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Abstract (English)

Digital imaging plays an increasingly important role in clinical practice. With the

number of images that are routinely acquired on the rise, the number of experts devoted

to analyzing them is by far not increasing as rapidly. This alarming disparity calls for

automated image analysis methods to ease the burden on the experts and prevent

a degradation of the quality of care. Semantic segmentation plays a central role in

extracting clinically relevant information from images, either all by themselves or as

part of more elaborate pipelines, and constitutes one of the most active fields of research

in medical image analysis. Thereby, the diversity of datasets is mirrored by an equally

diverse number of segmentation methods, each being optimized for the datasets they

are addressing. The resulting diversity of methods does not come without downsides:

The specialized nature of these segmentation methods causes a dataset dependency

which makes them unable to be transferred to other segmentation problems. Not only

does this result in issues with out-of-the-box applicability, but it also adversely affects

future method development: Improvements over baselines that are demonstrated on

one dataset rarely transfer to another, testifying a lack of reproducibility and causing

a frustrating literature landscape in which it is difficult to discern veritable and long

lasting methodological advances from noise.

We study three different segmentation tasks in depth with the goal of understanding

what makes a good segmentation model and which of the recently proposed methods

are truly required to obtain competitive segmentation performance. To this end, we

design state of the art segmentation models for brain tumor segmentation, cardiac

substructure segmentation and kidney and kidney tumor segmentation. Each of our

methods is evaluated in the context of international competitions, ensuring objective

performance comparison with other methods. We obtained the third place in BraTS

2017, the second place in BraTS 2018, the first place in ACDC and the first place in

the highly competitive KiTS challenge. Our analysis of the four segmentation meth-

ods reveals that competitive segmentation performance for all of these tasks can be

achieved with a standard, but well-tuned U-Net architecture, which is surprising given

the recent focus in the literature on finding better network architectures. Furthermore,
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we identify certain similarities between our segmentation pipelines and notice that their

dissimilarities merely reflect well-structured adaptations in response to certain dataset

properties. This leads to the hypothesis that we can identify a direct relation between

the properties of a dataset and the design choices that lead to a good segmentation

model for it.

Based on this hypothesis we develop nnU-Net, the first method that breaks the dataset

dependency of traditional segmentation methods. Traditional segmentation methods

must be developed by experts, going through an iterative trial-and-error process until

they have identified a good segmentation pipeline for a given dataset. This process

ultimately results in a fixed pipeline configuration which may be incompatible with

other datasets, requiring extensive re-optimization. In contrast, nnU-Net makes use of

a generalizing method template that is dynamically and automatically adapted to each

dataset it is applied to. This is achieved by condensing domain knowledge about the

design of segmentation methods into inductive biases. Specifically, we identify certain

pipeline hyperparameters that do not need to be adapted and for which a good default

value can be set for all datasets (called blueprint parameters). They are complemented

with a comprehensible set of heuristic rules, which explicitly encode how the segmenta-

tion pipeline and the network architecture that is used along with it must be adapted

for each dataset (inferred parameters). Finally, a limited number of design choices is

determined through empirical evaluation (empirical parameters). Following the anal-

ysis of our previously designed specialized pipelines, the basic network architecture

type used is the standard U-Net, coining the name of our method: nnU-Net (”No New

Net”). We apply nnU-Net to 19 diverse datasets originating from segmentation compe-

titions in the biomedical domain. Despite being applied without manual intervention,

nnU-Net sets a new state of the art in 29 out of the 49 different segmentation tasks

encountered in these datasets. This is remarkable considering that nnU-Net competed

against specialized manually tuned algorithms on each of them. nnU-Net is the first

out-of-the-box tool that makes state of the art semantic segmentation methods acces-

sible to non-experts. As a framework, it catalyzes future method development: new

design concepts can be implemented into nnU-Net and leverage its dynamic nature to

be evaluated across a wide variety of datasets without the need for manual re-tuning.

In conclusion, the thesis presented here exposed critical weaknesses in the current way

of segmentation method development. The dataset dependency of segmentation meth-

ods impedes scientific progress by confining researchers to a subset of datasets available

in the domain, causing noisy evaluation and in turn a literature landscape in which

results are difficult to reproduce and true methodological advances are difficult to dis-

cern. Additionally, non-experts were barred access to state of the art segmentation

for their custom datasets because method development is a time consuming trial-and-
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error process that needs expertise to be done correctly. We propose to address this

situation with nnU-Net, a segmentation method that automatically and dynamically

adapts itself to arbitrary datasets, not only making out-of-the-box segmentation avail-

able for everyone but also enabling more robust decision making in the development

of segmentation methods by enabling easy and convenient evaluation across multiple

datasets.
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Abstract (German)

Die digitale Bildgebung spielt in der klinischen Praxis eine immer wichtigere Rolle.

Obwohl die Zahl der routinemäßig aufgenommenen Bilder stetig zunimmt, steigt die

Zahl der für die Bildanalyse zuständigen Experten bei weitem nicht so schnell an. Diese

alarmierende Ungleichheit erfordert automatisierte Bildanalysemethoden, um die Ex-

perten zu entlasten und eine Verschlechterung der Versorgungsqualität zu verhindern.

Semantische Segmentierung spielt eine zentrale Rolle bei der Extraktion klinisch rele-

vanter Informationen aus Bildern, entweder isoliert betrachtet oder als Teil komplexerer

Pipelines, und stellt eines der aktivsten Forschungsfelder der medizinischen Bildana-

lyse dar. Dabei spiegelt sich die Vielfalt der Datensätze in einer ebenso vielfältigen

Anzahl von Segmentierungsmethoden wider, die jeweils für die von ihnen adressierten

Datensätze optimiert sind. Die daraus resultierende Methodenvielfalt ist nicht ohne

Nachteile: Die Spezialisierung dieser Methoden führt zu einer Datensatzabhängigkeit,

die es unmöglich macht, sie ohne weitere Optimierung auf andere Segmentierungs-

probleme zu übertragen. Dies führt nicht nur zu Problemen bei der Anwendbarkeit,

sondern wirkt sich auch nachteilig auf die zukünftige Methodenentwicklung aus: Ver-

besserungen gegenüber Baselines, die an einem Datensatz demonstriert werden, lassen

sich nur selten auf einen anderen übertragen, was zu einer mangelnden Reproduzier-

barkeit und damit zu einer frustrierenden Literaturlandschaft führt, in der es schwierig

ist, fundamentale und zukunftsweisende methodische Fortschritte vom Rauschen zu

unterscheiden.

Wir untersuchen drei verschiedene Segmentierungsprobleme mit dem Ziel zu verste-

hen, was ein gutes Segmentierungsmodell tatsächlich ausmacht und welche der kürzlich

vorgeschlagenen Methoden wirklich erforderlich sind, um eine kompetitive Segmen-

tierungsgenauigkeit zu erzielen. Zu diesem Zweck entwerfen wir state-of-the-art Seg-

mentierungsmodelle für die Segmentierung von Hirntumoren, kardialen Substrukturen

sowie Nieren und Nierentumoren. Um einen objektiven Leistungsvergleich mit ande-

ren Methoden zu gewährleisten wird jede unserer Methoden im Rahmen internationaler

Wettbewerbe bewertet. Hierbei haben wir den dritten Platz in BraTS 2017, den zweiten

Platz in BraTS 2018, den ersten Platz in ACDC und den ersten Platz im hochkompe-
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titiven KiTS Wettbewerb erhalten. Unsere Analyse der vier Segmentierungsmethoden

zeigt, dass eine kompetitive Segmentierungsqualität für all diese Aufgaben mit einer

standardmäßigen, aber gut eingestellten U-Net Architektur erzielt werden kann, was

angesichts des jüngsten Fokus in der Literatur auf der Suche nach besseren Netzwerkar-

chitekturen überraschend scheint. Darüber hinaus stellen wir bestimmte Ähnlichkeiten

zwischen unseren Segmentierungspipelines fest und lernen, dass ihre Unterschiede ledig-

lich gut strukturierte Anpassungen als Reaktion auf bestimmte Datensatzeigenschaf-

ten widerspiegeln. Dies führt zu der Hypothese, dass wir eine direkte Beziehung zwi-

schen den Eigenschaften eines Datensatzes und den Designentscheidungen identifizieren

können, die zu einem guten Segmentierungsmodell für diesen Datensatz führen.

Basierend auf dieser Hypothese entwickeln wir nnU-Net, die erste Methode, die die Da-

tensatzabhängigkeit traditioneller Segmentierungsmethoden überwindet. Traditionelle

Segmentierungsmethoden müssen von Experten entwickelt werden, die einen iterati-

ven Trial-and-Error-Prozess durchlaufen, bis sie eine gute Segmentierungspipeline für

einen bestimmten Datensatz identifiziert haben. Dieser Prozess führt letztendlich zu

einer festen Pipeline-Konfiguration, die möglicherweise mit anderen Datensätzen in-

kompatibel ist und eine umfangreiche Neuoptimierung erfordert. Im Gegensatz dazu

verwendet nnU-Net eine generalisierende Methodenvorlage, die dynamisch und automa-

tisch an jeden neuen Datensatz angepasst wird. Dies wird durch die Kondensation von

Domänenwissen über das Design von Segmentierungsmethoden in Form von indukti-

vem Bias erreicht. Insbesondere identifizieren wir bestimmte Pipeline-Hyperparameter,

die nicht angepasst werden müssen und für die ein guter Standardwert für alle Da-

tensätze eingestellt werden kann (sogenannte Blueprint Parameter). Sie werden durch

einen verständlichen Satz heuristischer Regeln ergänzt, die explizit kodieren, wie die

Segmentierungs-Pipeline und die zugehörige Netzwerkarchitektur abhaengig von den

Datensatzeigenschaften angepasst werden muessen (inferierte Parameter). Schließlich

wird eine begrenzte Anzahl von Designentscheidungen durch empirische Evaluation

bestimmt (Empirische Parameter). Motiviert durch die Analyse unserer zuvor entwor-

fenen spezialisierten Pipelines wird als grundlegender Netzarchitekturtyp das Standard-

U-Net verwendet, das den Namen unserer Methode prägt: nnU-Net (”No New Net”).

Wir wenden nnU-Net auf 19 verschiedene Datensätze an, die aus Segmentierungswett-

bewerben im biomedizinischen Bereich stammen. Obwohl nnU-Net ohne manuellen Ein-

griff angewendet wird, erreicht es bei 29 der 49 verschiedenen Segmentierungsaufgaben,

die in diesen Datensätzen vorkommen, einen neuen Bestwert. Dies ist bemerkenswert,

wenn man bedenkt, dass nnU-Net bei jedem Datensatz gegen spezialisierte, manuell

angepasste Algorithmen konkurriert. nnU-Net ist das erste sofort einsatzbereite Tool,

das modernste semantische Segmentierungsmethoden auch für Laien zugänglich macht.

Als Framework katalysiert es die zukünftige Methodenentwicklung: Neue Designkon-

zepte können in nnU-Net implementiert werden und seine dynamische Charakteristik
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nutzen, um über eine Vielzahl von Datensätzen ausgewertet zu werden, ohne dass eine

manuelle Neuabstimmung erforderlich ist.

Zusammenfassend lässt sich festhalten, dass die hier vorgestellte Dissertation kritische

Schwächen in der derzeitigen Art und Weise der Methodenentwicklung zur Segmentie-

rung verdeutlicht. Die Datensatzabhängigkeit der Segmentierungsmethode behindert

den wissenschaftlichen Fortschritt, indem sie die Forscher auf eine Teilmenge der in der

Domäne verfügbaren Datensätze beschränkt, was zu einer verrauschten Auswertung

und damit zu einer Literaturlandschaft führt, in der die Ergebnisse nur schwer repro-

duzierbar und echte methodische Fortschritte nur schwer zu erkennen sind. Darüber

hinaus wurde Laien der Zugang zu einer Segmentierung nach dem Stand der Tech-

nik für ihre individuellen Datensätze bisher verwehrt, weil die Methodenentwicklung

bisher ein zeitaufwändiger Trial-and-Error-Prozess war, der Fachwissen erforderte, um

korrekt durchgeführt werden zu können. Um dieser Problematik zu begegnen, schlagen

wir nnU-Net vor, eine Segmentierungsmethode, die sich automatisch und dynamisch

an beliebige Datensätze anpasst und nicht nur als Segmentierungsmethode für jeden

verfügbar ist, sondern auch eine robustere Entscheidungsfindung bei der Entwicklung

von neuen Segmentierungsmethoden vereinfacht, indem sie eine einfache und bequeme

Auswertung über mehrere Datensätze hinweg ermöglicht.

xiii





Contents

1. Introduction 1

1.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Related Work 9

2.1. Pre deep learning era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Shape-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2. Atlas-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3. Pixel-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Deep Learning-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1. Image Classification with Convolutional Neural Networks . . . . 12

2.2.2. Fully Convolutional Models (FCN) . . . . . . . . . . . . . . . . . . 15

2.2.3. U-Net based methods . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4. Medical Image Segmentation Beyond the U-Net . . . . . . . . . . 19

2.3. AutoML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4. Competitions in Medical Image Segmentation . . . . . . . . . . . . . . . . 21

2.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3. Manual Design of Segmentation Pipelines 27

3.1. Brain Tumor Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2. Automated Tumor Response Assessment with Artificial Neural

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2.2. Dataset description . . . . . . . . . . . . . . . . . . . . . 31

3.1.2.3. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3. Brain Tumour Segmentation Challenge 2018 . . . . . . . . . . . . 43

3.1.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xv



Contents

3.1.3.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.3.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2. Heart Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.3. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.3.1. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.3.2. Network Architecture . . . . . . . . . . . . . . . . . . . . 56

3.2.3.3. Training procedure . . . . . . . . . . . . . . . . . . . . . . 58

3.2.3.4. Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.4.1. Cross-validation results . . . . . . . . . . . . . . . . . . . 59

3.2.5. Test set results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3. Kidney and Kidney Tumor Segmentation . . . . . . . . . . . . . . . . . . 63

3.3.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3.1. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3.2. Network architecture . . . . . . . . . . . . . . . . . . . . . 66

3.3.3.3. Training procedure . . . . . . . . . . . . . . . . . . . . . . 67

3.3.3.4. Dataset Modifications . . . . . . . . . . . . . . . . . . . . 67

3.3.3.5. Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4. Automatic Design of Segmentation Pipelines 75

4.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1. Dataset fingerprint extraction . . . . . . . . . . . . . . . . . . . . . 80

4.2.2. Blueprint parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.2.1. Architecture template . . . . . . . . . . . . . . . . . . . . 81

4.2.2.2. Training schedule . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2.3. Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.3. Inferred parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.3.1. Intensity Normalization . . . . . . . . . . . . . . . . . . . 85

xvi



Contents

4.2.3.2. Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.3.3. Target spacing . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.3.4. Adaptation of Network topology, patch size, batch size 87

4.2.3.5. Configuration of 3D U-Net cascade . . . . . . . . . . . . 91

4.2.4. Empirical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.4.1. Model selection and ensembling . . . . . . . . . . . . . . 92

4.2.4.2. Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1. nnU-Net handles a variety of datasets and image properties . . . 93

4.3.2. nnU-Net outperforms specialized, manually tuned state of the

art pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.3. nnU-Net designs appropriate segmentation pipelines . . . . . . . 94

4.3.4. Evaluation across multiple datasets enables more robust design

choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.5. nnU-Net is freely available as an out-of-the-box tool . . . . . . . 104

4.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5. Discussion 109

List of Own Publications 115

Appendices 117

A. nnU-Net details 119

A.1. Details on nnU-Net’s Data Augmentation . . . . . . . . . . . . . . . . . . 119

A.2. Summary of nnU-Net Challenge Participations . . . . . . . . . . . . . . . 121

A.2.1. Challenge Inclusion Criteria . . . . . . . . . . . . . . . . . . . . . . 121

A.2.2. Compact Architecture Representation . . . . . . . . . . . . . . . . 122

A.2.3. Medical Segmentation Decathlon . . . . . . . . . . . . . . . . . . . 123

A.2.4. Multi Atlas Labeling Beyond the Cranial Vault: Abdomen (D11) 134

A.2.5. PROMISE12 (D12) . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.2.6. The Automatic Cardiac Diagnosis Challenge (ACDC) (D13) . . 137

A.2.7. Liver and Liver Tumor Segmentation Challenge (LiTS) (D14) . . 138

A.2.8. Longitudinal multiple sclerosis lesion segmentation challenge (MSLe-

sion) (D15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.2.9. Combined Healthy Abdominal Organ Segmentation (CHAOS)

(D16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.2.10.Kidney and Kidney Tumor Segmentation (KiTS) (D17) . . . . . 143

A.2.11.Segmentation of THoracic Organs at Risk in CT images (SegTHOR)

(D18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xvii



Contents

A.2.12.Challenge on Circuit Reconstruction from Electron Microscopy

Images (CREMI) (D19) . . . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 149

List of Figures 169

List of Tables 171

xviii



1. Introduction

Gathering information about the innards of the human body is quintessential for mod-

ern medicine. Only when we know what is going on inside can we judge what disease a

patient may be suffering from or whether the therapy they are getting has the desired

effect. One way of achieving this goal could be to open up the patient in a surgical

intervention. While physical access to the affected parts of the body certainly opens up

the valuable opportunity to do a visual inspection as well as take biological samples, it

also comes with obvious adverse effects to the patient’s health and well-being.

