEM to excitations between the Ni 2p and 3d shells. The second change con-
cerns the Hamiltonian H = HD + VC + Ueff + VCF and takes into account that NiO
is a crystal and not an isolated atom. While this is in principle also true for Ho em-
bedded in gold, here it is much more important as we are directly probing valence
excitations. Hence, we added the crystal field potential VCF which takes into account
that rotational symmetry is broken due to the effective potential of the oxygen atoms
surrounding Ni. This potential can be expanded on spherical harmonics [129]

VCF(x) =
∞

∑
L=0

L

∑
M=−L

ALM(r)YM
L (θ, φ) . (6.1)

As NiO has octahedral symmetry, the crystal field potential is invariant under action
of the corresponding symmetry group. Hence, this expansion contains only spherical
harmonics which belong to the trivial irreducible representation a1g of the octahedral
group Oh. We can further simplify the above expansion by considering only those
terms which couple to d-orbitals. These are the terms with L ∈ {0, 2, 4}, of which
only L = 0 and L = 4 involve a1g [130]. L = 0 yields a constant offset for all 3d elec-
trons which can be absorbed in a shift of the spectrum as long as all spectral features
of interest can be described by a configuration with constant occupation of 3d. More
interesting is the L = 4 term which leads to a splitting of the ten-fold degenerate
d-orbital into a six-fold degenerate orbital belonging to the t2g irreducible representa-
tion of Oh and a four-fold degenerate orbital belonging to the eg irreducible represen-
tation. As a1g is one dimensional, there is a dependence between the (A4M)M=−4...4
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such that only one parameter Dq has to be determined. With this in mind, the single-
particle crystal field potential can be expressed in the basis of the 5 standard d-orbitals
as [129]

〈3d, m1|VCF|3d, m2〉 = Dq


1 0 0 0 5
0 −4 0 0 0
0 0 6 0 0
0 0 0 −4 0
5 0 0 0 1


m1,m2

(6.2)

From photoemission data one can infer Dq = 0.11 eV [131]. We transform the above
matrix from its spherical harmonics basis into the basis of spin-weighted spherical
harmonics such that we can express VCF in second quantization consistently with the
rest of the Hamiltonian H = HD + VC + Ueff + VCF, which is constructed from a set
of Kohn-Sham orbitals obtained from FPLO [81–83] in complete analogy to chapter 2.
We include all Ni orbitals up to 3d.

Now we use Lanczos’ algorithm to determine the ground state ψ0 of H and all
bound eigenstates ψb which couple to the ground state via Tx, Ty, or Tz which are
the dipole approximations of the transition operator (5.25) for linearly polarized light
in x-, y- and z-direction respectively. As we did not include empty orbitals and the
valence shell contains at most two holes in the ground state configuration, the active
Hilbert space is small and hence we can determine all these eigenstates exactly. A
similar reasoning applies for all the un-bound states including one Auger-Meitner
electron.

Within the formalism of chapter 5 the XAS spectrum of NiO now reads

dΓ
dω

(ω) ∝ −Im ∑
j∈{x,y,z}

〈ψ0|Tj (ω + i0− HB − Σ(ω))−1 T†
j |ψ0〉 . (6.3)

The sum over linear polarizations in all three dimensions yields an isotropic spec-
trum. HB and Σ(ω) have the following matrix-elements

(HB)bb′ = 〈ψb|H|ψb′〉 (6.4)

Σbb′(ω) = ∑
ε

〈ψb|U†
ε (ω + i0− H − ε)−1 Uε|ψb′〉 . (6.5)

The continuous energy spectrum ε of the eigendifferentials is discretized with 1 eV
spacing and cut off at 2 keV to avoid artifacts due to a too small single-particle ba-
sis. Auger-Meitner electrons with all possible angular momenta up to κ = ±5 are
included.

A plot of the XAS spectrum (6.3) is shown in figure 6.1. Since we focused on an
excitation where a 2p electron absorbs a photon and is transferred to a 3d orbital, we
observe two major edges L3 and L2. Due to the crystal-field the latter is split into two
peaks corresponding to the irreducible representations t2g and eg of the octahedral
symmetry group. In literature [130] the observation that the t2g peak is at lower en-
ergies compared to eg is often explained intuitively by the shape of the involved d
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Figure 6.1.: Isotropic XAS spectrum of NiO for an excitation 2p63d8 → 2p53d9. The
lorentzian broadening (blue) has been chosen to match the self-energy
broadening. Comparison with experiment [132] shows that further relax-
ation channels aside from the Auger-Meitner effect have a strong impact
on line-broadening. The spectra are shifted in energy to match experi-
mental data. Normalizations are determined such that the L3 edge (en-
ergy range [845.65, 854.6]) has an integral equal to 1.

orbitals. While the lobes of the eg orbitals dz2 and dx2−y2 point towards the surround-
ing, negatively charged oxygen sites, the lobes of the t2g orbitals dxy, dxz and dyz point
between the oxygen sites. Hence, the latter orbitals are influenced less strongly by the
repulsive oxygen potential than the former and consequently are lower in energy. We
will point out in chapter 8 that this reasoning based on orbital shapes is problematic
if it is not supplemented by group theoretic calculations. A rigorous treatment of
crystal field splitting can also be found in [130].

More interesting are the relative heights of t2g and eg peaks. If one compares the
calculation where an overall constant lorentzian broadening has been assumed (blue)
to the calculation where energy dependent self-energy broadening has been used
(red), one observes that the eg peak is much higher than the t2g peak for the blue
curve, but peaks have almost equal height for the red curve. This shows that the self-
energy broadens t2g less than eg and hence also improves the relative amplitudes of
resonances compared to experiment. The observation that the eg peak obtains more
broadening as compared to t2g can be explained by the fact that the eg resonance is
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at a higher energy and hence the space of available Auger-Meitner states is larger as
for t2g, which directly leads to a larger Auger-Meitner cross-section and consequently
more broadening.

Clearly, there are discrepancies between theory and experiment. The L2 and L3
edges are broader in experiment than in theory. The continuous background underly-
ing the L2 edge indicates the reason for this. This background is related to broadening
due to coupling to the chemical environment, or to put it differently to the band struc-
ture of NiO which has not been considered in our calculation so far. This coupling
is also responsible for L2 being broadened more strongly than L3. As broadening is
related to energy shifts via Kramers-Kronig relation between real and imaginary part
of the self-energy, we can expect that additional coupling to the chemical environ-
ment will also shift L2 relative to L3 and thereby does not only correct for missing
line-width but also for the observed discrepancy in peak positions. Currently the dif-
ference in positions of L2 and L3 is related to spin-orbit coupling for electrons in an
atomic potential. Once the chemical environment is included, this difference will be
related to spin-orbit coupling for electrons in the effective potential of NiO and thus
will yield more accurate results. It would be possible to directly include the correct
spin-orbit coupling from a DFT calculation, but then care has to be taken when calcu-
lating the self-energy due to the chemical environment. In this case one has to assure
consistency between all onsite energies of the Ni atom as well as of the chemical envi-
ronment in order not to obtain the correction on spin orbit coupling twice (once from
DFT and once from the self-energy’s real part). We give a brief outlook on inclusion
of the chemical environment in section 6.3 and continue with another spectroscopic
method in the next section.

6.2. Resonant inelastic x-ray spectroscopy

Resonant inelastic x-ray spectroscopy (RIXS) is a technique capable of probing low
energy excitations in solids. By measuring energy, momentum, or polarization of an
x-ray photon before and after it has been scattered inelastically off a material probe
it is possible to infer the dispersion relation of phonons [133], magnons [134] and
further properties of the material due to d-d excitations [135], charge transfer [136]
and plasmons [137]. The change in the photons momentum, polarization and energy
can be related to different properties of excitations via theoretical calculations and
models. Hence, one can either test the precision of ab initio calculations, or extract
phenomenological model parameters. This way it is possible to study complex mate-
rials and their properties which are important for photosynthesis [138], batteries [139]
and superconductivity [140] to name only a few. A detailed discussion of the above
and further aspects can be found in the review [141].

