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kmet  Rate of (pre-systemic) metabolism 
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tmax  Time of maximum measured concentration 
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VPC  Visual Predictive Check 
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1. INTRODUCTION 

1.1 General Introduction 

An important challenge encountered when developing drugs derives from drugs with 

competing metabolic mechanisms interacting with one another. Specifically, a drug 

compound may act on drug metabolising enzymes in numerous ways: as a substrate, an 

inhibitor, an inactivator, an inducer, an activator, or a combination thereof (e.g. (Liu et al. 

2007; Zhou 2008)), resulting in multiple ways in which drugs may inadvertently interact with 

each other. With the ever growing rate of polypharmacy, this is becoming particularly 

problematic, especially in populations such as the elderly or in patients with comorbid 

conditions (Guthrie et al. 2015; Murphy et al. 2018; Qato et al. 2008).  

Cytochrome P450s (CYPs) are a family of heme-containing isoenzymes which have been found 

to be important in the metabolism of most drugs (Anzenbacher and Anzenbacherova 2001). 

Within this family, CYP3A is the most plentiful and contributes to metabolism in both the liver 

and the intestine (Paine et al. 2006; Thelen and Dressman 2009). Consequently, CYP3A is 

responsible for metabolism of almost half of the small molecule drugs currently marketed 

(Anzenbacher and Anzenbacherova 2001; Rendic 2002). Despite the preclinical methods that 

exist for testing drug-drug interaction (DDI) liability, clinical outcomes are not necessarily 

consistent with in vitro findings. In particular, in vitro-based models for inhibition in the gut 

and for time-dependent inhibition, as described in the FDA and EMA drug-drug interaction 

guidances, have been found to produce 14.8-21.3% positive prediction error, meaning that 

despite a positive in vitro signal for inhibition, no clinically relevant DDI is seen (Vieira et al. 

2014). Furthermore, it has been noted that when both time-dependent inhibition and 

induction are present, the potential for clinically relevant DDIs tends to be overestimated 

(Einolf et al. 2014). The conservative criteria given by the major health authorities (e.g. FDA 

and EMA) are meant to provide a safeguard for patients and, thus, it is understandably 

preferred to have studies with a higher potential for a negative DDI result to be conducted 

than to miss a DDI that is actually present (EMA-CHMP 2012 Jun; US-FDA 2020a; US-FDA 

2020b). Consequently, many DDI trials are conducted without any clinically relevant 

interactions, resulting in individuals (usually healthy volunteers) who are needlessly exposed 

to investigational substances, increased drug development timelines, and increased 

expenditure on clinical trials. An approach that can be used early in drug development to 
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accurately predict the overall CYP3A interaction liability would allow for better judgment on 

viability of a compound, would give earlier information regarding which drugs need to be 

excluded during Phase II/III clinical trials, would inform potential dose adjustments, and can 

help get much-needed drugs to the market faster.  

Due to its extensive metabolism via CYP3A, midazolam is the probe drug recommended by 

the FDA, EMA, and PMDA to examine the liability of an investigational compound as a 

perpetrator of CYP3A (EMA-CHMP 2012 Jun; PMDA 2014; US-FDA 2020a; US-FDA 2020b). 

Guidances state that a victim drug (enzyme substrate) needs to be within the dose 

proportional range of the drug when DDIs are tested. As midazolam has been found to be dose 

proportional over at least a 30,000-fold range (Bornemann et al. 1985; Halama et al. 2013), 

midazolam microdosing is an appealing method for assessing CYP3A DDI liability. Microdosing 

results in pharmacologically inactive systemic concentrations, meaning that neither 

therapeutic nor adverse effects should be present and there should be no interference with 

other administered drugs. Consistently, in research settings where midazolam microdosing 

has been employed, neither benzodiazepine effects nor adverse events were observed (Eap 

et al. 2004). Furthermore, DDI results were found to be scalable from midazolam microdoses 

to therapeutic doses, which is congruent with its large range of linearity (Halama et al. 2013; 

Hohmann et al. 2016)). Thus, combining midazolam microdosing with early clinical 

development studies may be a viable alternative to conducting a dedicated CYP3A DDI study. 

In order to increase the attractiveness of microdosing methods and to further decrease 

subject burden, it has been proposed that a limited sampling scheme may be used for 

midazolam. Limited sampling schemes have previously been shown to be predictive of 

midazolam metabolic clearance and/or midazolam exposure both following administration of 

midazolam alone and in the presence of a CYP3A modulator (Katzenmaier et al. 2010; 

Katzenmaier et al. 2011; Mueller and Drewelow 2013).  

Population pharmacokinetic modelling (PopPK) may also be used to enhance the predictability 

of limited sampling approaches. PopPK models are generally established using rich data and 

can then be applied to sparse sampling protocols; they identify relevant pharmacokinetic 

parameters, along with associated sources of variability, which are then entered into the 

model to predict exposure (Mould and Upton 2012). In the case of DDIs, this would allow for 
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the prediction of AUC ratios and clearance changes, thereby increasing the ability of limited 

sampling approaches to detect the presence of DDIs.  

Thus, it is proposed that through the implementation of multiple methods, including 

microdosing, limited sampling, and PopPK, earlier and accurate detection of DDIs may be 

feasible, without the need for dedicated studies.  

1.2 Brief Overview of Drug-Drug Interactions 

Drug-drug interactions can be a major concern both during drug development and when co-

prescribing medications. Such interactions can result due to a medication influencing what the 

body does to another medication (i.e. a pharmacokinetic interaction), due to a medication 

influencing how another drug affects the body (i.e. a pharmacodynamic interaction), or it can 

be a combination thereof. The focus of the current work is on pharmacokinetic interactions, 

thus, this overview will not cover pharmacodynamic interactions. 

Pharmacokinetic drug-drug interactions can be either metabolic in nature (i.e. interactions 

with one or more enzymes) or due to interactions with transporters involved in the 

absorption, distribution or elimination of drugs. The result of such interactions may be an 

increase in exposure that result in more safety concerns (e.g. a greater number or greater 

severity of adverse events (AEs)) or the result may be a decrease in exposure that results in a 

loss of efficacy of a drug (Lin and Lu 1998). Inhibitory interactions may be competitive, non-

competitive, or mechanism-based (Burk and Wojnowski 2004). Mechanism-based 

interactions are irreversible and time-dependent, meaning that either a covalent bond is 

formed with the enzyme or a reactive intermediate irreversibly alters part of the enzyme; 

maximal inhibition is slow to be achieved and usually requires multiple days to disappear, as 

the interaction duration is dependent upon the rate of the affected enzyme’s re-synthesis. In 

contrast, competitive and non-competitive inhibition is generally reversible and usually occurs 

rapidly, as weaker, non-covalent bonds between the substance and enzyme are formed. In 

the case of reversible inhibition, the effects are generally seen immediately (Lin and Lu 1998) 

and disappear shortly after the inhibitor is removed. A third type of inhibition, which is similar 

to irreversible inhibition, is termed ‘quasi-irreversible’ inhibition (Riley and Wilson 2015). 

Quasi-irreversible inhibition occurs due to the formation of an MI-complex – i.e. a complex 

created between the enzyme and a metabolic intermediate of the inhibitor. As with 

irreversible inhibition, the inhibitory effects are not immediately apparent and following 
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removal of the inhibitor, baseline activity levels are slow to return. The interaction persists, as 

either the complexation with the metabolic intermediate needs to be reversed before the 

enzyme can be activated again or enzyme re-synthesis is required (Lin and Lu 1998). While in 

vitro methods have been found to reverse the complexation, in vivo, such situations appear 

to be uncommon and, thus, interactions tend to last until the synthesis of new enzymes 

occurs. Finally, while less common, drug interactions may also result in the induction or 

activation of enzyme activity, with induction usually occurring through transcriptional 

activation (Thummel and Wilkinson 1998). Transcriptional activation persists as long as the 

inducer is present and the return to baseline levels of activity is dependent upon the affected 

enzyme’s rate of degradation. With enzyme activation, the rate of metabolite formation by a 

specific enzyme is increased due to the presence of another compound, resulting in much 

faster appearance of an induction-like effect than that seen with traditional induction (Atkins 

2005; Mikus et al. 2017).  

The superfamily of isoenzymes referred to as the cytochrome P450 (CYP) enzymes are 

responsible for the majority of Phase I metabolism of drugs (Evans and Relling 1999). Phase I 

metabolism refers to the metabolic reactions of oxidation, reduction, and/or hydrolysis, which 

result in a more polar compound. CYPs are a superfamily of oxidising enzymes located mainly 

on the endoplasmic reticulum membrane and the inner mitochondrial membrane of cells 

(Thelen and Dressman 2009). They are classified according to families (≥40% of amino acid 

sequence is similar), such as CYP1, CYP2, and CYP3, and subfamilies (≥55% of amino acid 

sequence is similar), such as CYP1A and CYP1B (Nebert and Russell 2002). Although at least 18 

CYP families have been discovered in humans to date, only three main families appear to be 

involved in drug metabolism. These families are CYP1, CYP2, and CYP3, with the CYP3A 

subfamily being responsible for the metabolism of ~50% of small molecule drugs on the 

market. Due to its importance in drug metabolism, the current work focuses on CYP3A, which 

will be discussed in more detail following an overview of the drug-drug interaction guidelines 

from the main health authorities (FDA, EMA, and PMDA).   

1.2.1 Guidelines for Assessment 

To ensure the safety of patients receiving medications, the main regulatory authorities, such 

as the FDA, the EMA, and the PMDA, have established guidelines for when drug-drug 

interaction studies need to be conducted in vivo (EMA-CHMP 2012 Jun; PMDA 2014; US-FDA 
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2020a; US-FDA 2020b). Although the guidelines refer to requirements for both DDIs relating 

to metabolism and to transport, only the metabolism-related aspects are covered here. 

In vitro assessments are required to see if a drug is a substrate, an inhibitor, and/or an inducer 

of specific metabolising enzymes. For inhibition, the guidelines refer to reversible inhibition 

and time-dependent inhibition (which can be slow reversible/’quasi-irreversible’ or 

mechanism-based/irreversible, as described in Section 1.2). For substrate and inhibition 

testing, CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4/5 should be routinely tested, while for 

induction, only CYP1A2, CYP2B6, and CYP3A4/5 are required for initial testing. If no induction 

signal is seen for CYP3A4/5, then testing of the CYP2C enzymes is not required, as these are 

induced via the same pathway (pregnane X receptor) as CYP3A4/5 (Wilkinson 2005). However, 

if a positive induction signal is seen for CYP3A4/5, then CYP2C8, 2C9, and 2C19 should also be 

tested for induction. Although it is clear which CYPs to assess for DDI testing, the criteria for 

determining if a positive signal is seen for a specific enzyme can be relatively complex and, 

although mostly aligned between guidelines, does have slight differences from one health 

authority to the next.  

Enzyme modulation potential is initially assessed using a basic model, which provides cut-offs 

to assess interaction signals from in vitro data. If the cut-offs are exceeded, a mechanistic or 

physiologically-based pharmacokinetic (PBPK) model may then be further used to assess 

inhibition and/or induction potential. As both the basic and the mechanistic models given by 

the authorities are static models, the change in concentrations over time is not accounted for 

and, thus, the models tend to overestimate drug interaction potential.  

1.2.1.1 Inhibition Testing 

Two main basic models exist for inhibition testing: one for reversible inhibition and one for 

time-dependent inhibition. For CYPs that have considerable presence in the gastrointestinal 

tract, the models are further broken down to try and determine the potential for interactions 

both at the hepatic level and at the level of the gut. The equation for determining the 

predicted area under the concentration-time curve (AUC) ratio based on reversible inhibition 

is the following: 

R1 = 1+([I]/Ki) 
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where [I] refers to the maximum unbound concentration (Cmax,u) of the inhibitor (for hepatic 

interactions) or dose/250 mL (interactions in the gut), and Ki is the unbound inhibition rate 

constant. The lowest unbound fraction to be used in the equation is 1%, even if lower unbound 

fractions are determined. When R1 ≥ 1.02 for hepatic level interactions or R1 ≥ 11 for 

interactions at the level of the gut, a DDI study using a sensitive substrate for the enzyme 

should be conducted in vivo. 

With regards to time-dependent inhibition, the following equation is to be used for predicting 

the AUC ratio: 

R2 = (kobs + kdeg)/kdeg  

Where kobs refers to the observed inactivation rate constant and kdeg refers to the degradation 

rate constant. To determine kobs, the following formula is used: 

kobs = (kinact*[I])/(KI + [I]) 

where kinact is the maximal inactivation rate constant and KI refers to the inhibitor 

concentration resulting in half-maximal inactivation; the meaning of [I] is different between 

guidelines, such that for the EMA, [I] is equal to the Cmax,u, while for the FDA and PMDA, [I] 

refers to 50*Cmax,u. When R2 ≥ 1.25 (all guidelines), a DDI examining time-dependent inhibition 

using a sensitive substrate for the enzyme should be conducted in vivo. 

1.2.1.2 Induction Testing 

For induction testing, multiple methods are given in the guidances. Specifically, the guidances 

refer to the fold-change method, the correlation method, and the basic kinetic model, which 

uses a given equation to determine a predicted AUC ratio in the presence and absence of the 

test substance. Note that in the guidance from the EMA, no basic kinetic model is given.  

For the fold-change method, the change in mRNA of the given enzyme within human 

hepatocytes from at least 3 donors is investigated following incubation with the test 

substance. This change is then compared to what is seen with positive and negative controls. 

If a ≥2-fold increase in mRNA is observed in at least one donor, the substance is considered to 

be an enzyme inducer. If the change in mRNA is ≥20% of the positive control, then even if less 

than 2-fold change is seen, the substance cannot be excluded as an inducer. 
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The FDA presents two possible methods for evaluating induction with a correlational method, 

while the EMA and PMDA only refer to one of these methods (the relative induction score 

[RIS] method). An RIS is calculated based on the following formula: 

RIS = Emax*[I]/ (EC50 + [I]) 

where Emax is the maximum induction effect, EC50 is the concentration required to obtain the 

half-maximal induction effect, and [I] is the Cmax,u. The RIS should be calculated both for the 

test substrate, as well as for several other known inducers of the particular enzyme. 

The basic kinetic model consists of the following formula: 

R3 = 1/[1+(d*Emax*10*[I])/(EC50+(10*[I]))] 

where [I] refers to Cmax,u, d is a scaling factor (usually 1), Emax is the maximum induction effect, 

and EC50 is the concentration required to achieve the half-maximal induction effect. If R3 ≤ 0.8, 

then the substance is considered to be an inducer of the particular enzyme. 

As noted earlier, the cut-offs implemented by the regulatory agencies result in numerous 

dedicated DDI trials without any clinically relevant effects observed, particularly in the cases 

of induction and time-dependent inhibition (Einolf et al. 2014; Vieira et al. 2014). This is 

particularly true for CYP3A, given its importance in drug metabolism. Due to the prominence 

of CYP3A, much research has been conducted regarding mechanisms associated with DDI 

liability, as well as with regards to the best ways to assess CYP3A activity. The following section 

gives an overview of the current knowledge pertaining to CYP3A.  

1.2.2 Cytochrome P450 3A  

CYP3A is one of the most abundant drug-metabolising enzymes, making up around 40% of the 

CYPs found in the liver (following induction, this can be increased to greater than 60% 

(Anzenbacher and Anzenbacherova 2001)) and almost 80% of CYPs in the gut (Paine et al. 

2006; Thelen and Dressman 2009). A broad spectrum of xenobiotics and endogenous 

substances are able to be metabolised by this subfamily of CYPs, with multiple substrates able 

to bind simultaneously (Sevrioukova and Poulos 2013). Thus, the potential for DDIs involving 

the inhibition, inactivation or induction of CYP3A is particularly high. Of the CYP3A genes, 

CYP3A4 is the most prominent (e.g. 71-99.5% of CYP3A transcripts), although CYP3A5 and 

CYP3A7 may also be important for metabolism, each accounting for, on average, 2.5% of the 
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CYP3A transcripts (Koch et al. 2002). Notably, CYP3A7 is generally found in the fetal liver, while 

reports of its existence in adults appears to be conflicting (e.g. (Dresser et al. 2000; Koch et al. 

2002)). While CYP3A5 has been shown in vitro to contribute to the metabolism of substances 

such as midazolam, its relevance in vivo remains controversial and may be partly tied to the 

relative expression of CYP3A5 to CYP3A4 (Thummel and Wilkinson 1998). At most, however, 

it plays a minor role in metabolism when compared to the CYP3A4 enzyme.  

Due to the high proportion of CYP3A, oral drugs which are mainly metabolised by CYP3A often 

undergo extensive first-pass metabolism (i.e. metabolism that occurs pre-systemically) both 

at the level of the liver and the gut. This extensive first-pass metabolism is a big contributing 

factor to low oral bioavailability of drugs that are mainly metabolised by CYP3A. Although the 

liver has traditionally been thought of as the main contributor to first-pass metabolism (due 

to its much higher enzyme content), intestinal first-pass metabolism has been shown to have 

an important role for several CYP3A substrates (Thelen and Dressman 2009). In the intestine, 

CYP enzymes are mostly present in the tips of the villi, as this increases the likelihood of an 

absorbed compound coming in contact with the enzyme and being metabolised for 

elimination purposes. Factors such as increased blood flow which change the amount of time 

spent intracellularly in the villi can have considerable influence on first-pass metabolism and, 

thus, bioavailability (Thelen and Dressman 2009). 

The expression and activity of CYP3A enzymes displays large inter-individual variability. 

Specifically, expression of CYP3A has been found to vary by factors of 32 (CYP3A5) to 118 

(CYP3A4) (Koch et al. 2002) and inter-individual variability in CYP3A4 expression in the 

intestine has been found to be as much as 30-fold (Thelen and Dressman 2009). It should be 

noted that such high inter-individual differences in expression do not necessarily mean 

similarly high levels of inter-individual variability in activity (Thummel and Wilkinson 1998). In 

vivo, baseline CYP3A activity has generally been found to vary by up to 10-14-fold (Dresser et 

al. 2000; He et al. 2005; Stoll et al. 2013), which is still considerably lower than the 118-fold 

difference in expression of CYP3A4 transcripts. Taking interactions into account, however, a 

400-fold range of variability in CYP3A activity may be seen (Wilkinson 2005). Although various 

factors have been postulated to influence the inter-individual variability in CYP3A activity, 

including age, disease state, and sex (Chen et al. 2006; Dresser et al. 2000), the findings 

regarding these factor have generally been conflicting or non-conclusive. For example, while 
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Chen et al. (Chen et al. 2006) have noted higher clearance in women following both iv and oral 

dosing of midazolam, a substrate used to measure CYP3A activity, other researchers have 

found no sex-related differences (He et al. 2005; Kashuba et al. 1998; Thummel et al. 1996) or 

lower clearance in women following oral administration (Krecic-Shepard et al. 2000).    

Some of the more potent inhibitors of CYP3A are known to include azole antifungals (e.g. 

ketoconazole), macrolide antibacterials (e.g. erythromycin), HIV protease inhibitors (e.g. 

ritonavir) and grapefruit juice. Rifampicin, efavirenz, and St. John’s Wort are some of the 

known potent inducers and/or activators of CYP3A (Dresser et al. 2000; Keubler et al. 2012; 

Mikus et al. 2017; Thummel and Wilkinson 1998; Wilkinson 2005). Interestingly, some 

perpetrators (e.g. grapefruit juice) appear to be selective for intestinal CYP3A, likely due to 

the comparatively low quantity of CYP3A in the enterocytes, along with the fact that orally 

administered substances have to go through the gastrointestinal tract before being 

metabolised in the liver (Wilkinson 2005). Generally, however, perpetrators that are 

administered orally have been found to inhibit both intestinal and hepatic CYP3A. For 

reversible inhibitors of CYP3A (e.g. voriconazole), inhibition of activity is often immediate and 

CYP3A activity has been found to return with a t1/2 of 24 h following discontinuation of the 

inhibitor (Katzenmaier et al. 2011). In contrast, substances such as ritonavir, which display 

mechanism-based/irreversible inhibition, have been noted to take 48 h to achieve maximal 

CYP3A inhibition, with long-lasting effects, even once the inhibitor is removed (Katzenmaier 

et al. 2011). In the study by Katzenmaier et al., 3 days after discontinuing ritonavir, CYP3A 

inhibition was still found to be strong, thus, it is important to ascertain not just if a substance 

is a perpetrator, but also how long such effects might be likely to last.  

Induction of CYP3A is controlled by the pregnane X receptor, which influences multiple 

enzymes and transporters (Kliewer et al. 2002; Nebert and Russell 2002). As substrates of 

CYP3A are often also substrates of the P-glycoprotein transporter, it can be unclear to what 

extent drug interaction effects are due to changes in CYP3A metabolism and to what extent 

they are due to transport factors (Benet 2009). This problematic further complicates the 

ability to predict in vivo reactions from in vitro assessments. The upregulation of transcription 

factors is a relatively slow process and maximal inductive effects of CYP3A may only be 

achieved after approximately 2 weeks of dosing; thus, induction is generally thought to be 

more a problem for chronically administered drug. However, recent evidence suggests that 
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CYP3A inductive effects may actually be activation effects and, thus, are not dependent on 

achievement of maximal induction, as even following a single dose, the effects can still be 

significant 16 or more days later (Mikus et al. 2017). This is also evidence of the long-lasting 

effects of induction and/or activation, which for CYP3A have been found to last up to 3 weeks 

or more following removal of the inducer (Mikus et al. 2017; Reitman et al. 2011). These 

effects can be particularly problematic, as potent inducers of CYP3A have been found to 

reduce drug exposure up to 40-fold (Kirby et al. 2006), which effectively eradicates any 

efficacy of a CYP3A substrate drug.  

While in vitro assessments of CYP3A metabolism or of CYP3A modulator potential provide a 

good first step in assessing DDI liability, these methods still leave much uncertainty and often 

do not translate into a similar impact on pharmacokinetics in the clinic. Furthermore, while in 

vitro methods are generally able to reflect the potential for CYP3A inhibition, CYP3A induction 

is much harder to predict. The fact that substances can simultaneously be a substrate, an 

inhibitor/inactivator and/or an inducer of CYP3A (Liu et al. 2007; Zhou 2008) leads to 

additional complexity in the prediction of whether a substance is likely to cause clinically 

relevant interactions.  Given the complexity of substance-enzyme interactions, it is often 

unclear from pre-clinical data which results to expect in clinical studies in vivo.  

Finding innovative and resource-saving approaches to accurately predict DDIs early on in drug 

development is important for academia, pharmaceutical companies, and the public, because 

it means that needed drugs can get to patients faster, with reduced costs associated with the 

drug development process. Thus, further efforts need to be made to develop such 

methodologies. As midazolam is an accepted means of assessing CYP3A activity, methods 

using midazolam measurement most advantageously appear to be a promising route to go. 

1.3 Characteristics of Midazolam 

Midazolam is a short-acting, benzodiazepine derivative, used as a sedative-hypnotic (Kanto 

1985). It is administered intravenously, intramuscularly, or orally. However, due to its 

pharmacokinetic properties, it is also the recommended probe drug (proposed by the main 

food and drug regulatory authorities) for CYP3A-related drug-drug interaction liabilities, both 

in vitro and in vivo (EMA-CHMP 2012 Jun; US-FDA 2020a; US-FDA 2020b). 
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1.3.1 Pharmacokinetic Properties 

Midazolam is a BCS Class I substance, meaning that it has both good solubility and good 

permeability. Despite its BCS Class I classification, midazolam has a relatively low oral 

bioavailability (~30% (Heizmann et al. 1983)), due to the extensive first-pass metabolism that 

it undergoes (Thummel et al. 1996). Absorption of midazolam is quite rapid, with peak 

concentrations reached between 15 and 60 min (Heizmann et al. 1983; Thummel et al. 1996). 

The volume of distribution for midazolam is quite variable, ranging from 38.6 L – 146.6 L 

following iv administration, which is generally higher than the total volume of water (42 L) in 

humans, suggesting that midazolam is highly distributed within the tissues of the body 

(Heizmann et al. 1983; Smith et al. 1981). Less than 1% of midazolam is excreted unchanged 

in urine, with the majority of midazolam metabolised via CYP3A (Heizmann et al. 1983; 

Heizmann and Ziegler 1981; Smith et al. 1981). In studies examining iv and oral administration 

of midazolam, hepatic and enteric extraction ratios have been found to be of similar 

magnitude, further indicating the importance of first-pass metabolism in the bioavailability of 

midazolam (Hohmann et al. 2015; Thummel et al. 1996). It is not known to be a substrate of 

any transporters (Cummins et al. 2004; Ziesenitz et al. 2012). 

The disposition of midazolam is usually described as being at least biexponential. Elimination 

is also quite rapid, with the elimination half-life ranging from 1.3-3.4 h (Heizmann et al. 1983). 

Although less than 1% of midazolam is excreted unchanged in urine, the main route of 

elimination (as metabolite) is renal, as evidenced by the fact that approximately 90% of 

radioactivity is recovered in urine 24 h following administration of 14C midazolam (Heizmann 

and Ziegler 1981). Clearance of midazolam is approximately 300-500 ml/min (18-30 L/h) 

(Heizmann et al. 1983). 

1.3.2 Metabolites 

Midazolam is metabolised into three main metabolites: 1’-OH midazolam, 4-OH midazolam, 

and 1’,4-dihydroxymidazolam, all of which are produced via CYP3A4/5 (Kronbach et al. 1989; 

Thummel et al. 1996). Metabolites are further metabolised via Uridine 5'-diphospho-

glucuronosyltransferase (UGT) enzymes, producing glucuronide conjugates of each of the 

metabolites (Heizmann et al. 1983). 1’-OH midazolam (and its glucuronide conjugate) is the 

most plentiful of midazolam’s metabolites, making up approximately 60 to 80% of the 

recovered dose in urine over 24 h following either iv or oral dosing (Heizmann et al. 1983; 



_INTRODUCTION____________________________________________________________________ 

16 
 

Heizmann and Ziegler 1981). The 4-OH and 1’,4-dihydroxymidazolam metabolites each 

account for only around 1-3% of the recovered midazolam dose. The metabolites are formed 

rapidly, with concentrations of 1’-OH midazolam already measurable by at least 5 minutes 

post-midazolam dose (Thummel et al. 1996). As with the parent compound, maximum 

concentrations of 1’-OH midazolam are reached around 15 to 60 minutes post-midazolam 

dose. Elimination tends to parallel that of midazolam, with an elimination half-life around 1.5 

to 2 hours (Bornemann et al. 1985). Due to the considerably lower concentrations of 4-OH 

midazolam and 1’,4-dihydroxymidazolam, the rest of this dissertation will focus on midazolam 

and its primary metabolite, 1’-OH midazolam. 

1.3.3 Microdosing 

Microdosing of drugs is a technique that has been gaining popularity and is supported by main 

regulatory authorities in early phases of development (CHMP 2004; FDA 2006). The dose of a 

small molecule is considered a microdose if it is 1/100th of the expected therapeutic dose or a 

maximum of 100 µg, whichever amount is smaller. This technique has been applied to 

promising drug candidates for early assessment of pharmacokinetics, including basic 

pharmacokinetic profiles and bioavailability, metabolic profiles, and tissue distribution 

(Sugiyama and Yamashita 2011), as well as in the investigation of pharmacogenomic impact 

on kinetics and of victim drug-drug interaction liability (Burt et al. 2016; Svendsen et al. 2016). 

Use of a microdose is considered advantageous, as concentrations within the body do not 

reach pharmacologically active levels and, thus, no adverse reactions are likely, nor is 

interference with other administered drugs expected (Mikus 2019; Sugiyama and Yamashita 

2011). Additionally, the limited exposure to drugs with microdosing reduces potential harm 

to subjects or patients which could arise when inhibition of an enzyme or transporter results 

in greatly increased exposure (Burt et al. 2016).  

Despite the limited systemic exposure resulting from microdosing, various analytical tools 

exist which are sensitive enough to measure such low concentrations, including accelerator 

mass spectrometry, positron emission tomography, and liquid chromatography-tandem mass 

spectrometry (LC-MS/MS). Of these methods, LC-MS/MS is also regularly employed in the 

measurement of therapeutic drug levels, meaning that costs and/or difficulty associated with 

the bioanalytical technique are not necessarily increased (Burt et al. 2016). With regards to 

midazolam, assays have been developed using ultra performance LC-MS/MS that are able to 
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adequately measure concentrations as low as 50 fg/mL for midazolam and 250 fg/mL for 1’-

OH midazolam (Burhenne et al. 2012). Therefore, the feasibility of applying microdosing to 

clinical studies should not be limited by lack of reasonable analytical techniques. 

Although some concern has been raised regarding the predictability of microdosing results for 

therapeutic doses, studies comparing pharmacokinetics have found approximately 80% or 

more of substances display linear (and, thus, scalable) pharmacokinetics from microdoses to 

therapeutic doses (Croft et al. 2012; EUMAPP 2012; Hohmann et al. 2016; Lappin et al. 2013). 