Imaging techniques, such as Magnetic Resonance Imaging (MRI) or Computed Tomog-

raphy (CT), on the other hand offer the possibility of examining the patient’s body

without causing physical harm. They constitute a particularly powerful tool in mod-

ern medicine, because they not only allow the visualization of tissue properties, but do

so in a spatially resolved way enabling the analysis of potential heterogeneities of the

disease. Images are regularly used for planning surgical interventions and radiotherapy

as they provide insights into the outline and surrounding of the target structure [1].

The lack of adverse effects, especially with MRI, furthermore opens up the time axis:

Whereas surgical interventions and biopsies can not be done at arbitrary time points

due to their invasive nature, images can be acquired as often as necessary making them

the perfect tool for monitoring diseases, such as tumors, over time. Modern imaging

techniques hereby offer unprecedented flexibility: Acquisition time can be traded for

spatial resolution, with long acquisitions enabling spatial resolutions down to 100 mi-

crons [2], whereas, on the other end of the spectrum, a lower desired resolution results

in acquisition times fast enough to monitor the heart as it beats [3, 4].

Given their inherent benefits, it is unsurprising that medical images are on the rise.

The Clinical radiology UK workforce consensus report 2018 [5] notes that the number
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1. Introduction

Figure 1.1.: Example for semantic segmentation in Medical Images. Left: axial slice
of an abdominal CT image. Middle: Overlay of the raw image with a segmen-
tation map. Purple encodes kidney and yellow encodes tumor. Right: Volume
rendering of the patient to highlight the 3D nature of the segmentation problem.
Image is taken from the KiTS [15] test set and the segmentation is generated by
our automatic segmentation method presented in Section 3.3.

of CT and MRI acquisitions has increased by 48% and 54%, respectively, between

2012 and 2018. At the same time, the number of radiologists has increased by only

21%, resulting in a severe lack of experts for image interpretation with potentially

detrimental effects to the quality of healthcare. This causes ”delayed diagnosis of

cancer and critical findings” and leaves the clinics ”unable to provide a safe and reliable

radiology service” [5]. Interpretation of medical images is a complex task, and as such

requires concentration and time to do correctly. Independent scientific studies have

already confirmed that spending less time per scan increases the error rate by as much

as 17% [6].

With more images being acquired in clinical practice on the one hand and a lack of

radiologists on the other, the question arises how the quality of healthcare can be main-

tained or maybe even improved in the future. Fueled by recent advances in computer

vision [7, 8, 9] as well as recently published methods for medical image analysis achiev-

ing or even surpassing radiologist-level performance [10, 11, 12], one possible answer

to this question is automation. Not only can automation take away tedious repetitive

work from the radiologists, freeing them up to deal with more pressing matters, but

it also has the potential to increase the quality of care. Automated methods are fast

to compute, easy to scale and yield reproducible results. They furthermore take away

the human component and thus address issues that naturally arise from it: substantial

variations in skill, large inter-rater variability [13] and inattentive blindness [14].

This thesis focuses on automated image processing algorithms for semantic segmen-

tation. In semantic segmentation, all voxels in an image are assigned a class label

indicating what type of object it belongs to. A typical example for semantic segmen-

tation in the medical domain is provided in Figure 1.1. It shows kidney and kidney
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Figure 1.2.: Dataset diversity in Medial Image Segmentation. Each dataset comes
with its own unique set of properties and peculiarities that need to be considered
when designing segmentation methods for them. As a result, methods developed
on one (type of) dataset are often incompatible with others, requiring constant
redesign and tuning of methods when confronted with a new segmentation prob-
lem. This dataset dependency of methods severely hampers progress in the field
and makes segmentation inaccessible to non-experts. Figure reproduced from
[23].

tumor segmentation in abdominal CT images with a raw axial slice shown to the left,

an overlay with the segmentation in the middle and a 3D volume rendering to the right

highlighting the three dimensional nature of the problem.

The development of automated segmentation models is one of the most researched ar-

eas in medical image computing [16] and has numerous applications. In radiotherapy,

radiologists spend a substantial amount of time manually delineating organs at risk

as well as the cancerous region(s) so that subsequent irradiation can be planned to

hit the target structure with the maximum intensity while sparing the most impor-

tant organs. Automating this process frees up valuable time for the radiologist [1].

In the diagnosis and therapy response assessment of tumors, limited time for image

annotation causes the substitution of accurate manual delineations with less accurate

measurements [17, 18, 19]. Here, automatic segmentation not only saves time but also

increases the accuracy and reliability of the measurements [10] to the benefit of the

patient. Segmentations are also an essential part of many image processing pipelines.

They serve for example as intermediary representation for the diagnosis of retinal dis-

eases [12] or for decoding molecular properties of tumors via radiomics [20, 21, 22].

Due to the diversity and flexibility of imaging techniques, the diversity of datasets
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in the medical domain is exceptional. Figure 1.2 documents this by extracting key

properties that are relevant for designing appropriate segmentation methods. Each of

the 19 dataset comes with its own peculiarities, requiring an algorithm to be tediously

adapted to it. As a result, modern semantic segmentation algorithms, which are almost

exclusively based on deep convolutional neural networks, are highly specific to the

dataset and application they are designed for, dealing with class imbalance [24, 25],

heterogeneous [26] and anisotropic [4, 27] voxel spacing, large variability in image sizes

[28, 29, 30], ambiguities [31, 32, 33], potential errors in the reference segmentations [34]

and many more. The design of such methods requires appropriate training data, time

and expertise. Facilitated by the availability of high quality publicly available training

data, current research is mostly focused around only a couple of different segmentation

problems with the most prominent examples being abdominal organ segmentation [35,

15, 36, 37], brain lesions [38, 39, 40], heart [29, 4, 41] and prostate [42, 29].

With image properties being diverse, and corresponding algorithms requiring careful

tuning and optimization to optimally handle them, existing segmentation methods are

not compatible with datasets other than the one they were designed for. For each

new, unique dataset, the current state of the art dictates that experts design suitable

segmentation methods, spending a lot of time in the form of numerous trial and error

experiments to find a good configuration. This issue not only hampers methods from

being available out of the box for a broad range of datasets but also causes severe

issues when researching new segmentation models, especially if said research is not

done on one of the standardized datasets. In particular, the dataset incompatibility

issue of segmentation methods is also present in baseline methods, such as the famous

U-Net [43, 44] architecture, causing the lack of a guaranteed high quality baseline

to compare new methods against. Instead, authors have to reimplement baselines

themselves so that they match the requirements of their dataset, a process that often

evokes suboptimal hyperparameter settings and low baseline performance, making it

difficult to gauge whether the conclusions drawn in the corresponding publications can

be relied upon.

1.1. Contributions

With semantic segmentation methods currently being bound to the dataset they were

developed on, both the research of new methods as well as their application to arbitrary

new datasets are severely impeded. The objective of this thesis is to break the dataset

dependency of segmentation models by developing a framework that takes a basic

segmentation algorithm, here based on the famous U-Net architecture [43], and makes

it generalizable in the sense that this model is automatically adapted to and can then

be trained on any dataset in the domain.
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In order to achieve this goal, we first look into three case studies, namely brain tumor

segmentation (Section 3.1), cardiac segmentation (Section 3.2 ) and kidney and kidney

tumor segmentation (Section 3.3). For each use case, we manually design and tune

separate segmentation pipelines. We experiment with different network architectures,

method configurations as well as pre-and postprocessing techniques with the goal of

understanding what makes or breaks a state of the art segmentation model on each

of these tasks. We furthermore will gain insights into why methods cannot readily

be transferred between datasets. All our developments are tested in the context of

segmentation challenges to ensure an objective performance evaluation on standardized

datasets.

In Manual Design of Segmentation Pipelines (Chapter 3) we make the following

contributions:

• Brain tumor segmentation in multi-modal MRI is considered to be one of the most

difficult problems in medical image segmentation [38]. The class imbalance, the

amorphous nature of the tumors as well as the potentially limited contrast between

tumor and healthy tissue are only three of the many challenges it poses. We develop

two different segmentation methods to tackle this task: First, we develop a model

based on a 3D U-Net with a residual encoder. We show that this model produces

radiologist-level accuracy on a large multi-institutional cohort comprising more than

2000 MRI acquisitions. Furthermore, we evaluate the model on the BraTS 2017

challenge [45] where it obtained the third place. We then developed a second model

intended to push the limits of a baseline architecture, the standard 3D U-Net. It

uses region-based training, tailored postprocessing and an optimized loss function

to specifically target the difficulties of brain tumor segmentation. It is evaluated on

the BraTS 2018 challenge, where it obtained the second place out of 64 participating

teams [45].

• Cardiac substructure segmentation in cine-MRI suffers from anisotropic data, slice-

misalignments as well as imaging artifacts. We show how these difficulties can be

overcome by developing a method based on ensembling standard 2D and 3D U-Nets.

The method is evaluated on the Automatic Cardiac Diagnosis Challenge [4] where

it obtained the first place.

• Kidney and kidney tumor segmentation in large abdominal CT scans poses prob-

lems with balancing the receptive field of the network with the target spacing for

resampling. Furthermore, tumors are difficult to discern from cysts and can be hard

to detect in the first place because they have very heterogeneous texture. We use

this segmentation problem to study the differences between the standard 3D U-Net

and several variants thereof which use residual connections in the encoder. Our best

model is then evaluated in the Kidney and Kidney Tumor segmentation challenge
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[15, 28] where it obtained the first place out of 105 participants.

• Finally we provide a thorough analysis of the different segmentation problems and

the key aspects of our methods that allowed them to be successful. Specifically, we

attempt to connect dataset properties to suitable design choices which could serve

as best practices for finding good segmentation models on new, previously unseen

datasets.

We then set out to break the dataset dependency of segmentation methods by develop-

ing a framework that automatically configures new models to arbitrary datasets. The

core idea behind this framework is to automatically determine the defining properties

of a dataset and how a model must be designed to deal with them effectively. To

achieve this goal, we use the experience gathered from the case studies in the previous

chapter.

Specifically, in Chapter Automatic Design of Segmentation Pipelines (Chapter

4), we make the following contributions:

• We revisit the key aspects that made our models in the previous chapter successful.

We use them to formulate guiding principles on how segmentation methods could be

adapted to yield good results on a new dataset with unique properties.

• For the first time, we formalize the relationship between dataset properties and

method configuration required for a successful model. The implementation of this

formalization yields nnU-Net, a framework for automated generation of segmentation

methods.

• We demonstrate the effectiveness of this approach by participating in 10 highly

competitive segmentation challenges comprising 19 different datasets and 49 seg-

mentation tasks. Without manual intervention, our method sets a new state of the

art on the majority of segmentation tasks even though it competes against manu-

ally tuned algorithms on each of the datasets. Remarkably, many recently proposed

segmentation methods use sophisticated network architectures whereas our results

were achieved by adapting the standard U-Net architecture, coining the name of our

framework: nnU-Net (”No new net”).

• nnU-Net has far reaching consequences for medical image segmentation:

– nnU-net is the fist segmentation algorithm that can be used out of the box on

arbitrary datasets and still deliver state of the art segmentation accuracy. As such,

it constitutes a valuable tool for researchers and clinicians who need semantic

segmentation both for their research as well as clinical applications. nnU-Net

requires no expert knowledge to run and does not require excessive GPU resources,

making it accessible to a broad audience.

– For the first time a single algorithm can be used on any dataset in the domain.

This is particularly valuable in a research environment where methodological con-
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tributions are often demonstrated on new datasets for which no optimized base-

line implementations exist. nnU-Net is such an optimized baseline and comparing

against it will yield more convincing evidence when proposing new methods.

– As a framework, nnU-Net catalyzes research in medical image segmentation. nnU-

Net is modular on one hand, allowing for easy integration of new ideas, while being

flexible on the other, enabling researchers to evaluate their method on a large

number of datasets. Evaluation across multiple datasets results in substantially

more reliable conclusions while also preventing overfitting.

1.2. Outline

The outline of this thesis is as follows. In chapter 2 we revisit the state of the art

in medical image segmentation. We furthermore look into issues associated with the

current way of developing segmentation, particularly those related to the dataset de-

pendency of segmentation methods and the need for proper hyperparameter tuning.

Then, in chapter 3 we develop four new state of the art methods for three different

segmentation problems. These methods are then analysed and used as a basis for de-

veloping nnU-Net (chapter 4), a framework that automatically generates state of the

art segmentation models for arbitrary datasets. We close with a discussion in chapter 5

on how this framework could transform the way we do method development in medical

image segmentation.
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2. Related Work

This chapter lays the foundations for the methodological innovations presented in chap-

ters 3 and 4. We first give a brief overview of modern pre deep learning methods for

medical image segmentation, followed by a journey through the history of deep learning

based methods as well as a presentation of the current state of the art. We close this

chapter with a discussion about the current way research is being done in the domain

and the shortcomings associated with it.

2.1. Pre deep learning era

2.1.1. Shape-based methods

Statistical shape models have been researched extensively in the past [46], in particular

for the segmentation of organs and for shape analysis [47, 48]. For segmentation,

they use a surface representation of the object of interest that is fitted to the image

information. There are several ways of representing the surfaces, with the most common

one being based on landmarks [49]. Landmarks are specific locations on the shape of the

objects. It is quintessential to assign the same location within the shape to the same

landmark on all shapes found in the training set in a process called correspondence

optimization. As a preprocessing step, shapes are aligned and normalized using these

corresponding landmarks. The underlying principle of statistical shape models is to

model the distribution of shapes (and appearances) encountered in a training set to

get a shape (and appearance) prior that can then be fitted to a new image. In the

most simple case, a shape prior can be found by running (kernel) principal component

analysis on the normalized and aligned training shapes. This will capture the most

relevant modes of variation while suppressing potential noise in the data [50, 51, 52].
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Appearance priors can be built by analyzing the intensity profile perpendicular to the

landmark positions [53, 54], region-based appearance modelling [55] or by incorporating

additional non-local information around the landmarks [56]. When applying statistical

shape models to a new, unknown image, the shape must either be initialized close to

the desired target structure or special measures must be taken to make the algorithm

robust to random initialization [57]. Then, in an iterative process, the underlying model

parameters are adapted to fit the image information while also adhering to the learned

prior distribution of shape and appearance. For a more complete overview of statistical

shape models, please refer to [46].

Statistical shape models have the inherent advantage that they are strongly constrained

by the shapes encountered in the training cases. This allows them to only produce

plausible shapes, making them robust even if the number of training cases is low.

Their robustness, however, can also cause them to be not as precise in cases where

the shape of the object in the image cannot be represented by their parametrization

(bias-variance trade-off). While shape models are a good fit for segmenting structures

that follow a certain shape and appearance pattern, such as organs, they are less well

suited for the segmentation of amorphous and heterogeneous structures such as tumors

or vessels. Furthermore, shape models must be retrained for each new target structure

to be segmented.

2.1.2. Atlas-based methods

Atlas-based segmentation methods basically treat a segmentation problem as a regis-

tration problem [58]. Single atlas segmentation requires only one manually delineated

example image. To generate a segmentation for an unknown target image, one of the

images is registered to the other, meaning that it is rigidly transformed (rotation, scale,

shearing, translation) and elastically deformed until the two images match. After reg-

istration the segmentation of the atlas can be transferred to the target image. Using

a single atlas is, however, often insufficient for capturing the broad anatomical varia-

tion and can result in inaccurate segmentations [59]. Multi-atlas-segmentation (MAS)

[60, 61] makes use of multiple atlases to improve upon this deficiency. Hereby, the

target image is registered pairwise with each of the available atlases. After transferring

all segmentations to the target image, the final segmentation can then be obtained

via label fusion (this can be majority voting in the most simple case). The quality of

multi-atlas segmentation is determined mostly by the quality of the registration and

the strategy applied for label fusion. We refer to [62] for a more detailed overview of

atlas-based medical image segmentation.

Atlas-based methods are data efficient, with single-atlas based methods yielding accept-

able results with only a single training case. With the exception of modern data-driven
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algorithms for label fusion, new target structures can be added to the atlas and thus

transferred to novel images without the need to adapt or retrain the method. Simi-

larly to shape models, atlas-based segmentation methods are well suited for segmenting

structures that follow a specific pattern in both their shape and location within the

body. They fall short, however, in the segmentation of pathologies and highly irregular

shapes. Furthermore, the lack of explicit shape and appearance modeling can result in

unrealistic segmentations, for example caused by registration errors. Finally, offloading

segmentation to registration brings several issues with it. First and foremost, registra-

tion in itself is a difficult problem that is an active area of research by itself [63, 64, 65]

and has not yet been solved to perfection. Furthermore, registration is computationally

expensive and often results in high run time, in particular in multi-atlas segmentation

where pairwise registration to all atlases yields a large number of registrations that

need to be done.