In this section we demonstrate how to apply our self-energy method from chapter
5 to calculate line-broadening due to the Auger-Meitner effect in a RIXS spectrum
of NiO. Such a spectrum involves two-photon processes. An incoming photon is
absorbed and resonantly excites a transition. In our example the photon is linearly
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6. Broadening due to Auger-Meitner effect in x-ray spectroscopy

polarized in x-direction and excites a 2p63d8 → 2p53d9 transition at a Ni site. This
excited state decays via emission of another photon, where we measure polarization
in y-direction as well as its energy loss due to the inelastic scattering. Hence, the
system does not necessarily return to its ground-state, but to an excited state with
small excitation energy. This way it is possible to study the low excitation energies at
the order of a few eV with photons at hundreds of eV or even keV. The spectrum can
be calculated according to the Kramers-Heisenberg formula [141, 142]

d2Γ
dωindωout

∝
ωout

ωin
∑
ψ f

∣∣∣∣∣∑
ψn

〈ψ f |Ty|ψn〉〈ψn|Tx|ψ0〉
E0 − En + ωin + i0

∣∣∣∣∣
2

δ
(
E f + ωout − E0 −ωin

)
. (6.6)

Here ωin/out denote the energies of the in- and out-coming photon. For 2p → 3d
excitations in NiO their quotient is to good approximation equal to one, because the
photon’s energy loss is below 1% of its energy. ψ f and ψn are final and intermediate
eigenstates of H with electronic energies E f and En respectively. E0 is the electronic
energy of the ground state ψ0.

The Kramers-Heisenberg formula is similar to Fermi’s golden rule [19], but de-
scribes processes at higher order perturbation theory. We can proceed in full analogy
to section 2.1 where we showed equivalence between Fermi’s golden rule and Kubo’s
formula by replacing Dirac’s δ-distribution by the imaginary part of a propagator

d2Γ
dωindωout

∝ −Im〈ψ0|Tx
1

ωin − H + i0
Ty

1
ω− H + i0

T†
y

1
ωin − H + i0

T†
x |ψ0〉 . (6.7)

We introduced the energy loss of the photon ω ≡ ωin−ωout and absorbed the ground
state energy E0 in the Hamiltonian H to clean up notation.

We proceed analogously to the XAS spectrum from the previous section and calcu-
late the self-energy for the excited states. This results in the final expression for the
RIXS spectrum

d2Γ
dωindωout

∝

(6.8)

−Im〈ψ0|Tx
1

ωin − HB − Σ(ωin) + i0
Ty

1
ω− HB + i0

T†
y

1
ωin − HB − Σ(ωin) + i0

T†
x |ψ0〉 .

Note that there is no self-energy in the propagator in the middle as these low lying
excitations are below the ionization threshold. In this regime broadening is probably
dominated by coupling to the chemical environment. For numerical purposes we
replace the infinitesimal i0 by a small but finite value of i 25 meV.

The RIXS spectrum for a 2p63d8→ 2p53d9 excitation is shown in figure 6.2. Similar
to the XAS spectrum we observe an L2 and L3 resonance. The former shows crys-
tal field splitting and the intensity ratio of t2g and eg peaks depends on the energy
loss of the photon. Since relative intensities are also influenced by energy dependent
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Figure 6.2.: RIXS spectrum of NiO for an excitation 2p63d8 → 2p53d9. The incoming
photon is linearly polarized in x-direction, the outgoing photon is lin-
early polarized in y-direction. The ”resonant energy” axis refers to the
energy of the incoming photon at which it can excite a 2p electron into a
3d orbital. The outgoing photon has lost energy as denoted on the other
axis. An important feature of including the self-energy due to the Auger-
Meitner effect is that the t2g peak of the L2 resonance is broadened less
than the eg peak.

broadening as we saw in the XAS spectrum, taking the self-energy due to the Auger-
Meitner effect into account was important in the calculation of this RIXS spectrum.
That t2g and eg broaden differently can be best seen at an energy loss of 1 eV.

By looking at the L3 edge, we notice a lot of smaller satellite structures, especially
when the photon loses 2 eV of energy or more. These structures strongly depend
on the valence electrons. In order to calculate them correctly, it would be necessary
to at least include the oxygen ligand orbitals in the computation, or even better the
band structure of the NiO crystal. However, this drastically increases the required
computational resources and poses further difficulties as we describe in the outlook
of the next section.

6.3. Outlook: Including the chemical environment

In order to correctly calculate satellite features due to valence excitations the chemi-
cal environment of the excited atom or molecule plays an important role. The pres-
ence of ligands allows electrons to hop to other sites and thus modifies ground state
configuration and excitation energies. The geometry of the compound under study
determines which excitations are possible due to selection rules. The band structure
of a crystal represents a continuous energy spectrum into which an electron can be
directly excited via a photon leading to continuous spectral features, or indirectly via
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6. Broadening due to Auger-Meitner effect in x-ray spectroscopy

relaxation processes subsequent to an initial excitation. This leads to line broadening
analogous to the Auger-Meitner effect.

The difficulty in combining the atomic calculations of the spectroscopic techniques
as presented in this work with band structure calculations lies in the necessity of
an accurate description of the Auger-Meitner self-energy, which involves core-level
excitations in multiple shells and electronic correlations, alongside the accurate de-
scription of valence and conduction bands. To combine these aspects efficiently, one
has to extend the approach of starting from a DFT calculation and including config-
uration interaction as we did in the previous chapters. Dynamical mean field theory
(DMFT) [143, 144] is a proper method to achieve this. It includes correlations locally
at one site of a lattice and treats the remaining sites as bath which couples to the corre-
lated site via electronic hopping. This is known as an Anderson impurity model [145].

In this section we describe a simplified approach based on such an Anderson im-
purity model. This approach is currently under investigation and if it is successful,
an extension to a full DMFT calculation is in principle possible and should improve
accuracy of calculated spectra.

As before, we start with a DFT calculation for the crystal we want to study with
some spectroscopic technique (for example electron capture of Ho embedded in Gold,
or XAS/RIXS in NiO). However, besides the atomic Kohn-Sham orbitals for the atom
which we want to probe, we also obtain the Kohn-Sham Hamiltonian HKS for the
whole crystal. Then we can construct the fully interacting Hamiltonian Hatom for the
correlated atomic site (e.g. Ho or Ni) according to chapter 2 using the atomic Kohn-
Sham orbitals only. The kinematics and dynamics of the bath are encoded in the
Kohn-Sham Hamiltonian.

To combine both, we transform the Kohn-Sham Hamiltonian to a tight-binding
Hamiltonian Htb with maximally localized Wannier-orbitals. This allows us to sin-
gle out one site of the crystal lattice at which we replace the onsite terms of the tight
binding Hamiltonian with Hatom. This gives a Hamiltonian Hfull with inter-electronic
Coulomb interactions at a single site and hopping between all sites. In order to have
an accurate band structure, the number of sites has to be large, which prevents us
from directly diagonalizing Hfull or calculating the spectrum. However, a transfor-
mation to natural orbitals allows us to simplify the problem [146].

Therefore, we determine the mean-field ground state ψmf of Hfull which is given by
a single Slater-determinant with Nel energetically lowest Kohn-Sham eigen-states (i.e.
Bloch functions) occupied and calculate the corresponding single-particle density-
matrix ρmn = 〈ψmf|e†

men|ψmf〉. Nel is the number of electrons in the crystal. The in-
dices m = (τ, R) denote the atomic quantum numbers τ characterizing the Wannier-
orbitals and the site R at which the Wannier-orbital is centered, where R = 0 denotes
the correlated site. As the Wannier-orbitals are not eigenfunctions of the Kohn-Sham
Hamiltonian, ρ is not diagonal. If we diagonalize ρ on the sub-space which does
not involve the correlated site (i.e. R 6= 0) we obtain a transformed density matrix
with four different blocks. One block is unchanged and corresponds to the orbitals
at R = 0. It couples to another block of same dimension which corresponds to a
transformed site R′. The two remaining blocks are decoupled. One is the zero matrix,
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6.3. Outlook: Including the chemical environment

the other the identity matrix. The former corresponds to sites with natural orbitals
which are unoccupied on the mean-field level, the latter corresponds to sites with
occupied natural orbitals. (Note that in this context ”site” refers to an abstract site
in the transformed single-particle space and not in real space.) In this single-particle
basis the hopping terms of Hfull between the fully occupied and fully empty orbitals
vanish, but this does not hold for the other hopping terms. However, it is always
possible to transform the single-particle basis such that the orbitals at R = 0 remain
unchanged and there is hopping from R = 0 to a single occupied site, a single unoc-
cupied site and to the site R′ [146]. The same is true for site R′. In this transformed
basis the hopping between occupied sites themselves connects one site to at most two
others. The same is true for the unoccupied sites. Figure 1 in [146] nicely illustrates
this transformation.

