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Beschleunigte neuromorphe Kybernetik:

Beschleunigte analog-digitale neuromorphe Hardware beschreibt elektronische Sys-
teme, die elektrophysiologische Aspekte biologischer Nervensysteme auf beschleu-
nigte Weise in analogen Spannungen und Strémen emulieren. Wéahrend die funk-
tionale Bandbreite dieser Systeme bereits viele beobachtete neuronale Fahigkeiten,
wie etwa Lernen oder Klassifizieren, abdeckt, bleiben einige Bereiche noch weit-
gehend unerschlossen. Mitunter betrifft dies kybernetische Szenarien, in denen
Nervensysteme in geschlossener Interaktion mit ihren Kérpern und Umgebungen
stehen. Da die Steuerung von Verhalten und Bewegungsablédufen in Tieren sowohl
den Zweck als auch die Entstehungsursache von Nervensystemen darstellt, sind
solche Prozesse in der Natur jedoch von essentieller Bedeutung. Neben dem
Entwurf neuromorpher Schaltkreis- und Systemkomponenten ist der Hauptge-
genstand dieser Arbeit deshalb die Konstruktion und Analyse beschleunigter
neuromorpher Wesen, die in kybernetische Wirkungsketten eingebunden sind.
Dabei handelt es sich zum einen um die Beschreibung eines beschleunigten
mechanischen Roboters, zum anderen um ein beschleunigtes virtuelles Insekt. In
beiden Féllen sind die sensorischen Organe, sowie die Aktuatorik ihrer kiinstlichen
Korper aus der Neurophysiologie der biologischen Vorbilder abgeleitet und so
originalgetreu wie moglich nachgebildet. Dariiber hinaus werden die beiden
biomimetischen Organismen jeweils einer evolutiondren Optimierung unterzogen,
die die Vorteile beschleunigter neuromorpher Nervensysteme durch signifikante
Zeitersparnis verdeutlicht.






Accelerated neuromorphic cybernetics:

Accelerated mixed-signal neuromorphic hardware refers to electronic systems
that emulate electrophysiological aspects of biological nervous systems in analog
voltages and currents in an accelerated manner. While the functional spectrum
of these systems already includes many observed neuronal capabilities, such as
learning or classification, some areas remain largely unexplored. In particular,
this concerns cybernetic scenarios in which nervous systems engage in closed
interaction with their bodies and environments. Since the control of behavior
and movement in animals is both the purpose and the cause of the development
of nervous systems, such processes are, however, of essential importance in
nature. Besides the design of neuromorphic circuit- and system components, the
main focus of this work is therefore the construction and analysis of accelerated
neuromorphic agents that are integrated into cybernetic chains of action. These
agents are, on the one hand, an accelerated mechanical robot, on the other hand,
an accelerated virtual insect. In both cases, the sensory organs and actuators
of their artificial bodies are derived from the neurophysiology of the biological
prototypes and are reproduced as faithfully as possible. In addition, each of
the two biomimetic organisms is subjected to evolutionary optimization, which
illustrates the advantages of accelerated neuromorphic nervous systems through
significant time savings.
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1 Motivation

"Oddly enough, it was only in 2040 that the
informationists, cipher theorists, and other experts
expressed surprise at how their predecessors could have
been so blind for so long, struggling to create artificial
intelligence. After all, for the overwhelming majority of
tasks performed by people in 97.8 percent of both blue-
and white-collar jobs, intelligence was not necessary.
What was necessary? A command of the situation, skill,
care, and enterprise.”
— Stanistaw Lem, Weapon systems of the 21st century
or The upside-down evolution, 1983

1.1 Agents and cybernetics

In his book, Stanistaw Lem writes from a fictitious future perspective about the
developments of artificial intelligence in the 21*" century. What can be attested 37
years after the story was published is that scientists and engineers are still struggling
to create true artificial intelligence and that a vast number of jobs indeed require "[a]
command of the situation, skill, care, and enterprise". Debatable, however, is perhaps,
whether intelligence may not be precisely that essential prerequisite for the listed
aspects that Lem contrasts it with. The etymology of the term intelligence reveals a
Latin origin from the word intelligentia that describes insight and understanding,
and thus, a rather abstract class of anthropogenic mental phenomena. Given Lem’s
intellectual background (Lem, 1981), this is probably where the distinction between
the aforementioned aspects of practical action and intelligence arises from. Seen
from another perspective though, the distinction may fade:

Having insight or understanding of a phenomenon is usually claimed when a
set of representations (either formal or mental) have been found that are precise
enough to reliably reconstruct, i.e. predict, the phenomenon. Information on the
phenomenon must therefore somehow be communicated to the understander, and the
understander must somehow be able to communicate his understanding back in order
to prove it. In the context of the natural sciences, the evidence for understanding
must be given formally, i.e., symbolically. A football player on the other hand
can prove his understanding of the game by his skills on the playing field. Insofar,
understanding or insight is always related to communication, i.e., either physical
action, formal language, or at the very least thinking.

Language, however, is formed by information exchange between individuals, which,
in turn, relies on physical processes.
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Logical thinking can be regarded as an interaction of the mind (the thinking entity)
with abstract ideas and their consequences. In a way, vocabulary and grammar are
to the mind, what objects and forces are to the hands.

The spirited term intelligence is therefore intrinsically related to interaction,
either formally, mentally, or physically, while the distinction between the three
is not so relevant from a high-level perspective. Norbert Wiener referred to the
science and phenomena related to "control and communication in the animal and
the machine" as cybernetics (Wiener, 1948) instead. The neo-Greek expression
derives from kybernetes (steersman) and means steersmanship. To maneuver a
vessel, a steersman must be versed in physically controlling the rudder, but also in
mastering symbolic navigation. Unlike intelligence, cybernetics directly implies an
exchange of information beyond mere understanding. One could say that cybernetics
describes the application of intelligence, in terms of recognition and action, as well
as intelligence itself. In Lem’s story, it would comprise both, symbolic artificial
intelligence, as well as what is necessary for the other 97.8 percent.

According to Wiener (1948), a cybernetic situa- controller/

tion always implies a control loop that is formed / agent \

by an acting agent (steersman), a set of actu-  sensors actuators
ators (rudder), a feedback medium (water and N feedback /
vessel), and a set of sensors (eyes, compass). In medium

neuroscience, this exact scheme became known
today as a closed-loop situation (Ejaz et al., 2013;
Potter et al., 2014; El Hady, 2016; Zhao et al., 2020). Why the much more precise,
and already well-defined term cybernetics became forgotten and replaced by a more
ambiguous, indeclinable, and awkward word compound appears somewhat nebulous.
Cariani (2010) reports that the two movements artificial intelligence and cybernetics
"coexisted for roughly a decade, but by the mid-1960s, the proponents of symbolic
Al gained control of national funding conduits and ruthlessly defunded cybernetics
research. This effectively liquidated the subfields of self-organizing systems, neural
networks and adaptive machines, evolutionary programming, biological computation,
and bionics for several decades, leaving the workers in management, therapy and
the social sciences to carry the torch." Be that as it may, in this thesis, the term
cybernetics is extensively employed for its semantic excellence and grammatical
superiority. In suitable situations, however, closed-loop is used as well.

Figure 1.1: A cybernetic loop.

Cybernetic experiments that involve neuromorphic agents are at the center of this
thesis. Neuromorphic is another neo-Greek expression that roughly translates to
'shaped like nerves'. The term was introduced by Carver Mead to describe large
scale integrated electronic circuits that mimic networks of biological neurons (Mead,
1990). The neuromorphic system, on which the experiments presented in this thesis
were carried out, is the second generation of the BrainScaleS system. BrainScaleS-
2 is a multi-scale neuromorphic computing substrate that is being developed at
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Heidelberg University within the Human Brain Project (HBP). While it is covered
in extensive detail in later section 2.2 and chapter 3, it is relevant to note here that
BrainScaleS-2 is substantially a family of mixed-signal microchips. I.e., both analog
and digital electronic integrated circuits are combined to mimic biological neurons
and synapses in a way that faithfully reproduces their dynamic behavior. Especially,
the membrane potential, i.e. the voltage across a neuron’s cell membrane, and the
spike-based communication are reproduced (see section 2.1).

In addition, the chip’s analog neural networks are tightly coupled to a conventional
digital processing unit, on which arbitrary control or learning algorithms can be
implemented and executed in parallel to the artificial neural processes. Moreover,
the network dynamics evolve significantly faster as compared to biological cells, that
is to say, in an accelerated way.

Besides research on accelerated neuromorphic cybernetics, as the document’s
title promises, parts of this thesis also involve engineering on BrainScaleS-2. In
particular, a highly parallel analog-to-digital converter (ADC) that is involved in
on-chip learning and inference tasks has been designed and implemented. Based on
the data collected by the ADC learning or calibration algorithms can take decisions
and actions on the network parameters. The ADC is therefore designed to take part
in another class of cybernetic control loops: In this context, they are formed between
the on-chip digital processor (agent) that takes action on the network parameters
(actuators) which, in turn, influence the neural network (feedback medium) what
is finally sensed by the ADC (sensor). The technical details together with some
evaluation and experimental results are part of section 3.5.

Unlike tightly specified conventional engineering projects, neuromorphic systems
are being developed together with the understanding of the substrate that they
emulate. The more capable neuromorphic systems become, the more can be learned
about both, their own function, as well as the emulated biological substrate. For
example, during the last five years, i.e., the period of the author’s doctoral studies,
multiple paradigm shifts concerning learning rules for spiking neural networks
occurred. Most importantly, the successes of what is commonly known as deep
learning (Schmidhuber, 2015) spilled over from the application-oriented field of
machine learning to the rather academic discipline of computational neuroscience.
In particular, the core-concept of deep learning, i.e. error backpropagation, has since
been translated in many different ways from continuous artificial to spiking neural
networks (Lee et al., 2016; Sacramento et al., 2018; Zenke and Ganguli, 2018; Bellec
et al., 2019, 2020).

However, most of these theoretical advances are not specifically concerned with
cybernetic agent-environment systems. l.e., situations where a nervous compound
takes some sort of control over an external system from which it receives feedback
according to its actions. Instead, the majority of them assumes feedforward situations,
where data enters the neural network and leaves it in a processed state, which is
then evaluated by the experimenter or the learning rule. The data might be pictures,
videos, or text, and the output might be labels (in classifying networks), or again
pictures, videos, or text (in autoencoders, or transformer networks). In these cases,
from a cybernetic perspective, the network can be regarded as the feedback medium,
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its quantified performance as the sensor signal, and the learning rule as the agent who
is taking action on the network parameters. While this architecture is optimized for
studying learning rules, it tends to bring neural networks into unnatural situations.

First, neural networks (in nature) always operate in feedback scenarios. Even
a single nerve cell is always part of a feedback loop, as its action causes effects in
the surrounding network or muscle tissue that necessarily reflect back at it in some
way (Brette, 2013; El Hady, 2016). This behavior is partly covered in recurrent
neural networks but lacking in typical multilayer feedforward networks. Second,
natural neural networks do not operate in a batch-like manner. I.e., they are not
consecutively switched on for the time of the classification or generation and then
switched off again for parameter updates, but they can operate continuously and
are observed to do both, inference and learning, in parallel.

However, there are of course also research areas that are concerned with more
organic and biologically plausible embeddings of neuronal networks. One example
is so-called online learning rules that apply parameter updates while the networks
are actively classifying. Although these rules contribute to the problem of parallel
inference and learning, they do not specifically address the agent-environment loop.

Reinforcement learning would be a counterexample where this loop is of central
interest (Frémaux et al., 2010, 2013; Frémaux and Gerstner, 2016; Wunderlich
et al., 2019). Here, interacting agents are observed for a certain amount of time
and afterward evaluated for their performance. A scalar reward signal is then
incorporated into the learning rule that usually updates the network parameters
after several evaluation cycles.

Apart from learning scenarios, agent-environment loops are also at the focus of
neurorobotics. Here, the goal is to employ neural substrates for controlling physical
or virtual robots, with or without learning. General examples can be found in Doya
and Uchibe (2005); Ijspeert et al. (2007); Rucci et al. (2007); Cox and Krichmar
(2009); Manoonpong et al. (2013); Vannucci et al. (2015); Stone et al. (2017); Knight
et al. (2019). The resulting kinetics of these robots, however, are in almost all cases
on the same time scale as the biological paragons. I.e., their movements resemble
those of biological agents in terms of speed and acceleration.

In contrast, the neurorobotic experiments, which are part of chapter 4, cope with
the thousandfold acceleration of BrainScaleS-2. For that purpose, a specialized
but still versatile robotic platform has been developed that contains interfaces
for converting neural signals into motor commands and sensor information into
neural signals. The design and construction process of this setup, as well as several
experiments, are outlined in this thesis.

Apart from this physical robotic agent, a virtual cybernetic creature is introduced
in chapter 5. In this experiment, a bee-like agent has to return to its nest after
foraging in a simulated environment. The insect’s body, actuators, and sensors are
implemented in accelerated real-time on the digital coprocessor of BrainScaleS-2,
while an anatomically-derived network model runs in parallel on the chip’s analog
core. Despite being extremely small (even for insect standards), this neuromorphic
brain masters its task robustly and with precision.

According to Lem, not only navigation, but all the other qualities that are
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necessary for the "blue- and white-collar jobs', i.e., "[a] command of the situation,
skill, care, and enterprise' can "be found in insects" too.

1.2 Insect brains

"The wasp may have enough nerve tissue to drive a
truck from a port to a distant city or to guide a
transcontinental rocket. It is only that its nervous
system was programmed by natural evolution for
completely different tasks. Successive generations of
information theorists and computer scientists had
labored in vain to imitate the functions of the human
brain in computers; stubbornly they ignored a
mechanism a million times simpler than the brain,
incredibly small, and remarkably reliable in its
operation. Not artificial intelligence but artificial
instinct should have been simulated for programming at
the outset."
— Stanistaw Lem, Weapon systems of the 21st century
or The upside-down evolution, 1983

What Lem refers to by artificial instinct is, in terms of the above considerations
and opposed to symbolic intelligence, the intelligence behind action. Again, it can
be attested 37 years after Lem’s text appeared, that "successive generations of
information theorists and computer scientists had labored in vain to imitate the
functions of the human brain in computers'. And again, an aspect of his prognosis
remains debatable: whether or not insect brains have been ignored in research since
then.

To get hints about certain trends or interests in popular as well as in scientific
literature, the Google Books Ngram Viewer (Michel et al., 2011) can be consulted.
This online service extracts the relative occurrence of certain terms or word combi-
nations in the published literature from Google’s vast archive of millions of digitized
books. The data for 'human brain’ and ’insect brain’ is plotted in figure 1.2. After
the interest in both topics increased from the end of the 1940s until around 1965,
only the interest in ’human brain’ continued to grow at about the same pace. The
appearance of ’insect brain’ stagnated instead. Lem’s prediction might therefore
hold to a certain extent, at least as far as the published interest in the two topics in
relation to each other is concerned.

Further evidence is that the number of neurons in brain simulations, in particular
those that concern mammalian brains, continuously increased over time reflecting a
certain amount of effort going into that direction. There are manifold motivations
behind this, of which four important ones are listed below.

First, there are brain areas that intrinsically require high dimensional processing
capabilities, like for example the visual cortex (see section 4.2.2). Without large
network simulations, these areas are hard to study in a biologically plausible manner.
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Second, a cortical area of only 1mm? contains already ~ O(10°) neurons and

~ O(10%) synapses (Keller et al., 2018). Due to this high neuron density, even small
mammalian brains, like those of rodents, consist of ~ O(10%) neurons (Herculano-
Houzel et al., 2006), which is still a very challenging number for today’s simulation
engines.

Third, pushing for large-scale brain simulators is a practical way to incentivize the
development of novel computing technologies in a goal-driven way (section 2.2). E.g.,
the HBP as one of the Future and Emerging Technology Flagships of the European
Union relies partly on this strategy. Also companies like Intel and IBM recently
invested large-scale efforts into that direction (Merolla et al., 2014; Davies et al.,
2018).

Fourth, practical applications in machine learning can evidently benefit from larger
networks. Particularly in the recent decade, many nontrivial problems were solved
predominantly because a larger amount of computing resources became available
(He et al., 2015; Radford et al., 2019; Brown et al., 2020). Among those successes
were some that were predicted to occur at least a decade later (Bostrom, 2017; Silver
et al., 2016, 2017; Vinyals et al., 2019).

However, achievements, which have to the largest amount resulted from a sheer
increase in available computing resources (winning Go, beating Humans in image
classifications, etc.), currently likely outweigh the achievements that should be aimed
for in a scientific context: insight and understanding. Some researchers in artificial
intelligence are even expecting general artificial intelligence (which mostly refers
to one that passes the Turing test (Turing, 1950)) to miraculously emerge from
upscaled networks (Bostrom, 2017; Koch, 2019), implying that the problem has
already been solved and is only waiting for its substrate.

So far, however, machine learning revealed a huge potential in terms of symbolic
artificial intelligence but also a tremendous lack of practical intelligence. I.e., most
of these networks achieve superhuman performance in pattern recognition but
they continuously produce errors that reflect their misunderstanding of the actual
underlying structure (Nguyen et al., 2015; Moosavi-Dezfooli et al., 2016; Papernot
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et al., 2016; Geirhos et al., 2017). For example Su et al. (2019) showed that a
number of image classifiers could reliably be fooled by single-pixel attacks. E.g.,
they recognized a frog instead of a horse, because one pixel was manipulated.

Other examples were generated by GPT-3 (Brown et al., 2020), a generative
language model that is based on a gigantic neural network with 175 billion parameters.
The following excerpt from a tale written by GPT-3 about some mice living at the
Yangtze river (gwern.net and GPT-3, 2020) might illustrate the type of confusion
these networks have between the mere structure of language, which they master
at superhuman performance, and the underlying reality, that they do not seem to
protrude: '[...] While they were swimming, another giant fish appeared. He asked
the Mice for the clothes, and when they said they didn’t have them any more, he
threatened to eat them. So, the Mice swam away as fast as they could. And while
they were swimming, another giant fish appeared. This time it was a tiger. [...]"!
So while the network can spin an exciting story, even using rhetorical elements, it
appears to not realize that fish do not suddenly emerge as tigers usually.

Recently, Hermann Haken, the founder of synergetics (Haken, 1980), a theory
about self-organization, both in dead and living matter (Haken and Haken-Krell,
1989), was asked why synergetics is yet ignored by the majority of the machine
learning and computational neuroscience community (Haken, 2018). Haken answered,
"What people are doing, I have to say, is that they are always building a certain
model, [...] but there are no penetrating concepts that you can see. [...] So I have to
say that, in my opinion, there is too much tinkering and too little theory. Or take
Deep Learning today, with all these layers. It’s like training a wild animal: in many
cases, it works, but sometimes it bites. And especially with Deep Learning, nobody
knows how it works."? The sudden tiger in GPT-3’s story, might be one of the wild
animals that Haken was referring to.

Let us turn back the focus on biological networks. Similar to machine learning,
there is a trend to scale up network sizes to search for emergent phenomena or to
reconstruct what is being observed in biology (Kunkel et al., 2014; Jordan et al.,
2018; Igarashi et al., 2019). While research on these large-scale networks is of course
justified and evidently produces outstanding results, for the most part, it confirms
what is already known or suspected. Its main yield, so far, is to confirm existing
theories (Reimann et al., 2013; Markram et al., 2015).

!The author of the current document warmly recommends enjoying a few of the stories of GPT-3
on the above-referenced website.

2This quote has been translated by the author of this thesis from what Haken said in German.
The actual quote is "Was die Leute da machen, muss ich leider sagen, ist, dass sie immer nur
ein bestimmtes Modell basteln, [...], aber es gibt keine durschschlagenden Konzepte, die man
sieht. [...] Ich muss also schon sagen, dass in meinen Augen da zu viel Bastelei dabei ist und zu
wenig Theorie. Oder nehmen Sie Deep Learning heutzutage, mit diesen vielen Schichten. Das
ist so als wiirde ich ein wildes Tier dressieren: in vielen Fallen funktioniert es, aber manchmal
beiflt es doch. Und gerade beim Deep Learning weifl kein Mensch, wie’s funktioniert." The
question has been posed by Yulia Sandamirskaya, who is also conducting research on cybernetic
neuromorphic agents (Sandamirskaya et al., 2011; Milde et al., 2017) at the University and
ETH Zurich.



1 Motivation

On the other hand, it appears that computational neuroscience that focuses on
functional principles in smaller-scale networks (~ O(10%) neurons), continuously
achieves valuable scientific output in terms of new theories. Especially research on
learning rules (Neftci et al., 2014; Zenke and Ganguli, 2018; Sacramento et al., 2018;
Bellec et al., 2019), and architectural and functional models (Stone et al., 2017;
Masoli et al., 2020; Miiller et al., 2020; Zhao et al., 2019) relies mostly on small-scale
simulations. But while there is in fact a lot of research on small networks, there
still lies an ocean of unresearched phenomena calm and often only softly touched by
funding at scales that are already long within the reach of classical and neuromorphic
computing (Turner-Evans and Jayaraman, 2016; Sarma et al., 2018; Xu et al., 2020).
Moreover, it must be recognized that networks with only O(100) neurons remain far
from being well-understood (Leng et al., 2018; Cramer et al., 2020b; Haluszczynski
et al., 2020). As long as that is the case, does it not seem much more obvious to
start with small, relatively simple brains before tackling the most complicated ones?

Lem’s prediction about misguided research on the human brain, therefore, does
not seem completely audacious, but it is certainly not entirely accurate either.
Considering artificial instinct though, one could still argue that at least a certain
imbalance in favor of feedforward instead of feedback loops still exists today. However,
for some years now also this gap is closing gradually, mainly driven by biological
closed-loop experiments with small mammals, fish, or insects. An impressive example
was given recently (Huang et al., 2020) by experiments on larval zebrafish which
are so transparent that their brains can be imaged noninvasively. Furthermore, the
fish can genetically be modified to express fluorescent proteins that are sensitive to
calcium concentrations. Since neural membrane potentials are intrinsically bound
to calcium concentrations, this fluorescence directly reflects neural activity. Using
fluorescence microscopy, this method can allow for recording the entire brain activity
of a fish at single-cell level accuracy in real-time (Ahrens et al., 2013).

Huang et al. (2020) used fast digital image analysis to infer the intended motion
of a fish that was tethered for this type of imaging. They used these movement
signals to steer a simulated agent through a virtual environment. Similar to a video
game, the simulation produced visual feedback that was presented to the tethered
animal via computer screens, effectively creating a virtual reality for zebrafish. In
this way, both, the animal’s behavior as well as its cell-level brain-wide activity can
be observed and interacted with in real-time.

This work aims at developing a deeper understanding of small-scale networks
on analog neuromorphic hardware. In addition, it seeks to explore the immense
capabilities of such miniature brains with a specific focus on biologically inspired
cybernetic agents. On the one hand, this is pursued with the above mentioned
robotic platform that combines BrainScaleS-2 with emulated nervous sensors and
motor organs into an accelerated electromechanical organism.

On the other hand, this approach is taken in chapter 5 by implementing a fully
autonomous insectoid agent that uses a neuromorphic nervous system to spatially
navigate through a virtual environment. This experiment confirms that, when
small-scale neural arrangements are considered carefully, only 17 neurons can be
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sufficient to make an artificial bee find its way back to its nest.

This PhD thesis is intended as a contribution to the transition from widespread
symbolic artificial intelligence to skilled artificial instinct before the year 2040.






2 Background

"Intelligent life on a planet comes of age when it first
works out the reason for its own existence."

— Richard Dawkins

2.1 Biology

2.1.1 Shape of nervous systems

The first considerably detailed pictures of nervous systems became available with an
improved sliver staining technique presented by Camillo Golgi in 1873 (Finger, 2001;
Grant, 2007). Golgi himself first interpreted what he saw not as a separated but
as a continually connected giant structure of delicately branched cell tissue. A few
year later, Ramon y Cajal discovered that this immense web was indeed separated
into many single cells (y Cajal, 1888; Cimino, 1999). y Cajal (1888) provided visual
evidence, collected by means of Golgi’s staining method, that the nerve cells were not
continuous but separated in the brains of adult birds (DeFelipe, 2015). Figure 2.1
shows the title page of this seminal article, some of the micrographs that were
obtained in his measurements, and a few of Cajal’s famous drawings. The term
neuron was coined a little later by Waldeyer (1891) (Scheuerlein et al., 2017).

Figure 2.2 gives a more detailed and contemporary schematic illustration of a
typical neuron and how it is connected to its surrounding. Like most other animal
cells, also neurons contain the basic eucaryotic set of organelles and proteins that
are relevant for its metabolism, structure and life cycle (Alberts et al., 2007). Unlike
other cells, however, neurons have a very unique shape and some special features
related in particular to their cell membrane. Around their cell body, called the soma,
unfold many long and finely branched structures, the dendrites. Together, these
dendrites constitute the dendritic tree, which provides the primary membrane area
for other neurons to dock at. On one side of the neuron, at the azxon hillock, the
cell membrane tapers into a thin tube, the axon, which can extend over distances
from about 0.1 mm to 2m in the case of humans (Kandel et al., 2013). The axon
can also branch out but usually not as much as the dendrites. The primary function
of the axon is to transport information in terms of time-varying electrical potentials
from the soma to other neurons at potentially distant locations. It is surrounded
by myelin sheaths, which grow out of the so-called Schwann cells. These sheaths
provide increased electrical insulation between the cytosol and the extracellular
space, resulting in a substantially increased transmission rate for the electrical signals
(Kandel et al., 2013). The axon docks at other neurons via synapses.
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Las investigaciones de Golgi sobre la textura de los centros nervio-
s0s han abierto una nueva era de investigaciones cuyo término no se
vislumbra, pues si bien el método analitico descubierto por este autor
permite resolver algunos problemas de estructara, ha servido también
para peagr sobre el tapete cuestiones nuevas y dificilisimas. Tal es, por
ejemplo, la conexién de las células, imposible de discernir en las mejo-
res preparaciones de los centros, y tal es también la disposicién y termi-
naciones de las ramitas laterales de la prolongacién nerviosa, ora sensi-
tiva, ora motriz, que todos los corpisculos ofrecen.

No tenemos nosotros la pretension de resolver estos problemas: etim-
plenos por ahora solamente exponer el resultado de nuestras investiga~
ciones sobre el sistema nervioso de las aves, particularmente del cerebe-
lo, que serd objeto de esta primera comunicacion. 3

El método analitico utilizado es el que Golgi recomienda en su me-
morable trabajo (1) y el que han seguido para sus notables investigacio-
nes Fusari (2), Tartuferi (3) y Petrone (4)-

De los tres métodos de induracion que Golgi recomienda para que
las piezas puedan recibir la accion del nitrato de plata, el que mejores re-
sultados nos ha dado es ¢l tercero (5) (maceracién de las piezas frescas

(1) Sulla fina Anatomia degli organi centrali del sistema nervioso, 1885. Milano.
diefeinere i i "Tel Intern.
1887.

retina. International Monalsschrift. fur Aat. wnd Fhy-

nerfs cerebrorrachidicus. fterst, Monatichrift, f. Auat.

wnd Physiol, 1888
(5) Loc. cit. p. 201, 6.

A

Figure 2.1: First illustration by Cajal (1888) of a Golgi impregnated preparation of
the nervous system. (A) First page of the article and (B) illustration whose legend
states: “Vertical section of a cerebellar convolution of a hen. Impregnation by the
Golgi method. A represents the molecular zone, B designates the granular layer and
C the white matter” . (C) photomicrograph from one of Cajal’s preparations of the
cerebellum of an adult bird stained with the Golgi method. (D) higher magnification
of (C) to illustrate a Purkinje cell and a basket formation (arrow). (E) dendrite of
the Purkinje cell which is covered with dendritic spines. The histological images
were obtained by Pablo Garcia-Lopez, Virginia Garcia-Marin, and Miguel Freire
(Legado Cajal, Instituto Cajal). Scale bar: 200 pm in (C); 60 pm in (D); 8.4 pm in
(E). Based on y Cajal (1888) and Oroquieta (2014). Figure and description are
taken from DeFelipe (2015). (CC BY).
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Figure 2.2: Detailed illustration of a neuron surrounded by other neurons. The

most important components for neural information processing are labeled. Based
on LadyofHats (2007).
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2 Background

The synapse comprises the cellular and extracellular space at the location where
the two neurons meet. It contains the synaptic cleft, which is the small volume
in between, and the neighboring cell volumes of both, the pre- and postsynaptic
neuron.

All models and descriptions within this thesis implicitly assume the neuron doctrine.
Le., it is assumed that the relevant part of nervous information processing is carried
out by neurons. Moreover, it is assumed that the relevant messaging between
different neurons happens only synaptically and via spike based transmission, if not
otherwise noted. The next section describes phenomena that are in relation to the
dynamics of the membrane potential.

2.1.2 Dynamics of neurons

Research on the electrical properties of biological tissue dates back to the late 18"
century, when Luigi Galvani found a connection between electrical voltage and
muscle reflexes in frogs. It happened almost simultaneously with Alessandro Volta’s
discovery of the battery (Piccolino, 1997). A more profound understanding of the
electrophysiological properties of individual cells came significantly later though.
An important landmark was the discovery of the action potential by Emil du
Bois-Reymond, which, however, has first precisely been described by Julius Bernstein
in 1868 (Bernstein, 1868; Seyfarth, 2006). The action potential is characterized as a
transient change in the voltage across the cell membrane and it later turned out
to be essential for information transmission in neural networks. To understand the
underlying electrochemical processes, it is vital to consider the resting potential first.

Resting potential

Almost all animal and plants cells have an electrical potential in the soma that is
different from outside the cell body. This resting potential is maintained by the
lipid bilayer of the cell membrane which acts as an electrical insulator, preventing
electrical current to flow directly through it. Instead, a large variety of proteinic ion
channels are embedded into the cell membrane and allow certain types of ions to flow
from the cytosol into the extracellular space more easily than others. In particular,
the neuron membrane is more permeable for potassium than, for example, for sodium
or calcium. In effect, the concentration gradient between the two membrane sides
equilibrates for potassium until the electrical potential that is mostly created by the
left-behind charges of the other ion types balances the outflux of potassium. This
electrochemical equilibrium results in a static potential of the cytosol with respect to
the extracellular space. Its amount depends on the various channel concentrations
and types within the membrane (Alberts et al., 2007; Kandel et al., 2013). In
addition to this passive ion diffusion, the resting potential is also influenced by
proteins that actively pump ions through the membrane under consumption of
adenosine triphosphate (ATP). Most important here is the Nat-K*-pump which
regulatorily counteracts the effect of passive Na™ and Kt diffusions. In neurons, the
sum of these mechanisms amounts to a voltage of around —70 mV with respect to
the extracellular space. The Nernst equation for nerve cells from which this potential

14
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Figure 2.3: Real and calculated action potentials. A/B: Solution of the Hodgkin-
Huxley equations plotted at two different time scales. C/D: Recorded action potential
from a squid axon. Taken from the original publication by Hodgkin and Huxley
(Hodgkin and Huxley, 1952a). Reprinted with permission from John Wiley and
Sons and Copyright Clearance Center. Copyright 1952 The Physiological Society.

can be calculated was also first derived by Bernstein (1902) and later extended and
generalized by Goldman (1943).

Action potential

However, the membrane potential Ve, of a nerve cell is not only found stable but
can also be influenced by external stimuli like current injections. Such influences take
approximately linear effect on Vi, over a range of a few mV. L.e., the membrane
voltage response is in proportion to the amount of the applied stimulus. Around a
certain threshold voltage V;y,, however, a nerve cell quickly depolarizes (on the order
of 1 ms) and increases Vi,em overproportionally. After reaching a maximum voltage
of about 30 mV to 40 mV, Ve quickly decreases again, hyperpolarizing to a value
Vieset = —90mV that is even lower than its resting potential.

The cause of this is another class of membrane proteins, voltage-gated ion channels
whose permeability is influenced by the voltage difference across the membrane. In
the hyperpolarization phase, the voltage increase is dominated by voltage-gated
sodium channels that increase the influx of Na™ ions from outside the cell, driven by
voltage and concentration differences. Being sensitive to an increase in voltage, this
mechanism creates a positive feedback on itself, increasing the Na™ permeability as
the voltage rises. At a certain voltage, however, this gets counteracted by mainly
three effects. One is that sodium approaches its electrochemical equilibrium, reducing
the speed at which ions flow through the open channels. The second effect is that
the voltage-gated Nat channels become inactive again when the voltage gets too
high. And the third effect is that at a certain voltage also voltage-gated K* channels
become active, increasing the permeability of sodium again, thus, causing Vi, to
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Figure 2.4: Circuit diagram of the Hodgkin-Huxley model taken from the original
publication (Hodgkin and Huxley, 1952a). Reprinted with permission from John
Wiley and Sons and Copyright Clearance Center. Copyright 1952 The Physiological
Society.

reapproach its original resting potential.

The high permeability for sodium, though, leads to a hyperpolarized membrane
state for a refractory period of around Tf &~ 2 ms, during which the neuron is unable
to undergo the same chain of de- and hyperpolarization. This entire cycle is called
action potential.

Its shape is very consistent over multiple repetitions. That is to say, the duration
and the amplitude can be considered constant for all action potentials of a specific
cell.

Hodgkin-Huxley model

The interplay of ion concentrations and permeabilities that has been described
above was first quantitatively and comprehensively summarized by Alan Hodgkin
and Andrew Huxley in an extensive series of papers in 1952 (Hodgkin and Huxley,
1952¢,b,d,a). The two succeeded in formalizing a set of differential equations that
can reproduce the kinetics of action potentials as observed in the giant axons of
squids. The significance of these equations can hardly be overstated, as they provided
the evidence, that the biochemical properties of the neuron, and in particular its
membrane, have been understood to a degree that allowed quantitative prediction.

The model’s equivalent circuit diagram is given in figure 2.4. Outside and Inside
denote the extracellular space and the cytosol, respectively. C); on the left side
represents the membrane capacitance of the entire cell. Ry,, Rx are variable resistors
that represent the inverse conductances of the sodium and potassium channels. Each
is connected to the outside of the cell compartment and to one of the voltage sources,
FEn, and Fg, which implement the Nernst potentials of the respective ion type. In
addition to the two ion channels, a third series of a voltage source and a resistor
is connected in parallel. Ej is the resting or leak potential of the neuron, i.e., the
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net potential that is achieved by all electrochemical balances and ion pumps in the
resting state. R; is the leak resistance that connects the cytosol to this potential.
C) (identical to Chen in later sections) and R; together define the membrane time
constant Tyem, i.€., the relaxation time with which the membrane decays back to its
resting state, when both currents Iy, and I are negligible. Although the circuit
seems to consist only of linear components, the resistances Ry, and Rx depend
nonlinearly on the voltage E across the membrane (Ve in later sections). Note
that, the circuit in figure 2.4 does not explicitly account for any external stimuli.