2.1.3. Pixel-based Methods

Pixel-based methods rely on a classifier to make a decision for each pixel in the im-

age independently. The features available to the classifier are hereby crucial for the

success of this approach. To ensure that decisions can be made under consideration

of both local as well as more global information, it is upon the researcher to design

the features appropriately. Ideally, features encode a large variety of image properties

across multiple scales, such as the presence or absence of edges, texture information

or smoothed intensity information. Popular feature extractors are edge detectors [66],

Haar wavelets [67], intensity gradients and texture features or even simple Gaussian

smoothing filters [68, 69]. Features are computed from the original image. Their output

is a new, transformed image of identical shape, referred to as feature representation.

For each voxel, a feature descriptor can be collected by accumulating the values found

at the pixel location across all feature maps. Since most features also encode informa-

tion about the surroundings of the voxel they belong to, spatial information is encoded

implicitly in these representations, allowing the classifier to incorporate the surround-

ing context into its decisions even though it only operates on a per-pixel level. To

prevent the classifier from being overwhelmed by a large number of features, and to

select features that are appropriate for the task at hand, feature selection algorithms

can be used to identify the most relevant representations [70]. The most popular type

of classifier used for pixel classification is the Random Forest [71]. It excels through

its balance of expressivity, robustness to overfitting, ability to handle a large number

of features effectively as well as its low computational complexity. Successful applica-

tions are prevalent in tumor segmentation [72] where the local texture and intensity

information is particularly predictive. Due to the pixel-wise decision of the classifiers,

postprocessing techniques are often applied to smooth the resulting segmentation and
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enforce spatial consistency, for example through the use of guided filters [73], graph

cut [74] or conditional random fields [75].

Pixel-based methods excel at segmentation tasks where the structure of interest has

irregular shapes and can be found with more local rather than image-global information,

in particular whenever it is identifiable by its texture and intensity profile. The vast

pool of possible features, classifiers and postprocessing methods makes them extremely

versatile, but also requires researchers to be experienced with all the aspects of the

pipeline to be successful. Pixel-based methods also struggle with incorporating global

information into the decision process because they require the design of features that

can encode it. This task becomes increasingly difficult the larger the receptive field

of the features needs to be. Finally, depending on the choice and number of features,

computation times for feature extraction can be cumbersome.

2.2. Deep Learning-based Methods

2.2.1. Image Classification with Convolutional Neural Networks

The success of convolutional neural networks (CNN) started when the AlexNet ar-

chitecture [7] won the ImageNet image classification [76] challenge in 2012 by a large

margin. Since then, the state of the art not only in image classification but also im-

age segmentation [77] object detection [78] and instance segmentation [79] have been

dominated by this type of methods.

CNNs differ from the previously presented methods in that they do not require any prior

information, image registration or manual feature design. They are entirely data driven

and learn directly from training data. Building appropriate network architectures is

hereby key for enabling the learning process: the network architecture is in a certain

way a template that can be molded during training to extract the necessary information

directly from the image. The extraction of information is hereby handled by stacking

convolutional layers with nonlinearities in between. The convolutions act similarly to

the handcrafted features used in the pixel-based methods presented in Section 2.1.3 by

transforming their input to generate new feature representations. The quintessential

difference to the previously described features (many of which can also be expressed

by convolutions) is that the kernel weights of the transformation are not set by the

researcher but instead treated as learnable parameters during training. Another critical

aspect for the success of CNNs is the stacking of these transformations. Only the

very first convolution operates on the raw image values. Every successive layer then

takes the feature representation of the previous layer as input, enabling the network

to recombine previously computed representations and thereby learning increasingly

expressive features with each layer.
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Figure 2.1.: VGG16 network architecture. Convolutional neural networks for image
classification extract feature representations by stacking convolutional layers.
Hereby, each convolution takes the feature representations of the previous block
as input, allowing the network to recombine existing representations into new,
more expressive ones. After a set number of convolutions, max pooling layers
aggregate the feature representation spatially and reduce the size of the feature
maps in half, allowing the following convolutions to operate on what is effectively
a larger area of the image and thereby aggregating more global information. The
pattern of alternating feature extraction (via convolutions) and spatial aggre-
gation (pooling) is repeated until the features have a small spatial extent but
contain image global information. Then, fully connected layers are used to do
the final classification. Each black rectangular block represents the output of a
convolution with the associated tensor size written next to it. Red blocks repre-
sent max pooling operations. Blue boxes are fully connected layers. Figure taken
from [80].
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The way most modern CNNs for image classification are constructed is by alternating

computational blocks for feature extraction with spatial aggregation. One prominent

example, the VGG-16 network [81], is shown in Figure 2.1. After some number of

convolutional layers, the size of the feature representation is reduced with a max pool-

ing operation. This operation only retains the highest value found within a certain

region in the input feature map (here 2× 2). Since it is applied at a coarser grid (here

every other pixel), the resulting feature representation has half the spatial extent than

the feature map it was applied to. Utilizing pooling operations increases the receptive

field of the convolutions because, at a fixed kernel size and a lower resolution feature

maps, they effectively operate on a larger proportion of the image. Alternating con-

volutions with pooling operations enables the network to successively transform local

information, such as the presence or absence of edges, corners or textures into global

representations which finally enable the classification of the entire image. It is common

practice to increase the number of convolutional kernels (and with it the number of fea-

ture representation) as the spatial resolution decreases to increase the representational

power of the model.

CNNs are purely data driven and require a large number of training cases. The famous

ImageNet challenge [76], for example, comprises one million images with 1000 different

classes. Training is most commonly done by stochastic gradient descent: A small subset

of the training database, called a minibatch, is passed through the network (forward

pass) and the networks classification output is compared with the ground truth infor-

mation. A loss function hereby serves as a metric for how good the network output is.

The most commonly used loss function for image classification is the categorical cross-

entropy. In the subsequent backwards pass, the gradients of the loss with respect to all

parameters in the network (these are usually the kernel parameters of the convolutions)

are obtained with backpropagation [82]. Hereby, the gradients are computed starting

at the last layer and propagated through the layers in the network in reverse order

by applying the chain rule. Finally, all model parameters are updated by subtracting

their gradient multiplied by some constant (the so called learning rate). Finding a

good set of hyperparameters for training CNNs is quintessential for obtaining good

performance. Due to relatively long training times, codependency of hyperparameters

and a large number thereof, finding a good setting is considered difficult and requires

careful optimization, either through expertise, grid search or AutoML-like approaches

[83]. Parameters that must be optimized, apart from the network architecture, in-

clude the minibatch size, learning rate, momentum term, input size, kernel parameter

initialization and many more.

Modern state of the art classification algorithms still follow the basic scheme of al-

ternating feature computation and spatial pooling, but improve upon the way the
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representations are computed. He et al. [9, 84] observed that deeper networks do not

always improve the results. According to the authors, this result is counter-intuitive

because the solution space of the shallower networks is a mere subset of their deeper

counterparts. They explain this shortcoming by the inability of convolutions to model

the identity function, which should allow them to bypass not needed feature computa-

tions. They propose to offload the extraction of feature representations into so-called

residual blocks, a stream that branches off the main network and adds its result (resid-

ual) back to the input feature maps. The resulting architectures are called Resnets

and have been shown to enable the construction of substantially deeper networks while

improving the accuracy in the process. GoogleNet [85, 8] computes representations in

each step not by using a single convolution or residual block, but instead splits the

feature computation into several streams, each with a reduced number of resulting rep-

resentations. The representations of the streams are concatenated before being passed

to the next step. The rationale between the multiple streams is to increase the diversity

of the operations used at once (for example convolutions with different kernel sizes),

thus making the feature extraction process more flexible. Densenets [86] are specifically

optimized for network depth. Instead of adding the result of a feature computation

block to its input (as done in Resnets), they concatenate it. This ultimately results

in a substantially improved gradient flow, because layers are densely connected and

gradients can be passed from the tail of the network all the way to the front with no

steps in between.

2.2.2. Fully Convolutional Models (FCN)

The first segmentation algorithms based on CNNs used the same architecture as clas-

sification networks, but instead of classifying the entire image they were trained to

predict the semantic class of the center pixel of their input [87, 88]. The network input

was hereby often significantly smaller than the typical image size to prevent excessive

padding at the image borders. To predict an entire image, these networks needed to be

slided across the whole image, pixel by pixel, to generate a complete segmentation map.

This approach is computationally inefficient because feature representations computed

in one forward pass cannot be reused for another, resulting in very long run times.

This issue was recognized by Long, Shelhamer et al [89, 90] who designed FCN, the

first architecture for fully convolutional image segmentation. The key idea behind fully

convolutional architectures is to utilize only operations whose parameters are inde-

pendent of the input size (such as convolutions, hence the name), thus allowing them

to be applied to arbitrary image sizes. This enables the re-use of computed feature

maps and makes the approach computationally efficient. At the core of their approach

they used standard Imagenet pretrained networks [7, 85, 81]. This reduces the number
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Figure 2.2.: FCN Network. A standard Imagenet pretrained classification network is con-
verted into a fully convolutional CNN by replacing its fully connected layers
with 1× 1 convolutions and dropping the final pooling layer. Left: The varying
resolutions of Alexnet are represented by the corresponding pooling layers (see
[7]). Right: Reconstruction of full image resolution segmentations by convolution
transposed. FCN-32s utilizes a segmentation head located in pool5 to obtain a
segmentation at 1/32 image resolution, which is then upscaled with convolution
transposed. FCN-16s and FCN-8s use two and three segmentation heads, respec-
tively, which are located also at higher resolution feature maps (pool4 and pool3).
They are recombined after upsampling through summation. Figure taken from
[89].

of training cases required for training because the kernel weights of the convolutions

are already trained to produce meaningful representations instead of initialized ran-

domly. To convert the networks to be fully convolutional, the final fully connected

layers are converted to 1x1 convolutions and the pooling operation preceding these

layers is dropped. One major drawback of this approach is the low resolution of the

segmentation output. As mentioned previously, CNNs need to successively reduce the

spatial extent of their representations to enable the convolutional kernels to see large

proportions of the image simultaneously, which is a requirement for correctly identify-

ing large objects. Translating this pattern to the type of information being available

to the network at a given layer, there is a lot of spatial information and little semantic

information in the early layers and a lot of semantic information but little spatial infor-

mation at the final layers. The networks used by Long et al. make use of five pooling

operations, which results in coarse segmentation outputs that are downsampled by a

factor of 32 (25) with respect to the original input (’output stride 32’).

To improve the output resolution they use a convolution transposed at the end of the

network which upsamples the segmentations back to the original image resolution. A

convolution transposed effectively constitutes a learned upsampling that incorporates

class-specific prior information into the process, thus increasing the fidelity of full res-

olution segmentations over bilinear upsampling. Still, the resulting segmentations are

quite coarse and cannot capture fine structure in the image. To further improve the

situation, they experimented with adding additional segmentation heads at two finer
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Figure 2.3.: Impact of output stride on segmentation fidelity. FCN-32s generates a
segmentation at 1/32 image resolution (output stride 32), FCN-16s at 1/16 and
FCN-8s at 1/8. Resolution and fidelity of the generated segmentation increase
the smaller the output stride. Figure taken from [89].

locations (at stride 16 and 8) and combining the upsampled outputs of the heads by

addition (see Figure 2.2). Weights for the segmentation heads as well as the convolu-

tion transposed were fine-tuned end-to-end on PascalVOC [91]. Figure 2.3 shows how

utilizing additional predictions from higher resolution layers gives finer details in the

segmentations.

2.2.3. U-Net based methods

In order to produce a precise segmentation, a network needs to extract both, what

objects are in the image (semantic information) as well as exactly which pixels belong

to them (spatial information). As we have seen previously, CNNs need to reduce spatial

information in order to obtain more semantic information. Thus, once the semantic

information is available, the spatial information must somehow be recovered. Long et

al. [89] solved this by upsampling the low resolution segmentations with a convolution

transposed. They furthermore generated segmentations at different resolution outputs

and merged them together. While this worked reasonably well, the downside of this

approach is that only the stride 32 output has access to the full semantic information

while the other segmentation heads have more spatial information at their disposal but

potentially limited knowledge about the semantic of the pixels. This is problematic

because the segmentations generated at earlier layers cannot gain access to the semantic

information required for them to be accurate. The lack of proper recombination of

spatial and semantic information severely limits the accuracy FCN can achieve. It

is also the main reason why this architecture cannot create segmentations at output

stride 1, and thus always requires upsampling.

These shortcomings were addressed in the famous U-Net architecture [43]. It con-

stitutes a significant improvement over FCN [89], both in terms of how spatial and
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Figure 2.4.: U-Net architecture. U-Net consists of three major components: the encoder
(left), the decoder (right) and skip connections connecting them. The encoder
follows the same pattern as image classification networks: convolution and pool-
ing operations are alternated, generating increasingly expressive representations
at the cost of a reduced spatial resolution. In order to generate high fidelity seg-
mentation maps at image-level resolution, the semantic information present at
the bottleneck is then successively reconstructed in the decoder network. Hereby,
increasingly high resolution feature maps stemming from the encoder (via skip
connections) are concatenated to the upsampled feature maps. This enables the
network to take the semantic information from the encoder and precisely localize
it in the decoder until the original image resolution is obtained. Only then the
final segmentation is generated. Figure taken from [43].
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semantic information are recombined in the network as well as the resolution of the

output segmentations. U-Net, which is shown in Figure 2.4, consists of three major

components: The encoder is similar to FCN and follows the well-known structure of im-

age classification networks. It alternates feature computation and spatial aggregation,

thus increasing the semantics in its representations while losing spatial information.

Where U-Net differs from previous approaches is in the reconstruction of the spatial

information after the end of the encoder. The simple segmentation heads that were

used by FCN are replaced by a whole decoder network which effectively mirrors the ar-

chitecture of the encoder and reverses the downsampling of the former step by step. By

itself, the decoder would not be able to generate high resolution segmentations because

all the spatial information needed for that would need to pass through the bottleneck

and some of it would be lost. To alleviate this problem, skip connections forward

feature representations from the encoder. They are concatenated with the upsampled

feature maps in the encoder and then used jointly in the following convolutions. Due

to its unique architecture, U-Net elegantly recombines local and global information at

several stages throughout the network. This allows it to successively broadcast the

semantic information gathered by the encoder to the original image size, resulting in

segmentations generated at output stride 1. This property is particularly interesting

for medical image segmentation, where the exact boundary position is quintessential,

for example for radiotherapy planning [1].

2.2.4. Medical Image Segmentation Beyond the U-Net

In recent years, many improvements upon the original U-Net architecture have been

proposed. The 3D U-Net [44] transitioned the original architecture to use 3D con-

volutions to better deal with the 3D nature of biomedical images. V-Net [25] also

uses 3D convolutions but additionally replaces the feature computation blocks with

residual layers [84] for improved gradient flow and representational power. They were

also among the first [24, 25] to replace the most commonly used cross-validation or

weighted cross-validation [92] loss with the Dice loss to directly optimize the metric

used to evaluate segmentations. Design patterns that were found to be effective in

image classification on the ImageNet database were also quickly transferred into a U-

Net-like segmentation architecture. [93] for example make use of densely connected

convolutional layers, a principle that was also adapted in the medical domain [94]. [95]

augmented the U-Net with squeeze and excitation modules [96] and introduced their

own variant thereof. Others added attention modules to the U-Net [97] to improve the

localization for organs.

Still today in 2020, U-Net architectures and their derivatives define the state of the art

in medical image segmentation [98, 45, 35, 4, 99].
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2.3. AutoML

Automatic machine learning (AutoML), as the name implies, seeks to take away the

human component in designing and configuring machine learning models by replacing as

many steps during method development as possible with automation [100]. It targets

machine learning (ML) experts and non-experts alike: ”ML experts can profit from

AutoML by automating tedious tasks like hyperparameter optimization (HPO) leading

to a higher efficiency. Domain experts can be enabled to build ML pipelines on their

own without having to rely on a data scientist” [101]. There are many different ways of

introducing automation into model design, with hyperparameter optimization, model

selection, feature design and neural architecture search being the most common ones.

Hyperparameter optimization can be a tedious and time consuming task which, de-

pending on the classification algorithm used, can also take a lot of compute resources

to be done successfully. Yet, it is a quintessential step in obtaining good machine

learning models: proper hyperparameters can often not be set a priori as different

datasets may require different parameters to yield optimal results [102]. Grid search

[103, 104] is one of the most straightforward ways of addressing this problem: a plau-

sible value range for each hyperparameter is provided by the experimenter, along with

a corresponding coarseness with which is should be evaluated. Then, each possible

combination is tested and the best result is returned. Given appropriate ranges, this

approach yields good results, but at a high computational cost. The high cost com-

bined with the restricted values hyperparameters can attain (due to the grid) is often

problematic in practise. Recent evidence even suggests that random search [105] should

be preferred over grid search as it finds better configurations with less computational

overhead. Bayesian optimization tackles the problem from a different angle by using

”an algorithm to build a probability model of the objective function, and then uses this

model to select the most promising hyperparameters” [106]. This allows the algorithm

to probe only promising hyperparameter combinations and prevents the unnecessary

exploration of combinations that are unlikely to give good results. Genetic algorithms

[107] approach this problem from yet another angle by constructing a population of

hyperparameter sets and using evolutionary approaches to successively increase the

fitness of the population.