The important features of this transformation are first that the orbitals at the corre-
lated site R = 0 are not changed, which allows us to interpret this site as an atom in
a bath. Second, the occupations of the bath sites are mostly either completely filled,
or completely empty for the mean-field ground-state. This allows us to impose harsh
restrictions on the active Hilbert space when calculating the spectrum without intro-
ducing large errors. A first restriction would be to include only configurations with
a single hole in the previously fully occupied sites and a single electron in the previ-
ously empty sites. Accuracy can be increased step-wise by allowing for more holes
and excited electrons. With these restrictions and the transformed Hamiltonian we
should be able to apply the methods from chapters 3 to 5 to determine an electron
capture spectrum of Ho in Gold, an XAS/RIXS spectrum of NiO, or any other x-ray
spectrum of further transition metal compounds. The spectrum would include core-
level excitations, broadening due to the Auger-Meitner effect and excitations within
valence and conduction bands. Thereby the large number of sites results in an almost
continuous energy spectrum corresponding to the band structure and yields addi-
tional broadening and spectral features. The spacing between these energies can be
decreased by increasing the number of sites, thereby approaching the spectrum of an
infinitely extended lattice.

The feasibility of this approach is under investigation. The major difficulties to
overcome will be first to assure consistency between the atomic energies encoded in
Hatom and the onsite energies encoded in the tight-binding Hamiltonian. If consis-
tency is not given, artifacts in the self-energy can be seen due to artificial excitations
as tests show. Second, an efficient numerical implementation will be necessary. Thus
the impact of truncation of the single-particle basis, or the number of sites, restric-
tions on the many-body Hilbert-space and possibly further approximations needs to
be studied carefully.
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In section 4.2 we already tackled the importance of precise knowledge of the Q-value
to determine neutrino masses from the electron capture spectrum of 163Ho. There we
described how to infer Q from the spectrum itself. However, an independent deter-
mination with different systematic errors is desirable when aiming for sensitivities to
neutrino masses in the sub-electron-volt regime.

Mass spectroscopy of highly charged ions in Penning traps yields very accurate
estimates on the 163Ho Q-value [5]. Since atoms have to be ionized in order to be
stored in Penning traps, measurements of Q have to be corrected for the binding
energies of the electrons removed from the neutral atoms to reach the ionized state.
The binding energies can be calculated from first principles as we will describe in this
chapter.

Besides determination of Q, Penning trap mass spectrometry is capable of detecting
meta-stable states in highly charged ions [4]. These are of special importance for
construction of high precision clocks to set frequency standards [149]. Due to their
large life-times, they have narrow line-widths, which is a prerequisite for accurately
determining the excitation energy. To identify such states and precisely calculate their
excitation energies, computational methods as described in this work are necessary.

With the experimental setup of PENTATRAP [147, 148], measurements of the mass
difference between ionized Rhenium 187Re29+ and Osmium 187Os29+ have been per-
formed, which led to an interesting discovery of a meta-stable excited state in Re29+

[4]. Two different cyclotron frequencies of Re29+ ions have been detected in the trap.
Thus these two ions are in different states. One in the system’s ground-state, the
other in an excited state, which is meta-stable, since it could be observed for many
days. The energy difference between ground and meta-stable state was measured to
be 202.2± 1.7 eV [4].

In section 7.1 we review the ab initio calculations we performed in [4] for this exci-
tation energy in more detail. Further application of our methods to calculate binding
energies can be found in section 7.2.

7.1. Determination of a meta-stable state’s excitation
energy

To determine the excitation energy of the meta-stable state in Re29+ and confirm the
experimental observations, we need to calculate the eigen-energies of the Hamilto-
nian H = HD + VC + UC, which governs the dynamics of the 46 remaining elec-

83



7. Highly charged ions

trons of ionized Rhenium. It is given by Dirac’s Hamiltonian (2.34) and the Coulomb
operator (2.40). Similar to section 2.4 we obtain a single-particle basis from rela-
tivistic Kohn-Sham orbitals out of a DFT calculation using FPLO [81–83]. These
are the atomic orbitals of the ionized Re29+ atom. Due to the high ionization the
Aufbau-principle is no longer valid. Instead one-particle energy levels are the lower,
the smaller their principle quantum number is. Hence, on a mean-field level the
ground-state configuration is [Kr]4d10 and the first excited states have configuration
[Kr]4d94f1. Using states from these configurations as starting vectors we apply Lanc-
zos’ algorithm to determine ground-state and excited state energies as described in
section 3.2.

In a first step we use single-particle orbitals 1s to 4f only. From Hund’s rules we
expect the ground-state to be [Kr]4d10 1S0, but for the excited state configuration
[Kr]4d94f1 Hund’s rules are no longer applicable, since the highly charged Re ion
is in a regime where the L-S coupling scheme is not valid. This becomes apparent
when observing the excited states as shown in table 7.1. While J commutes with the
Hamiltonian, L2 and S2 do not. Therefore, their expectation values corresponding to
the excited-states are not integers as one would expect in an L-S coupling scheme.
Additionally, the table shows that excitation energies do not follow Hund’s rules.

However, since the total angular momentum J is a conserved quantum number,
we can use it to infer which states are stable against decay into the ground-state by
spontaneous emission of photons. The created photon has to carry away the angular
momentum difference between ground-state and decaying excited state. The higher
this difference, the more unlikely is the decay process. In table 7.1 the highest occur-
ring angular momentum is six (〈J2〉 = 42). However, this state is just above another
state that differs in angular momentum by only one (〈J2〉 = 30). Thus the former
state can decay into the latter easily by a dipole transition. The latter state however
is five quanta of angular momentum above the ground-state. Thus an electric tri-

E (eV) 〈J2〉 〈L2〉 〈S2〉 E 〈J2〉 〈L2〉 〈S2〉
0 0 0 0 211.08 20 15.763 1.4253

196.42 0 2 2 212.97 30 22.385 1.5802
198.79 2 2.5141 1.9996 213.89 12 10.85 1.2554
203.24 6 4.2382 1.9872 214.69 2 5.431 1.9656
203.95 30 29.731 1.2768 220.77 20 27.025 1.5693
206.13 42 30 2 221.74 6 5.981 0.9778
207.06 12 11.068 1.9531 224.22 6 8.2776 1.9605
207.62 6 7.5033 1.0746 226.33 30 27.884 1.143
207.95 20 20.605 1.6604 227.39 12 17.354 1.8904

Table 7.1.: Eigen-energies and angular momenta expectation values of Re29+ states.
The first entry corresponds to the [Kr]4d10 1S0 ground-state, the others to
excited states with configuration [Kr]4d94f1.
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7.1. Determination of a meta-stable state’s excitation energy

acontadipole (E5) transition would be needed for decay into the ground-state, or a
hexadecapole (E4) transition to the state at 198.79 eV and a subsequent dipole transi-
tion to the ground-state. Both decays are highly unlikely leading to long life-times.

This identifies the meta-stable state observed in experiment. We infer from table
7.1 that this state is dominated by a 3H5 multiplet, but further states with same J
but different L and S also contribute. To accurately determine its excitation energy
with respect to the ground-state, we need to include further configurations in our
calculation.

Therefore, we increase the one-particle basis step-wise until it includes all orbitals
with principle quantum numbers up to six and orbital angular momentum l = 0 . . . 3.
Also step-wise we include configurations [Kr]4d84f2, [Kr]4d74f3 and [Kr]4d64f4. In
this way we can monitor how the excitation energy evolves when going to higher ac-
curacy. The increase of the one-particle basis leads to a monotonic decrease in ground-
state and excited state energy. The difference between both also decreases monotoni-
cally. On the other hand, the inclusion of further configurations does not show mono-
tonic behavior. This is caused by different strengths in the coupling of the additional
configurations to the ground-state and meta-stable state. Since Coulomb interaction
involves scattering of two electrons at a time, the ground-state couples more strongly
to configurations with even numbers of holes in 4d and even numbers of electrons
in 4f. Conversely the meta-stable state obtains larger contributions from configura-
tions with odd numbers of holes in 4d and odd numbers of electrons in 4f. Thus, if
one observes the energy difference as a function of included configuration, one finds
oscillations. These emerge since consecutive steps add further configurations that al-
ternately improve either ground- or excited state more strongly. One can avoid this
peculiarity by calculating the energy differences as ∆En = Emeta(4d10−(n+1)4 f n+1)−
Eground(4d10−n4 f n) for n ∈ {0, 2, . . .}. Eground/meta(4d10−n4 f n) denotes the ground-
state’s (meta-stable-state’s) energy where configurations up to 4d10−n4 f n are included.
This effectively treats both states on the same level of approximation and therefore
leads to error cancellation. Furthermore, it results in a monotonically decreasing en-
ergy difference.