Figure 2.3 shows two action potentials at two different time scales, each. The top
row (A and B) shows the action potential as calculated from the Hodgkin-Huxley
equations. The bottom row (C and D) shows actual recordings from a squid axon
again for two different time scales. The difference in amplitude in D is explained by
the fact that the axon had already been used for several hours before the recording.
The model nicely reproduces the time scales, amplitudes, and the shapes of the
biological standard. However, most of the terms, in particular the sodium and
potassium currents and their nonlinear modulation, are mostly relevant to producing
the action potential. If the membrane is below Vjy, these term have negligible
behavior on the kinetics by but bloat the computational complexity of the model.
Especially for simulations that comprise networks of multiple cells, it is therefore
desirable to find simpler neuron models.

FitzHugh - Nagumo model

Many of these are based on substituting the various chemical potentials by a single
potential that represents the membrane voltage. A notable among them is the
FitzHugh - Nagumo model (FitzHugh, 1961; Nagumo et al., 1962), which replaces
the set of four highly nonlinear differential equations of the Hodgkin-Huxley model by
two much more compact differential equations with a single remaining nonlinearity.
Still, it is able to reproduce a vast range of observable cell phenomena (Izhikevich
and FitzHugh, 2006).

Another interesting aspect about it is that the second eponymous author did not
actually contribute to deriving the equations but presented an electronic circuit
that emulated them. The intended purpose of this circuit was to overcome the
attenuation and distortion that signals suffer from when traveling through (back then)
conventional pulse transmission lines. The authors speculated that "an electric pulse
signal which is transmitted along an animal nerve axon suffers neither attenuation
nor distortion, regardless of the distance covered'. Their intention was "to realize
such a pulse transmission line by simulating the animal nerve axon". (Nagumo et al.,
1962). This biomimetic approach to solving a technical problem that existed back
then is worth being contrasted with the approach of contemporary neuromorphic
engineering (section 2.2). The latter is ultimately concerned with overcoming current
technical limitations in large scale brain simulations by mimicing the architecture of
the brain itself.

17
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Figure 2.5: Equivalent circuit diagram of the LIF equations (equations (2.1)
and (2.2)). A synaptic input current Iy, flows on the membrane capacitor Cpep, that
holds the voltage Vijem. Moreover, a leak resistor Rje. connects the leak potential
Vieax to this node. If Vo becomes greater than V;;,, the comparator triggers a switch
that connects Vo, to the reset potential Vieeet. Thereafter, Viem = Vieset < Vin,
thus, opening the switch again.

Leaky integrate-and-fire model

An even further simplified mathematical neuron description is given by the leaky
integrate-and-fire (LIF) model (Gerstner et al., 2014; Petrovici, 2016). This model
entirely avoids nonlinearities in the differential equations by modeling the neural
dynamics without accounting for action potentials. Instead, the action potential is
substituted by a binary event that takes non-continuous action on the membrane
potential for a defined amount of time. Interestingly, the model was first proposed by
Louis Lapicque in 1907; long before Hodgkin’s and Huxley’s work (Lapicque, 1907;
Abbott, 1999). Lapicque’s model is not a set of equations derived from underlying
physical principles but a heuristic and successful attempt to model the behavior he
observed in real neurons phenomenologically.

The model consists of a continuous linear differential equation (equation (2.1))
and a conditional noncontinuous operation (equation (2.2)):

deem
Tmem * dt - (‘/ieak - Vmem) + Rleak . Isyn (21)
Vmem — ‘/reset if Vmem > V:ch (22)

Here, Viem, Vieaks Vieset, and Vi, are the membrane, leak, reset and threshold
potential, respectively. Tyem is the membrane time constant and R, the leak
resistance. Moreover, a synaptic input current Iy, is connected to the membrane
capacitor. Figure 2.5 shows the equivalent circuit schematic of these equations. As
long as Viem stays below Vi, Chem and Riea act as a low pass filter on the synaptic
input signals. The time constant of this filter is equivalent to the membrane time
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Figure 2.6: Bottom: Constructed synaptic input current, based on a superposition
of immediately rising and exponentially decaying current pulses. Top: Response of
the LIF equations (equations (2.1) and (2.2)) to this stimulus. The dashed horizontal
lines indicate the three potentials Vi, Vieak, Vieset, and the faint vertical lines the
onset of the current pulses from the lower plot. The parameters are Vigae = —70mV,
Vih = —=55mV, Vieset = —90mV, Ricax = 1 M, and Tem = 15 ms.

constant Tmem = Rieak * Cmem. Whenever no input is present, i.e. I, = 0, the
membrane potential decays exponentially back to the leak potential Vie... However,
as soon as Viem surpasses Vin, Viem gets connected to Vieser Via zero impedance,
thus, resetting the membrane state.

The resulting kinetics are illustrated in figure 2.6. The lower plot shows a
constructed synaptic input current, based on a superposition of immediately rising
and exponentially decaying current pulses. The top plot shows the response of
equations (2.1) and (2.2) to this stimulus. Between ¢ = 50 ms and ¢ = 150 ms, three
positive current pulses arrive on the membrane and cause the membrane potential
to almost reach V;;,. Between ¢t = 150ms and £ = 200 ms no stimulus occurs and
the membrane voltage decays back to Viea. At t = 200 ms another series of pulses
starts that is sufficient to force Vyem over the threshold voltage and therefore to
cause an action potential at ¢ ~ 270 ms. Of course, since nothing in equations (2.1)
and (2.2) accounts for it, the characteristic spike of the depolarization phase is
missing (compare to figure 2.3). Moreover, the refractory period 7 is zero, so the
LIF neuron from above would be able to fire again immediately after undergoing an
action potential.

A simple way to introduce a refractory period and thereby enhance the equations
biological plausibility is to replace the auxiliary reset mechanism (equation (2.2)) by
the following.

Y

tspike —t if Vmem > ‘Zch (23)
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Figure 2.7: Response of the LIF equations with a non-zero refractory period
(equations (2.1), (2.3) and (2.4)). The stimulus and the parameters are the same as
in figure 2.6, except for 7o = 3ms. The dashed action potential is artificially ploted
on top and not related to the equations. It only indicates how the depolarization
phase would fit into the refractory period.

Vmem — Vreset it ¢ S [tspikea tspike + Tref[ (24)

Besides resetting the membrane voltage at the moment it crosses Vi, equations (2.3)
and (2.4) ensure that the reset voltage is maintained for the period 7., effectively
disabling the neuron for this time.

Figure 2.7 shows the response of equations (2.1), (2.3) and (2.4) when the same
stimulus as in figure 2.6 is being applied. The zoom goes into a time interval around
the action potential, where the neuron is refractory from approximately 266.4 ms
to 271.4ms. The dashed curve qualitatively indicates how the depolarization phase
would fit into this period but is not related to the equations nor of any importance
for the model.

Since biological neurons are assumed to be insensitive for stimuli during an action
potential, the voltage trajectory of the membrane during that time is irrelevant in
terms of neural information processing. In this context, it only matters that the
neuron becomes susceptible again in the same state as it would be in after a precise
action potential happened, i.e., at Vijem = Vieset-

When a LIF neuron is exposed to a persistent current stimulus, it responds with
a regular sequence of spikes, because the threshold value is reached again and again
after each reset. Figure 2.8 illustrates this behavior for different values of the input
current. Assigning a spike rate to this regular sequence results in a transfer function
as shown in the right part of the figure. Starting from I, = 0, the output rate
suddenly jumps to 7o, ~ 20 Hz, when the input stimulus is large enough to trigger
a spike at Iy, ~ 11A. From there on, it smoothly increases with Iy, and slowly
approaches a maximum rate that is ultimately limited by the inverse refractory
period Tmax = 1/Tyer &~ 333 Hz.
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Figure 2.8: Rate response of an LIF neuron to a constant stimulus. Left: The
synaptic current stimulus (bottom) is stepwise increased and decreased. The neuron
(top) responds with a varying spike rate. Right: Output rate rqy of this neuron
versus input stimulus.
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-2 0 out by the addition of noise. The parame-
Isyn [uA] ters are the same as in figure 2.8.

The jump at the onset of regular spiking can be smoothed out by adding noise to
Iy, which is illustrated in figure 2.9. Due to the resulting random fluctuations on
its membrane potential, the neuron occasionally spikes, even when the average input
current is below the spiking threshold. Because of the large number of chaotically
firing presynaptic partners in biological neurons, a stochastic fluctuation on the total
input current is usually the case. Therefore, a transmission curve like in figure 2.9 is
more likely to be expected in cells that are embedded in a network than the smooth
response function in figure 2.8.

If the firing rate is more important for information processing in a neural network
than single spike events, the network is said to operate in the rate limat.

The internal dynamics of neurons lie typically within 1 ms to 100 ms. For example,
cerebellar Purkinje cells in mice can reach a maximum firing rate of 625 Hz (Hurlock
et al., 2008), while oxytocin neurons in rats fire only at a rate of O(1 Hz) (Wang
and Hatton, 2004). Most neurons, however, spike at an average rate of 10 Hz and a
maximum rate of 100 Hz.

Overall, the LIF model is computationally efficient and reproduces three funda-
mental properties of biological neurons: it has a stable resting potential, it integrates
over the synaptic inputs, and it mimics an abstract action potential in terms of
creating a spike event and being refractory for a finite period.

However, it is not able to reproduce some phenomena observed in biological
neurons, like for example, adaptation and bursting, without additional terms.
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LIF extensions

Except for the spiking mechanism and the synaptic input, the circuit diagram in
figure 2.5 is equivalent to the I;-branch of the Hodgkin-Huxley model (figure 2.4).
By adding the Iy, and Ik branches and set Vi, above the peak voltage during the
depolarization phase, the LIF circuit could therefore be turned into the Hodgkin-
Huxley circuit without modifying its core structure. This shows that the linear
structure of the LIF equations, as well as of the corresponding circuit, is easily
extensible and modular.

So far, a large variety of extensions and modifications to the original LIF equations
have been proposed. The most notable among them are probably the Izhikevich
model (Izhikevich, 2003) and the adaptive exponential integrate-and-fire (AdEx)
model (Brette and Gerstner, 2005).

Both of these models have a term that reduces or enhances the excitability (i.e.
how much stimulus is required to produce an action potential) at a time scale of
multiple action potentials. In effect, the firing rate of a neuron at constant stimulus
is not constant like for the LIF neuron but it adapts by increasing or reducing its
rate to the stimulus.

Moreover, both models have a nonlinear term that affects the membrane potential
when it approaches the spike threshold. For the Izhikevich model, this is a quadratic
nonlinearity that injects an additional current onto the membrane capacitor when
Vinem 18 close to Viy.

For the AdEx model, this additional current is exponentially dependent on the
differences between Ve, and Vi,. The smaller the difference, the larger the current.
Biologically, the nonlinearities in both models resemble the effect of the voltage
gated ion channels in real cells.

Axonic spike

The point neuron descriptions from above implicitly neglect spatial effects, as they
only include ion concentrations and electrical potentials in a scalar manner. In
actual neurons, both are potentially diverse throughout the entire cell volume.
To understand how an action potential spatially affects a neuron, a cell can be
considered whose entire cytosol is first in a static resting state, i.e. Vijem = Vieax. If
one point within the cytosol close to the membrane is then stimulated sufficiently
enough to trigger an action potential, the resulting voltage increase will affect the
neighboring membrane areas as well, causing them to also enter the depolarization
phase. In effect, a wave is created that spreads radially from the initial point. As
the membrane becomes refractory after it experienced an action potential, the wave
leaves inactive membrane areas behind and thus, only travels away from the initial
excitation and not towards it. Most importantly, if the soma experiences an action
potential, the wave necessarily arrives at the axon hillock and finally at the axon
which it then travels along. Since almost all action potentials originate from the
dendritic tree or from the soma, the action potential travels practically always from
the soma to the end of the axon. When this spike arrives at the end of the axon, it
causes a biochemical reaction that releases neurotransmitters from the presynaptic
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cell into the synaptic cleft.

2.1.3 Dynamics of synapses

The released neurotransmitters then bind to receptors in the membrane of the
postsynaptic cell, which results in an influx or outflux of ions and, hence, in a
change in the membrane voltage. In real cells, this postsynaptic potential (PSP) is
both a spatial and a temporal effect that is often described by the cable equations
(Gerstner et al., 2014). In point neurons, only the temporal aspect is taken into
account. Depending on the receptor and neurotransmitter type, the PSP can either
be a positive or a negative voltage shift, but per synapse, it can only be one of both.
The first type is called excitatory and the second type inhibitory.

The amplitude of a PSP mostly depends on the size of the respective synapse
(Kandel et al., 2013). Regardless of the exact biological mechanisms, however, a
modeled synapse can simply be assigned a weight w, that encodes both, the polarity
and the amplitude of the PSP.

The effect of the ion stream caused by the neurotransmitters is often modeled as
a current pulse of a certain length and shape onto the postsynaptic cytosol. Within
this current-based synapse model, the total synaptic input of a neuron with index j
can be defined as a series of weighted kernel functions:

Tsyn () = Z ; wij k(=) (2.5)

Here, w;; is the synaptic weight that connects the axon of neuron i to the dendrite
or soma of neuron j. tgpyij is the time when the f** spike of neuron i arrives at
neuron j. Hence, the sum goes over all presynapic neurons as well as over all spikes,
each of them has sent so far. k is the synaptic kernel function. In the previous
illustration of the LIF equations in figure 2.6, the neuron received a series of kernel

function of the shape

—t

e (t) = O(t) - €7 (2.6)

This is known as an exponential kernel with the synaptic time constant 75,. Here,

© denotes the Heaviside step function.
As equation (2.6) is also the Green’ s function of the differential operator 8 + —,
syn

equation (2.5) can also be written as

djs n,j 1
2 — .fsynﬁzgfjwij.5(t—t;‘p’ij), (2.7)

syn

if K = Kexp. The synaptic input current is therefore also representable as a first-order
differential equation, which can be expressed in a linear equivalent schematic. There
are further Green’s functions which are suitable for use as synaptic kernels, but
equation (2.6) covers all cases that are relevant within this document. Figure 2.10
shows a synaptic current as it can be constructed via equation (2.6) assuming various
spikes arriving at various synapses.
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Figure 2.10: Synaptic input current as obtained from equation (2.7). The gray
curves are the single PSPs w;; « Kexp(t — tgpvij) originating from various spikes tgpvij
and synapses w;; and the black curve is the assembled synaptic input current Ig,.
Inhibitory synapses cause negative PSPs, excitatory synapses positive PSPs.

Short term plasticity

Similar to the adaptation in neurons that was briefly mentioned in section 2.1.2,
also synapses can adapt to repeatedly occurring stimuli by becoming increasingly
or decreasingly sensitive to incoming spikes. One of the most prominent models to
replicate this behavior was proposed in Tsodyks and Markram (1997) and Tsodyks
et al. (1998). The first work provides an analytical description of short term
depression that assumes a successive depletion of neurotransmitters within the axon
tip: If many spikes arrive in short time intervals, the available neurotransmitters
get used up and the PSPs become weaker in amplitude in effect. When stimuli are
absent, neurotransmitters can be regenerated and, thus, also the PSP amplitudes
recover.

The second publication extends the mechanism by short term facilitation, i.e., a
synapse produces successively larger PSPs when frequently triggered. Biologically,
this is explained by an increased release probability of neurotransmitters, due to an
influx of calcium into the axon after an action potential.

Although both phenomena happen on a time scale of multiple spikes, they can
be considered as short term effects as compared to, for example, synaptic weight
changes or synapse formation. Therefore, this type of synaptic modulation is called
short term plasticity (STP).

Note that, STP is only dependent on the presynaptic spikes and therefore only
on presynaptic properties. In contrast, other synaptic modulations also depend on
postsynaptic variables, like the timing of the postsynaptic spikes.

Spike-timing dependent plasticity

One such mechanism has first been formalized by Donald Olding Hebb in The
Organization of Behavior: "When an axon of cell A is near enough to excite a cell
B and repeatedly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased." (Hebb, 1949). This principle, known as Hebbian
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learning, is often compressed into the slightly oversimplifying catchphrase "what fires
together, wires together." What is meant by that is that the efficacy is increased in
synapses whose presynapic neuron often cause the postsynaptic neuron to fire. Since
the membrane potential of neurons intrinsically strives back to the resting potential,
their memory of single spike events decays over time. Short time intervals between a
pre- and the postsynaptic event should therefore indicate a higher causal relationship
than long time intervals. Anticausal relations, i.e., when the postsynaptic neurons
spikes before than the presynaptic one, should, on the other hand, have no or even
a negative effect on the synaptic efficacy.

Firm experimental evidence for this type of spike-timing dependent plasticity
(STDP) has first been provided by Bi and Poo (1998). If the individual weight
changes are modeled as exponential functions of the spike time differences, according
to Kempter et al. (1999), the mechanism can be expressed as

Aw =>">" W(tpost — tore) (2.8)

tpre tpost
with

W(z)=Ay-e@™ for 2 >0 (2.9)
W(z)=A_-e"™ for x <0. (2.10)

Here, W (x) is the effect of a single pair of pre- and postsynaptic spike events. A ,_
is the amplitude of the causal/acausal weight change, and 7, ,_ are the causal and
acausal STDP time constants. ¢, and ¢, denote the pre- and postsynaptic spike
time, of course. The data from Bi and Poo (1998) together with two exponential
functions for the causal and acausal branches, is shown in figure 2.11.

STDP is an important concept from a purely biological perspective as well as
from the perspective of computational neuroscience, primarily because it constitutes
an important building block for various biologically derived learning rules. A few
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relevant examples are given in Sjostrom and Gerstner (2010); Frémaux et al. (2010);
Neftci et al. (2014); Frémaux and Gerstner (2016).

2.1.4 Biological cybernetics

"Now that the concept of learning machines is
applicable to those machines which we have made
ourselves, it is also relevant to those living machines
which we call animals, so that we have the possibility of
throwing a new light on biological cybernetics."

— Norbert Wiener, Cybernetics, 1965

So far, a number of mathematical descriptions of cell physiological observations
concerning neurons and synapses have been introduced. The following is about
larger compounds of cells and their higher level organization and function in animals.

In contrast to plants, which are able to follow their autotrophic, sessile life cycles
based on slow hormonal control, animals require faster signal transmission, since
rapid movement is an essential prerequisite for foraging and for escaping predators
(Wehner and Gehring, 2013). As nerve cells are capable of signal processing and
transmission on time scales as short as a few milliseconds, they form the implementing
substrate. While many primordial animals, such as jellyfish or starfish, tend to have
diffuse networks of neurons, simple bilateral species such as flatworms already show
higher concentrations of nerve cells in the head region where food is taken up into
their bodies (Wehner and Gehring, 2013). The ability to analyze matter prior to
ingestion of food using tactile, chemical, or optical sensors represents an obvious and
significant evolutionary advantage. A comprehensive collection of sensors is not only
useful for analytical purposes, but also enables efficient hunting due to the ability
to track and trace. The Cambrian explosion, the greatest diversification event in
the history of life some 541 million years ago, was, among other things, shaped
by the emergence of quicker and stronger predators (Bengtson, 2002). There are
even indications that this extreme diversification was supported by the emergence
of eyesight, which enabled precise remote detection and spatially planned predation
(Parker, 2003). The schematic plan of modern arthropod brains also dates back
almost to this time (Ma et al., 2012). However, recent studies indicate a much
earlier development of vision, which goes back at least to the last common ancestor
of chordates and arthropods (Joly et al., 2016), i.e. about 620 million years ago
(Edgecombe et al., 2011). In any case, from an evolutionary perspective, as well as
from more abstract considerations about information processing, the development of
nervous tissue in animals seems to be inseparably linked to the formation of sensors
and muscles (Chiel and Beer, 1997).

In some species, particularly in the vertebrates, the size and complexity of neural
networks has increased over the course of the evolution. The more complex these
networks grew, the more complex the resulting capabilities and behaviors became.
Higher level skills, like for example strategic hunting, or anticipation of predator
behavior, led to higher level evolutionary advantages, which likely caused a positive
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feedback on the development of the responsible brain regions (Dukas, 2004). The
species that is typically credited with the highest cognitive abilities on our planet
are humans. Evidence that they in fact are is provided by a long list of remarkable
achievements that other species did not yet achieve (as far as we know). Using
and shaping complex language and metalanguage, sending robots on interplanetary
journeys, or writing doctoral theses on neuromorphic hardware, to name few. Fas-
cinatingly, all these capabilities so far remain somewhat opaque in the face of the
brain’s slippery, wet, not very aesthetic shape.

The human brain is taken here as a benchmark from which some dimensions and
properties are derived for the considerations in the next sections. Note, however, that
many properties are conserved among different vertebrate species. For example, the
cerebellum of birds (and thus of dinosaurs) is composed of cells that are very similar
to the cells in the human cerebellum (Arends and Zeigler, 1991). The same holds true
for the cerebral cortex in mice and humans (Kandel et al., 2013). Even arthropods
share synaptic classes and cell organizations with us (Smarandache-Wellmann, 2016).
Therefore, some properties, like the time scales and sizes of cell-level phenomena
can be considered similar for approximative modeling aspects. Other properties,
like the brain size in terms of its weight or its number of neurons and synapses are,
however, obviously divergent among species. As Williams and Herrup (1988) put it,
"[t]he total number of neurons in the central nervous system ranges from under 300
for small free-living metazoans such as rotifers and nematodes |...], through about
30 million for the common octopus and small mammals such as shrews [...], to well
over 200 billion for whales and elephants".

A 2009 study about the human brain found that it contains 86.06 £ 8.12 billion
neurons of which approximately 69 billion are located in the cerebellum and 16
billion in the cerebral cortex (Azevedo et al., 2009). Pyramidal neurons in the
cerebral cortex typically receive 2 — 30 x 10 synaptic inputs each, depending on
the region (Elston et al., 2001; DeFelipe et al., 2002). The Purkinje cells of the
cerebellum have a higher number of approximately 1.7 x 10° synapses per neuron
(Napper and Harvey, 1988).

For the sake of simplicity, the following estimates therefore assume that the human
brain contains roughly O(10") neurons with O(10*) synapses each.
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"Living matter certainly has a fine structure more
relevant to its function and multiplication than that of
the parts of a nonliving machine, though this may not be
equally the case for those newer machines which operate
according to the principles of solid-state physics.”

— Norbert Wiener, God & Golem, Inc., 1964

2.2.1 von Neumann architectures

To understand the motivation behind novel computer architectures, it necessary to
briefly illustrate what conventionial architectures are already capable of.

The most widespread system design in contemporary computers goes back to a
draft report by John von Neumann from 1945 on the EDVAC (Electronic Discrete
Variable Automatic Computer) (Von Neumann, 1993). This document contains a
description of a digital computer that consists of four essential components:

e An input device

» A central processing unit (CPU)

o A central memory that contains data and programming instructions
e An output device

Moreover, the CPU is divided into two subunits, a control unit that manages the
programming flow and a processing unit that performs arithmetic logic operations.
Both have working registers for programming instructions and data, respectively.
While there are multiple variations and extensions to this concept, the core principle
of a centralized computation unit with memory access is what is typically referred
to as a von-Neumann-architecture.

Resembling the principles of a universal Turing machine, von-Neumann computing
devices are limited in what they can compute only by the available memory and time
resources. Since its development in the 1950’s, qualitative advancement in digital
computing was largely a consequence of quantitative increases of computation speed
and memory due to improvements in silicon based semiconductor devices.

Computer programs are typically compiled into a list of hardware instructions
that is then consecutively executed on a processor. Even machines that have a
large number of parallelly distributed processing cores, like for example graphics
processing units (GPUs), work by the same principle.

As outlined in the previous section, biological neural networks operate in a
very different manner. One prominent difference is the intrinsically distributed and
massively parallel arrangement of their information processing units, i.e., the neurons
and synapses. Being independent of the computing progress of other cells, a neuron,
unlike a CPU, implements its own function continuously and uninterruptedly. When
new information arrives, it gets processed immediately.

Another outstanding difference is that memory and computation are combined
and distributed over the entire neural network. The amplitude of a post-synaptic
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potential is computed by a synapse whose strength can abstractly be identified as a
memory. Hence, the physical structure that implements the memory simultaneously
performs the computation.

Mathematical neuron descriptions, like for example the LIF equations (equa-
tions (2.1) to (2.4)), can of course be solved numerically on von Neumann machines.
By introducing discrete time and sequentially iterating over the involved synapses
and neurons, a conventional computer can simulate a large scale neural network to an
extent that is almost exclusively limited by the available memory and computation
time. However, the latter is what currently predominantly prevents conventional
computers from scaling up the size of simulated neural networks, to an arbitrary
extent.

2.2.2 Computational complexity of brains

Since, as of today, no comprehensive fundamental theory of computation in biological
neural networks has been found, deriving a reliable estimate of the true computational
complexity of brains is a highly speculative endeavor. One way to do so, however, is
to assume that each synaptic event corresponds to one floating point operation.

Following this reasoning, the operations that are associated with a neuron’s action
potential occur much less frequent than operations associated with postsynaptic
potentials, because the number of synapses is 10* times larger than the number
of neurons. For an estimate of the computational scale, the action potentials
are therefore negligible in comparison. Assuming further an average neural spike
frequency of 10 Hz, the total number of floating point operations per second (flop
s1) is 10% - 10! - 10 Hz = 10 flop s, If the resolution of the synaptic weights is
only 1 byte, we further require 10! - 10* - 1 B = 1 PB of memory for the connectivity
matrix. In order to compute the synaptic action, every entry of this matrix has to
be accessible at an average spike rate of 10 Hz. Hence, the data rate for accessing
the synaptic weights alone is approximately 10 PBs™!.

So far, the estimate does not contain synaptic mechanisms like STP, or STDP. If
these ought to be included, another set of roughly 10! - 10* differential equations
have to be solved and must be iterated over at a rate not less than the average
spiking rate. Thus, at least another 10 Pflops—! would be required.

Note that, this estimate assumes point neurons, i.e., that all ion concentrations
can be abstracted into a scalar membrane potential. It also neglects numerous
existing physiological phenomena, like synaptic delays, extra-neural dynamics (like
potentials in glia cells, or dopamine concentrations, etc.), or spatial effects like the
dendritic structure of neurons. Considering these simplifications, the given estimate
should be regarded as a lower bound of the number of computational operations
that are actually carried out in the human brain.

The actual amount of computation that is necessary to implement the brain’s
function might be lower though, because of noise, redundancy, and non-optimal
implementation in the biological substrate. As, so far, not enough is known about
how spiking neural networks are compressible, arguing for a lower number would be
even more speculative, however.
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2.2.3 The von-Neumann brain

This section aims at evaluating the feasibility of a network composed of the estimated
number of neurons and synapses in terms of a LIF neuron implementation on
conventional computing architectures. It starts with some very crude and simplified
estimates and then concentrates on existing hardware and software examples.

To achieve a biologically reasonable precision, a LIF neuron typically requires
an integration time increment smaller or equal to At = 0.1 ms, and thus, 10000
simulation updates per second (van Albada et al., 2018). On the other hand, every
neuron receives input from 10 000 presynaptic partners each spiking at a rate of 10 Hz
on average. The numerical operations to implement the synaptic inputs are therefore
again dominant or at least equal compared to those for the neuron dynamics. For
simplicity, we therefore continue with the above derived 10'¢ flop s* and 10PBs~!.

According to the Green500 list, high performance computing (HPC) currently
achieves an energy efficiency of up to around 20 Gflop W= (TOP500.0rg, 2020). If
the above estimate is naively divided by this number, a power of 500 kW would
be necessary to run a full scale brain simulation in real-time. Compared to a
human brain, which consumes about 20 W on average, this is roughly four orders of
magnitude less energy efficient. On the other hand, with a power requirement of
a small to medium-sized factory, it is still within a feasible range. However, many
factors are not included in this estimate.

First, the number of flop s cannot be pumped out with a hundred percent
efficiency. In between the actual floating point operations, data has to be transferred
into and out of the various CPU registers, and external memory locations. Typically,
without further optimization, 10 to 100 CPU cycles are easily waisted for a single
floating point operation.

Second, as laid out above, the memory and hence, the memory bandwidth that
the brain simulation requires, is far above what can be connected to the various
CPU cores in terms of shared memory with the latency requirements that a plausible
simulation demands. The memory access must therefore be put over further detours,
wasting further resources. To get a more realistic estimate of the the actual power
consumption of a brain simulation, one can take a look at published results.

Recently, for example van Albada et al. (2018) performed an optimized simulation
of one cortical column (comprising approximately 80000 neurons and 0.3 billion
synapses, i.e. ~0.0001 % of the entire brain) on a supercomputer. They obtained
a minimal required energy of 5.811J per synaptic event. If this value is linearly
scaled up to a complete brain simulation, the power consumption already reaches
58 GW (the equivalent of 2 - 3 Three Gorges Dams'), which is roughly six orders
of magnitude above the overly simplistic one-flop-per-synaptic-event estimate from
above. Moreover, it still neglects the nonlinear increase in power demand due to the
growing network complexity.

An existing class of computing devices that are better suited for parallel processing
tasks are GPUs. Originally invented to efficiently solve computer graphic problems

!The maximum electric generating capacity of the Three Gorges Dam is reported to be 22 500 MW
(Wikipedia, 2020b).

31



2 Background

which typically involve matrix multiplications, and hence parallel arithmetic, they
are very suitable for being reused for similar tasks in computational neuroscience
and machine learning. In a another recent publication, Knight and Nowotny (2018)
simulated the same model of a highly-connected cortical microcolumn (Potjans and
Diesmann, 2014; van Albada et al., 2018) on a variety of GPUs. The authors showed
that in this case GPUs perform better in terms of speed and power consumption
than HPC and even some existing neuromorphic platforms. Among the best results
they obtained was 0.3 pJ per synaptic event on a Nvidia Jetson TX2 device, which
is roughly one order of magnitude below the HPC performance but still a stunning
eight orders of magnitude away from what the brain requires for a synaptic operation,
ie. 2f].

It is for this reason, that alternative computing approaches are being developed.

2.2.4 Parallel computation and memory

The result of the last section is that simulations of neural networks are intrinsically
inefficient to implement on traditional architectures.

As indicated above, one of the greatest inefficiencies that manifest when simulating
neural networks on von Neumann architectures is the serial memory access of
massively parallel data. An approach to overcome this bottleneck is to locally
combine memory and processing units. For example, if the synaptic weight is always
and with low latency accessible to the unit that computes the postsynaptic potential,
the overhead of loading the weight matrix disappears. Moreover, the network can be
scaled up more easily because doubling the size of computing resources automatically
doubles the required memory.

Another mentioned issue is that also the massively parallel computation per
neuron and synapse has to be serialized on conventional architectures. Since a single
microchip does not offer unlimited resources, this can be solved by trading the
complexity of a single processing unit against the number of such units. GPUs for
example, take this approach.

Both strategies can be pursued with both analog as well as digital computers. If
the purpose of such a hardware device is exclusively the simulation or emulation of
neural networks, then the device is commonly referred to as a neuromorphic system
(Mead, 1990).

2.2.5 Neuromorphic devices

In the recent years even a number of large chip manufacturers engaged in building
neuromorphic devices. For example IBM’s TrueNorth (Merolla et al., 2014) or Intel’s
Loihi (Davies et al., 2018) are both complementary metal oxide semiconductor
(CMOS)-based microchips that contain custom digital circuits to implement large
clusters of neurons and synapses. Most of the neuromorphic projects, though, are
still situated in academia (Furber et al., 2014; Benjamin et al., 2014; Qiao et al.,
2015; Shen et al., 2016; Moradi et al., 2017; Schemmel et al., 2017; Neckar et al.,
2018) or small university spin-offs, like aiCTX/SynSense, or brainchip. Neuron-
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inspired circuits have first been implemented in very-large-scale integration (VLSI),
i.e. integrated into large scale semiconductor devices, in late 1980s and early 1990s
(Mead, 1989, 1990; Douglas et al., 1995). Since then many different approaches for
many different aspects of the involved problems have been taken. Most important,
perhaps, is the distinction between digital and analog implementations, the second
of which is mostly relevant for the current thesis.

The fundamental idea in analog neuromorphic engineering is to replace digital
circuits that solve differential equations numerically by circuits that make analog
voltages behave like the state variables of the differential equations. The main
motivation behind this idea is energy efficiency.

By far the most transistors that are currently existing on earth are implemented
as CMOS devices. The most characterizing feature of this technology is that it
uses complementary and symmetrical pairs of metal - oxide — semiconductor-based
field-effect transistors (MOSFETs) (Weste and Harris, 2015). In this transistor type,
the gate is only capacitively coupled to the semiconductor substrate. The energy
that is required to charge such a gate in order to make the substrate conducting is
approximately

E=V?.C, (2.11)

where V' is the voltage across the gate and C' is its capacitance. To a certain degree,
C can be approximated as a plate capacitor that is formed by the semiconductor
on the one side and the conducting gate on the other side, separated by a thin
layer of insulating oxide. Thus, C' scales with the intersection area between the two
galvanically decoupled sheets. For this reason, the energy efficiency of semiconductor
technologies scales roughly quadratically with the inverse minimal gate length.

Moreover, E scales quadratically with the voltage V' that is applied across the
transistor gate. In digital circuits, V' is almost always driven from its maximal to its
minimal value and vice versa. This ensures, that the transistors are either fully open,
facilitating high currents and therefore fast switching of subsequent gates, or fully
closed, preventing leakage currents, in the transient operating states. Therefore, the
energy efficiency of a digital CMOS device also decreases with the squared operating
voltage.

On the other hand, if analog computation is performed on a capacitor, the
minimal voltage changes are only limited by the signal-to-noise ratio and are usually
significantly smaller than the supply voltage. Moreover, the transistors involved
in analog computation are also not necessarily bound to the digital binary states.
Instead, they can operate in arbitrary configurations, even in the subthreshold region,
i.e., when the gate voltage is below the threshold voltage required to activate the
source-drain channel. The drain current in this region is proportional to

Ves—Vin

Ip x e erT (2.12)

where Vg is the gate-source voltage, V4, the threshold voltage, ¢ a transistor specific
constant, k£ the Boltzmann constant, and 7" the absolute temperature of the device.
Due to the exponential dependency on Vg, the currents through the transistors can
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be as low as only a few nA of even pA. In effect, the reported energy per spike of
systems operating in this subthreshold regime can go down to the order of a few pJ
when running in biological real-time (Livi and Indiveri, 2009; Indiveri et al., 2011).

However, equation (2.12) also reveals a fundamental disadvantage of the sub-
threshold approach, i.e., the exponential temperature dependency. Without active
and precise temperature control, these circuits’ behavior is as influenced by ambient
temperature drifts as it is by the gate voltages. This temperature dependency is
much less pronounced in circuits that operate in the ohmic region (i.e., Vgg > Vi, and
VDS < VGS - ‘/th) or in the saturation region (i.e., VGS > ‘/th and VDS Z (VGS - ‘/th))?
In both cases, mostly the temperature dependence of V;y, is influential which is typi-
cally on the order of only 0.5mV K™ to 3mV K~ (Weste and Harris, 2015). Most
analog integrated circuits therefore avoid the subthreshold region.