Each classification problem has different characteristics and different machine learning

models may be more or less suited to address it [102]. Model selection in the context of

AutoML refers to the automated testing of different models and automatically selecting

the best based on some validation score. To ensure a good selection, model selection

is often done in conjunction with hyperparameter optimization, for example in the

popular auto-sklearn framework [83].

The performance of a machine learning model, in particular those that use non-deep
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learning methods (for example the methods described in Section 2.1.3) strongly depends

on the availability of a suitable feature set [102]. There are some approaches that make

an attempt at automated feature design (e.g. [108]), but a large performance gain can

also be achieved by simply extracting as many features as possible and then running

feature selection [70, 109, 110, 20] to cut down on the number of unnecessary features.

Recently, the area of AutoML that has certainly received the most attention is neural

architecture search [111, 112, 113]. Instead of using manually designed sequences of

convolutional layers, such as the ones we presented above (Section 2.2), this area of

research focuses on how these architectures can be derived automatically. Hereby,

very different approaches can be selected, for example based on evolutionary strategies

[114] or fully differentiable search spaces [111]. While early methods required immense

compute resources to be run effectively, more recent methods [115] specifically attempt

to cut down on the computational complexity. There already exist initial attempts at

making neural architecture search viable for medical image segmentation [116, 117] but

these so far fall short of simpler, manually designed network architectures. We refer to

[106] for a more extensive overview of recent advances in neural architecture search.

2.4. Competitions in Medical Image Segmentation

The medical image analysis community is extraordinarily active in developing new

segmentation methods to cope with the many diverse datasets that can be encountered

in the domain. In this context, a large number of competitions (also referred to as

challenges) has been conceived with the goal of either encouraging the development of

methods for a dataset that is yet unsolved or for providing a standardized environment

in which algorithms can be tested and evidence for methodological improvements can

be derived. Many of these challenges are held in conjunction with the Conference on

Medical Image Computing and Computer Assisted Interventions, the largest conference

in the domain.

The general structure of a competition is as follows: A fixed number of training cases

is released to the public containing both the original images as well as the correspond-

ing segmentations which, ideally, were generated by medical experts. These are then

used by the participants to develop and train their models. Test images (without

their segmentations) are either also released to the participants or participants need

to submit their algorithm to be evaluated by the challenge organizers. Evaluation is

done by comparing the segmentation maps generated by the participating algorithms

with the withheld reference segmentation. Finally, the metrics used for comparison are

aggregated and a challenge ranking is created.

Metrics used for evaluation can be grouped in two major groups: overlap and distance-

based metrics. Depending on the segmentation task, other metrics may also be used.
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The by far most popular metric for evaluating segmentations in the medical domain is

the Dice coefficient [118, 119]. It measures how well two segmentation maps overlap.

The Dice coefficient (also often called the Dice score or simply Dice for brevity) is

defined as:

DICE(A,B) =
2A ∩B
|A|+ |B|

(2.1)

Where A and B are the two segmentation maps to be compared. The Dice coefficient is

computed individually for each class present in the image. A∩B measures the number

of pixels with which they overlap. |A| and |B| denote the number of pixels in map

A and B, respectively. A perfect overlap results in a Dice score of 1, no overlap in a

Dice score of 0. If both A and B do not contain a class, the respective Dice score is

undefined (this special case receives special treatment in some challenges [38], also see

Section 3.1.3).

When it comes to distance-based metrics, the Hausdorff distance (HD) is the most

popular. In the context of segmentations, it measures the maximum distance between

the two surfaces of A and B. It is again computed for each class individually. Perfect

agreement in the segmentations results in a HD of 0, disagreement causes increasingly

high HD the further away from the reference the segmentation is. Due to its sensitivity

to outliers (a single false positive far away results in a huge Hausdorff distance), chal-

lenges often opt to use the HD95 metric, which takes the 95th percentile of the surface

distances instead of their maximum.

There are multiple ways of aggregating metrics to a challenge rank with the most

commonly used being metric aggregation (for example by averaging) followed by the

actual ranking. The discussion of the different ranking schemes is beyond this thesis.

A comprehensive discussion and overview are provided in [16].

2.5. Discussion

There exists an enormous body of literature addressing semantic segmentation of med-

ical images. It is complemented by numerous competitions, some of which exceed 700

submissions to their leaderboards 1. Although there are varying beliefs about what

exactly constitutes a good segmentation algorithm, there is a unilateral consensus that

variants of the U-Net (i.e. encoder-decoder with skip connections) are state of the art

for supervised semantic segmentation problems. Over the years, numerous improve-

ments over the vanilla U-Net [43] and its 3D counterpart [44] have been proposed to

1https://kits19.grand-challenge.org/evaluation/results/
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push the state of the art, with most of them revolving around elaborate architectural

modifications.

In an ideal world, the effectiveness of new methods would be demonstrated by ap-

plying them to as many datasets as possible thereby either exceeding state of the art

performance on multiple competitions or, at the least, improving upon appropriate

standardized baseline implementations. The real world is, unfortunately, quite far

away from this reality.

More often than not, methodological improvements and the associated claims are

demonstrated on only a single dataset. And even if multiple datasets are used, they are

often too similar (such as both being abdominal CT scans) thus limiting the generality

of the claims. Especially in the medical domain where datasets often contain only in

the order of one to several hundred training cases and about half as many test cases,

the inherent noisiness of the results as well as the potential for overfitting raise the

question whether a general methodological improvement demonstrated on one (type

of) dataset will actually translate to other segmentation problems or, in the extreme

case, even hold up to a different random seed.

What further complicates the situation is that proposed methods are often not evalu-

ated in the context of competitions, thus severely hampering an objective assessment

of their performance. Instead, authors revert to taking some popular model as their

baseline, such as the 3D U-Net [44] or the V-Net [25], and demonstrate improved perfor-

mance relative to them. This strategy is, however, severely flawed. In the Introduction

(Chapter 1, in particular Figure 1.2) we have touched on the dataset diversity in the

medical domain and the need for dataset-specific adaptations that goes along with it.

This translates to models that were developed on some dataset to be incompatible with

the dataset properties of another. These restrictions naturally apply to the baselines as

well: With the 3D U-Net being developed for Xenopus kidney segmentation [44] and

the V-Net being developed for prostate segmentation [25] they simply cannot be taken

as they are and applied to arbitrary datasets in the domain. As a consequence, au-

thors need to reimplement their baselines and retune their hyperparameters to match

the dataset(s) they are working with, a process that is not standardized and error

prone, ultimately resulting in unreliable and potentially underperforming baselines. In

particular, hyperparameters are sometimes tediously adapted to the proposed method

whereas tuning is mostly disregarded for the baseline, for which authors sometimes

simply use a copy of the hyperparameters used for their proposed method. As a result,

the baseline method may not perform at its best, suggesting an improvement when

in reality there exists a different set of hyperparameters for which the baseline by far

exceeds the proposed solution.

To underline the impact of hyperparameter tuning, Figure 2.5 presents our analysis of

23



2. Related Work

Figure 2.5.: Hyperparameter tuning of deep learning-based segmentation methods.
Analysis of the 100 submissions to the Kidney and Kidney Tumor Segmentation
Challenge 2019. a) Coarse categorization of leaderboard entries by architecture
variation. All top 15 methods were 3D U-Net-like, i.e. used encoder-decoder
style architectures with skip connections, 3D convolutions and output stride 1.
No clear pattern about which variant consistently outperforms the others can be
derived. Furthermore, none of the variants constitutes a necessary requirement
for good performance. b) Analysis of all methods similar to the challenge-winning
entry (non-cascaded 3D U-Net like architecture with residual connections). The
methods vary drastically in their performance as well as their selected hyperpa-
rameters. No clear connection between hyperparameters and model performance
can be established, highlighting the difficulty of hyperparameter optimization.
Figure reproduced from [23].
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the Kidney and Kidney Tumor Segmentation (KiTS) challenge, the largest competition

at MICCAI in 2019 with 100 leaderboard entries. As can be seen in a), all methods in

the top 15 were offspring of the 3D U-Net architecture from 2016, confirming its impact

on the field of medical image segmentation. When dissecting the 3D U-Net models fur-

ther into their architectural variants, we do not observe a clear pattern favoring one

of the variants over the others. In fact, none of the recently introduced architectural

modifications (e.g. residual connections [84, 25], dense connections [86, 93], attention

mechanisms [97], or dilated convolutions [77, 34]) seem to represent a necessary condi-

tion for good performance. This contradicts the accompanying publications, where for

example a plain U-Net was shown to be outperformed by a U-Net with attention gates

[97].

Interestingly, each architectural variant can be found all across the leaderboard indi-

cating that the selection of proper hyperparameters may have a substantially larger

impact on model performance than the exact model architecture. Identifying a good

set of hyperparameters is a difficult and complex process in which co-dependencies

of parameters as well as dataset-specific peculiarities need to be considered. To get

a glimpse at this problem in the context of the KiTS challenge, we analyzed all en-

tries that use the same architectural variant as the challenge-winning contribution, a

non-cascaded 3D U-Net with residual connections. In Figure 2.5 b), each of these mod-

els is represented by its key configuration parameters illustrating design choices made

by the authors. There appears to be no clear trend linking the choice of parameters

to model performance, underlining the complexity of hyperparameter optimization in

deep learning methods. This observation stands in stark contrast with the reporting

in the literature which almost exclusively focuses on newly introduced network archi-

tectures and often disregards the selection of hyperparameters and the process of how

they were obtained. Considering the variability in model performance and the large

impact of the hyperparameters, this analysis raises questions about the validity of uti-

lizing non-standardized and manually re-tuned baseline when proposing methodological

improvements.

With this in mind, research in medical image segmentation is overshadowed by a lit-

erature landscape in which even experts struggle to ascertain which methods really

constitute a veritable and long lasting improvement over baselines. Disregarding the

importance of hyperparameter optimization, especially regarding the baseline method

is a major problem not only in this research area but has also been observed in other

communities as well [120, 121]. This is particularly important in the medical domain

where the dataset diversity causes a coupling of methods to the one (type of) dataset

they were developed for and a constant need for manually retuning hyperparameters

when applied to other datasets. Not only does this prevent the standardized applica-
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tion of baseline algorithms, thus ensuring researchers can objectively measure potential

improvements, but it also causes proposed methods to be applicable only to a narrow

band within the segmentation problems posed by the domain. As highlighted in Section

1.1, this thesis will demonstrate how the dataset dependency of segmentation meth-

ods can be broken by automatically determining appropriate method configurations for

each individual datasets. This method not only outperforms the current state of the

art on the majority of datasets but also addresses multiple issues in the field: it can be

used as high-quality standardized baseline, as framework for future model development

or simply as an out-of-the-box tool making medical image segmentation available to

non-experts.
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In this chapter we will conduct three case studies of semantic segmentation segmen-

tation problems in the medical domain. We will look at brain tumor segmentation

in section 3.1, heart segmentation in section 3.2 and kidney and kidney tumor seg-

mentation in section 3.3 . For each of these problems we will develop state of the

art segmentation methods which are evaluated on respective challenge datasets. In

preparation for the next chapter, we will then discuss the choices made in each of these

algorithms in order to determine which design principles may generally be related to a

good segmentation performance.

3.1. Brain Tumor Segmentation

3.1.1. Motivation

Gliomas are the most frequent type of primary brain tumors in adults. Prognosis is

poor, with patients suffering from the more aggressive high grade gliomas having a me-

dian survival rate of only two years or less [122]. Due to the severity of these tumors,

treatment options are often drastic and entail surgical removal of the affected tissue

as well as chemotherapy, immunotherapy and radiation therapy. Magnetic resonance

imaging (MRI) techniques are widely used throughout the clinical pipeline, from diag-

nosis and (potential) surgery planning all the way to monitoring treatment success over

time. Systematic analysis of the images reveals crucial characteristics of the tumors,

such as the presence or absence of areas that accumulate Gadolinium contrast agent

as well as the overall size of the tumor. Quantitative measurements are particularly

important for assessing treatment success in the form of progression free survival, a

measure that is increasingly often considered as an endpoint in clinical trials [17]. Re-

sponse Assessment in Neuro-Oncology (RANO) [17] is the state of the art for measuring

therapy response with MRI in both clinical practice [123] and clinical trials [124]. To

obtain an estimate of the tumor size, RANO requires clinicians to identify the axial

slice with the largest visible contrast-enhancing tumor and to draw a set of perpen-

dicular diameters measuring the spatial extent of this tumor region. This process is

repeated for each individual lesion and the total tumor burden is then estimated as the

sum of products of the perpendicular diameters [17].

While this approach has certainly been designed with practical considerations in mind,

it has obvious drawbacks that substantially impact its accuracy and reliability. First,

by using axial slices only, it relies on the assumption that tumors grow in a spherical

shape. This is, however, often inaccurate and larger tumor sizes may be observed in

coronal or sagittal slices instead. This is particularly problematic when considering

that tumor growth is substantially influenced by the surrounding anatomy of the brain

and may also be affected by treatment-related effects such as large necrotic regions or
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Figure 3.1.: Inter-rater variability in diameter-based tumor burden estimation. Tu-
mor burden estimation based on RANO [17] requires the radiologist to identify
the axial slice with the largest tumor size followed by estimating the tumor size
with perpendicular diameters. This two-step manual approach introduces signifi-
cant leeway for subjectivity and ultimately results in a high inter-rater variability
with potentially harmful consequences.

surgical scars [125, 126]. Furthermore, measurements based on perpendicular diameters

in a manually selected axial slice are highly subjective, causing large inter-rater vari-

ability [10] (see Figure 3.1) that may have therapeutic consequences for the patients.

It is therefore unsurprising that volumetric assessment of tumor volume has been a

recent focus with several studies attesting it superior accuracy and reliability in ther-

apy response assessment over the perpendicular diameters within a single axial slice as

used by RANO [127, 128]. However, due to the amount of time required to generate

manual segmentation of the images, volumetric measurements lack practicability for

clinical settings.

Robust automated methods for volumetric tumor measurements can therefore have sig-

nificant impact on clinical workflows as they combine the best of both worlds: requiring

no manual interaction frees up valuable time of the clinician to focus on more urging

aspects of patient care whereas the volumetric and automatic nature of the measure-

ments ensure high accuracy and reproducibility. Development of such an algorithm

is, however, not a straightforward task as brain tumor segmentation is certainly one

of the most difficult tasks in medical image analysis due to the inherent challenges

associated with it [38]: tumors can be recognized in the images by slight intensity and

texture changes relative to their surroundings. They grow amorphously and exhibit

no clear patterns in size, shape and location. Furthermore, their growth can deform

the surrounding brain, thus reducing the amount of prior information that could be

used to detect them. Figure 3.2 shows a typical example for the complex shape of

high grade gliomas. The fine structures of the enhancing tumor region (green) as well

as the unclear borders of the necrosis and non-enhancing tumor regions underline the
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Figure 3.2.: MRI of a high grade glioma. a) T1w, b) T1c (T1w with contrast agent), c)
T2w, d) Flair and e) Manual segmentation of the tumor compartments overlaid
with the T1c image. The edema is shown in blue, the enhancing tumor region in
green and the necrotic core as well as non-enhancing tumor regions in red. The
image shown originates from the BraTS 2018 challenge (case CBICA ABE 1 ).

difficulty and ambiguity associated with annotating brain tumors in MRI.

The Brain Tumor Segmentation Challenge (BraTS) [38] is an annual competition that

provides a large training dataset (335 cases as of 2019) and catalyzes the development of

brain tumor segmentation methods. Deep learning methods in particular have recently

been dominating the competition [99, 129, 98, 130, 92, 34] underlining the potential

for these types of methods.

3.1.2. Automated Tumor Response Assessment with Artificial Neural Net-

works

This section is based on the following publications ([10] and [130]):

Kickingereder, P.*, Isensee, F.*, Tursunova, I., Petersen, J., Neuberger, U., Bonekamp,

D., Brugnara, G., Schell, M., Kessler, T., Foltyn, M., Harting, I., Sahm, F., Prager,

M., Nowosielski, M., Wick, A., Nolden, M., Radbruch, A., Debus, J., Schlemmer,

H.-P., Heiland, S., Platten, M., von Deimling, A., van den Bent, M. J., Gorila, T.,

Wick, W., Bendszus, M. & Maier-Hein, K. H. (2019). Automated quantitative tu-

mour response assessment of MRI in neuro-oncology with artificial neural networks:

a multicentre, retrospective study. The Lancet Oncology, 20(5), pp.728-740. https:

//doi.org/10.1016/S1470-2045(19)30098-1

Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., & Maier-Hein, K. H. (2017).