In cases where microdosing is not predictive, there is indication that one can already see 

preclinically that processes are likely to be saturable and, thus, microdosing would either not 

be an appropriate tool or could be used together with an appropriate model to scale to 

therapeutic doses (Bosgra et al. 2016). Midazolam has received considerable attention with 

regards to its ability to predict outcomes based on a microdose, due to its use for phenotyping 

CYP3A activity. Doses as low as 100 ng have been administered and results compared to those 

following microdosing, low milligram doses, and therapeutic doses (Halama et al. 2013). 

Midazolam was found to display linear pharmacokinetics over the full range of doses; such 

findings regarding midazolam’s dose proportionality have been confirmed by multiple 

researchers, both for orally administered doses and for iv infusions (Bornemann et al. 1985; 

Croft et al. 2012; Lappin et al. 2006). 

Due to its dose proportionality, as well as to the lack of pharmacological effect, a midazolam 

microdose is an appealing tool for integrating into early clinical studies without influencing 

the examination of the experimental drug. In support of this potential application for 

midazolam microdosing, it has been shown that midazolam microdoses are able to detect 

inhibition of CYP3A by a perpetrator drug, without reports of any benzodiazepine effects being 

present or adverse events occurring (Eap et al. 2004; Hohmann et al. 2015). Furthermore, 

midazolam microdoses have been used both alone to detect CYP3A DDIs, as well as together 

with other substrates for DDI testing (Croft et al. 2012) and results when administered with 

perpetrators have been consistent with results for therapeutic doses (Croft et al. 2012; Eap et 

al. 2004; Hohmann et al. 2015). Thus, the assessment of the feasibility and appropriateness of 

applying the midazolam microdosing approach in clinical drug development is investigated as 

part of the work presented here. 
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1.3.4 Limited Sampling Approaches 

As another tool to facilitate measurements in the clinic and to reduce inconvenience to 

subjects or patients, costs, and burden to site staff, limited sampling approaches have 

increasingly been investigated for various drug compounds (Egorin et al. 1989; Katzenmaier 

et al. 2010; Miyazaki et al. 1997; Ratain and Vogelzang 1987; Yang et al. 2018). Such 

approaches utilise between 1 to 4 plasma/blood samples to predict AUC and/or clearance of 

a drug, rather than taking the typical 6-15 samples over a 12 to 24 hour period. Limited 

sampling approaches have been successfully applied for multiple drugs, including multiple 

cancer drugs and some immunosuppressive medications.  

Given the liability for DDIs with CYP3A and the use of midazolam as the typical phenotyping 

agent, various limited sampling strategies have been proposed for assessing midazolam 

exposure. As a single time point measurement to predict exposure is particularly appealing, 

multiple researchers have examined the ability of a single sample to predict midazolam AUC 

or clearance (Chaobal and Kharasch 2005; Krupka et al. 2006; Lee et al. 2006; Nguyen et al. 

2016; Penzak et al. 2008; Rogers et al. 2002; Yang et al. 2018; Zadoyan et al. 2012). Although 

findings have often been favourable, at least for constitutive CYP3A conditions, the ideal time 

point differs between studies and the ability of a single time point to detect DDIs has been 

inconsistent. The most predictive single time point within studies ranges from anywhere 

between 2 and 6 h, with one group not finding any single time point to be predictive of 

midazolam exposure (Rogers et al. 2002). The group finding no predictive time points 

estimated metabolite exposures and/or the ratio of 1’-OH midazolam to midazolam exposure, 

rather than midazolam exposure/clearance itself; neither metabolite exposure nor metabolite 

ratios has been validated as a reliable phenotyping method, likely explaining the negative 

outcome compared to other groups. Additionally, metabolic ratios have generally not been 

found to be a good predictor of CYP3A activity (Lee et al. 2006).  

With regards to DDI outcomes, only three studies examined a single time point for DDI 

prediction. In one study, only the single time point (6 h) in the absence of full profiles was used 

for assessment of a DDI, thus, it is unclear if the time point would be truly predictive or not 

(Zadoyan et al. 2012). In the other two studies examining DDIs, results were mixed; Penzak et 

al. (Penzak et al. 2008) found that different time points were needed to be able to predict 

midazolam AUC under different conditions, such that a 4 h time point was ideal for basal 
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conditions, while 2 or 8 h were ideal for conditions of induction, thereby limiting the 

usefulness of the approach for DDI predictions. In contrast, Chaobal et al. (Chaobal and 

Kharasch 2005) found that a 5 h time point could adequately predict midazolam exposure 

under conditions of inhibition and induction, as well as for basal conditions. Furthermore, 

geometric mean (gMean) ratios and 90% confidence intervals (CIs) for AUCs and for single 

time points were in the same magnitude as those found using full profiles for all conditions.  

In order to avoid limitations noted with a single time sample, as well as to decrease the 

possibility of losing data when difficulties arise in obtaining or analysing the single sampling 

point, other groups have examined the predictability of 2 to 4 samples over different time 

intervals (e.g.(Katzenmaier et al. 2010; Katzenmaier et al. 2011; Kim et al. 2002; Masters et al. 

2015; Nguyen et al. 2016)). The particular time points to use have generally been decided 

using linear regression models, comparing regression predicted outcomes to observed 

midazolam AUCs or clearance values (Katzenmaier et al. 2010; Katzenmaier et al. 2011; Lee et 

al. 2006), although a PopPK model has also been used to predict midazolam exposures 

(Nguyen et al. 2016). Constitutive CYP3A activity was generally well-predicted using multiple 

limited sampling schemes, including 5 min, 0.5 and 6 h (Kim et al. 2002), 0.5, 2 and 6 h (Lee et 

al. 2006), 2, 2.5, 3 and 4 h (Katzenmaier et al. 2010; Katzenmaier et al. 2011), 0.5, 1, 2 and 8 h 

(Mueller and Drewelow 2013), and 0.25, 2, 2.5, and 6 h (Nguyen et al. 2016). In contrast, 

Masters et al. (Masters et al. 2015), who examined multiple partial AUCs (AUC0-4 being the 

most predictive), found baseline activity to be poorly predicted, while Ma et al. (Ma et al. 

2010) who examined the ability of 2 and 3 time point sampling schemes to predict CYP3A 

baseline activity, induction and inhibiton, observed mixed results for baseline activity.  

Induction could be well predicted in the schemes of Masters et al., Mueller and Drewelow, 

and Katzenmaier et al., although Ma et al. found induction was poorly predicted using their 

sampling scheme. Only the limited sampling scheme used by Katzenmaier et al. was able to 

accurately predict midazolam exposure following CYP3A inhibition, although inhibition of 

intestinal CYP3A activity was also accurately predicted by the sampling scheme used by Ma et 

al. Thus, limited sampling schemes for midazolam have displayed promising results, but could 

still benefit from further optimization to increase their predictability. Combining a limited 

sampling scheme with PopPK, as done by Nguyen et al. (Nguyen et al. 2016) for basal CYP3A 

activity, could provide the required optimization, thereby offering another tool for reducing 
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subject and patient burden, as well as development time and costs when assessing CYP3A 

DDIs. As such, the following sections will review the definition and theory behind PopPK 

modelling, model development and evaluation, and give an overview of the currently available 

midazolam PopPK models. 

1.4 Overview of Population Pharmacokinetic Models 

Models are a powerful tool to better understand a drug’s characteristics and potential factors 

contributing to its pharmacokinetics and/or pharmacodynamics. There are multiple types of 

models used in pharmacology, ranging from simple mechanistic models to complex 

quantitative systems pharmacology (QSP) models. Each model has its advantages and 

disadvantages and different places where it is likely most useful within drug development or 

individualization of patient care. One of the more common modelling approaches in clinical 

pharmacology is PopPK modelling, which can provide important information and be used in 

numerous ways without being overly complex. Thus, for the purposes of the current 

dissertation, the focus here will solely be on PopPK models. 

1.4.1 Definition and Theory 

PopPK is a modelling approach which combines information from multiple trials and sources 

to achieve different aims. One important goal of PopPK is to identify and describe covariate 

relationships that impact exposure, as well as to describe the overall inter- and intra-individual 

variability for different pharmacokinetic parameters. This information can then be used to 

estimate exposures based on different dosing regimens, special populations, or other factors 

where direct empirical evidence has not necessarily been collected yet (Lalonde et al. 2007; 

Whiting et al. 1986). Thus, using all relevant information from different settings allows for 

predictions that can have important impact on drug development decisions, as well as on the 

label of a compound (Lalonde et al. 2007).  

PopPK can be used with either sparse or dense sampling schemes and it is robust to 

differences in sampling and/or dosing schedules (Wade et al. 1994). As such, PopPK is 

becoming a regularly used tool in drug development to inform study design, dosing regimens, 

dose adjustments in special populations, as well as to provide richer information regarding 

the relationship between drug exposure and safety or efficacy outcomes (Atkinson Jr and 

Lalonde 2007; Mould and Upton 2012). PopPK is particularly useful, as it does not rely on 
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stringent criteria for timing of data collection and is helped, rather than hindered, by 

heterogeneous samples, as are usually seen in patient trials (Sheiner 1997). 

Multiple methods have previously been used for PopPK, including the naïve-pooled approach, 

the two-step approach and, more recently, the nonlinear mixed effects approach (Mould and 

Upton 2012). The naïve pooled approach consists of fitting the pooled data from all individuals 

while ignoring differences between the individuals. The two-step approach first fits each 

individual’s data and then uses the mean of the combined individuals’ parameter estimates 

to determine population parameters. These two methods are less robust to deviations in 

sampling and/or dosing and have been found to result in biased estimates (Mould and Upton 

2012). Biased estimates are those which are further from the actual values and, thus, do not 

fit the data as well. Nonlinear mixed effects modelling, originally introduced by Sheiner and 

colleagues for PopPK (Sheiner et al. 1972), is currently the most applicable and likely most 

commonly used method. Mixed effects refers to the fact that both fixed and random effects 

are accounted for in the model (Sun et al. 1999). Fixed effects are the aspects that are constant 

for the population, while random effects are the effects that differ for each individual without 

being able to be accounted for by a covariate effect. For inter-individual differences that are 

measurable (e.g. weight and age) and influential for model parameters, a covariate effect is 

built in for the model parameter’s estimate, as the covariate should have a fixed effect for the 

population as a whole. On the other hand, an example of a random effect, i.e. an effect of 

something which is not directly measurable but which contributes to variability between 

individuals, would be the differing expression of CYP3A in each individual. This differing 

expression would affect an individual’s exposure to CYP3A substrate drugs, as well as likely 

having an influence on the impact of CYP3A modulators on overall exposure of such 

substrates. Thus, although pharmacokinetic parameters are estimated at the population level, 

the individual’s parameters are maintained through estimates of variability within the model. 

The process of developing the structure, including appropriate variability and identifying 

appropriate covariates will be described in the next sections, followed by a review of available 

midazolam PopPK models in order to give the background for development of the model 

which is the topic of this dissertation.  
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1.4.2 Model Development and Evaluation 

The process associated with model development and evaluation consists of multiple steps, 

which are depicted in Figure 1, below. While not all aspects listed are necessarily needed for 

every model, each can play an important role in obtaining the most appropriate final model 

and/or simulation for the model’s final intended use.   

 
Fig. 1: Model development and evaluation overview 

1.4.2.1 Model Development 

Model development begins before the actual development itself. As an initial step, it is 

important to take an exploratory look at the available data. With this initial exploratory 

analysis, data errors can immediately be identified and corrected or omitted, different phases 

in the substance’s disposition may be apparent and can give an initial framework for the model 

structure, patterns in the data may be readily visible, variability in exposure can be assessed, 

and outliers can be identified. Extreme outliers may disproportionately affect the estimation 

of parameters and, thus, it may be best to leave them out during model development, 

although completely removing outliers requires reasonable justification (Sun et al. 1999). 

 

Following the exploratory analysis and any needed steps which may have been implemented 

as a result of the analysis, the actual model development begins. Model development is a 

multi-stage process, consisting of three main elements: 1) the structural model, 2) the 

statistical model, and 3) the covariate model (Mould and Upton 2013). The structural model 

describes the important fixed effect parameters required to adequately describe the data. 
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Compartments, which may be either theoretical in nature, or which may refer to an actual 

physiological “compartment”, such as blood, make up the main structure of the model. 

Parameters describing the typical (i.e. at a population level) movement of the dependent 

variable, usually concentration, through the compartments further make up the structure. In 

a simple 1-compartment model, these parameters would generally consist of clearance and 

volume of distribution. With the inclusion of more compartments, more parameters are 

needed to describe movement between compartments. For a typical PopPK analysis, 1-, 2-, 

and/or 3-compartment models are tested and included for any one particular analyte (with 

multiple analytes, there may be a series of 1-, 2-, or 3- compartment models combined), with 

at least one absorption/depot compartment generally incorporated for drugs administered 

via extravascular routes.  

 

Model parameters describe the typical pharmacokinetic processes following drug 

administration and, thus, account for absorption, distribution, and metabolism/elimination. 

Absorption is customarily accounted for using zero-order absorption (e.g. administration 

directly into the compartment of interest) or first-order absorption, such as that typically seen 

following oral administration of a drug, while elimination is generally defined as linear, non-

linear, or a combination thereof. Non-linear, or saturable elimination, is most commonly 

described for small molecule drugs via the Michaelis-Menten equation (Menten and Michaelis 

1913), which describes saturable enzyme kinetics (Mould and Upton 2013): 

CLint = Vmax/(Km+Cp)                

where CLint is the intrinsic clearance, Vmax is the maximum rate of metabolism at high substrate 

concentrations, Cp is the unbound concentration of the substrate, and Km is the Michaelis-

Menten constant, representing the unbound concentration where the half-maximal rate of 

metabolism is achieved.        

Additionally, a lag time or one or more transit compartments may be added to the model to 

describe a delay between drug administration and appearance of drug within the blood (Savic 

et al. 2007). The advantage to transit compartments is that the drug concentrations appear 

more gradually within the central compartment, although finding the optimal number of 

transit compartments may be a question of trial and error. 
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Along with choosing the right structural model, it is important to appropriately describe the 

variability between and within individuals through selection of an appropriate statistical 

model. Variability in the dependent variable is described via the inter-individual variability 

(IIV), the inter-occasion variability (IOV), as well as the remaining/residual unexplained 

variance (RUV). IIV can be applied in different ways, although most commonly, due to the log-

normal distribution of most biological data (Fisher and Shafer 2007), it is modelled 

exponentially:  

Pi = θpop x eηi,                             

where Pi is the individual pharmacokinetic parameter, θpop is the ‘typical’ (mean) population 

value for P, and ηi describes the random effect (making the variability) on P for the ith 

individual; ηi is assumed to be normally distributed with a mean of 0 and a variance of ω2. IOV 

is modelled using a similar approach, although the random effect is determined over 

numerous occasions, to account for fluctuations due to, for example, physiological processes 

and measurement errors, with the resulting formula being (Karlsson and Sheiner 1993): 

Pij = θpop x eηi+κij,           

where κij describes the random effect on P for the ith individual at the jth occasion. As with 

ηi, the κij effect is assumed to be normally distributed with a mean of 0 and a variance of π2. 

RUV is added to the model to identify any remaining variability that cannot be accounted for 

using the available data (Fisher and Shafer 2007). This may be due to assay measurement 

errors, covariates for which one has no data, errors during study conduct, or may be due to 

model misspecification. Misspecification occurs when one or more components of the model 

are falsely characterised, such as a potentially inappropriate structural model, an incorrect 

variability structure, inappropriately defined parameter values (e.g. a local minimum during 

the minimization process rather than a true, global minimum for the value), or spurious 

covariate relationships within the model. The most common ways to account for RUV are 

through additive error, proportional error, or combined additive and proportional error, 

although other ways of accounting for the variance exist (e.g. Poisson distribution or log-

normal error). The equations accounting for RUV are as follows (Fisher and Shafer 2007): 

Additive error: Yij = Ctrue,ij + εij  
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Proportional error: Yij = Ctrue,ij*(1+ εij)  

Combined additive and proportional error: Yij = Ctrue,ij*(1+ εij) + εij  

Poisson error: Yij = Ctrue,ij + √(Ctrue,ij)*εij 

where Yij represents the concentration value for the ith individual at time j, Ctrue represents 

the “true” concentration (if it could be known) for the ith individual at time j, and εij represents 

the residual error associated with the observation. 

A final consideration (though not necessarily the last step) for model development is the 

incorporation of any important covariates. Covariates pertain to subject characteristics and/or 

other known factors that may predictably account for variability in the pharmacokinetic 

parameters. Some common covariates include age, weight, body mass index, body surface 

area, sex, disease state, (e.g. renal or hepatic impairment; severe or mild disease), race, co-

medications, and creatinine clearance. In PopPK models, these are often normalised (divided 

by the ‘typical’ value) or centered (‘typical’ value subtracted; should be used with caution) for 

better interpretability of the final parameters. Specifically, by normalising or centering 

covariates, then the resulting value is that of a ‘typical’ subject or patient (Mould and Upton 

2013). Covariates may be entered into a model in a variety of ways. If a covariate is expected 

to have a direct, linear effect on the pharmacokinetics, then the following equation may be 

used: 

Pi = (θpop + covariatei x θcov) x eηi, 

where Pi is again the individual pharmacokinetic parameter for the ith subject, θpop is the mean 

population value for P, covariatei is the individual’s value for the covariate being examined, 

θcov is the constant influence of the value in the population, and ηi describes the variability on 

P for the ith individual. More commonly, a power model with covariate normalisation is used 

to describe the relationship between a covariate and the parameter of interest: 

 Pi = (θpop x (covariatei/covariatepop)θcov) x eηi 

The decision to include a covariate in a model is generally based on i) knowledge based on 

prior research that the covariate impacts the pharmacokinetics of the substance being 

modelled and/or ii) the covariate is identified during model development (usually using 

graphical analysis) as having an impact on any of the model’s parameters. In a graphical 



_INTRODUCTION____________________________________________________________________ 
 

26 
 

analysis, covariates are plotted against model parameters and/or parameter variability values. 

This graphical analysis may or may not be combined with a statistical analysis, though the 

usefulness of statistical analysis may partly depend on the sample size examined (Mould and 

Upton 2013). Those covariates that appear to explain some of the model’s variability are 

entered into the model and an evaluation to ascertain if there is an improvement in model fit 

is conducted.  

1.4.2.2 Model Evaluation 

Model evaluation is a topic of great interest and is conducted using various methods, including 

both internal and external evaluation methods. Although there appears to be some 

disagreement on the best methods to use (for example, see (Sherwin et al. 2012)), it is 

suggested that the method chosen to evaluate a model should be consistent with the purpose 

of the model (Ette et al. 2003). An initial evaluation of a model’s acceptability may be based 

on the physiological plausibility of values obtained, as well as on the precision with which the 

parameters are estimated. The precision of a parameter estimate is based on its relative 

standard error (RSE) and is generally considered acceptable when it is <30% (CDC/National 

Center for Health Statistics 2010). The fit of a model is further assessed using multiple 

graphical tools, as well as through improvements in the objective function value (OFV). An 

OFV is a value that is being minimised to obtain the best model parameter estimations for the 

data and, thus, the smaller the OFV, the better the model fit (though one should beware of 

overfitting the model, such that it is no longer useful beyond the dataset used for 

development). Commonly, this value is minimised via maximum likelihood estimation and is 

expressed as -2*log-likelihood (-2LL)(Mould and Upton 2013). Multiple methods for maximum 

likelihood estimation exist, with first order conditional estimation (FOCE), Laplace estimation, 

importance sampling and stochastic approximation expectation-maximization (SAEM) as 

some of the more common estimation methods used (see (Bauer 2019) for a review of the 

different estimation methods). When examining the OFV, different initial estimates in the 

model should be examined, as minimisation may stop at what is referred to as a local 

minimum, rather than at the true minimum. A local minimum occurs because the slope of the 

function being evaluated has stopped decreasing for an increment, so the model evaluations 

stop and the current function parameters are considered the best fit (see Figure 2 for a 

graphical representation). In such cases, if different function values are used, a greater slope 
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decrease would be noted until the true (global) minimum is reached. Thus, the examination 

of different initial values may mean that one avoids the local minimum and the model 

continues to minimise to the true minimum OFV for the set of given parameters.  

 
Fig. 2: Illustration of local and global minima. A local minimum is reached when there is a ‘dip’ in the 
slope which does not represent the lowest value, while the global minimum is the truly lowest 
(minimum) value. 
 
With regards to the graphical analyses, a general set of plots that should be used in model 

evaluation has been proposed by the International Society of Pharmacometrics Model 

Evaluation Group, along with an assessment of the pros and cons of each evaluation type 

(Nguyen et al. 2017). Due to the different strengths and weaknesses of the different diagnostic 

tools, a best practice is to use a combination of methods. In this way, bias, precision, and 

predictability of the model can be better determined.  

The plots used to evaluate the model are termed “goodness-of-fit” or diagnostic plots. 

Goodness-of-fit plots usually consist of a series of plots examining individual and/or 

population predictions against the observed data, against associated errors over time, and 

against associated errors over actual observations (Figure 3).  
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Fig. 3: “Goodness-of-fit”/diagnostic plots for model evaluation. The upper row displays individual 
model predictions, while the lower row displays population predictions. The predictions are plotted 
against actual concentrations (first panels), weighted errors over concentrations (second panels), and 
weighted errors over time (last panels). Blue dots represent actual concentrations, while the red-
dashed lines represent smoothing functions using a linear regression (first panels) or a loess smooth 
(middle and last panels). The black solid lines represent the line of unity (first panels) or the 0 line 
(middle and last panels). Dashed black lines show the boundaries for ± 1.96 standard deviations. IWRES 
= individual weighted residuals; CWRES = conditional weighted residuals. 
 
For individual predictions plotted against observations, a good model fit should result in a 

regression line similar to the line of unity (as in the first upper left panel of Figure 3); the same 

cannot necessarily be said of the population predictions against observations, as the level of 

direct association is dependent upon the nature of the processes involved and variability in 

the model (Karlsson and Savic 2007). The individual or population predictions plotted against 

the observations can help identify misspecifications in the structural model, although 

misspecification in the residual error model does not necessarily affect such plots (Nguyen et 

al. 2017). To evaluate an overall misspecification in structural or residual error model, 

predictions should be plotted against their weighted residual errors. Examination of these 

plots should not reveal any evident trends in error dispersion around the line of 0, but rather, 

errors should be relatively evenly distributed above and below when the model is correctly 

specified (as in Figure 3). Furthermore, the error associated with individual predictions should 

have approximately 95% of the data falling within ± 1.96 standard deviations, which indicates 

a normal distribution of error.  
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Examination of model estimations against their weighted residual errors should typically not 

reveal any non-symmetrical error dispersion, as a non-symmetrical dispersion may indicate 

structural, covariate or residual error misspecification. However, a non-symmetrical 

dispersion in the population conditional weighted error is not always indicative of a problem 

with the model, as it may also be an indication of highly nonlinear data or a particularly high 

inter-individual variability. With individual predictions, inter-individual variability is already 

accounted for and, therefore, does not influence error dispersion. One caution with using 

plots of individual predictions against weighted residuals, is that a covariate misspecification 

cannot be assessed, as it is considered part of the inter-individual variability; thus, both 

population predictions and individual predictions need to be examined together for a real 

understanding of potential deficiencies in the model (Nguyen et al. 2017).  

The dispersion of errors over model predictions gives an indication of whether there are 

trends for certain concentrations to be less well fit by the model (e.g. maximum concentration 

values), but another valuable assessment for model fit is that of the dispersion of errors over 

time. A trend in deviation from the 0 line may indicate a structural misspecification (e.g. if 

later time points are systematically increased, it may indicate a missing compartment in the 

model). Diagnostic plots from a misspecified model (structural misspecification) are depicted 

in Figure 4. Here, although the regression line for the individual data overlaps with unity, it is 

clear by the two distinct spreads of the observations compared to the predictions that the 

data is not being adequately described by the model. Furthermore, in each of the plots of 

predictions against the weighted residuals, there are evident trends in the scatter of errors 

around the 0 line. Finally, when looking at the errors over time, there is a clear trend for errors 

to scatter considerably above the 0 line towards the end of the substance’s terminal phase of 

elimination, suggesting that there may be a compartment missing in the model or that an 

important covariate has been missed. 
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Fig. 4: “Goodness-of-fit”/diagnostic plots for a misspecified model. A clearly distinguishable trend for 
poor prediction of peak concentrations is noted in the first two panels and is particularly evident for 
the individual predictions. Predictions plotted against errors over time indicate that the terminal phase 
is not well captured by the model, as evidenced by the rising trend line. Blue dots represent actual 
concentrations, while the red-dashed lines represent smoothing functions using a linear regression 
(first panels) or a loess smooth (middle and last panels). The black solid lines represent the line of unity 
(first panels) or the 0 line (middle and last panels). Dashed black lines show the boundaries for ± 1.96 
standard deviations. IWRES = individual weighted residuals; CWRES = conditional weighted residuals. 
 
A final graphical method that is commonly used for the individual and/or population 

predictions is one whereby the concentration-time profiles based on model predictions are 

plotted together with the observed data points. This allows one to determine, for example, 

particularly problematic individuals for model predictions, as well as to get an overall 

impression of the fit of the model predictions to the data (see Figure 5). Furthermore, when a 

“typical” profile (i.e. the population predicted profile) is added, one can determine the extent 

to which individuals differ overall. 
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Fig. 5: Individual model predicted concentration-time profiles fit to actual observations. Lines 
represent the model predictions, while points are the actual observations. Different coloured lines and 
different shaped points represent different visits; each panel depicts a different subject.  
 
In addition to assessing model misspecifications, graphical inspection can be used to aid in the 

decision of appropriate relationships to include for explaining inter-individual variability and 

in describing any relationships between model parameters. This graphical assessment can be 

carried out using plots of empirical Bayes estimates (EBEs), which are the resulting random 

effect values. A potential need for covariates in the model may be detected if the histogram 

of a particular EBE displays multiple peaks and/or if a plot of EBEs against each of the 

covariates gives an indication of any relationships (Figure 6). Those covariates that appear to 

be related to the random effects should be tested in the model to examine if an improvement 

of model fit is observed. With regards to the error model assessment, if the majority of EBEs 

cluster around the mean of the histogram, with very little spread overall, this may indicate 

that IIV on this parameter is not needed, as only limited information is apparent at the 

individual level. Such a phenomenon refers to the shrinkage of a parameter towards the 

population value, suggesting overfitting of the model. A plot of EBEs against one another 

allows one to assess the potential correlation between parameters, which should then be built 

into the model (Figure 6). Thus, these graphical assessments are quite beneficial in 

ascertaining the most appropriate IIV error models, as well as in identifying important 

covariates for inclusion in the model. 
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Fig. 6: EBE and covariate relationship plots. The double peak in the histogram suggests that a covariate 
(e.g. sex) should be added to the model to account for differences in variability. The next two plots 
display a relationship between age and bioavailability and between the variances for bioavailability 
and clearance. 
 
Further common model evaluation methods include bootstrapping, cross-validation, case 

deletion, data-splitting, visual predictive checks (VPCs), and normalised prediction distribution 

errors (NPDEs). Data-splitting consists of using a portion of the available dataset for model 

development (usually about 2/3 of the data) and testing the resulting model on the remaining 

data. Although data-splitting is a commonly used method, when used with small datasets it 

generally results in biased, overly optimistic results (Steyerberg and Harrell 2016). A slightly 

more robust method is that of cross-validation, whereby the data are repeatedly split into 

“training” and “test” sets via resampling methods and an out-of-sample error is generated 

based on the average of all cross-validation runs (Sherwin et al. 2012). In case deletion, which 

is a form of cross-validation, each case (for example, an individual subject) is sequentially 

deleted (only one case deleted per evaluation) from the overall dataset and the influence of 

each case is then computed based on changes in parameter variables. This can help identify 

highly influential subjects/cases, as well as helping to determine how robust the model is in 

the face of potential outliers (Sherwin et al. 2012).  

Bootstrapping, VPCs, and NPDEs are all examples of simulation-based tools which are used for 

internal qualification of a model. Using the original dataset, many simulations (e.g. 1000) are 

conducted with the final model and the results of the simulated datasets are then compared 

to the observed values or model-estimated parameters based on the original dataset. With 

bootstrapping, datasets are created by sampling the original dataset using replacement, with 

an approximately equal distribution of important characteristics (e.g. proportion of subjects 

in a particular treatment or of a specific covariate) compared to the original dataset. 

Confidence intervals (usually 95%) are then computed for each model parameter using the 
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results of each successfully minimised model run. VPCs provide a visual representation of how 

well the model describes the actual data used for developing the model (Figure 7).  