However, transistors operating above or at threshold voltage cannot straight-
forwardly achieve drain currents that are as low. By tendency, this leads to faster
circuit dynamics, as the voltage changes across capacitors are directly proportional
to the related currents. The easiest way to overcome this obstacle in neuromorphic
engineering is to embrace it and design the circuits such that all time scales are
scaled down by a constant linear factor, the acceleration factor or speed-up. If, for
example, the membrane time constant 7, and the refractory period 7 of the
LIF equations (equations (2.1), (2.3) and (2.4)) are scaled by an acceleration factor
a, the relative neuron dynamics remain unchanged while only the absolute time
scales are compressed. E.g., if the average spike rate of such a neuron is r,,,, before
scaling, it becomes 7/ . = « - ryay after scaling.

The qualitative impact of such an acceleration manifests in positive and negative
aspects. The greatest shortcoming is, perhaps, that an accelerated neuromorphic
system is usually not compatible with biological systems. Obviously this is to be seen
negative for biological or medical applications that aim at interfacing nervous tissue
with electronic devices. Not quite so obviously, it generally complicates interfacing
the accelerated neural networks with external hardware, like for example, robotic
sensors, actuators, or even conventional computers. There are two main reasons for
this:

First, the input/output data bandwidth increases linearly with the speed-up,
while the tolerated latency decreases linearly with it. For neural networks this is
typically more challenging than, for example, for radio signals, because of the inherent
massively parallel data representation. This is not only challenging for the interface
itself but also for the connected entities. For example, if a neuromorphic ear receives
an audio signal from a computer, a maximum jitter of maybe ~100ps (1/10kHz)
should not be violated if it operates in biological real-time. For a neuromorphic ear,
operating 1000 times faster, the maximum allowed jitter becomes ~100 ns, which is
equivalent to just a few hundred CPU cycles on a typical computer. So far, in the
context of accelerated neuromorphic hardware, only around 8.5 j1s minimum latency
have been achieved between a neuromorphic system and a computer while requiring
highly competent and nontrivial modifications even on real-time operating systems
(Miiller, 2015). Concerning the parallel bandwidth, a quantitative estimate for the

2Vpg is the voltage across the transistor’s drain and source.
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optic nerve is given later in section 4.2.2.

The second reason is that most machines or interfaces are designed for human
interaction. While standard computer monitors can be used to create a virtual
reality for larval zebrafish (Engert, 2013), a frame rate of 50 Hz appears pretty
much static to a neuromorphic system that is operating at a 1000-fold speed-up.
Reaction times of a few dozen milliseconds are considered fast for robotic actuators
(McClintock et al., 2018) but translate to reaction times of a few dozen seconds for
a system with such a speed-up. The reason for this lies not only in arbitrary or
coincidental preferences of the human species for certain time scales, but is related
to the energy scales that we live in. The average energy and mass densities in
our environment characterize the typical time scales of mechanical processes (see
equation (4.1)).

However, both the bandwidth and latency requirements of accelerated neuromor-
phic hardware do not interfere with physical limitations but are merely technical
problems that can be solved by investing engineering resources. In terms of virtual
environments, specialized low latency simulators can be developed and coupled
closely to the neuromorphic hardware. The corresponding design effort for such
an auxiliary component is most likely below the design effort that has to be put
into developing the system itself. It should not be neglected though. In terms of
real-world robotic applications, the same holds true. Acceleration at reasonable
energy scales can potentially be achieved by either miniaturizing mechanical systems,
or by switching from mechanical actuation to sound or light based systems.

Overall, the advantages of an accelerated neuromorphics likely outweigh its
disadvantages. Most importantly, the speed-up increases the experiment throughput
to an extent that unlocks entire fields of research. For example, the neuronal
development of vision in cats takes approximately ten weeks to complete (Tootle and
Friedlander, 1989). Studying neural phenomena on such timescales must doubtlessly
be one of the goals of large scale brain simulations, since all large brains in biology
are developing over time scales of months or even years to decades. Apart from brain
development, numerous other interesting learning phenomena, such as structural
plasticity, unfold over several days to months (Grutzendler et al., 2002). Even these
time scales are so significant for real-time simulators that statistical analyses cannot
be carried out straightforwardly. With an acceleration of 1000, however, a day can
be compressed to one and a half minutes, a month to 43 minutes, ten years to three
and a half days. In this manner, the statistical capacity is amply sufficient to apply
strategies such as hyperparameter optimization or systematic parameter sweeps even
to large-scale emulations that study long-term phenomena.

One system that aims for the illustrated capabilities is the BrainScaleS system
developed and operated at the University of Heidelberg.

2.2.6 BrainScaleS

The BrainScaleS system is an accelerated analog neuromorphic computer with a
digital communication infrastructure. I.e, the neurons and synapses on BrainScaleS
are emulated by power efficient analog CMOS circuits, while the spikes are being
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transported digitally. Like its name implies, the system is designed to scale to a
virtually arbitrary size while maintaining a constant speed-up factor.

The first large scale version of BrainScaleS is centered around the so-called high
input count analog neural network (HICANN) chip that contains 512 analog neurons
with 224 synapses each that are accelerated by a factor of 10000. The HICANNS are,
like most microchips, produced on disk-like slices of crystalline silicon, called wafers.
For technical reasons, the size of a continuous circuit layout cannot correspond to
that of the entire wafer, but is instead confined to a rectangle with a side length of a
few centimeters. These rectangles, also called reticles, define the largest producible
unit on a wafer and are tiled next to each other to maximally exploit the available
area resources. Within one reticle, eight HICANN chips find place and exchange
spikes with each other by means of a custom communication infrastructure. Due to
the mentioned technical limitations, each reticle, is isolated after wafer production.
They can be joined together, though, by adding additional metal layers on top of to
the wafer in a custom post-processing step. Ultimately, 48 reticles with 8 HICANNs
each can be combined by this wafer-scale integration to obtain a system of 196 608
neurons and 44 040192 synapses. Moreover, multiple wafer-scale systems can be
interfaced with each other to further scale up the system size. Extensive information
on the BrainScaleS system can be found in Schemmel et al. (2008, 2010); Briiderle
et al. (2011).

Development of the HICANN chip went on in parallel to the development of the
wafer-scale system. On the one hand, in terms of incremental improvements of the
existing chip, on the other hand, in terms of developing an entirely new version. This
second version, BrainScaleS-2, is manufactured by TSMC in a 65 nm process instead
of the 180 nm node the previous chip was designed for. Apart form this transition
to another process technology, a large number of circuits and system-aspects were
added and improved in BrainScaleS-2. The next section starts with an overview of
the system architecture.
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3 BrainScaleS-2

"What I cannot create, I do not understand."”
— Richard Feynman

The central component of the BrainScaleS-2 family is the analog neural network
core (ANNCORE) which contains the neuron and synapse arrays as well as other
supporting analog and mixed-signal circuits. A simplified overview of its architecture
is given in figure 3.1. Digital spike events arriving in the ANNCORE are first
received by the synapse drivers (vertically stacked triangles at the left of the synapse
array in figure 3.1) which preprocess and then drive them across horizontal rows of
synapses. In case a synapse receives a spike, it injects an analog current pulse onto
a vertical synaptic input line stretching from the topmost synapse to the neuron at
the bottom. These pulses are then collected and processed by the neurons which
in turn may transmit spike events via outgoing digital lines. Each synapse further
stores analog voltages reflecting spike correlations which can be used for STDP-like
learning rules (see section 2.1.3). These signals and the membrane potentials of
the neurons can be digitized by a parallel ADC, the CADC, at the top edge of the
synapse array.

The ANNCORE is surrounded by a digital back end of control and communication
subsystems as well as a digital coprocessor with a PowerPC instruction set (Wikipedia,
2020a). The main purpose of this coprocessor is to provide a versatile and efficient
way to implement arbitrary learning and control algorithms. Since most of these
take actions on the synaptic weights, the processor is referred to as the plasticity
processing unit (PPU) (Friedmann, 2013). Its standard PowerPC instruction set
is extended by a custom single instruction multiple data (SIMD) vector unit that
can perform instructions on slices of 16 data entries at once which is particularly
useful when operations on the synaptic weights are performed. The PPU is perhaps
the most significant innovation over BrainScaleS-1 and gives BrainScaleS-2 its
extraordinary versatility in terms of its applications.

The development of BrainScaleS-2 started with a series of smaller prototype
chips (1.7 x 1.7 mm?) that extended over three generations. Due to the powerful
digital extensions, these chips are also called high input count analog neural network
with digital learning system (HICANN-DLS). To indicate the respective prototype
version, v2 or v3 is sometimes appended to this acronym. After the prototypes
became mature, the development continued with a series of two full scale versions
(4 x 8 mm?), called high input count analog neural network - X (HICANN-X). Since
the experiments presented in chapters 4 and 5 were conceived and refined before the
fully sized system was available, they were carried out on one of the small versions,
in particular on HICANN-DLSv2 (Aamir et al., 2016). The following describes some
of the most important system components in more detail.
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Figure 3.1: Simplified ANNCORE archi-
‘ tecture and PPU. The synapse drivers re-

ceive incoming spikes events and buffer
‘ CADC ‘ them horizontally into the synapse array.
If a synapse receives a spike, it injects a
current onto a vertical synaptic input line
stretching from the topmost synapse to
the neuron at the bottom. The neuron in
turn may send a spike to outgoing lines.
The correlation measurements obtained in
each synapse and the membrane potential
of the neuron can be connected to the in-
puts of the CADC at the top edge of the
synapse array. The digitized results can
then be read out and processed by the
spikes out PPU.

\ PPU

Contribution

is a very complex project in which numerous people are and were involved explicitly
or implicitly. In order to avoid listing them all, it may be assumed in most of
this chapter that the contributions are not from the author, unless it is explicitly
mentioned in the text. This rule is inverted for sections 3.2, 3.4 and 3.5, where
the author was primarily responsible for the content. In these chapters it can be
assumed that all contributions can be attributed to the author, unless it is explicitly
mentioned in the text. For clarity, the most important contributions are also listed
here:

The author designed the prototype baseboard and the HICANN-DLSv3 chip
carrier board which are outlined in section 3.2. Both are based on previous designs
by Matthias Hock. The author further designed the xBoard and the HICANN-X
chip carrier, as outlined in section 3.4. In this case no previous design was adapted.
Moreover, he designed the CADC of HICANN-DLSv3 and HICANN-X as outlined
in section 3.5, with the exception of an operational amplifier by HBP collaboration
partners from the Sabanci Universitesi in Istanbul and another operational amplifier
from Matthias Hock (Hock, 2014). Both is mentioned again at the text passage
where these components appear. Besides these three sections, the author contributed
to some parts of the readout chain that was introduce in HICANN-DLSv3 and
in form of some invisible labor related to the tape-outs of HICANN-DLSv3 and
HICANN-X. Both is not explicitly mentioned in the text.

3.1 The prototype chips

In the prototypes, the ANNCORE comprises 32 neurons and 32 x 32 synapses.
Moreover, it contains a 64 channel ADC, an analog parameter storage, the synapse
drivers, and in v3 the digital neuron backend. The order of the descriptions of these

38



3.1 The prototype chips

subcomponents tries to follow the data flow of the spikes events outlined above and
in figure 3.1.

3.1.1 Synapse drivers and synapses
Synaptic events

The main purpose of the synapse drivers is to
forward the digital spike events horizontally into
the synapse array. In particular, they control
the synapses timing by means of a short digital
voltage pulse. Furthermore, each spike event is
represented by a 6 bit address, which identifies its ‘
source and each synapse stores a corresponding i : !..
6 bit value within a local static random-access bk i 9 [
memory (SRAM). If the label of an incoming AR R | umuuumui

|

‘g

| 5 &

event matches the locally stored one, a synaptic ‘f.,m!!!!”m!!m '
current digital-to-analog converter (DAC) injects :
a current pulse onto one of two vertical synaptic
input lines which lead to the respective neuron.
Depending on which line it is injected on, the
synaptic pulse acts either excitatorily or inhibito-
rily on the neuron. The corresponding config-
uration is also done row by row by the synapse drivers. The amplitude of the
current pulse is defined by a six bit weight which is also stored in a dedicated SRAM
per synapse. The pulse width is derived from the above mentioned digital pulse
coming from the synapse drivers and on the order of a few nanoseconds. Hence, the
weight and the pulse length linearly influence the amount of charge injected into the
synaptic input line.

Figure 3.2: HICANN-DLSv?2 lay-
out. The chip measures 1.7 X

1.7 mm?.

Short-term plasticity

While the pulse width can only be configured globally on HICANN-DLSv2, the
synapse drivers on v3 are able to modulate it dynamically, which they utilize to
implement short term plasticity (STP) (see section 2.1.3). The state variables for
the STP dynamics are kept on an array of capacitors within the synapse drivers of
HICANN-DLSv3. The corresponding circuits were designed and implemented in the
scope of Sebastian Billaudelle’s Master’s thesis (Billaudelle, 2017), where extensive
further details can be found.

Synaptic correlation measurement

In addition to the mentioned mechanisms related to synaptic action (i.e. the address
and weight memories and the current DAC), the synapse circuits also contain
sensors for measuring spike-timing dependent correlations (Friedmann et al., 2016).
In particular, each synapse contains two measurement units, one for the correlation
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between the pre- and postsynaptic, and another one for the correlations between the
post- and presynaptic spike times. Both measurements are represented as analog
voltages, V. and V,,, each stored on a dedicated capacitor. In the first case, the
voltage is proportional to

—(tpost —tpre)
Vie o (1—6 e ), (3.1)

where T, is a configurable time constant and ¢,y and ¢,.. denote the time of the
post- and presynaptic spike, respectively. The index of this voltage (i.e., cc) denotes
the fact that it measures the causal correlation between the presynaptic cause and
the postsynaptic reaction.

V.. on the other hand reflects the acausal relationship between a postsynaptic
spike and next presynaptic event as

—(tpre—t ost)
Vea <1—e > (3.2)

tore is of course directly available to each synapse and t,.g is provided by a dedicated
line that carries the binary spike signal from the neuron circuit up through its entire
associated column.

3.1.2 Neurons

The 32 neurons emulate the LIF model (see section 2.1.2) with a current-based
synaptic input. A block-level schematic of the entire neuron circuit as presented
by Aamir et al. (2016) is given in figure 3.3. The data flow in this figure tends to
proceed from left to right.

Synaptic input

First, synaptic input is collected from the two lines that stretch over an entire
synaptic column, i.e. 32 synapses, from top to bottom. The injected synaptic
current pulses result in a voltage signal Vi ex/in(t) similar to the one in figure 2.10,
only that the pulses all share the same polarity. Since the current pulses last only
for a few nanoseconds, the rise times of the voltage responses are negligible. The
decay time constants on the other hand are on the order of a few microseconds and
defined by resistors, one for each line, which can be configured by the allocated
bias currents i_bias_syn res_ex and i_bias_syn_res_in. These voltage signals,
on both lines, are then translated into proportional currents by the operational
transconductance amplifiers (OTAs) of the synaptic inputs. Signals on the excitatory
line result in positive currents, signals on the inhibitory line in negative currents
onto the membrane capacitance C,,. Both synaptic inputs can be disconnected
from Clpem by two switches for debugging purposes.

Leak term and LIF behavior

Another OTA connected to Cpem emulates a tunable resistor to the leak potential
Vieak- Together with Cl e it defines the membrane time constant 7em. Chem 1S
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Figure 3.3: Block schematic of the HICANN-DLS neuron. Taken from Aamir et al.
(2016).

also digitally configurable but set to a constant maximum value of C\em ~ 2.3 pF
for all experiments conducted within this thesis. The circuits listed so far (synaptic
inputs, Cpem, and leak OTA) together emulate the continuous part of the LIF
equations described in equation (2.1). The discontinuous part that is responsible
for the membrane reset and hence the action potential (equations (2.3) and (2.4))
is implemented by the spike generating comparator and a corresponding switch
that can short Chem t0 Vieset- If the voltage on Chienm, 1. Vipem, crosses Vinresh,
this comparator closes the switch for a certain amount of time 7,.¢ defined by the
refractory bias current i_refr. Moreover, a spike event is then transmitted to the
digital back end.

In HICANN-DLSv3 two additional circuits were connected to Cler, that emulate
the adaptive and exponential terms of the AdEx model (see section 2.1.2). However,
since this functionality is not involved in the experiments discussed in this thesis, it
is not described in detail here. For more extensive descriptions the reader is kindly
referred to Aamir et al. (2017).

Readout

Vinem, as well as Vi ex and Viyn in, can be applied to a high impedance amplifier in
the analog I/O circuit for external monitoring. This circuit also offers direct access
to Cluem, such that also voltage or current stimuli can be applied from outside the
chip.
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3.1.3 Correlation ADC

The synaptic correlation voltages can be read out by a parallel 8 bit ADC that
is located at the top edge of the synapse array and stretches horizontally over all
columns. As one of its main purposes is the digitization of the voltages accumulated
by the synaptic correlation sensors, it is referred to as correlation analog to digital
converter (CADC). Every CADC column contains two ADC channels (for the causal
and acausal signal) that can convert simultaneously. Hence, 64 input signals can be
digitized in parallel. The CADC in HICANN-DLSv2 has been developed within an
HBP collaboration between Sabanci Universitesi in Istanbul and the University of
Heidelberg. Initially, this implementation had some defects, which collectively could
have rendered the entire CADC dysfunctional. However, most of these flaws could
be mitigated by the Heidelberg group before tape-out. To save complexity in the
individual channels, the ADC is designed in a ramp-compare architecture with a
centralized ramp generator. This means that a global circuit produces a linearly
rising voltage ramp that is distributed to all channels where it gets compared to the
input voltages. The time between the start of the voltage ramp and the moment,
when the input voltage matches it, is therefore proportional to the voltage difference
between the two. This time is measured by counters that are also represented per
channel. The maximum sampling rate is therefore naturally derived from the digital
clock speed, i.e. 100 MHz, divided by the maximum number of counts, i.e. 2% = 256,
an thus, approximately 390 kHz on this chip version. The digital output of the
CADC is accessible by the vector unit of the PPU in a way similar to the synaptic
weights and addresses.

Due to the aforementioned flaws and weak analog characteristics in v2, the CADC
was largely redesigned for HICANN-DLSv3 and HICANN-X. Apart from layout
and circuit optimizations in its analog part, the most important change was that
all channels were provided with individual digital calibration circuits to mitigate
inter-channel variation. Since these changes were all conceptualized and applied
by the author, a dedicated and more elaborate description of the CADC follows in
section 3.5.

3.1.4 Analog parameter storage

The control voltages and currents that most of the analog circuits require for biasing,
configuration, and reference are generated by the on-chip analog capacitive memory
(Hock, 2014). This memory is, like the neurons and synapses, organized in columns,
with one additional column for global currents and voltages to the left of the neuron-
aligned array. Both currents and voltages are stored at a 10 bit resolution. Like
almost all other components on the chip, the capacitive memory can be configured
by the PPU or by external digital access.

Except for the digital neuron back end, the following components are not part of

the ANNCORE and all of them were newly introduced in HICANN-DLSv3. The
bonded v3 die is depicted in figure 3.4.
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Figure 3.4: HICANN-DLSv3

chip on the chip carrier. The

chip measures 1.7 x 1.7 mm?.

3.1.5 Membrane ADC

In order to digitize arbitrary ANNCORE signals at high speed and precision a fast
successive approximation register (SAR) ADC has been added to the chip. The
main motivation behind this was to make the system more autonomous by avoiding
the dependency on off-chip measurement equipment. The name membrane analog
to digital converter (MADC) derives from one of its major tasks, i.e., digitizing the
membrane potentials. It achieves a sample rate of up to 62.5 MS/s, when driven
by a 750 MHz clock signal at a resolution of 10 bit. The digital output values are
transported similarly to spike signals such they can seamlessly be recorded in a
dedicated spike memory. This ADC is the result of a fruitful collaboration with a
HBP partners from the EPFL in Lausanne.

3.1.6 Analog readout

Since the MADC has a differential low-impedance input stage, a custom single-
ended-to-differential converter with a comprehensive multiplexing and switching
input stage first collects and buffers the signals from the ANNCORE. This complex
of components is referred to as the readout chain. Comprehensive details on it can
be found in Kiene (2017).

3.1.7 Digital neuron back end

Within his Master’s thesis, Kiene (2017) also added a digital back end to the analog
neuron circuits, which greatly extends their capabilities. Moreover, some functions
that were formerly implemented as analog circuits were replaced by more robust
and versatile digital units. For example, the neuron refractory period in HICANN-
DLSv3 is determined in a counter-driven, digital manner, allowing for more precision,
flexibility, and range. To maintain analog signal integrity in the analog neuron
circuits and the upper part of the capacitive memory, the digital neuron parts are at
the bottom of the capacitive memory and connected only over a few relevant wires.
For an exhaustive description of the digital neuron back end, the reader is again
kindly referred to Kiene (2017).
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3.1.8 Phase-locked loop for internal clock generation

To generate high-speed clock signals for the MADC, the PPU, and the off-chip
communication infrastructure, a phase-locked loop (PLL) has been added. A PLL
is a control module that converts a reference input frequency to different, mostly
higher, output frequencies. The PLL on HICANN-DLSv3 is configurable via JTAG
and relies on an external 50 MHz input signal, from which it derives various clock
signals with up to 1.5 GHz. Since an initial configuration is required to start the
PLL and since core components of the chip depend on its function, HICANN-DLSv3
can only be booted via JTAG. The component is implemented fully digitally and
was also developed within a HBP collaboration with the Dresden University of
Technology.

3.1.9 Communication and FPGA board

Both prototypes, v2 and v3, communicate with an external field-programmable gate
array (FPGA) via four digital data signals and one clock line. On both sides, a
SerDes is used to (de)serialize the exchanged data. The FPGA sits on the Flyspi
board, a custom printed circuit board (PCB), designed by Johannes Schemmel. It
contains a Xilinx Spartan-6 FPGA, 2x128 MB DDR3 random access memory, a
differential input ADC that can capture 125 MS/s at 12 bit resolution, multiple
digital general purpose I/0 lines, and USB conncectivity (Hartel, 2016; SP9 partners
et al., 2020). This board generally interfaces the HICANN-DLS with external
hardware like the host computer, but it can also control the experiment flow and
record spike events that are produced during an experiment for later readout.

3.1.10 Summary

Figure 3.5 provides a schematic overview of all the components mentioned so far.
Blocks highlighted in yellow were introduced with v3, while the others were already
present on v2. Most of the components that were added on the transition from
HICANN-DLSv2 to v3, could be tested successfully after tape-out and turned out to
be widely functional. Some minor flaws and errors became well understood during
testing and could be further improved for the first upscaled version. However, a
problem in the digital communication system caused the chip to crash in the case of
high spike traffic, rendering the chip unusable for larger, especially recurrent network
experiments. The exact origin of this bug remained unresolved but was suspected
to be related to clock transitions induced by the newly introduced varying PLL
clock domains. As most of the communication infrastructure was replaced in the
transition to the full-sized chip, however, no further effort was taken into clarifying
the exact causes. Therefore, network experiments, among them the experiments in
chapters 4 and 5, were continued on HICANN-DLSv2 instead, until the new setup
incorporating the full-sized HICANN-X became available.
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Figure 3.5: Logical block-level diagram of the HICANN-DLSv3 setup. Analog and
digital are both part of the chip, while the right off-chip section contains components
that are implemented externally. Highlighted in yellow are the components that
were not yet part of HICANN-DLSv2 and new to v3.

3.2 Prototype test setup

The connection between the prototype chips and the Flyspi is realized by a set of
two PCBs, the baseboard and the chip carrier board. The latter provides a landing
site for the HICANN-DLS chip and has the form factor of a Small-Outline Dual
Inline Memory Module (SODIMM). It is mostly equipped with passive components
for supply voltage stability and some test pads for direct signal readout. Its current
implementation is based on a design by Matthias Hock and was slightly modified
to satisfy the HICANN-DLSv3 requirements. It can be inserted into a standard
SODIMM connector on the baseboard.

The baseboard on the other hand required a more significant modifications on
its transition from v2 to v3 but was designed to be fully backward compatible with
v2. The redesign was mostly necessitated by the newly added JTAG interface as
well as the change in the chip’s clocking scheme. Due to several other introduced
improvements, the v3 baseboard eventually superseded most of the older v2 base-
boards after its introduction. The functional components and the relations between
them are depicted in figure 3.6 and described in detail below.

3.2.1 Power supply

The HICANN-DLS requires two different supply voltage levels, i.e. 1.2V and
2.5V, each for both, the digital and the analog domain. This domain separation is
introduced to shield the analog supply voltages from noise and distortion induced
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Figure 3.6: Block-level schematic of the baseboard for the HICANN-DLSv3. This
setup is also compatible with the 2"¢ generation prototype.

by the fast switching digital circuits. The latter operate almost exclusively on 1.2V,
while the digital I/O cells are driven with 2.5V mostly. In the analog domain, 2.5V
are usually avoided for power efficiency reasons but can occasionally be of advantage.
In particular in scenarios where voltage operations close to the 1.2V supply rail are
desired. In these cases, introducing 2.5V can often help avoiding signal distortions
or circuit complexity that have to be tolerated otherwise.

The four voltages, VDD12D, VDD12A, VDD25D, and VDD25A and the corresponding
supply currents can be monitored by a bank of four INA219 current sense amplifiers
(Tex, 2015b) from the Flyspi FPGA.

3.2.2 MADC test input

Since both, the readout chain and the MADC were newly introduced on this
prototype chip, a versatile test interface for both became part of the baseboard.
Essentially, a shielded test signal can be connected to a single-ended to differential
amplifier that can be switched directly to the MADC inputs. The same signal chain
also contains a few test pads and removable 02 resistor bridges such that analog
data from the ASIC can also leave the chip and be accessed from the outside. Kiene
(2017) contains some characterizations and measurements that rely on this unit.
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3.2.3 ADC chain

Single-ended analog voltages can also be digitized by the Flyspi ADC. For that
purpose, the signals are first selectably routed through a 9-channel multiplexer
composed of three smaller low on-resistance 3:1 TS5A3357 multiplexers (Tex, 2018a)
before they are pre-buffered by a LMH6612 rail-to-rail operational amplifier (Tex,
2013). This preamplifier shifts and scales the signals to the appropriate input voltage
of a LMH6518 programmable gain differential output amplifier (Tex, 2016) that is
fast and low-impedant enough to drive the Flyspi ADC. Both the multiplexer and
the differential amplifier are configurable by the FPGA.

3.2.4 Reference signals

Being in the developmental stage, many circuit components on the prototype chips
have to receive reference voltages and currents from outside the chip. These signals
are generated by an AD5328 DAC (Ana, 2016) and some operational amplifiers and
custom voltage to current converters.

3.2.5 Spike I/O

A few general purpose pins of the FPGA on the Flyspi board are accessible via an
array of TXB0108 bidirectional level shifters (Tex, 2018c). These integrated circuits
(ICs) do not only shift the FPGA voltage levels into more commonly used ranges,
simplifying external access, but also protect the fragile FPGA pins from electrostatic
discharge and other electrically related hazards. On the baseboard, these signals are
guided to an array of pin headers for easy access.

These pins play a key role for the robotic experiments which are part of later
chapter 4, where they are used for spike input and output to and from the analog
core of HICANN-DLS. The FPGA design was extended to assign the first six neurons
in the neuron array one pin on the mentioned pin header where every spike results
in a digital pulse with a width of 500 ns.

Signals to the HICANN-DLS are encoded in a similar way. When a rising edge
appears on one of the remaining seven pins on the header, the FPGA injects a spike
event into the corresponding one of the top seven synapse rows in the synapse array.
The address of these spike events can be freely configured. The necessary FPGA
hardware description was written and implemented by Christian Pehle.

3.2.6 Spike router

This Spike I/O mechanism is technically coupled to the spike router, which also
resides in the FPGA. This unit, which was also implemented by Christian Pehle, is
responsible for recurrent routing. If it is activated, spikes leaving the HICANN-DLS
are assigned a configurable target address and row and sent back into the chip.
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Figure 3.7: Left: Photo of the HICANN-DLSv3 baseboard with the HICANN-
DLSv2 chip carrier board (plugged in at the right). The Flyspi FPGA board sits
on top of the baseboard (middle, close to the fan) and a ribbon band cable is
connected at the left via a small adapter PCB. This setup has been used for the
experiments described in later chapters 4 and 5 of this thesis. Right: A flock of
v3-baseboards and one old v2-baseboard among them. The setups retired when
experiment development for HICANN-X started.

Lastly, the baseboard contains an Ethernet interface that has, however, never been
commissioned. Generally, all signals on the board, digital as well as analog are also
accessible by test pads or pins for additional debugging support. The base board
is fully compatible with the HICANN-DLSv2 and its chip carrier board. All later
described experiments have, unless explicitly noted, been carried out on this setup.
The entire schematic can be found in appendix C.1 and the setup is depicted in
figure 3.7.
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Figure 3.8: HICANN-X chip

on its chip carrier. The chip

measures 8 X 4 mm?.

3.3 HICANN-X

The HICANN-X is the first full-scale version of the BrainScaleS-2 series with 512
neurons with 256 synapses each, i.e., 131072 synapses in total. Besides stating a
significant milestone in the BrainScaleS family, it is the first autonomous analog
neuromorphic chip with digital multicore plasticity management. While many of
the HICANN-DLSv3 components were simply scaled up to the larger array size,
some received additional updates. Moreover, the digital infrastructure changed
significantly. Below listed are the most important changes as compared to the
previous incarnations.

3.3.1 ANNCORE and quadrants

Figure 3.9 gives an overview of the arrangement of the ANNCORE (blue) and the
digital components surrounding it. Apart form the synapse drivers and the digital
neuron circuits, the ANNCORE is composed of four quadrants that each contain an
instance of the CADC, the synapse array, the analog neuron part, and the capacitive
memory. Each quadrant contains 128 neurons, 256 synapse rows, and hence 32768
synapses in total. Like in the prototype chip, there are two CADC channels per
neural column. Figure 3.10 depicts an elaborate block schematic of one quadrant
with all relevant digital and analog components and data buses.

Synapse drivers and the machine learning mode

The synapse drivers blocks sit in the middle between two horizontally aligned
quadrants and are responsible for both, the left and right synapse arrays. Each of
the 128 drivers within each block is individually addressable and responsible for
two rows, i.e., 2 sides x 2 rows x 128 columns = 512 synapses. Since the 6 bit
synaptic address space allows only for 64 different target addresses, a spike has to be
received by at least eight neurons simultaneously if all synapses shall be used. This
limits the maximum number of different presynaptic partners to 16384 per chip. In
HICANN-X, these drivers were extended by a machine learning mode in which the
STP pulse length modulation is reused to encode an arbitrary value. lL.e., five of the
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3.3 HICANN-X

six bits of a spike package that usually encode the sender address, encode the pulse
length instead. In this way, the synapses inject a charge into the synaptic input line
that is proportional to the product of the weight and this received five bit value,
and hence, they implement an analog multiplication. As neurons can be brought
into a state where they integrate this injected charge over time, the entire synapse
array is transformed into a vector-matrix multiplier.

Event routing and random generators

The digital neuron circuits are located in the middle between each two vertically
aligned quadrants. The circuits belonging to the upper quadrant are interleaved with
those from the lower quadrant, forming one block. A bus system at the center of it,
transports the spike events to the middle of the ANNCORE, where a synthesized
event router is located. This unit merges and splits input to output signals and
streams spike events to the top and bottom into the synapse drivers. The router
block also contains spike sources that can directly inject spike trains with random
Poisson-distributed or equidistant inter-spike intervals into the neural network. Since
Poisson noise is commonly used to provide random background activity for neural
networks, and since this type of noise intrinsically has a high data bandwidth, these
generators save a considerable amount of off-chip communication resources.

3.3.2 Other components

The ANNCORE is surrounded by two PPUs, one at the top and one at the bottom,
such that both have high-speed parallel access to the corresponding CADCs and the
synapse arrays. To the left of the ANNCORE are the PLL, the MADC, two analog
output buffers (amplifiers), eight high-speed SerDes links, and most of the digital
back end. Both the PLL and the MADC were taken over without updates from the
HICANN-DLSv2/3 prototypes. The amplifiers could also be reused from previous
chips and sit, like the MADC, behind a large multiplexing stage that can route analog
signals from and to the analog core. Moreover, HICANN-X contains an internal
reference current generator from which all internal biases and reference voltages
are derived. Thus, after initial calibration, the chip is completely independent of
external analog signals.

Another major change concerns the data interface (Karasenko, 2020). Instead of
previously 4 single-ended data pins, the upscaled version contains eight bidirectional
full-duplex differential high-speed links, each with a data rate of 1 Gb/s output plus
1 Gb/s input, when driven with a 500 MHz clock signal. The total 1/O bandwidth is
therefore up to 84+8 Gb/s. With the current spike encoding scheme, this bandwidth
results in a maximum rate of 250 x 10° spikes per second for each direction. To put
this into intuitive relation, the maximum allowed output spike rate per neuron is
then about 488 kHz. This is roughly five times above what is maximally expected
(100 kHz per neuron) and about 50 times above the average operation (10 kHz per
neuron). The output bandwidth is therefore amply sufficient.

Concerning the input bandwidth, a maximum of 16384 presynaptic partners
(constrained by the address space per row and the number of synapse drivers) could
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fire at a maximum rate of 100 kHz. This extreme case would lead to roughly 1.6 x 10°
spikes per second and therefore exceed the technical capacity by a factor of about
6.5. In the average case, however, the input rate is 10 times lower, i.e., about
164 x 10° spikes per second, and therefore well within the link capacity. Also note
that, the larger the network is, the less likely it is that all neurons spike at maximum
rate. Moreover, the link capacity can be doubled if clocked with 1 GHz instead of
500 MHz. The latter is only chosen because of technical limitations imposed by the
FPGA that the chip is currently connected to (Karasenko, 2020). This interface
between the chip and the FPGA is physically implemented on a PCB, which was
also developed within the context of this thesis.

3.4 Full-scale test setup

The current HICANN-X test platform is based on the Cube setup (Giittler, 2017;
Kleider, 2017). These setups are usually composed of six PCBs: four Kintex-7
FPGA boards, one 10-Board for external 1/0, like Ethernet and USB, and one
iBoard-Adapter for interfacing to the HICANN chip carrier boards. They were
originally developed for prototyping the HICANN-to-FPGA connectivity for the
BrainScaleS-1 wafer-scale system, which contains the same but more of these Kintex-
7 boards. Facing the same challenge again with the BrainScaleS-2 prototype chips,
reusing these setups came as a natural choice. Hence, a new board was developed
to serve as a bridge between the Cube setups and the HICANN-X chips. Since the
BrainScaleS-1 equivalent of this PCB is the iBoard, the HICANN-X version is called
xBoard.

Figure 3.11 shows a Cube setup with the new PCB installed. Mechanically, it is
held in place by some custom mounts that attach to the vertical aluminum rail at its
back. The xBoard is connected to the iBoard-Adapter by a 120-pin Samtec BTH-60
connector that is mostly occupied by the 18 differential pairs for the high-speed link
and a large number of ground connections for signal integrity. Moreover, it carries a
few further differential signals for a high-speed ADC that sits on the xBoard, and
some other signals for slower communication. Details and components are listed
below and the entire schematic can be found in appendix C.2. Figure 3.12 gives a
block-level schematic overview of the xBoard.