Brain tumor segmentation and radiomics survival prediction: Contribution to the

brats 2017 challenge. In International MICCAI Brainlesion Workshop (pp. 287-297).

Springer, Cham.

(*: shared first authorship)
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Note that this chapter explicitly omits extensive details regarding the collection of

cases for the HD-train, HD-test and EORTC datasets, their annotation procedure

and the clinical evaluation of the method because these parts of the publication [10]

were contributed by my co-author, Philipp Kickingereder. The clinical integration

of the resulting segmentation method was done in collaboration with my co-author

Jens Petersen. The conception and implementation of the segmentation method, the

presented experiments, the (non-clinical) evaluation and the application to the BraTS

2017 challenge were contributed by me.

3.1.2.1. Introduction

Despite the popularity and size of the BraTS dataset, the algorithms developed in the

context of the competition have so far not been proven to be sufficiently robust for

transfer into clinical practice. One of the major reasons for this is the lack of patients

with treatment-induced alterations of the brain, such as resection cavities and surgical

scars in this dataset.

In the following section we describe our fully automated brain tumor segmentation

algorithm for volumetric tumor progression analysis. We show that this algorithm

is highly accurate and robust and thus qualifies for application in clinical practice.

Integration of our segmentation pipeline into clinical infrastructure ensures seamless

embedding into existing workflows and delivers maximum usability. Our segmentation

algorithm is currently being used in the Heidelberg University Hospital.

3.1.2.2. Dataset description

A large, diverse and accurately annotated training dataset is as important to the suc-

cess of a model as model itself. To ensure that our model is able to cope with the

large variability that occurs in the shape, localization and appearance of tumors, a

suitable training set is required. To this end, 455 MRI acquisitions originating from

455 different patients that were treated at the Heidelberg University Hospital were

collected as training set (HD-train). It should be noted that particularly difficult cases

were preferentially included to increase the robustness of our model. Evaluation was

performed on two separate test sets. The HD-test set originates from the same hospital

as the training set and consists of 239 MRI acquisitions from 40 different patients (HD-

test). Furthermore, to test the generalization of the algorithm, a large scale dataset

comprising 2034 MRI scans from 532 patients at 34 different European institutions

was collected (EORTC-test). These scans were initially acquired in the context of the

EORTC-26101 study [131, 125]. The inclusion of MRI scans from multiple institutions

is particularly important to test the robustness of our algorithm because MRI scanners

can produce vastly differently looking images depending on the vendor, field strength
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and acquisition parameters. Both test sets include multiple acquisitions per patient,

each acquired at different time points, to enable evaluation also with respect to clinical

parameters, such as the progression-free survival.

Each MRI scan used in the context of this study consists of four MRI modalities: T1w,

T1c (T1w with Gadolinium contrast agent), T2 and FLAIR. In the context of deep

learning, these modalities are simply treated as different color channels (just like red,

green and blue in natural images).

Prior to annotation, all images were transformed to the standard MNI orientation and

coregistered to the T1w image. Skull stripping [132] was performed on the T1w image,

corrected manually if necessary, and the resulting mask was transferred to the remaining

modalities. The resulting images show the brain region on a black background, as can

also be seen in Figure 3.2.

Annotation of the enhancing tumor region as well as the edema in the HD-train and HD-

test set was done semi-automatically with the ITK-SNAP [133] software as described in

[21, 22]. Corrections of the form of fully manual delineations were performed whenever

required. The EORTC-test set was annotated post-hoc by correcting the segmentation

masks produced by an early iteration of our model. All annotations were done by

radiologists with multiple years of experience. Please refer to [10] for a more thorough

dataset and annotation procedure description.

3.1.2.3. Method

Preprocessing

Medical images consist of a voxel grid storing the localized intensity information of the

modalities as well as geometry information that describe where and how the image is

located in space: orientation, position and scale. Convolutional neural networks operate

on voxel grids and cannot interpret the geometric information. To ensure compatibility,

positional and rotation information is homogenized by orienting all images into MNI

space (see above). Scaling (i.e. how much physical space each voxel occupies in all

three dimensions) is typically heterogeneous, even within the same dataset, and must

be addressed by resizing all training cases so that they have the same voxel spacing.

Inspired by the BraTS dataset we select 1× 1× 1 mm as target spacing. We resample

image data with third order spline interpolation and segmentation maps with linear

interpolation. Note that segmentations are first transferred into a one-hot encoding,

then resampled and finally converted back to segmentation maps via argmax operation.

Unlike CT images which are quantitative and always have similar voxel intensities for

the same structures, MRI image intensities are qualitative and can occupy arbitrary
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value ranges. It is thus important to normalize the images to facilitate the learning

and robustness of algorithms [72]. Finding good normalization techniques for MRI has

received a lot of attention in the past [134]. With the emergence of deep learning-

based algorithms, however, the exact normalization method has become less important

as long as the intensity values are in approximately the same value range. We follow

this trend and adopt the normalization technique that was also used by the BraTS

2016-winning contribution [92]: each modality is normalized separately by subtracting

the mean and dividing by the standard deviation. This preprocessing technique (as well

as the mean and standard deviation computation) is only applied to the brain region,

leaving the outside voxels at 0. We do not apply bias field correction algorithms [135]

because we found that they may negatively impact segmentation performance of large

edema.

Network architecture

Our network architecture is inspired by the 3D U-Net [44] and its derivatives [25, 136].

Just like the U-Net, we follow the encoder-decoder pattern with skip connections. An

overview of our network architecture is provided in Figure 3.3.

Dense encoder, lightweight decoder. The encoder aggregates the contextual infor-

mation required for identifying the different classes. The decoder successively upscales

this information back to the original image resolution by recombining the coarse upsam-

pled contextual information from below with higher resolved feature maps originating

from the skip connections (also see Section 2.2.3). Intuitively, the encoder therefore

requires higher computational complexity than the decoder. Following this consider-

ation, we use more convolutional layers in the encoder. To improve the gradient flow

through the network, we make use of residual connections [9, 84]. Each residual block

consists of two convolutional convolutional layers with kernel size 3 × 3 × 3, each of

which is preceded by instance normalization [137] and a leaky ReLU [138] nonlinear-

ity. Note that our choice of the less popular instance normalization over the more

commonly used batch normalization [139] is intentional: due to the small batch size

the network is trained with (see below), the batch statistics used by batch normaliza-

tion are unreliable and cause a degradation in performance. The encoder starts with

an initial convolution that maps the four input modalities to 21 feature maps. The

number of convolutional kernels (and thus the number of feature representations) is

doubled with each downsampling operation. We avoid representational bottlenecks [8]

by implementing downsampling via strided convolutions, allowing us to do the down-

sampling and increase in feature maps in one operation. Our encoder encompasses

four downsampling steps, resulting in 21 ∗ 24 = 336 feature maps in the bottleneck. In

the decoder, feature maps are upsampled with trilinear upsampling prior to concate-

nation with the features originating from the skip connections. After concatenation, a
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Figure 3.3.: Network architecture brain tumor segmentation. We use residual connec-
tions in the encoder to enable a better gradient flow and facilitate the learning
of representations. The decoder is held as lightweight as possible to reduce the
GPU memory footprint. Auxiliary segmentation heads are added to lower reso-
lution stages of the decoder to encourage the training of the lower layer in the
U-shape of the network. Our architecture is designed to process patches of size
128 × 128 × 128 with a batch size of 2 and 21 initial feature maps. The num-
ber of feature maps is doubled with every downsampling and halved prior to
upsampling. Figure reproduced from [10].
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localization module is used to reduce the number of feature maps and thus the mem-

ory footprint of the network during training. It consists of two convolution-instance

normalization-leaky ReLU sequences where the first convolution has a 3× 3× 3 kernel

size and the second convolution uses 1 × 1 × 1 kernels. Both convolutions halve the

number of feature maps (reducing the number of features to a quarter of what it was

after concatenation).

Large input size The receptive field of the network, along with an appropriate input

patch size, determines how much of the image the network can ’see’ at once, and thus

directly impacts the amount of contextual information that can be incorporated in

the network’s decision making. We select 128 × 128 × 128 as the input patch size for

the network, which covers almost an entire brain at the selected target spacing. The

receptive field of the network depends on the number of downsampling operations as

well as the convolutional kernel sizes and is sufficiently large in the proposed network

architecture.

Deep supervision Gradient-based training of the network may push it towards find-

ing the most simple decision rules it can represent. In the case of a U-shaped archi-

tecture such as the one here, this can cause the lower parts of the network to not be

utilized effectively, ultimately encouraging the learning of decision rules solely based

on the local information encoded in the upper layers. We use auxiliary loss layers

at various resolutions of the decoder to push the network towards aggregating more

contextual information. Auxiliary loss layers are implemented as separate low resolu-

tion segmentation outputs. During training, losses for these layers are computed with

downsampled versions of the reference segmentation.

Training procedure

The network is trained for a total of 450 epochs, where one epoch is defined as 200

training iterations with a batch size of 2. Patches for constructing the minibatches

are sampled randomly (with respect to the cases they are drawn from as well as their

localization within the cases). We use the Adam [140] optimizer with an initial learning

rate of 10−4. After each epoch, the learning rate is decayed by multiplying it with 0.99.

We use a soft Dice loss [25, 24] for optimizing the network. The Dice loss inherently

handles class imbalance, which is particularly important in brain tumor segmentation

where the fraction of enhancing tumor voxels can be several orders of magnitude lower

than that of the edema and background classes. We use the following definition of the
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Dice loss:

Ldc = − 2

|K|
∑
k∈K

∑
ik
uikvik∑

ik
uik +

∑
ik
vik
, (3.1)

where u and v denote a one hot encoding of the ground truth and the softmax output

of the network, respectively. k ∈ K denotes the class identifier (K = 0, 1, 2 for this

dataset: background, edema, enhancing tumor). ik ∈ N 3 denotes all voxels belonging

to the class activation map and softmax output of the network.

The Dice loss is applied to all three output layers of the network during training. The

losses are accumulated via summation, with lower weights being associated with losses

originating from lower resolutions:

Ltotal = 0.25l 1
4

+ 0.5l 1
2

+ 1l 1
1

(3.2)

l 1
x

denotes the loss computed at 1
x

of the original image resolution. The loss is computed

independently for every sample in the batch and the mean loss value is used for gradient

computation.

Data augmentation is a well-proven technique to improve the robustness of CNNs [141].

Overfitting is reduced by applying random transformations to the training cases dur-

ing training. We use a variety of data augmentation techniques for training our brain

tumor segmentation network: mirroring along all spatial axes, scaling, rotation, elastic

deformation and gamma augmentation. All transformations are applied on the fly dur-

ing training with randomly drawn parametrization, ensuring a large variability in the

augmented training cases. See [10] for a detailed description of the data augmentation

techniques used.

Inference

For inference, all test set images are preprocessed with the same pipeline as the training

images. The proposed network architecture is fully convolutional, meaning that all

operations in it can process arbitrary image sizes. Although 128 × 128 × 128 sized

patches were used for training the network, other image sizes can be processed in

inference. We make use of this property of the network to predict entire scans at once,

alleviating the need to stitch patches together. The resulting predictions are then

resampled to their original image spacing.
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Ensembling

We developed our model by running five-fold cross-validation on the HD-train dataset

and optimizing its architecture as well as hyperparameters. The final training was done

in a five-fold cross-validation as well, resulting in five models each trained on a slightly

different training dataset. We used these five models as an ensemble to predict the two

test sets. Ensembling was done by averaging the softmax outputs of the networks prior

to generating the segmentation map via argmax.

Volumetry and tumor progression analysis

Once the segmentation map is available, computation of the volume of the different

compartments of the tumor is straightforward. The spacing of the image gives the

volume occupied by each voxel, and the number of voxels belonging to enhancing tumor

and edema can be retrieved directly from the segmentation maps. Besides a change in

tumor size, RANO also monitors the appearance of new lesions [17]. We detect new

lesions by registering all longitudinal images in the HD-test and EORTC-test set to

the first MRI scan of the respective patient. Connected component analysis on the

segmentation maps from the different time steps then reveals the appearance of new

lesions.

Clinical Integration

The resulting model is integrated into the clinical infrastructure. In order to not in-

terfere with the existing pipelines, a separate Picture Archiving and Communication

System (PACS) was set up. Newly acquired MRI scans are sent to both the standard

clinical PACS as well as the separate PACS that runs the tumor segmentation ensur-

ing independent and vendor-neutral operation. Our server runs the XNAT platform

(www.xnat.org). The image processing pipeline is dockerized (www.docker.com) and

is triggered whenever a new image arrives. The resulting segmentations and tumor

volumes are reported back to the clinical PACS where they can be used alongside the

raw images. For more information on the clinical integration, see details in [10].

3.1.2.4. Results

Our proposed brain tumor segmentation method shows excellent agreement with the

radiologist-generated reference segmentations. Figure 3.4 shows multiple examples

from the EORTC-test set highlighting both the accuracy of the model as well as the

diversity of tumor appearances encountered in clinical practice. Our model is robust

with respect to resection cavities and cysts, can handle multiple lesions and also works

reliably when the contrast of the T1c image is low.
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Figure 3.4.: Qualitative results on the EORTC-test set. Each row represents one MRI
scan with the first four columns showing the four MRI modalities and the last
two columns showing overlays of our predictions and the radiologist-generated
reference segmentations with the T1c modality. Each row highlights challenging
characteristics of the EORTC-test set: a) large cyst right next to the enhancing
tumor b) tumor spanning an entire hemisphere with a large necrotic core inside
the enhancing tumor region c) multiple small enhancing tumor lesions and de-
formation of the midline d) resection cavity e) small, barely visible enhancing
tumor lesion f) small resection cavity g) low contrast of enhancing tumor, diffuse
borders of the tumor and imaging artifacts.

38



3.1. Brain Tumor Segmentation

Figure 3.5.: Quantitative results of our model on the HD-train, HD-test and
EORTC-test set. The results for the HD-train set originate from a five-fold
cross-validation. The predictions for HD-test and EORTC-test were generated
by ensembling the five models from the cross-validation. The midline of the
boxes indicates the median value and the shaded area represents the inter quar-
tile range. Outliers are plotted as dots. Left: enhancing tumor, right edema.
Figure reproduced from [10].
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Figure 3.6.: Volume agreement between the segmentations generated by our CNN
and the reference annotation. We observe very high agreement between the
two sets of segmentations with concordance correlation coefficients of 0.989 for
enhancing tumor and 0.984 for edema, underlining the value of our segmentations
for the assessment of tumor therapy response. Figure reproduced from [10].

Quantitative results are provided in Figure 3.5. Our model achieves median Dice scores

of 0.883 for enhancing tumor and 0.905 for edema on the HD-train set cross-validation.

Our ensemble achieves median Dice scores of 0.885 and 0.906 for contrast enhancing

tumor and 0.929 and 0.932 for edema on the HD-test and EORTC-test set, respectively.

The high overlap between our generated segmentations and the corresponding reference

translates to an excellent volume agreement on the EORTC test set, as shown in Figure

3.6. With the focus of this thesis being first and foremost the segmentation algorithm,

we refer the interested reader to our publication [10] for detailed results regarding tumor

volumetry and progression analysis.

Our pretrained segmentation model is publicly available. It can be downloaded here:

https://github.com/NeuroAI-HD/HD-GLIO.

BraTS 2017 participation

We also tested our model in a standardized and competitive environment by participat-

ing in the BraTS 2017 challenge. For this purpose we retrained our network using only

the data provided by the challenge. We again make use of five-fold cross-validation and

use the resulting models as ensemble.

40

https://github.com/NeuroAI-HD/HD-GLIO


3.1. Brain Tumor Segmentation

Figure 3.7.: Qualitative segmentation results on the BraTS 2017 challenge. Each
row shows a separate example from our five-fold cross-validation on the training
set of the challenge. While the first row shows excellent agreement with the
reference segmentation, some disparity in the necrosis and non-enhancing tumor
class is observed in the second example. We attribute this discrepancy to an
unclear and sometimes inconsistent definition of this class within the training
set. Figure reproduced from [130].
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Figure 3.7 shows results from a five-fold cross-validation of our model on the BraTS

training datasets. Note that BraTS has an additional label named necrosis and non-

enhancing tumor, the definition of which is not always consistent (see Section 3.1.3.4)

causing discrepancies of our prediction with the reference annotation in some training

cases. BraTS evaluates predictions not on the single labels but on overlapping regions

that are constructed from the labels: the whole tumor (union of edema, necrosis and

non-enhancing and enhancing tumor), tumor core (necrosis, non-enhancing and en-

hancing tumor) and the enhancing tumor. On the training set cross-validation, our

model obtains mean Dice scores of 0.895, 0.828 and 0.707 for whole tumor, tumor core

and enhancing tumor, respectively. On the test set (with ground truth annotations be-

ing only available to the challenge organizers) we obtained mean scores of 0.858, 0.775

and 0.647, respectively. Among the 47 participating teams, our algorithm secured the

third place [45].