Now we include all configurations that involve up to two holes in 4d for the ground-
state, as well as all configurations that involve up to three holes in 4d for the meta-
stable state and monitor the excitation energy’s correction obtained from increasing
the one-particle basis as described above. If we assume that the correction on the
excitation energy follows a power law decay, we can extrapolate the trend by fitting
∆Ek = ∆E∞ + a

kp to the data for the energy difference ∆Ek where k denotes the k-th
step in the increase of the one-particle basis. We have two fit-parameters a and ∆E∞,
where the latter is the extrapolated value of the excitation energy. By varying p be-
tween one and three, ∆E∞ assumes values between 202.41 eV and 203.26 eV which
agrees well with experiment ∆E = 202.2 ± 1.7 eV and calculations from different
methods [4].
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7.2. Binding energies

As mentioned in the beginning of this chapter, Penning trap mass spectroscopy is
suited to precisely determine mass differences of atoms, which in the case of neutral
163Ho and 163Dy would be the Q-value, i.e the total energy released by electron cap-
ture. However, the atoms in a Penning trap have to be ionized and hence the mea-
sured mass difference has to be corrected for the binding energies of the removed
electrons of both ions, in order to determine the mass difference of the neutral atoms.

Binding energies can be calculated with the methods described in the previous
sections. Here it is demonstrated for the binding energies of 187Re29+ and 187Os29+,
since the mass difference between neutral 187Re and 187Os can be used to benchmark
the precision of the experimental apparatus and theoretical methods.

When we determined the excitation energy of meta-stable Re29+, we employed an
extrapolation scheme and made use of error cancellation by calculating energy differ-
ences. For the binding energies this will be difficult, since dissimilar configurations
and different one-particle orbitals are involved in neutral and ionized atoms. How-
ever, in the end only the difference in binding energies of Re and Os matters. Here
one can make use of error cancellation. The ground-state configurations of neutral
Re and Os differ by one electron in 5d. Their one-particle orbitals are very similar.
Therefore, one can expect error cancellation in the energy difference ∆E0 between the
ground-states of the two neutral atoms [150]. For ionized Re29+ and Os29+ the sit-
uation is similar. The Os29+ ground-state configuration is [Re29+]4f1 and the single-
particle orbitals are similar, too. Thus the calculation of the energy difference ∆E29+
of the ionized ground-states likewise benefits from error cancellation. The difference
in binding energies is then given as ∆B = ∆E0 − ∆E29+.

In table 7.2 we present the calculated ground-state energies of ionized and neu-
tral atoms as well as the corresponding differences. For these calculations the Block-
Lanczos algorithm described in section 3.2 has been used in full analogy to the cal-
culation of the excitation energies in the previous section. Here we restricted the
active Hilbert-spaces to configurations that involve at most two holes created on top

highest orbital ERe29+ EOs29+ ∆E29+
4f -443.813961 -459.094295 15.280334
5f -443.830998 -459.115234 15.284236
6f -443.834915 -459.119847 15.284932
highest orbital ERe0+ EOs0+ ∆E0
6d -454.718824 -459.115234 15.339716
7d -454.719073 -459.119847 15.339677

Table 7.2.: Ground-state energies of ionized (neutral) Re and Os in keV. Successively
higher orbitals have been added to the single particle basis, thereby im-
proving the estimates on the energies.
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of the mean-field ground-state configurations. Successively the single particle basis
has been increased to include higher orbitals, which are restricted to be populated by
at most two electrons. This increase improves the estimate on ground-state energies
by shifting them to lower values. These shifts are one order of magnitude larger than
the accompanied change in the ground-state-energy-differences ∆E, hence confirm-
ing the expected error cancellation discussed above.

The successive corrections to the ground-state energies of the ionized atoms is of
the order of 100 to 101 eV and for ∆E29+ of order 10−1 to 100 eV. For the neutral atoms
these are even smaller with a correction on ∆E0 of ∼ 4 · 10−2 eV. Thus the binding
energy ∆B = ∆E0 − ∆E29+ obtains its largest uncertainty from ∆E29+. To estimate
this uncertainty we extrapolate the values of ∆E29+ from table 7.2 analogously to the
excitation energy from the previous section and subtract them from our best estimate
on ∆E0 given in the last row of the table. This yields binding energies in the range
52.166 eV ≤ ∆B ≤ 54.709 eV.

We also included static Breit interaction (2.39) to estimate its impact. While it
changes the absolute energies significantly, the energy differences are affected to an
amount much smaller than the accuracy we could reach with the above procedure.
Hence, neglecting Breit interaction is justified a posteriori. It will become important
only if errors due to truncations of single-particle basis and restrictions on the many-
body configuration space are reduced below 1 eV. However, exact diagonalization us-
ing Lanczos’ algorithm becomes impractical for that, due to the exponential growth
of the Hilbert-space when weakening truncations and restrictions. Other methods
like renormalization schemes might me more appropriate.
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8. Rotated spherical harmonics

In many textbooks the shape of atomic orbitals is frequently used as argument to
explain splitting of degenerate energy levels due to the presence of ligands surround-
ing a central atom. As Richard E. Powell [151] pointed out, some of those textbooks
falsely state that only the sub-space of the three p-orbitals can be spanned by or-
thonormal basis vectors which have the same shape, but differ in orientation solely.
Powell proofed that also the sub-space of the five d-orbitals has this property. In this
chapter we present a general proof for sub-spaces of arbitrary orbital angular mo-
mentum.

Canonically atomic orbitals are introduced as eigen-functions of angular momen-
tum operator L which can be expressed as spherical harmonics {Y(l)

m }m=−l...l for given
angular momentum quantum number l ∈N0. These span the irreducible representa-
tions of the group of rotations SO(3) on the Hilbert-space L2(S2) of square integrable
functions defined on the sphere. If a Hamiltonian commutes with L, its eigenval-
ues are at least 2l + 1-fold degenerate and the spherical harmonics Y(l)

m span 2l + 1-
dimensional invariant sub-spaces for each l. Thus, we have the freedom to choose
other basis sets different from {Y(l)

m }m=−l...l.
One possible choice is to linearly combine the complex valued spherical harmon-

ics such that the resulting basis set consists of real valued functions which are called
tesseral harmonics and are more suitable for numerical implementations. In figure 8.1
we show these tesseral harmonics in the case of p-orbitals. They already fulfill the de-
sired property of having the same shape and differ in orientation only. Unfortunately
this is not the case for the tesseral d-orbitals.

The tesseral p-orbitals in figure 8.1 have been aligned to the diagonals of a cube
to show that we can map them onto each other by three-fold rotations around the
z-axis. This constitutes the major idea behind the proof in this chapter. If we can
construct our 2l + 1 basis functions in such a way that they are mapped onto each
other by 2l + 1-fold rotations, we found a basis which fulfills the desired property of
having the same shape and differs in orientation only. Therefore, we first construct an
abstract representation for the group of 2l + 1-fold rotations, also called cyclic group
C2l+1, which already fulfills this property, and then we show that this representation
is unitarily equivalent to the canonical representation of C2l+1 on the basis of spherical
harmonics. This will conclude the proof of existence of a set of basis functions of
similar shape and we will finish this chapter by giving an algorithm to explicitly
calculate the orbitals.
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Figure 8.1.: Tesseral harmonics for p-orbitals all have the same shape, but differ in
orientation. Colors depict the sign of the orbital. To demonstrate that
these tesseral harmonics can be mapped onto each other by three-fold
rotations, they have been aligned to the diagonals.

8.1. Proof of existence

We start by constructing an abstract representation of the cyclic group C2l+1 where
the group acts on the basis vectors by mapping them onto each other.