 
Fig. 7: Visual predictive check. The red solid line depicts the observed median, while the dashed red 
lines depict the observed 97.5th and 2.5th percentiles. The shaded blues areas represent the 90% 
confidence intervals for the 97.5th and 2.5th percentiles, based on a large number of simulations from 
the data, and the red shaded area depicts the 90% confidence intervals of the median. 
 
Although there are a number of ways a VPC can be conducted, currently the more common 

approach is to use confidence interval VPCs (Nguyen et al. 2017). In this VPC approach, Monte 

Carlo simulations based on the final model and observed data are conducted and 95% 

confidence intervals over various relatively equally representative bins (usually binned over 

time) for the median and for the 97.5th and 2.5th percentiles (or other preferred percentiles) 

are calculated. If the model describes the data well, then the observed median, 97.5th and 

2.5th percentiles of the data should fall within the respective 95% confidence intervals. When 

a dataset contains large heterogeneity in study design or unbalanced designs, it may be 

preferential to use a prediction-corrected VPC, which normalises the data to population 

median values at each of the independent variable (e.g. time) values (Bergstrand et al. 2011). 

An NPDE is based on the quantile of an observation within its predicted distribution (obtained 

in the same way as by a VPC); as observation errors are not independent within an individual, 

both the simulated and observed data are decorrelated (Brendel et al. 2006). When the model 

provides an adequate description of the data, a normal distribution of prediction 

discrepancies (i.e. observation quantiles), with a mean of 0 and standard deviation of 1, should 

emerge. 
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1.4.3 Review of Available Midazolam Population Pharmacokinetic Models 

In order to develop the PopPK model for midazolam under constitutive, inhibitory, and 

inductive CYP3A conditions, a review of the currently available models will provide the initial 

framework from which to begin. Of the numerous midazolam PopPK models which have been 

published, a search of the literature revealed that all are currently based only on basal levels 

of CYP3A activity. The available PopPK models range from very simple 1- to 2-compartment 

models with midazolam only, to more complex PopPK-physiological model combinations 

including midazolam’s main metabolite (Brill et al. 2014; Brussee et al. 2018; De Wildt et al. 

2003; Nguyen et al. 2016; Tomalik-Scharte et al. 2014; van Rongen et al. 2015; Yang et al. 

2018).  Of the existing models, multiple were developed specifically for paediatric populations 

(Ahsman et al. 2010; Brussee et al. 2018; De Wildt et al. 2003; van Groen et al. 2019), where 

maturation processes may result in drugs impacting enzyme inhibition or induction differently 

than with adults. Furthermore, paediatric drug development is often limited by sparse 

sampling, thus, PopPK models are needed to better understand the pharmacokinetics (and 

pharmacodynamics) of drugs. Other models have been developed for other special 

populations (Brill et al. 2014; Seng et al. 2014; Swart et al. 2004; van Rongen et al. 2015), for 

special situations (Hostler et al. 2010; Tomalik-Scharte et al. 2014; Zomorodi et al. 1998), or in 

anticipation of future model application to DDIs (Nguyen et al. 2016; Yang et al. 2018). 

As the majority of midazolam models have been developed for paediatrics, specifically in 

neonate populations, only a few paediatric models including differing paediatric age ranges 

will be described here (see Table 1 for an overview of each model).  
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Tab. 1: Paediatric midazolam population pharmacokinetic models 
Model Population Structural 

model: MDZ 
Structural 

model: 
metabolite(s) 

Error model Covariates 

(Ahsman et 
al. 2010) 

20 neonates 
receiving 

extracorporeal 
membrane 

oxygenation 

2-compartment 1-compartment 
(1’-OH MDZ);  

1-compartment 
(glucuronide) 

Combined 
additive and 
proportional 

Bodyweight 
with all 

parameters; 
postnatal age 

with 1’-OH 
MDZ 

clearance 

(Brussee et 
al. 2018) 

264 patients, 
1-18 years old 

3-compartment 
+ physiological 
compartments 
(gut wall, liver, 

portal vein) 

1-compartment 
(1’-OH MDZ) + 
physiological 

compartments 
(gut wall, liver, 

portal vein) 

Combined 
additive and 
proportional 

Bodyweight 
with volume 
and intrinsic 
hepatic and 

gut wall 
clearance 

(De Wildt 
et al. 2003) 

18 children in 
intensive care, 

2 days - 17 
years old 

2-compartment --- Combined 
additive and 
proportional 

--- 

(van Groen 
et al. 2019) 

15 children, 
preterm to 2 

years in 
intensive care 

2-compartment --- Combined 
additive and 
proportional 

Bodyweight 
with central 

volume 

(van 
Rongen et 
al. 2015) 

19 overweight 
or obese 12.5-
18.9 year olds 

2-compartment 1-compartment 
(1’-OH MDZ); 

2-compartment 
(glucuronide) 

Proportional Excess 
bodyweight 
with MDZ 
peripheral 

volume 
MDZ = midazolam 

The main reasons for PopPK model development were to examine the covariates influencing 

midazolam exposure and to better understand CYP3A-related metabolism in paediatrics. In 

the majority of cases, a 2-compartment model was found to best describe midazolam 

concentrations (Ahsman et al. 2010; De Wildt et al. 2003; van Groen et al. 2019; van Rongen 

et al. 2015). Metabolite concentrations were best described using a 1-compartment model for 

1’-OH midazolam (Ahsman et al. 2010; Brussee et al. 2018; van Rongen et al. 2015) and 1-

compartment (Ahsman et al. 2010) or 2-compartment (van Rongen et al. 2015) model for the 

1’-OH midazolam glucuronide. A combined additive and proportional error was largely found 

to be the best error model. Bodyweight was observed to be a significant covariate of volume 

of distribution (Ahsman et al. 2010; Brussee et al. 2018; van Groen et al. 2019) and/or of 

clearance and inter-compartmental clearances (Ahsman et al. 2010; Brussee et al. 2018). 
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Although van Rongen et al. did not find bodyweight in-and-of itself to be a significant 

covariate, excess bodyweight was a covariate of peripheral volume of distribution for 

midazolam (van Rongen et al. 2015). Thus, for paediatrics, midazolam models were relatively 

consistent across populations, with a 2-compartment model for midazolam, a 1-compartment 

model for the 1’-OH midazolam metabolite, a combined error model, and bodyweight as a 

covariate of volume of distribution and potentially also clearance. 

In adult populations, midazolam PopPK models have also been developed for various 

purposes, including to better understand CYP3A activity, to examine how certain clinical 

practices may impact CYP3A substrate pharmacokinetics, to better characterise sources of 

inter-individual variability in CYP3A activity, and for anticipated use in predicting DDIs. Due to 

the nature of the populations examined, some of the covariate models which have been used 

are not applicable for the healthy population being examined in the model under 

development (e.g. examination of disease status). As such, only potentially relevant factors 

for a healthy population will be summarised here. The PopPK models of midazolam developed 

in adults appear to be less consistent than those for children. The structural models best suited 

to the midazolam data have contained 1-compartment (Tomalik-Scharte et al. 2014), 2-

compartments (Hostler et al. 2010; Nguyen et al. 2016; Seng et al. 2014; Swart et al. 2004; 

Yang et al. 2018), or 3-compartments (Brill et al. 2014; Zomorodi et al. 1998), while those for 

the 1’-OH midazolam and 1’-OH midazolam glucuronide metabolites have consistently 

contained 1-compartment (Nguyen et al. 2016; Seng et al. 2014; Tomalik-Scharte et al. 2014). 

The proportional residual error model has most often been shown to be the most suitable 

(Brill et al. 2014; Hostler et al. 2010; Tomalik-Scharte et al. 2014; Yang et al. 2018; Zomorodi 

et al. 1998), although additive (Seng et al. 2014) and combined error models (Nguyen et al. 

2016; Swart et al. 2004) have also been used. Multiple covariates have been examined and 

the influence of these covariates have been mixed. None of Nguyen et al. (Nguyen et al. 2016), 

Tomalik-Scharte et al. (Tomalik-Scharte et al. 2014), or Zomorodi et al. (Zomorodi et al. 1998) 

found any covariate effects for the parameters in their models. In contrast, two groups found 

weight to be a covariate in their models, with Seng et al. finding it to be a covariate of 1’-OH 

midazolam clearance and volume of distribution (Seng et al. 2014), and Brill et al. finding 

weight to be a significant covariate of midazolam central and peripheral volumes of 

distribution (Brill et al. 2014). Only one model found sex to be a significant covariate (Yang et 

al. 2018), while age was found to be significant covariate of central volume (Yang et al. 2018) 
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or clearance parameters (Swart et al. 2004). Finally, Seng et al. also examined genotypes and 

found the CYP3A5*3 to be a significant covariate of midazolam clearance (Seng et al. 2014).  

A number of limitations are present within the models reviewed here. First, in the majority of 

published models, relatively small sample sizes (6 to 32 subjects/patients) have been used 

(Brill et al. 2014; Nguyen et al. 2016; Seng et al. 2014; Swart et al. 2004; Tomalik-Scharte et al. 

2014), although at least two groups used 63 or more subjects during model development 

(Yang et al. 2018; Zomorodi et al. 1998). Additionally, the population models found in the 

literature do not include inter-occasion variability, as samples were only taken during one 

dosing interval. Given the large variability seen with CYP3A activity, it is especially important 

to account for inter-occasion variability when examining profiles of midazolam given multiple 

times, as this variability could partly confound the results when examining potential effects of 

different conditions on midazolam exposure. Given the purposes that most other models have 

been developed for until now, this second point is likely not too critical and the models have 

suited the purpose they were designed for. Despite the limitations noted here, the published 

models provide a starting point for developing a midazolam model to examine DDI liabilities.  

1.5 Aim of Thesis 

The aim of this thesis project is to establish a midazolam microdosing approach for assessing 

CYP3A DDI liability in early clinical development, which reduces burden to subjects and/or 

patients while simultaneously giving an earlier assessment of true DDI liability. To further 

increase the feasibility of the approach, a limited sampling scheme is examined to determine 

the performance and robustness of this method in predicting the presence of DDIs. Finally, 

the ability of a PopPK model to assess the presence of a CYP3A-related drug-drug interaction 

is evaluated, both with full PK profiles and with limited sampling, and specific cut-points for 

exposure parameters are assessed for identification of the presence of inhibition and/or 

induction of CYP3A.  

2. MATERIALS AND METHODS 

2.1 Implementation of Midazolam Microdosing 

Three monocenter early clinical studies in healthy male volunteers, all sponsored by 

Boehringer Ingelheim Pharma GmbH & Co. KG, Germany, were conducted for potential drug 
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candidates that displayed CYP3A liability signals in vitro. Specifically, the three compounds 

were all potential perpetrators of CYP3A4 induction and two of the compounds showed 

potential for CYP3A4 inactivation. CYP3A4 liability thresholds, as determined in in vitro 

assessments, are listed in Table 2, along with the constants used to calculate the respective 

thresholds. If the maximum concentrations of the test substances exceeded these thresholds, 

a DDI was expected. In the case of inactivation, an increase in midazolam concentrations 

would be expected following multiple dosing of the test substance, while induction would be 

expected to result in lower midazolam concentrations following multiple dosing of the test 

substance. When both inactivation and induction were detected in vitro, until both thresholds 

were exceeded, the process with the lower threshold (in this case it was always inactivation) 

would be expected to influence the midazolam concentrations; however, once both 

thresholds were exceeded, it would be expected that both processes would influence CYP3A 

activity. Thus, it is possible that the combination of processes would negate each other in vivo, 

but this is difficult to determine based on in vitro data. Furthermore, the authority guidelines 

specifically state that the mechanistic models given are to be used separately for reversible 

inhibition, irreversible inhibition, and induction, thus, regardless of the expected combined 

influence on CYP3A activity, clinical studies would need to be conducted. Finally, for 

Compound C, the ability to assess inhibition in vitro was limited by the compound’s poor 

solubility, as well as for a propensity to bind to certain materials. Thus, CYP3A inhibition 

potential was also assessed in vivo, with the expectation that if Compound C was an inhibitor, 

an increase in midazolam exposure would be seen following a single dose of active substance. 
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Tab. 2: CYP3A4 Drug-Drug Interaction Thresholds Based on In Vitro Experiments, and Achieved 
Concentrations In Vivo 

 EC50 

[nM] 

Emax  

[fold] 

CYP3A4 
Induction 

[nM] 

kinact/KI  

[min-1·nM-1] 

CYP3A4 
Inactivation 
[nM] 

gMean Cmax,ss  

[nM] 

Compound A 7100 14 Cmax ≥ 130 0.0130/3210 
= 4.05x10-6 

Cmax ≥ 4.60 1840a,b, 
2260a,b 

 Metabolite 34800 11 Cmax ≥ 110  0.00666/4010 
= 1.66x10-6 

Cmax ≥ 2.70 513a,b, 680a,b 

Compound B 

 

230 2.26 Cmax ≥ 12.0 0.140/28800 
= 4.85x10-6 

Cmax ≥ 2.95 19.8a,b, 41.8a,b, 
43.4a,b, 52.6a,b 

Compound C  

 

140 8.3 Cmax
c ≥ 448   138, 225, 383, 

843a, 1150a 

aConcentrations exceeded the in vitro determined thresholds for producing CYP3A induction, thus, a decrease in midazolam 
concentrations when combined with the active substance would be expected;  

bConcentrations exceeded the in vitro determined thresholds for producing CYP3A inactivation, thus, an increase in 
midazolam concentrations when combined with the active substance would be expected 

  cBased on ≥2-fold increase in mRNA criteria (EMA-CHMP 2012 Jun) 

Induction potential was determined using FDA guidelines from 2012(US-FDA 2012 Feb), where R3<0.9 rather than <0.8 was 
required for a DDI study to be conducted. 

In order to avoid conducting dedicated DDI studies, microdosing was seen as a promising tool 

for combining with early clinical studies. Thus, to assess the CYP3A DDI liability in vivo, 

midazolam microdosing was incorporated in studies that were primarily designed to assess 

multiple rising doses (MRD) of the test compounds. As microdoses should result in 

concentrations below pharmacologically active levels, it was not expected to interfere with 

the regular investigation of the test compounds.  

The studies were carried out at CTC North GmbH & Co. KG, Hamburg, Germany (Compound 

A) and at CRS Clinical Research Services Mannheim GmbH, Germany (Compounds B & C). All 

procedures were performed in compliance with the respective clinical trial protocols, and in 

accordance with the principles of the Declaration of Helsinki, the International Conference on 

Harmonization Good Clinical Practice (as defined in the International Conference on 

Harmonization E6 Guideline for Good Clinical Practice), and in accordance with applicable 

regulatory requirements. Approval by the appropriate Ethics Committees (CTC North: Ethics 

Committee of the Medical Council [Ethikkomission bei der Ärztekammer], Hamburg, 

Germany; CRS:  Ethics Committee of the State Medical Council of Baden-Württemberg 
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[Ethikkommission bei der Landesärztekammer Baden-Württemberg], Stuttgart, Germany) and 

the Federal Institute of Drugs and Medical Devices (BfArM, Bonn, Germany) was obtained 

prior to conducting any of the trials. 

2.1.1 Subjects 

The studies consisted of 24 (Study 1), 40 (Study 2), and 50 (Study 3) healthy male subjects. All 

subjects provided written informed consent prior to participation in the studies. For inclusion 

in the studies, subjects were required to be both mentally and physically healthy, as 

ascertained by a complete medical history, physical examination, vital signs (blood pressure, 

pulse rate), 12-lead ECG, and clinical laboratory tests. Subjects were between the ages of 18 

and 50 and within a healthy Body Mass Index range of 18.5 to 29.9 kg/m2.  

2.1.2 Study Design 

All three studies were multiple rising dose studies that were placebo controlled and 

randomised within dose group (i.e. dose levels were known, but not if it was active drug or 

placebo). A 75 ug dose of midazolam was administered orally as a solution in a fixed sequence: 

alone (baseline/reference treatment; R) and in the presence of single and/or multiple doses 

of each of the test compounds (test treatment; T). The days on which midazolam profiles were 

obtained in the presence of active compounds were based on the liability signals obtained in 

vitro or on uncertainties due to limitations in the ability to asses in vitro. All test compounds 

had reached steady state before Day 14/17. Further details for each study are given below:  

Study 1 (ct.gov: NCT03279978; EudraCT: 2017-001653-14): For Compound A, midazolam 

profiles were obtained on Days -1, 3 and 14 for the two highest doses in the study. In total, 6 

subjects received midazolam+placebo (3 per dose group) and 18 subjects received 

midazolam+Compound A (9 per dose group). 

Study 2 (ct.gov: NCT03325712; EudraCT: 2017-003269-85): For Compound B, midazolam 

profiles were obtained on Days -1 and 17 for the 4 highest tested doses. In total, 8 subjects 

received midazolam+placebo (2 per dose group) and 32 received midazolam+Compound B (8 

per dose group). 
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Study 3 (ct.gov: NCT03754959; EudraCT: 2018-000389-12): For Compound C, midazolam and 

1’-OH midazolam profiles were obtained on Days -1, 1, and 14 for all 5 tested dose groups. 

The additional characterisation of the metabolite 1’-OH midazolam was implemented both 

due to the development of an assay which measured both midazolam and 1’-OH midazolam 

analyltes, as well as to obtain further information regarding the metabolism of midazolam. A 

total of 10 subjects received midazolam+placebo (2 per dose group) and 40 received 

midazolam+Compound C (8 per dose group). 

2.1.3 Study Conduct 

2.1.3.1 Preparation of Study Medication 

All midazolam microdoses were prepared from commercially available intravenous 

formulations containing 5 mg midazolam per 5 mL (Midazolam-ratiopharm® 5 mg/ 5 ml 

Injektionslösung). The oral solutions were prepared by transferring 1 mL of Midazolam-

ratiopharm® via a 2 mL syringe into a glass beaker; thereafter, 19 mL of 0.9% isotonic saline 

solution (Fresenius, Germany) was also transferred into the glass beaker via a 20 mL syringe. 

The resulting solution was gently swirled in the beaker for 1 minute; the final concentration 

of the diluted midazolam solution was 50 µg/mL. Any potential loss of substance due to 

adsorption was excluded beforehand and chemical stability of the compound over 24 hours 

was assessed in experiments prior to study conduct.  

Test compounds and placebo treatments were administered as tablets according to the 

available dose strengths.   

2.1.3.2 Drug Administration and Blood Sampling 

Subjects were orally administered 1.5 mL (75 µg) of the diluted midazolam solution via the 

syringe used for drawing up the solution, along with 240 mL of water, following a standard 

continental breakfast. Midazolam administration occurred at approximately the same time 

each day (between 7:30 and 9:30 AM). The continental breakfast was served 30 min before 

midazolam administration and was to be completely consumed prior to drug administration. 

On test treatment days, midazolam and the test compound or midazolam and placebo were 

administered together. 
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Subjects were not to lie down (except during medical examination) or sleep for the first 2 h 

following dose administration and no food was allowed for 4 h following dosing. Meals on 

study days consisted of standardised meals provided by the study center. Alcoholic beverages 

were not allowed starting at least 7 days prior to study participation up until after the last PK 

sample of the trial. Methylxanthine-containing beverages were not allowed from 4 h before 

until 4 h following trial drug (midazolam and/or test substance) administration.  

Concomitant medications, as well as foods and herbal supplements known to modulate CYP3A 

activity (e.g. St. John’s Wort, grapefruit, Seville oranges, etc.) were not allowed for the 

duration of the trials.  

For each midazolam plasma concentration-time profile, 4.0 mL of blood was drawn from an 

antecubital or forearm vein. Samples were drawn at each of the following time points: 

Study 1: Day -1, Day 3 and Day 14; pre-dose, 0.25, 0.5, 1, 2, 2.5, 3, 4, 6, 8 h 

Study 2: Day -1, Day 17; pre-dose, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8 h 

Study 3: Day -1, Day 1, Day 14; pre-dose, 0.17, 0.5, 1, 2, 2.5, 3, 4, 6, 8 h 

The EDTA-anticoagulated blood samples were centrifuged for about 10 minutes at 2000 g to 

4000 g and at 4 to 8°C. Plasma was stored at -20°C or lower until bioanalysis.  

As Katzenmaier et al. (Katzenmaier et al. 2010; Katzenmaier et al. 2011) have previously found 

a 4 time point sampling scheme (2, 2.5, 3, and 4 h post-dose) to be highly predictive of overall 

CYP3A activity, these time points were included in all three studies. As such, the predictability 

and robustness of the limited sampling schedule during induction and/or inhibition or 

inactivation of CYP3A could be examined.   

2.1.3.3 Analytical Assays 

Studies 1 and 2: Midazolam plasma concentrations were quantified in the Department for 

Drug Metabolism and Pharmacokinetics at Boehringer-Ingelheim (Biberach, Germany) using a 

validated high performance liquid chromatography-tandem mass spectrometry (HPLC-

MS/MS) assay. The lower limit of quantification for the assay was 3.00 pmol/L (0.00097731 

ng/mL), with two calibration ranges tested (3.00-300 pmol/L and 3.00-3000 pmol/L).  
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Study 3: Midazolam and 1’-OH midazolam concentrations were quantified at Nuvisan (Neu-

Ulm, Germany) using a validated LC-MS/MS assay. The lower limit of quantification for the 

assay was 9.21 pmol/L (0.003 ng/mL) for midazolam, with a calibration range of 9.21-9210 

pmol/L, and 8.78 pmol/L (0.003 ng/mL) for 1’-OH midazolam, with a calibration range of 8.78-

8780 pmol/L.  

2.1.3.4 Pharmacokinetic Analysis and Statistical Evaluation 

Pharmacokinetic parameters were calculated using Phoenix WinNonlin version 6.3 or later 

(Certara USA Inc., Princeton, NJ, USA) and the PKNCA package for R (Buckeridge et al. 2015). 

The parameters used for the assessment of a drug-drug interaction with midazolam were area 

under the concentration-time curve (AUC) from 0 extrapolated to infinity (AUC0-∞), derived 

using a linear up, log down method and maximum measured concentration (Cmax), with 

apparent clearance (CL/F) included as an exploratory DDI assessment measure. AUC from 0 to 

the last quantifiable time point (AUC0-tz) was assessed descriptively. AUC from time 2 h to 4 h 

(AUC2-4) and time to maximum concentration (tmax) were also calculated and provided 

descriptively. Geometric means (gMeans) and geometric coefficients of variation (gCVs) were 

calculated for all parameters. 

Statistical analyses were conducted using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) and 

R 3.5.2 (R Core Team 2018). The potential effect of each of the test compounds on midazolam 

was assessed using an analysis of variance (ANOVA) model on the logarithmic scale. Estimates 

were back-transformed following analysis. For each study, ‘Time Point’ was a fixed effect and 

‘Subjects’ was a random effect. Potential DDI effects were estimated by the gMean ratios of 

AUC0-∞ and Cmax when given with the BI compound compared to the reference (midazolam 

alone); for Compound A and Compound C, this was done separately for Day 1/3 and Day 14; 

two-sided 90% confidence intervals (CIs) were calculated based on residual error. Analyses 

were conducted separately for each individual dose group. A DDI result was considered 

positive if, based on FDA and EMA cutoffs, point estimates indicated at least an increase to 

125% from baseline/reference (inhibition/inactivation) or a decrease to 80% or less of the 

baseline/reference concentrations (induction) (EMA-CHMP 2012 Jun; US-FDA 2020a). A 

descriptive assessment of the number of subjects exceeding the thresholds per parameter 

was also provided. 
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For the exploratory analyses comparing AUC2-4 and AUC0-∞ test-to-reference ratios, i.e. 

comparing the ratio of (AUC2-4,Day1/3 or 14/17)/(AUC2-4,Baseline) to (AUC0-∞,Day1/3 or 14/17)/(AUC0-

∞,Baseline), a linear mixed effects model was performed on log-transformed AUC values for each 

study and overall. ‘AUC-type’, ‘Time Point’ (Baseline and Day 1/3 or Day 14/17) and the 

interaction thereof were fixed effects and ‘Subjects’ was a random effect. When applicable, 

test treatment days (Day 1/3 or Day 14) were assessed separately. 

The two-sided 90% CI was constructed using standard errors and degrees of freedom from the 

model. The back-transformed point estimates and confidence intervals represent the estimate 

of comparability. Perfect comparability holds true if the point estimate equals one.  

2.2 Midazolam and Metabolite Population PK Model Development 

Non-linear mixed-effects modeling was employed for the development of a parent-metabolite 

population PK model for midazolam (metabolite: 1’-OH midazolam). The purpose of the model 

was to determine which factors may be most relevant for DDI predictability and to allow for 

estimation of PK parameters/presence of DDIs using a sparse/limited sampling method. 

Model development was conducted in a stepwise manner, whereby separate base models 

were first developed for midazolam and for 1’-OH midazolam. The adopted base models were 

then combined into one composite model and the resulting model was further refined. During 

initial development, only the first midazolam baseline profile per subject was used. For the 

midazolam only model and for the composite model, the remaining profiles were included 

and the inter-occasion variability (IOV) was estimated. Once the appropriate structural and 

statistical models were ascertained, the covariates of age, weight, and sex were examined for 

influence on any of the model parameters. Finally, covariance between model parameters was 

examined and any relationships were incorporated into the model. 

Previously gathered data regarding midazolam and 1’-OH midazolam concentrations (when 

administered alone versus in the presence of a CYP3A modulator) were used together with 

data from the prospective studies described in Section 2.1 to qualify and refine the midazolam 

and metabolite models. All data were anonymised prior to data analysis. 
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2.2.1 Datasets 

Midazolam and 1’-OH midazolam data were available from 11 previously conducted trials. Of 

the 11 studies, 7 which included full midazolam profiles were used for model development 

(development set), while the remaining 4 were used as an external validation set, particularly 

for examination of the model’s ability to detect DDIs based on limited sampling. The studies 

had various purposes, including examining CYP3A activity following different doses of 

midazolam alone, as well as in the presence of known inhibitors or inducers of CYP3A. A 

description of the available conditions, doses, and profile types for each of the studies is 

displayed in Table 3. Plasma profiles were obtained following both oral and iv administration 

of midazolam. Plasma concentrations were measured using validated ultra (Burhenne et al. 

2012) or high (Quintela et al. 2004) performance liquid chromatography–tandem mass 

spectrometry methods. The lower limits of quantification ranged from 50 fg/mL to 0.525 

ng/mL for midazolam and from 250 fg/mL to 0.550 ng/mL for 1’-OH midazolam. 

Tab. 3: Model Dataset Characteristics 
Study MDZ 

Alone 
MDZ + 

Inhibitor 
MDZ + 
Inducer 

MDZ Doses Route(s) Profile Type Reference 

K119* X X (RTV)  4 mg + 2 mg po+iv Full: 25 
samples/subject 
per treatment 

arm 

(Hafner et 
al. 2010) 

K155* X  X (EFV) 3 mg po Full: 12 
samples/subject 
per treatment 

arm 

(Bayer et 
al. 2009) 

K169* X   4 mg + 2 mg po+iv Full: 23 
samples/subject 
per treatment 

arm 

(Fetzner et 
al. 2011) 

K257* X X 
(VCZ/RTV) 

 3 mg po Full: 13 
samples/subject 
per treatment 
arm + Limited 

sampling 

(Katzenmai
er et al. 
2011) 

K380* X X (VCZ)  1 ug, 1 mg 
(iv); 3 ug, 3 

mg (po) 

iv&po Full: 15 samples 
per subject/iv 

treatment arm; 
14 samples per 

(Hohmann 
et al. 2015; 
Hohmann 

et al. 2016) 
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subject/po 
treatment arm 

K194* X   4 mg + 2 mg po+iv Full: 23 
samples/subject 
per treatment 

arm 

(Mikus et 
al. 2017) 

K345* X X (keto)  1 ug, 100 ug, 
1 mg, 3 ug, 
30 ug, 3 mg 

po Full: 14 
samples/subject 
per treatment 

arm 

(Halama et 
al. 2013) 

K292 X X (keto)  3 mg po Limited = 4 
samples per 

subject/treatme
nt arm 

(Ziesenitz 
et al. 2015) 

K293 X  X (SJW) 3 mg po Limited = 4 
samples per 

subject/treatme
nt arm 

(Fuchs et 
al. 2013) 

K342 X X (RTV)  3 mg po Limited = 4 
samples per 

subject/treatme
nt arm 

(Eichbaum 
et al. 2013) 

K363 X X (RTV)  100 ug po Limited = 4 
samples per 

subject/treatme
nt arm 

(Stoll et al. 
2013) 

*Used for model development 

EFV = efavirenz; keto = ketoconazole; MDZ = midazolam; RTV = ritonavir; SJW = St. John’s Wort; VCZ = voriconazole; iv = 
intravenous dosing; po = per os (oral) dosing.  

2.2.2 Software 

Models were developed using NONMEM 7.3 (ICON Development Solutions, Ellicott City, MD). 

The ADVAN6 subroutine was used and models were fit using the first-order conditional 

estimation with interaction between inter- and intra-individual error (FOCE-I) method. 