3.1.2.5. Discussion

In this section we presented a model for automated tumor segmentation in MRI images.

This model was trained on a large cohort of diverse tumor appearances. Evaluation

both on an in-house test set as well as a large-scale multi-institutional cohort underlines

the robustness of the model and emphasizes its usefulness in a clinical setting. With

the emphasis of this thesis being the development of segmentation methods, details

about the clinical evaluation have been left out for brevity. We refer interested readers

to our publication [10] for details regarding the clinical metrics.

Perhaps surprisingly, the Dice scores of our model on the test sets surpassed the scores

obtained on the training set cross-validation. We explain this unusual behavior on the

HD-test set with a) the fact that the HD-train set was enriched in particularly difficult

cases whereas the HD-test set is representative of the distribution found in clinical

practice and b) the HD-test set being predicted with an ensemble of five models which

is expected to improve the quality of the segmentations whereas the segmentations

generated in the cross-validation were generated by single models. The higher scores in

the EORTC-test set are certainly in part caused by these aspects, but with the reference

segmentations of this set being generated post-hoc (they were generated by a previous

iteration of our model and thoroughly corrected by radiologists) we cannot exclude a

bias in these segmentations towards our segmentations. Therefore, the EORTC-test

set should be used to evaluate the robustness of our model first and foremost. As we

have shown in the Results, our model indeed produced very robust results although

the images in this set originated from 34 institutions with MRI scanner parameters

(vendors, field strengths, acquisition parameters) that the model had not seen during

training.
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We furthermore demonstrated that our model does not only produce excellent seg-

mentation results on an in-house dataset but also in the context of an international

competition. Our participation in the BraTS 2017 challenge resulted in a third place

(47 teams in total) which is a respectable result given the competitive nature of the

challenge as well as the lack of dataset-specific tuning.

3.1.3. Brain Tumour Segmentation Challenge 2018

This section is based on the following publication [129]:

Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., & Maier-Hein, K. H. (2018).

No new-net. In International MICCAI Brainlesion Workshop (pp. 234-244). Springer,

Cham.

3.1.3.1. Introduction

In the previous section (3.1.2) we presented our method for brain tumor segmenta-

tion which was developed to enable automated tumor volumetry and therapy response

assessment on a large multi-institutional cohort. While the method has excellent per-

formance both on our in-house dataset as well as the BraTS 2017 challenge, it remains

unclear which design choices contributed to this effect. In this section we are going

back to the ’roots’: Preliminary experiments have shown that good results can also

be achieved with simpler network architectures. To investigate this further, we par-

ticipate in the BraTS 2018 challenge with the constraint of only using a 3D U-Net

[44] like network architecture. We maximize the performance of our method through

tuning of hyperparameters as well as adapting it carefully to the requirements of the

competition.

The network architecture used is often treated as the defining characteristic of a seg-

mentation method [97, 95, 25]. This seems quite surprising, especially because reducing

a method to the network architecture omits all the intricacies of developing state of

the art pipelines. The following section challenges this simplistic view of method de-

velopment: We build our method around the 3D U-Net, an architecture that other

researchers like to use as a baseline method for demonstrating the improvements that

their more elaborate architecture may offer. Instead of optimizing a new approach, we

invest our resources into optimizing the baseline with the goal of demonstrating that

it can still achieve state of the art performance if tuned properly.

To ensure objectively good performance we evaluate the following approach in the very

competitive BraTS 2018 challenge [38, 45, 142, 143, 144]. The 2018 dataset comprises

285 training cases (identical to the 2017 training set). Each case in BraTS consists of the

T1w, T1c, T2 and FLAIR modalities. Note that in contrast to the in-house dataset
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used in the previous section, BraTS also provides annotation for the non-enhancing

tumor and necrosis class (see also Figure 3.7). BraTS 2018 also provides a validation

set (n=66) without reference annotations. Participants can submit their predictions

of the validation set to an online platform and use the obtained metrics for model

development. The final evaluation is done on the test set (n=191) which is provided

to the participants only shortly before the challenge deadline. Only one submission

to the test set can be made. The evaluation of BraTS is not done on the raw labels

but on three (partly overlapping) regions that are constructed from these labels: the

whole tumor (edema, non-enhancing tumor and necrosis, enhancing tumor), the tumor

core (non-enhancing tumor and necrosis and enhancing tumor class) and the enhancing

tumor. Evaluation metrics are Dice score and Hausdorff distance (95th percentile) (see

also 2.4).

3.1.3.2. Method

We first briefly describe our 3D U-Net-based baseline implementation followed by the

improvements used to maximize performance on the BraTS 2018 dataset.

Preprocessing

The BraTS dataset is provided in a preprocessed format: all images are resampled to

a common 1 × 1 × 1 mm voxel spacing. The four input modalities (T1w, T1c, T2

and FLAIR) are co-registered and brain extracted with the voxels outside the brain

being set to 0. We normalize the intensity values of each modality independently by

subtracting its mean and dividing by its standard deviation in the brain region. The

voxels outside the brain region remain 0.

Network architecture

Our network architecture, depicted in Figure 3.8, is based on the U-Net [43, 44]. It

follows the successful encoder-decoder pattern with skip connections and output stride

1 (meaning that the segmentations are generated at the same size as the image and

do not need to be upscaled, see Section 2.2.2). It does not use any of the recent

architectural advancements and instead relies on two standard convolution-instance

normalization-leaky ReLU sequences per resolution in both the encoder and decoder.

The network processes 128× 128× 128 sized patches during training with a batch size

of 2. The encoder has four downsampling operations, resulting in a feature map shape

of 8×8×8 in the bottleneck. Due to the simpler design relative to the network used in

the previous section (see 3.1.2.3) we can fit a larger number of initial feature maps in

the highest resolution (30 as opposed to 21). As is convention, the number of feature

maps is doubled with every downsampling operation resulting in 480 feature maps in
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Figure 3.8.: Network Architecture for BraTS 2018. The network architecture used for
the BraTS 2018 challenge was explicitly chosen to be standard U-Net-like. It
processes patches of size 128× 128× 128 with 30 initial feature maps.

the bottleneck. The decoder mirrors the number of features of the encoder. We justify

replacing the more commonly used batch normalization [139] by instance normalization

[137] with the small batch size used during training (see below). A small batch size

has unreliable batch statistics and can cause issues with batch normalization [145]. We

furthermore replaced the more commonly used ReLU with leaky ReLUs [138].

Training procedure

The network is trained for a maximum of 500 epochs with each epoch being defined as

250 iterations. Batches are constructed from random samples and patches are cropped

randomly without oversampling rare classes. Training is done with the Adam optimizer

[140] with an initial learning rate of 10−4. The learning rate is reduced by multiplication

with 0.2 whenever the exponential moving average of the validation loss (lupdated =

αlold + (1 − α)lnew; α = 0.95) has not improved in the last 30 epochs. Training was

terminated early if the validation loss did not improve within the last 60 epochs. Just

like in the previous section we use the soft Dice loss for training (see Equation 3.1)

to deal with the class imbalance in the dataset. During training a variety of data

augmentations are applied on the fly: random rotations, scaling, elastic deformation,

gamma augmentation and mirroring along all spatial axes.

Inference

We use the fully convolutional nature of our architecture to predict entire images at

once. Mirroring along all axes is applied as test time data augmentation for a slight
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Figure 3.9.: Region-based segmentation targets. Left: overlay of reference annotation
with the T1c image. Upper row: Conventional, mutually exclusive, segmenta-
tion targets. Bottom row: Overlapping region-based segmentations. The BraTS
dataset evaluates the quality of predictions on three partially overlapping regions.
To optimize for this evaluation scheme as well as putting less emphasis on the
inconsistently annotated non-enhancing tumor and necrosis class, we optimize
the regions directly.

increase in accuracy. Whenever used, ensembling is implemented by averaging the

softmax probabilities (or sigmoid outputs, see below).

Improvements over the baseline implementation

Region-based segmentation targets The BraTS evaluation is made on three par-

tially overlapping regions instead of the raw labels. Optimizing the regions directly as

opposed to indirectly could improve the segmentation accuracy because the network

would learn to optimize the target metrics directly.

Figure 3.9 depicts the idea behind region-based training. To the left is an overlay

of the three labels that are provided by the training data. The upper row shows

the conventional, mutually exclusive segmentation targets. During training, the logits

of the segmentation network are passed through a softmax nonlinearity and the loss

function (here a multiclass Dice loss) is applied to transformed logits. This forces the

network to have a final embedding where the three labels are pushed into the corners of
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a hypercube, enabling linear separability and pushing the classes as far away as possible

from each other. We believe that this approach could cause issues because it does not

respect the hierarchical nature of the data (the enhancing tumor is a part of the tumor

core which in turn is a part of the whole tumor). Region-based training is depicted in

the bottom row. Making the network output the hierarchical regions directly optimizes

the target metric and also puts less emphasis on the non-enhancing tumor and necrosis

class which is ill-defined and annotated inconsistently. In region-based training, this

class is no longer optimized directly and only plays an indirect role as part of the whole

tumor and tumor core. Our region-based training is inspired by [146] who designed

a cascade of CNNs to segment the three regions one after the other. To simplify the

segmentation method we incorporate the region optimization into a single network.

Overlapping segmentation targets are accommodated by replacing the final softmax

layer with a pixelwise sigmoid which makes our outputs no more mutually exclusive.

We construct the reference regions from the ground truth annotations. Optimization

is done as before with a soft Dice loss (the soft Dice loss does not require mutually

exclusive labels because it treats the ground truth as one-hot or multi-hot and works

independently for each output).

Co-training with external data Although 285 cases is plenty in the context of

medical image segmentation, additional training data could improve the results even

further. When using additional data, these can be either used for pretraining or along

with the available training data. The additional training data would need to follow the

same annotation convention as the original data. Due to the annotation procedure of

the BraTS 2018 dataset [45], neither the in-house dataset from the previous section or

previous BraTS datasets [38] can be used for this purpose naively. Still, some similari-

ties in the annotation procedure exist and could be used. To prevent contamination of

our BraTS predictions with different annotation procedures we use external data with

an approach similar to ’M Heads’ [147]. We add an additional segmentation layer at

the end of our network that has a separate set of weights to generate the segmentations

from the previous feature representation. The samples originating from BraTS are

directed towards the BraTS-specific segmentation output whereas the samples origi-

nating from the additional data source are directed towards their segmentation head

(we only use one external data source at once). All remaining network weights and

representations are shared. During training, we use one sample taken from the BraTS

dataset and one from the external dataset per minibatch. We experiment with the

Task01 BrainTumour from the Medical Segmentation Decathlon [29] as well as the

in-house dataset from the previous section as external training data.

Postprocessing Metric aggregation in BraTS overemphasizes zero false positives in

the enhancing tumor class. The following equation recaps the definition of the Dice
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Figure 3.10.: Postprocessing by removing small enhancing tumor regions. BraTS
awards predictions with no false positives when there is no enhancing tumor
in the reference segmentation with a Dice score of 1. We introduce a simple
postprocessing technique that exploits this by discarding the enhancing tumor
prediction entirely when only small enhancing tumor regions are predicted. Left:
overlay of our prediction before postprocessing. The enhancing tumor is shown
in yellow, the edema in purple and the non-enhancing tumor and necrosis class
in turquoise. This example demonstrates one of the most common failure cases
in brain tumor segmentation: blood vessels still containing contrast agent are
erroneously segmented as enhancing tumor. In the BraTS evaluation, this case
would have gotten a Dice score of 0 for this class. Right: Postprocessing removed
the false positive prediction, awarding a Dice score of 1 for the non-enhancing
tumor class.

score:

DSC =
2A ∩B
|A|+ |B|

(3.3)

with A∩B being the intersection between two segmentations A and B and |A| and |B|
being the number of elements in A and B, respectively. If both reference and prediction

do not contain the enhancing tumor class, all numbers in the above equation are zero,

causing the Dice score to be undefined. Instead of excluding these cases from the

metric aggregation, BraTS handles this case by assigning a Dice score of 1, rewarding

the participants for their lack of false positives (note that a single false positive voxel

will cause the Dice score to be 0!). If one considers that small lesions usually have

lower scores because small mistakes have a large effect on the Dice, it may be beneficial

to trade an increase in false negatives for the large reward that is a Dice score of 1 by

postprocessing the predictions such that small predicted enhancing tumor regions are

dropped.
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Table 3.1.: Results on BraTS 2018 training data (285 cases). All results were obtained
by running a five fold cross-validation. Metrics were computed by the BraTS
online evaluation platform. reg: region-based training. cotr: cotraining with
additional training data. post: postprocessing by removing small enhancing tumor
regions. DC&CE: using sum of Dice and cross-entropy as loss function (as opposed
to Dice only).

Dice (higher is better) HD95 (lower is better)
enh. whole core enh. whole core

Isensee et al. (2017) [130] 70.69 89.51 82.76 6.24 6.04 6.95
baseline 73.43 89.76 82.17 4.88 5.86 7.11
baseline + reg 73.81 90.02 82.87 5.01 6.26 6.48
baseline + reg + cotr (dec) 75.94 91.33 85.28 4.29 4.82 5.05
baseline + reg + cotr (dec) + post 78.68 91.33 85.28 3.49 4.82 5.05
baseline + reg + cotr (dec) + post + DC&CE 78.62 91.75 85.69 2.84 4.88 5.11
baseline + reg + cotr (inst) + post + DC&CE 76.32 90.35 84.36 3.74 5.64 5.98
baseline + reg + post + DC&CE 76.78 90.30 83.55 3.66 5.36 6.03

We experiment with increasing the score obtained for the enhancing tumor class by

removing the enhancing tumor class entirely from an image if the total volume of the

predicted enhancing tumor is less than some threshold. Enhancing tumor is removed

by replacing it with necrosis (as shown in Figure 3.10). The associated threshold is

tuned on the training set by testing several thresholds and picking the one that resulted

in the highest aggregated Dice score.

Loss function improvement The Dice loss, while optimizing the target metric di-

rectly and inherently handling class imbalance [25, 24, 148] can be difficult to optimize

for neural networks [148]. We experiment with complementing it with a pixel-wise

cross-entropy loss. The loss terms are simply merged with summation. No weighting

is applied to them.

3.1.3.3. Results

We train and evaluate our baseline model as well as its derivatives on a five-fold cross-

validation on the training cases as well as the official BraTS validation set. The val-

idation set is predicted using the five models from the training set cross-validation as

an ensemble. Note that the final evaluation of the challenge is done on the test set, for

which only one submission could be made.

Table 3.1 gives an overview of the performance of our baseline model as well as its

derivatives on the training set cross-validation. Due to the BraTS 2018 training cases

being equivalent to the ones used in 2017, we can also directly compare the results to our

previous model (which was introduced in section 3.1.2). Although our previous model

had a much more elaborate network architecture, the simple U-Net baseline used in this
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Table 3.2.: Results on BraTS2018 validation data (66 cases). Results were obtained
by using the five models from the training set cross-validation as an ensemble.
Metrics were computed by the BraTS online evaluation platform.

Dice HD95
enh. whole core enh. whole core

baseline 79.59 90.80 84.32 3.12 4.79 8.16
baseline + reg + cotr (dec) + post + DC&CE (*) 80.46 91.21 85.77 2.52 4.38 6.73
baseline + reg + cotr (inst) + post + DC&CE (**) 80.95 91.15 86.6 2.44 5.02 6.73
baseline + reg + post + DC&CE 80.66 90.92 85.22 2.74 5.83 7.20
ensemble of (*) and (**) 80.87 91.26 86.34 2.41 4.27 6.52

project outperformed it by a quite substantial margin on the enhancing tumor class.

Region-based training (reg) yields a small improvement over the baseline model in all

evaluation regions. Cotraining with the data from the Medical Segmentation Decathlon

(cotr (dec)) yields a substantial improvement on the training set. Postprocessing in

the form of removing enhancing tumor for cases where the total predicted enhancing

tumor volume was below 750mm3 improved the scores of the enhancing tumor class

even further. Complementing the Dice loss with a cross-entropy loss improved the

scores on the whole tumor and tumor core. Interestingly, using our institutional data

(cotr (inst)) performed worse than the cotr (dec).

The results on the validation set are summarized in Table 3.2. Surprisingly, cotr (inst)

performed substantially better then cotr (dec) on this set. This is the opposite of what

was observed for the training set cross-validation. With only one test set submission

available, this discrepancy is problematic. Due to the larger size of the training set

(n=285 vs n=66) one could lean towards favoring the cotr (dec) model. However, as

we have used the training set extensively for model development and hyperparameter

tuning, the validation set may give a better indication of the test set performance.

We finally opted for ensembling the two models. Even though the ensemble did not

yield noticeably better performance than the cotr (inst) model on the validation set

we hypothesized that it would be more robust and therefore selected it for the test set

prediction.