Definition. Let V be a vector space of dimension 2l + 1, where l ∈ N0, and {e(l)k ∈ V | k =
0 ... 2l} an orthonormal basis. ρ is defined as the linear map ρ : V → V that permutes the
basis vectors as

ρ : e(l)k 7→ ρe(l)k = e(l)k+1 where e(l)2l+1 ≡ e(l)0 . (8.1)

The n-fold concatenation of ρ is denoted ρn and ρ0 ≡ 1 is the identity on V . As
concatenation is associative we can state the following lemma

Lemma 1. ({ρn}n=0...2l, V) is a representation of the cyclic group C2l+1.

Proof. It follows by definition that ρ is injective and surjective, hence invertible. Since
ρ2l+1 = 1 ⇒ (ρn)−1 = ρ2l+1−n ∀n = 0 ... 2l, it follows that {ρn}n=0...2l forms a group
under the operation of concatenation. As this group has the same Cayley table as
C2l+1, we conclude that ({ρn}n=0...2l, V) is a representation of the cyclic group.

Having constructed the above representation of C2l+1 it remains to show unitary
equivalence to the canonical representation of C2l+1 on the space spanned by spher-
ical harmonics {Y(l)

m }m=−l...l. Thus, we will use methods form group theory, namely
the calculus with characters [152].

Lemma 2. The characters of ({ρn}n=0...2l, V) are

χ
(l)
V (ρn) =

{ 0 n = 1 ... 2l
2l + 1 n = 0 . (8.2)

Proof.

χ
(l)
V (ρn) =

2l

∑
k=0
〈e(l)k |ρne(l)k 〉 =

2l

∑
k=0
〈e(l)k |e

(l)
k+n〉 = (2l + 1)δn,0 (8.3)
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This leads us to the final theorem

Theorem. Let {Y(l)
m }m=−l...l denote the irreducible representations of SO(3) on the Hilbert-

space of square integrable functions defined on the sphere L2(S2) and Rz(
2π

2l+1) ≡ Rz ∈
SO(3) a rotation about the z-axis by 2π

2l+1 .

The canonical representation of C2l+1 given by
(
{Rn

z}n=0...2l, span
(

Y(l)
m

))
is group-

isomorphic to ({ρn}n=0...2l, V).
Proof.

χ
(l)
L2(S2)

(Rn
z ) =

l

∑
m=−l

〈Y(l)
m |Rn

z Y(l)
m 〉 =

l

∑
m=−l

e−
2πi

2l+1 n·m〈Y(l)
m |Y(l)

m 〉 = (2l + 1)δn,0 (8.4)

Comparing this with Lemma 2, we see that both representations have equal charac-
ters χ

(l)
L2(S2)

(Rn
z ) = χ

(l)
V (ρn) ∀n and hence are group-isomorphic ({ρn}n=0...2l, V) ∼=(

{Rn
z}n=0...2l, span

(
Y(l)

m

))
.

As C2l+1 is a finite group, every representation is unitary [153]. Hence, the group
isomorphic representations from the above theorem are unitarily equivalent.

Corollary. There is a vector e(l)0 ∈ span
(

Y(l)
m

)
such that e(l)n ≡ Rn

z e(l)0 n = 0...2l is an

orthonormal basis of span
(

Y(l)
m

)
.

This shows that every irreducible representation of SO(3) can be spanned by func-
tions that are similar in shape and differ in orientation only. Since they can be mapped
onto each other by rotations around the z-axis, we call them rotated spherical har-
monics.

8.2. Construction of rotated spherical harmonics

From the proof of the previous section we can infer an algorithm to directly construct
the rotated spherical harmonics for arbitrary l. The basic idea is to find the unitary
transformation, which maps the matrix-form of ρ in the basis of {e(l)n }n=0...2l onto the
matrix-form of Rz(

2π
2l+1) in the basis of spherical harmonics. As Rz is diagonal in this

basis, the unitary transformation can be found by an eigenvalue-decomposition of ρ.
Hence, we perform three steps:

1. calculate the matrix representation of ρ (8.1) in the basis of {e(l)n }n=0...2l

ρnk =
{ δk,2l n = 0

δk+1,n otherwise (8.5)
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8. Rotated spherical harmonics

2. calculate eigenvalues exp
(
−2πi·m

2l+1

)
of ρnk and store the corresponding eigen-

vectors in the columns of matrix U such that

ρnk =
l

∑
m=−l

Unm exp
(
−2πi ·m

2l + 1

)
U†

mk (8.6)

3. calculate rotated spherical harmonicsR(l)
n (θ, φ) via

R(l)
n (θ, φ) =

l

∑
m=−l

UnmY(l)
m (θ, φ) (8.7)

This yields complex valued basis functions which are similar in shape, but differ in
orientation. To obtain real valued functions with the same property, we define

Ũnm ≡
{ 1√

2
(Un,m + Un,−m) n = 0, . . . , l

1√
2
(Un,m −Un,−m) n = l + 1, . . . , 2l

(8.8)

and use tesseral harmonics T (l)
m instead of spherical harmonics to construct real val-

ued rotated spherical harmonics

R̃(l)
n (θ, φ) =

l

∑
m=−l

ŨnmT (l)
m (θ, φ) . (8.9)

This can be done, since Ũ maps the matrix-form of Rz(
2π

2l+1) in the basis of T (l)
m onto

ρ in matrix-form (8.5) via Ũ · Rz · Ũ†. The proof of this directly follows form the
definitions of Ũ (8.8) and the tesseral harmonics.

To demonstrate how these real valued rotated spherical harmonics look like, we
plotted them for d-, f- and g-orbitals in figure 8.2. For the d-orbitals it is best visible
that each of them has the same shape and that each can be mapped onto its right
neighbor by a counter-clockwise rotation around the z-axis with angle 2π

5 . For f- and
g-orbitals perspective distortions make it harder to see that the orbitals actually have
the same shape. It is worth noting that applying the above algorithm for p-orbitals,
directly results into the p-orbital tesseral harmonics aligned along the diagonals of a
cube as shown in figure 8.1.

As pointed out in section 6.1, crystal-field splitting of d-orbitals into eg and t2g
irreducible representations of the octahedral symmetry group is often explained by
the different shapes of the eg and t2g orbitals. The shown fact, that all orbitals for
a given l can be chosen to have the same shape weakens this explanation. Such an
argumentation has to be supplemented by a demonstration that eg and t2g orbitals
cannot have the same shapes as opposed to d-orbitals.
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8.2. Construction of rotated spherical harmonics

d-orbitals

f-orbitals

g-orbitals

Figure 8.2.: Real valued rotated spherical harmonics for d-, f- and g-orbitals all have
the same shape, but differ in orientation.
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9. Summary

Our analysis of the electron capture spectrum of 163Ho has shown that the methods
described in this work, as well as in our publications [1] and [3], are capable of quan-
titatively explaining the spectral features observed so far. These include bound-state
resonances and energy-dependent line broadening. The former have earlier been
studied by different authors with different techniques [62–69], non of which consid-
ered multi-configuration states and configuration interaction. With the inclusion of
these effects, we were able to determine observed – but so far unexplained – reso-
nances. Starting from first principles, our ab initio framework allowed us to identify
these resonances as multiplet structures and two-hole states, which result in appar-
ent broadening of one-hole resonances or additional satellite structures. These spec-
tral features emerge from relaxation processes subsequent to the initial electron cap-
ture event. Such processes are governed by Coulomb scattering. Coster-Kronig and
Super-Coster-Kronig transitions lead to enhanced peaks with two electronic holes in
core orbitals. Here the multi-configuration structure of ground- and excited states
plays an important role in the determination of peaks’ positions and intensities.

These bound-state resonances have first been treated as Lorentzians, which leads
to observable deviations from experiment. We concluded that the lorentzian descrip-
tion is insufficient to explain the spectral shape in energy regions away from reso-
nances and a calculation of line-broadening from first principles is necessary. The
latter has been done by including the Auger-Meitner effect leading to coupling be-
tween bound resonances and unbound states which have a continuous energy spec-
trum. This results in line-broadening different from Lorentzians. Fano’s effect and
energy-dependence of the Auger-Meitner cross-section are responsible for prominent
asymmetries of peaks. With this treatment of spectral broadening we were able to re-
produce the experimentally observed line-shape close to a resonance as well as away
from it. Especially the increased spectral weight on the high energy side of the N1 (4s)
edge and in the endpoint region could be explained by the Auger-Meitner effect. The
observed smaller line-width of N1 (4s) as compared to M1 (3s) could be attributed to
the fact that N1 is at a lower energy and hence couples to a smaller amount of final
Auger-Meitner-states as compared to M1.