3.4.1 Power supply

The arrangements of linear regulators and INA219 current and voltage monitors
was largely adopted from the HICANN-DLSv3 baseboard and extended by two
further supplies, for the MADC and the PLL. In this way, these components can
be separately monitored for their power consumption while the system remains
fully functional. Moreover, all of the chip supply voltages can be fine tuned by a
DAC that can take influence on the corresponding linear regulators. Therewith, the
HICANN-X can be tested for its capability of operating at lower supply voltages
and thus, at greater energy efficiency. A software-defined feedback loop that sets
the voltages based on the INA219 data was implemented by Mitja Kleider.
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Figure 3.11: Cube setup with xBoard and HICANN-X chip carrier. The compo-
nents of the legacy Cube setups are have a green overlay, and the new HICANN-X
components are tinted red and yellow. The 10-Board connects the four FPGA
boards and is only partially visible in the background. The iBoard-Adapter is the
z-shaped PCB in the foreground.
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3.4.2 Readout chain and reference generation

Also some of the analog readout multiplexing circuits from the HICANN-DLSv3
baseboard could be reused for the xBoard but were extended to a certain degree,
mostly because the analog HICANN-X pins can be configured both as inputs and
outputs, depending on the test case. For example, the pin IREF can be connected
to the newly introduced chip-internal reference current generators for readout and
characterization, but can also receive an external reference current as a fallback
solution in case of the circuit’s failure. The pins ANAREADOUT DBG_0/1 can also be
configured as inputs and outputs. Therefore, these pins can be gated to readout
circuits as well as to buffered DAC outputs. Additionally, some signals can be
accessed by two SMA connectors for shielded external measurements. The readout
signal is also passed to a LMH6518 differential programmable gain amplifier but then
digitized locally by a ADC3224 12 bit, 125 MS/s high-speed ADC (Tex, 2019), which
also streams to the Kintex-7 FPGA.

3.4.3 Digital I/O

The xBoard also contains some level shifters and digital output extensions from
which various digital signals for IC control or light-emitting diode (LED) indicators
emerge. While a Cube setup contains up to four FPGA boards, only one is used
per HICANN-X. The corresponding digital high-speed busses are routed from the
Samtec connector, across the xBoard, to a SODIMM connector that receives the chip
carrier board. On both boards the wires are matched in total as well as differential
length to equalize signal runtimes.
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3.4 Full-scale test setup

Figure 3.13: Partially assembled HICANN-X chip carrier board.

3.4.4 Chip carrier

Besides the landing site for HICANN-X and some capacitors for supply voltage
filtering, the chip carrier (figure 3.13) also contains LED-based supply voltage
indicators and two ICs, a 24AA02UID electrically erasable programmable read-only
memory (EEPROM) (Mic, 2013) and a MAX11615 8-channel ADC (max, 2012). The
24AA02U1ID also contains a unique 32-bit identification number, which can be used
to identify the individual HICANN-X chips. Data from central calibration data
banks can therefore be accessed automatically and chip-specific data can always
be associated with this specific ID. Moreover, 2kB of EEPROM can be used for
arbitrary local metadata on the respective chip. The ADC was originally intended
to provide measurements for a supply voltage control loop but has become obsolete
by the INA219 monitors on the xBoard. It therefore remains unassembled.

All peripheral components on both, the xBoard and the chip carrier, are digitally
configurable over either a serial peripheral interface (SPI) or an inter-integrated
circuit (I*C) bus that are both driven from the Kintex-7 FPGA in the Cube setup.
At the time of writing, 16 HICANN-X Cube setups were actively in use, eight of
which are depicted in figure 3.14.
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Figure 3.14: Assembled xBoard without chip carrier PCB (top) and a few HICANN-
X test setups in fully assembled working state (bottom).
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Figure 3.15: CADC architecture. The ramp voltage and a few control signals are
distributed from a central section at the left to an array of CADC columns. The
central section receives analog references and biases, as well as digital configuration
and control signals. Each column is subdivided into two channels for the causal (cc)
and anti-causal (ca) STDP correlation measurements, which, in turn, consist of an
analog circuit A and a digital circuit D each. The voltage signals to be measured
arrive from the bottom of the array and the digitized values leave the CADC at the
top into the PPU. The colored top figure shows chip layout of the central section
and the first eight columns and the bottom figure a schematic representation of it.

3.5 CADC

The CADC is structured in an array of column-wise organized channels, and a
central component that distributes signals which are shared among all channels.
This central compound, also referred to as the CADC center, is responsible for the
ramp and reset voltage generation and buffered signal distribution. Figure 3.15
illustrates the arrangement of the subcomponents.

3.5.1 CADC center

Parts of the CADC center were recycled from the previous HICANN-DLSv2 design
from Sabanci Universitesi only with minor modifications. In particular, the opera-
tional amplifier, that is responsible for the ramp generation was reused in a different
circuit and layout configuration. In both, the new and the former design, the ramp
voltage is generated by integrating over an adjustable reference current. For that
purpose, the operational amplifier is configured with an integrating capacitor in the
feedback path that neutralizes its input current by a constant increase in voltage. In
the HICANN-DLSv2 design, this current derives from a resistor network that receives
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a reference voltage from the capacitive memory. In the current implementation this
current is obtained more straight-forwardly by a mirrored reference current from
the capacitive memory. In both versions, the ramp reset is executed by shorting
the integrating capacitor, turning the entire circuit into a unity gain buffer with the
ramp reset voltage at its input.

The CADC center also contains a smaller operational amplifier (taken from the
voltage buffers in the capacitive memory (Hock, 2014) that constantly buffers this
reset voltage to all CADC channels. The reason for this is that the ramp voltage
wire has a large parasitic capacitance attached to it because it travels over a distance
of 1.5mm through an entire quadrant and because it is attached to large gate
capacitors of the comparators in every channel. In order to accelerate the reset
process, every channel has a switch that can short the ramp to the reset voltage,
thus, maximizing the reset current.

In addition to the analog voltages, most of the digital signals necessary to clock
and control the CADC channels are also buffered in the central section.

3.5.2 Columns and channels

As mentioned earlier, voltage conversion in a ramp-compare ADC is accomplished
by measuring the time it takes for a constantly rising ramp voltage Viamp to exceed
the input voltage Vi,. To measure this time, every channel contains a digital counter
that is incremented as long as Viamp < Vin. This is achieved by gating the counter’s
clock signal with the output of an analog comparator that continuously compares the
two voltages. The crucial aspect in this scheme is the input voltage mismatch of the
comparator, which must be kept low in order to minimize inter-channel variations. A
common way to do so, is to maximize the gate area of the input transistors, because
this minimizes the relative impact of unavoidable manufacturing width, density, and
thickness variations with respect to the total area of the component.

However, each channel is subject to significant area constraints, as it is instantiated
1024 times on one chip. Therefore, besides area upscaling, a calibration mechanism
has been implemented, which compensates 0'" order mismatch, i.e., offset variations.

Although the CADC achieves a precision of roughly 8 bit, every counter has a
9 bit range and starts at a configurable value between 129 and 383, usually around
256. If the conversion value is smaller than 256, a readout logic sets the digital
output value to zero. Moreover, the most significant bit is truncated, such that the
visible results are effectively within 0 to 255, while, internally, the counter runs from
around 256 to 511 maximum. Thus, by setting this initial value to the negative offset
deviation of the respective channel, the offset mismatch is effectively calibrated.

Appendix C.3 contains the schematics the CADC channel, the comparator, the
digital part including the calibration logic, and the ramp generator.

3.5.3 Measurements and performance

Figures 3.17 and 3.18 show the uncalibrated and calibrated conversion response
functions. As typical deviations are on the order of £10 least significant bit (LSB),
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Figure 3.17: Uncalibrated and calibrated CADC response functions for all channels
within the four quadrants of one HICANN-X chip. The filled areas are limited by
the respective minimum and maximum values. Calibration took place per quadrant
for the ramp current that determines the ramp slope, and per channel for the
inter-channel variation using the custom digital calibration strategy. The data was
generously provided by Johannes Weis, who also implemented the CADC calibration
routines in HICANN-X (Weis, 2020).

this calibration scheme causes the range of some channels to shrink by an equal
amount because of digital clipping at the lower and upper counter range limits.
So far, however, no cases have been encountered in which this limitation stated a
problem.

The power consumption imposes another constraint. The initial design goal was a
current consumption of 2 pA per channel, when driven from a single 1.2 V supply rail.
The corresponding power consumption was therefore targeted at 2.4 nW. Figure 3.19
puts this into relation to in-silico ADCs by plotting the energy per conversion over
the ADC resolution for various values found in literature (Sundstrom et al., 2008).
The smallest technology included in this publication is a 90 nm process, which uses
roughly twice the area for digital circuits than the 65 nm technology used for the
presented CADC. For the sake of the argument, a factor two in terms of power
efficiency merely due to the technology improvement can be assumed.

The targeted signal-to-noise ratio is somewhere between 6 and 8 bit and the
energy consumption for the corresponding supply currents is marked in the figure
as a pink (7.3 pJ for the presented solution) and a blue (1.3 pJ, corresponding to
2 11A target current consumption) bar. It becomes apparent that 2 pA per channel is
approximately one to two orders of magnitude below the state-of-the-art at the year
of the publication, i.e., 2008, while 7.3 pJ is still at the lowest end. Note however,
that the included ADCs are not necessarily subject to the tight area constraints
that the HICANN-X imposes. Unfortunately, until the current solution percolated,
a lot of effort has been wasted for aiming at the desired goal of 2 1A per channel. A
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Figure 3.18: Uncalibrated and calibrated CADC deviations for all channels within
the four quadrants (top to bottom) of one HICANN-X chip. The violin plots show
the histogram over the deviations from a linear fit at the various data points, i.e.,
the integral nonlinearity (INL). The fits in the left column were obtained by linear
regressions based only on the data from the respective quadrant. The fits on the
right are obtained from data from all quadrants. These plots are based on the same
data set as in figure 3.17.
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design that achieved a total consumption of 2.13 pA per channel in simulation was
ultimately dismissed because it demanded periodical calibration, which would have
negatively impacted the user experience (Schreiber, 2016).

The current implementation is therefore oriented at a more conservative design
and uses 0.5 1A to 1 pA for the analog circuits on 2.5V and approximately 6 pA for
the digital part when running at a maximum sample frequency of approximately
1.85 MHz. Taking into account the power demands of the central stage, another
4.1 1A have to be added per channel on 1.2V, and thus, the total current consumption
per channel is roughly 10.1pA on 1.2V and 0.5pA on 2.5V. Hence, a conversion
takes about 7.3 pJ, which is still well within a state-of-the-art performance margin.
A summary of the CADC key characteristics is given below.

Resolution 8 bit

Input range 0V to 1.2V (scalable)
Maximum sampling rate ~1.85 MHz

Nr of channels 256 per unit, 1024 per chip
Power per channel ~13.4pW

Energy per conversion and channel ~7.3pJ

Power per CADC ~3.4mW

Channel height 45.725 pm

Channel width 5.88 pm

Area per channel 268.863 1m?

The input range is labeled scalable because it can be adjusted with the ramp offset
and slope. In this way, resolution can be traded against range because the counting
time stays constant. For example, if the signal of interest does not go below 0.4V
and not above 0.8 V the ramp can be configured such that it starts at the 0.4V and
reaches 0.8 V, when the counter reaches at 256. This maps the 8 bit output range
to 0.4V to 0.8V and improves the LSB resolution from 4.7mV to 1.6 mV.
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Figure 3.20: Correlation recordings of 31 synapses belonging to one neuron on
HICANN-DLSv3. Every synapse was exposed to a number of pre- and postsynaptic
spike pairs each with fixed inter-spike interval At = t,o5t — tpre prior to CADC
readout. The left plot shows the voltages collected for the causal correlation branch,
the right plot for the acausal branch. One synapse was blacklisted due to overly
bad performance within this measurement. The data was also recorded by Johannes
Weis within the scope of his Bachelor’s thesis. Further details can be found in Weis
(2018).

Correlation readout

As mentioned, the main purpose of the CADC is the conversion of the synaptic
correlation measurements that are relevant for numerous learning rules, like, for
example, STDP. Figure 3.20 shows the results of such measurements for both
correlation branches of a column of synapses on HICANN-DLSv3.

Membrane voltage readout

Besides synaptic correlation measurements, the CADC can also digitize the mem-
brane potentials of the neurons. For this purpose, digital switches in the synapse
array and the neuron readout multiplexer can be configured such that an amplifier
located at the neuron sends the buffered membrane potential to one of the synaptic
correlation readout lines. This feature has recently been used by Cramer et al.
(2020a) to train a three-layer network on HICANN-X to classify handwritten digits
from the MNIST dataset (LeCun et al., 1998). The underlying training algorithm
was proposed by Zenke and Ganguli (2018) and requires knowledge of the membrane
potentials to compute the backpropagation signals. For an elaborate description
of the algorithm and the technical details, the reader is kindly referred to Cramer
et al. (2020a). Figure 3.21 shows the recorded membrane traces and spike activity
during one classification cycle. The CADC recorded the membrane potentials of 128
neurons simultaneously at a rate of 400 kHz. The rate is adequate for the experiment
and naturally results from the execution time for serial data access and arithmetic
in the PPU.
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Figure 3.21: Parallel recording of membrane traces with the CADC. The left side
shows the color-encoded membrane potentials of 118 neurons in the hidden layer
and 10 neurons in the output layer of a spike-based classifying network. The black
dots indicate spike events of the respective neurons. At t = 0, an MNIST-digit
is presented to the input layer (not part of the above illustration), which causes
postsynaptic potentials in the neurons of the depicted hidden layer, which, in turn,
cause output spikes that ultimately reach the output layer. The output layer neurons
are configured as non-spiking leaky integrators, such that the classification result
can be obtained from their membrane potentials. The membrane potentials of a
subset of hidden layer neurons (highlighted in gray) are shown in more detail in
the top right panel. The zooming region covers the traces of four neurons (29 to
32) whose membrane potentials are shown in the main plots. The small embedded
figure is merely an enlarged view of the zoomed region with the same color encoding
as the left plots. The lower plot on the right-hand side shows all membrane traces
of the output layer. Most membrane potentials are either inhibited or unaffected,
while one trace clearly separates from the others (red). The index of this most active
neuron identifies the classification response of the network. The recordings where
kindly provided to the author by Sebastian Billaudelle. An elaborate description of
the underlying experiment can be found in Cramer et al. (2020a).
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3.5.4 Discussion and outlook

The CADC calibration and accuracy updates state major improvements as compared
to the previous design. Given the area and power constraints, the component
probably operates close to the achievable optimum, which is supported by the above
mentioned comparative study by Sundstrom et al. (2008) (see figure 3.19).

However, the most limiting factor is perhaps the comparably low sampling rate of
O(1-2MHz), which is mostly due to the ramp-compare architecture that intrinsically
requires at least 256 clock cycles for an 8 bit conversion. One possible way to overcome
this is to switch to a SAR~architecture instead. This ADC type requires the same
amount of clock cycles per conversion as the desired number of bits, i.e., 8 cycles
in this case. Since SAR-ADCs are among the most power-efficient architectures,
this could also state a further improvement in terms of energy-efficiency (Bashir
et al., 2016). However, these two advantages have to be be paid for predominantly
by three disadvantages.

First, SAR-ADCs are prone to differential nonlinearities (DNL). This means
that the difference between two adjacent analog values does not map to the same
difference in the converted digital domain. For example, when the input voltage
crosses the equivalent of one LSB, a jump of multiple LSBs in the digital domain
could be the consequence in an ADC with a bad DNL. At another absolute input
voltage the same differential increase could result in no or even a negative change
in the converted value. Thus, while the overall input range could map well to its
output range (a good INL), the results could still be compromised by differential
nonlinearities (DNL).

Especially for learning algorithms in neural networks, this can state a significant
problem, since they often rely on differential instead of absolute variables. Usually,
this type of nonlinearity is compensated for by larger capacitor sizes (mismatch
reduction) and occasionally by calibration circuits. Both options, however, are
facing substantial technical difficulties in the current implementation due to the
tight area constraints. Ramp-compare ADCs, in contrast, are intrinsically robust
against differential nonlinearities.

Second, the size of an SAR-ADCs grows exponentially with the number of bits
N, if not pipelined. I.e., the area that is required for the SAR capacitor array
is proportional to 2 - 2V - A,,, where A, is the size of the smallest capacitor.
Using serially connected capacitors for the lowest bits, the scaling can be reduced to
2- (2N —2 —|—2+24) - Amin. Because of the necessary mismatch reduction, A, should be
on the order of at least 5 um? net. The necessary area is then roughly 700 pm? only
for the SAR capacitor bank. Therefore, an SAR-ADC would likely triple the area
requirements as compared to the presented ramp architecture. However, a three-fold
increase in area is possibly still within a manageable frame on the current chip.
Moreover, when transitioning to larger die sizes (e.g. for wafer-scale integration),
this problem can potentially become entirely negligible.

Third, the input capacitance of an SAR-ADC is a few orders of magnitude higher
than that of a typical ramp-ADC. In practice, this can decrease the accuracy
significantly because the sampled signal is connected to the low-impedant ADC
input. As the CADC multiplexes the synaptic rows, frequently varying input voltages
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have to be expected, worsening the problem. This obstacle can only be resolved
by reducing the impedance of the signals to be measured, which automatically
necessitates higher current consumption in the corresponding buffer circuits. In
the MADC readout chain®, the same issue causes the readout amplifier to require
O(1mA) supply current, which is comparable to the current consumption of the
MADC itself.

Taken together, the three disadvantages require certain trade-offs to be accepted
for the SAR approach. Nevertheless, especially in the machine learning mode (see
section 3.3.1), where the membrane potentials represent the results of vector-matrix
multiplications, the CADC sampling rate is potentially one of the speed-limiting
factors. The other bottlenecks are currently the integration time on the membrane
capacitor and the reset time of the neuron. A thorough analysis of the performance
in machine learning applications is subject of currently ongoing research. Therefore,
the SAR architecture might indeed be of interest in future designs and should be
kept in mind.

The currently implemented ramp-compare CADC, however, combines a lot of
advantages into a readily usable, scalable, and robust solution. Concerning the speed
disadvantage, there also exists a potential improvement that could be implemented
without much effort in the digital CADC back-end. L.e., the CADC conversion time
can be shortened by making the maximum counter value configurable, trading digital
resolution for conversion speed. Limited by the bandwidth of the ramp generator
and the time the ramp reset requires, the maximum sampling rate can likely be
increased by a factor of 5 to ~8.8 MHz, when a resolution of 5 bit is still acceptable.
A sampling rate of 5.6 MHz could be achieved at a 6 bit resolution. Considering the
noise on the synaptic input line, this resolution might be well sufficient for many
tasks.

IThe MADC is an SAR-ADC.
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"All three crystals were housed in the basement now,
just centimetres away from the Play Pen: a vacuum
chamber containing an atomic force microscope with
fifty thousand independently movable tips, arrays of
solid-state lasers and photodetectors, and thousands of
micro-wells stocked with samples of all the stable
chemical elements. The time lag between Sapphire and
this machine had to be as short as possible, in order for
the Phites to be able to conduct experiments in
real-world physics while their own world was running at
full speed.”

— Greg Egan, Crystal nights, 2009

4.1 Motivation

In his science fiction short story Crystal nights, Greg Egan describes how an artificial,
accelerated world, called Sapphire, is simulated on an extremely powerful supercom-
puter. Within Sapphire virtual beings, the Phites, are exposed to an evolutionary
pressure that requires them to evolve higher and higher intelligence. After developing
space travel, the Phites find a black monolith on their moon that contains interfaces
to a machine that is not part of their simulation but of the outside physical world,
the Play Pen.

Since Sapphire, like the neurons on BrainScaleS-2, runs accelerated with respect to
the outside world, the problem that the engineers in Egan’s story face, is similar
to the problem that this section is about. I.e., constructing a mechanical robotic
interface for an accelerated intelligent system.

More generally, this chapter can be seen as a contribution to the field of neuro-
robotics, which is mainly concerned with the neuronal control of physical or virtual
agents. Within a large part of the research in this field, the neural control organs are
implemented in the form of digitally executed simulations on conventional computer
architectures. However, there are some isolated projects that use neuromorphic
hardware instead. For example, Massoud and Horiuchi (2010) presented a ring
attractor network that can track an angular direction on a custom neuromorphic
ASIC. These networks are similar in function to some brain areas which are com-
monly found in various animal species, from mammals to insects (see chapter 5).
More recently, a similar circuit was presented with further extensions that allow
the encoded direction to be updated precisely by means of differential movement

67



4 Accelerated mechanics

inputs (Kreiser et al., 2018b,a, 2019a,b). In Kreiser et al. (2020), this network was
successfully employed to estimate the head pose of a small humanoid robot. Zhao
et al. (2020) derived a neural motor controller from a similar circuit to control the
head rotation of the same robot. Cheng et al. (2020) recently presented another
agent who is able to intercept moving objects based on the digital neuromorphic
SpiNNaker system (Furber et al., 2014). As already mentioned in section 1.1, none
of the above examples runs significantly faster then biological real-time though.
Moreover, none of them employs the neuromorphic substrate for much more than a
fractional aspect of the agents.

The motivation behind the presented robot is to study how accelerated neuromor-
phic nervous systems can cybernetically interact with external environments, while
the interfaces between the two worlds are realized by a set of biomimetic actuators
and sensors. l.e., for the presented robot, the sensors, actuators, and the agent
are fully neuromorphic. In this way, the accelerated neural network experiences a
similar state to biological nervous systems that engage in a constant interplay of
action and reaction. Potentially, this should facilitate insight into many dynamical
network effects like the control of motion sequences or fast information propagation
through the network. Moreover, as the neuromorphic agent is able to determine
the sensed content on its own, this experiment architecture also enables studying
phenomena like attention.

This chapter first outlines the physical considerations that preceded the technical
concepts. Then the development and characteristics of a prototype are described,
followed by those of the final robot. For both incarnations, experiments are presented
that reflect the biological plausibilities and capabilities of the systems.

Contribution

Louis Jussios selected and developed the rotational position sensors for the first
robotic prototype (section 4.3.2) and Malte Prinzler and Sebastian Billaudelle
contributed to the mechanical construction of it. Furthermore, Malte Prinzler con-
tributed to some electronic components and conducted the first nontrivial experiment
on this prototype which is outlined in section 4.5. All other parts of this chapter
were conceptualized, implemented, and evaluated by the author of the thesis.

4.2 Requirements and limitations

The intrinsic speed-up of BrainScaleS-2 represents both a challenge and an oppor-
tunity for neuromorphic robotic experiments. On the one hand, the demands that
have to be met by a mechanical system that is supposed to move 1000 x faster than
biological systems are significant and hard to satisfy with of-the-shelf components.
On the other hand, the increase in experiment throughput is high enough to leverage
robotic optimization schemes to a new qualitative level. I.e., costly optimization
algorithms, like evolutionary strategies, can be executed within days instead of years
when implemented serially.
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Figure 4.1: Drosophila melanogaster’s physical reactions after being confronted with
the visual cue of a fly swatter at tyo = 0. The first reaction becomes visible around
200ms after the cue. Reprinted from Gwyneth Card, and Michael H. Dickinson,
Visually mediated motor planning in the escape response of Drosophila, Current
Biology 18(17) (2008): 1300-1307, Copyright (2008), with permission from Elsevier.
(Card and Dickinson, 2018).

Except for optimization advantages, the time scales of the actions that BrainScaleS-
2 could take as a neural robotic controller are on the order of a few microseconds.
It could therefore be used in high-speed applications, like for example micro-sized or
very fast aerial vehicles, motor control circuits, or ultra sound and radar applications.

In order to develop an intuition about the demands that the BrainScaleS-2 speed-
up states for a physical system, first a look is taken at neural actuator control in
biological systems.

4.2.1 Actuators

The speed, or more precisely the acceleration, of movement of biological actuators
with nervous systems is in a certain proportion to their size (Greenewalt, 1962;
Healy et al., 2013), which among other reasons is simply due to the inertia of
their extremities. For example, the largest animal on our planet, the blue whale,
moves with calm, graceful strokes that typically span several seconds. In contrast,
some midges flap their wings up to 1000 times per second (Sotavalta, 1953). This
frequency, however, is beyond the reach of neural dynamics (see section 2.1.2) and
relies on a slick interplay of mechanical stretch and motor control instead.

As the typical spiking frequencies of neurons lie around 10Hz to 100 Hz, the
relevant lower end of motion time scales that are accessible by neural control should
typically be on the order of 10ms to 100ms. Support for this range is provided
by experiments with Drosophila melanogaster. In Card and Dickinson (2018), a
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high-speed camera recorded the motion of fruit flies when confronted with a fly
swatter (see figure 4.1). It takes approximately 200 ms for the fly to process the
visual input and initiate motor action. The leg movements and wing flapping then
happens within a few 10 ms.

Considering the BrainScaleS-2 speed-up, we therefore desire a mechanical system
that is capable of performing changes in motion on the order of 10ps to 100 ps. For
a robotic application, these small timescales are crucial, since longer time scales can
usually easily be achieved by reducing the force of the actuators or simply by adding
mass. That is to say, slower motion is always accessible.

To estimate the feasibility of such a system, first the energy F that is required to
translate an initially resting mass m over a distance x within a time interval 7 is
considered:

Ez2-m-<x)2. (4.1)

T

For a constant acceleration, this implies a necessary power of

P:2-m-§. (4.2)
Assuming that electronic sensors and mounting accessory might be attached to the
actuator, a mass of a few gram is hardly avoidable. Moreover, for movements on
biological length scales, x should be on the order of perhaps 1 mm. Thus, the power
required to move an initially resting sensor with a mass m = 3 g over a distance
r = 1lmm within 7 = 10ps is P = 6 MW, and therefore already on a scale that
lies beyond the capacities of a typical laboratory environment (at least if driven
continuously). Fortunately, due to the inverse cubic dependence on 7, the power
drops by three orders of magnitude to P = 6 kW if the desired mechanical response
time is decreased by only one order of magnitude to 7 = 100 ps. If it is decreased
further to 7 = 500 ps, that is half a second in biological time, the power consumption
drops to only 48 W, which can easily be satisfied by standard low-cost power supplies.
The resulting acceleration is then on the order of

1 mm
a=2-——— =8000ms *. 4.3
(500 ps)? (43)
Although, this response time is not in the desired regime of 10 s to 100 ps, it is
still within the range of just a few spikes. Also, the quadratic dependency on the
distance x allows for dividing the response time by a factor of 4 to 7 = 125 s, if a
minimum movement of 0.5 mm is accepted instead.

The next aspect to look at are the spike-actuator transfer functions, i.e. the muscle
force with respect to the neural input commands. Figure 4.2 shows a simplified
schematic of vertebrate motor units. Each motor unit is comprised of a motor
neuron and a set of muscle fibers. The force response at various input spike rates of
such a unit is illustrated in figure 4.3. Here, the relevant spike rates are on the order
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Figure 4.2: Schematic of bi-
ological motor units. A mo-
tor unit consists of a motor nu-
cleus in the spinal cord, an ax-
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Figure 4.3: Force response of motor units related to finger movement with respect
to a varying spike rate stimulation. Results were obtained by intraneural motor
axon stimulation in humans. Adapted from Fuglevand et al. (1999) with permission
of The American Physiological Society.

71



4 Accelerated mechanics

Figure 4.4: Human retina with rods
(small) and cones (large). Reference scale
is 10 pm. Taken from Curcio et al. (1990).
Reprinted with permission from John Wi-
ley and Sons and Copyright Clearance Cen-
ter. Copyright (1990) Wiley - Liss, Inc.

of 0Hz to 50 Hz with a typical saturation at around 30 Hz. All motor units that
constitute an entire muscle are referred to as a muscle pool (Kandel et al., 2013).
When a muscle becomes active, small motor units within this pool become active
first. As more force is required, the more and the larger motor units get activated
by spinal interneurons. This process, also known as motor unit recruitment (Kernell,
2006; Kandel et al., 2013), allows for high precision at tasks that require weak forces,
and strong support of large units, when strength is more important than precision.
In that way, the nonlinear force response of a single motor unit averages out and a
more homogeneous, linear transfer function for the entire muscle with respect to the
interneuron input is achieved.

One possible medium to realize artificial muscles that operate within the above
mentioned power scales, are electromagnetic actuators. Since these devices usually
have a very homogeneous, within a certain range even linear, force response with
respect to the input current, the recruitment of multiple units is not necessary and
the force can instead straight-forwardly be controlled by the overall input current.
In accordance with biology, the input spike rate for the current control circuits of

the accelerated robotic actuators is therefore desired to cover a maximum range of
0kHz to 100 kHz.

4.2.2 Sensors

Nervous systems acquire information on the physical system and environment that
they are embedded into, via a large variety of sensory cells. Typically, sensor cells rely
on specialized physicochemical processes that induce changes in the cells” membrane
potential when stimulated by extracellular information, e.g., light, pressure, heat,
sound, etc. (Kandel et al., 2013). The changes in the membrane potentials eventually
cause action potentials that are transmitted as spikes into the nervous system. Since
so many different types and subtypes of sensor cells exist, only a few examples are
presented here in order to not leave the scope of this manuscript. Two aspect are of
particular interest for neuromorphic sensors: the typical encoding schemes, and the
response dynamics.

Sensor cells typically appear where they are useful for the organism that carries
them (see section 2.1.4). Their spatial density is usually proportional to their
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usefulness at the given location. Since every sensor has a certain energy consumption,
they are of course placed economically. For example, mechanoreceptive cells are
very densely packed at the tongue and lips, as this allows the organism to detect
hazardous material before swallowing it. Also our finger tips contain a lot of touch
receptors, since this enables a high level of control and precision of movement, which,
in turn, is useful for object manipulation, tool building and hazard detection. On the
other hand, areas like the trunk, do only contain as many receptors as are necessary
to detect relevant outside influences.

An area that is extremely densely packed with sensor cells is the retina (see
figure 4.4). It is filled with light sensitive cells, called rods, and color specific cells,
called cones. The rods reach a density of about up to 1 cell every 2 pm at the regions
highest resolution. In front of this layer of rods and cones is a layer of various types
of retinal neurons, that implement some rudimentary receptive fields over the light
receptive cells. Ultimately, retinal ganglion cells represent the output of these fields
and transfer the information via long axonic connections into the direction of the
central nervous system (Hubel, 1995). For humans, this bundle of axons, the optic
nerve, contains about 1158 000 nerve fibers on average (Jonas et al., 1992). Thus,
assuming an average firing rate of 10 Hz, the typical data rate of this bundle is on
the order of 10 million spikes per second. Translated to the BrainScaleS-2 speed-up
and encoding, this would correspond to a data rate of about 30 GBs~!. While future
scaled-up versions of BrainScaleS-2 might potentially be able to process such an
amount of data, it is by far too large for the current single chip setups. Moreover,
after arriving in the brain, the optical information is distributed to and processed
by the striate area (a part of the visual cortex), that contains a number of neurons
that is orders of magnitude larger than the number of axons within the optic nerve.
Figure 4.5 shows how the optical information is distributed over the striate cortex
of macaque monkeys.

Since a biologically plausible neuromorphic visual cortex should behave in the
same way, even the limitations of fully upscaled wafer version would be surpassed.
Therefore, reducing the number of axons and, hence, the sensor dimensionality is
inevitable for these kinds of experiments within the foreseeable future. Since the
BrainScaleS-2 prototype chip on which the robotic experiments within this thesis
were conducted, contains only 32 neurons, the sensor dimensionality has to be
limited even more drastically to only 1 to 10 sensor channels in total.

Apart from the sensor dimensionality, another interesting aspect is the way in
which a single sensor unit transforms a scalar stimulus into a spike train. Figure 4.6
shows how slowly (A) and rapidly (B) adapting mechanoreceptive cells respond to
pressure stimuli in terms of their output spikes. In column A, the most apparent
observation is that the overall firing rate is in some proportion to the amplitude of the
applied stimulus. Another observation is that the cells adapt to the constant stimuli
by reducing their output rate over time. This behavior is even more pronounced in
B, where cells were stimulated with rising signals. These rapidly adapting receptors
fire only when the stimulus is changing over time and are insensitive to the absolute
amplitudes. This dynamical response is not exclusive for mechanoreceptors but
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Figure 4.5: The spatial representation of visual information in the striate cortex of
macaque monkeys. For this experiment, a monkey was anesthetized and medically
paralyzed in order to suppress eye movements. A static visual pattern was then shown
in front of it such that the pattern was projected onto its retinas for approximately
25 min to 30 min before the monkey was euthanized. The striate cortex was then
removed and the activity visualized on an autoradiograph. At the beginning of
the experiment the monkey was injected radioactive 2-deoxy-d-glucose that is
metabolized by neurons. The more active neurons are, the more energy they require
and the more metabolism takes places. Therefore, high neural activity is correlated
with high concentration of this special radioactive glucose. Left: Target-shaped
visual pattern that is presented to the monkey. For maximum neural response, the
black and white checks alternatingly flickered with a frequency of 3 Hz. The black
border around the right halve of the pattern indicates the part of the field of vision
the neural response belongs to. the scale bar denotes 2° in the visual field. Right:
The autoradiograph of the fourth layer of the striate cortex. The structure of the
presented pattern is reproduced on the cortex, proving a topological conservation
of visual information. The left side corresponds to the center of the pattern, the
right side to its outer regions. The scale bar length is 1cm. The number of neurons
in this area is about 78 000 mm~—2 for macaque monkeys (Beaulieu and Colonnier,
1989). Taken from Tootell et al. (1988). Copyright 1988 Society for Neuroscience.
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Figure 4.6: A, B) Spike response of a few mechanoreceptive sensory neurons
(vertical bars). The stimuli over time are given below each spike trace. All cells start
spiking when the stimulus is being applied and adapt to it by decreasing their output
activity over time. Some receptors adapt slowly (A) and thereby indicate mostly
the stimulus amplitude, others adapt rapidly (B) being mostly sensitive to changes
in the applied stimuli. C, D) Spike rate response of slowly (C) and rapidly (D)
adapting retinal ganglion cells. Each column shows four typical response functions
and the applied stimulus in the bottom line, which is switched on at ¢ = 0 and
switched off again at ¢ = 1s. Sustained cells (C) respond by a change of a certain
baseline activity as long as a stimulus is applied. In transient cells (D), the activity
is influenced by the change of the stimulus signal but decays back to the baseline
level within a few 100 ms. Note that also sustained cells may have a certain amount
of transient decay. The data has been extracted from Mountcastle et al. (1966),
Talbot et al. (1968), and Kandel et al. (2013).
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appears in many other sensor cells as well (Hubel, 1995; Kandel et al., 2013).

Figure 4.6 also shows a similar scheme for slowly (C) and rapidly (D) adapting
retinal ganglion cells. In this case, the stimulus is increased relative to some baseline
activity instead of starting from and dropping back to zero as in A and B. When the
stimulus is removed, these cells undershoot. The second row reveals inverse output
characteristics, i.e., these cells decrease their activity upon receiving a positive
stimulus.