NONMEM outputs and plot generation were processed in RStudio using R version 3.5.2 ((R 

Core Team 2018) and Pearl-speaks-NONMEM (PsN; psn.sourceforge.net). The ‘mrgsolve’ 

package for R (Baron et al. 2015) was used for simulating profiles based on limited sampling 

strategies. 

2.2.3 Base Midazolam Model Development 
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Concentrations used in the midazolam datasets for model development were expressed in 

nmol/L, while doses were converted to nmol doses. The molecular weight of midazolam 

(325.77 g/mol) was used in the transformation of concentrations and doses. Doses ranged 

from 1 ug (3.0697 nmol) to 4 mg (12279 nmol) and were administered both orally and via iv 

infusion.  

As previous midazolam models have described midazolam using 1-, 2- and 3-compartment 

models, all were tested during model development. Models were examined using a first-order 

absorption process (oral administration) with linear elimination. Given the rapid absorption 

time of midazolam, no lag time or transit compartments were assessed. Bioavailability, 

absorption rate constant (ka), compartment volumes, inter-compartmental clearance, and 

total midazolam clearance were all estimated in the models.  

Appropriateness of the models was evaluated based on physiological plausibility, the OFV, and 

goodness-of-fit plots; a final evaluation of the chosen model was assessed employing a VPC. 

2.2.4 Base 1’-OH Midazolam Model Development 

As with midazolam, concentrations in the dataset for 1’-OH midazolam model development 

were expressed in nmol/L and doses in nmol. Since 1’-OH midazolam was not given directly, 

nmol doses were based on the molecular weight of midazolam, while concentrations of 1’-OH 

midazolam were converted based on its own molecular weight (341.77 g/mol).  

As the majority of previously developed midazolam models have described 1’-OH midazolam 

data with a 1-compartment model, the initial assessment of the base 1’-OH midazolam model 

included use of a 1-compartment model, followed by assessment of 2-compartment and 3-

compartment models, as appropriate. A dual first-order absorption model was evaluated, with 

one ‘absorption’ compartment representing the pre-systemic and systemic metabolism 

following oral administration, and the second ‘absorption’ compartment representing 

systemic metabolism following iv infusion of midazolam. In order to account for any potential 

lag in the presence of metabolite (due to the need for midazolam to first be absorbed/present 

in systemic circulation and then metabolised), models were also tested with a lag time on the 

second ‘absorption’ compartment or with transit compartments between the second 
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‘absorption’ compartment and the central metabolite compartment. Linear elimination was 

assumed for all models tested. 

Parameters for availability of metabolite, rate of metabolism, compartment volumes, inter-

compartmental clearance, and metabolic clearance were estimated. Model evaluation was 

based on the same criteria previously described. 

2.2.5 Statistical Models 

A log-normal distribution was assumed for all pharmacokinetic parameters. Random effects 

for inter-individual variability (IIV) were modeled exponentially. Initially, random effects for 

all parameters were examined and any effects smaller than 0.001 or leading to the model not 

minimising were removed from the model.  

Residual unexplained variance (RUV) was assessed in the separate midazolam and 1’-OH 

midazolam base models using additive, proportional, and combined additive and proportional 

error models. Additionally, as more noise tends to be apparent in earlier sampling time points 

compared to later time points, residual error was further examined by splitting the error term 

into early/late time points, referred to by Karlsson, Beal and Sheiner as a ‘Two-Step’ error 

model (Karlsson et al. 1995). As suggested, the split was chosen such that the ‘early’ error 

term described the majority of the main absorption phase for both midazolam and 1’-OH 

midazolam, while the ‘late’ error term was meant to describe the disposition of the profiles. 

The error model that best described the data (based on estimated values, OFVs and goodness-

of-fit plots) was retained for use in the composite model. 

2.2.6 Composite Model 

The adopted base structural and statistical models for midazolam and 1’-OH midazolam were 

combined and fraction of midazolam metabolised (fm) to 1’-OH midazolam was added to the 

model. As midazolam is eliminated almost entirely by metabolism, the fm was fixed to 1. The 

composite model was then evaluated based upon the same criteria as for each of the base 

models. Once the structural and statistical models were obtained, a covariate analysis for the 

model was investigated, followed by an examination of covariance within the model 

parameters.  
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Information was available for all subjects regarding age, weight and sex. Potential 

relationships with these covariates were first examined graphically; if correlations between 

any of the covariates and the model parameters were apparent, p-values were calculated and 

any covariate correlated with a p<.01 was added individually to the model. In order to be 

retained in the model, a drop in OFV of at least 3.84 points (corresponding to p<.05) was 

required, along with adequate precision in the estimation of the effect, the disappearance of 

a correlation between errors for the covariate and affected model parameter, along with a 

noticeable improvement in model fit based on model diagnostics.   

The covariance of model parameters was assessed by plotting IIVs against each other and 

assessing statistical significance of any apparent correlations. As for the covariates, a p<.01 

was required for inclusion in the model, along with a decrease in OFV and adequate precision 

(RSE<50%) for the estimation of the covariance. The final model was considered well-

described if the values were physiologically plausible, if residual standard errors were <30% 

for all model parameters, if individual and population predicted vs. observed values were 

relatively evenly dispersed around the unity line, if weighted residual errors (both individual 

and population) were generally evenly distributed around 0, and if there were no trends (e.g. 

considerable increase in errors for elimination phase) for inadequate description of the model 

based on weighted residuals over time. The final model was subsequently assessed using a 

visual predictive check, ensuring that the median, 2.5th and 97.5th percentiles based on the 

model were within or close to the 95% CIs predicted by the model following 1000 samplings 

of the original dataset. 

2.2.7 Model Testing for Drug-Drug Interactions  

Both the final adopted midazolam model and the final adopted composite model were 

evaluated for their ability to describe CYP3A drug-drug interaction presence through the 

addition of the inhibition and induction treatment arms into the dataset. Model parameters 

were fixed and treatment was added as a covariate on F (bioavailability), clearance (CL for 

midazolam only model; Qmet and CLmet for the composite model), and kmet (rate of pre-systemic 

metabolism; only present in composite model). If the resulting model did not provide an 

adequate description of the inhibition and induction data, further plausible parameters were 

examined for changes due to treatment effect.  
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2.2.7.1 Assessment of Cut-points 

If the inhibition and/or induction data were well-described by the composite model and/or 

the midazolam only model, a further evaluation of the model parameters was undertaken. In 

this evaluation, the R package ‘OneR’ was used to determine the parameter that was best able 

to distinguish between treatment conditions (induction, inhibition, midazolam alone). The 

‘OneR’ package applies a simple rule based on the One Rule Machine Learning classification 

algorithm (Holte 1993) (also described as a 1-level decision tree) to determine parameter cut-

points to distinguish each treatment category for each of the various model parameters. The 

percent of values assigned to the correct treatment, based on the cut-points, are output, along 

with a more detailed breakdown of the predicted versus observed category for the parameter 

with the highest accuracy.  

2.2.8 Limited Sampling Testing 

As a final assessment of the adopted composite model and the final midazolam model, limited 

profiles from both midazolam alone and midazolam administered with an inhibitor or an 

inducer were simulated. This was done both by using the full profile data and removing all but 

the appropriate time points (e.g. 2, 2.5, 3, and 4 h), and by using the data in studies where 

only a limited number of samples were obtained. Predictions were then compared to actual 

observations through a visual predictive check.  

3. RESULTS 

3.1 Midazolam Microdosing Implementation 

Midazolam microdosing was accepted by health authorities and successfully employed in all 

three early clinical studies. Administration instructions were adapted following the first study 

completed, as some difficulty was encountered with drawing up the midazolam solution for 

administration to the subjects. Consequently, a blunt steel-tipped needle was used to help 

with drawing the solution into the syringe for all subsequent studies. All post-dose 

concentrations of midazolam following microdosing were quantifiable and, thus, AUC and Cmax 

values could be accurately determined. For 1’-OH midazolam (Study 3 only), concentrations 

were quantifiable by no later than 30 min post-dose (the second post-dose sampling time) 

and remained quantifiable for the remainder of the sampling interval. The results of the 
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individual midazolam assessments from the three clinical studies are presented in the 

following sections. 

3.1.1 Study 1 

In Study 1, midazolam was administered at baseline, as well as on two separate days to assess 

potential inactivation of CYP3A (Day 3) or induction of CYP3A (Day 14) by Compound A. 

Twenty-four healthy male subjects, aged 19 to 43 years (2 Asian, 2 Black/African American), 

underwent midazolam microdosing during the two highest dose groups (12 per dose group). 

All subjects completed the study. On the baseline day and on Day 3 of Compound A/placebo 

dosing, all midazolam pre-dose concentrations were below the lower limit of quantification 

(BLQ). On Day 14 of Compound A/placebo dosing, 3 subjects (1 in placebo group, 2 in 400 mg 

Compound A dose group) had pre-dose concentrations above BLQ. However, these 

concentrations were still <5% of the individual Cmax values and, thus, were included as-is in all 

analyses.  

Geometric mean midazolam plasma concentration-time profiles at baseline and in the 

presence of the test compound (combined over all dose groups) or placebo are depicted in 

Figure 8. Descriptive statistics are presented in Appendix Table A1.  

The Cmax,ss values of the test compound were above the potentially clinically relevant DDI 

thresholds (predicted AUC ratio ≥1.25 for inactivation or predicted AUC ratio ≤0.80 for 

induction) determined in vitro for the dose groups tested with midazolam microdosing, both 

for parent substance and metabolite (see Table 2). Thus, both inactivation and induction of 

CYP3A were expected, with inactivation expected to be most apparent at Day 3, while 

induction would likely have reduced the influence of inactivation by Day 14.  

A minor increase in concentrations following treatment on Days 3 and 14 can be seen in the 

concentration-time profiles (Figure 8), as well as in the PK parameters (Appendix Table A1). 

This same trend was not observed for subjects receiving placebo. Median time to maximum 

concentrations was 0.75-1.00 h post-dose. Inter-individual variability in parameters was in a 

similar range for subjects treated with Compound A and those treated with placebo. 

Statistical analyses of the adjusted geometric mean ratios of midazolam administered 

following 3 days of dosing of Compound A compared with administration alone, as well as for 
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administration following 14 days of Compound A dosing compared with administration alone 

are displayed in Table 5. Point estimates of the AUC0-∞ gMean ratios ranged from 108.3%-

127.1%, while those for Cmax ranged from 110.2%-123.9%. The 90% CIs for Cmax were mostly 

above 100%, except for on Day 3 of dosing in the 400 mg dose group, where CIs for Cmax 

minimally exceeded 125% at the upper limit. For the 200 mg dose group, AUC0-∞ 90% CIs were 

completely above 100%, while for the 400 mg dose group, the 90% CIs included 100%. Point 

estimates for CL/F ranged from 79.5%-99.7%. The 90% CIs for CL/F contained 100% for both 

the placebo and 400 mg dose groups, although for the 200 mg dose groups, the range lay 

completely below 100%; this minor decrease in clearance is consistent with the minor increase 

in exposure seen for AUC0-∞. As only one parameter for on treatment arm exceeded the cut-

off of 1.25 (127.1% for AUC0-∞) for a weak inactivator, Compound A was not considered to 

relevantly modulate CYP3A activity. 

Looking at the individual subjects, it is noteworthy that based on the often used cut-offs of 

1.25 and 0.80, even in the placebo group individual subjects would still be classified as having 

a DDI (33.3%-50% of subjects). Specifically, the Cmax parameter consistently resulted in the 

highest number of subjects being classified as having inhibition of CYP3A, while AUC0-∞ and 

CL/F tended to have fewer subjects classified as having a DDI, at least on Day 3. When subjects 

exceeded the thresholds, the direction of DDI was inconsistent for AUC0-∞ and CL/F. 
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Fig. 8: Geometric mean midazolam concentration-time profiles for Baseline, Day 3, and Day 14 with either Compound A or placebo.  
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Tab. 5: Adjusted by-treatment geometric mean ratios of a single dose of midazolam administered 
alone (R) compared with administration following multiple dosing (Days 3 and 14) of 
Compound A (T) – Study 1 

PK parameter  MDZ + Compound 
A/Placebo 

Test (T) 

MDZ alone 
Reference (R) 

Ratio T/R 
(%) 

 
Number of 

subjects 
with DDI 

classification 
(INH,IND) 

90% Confidence 
interval (%) 

Lower 
limit 

Upper 
limit N n gMean n gMean 

Placebo (T0) 
AUC0-∞,3 [pM∙h] 6 6 4605 6 4550 101.2 90.4 113.3 0,0 
Cmax,3 [pM] 6 6 1315 6 1234 106.5 87.5 129.6 2,1 
CL/F,3 [L/h] 6 6 50.4 6 51.0 98.7 88.4 110.3 0,0 
AUC0-∞,14 [pM∙h] 6 6 4598 6 4550 101.1 83.5 122.3 1,1 
Cmax,14 [pM] 6 6 1393 6 1234 112.9 96.8 131.5 2,0 
CL/F,14 [L/h] 6 6 50.9 6 51.0 99.7 82.2 120.8 1,1 

200 mg Compound A (T1) 
AUC0-∞,3 [pM∙h] 9 9 4322 9 3717 116.3 107.7 125.5 2,0 
Cmax,3 [pM] 9 9 1313 9 1060 123.9 106.9 143.5 4,0 
CL/F,3 [L/h] 9 9 54.2 9 62.7 86.4 80.0 93.4 1,0 
AUC0-∞,14 [pM∙h] 9 9 4726 9 3717 127.1 113.8 142.0 3,0 
Cmax,14 [pM] 9 9 1265 9 1060 119.4 108.5 131.3 3,0 
CL/F,14 [L/h] 9 9 49.9 9 62.7 79.5 70.9 89.2 3,0 

400 mg Compound A (T2) 
AUC0-∞,3 [pM∙h] 9 9 3887 9 3588 108.3 97.4 120.6 2,1 
Cmax,3 [pM] 9 9 1238 9 1123 110.2 95.3 127.6 3,1 
CL/F,3 [L/h] 9 9 59.8 9 64.9 92.1 82.8 102.3 1,1 
AUC0-∞,14 [pM∙h] 9 9 4270 9 3588 119.0 99.9 141.8 4,0 
Cmax,14 [pM] 9 9 1372 9 1123 122.2 101.4 147.2 4,0 
CL/F,14 [L/h] 9 9 54.6 9 64.9 84.1 70.8 100.0 4,0 

MDZ = midazolam; AUC0-∞ = area under the curve extrapolated to infinity; Cmax = maximum measured concentration; CL/F = 
apparent clearance; INH = inhibition; IND = induction; N = number of subjects in analysis set; n = number of observations 
included in the analysis 

Subscript ‘,3’ refers to Day 3 parameter comparison and subscript ‘,14’ refers to Day 14 parameter comparison 

 

Safety and tolerability 

Only a few drug-related (as evaluated by the investigator) AEs were reported. Specifically, two 

drug-related events were reported close to a midazolam administration: dyshidrotic eczema 

and mild headache. Both adverse events were reported more than 24 h following the last 

midazolam microdose; given the short half-life of midazolam, these AEs were most likely 

related to the test compound or study conditions only. All drug-related AEs were of mild or 

moderate intensity. No AEs were reported on the midazolam only baseline day. 

3.1.2 Study 2 

In Study 2, 40 healthy male subjects, aged 21 to 51 years (2 Black/African American), 

participated in the midazolam microdosing cohorts of the study. Two subjects in the 40 mg 
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dose group did not have PK samples for midazolam following multiple dosing of Compound B 

(one discontinued due to an AE; one was discontinued due to a refusal to comply with the 

study protocol), thus, only baseline PK profiles are available for these subjects. Prior to single 

doses of midazolam, plasma concentrations were BLQ for all subjects in all dose groups.  

Geometric mean midazolam plasma concentration-time profiles at baseline and in the 

presence of the test compound or placebo are depicted in Figure 9. Descriptive statistics are 

presented in Appendix Table A2. 

Cmax,ss values were above the CYP3A inactivation thresholds at all dose groups and above the 

threshold for induction as of the highest dose group tested. Thus, increased midazolam 

concentrations following dosing of Compound B were expected for the lower dose groups; the 

expectation for the combined influence of inactivation and induction on midazolam 

concentrations was unclear. Following treatment with Compound B (20 to 80 mg) or placebo, 

no differences in exposure to midazolam were apparent and plasma-concentration time 

profiles were similar in shape to that seen for the placebo subjects. Similarly, midazolam Cmax 

and AUC values were similar both when dosed alone or in the presence of Compound 

B/placebo (Table 6). Median tmax was achieved at approximately the same time (1-1.5 h), 

regardless of treatment. Inter-individual variability in PK parameters was low-to-moderate. 
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Fig. 9: Geometric mean midazolam concentration-time profiles for Baseline and Day 17 with either Compound B or placebo.  
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Results of the inferential analyses of the adjusted gMean ratios for AUC0-∞, Cmax, and CL/F are 

displayed in Table 6. Point estimates of the AUC0-∞ gMean ratios for midazolam in the 

presence of Compound B versus midazolam alone ranged from 93.3%-114.5%, for Cmax from 

84.4%-109.4%, and for CL/F from 88.2%-106.1%. The majority of 90% CIs contained 100%. In 

cases where 100% was not included (Cmax, 20 mg dose group, and CL/F and AUC0-∞, 40 mg 

dose group), the upper and/or lower limits of the 90% CIs only minimally exceeded 80-125%, 

thus, no DDI via CYP3A was observed.  

As with Study 1, examination of individual subject ratios revealed that even in the placebo 

group, a number of subjects (25%-62.5%) would have been classified as having DDIs based on 

the limits of 1.25 and 0.8. In most groups tested, there was no clear direction for classification 

of DDI. 

Tab. 6: Adjusted by-treatment geometric mean ratios of a single dose of midazolam administered 
alone (R) compared with administration following multiple dosing of Compound B – Study 2 

PK parameter  MDZ + Compound 
B/Placebo 

Test (T) 

MDZ alone 
Reference (R) 

Ratio T/R 
(%) 

90% Confidence 
interval (%) 

Number of 
subjects with 

DDI 
classification 

(INH,IND) 
Lower 
limit 

Upper 
limit N n gMean n gMean 

Placebo (T0) 
AUC0-∞ [pM∙h] 8 8 4479 8 4356 102.8 87.2 121.3 2,2 
Cmax [pM] 8 8 1198 8 1197 100.1 84.0 119.3 1,1 
CL/F [L/h] 8 8 45.1 8 45.7 98.8 82.0 119.0 3,2 

20mg Compound B (T1) 
AUC0-∞ [pM∙h] 8 8 3961 8 4246 93.3 77.9 111.7 1,2 
Cmax [pM] 8 8 1040 8 1232 84.4 72.3 98.6 0,3 
CL/F [L/h] 8 8 58.5 8 55.1 106.1 88.7 127.0 1,3 

40mg Compound B (T2) 
AUC0-∞ [pM∙h] 8 6 5659 8 4945 114.5 104.5 125.4 1,0 
Cmax [pM] 8 6 1255 8 1147 109.4 94.3 126.9 2,0 
CL/F [L/h] 8 6 41.8 8 47.0 88.9 82.9 95.2 0,0 

60mg Compound B (T3) 
AUC0-∞ [pM∙h] 8 8 4343 8 3842 113.1 93.1 137.3 3,1 
Cmax [pM] 8 8 984 8 1031 95.4 79.8 114.2 1,1 
CL/F [L/h] 8 8 53.8 8 61.0 88.2 72.8 106.8 3,1 

80mg Compound B (T4) 
AUC0-∞ [pM∙h] 8 8 3894 8 3619 107.6 90.7 127.6 4,2 
Cmax [pM] 8 8 1058 8 1175 90.0 70.8 114.6 2,3 
CL/F [L/h] 8 8 60.4 8 64.8 93.2 78.2 111.1 4,2 

MDZ = midazolam; AUC0-∞ = area under the curve extrapolated to infinity; Cmax = maximum measured concentration; CL/F = 
apparent clearance; INH = inhibition; IND = induction; N = number of subjects in analysis set; n = number of observations 
included in the analysis 
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Safety and tolerability 

Five instances of drug-related AEs were reported on days of midazolam administration: Two 

participants (5%) reported drug-related events on the midazolam alone baseline day and three 

participants (7.5%) reported drug-related events on Day 17 (test compound/placebo and 

midazolam administered together). Mild fatigue and headache were each reported by single 

participants on the baseline day and fatigue, dizziness, and petechiae were each reported by 

single participants on Day 17. Day 17 AEs were reported in the placebo (fatigue) and 60mg 

dose groups. Similar AEs were reported for days with and without midazolam administration. 

3.1.3 Study 3 

Fifty healthy male subjects, aged 18 to 45 years (1 Black/African American), received 

midazolam microdoses in the study. One subject withdrew from participation due to an AE 

prior to administration of midazolam with the multiple dose of Compound C, thus, only 

baseline and single dose PK profiles are available for this subject. One further subject 

withdrew due to an AE following 6 hours on the first Compound C administration day; this 

subject, thus, contributed baseline midazolam and 1’-OH midazolam profiles, as well as AUC2-

4 following a single Compound C dose.  

Prior to single doses of midazolam on Days -1 and 14, plasma concentrations of midazolam 

and 1’-OH midazolam were BLQ for all subjects in all dose groups. On Day 1, 18 subjects 

receiving the active test compound with midazolam and 3 subjects receiving placebo with 

midazolam still had measureable concentrations of midazolam at the pre-dose sample; 

however, all pre-dose concentrations were <5% Cmax and were included as-is in all analyses. 

Plasma concentration-time profiles (geometric means) of midazolam and 1’-OH midazolam 

are depicted graphically in Figures 10 and 11.  Greater differences were seen for the 1’-OH 

midazolam profiles between treatment days than for midazolam itself and this was evident 

both for Compound C and placebo treated patients, suggesting greater inter-occasion 

variability, rather than a true effect. Cmax and AUC values of both midazolam and 1’-OH 

midazolam were similar when midazolam was dosed alone or in the presence of Compound C 

or placebo (Appendix Table A3). Inter-individual variability in midazolam PK parameters was 

moderate-to-high; inter-individual variability for 1’-OH midazolam was moderate. 
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Following oral administration of midazolam with or without Compound C, adjusted gMean 

ratios for AUC0-∞, Cmax, and CL/F ranged from 88.7%-101.0%, from 94.5%-117.5%, and from 

101.1%-113.4%, respectively, following a single Compound C dose, and from 87.9%-117.5%, 

83.9%-116.3%, and 81.1%-115.0%, respectively, following multiple dosing of Compound C 

(Table 7). Following a single dose of Compound C with midazolam, the 90% CIs for Cmax 

contained 100% for all but the 25 mg dose group, while 90% CIs for CL/F and AUC0-∞ contained 

100% for all but the 100 mg and 200 mg dose groups; upper and lower limits were either 

within or only marginally exceeded the standard bioequivalence acceptance range (80-125%). 

Following administration of midazolam in the presence of Compound C at steady state, 90% 

CIs contained 100% for all CL/F and AUC0-∞ gMean ratios except for in the 10 mg and 25 mg 

dose groups; for Cmax, 90% CIs included 100% for all but the 100 mg dose group. Upper and 

lower limits of the 90% CIs were either within or only marginally exceeded 80-125%, indicating 

no relevant drug-drug interaction.  

Examination of ratios for individual subjects again indicated that up to 50% of subjects in the 

placebo group would have been classified as having a DDI. Again, there was no clear direction 

for the DDI classification, such that multiple subjects would have been classified as 

experiencing CYP3A inhibition, while others in the same dose group would have been 

classified as having CYP3A induction.   
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Fig. 10: Geometric mean midazolam concentration-time profiles for Baseline, Day 1, and Day 14 with either Compound C or placebo.  
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Fig. 11: Geometric mean 1’-OH midazolam concentration-time profiles for Baseline, Day 1, and Day 14 with either Compound C or placebo.  
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Tab. 7: Adjusted by-treatment geometric mean ratios of a single dose of midazolam administered 
alone (R) compared with single or multiple dose administration of Compound C or placebo 
dosing (T) – Study 3 

PK parameter MDZ + Compound C 
/Placebo 
Test (T) 

MDZ alone 
Reference (R) 

Ratio T/R 
(%) 

90% Confidence 
interval (%) 

Number of 
subjects 
with DDI 

classification 
(INH,IND) 

Lower 
limit 

Upper 
limit N n gMean n gMean 

Placebo (T0) 
AUC0-∞,1 [pM∙h] 10 10 3280 10 3374 97.2 90.2 104.8 0,1 
Cmax,1 [pM] 10 10 913 10 929 98.3 84.2 114.8 2,3 
CL/F,1 [L/h] 10 10 71.2 10 68.5 104.0 96.4 112.2 0,1 
AUC0-∞,14 [pM∙h] 10 10 3689 10 3374 109.3 98.3 121.7 2,1 
Cmax,14 [pM] 10 10 887 10 929 95.5 81.3 112.1 2,3 
CL/F,14 [L/h] 10 10 63.5 10 68.5 92.7 83.4 103.1 2,1 

10mg Compound C (T1) 
AUC0-∞,1 [pM∙h] 8 8 4048 8 4230 95.7 89.0 102.8 0,0 
Cmax,1 [pM] 8 8 1095 8 1117 98.0 87.9 109.3 1,1 
CL/F,1 [L/h] 8 8 58.0 8 55.2 105.0 97.9 112.6 0,0 
AUC0-∞,14 [pM∙h] 8 8 5204 8 4230 123.0 109.9 137.7 3,0 
Cmax,14 [pM] 8 8 1180 8 1117 105.7 91.5 122.0 1,1 
CL/F,14 [L/h] 8 8 44.8 8 55.2 81.1 72.0 91.4 3,0 

25mg Compound C (T2) 
AUC0-∞,1 [pM∙h] 8 8 3600 8 3564 101.0 97.7 104.4 0,0 
Cmax,1 [pM] 8 8 1132 8 963 117.5 102.6 134.6 4,0 
CL/F,1 [L/h] 8 8 65.8 8 65.0 101.1 97.3 105.1 0,0 
AUC0-∞,14 [pM∙h] 8 7 4188 8 3564 117.5 105.1 131.3 2,0 
Cmax,14 [pM] 8 7 1120 8 963 116.3 90.9 148.7 3,0 
CL/F,14 [L/h] 8 7 56.3 8 65.0 86.6 77.3 96.9 2,0 

50mg Compound C (T3) 
AUC0-∞,1 [pM∙h] 8 8 3097 8 3366 92.0 84.1 100.7 0,1 
Cmax,1 [pM] 8 8 920 8 974 94.5 85.5 104.4 0,0 
CL/F,1 [L/h] 8 8 75.2 8 69.6 108.1 99.2 117.7 0,0 
AUC0-∞,14 [pM∙h] 8 7 3740 8 3366 111.1 86.6 142.5 2,1 
Cmax,14 [pM] 8 7 1040 8 974 106.8 92.4 123.4 1,1 
CL/F,14 [L/h] 8 7 63.1 8 69.6 90.6 72.0 114.1 2,1 

100mg Compound C (T4) 
AUC0-∞,1 [pM∙h] 8 8 3746 8 4074 92.0 86.1 98.2 0,0 
Cmax,1 [pM] 8 8 1153 8 1175 98.2 87.3 110.4 1,1 
CL/F,1 [L/h] 8 8 61.8 8 57.0 108.4 101.9 115.3 0,0 
AUC0-∞,14 [pM∙h] 8 8 3941 8 4074 96.7 83.3 112.4 0,2 
Cmax,14 [pM] 8 8 985 8 1175 83.9 71.2 98.9 0,3 
CL/F,14 [L/h] 8 8 59.5 8 57.0 104.3 90.2 120.7 0,2 
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PK parameter MDZ + Compound C 
/Placebo 
Test (T) 

MDZ alone 
Reference (R) 

Ratio T/R 
(%) 

90% Confidence 
interval (%) 

Number of 
subjects with 

DDI 
classification 

(INH,IND) N n gMean n gMean Lower limit 
Upper 
limit 

200mg Compound C (T5)  
AUC0-∞,1 [pM∙h] 8 8 2721 8 3069 88.7 80.4 97.7 0,2 
Cmax,1 [pM] 8 8 812 8 828 98.0 84.3 114.0 1,1 
CL/F,1 [L/h] 8 8 85.2 8 75.1 113.4 102.3 125.5 0,2 
AUC0-∞,14 [pM∙h] 8 8 2699 8 3069 87.9 70.1 110.3 1,3 
Cmax,14 [pM] 8 8 722 8 828 87.2 73.5 103.5 0,3 
CL/F,14 [L/h] 8 8 86.4 8 75.1 115.0 91.6 144.3 1,3 

MDZ = midazolam; AUC0-∞ = area under the curve extrapolated to infinity; Cmax = maximum measured concentration; CL/F = 
apparent clearance; INH = inhibition; IND = induction; N = number of subjects in analysis set; n = number of observations 
included in the analysis 

Subscript ‘,1’ refers to Day 1 parameter comparison and subscript ‘,14’ refers to Day 14 parameter comparison 

Safety and tolerability 

Twenty-one (42%) participants reported drug-related AEs on days when midazolam was 

administered. Most commonly reported AEs were headache and orthostatic intolerance, and 

were similarly reported on days with and without midazolam administration, suggesting 

relation to the test compound, rather than midazolam itself. All drug-related AEs were of mild 

or moderate intensity. No drug-related AEs were reported following midazolam 

administration alone at baseline. 