Although our methods account for all the observed spectral features and even pre-
dict further ones, currently hidden due to experimental resolution, some smaller
quantitative discrepancies remain. Calculations still miss some broadening of the
resonances, which are sharper than in experiment, and have reduced intensity in be-
tween the peaks. This indicates that further relaxation channels coupling to continu-
ous energies have to be considered. These include coupling to the electro-magnetic
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9. Summary

field leading to relaxation via emission of photons, double Auger-Meitner processes,
where two electrons are ejected, and scattering of electrons into bands of the chemical
environment, which is gold in the case of the shown experimental data.

Coupling to the electro-magnetic field can be treated in full analogy to the Auger-
Meitner effect via introduction of a self-energy. In this case the number of bound
electrons is conserved, which makes numerical calculations easier than in the Auger-
Meitner case, because calculations already done for the bound states can be reused.
However, due to the small Q-value of Ho, decay via photon emission will be small
compared to the Auger-Meitner effect. It will become important for other EC iso-
topes with larger Q-values. Hence, measuring different EC spectra and comparison
to theory would not only yield additional tests for our calculations, but would also
explore energy-regimes where effects other than the Auger-Meitner process become
dominantly responsible for line-broadening. Furthermore, ratios between Auger-
Meitner electrons and emitted photons after electron capture in different isotopes are
important observables in radio therapy [56–60]. Hence, extension of our methods to
calculate these observables would have applications beyond the search for neutrino
masses.

Including chemical environment could be done with the help of electronic structure
calculations of a Ho atom embedded in a gold crystal. DFT or dynamical mean-
field theory (DMFT) may be used as starting point to construct band-structure and
single-particle basis for such a system. As Coulomb scattering can transfer electrons
from Ho to the Au bands, we expect that this can also be treated in analogy to the
Auger-Meitner effect, but with an energy-continuum that is bounded by the band-
width instead of an unbound continuum. Hence, it will mostly effect the spectral
shape in the vicinity of resonances. However, the chemical environment also leads
to a Ho valence configuration different from the atomic case we studied in this work.
This might open additional Auger-Meitner channels and hence could yield further
broadening of resonances and enhanced intensity in their wings.

Coupling to continuous final states does not only yield broadening but also affects
positions of resonances. Hence, inclusion of the above effects might also correct the
observed differences in calculated and measured peak positions. Additionally in-
creasing single-particle and many-body basis-size will improve accuracy of resonant
energies further. Therefore, methods from renormalization should be considered.

Despite these discrepancies, our calculations of the electron capture spectrum in-
cluding only bound states enabled us to determine the Ho Q-value to be 2838± 14
eV. This value has high accuracy and is in good agreement with literature where Q
has been determined via Penning-trap mass-spectrometry [5].

For even more accurate future Q-value measurements using highly charged 163Ho
and 163Dy ions in a Penning-trap it is necessary to calculate binding energies of the
ions. In this work we describe the corresponding calculations and provide estimated
atomic binding energies for Re29+ and Os29+ which can be used to benchmark preci-
sion of experiment and theory. In order to provide binding energies for estimation of
the 163Ho electron capture Q-value, the presented method can be easily adopted for
Ho and Dy with arbitrary ionization.
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As a byproduct of the Re29+/Os29+ studies, experimentalists discovered meta-
stable states with long life-times and measured their excitation energies [4]. We em-
ployed the same framework used for the binding energies to compute those excitation
energies and we obtained good agreement with experimental data and theoretical cal-
culations from our co-authors.

In order to further improve excitation or binding energies reaching sub eV accu-
racy, our methods should be combined with renormalization techniques to handle
the tremendous growth in the many-body Hilbert-space, which accompanies an in-
creasing precision aim.

Besides electron capture spectroscopy our methods have further applications to x-
ray spectroscopy. As we showed in the case of NiO, the Auger-Meitner effect leads
to different broadenings of t2g and eg resonances, thereby affecting their relative in-
tensities. The study of x-ray spectra from solids also guides us in the development of
algorithms that combine band-structure calculations with our framework; especially
when we want to include the gold environment of Ho in the detectors.
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A. Weak interaction on spherical basis

In the following we derive the form of the effective Hamiltonian (2.51) governing
weak interaction. We do this in more detail than in literature [93] and hopefully with
a clean and comprehensible notation, such that the reader can use the complicated
expressions for further calculations. The detailed form of the weak Hamiltonian be-
comes important when hyper-fine interactions are included to the electron capture
spectrum, or when methods developed in this thesis are applied to different electron
capture isotopes that decay via higher order forbidden transitions.

As discussed in section 2.2, the weak interaction is mediated by exchange bosons,
which are massive in contrast to the photon. This massiveness leads to different inter-
actions especially at low energies, where the mass of the exchange boson dominates
all other energy scales. For this regime we obtained an effective current-current inter-
action with point-like potential δ(x1 − x2) leading to the effective weak Hamiltonian
(2.23)

HW =
GW√

2

3

∑
a=1

Uae

∫
ψ̄νa(x)γ

µ
(

1− γ5
)

ψe(x)ψ̄n(x)γµ

(
1− λγ5

)
ψp(x)d3x + h.c.

(A.1)
Besides the different effective potential, the major differences compared to (2.36) are
in the hadronic Jµ

W = ψ†
nαµ

(
1− λγ5)ψp and the leptonic current Jµ

W = ψ†
ναµ

(
1− γ5)ψe.

They involve creation of a neutron ψ†
n (neutrino ψ†

ν) and annihilation of a proton ψp
(electron ψe). As only left-handed leptons (SU(2)-doublets) couple weakly, the lep-
tonic current contains a projection onto the sub-space of left-handed particles (1 −
γ5)/

√
2, where γ5 = iγ0γ1γ2γ3. Protons and neutrons are composite particles made

of quarks and gluons and hence the strength of vector-coupling is different from axial-
coupling which is reflected in the parameter λ [93, 94].

Except for the neutrino created by electron capture almost every particle involved
in this decay is in a bound state. Hence, it is convenient to expand the fields ψ on
a basis of local orbitals as in (2.25). The radial parts of neutrino wave-functions are
given by spherical Bessel-functions, as we treat the neutrino as free particle

gq,κ,a(r) = Na r jl(qr) (A.2)

fq,κ,a(r) = Na sign(κ)
q

Eq + m
r jl̄(qr) (A.3)

Na =

√
2q√

π

[
1 +

(
q

Eq+ma

)2
] Eq =

√
q2 + m2

a (A.4)
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A. Weak interaction on spherical basis

jl(qr) denotes the l-th spherical Besselfunction as function of neutrino momentum q
and distance from the origin r. Eq is the energy dispersion for a relativistic particle of
mass m and the normalization Na is chosen such that∫

gq,κ,a(r)gp,κ,a(r) + fq,κ(r) fp,κ(r)dr = δ(q− p) . (A.5)

The single-particle state of the neutrino is characterized by quantum numbers τν ≡
{q, κ, a, mjz} and a sum over all quantum numbers ∑τν

≡ ∑3
a=1 ∑κν,mjz

∫ ∞
0 q2dq in-

volves an integral over the neutrino’s momentum. In this basis the Hamiltonian reads

HW =
GW√

2
∑

τnτpτντe

Uaen†
τn ν†

τν
eτe pτp∫

φ†
n

(
1− λγ5

)
φpφ†

ν

(
1− γ5

)
φe − φ†

nα
(

1− λγ5
)

φp · φ†
να
(

1− γ5
)

φed3x

+h.c. (A.6)

Here, we explicitly evaluated the contraction over the four-index µ in (A.1) such that
the Hamiltonian is split into a density-density interaction (first term in the integrand)
and a current-current interaction (second term). The hadron density can be expanded
on spherical harmonics [93]

φ†
n

(
1− λγ5

)
φp =

∞

∑
l=0

l

∑
m=−l

(−1)m
∫

φ†
nY−m

l

(
1− λγ5

)
φpdΩ Ym

l (A.7)

where dΩ denotes the integral over the solid angle. Plugging this into (A.6) the
density-density interaction reads

S(τnτpτντe) ≡
∫

φ†
n

(
1− λγ5

)
φpφ†

ν

(
1− γ5

)
φedΩ (A.8)

=
∞

∑
l=0

l

∑
m=−l

(−1)m
∫

φ†
nY−m

l

(
1− λγ5

)
φpdΩnuc

∫
φ†

νYm
l

(
1− γ5

)
φedΩlep .