The advantage of this adaptation scheme is that it greatly extends the dynamic
range of perception by conveying relative instead of absolute information. For
example, our ears are able to detect pressure variations within a dynamic range of
up to 120dB (Zwicker and Fastl, 2013). Another example is our eyes, that can see
under night sky luminance levels of only 1072 cdm~2 as well as in bright daylight
at 10%cdm™2, i.e. within a range of nine orders of magnitude. At any such level of
adaptation, they can recognize details that vary by 1: 10* (Banterle et al., 2017).

If the encoding happened in direct proportion to the incoming light intensity
with a maximum spiking rate of 100 Hz, the maximum jitter of the individual spikes
would have to be on the order of 1 s for the detail recognition and on the order 10 ps
if one sensor was supposed to capture the entire dynamic range with that precision®
Due to adaptation, this becomes unnecessary, as most of the sensors auto-adjust
to the current offset conditions. Saccades further help scooping the full potential
of this differential encoding scheme, since they cause frequent changes in the light
patterns that are mapped on the retina.

Seen from a systems theory perspective, the response functions in figure 4.6
appear to contain proportional, as well as high-pass filtered stimulus components.
L.e., similar response functions in the form of an output rate » depending on a
time-dependent continuous input stimulus s(¢) can be constructed as a superposition
of a proportional, a differential, and constant term:

r(t)=a-s(t)+b- ;is(t) +c (4.4)

The next section describes how these presented biological de- and encoding schemes
can be mapped to a high-speed robotic application.

!Neglected is the fact that the eye’s apertures also contribute to the adaptation. Given that they
can modulate the amount of incoming photons by a factor of roughly 10 to 100, one or two
orders of magnitude can be subtracted from the total range. The total dynamic range of the
retina therefore still stretches over seven to eight orders of magnitude. A similar mechanism also
exists in the ears. Here, the stapedius muscle contracts in a way that dampens the mechanical
signal that is guided to the cochlea, when loudness increases.
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4.3 PlayPen

The main goal was to achieve a possibly flexible system, that simultaneously satisfies
the tight timing constraints imposed by the 1000-fold speed-up of the neural network.
Since this endeavor of interfacing an accelerated neuromorphic agent with the real
world uncannily resembled the situation in Egan’s short story, the name PlayPen
was chosen for this project.

4.3.1 Actuators

As the research focus was on the neuromorphic cybernetics rather than on the robot
itself, the building and design effort was to be kept possibly low. The high mechanical
acceleration already excludes something like a surface-bound vehicle, as the traction
of wheels would require additional pressure of some kind to mediate enough force.
Robot-sumo competitions (Liu and Zhang, 2004; Erdem, 2007; Wikipedia, 2019)
provide examples for very quickly accelerating surface-bound robots. In these
competitions, two robots are put into a circular arena with the goal for each robot
to push the other one out of the ring. In order to gain maximal traction, these
robots are being pulled to the metal arenas by strong neodymium magnets. A match
can end within fractions of a second. Judging from competition videos (McGregor,
2019) (for a lack of scientific publications that reflect the state-of-the-art in robot-
sumo), the robots can traverse an arena with a diameter of ~ 1 m within 100 ms to
200 ms starting from and ending at resting state. Thus, they reach accelerations
of approximately 100 ms~2 to 400ms~2. Although this acceleration is remarkably
high for surface-bound vehicles, it is still more than an order of magnitude below
what is required for BrainScaleS-2 (see equation (4.3)).

Higher accelerations can be achieved by mediating the force through, for example,
bearings or joints instead of friction.

A recent example of very fast lightweight robotic actuators is the wings of flying
microbots (Chen et al., 2019). Driven in resonance, these wings can reach a
displacement of ~ 1 mm at a flapping frequency of 500 Hz. Roughly, this corresponds
to an acceleration of 4000 m s~2, which is only a factor of two away from equation (4.3).
Being the result of very recent research in micro robotics, actuators like that are
after all not available of the shelf yet. Neither are they suitable for carrying sensors,
as their own weight is only about 100 mg which would be greatly exceeded by
PCB-based sensors.

Another recently published high-speed actuator is a piezoelectrically driven Delta
robot (McClintock et al., 2018). Delta robots are actuators that can access three
degrees of translational movement by using three motors in a pantograph-like manner.
According to the authors, this robot’s bandwidth is 15 to 25 times higher than that
of previously available Delta robots. However, the maximum accelerations are on
the order of 215 ms~2, which is again far below what equation (4.3) demands. Since
these actuators are part of recent academic research as well, they are neither readily
available, nor reproducible without the risk of distorting the neuromorphic research
focus.
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Figure 4.7:  Hard-disk drive
(HDD) with magnetic storage disks
and voice coil actuator. Image
taken from Evan-Amos (2013).

Very common everyday objects that have exceptionally fast actuators are hard-disk
drives (HDDs), though.

In HDDs, the magnetic information on the rotating disks is accessed by a read
and write head that is brought into position by a moving coil motor (see figure 4.7).
This voice coil is rotatably mounted such that the coil at its rear part is penetrated
by a magnetic field B. When a current I flows through the coil, the Laplace force

Fie=n-1-IxB (4.5)

is induced on one side of the coil. Here, n is the winding number and [ is the length
of the coil segment that is penetrated by the magnetic field. As the other side of
the coil is immersed in a magnetic field of same magnitude but opposite direction
with inversely flowing current, the net force acting on the voice coil is F = 2 - Fgjqe
Since n, [, and B are constant and fixed for a given voice coil, and since I is always
constrained to be perpendicular to B, the net force can be written as

F = Ceoil * I (46)

The accelerating force should, therefore, be proportional to the coil current I.
Figure 4.8 offers further support for equation (4.6) by measurements of the voice
coil torque at varying coil currents.

The accelerations that HDD-voice coils can achieve are on the order of what is
desired from equation (4.3). For example, assuming that a the read/write head
travels over half of the disk width, i.e. over &~ 1cm, to access random data and
given an average seek time of 3.6 ms (Wes, 2010), the acceleration should be on the
order of at least 3000 ms—2.

HDD-voice coil actuators are therefore well suited for simple robotic experiments
at BrainScaleS-2 speed-up. Constrained by this selection, two voice coil actuators
were combined into a pantographic robot. The basic idea is sketched in figure 4.9.
Note that, additional levers and moving parts decrease the acceleration of a naked
HDD-voice coil. To a certain extend this can be compensated for by increasing the
coil current but an effective lower maximum acceleration is likely to be the case
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Figure 4.8: Left: Schematic of the voice coil within the magnetic field spawned
by the statically mounted permanent magnets. The magnetic field lines on the
left hand side (indicated by crosses) enter the plane, while the field lines on the
right hand side exit the plane (rings). The current can either flow clockwise
or counterclockwise through the coil, causing the actuator to move clockwise or
counterclockwise, respectively, due to the Laplace force. Right: The measured torque
of a voice coil actuator vs. coil current and a linear fit. The measurements were
conceptualized and recorded by Malte Prinzler (Prinzler, 2018).

in the real setup. For now, the maximum achievable acceleration is optimistically
assumed to be on the order of

Umax ~ 3000 m s~ 2. (4.7)

The maximum frequency of an oscillation over a range of 1 mm is therefore on the
order of

| R rr— 1 /3000ms2
fmax — 277_\/7 == % m = 390 Hz. (48)

Next, the signal processing and amplification circuits are discussed that together
with the actuators form a robotic motor unit.

To translate neural activity into the current that drives the coil, a multi-stage
circuit is implemented that converts individual spikes that come from the Spike 1/O
of the BrainScaleS-2 prototype system into amplified current pulses. Spikes leave the
neuromorphic system as voltage pulses with a width of 500 ns. Due implementation
details on the Flyspi FPGA board, the voltage amplitudes are either 2.5V, 3.3V,
or 5.0V, depending on the sender neuron index (see also section 3.2). A battery of
TXB0104/8PW level shifters (Tex, 2018b,c), therefore, first unifies all voltage levels to
5.0V before they enter the next circuits (see appendix C.4 Sheet 1/3).

To cause a significant actuator response, the next stage extends the pulse length.
Figure 4.10 shows the schematic diagram of one such unit that is also referred to as
pulse shaper. The 500 ns-pulse charges a capacitance C' over a small signal diode D,
such that the charge cannot flow back, when the input voltage level goes back to 0'V.
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4 Accelerated mechanics

Instead, the capacitor discharges mainly over a variable resistor R which, together
with the capacitor, forms an RC-circuit with exponential decay characteristics. The
decay time constant R - C' = Tr¢ determines the shaped pulse length. The voltage
across C, Vg, is applied to the input of an inverting 74HC14D Schmitt trigger (Nex,
2020).

Schmitt triggers are digital buffering ICs with a certain level of input hysteresis.
Le., if the output of the Schmitt inverter is HIGH, it takes an input voltage Vi, > Vip
to flip the output signal to LOW. As soon as the output is LOW, it takes an input
voltage of Vi, < Vin < Virp to switch the output back to HIGH again. The difference
of the two threshold voltages, the hysteresis voltage Vi = Vrp — Vi, is particularly
helpful when noisy or slowly rising input signals are to be translated into faster
digital signals. Without hysteresis, the output level of a standard inverter with a
single input threshold Vi would quickly switch between HIGH and LOW during a slow
transition from V;,, < Vp to V;,, > Vp if the signal is noisy.

In the case at hand, the hysteresis allows for creating a LOW signal on the output
while C' is being discharged from its initial voltage Vo (t & tspie) > Vip to Ve(t =
tspike + Tpuise) < Vrn. This negative pulse is then inverted by a second Schmitt
inverter such that an extended positive output pulse leaves the pulse shaper. By
tuning R and C, the pulse time is usually set to 7,u5c = Sps.

The next step is to turn the shaped voltage pulse into an amplified current pulse
that can drive the voice coil. The basic idea is to drive each terminal of a coil
by a voltage amplifier with low output impedance and current limitation. In this
way, the actuator can turn into both directions, depending on the amplifier input
combinations. Table 4.1 summarizes the amplifier states and the corresponding

Screen BrainScaleS-2
\ ~ |

. @

7@ Top View

Figure 4.9: The PlayPen. Two actuators (mx and my) pantographically move an
optical sensor head (s) over a surface with some graphical content (screen). The
sensor information is received and processed by BrainScaleS-2. Motor signals then
drive the two voice coil actuators, thus, creating a cybernetic loop between the
sensor, the neuromorphic hardware and the actuators.
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Figure 4.10: Pulse shaper of the PlayPen prototype. ACT_DRV_IN denotes the
pulse input and ACT_DRV_QUT the pulse output. The full schematic can be found in
appendix C.4.

A B voice coil response
LOW  LOW -
LOW HIGH O
HIGH LOW O
HIGH HIGH -

Table 4.1: Amplifier output states and voice coil responses.

voice coil responses.

Since the amplifiers remain in low impedance, they source current, in case their
output state is HIGH and the sink current in case their output state is LOW. When
both amplifiers are in the same output state, the actuator is not actively driven,
as no active current flows through the coil. Because the amplifier outputs remain
in low impedance, however, the coil’s terminals are virtually shorted, acting as an
induction brake. Since this brake acts only when the driving signals are ambiguous
(HIGH HIGH) or off, it does not negatively impact the motor unit’s performance,
while motor actions are executed. Because of the low-friction bearings of the voice
coil actuators, the induction brake even benefits smoother movements as it slightly
damps overshooting and oscillations when the actuator bumps into its mechanical
limits.

Taken together, a robotic motor units translates an input spike train into a force
response that is proportional to its rate. Given a preprocessed pulse length of 8 pis, a
maximum spike rate of 100 kHz causes a duty cycle of 80 % in the amplifier outputs
which leaves a margin of 20 % to the maximum response (i.e., always on).

4.3.2 Sensors

As important as the robotic motor units are of course the sensor inputs and the
corresponding signal chains. Again, a few basic estimations are made to narrow
down the hardware demands.
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4 Accelerated mechanics

Figure 4.11: Top view of three schematic sensor arrangements with one, three,
and seven channels, respectively. Every dot indicates the receptive field of a sensor
channel.

\ PCB \
l = l Figure 4.12: Photo diode (PD) within
SCREEN its aperture cabinet above a screen.

Sensor head

As figure 4.9 indicates, the PlayPen’s sensor head is supposed to capture visual input
that is being displayed on a screen that it is moving on. As explained in section 4.2.2,
the restricted number of neurons in the BrainScaleS-2 prototype chips makes it
futile to connect high-dimensional sensor input to the neuromorphic chip. However,
a large number of experiments can already be facilitated using only low-dimensional
Sensors.

figure 4.11 illustrates three applicable sensor topologies with one, three, and seven
sensor channels, respectively. While the one-dimensional sensor on the left is blind
to spatial gradients, the three-dimensional sensor in the middle can resolve linear
gradients in 2D. The sensor with seven channels on the right can even resolve 2"
order gradients and local maxima. Within this thesis the one- and three-dimensional
sensor types have been evaluated.

Figure 4.12 shows a cross section of one optical sensor. A photo diode (PD) is
mounted on the bottom side of a PCB and shielded from ambient light by a plastic
aperture that slides directly on top of the screen. In this way, the sensor is spatially
selective to the small aperture opening, despite the larger active area of the photo
diode. Figure 4.13 depicts a sketch of how the aperture opening is similar to a
receptive field applied to the screen content.

To derive an estimate for the photo diode response, it is first assumed that the
aperture opening is homogeneous in terms of its effect on the diode. By that is
meant, that a point-like light source with a fixed luminous intensity would cause
the same electrical effect in the photo diode independent of its position within the
aperture opening. If, in addition, the opening is circular with a diameter dr, then
the corresponding kernel function can be expressed as

4 for :Ez—i—yQS%F

F(fcay)z{“"”’

4.9
0, else (4.9)

In this case, the diode current only depends on the convolution L of this receptive
field F' and the screen content S at the position (z,y):

L= (F=x*S)(z,y) (4.10)
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p ~ 180 pm

l receptive
— field F'

\«

Figure 4.13: Convolution of the recep-
tive field F' and the screen content S.
dp The pixel pitch on the screen is roughly
dp ~ 180 pm. The diameter of the re-
ceptive field dp is a little larger than
screen S that.

If dp 2 dp, i.e. the opening covers more than one pixel, F acts like a spatial low pass
filter, effectively averaging over the area defined by the aperture. Choosing dr ~ dp
allows the sensor to access the full screen resolution but potentially demands a
higher photo diode sensitivity as more light is blocked by the aperture. Selecting
dr < dp does not provide any improvements in resolution but only reduces the light
and, thus, the current through the photo diode.

When the sensor head is moving, the maximum signal frequency, i.e., the rate
at which pixels pass by, iS fsignal = ;’—i, where vg is the speed of the senor head.
Given the acceleration that was estimated in section 4.3.1, i.e. a = O(3000ms~?),
the sensor head speed after accelerating over s = 1cm is vg = v2as ~ 7.7ms ™"
Thus, the maximal signal frequency should be on the order of fggna1 ~ 43 kHz which
corresponds to 43 Hz in biological time. Given that most healthy humans can hardly
resolve flicker frequencies that are higher than 40 Hz (Unios Australia Pty Ltd, 2019),
this rate is acceptable.

As we aim at maximizing the signal frequency for our accelerated neuromorphic
agent, also dp is chosen to be on the order of dp to not further reduce the signal
rate by spatial filtering.

However, another aspect that has to be kept in mind is the sensitivity of the photo
diodes. For their small and lightweight form factor and their good availability, BPW34
photo diodes (VIS, 2011) were selected. With bias voltage applied, the current
through this diode is

Ip =~ 11- PM®[A] (4.11)

where P is the integrated light intensity over the photo-active area in watts. A
typical liquid crystal display (LCD) emits a power of approximately 2.4 nW per pixel
at full brightness 2. Assuming a contrast ratio of 1:1000, the light power received
by the photo diode is therefore roughly on the order of 2.4nW to 2.4 ptW, which
translates to a diode current of 5.4nA to 9.4 pA. Signals in the nA-range usually

2A typical LCD monitor achieves maximum brightness at around 5 W backlight power (Issa,
2012). Assuming that that the light can be efficiently transported through the LCD panel,
the approximate power per pixel for a monitor with 1920 x 1080 pixels is therefore Ppixel ~
5W/(1920 - 1080) = 2.4 pW.
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4 Accelerated mechanics

demand carefully shielded routing in PCB layouts when they are supposed to be
transmitted over distances of a few cm. As the signal has to travel from the quickly
moving sensor head to the processing circuits, only a fully shielded cable could
guarantee the signal integrity. However, as the signal environment is highly polluted
by the strong magnetic fields of the voice coil actuators and broad band noise coming
mainly from switching regulators and digital circuits on the signal processing board
and BrainScaleS-2, even good shielding would not suffice to reliably resolve a few nA
over that distance. The diode current is therefore pre-amplified and converted into
a voltage directly on the sensor head such that the signal can be transmitted with
a higher signal-to-noise ratio to the signal processing board. This amplification is
optimally set such that the pre-amplified signal amplitude spans the accessible input
voltage of the receiving signal processing units. The remaining part of the signal
chain that converts the signal into a spike train is implementation-specific to the
robot version. Therefore, details are given in the corresponding following sections.

However, if even the preamplifier is not sufficient to reliably amplify 5.4nA, the
aperture diameter dp can be increased to allow more light to hit the photo diode
surface. Note that, to our advantage, the decrease in signal frequency scales linearly
with dp, while the integrated light intensity scales quadratically with dg.

Moreover, the experiments that were performed so far, did not rely on a full
dynamic range of 1:1000. As long as the maximum spike rate corresponds to the
maximum light intensity, structure in the visual input can still be resolved by the
sensor, loosing only a certain amount of precision in worst case.

Rotary position

A second category of sensors are rotary encoders that measure the position of the
voice coil actuators. Much of the related part selection and evaluation has been
carried out in Louis Jussios’ project internship (Jussios, 2018). The relevant selection
criteria for the sensor type are its mechanical properties, the sampling rate, and the
precision. As the friction and momentum of the actuator are to be kept possibly
low in order to not unnecessarily decrease its speed and acceleration, some form of
contactless measurement is ideal. During the design processes, especially optical
and magnetic sensors have been considered. The initial choice fell onto optical Gray
code (Frank, 1953) sensors, as they only require a lightweight printed add-on on the
actuators and a relatively simple arrangement of photo sensors and illumination
that is mounted in a static position. It became clear, however, that a reasonable
level of precision was technically hard to achieve because the sensor resolution scales
with the size of the add-on that has to be attached to the actuator. Moreover, the
entire arrangement would have required a non-negligible amount of engineering and
testing which would have gone somewhat too far beyond the intended focus of the
PlayPen project. Gray encoders were therefore discarded and replaced by magnetic
Hall-effect-based sensors. Jussios selected the AS5600 programmable contactless
potentiometer (ams, 2018) for its high angular resolution and sampling rate, its
simplicity, and its good availability.

The only component that contributes additional weight to the moving actuator is
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a small neodymium magnet that has to be mounted on top of the center of rotation?.

Together with a custom 3D-printed mounting socket, one magnet weighs about
1g. Asits radius is on the order of a few mm and as it is mounted at the very center
of rotation, it does however only contribute negligibly to the total moment of inertia
of all moving units.

The AS5600 has a measurement resolution of 12 bit that can be mapped to either
the full range of 360° or to a programmable arbitrary subrange. As it takes one
sample every 150 ps, its sampling rate is approximately 6.67 kHz, corresponding to
6.67 Hz in the biological domain. Although a higher sampling rate would be desirable
in order to better match the estimated lower limits of biological sensor response
times (see section 4.2.2), an interval of 150 ms biological time is still close to the
average spike time intervals and therefore acceptable. Moreover, the reaction time
of the system is ultimately limited by the mechanical restrictions of the actuators.

The AS5600 can be configured and read out via a digital I?C interface at a
maximum data clock speed of 1 MHz. For each data readout, a slave address and
a request address have to be transmitted to the sensor IC first. Then the chip
transmits the measured 12 bit position packed in two bytes. Thus, the achievable
sample data rate per sensor is 31.25kHz. A drawback of the AS5600 is that it has
a static, non-configurable 12C slave address. As a result, only one AS5600 can be
connected to one I*?C-bus since otherwise all AS5600 would respond simultaneously
to a read/write request. Since two sensors are required to access both actuator
positions, this problem has to be circumvented. Instead of utilizing a second I?C
bus channel, the I?C clock signal (which is always driven by the I*C master) is
gated to one or the other AS5600 by a custom logic circuit. Thus, in order to
access a specific AS5600, the I2C master has to select the respective clock gate and
initialize the normal data request procedure. Hence, the sensors can only be read
out alternatingly, effectively halving the digital readout rate to 15625 Hz. As this
rate is still higher than the internal data sampling rate, no disadvantage is caused
by this procedure.

In addition to the digital output, the AS5600 contains an internal DAC that can
stream out an analog voltage representing the rotary position. Like the digital
readout, also the analog output can be configured such that only a selected angular
region is mapped onto the entire output voltage range.

In effect, the rotary position can be represented in the same format as the optical
sensors, i.e., such that it covers the accessible input voltage of the receiving signal
processing units. The signal processing is again experiment- and version-specific
and is therefore explained in detail in the corresponding next sections.

4.3.3 Prototype

The first incarnation of the PlayPen is to be seen as a proof-of-concept prototype
system that lacks a large number of possible optimizations. Figure 4.14 gives a
schematic overview of the system components. In the following, subsections which
concern electrical modules are sometimes accompanied by thumbnail pictures of the

3Figure 4.28 shows this magnet attachment for the second PlayPen version.
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Figure 4.14: PlayPen prototype. The digital spike output from BrainScaleS-2 can
be received by up to six pulse shapers (see figure 4.10 and section 4.3.1) that deliver
a preprocessed pulses to up to four motor drivers, of which each is responsible for
one actuator direction. The pre-amplified analog signals from the sensor head and
the rotary encoders are sent to an analog signal processing unit, which contains three
inverting amps, three differentiators, two quad-input adders, two white noise sources
and six spike generators. The latter can be connected back to the BrainScaleS-2
spike input.

&

corresponding PCBs to give the abstract descriptions a little more character. If no
explicit reference is given, these images always relate to the respective sections.
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Core module

The power supply for all components except BrainScaleS-
2 is implemented together with the motor driving circuits
and the TXB0104/8 level shifters on a PCB referred to
as core module. The entire schematic can be found in ap-
pendix C.4. This module hosts only components that are
universal to all PlayPen experiments and does not contain
parts of the actual signal processing. Instead, it has a
parallel interface offering BrainScaleS-2 spike outputs at
preprocessed voltage levels (5.0 V), supply voltages (5.0 V
digital and analog), and motor driver inputs to which a
daughter board can be connected. During the lifetime
of the PlayPen prototype only one daughter board, the
HC14 module, has been commissioned and used. It is
described in detail further below and its schematic can
be found in appendix C.5.

During the initial planning phase of the PlayPen
project, a few different actuator types were considered,
which is why the core module contains up to four L6234PD
three-phase motor drivers (STM, 2017) of which only two

K . X 0000 0’0 )
are equipped and necessary to drive the two HDD voice [00000000000000000000

214

coils. The L6234PD can deliver up to a 5 A of pulsed output current at a commutation
frequency of up to 150kHz. They are supplied with a voltage of 12V and therefore
capable of delivering 60 W pulses into the coils, satisfying the expected demands of
equation (4.3).

Since the voice coils and magnets are precisely mounted within the sophisticated
HDD aluminum cabinets, the easiest way to preserve their intended position with
respect to each other is to leave them in their cabinets. Therefore, everything but the
magnets and actuators has been removed from the HDDs priorly and the cabinets
were trimmed to the minimum necessary size with a band saw. The disadvantage is
that the voice coil tips then partially overlap with the remaining aluminum frames,
blocking the mechanical access to them. In the prototype version, this problem
is solved by spatially extending the actuators using rigid and lightweight carbon
fiber tubes. Each actuator is covered by a piece of cardboard that holds an AS5600
evaluation board (ams, 2014) in a suitable position above the moving magnet.

The actuator movements are mediated to the sensor head by two joints and
another pair of carbon fiber tubes. One of these tubes is rigidly connected to the
sensor head, while the other one is flexibly mounted by another custom joint.

Both, the sensor head and the rotary sensors are supplied by 5.0V coming from
the analog signal processing board.
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Sensor head

The sensor head consists of a custom PCB and a 3D-printed cabinet
that shields the sensor from ambient light while guiding the relevant
light to its center. The photo diode sits on the bottom side, the
preamplification circuits on the top side of the PCB. The circuit
is centered around a MAX4206 logarithmic transimpedance amplifier
(max, 2015), that is particularly designed for photo diode applications.
The ideal transfer function of this amplifier is

Vous = K- 108;10 If[) (4.12)
Iref

where K as well as [,s are configurable by connected passive components. Since
the output voltage range of the amplifier is specified as 0.08 V to 4.8V, and since
the analog processing board can handle rail-to-rail voltage input *, K and I, are
configured such that the expected diode current of 5.4nA to 9.4pA is mapped
to the full range. Being a logarithmic amplifier, the MAX4206 also converts the
logarithmically distributed brightness of the screen into linearly distributed voltages,
which is of great advantage for the subsequent signal processing on the HC14 module.

4Rail-to-rail means that the allowed or achievable voltage covers the entire range from the negative
supply voltage to the positive supply voltage of the corresponding electronic component. E.g.,
for a component that is supplied by Vpp =5V and Vgg = 0V, rail-to-rail input means that all
voltages within 0V to 5V are allowed and can be processed.
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In order to facilitate a high level of flexibility, the process-
ing module contains a variety of analog subcircuits that
can be patched together as needed. The name HC14 mod-
ule refers to the extensive use of the 74HC14 six-channel
Schmitt inverters (Nex, 2020).
described how a Schmitt inverter can be employed for
extending the width a digital pulse. Another application
is to convert an analog voltage into a pulse train with a
frequency that is proportional to this voltage.

Figure 4.15 shows the schematic of such a unit. To
understand its operation, let us first assume an input
voltage Vi, = 5V that charges the capacitor C' over the
potentiometer Rp and a resistor Rg. When a stationary
state is reached, the voltage at the input of the Schmitt
inverter, V;, is 5 V as well and its output voltageis O V. As
no significant current flows through the diode D when a
reverse bias is applied, the stationary state is maintained
as long as Vi, does not change. When the Vj, decreases, V; follows until it reaches
Vrn, which causes the Schmitt inverter to change its output voltage to 5V and,
in turn, charge the capacitor C' over the diode D and the feedback resistor Rp
increasing V; again. Since Ry is much smaller than Rp + Rp, the current through
the feedback path dominates the charging during this phase. When V; reaches Vrp,
the output state changes back to 0V and C discharges again via Rp and Rr. The
cycle continues as long as Vi, < Viy, causing a regular train of pulses. The pulse
length is dominantly determined by the resistance of D, Rp, and the capacitance C'.
The pulse frequency on the other hand depends mostly on Vi,, Rg, Rp, and C.

Hence, for Vi, < Viy, the spike rate is proportional to —Vj,. The sensitivity can
be tuned by the potentiometer Rp. This circuit is implemented six times on the
HC14 module and represented as the spike generators in figure 4.14.

Another set of units on the processing board are the inverting amplifiers. These
are operational amplifier-based circuits that each have an independently configurable
offset and amplification. Two potentiometers are used for each of the three amplifiers
to set these parameters.

To give an application example, consider an inverting amplifier that maps an

Section 4.3.1 already

Figure 4.15: Voltage to spike converters of the PlayPen prototype.
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Figure 4.16: Block schematic of a signal chain that implements equation (4.4) to
mimic sensor unit spike responses as depicted in figure 4.6.

incoming sensor voltage to the operating range of such a circuit. A spike train can
then be generated whose rate is proportional to the sensor input. In that way, simple
rate encoding can be implemented.

To achieve response functions like in figure 4.6 the HC14 module further contains a
set of three inverting differentiators, again with potentiometer-defined amplification
and offset for each unit.

Linearly amplified and shifted sensor signals can be combined with scaled and
shifted signal derivatives using the two quad-input adders. A superposition of terms
like in equation (4.4) can thus be realized. A block schematic of this arrangement is
given in figure 4.16.

The last subcircuits to be discussed are the two white noise sources. The intension
behind these is to introduce an easily accessible source of stochasticity into the
module that can be used to create a random spike train together with the spike
generators, or to smooth out artifacts that might occur due to strong nonlinearities.
For example, the transition from Vi, > Viry to Vi, < Vin causes a sudden increase
in the output rate of the spike generators. If noise is added to Vj,, the transition
becomes stochastic and therefore smoothes out similar to figure 2.9.

The complete schematic of the HC14 module with all its subcircuits can be found
in appendix C.5.

The only component that has been added retrospectively to the initial prototype
setup is an Arduino Nano (Ard, 2008) with the above mentioned I*C clock gating
circuit to digitally access and configure the AS5600 rotary sensors. The Arduino
Nano is a low cost and easy to use microcontroller platform with integrated power
supply and USB interface. It is based on an 8-bit ATmega328P microcontroller that
runs at a clock frequency of 16 MHz. Due to a user-friendly and comprehensive
open-source integrated development environment (IDE), code for the Arduino Nano
can be developed quickly and without deep prior knowledge on microcontrollers,
which makes it perfect for prototyping small research projects, like the PlayPen.
The power supply for the I?C clock multiplexing is also provided by the Arduino
Nano, such that the entire device does not require more than a USB-connection
to the host PC. Further details on the implementation and usage can be found in
Jussios (2018).
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Figure 4.17: Experiment schematic. The sensor head is supposed to trace the edge
of a light gradient. Only one arm (mx) is enabled, the other one is left loose.

4.4 Edge tracing

To test the entire signal chain of the PlayPen prototype, a simple neural network
was implemented that uses only one motor unit to trace a border between light and
shadow. The experiment was presented during the 12" CapoCaccia Cognitive Neu-
romorphic Engineering Workshop. Being more of a proof-of-concept demonstration,
the results are displayed only qualitatively without extensive analysis.

Figures 4.17 and 4.18 show the block schematics of the signal chain and the
neural network. The HC14 module is used such that the scalar brightness, as
measured by the sensor head, is turned into a spike rate. This spike train then
enters BrainScaleS-2 via its spike input where it is received by two neurons (NO
and N2) via one synaptic circuit, each. Both neurons only act as repeaters of the
incoming signal. N1 on the other hand is neuron that is configured to spike without
external excitation. This is achieved by setting its resting potential higher than
the spiking threshold Vieak > Vinresn. Its reset potential Vit is set to be smaller
than Vipresn, such that its membrane potential V. has to recover after each spike
before a new spike is triggered. The time it takes for Vem to increase from Vieget
to Vinresh 1S proportional to the difference between Vijresh and Vieset, the membrane
time constant Tyem, plus the refractory period 7. These parameters, therefore,
allow setting the resting spike rate to a moderate level that is equal to the rate of
NO at maximum sensor input.

The role of N2 is to reduce N1’s firing rate in case of sensor input. To do so, it is
connected presynaptically to an inhibitory synapse of N1.

Finally, NO is connected to the motor unit that moves the actuator into clockwise
direction, while N1 is connected to the one that drives it counterclockwise,

The network can be thought of as a buffer (NO branch) and an inverter (N2-N1
branch) that receive the same sensor input. If the input is weak, the voice coil will
rotate counterclockwise, if it is strong, it will turn clockwise. If the sensor input is
such that a clockwise rotation weakens the light, while a counterclockwise rotation
causes the sensor to move to a brighter region, the system will act as a regulator
that keeps the sensor head at a position of constant brightness (see figure 4.17).

To create the light gradient, half of a light cone that came from below the sensor
head was coverd with a sheet of paper. After setting up the chip, the network started
to trace the paper edge.
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Figure 4.18: Left: Block schematic of the edge tracing experiment. The signal
coming from the light sensor is first turned into a spike rate using the inverting
amplifiers and a spike generator. After entering the BrainScaleS-2 Spike 1/0, the
spike train excites two neurons, NO and N2. N2 then inhibits a third neuron N1
that is self-firing, that is, firing without external excitation. NO is connected to
the amplifier that makes the actuator move clockwise and N1 is connected to the
amplifier that turns it counterclockwise. Right: Oscilloscope traces of the rotary
position (bottom trace) and the spike response (top trace) over time.

Figure 4.18 (right) shows two signals, the analog voltage obtained from the rotary
position sensor and the spike output of N1. The latter is not depicted in full
resolution because the rate is on a much smaller time scale than the movement.
Well visible is however that an oscillation period is on the order of 13 ms. Thus, the
reaction time of the actuator is too slow to correspond to a biological muscle system,
like a limb for example (see section 4.2.1). However, the experiment successfully
closes the loop between an accelerated neuromorphic system and a mechanical
robotic actuator.
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Figure 4.19: Experimental setup for a neuromorphic maximum finder with a scalar
light sensor signal.
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Table 4.2: Translation of arm rotations into directions of sensor head movements.
Counterclockwise rotations are symbolized as ccw O, clockwise rotations by cw O.
The resulting movement direction of the sensor head is indicated by arrows whose
directions are in correspondence with figures 4.9, 4.14 and 4.19. Adapted from
Prinzler (2018).

4.5 Maximum finder on prototype

The goal for this experiment was to track and trace the location of maximum
brightness in a light field that comes from below the sensor head.

Contribution

The following experiment has been implemented in the course of Malte Prinzler’s
Bachelor’s theses (Prinzler, 2018). Malte Prinzler and the author of this thesis both
contributed to the experiment design and execution. Measurements and plots where
created by Malte Prinzler.

As the PlayPen prototype only contains a one-dimensional optical sensor, the light
gradient cannot be measured spatially but only be deduced by correlating movement
with temporal changes in the sensor signals. A block schematic of the experimental
arrangement is given in figure 4.19. To get information on the sensor head motion in
two dimensions, the derivatives of both actuators are required. Table 4.2 provides a
summary of how the actuator rotations correspond to the directions of sensor head
movement.
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4 Accelerated mechanics

Initially, the signal derivatives where constructed by the differentiators on the
HC14 module (see section 4.3.3). However, a problem that became apparent very
soon, was that the high frequency noise on the incoming analog signals was massively
dominating the differentiator response. To circumvent this, a series of passive analog
low pass filters, preceding the differentiators, was inserted into the signal path. While
functional differentiation could be achieved with this extended analog network, the
processed signal was still very noisy and tuning became increasingly complicated as
all circuit components had to be matched well to the speed and response time of the
system, which constantly changed during experiment development. Eventually, the
decision was made to replace the analog differentiators with better controllable and
configurable digital filters. In order to keep the implementation low in effort, easy,
and flexible, the signal processing has been implemented on another Arduino Nano
(Ard, 2008). The signals were first amplified and shifted by three inverting amplifiers
on the HC14 module and then digitized by the ATmega328P’s internal ADCs on the
Arduino Nano board. These ADCs have an input range of 0V to 5V, a resolution
of 10bit, and a maximum sampling frequency of 10 kHz. Since the Arduino Nano
contains no analog output but instead a large amount of digital outputs, the spike
generation has been implemented digitally as well. After optimizing the code,
Prinzler achieved a maximum output rate of 125kHz per channel at a sampling
rate of 1.778 kHz. While the maximum spike rate is optimal, the sampling rate only
corresponds to about one sample every 0.56 seconds. Considering the relatively low
mechanical agility of the prototype system and the simplicity of the input data (a
smooth light gradient), the sampling rate does represent the limiting factor in terms
of dynamical performance however. The temporal changes in the sensory input are
expected to be on the same order as the sensor head motion and therefore on the
order of maximally 390 Hz (see equation (4.8)). As the sampling rate is therefore
higher than the Nyquist frequency (Nyquist, 1928) fample > 2 - fsignal = fyquist, it
is considered sufficient.