3.1.4 Exploratory Analysis of Partial AUC 

An exploratory analysis of AUC2-4 compared to AUC0-∞ was conducted for each study 

separately and over all three studies combined. The results of the comparison of AUC2-4 ratios 

and AUC0-∞ ratios are displayed in Table 8. The gMean point estimates were close to one for 

all three studies and overall. Furthermore, the 90% CI included one for all three studies, as 

well as for the pooled data, indicating that the ratios based on either AUC type were 

comparable. 
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Tab. 8: Comparison of AUC2-4 and AUC0-∞ test-to-reference gMean ratios, with point estimates 
and 90% confidence intervals 

  Day 1 or 3 Day 14 or 17 
  n Point 

estimate 
90% CI n Point 

estimate 
90% CI 

Study 1 24 0.960 0.885-1.04 24 1.02 0.921-1.14 
Study 2 --- --- --- 38 1.04 0.962-1.13 
Study 3 50 0.996 0.954-1.04 48 1.02 0.947-1.09 
Pooled 74 0.989 0.953-1.03 110 1.03 0.978-1.08 

n = number of observations included in the analysis; CI = confidence interval 

3.2 Model Development Results 

Information regarding sex, age, and weight for each of the subjects was available for covariate 

analysis. Population characteristics for each of the studies and over both the model 

development and external validation datasets are given in Table 9. The proportion of males to 

females, as well as the ranges of values, were adequate for assessing covariate relationships, 

although all subjects were still young to middle-aged adults within a healthy range of weights. 

Tab. 9: Population characteristics 
 N Age (years) Sex Weight (kg) 

 Mean Range M:F Mean Range 
K119* 12 26.0 22-33 8:4 74.9 51-103 
K155* 12 26.4 21-45 8:4 75.9 53.5-101 
K169* 20 24.6 21-34 10:10 67.0 47-91 
K257* 16 28.5 22-34 9:7 71.2 57-88 
K380* 16 30.0 22-52 12:4 72.4 55.1-96.3 
K194* 12 25.3 21-34 6:6 73.4 55-109 
K345* 11 27.4 19-36 6:5 70.0 53.1-111 
Total* 99 26.9 19-52 59:40 71.7 47-111 
K292 16 32.7 22-49 12:4 73.4 61-92 
K293 12 31.0 22-49 12:0 70.6 61-97 
K342 12 29.8 19-50 8:4 74.7 50.0-94.1 
K363 18 33.7 24-50 7:11 67.9 52.8-88.9 
Total Overall 157 28.8 19-52 98:59 71.6 47-111 

*Used for model development 

3.2.1 Midazolam Model 

Ninety-nine subjects contributed data to the base midazolam model development, providing 

a total of 2652 evaluable midazolam concentrations. Measurements were below the lower 

limit of quantification (BLQ) for 29 samples and were, thus, omitted from data analysis. The 

midazolam concentrations were best described using a 3-compartment drug disposition 

model with first-order absorption and linear elimination. The proportional error model, using 

an early/late cut-point at 0.5 h, best fit the data. Although a potential relationship was found 

for weight and Vp1, addition of weight as a covariate to the model did not improve the overall 
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fit nor did it reduce the amount of residual variability or the IIV for Vp1. A number of 

correlations between EBEs were observed and were sequentially added to the model from 

largest correlation to smallest; only the correlation between the EBE for clearance and 

bioavailability (the largest correlation) was estimated with reasonable precision (RSE<50%), 

thus, only this relationship was added to the model. 

A comparison of a 2-compartment model with the 3-compartment model over time is shown 

in Figure 12 and goodness-of-fit plots for the final adopted model are displayed in Figure 13. 

As seen by the considerably higher distribution of errors at the later time points using the 2-

compartment model compared to the even distribution of errors over time for the 3-

compartment model, the 2-compartment model clearly did not describe the elimination phase 

of midazolam as well as the 3-compartment model. Inspection of the predicted concentrations 

compared to observed concentrations showed that both individual and population predictions 

coincided well with the observed data, as noted by the trend lines, which mostly overlapped 

with the lines of unity. When examining the individual and population predictions plotted 

against their weighted residual errors, IWRES and CWRES, respectively, no trends were 

observed, showing an even distribution of errors. Furthermore, the majority of individual 

weighted residual errors (other than for the lowest concentrations) fell within the range of +/- 

1.96 standard deviations, indicating a normal distribution of errors and a good model fit. 

 
Fig. 12: Comparison of 2-compartment and 3-compartment structural models for midazolam using 
conditional weighted residuals for the predictions over time. CWRES = conditional weighted residual 
error. 
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Fig. 13: Goodness-of-fit plots for final adopted midazolam model. Blue points denote individual values; 
black solid lines represent unity (top panels); red-dashed line is a linear smoothing function (top 
panels) or a loess smoothing function (bottom panels); black dashed lines represent ±1.96 standard 
deviations (bottom right panel). CPRED = conditional population predictions; IPRED = individual 
predictions; CWRES = conditional weighted residual error; IWRES = individual weighted residual error. 

Population PK parameter values, RSEs and shrinkage for the final model are given in Table 10. 

Random effects (IIV) were applied to all parameters except inter-compartmental clearance for 

peripheral compartment 2, where IIV was found to be close to 0 and, thus, was removed from 

the model. Inter-occasion variability was added and could be estimated with good precision 

for apparent clearance and bioavailability. Eta-shrinkage was generally below 30%, although 

for apparent volume of the 2nd peripheral compartment and for clearance, shrinkage was 

39.0% and 31.5% for IIV, respectively, which was still considered acceptable; the IOV for 

clearance was 48.6%, suggesting that the variance of this parameter may be biased (i.e. is not 

accurately describing the true variance).  

The population parameters as estimated by the model were in-line with expected values. For 

example, bioavailability was expected to be ~30% (Heizmann et al. 1983) and the model 

estimated the bioavailability of the population to be 27.8%; clearance was expected to be 

around 18-30 L/h (Heizmann et al. 1983) and the population estimated parameter was 24.1 

L/h. Inter-individual variability as estimated by the model was also found to be in the range of 
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low-to-moderate, which is consistent with findings in other midazolam studies. Thus, the final 

estimated parameters were considered physiologically plausible. 

For the addition of the data from the prospective studies, all pre-determined values from 

model development were fixed. Additionally, as the prospective studies all gave midazolam 

with a standard continental breakfast, fed status was added as a covariate. Specifically, an 

interaction effect of food was added on Vc, ka, and F1, and a separate late residual error term 

was added to account for a later tmax following fed administration. Goodness-of-fit plots 

looked very similar when examining both the original model alone and the original model with 

addition of the prospective studies, indicating that the model structure was appropriate for 

both sets of data.  

Tab. 10: Population parameter values for the final adopted midazolam model.  
Model Development 

(N=99 (2652 obs)) 
w/Prospective Studies 

(N=213 (3718 obs)) 
Value RSE [%] Shrinkage 

[%] 
Value RSE [%] 

Parameter      
 Vc [L] 20.7 6.24  FIXED  
 Vp1 [L] 44.0 7.25  FIXED  
 Vp2 [L] 23.7 4.49 

 
FIXED  

 Qp1 [h-1] 8.03 7.08 
 

FIXED  
 Qp2 [h-1] 45.7 7.76 

 
FIXED  

 CL [L∙ h-1] 24.1 1.87 
 

FIXED  
 ka [h-1] 2.33 3.81 

 
FIXED  

 F1 [%] 27.8 3.28 
 

FIXED  
 Vc,fed [L] --- ---  11.3 11.8 
 kafed [h-1] --- ---  -1.08 3.33 
 F1fed --- ---  0.178 9.06 
 EarlyMDZ,prop  0.473 3.60 

 
FIXED  

 LateMDZ,prop -0.156 5.18 
 

FIXED  
 LateMDZ,prop,fed --- ---  -0.0728 4.24 
Inter-Individual Variability     
 ω2

Vc 0.323 9.71 25.1 FIXED  
 ω2

Vp1 0.430 12.2 29.9 FIXED  
 ω2

Vp2 0.184 23.6 39.0 FIXED  
 ω2

Qp1 0.470 12.6 12.2 FIXED  
 ω2

ka 0.301 17.6 27.6 FIXED  
 ω2

CL 0.0851 36.9 31.5 FIXED  
 ω2

F 0.239 12.6 14.4 FIXED  
 ω2

F~ω2
CL -0.624 21.3 --- FIXED  

Inter-Occasion Variability     
 ω2

CL 0.138 16.5 48.6 FIXED  
 ω2

F 0.143 15.0 15.9 FIXED  
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OFV* 241   -3639  
*Due to different datasets, OFVs are not comparable, however, both OFVs are given for reference; relative standard errors 
for inter-individual variability are given on the approximate standard deviation scale (standard error/variance estimate)/2; 
obs = observations; OFV = Objective function value; prop. = proportional; RSE = Relative Standard Error; w/ = with 

As a final check of the model’s ability to describe the data, a VPC was conducted, split by 

dosing regimen (a single midazolam dose over the dosing interval vs. semi-simultaneous 

administration of oral plus iv midazolam) and dataset source, with 1000 simulations 

conducted. The resulting VPC (Figure 14) showed good concurrence with the data, with the 

median, 97.5th and 2.5th percentiles of the observed data mostly encompassed within the 95% 

CIs for the model predicted median, 97.5th and 2.5th percentiles. For the prospective studies, 

the 2.5th percentile for the early time points was under-predicted, but otherwise the model 

proved to be able to describe the data well. Thus, the final adopted midazolam alone model 

was a 3-compartment model with first-order absorption (following oral dosing) and linear 

elimination, as depicted in Figure 15. 
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Fig. 14:  Visual predictive checks for the adopted midazolam model. 1000 simulations were used and data are displayed on a semi-log scale. The top two panels 
are run on the dataset used to build the model, while the bottom panel includes only data from the prospective studies. The solid red line depicts the observed 
median concentrations, while the dotted lines depict the observed 97.5th and 2.5th percentiles. The shaded red area pertains to the 90% confidence interval for 
the predicted medians, while the shaded blue areas pertain to the 90% confidence interval for the 97.5th and 2.5th percentile predictions. Data are normalised to 
a midazolam dose of 4 mg. nM = nanomolar; h = hours. 
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Fig. 15: Adopted base midazolam model: 3 compartment model with absorption compartment, first-
order absorption and linear elimination; ka = absorption rate; QP1/QP2 = inter-compartmental 
clearance; CL = clearance. 

3.2.2 1’-OH Midazolam Model 

The same 99 subjects from the midazolam model development also contributed data to the 

base 1’-OH midazolam model development. Due to difficulties in modelling 1’-OH midazolam 

concentrations following a 1 µg dose of midazolam, 1’-OH midazolam profiles following this 

dose were excluded. Subjects contributed a total of 1571 concentrations that were above the 

lower limit of quantification, with an additional 190 samples omitted from analyses as they 

were BLQ. As with the midazolam model, 1’-OH midazolam concentrations were best 

described using a 3-compartment drug disposition model with first-order absorption and 

linear elimination. The two-step proportional error model was again the best error model. An 

early/late cut-point was applied at 0.75 h. Inclusion of a transit compartment resulted in the 

model not converging. Although inclusion of lag time resulted in an improvement of OFV by 

10 points, numerous large correlations between model parameters resulted and the model 

became unstable. Therefore, no lag time was included in the model.  

The plot examining residual errors over time (Figure 16) indicated that the 3-compartment 

model best described the data, as no trends were evident for the errors over time, while with 

the 2-compartment model, a clear increase in error distribution was seen during the terminal 

phase.  
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Fig. 16: Goodness-of-fit for 1’-OH midazolam 3-compartment model using conditional weighted 
residuals for the predictions over time. 3-CMT = 3-compartment; 1’-OH MDZ = 1-hydroxymidazolam; 
CWRES = conditional weighted residual error; h = hours. 

Goodness-of-fit plots (Figure 17) showed that both population and individual values were 

under-predicted at higher concentrations, but that residual errors for the predictions were 

still within an acceptable range (the majority of errors within ±1.96 standard deviations). 

Furthermore, VPCs (Figure 18) indicated that the model was able to describe the data well, 

although the maximum concentrations and the 2.5th percentile were still under-predicted by 

the model when midazolam was administered first as an oral dose, then as an iv dose. The 

model predictions for 1’-OH midazolam data from the prospective study (Study 3) also 

indicated a good fit of the model to the data. 
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Fig. 17: Goodness-of-fit plots for final adopted 1’-OH midazolam model. Blue points denote individual 
values; black solid lines represent unity (top panels); red-dashed line is a linear smoothing function 
(top panels) or a loess smoothing function (bottom panels); black dashed lines represent ±1.96 
standard deviations (bottom right panel). CPRED = conditional population predictions; IPRED = 
individual predictions; CWRES = conditional weighted residual error; IWRES = individual weighted 
residual error. 
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Fig. 18:  Visual predictive checks for the adopted 1’-OH midazolam model. 1000 simulations were used and data are displayed on a semi-log scale. The top panels 
are run on the dataset used to build the model, while the bottom panel includes only data from the prospective studies. The solid red line depicts the observed 
median concentrations, while the dotted lines depict the observed 97.5th and 2.5th percentiles. The shaded red area pertains to the 90% confidence interval for 
the predicted medians, while the shaded blue areas pertain to the 90% confidence interval for the 97.5th and 2.5th percentile predictions. Data are normalised to 
a midazolam dose of 4 mg. nM = nanomolar; h = hours. 
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Table 13 lists the population PK parameter values, RSEs and shrinkage for the final 1’-OH 

midazolam model. Random effects (IIV) were tested on all parameters. IIV was not included 

on QMP2 (inter-compartmental clearance for peripheral compartment 2) and ka (rate of 

metabolism following an oral dose) for the final model, as including IIV on these parameters 

resulted in imprecise parameter estimation for the full model. Eta-shrinkage was below 30% 

for Vmet, QMP, F1 and CLmet, while shrinkage for F5, kmet, VMP (metabolic peripheral 

compartment 1 volume) and VMP2 (metabolic peripheral compartment 2 volume) was 

generally high. Removal of the IIV on these parameters resulted in worse parameter estimate 

precision (many RSEs >30%). Thus, it should be noted that the estimates for the high shrinkage 

parameters may be biased. This was not considered a concern for the composite model, as at 

least the values represented by F5 and kmet were expected to be more accurately estimated 

with the inclusion of the actual midazolam concentrations. Assessment of the different error 

models revealed that the early/late split proportional error, with an additive error fixed at 

0.00001 was best suited to the data. Finally, the correlation between EBEs was examined and 

a covariance term between ω2F1 and ω2CLmet was added to the model. The resulting correlation 

was -1.00, which improved the fit and stability of the model, but which suggests that in the 1’-

OH midazolam base model, no additional information is given by including both bioavailability 

and clearance parameters.  

Tab. 13: Population parameter values for the final adopted 1’-OH midazolam model.  
Model Development 

(N=99 (1571 obs)) 
w/Prospective Studies 

(N=149 (2009 obs)) 
Value RSE [%] Shrinkage 

[%] 
Value RSE [%] 

Parameter      
 Vmet [L] 59.2 1.36  FIXED  
 VMP[L] 2491 10.8  FIXED  
 VMP2 [L] 56.9 9.61 

 
FIXED  

 QMP [h-1] 114.5 1.58 
 

FIXED  
 QMP2 [h-1] 24.7 0.916 

 
FIXED  

 CLmet[L∙ h-1] 129.5 1.53 
 

FIXED  
 kmet [h-1] 0.803 1.44  FIXED  
 ka [h-1] 0.427 5.26 

 
FIXED  

 F1 [%] 81.1 1.73 
 

FIXED  
 F5 [%] 79.7 2.83  FIXED  
 Vmet,fed [L] --- ---  118.9 12.1 
 kmet,fed [h-1] --- ---  -0.228 10.6 
 QMP,fed [h-1] --- ---  -41.8 16.0 
 Early1’-OHMDZ,prop -0.487 3.65 

 
FIXED  

 Late1’-OHMDZ,prop 0.182 3.93 
 

FIXED  
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Inter-Individual Variability     
 ω2

Vmet 0.660 13.7 16.7 FIXED  
 ω2

VMP 0.611 14.7 39.8 FIXED  
 ω2

VMP2 0.915 16.7 55.2 FIXED  
 ω2

QMP 0.643 10.4 14.9 FIXED  
 ω2

kmet 0.0929 22.5 46.0 FIXED  
 ω2

CLmet 0.315 22.2 11.5 FIXED  
 ω2

F1 0.113 39.7 11.5 FIXED  
 ω2

F5 0.112 12.2 42.5 FIXED  
 ω2

F1~ω2
CLmet -1.00 12.3 --- FIXED  

OFV* -376   -3061  
*Due to different datasets, OFVs are not comparable, however, both OFVs are given for reference; relative standard errors 
for inter-individual variability are given on the approximate standard deviation scale (standard error/variance estimate)/2; 
obs = observations; OFV = Objective function value; prop. = proportional; RSE = Relative Standard Error; w/ = with 

Model-predicted CL values for 1’-OH midazolam were similar to the clearance values obtained 

in the midazolam microdosing Study 3 and the high fraction of metabolite available is in-line 

with the extensive metabolism of midazolam, suggesting physiological plausibility to the 

parameter estimates. 

To test the model with the prospective data, fed status was added as a covariate on Vmet 

(metabolic central compartment volume), kmet (rate of metabolism following oral 

administration), and QMP (inter-compartmental clearance for peripheral compartment 1); a 

separate late residual error term for fed administration was not required, as tmax remained 

similar for both fed and fasted conditions. Goodness-of-fit plots indicated similarly well fit data 

for both the original model alone and the original model with addition of the prospective 

studies. Thus, the 1’-OH midazolam base model showed both internal and external validity 

and was adopted for incorporation in the composite model. The graphical representation of 

the final model is depicted in Figure 19.  
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Fig. 19: Adopted base 1’-OH midazolam model: 3 compartment model with dual absorption 
compartments, first-order absorption and linear elimination; F1 = 1’-OH midazolam availability 
following oral dosing of midazolam; F5 = 1’-OH midazolam availability following iv dosing of 
midazolam; kmet = pre-systemic+systemic metabolism following oral administration of midazolam; K5M 
= systemic metabolism following iv administration of midazolam; QMP/QMP2 = inter-compartmental 
clearance; CLmet = apparent metabolic clearance.  

3.2.3 Composite Model 

The adopted midazolam and 1’-OH midazolam models were combined to form the composite model, 

with CL for midazolam being replaced by Qmet to represent the clearance of midazolam via metabolism 

to 1’-OH midazolam; the midazolam base model replaced parameters designed to account for 

metabolism following iv administration that had been added to the 1’-OH midazolam model. Final 

estimates from the base models were used as the initial values for estimating final model parameters. 

The combination of both models as they were adopted resulted in model instability and various 

parameters could not be precisely estimated. Thus, IIVs were removed one by one, based on worst 

precision, until all parameters could be adequately estimated. As well, to further simplify the model, 

the late/early split for the proportional error term was set to 0.5 h for both midazolam and 1’-OH 

midazolam. The resulting model had IIV removed for the apparent volume of both metabolite 

peripheral compartments and for midazolam’s peripheral compartment 2. The IOV on F and CL (now 

Qmet) was retained from the midazolam model, with the addition of IOV on CLmet. All three IOVs could 

be precisely estimated, as seen in Table 13. Inspection of covariates revealed relationships between 

weight and QMP, as well as between age and kmet. Therefore, these covariates were normalised to 70 

kg and 26.5 years (approximate mean values), respectively, and added to the model using the power 

functions: 

QMP,i = (θQMP*(weight,i/70 kg)θweight)*eηi 

kmet,i = (θkmet*(age,i/26.5 years)θage)*eηi 
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where i refers to the individual values, θQMP and θkmet refer to the population values, θweight and θage 

refer to the population level effects of weight and age, respectively, and eηi refers to the IIV for the 

parameter. Following addition of these parameters, the OFV was significantly decreased and variability 

on QMP was reduced, although no differences were noted for the variability of kmet. Re-assessment of 

the errors following covariate addition revealed that the initially present relationships had 

disappeared, indicating that the covariates had indeed contributed to inter-individual differences in 

parameter values. However, as no improvement of fit was seen for the addition of age, only the effect 

of weight was left in the final model. Next, EBEs were examined for covariance and it was noted that 

the EBEs for central compartment volumes for both midazolam and 1’-OH midazolam were related, as 

well as the EBEs for inter-compartmental clearance and volume of midazolam’s peripheral 

compartment 1. Inclusion of the relationship between compartment volume errors resulted in a better 

model fit, as well as adequate precision for parameter estimation. Further inclusion of a covariance 

between inter-compartmental clearance and volume of peripheral compartment 1 resulted in a large 

increase in the OFV and, thus, was not included in the final model. 

Final parameter estimates, RSEs, and shrinkage are presented in Table 13. Parameters were estimated 

with good precision, with all RSEs for fixed effects <30%. Parameter estimates for midazolam were 

mostly similar to those determined in the base model, although F was increased, as it now accounted 

for both the availability of midazolam and 1’-OH midazolam combined, and ka was decreased. 1’-OH 

midazolam parameters showed greater changes, although CLmet remained similar to the base model 

estimate. Thus, the parameters continued to show physiological plausibility. Eta-shrinkage was mostly 

acceptable, although Qmet, CLmet and the IOV for F had shrinkage greater than 30%, suggesting a 

potential bias to the estimated values. Given the good precision (RSEs between 1.96% to 4.75%) of 

estimation, combined with the coincidence with physiological plausible values, the potential bias was 

not considered problematic. 

 For the prospective study data, the fed effects as they were added to the base models were included 

in the composite model. The fed effect could no longer be well estimated for bioavailability, likely 

because it no longer just represented the bioavailability of midazolam, or for Vmet, likely due to the 

correlation between Vmet and Vc. Thus, these effects were removed from the model, but all others 

remained and could again be relatively precisely estimated (see Table 14). 
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Tab. 14: Population parameter values for the final composite midazolam model. 
Model Parameters Parameter Name Final Model 

(N=99 (4568 obs)) 
w/Prospective 
Studies (N=213 

(6072 obs)) 
Value RSE [%] Shrinkage 

[%] 
Value RSE [%] 

Structural & Covariate Parameters      
 Vc [L] MDZ central volume 19.5 5.93  FIXED  
 Vp1 [L] MDZ peripheral 1 volume 41.3 6.77  FIXED  
 Vp2 [L] MDZ peripheral 2 volume 23.6 4.43  FIXED  
 Qp1 [h-1] MDZ inter-compartment clearance 1 8.13 7.33  FIXED  
 Qp2 [h-1] MDZ inter-compartment clearance 2 45.4 7.42  FIXED  
 ka parent [h-1] Absorption rate constant 0.682 5.48  FIXED  
 F Combined bioavailability 0.933 3.39  FIXED  
 kmet [h-1] Pre-systemic metabolism rate 1.60 4.84  FIXED  
 Qmet [L∙ h-1] MDZ clearance via metabolism 24.2 2.00  FIXED  
 Vmet [L] Metabolic central volume 179.6 6.37  FIXED  
 VMP [L] Metabolic peripheral 1 volume 694.6 15.1  FIXED  
 VMP2 [L] Metabolic peripheral 2 volume 64.6 11.1 

 
FIXED  

 QMP [h-1] Metabolic inter-compartment clearance 1 60.3 8.80 
 

FIXED  
 QMP,WT [h-1/70 kg] Power of weight on QMP 1.18 26.7  FIXED  
 QMP2 [h-1] Metabolic inter-compartment clearance 2 127.7 11.6 

 
FIXED  

 CLmet [L∙ h-1] Metabolic clearance 199.6 4.15 
 

FIXED  
 Vc,fed [L] Effect of food on central volume    9.20 13.8 
 kafed [h-1] Effect of food on absorption rate    -0.117 17.7 
 kmet,fed [h-1] Effect of food on pre-systemic metabolic rate    -1.01 2.20 
 QMP,fed [h-1] Effect of food on metabolic inter-compartment clearance 1    -48.3 6.02 
 EarlyMDZ,prop  Early proportional error for MDZ (split: 0.5 h) 0.500 3.36 

 
FIXED  

 LateMDZ,prop Late proportional error for MDZ (split: 0.5 h) 0.147 4.12 
 

FIXED  
 LateMDZ,prop,fed Late fed proportional error for MDZ (split: 1.5 h) --- ---  -0.0760 4.08 
 Early1’-OHMDZ,prop Early proportional error for 1’-OH MDZ (split: 0.5 h) 0.543 3.25  FIXED  
 Late1’-OHMDZ,prop Late proportional error for 1’-OH MDZ (split: 0.5 h) -0.215 3.91  FIXED  
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Inter-Individual Variability      
 ω2

Vc Variance of MDZ central volume 0.368 9.34 16.5 FIXED  
 ω2

Vp1 Variance of MDZ peripheral 1 volume 0.416 12.6 25.8 FIXED  
 ω2

Qp1 Variance of MDZ inter-compartment clearance 1 0.499 12.0 9.6 FIXED  
 ω2

F Variance or bioavailability 0.214 12.9 24.1 FIXED  
 ω2

kmet Variance of pre-systemic metabolism rate 0.309 11.6 11.1 FIXED  
 ω2

Qmet Variance of MDZ clearance via metabolism 0.0832 46.3 53.4 FIXED  
 ω2

Vmet Variance of metabolic central volume 0.349 9.34 18.1 FIXED  
 ω2

QMP Variance of metabolic inter-compartment clearance 1 0.551 12.4 17.2 FIXED  
 ω2

CLmet Variance of metabolic clearance 0.155 29.2 50.8 FIXED  
 ω2

Vmet~ω2
Vc Covariance of MDZ central volume and 1’-OH MDZ central volume 0.615 14.0 --- FIXED  

Inter-Occasion Variability      
 ω2

F Inter-occasion variability for bioavailability 0.161 13.3 40.1 FIXED  
 ω2

Qmet Inter-occasion variability for MDZ clearance via metabolism 0.152 15.1 17.3 FIXED  
 ω2

CLmet Inter-occasion variability for metabolic clearance 0.300 18.9 3.1 FIXED  
OFV*  2358   -4100  

*Due to different datasets, OFVs are not comparable, however, both OFVs are given for reference; relative standard errors for inter-individual variability are given on the approximate standard 
deviation scale (standard error/variance estimate)/2; obs = observations; OFV = Objective function value; prop. = proportional; RSE = Relative Standard Error; w/ = with 

Examination of the diagnostic plots (Appendix Figure A1) indicated similar results to those seen with the individual models, in that midazolam 

concentrations were well described and 1’-OH midazolam concentrations were generally well described, although they were still under-predicted 

at higher concentrations. The majority of individual weighted residuals for both analytes were between ±1.96 standard deviations, and no real 

trends were noted for error distribution. Furthermore, VPCs conducted for both the original dataset and for the prospective dataset indicated the 

model described both sets of data well, although the maximum concentrations and 2.5th percentile of 1’-OH midazolam concentrations continued 

to be under-predicted for the oral + iv administration of midazolam (Appendix Figure A2). The resulting final model is illustrated in Figure 20.
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Fig. 20: Adopted composite parent-metabolite midazolam model: 3-compartment model for each 
substance, first-order absorption and linear elimination; kmet = pre-systemic metabolism rate; ka = 
absorption rate constant; Qp1/Qp2/QMP/QMP2 = inter-compartmental clearance; Qmet = midazolam 
clearance via metabolism; CLmet = metabolic clearance; WT = weight. 

3.2.4 Model Assessment of Drug-Drug Interaction  

To assess the adopted midazolam and composite models’ ability to predict drug-drug 

interactions, final model parameter and variance values were fixed (Tables 10 and 14) and 

CYP3A modulation (inhibition or induction) was added as a covariate of F1 and CL for the 

adopted midazolam model, and of F, Qmet, kmet, and CLmet for the composite model. Based on 

visual inspection of concentration-time profiles, a differential influence of reversible 

compared to irreversible inhibitors was present for the exposure of both midazolam and 1’-

OH midazolam. Thus, for the midazolam model and the composite model, the inhibitory 

treatment effect was split into two components – one representing reversible inhibition and 

one representing irreversible inhibition - for Vc and for CLmet. For Vc, only an effect of 

irreversible inhibition was added, as adding the other treatment effects resulted in a worse fit 

to the data. Applying this same split for inhibition to the other parameters did not improve 

the model fit.  