Now we can use the definition of the orbital wave-functions (2.31) to write down the
densities explicitly∫

φ†
nY−m

l

(
1− λγ5

)
φpdΩnuc = gngp〈Ymn

jnln
|Y−m

l |Ymp
jplp
〉

+ fn fp〈Ymn
jn l̄n
|Y−m

l |Ymp

jp l̄p
〉

− iλgn fp〈Ymn
jnln
|Y−m

l |Ymp

jp l̄p
〉

+ iλ fngp〈Ymn
jn l̄n
|Y−m

l |Ymp
jplp
〉

=
(

gngp + fn fp
)
〈Ymn

jnln
|Y−m

l |Ymp
jplp
〉 − iλ

(
gn fp − fngp

)
〈Ymn

jnln
|Y−m

l |Ymp

jp l̄p
〉 .

(A.9)
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Note that two angular integrals over two spin weighted Ym
jl and one normal Y−m

l
spherical harmonics appear. The first also appears in Coulomb interaction and it
assures conservation of parity. The second however mixes the large and small part
and will be responsible for parity violation. Both can be simplified using the Wigner-
Eckhart theorem [154]

〈Ymn
jnln
|Y−M

J |Ymp
jplp
〉 = (−1)jn−mn

(
jn J jp
−mn −M mp

)
〈Yjnln ||YJ ||Yjplp〉 . (A.10)

The reduced matrix elements vanish if ln + lp + J odd and otherwise read [85]

〈Yjnln ||YJ ||Yjplp〉 = (−1)jn+1/2
√
(2jn + 1)(2jp + 1)

(
jn jp J
−1/2 1/2 0

)
. (A.11)

Completely the same calculations can be applied to the lepton density and the results
are plugged into the density-density interaction (A.8)

S(τnτpτντe) = ∑
JM

(−1)jn−mn+jν−mν+M
(

jn J jp
−mn −M mp

)(
jν J je
−mν M me

)
×
[(

gngp + fn fp
)
〈Yjnln ||YJ ||Yjplp〉 − iλ

(
gn fp − fngp

)
〈Yjnln ||YJ ||Yjp l̄p

〉
]

×
[
(gνge + fν fe) 〈Yjνlν ||YJ ||Yjele〉 − i (gν fe − fνge) 〈Yjνlν ||YJ ||Yje l̄e〉

]
.

(A.12)

The same shall be done for the current-current interaction in (A.6), but as a current
transforms as vector-field under rotations it is much more convenient to expand the
currents on a basis of vector spherical harmonics [93] defined by [100]

Y M
JL =

L

∑
m=−L

1

∑
q=−1

Ym
L eq〈Lm, 1q|JM〉 . (A.13)

The basis vectors are linear combinations of the standard unit norm vectors in the
three spatial dimensions

e0 = ẑ e1 = − (x̂ + iŷ) /
√

2 e−1 = (x̂− iŷ) /
√

2 . (A.14)

Thus the hadron current reads

φ†
nα
(

1− λγ5
)

φp =
∞

∑
J=0

J+1

∑
L=J−1

J

∑
M=−J

(−1)M
∫

φ†
nα · Y−M

JL

(
1− λγ5

)
φpdΩ Y M

JL (A.15)

and the current-current interaction is given by

V(τnτpτντe) ≡
∫

φ†
nα
(

1− λγ5
)

φp · φ†
να
(

1− γ5
)

φedΩ (A.16)

=
∞

∑
J=0

J+1

∑
L=J−1

J

∑
M=−J

(−1)M
∫

φ†
nα · Y−M

JL

(
1− λγ5

)
φpdΩnuc

×
∫

φ†
να · Y M

JL

(
1− γ5

)
φedΩlep .
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A. Weak interaction on spherical basis

Again using the definition of the orbital wave-functions (2.31) and the matrix form of
α

α =

(
0 σ
σ 0

)
(A.17)

where σ denote the Pauli-matrices, we obtain an explicit expression of the hadron
current ∫

φ†
nα · Y−M

JL

(
1− λγ5

)
φpdΩnuc = −λgngp〈Ymn

jnln
|σ · Y−M

JL |Y
mp
jplp
〉

− λ fn fp〈Ymn
jn l̄n
|σ · Y−M

JL |Y
mp

jp l̄p
〉

+ ign fp〈Ymn
jnln
|σ · Y−M

JL |Y
mp

jp l̄p
〉

− i fngp〈Ymn
jn l̄n
|σ · Y−M

JL |Y
mp
jplp
〉 . (A.18)

Due to the Clebsch-Gordan coefficients in the definition of the vector spherical har-
monics only three types of matrix elements have to be calculated in the above expres-
sion, namely [100]

〈Ymn
jnln
|σ · Y−M

J,J+1|Y
mp
jplp
〉 =

√
J + 1

2J + 1

(
1 +

κn + κp

J + 1

)
〈Ymn

jnln
|Y−M

J |Ymp

jp l̄p
〉 (A.19)

〈Ymn
jnln
|σ · Y−M

J,J |Y
mp
jplp
〉 =

κn − κp√
J(J + 1)

〈Ymn
jnln
|Y−M

J |Ymp
jplp
〉 (A.20)

〈Ymn
jnln
|σ · Y−M

J,J−1|Y
mp
jplp
〉 =

√
J

2J + 1

(
−1 +

κn + κp

J

)
〈Ymn

jnln
|Y−M

J |Ymp

jp l̄p
〉. (A.21)

Here we introduced the quantum number κ as defined in section 2.4.1. Plugging these
equations into the hadron current one obtains for L = J + 1∫

φ†
nα · Y−M

J,J+1

(
1− λγ5

)
φpdΩnuc = −λgngp

√
J + 1

2J + 1

(
1 +

κn + κp

J + 1

)
〈Ymn

jnln
|Y−M

J |Ymp

jp l̄p
〉

− λ fn fp

√
J + 1

2J + 1

(
1− κn + κp

J + 1

)
〈Ymn

jn l̄n
|Y−M

J |Ymp
jplp
〉

+ ign fp

√
J + 1

2J + 1

(
1 +

κn − κp

J + 1

)
〈Ymn

jnln
|Y−M

J |Ymp
jplp
〉

− i fngp

√
J + 1

2J + 1

(
1 +

κp − κn

J + 1

)
〈Ymn

jn l̄n
|Y−M

J |Ymp

jp l̄p
〉

=

√
J + 1

2J + 1

[
− 〈Ymn

jnln
|Y−M

J |Ymp

jp l̄p
〉 × λ

(
gngp

(
1 +

κn + κp

J + 1

)
+ fn fp

(
1− κn + κp

J + 1

))
+〈Ymn

jnln
|Y−M

J |Ymp
jplp
〉 × i

(
gn fp

(
1 +

κn − κp

J + 1

)
− fngp

(
1 +

κp − κn

J + 1

)) ]
.

(A.22)
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In order to achieve a clean notation and focus on the important parts we introduce
the following symbols that include all radial dependencies of the hadron current and
are independent of m quantum numbers

R1
J,J+1 ≡ −

√
J + 1

2J + 1
λ

(
gngp

(
1 +

κn + κp

J + 1

)
+ fn fp

(
1− κn + κp

J + 1

))
(A.23)

R2
J,J+1 ≡

√
J + 1

2J + 1
i
(

gn fp

(
1 +

κn − κp

J + 1

)
− fngp

(
1 +

κp − κn

J + 1

))
. (A.24)

For L = J − 1 the hadron current has a similar form∫
φ†

nα · Y−M
J,J−1

(
1− λγ5

)
φpdΩnuc

=

√
J

2J + 1

[
− 〈Ymn

jnln
|Y−M

J |Ymp

jp l̄p
〉λ
(

gngp

(
1 +

κn + κp

J + 1

)
+ fn fp

(
−1− κn + κp

J

))
+〈Ymn

jnln
|Y−M

J |Ymp
jplp
〉i
(

gn fp

(
1 +

κn − κp

J + 1

)
− fngp

(
−1 +

κp − κn

J

)) ]
.

and we again introduce some shorthand notation that covers the radial part of the
current

R1
J,J−1 ≡ −λ

√
J

2J + 1

(
gngp

(
1 +

κn + κp

J + 1

)
+ fn fp

(
−1− κn + κp

J

))

R2
J,J−1 ≡

√
J

2J + 1
i
(

gn fp

(
1 +

κn − κp

J + 1

)
− fngp

(
−1 +

κp − κn

J

))
.