The first digital filter that is applied to the signal x(¢) after being digitized is an
exponentially smoothing moving average. This filter is computationally efficient and
requires only one word (in this case two byte) of memory allocation per channel.
The moving average is

() =r-x(t)+ (1 —r)-(z(t—1)) (4.13)

with the discrete time ¢ and the smoothing coefficient s € [0; 1].

Since the ATmega328P does not contain a floating point unit and can therefore
only implement integer operations efficiently, x is expressed as a division of two
integers k = /3, where the denominator 8 = 64 is fixed and « is selectable between
1 and 64. Extensive details on the filter response function in the time as well as in
the frequency domain can be found in Prinzler (2018). This moving averaging stage
is used to reduce input noise by filtering out high frequency components that do
not represent the actual sensor inputs but are inevitably introduced throughout the
analog signal path.

The next stage are the differentiators. On a discretized signal, their output is
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proportional to the difference between the input at ¢t and at ¢t — At:
A(x(t)) = (2(t)) — (x(t — At)) (4.14)

The time difference At is, like «, a tunable parameter that is subject to extensive
analysis in Prinzler (2018). « and At together can be thought of describing the
lower and higher cutoff frequency of a band-pass filter on the sensor signals. Note
that, A (x(t)) is only a proxy for the actual derivative #(¢). In particular, a constant
factor of dimension 1/t is missing that scales A (x(t¢)) in amplitude and accounts for
the variable time interval At. However, since the scaling of the output spiking rate
with A (z(t)) is arbitrary and internal to the microcontroller, this factor is absorbed
in the spike conversion anyhow.

Ultimately, three derivatives are obtained that represent an increase in light
intensity and counterclockwise rotations of the two actuators, respectively. By
inverting the first one, an additional signal is derived that represents a decrease in
light intensity, leaving us with four signals in total, each of which is represented as a
spike rate:

e channel 1: increasing light
e channel 2: decreasing light
o channel 3: counterclockwise rotation of actuator my
e channel 4: counterclockwise rotation of actuator mx

If channels 3 or 4 are not spiking, my or mx are either rotating clockwise or they
are resting.

With these input signals available, the brightness tracing algorithm can be ex-
pressed as a finite state machine (see table 4.3).

The state machine takes action on all four actuators, more precisely, on the motor
unit inputs that are responsible for exerting clockwise and counterclockwise torque
on both actuators mx and my:

o channel 5: exert clockwise torque on my
o channel 6: exert counterclockwise torque on my
o channel 7: exert clockwise torque on mx
o channel 8: exert counterclockwise torque on mx

When the regulation mechanism behaves according to table 4.3, the resulting sensor
head motion is circular around the point of maximum brightness, ideally spiraling
into the center. The neural network that implements this state machine is depicted
in figure 4.20.

The first layer receives the incoming sensor signals and distributes them to the
next layers. The second layer, the integrating neurons, are special neurons that are
configured such that they respond only when at least a certain number of presynaptic
neurons are spiking. The respective number of simultaneously spiking presynaptic
partners that are necessary to invoke a response from one such neuron is specified as
the number to the lower right of the neuron index. Thus, this layer can be thought
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input output
light light my mx my my mxX mX
motion | light | 1 J O O |steering | O O O O
— - 0 0 0 0 - 0 0 0 0
— T 1 0 0 0 — 1 0 1 0
— $ 0 1 0 0 T 1 0 0 1
T - 0 0 0 1 - 0 0 0 0
T T 1 0 0 1 T 1 0 0 1
T i 0 1 0 1 — 0 1 0 1
— - 0 0 1 1 - 0 0 0 0
— T 1 0 1 1 — 0 1 0 1
— i 0 1 1 1 i 0 1 1 0
i - 0 0 1 0 - 0 0 0 0
4 T 1 0 1 0 4 0 1 1 0
4 4 0 1 1 0 — 1 0 1 0

Table 4.3: State matrix of the maximum finder. 1 indicates a signal increase, |
a signal decrease. O represents a counterclockwise and O a clockwise rotation or
torque. If a change in brightness is detected a motor action is executed in accordance
with the current direction of sensor head movement. When the brightness does
not change significantly, no action is taken by the system. The resulting motion is
circular. Adapted from Prinzler (2018).
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of as a layer of parallel neural AND gates®. The next layer, the inhibited neurons,
receive excitatory input from the integrating neurons, as well as inhibitory input
from the input layer. Due to the direct connections to the latter, inhibitory input
always arrives first. In this way, it is ensured that the neurons in this layer only fire
when inhibition does not prevent them from doing so. Transient output spikes that
might occur if the spike trains arrived simultaneously is therefore prevented.

The neurons in the fourth processing layer, the frequency modulating neurons,
have a long refractory period in order to respond with an output rate that is lower
than the input rate. Thereby, they translate the high internal spike rates of up
to 125 kHz into lower rates of approximately 16 kHz. These neurons are employed
to facilitate terraced, gradual output signals. For example, when the brightness
increases while the sensor head is actively driven, the motor unit input is supposed
to be weaker than in a situation where a correction on the currently taken motor
action is required. This allows for quick motor actions when corrections are needed
and prevents overshooting due to overproportionate motor actions in situations
where the correct actions are already being taken.

Figure 4.21 shows six recorded two-dimensional trajectories of the sensor head
during experiment execution. The six recordings have been performed for different
parameter settings of At (An in the plots) and «. The trace brightness of each
trace is proportional to the measured brightness at the respective locations. The red
dot indicates the point of the maximum measured light intensity, i.e. the expected
center of rotation. In addition to the x-y-traces, the distance over time with respect
to this point is shown as well in the respective lower plots.

The results show that the maxima are successfully being traced by the neural
regulators for a variety of parameter settings. Figure 4.22 shows the neural input
and output signals, and the raw sensor readings for one regulation orbit.

Although figure 4.21 illustrates the regulation behavior only for static light
locations, the system can also follow moving light sources. Moreover, due to the
differential sensor encoding, the absolute brightness of the light source can vary to a
fairly high degree.

For example, a flashlight can be held below the sensor head which then interactively
follows its position. Figure 4.23 illustrates the regulation for such a scenario. While
the brightness remains almost constant during the entire measurement, the slowly
changing angular positions reflect the flashlight movement.

The experiment demonstrates that even without a directly accessible spatial
gradient, the system is capable of dynamically tracing the maximum in a two-
dimensional potential landscape.

5An AND gate in Boolean logic is a circuit with n inputs and one output. The output state is 1,
only when all n inputs are 1, otherwise it is 0.
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Figure 4.21: Position of the sensor head and distance to the center of maximum
brightness during active regulation for different parameter sets. The trace color in
the position plots indicates the measured brightness at the corresponding location.
The red dots mark the points of the highest measured light intensity. Taken from
Prinzler (2018).
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Figure 4.22: Processed and unprocessed sensor input and motor outputs during a
regulation cycle. The arrows at the bottom indicate the respective periods in terms
of sensor head movement during one orbit. Taken from Prinzler (2018).
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Figure 4.23: Processed and unprocessed sensor input and motor outputs while the
location of maximum brightness is moving. While the brightness remains largely

constant, the angular positions reflect the light source movement. Taken from
Prinzler (2018).
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The experiments with the PlayPen prototype revealed a number of bugs, flaws and
inconveniences. While some of them only interfere with the convenience of the
system, others have a disruptive impact on the functionality. A overview of errors
and improvable aspects is given below.

e The bidirectional TXB0104/8 level shifters on the core module are wrongly
connected (VCCA < VCCB, see Tex (2018b,c) and appendix C.4).

o The large number of potentiometers on the HC14 module makes it hard to
keep track of the parameter settings.

o Analog differentiation is practically not possible due to noise that is pre-
dominately collected by the long signal traces, in particular the patching

wires.

o The three-phase motor drivers are obsolete because the actuators were finally
implemented as HDD voice coils.
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Figure 4.24: Mechanical response of the PP2 sensor head for both axes. Az is
the peak-to-peak distance that the sensor head travels when being excited with a
square wave signal for frequency f. Until f ~ 32 Hz the sensor head swings over
the full range of Az ~ 20mm. At 100Hz < f < 200 Hz Ax drops below 1 mm. The
frequency at which the movement goes below 100 pm is about 400 Hz.

The partial HDD-cabinets that are used to hold the magnets and actuators in
place limit the access to the actuator arms.

The long carbon fiber arm extensions induce a lot of angular momentum and
therefore reduce the actuator acceleration.

As the operating range of the optical sensor has been evaluated, a simpler and
therefore more compact and light-weight circuit can be implemented on the
sensor head.

The cardboard sheets that hold the AS5600 evaluation boards in place above
the rotating magnets are unstable and spatially and visually limit access to
the voice coil mechanics below.

Since the functionally necessary signal processing components have been iden-
tified, the analog signal chains can aggregately be simplified and specialized.
Relevant functional components are scattered across multiple PCBs, introduc-
ing wiring complexity and potentially corrupted signal integrity.

4.6.1 Hardware improvements

In order to overcome and respond to the above listed points, a second revision of the
PlayPen has been designed. In this second version of the robot, the PlayPen-2, or
PP2 for short, a few major design modifications and amendments were introduced.
The most important changes are again listed pointwisely below.
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o The signal pre-amplification remains analog but digitally configurable. This

allows experiments to be quickly initialized and reliably reproduced.

o Advanced signal processing and spike generation is implemented digitally to

further improve reproducability and flexibility.

o To have a larger margin for the code execution, an STM32F103C8 32-bit micro-

controller (STM, 2015) running at 72 MHz replaces the Arduino Nano. This



4.6 PlayPen-2

BrainScaleS-2 STM32F103
/| in |<\
FPGA HO
out
4x pulse shaper 4x motor driver
HICANN-DLS
| ~H 1-&

Figure 4.25: Block schematic of the PlayPen-2 signal path. Spikes from BrainScaleS-
2 reach the pulse shapers which are set to a fixed pulse width that results in an
optimal actuator response. Four motor drivers enable bidirectional movement of
each actuator. Signals are obtained from the rotary sensors at the actuator (mx and
my) and the optical sensor head (s) and reach the programmable gain amplifiers
(PGASs) the return path. Thereafter, the analog signals are digitized and translated
into spike trains by the STM32F103C8 microcontroller and sent into the spike input
of BrainScaleS-2.

microcontroller is also carried by a compact development board with its own
power supply and USB functionality. Therefore, it can easily be replaced or
upgraded for future PlayPen experiments.

o Both actuator coils are driven by one DRV8833 dual H-bridge motor driver
(Tex, 2015a) with current limitation and thermal shutdown.

o The TXB0104/8 self-configuring level shifters were replaced by externally

configured SN74LVC2T45DCT transceivers (Tex, 2017).
o« The AS5600 rotation sensors are mounted on small custom PCBs above the

actuator sensor magnets.
e The voice coil actuators and the corresponding magnets are mounted directly

on the PlayPen PCB.
o The sensor head and its guidance rods are lighter and more stable than before.
e The supply voltage changed from 5.0V to 3.3 V.

The mechanical actuator responses of the new sensor head to various driving
frequencies is shown in figure 4.24. The maximum usable frequency is approximately
300 Hz, above which the peak-to-peak range goes down to below 0.3 mm. According
to equation (4.8), the sensor head acceleration is therefore

Umax = 47 - Az - f2 ~ 1000m s~ 2, (4.15)

Figure 4.25 shows the block schematic of the second revision. The image at the
beginning of this section shows the PCB layout. Part of the output path are only
four pulse shapers that are set to a fixed pulse width and four motor drivers. Instead
of the analog signal processing components in the return path, PP2 only contains six
PGA112 programmable gain amplifiers (PGAs) (Tex, 2015¢) and the microcontroller
that digitizes the signals with its integrated 12-bit ADCs.

The microcontroller is also responsible for communication with the peripheral
units, i.e., the PGAs, a MCP4922 DAC (Mic, 2010) for offset adjustments in the signal
path, and various custom circuits for spike triggering and gating. The complete
schematic can be found in appendix C.7.
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4.6.2 Sensor head

With the transition from the prototype to PP2, also the sensor head
has been updated. From previously only one, the number of photo
diodes increased to three. Figure 4.26 shows the sensor head cabinet
without the PCB. The cabinet connects the sensor PCB to the guiding
rods and shields the photo diodes from disturbing ambient light.
Moreover, it guides the relevant light through the small quadratic
openings in the bottom and the pyramid-shaped apertures. The total
weight of the sensor head including the push rods is 4.6 g.

The MAX4206 logarithmic transimpedance amplifier has been replaced by three
linear transimpedance amplifiers. To save parts and complexity, the circuits are
kept very simple and centered around an AD8648 four-channel rail-to-rail operational
amplifier. The AD8648 has low noise characteristics and an input bias current of only
1pA to not interfere with the small photo diode currents. The complete schematic
can be found in appendix C.9. With the photo current of equation (4.11), the output
voltage of one transimpedance circuit is

Viensor = R+ Igioge = R+ 11 - P*%® =~ 3.6 x 10° . P18 V], (4.16)

Here, R = 330k(2 is the feedback resistor, Ig.q. is the diode current, and P the
integrated light intensity over the photo-active area in watts. As currents of up to
Lgiode = 9.4 11A are expected (see section 4.3.2), the output voltage should be in the
range of Viensor =0V to 3.1 V. Since the supply voltages of all components including
ths PGAs on the PP2 setup are 3.3V, this optimally covers the maximally allowed
input range.

The get an estimate for the smallest measurable currents, the smallest reliably
measurable signal is assumed to be on the order of a few LSBs that the STM32F103C8
ADCs can resolve. At at 3.3V input range and a resolution of 12 bit, the LSB voltage
equivalent is Vi gg = 806 pV. If three to four LSBs are assumed to be what can
reliably still be resolved in a single measurement, the lowest detectable voltage is on
the order of 3mV, which translates to a smallest measurable current of 9nA.

Thus, the range is already sufficient to cover all applications that are expected
from the considerations in section 4.3.2 but it can further be extended by employing
the PGAs. For example, if the light conditions are lower than expected, the PGAs
can amplify the signal by a factor of up to 128.

104



4.6 PlayPen-2

Figure 4.26: Photo and rendering of the cabinet of the PlayPen-2 sensor head
without PCB. Visible are the channel for the solidly mounted push rod, the hole for
the flexibly mounted push rod, and the three pyramid-shaped aperture channels.
The cabinet is 3D-printed

Figure 4.27: PlayPen-2 sensor head PCB. On the bottom side are the three BPW34
photo diodes and the top side hosts the preamplifiers.

4.6.3 Rotary sensors

The design of the AS5600 rotary sensor PCBs has been mostly adapted
from the evaluation board (ams, 2014) and adjusted to fit the special
requirements of PP2. Each AS5600 is mounted on the bottom side of a
bridge-like board that has two eight-pin header connections on each side,
which also serve as the mechanical mounting points. The corresponding
connections on the PP2 main PCB are to the left and right of the center of
rotation of each voice coil actuator. The pinout of the both connections is
point symmetric, such that the PCB can be rotated by 180° without being
reversed in polarity. The height of the sensors can be adjusted by trimming
the length of the pins strips. Figure 4.28 shows this arrangement.
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Figure 4.28: PlayPen-2 rotary sen-
sor. Top: The neodymium magnet is
mounted in a 3D-printed plastic disk that
is, in turn, solidly connected to the alu-
minum actuator. Bottom: The rotary
sensor PCB is centered above the mag-
net and held in place by the two 2 x 4
pin strips.

4.6.4 Microcontroller firmware

The complexity reduction in terms of removing most components of the

analog signal processing chain is compensated by digital signal processing which is
implemented in C code (Kernighan et al., 1988) and executed on the microcontroller.
For the sake of brevity, only the exceptional and relevant aspects of the software
implementation are outlined.

The ADC results are read out and transferred to static memory locations at a rate
of 100kHz. As this transfer is handled by one of the STM32F103C8’s direct memory
access (DMA) engines in the background, the user routines can seamlessly access an
ADC result with a single-cycle instruction from the memory locations and therefore
at high performance.

Since the microcontroller has to be able to send spikes at a rate of up to 100 kHz,
the software spike generators have to be implemented efficiently. To achieve this,
the spike sending functions are called from a timer-triggered interrupt routine that
is invoked at a rate of finterrupt = 100kHz. Every call iterates the state of all spike
generators. Below is a slightly simplified version of the interrupt routine.
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__attribute__((optimize("unroll-loops")))
void timerInterrupt(void) {
// Update spike generator states
for(uint8 t i = 0; i < NR_SPIKE_GENS; i++) {
// Takes ~26 clock cycles for each (~360 ns)
spikeGenHandlePhaseIncrement (&spike_generators[i]);
}
// Reset spike pins
for(uint8 t i = 0; i < NR_SPIKE_GENS; i++) {
spikeGenResetSpikeQutput (&spike_generators[i]);
}

The total number of spike generators, NR_SPIKE_GENS, is in the current implemen-
tation set to 7. However, the number of active spike generators can by configured
dynamically during runtime. The function attribute (optimize("unroll-loops"))
tells the compiler to not actually iterate over the spike generators but to instead
explicitly execute the loop content consecutively. l.e.,

for(uint8_t i = 0; i < NR_SPIKE_GENS; i++) {
spikeGenHandlePhaseIncrement (&spike_generators[i]);

}

will be compiled as

spikeGenHandlePhaseIncrement (&spike_generators[0]);
spikeGenHandlePhaseIncrement (&spike_generators[1]);
spikeGenHandlePhaseIncrement (&spike_generators[2]);
spikeGenHandlePhaseIncrement (&spike_generators[3]);
spikeGenHandlePhaseIncrement (&spike_generators[4]);
spikeGenHandlePhaseIncrement (&spike_generators[5]);
spikeGenHandlePhaseIncrement (&spike_generators[6]) ;

This increases the code size but safes execution time, which is the far more critical
parameter to optimize in this case.

Every spike generator holds a few state and configuration variables. Most im-
portantly, its phase phi and its phase increment delta_phi. phi is increased by
delta_phi in every call of the interrupt routine until it crosses 1024. On that event,
a spike is triggered and phi is wrapped back:

phi < phi — 1024 (4.17)

Therefore, phi behaves similar to a watch hand that rotates with a frequency defined
by the phase increment and the interrupt rate.

delta_phi
fspike - W . finterrupt (418)

After every full cycle it triggers a spike. Below are the relevant functions.
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inline void spikeGenHandlePhaseIncrement (spikeGenerator *sg) {
// Increment phase
sg->phi += sg->delta_phi;
// Handle a spike event when we cross phi_max and wrap phi
if (sg—>phi >= 1024) {
// Send spike if the generator is enabled
if (sg->enable) {
// Set the corresponding hardware pin
GPIO_SetPin(sg->spike_port, sg->spike_pin);
}
// Wrap phi
sg->phi -= 1024;

}
inline void spikeGenResetSpikeOutput (SpikeGenerator *sg) {

// Reset the corresponding hardware pin
GPIO_ResetPin(sg->spike_port, sg->spike_pin);

3

The keyword inline tells the compiler to not actually call the function by
executing a jump to the corresponding program location, but to implement the
content of the function at the location where it appears. Again, this has a negative
impact on the code size, as the function’s content is redundantly implemented at
every call, but it safes execution time because the function calls are avoided.

The total execution time of the interrupt routine fluctuates with the state of
the spike generators but takes maximally around 3.5 ps, causing a maximal load of
about 35%. The rest of the code can therefore be executed with a lower priority
during the remaining 65 %.

After initialization, the system enters an infinite loop from which it monitors
and orchestrates all tasks that are less time critical. One loop cycle usually takes
500 ps but can take longer if either the system load is too high or if the system is
actively communicating over USB. During each cycle, the buffered ADC results are
converted into spike rates. Hence, the sensor unit update rate is 2 kHz, or twice a
second in biological time.

Moreover, all ADC traces can be recorded on the microcontroller at the same
rate. The trace length is limited by the remaining random access memory (RAM)
resources that are not already in use by the program execution. It is statically set
to 12kB. The number of recorded samples is automatically adjusted according to
the number of channels that are selected for read-out.

Apart from the sensor-to-spike translation and the ADC recorder, the STM32F103C8
is also responsible for managing the entire state of the PP2 system and for com-
munication with the host PC. The latter takes place over an USB interface that
appears as a serial port on the computer. Due to the powerful periphery of the
STM32F103C8, the interface can be configured to a data rate of ~2MBs™!, providing
generously dimensioned access to the robotic system. Information gets exchanged
via a simple text-based communication protocol. However, in order to have a more
convenient way to interact with the system, a custom Python library that contains
an abstracted representation of the robotic system has also been developed.
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The library provides a class called PP2 with abstract representations of the various
robot subcomponents, each of which can further be configured by properties that
are hierarchically nested. The main components are

e PP2.motor_drivers

e PP2.dac

 PP2.pga

 PP2.hdds

o PP2.spike_generators
e PP2.recorder

PP2.pga, PP2.hdds, and PP2.spike_generators inherit from lists and can hence
be iterated. Every parameter can be directly assigned a value. For example, to
enable the motor drivers, the corresponding parameter is set to True:

‘ pp2.motor_drivers.enable = True

After configuring the components like this, the state of the virtual Python object is
transferred to the hardware, by calling the .set ()-method of this component:

‘ pp2.motor_drivers.set()

Calling the .set()-method of a PP2 instance, calls the .set ()-methods of all the
subcomponents and therefore transfers the state of the entire PP2 object to the
hardware. Parallel to the .set ()-methods, also .get ()-methods exist to synchronize
the software objects with the robot. The following example illustrates how PlayPen-2
can be configured and used from within Python.

# Get the serial interface over which PP2 is connected
port = get_pp2_port()

with serial.Serial(port, 2073600, timeout=1) as s:
# Create a PP2 instance
pp2 = PP2(s)

# Calibrate the HDD sensors
pp2.calibrate_hdd_sensors()

# Enable spike generators and assign a channel to each
for i in range(PP2_NR_SPIKE_GENS):
pp2.spike_generators[i] .enable = True
pp2.spike_generators[i] .adc_channel = i
pp2.spike_generators.set ()

# Configure the ADC recorder
Pp2.recorder.enable = True
pPp2.recorder.nr_channels = 5
pp2.recorder.adc_channels = [0, 1, 2, 4, 5]
pp2.recorder.set_config()

# Start the recording, wait for 2 seconds, then get the data
pp2.recorder.start ()

time.sleep(2)

pp2.recorder.get_data()

data = pp2.recorder.data
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Figure 4.29: The complete PlayPen-2 setup.
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Figure 4.30: Experiment schematic and data flow for maximum brightness tracing
with a three-dimensional sensor on PP2.
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4.7 Maximum finder on second revision

The goal of this experiment is, again, to find and trace the brightness maximum of
an illuminated surface. However, since the upgraded sensor head is able recognize
two-dimensional gradients, the network can be structured in a much simpler way.

Figure 4.30 shows the signal path for this experiment in terms of included hardware
resources. BrainScaleS-2 sends the output spikes of four motor neurons to four pulse
shapers which are directly connected to four motor drivers. The motor neurons can
therefore control the motion of both actuators, each in both directions. The angular
actuator positions leave the two AS5600s as analog signals and are buffered by two
PGAs before they reach the microcontroller’s ADC inputs. All three preamplified
photo signals are also distributed to three PGA channels and then digitized by the
microcontroller. The rotary information, in this case, has no influence on the neural
network but is only recorded to reconstruct the sensor head positions in the ensuing
experiment analysis.

The photo signals are each converted linearly into an output rate

‘/;i na.
Tout = Tmax * Vg l (419)

with rmax = 100 kHz. Vi, is calibrated such that at the brightest point Viignal = Vinax-
Thus, each photo sensor is assigned a separate spike generator and a separate spike
source channel. After reaching BrainScaleS-2, the spikes are distributed over three
synaptic rows, in particular, one row for each sensor.

Some synapses within these rows are assigned a discrete weight such that they
cause a non-zero postsynaptic potential on the synaptic input of the respective motor
neurons after receiving a spike. In turn, this might cause the receiving neurons to
fire. Each motor neuron is statically assigned one actuator direction and therefore
exerts a torque pulse every time it spikes.

Figure 4.31 illustrates this chain of effects in a more graphical way.

In each individual experiment the neural network assumes control of the movement
patterns for about 150 ms, which corresponds to 150s in biological time. Before an
experiment starts, the sensor is externally forced to an arbitrary boundary location
by the control software, such that the system has to find the maximum from a
different starting position in each run.
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Figure 4.31: Detailed data flow and network architecture for brightness maximiza-
tion.

In figure 4.32, some return journeys are plotted. The gray shape in the background
indicates the area that is reachable by the sensor head. Each of the four trajectories
starts from a different position in one of the corners. The reason why some of them
do not seem to start exactly in the corner is because there is a latency between
the signal that forces them to the start position and the start of neural control.
Moreover, the flexible PCBs (the golden-brown bands on the left of the actuators in
figure 4.28) exert a force on the actuators that is insignificant when the actuators
are actively driven but causes them to drift away from the edge position when no
coil currents are applied. Therefore, three of the four edge locations are unstable
when the actuators move passively. However, the procedure is sufficient to assert a
different starting position for each run.

After the active control starts, the sensor head is driven to a point around
x =11.5mm and y = 12.7mm. The actuators forcefully move the sensor into the
approximate region of this point, also including some overshooting. After that the
target location is approached more slowly and more precisely.

Figure 4.33 shows the location and sensor signals of the blue trajectory from
figure 4.32 over time. At ¢t = 100 ms the neural network assumes control over the
actuators and it stops at ¢ = 250 ms. The gray curves in the sensor plots show
the average over the three sensor signals, which is what the network is intended to
maximize. While it increases by tendency, the value at ¢ = 180 ms is higher then the
final value. Hence, the system does not converge the absolute maximum. This is
due to the fact that the weights have not been optimized but manually tuned until
the network achieved its goal qualitatively.

In the next experiment, the parameter tuning is automized by an evolutionary
strategy algorithm.
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Figure 4.32: Trajectories of the sensor head starting from four different positions.
Left: The gray shape in the background marks the area that is accessible to the
sensor. The stars indicate the respective starting positions. Right: Zoom into the

region of the brightness maximum.
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Figure 4.33: Position (top) and optical sensor (bottom) signals over time. Left:
All signals are shown from 0ms to 350ms. The neural network takes control at
t = 100ms and stops at t = 250ms. Right: A zoom into 100 ms to 200 ms. The
gray curve in the lower plots is the average over the three photo diode signals.
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4.8 Evolutionary optimization

In this experiment, the task is again to find the brightness maximum but the
parameters were further optimized by an evolutionary algorithm, in particular an
evolution strategy with covariance matrix adaptation (Hansen and Ostermeier, 1996).
The algorithm has control over the same twelve weights as depicted in figure 4.31,
and optimizes a fitness function that it derives from the three sensor signal Sg(¢). In
order to prevent artifacts that might arise from unfair starting conditions, the fitness
of one set of weight parameters is always derived from averaging over four runs from
four different starting positions as in figure 4.32. Thus, the three sensor signals get
averaged over the sensor index s, the time ¢, and the four starting positions r:

1
f - W Z Z Z Ss(t)|run:r- (420)

stop re{0,1,2,3} s€{0,1,2} 0<t<tstop

f is therefore proportional to the average brightness received by the three diodes.
Moreover, since the runtime is finite and since the averaging starts at ¢t = 0, f also
reflects how fast the sensor approaches maximum brightness.

Initially, 50 weight vectors w; are each drawn from a Gaussian distribution whose
mean vector corresponds to the weight vector from the previous example from
section 4.7 and whose standard deviation is set to 3.0 for all weights. A weight
vector w; is also referred to as an individual in reference to evolutionary algorithms.
After all individuals with index 7 of this first generation have been evaluated and
assigned a fitness f;, the best five are selected as the parents of the next generation.

In the following, the next 50 weight vectors are then drawn from a multivariate
Gaussian distribution whose mean is obtained from the fittest individuals and whose
covariance matrix adapts to the apparent success of the individual genes:

w; ~N(p,0-%). (4.21)
Here, 0 = 3.5 is a heuristically chosen step size and

is the covariance matrix with d; = w; — p and p = >, p; - w;. Furthermore, p; = %
if the individual ¢ is among the five fittest and p; = 0 otherwise. Scaling the
covariance matrix in this way tends to warp the variance into directions that promise
successful mutations. The weights are allowed to be in the interval w; ; € [0;50]. If
equation (4.21) produces a weight that is not within this range, it is clipped to the
respective range boundary. The maximum weight is set to 50 instead of technical
maximum 63 in order to limit the impact one presynaptic partner can have on a
single neuron and to have a certain tuning margin in case the stimuli are generally
found to be too weak to trigger sufficient motor neuron responses. Typically, the
optimization converges already after approximately 20 generations.

Figure 4.34 shows the course of this evolution for a few selected generations

starting from the top left and going to the bottom right, rowwise. The background
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Figure 4.34: Evolution of the maximum finder starting from a heuristically chosen
initial weight configuration. The dark solid curve in the top plot is the average
fitness of the evaluated population. The light solid curve is the corresponding
moving average over five samples. The dashed curves are the fitnesses of top three
individuals, again the value per generation and the moving average. Additionally,
the weight vector p is plotted qualitatively at six selected generations (0, 3, 10, 25,
50, and 100). The mean weight vectors of the same six generations were evaluated
for their performance by conducting 100 experimental runs, each subdivided into
four runs from four starting positions (see figure 4.32). The contour lines in the
lower six tiles indicate the distributions of the sensor head positions after 225 ms,
when the target positions should be reached. The outer contours contain 99 % of
the samples, the next inner contours, 50 %, and the innermost contours 10 %. The
background color represents the sensor brightness obtained from sampling the photo
diode signals over all runs and all generations. Some pixels are missing because the
sensor head did not cross the respective positions.
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of each tile represents the brightness obtained from sampling the sensor information
from all conducted runs. The black contours reflect the probability of presence of
the sensor head after 225 ms when the position is usually settled.

In generation 0, the trajectories are localized at z/y ~ 0.0 mm/2.0 mm, a position
that is not in the very center of brightness, but at a gradient slightly upwards of
it. As the optimization proceeds, the distribution of target locations continues to
diffuse and narrow again but its center moves toward brighter areas, thus, achieving
its objective. However, overall not much changes, indicating that the heuristically
chosen parameter set from section 4.7 is either already close to optimal or leads into
a local minimum. Moreover, the distribution seems to avoid the peak brightness
while elongately lingering around areas up and right of the brightness maximum.

In order to test, whether different starting conditions produce different parameter
sets, the evolution is conducted a second time starting from a totally random weight
configuration. The first generation is made up of individuals whose weights are each
drawn from a uniform distribution within the allowed weight ranges, i.e. w;; € [0;50].
Figure 4.35 shows again the target location probabilities for a few selected generations.
The network successfully reaches a point of maximum brightness and it converges
into a functional state after approximately 20 generations. This time however, the
absolute fitness value is higher and the distribution remains narrow and circular,
covering the very center of brightness. A look at the weight matrices reveals that
the final weight configuration is different from the one obtained with heuristically
chosen starting conditions. Hence, the evolution with artificially set initial conditions
indeed ended up in a local minumum.

One evolution, as presented above, took approximately 2.5 hours. During this
time, 100 generations of 50 individuals each performed four test runs. Thus, the
robot carried out 20000 evaluations in total for one evolution. Translated into
biological real-time considering the acceleration factor, the system would have had
to run for three months instead.

4.9 Outlook

The PlayPen setup allows accelerated neuromorphic hardware to be interfaced
with physical robotic actuators and sensors in a low latency, closed-loop fashion.
Experiments with the prototype setup (sections 4.3 to 4.5) revealed a few weaknesses,
which for the most part were eliminated in the second revision. Furthermore, the
software representation of PP2 facilitates easy, stable, and reproducible configuration
of and interaction with the robot. In this way, it becomes possible to automate
complex experimental sequences such as those required for training with evolutionary
algorithms.

One remaining aspect, which could not be satisfied according to the original
objectives, is the mechanical acceleration capacity of the actuators. Regulation
oscillations are still on the order of 10 ms, which is one to two orders of magnitude
below what would correspond to a typical biological movement translated to the
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Figure 4.35: Evolution of the maximum finder starting from a random initial
weight configuration. The reader is kindly referred to the caption of figure 4.34 for
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thousandfold BrainScaleS-2 speedup. More electrical power and a further reduction
of mass in the actuation complex could help meeting the demands but the scaling
relation P oc % (equation (4.2)) suggests that both, mass and power, have only
linear impact against the third power of the typical reaction time. Thus, achieving an
improvement of one to two orders of magnitude in the dynamics requires significant
changes in the system design, including replacing the HDD-based voice coil actuators
and preferably dumping the sensor head. For example, robotically controlled sensory
access to a two-dimensional surface could also be achieved by mirror-based optical
guidance. In this way, the sensors could be statically mounted, reducing the number
of moving parts to two light-weight mirrors.

However, since the emulated LIF neurons on BrainScaleS-2 are naturally also
capable of operating in the rate limit, the robotic movements are of course accessible
to neural control. Moreover, PP2 accelerates typical biological scales by one or
two orders of magnitude. Therefore, an actuator action that lasts for 10 ms, can
be understood as an action that takes 10s in the neuromorphic time frame. This
duration is not so far from many biological courses of action, like for example, moving
through space, or observing a situation. Hence, the PP2 sensor head speed is in an
acceptable regime, when interpreted as a moving agent rather than a moving limb.

Thus the range of possible experiments is far from being exhausted. Together
with the extended possibilities of the full-scale BrainScaleS-2 version, many more
complex application areas emerge. In addition, the neurons on BrainScaleS-2 offer
more generous parameter ranges, so that the lack of speed of the system can be
compensated for by slower neurons.

In addition to this physical robotic setup, the next chapter presents and experiment
with a virtual cybernetic insect.
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"Of course, the point was not to duplicate wasps, flies,

spiders, or bees in computer chips or the like; the

important thing was their neural anatomy with its

built-in sequences of directed behavior and programmed

goals.”

— Stanistaw Lem, Weapon systems of the 21st century
or The upside-down evolution, 1983

As outlined in section 2.2, one major motivation for neuromorphic hardware lies in
simulations of large-scale brain structures like the neocortex. The reason for this is
the immense computational complexity of tens of billions of neurons that greatly
surpasses the capabilities of contemporary computing devices. However, among
the tiny representatives of brains lie equally unexplored structures with equally
interesting properties. One example are the neural compounds that are associated
with spatial navigation in insects.