Figure 3.11 shows a qualitative example taken from the validation set. All tumor

classes seem to have been delineated accurately. Notably, the blood vessels located to

the left of the enhancing tumor region (the bright structures in the T1c image) have

not been falsely segmented. The thin rim of non-enhancing tumor and necrosis voxels

around the enhancing tumor region is an artifact of region-based training and does not

adversely affect performance.

Our algorithm obtained the second place out of 61 competing teams in the BraTS 2018

challenge. The winning method by Andrij Myronenko [99] outperformed our method
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Figure 3.11.: Qualitative results on the BraTS 2018 validation set on a particularly
difficult case. All classes have been delineated accurately. Edema is shown in
purple, enhancing tumor in yellow and non-enhancing and necrosis in turquoise.
Figure reproduced from [129].

Table 3.3.: Test set results. We show the scores achieved by NVDLMED [99], the winner
of BraTS2018, and our method (’MIC-DKFZ’), which achieved the second place.
Table reproduced from [129].

Dice Hausd. dist.
enh. whole core enh. whole core

NVDLMED
Mean 76.64 88.39 81.54 3.77 5.90 4.81

StdDev 25.57 11.83 24.99 8.61 10.01 7.52
Median 84.41 92.06 91.67 1.73 3.16 2.45

MIC-DKFZ
Mean 77.88 87.81 80.62 2.90 6.03 5.08

StdDev 23.93 12.89 25.02 3.85 9.98 8.09
Median 84.94 91.79 90.72 1.73 3.16 2.83
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in whole tumor as well as tumor core while we achieved higher Dice scores in the

enhancing tumor class. [45] provides a detailed overview of the test set results.

3.1.3.4. Discussion

In this section we investigated how far we can push the segmentation performance of a

simple 3D U-Net-derived network architecture. By optimizing the hyperparameters as

well as introducing optimizations for the BraTS 2018 dataset to the training and post-

processing pipeline we were able to obtain the second place in the highly competitive

BraTS 2018 competition. In a research field where overwhelming research effort is put

into the advancement of network architectures, this is a remarkable result because it

strictly opposed the direction research in the field is taking.

We should note that the postprocessing technique in the context of this method was

developed solely to improve the challenge metric. It should never be used in a clinical

environment where the accurate detection and delineation of small enhancing tumor

regions can have a substantial impact on the prognosis and treatment of patients. We

would like to see metric aggregation in BraTS to be changed so that they better reflect

clinical requirements. This can be achieved by simply excluding the cases with no

enhancing tumor in both prediction and ground truth from metric aggregation (but

retaining them if false positive voxels are present).

Transitioning from BraTS 2016 to later challenges, the organizers have merged the non-

enhancing and necrosis classes into a single non-enhancing tumor and necrosis class.

The non-enhancing class in particular was not well defined and had little evidence in

the images, causing the annotations to be inconsistent and hard to reproduce. Starting

with BraTS 2017, the organizers have identified this problem: ”In order to address the

aforementioned issue, in BraTS 2017 the NET label (”Label 3”) has been eliminated

and combined with NCR (”Label 1”).” [45]. However, by combining these two classes

together, the underlying issue remains and inconsistent annotations in the training set

can cause issues preventing good model optimization. Region-based training seems

to be an effective approach for dealing with this issue by putting less emphasis on

optimizing this label.

The drop in Dice scores in the test set relative to the performance on the training and

validation set is a recurring sight in the competition. It is unclear as to what causes

it, but several observations point towards a general problem associated with the test

set itself. We believe it highly unlikely that this drop is related to any of the design

choices in our method. We base this hypothesis on two pillars. First, all participating

teams experience this drop in performance making it highly unlikely to be caused by

overfitting in our method. Second, in the context of this thesis, we will present a
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large number of highly competitive segmentation methods. The vast majority of these

methods are evaluated on holdout test sets for which the reference annotations are not

accessible. While all of these methods were developed using the same principle (tuning

on five-fold cross-validation on the training cases), none of these methods experience a

similar drop in test set performance.

3.1.4. Discussion

This chapter summarized our efforts in advancing brain tumor segmentation methods.

In Section 3.1.2, we have investigated tumor volumetry and therapy response assess-

ment on a large cohort. Although the model was trained on an in-house dataset, it

proved to be robust when applied to a large cohort of cases originating from 34 different

institutions across Europe. We also applied this algorithm to the BraTS 2017 chal-

lenge where we achieved the third place out of 47 competing teams. In Section 3.1.3 we

have questioned our elaborate network architecture and designed a simple 3D U-Net-

derived segmentation method. Instead of focusing on architectural advancements, this

method was optimized solely through hyperparameter optimizations as well as training

and postprocessing pipeline improvements for good performance on the BraTS 2018

dataset. Interestingly, even the simple baseline model could outperform our previous

network architecture. By incorporating several improvements we could successively

improve the segmentation accuracy of the model and ultimately achieved the second

rank out of 61 competing teams.
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3.2. Heart Segmentation

This section is based on the following publication [27]:

Isensee, F.*, Jaeger, P. F.*, Full, P. M., Wolf, I., Engelhardt, S., & Maier-Hein,

K. H. (2018). Automatic Cardiac Disease Assessment on cine-MRI via Time-Series

Segmentation and Domain Specific Features. Statistical Atlases and Computational

Models of the Heart. ACDC and MMWHS Challenges (pp. 120–129). Cham: Springer

International Publishing. https://doi.org/10.1007/978-3-319-75541-0_13

(*: shared first authorship)

Note that this section only describes my contribution to this publication, which was

the development, implementation and evaluation of the segmentation method. The

disease classification method, which was contributed by my co-author Paul F. Jaeger,

is explicitly omitted.

3.2.1. Motivation

Structural changes in the heart can cause heart failure if they remain untreated. Re-

liable identification of structural alterations is essential not only for diagnosis and

treatment stratification but also for managing patients at risk [149, 150, 151]. Clinical

processes are hereby tightly wound around digital imaging techniques, such as Cardiac

Magnetic Resonance Imaging (MRI). On the one hand, cardiac cine MRI (CMRI) offers

high contrast in soft tissue allowing the measurement of the relevant compartments in

the heart. On the other hand it allows to capture a time series of the moving heart in

3D, enabling the analysis of the dynamics of the heartbeat. Clinical analysis of CMRI

images starts with manual or semi-automated segmentation of the end systolic (ES)

and end diastolic (ED) images [152]. Based on the segmentation masks as well as the

underlying images, quantitative parameters characterizing the heart are extracted[4].

Ejection fractions (EF) of the ventricles describe what percentage of their end diastolic

volume (i.e. when the heart is relaxed) is ejected when the heart contracts. The stroke

volume complements this value by providing the absolute volume difference between

ED and ES. Quantification of the myocardial wall thickness between left and right

ventricle allows insights into possible prior infarction. These well-established metrics

are regularly used in rule-based clinical decision processes and guidelines [153].

Although cardiac segmentation has been an active research area in recent years [154,

155], the accuracy and robustness of the resulting models does not yet meet clinical

standards. Therefore, the required segmentations are still created either manually or

with the help of semi-automatic tools. This process is not only time consuming, but

also introduces substantial inter-rater and even intra-rater variability [152] resulting in

insufficiently reliable outcomes.
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Figure 3.12.: ACDC training data. This example shows the end diastolic and end systolic
time steps of patient 066 from the ACDC challenge [4]. The axial view in the
top row demonstrates the high in-plane resolution. The coronal view in the
bottom row highlighting the low out of plane resolution. The left image shows
the raw data and the right image shows an overlay of the segmentation maps
on the raw data. The right ventricle is shown in red, the myocardium of the left
ventricle in green and the left ventricular cavity in blue.

3.2.2. Introduction

The Automated Cardiac Diagnosis Challenge (ACDC) [4] was created to encourage

and enable the development of automated cardiac segmentation methods. It provides

a large training cohort of 100 CMRI time series. For each time series, the left ven-

tricular cavity (LVC) the right ventricle (RV) and the myocardium of the left ventricle

(LV¡) are segmented in the ES and ED time step, resulting in a total of 200 anno-

tated images. One unique feature of the ACDC dataset is its inclusion of patients

with pathologies. The training set consists of patients with abnormal right ventricles,

infarction, hypertrophic cardiomyopathy, dilated cardiomyopathy and a control group

of healthy patients (20 cases each). The dataset provides 50 test cases with unknown

pathologies and segmentations for independent method evaluation.

Figure 3.12 shows an example image taken from the ACDC training dataset. One

of the major challenges associated with this dataset is the disparity between in and

out-of-plane resolution. As is typical for CMR images of this type, the slice-wise 2D

acquisition results in a high in-plane resolution but suffers from inter-slice distances

of up to 1 cm. Higher resolutions in the out of plane axis are certainly desirable but

difficult to achieve with patients suffering from coronary diseases because they require

longer image acquisition times during which the patients are required to hold their

breath. Furthermore difficulties associated with this dataset are slice misalignments

due to patient movement between slice acquisitions, the presence of trabeculae and

papillary muscles inside the LVC, partial volume effects as well as banding and motion
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artifacts [4].

3.2.3. Method

Our approach for CMR segmentation uses an ensemble of standard 2D and 3D U-Net

architectures [43, 44] that were specifically adapted to the ACDC dataset.

3.2.3.1. Preprocessing

All images were normalized individually by subtracting their mean value and dividing

by their standard deviation. The ACDC dataset contains training cases with varying

voxel spacings. Neural networks, which operate on voxel grids, cannot encode this

information. Therefore, all images need to be resampled to the same voxel spacing

prior to feeding them into the network. We selected 1.25 × 1.25 × 10 mm as target

spacing for the 3D U-Net. For the 2D U-Net the in-plane target spacing is set as

1.25× 1.25 mm as well. Since the network operates on in-plane slices, the out-of-plane

spacing is left unchanged to alleviate the need for resampling across the low resolution

axis. Resampling is done with linear interpolation. Segmentation maps are converted to

a one-hot encoding prior to resampling and converted back with the argmax operation.

3.2.3.2. Network Architecture

Figure 3.13 gives an overview of the segmentation network used for the ACDC challenge.

Note that both the 2D and 3D network follow the same global topology but differ in

their implementation. The encoder consists of five blocks, with each block being com-

posed of 2×(convolution-batch normalization-leaky ReLU) [138, 139]. Downsampling

is done with max pooling. The number of feature maps doubles with each downsam-

pling operation. The decoder mirrors the structure of the encoder. Upscaling feature

maps is implemented as linear upsampling. Features originating from the skip connec-

tions are concatenated to the upsampled feature maps. The decoder is augmented with

deep supervision, similarly to [136]: additional segmentation outputs are generated at

lower resolutions in the decoder, upsampled to match the full resolution output and

aggregated by addition prior to softmax activation. All convolutions are padded to

ensure that they have identical input and output shapes.

Both the 2D and 3D U-Net are configured to fill the GPU memory of a 12 GB Nvidia

Titan X during training. The 2D U-Net uses an input patch size of 352×352, processing

almost entire axial slices. The initial number of feature maps is set to 48, allowing a

batch size of 10. The 3D U-Net processes batches of size 10× 224× 224 with a batch

size of 4. All kernel sizes of feature map generating convolutions are set to be 3×3 in

the 2D U-Net and 3×3×3 in the 3D U-Net. Due to the anisotropy of the batches in
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Figure 3.13.: 3D U-Net architecture for the ACDC challenge. The input patch size
of the network is 10 × 224 × 224 voxels. Due to the anisotropy of the patch,
pooling throughout the entire network is only done in-plane, resulting in the
out-of-plane dimension to remain at 10 at all times. Information between slices
are aggregated only through the 3 × 3 × 3 convolutional kernels. The network
starts with 26 feature maps which double with every downsampling step in the
encoder. The decoder mirrors the number of feature maps in the encoder. We
introduce additional auxiliary segmentation outputs at lower resolutions in the
decoder which are upsampled and added to the segmentation output of the
highest output resolution. The 2D network architecture is equivalent but uses
2D convolutions and starts with a patch size of 352× 352 and 48 feature maps.
Figure reproduced from [27].
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the 3D network, downscaling (and upscaling) is only performed in-plane, leaving the

size of the out of plane feature maps untouched at a size of 10 voxels. Aggregation

of contextual information between slices thus occurs only through the convolutional

kernels in the 3D U-Net (and not at all in the 2D U-Net).

3.2.3.3. Training procedure

Both the 2D and 3D model were trained in a five-fold cross-validation to obtain es-

timates of their performance on the training cases. The splits of the cross-validation

were generated such that the ED and ES image of a patient were either both part of

the training or the validation split (patient-level stratification).

The 3D model was trained for 300 epochs with each epoch being defined as 100 iter-

ations with batch size 4. The batches were constructed by randomly selecting cases

from the training split and randomly cropping patches out of these images. Categorical

cross-entropy was used as loss function. We used the Adam optimizer [156] with an

initial learning rate of 5 ·10−4 which was decayed by multiplication with 0.98 after each

epoch.

Just like the 3D model, the 3D model was also trained for 300 epochs with each epoch

being defined as 100 iterations. Adam with the same settings was used here as well.

Patches were sampled by selecting random slices from random training images and then

cropping the slices randomly to the desired input. The 2D network was trained with a

multiclass variant of the Dice loss [25, 24]:

Ldc = − 2

|K|
∑
k∈K

∑
ik
uikvik∑

ik
uik +

∑
ik
vik
, (3.4)

with u and v being a one hot encoding of the ground truth and the softmax output

of the network, respectively. k ∈ K denotes the class identifier (K = 0, 1, 2, 3 for the

ACDC dataset: background and three different foreground classes LVC, MLV, RV).

ik ∈ N 3 denotes all voxels belonging to the class activation map and softmax output of

the network, both having a shape of 10×352×352. Note how k extends into the batch

dimension, effectively treating the individual samples in the minibatch as a pseudo-3D

volume to increase the robustness of the loss.

A variety of data augmentation techniques are applied during training to increase the

robustness of the networks to unseen data: mirroring along the in-plane axes, random

rotations, gamma augmentation and elastic deformations. Due to the anisotropy of the

data resampling along the out of plane axis results in resampling artifacts. To prevent
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Table 3.4.: Comparison of 2D and 3D U-Net performance on the ACDC training
set. Dice scores computed from a five-fold cross-validation. Table reproduced
from [27].

LVC RV LVM

2D model 0.945 0.902 0.905
3D model 0.928 0.879 0.872
ensemble 0.945 0.908 0.905

artifacts being introduced by data augmentation we apply all spatial transformations

only in-plane. We furthermore artificially increased the number of slice misalignments

for the 3D network by shifting slices with a probability of 10% by a random offset

drawn from a Normal distribution N (0, 20). The offset is sampled independently for x

and y.

3.2.3.4. Inference

We apply the same preprocessing techniques used for preparing the training cases to

the test cases. Note that this entails generating two sets of preprocessed test images:

one for the 3D U-Net and one for the 2D U-Net. Prediction of the images was done fully

convolutionally. The softmax outputs were then sampled back to the original image

resolution. The final segmentations were obtained by averaging the softmax predictions

of the 2D and 3D model followed by an argmax operation. Note that for each U-Net

model we use the five models obtained from cross-validation in the ensemble, resulting

in a total of 10 models for the final test set predictions.

3.2.4. Results

3.2.4.1. Cross-validation results

The Dice scores obtained on the five fold cross-validation on the ACDC training dataset

are presented in Table 3.4. Although the 2D model outperforms the 3D model in all

three labels, ensembling the two models improves the segmentations of the RV label

and supports our design decision to submit the ensemble of these models for the test

set.

3.2.5. Test set results

The ACDC test set consists of 50 patients, again each with ED and ES time points

for a total of 100 images. We predicted the test cases with the inference methodology

described in Section 3.2.3.4.
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Figure 3.14.: Test set results for ACDC. Each plot shows a different test case with the
raw image on the left and an overlay with our prediction on the right.
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Table 3.5.: Quantitative ACDC test set results. All scores were computed and provided
by the challenge organizers [4].

LVC RV LVM Average

Isensee et al. [27] 0.9495 0.9225 0.9105 0.9275
Baumgartner et al. [157] 0.937 0.9075 0.8965 0.9137
Khened et al. [94] 0.9405 0.907 0.8935 0.9137
Zotti et al. [158] 0.931 0.9115 0.89 0.9108
Jang et al. [159] 0.94 0.907 0.885 0.9107
Wolterink et al. [160] 0.9395 0.9 0.8845 0.908
Rohe et al. [161] 0.9285 0.8805 0.8815 0.8968
Jain et al. [162] 0.92 0.865 0.8895 0.8915
Tziritas-Grinias [163] 0.9065 0.803 0.7975 0.8357
Yang et al. [164] 0.8195 0.7795 N/A N/A

Figure 3.14 shows eight representative samples of the test set along with the predictions

of our model. Although no ground truth masks are available for comparison (these are

only available to the challenge organizers) visual inspection reveals high segmentation

accuracy. This is even true for difficult cases, for example in the upper right corner

(b) where the right ventricle (red) is barely visible due to the pathological appearance

of the heart (likely hypertrophic cardiomyopathy). The models also seem to be robust

with respect to shadows introduced by blood flow (f) [4] and motion artifacts (h).