Including treatment effects in the midazolam model resulted in an increase in bioavailability 

of 0.529 (i.e. an additional 52.9%; RSE: 10.0%) and a decrease in clearance of 15.1 L/h (RSE: 

2.45%) following inhibition, with an additional increase in central compartment volume of 

16.6 L (RSE: 15.6%) following irreversible inhibition. Induction of CYP3A resulted in a decrease 

in bioavailability of 0.199 (i.e. a deduction of 19.9%; RSE: 6.09%) and an increased clearance 

of 39.8 L/h (RSE: 22.3%). The proportional residual error term added for inhibition was -0.195 
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(RSE: 12.9%). For the composite model, addition of treatment effects resulted in the changes 

listed in Table 15. The effects of induction on the model parameters were generally estimated 

with less precision than for inhibition, likely due to the limited data available for estimating 

the effects. Furthermore, the increase in metabolic clearance following irreversible inhibition 

appeared rather high and, thus, was likely overestimated. As a whole, however, the effects 

appeared plausible and were estimated with reasonable precision. 

Tab. 15: Interaction parameter values for the final adopted composite model. 
Effect Parameter Parameter Meaning Value RSE [%] 
Inhibition    
 Vc,INH2 [L] Irreversible inhibition effect on Vc 23.2 24.2 
 kmet,INH [h-1] Overall inhibition effect on kmet -1.04 15.4 
 FINH [%] Overall inhibition effect on bioavailability 77.7 16.3 
 Qmet,INH [h-1] Overall inhibition effect on midazolam clearance -14.1 3.37 
 CLmet,INH1 [L/h] Reversible inhibition effect on metabolic clearance -78.7 15.0 
 CLmet,INH2 [L/h] Irreversible inhibition effect on metabolic clearance 1159 10.1 
 Earlyprop,INH Early proportional error for inhibition 0.532 4.20 
 Lateprop,INH Later proportional error for inhibition -0.309 5.95 
Induction    
 kmet,IND [h-1] Induction effect on kmet 1.56 46.0 
 FIND [%] Induction effect on bioavailability -39.1 16.3 
 Qmet,IND [h-1] Induction effect on midazolam clearance 38.7 22.1 
 CLmet,IND [L/h] Induction effect on metabolic clearance -47.3 23.6 

 

Inspection of the diagnostic plots revealed a generally good fit to the data for both the 

midazolam model and the composite model. Plotting the individual model estimated 

concentration-time profiles against the observed concentrations also showed good 

concordance between the model and the actual data (see Appendix Figures A3 and A4). 

Examination of the VPC for the midazolam model showed that the 2.5th and 97.5th percentiles, 

and the median values for all treatments were mostly contained within the respective 95% 

CIs. The exception to this was for the single dose with inhibition, where the model over-

predicted the 2.5th percentile and under-predicted the 97.5th percentile during the elimination 

phase; the median was mostly contained within the 95% CI over the full dosing interval. For 

the interaction model, observed data were again relatively well described (Figure 21), 

although a worse fit was noted for 1’-OH midazolam following inhibition when administered 

orally first, followed by iv administration. Given that the data for that regimen were 

particularly scarce, with only 6 subjects contributing to the set, it was not considered 

representative of the overall model fit. The VPCs for the midazolam model with interaction 
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are displayed in Appendix Figure A5. Due to limited data, confidence intervals for the 

inhibition and induction data were relatively wide. 

 

 

 
Fig. 21:  Visual predictive checks for the final interaction model. 1000 simulations were used and data 
are displayed on a semi-log scale. The solid red line depicts the observed median concentrations, while 
the dotted lines depict the observed 97.5th and 2.5th percentiles. The shaded red area pertains to the 
90% confidence interval for the predicted medians, while the shaded blue areas pertain to the 90% 
confidence interval for the 97.5th and 2.5th percentile predictions. Data are normalised to a midazolam 
dose of 4 mg. nM = nanomolar; h = hours. 
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3.2.4.1 Cut-points 

Using model estimated parameters, an assessment of potential cut-points to use for 

identifying the different CYP3A modulation categories (inhibition, no modulation, induction) 

was conducted for the adopted midazolam model and for the final composite model. For the 

midazolam model, the parameter with the highest accuracy identifying modulation categories 

was clearance (CL). The applied cut-points, 4.85-13.2 L/h (inhibition), 13.2-39.6 L/h (no 

modulation), and 39.6-80.4 L/h (induction), correctly identified 100% of cases in the model 

development dataset. The cut-points were then applied to the estimated parameters from the 

prospective study data and 100% of cases were again correctly classified. Although upper and 

lower limits were given for the cut-points, cases falling below the lowest identified value (4.85 

L/h) and those falling above the highest value (80.4 L/h) should be categorised as inhibition 

and induction, respectively. Thus, for the datasets tested, both specificity and sensitivity of 

the determined cut-offs was 100% using the midazolam only model. 

The model estimated parameter with the highest accuracy in identifying modulation 

categories in the composite model was also midazolam clearance (Qmet; i.e. the clearance of 

midazolam via metabolism). Cases were correctly identified 98.21% of the time, with cut-

points of 6.81-16.8 L/h (inhibition), 16.8-43.3 L/h (no modulation), and 43.3-86.6 L/h 

(induction). Of the incorrectly classified cases, 2/148 (1.35%) cases with no modulation of 

CYP3A were classified as inhibition, and 2/63 (3.17%) of inhibition cases were classified as 

having no modulation. None of the induction cases was incorrectly classified. Applying these 

cut-offs to the prospective study data, 99.33% of cases were correctly categorised and for the 

values estimated from the external validation set (limited sampling only), 100% of cases were 

correctly classified. The 2 incorrectly categorised cases from the prospective studies were no 

modulation cases that were classified as inhibition. Thus, over all datasets, a specificity of 

500/504 (99.2%) was achieved, with a sensitivity of 148/150 (98.7%) for inhibition and of 

24/24 (100%) for induction. These outcomes support the use of the cut-points determined 

from the model development set to identify DDIs based on midazolam clearance.  

3.2.5 Limited Sampling 

In order to test if the model would still adequately estimate concentrations with a limited 

sampling scheme, simulations based on the final midazolam and composite models were 
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performed. These were conducted using the limited sampling scheme of 2, 2.5, 3, and 4 hours 

(Katzenmaier et al. 2010; Katzenmaier et al. 2011), as these were the sampling times from the 

external validation set (see Tables 3 and 9 for more details), as well as being times that have 

previously been shown to be predictive of midazolam clearance. Results from the simulations 

using the midazolam only interaction model were congruent with the actual data for all 

conditions from the original dataset and from the prospective studies (Figure 21). For the 

external validation set, the data were well predicted for baseline conditions and inhibition, as 

well as for the induction condition with 1’-OH midazolam. However, the midazolam 

concentrations in the induction condition were under-predicted for this dataset. Interestingly, 

the slope of the median induction observations was relatively parallel to the slope of the 

predicted elimination phase, even if the estimated concentrations were lower than the actual 

observations. Figures 22 and 23 depict the simulation results for the midazolam model based 

on the limited sampling. High overlap between the observed concentrations and medians with 

the 90% prediction intervals are apparent for all but the previously noted induction condition. 

The simulations for the composite interaction model also showed good congruence with the 

observed data, with the majority of observed points falling within the 90% prediction intervals 

(Appendix Figures A6 and A7).
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Fig.  22: Observed versus predicted midazolam concentrations, based on limiting sampling and the final adopted midazolam interaction model. Samples were 
taken at 2, 2.5, 3, and 4 h. Fasted conditions are simulated based on the original dataset, while fed conditions are simulated based on the prospective study 
dataset. 



_MODEL DEVELOPMENT RESULTS_____________________________________________________________________________________________________ 

86 
 

 
Fig.  23: Observed versus predicted midazolam concentrations, based on limiting sampling and the final adopted midazolam interaction model. Simulations are 
based on the external validation set and samples were taken at 2, 2.5, 3, and 4 h.  
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4. DISCUSSION 

The current dissertation aimed to examine the feasibility of implementing and developing 

potential tools for more efficient determination of CYP3A DDIs. Specifically, the feasibility of 

implementing midazolam microdosing in early clinical studies was assessed, along with an 

exploratory comparison of AUC2-4 for test-to-reference ratios compared to AUC0-∞ ratios, 

given that AUC2-4 has previously been shown to be predictive of midazolam clearance for both 

baseline and DDI conditions (Katzenmaier et al. 2010; Katzenmaier et al. 2011). To 

complement microdosing and limited sampling, midazolam and composite midazolam + 1’-

OH midazolam PopPK models were developed, together with proposed cut-points for 

clearance of midazolam via metabolism to potentially identify the presence of DDIs with a 

single profile. Various benefits could arise through the use of such tools, such as reduction of 

time and resources used during drug development, the reduction of subject and patient 

burden, as well as facilitation of DDI detection in clinical practice. The outcomes of the 

examinations are discussed below. 

4.1 Midazolam Microdosing Implementation 

Midazolam microdosing was successfully incorporated into three multiple rising dose studies 

for test compounds having given positive signals in vitro as perpetrators for CYP3A 

modulation. Specifically, Compounds A and B gave signals that they were both inactivators 

and inducers of CYP3A, while Compound C was found to be an inducer of CYP3A. Based on 

static mechanistic modelling of the in vitro results using the expected therapeutic exposure 

for Compound A, an overall increase in exposure of ~1.8-fold for midazolam was expected 

following multiple administration of Compound A. However, the Cmax of Compound A was 

approximately 400-500 times higher than the concentration required for inactivation and ~14-

17 times greater than that required to achieve an induction effect. These exposures were also 

much higher than the originally predicted therapeutic exposures, thus, larger effects of CYP3A 

modulation would have been expected. In particular, the effect of inactivation would have 

been expected to be particularly strong at Day 3, although by Day 14, the influence of 

induction may have reduced the overall impact of CYP3A modulation. For Compound B, Cmax 

levels were ~7-18 and ~1.7-4.4 times higher than the thresholds for inactivation and induction 

determined in vitro, respectively. Based on experiments performed by others examining 
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simultaneous effects of induction and inactivation, it would be expected that the inactivation 

effect of the compound should dominate over the induction effect (Hafner et al. 2010). This 

may be particularly true, given that the inactivation effect was reached at a much lower 

threshold for Compound B than induction. Thus, it was expected that midazolam exposure 

would be increased following combined Compound B and midazolam treatment. However, 

even though the expectation was that midazolam exposure would be higher, it was still 

possible that the induction effect could negate any relevant inactivation effect, given that both 

exposure thresholds were exceeded. Finally, for Compound C, as of the second highest dose 

group, the achieved Cmax concentrations were ~2-3 times higher than the induction thresholds 

determined in vitro. Furthermore, based on static mechanistic modelling, it was determined 

that an AUC ratio for midazolam of 0.122 should be expected (i.e. midazolam exposure at Day 

14 should have been ~12% of that at baseline). 

Midazolam concentrations and 1’-OH midazolam concentrations, when measured, were 

quantifiable over the entire sampling periods for all three studies. Concentration-time profiles 

for subjects receiving placebo plus midazolam showed that concentrations were consistent 

from one treatment period to the next, as evidenced by the overlapping gMean plots and 

similar Cmax and AUC values, signifying that dosing was consistent between treatment arms. 

Geometric mean plasma concentration-time profiles for midazolam administered alone or in 

the presence of test treatment (combined over all dose groups) showed a minor increase in 

exposure for midazolam following treatment with Compound A, while no differences in 

concentration-time profiles for baseline and test treatment were evident following treatment 

with Compounds B or C (Figures 8 to 10).  The concentration-time profiles for 1’-OH midazolam 

in Study 3, while showing greater variability between treatment arms, also did not indicate 

any relevant differences between treatments. Consistent with the concentration-time profiles 

from the three studies, analysis of Cmax and AUC0-∞ showed midazolam ratios of 108-127% 

following dosing of Compound A, while point estimates of midazolam Cmax and AUC0-∞ 

following administration together with Compound C or with Compound B were all close to 

100%. Geometric mean ratios for CL/F showed similar results to those of AUC0-∞, albeit in the 

opposite direction, as a decreased clearance would result in increased exposure and vice 

versa. The 90% CIs of Cmax and AUC0-∞ for midazolam in the presence of Compound A were 

mostly above 100%, although only the highest point estimate of 127.1% (for AUC0-∞ following 

14 days of 200 mg Compound A dosing) would fall within the classification given by the FDA 
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of a weak inhibitor (1.25 to 2-fold increase of AUC) (US-FDA 2020a). Upon examination of 

individual test-to-reference ratios, the proportion of placebo subjects having point estimates 

in the range of a weak inhibitor or weak inducer in Study 1 was the same as the proportion of 

subjects in the 200 mg Compound A dose group (both 33.3% of subjects) whose point 

estimates would have classified them as having a DDI. This suggests that even the finding of 

one point estimate exceeding 125% was likely due in part to intra-individual variability in 

CYP3A activity, which has been found to vary by 5.25-21.8% (median: 9.75%) between 

occasions (Kashuba et al. 1998). For Compounds B and C, 90% CIs were mostly within or barely 

exceeded the range of 80 to 125%. Thus, despite all three compounds exceeding the 

thresholds defined from in vitro analyses, none of the compounds resulted in a relevant CYP3A 

DDI.  

The lack of clinically relevant DDIs seen in these studies is consistent with findings showing 

higher false positive results for time-dependent inhibition (i.e. inactivation)(Vieira et al. 2014). 

Furthermore, the observation that substances with positive signals for both time-dependent 

inhibition and induction tend to overestimate inactivation potential (Einolf et al. 2014) is 

supported by the results of these studies, as 2 out of the 3 studies indeed had positive in vitro 

signals for both induction and inactivation. However, in contrast to the findings of Einolf et al. 

(Einolf et al. 2014), where induction was found to be well predicted in vitro, no relevant 

induction effect was observed in Study 3, where in vitro findings indicated that only induction 

potential was present. This discrepancy may come from the poor solubility of the test 

compound along with the propensity of the substance to bind to various plastic surfaces and 

microsomal proteins, thereby limiting the concentrations which could be tested in vitro; thus, 

potential inhibition effects in combination may have been missed. Additionally, the thresholds 

given by the authorities are designed to avoid false negatives to ensure the safety of patients, 

which consequently results in a higher number of false positive results. One may be tempted 

to hypothesize that the lack of evident DDI effect is due to a deficient sensitivity of the 

midazolam microdosing method itself. However, due to the linearity of midazolam over such 

a large range (Halama et al. 2013; Hohmann et al. 2015), as well as the finding from several 

researchers that DDI effects on midazolam microdoses scale well to those for therapeutic 

doses of midazolam (Croft et al. 2012; Halama et al. 2013; Prueksaritanont et al. 2016), this is 

considered an unlikely explanation. 
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Through the incorporation of midazolam microdosing in the early clinical studies described 

here, three dedicated DDI studies were avoided. This is particularly important given the nature 

of the DDIs being examined. Both inactivation and induction take multiple days for full effects 

to be seen and, thus, dedicated studies using the therapeutic dose of midazolam would have 

required a minimum of 1.5-2 weeks. Combined with the fact that such studies traditionally 

include a minimum of 12 subjects each, considerable time and resources were saved. 

Furthermore, subject burden was avoided for the at least 36 additional healthy subjects who 

would have been needlessly exposed to the test substances. Due to its linearity over a 30,000-

fold dose range, midazolam microdosing is in-line with health authority guidelines, which state 

that for a victim drug, any dose within the linear range may be used to assess DDIs (US-FDA 

2020a). Thus, microdosing incorporated with early clinical development can be a useful tool 

to avoid dedicated DDIs following positive results from in vitro examinations.  

As microdosing is just one tool with which subject burden can be reduced in clinical trials, 

further methods have been proposed which may compliment the use of microdosing. 

Specifically, numerous researchers have proposed that a limited sampling scheme with 

midazolam may be adequate for determining CYP3A activity (Katzenmaier et al. 2010; 

Katzenmaier et al. 2011; Lee et al. 2006; Yang et al. 2018). Based on the time points found by 

Katzenmaier et al. (2, 2.5, 3, and 4 h) to be particularly predictive of the clearance of 

midazolam via metabolism both during constitutive and modulated CYP3A activity 

(Katzenmaier et al. 2010; Katzenmaier et al. 2011), an explorative analysis using AUC2-4 was 

conducted. Results of the analysis revealed that for all three studies, the ratios between 

treatment arms obtained using the partial AUC were consistent with those obtained using 

AUC0-∞. These results lend further support to the findings of Katzenmaier et al. regarding the 

ability to assess the presence of DDIs using just AUC2-4. Additionally, in the three studies 

reported here, midazolam was given following a continental breakfast, suggesting that the 

limited sampling is robust to conditions such as food effects. Therefore, the limited sampling 

scheme proposed by Katzenmaier et al. appears to be an effective tool for assessing DDIs while 

reducing subject burden. 

In the early clinical studies presented here, only a few drug-related AEs were reported during 

administration of midazolam with or without active substance and all that were reported were 

of mild or moderate intensity. The reported AEs were all in-line with those reported on days 
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when no midazolam was administered, suggesting that AEs were likely attributable to the test 

conditions or the test compounds themselves. This is supported by other studies which have 

shown that no adverse events or benzodiazepine effects are seen following midazolam 

microdosing (Eap et al. 2004). However, due to the presence of AEs at baseline in one of the 

three studies and the presence of AEs during placebo administration, as well as due to the 

design of the studies, the contribution of midazolam to the AEs reported here cannot be 

completely ruled out.  

4.1.1 Limitations 

Although midazolam microdosing has been shown to be a feasible and potentially useful tool 

for early clinical development, several limitations of the methodology are still present. First, 

there are currently no existing microdose formulations on the market; thus, dilutions are done 

on-site no more than 24 hours prior to dosing. This means that for each pharmacokinetic 

profile day, a new dilution must be prepared, potentially resulting in variability between doses 

administered on one day compared to another. However, the dilution procedure was 

designed to be quite simple, with only a limited number of steps involved. Therefore, it is 

expected that any variations in dose would be negligible, with little impact on the DDI 

assessment. Furthermore, subjects receiving placebo instead of active test compounds also 

received midazolam, so any differences in exposure due to different midazolam doses 

administered rather than due to modulation by the test substances would be seen for the 

placebo subjects, too. In Study 3, 1’-OH midazolam was also measured, which provides further 

assessment of the nature of midazolam concentration changes. If concentrations of both 

substances are impacted in similar ways over treatment conditions, then this implies that 

exposure differences are due to inter-occasion variability, a difference in dose, or a 

combination thereof. If the concentrations are impacted in opposite directions or to a 

different magnitude, this suggests that differences in midazolam concentrations are due to 

modulation of CYP3A activity. Thus, the additional measurement of 1’-OH midazolam would 

be desirable to obtain when conducting midazolam microdosing studies. Finally, for future 

studies it may be possible to obtain microdose formulations, as such preparations are 

currently under investigation for more regular use (PMID: 31102650) (Kiene et al. 2019). 
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Another limitation to the midazolam microdosing strategy proposed here is that AEs cannot 

be unambiguously assigned to the test substance versus midazolam. However, as mentioned 

before, other studies using midazolam microdosing alone have found that neither AEs nor 

pharmacodynamic effects, such as drowsiness or other sedative effects, have been noted (Eap 

et al. 2004; Halama et al. 2013; Hohmann et al. 2015), suggesting that the microdose indeed 

results in sub-pharmacological levels. 

Finally, a limitation for the current dissertation is the lack of actual DDI effect observed for the 

test substances presented here. Although midazolam microdoses have previously been shown 

to result in the same levels of inhibition and induction effects as those produced with 

therapeutic doses (Croft et al. 2012; Halama et al. 2013; Prueksaritanont et al. 2016), 

examination of a substance with a clear DDI effect would provide unequivocal support for the 

sensitivity of the method for detecting DDIs in early clinical studies. 

4.1.2 Midazolam microdosing conclusion 

The studies presented here support the implementation of midazolam microdosing in early 

clinical studies, as they show that such an approach can be successfully implemented in the 

clinic with fully quantifiable profiles. Results of the presented studies provide confirmation 

that the signals for potential DDI liability determined in vitro do not necessarily translate into 

similar results in vivo. In all three studies, liabilities for induction and/or inactivation of CYP3A 

were observed in vitro, but no DDIs were detected in vivo, despite the fact that the Cmax values 

for all three substances exceeded the predicted thresholds required for seeing clinically 

relevant DDIs. Midazolam microdosing was shown to be a safe and feasible tool for reducing 

the need for unnecessary dedicated drug-drug interaction studies during drug development, 

which may be complimented through the use of limited sampling designs. The results 

obtained from the microdosing implemented here allowed for earlier acquirement of 

information pertaining to the actual CYP3A DDI liability of the drug compounds under 

development, thereby supporting the selection of allowed medications for Phase II and III 

trials. Thus, by incorporating midazolam microdosing in early clinical studies, three further 

dedicated studies were avoided, thereby reducing the number of healthy subjects needlessly 

exposed to test substances, as well as reducing costs, time, and needed resources, while 
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gaining valuable information regarding CYP3A DDI liability for the future development of the 

test compounds. 

4.2 Model Development 

The microdosing approach employed in the preceding studies is one of several tools that may 

be implemented for more efficient assessment of DDI liability. An exploratory examination of 

a limited sampling scheme showed results similar to those obtained with AUC0-∞ assessments, 

suggesting this may be another method for improving DDI assessment through reduced 

subject burden. Modelling is a complementary technique for these proposed tools, as it may 

be used to increase the accuracy with which limited sampling techniques can detect DDIs. 

Thus, the aim of the model presented here was to describe the pharmacokinetics of 

midazolam and 1’-OH midazolam under various conditions of CYP3A activity (constitutive, 

inhibition, and induction) in healthy adult subjects, examining both extensive and sparse 

sampling designs. Numerous midazolam PopPK models have been developed previously (Brill 

et al. 2016; Brill et al. 2014; Brussee et al. 2018; Tomalik-Scharte et al. 2014; van Rongen et al. 

2015; Yang et al. 2018), although none have assessed midazolam under conditions of CYP3A 

inhibition or induction. The composite model developed here was best described with 3-

compartments for both analytes, first-order absorption and linear elimination. A two-step 

proportional error model was used to describe the residual variability. Addition of treatment 

effects to F, Qmet, kmet and CLmet, as well as a proportional error term for the delayed tmax by 

inhibition allowed for adequate description of the midazolam and 1’-OH midazolam 

concentrations under conditions of inhibition and induction. As an exploratory objective, 

potential cut-points were examined for identifying potential CYP3A activity conditions using a 

single profile. The outcome of the development, followed by the overall assessment of 

appropriateness and use for DDIs are discussed in the following sections. 

4.2.1 Structural models 

The structural model resulting in the best diagnostics and best overall fit to the data was the 

3-compartment model for midazolam, combined with a 3-compartment model for 1’-OH 

midazolam. The 3-compartment model used to describe midazolam was in agreement with 

models by Brill et al. (Brill et al. 2014), Zomorodi et al. (Zomorodi et al. 1998), and by Brussee 

et al. (Brussee et al. 2018). In contrast, the model reported by Tomalik-Scharte et al. best 
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described midazolam pharmacokinetics with a 1-compartment model (Tomalik-Scharte et al. 

2014), while multiple other groups found a 2-compartment model to be a better fit for 

midazolam (Hostler et al. 2010; Nguyen et al. 2016; Seng et al. 2014; Swart et al. 2004; van 

Rongen et al. 2015; Yang et al. 2018). As noted earlier, in the majority of the published models, 

data were obtained from a relatively small sample size (6-32 subjects), limiting the number of 

compartments and/or parameters which can be estimated by the models. The sample size for 

the current model development was much larger, with 99 subjects contributing to both 

midazolam and to 1’-OH midazolam concentration profiles. Furthermore, multiple subjects in 

the model development dataset contributed two or more profiles, as opposed to the single 

profiles modelled in the previous models, thereby increasing the number of observations 

going into the model development. Note that in the model by Tomalik-Scharte et al., not only 

was a small sample size used, but also the design consisted of hourly samples during a 

continuous infusion of midazolam; samples were not taken once the infusion was stopped, 

when distribution processes between compartments would likely be most apparent. Thus, the 

limited sample size and lack of sampling following withdrawal of midazolam likely reduced the 

ability to detect multiple compartments. Moreover, a 1-compartment model is inconsistent 

with the observation that midazolam is generally described as declining in an at least 

biexponential fashion (e.g. (Thummel and Wilkinson 1998).  

For 1’-OH midazolam, the best structural model found in the current evaluation was a 3-

compartment model, although a 2-compartment model may also have been acceptable. This 

is in contrast to other models, where 1’-OH midazolam was found to be best described using 

a 1-compartment model (Brussee et al. 2018; Nguyen et al. 2016; Seng et al. 2014; Tomalik-

Scharte et al. 2014; van Rongen et al. 2015). Of note, two of the models also included 1 or 2 

compartments for 1’-OH midazolam glucuronide (Seng et al. 2014; van Rongen et al. 2015), 

and the clearance into and between these compartments may have been partly captured by 

the 1’-OH midazolam structure in the present model. In addition, the small sample sizes noted 

earlier would have provided additional limitations in the structural assessments for the 

models. Another difference for at least the model by Brussee et al. is the fact that it was 

developed on a paediatric population, where CYP3A activity would not be as mature (children 

were between the ages of 1 and 18 years) and where sampling is generally less extensive (at 

least in the younger populations), limiting one’s capacity to identify multiple compartments.  
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Thus, while some discrepancies existed for the 1’-OH midazolam model structure, which has 

not been examined in many of the existing models, the composite model structure was still 

largely concordant with the structures of midazolam models developed to date.  

4.2.2 Statistical and covariate models 

The statistical model providing the best results for midazolam models has been relatively 

consistent. Specifically, in the majority of literature, as well as in the current work, a 

proportional error model was found to best describe the residual unexplained variance. 

Consistent with Yang et al. (Yang et al. 2018) a two-step error approach was applied to the 

residual error, given the observation that there was greater error for the earlier time points 

than for the later time points. In contrast to the error model used here, Brussee et al. (Brussee 

et al. 2018) and van Groen et al. (van Groen et al. 2019) found that a combined proportional 

and additive error model was best-suited for describing residual variability. However, both 

groups examined paediatric populations where physiological processes would be at various 

levels of maturation, possibly accounting for the need to include the extra additive error term. 

Examination of covariates affecting CYP3A activity has generally resulted in mixed conclusions. 

Although some studies have found an effect of sex, weight, and/or age (Brill et al. 2014; 

Brussee et al. 2018; Chen et al. 2006; Dresser et al. 2000; van Rongen et al. 2015), others have 

found no effect of these covariates (Kashuba et al. 1998; Thummel et al. 1996; Tomalik-

Scharte et al. 2014). In the current model, the population consisted of a good proportion of 

males to females (59:40), which should allow reliable conclusions to be drawn regarding the 

covariate of sex. The ages included were within a restricted range (19 to 52 years) and all 

weights were within a healthy range for adults, so extrapolation to paediatric or elderly 

populations or to obese populations would require additional investigation. Despite these 

limitations, a relationship between weight and metabolite inter-compartmental clearance 

were observed and included in the composite model. Although age was found to be correlated 

with kmet, the addition of age to the model did not improve the model fit or decrease 

variability, suggesting it may have been a spurious finding. Thus, it was not included in the 

final composite model. Sex was not found to be a significant covariate of any of the model 

parameters and in the midazolam only model, no covariate relationships were found to be 

present.  
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Although other groups have found weight to be related to midazolam parameters, these 

models have generally examined special populations. Specifically, weight was found to be a 

significant covariate of midazolam parameters in models examining paediatric populations 

and obese populations (Brill et al. 2014; Brussee et al. 2018; van Rongen et al. 2015), although 

the relationship with weight found by van Rongen et al. was more related to excess body 

weight. Visual examination of the plots provided by Brill et al. also suggested that their 

correlation with weight was more related to excess body weight, as it was not apparent in the 

healthy volunteers. Other models examining midazolam pharmacokinetics in healthy adults 

did not find weight to be a covariate of midazolam parameters (Tomalik-Scharte et al. 2014; 

Yang et al. 2018), which is in-line with the examination performed for the midazolam only 

model. Consistent with the finding that weight was related to 1’-OH midazolam parameters, 

in one of the few models which also examined metabolite concentrations, weight was found 

to be a covariate of 1’-OH midazolam clearance and volume of distribution (Seng et al. 2014). 

Given the limited number of models including 1’-OH midazolam, the correlation with weight 

and metabolite exposure should be further assessed in future models to confirm the 

relationship found here and by Seng et al.  

In contrast to the results of the presented model, Yang et al. found both age and sex to be 

significant covariates of midazolam clearance and central compartment volume, although only 

the effect on volume was retained in the final model (Yang et al. 2018). 1’-OH midazolam was 

not included in the model, thus, potential relationships with the metabolite concentrations 

are unknown. As ages included in the model development by Yang et al. were also relatively 

restricted (similar age range to the current analyses), further modelling activities including an 

expanded age range would be needed to determine if relationships are true or spurious.  