Finally for L = J the hadron current reads∫
φ†

nα · Y−M
J,J

(
1− λγ5

)
φpdΩnuc =

κp−κn√
J(J+1)

〈Ymn
jnln
|Y−M

J |Ymp
jplp
〉λ
(

gngp − fn fp
)

+
κn+κp√

J(J+1)
〈Ymn

jnln
|Y−M

J |Ymp

jp l̄p
〉i
(

gn fp + fngp
)

where we abbreviate

R1
J,J ≡

κn + κp√
J(J + 1)

i
(

gn fp + fngp
)

(A.25)

R2
J,J ≡ λ

κp − κn√
J(J + 1)

(
gngp − fn fp

)
. (A.26)

Using the above abbreviations, the hadron current can be expressed as∫
φ†

nα · Y−M
J,L

(
1− λγ5

)
φpdΩnuc = R1

J,L〈Ymn
jnln
|Y−M

J |Ymp

jp l̄p
〉+ R2

J,L〈Ymn
jnln
|Y−M

J |Ymp
jplp
〉 .

(A.27)
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A. Weak interaction on spherical basis

Here the same angular integrals as in the densities (A.9) appear, such that we can
again use the Wigner-Eckhart theorem (A.10) and the reduced matrix elements (A.11)
to obtain the current-current interaction

V(τnτpτντe) =
∞

∑
J=0

J+1

∑
L=J−1

J

∑
M=−J

(−1)jn−mn+jν−mν+M (A.28)

×
(

jn J jp
−mn −M mp

)(
jν J je
−mν M me

)
×

[
R1

J,L(τnτp)〈Yjnln ||YJ ||Yjp l̄p
〉+ R2

J,L(τnτp)〈Yjnln ||YJ ||Yjplp〉
]

×
[

R1
J,L(τντe)〈Yjνlν ||YJ ||Yje l̄e〉+ R2

J,L(τντe)〈Yjνlν ||YJ ||Yjele〉
]

.

The above expression has the same structure as the density-density interaction (A.12).
Hence, we introduce one further notation

R1
J,µ(τnτp, r) ≡

{ −iλ
(

gn(r) fp(r)− fn(r)gp(r)
)

if µ = 0
R1

J,L(τnτp, r) | L = J + 2− µ if µ = 1, 2, 3 (A.29)

R2
J,µ(τnτp, r) ≡

{ gn(r)gp(r) + fn(r) fp(r) if µ = 0
R2

J,L(τnτp, r) | L = J + 2− µ if µ = 1, 2, 3 (A.30)

which allows us to write the weak-interaction Hamiltonian in compact form

HW =
GW√

2
∑

τnτpτντe

Uaen†
τn ν†

τν
eτe pτp ∑

JM
(−1)jn−mn+jν−mν+M (A.31)

×
(

jn J jp
−mn −M mp

)(
jν J je
−mν M me

)
×

∫ [
R1

Jµ(τnτp, r)〈Yjnln ||YJ ||Yjp l̄p
〉+R2

Jµ(τnτp, r)〈Yjnln ||YJ ||Yjplp〉
]

×
[
R1µ

J (τντe, r)〈Yjνlν ||YJ ||Yje l̄e〉 + R2µ
J (τντe, r)〈Yjνlν ||YJ ||Yjele〉

]
dr .

This is the microscopic Hamiltonian governing weak-interaction between nucleons,
electrons and neutrinos. However, For the description of electron capture one needs
to consider the full nucleus instead of single nucleons. The nucleons form multi-
plets of definite total angular momentum I. Now we deduce the Hamiltonian matrix-
elements in such a many-nucleon multiplet basis from the microscopic Hamiltonian
(A.31).

First we note that creation operators c†
jm are irreducible spherical tensor operators

(irreds.) of degree (or rank) j. Therefore, their product can be written as [154]

n†
jnmn

pjpmp = (−1)jp−mp ∑
Kq

Tq
K〈jn, mn, jp,−mp|Kq〉 (A.32)

Tq
K = ∑

m1m2

(−1)jp−m2n†
jnm1

pjpm2〈jn, m1, jp,−m2|Kq〉 (A.33)
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where TK
q is itself an irred. of degree K. Hence, we can apply the Wigner-Eckhart

theorem [154] to the following matrix-element

〈ψ f
nuc, I f , MI f |n†

jnmn
pjpmp |ψi

nuc, Ii, MIi〉 = (−1)
jp−mp+I f−MI f

+jn+jp−J ∑
Kq

(A.34)

×
(

I f K Ii
−MI f q MIi

)
〈K,−q|jn,−mn, jp, mp〉〈ψ f

nuc, I f ||TK(jn, jp)||ψi
nuc, Ii〉 .

Here |ψi
nuc, Ii, MIi〉 and |ψ f

nuc, I f , MI f 〉 denote initial and final nuclear states with total
angular momentum I. The fact that Wigner 3-j symbols are related to Clebsch-Gordan
coefficients via [155](

jn J jp
−mn −M mp

)
=

(−1)J+M+2jp

√
2J + 1

〈jn,−mn, jp, mp|JM〉 (A.35)

can be used to simplify the Hamiltonian by exploiting the orthogonality relation of
Clebsch-Gordan coefficients [154]

∑
mnmp

〈K,−q|jn,−mn, jp, mp〉〈jn,−mn, jp, mp|JM〉 = δKJδ−q,M . (A.36)

To evaluate the sum over mn, mp and use the above orthogonality relation, we have to

also use (−1)mn+mp = (−1)M. We insert unity 1 = 1lep⊗∑
ψ

f
nuc
|ψ f

nuc, I, M〉〈ψ f
nuc, I, M|

twice in the microscopic Hamiltonian (A.31), where ∑
ψ

f
nuc
≡ ∑

ψ
f
nuc,I f ,M f

abbreviates

the sum over all quantum numbers characterizing the nuclear many-body state and
1lep is the identity on the leptonic Fock-space. Using further (A.34) and (A.35) leads
to

HW =
GW√

2
∑
τντe

Uae ∑
ψi

nuc,ψ f
nuc

∑
JM

(−1)
jν−mν+I f−MI f

+M

√
2J + 1

×
(

I f J Ii
−MI f −M MIi

)(
jν J je
−mν M me

)
×

∫
∑
τnτp

[
R1

Jµ(τnτp, r)〈Yjnln ||YJ ||Yjp l̄p
〉+R2

Jµ(τnτp, r)〈Yjnln ||YJ ||Yjplp〉
]

×〈ψ f
nuc, I f ||TJ(jn, jp)||ψi

nuc, Ii〉
×
[
R1µ

J (τντe, r)〈Yjνlν ||YJ ||Yje l̄e〉 + R2µ
J (τντe, r)〈Yjνlν ||YJ ||Yjele〉

]
dr

× ν†
τν

eτe ⊗ |ψ
f
nuc, I f , M f 〉〈ψi

nuc, Ii, Mi| . (A.37)

In order to simplify notation we introduce a nuclear form factor

N Ii I f
Jµ (r) ≡ ∑

τnτp

[
R1

Jµ(τnτp, r)〈Yjnln ||YJ ||Yjp l̄p
〉+R2

Jµ(τnτp, r)〈Yjnln ||YJ ||Yjplp〉
]

×〈ψ f
nuc, I f ||TK(jn, jp)||ψi

nuc, Ii〉 (A.38)
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A. Weak interaction on spherical basis

and define

p
Ii I f
J (τν, τe) ≡

GW√
2(2J + 1)

∫
N Ii I f

Jµ (r)
[
R1µ

J (τντe, r)〈Yjνlν ||YJ ||Yje l̄e〉 (A.39)

+ R2µ
J (τντe, r)〈Yjνlν ||YJ ||Yjele〉

]
dr .

With the above abbreviations the Hamiltonian is most compactly written as

HW = ∑
τν,τe

Uae ∑
ψi

nuc, ψ
f
nuc

∑
JM

(−1)
jν−mν+I f−MI f

+M

×
(

I f J Ii
−MI f −M MIi

)(
jν J je
−mν M me

)
× p

Ii I f
J (τν, τe) ν†

τν
eτe ⊗ |ψ

f
nuc, I f , M f 〉〈ψi

nuc, Ii, Mi| . (A.40)

This is form (2.51) and hence our derivation is finished.
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