While even the largest insect brains measure only a few cubic millimeters in
volume and do not contain significantly more than around one million neurons
(Burrows, 1996; Menzel and Giurfa, 2001), the cognitive and behavioral capabilities
of insects are impressive and manifold.

For example, various moth species perform nocturnal seasonal migration over
distances of more than 1000 kilometers, flying 400 km to 500km per night at
altitudes of up to around 1000 m (Chapman et al., 2002; Adden et al., 2020). Bees
can remember multiple spatial locations at once and even communicate the relative
directions and distances to fellow bees by means of a symbolic language (Frisch, 1949;
Von Frisch, 1967; Collett and Collett, 2002). While it has earlier been shown that
bumblebees can learn to distinguish visual cues (Nityananda et al., 2014), a recent
study revealed that they are even able to acquire complex behavioral patterns from
training. In particular, Loukola et al. (2017) rewarded bumblebees for rolling tiny
balls into a target area. The bumblebees did not learn by trial and error but mostly
by observing other bumblebees who had already adapted the skill. Moreover, they
were able to anticipate the best strategy to obtain quick reward when confronted
with more than one ball.

As a result of considerable progress in neurophysiological measurement techniques,
more and more insights into the neuronal processes from which the above examples
ultimately result are now being gathered. For instance, electron microscopy and
image reconstruction have recently made it possible to map and reconstruct the entire
connectome of Drosophila melanogaster (Chiang et al., 2011; Xu et al., 2020). Based
on such studies, deeper insights into the mechanistic processes behind insectoid
learning (Takemura et al., 2017), or motion detection (Takemura et al., 2013), could
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be derived. A recent example also includes a neural model, which can reproduce the
ability of bees to return to their nests after foraging (Stone et al., 2017).

This chapter outlines how this model is emulated on the analog core of BrainScaleS-
2 and coupled to a simulated body in a virtual environment on the digital plasticity
processing unit (PPU). The PPU also implements the sensor and motor complexes
that connect the virtual agent to the physical neuromorphic network. In effect,
the neuromorphic brain is absorbed into an ultra-low-latency cybernetic loop that
perfectly meets the speed requirements of its accelerated neurons. In order to fully
understand the model function and terminology, it is vital to start with a short
phenomenology of insect brains.

Contribution

The author conceptualized, implemented, and evaluated all experimental aspects of
this chapter. Philipp Spilger offered significant consulting and support concerning
the PPU compiler. Parts of the calibration routines (sections 5.5.1 and 5.5.2) are
based on previous work by Sebastian Billaudelle, Benjamin Cramer, and Yannik
Stradmann. Timo Wunderlich contributed to software simulations which preceded
the hardware implementation. At the time of writing, it is being prepared for
publication.

5.1 The central complex

The brain area that is of specific interest for the presented neural model is the
central complex, a highly convoluted compound that is located in the very center of
insect brains. Fossil evidence suggests that this brain region evolved over a period
of at least 520 Mio. years since the arthropods emerged in the Cambrian (Ma et al.,
2012). Until today, this area is highly conserved among various arthropod species.

The central complex is usually subdivided into four substructures, the protocerebral
bridge, the ellipsoid body, the fan-shaped body, and the paired noduli (Turner-Evans
and Jayaraman, 2016). The ellipsoid body is also referred to as the central body
lower, and the fan-shaped body as the central body upper. Figure 5.1 shows a three-
dimensional reconstruction of the entire compound of the female tropical nocturnal
bee Megalopta genalis.

The central complex is connected to many other brain areas, but most importantly
for the topic at hand, to the lateral accessory lobes. These lobes are considered
premotor control regions, relevant for locomotion, but they also receive input from
the anterior optic tubercles that process information coming from the optic lobes
(Heinze and Homberg, 2009; Homberg et al., 2011). Figure 5.2 gives an overview of
the entire brain of the same bee with highlights on the mentioned brain regions.

While it has long been speculated that the central complez is involved in motor
control and visually guided behavior (Miiller et al., 1997), more recent studies gave
firm evidence for its involvement in orientation and navigation (Neuser et al., 2008;
Varga and Ritzmann, 2016; Le Moél et al., 2019). Much of the recent research is
centered around a specific navigation strategy known as path integration.
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Figure 5.1: 3D reconstruction of the central complex of Megalopta genalis consisting
of the protocerebral bridge, the ellipsoid body, the fan-shaped body, and the two noduli.
The image was generated on insectbraindb.org based on data from Stone et al. (2017).
Labels and the scale bar have been added retrospectively. (IBdb CC-BY)
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Figure 5.2: 3D reconstruction of the brain of the tropical nocturnal bee Megalopta
genalis (female). Two brain regions are highlighted in color: the central complex in
green and the anterior optic tubercles in brown. In addition, a neuron that pervades
the lateral accessory lobes is rendered in black. The large, outer structures (three
large ones on each side, the outermost prominently vertically aligned, the innermost
round) are the optic lobes that sit behind the eyes and process visual information.
The image was generated on insectbraindb.org based on the data set for the neuron
mg-Inter-LAL-DN1 (Szakal et al., 2015; Stone et al., 2017). The scale bar was
enlarged for better visibility. (IBdb CC-BY)

121



5 Accelerated insects

5.2 Path integration

Path integration, also know as dead reckoning in
technical navigation, is a mechanism that infers
an object’s absolute position by integrating over
the history of its locally taken movements. In or-
der to do so, it depends on continuously available
direction and speed information during its journey.
So called inertial navigation systems in ships or
airplanes, therefore rely on compass information,
paired with acceleration data or speed measure-
ments. Because deviations from the actual speed
or orientation are accumulated and summed up
over time, path integration relies on exact mea-
surements and data interpretation.

Speculation about similar mechanisms in ani- Figure 5.3: Path integration
mals, in particular in insects, goes back at least in the Saharan dessert ant
to the early 20" century (Wehner, 2003). In the Cataglyphis fortis. An ant’
late 1940s, experiments gave evidence for the abil- g tortuous outward (foraging)
ity of bees to infer compass information from the and straight homeward path
light polarization in the sky (Frisch, 1949), which recorded in a featureless salt pan.
they do not only use to navigate but on the basis F denotes the feeding site, N
of which they also communicate food locations to the nest. The trajectory data
other bees. Later studies have shown that compass is taken from Wehner (2003)
information is gathered by various insect species and the image from Moller et al.
not only via sky light polarization but also by the (2001).
locations of sun (Heinze and Reppert, 2011) and
moon (Warrant and Dacke, 2016), or even the orientation of the milky way in the
night sky (Dacke et al., 2013). Experiments with Drosophila melanogaster even
revealed that the tiny fly is able to keep track of its head orientation for a certain
amount of time when optical cues are entirely missing. In vivo neural imaging of
head-fixed flies shows that they do so by integrating over their own movements
(Green et al., 2017, 2018). Interestingly, the obtained results are surprisingly well in
line with an early proposed neuronal model for angular path integration (Wittmann
and Schwegler, 1995). Like in a compass, the current heading direction is population-
encoded in the protocerebral bridge and the ellipsoid body (Seelig and Jayaraman,
2015). The same encoding is observed in locust (Heinze and Homberg, 2007),
butterflies (Heinze and Reppert, 2011), and bees (Stone et al., 2017), as well.

One of the most influential research on insect navigation was centered around
Cataglyphis fortis (Wehner, 2003; Jeffery, 2003). This ant species is endemic to the
Saharan dessert — an almost featureless environment in which the ants navigate
without clear-cut visual cues like trees reliably over distances many thousand times
their own body length (Huber and Knaden, 2015). Figure 5.3 gives an example of such
a recorded ant trajectory over a distance of a few hundred meters. During adolescence
when they acquire their extraordinary navigation skills, these ants calibrate their
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internal compass using the earth’s magnetic field as an initial reference and learn to
use any available cues (sky light polarization, sun position, memory of movements,
the shape of the horizon) to construct more and more reliable compass information
(Grob et al., 2019). Besides the directional orientation, path integration requires
precise knowledge about the traveled distances. Inferring this distance over time
from different kinds of available sensor information is called odometry.

It has been shown that Cataglyphis fortis mostly relies on pedometric information,
i.e., it counts its steps (Ronacher, 2008). Supporting evidence comes from a prominent
experiment in which desert ant received leg modifications before returning to their
nest (Wittlinger et al., 2006). Increasing the ant’s step size by attaching stilts to
their legs, caused the insects to walk in the correct direction to their nest, but past
it. When the ant’s legs where shortened, they returned into the correct direction
too but expected the nest entry too early on their home trajectory. However, the
odometric processing that their path integration mechanism relies on, seems to
take more information than only the number of steps into account. For example,
Cataglyphis fortis corrects its number of steps for three-dimensional obstacles that
might lie in the return path but not in the foraging path (Wohlgemuth et al., 2001;
Grah and Ronacher, 2008; Ronacher, 2008). It can compensate for the additional
number steps that are made necessary by slopes. Hence, also for odometry it seems
that the insects interweave multiple available sensory cues to increase reliability.

Similar features and behaviors have been found in other insects too. While land
bound species tend to rely more on pedometry, flying insects derive information
mostly from visual cues and air flow (Wagner, 1986; Srinivasan et al., 1996; Collett
and Collett, 2000; Khurana and Sane, 2016). Although the exact mechanisms that lie
between the raw optical and sensory information and the odometric representation
are yet unknown and subject to ongoing research (Floreano et al., 2009; Yakubowski
et al., 2016), neurons can be found in the bee brain which encode different aspects
of the optical flow as abstract scalar values. These tangential noduli (TN) neurons
(Stone et al., 2017) come from the lateral accessory lobes and provide input to the
noduli. Thus, together with the head orientation cells, they potentially deliver all the
necessary information for a functional path integrator within the central complez.

5.3 A neural model for path integration

The authors of the publication introducing these TN neurons also propose a complete
corresponding physiologically derived model that is able to reproduce the observed
biological phenomena functionally (Stone et al., 2017). The following presents a
neuromorphic implementation that is fundamentally based on it. Following the
original publication, the model is discussed below without referencing each point
individually. Thus, if not explicitly mentioned otherwise, the reference is Stone et al.
(2017).

We start with assigning the individual neural subpopulations to the respective
compartments in the central complex. For a detailed anatomical reasoning behind
the various connections and simplifications, the reader is kindly referred to the
original publication. Unlike the compact language that physicists tend to use to

123



5 Accelerated insects

Figure 5.4: Orientation encod-

T ing in the central complex of the
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Noduli L from el Jundi et al. (2018).

describe their aseptic and purified systems, the language used to describe insect
brains, despite efforts taken (Ito et al., 2014), is necessarily more complex as it aims
at reflecting the given biological complexity in an uncompressed way. The author
of this thesis therefore begs the reader, especially the physicists among them, for a
certain amount of patience with the terminology. After digging deep into the cell
structures of the involved neurons, a simplified model is introduced that tries to put
a large complexity back into simple terms.

5.3.1 Subpopulations and network topology

Orientational information is provided by the compass network, which is subdivided
into three stages. First, a population of tangential lower division of the central
body (TL) neurons projects orientational input into the columnar lower division
of the central body, type 1 (CL1) neurons of the ellipsoid body. Cell imaging
and recording suggests that these TL neurons collect the orientational information
from the lateral accessory lobes (Homberg et al., 2011). As mentioned earlier, the
ellipsoid body is known to encode the angular head orientation in a ring-shaped
network of neurons. Unlike the protocerebral bridge and the noduli, the ellipsoid
body does not have a clear lateral separation into two hemispheres. Instead, like
the fan-shaped body too, it appears to merge information from the both brain sides
(see figures 5.4 and 5.5). The CL1 neurons, in turn, project to inhibitory tangential
protocerebral bridge, type 1 (TB1) neurons in the protocerebral bridge, which has a
well recognizable, hemispherically defined activity distribution. It is organized in
eight to nine vertically aligned columnar bundles, called glomeruli, per hemisphere
that each represent a specific heading direction (Turner-Evans and Jayaraman, 2016).
In vivo recordings show that the two halves of the protocerebral bridge each reflect
the compass information (Green et al., 2017) from CL1. Schematically, this is
illustrated in figure 5.4 for the dung beetle Scarabaeus satyrus. The ellipsoid and
fan-shaped body therefore contain only about half as many glomeruli as the entire
protocerebral bridge. In effect, the two TB1 halves also carry the angular information
redundantly only with slightly different characteristics.

This information is then coupled into columnar protocerebral bridge/upper
division of the central body, type 4 (CPU4) cells that stretch through the entire
central compler and arborize in the protocerebral bridge, as well as in the noduli,
such that they receive excitatory input from both, the TB1 and TN cells. Within
the model, the CPU4 population is therefore assumed to implement the actual path
integration, since it has both, the speed, and the heading direction available. Thus,
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CPU4 is assumed to encode the integrated homing vector.

The CPU4 neurons also arborize in the fan-shaped body, where they project their
activity to columnar protocerebral bridge/upper division of the central body, type 1
(CPU1) neurons. These neurons are the largest columnar cells in the central complex
and are known to converge at the lateral accessory lobes, which are, as mentioned
earlier, presumably premotoric control regions. They also collect directional input
from the protocerebral bridge and their structure suggests that each hemispherical
population correlates the stored home vector in CPU4 with the heading vector in
TB1. However, the way in which the two directions are correlated with each other
is literally twisted:

CPUL1 is subdivided into two types of neurons, CPUla and CPU1b. Since the
protocerebral bridge is laterally elongated and does not appear to be circularly closed
like the ellipsoid body, this angular shift is achieved by a structural wrapping from
one end to the other. Figure 5.5 illustrates this wrapping with the example of
five different CPU1 neurons in the brain of the monarch butterfly. The individual
neuronal arborization regions reflect the positions of the columnar glomeruli in the
fan-shaped body as well as in the protocerebral bridge and thus, the encoding regions
for the different directions. The directions are ordered from the left to the right
in both compartments of the bridge such that functionally, the two halves are not
mirrored but consecutive copies. l.e., the leftmost glomeruli in the left halve of the
protocerebral bridge represents the same direction as the leftmost glomeruli in the
right halve (see also figure 5.4). The CPUla neurons connect the left protocerebral
bridge compartment with the right lateral accessory lobe crossing though the fan-
shaped body. The very left of the latter is connected to CPUla R7 which is not at
the very left of the protocerebral bridge compartment but the second or third to
left. The rightmost neuron in the left bridge compartment does neither connect
to the rightmost glomeruli in the fan-shaped body, but to the second or third to
right. Instead, this is where the first of the CPU1b neurons of the right protocerebral
bridge compartment arborizes. In this way, the vectorial directions encoded by the
protocerebral bridge are rotated and wrapped by one angular resolution before being
mapped to the corresponding directional glomeruli in the fan-shaped body.

Note that the protocerebral bridge is divided in the monarch butterfly (figure 5.5),
while it forms one connected structure in Megalopta genalis (figures 5.1 and 5.2),
Scarabaeus satyrus (figure 5.4), and most other insects (Heinze and Reppert, 2012).
However, functionally it can be assumed equivalent to the two halves of a connected
bridge.

The last involved neuron type is the pontine neurons which connect cells in
the fan-shaped body across the two brain hemispheres. In the model, they receive
excitatory input from CPU4 which they project inhibitorily to the CPU1 population
associated with the opposite brain hemisphere in a way that rotates the encoded
direction by 180°. Since the pontine neurons exert inhibition, the stored direction in
CPU4 is effectively projected differentially to CPUL. L.e., the more active CPU4 is
overall, the more pronounced is the transmitted activation difference between the
most active and least active direction in CPU1. The sum over all direction encoding
activities remains the same however, independent of the average population activity
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Figure 5.5: Various CPU1
neurons in the brain of the
monarch butterfly Danaus
plexippus. From top to bot-
tom occurs a transition from
left to right glomeruli. In the
top figure it can be observed
that CPUlaR7 does not con-
nect the leftmost compart-
ment of the fan-shaped body
to the leftmost glomerulus
in the protocerebral bridge,
but instead to the second
to the left. This effectively
results in a phase shift of
one angular resolution (-45°).
In the lowest image one can
see how a CPUlb neuron
accomplishes the wrapping
by taking the next orienta-
tion missing in the left proto-
cerebral bridge compartment
from the right one. The indi-
vidual images are taken from
insectbraindb.org based on
data from Heinze and Rep-
pert (2012).



5.3 A neural model for path integration

of all CPU4 neurons. The summed activity of each lateral CPU1 population is then
finally taken as the steering signal.

The concept of the entire encoding scheme becomes more obvious, when it is
reduced to an abstract point neuron representation, which follows in the next section.

5.3.2 Abstract connectivity

Figure 5.6 shows the network in this representation. Based on the above mentioned
observations, the neurons in TL, CL1, TB1, CPU4, and in the pontine population can
each be assigned one of eight unique directions. The order of directions is preserved
by most of the population interconnects, as they implement one-to-one mappings
between the individual neurons. For example, the vectorial compass information
from the 16 TL cells (eight per brain hemisphere) is translated through CL1 down to
TB1. Note that, the TL input neurons inhibit the CL1 cells, which effectively inverts
the activity after the first layer. However, this is without effect on the network
function since only the orientation encoding is affected, not the orientation itself.
As both of the CL1 neurons belonging to one directional component are branching
into the same dendritic regions that the corresponding TB1 neuron has in the two
protocerebral bridge compartments, the duplicated vectorial information collapses
into a single one.

The inhibitory TB1 population then projects to the two lateral CPU4 and CPU1
populations, again preserving the vectorial alignment. CPU4 receives further input
from the speed encoding TN neurons in a one-to-all mapping. That is, every CPU4
neuron belonging to one hemisphere receives the same excitatory hemispherical TN
input. CPU4’s output goes to the pontine populations in the same one-to-one way
and to the CPU1 populations in a different way. Here, every CPU1 neuron collects
excitatory input from one CPU4 neuron but cyclically permuted by one angular
resolution relative to the TB1 input, clockwise, or counterclockwise, respectively. In
that way, CPU1 compares the stored home vector from CPU4, rotated to the left or
to the right, with the current heading direction.

To understand how this influences the overall activation of CPU1, let us consider
that the insect currently heading into a direction that is off from the target direction
by one angular resolution. In effect, in one lateral CPU1 population, the inhibitory
TB1 activity will cancel out the activity that represents CPU4’s stored home vector,
as they exactly overlap. In the other lateral CPU1 population, though, some of
the CPU4 activation will not be cancelled out and eventually causes some CPU1
neurons to respond stronger. The summed CPU1 activity in each hemisphere is
therefore indicating whether the currently taken heading direction is deviating more
to the left or to the right. If both lateral populations have the same average activity,
the heading direction is parallel to the home vector. Thus, a steering signal can be
derived from the two lateral CPU1 activities.

Lastly, CPU1 also receives inhibitory input from the pontine neurons that repeat
the CPU4 activities but rotated by 180° and acting as inhibitors. As mentioned
above, the effect is that the stored home vector is projected sort of differentially
to CPU1. For example, if one CPU4 neuron has the same activity as the neuron
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Figure 5.6: Abstract point neuron representation of the path integration network.
Black denotes excitatory, blue inhibitory synapses. Except for TN, each subpopula-
tion contains eight neurons. The connections from CPU4 to CPU1 are shifted by
one angular resolution (i.e. 45°) clockwise or counterclockwise, respectively. The
pontine populations project their activity inhibitorily to CPU1 rotated by 180°). All
other connections preserve the orientational population encoding by implementing a
one-to-one mapping of the individual neurons. The direction a neuron represents is
indicated by the arrows within.

representing the opposite direction, their summed activities even out. Those neurons
in CPU4, however, that indicate the home vector with a higher than average activity,
face weak activations in the opposite direction, due to the integration rule of the
CPU4 cells!. The high positive postsynaptic influence of active CPU4 cells is
therefore matched by only weak inhibitory influence and vice versa. Thus, the
postsynaptic activity pattern, representing the home direction over the receiving
cells becomes more pronounced. Moreover, it becomes less dependent on the activity
of CPU4 averaged over the population, since a higher overall activity also causes a
higher overall inhibition, making the entire regulation mechanism more robust.

In Stone et al. (2017), all neurons are modeled as firing rate neurons with a
sigmoidal transfer function

1

YR (5.1)

i
of their accumulated synaptic input

!The rule is presented in detail in section 5.3.4
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Figure 5.7: Coordinate system of the insectoid agent. © is the direction of flight
and ¢® and ¢*~V) the head direction of the current and the previous time step,
respectively. A¢ is the difference between both and indicates the head rotation. As
the time interval is discrete and defined to be 1, the traveled distance is equal to
the velocity vector v.

w;; is the synaptic weight that connects neuron 7 with neuron j, and a and b are
parameters that are individually tuned for every neuron population. The output
rate is dimensionless and intrinsically normalized to the interval r; €]0; 1[. While
equation (5.1) is indeed universal for all neurons, the internal state of the cells is
computed differently for the sensor populations TN and TL, and for the integrator
population CPU4.

5.3.3 Sensors

The physical state of insect is described by five state variables, i.e., its position «x, its
head orientation ¢, and its velocity v, where & and v are two-dimensional vectors.
When switching to polar coordinates, there are two more derived state variable, the
direction of movement ©, and the absolute velocity v:

o= [ o) 53

A graphical overview is given in figure 5.7. Note that the head direction does
not necessarily have to be identical with the direction of movement. In this way,
effects like side wind can be integrated into the model to study holonomic motion.
Generally, a system is said to be holonomic when the number of degrees of freedom
matches the number of controllable degrees of freedom, such that any system state
can be achieved independently of the path taken. For example, human walking
capabilities can be described as holonomic because an arbitrary potentially accessible
state can be achieved independent of the path taken. A counterexample would be
a wheel that rolls over a surface. For such a wheel positions and orientations are
not independent of its rotation. Translated to the problem at hand, the insect’s
direction of movement is said to be nonholonomic when it depends on the head
direction.
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Optical flow

According to Stone et al. (2017), the internal states of the two TN cells are derived
as

Itnr = [sin(¢ + ¢rN) cos(¢p + quN)} . (5.4)

Here, ¢y is the "preference angle of a TN-neuron, i.e., the point of expansion of
optic flow that evokes the biggest response" (Stone et al., 2017). For example, if
© = ¢ + ¢rn, the response of the corresponding cell would be maximal. If, on
the other hand, © = ¢ + ¢n £ 90°, the response of the corresponding cell would
be minimal, since the agent moves orthogonally to the cell’s sensitivity. In polar
coordinates, equation (5.4) can be written as

Itnpr = v - [cos(O) sin(¢ + ¢rn) + sin(O) cos(¢ + dry)]
=0 -sin(O® + ¢ £ ¢rn).

Since the cell response is dependent on © + ¢ rather than on © — ¢, Itx 1k is not
rotationally invariant. The author of this thesis supposes, however, that Itn /g
should be invariant against common changes in © and ¢, because the optical flow
should only depend on the insect’s frame of reference. E.g., if the insects heads
north (© = 90°) with its head tilted by 20° relative to its direction of movement
(¢ =20° 4+ © = 110°), it should measure the same optical flow as if it was heading
eastwards, that is ©® = 0°, with the same relative head tilt. As the TN responses,
depicted in Stone et al. (2017) are also supporting this assumption, the author of
the thesis at hand suspected a minor mistake in the written equations and therefore
derived an own solution based on an orthogonal projection of v onto a plane that
reflects the preferential direction of each TN neuron:

PTN,L/R =v- Sin(@ - ¢ + ¢TN) (57)

This, however, only accounts for translational movements. If the insect’s rotation is
further included, an additional term emerges:

PTN,L/R:v'sin(@—¢:|:gz§TN):Fp~gz§ (58)

Here, the constant p is proportional to the distance between the two eyes. Because
the optical flow should be positive for both cells when the insect is moving forward
into head direction, the sign of the translation term of one eye has to be inverted.
Finally, the cell state of the TN cells is obtained as

ITN7L/R =4dv- sin(@ — ¢ + ngN) Fp- gb (59)

In Stone et al. (2017), the term +p - ¢ is completely omitted, although TN signals
that are plotted of over time suggest otherwise.

At this point, it is also worth mentioning that although Stone et al. elaborate on
holonomic movements, the case where © is indeed independent of ¢ is only tackled
in the supplementary material of the publication and without a comprehensive
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functional description. In the main body of the paper, they only investigate "partial
holonomic motion" by which they mean a constant non-zero offset between © and
¢. This, however, is actually unrelated to the definition of holonomic, because ©
and ¢ remain fully dependent on each other. Therefore, this "partial holonomic"
case should not be regarded as holonomic but can be interpreted as a static rotation
of the flow field organs with respect to the body. In the implementation at hand,
the insect is constrained to always move into its head direction instead, i.e., © = ¢.
Hence, equation (5.9) simplifies to

Irnyr = v - sin(¢mn) F p- 0. (5.10)

Head direction

The second class of sensor signals comes from the TL compass neurons. This
population comprises two groups of eight neurons TL; with j = {0, .., 7} that encode
the head orientation ¢ in their output activity:

™
ITLL/R,] = sin <¢+j4 ) . (511)

After being warped by the transfer functions (equation (5.1)), the signal is then
passed on to the 16 CL1 neurons and further to the eight TB1 neurons. The latter
also experience lateral inhibition from their neighbors such that their internal state
becomes

2
Itpy,; = BTCng +3 ZwUTTBl i (5.12)

Here and in the following, ¢ denotes the discrete time. Moreover, there is no self
inhibition, i.e., w;; = 0, if ¢« = j. The lateral inhibition to all other cells in the
population functionally implements a winner-take-all, or ring-attractor network.
Among the population, this causes weakly activated cells to become even weaker
due to the inhibition of their neighbors, while highly active cells receive only weak
inhibition from their more inactive neighbors. In effect, TB1 also represents the
compass information, only weakly temporally filtered and morphed in amplitude by
the lateral inhibition and the transfer functions.

Because of the low number of available neurons on the BrainScaleS-2 prototype
chip, the directional sensor input is therefore directly provided to the network from
the TB1 cells, omitting TL and CL1. A detailed summary of the encoding follows
in section 5.4.

5.3.4 Integrators

As indicated above, the CPU4 integrators form another exception to equation (5.2).
Their internal cell state

(t) (t-1) (t) (t)
Iopua,Lyri = lopussyps T (TTN,L/R —TTB1,; — k) (5.13)

depends on the inputs from TB1 and TN, as well as on their own previous state. The
two constants h and k£ define the coupling strength and the damping, respectively.
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5.3.5 Motoric outputs

Motoric output is derived from the activities of the left and right CPU1 populations.
While the absolute velocity v is kept constant throughout an experiment, the
direction is altered according to the difference of the summed lateral activities:

Ap=AO =p- (Z TCPULR,i — ZTCPULL,Z‘) (5.14)

Here, 1 is a heuristically chosen scaling constant.

This concludes the functional description for the model proposed in Stone et al.
(2017). Next, the changes and adaptations that had to be introduced for the
hardware implementation are introduced.

5.4 LIF-based model

5.4.1 From spike rates to spikes

In section 2.1.2, in particular figure 2.9, the transition of the LIF equations to the
stochastic rate limit has already been qualitatively introduced and illustrated. The
equations (5.1) and (5.2) that are used to describe the rate response of the TB1, CL1,
CPU1 and the pontine populations present a commonly used quantitative approach
to approximate the rate output of spiking neuron models under stochastic influence
(Stevens and Zador, 1996; Dayan and Abbott, 2001; Fourcaud and Brunel, 2002).
The implementation of these neuron populations on the BrainScaleS-2 prototype is
therefore straight-forward.

However, since LIF neurons reset their internal state after each firing event
(see equations (2.1), (2.3) and (2.4)), the integration dynamics of equation (5.13)
cannot be implemented as easily. As the path integration time constants, i.e.,
multiple seconds or minutes in biological time, by far exceed the time scales of
the LIF dynamics, i.e., 1 ms to 10 ms, only an extraneuronal mechanism or a large
population of LIF neurons can account for the homing memory mechanism. One
example for the latter are synfire chains (Abeles, 2009). These chains describe
concatenated feed-forward networks that are characterized by sequential layer-wise
spiking activities that propagate through the network in a wave-like manner. The
time it takes for such a wave to traverse the entire synfire chain is proportional to
the time constant of the neurons multiplied by the number of layers. Since there are
only about 18 CPU4 neurons per glomerulus in the insect brain (Stone et al., 2017),
even a synfire chain with only one neuron per layer, could only account for a wave
period length of less then 100 ms. The idea of encoding of the integrated distance
as a population activity within one CPU4 glomerulus is therefore omitted.

Instead, an extraneural mechanism is considered. One such mechanism that
operates on suitable time scales is axoaxonic synaptic modulation.

This mechanism plays a prominent role in the gill and siphon withdrawal reflex
in the sea snail Aplysia (Kandel, 1976) and is commonly found in insect brains
(Schneider-Mizell et al., 2016) too. Usually, these synapses are formed between
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Figure 5.8: Axoaxonic depression and facilitation. A) A synapse that forms an
excitatory connection to a background source with a constant spike rate is modulated
by two axoaxonic synapses. Activity coming from the TNy, /g axons facilitates the
synaptic weight wcpus,;, while activity from TB1; inhibits it. The neuron responds
with an output rate rcpus;. B) Output rate vs. weight. The plot shows an overlay
of the transfer functions of eight CPU4 neurons on the BrainScaleS-2 system.

facilitating neurons and the presynaptic region of a normal axodendritic synpase
(Kandel et al., 2013). The strength of this synapse is then reduced or increased
on short-term memory time scales by the activity of the modulation neuron. The
mechanism is also known as presynaptic facilitation or depression (Byrne and Kandel,
1996; Lodish et al., 2000). In the case of the modelled CPU4 cells, these neurons
correspond to the TN and TBI1 subpopulations. In order to reproduce the behavior
of equation (5.13), one spike source with a constant average rate is connected to
each integrating neuron by an excitatory synapse with a variable weight wcpua, ;.
The integrating neuron therefore responds with an average output spike rate rcpua ;
that is proportional to this weight. To that end, the synapse can operate on the
short-term memory time scales that are necessary for the distance integration. Thus,
in analogy to equation (5.13), we have

® _ ) h ® 0
Wopus,L/Ri = WoPULL/R: T (TTN,L/R — I'TB1i — k) (5.15)

Figure 5.8 provides a schematic illustration of the axoaxonic synapses and the
measured response on the BrainScaleS-2 prototype setup (more details follow in
section 5.5.2).

With the implementation strategies laid out, the neuronal properties and details
can now be discussed.

5.4.2 General neuron properties

Unlike the transfer function of the fire rate neurons from Stone et al. (2017) (see
equation (5.1)), the LIF equations do not intrinsically limit the output rate to
a dimensionless interval ]0;1[. Instead, they produce a series of spikes, whose
rate response with respect to the input is determined by the equation parameters,
most importantly, the leak potential Vie.k, the threshold potential Vi, the reset
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potential Vieset, the membrane time constant Tipem, and the refractory period s (see
section 2.1.2). Within certain limitations that the hardware implementation imposes,
these parameters can be freely configured and calibrated to obtain a transfer function
that best matches the desired biological blueprint. The minimum output rate is, of
course, naturally chosen to be 0s™1, i.e., no output activity at all.

On the other hand, a maximum sustained rate of 150 Hz has been recorded in
the TN cells in Megalopta genalis (Stone et al., 2017). Although this rate is well
within reach for the hardware LIF neurons, the implemented upper limit is chosen
slightly lower to 100 kHz, which is equivalent to a biological rate of 100 Hz. The
main reasons for this reduction are the tight timing constraints of the code execution
on the PPU. The desired maximum output spike rate also determines the rate at
which the spike sending routine that implements the background generators for the
CPU4 weight memories and the sensor signals has to be triggered. The more often
this routine is called, the less time the PPU has left in between the individual calls
for other tasks, like the simulation update or data recording.

However, a deviation by —33 % with respect to the biological maximum rate is in
fact largely negligible, especially since the 1000 fold acceleration of the hardware
is to be understood as approximative as the typical time scales of the neuronal
phenomena. As outlined in section 2.1.2, 100 Hz is generally considered a high firing
rate that also corresponds to typically measured maximum rates of cortical neurons.

Therefore, the output range of the BrainScaleS-2 neurons is confined to 0 kHz to
100 kHz. This rate spectrum applies to all involved neurons as well as to all sensors.
Obtaining this range requires a few calibration schemes that are described in the
following.

5.5 Insects on BrainScaleS-2

Generally, the calibration becomes necessary for two reasons. First, parameters like,
for example, the membrane time constant cannot be set directly in SI units, but
may depend even nonlinearly on the corresponding DAC values of the capacitive
memory (see section 3.1.4). Second, fixed pattern noise due to unavoidable chip
manufacturing variations causes mismatch between the individual neurons and
synapses. Therefore an adequate calibration scheme has to be employed first in
order to obtain a reliable and uniform set of neurons.

5.5.1 Non-integrating neurons

The goal for this neuron type is to respond to a superposition of excitatory and
inhibitory inputs in a uniform and reliable way that also respects the desired output
range. Before the precise calibration procedure starts, all neuron are coarsely
calibrated by a database-based configuration routine (Aamir et al., 2018). These
routines have been developed by Yannik Stradmann in the Python language to
mitigate fixed-pattern noise on the 2" BrainScaleS-2 prototype chip. Instead of
setting the capacitive memory parameters manually, they allow the user to describe
the desired neuron properties in SI units. For example, if the membrane time
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constant is set to 3 s, the capacitive memory cell that defines the leak resistance
will automatically be set accordingly. With this procedure the neurons are initially
put into heuristically chosen configuration that represented a good basis for the
succeeding rate calibration.

Toyninh = 1.0ps Vi = 10V
Tmem = 15118 ‘/reset = 0.0V
Tref = 20 ns
While the time constants lie in ordinary ranges, the ratio 7V}/thki‘/leakt =19 is

atypical for biological neurons. The reason for this is that V.. is one of the control
variables of the second calibration routine that is responsible for adjusting the actual
rate response characteristics. Setting Ve, initially to 50 mV guarantees that the
control variables converge all from the same polarity, thus, stabilizing the calibration
procedure.

Moreover, Vet 18 usually set to values higher than 0.0 V, because a lower dynamic
range of the membrane voltage decreases nonlinear distortions, which is important
if the LIF equations ought to be replicated faithfully. Here however, maximizing
the dynamic range of the neuron membrane was found to be beneficial for smooth
response functions.

The main calibration routine is then executed on the PPU and comprised of
three consecutive bisections. The first one targets for a 50 kHz firing rate at 50 kHz
excitatory input with 0 Hz inhibitory input and uses Vje.x as the control variable.
The second bisection tunes the refractory period by setting the corresponding bias
current i_refr to achieve 100 kHz output rate at 100 kHz excitatory input and
again without inhibitory input. Finally, the inhibitory synaptic time constant is
tuned with the corresponding bias current to such that 50 kHz output rate result
from 100 kHz excitatory input and 100 kHz inhibitory input.

The result of this calibration scheme is depicted for eight CPU1 neurons in
figures 5.9 and 5.10.