4.2.3 Final models with constitutive CYP3A activity 

Midazolam model estimates for CL, F, Vc, Qp1, and Qp2 were in-line with those found by others 

(Brill et al. 2014; Yang et al. 2018), although ka was estimated to be lower than in other 

models. Proportional error estimates were found to be comparable with the estimates from 

the model by Yang et al. (Yang et al. 2018), whose residual error approach was similar to that 

in the present model. As further support for the appropriateness of the final models, estimates 

for CL and F were in-line with the pharmacokinetics of midazolam found in clinical studies 
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(Heizmann et al. 1983), showing physiological plausibility. Model estimates of CLmet for 1’-OH 

midazolam were also in general accordance with previous models (Brussee et al. 2018; Seng 

et al. 2014; Tomalik-Scharte et al. 2014; van Rongen et al. 2015), and with the values found in 

the microdosing study described in Section 3.1.3. As other models generally described 1’-OH 

midazolam using a 1-compartment model, comparisons between other metabolite 

parameters cannot be made. 

The final models displayed both good internal and external validity, as evidenced by visual 

predictive checks conducted on both the data used to develop the model, as well as on the 

data from the prospective studies. Median values and the 97.5th percentile values were almost 

always within the confidence intervals provided by the VPC simulations, although the 2.5th 

percentile was sometimes under-predicted by the model. As the models covered various 

situations, including different dosing regimens (oral, iv, or semi-simultaneous oral + iv 

administration), different conditions (fasted vs fed), and different sites of data collection, this 

suggests that the model should be fairly robust and applicable for numerous settings. Thus, 

the model was found to perform well under constitutive CYP3A activity levels and was 

subsequently examined for CYP3A inhibition and induction.   

4.2.4 Drug-drug interaction assessment 

Treatment effects for inhibition and induction were added to the final composite and 

midazolam only models. Applying treatment effects to midazolam clearance, bioavailability, 

and central volume of distribution for the midazolam only model, with the addition of 

treatment effects on pre-systemic rate of metabolism, and metabolic clearance for the 

composite model generally resulted in a good description of the midazolam data following 

CYP3A inhibition and induction with potent perpetrators. 1’-OH midazolam concentrations 

were less well-described, although model fit was still adequate. The reason for the less well-

described metabolite concentrations may be due to a number of factors. First, inhibition via 

both reversible and irreversible inhibitors were included in the dataset; as these have different 

mechanisms of action, they would not necessarily be expected to impact exposure in the same 

way. Including an additional term for irreversible inhibition on metabolic clearance and on 

midazolam’s central volume of distribution provided a better fit for the data, but still resulted 

in a less ideal overall fit of 1’-OH midazolam concentrations compared to the other CYP3A 
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conditions. More data using each of the different inhibitor types would help to further tease 

out the impact of the different inhibitors on metabolite concentrations.  

Another potential reason for the less well-described 1’-OH midazolam concentrations is likely 

related to the differing levels of CYP3A activity at the intestinal and hepatic levels, as well as 

to the fact that 1’-OH midazolam goes on to be further metabolised. The further 

glucuronidation of 1’-OH midazolam would increase variability of the model, both for 

constitutive and modulated CYP3A activity, resulting in additional variability that can be hard 

to account for. Moreover, 1’-OH midazolam is not the only metabolite produced via CYP3A 

metabolism and while midazolam clearance would look the same, regardless, differing 

amounts of each of the produced metabolites may contribute to increased variability in the 

1’-OH midazolam portion of the model that cannot be accounted for without additional 

information pertaining to the minor metabolites. The increased variability for 1’-OH 

midazolam is consistent with the findings of Study 3 of the midazolam microdosing studies, 

whereby the gMean concentration-time profiles also indicated a greater variability in 1’-OH 

midazolam exposure. This suggests the increased variability, whether due to differences in 

metabolite formation, further metabolism or for other reasons, provides a reasonable 

explanation for a decreased ability to describe these data well in the model. All-in-all, 

however, the model described the data relatively well for all conditions and, thus, was 

considered to be a good model for assessment of CYP3A DDIs. 

The utility of the model was further assessed through the determination of model predicted 

cut-points that may help in identifying if a midazolam profile is based on constitutive levels of 

CYP3A activity, inhibited levels of activity, or induced levels of activity. The parameter with 

cut-points that were most accurate in categorising the individual cases was midazolam 

clearance via metabolism. Given that metabolism is the process affected by CYP3A 

modulation, this outcome is not surprising. Less than 2% of cases were incorrectly identified 

using the cut-points from the composite model. Those cases that were falsely categorised 

tended to be constitutive activity cases that were classified as inhibition cases, meaning that 

the presence of interactions would generally not be missed. As such, the model predictions 

can be useful not just during drug development, but also in clinics when baseline conditions 

are not necessarily available for classification of a DDI. 



_DISCUSSION_______________________________________________________________________ 

99 
 

4.2.5 Limited sampling assessment 

As a final assessment of the model utility, simulations were conducted using limited sampling 

schemes from the model development dataset, as well as from the prospective studies and 

an external validation set. Simulations were mostly in-line with the observed data, although 

the 90% prediction interval for induction with the external dataset showed an under-

prediction for concentrations, suggesting that a larger effect of induction would be predicted 

by the model than what is actually seen. As such, the model would likely benefit from 

additional induction datasets, in order to improve the estimation of this effect. In general, 

however, the model shows good predictive ability, even when only limited sampling is 

provided. Thus, the model may be combined with limited sampling for facilitating assessment 

of the presence of CYP3A DDIs. 

4.2.6 Limitations 

A number of limitations were present in the current model. Specifically, the 1’-OH midazolam 

concentrations could not be as well described as those of midazolam itself, likely due to 

varying levels of CYP3A activity, both at the intestinal and hepatic levels, as described in the 

sections above. Furthermore, in the composite model, the 1 µg and lower doses were 

particularly hard to model for 1’-OH midazolam and, thus, were removed from the dataset 

(note that for midazolam, only the nanomolar doses caused the model to become unstable). 

This limitation with the lower doses mostly stems from the fact that the lower limit of 

quantification for the 1’-OH metabolite resulted in a large number of measurements below 

the limit of quantification. Given that the model adequately described the data between 3 µg 

and 4 mg and that most studies would likely be using doses within this range, this limitation is 

not considered particularly problematic.  

Another limitation of the presented model was that the amount of data for induction was 

relatively limited (only 1 study with full profiles, consisting of only 12 subjects). As such, 

although the individual predictions were generally well described, the fit for the overall 

population would likely have been better with the inclusion of more data. 

Finally, with regards to covariate analyses, as mentioned previously, the age and weight 

ranges included were still relatively limited (19-52 years and 47-111 kg), so results from the 
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model presented here do not necessarily extend to paediatric or elderly populations, or to 

obese individuals. 

4.2.7 Model development conclusion 

Both the developed composite parent-to-metabolite PopPK model and the midazolam only 

PopPK model were able to describe CYP3A activity in healthy adults during constitutive CYP3A 

activity, inhibited CYP3A activity, and induced CYP3A activity. Furthermore, the model was 

able to describe such activity over a broad range of doses, allowing it to be combined with 

microdosing approaches for reduced subject or patient burden. Simulations using limited 

sampling time points resulted in adequate predictions, suggesting the combination of a 

population pharmacokinetic model with limited sampling offers a good ability to detect 

clinically relevant pharmacokinetic DDIs. The obtained cut-points for clearance were able to 

categorise the vast majority of interactions correctly and, thus, may be useful indicators of 

interaction presence when only a single profile is available, making it particularly convenient 

for clinical practice. Examination with moderate or weak moderators would give additional 

benefit for the usefulness of these cut-points. Further research examining the applicability of 

the model to paediatric and elderly populations is warranted. 

4.3 Overall Conclusions 

Midazolam microdosing was successfully implemented in early clinical development studies. 

The results indicated that liability of the test compounds as being CYP3A perpetrators, despite 

all compounds exceeding the in vitro determined concentration thresholds for CYP3A DDI 

liability, was minimal at most. Partial AUC ratios showed good agreement with AUC0-∞ ratios, 

suggesting a limited sampling approach may be appropriate to assess the presence of DDIs. 

Furthermore, the developed PopPK models were able to adequately describe CYP3A activity 

interactions and, thus, would provide a useful tool for combining with limited sampling in the 

assessment of CYP3A DDIs.  As such, the current dissertation has shown the feasibility of using 

midazolam microdosing and limited sampling in clinical studies, as well as providing three 

separate, complementary tools for the assessment of CYP3A DDIs.
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5. SUMMARY 

5.1 English 

Due to its abundance in the human liver and gut, as well as the important role it plays in 

drug metabolism, CYP3A is a significant liability for drug-drug interactions. As such, efficient 

and accurate methods for detecting CYP3A drug-drug interactions are needed to facilitate 

assessment both in drug development and in the clinic. Several methods are considered in 

this work, including midazolam microdosing, a limited sampling approach, and population 

pharmacokinetic modelling. Microdosing consists of administration of a pharmacologically 

inactive dose that is no more than 1/100th of the therapeutic dose, which allows such doses 

to be administered with other substances without worry that they may influence the 

pharmacokinetics or pharmacodynamics of the co-administered substance. Limited sampling 

approaches use 1 to 4 samples to determine exposure of a drug, rather than obtaining a full 

pharmacokinetic profile. These approaches are ideal candidates for combining with 

population pharmacokinetic modelling, which can estimate full profiles from sparse 

sampling. Thus, the current dissertation had the following aims: 1) establish a method of 

incorporating midazolam microdosing in multiple rising dose studies for early detection of 

CYP3A drug-drug interactions; 2) develop a population pharmacokinetic model to describe 

midazolam exposure during constitutive, inhibited, and induced CYP3A activity; and 3) assess 

the capability of limited sampling to complement the two preceding aims. As an exploratory 

objective, model estimated parameters were assessed for potential cut-points that may 

allow for determination of drug-drug interactions when a baseline profile is not available.  

For the establishment of midazolam microdosing in early clinical development, three early 

clinical studies were conducted with substances (Compounds A, B, and C) which gave 

positive CYP3A perpetrator signals in vitro. A 75 µg dose of midazolam was administered 

alone (baseline CYP3A activity) followed by administration with the highest dose groups 

tested for each compound on Day 1/3 and Day 14 or Day 17. Midazolam exposure (AUC0-∞, 

Cmax) during administration with the test substances was compared to baseline data via an 

analysis of variance on log-transformed data. Partial AUC2-4 ratios were also compared to 

AUC0-∞ ratios using linear regression on log-transformed data. The data obtained from these 

studies were further used for external validation, following development of a composite 

midazolam-1’-OH midazolam population pharmacokinetic model for CYP3A drug-drug 
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interactions. The composite model was also evaluated using limited sampling profiles, both 

from the model development set, as well as from an external validation set. 

The implementation of midazolam microdosing in early clinical studies proved to be feasible: 

Midazolam concentrations were quantifiable over the full profiles for all subjects in all 

studies and AUC and Cmax values could, thus, be accurately determined. Results from the test 

compounds indicated that, based on the Cmax values exceeding relevant thresholds, drug-

drug interactions were expected. Point estimates of the midazolam AUC0-∞ gMean ratios 

ranged from 108.3 to 127.1% for Compound A, from 93.3 to 114.5% for Compound B, and 

from 92.0 to 96.7% for the two highest dose groups of Compound C. Cmax gMean ratios were 

in the same range. Thus, despite the expectation of drug-drug interactions from in vitro 

results, midazolam microdosing results indicated no relevant interactions were present. 

AUC2-4 ratios, based on the limited sampling scheme suggested for subsequent studies (2, 

2.5, 3, and 4 h), were comparable to the AUC0-∞ ratios in the conducted studies. 

A composite model was developed, which adequately described midazolam and 1’-OH 

midazolam concentrations for constitutive, inhibited, and induced CYP3A activity. The model 

showed good internal and external validity, both with full profiles and limited sampling (2, 

2.5, 3, and 4 h), and the model estimated parameters were congruent with values found in 

clinical studies. Assessment of potential cut-points for model estimated parameters to 

identify drug-drug interaction liability with a single profile suggested that midazolam 

clearance may reasonably be used to detect inhibition (6.81-16.8 L/h), induction (43.3-86.6 

L/h), and no modulation (16.8-43.3 L/h). Sensitivities for potent inhibition and induction 

were 98.7% and 100%, respectively, and specificity was 99.2% for no modulation.  

Thus, the current dissertation indicated that 1) midazolam microdosing incorporated into 

early clinical studies is a feasible tool for reducing dedicated drug-drug interaction studies; 2) 

a population pharmacokinetic approach can provide efficient and accurate CYP3A drug-drug 

liability detection; and 3) limited sampling can be a useful complementary tool for both 

midazolam microdosing and population pharmacokinetic modelling. Therefore, the current 

dissertation provides three separate, complementary tools for the assessment of CYP3A drug-

drug interactions, either in drug development or in clinical practice. 
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5.2 Deutsch 

Aufgrund seiner Menge in der Leber und im Darm sowie der wichtigen Rolle, die es im 

Arzneistoffmetabolismus spielt, ist CYP3A eine bedeutende Ursache für 

Arzneimittelinteraktionen. Daher sind effiziente und verlässliche Methoden zum Nachweis 

von CYP3A-Interaktionen erforderlich, um die Beurteilung sowohl in der Entwicklung als auch 

in der Klinik zu erleichtern. In dieser Arbeit werden Midazolam-Mikrodosierung, ein limitierter 

Probenentnahmeansatz und die Populations-Pharmakokinetik als Optionen berücksichtigt. 

Die Mikrodosierung besteht aus der Verabreichung einer pharmakologisch inaktiven Dosis, die 

nicht mehr als 1/100 der therapeutischen Dosis beträgt, wodurch solche Dosen mit anderen 

Substanzen verabreicht werden können, ohne befürchten zu müssen, dass sie die 

Pharmakokinetik/Pharmakodynamik der gleichzeitig verabreichten Substanz beeinflussen. Bei 

Ansätzen mit limitierter Probenentnahme werden 1 bis 4 Proben verwendet, um die 

Exposition eines Arzneimittels zu bestimmen. Diese Ansätze sind ideale Kandidaten für die 

Kombination mit der Populationsanalyse mit den vollständigen Profilen aus spärliche 

Messwerte geschätzt werden können. Daher hatte die aktuelle Dissertation folgende Ziele: 1) 

Etablierung einer Methode zur Einbeziehung der Midazolam-Mikrodosierung in frühen 

Studien mit steigender Dosis zur Früherkennung von CYP3A-interaktionen; 2) Entwicklung 

eines populationspharmakokinetischen Modells zur Beschreibung der Midazolam-Exposition 

während der konstitutiven, inhibierten und induzierten CYP3A-Aktivität; und 3) Bewertung 

einer limitierten Probenentnahme zur Ergänzung der vorhergehenden Ziele. Als exploratives 

Ziel wurden vom Modell geschätzte Parameter potenzielle Grenzwerte bewertet, die die 

Bestimmung von Interaktionen ermöglichen können, wenn kein Basisprofil verfügbar ist. 

Zur Etablierung einer Midazolam-Mikrodosierung in der frühen klinischen Entwicklung 

wurden drei frühe klinische Studien mit Substanzen (Substanzen A, B und C) durchgeführt, die 

in vitro positive CYP3A-Modulatorsignale ergaben. Eine 75 µg Dosis von Midazolam wurde 

allein verabreicht (Basis-CYP3A-Aktivität), gefolgt von der Verabreichung mit den höchsten 

Dosisgruppen, die für jede Substanz am Tag 1/3 und am Tag 14 oder Tag 17 getestet wurden. 

Midazolam-Exposition (AUC0-∞, Cmax) während der Verabreichung mit den Testsubstanzen 

wurden über eine Varianzanalyse der logarithmisch transformierten Daten mit den Basisdaten 

verglichen. Partielle AUC2-4 Verhältnisse wurden auch mit AUC0-∞ Verhältnissen verglichen. 

Die aus diesen Studien erhaltenen Daten wurden nach der Entwicklung eines 
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pharmakokinetischen Populationsmodells für CYP3A-Interaktionen weiter als externe 

Validierung verwendet. Das finale Modell wurde auch unter Verwendung limitierter 

Stichprobenprofile bewertet. 

Die Implementierung einer Midazolam-Mikrodosierung erwies sich als machbar: die 

Midazolam-Konzentrationen waren über die vollständigen Profile quantifizierbar, und die 

AUC- und Cmax-Werte konnten somit genau bestimmt werden. Die Ergebnisse der 

Testsubstanzen zeigten, dass basierend auf den Cmax-Werten, die die relevanten Grenzen 

überschreiten, Arzneimittelinteraktionen erwartet wurden. Die Punktschätzungen der 

Midazolam AUC0-∞ gMean-Verhältnisse lagen zwischen 108,3 und 127,1% für Substanz A, 

zwischen 93,3 und 114,5% für Substanz B und zwischen 92,0 und 96,7% für die beiden 

höchsten Dosisgruppen von Substanz C. Cmax gMean-Verhältnisse lagen im gleichen Bereich. 

Trotz der Erwartung von Interaktionen, zeigten die Ergebnisse der Midazolam-

Mikrodosierung, dass keine relevanten Interaktionen vorhanden waren. Die AUC2-4-

Verhältnisse waren mit den AUC0-∞ Verhältnissen in den durchgeführten Studien vergleichbar. 

Es wurde ein Midazolam-1'-OH-Midazolam-Modell für konstitutive, inhibierte und induzierte 

CYP3A-Aktivität entwickelt. Das Modell zeigte eine gute interne und externe Validität, sowohl 

mit vollständigen Profilen als auch mit limitierter Stichprobe (2, 2,5, 3 und 4 Stunden); die 

geschätzte Parameter des Modells stimmten mit den in klinischen Studien gefundenen 

Werten überein. Die Bewertung möglicher Grenzwerte für vom Modell geschätzte Parameter 

zur Bewertung den Interaktionen mit einem einzigen Profil zeigte, dass die Clearance von 

Midazolam vernünftigerweise zum Nachweis von Hemmung (6,81-16,8 L/h), Induktion (43,3-

86,6 L/h) und keine Modulation (16,8-43,3 L/h) verwendet werden kann. Die Empfindlichkeit 

für eine starke Hemmung war 98,7% und für die Induktion war 100%. Die Spezifität für keine 

Modulation war 99,2%. 

Daher zeigte diese Dissertation, dass 1) Midazolam-Mikrodosierung ein praktikables 

Instrument zur Reduzierung dedizierter Interaktionenstudien darstellt wenn es in frühen 

Studien enthalten ist; 2) ein populationspharmakokinetischer Analyse kann einen effizienten 

und genauen Nachweis der CYP3A-Interaktion liefern; und 3) eine limitierter Probenentnahme 

kann ein nützliches ergänzendes Instrument sowohl für die Midazolam-Mikrodosierung als 

auch für die populationspharmakokinetische Modellierung sein.   
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APPENDICES 

PK Parameter Tables for Midazolam Microdosing Implementation 

Tab. A1: Non-compartmental PK parameters of midazolam administered alone and after multiple oral 
administration of Compound A or placebo to healthy male participants – Study 1 

PK Parameter Midazolam + Compound A Midazolam + Placebo 
 N gMean (gCV [%]) N gMean (gCV [%]) 

Baseline (Midazolam only)    
 AUC0-tz [pM∙h] 18 3310 (36.9) 6 4220 (37.6) 
 AUC0-∞ [pM∙h] 18 3650 (39.6) 6 4550 (39.0) 
 AUC2-4 [pM∙h] 18 970 (45.3) 6 1360 (38.0 
 CL/F [L∙h-1] 18 63.8 (39.0) 6 51.0 (38.1) 
 Cmax [pM] 18 1090 (36.1) 6 1230 (39.0) 
 tmax

1 [h] 18 1.00 (0.250 to 2.00) 6 1.00 (0.500 to 2.00) 
Day 3 of Compound A    
 AUC0-tz [pM∙h] 18 3680 (32.5) 6 4210 (30.8) 
 AUC0-∞ [pM∙h] 18 4100 (36.3) 6 4610 (30.8) 
 AUC2-4 [pM∙h] 18 1060 (35.2) 6 1280 (39.9) 
 CL/F [L∙h-1] 18 56.9 (36.0) 6 50.4 (30.8) 
 Cmax [pM] 18 1270 (33.3) 6 1310 (29.3) 
 tmax

1 [h] 18 1.00 (0.250 to 1.02) 6 0.750 (0.500 to 2.00) 
Day 14 of Compound A    
 AUC0-tz [pM∙h] 18 4070 (29.2) 6 4230 (25.2) 
 AUC0-∞ [pM∙h] 18 4490 (30.1) 6 4600 (25.6) 
 AUC2-4pM∙h] 18 1240 (33.3) 6 1310 (28.7) 
 CL/F [L∙h-1] 18 52.2 (29.7) 6 50.9 (25.4) 
 Cmax [pM] 18 1320 (34.0) 6 1390 (31.9) 
 tmax

1 [h] 18 1.00 (0.500 to 2.00) 6 0.759 (0.450 to 2.00) 
1 For tmax, the median and range (minimum-maximum) are given. 
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Tab. A2: Non-compartmental PK parameters of midazolam in plasma after oral administration alone 
and following multiple oral administration of Compound B or placebo – Study 2 

PK Parameter Midazolam + Compound B Midazolam + Placebo 
 N gMean (gCV [%]) N gMean (gCV [%]) 

Baseline (Midazolam alone)    
 AUC0-tz [pM∙h] 32 3660 (42.8) 8 4360 (36.4) 
 AUC0-∞ [pM∙h] 32 4130 (44.9)  8 5140 (42.4) 
 AUC2-4 [pM∙h] 32 1110 (50.9) 8 1410 (35.1) 
 CL/F [L∙h-1] 32 56.6 (44.9) 8 45.7 (41.3) 
 Cmax [pM] 32 1140 (40.5) 8 1200 (33.6) 
 tmax

1 [h] 32 1.00 (0.250 to 2.50) 8 1.00 (0.500 to 2.00) 
Day 17 of Compound B    
 AUC0-tz [pM∙h] 30 3850 (47.1) 8 4480 (15.3) 
 AUC0-∞ [pM∙h] 30 4420 (49.7) 8 5170 (17.7) 
 AUC2-4 [pM∙h] 30 1230 (52.8) 8 1500 (18.3) 
 CL/F [L∙h-1] 30 52.9 (49.2) 8 45.1 (16.9) 
 Cmax [pM] 30 1080 (42.0) 8 1200 (16.5) 
 tmax

1 [h] 30 1.00 (0.250 to 2.00) 8 1.50 (0.300 to 2.50) 
1 For tmax, the median and range (minimum-maximum) are given. 
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Tab. A3: Non-compartmental PK parameters of midazolam and 1’-OH midazolam in plasma after oral  
administration alone and following single and multiple oral administration of Compound C or 
placebo – Study 3 

PK Parameter Midazolam + Compound C Midazolam + Placebo 
  MDZ  1’-OH MDZ        MDZ  1’-OH MDZ  

 N gMean (gCV [%]) gMean (gCV [%]) N gMean (gCV [%]) gMean (gCV [%]) 
Baseline (Midazolam alone)     
 AUC0-tz [pM∙h] 40 3220 (34.5) 852 (28.9) 10 3030 (28.6) 907 (20.7) 
 AUC0-∞ [pM∙h] 40 3630 (37.5) 920 (29.0) 10 3370 (32.3) 998 (22.2) 
 AUC2-4 [pM∙h] 40 987 (37.6) 283 (34.9) 10 933 (33.4) 306 (25.2) 
 CL/F [L∙h-1] 40 64.0 (37.2) 252 (28.9) 10 68.5 (32.7) 231 (22.9) 
 Cmax [pM] 40 1000 (32.9) 268 (30.5) 10 929 (25.6) 255 (18.3) 
 tmax1 [h] 40 1.00 (0.500-2.00) 1.00 (0.500-2.50) 10 1.00 (0.500-2.00) 1.00 (0.500-2.50) 

Day 1 of Compound C      
 AUC0-tz [pM∙h] 40 3050 (35.0) 862 (28.3) 10 2960 (31.8) 998 (26.7) 
 AUC0-∞ [pM∙h] 40 3410 (37.4) 937 (28.8) 10 3280 (35.1) 1110 (28.0) 
 AUC2-4 [pM∙h] 40 912 (40.6) 279 (33.3) 10 943 (37.3) 356 (27.8) 
 CL/F [L∙h-1] 40 68.5 (36.5) 247 (28.9) 10 71.2 (35.2) 210 (28.4) 
 Cmax [pM] 40 1010 (29.6) 283 (30.6) 10 913 (26.2) 274 (26.1) 
 tmax1 [h] 40 1.00 (0.500-2.00) 1.00 (0.500-2.50) 10 1.00 (0.500-2.50) 1.50 (0.500-2.00) 

Day 14 of Compound C      
 AUC0-tz [pM∙h] 38 3380 (33.6) 752 (24.4) 10 3200 (28.9) 800 (23.3) 
 AUC0-∞ [pM∙h] 38 3870 (38.5) 830 (24.9) 10 3690 (33.9) 893 (24.5) 
 AUC2-4 [pM∙h] 38 1070 (36.2) 252 (32.0) 10 1050 (24.5) 285 (22.1) 
 CL/F [L∙h-1] 38 60.5 (38.3) 280 (24.9) 10 63.5 (33.4) 259 (24.8) 
 Cmax [pM] 38 991 (31.4) 224 (28.7) 10 887 (27.1) 230 (23.8) 
 tmax1 [h] 38 1.00 (0.500-2.50) 1.00 (0.500-2.50) 10 1.00 (0.500-2.00) 2.00 (0.500-2.00) 
1 For tmax, the median and range (minimum-maximum) are given. 
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Figure A1: Composite Model Diagnostic Plots 

 
Fig. A1: Goodness-of-fit plots for the final composite model. Blue points denote individual values; black solid lines represent unity (top panels); red-dashed line 
is a linear smoothing function (top panels) or a loess smoothing function (bottom panels); black dashed lines represent ±1.96 standard deviations (bottom left 
panels). CWRES = conditional weighted residual error; IWRES = individual weighted residual error.
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Figure A2: Composite Model VPC 
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Fig. A2: Visual predictive check of the final composite model. 1000 simulations were used and data are displayed on a semi-log scale. The first two panels for each 
analyte are run on the dataset used to build the model, while the third panel includes only data from the prospective studies (‘External Set’). The solid red line 
depicts the observed median concentrations, while the dotted lines depict the observed 97.5th and 2.5th percentiles. The shaded red area pertains to the 90% 
confidence interval for the predicted medians, while the shaded blue areas pertain to the 90% confidence interval for the 97.5th and 2.5th percentile predictions. 
Data are normalised to a midazolam dose of 4 mg. Single doses refer to a single oral or iv dose during the dosing interval. nM = nanomolar; h = hours.   
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Figure A3: Midazolam Individual Fits for Interaction Model 
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Fig. A3:  Individual fits for all CYP3A conditions based on the composite model predictions. Profiles are for midazolam concentrations and are plotted on a semi-
log scale; lines represent predicted profiles, while black circles represent actual observations. 
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Figure A4: 1’-OH Midazolam Individual Fits for Interaction Model 
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Fig. A4:  Individual fits for all CYP3A conditions based on the composite model predictions. Profiles are for 1’-OH midazolam concentrations and are plotted on a 
semi-log scale; lines represent predicted profiles, while black circles represent actual observations.  
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Figure A5: Midazolam Interaction Model VPC 
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Fig. A5: Visual predictive check of the interaction effect on midazolam using the final midazolam model with interaction. 1000 simulations were used and data 
are displayed on a semi-log scale. The solid red line depicts the observed median concentrations, while the dotted lines depict the observed 97.5th and 2.5th 
percentiles. The shaded red area pertains to the 90% confidence interval for the predicted medians, while the shaded blue areas pertain to the 90% confidence 
interval for the 97.5th and 2.5th percentile predictions. Data are normalised to a midazolam dose of 4 mg. Single doses refer to a single oral or iv dose during the 
dosing interval. nM = nanomolar; h = hours. 
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Figure A6: Simulations Based on Limited Sampling – Internal Set 

 
Fig.  A6: Observed versus predicted midazolam and 1’-OH midazolam concentrations, based on limiting sampling and the final interaction model. Prediction 
intervals are simulated based on times 2, 2.5, 3, and 4 h from the original dataset. Black dots show all the actual observations, not just those used for simulations. 
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Figure A7: Simulations Based on Limited Sampling – External Set 

 
Fig.  A7: Observed versus predicted midazolam and 1’-OH midazolam concentrations, based on limiting sampling and the final interaction model. Prediction 
intervals are simulated based on times 2, 2.5, 3, and 4 h from the external validation dataset.  
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Adopted Midazolam Model Control Stream with Interaction and Food Effect 
 