The target response that is used to derive the deviation in figure 5.10 is naively
expected to be

Tout = Texc * (]- —C- lin ) (516)

Tmax

¢ = 0.5 is set such that the 50 % output rate is achieve when both inputs fire at
100 %. Note that equation (5.16) does not represent a sigmoidal transfer function
as equation (5.1) suggests. Instead, the output rate increases linearly with ey
and decreases linearly with r;,,. However, since the CPU1 neurons’ output activity
only affects the insect’s behavior in terms of the difference between the summed
activities of the left and right subpopulation, this has no effect on the network
function. Moreover, the output response is most crucial at the operating point of
the neurons, that is in the middle of the output range. Here, the desired behavior is
achieved as the corresponding activities of the individual neurons are well aligned at
the correct voltage.
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Figure 5.9: Output response of the calibrated CPU1 neurons with respect to
excitatory and inhibitory input rates. The dashed line indicates the region where
50 % of the maximum output rate is expected.
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Figure 5.10: Deviation of the output responses of the calibrated CPU1 neurons
from an ideal response behavior. The dashed line indicates the region where a 50 %
output rate is expected. pu is the mean deviation from the expected response in kHz
and o the standard deviation of the differences. The deviation pattern is similar for
all eight neurons, such that the inter-neuron deviation is less significant than the
deviation from the target distribution.
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5.5.2 Integrator neurons

The calibration of the CPU4 neurons also starts with a database-based precalibration
that sets the neurons initially to the same parameter set as in section 5.5.1. The
main calibration is divided into two bisections, that again calibrate the response at
the operating point 7oy = 50 % - 7oyt and the maximum rate. However, as mentioned
earlier, the CPU4 neurons function fundamentally different from the other neurons
as their response depends on the axoaxonic synaptic weight rather than on an input
spike rate. Since the hardware synapses on BrainScaleS-2 have discrete weights with
a resolution of six bit, the dynamic range of a single synapse is limited to values
between 0 and 63. As the home vector is basically stored in these synapses, their
dynamic ranges effectively determine the ratio between the accessible spatial range
and the precision of the stored home location. It is therefore vital to extend this
dynamic range if possible.

In order to do so, 16 synapses were joined together into a supersynapse. Technically,
this is achieved by combining 16 synapses per CPU4 neuron vertically in the top 16
rows of the synapse array. These synapses are set to the same address such that
all of them receive static background activity as it is required for the axoaxonic
integrators. The synaptic weights are then filled from the top to the bottom. The
following pseudo code illustrates the procedure.

weight = 543

for row in [0 .. 15]:
if weight > 63:

synapse_weight [row] = 63
weight -= 63

else:
synapse_weight [row] = weight
weight = 0

Thus, the value range per supersynapse is extended to wepys € [0;63 - 16] =
[0; 1008], corresponding to almost 10 bit.

However, by default the global bias current that defines the amplitude of the
synaptic current pulses is tuned for optimal single-synpsase response. Therefore,
the current injected by 1 to 16 synapses simultaneously is too high and enough to
saturate the synaptic input line. The synaptic bias current was therefore reduced to
allow a decent response of the 16 joint synapses.

The background input to the CPU4 supersynapses is a periodic spike train with
static spike rate of 100 kHz. Again, this fixed-rate background is implemented due
to the tight timing demands of the code execution on the BrainScaleS-2 prototype.
Spike sources with Poisson-distributed inter-spike intervals would be favorable
because they would reduce aliasing artifacts, soften discontiuous transistions in
the output response, and be biologically more plausible. However, in simulation it
was found that the overall performance is not dramatically affected by the fixed
rate sources. Moreover, in hardware, jitter and intrinsic analog noise additionally
mitigate possible artifacts to some degree.

The control variables for the two calibration bisections are the source degeneration
bias of the excitatory synaptic input operational transconductance amplifier for
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rout = D0 kHz and again the bias current that determines the refractory period for
the maximum output rate.

While the calibration generally succeeds in producing a sufficiently large set of
close-to-optimal CPU4 neurons, it is not capable of configuring all neurons into
the desired operating mode. This is mostly due to two aspects. First, neither the
synapses nor the synaptic input were designed to operate in the supersynapse regime.
Although the system is perfectly capable of handling the corresponding parameter
settings, it has not been designed for that purpose. Therefore, some of the necessary
parameter settings are close to the edge of the allowed ranges, where nonlinearities
and clipping effects start to occur. Second, the relatively low periodic input spike
rate causes aliasing artifacts that can confuse the calibration routines. As already
mentioned, a Poisson input spike train at a higher rate would virtually remove
these artifacts and allow for a much more stable calibration procedure and output
response. However, the mis-calibrated neurons are eventually separated from the
functioning ones and used as CPU4 cells. Figure 5.11 shows the response curves
of 16 neurons after calibration and indicates which ones are either sorted out or
employed in the network.

The obtained response functions match well in slope and offset and therefore
suited for implementing the memory mechanism. It is important to note that the
experiment starts with all CPU4 weights set to 504. If the network is configured
correctly, it will steer the virtual insect such that the activity pattern among CPU4
equalizes and this initial weight configuration is approximately restored. It is
therefore important that the neuron activities match well around this operating
range but it is less significant if they deviate a at the edges. Moreover, a steep
slope around wcpys =~ 500 is therefore also beneficial as it amplifies the network
response with respect to changes in the synaptic weights that reliably store the
homing information. The calibrated neurons fulfill these criteria superbly.
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5.5 Insects on BrainScaleS-2

5.5.3 CPU4 weight access

Since the CPU4 weights have to be accessed frequently to implement the axoaxonic
modulations in parallel to the continuously running hardware neurons, the corre-
sponding software routines on the PPU have to be as efficient as possible. Therefore,
the supersynapse access functions make excessive use of the assembly instructions of
the PPU’s vector unit. As it would shift the focus too far from the actual substance
of this chapter, the read and write routines are not given below but are attached
as commented code snippets in the appendix. The read function can be found in
appendix B.1 and the write function in appendix B.2.

One aspect that is important to mention here, however, is that the vector unit
always operates on slices of 16 columns at once. Therefore, the optimized read and
write functions affect all synapses of the first 16 neurons, irrespective of whether
some of these neurons are actually used as CPU4 integrators or not?. For that
reason, the upper 16 synapse columns for the first 16 neurons are not available for
other purposes.

5.5.4 Reduced network size

Since the resources are limited to maximally 32 available neurons on the BrainScaleS-
2 prototype chip, the original network size from Stone et al. (2017), i.e., 90 neurons,
is too large and therefore had to be scaled down.

As explained in section 5.3.3, the first step to reduce this number is to inject the
compass information directly from TB1, omitting TL and CL1.

Moreover, as the neuromorphic system is not subject to Dale’s law (Strata and
Harvey, 1999), the inverting pontine population can be left out as well, since CPU4
is able to project both excitatory and inhibitory input to CPU1 in an arbitrary
configuration.

Since TN and TBI1 are virtually implemented spike sources, both do not require
physical neurons to exist. Consequently, 32 neurons remain, which just fit into the
BrainScaleS-2 prototype.

However, during the experiment preparations hardware-independent software
simulations of the network have been carried out as well. In the course of this, it
turned out that the number of angular cells per population does not have to be
constrained to exactly eight. In fact, the network remained fully functional with
only three neurons per subpopulation. For that reason, it was decided to cut down
the angular resolution from eight to four, thus, reducing the number of neurons
further down to only 16 cells, i.e., eight for the CPU4 integrators and eight for
the CPU1 steering cells, divided into two hemispherical subpopulations, each. The
remaining 16 neurons are employed for two other purposes.

First, four neurons mirror the TB1 sources, allowing the associated spikes to be
recorded on the FPGA memory on the BrainScaleS-2 test setup.

2This a particular circumstance on the 24 generation prototype, where not all vector instructions
supported masking yet. On later chip versions, there is an option to apply vector operations
only to a masked subset of entries within one slice.
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Second, instead of summing over the two CPU1 subpopulations, two motor (M)
neurons collect the CPU1 spike output from each hemisphere. Their calibration is
equivalent to the CPUT1 calibration, only that the synaptic input weight is reduced
because it receives signals from four instead of one excitatory presynaptic partners.

Thus, 18 neurons implement the entire network, and 4 further neurons monitor
the TB1 activities.

5.5.5 Sensor inputs

Adapted to only four instead of eight angular neurons, the sensor response of the
four TB1 neurons can be obtained in analogy to equation (5.11) as

rTB1; = TH;X : {1 + sin <¢ + ‘727T>} . (5.17)

This causes the virtual TB1 neurons to encode the head direction as an activity
distribution over the four cells.
The odomotric TN input is derived in analogy to equation (5.10) as

sin(or) F p- 6 (5.18)

TTN,L/R = T'max * <

max

with ¢ry = m/2 and p = 0.614. Setting ¢y = 7/2 eliminates the second factor in

the first term. In the non-holonomic case, choosing this arbitrarily is allowed since

it only corresponds to a linear scaling of the velocity contribution. Furthermore,
“— = (.5 as the velocity remains constant over the entire experimental run.

VUmax
5.5.6 Motor output
The steering signal is derived from the activities of the two motor neurons as

A¢p = AO =

. (TM,L_TM,R) (519)
with p = 0.982. The velocity is again set to a constant value.

The author would like to add that both p from equation (5.18) and p from
equation (5.19) are actually represented as integer numbers in the PPU code (200
and 160, respectively). The reason for their fractional appearance here is that all
angles on the hardware are not represented in radians but run from 0 to 1023. The
conversion to radians is responsible for these inconveniences.

A summary of the entire implemented network is given in figure 5.12.

5.5.7 Experiment execution and scheduling

Each experimental run starts with transferring a set of parameters from the host
computer to the BrainScaleS-2 system. This includes a random seed for the outbound
journey, the experiment run time %y,p, the time at which the agent is to return
treturn, the CPU4 decay k, the CPU4 update scaling h, and the synaptic weights.
Subsequently, the code execution is started on the PPU.
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5.5 Insects on BrainScaleS-2

Figure 5.12: Network architecture of the BrainScaleS-2 implementation. The black
and blue arrows correspond to excitatory and inhibitory connections, respectively.
The first layer (TN and TB1) represents the sensor cells and is fully virtual. The
CPU1 and CPU4 populations are divided into a left and right subpopulation,
respectively.
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5 Accelerated insects

During runtime, the PPU executes the simulation and implements all sensory
input spike sources. One agent/environment update is conducted every At = 100 ps,
which corresponds to a frame rate of 10 Hz in biological time. To achieve the
maximum spike rate of 100 kHz, the spike sources have to be able to send a spike
every 10ps. As the code execution time for one full agent/environment update
exceeds the time between two consecutive spikes, it is divided into three subcycles
that are called in between individual spike sending routines:

1. Iterate the insect state and transmit the sensory input to the TN and TB1
spike generators.

2. Read the CPU4 weights and calculate their updates.

3. Update the CPU4 weights, process the motor neuron output and update the
agent velocity accordingly. Also update the simulation state, and store the
trajectory data.

From the experiment start until ¢ = t,cturn = 50 ms, the virtual insect is forced on
a random walk. This happens by overriding the motor neuron outputs by artificially
generated pseudo-random signals. During this phase, the network does not influence
the insect’s motion but is provided with motion-derived sensory input. The velocity
is set to the same value as in the brain driven mode and the steering signals are
scaled to produce similar turning radii. At ¢ = t.ctum, the agent switches from
random to network-driven movement. Translated to biological time, the insect
therefore spreads out for 50s and has then 150s to return to its nest. Finally, the
simulation stops at ¢ = tsop = 200ms. At this point, the trajectory data and spikes
are read back from the host computer.

The BrainScaleS-2 prototype chip can record all post-synaptic spikes using the
connected FPGA, while the available on-chip memory for arbitrary data storage is
limited to 4kB. The latter is used for saving the trajectory from which the velocity
and the optical flow can be reconstructed. Both the x and y coordinates are 16 bit
signed integer values. Therefore, a total of 1000 locations can be stored. With
n = tsop/At = 200ms/100 ps = 2000 time steps in one run, every second step is
written to memory. Figure 5.13 gives an overview of the scheduling.

5.6 Execution and parameter sweeps

Figure 5.14 shows the network activity of an entire experimental run together with
the trajectory. The progress is indicated at four different times. Before t,tym, the
insect performs a forced random walk while the home vector is stored in the left and
right CPU4 populations. While the activity is approximately equal among these
neurons at t = 0, it diversifies until the furthest distance from the home location is
reached. The amplitude of this activity differentiation encodes the distance while
the direction is encoded in the population.

After t,etum, the motor neurons take over the agent movement and steer the insect
back home, equilibrating the CPU4 spike pattern again. At ¢ ~ 100 ms homing is
completed and the insect starts looping around the home location.
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Figure 5.13: Experiment schedule. A) The experiment starts with a setup phase
in which the parameters are transferred to the BrainScaleS-2 prototype and the
synaptic weights are initialized. The actual experiment, starting with a spread out
phase follows. After the full experiment, data is read back from the system memory
to the host. The time required for readback varies, as it depends on the amount of
spikes produced in an experiment. B) Zoom into the point of return. Each block
symbolizes an agent/environment update, the blue color indicates the return phase.
C) Zoom into one update. The black bars mark the times at which the spike sending
routine is called. The three update phases are represented by the white blocks 1,
2, and 3. Position recording happens only in every second update cycle in block s.
Note that the variable time of the update phase executions can introduce a jitter in
the following spike.

5.6.1 Parameter sweep

The influence if the parameters h and k from equation (5.15) on the dynamical
behavior of integrating synapses is illustrated in figures 5.15 and 5.16.

The scaling value h determines the sensitivity of the integrator. If it is set too
low, then the precision of the memorized home location decreases because every
step causes only a small increment. This effect is visible in the lower left plot of
figure 5.15 that shows the standard deviation o of the trajectory during the looping
phase. ¢ increases by tendency as h decreases. On the other hand, increasing h
also increases the precision of the home location but also the risk, that the synaptic
weights clip, which then distorts stored home location. This effect can be seen in the
lower right plots of figure 5.15 that illustrates the standard deviation of memorized
home locations, i.e., the geometric looping centers. At h = 0.034 to h = 0.040, this
standard deviation more than doubles. For values below h = 0.040, no obvious trend
can be recognized except for an optimum at A = 0.034.

The parameter k acts as a damping constant that regulates the overall activity of
the CPU4 cells over time. Its increase or decrease is directly related to an increase
or decrease in CPU4 activity over time (top left plot in figure 5.15). Moreover, if
the damping constant is too high, it causes the integrators to forget the stored home
location before reaching it (lower left plot in figure 5.15).

One more non-obvious effect becomes visible in the top right plot of figure 5.15.
If k is set too low, the lateral CPU4 activities diverge. That is, one hemisphere
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Figure 5.14: Network activity and trajectory. The spike rate is measured as the
output spike count of a neuron within 100 ps intervals. This activity is color-coded
over time. The maximum count is around 10, which corresponds to an instantaneous
spike rate of 100kHz. The top left plot shows the full trajectory consisting of
spread-out (black) and return phase (gray). The top right plot zooms into the
home area where the insects loops after returning. Four selected points in time are
highlighted by the blue lines: the moment of return, shortly before reaching the
home location, and two moments during the looping phase.
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Figure 5.15: Effect of h and k (see equation (5.15)) on the network performance.
Each data point reflects the statistic over 100 independent experimental runs for
the respective parameter set. The top left plots shows the change in CPU4 activity
relative to the spread-out phase (¢ < teturm) in percent. The plot CPU4 asymmetry
depicts the difference in the left and right CPU4 activities relative the mean activity.
o of loops illustrates the mean standard deviation of the trajectories during ¢t >
2 - tyeturn, that is, during the looping phase. This measures how tight the individual
looping radii are. Finally, o of looping centers measures the standard deviation of
the geometric centers of the individual trajectories during looping. This indicates,
if the insect repeatedely returns to the same place over several iterations, or if it
scatters.
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Figure 5.16: Effect of h and k (see equation (5.15)) on the network performance.
Each square measures 12000 x 12000 and contains a histogram over the looping
phase (t > 2 - tepum) of 100 individual trajectories. The color encoding qualitatively

represents the number of samples in each bin and goes from bright to dark.
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becomes much more active than the other, causing the insect to rotate in tight
circles rather than looping around in alternating left and right curves. The effect is
self amplifying since the spontaneous rotation causes stronger TN input on the same
CPU4 hemisphere that causes the looping. Thus, positive feedback is transferred
from the integrators via the motor units and the odometer back to the integrators.

Figure 5.16 shows the same parameter sweep in a qualitative way to convey
a little more intuition for the actual behavior of the path integrator. Moreover,
appendix A.1 contains trajectory and activity plots of a few stereotypical cases.

The lowest standard deviation among the looping centers is in average achieved
for h = 0.034. Given this constraint and considering all aspects of figure 5.15, the
optimal values for k lie within -2 and 2. Since an increase in activity and asymmetry
in the CPU4 cells is to be avoided, the parameter set h = 0.034 and k = 2 is selected
for the next experiment.

5.7 Evolutionary optimization

To mitigate fixed-pattern noise effects and further optimize network performance,
an evolution strategy with covariance matrix adaptation (Hansen and Ostermeier,
1996) is employed. The optimization parameters are the 26 synaptic weights w that
project to the CPU1 population: TB1 — CPU1, CPU4 — CPU1 (inhibitory and
excitatory), and CPU1 — M. To optimize for tight looping around the home position,
the fitness f; of an individual 7 is derived from its trajectory x;(t) y during
looping:

t:[Q‘treturn 7tstop

i == (It + V(i — (@),

i 20

The first term is the time-averaged radial distance to the home location and the
second term the time-averaged looping diameter. This sum is then additionally
averaged over three runs with different outbound trajectories.

Instead of selecting a fixed number of best individuals of each generation, as
in in the PlayPen experiment in section 4.8, the new mean parameter vector for
the offspring population is derived from a weighted sum over the parameters of all
individuals:

w= Zpi'wi (5.21)

p; is obtained as

_ Di
> D

Di W (5.22)

The power of eight overproportionally increases the fitness of successful individuals,
while decreasing that of weak individuals. If the success of individuals is diverse,
it exerts a strong evolutionary pressure. On the other hand, if the individuals are
equally successful, the evolutionary pressure is released. Note that p; is positive due

147



5 Accelerated insects

s/ fhy 0x/0y
primeval -313/-774  1419/1398
optimized -75/150  1125/1066
improvement -76%/-81% -21%/-24%

Table 5.1: Mean displacement and standard deviation before and after evolutionary
optimization.

to the even exponential index. Moreover, small absolute values of f; translate to a
high p; and vice versa.

The new population consists of 15 weight vectors drawn from a multivariate
Gaussian distribution:

w; ~N(p,o-X) (5.23)

Here, 0 = 0.3 is a heuristically chosen step size and X is a covariance matrix derived
from the previous generation

with d; = w; — p. Like in section 4.8, the variance is increased into the direction of
successful mutations. Typically, the optimization converges after approximately 200
generations.

To evaluate the robustness and performance of the network before and after the
optimization, 1000 experiments were conducted for each case. The histogram over
the return trajectories after t = 2 - t,otum is shown in figure 5.17. The shape of this
distribution reflects the average center and spread of the trajectories in the looping
period. With the default weight settings, the network is already able to return home
with sufficient accuracy, as the looping area overlaps the home location.

After evolutionary optimization, however, the center of looping is more aligned
with the actual home location (0, 0) and the looping has a reduced spread and is
therefore more precise. The results are summarized in table 5.1. The experiment
shows that hardware fixed-pattern noise and inaccuracies can be compensated for
by a weight-based optimization. Moreover, the entire evolution took 96 minutes. If
it were to be carried out in the same manner in real-time without the acceleration
factor, it would take more than two months instead.

5.8 Discussion and outlook

The presented experiments demonstrate a biologically constrained fully functional
neuromorphic path integration agent. The agent’s body and the environment are
simulated on the digital on-chip coprocessor of BrainScaleS-2. The neural network
is physically emulated on the same chip’s analog neuromorphic core with digitally
emulated sensoric inputs and motoric outputs attached to it via mixed-signal circuits.
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Figure 5.17: Statistical performance and evolutionary optimization. Three sample
trajectories generated by the primeval (left) and the evolved network (right). Below
are two 6000 x 6000 zooms into the center region that show the histograms over the
data points of the looping phase of 1000 trajectories before and after optimization.
The primeval network’s center of looping is shifted to the lower left with a broad
and elliptically deformed looping area. The evolved network on the other hand,
is more centered and has a tighter and roundly shaped looping behavior. The
lower left plot shows the population fitness (gray) and the fitness of the best three
individuals (blue). For each, the faint line is the actual and the strong line the
moving-average-filtered fitness for better visibility. The optimization converges after
~ 200 steps.
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In contrast to previous experiments that only incorporated subcomponents of neural
network models of insectoid or mammalian path integration into neuromorphic
applications (Massoud and Horiuchi, 2010; Kreiser et al., 2018b,a, 2019b, 2020), the
presented agent within its environment is realized on a stand-alone mixed-signal
neuromorphic system.

The network is small enough to form a versatile building block for future insect-
inspired systems that might integrate more and more neural subcomponents towards
a neuromorphic implementation of entire insect nervous systems (Collins, 2019).
The full-scale HICANN-X system, offers per-neuron random number generators to
enable independent high-speed Poisson spike sources and a higher PPU clock speed.
This relaxes the timing requirements on the PPU to a significant degree and, thus,
leaves more space for further scheduling and control routines. For example, the
CPU4 integrator populations can be instantiated repeatedly to allow for storing
multiple locations at once. A hyper control routine (neural or digital) could then
sequence the various target locations, mimicking bee’s flower searching behavior.

Moreover, nothing prevents the setup from being connected to a physical robotic
agent, like for example a flying multicopter. The reduced speed of such a robot can
always be matched, since the neurons can operate in the rate limit and since the
CPU4 update routines can be slowed down by an arbitrary factor.
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6 Concluding remarks

"Until we see how many dimensions of behavior even a

one-celled animal has, we won’t be able to fully
understand the behavior of more complicated animals.”
— Richard Feynman, ’Surely You're Joking, Mr.
Feynman!’, 1997

The thesis started with some considerations about the relation between intelligence
and interaction. It was concluded that the former without the latter typically implies
purely symbolic intelligence, while the unity of both should naturally flow into an
intelligence of action. The text continued with an argument for the exploration of
small brains. This proposal was motivated primarily by the fact that the most signif-
icant findings in simulation neuroscience had recently been derived from simulations
of small rather than large brains. Furthermore, by the paradoxical situation that
even though small brains are still far from being well understood, research on the
human brain is being conducted with much more momentum.

After a brief introduction to biology and neuromorphic systems, chapter 3 outlined
the evolution and working principles of the hybrid BrainScaleS-2 system. The
prototype as well as the full-scale chip versions and their test setups were introduced.
One component, the CADC, was discussed in greater detail. Some accompanying
experimental results then clarified the application areas and diversity of this parallel
sensory component.

To address the desire for cybernetic interaction between an accelerated neuromor-
phic agent and mechanical reality, the next chapter 4 described the construction
and functionality of an accelerated biomimetic robot. A prototype as well as an
optimized final version were described and evaluated based on several experiments.
Preliminary considerations already revealed that the realization of the concept would
be at the limit of what is feasible. Experimentally this assumption was confirmed
in that the robot is not yet able to reproduce the agility of small limbs but in any
case that of typical agent trajectories. A demonstration of its speed advantages was
provided in the form of an evolutionary optimization that consumed 2.5 hours in
total. Had the process been executed in real-time, it would have taken three months
instead. Since the platform is versatile, extensible, robust, and well documented, it
is readily available for a wide range of future accelerated neuromorphic experiments.

The last chapter 5 dealt with functional aspects of insect brains with special
reference to the central complex, a neural compound strongly related to spatial
navigation. A functional model extracted from this brain area was modified to meet
the requirements of BrainScaleS-2 and implemented successfully. The cybernetic
insect reliably finds its way home with only 17 neurons. Again, it was shown how a
genetic optimization of the network could be achieved within 1.5 hours instead of

151



6 Concluding remarks

two months as it would have taken in biological real-time.

Very recently it has been remarked by Zhao et al. (2020) that "fully artificial agents'
are yet missing in the context of neuromorphic hardware and that especially the
development of "control and actuation [is] still lagging behind". Both aspects were
addressed in this thesis and it may be justifiable that at least the lack of fully
artificial agents was disproved. On the one hand, such an agent in terms of the
neuromorphic bee has been introduced in chapter 5. On the other hand, chapter 4
contains the description of a fully neuromorphic robot that embodies a complete
biomimetic cybernetic system comprising the control, actuation, feedback, and
sensor components.

The second aspect, i.e. control and actuation, is certainly not mature yet but
was also incorporated in both experiments. Moreover, everything satisfied the
demands of an accelerated setup, which imposes far greater challenges than a system
operating in biological real-time (see chapter 4). This difficulty has recently been
made explicit by Yan et al. (2020), who questioned whether BrainScaleS-2 is at all
capable of using "the neural activity of each time step [..] for the weight update[s]".
Its capability to do so could be affirmed in chapter 5, as the accelerated insects rely
on weight updates, which must be executed at a rate of no less than 10kHz (10 Hz
in biology) to reliably track their positions. Besides, the update of the actuators,
which results from the spike count of the motor neurons, is also carried out at this
rate. BrainScaleS-2 is therefore doubtlessly capable of processing and performing
weight updates at timescales of merely a few inter-spike intervals.

Yan et al. (2020) also noted that it remains unclear so far how "a neural network
running in accelerated time" can be interfaced with "robotic applications which
require real time response". More clarity in this regard has been gained through the
physically manifested accelerated robot described in chapter 4. This chapter also
contains further descriptions of how the presented simple setup can potentially be
extended to comprise more capable sets of both sensors and actuators. It was also
noted there that unlike higher speeds, lower speeds are always accessible to spiking
neuromorphic substrates when operating in the rate limit. Real-time responses can
therefore straight-forwardly be achieved by accelerated hardware.

From a biomimetic point of view, continuously operating neuromorphic substrates
integrate much more naturally into biologically derived cybernetic situations than
discretely operating systems do. Although this is the case, the networks are much
more often adapted to the working conditions of the latter, than the working
conditions are adapted to the intrinsics of the neural networks. At present, this
seems to be driven by the tremendous recent successes in machine learning which
often involve batch-like evaluations of massive data sets. While until a few years ago
spiking neural networks were predominantly simulated or emulated to increase the
understanding of animal nervous systems, they are currently often forced to comply
with the principles of machine learning. To achieve more competitive classification
results, they are being exposed to monstrous series of artificial images. Most animals,

152



including the author, would perceive this as torture of the most terrible kind.

The author, therefore, expresses his sincere hope that this trend will flow back into
a more biological direction at some point in the near future and that neuromorphic
organisms will be guided into more natural habitats. Small artificial brains with less
than a thousand neurons could first be (re)naturalized to eventually set the process
in motion. Maybe this thesis can contribute a little piece to this.
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A Additional figures

A.1 Insect trajectories
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Figure A.1: Network activity and trajectory for h = 0.050 and k£ = —6. See the
description of figure 5.14 for a detailed description.
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Figure A.2: Network activity and trajectory for h = 0.022 and k£ = —6. See the
description of figure 5.14 for a detailed description.
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Figure A.3: Network activity and trajectory for h = 0.022 and k£ = 0. See the
description of figure 5.14 for a detailed description.
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Figure A.4: Network activity and trajectory for h = 0.034 and k = 2. See the
description of figure 5.14 for a detailed description.
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Figure A.5: Network activity and trajectory for h = 0.050 and k = 6. See the
description of figure 5.14 for a detailed description.
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Figure A.6: Network activity and trajectory for h = 0.022 and k = 6. See the
description of figure 5.14 for a detailed description.
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B Code snippets

B.1 CPU4 read access

The supersynaptic weights are read out with the following ‘C++* routine.

void InsectBrain::readCPU4Weights(void)

{
register vector uint8_t tmp;
register vector uint8_t tmp2;
register vector uint8_t read_weights;

vector uint8_t accumulator_msb;
vector uint8_t accumulator_lsb;
vector uint8_t zeros;

for(uint8_t i = 0; i < 16; i++) zeros[i] = 0;

// Set accumulator to O
asm volatile (
// Set accumulator to O.
// Load zeros to tmp:
"fxvlax %[tmpl, 0, %[zeros]\n"
// Move content of tmp to accumulator, aligned to the right:
"fxvmtacb % [tmp]\n"
"sync\n"
(tmp] "=&kv" (tmp)
[zeros] "r" (&zeros)

)

// Accumulate weights additively
for(uint8_t row = 0; row < INSECT_CPU4_SYNAPSE_DEPTH; row++){
uint8_t idx = 2*row;
asm volatile (
// Read synaptic weights
// Load weight slice to read_weights:
"fxvinx % [read_weights], %[dls_weight_base], %[idx]\n"
// Add weights to double precision accumulator in a saturating manner:
"fxvaddactacbm %[read_weights]\n"
"sync\n"
[read_weights] "=&kv" (read_weights)
[d1s_weight_base] "b" (dls_weight_base),
[idx] "r" (idx)
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// Save most significant bytes
asm volatile (
// Load zeros to tmp:
"fxvlax %[tmpl, 0, %[zeros]\n"
// Add zeros to ACC and store in tmp2
"fxvaddacbfs %[tmp2], % [tmp]l\n"
// Store contents of tmp2 to address starting at msb_addr
"fxvstax %[tmp2], O, %[msb_addr]\n"
"sync\n"
[tmp] "=&kv" (tmp),
[tmp2] "=&kv" (tmp2)
[zeros] "r" (&zeros),
[msb_addr] "r" (&accumulator_msb)

)

// Save least significant bytes
asm volatile (
// Add accumulator byte modulo only to get the accumulator LSB.
// Load zeros to tmp:
"fxvlax %[tmpl, 0, %[zeros]\n"
// Add contents of tmp to ACC and write truncated result to tmp
"fxvaddacbm %[tmp2], %[tmp]\n"
// Store contents of tmp to address starting at msb_addr
"fxvstax %[tmp2], O, %[lsb_addr]\n"
"sync\n"
[tmp] "=&kv" (tmp),
[tmp2] "=&kv" (tmp2)
[zeros] "r" (&zeros),
[1sb_addr] "r" (&accumulator_lsb)

)

// Write weights to the globally accessible memory locations

for(uint8_t col = 0; col < 2*xINSECT_BRAIN_ANGULAR_RESOLUTION; col++) {
weights[col] = accumulator_lsb[INSECT_BRAIN_CPU4_NEURON_IDX[coll];
weights[col]l |= (accumulator_msb[INSECT_BRAIN_CPU4_NEURON_IDX[col]l] << 8);
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B.2 CPU4 write access

The supersynaptic weights are written with the following ‘C+-+¢ routine.

{

void InsectBrain::writeCPU4Weights(void)

vector uint8_t zeros = vec_splat_u8(0);
vector uint8_t ones = vec_splat_u8(1);

vector uint8_t sixtythree = vec_splat_u8(63);
volatile vector uint8_t weights_to_fill;
volatile vector uint8_t weights_residue;

// This loop takes ~2.2us
for (uint8_t i = 0; i < 2*INSECT_BRAIN_ANGULAR_RESOLUTION; i++) {

}

uint8_t to_fill = weights[i]/63;
weights_to_fill [INSECT_BRAIN_CPU4_NEURON_IDX[i]]
weights_residue [INSECT_BRAIN_CPU4_NEURON_IDX[i]]

// Conditions:

// 0: always

// 1: greater then
// 2: less then

// 3: equals

for(uint8_t row =
uint8_t idx = 2*row;
// clang-format off
asm volatile (

// Load weights_to_fill to tmpl:

// "fxvlax %[tmpl]l, O, %[fill_addr]\n"
"fxvlax 1, 0, %[fill_addr]\n"

// Splatter idx to tmp2

// "fxvsplatb %[tmp2], % [row]\n"
"fxvsplatb 2, %[row]l\n"

to_fill;
weights[i] - 63%to_£fill;

0; row < INSECT_CPU4_SYNAPSE_DEPTH; row++){

// Subtract idx from weights_to_fill and store the difference in tmpl

// "fxvsubbm %[tmpl]l, %[tmp1l, %[tmp2]\n"
"fxvsubbm 1, 1, 2\n"

// Compare this difference to O:

// "fxvcmpb %[tmpl]l\n"

"fxvcmpb 1\n"

// Select either 63 or O to write to synapse
// If difference > 0: write 63, else write O

// "fxvsel %[tmp2], %[zeros], Y%[sixtythree], 1\n"

"fxvsel 2, Y%[zeros], Y[sixtythree], 1\n"

// Load residues to tmp3

// "fxvlax %[tmp3], O, %[residue_addr]\n"
"fxvlax 3, 0, %[residue_addr]\n"

// Add 1 to the difference and compare again:
// "fxvcmpb %[tmpl]l\n"

"fxvcmpb 1\n"

// Select residue, if the index is correct
// "fxvsel %[tmp2], %[tmp2], %[tmp3], 3\n"
"fxvsel 2, 2, 3, 3\n"
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// Write the weights
// "fxvoutx %[tmp2], %[dls_weight_base], %[idx]\n"
"fxvoutx 2, %[dls_weight_basel, %[idx]\n"

// [tmpl] "=&kv" (tmpl),

// [tmp2] "=&kv" (tmp2),

// [tmp3] "=&kv" (tmp3)

: [£fill_addr] "r" (&weights_to_£fill),
[residue_addr] "r" (&weights_residue),
[sixtythree] "kv" (sixtythree),
[zeros] "kv" (zeros),

[ones] "kv" (ones),

[d1s_weight_base] "b" (dls_weight_base),
[idx] "r" (idx),

[row] "r" (row)

)

// clang-format on

196



197



C Schematics

C Schematics

C.1 Baseboard for the 3" generation
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C.4 PlayPen-1: core module

C.4 PlayPen-1: core module
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C.5 PlayPen-1: signal processing module

C.5 PlayPen-1: signal processing module
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C Schematics
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C.6 PlayPen-1: sensor head

C.6 PlayPen-1: sensor head

Filter Supply Noise!

veo -
cC-27. 110V V_LOG1 outputs -0.25V/0V to 1.5V.

AP 084D s he posive input o an
o ol independent GPAMP, SCALE i s
g nput and LOGVZ fs
oup
£0GV - (1+R2/R3LOGY1
E VIOV < LOGV2 < 6V
c| [ our C|
REFIOUT
soue
ReIN
i
ReFvouT
cuour
RersET 5
L woevt +¥3
o g 7
N2
Mo 5 % oso -
WARE] ] ElS
a
o @ an an an
D| cs G D
In single-supply operation
e gn ISR Tien :

E E
K. Schreiber
sense_head-v1
20/07/2020 16:03
Sheet: 11

il 2 3 4 5 6 7 [ 8

213



C Schematics
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C.7 PlayPen-2
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C.8 PlayPen-2: rotary sensor
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C.9 PlayPen-2: sensor head

C.9 PlayPen-2: sensor head
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