$PROB     MDZ PopPK Model with Interaction and Food Effect 
$INPUT       C ID XTIME=TIME TAFD AMT AMT2 DOSE CMT ANA XDV LDV=DROP DV 
              MDV SEX AGE WT EVID RATE TRT TRT2 VIS STDY OCC BIS LLOQ 
              LLOQ_Unit=DROP TRT3 STYP$DATA        
$DATA  Combined_ Set_w_TRT.csv  

IGNORE=C IGNORE=(ANA.EQ.1)             
$SUBROUTINE  ADVAN6 TOL=4 
$MODEL       COMP(ABSORB)  

COMP(CENTRAL,DEFOBS)  
COMP(PERIPH) 

              COMP(PERIPH2) 
;;========================== PARAMETER DEFINITIONS ==========================                      
$PK   
;;---------------------------------- FED STATUS ----------------------------------------------- 
FED = 0 
 
IF(FOOD.EQ.1) FED = 1 
;;---------------------------------- TREATMENT ------------------------------------------------- 
INH1 = 0 ; for reversible inhibition 
INH2 = 0 ; for irreversible inhibition 
IND = 0 
 
IF(TRT3.EQ.2) INH1 = 1 
IF(TRT3.EQ.5) INH2 =1 
IF(TRT3.EQ.3) IND = 1 
;;---------------------------------- INTEROCCASION VARIABILITY ----------------------------------  
  OCC1=0 
  OCC2=0 
  OCC3=0 
  OCC4=0 
   
  IF(OCC.EQ.1)  OCC1=1 
  IF(OCC.EQ.2)  OCC2=1 
  IF(OCC.EQ.3)  OCC3=1 
  IF(OCC.EQ.4)  OCC4=1 
   
  IOF1 = OCC1*ETA(8)+OCC2*ETA(9)+OCC3*ETA(10)+OCC4*ETA(11) 
  IOCL  = OCC1*ETA(12)+OCC2*ETA(13)+OCC3*ETA(14)+OCC4*ETA(15)   
;;---------------------------------- PK MODEL ----------------------------------     
    TVVC   = THETA(1)+INH2*THETA(17)+FED*THETA(20) 
    VC      = TVVC*EXP(ETA(1))       ; central compartment volume with food effect 
    
    TVVP1   = THETA(2) 
    VP1      = TVVP1*EXP(ETA(2))       ; peripheral compartment1 volume 
 
    TVVP2   = THETA(3) 
    VP2     = TVVP2*EXP(ETA(6))        ; peripheral compartment2 volume 
 
    TVQP1   = THETA(4) 
    QP1     = TVQP1*EXP(ETA(3))        ; inter-compartmental clearance (PER1) 
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    TVQP2   = THETA(5) 
    QP2       = TVQP2                  ; inter-compartmental clearance (PER2) 
 
    TVCL   = THETA(6)+ INH1*THETA(15)+INH2*THETA(15)+IND*THETA(16) 
    CL       = TVCL*EXP(ETA(4)+IOCL)   ; elimination of parent with treatment effect 
 
    TVKA   = THETA(7)+FED*THETA(21) 
    KA       = TVKA*EXP(ETA(7))       ; absorption rate constant with food effect 
 
    TVF1   = THETA(8)+INH1*THETA(13)+INH2*THETA(13)+IND*THETA(14)+FED*THETA(22)      
    F1      = TVF1*EXP(ETA(5)+IOF1)   ; bioavailability with treatment and food effects 
  
    K20   = CL/VC 
    K23   = QP1/VC    
    K32   = QP1/VP1 
    K24   = QP2/VC 
    K42   = QP2/VP2 
 
    S2=VC       
;;======================== DIFFERENTIAL EQUATIONS ============================   
$DES 
     DADT (1) =  - KA*A(1)  
     DADT (2) =    KA*A(1) - K23*A(2) + K32*A(3) - K24*A(2) + K42*A(4) - K20*A(2) 
     DADT (3) =                      K23*A(2) - K32*A(3) 
     DADT (4) =                                                              K24*A(2) -  K42*A(4)      
;;============================= MODEL FIT ===================================      
$ERROR 
 
FPROP    = THETA(9)    ; proportional RUV (early) 
FADD     = THETA(10)   ; additive RUV (early - fixed to 0) 
FPROP2  = THETA(11)   ; proportional RUV (late) 
FADD2   = THETA(12)   ; additive RUV (late - fixed to 0) 
FPROP3  = THETA(18)   ; proportional RUV (late) 
FADD3   = THETA(19)   ; additive RUV (late - fixed to 0) 
 
;;Uppsala method for expressing error and weighted residuals: 
 
IPRED  =    A(2)/S2  
 
AUC = F1*DOSE/CL 
 
W = SQRT((FPROP**2)*(IPRED**2)+(FADD**2)) 
IF(TRT.NE.2.AND.TIME.GT.0.5) W = SQRT((FPROP2**2)*(IPRED**2)+(FADD2**2)) ; to account for  
; additional noise at early time points 
 
IF(FED.EQ.1.OR.TRT.EQ.2.AND.TIME.GT.1.5) W = SQRT((FPROP3**2)*(IPRED**2)+(FADD3**2))  
; to account for later tmax 
 
IRES  = DV - IPRED 
IWRES = IRES/W 
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Y  = IPRED+W*EPS(1)                              ; MDZ early prediction 
IF(TRT.NE.2.AND.TIME.GT.0.5) Y  = IPRED+W*EPS(2) ; MDZ late prediction 
IF(FED.EQ.1.OR.TRT.EQ.2.AND.TIME.GT.1.5) Y  = IPRED+W*EPS(3) ; MDZ late – inhibition/fed 
 
IF(ICALL.EQ.4.AND.Y.LE.0) Y = 0.00001 ; to allow for log-transformed VPCs 
;;========================= INITIAL ESTIMATES =================================  
$THETA   
 20.6932 FIX   ; 1 VC L 
 44.0251 FIX   ; 2 VP1 L 
 23.6997 FIX   ; 3 VP2 L 
 8.02466 FIX   ; 4 QP1 L/h 
 45.7333 FIX   ; 5 QP2 L/h 
 24.088 FIX    ; 6 CL L/h 
 2.32486 FIX   ; 7 KA /h 
 0.277613 FIX  ; 8 F1 
 0.473118 FIX  ; 9 FPROP 
 0 FIX         ; 10 FADD 
 -0.155528 FIX ; 11 FPROP2 
 0 FIX         ; 12 FADD2 
 0.529075 FIX  ; 13 F1~INH  
 -0.199376 FIX ; 14 F1~IND  
 -15.1216 FIX    ; 15 CL~INH  
 39.7503 FIX   ; 16 CL~IND  
 16.6395 FIX ; 17 V2~INH2 
 -0.195234 ; 18 FPROP3 ; allowed to vary, as both fed and inhibition conditions have later tmax 
 0 FIX         ; 19 FADD3   
 11.34 FIX     ; 20 VC~FED 
 -1.076 FIX    ; 21 KA~FED 
 0.1775 FIX    ; 22 F1~FED 
  
$OMEGA   
 0.103977  FIX  ;     IIV_VC 
 0.184672  FIX  ;     IIV_VP1 
 0.220718  FIX  ;     IIV_QP1 
  
$OMEGA  BLOCK(2) FIX 
 0.00724547  ;     IIV_CL 
 -0.0127034 0.057301  ;     IIV_F1 
  
$OMEGA   
 0.0339725  FIX  ;     IIV_VP2 
 0.0907368  FIX  ;     IIV_KA 
  
$OMEGA  BLOCK(1) FIX   
0.0204782  ; IOV FOR F1 
$OMEGA  BLOCK(1) SAME 
$OMEGA  BLOCK(1) SAME 
$OMEGA  BLOCK(1) SAME 
 
$OMEGA  BLOCK(1) FIX   
0.0191667  ; IOV FOR CL 
$OMEGA  BLOCK(1) SAME 
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$OMEGA  BLOCK(1) SAME 
$OMEGA  BLOCK(1) SAME 
 
$SIGMA   
 1  FIX 
 1  FIX 
 1  FIX 
;;========================== ESTIMATION METHOD ============================= 
$ESTIMATION  METHOD=1 INTERACTION MAXEVAL=9999 NOABORT PRINT=5 NSIG=3 
              SIGL=9 ; FOCE-I   
$COVARIANCE PRINT=E 
;;================================ TABLES ===================================   
$TABLE       ID STDY TIME DOSE AMT CMT MDV EVID RATE VIS OCC BIS TRT  
              ETAS(1:LAST) STYP; Standard parameters 
              IPRED IWRES CIPRED CPRED CRES CWRES CIWRES NOPRINT 
              ONEHEADER FILE=sdtab11.7446 
 
$TABLE       ID AUC CL VC VP1 VP2 QP1 QP2 KA F1 AGE WT SEX TRT TRT3; Model params 
              FPROP FADD FPROP2 FADD2 ETAS(1:LAST) NOPRINT NOAPPEND 
              ONEHEADER FILE=patab11.7446 
 
$TABLE       ID SEX ; categorical covariate parameters 
              IPRED IWRES CIPRED CPRED CRES CWRES CIWRES NOPRINT 
              NOAPPEND ONEHEADER FILE=catab11.7446 
 
$TABLE       ID AGE WT ; continuous covariate parameters 
              IPRED IWRES CIPRED CPRED CRES CWRES CIWRES NOPRINT 
              NOAPPEND ONEHEADER FILE=cotab11.7446
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Adopted 1’-OH Midazolam Control Stream with Food Effect 
 
$PROB     1’-OH MDZ PopPK Base Model 
$INPUT       C ID TIME TAFD AMT CMT CMT2=DROP ANA DV LDV=DROP MDV SEX 
              AGE WT EVID RATE TRT=DROP VIS=DROP STDY OCC BIS 
$DATA       Combined _Set_1OH_MDZ.csv  

IGNORE=C  IGNORE=(OCC.GT.1) 
$SUBROUTINE  ADVAN6 TOL=3 
$MODEL       COMP(ABSORB)  

COMP(CENTRAL,DEFOBS)  
COMP(PERIPH) 

              COMP(PERIPH2)  
COMP(PARENT) 

;;============================ PARAMETER DEFINITIONS ===========================                      
$PK  
;;-------------------------------- FED STATUS ------------------------------------ 
FED = 0 
 
IF(STDY.EQ.3) FED = 1 ; Study 3 gave midazolam following continental breakfast 
;;---------------------------------- PK MODEL ----------------------------------        
     
    TVVMET     = THETA(1)+FED*THETA(15)       ; central compartment volume with food effect 
     VMET         = TVVMET*EXP(ETA(1))  
        
    TVVMP     = THETA(2)     ; peripheral compartment volume 
     VMP          = TVVMP*EXP(ETA(3))              
        
    TVVMP2    = THETA(3)      ; peripheral2 compartment volume 
     VMP2        = TVVMP2*EXP(ETA(8)) 
        
    TVQMP       = THETA(4)+FED*THETA(17)   ; intercompartmental clearance with food effect 
    QMP       = TVQMP*EXP(ETA(2))              
     
    TVQMP2       = THETA(5)  ; intercompartmental clearance2 
    QMP2       = TVQMP2 
     
    TVCLM      = THETA(6) ; elimination of metabolite 
    CLM      = TVCLM*EXP(ETA(4))   
       
    TVKMET      = THETA(7)+FED*THETA(16) ; oral dose metabolic rate constant with food effect 
    KMET      = TVKMET*EXP(ETA(7))            
     
    TVF1       = THETA(8) 
    F1       = TVF1*EXP(ETA(5)) ; fraction metabolised/available following oral administration              
       
    TVF5       = THETA(9) 
    F5       = TVF5*EXP(ETA(6)) ; fraction metabolised/available following iv administration  
     
    KA   = THETA(10) ; rate of metabolism/”absorption” (following iv administration) 
    IF(CMT.EQ.1) KA = KMET 
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    K20   = CLM/VMET 
    K23   = QMP/VMET    
    K32   = QMP/VMP 
    K24   = QMP2/VMET 
    K42   = QMP2/VMP2 
 
    S2=VMET 
       
$DES 
     DADT (1) =  - KMET*A(1)  
     DADT (2) =    KMET*A(1) - K23*A(2) + K32*A(3) - K24*A(2) + K42*A(4) + F5*KA*A(5) - K20*A(2) 
     DADT (3) =                            K23*A(2) - K32*A(3) 
     DADT (4) =                                                                    K24*A(2) - K42*A(4) 
     DADT (5) =  - F5*KA*A(5)  
      
;;================================== MODEL FIT =====================================      
$ERROR 
 
FPROP   = THETA(11) 
FADD    = THETA(12) 
FPROP2 = THETA(13) 
FADD2   = THETA(14) 
 
;;Uppsala method for expressing error and weighted residuals: 
 
IPRED  =    A(2)/S2  
W = SQRT((FPROP**2)*(IPRED**2)+(FADD**2)) 
IF(TIME.GT.0.75) W = SQRT((FPROP2**2)*(IPRED**2)+(FADD2**2)) ; late cut-point for 1’-OH MDZ 
 
IRES  = DV - IPRED 
IWRES = IRES/W 
Y  = IPRED+W*EPS(1)                 ; 1’-OH MDZ early prediction 
IF(TIME.GT.0.75) Y  = IPRED+W*EPS(2) ; 1’-OH MDZ late prediction 
 
IF(ICALL.EQ.4.AND.Y.LE.0) Y=0.0001 ; to be able to produce log-transformed VPCs 
 
;;============================== INITIAL ESTIMATES ===================================  
$THETA   
 59.2791 FIX  ; 1 VMET L 
 2488.52 FIX  ; 2 VMP L 
 56.8482 FIX  ; 3 VMP2 L 
 114.423 FIX  ; 4 QMP L/h 
 24.7025 FIX  ; 5 QMP L/h 
 129.467 FIX  ; 6 CLM L/h 
 0.802675 FIX  ; 7 KMET /h 
 0.811246 FIX  ; 8 F1 
 0.796446 FIX  ; 9 F5 
 0.426855 FIX  ; 10 KA 
 -0.487011 FIX  ; 11 FPROP 
 0.00001 FIX  ; 12 FADD 
 0.181784 FIX  ; 13 FPROP2 
 0.00001 FIX  ; 14 FADD2 
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  120          ; 15 VMET~FED 
 -0.2279        ; 16 KMET~FED 
 -42           ; 17 QMP~FED 
  
$OMEGA   
 0.435663 FIX  ;  IIV_VMET 
 0.413409 FIX  ;  IIV_QMP 
 0.373184 FIX  ;  IIV_VMP 
 
$OMEGA  BLOCK(2) FIX 
 0.0990933  ;  IIV_CLM 
 -0.0354774  0.0127039 ;  IIV_F1 
 
$OMEGA   
 0.0126279 FIX  ;  IIV_F5 
 0.00863727 FIX;  IIV_KMET 
 0.83752 FIX  ;  IIV_VMP2 
 
$SIGMA   
 1  FIX 
 1  FIX 
;;============================= ESTIMATION METHOD ============================= 
$ESTIMATION  METHOD=1 INTERACTION MAXEVAL=9999 NOABORT PRINT=5 NSIG=3 
              SIGL=9 ; FOCE-I  
 
$COVARIANCE PRINT=E 
;;================================ TABLES ====================================   
$TABLE       ID TIME AMT CMT MDV EVID RATE STDY BIS STYP ETAS(1:LAST) ; Standard parameters 
              IPRED IWRES CIPRED CPRED CRES CWRES CIWRES NOPRINT 
              ONEHEADER FILE=sdtab42.345 
 
$TABLE       ID CLM VMET VMP VMP2 Q1 Q2 F1 F5 KMET AGE WT SEX ; Model parameters  
              FPROP FADD ETAS(1:LAST) IPRED IWRES CIPRED CPRED CRES 
              CWRES CIWRES NOPRINT NOAPPEND ONEHEADER FILE=patab42.345 
 
$TABLE       ID SEX ; categorical covariate parameters 
              IPRED IWRES CIPRED CPRED CRES CWRES CIWRES NOPRINT 
              NOAPPEND ONEHEADER FILE=catab42.345 
 
$TABLE       ID AGE WT ; continuous covariate parameters 
             IPRED IWRES CIPRED CPRED CRES CWRES CIWRES NOPRINT 
             NOAPPEND ONEHEADER FILE=cotab42.345 
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Adopted Composite Model Control Stream with Interaction 
$SIZES       LVR=50 ; increase number of allowed etas+epsilons to 50 
$PROBLEM     Combined MDZ+1-OH MDZ PopPK Model 
$INPUT       C ID XTIME=TIME TAFD=DROP AMT DOSE CMT ANA DV LDV=DROP NDV 
              MDV SEX AGE WT EVID RATE TRT TRT2 VIS STDY OCC BIS BIS2 
              LLOQ LLOQ_Unit=DROP TRT3 STYP 
$DATA       Combined_Set_w_TRT_no1ug.csv IGNORE=C 
              IGNORE=(BIS.EQ.1) 
$SUBROUTINE  ADVAN6 TOL=4 
$MODEL       COMP(ABSORB)  

COMP(CENTRAL)  
COMP(PERIPH1)  
COMP(PERIPH2) 

              COMP(METABOL)  
COMP(MET_PER)  
COMP(MET_PER2) 

;;========================== PARAMETER DEFINITIONS ========================= 
$PK  
;;-------------------------------- INTERACTION -------------------------------------------- 
INH1 = 0 ; reversible inhibition 
INH2 = 0 ; irreversible inhibition 
IND = 0   ; induction 
 
IF(TRT3.EQ.2) INH1 = 1 
IF(TRT3.EQ.5) INH2 = 1 
IF(TRT3.EQ.3) IND = 1 
;;---------------------------------- INTEROCCASION VARIABILITY ----------------------------------  
  OCC1=0 
  OCC2=0 
  OCC3=0 
  OCC4=0 
  OCC5=0 
   
  IF(OCC.EQ.1)  OCC1=1 
  IF(OCC.EQ.2)  OCC2=1 
  IF(OCC.EQ.3)  OCC3=1 
  IF(OCC.EQ.4)  OCC4=1 
  IF(OCC.EQ.5)  OCC5=1 
   
  IOQMET   = OCC1*ETA(10)+OCC2*ETA(11)+OCC3*ETA(12)+OCC4*ETA(13)+OCC5*ETA(14) 
  IOCLM      = OCC1*ETA(15)+OCC2*ETA(16)+OCC3*ETA(17)+OCC4*ETA(18)+OCC5*ETA(19) 
  IOF1        = OCC1*ETA(20)+OCC2*ETA(21)+OCC3*ETA(22)+OCC4*ETA(23)+OCC5*ETA(24) 
;;---------------------------------- PK MODEL ---------------------------------- 
; - MDZ - 
    TVVC   = THETA(1)+INH2*THETA(25) 
    VC      = TVVC*EXP(ETA(2))    ; central compartment volume 
    
    TVVP1   = THETA(2) 
    VP1      = TVVP1*EXP(ETA(5))     ; peripheral compartment1 volume 
 
    TVVP2   = THETA(3) 
    VP2     = TVVP2                   ; peripheral compartment2 volume 
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    TVQP1   = THETA(4) 
    QP1     = TVQP1*EXP(ETA(6))      ; intercompartmental clearance (PER1) 
     
    TVQP2   = THETA(5) 
    QP2       = TVQP2                ; intercompartmental clearance (PER2) 
 
    TVQMET   = THETA(10)+INH1*THETA(26)+INH2*THETA(26)+IND*THETA(27)      
    QMET    = TVQMET*EXP(ETA(3)+IOQMET) ; 1-OH MDZ systemic formation rate 
 
    TVF1     = THETA(7)+INH1*THETA(28)+INH2*THETA(28)+IND*THETA(29)  
    F1       = TVF1*EXP(ETA(7)+IOF1) ; availability of parent+metabolite 
 
    FM = 1                          ; fraction metabolised, fixed to 1 
 
; - 1-OH MDZ - 
 
  TVKMET     = THETA(8)+INH1*THETA(30)+INH2*THETA(30)+IND*THETA(31)  
  KMET     = TVKMET*EXP(ETA(8)) ; pre-systemic metabolism rate 
     
  TVVMET    = THETA(9)                 
  VMET    = TVVMET*EXP(ETA(1)) ; metabolic central compartment volume 
     
  TVCLM     = THETA(11)+INH1*THETA(32)+INH2*THETA(33)+IND*THETA(34)   
  CLM        = TVCLM*EXP(ETA(4)+IOCLM)  ; metabolic clearance 
     
  TVVMP     = THETA(12)                  
  VMP     = TVVMP    ; volume of metabolic peripheral compartment 1 
     
  TVQMP      = THETA(13)*(WT/70)**THETA(24)  
  QMP        = TVQMP*EXP(ETA(9)) ; metabolic inter-compartmental clearance 1 
 
  TVVMP2    = THETA(14)                   
  VMP2    = TVVMP2 ; volume of metabolic peripheral compartment 2       
     
  TVQMP2     = THETA(15)                  
  QMP2       = TVQMP2 ; metabolic inter-compartmental clearance 2 
   
  IF(ANA.EQ.0) KA = THETA(6)           ; absorption rate constant 
  IF(ANA.EQ.1) KA = KMET   ; first-pass/pre-systemic metabolism rate 
 
  K23    = QP1/V2     
  K32    = QP1/VP1 
  K24    = QP2/V2 
  K42    = QP2/VP2 
  K56    = QMP/VMET 
  K65    = QMP/VMP 
  K57    = QMP2/VMET 
  K75    = QMP2/VMP2 
  K2M    = FM*QMET/V2 
  KM0    = CLM/VMET 
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  S2=V2 
  S5=VMET 
;;======================== DIFFERENTIAL EQUATIONS ============================   
$DES 
  DADT (1) =  - KA*A(1) - KMET*A(1)            
  DADT (2) =    KA*A(1) - K23*A(2) + K32*A(3) -  K24*A(2) + K42*A(4) -   K2M*A(2) 
  DADT (3) =                      K23*A(2) -  K32*A(3) 
  DADT (4) =                                                               K24*A(2) -  K42*A(4) 
  DADT (5) =   KMET*A(1) - K57*A(5) + K75*A(7) - K56*A(5) + K65*A(6) + K2M*A(2) - KM0*A(5)  
  DADT (6) =                                                                 K56*A(5) -  K65*A(6) 
  DADT (7) =                        K57*A(5) -  K75*A(7) 
;;============================== MODEL FIT ================================== 
$ERROR 
 
IPRED = F 
 
IPRED = A(2)/S2 
IF(ANA.EQ.1) IPRED = A(5)/S5 
 
FPROP1 = THETA(16) ; proportional residual error 
FADD1   = THETA(17) ; additive residual error 
FPROP2 = THETA(18) 
FADD2   = THETA(19) 
FPROP3 = THETA(20) 
FADD3   = THETA(21) 
FPROP4 = THETA(22) 
FADD4   = THETA(23) 
FPROP5 = THETA(35) 
FADD5   = THETA(36) 
FPROP6 = THETA(37) 
FADD6   = THETA(38) 
 
IF(TRT.NE.2.AND.ANA.EQ.0.AND.TIME.LE.0.5)  W = SQRT((FPROP1**2)*(IPRED**2)+(FADD1**2))  
IF(TRT.NE.2.AND.ANA.EQ.0.AND.TIME.GT.0.5) W = SQRT((FPROP3**2)*(IPRED**2)+(FADD3**2))  
IF(TRT.NE.2.AND.ANA.EQ.1.AND.TIME.LE.0.5)  W = SQRT((FPROP2**2)*(IPRED**2)+(FADD2**2))  
IF(TRT.NE.2.AND.ANA.EQ.1.AND.TIME.GT.0.5) W = SQRT((FPROP4**2)*(IPRED**2)+(FADD4**2)) 
IF(TRT.EQ.2.AND.TIME.LE.1.5) W = SQRT((FPROP5**2)*(IPRED**2)+(FADD5**2)) 
IF(TRT.EQ.2.AND.TIME.GT.1.5) W = SQRT((FPROP6**2)*(IPRED**2)+(FADD6**2)) 
 
Y1  =  IPRED+W*EPS(1)       ; MDZ prediction [P] 
Y2  =  IPRED+W*EPS(2)        ; 1'-OH MDZ prediction [P] 
 
IRES= DV - IPRED 
IWRES = IRES/W 
 
Y = ANA*Y2+(1-ANA)*Y1 ; Combine both analytes for predictions 
IF(ICALL.EQ.4.AND.Y.LE.0) Y=0.0001 
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;;=========================== INITIAL ESTIMATES ===============================  
$THETA   
 19.4929 FIX  ; 1 VC L 
 41.28 FIX  ; 2 VP1 L 
 23.679 FIX  ; 3 VP2 L 
 8.1232 FIX  ; 4 QP1 L/h 
 45.4305 FIX  ; 5 QP2 L/h 
 0.68347 FIX  ; 6 KA parent /h 
 0.931754 FIX  ; 7 F1 
 1.59436 FIX  ; 8 KMET /h 
 178.663 FIX  ; 9 VMET L 
 24.2406 FIX  ; 10 QMET L/h 
 199.081 FIX  ; 11 CLM L/h 
 695.65 FIX  ; 12 VMP L 
 60.2326 FIX  ; 13 QMP /h 
 64.9128 FIX  ; 14 VMP2 L 
 128.035 FIX  ; 15 QMP2 /h 
 0.500352 FIX  ; 16 FPROP1 
 0 FIX   ; 17 FADD1 
 0.542515 FIX  ; 18 FPROP2 
 0.00001 FIX  ; 19 FADD2 
 0.147547 FIX  ; 20 FPROP3 
 0 FIX   ; 21 FADD3 
 -0.215408 FIX  ; 22 FPROP4 
 0.00001 FIX  ; 23 FADD4 
 1.177 FIX  ; 24 QMP~WT 
 23.1644  ; VC~INH2 
 -14.0604  ; QMET~INH 
 38.6969  ; QMET~IND 
 0.777008  ; F1~INH 
 -0.391097  ; F1~IND 
 -1.03554  ; KMET~INH 
 1.56394  ; KMET~IND 
 -78.6676  ; CLM~INH1 
 1159.2  ; CLM~INH2 
 -47.3111  ; CLM~IND 
 0.531725  ; FPROP5 
 0 FIX   ; FADD5 
 -0.309011  ; FPROP6 
 0 FIX   ; FADD6 
 
$OMEGA  BLOCK(2) FIX 
 0.119028  ;   IIV_VMET 
 0.0811696 0.135856  ;     IIV_VC 
 
$OMEGA   
 0.00678604  FIX  ; IIV_QMET 
 0.0221803  FIX    ; IIV_CLM 
 0.173052  FIX      ; IIV_VP1 
 0.249102  FIX      ; IIV_QP1 
 0.0468617  FIX    ; IIV_F1 
 0.0848403  FIX    ; IIV_KMET 
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 0.303653  FIX     ; IIV_QMP 
 
$OMEGA  BLOCK(1) FIX 
 0.0230267   ; IOV FOR QMET 
$OMEGA  BLOCK(1) SAME 
$OMEGA  BLOCK(1) SAME 
$OMEGA  BLOCK(1) SAME 
$OMEGA  BLOCK(1) SAME 
 
$OMEGA  BLOCK(1) FIX 
 0.0904157   ; IOV FOR CLM 
$OMEGA  BLOCK(1) SAME 
$OMEGA  BLOCK(1) SAME 
$OMEGA  BLOCK(1) SAME 
$OMEGA  BLOCK(1) SAME 
 
$OMEGA  BLOCK(1) FIX 
 0.0261093   ; IOV FOR F1 
$OMEGA  BLOCK(1) SAME 
$OMEGA  BLOCK(1) SAME 
$OMEGA  BLOCK(1) SAME 
$OMEGA  BLOCK(1) SAME 
 
$SIGMA   
 1  FIX  ;   MDZ proportional 
 1  FIX  ;   1’-OH MDZ proportional 
;;======================== ESTIMATION METHOD =============================== 
$ESTIMATION METHOD=1 INTERACTION MAXEVAL=9999 NOABORT PRINT=5 NSIG=3 ; FOCE-I 
$COVARIANCE PRINT=E 
;;=============================== TABLES ====================================  
$TABLE       ANA ID TIME AMT DOSE CMT MDV EVID RATE SEX AGE WT STDY VIS 
              TRT TRT3 TRT2 STYP ETAS(1:LAST) IPRED IWRES CIPRED CPRED 
              CRES CWRES CIWRES NOPRINT ONEHEADER FILE=sdtab247.69 
 
$TABLE       ANA ID CLM V2 VP1 VP2 VMET VMP VMP2 QP1 QP2 QMET QMP QMP2 KA 
              F1 KMET TRT TRT2 SEX AGE WT FPROP1 FADD1 FPROP2 FADD2 
              FPROP3 FADD3 ETAS(1:LAST) IPRED IWRES CIPRED CPRED CRES 
              CWRES CIWRES NOPRINT ONEHEADER FILE=patab247.69
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