The quantitative test set results of all teams that participated in the 2017 challenge

are presented in Table 3.5. As can be seen in the table, the proposed ensemble of 2D

and 3D U-Net outperformed all competing methods by a fair margin and thus won the

ACDC challenge. Note that all scores were computed and provided by the challenge

organizers [4]. We added a column showing the average score for the three regions for

convenience.

Note that our Dice scores for all three classes (RV, LV, LVM) were higher on the test set

than on the training set cross-validation. While ensembling the five models from cross-

validation certainly plays a role (due to ensembling 10 predictions per image on the

test set as opposed to 2 on the training set), this result still emphasizes the robustness

of our model with respect to previously unseen images.

Our segmentation method is publicly available. Source code can be downloaded here:

https://github.com/MIC-DKFZ/ACDC2017.

3.2.6. Discussion

In this section we presented our method for cardiac MRI segmentation in the context

of the ACDC challenge. Our method revolves around adapting the successful 2D and
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3D U-Net architectures to deal with the specific difficulties encountered in the ACDC

dataset, the most important of which being the strong anisotropy of the data (high

in-plane and low out-of-plane resolution). Even though our approach is based on plain

convolutions, and thus had one of the simplest feature extractors among the challenge

competitors, the careful design of the method allowed it to outperform substantially

more sophisticated approaches [94].

Perhaps surprisingly, the 3D U-Net performed worse than its 2D counterpart on the

five fold cross-validation. We would have expected it to perform substantially better

because it can transfer information between slices and thus better cope with situations

in which structures cannot be recognized using a single slice (see for example Figure

3.14 b). Note that other participants also investigated the use of 3D U-Nets and

made similar observations about their performance relative to 2D architectures [157].

We attribute the lower segmentation accuracy of the 3D network to two properties

of the ACDC data. First, the large out-of-plane resolution causes substantial changes

between successive slices that may go beyond what the small 3×3×3 kernel sizes of the

convolutions can process. Second, slice misalignments worsen this effect substantially

by introducing adjacent slices where the structures are shifted substantially relative

to each other. Both of these effects may introduce a substantial amount of noise into

the convolution operations hampering the learning process of the networks and causing

them to overfit more than their 2D counterparts.

Surprisingly, despite its overall worse performance, ensembling the 3D U-Net with

the 2D U-Net improved the Dice score of the most difficult class, the RV, while not

impacting the Dice scores of the other classes. We suspect that despite its shortcomings,

the 3D network was able to learn complementary information to the 2D network that

enabled it to improve upon the latter’s performance in the RV class.

Finally, we should note that the resampling process selected for this method may,

even though it was tuned towards anisotropic data, still be suboptimal. Some images

in the training set had substantially better out of plane resolution (5mm) than the

majority of images (10mm). Downsampling these images to a common out of plane

spacing of 10mm and the upsampling the predictions back to 5mm can cause substantial

interpolation artifacts, especially in the presence of slice misalignments. It would have

been beneficial to select a higher out-of-plane resolution as target spacing resulting in

less downsampling during preprocessing.
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3.3. Kidney and Kidney Tumor Segmentation

This section is based on the following publication ([165]):

Isensee, F., & Maier-Hein, K. H. (2019). An attempt at beating the 3D U-Net. arXiv

preprint arXiv:1908.02182.

3.3.1. Motivation

Between 1983 and 2002 the incidence of kidney tumors has risen from 7.1 to 10.8 cases

per 100,000 US citizens [166]. The frequency of small incidental findings in particular

has increased, which is largely attributed to the widespread availability of imaging

techniques [166]. Surgical removal of the tumors is curative and is considered the

standard treatment approach [167], but comes with associated adverse effects to the

patients health.

Treatment of renal tumors has advanced substantially in the last 60 years, going from

radical nephrectomy (i.e. complete removal of the affected kidney) [168] to kidney-

preserving partial nephrectomy [169]. Recent evidence suggests that a substantial

number of tumors may even be indolent, meaning that they are unlikely to ever become

dangerous for the patient [170, 171]. For these cases, active surveillance constitutes the

best treatment option, is considered safe [171] and provides the highest patient well-

being. To identify the best type of treatment and thus outcome for each individual

patient, proper stratification techniques are required. The distinction of malignant

renal cell carcinoma from benign kidney tumors is, however, considered difficult on ra-

diological images [172]. Nonetheless, several scoring systems for quantification of tumor

aggressiveness have recently been proposed [18, 19], but so far lack widespread adoption

in clinical practice. This is partly due to high manual labelling effort [173], substan-

tial inter-observer variability [174] as well as insufficient accuracy of the predictions

[175, 176, 177].

Semantic segmentations of the kidneys and tumors have the potential to drastically

improve the accuracy and inter-rater variability of these scoring systems. However,

simply due to the time required to do the delineation manually, this has so far not

been considered to be an option for clinical practice. For this reason, fully automated

segmentation methods could have tremendous impact on clinical decision making by

taking away the manual effort while at the same time providing a way to generate re-

producible, high quality segmentation masks. Furthermore, automatic segmentations

can be deployed on a large scale at minimal cost, ultimately enabling the discovery of

more precise and robust scoring systems for treatment stratification. Although sub-

stantial advances in automatic segmentation methods on CT images, most prominently

in liver and liver tumor segmentation [26, 35, 29] as well as multi-organ segmentation

63



3. Manual Design of Segmentation Pipelines

[36] have been made in recent years, kidney tumor segmentation remains an unsolved

problem with only few methods being devoted to it [178, 179, 180].

3.3.2. Introduction

The Kidney and Kidney Tumor Segmentation Challenge (KiTS) [15, 28] was created to

encourage the development of automated segmentation methods for kidneys and kidney

tumors and to identify the best algorithm for this task. It was held in conjunction with

the Conference for Medical Image Computing and Computer Assisted Interventions

(MICCAI) in 2019. The challenge provides the largest fully annotated dataset for this

type of problem to date with 210 training and 90 test images. The segmentations for

the training cases are released to the public while the annotations of the test set are

held private and used for method evaluation.

Reference annotations comprise labels for the Kidneys as well as the tumors. Figure

3.15 shows two examples from the training set. The kidneys are shown in purple and

the tumors are shown in yellow. Tumors can be identified via their texture and based

on the deformation they cause, causing the kidneys to bulge outward. One of the major

difficulties in the dataset is the presence of cysts (see bottom row in the Figure) that

can be difficult to distinguish from tumors.

The U-Net [44, 43] and its derivatives are the de facto state of the art in most medical

image segmentation applications [99, 34, 27, 129, 26]. As we have discussed in Section

2.2.4, many newly proposed methods attempt at improving upon the U-Net by intro-

ducing alterations to its architecture [97, 95, 94, 93, 25]. However, results both from

previous sections in this thesis (see Sections 3.2 and 3.1.3) as well as recent challenge

results [30, 129] indicate that state of the art results can be still achieved with just

a U-Net, questioning the necessity for complex design patterns in segmentation archi-

tectures in the medical domain. In this section we will be revisiting this question by

directly comparing a standard U-Net with U-Nets that incorporate residual connections

in their encoder.

3.3.3. Method

3.3.3.1. Preprocessing

The voxel spacing of the images provided by KiTS is heterogeneous and must be ho-

mogenized for processing with neural networks. Selecting the proper target spacing is

crucial because it changes the size of the images as well as how much fine-grained details

are discernible after resampling. A larger target spacing results in smaller images with

less detail whereas a smaller spacing results in larger images with more details. When

working with CNNs, the amount of contextual information that can be used by the
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3.3. Kidney and Kidney Tumor Segmentation

Figure 3.15.: Kidney and Kidney tumor segmentation. Examples are taken from the
KiTS 2019 training set. Left: raw CT image, Right: overlay with the reference
segmentation. Kidneys are shown in purple, tumor in yellow. Tumors can be
difficult to discern from kidney tissue and may be identified either by protruding
from the kidney or by their texture (upper row). Cysts can look similar to
tumors (bottom row), making them one of the main sources for segmentation
errors in this dataset.
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network is determined by the spatial extend the input patch size can cover (provided

that the network architecture is designed appropriately). Ideally, we would like to set

the input patch size to be as large as (or close to) the image size to enable the network

to see all the relevant details. This is, however, often impossible in practice because

large patch sizes require a large amount of GPU memory during training. Based on

our experience in Section 3.1.3, an input patch size of 128× 128× 128 can reasonably

be processed by common deep learning capable GPUs, such as the Nvidia Titan X (12

GB) or Nvidia RTX 2080 ti (11 GB). With the input patch size being limited by the

GPU memory, the proportion of the image the network can see at once depends on the

target spacing because it determines how many millimeters the patch size corresponds

to. Maximum contextual information would be accessible to the network if the target

spacing was chosen such that the resulting average image shape was approximately

equal to the patch size. However, excessive downsampling comes at the price of less

fine grained texture information being retained, possibly decreasing the accuracy with

which structures that are best identified by their texture are segmented. Furthermore,

downsampling the reference segmentations to the new spacing also causes a loss in

fine grained details and resampling the result back to the original image resolution

introduces interpolation artifacts. We therefore strike a balance between image size,

texture quality and the granularity of the segmentations by selecting a target spac-

ing of 3.22 × 1.62 × 1.62 mm which results in a typical shape of the training cases of

128× 248× 248 (median size in voxels, computed individually for each axis).

CT images are quantitative with voxel intensities representing Hounsfield Units (HU),

a measure of how much radiation is absorbed by the tissue. Unlike MRI images which

produce qualitative image intensities, HU values are comparable between different CT

scanners. This property is used by clinicians for the analysis of CT images: organ-

specific level windows can be set to clip undesired values and increase the perceived

contrast within the structure of interest. We follow this idea in our intensity normal-

ization scheme by clipping the intensity values of all images to the range [−79, 304].

We then subtract 101 and divide by 76.9 to bring the resulting intensities into a range

that can easily be processed by CNNs.

3.3.3.2. Network architecture

In this section we compare the segmentation accuracies of a standard 3D U-Net with

two residual variants: a 3D U-Net with residual connections [9] and a 3D U-Net with

pre-activation residual connections [84] in the encoder. Since residual networks facili-

tate the construction of deeper network architectures through improved gradient flow

and the inherent capability of learning residual functions, we increase the number of

convolutional layers in the residual variants to reflect this advantage. In the context of
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3.3. Kidney and Kidney Tumor Segmentation

medical image segmentation, the GPU memory used for training is the most limiting

constraint when designing segmentation networks, which is why we configure all net-

work architectures to fully utilize the memory of a 12 GB Titan X GPU to allow for

a fair comparison. It is important to note that the number of convolutional layers and

parameters intentionally differ between the architectures.

Figure 3.16 gives an overview over the U-Net architectures used in this section. The

upper part shows the standard 3D U-Net and the lower part the residual U-Nets. The

residual U-Nets share the same topology with only the type of residual blocks being

different. Both architectures process a patch size of 80× 160× 160 voxels and have 5

downsampling operations. The first downsampling operates only in-plane to account

for the anisotropy in the patch size. This results in a feature map size of 5×5×5 in the

bottleneck. Downsampling is implemented as strided convolution and upsampling is

implemented as convolution transposed. To reduce the memory footprint of the residual

U-Nets, they use only one convolution per resolution in the decoder as opposed to 2 in

the standard U-Net. The standard U-Net starts with 30 feature maps and the residual

U-Nets with 24.The number of feature maps is doubled with each downsampling, up

to a maximum of 320. Auxiliary loss layers are added to the decoder (also see Section

3.1.2.3).

3.3.3.3. Training procedure

The training procedure is identical for all three U-Nets. We use stochastic gradient

descent with nesterov momentum and a batch size of 2. Training is done for 1000 epochs

with one epoch being defined as 250 iterations. Following our experience in Section

3.1.3 the sum of cross-entropy and multiclass Dice loss are used. During training we

apply a variety of data augmentation techniques on the fly: scaling, rotation, brightness,

gamma, contrast and Gaussian Noise.

3.3.3.4. Dataset Modifications

During the training phase of the challenge the organizers confirmed the reference seg-

mentation of two cases (IDs 15 and 37) to be faulty 1. We therefore replaced the

segmentations of these cases with the ones generated from initial runs of our standard

U-Net. During model development, we furthermore noticed consistent disagreement

between our predictions and four additional cases (23, 68, 125 and 133) which led us to

exclude them for the final experiments reducing the number of training cases to 206.

1https://github.com/neheller/kits19/issues/21
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Figure 3.16.: 3D U-Net and its residual counterparts used for the KiTS 2019 chal-
lenge. We investigate whether including residual connections can improve the
segmentation accuracy of the U-Net. The reference U-Net implementation uses
two convolutions per stage in both the encoder and decoder (upper row). The
residual and pre-activation residual U-Nets (bottom row, they only differ by the
type of residual block being used) have a deeper encoder to utilize the bene-
fits of using residual connections, namely the improved gradient flow and the
possibility of creating deeper network architectures. The decoder of the resid-
ual U-Nets only uses one convolution per stage to offset the increased memory
consumption of the encoder. They also start with only 24 feature maps instead
of 30 to fit the same memory budget as the reference U-Net during training.
Figure reproduced from [165].
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Table 3.6.: Five-fold cross-validation on the KiTS 2019 training data. The residual
3D U-Net achieved the highest composite Dice score and is therefore selected for
test set prediction.

Network architecture Kidney Dice Tumor Dice Composite Dice

3D U-Net 97.34 85.04 91.19
Residual 3D U-Net 97.36 85.73 91.54
Preact. Res. 3D U-Net 97.37 85.13 91.25
ensemble of all U-Nets 97.43 85.58 91.50

3.3.3.5. Inference

Due to the disparity in patch and image size (80 × 160 × 160 vs typical image size of

128× 248× 248) we do not use fully convolutional inference (as was done in Sections

3.1.2, 3.1.3 and 3.2) and instead make use of a sliding window approach. We set the

window size to be the same as the patch size that was used during training and scan

the images. Since the segmentation accuracy decreases towards the borders we use 50%

overlap between adjacent patches and weigh the voxels in the center of each prediction

higher than the ones close to the border. This ensures that during the aggregation of

the single predictions pixels that have a higher confidence influence the final prediction

the most. Whenever ensembling is used we compute the softmax probabilities for each

model separately and average them across the ensemble members.

3.3.4. Results

We train all three U-Net models in a five fold cross-validation on the 206 training cases

to obtain a reliable estimate of their segmentation performance. Note that the KiTS

challenge ranks methods by their composite Dice, which is defined as the average of the

kidney and tumor dice scores. In case of a tie the tumor dice is used as tie breaker [15].

Table 3.6 shows the Dice scores of our experiments with the three U-Net variants. All

networks show excellent agreement with the reference annotations, yielding composite

Dice scores of 91.19 for the standard U-Net, 91.54 for the residual U-Net and 91.25 for

the pre-activation residual U-Net. We attempted increasing the segmentation scores

by ensembling the three models. Interestingly the ensemble could not improve upon

the single model score of the residual U-Net.

Based on how close the scores for the U-Nets are it is difficult to declare a winner,

especially because there is always a certain amount of noise in the results. Nonetheless,

one model had to be selected for test set prediction. For this we selected the residual

U-Net based on its marginally higher composite Dice. We used the five models from

the cross-validation as an ensemble for predicting the 90 cases of the test set.
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Figure 3.17.: Qualitative segmentation results on the KiTS 2019 test set. Left:
raw CT image; Middle: Our predicted segmentation; Right: 3D Rendering.
Kidneys are shown in purple and tumors in yellow. Each row highlights a
particular difficulty of the dataset. a) Large heterogeneous tumor and kidney
displacement. b) homogeneous tumor and strong kidney displacement. c) small
tumor that is difficult to discern from the kidney. d) cyst and tumor. e) large
tumor that protrudes from the kidney. d) one kidney missing. Renderings are
done with the MITK workbench [181].
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Table 3.7.: Results on the KiTS 2019 test set (90 cases). Our segmentations were
generated by using the five residual 3D U-Nets obtained from the training set
cross-validation as an ensemble. Only the top 10 entries to the challenge are
shown for brevity. The full leaderboard can be accessed at http://results.

kits-challenge.org/miccai2019/

Rank Team Composite Dice Kidney Dice Tumor Dice

1 Isensee F and Maier-Hein K. H. 91.23 97.37 85.09
2 Xiaoshuai H. et al. 90.64 96.74 84.54
3 Guangrui M. et al. 90.25 97.29 83.21
4 Zhang Y. et al. 90.24 97.42 83.06
5 Ma J. 89.94 97.34 82.54
6 Liu S. 89.87 97.42 82.31
7 Wszhao fdu 89.61 97.41 81.81
8 Li Y. 89.39 97.17 81.61
9 Myronenko A. and Hatamizadeh A. 89.23 97.42 81.03
10 Chen B. 89.20 97.01 81.40

Figure 3.17 shows qualitative results of our method on the KiTS 2019 test set. With

the reference predictions being held private by the challenge organizers we can only

show our predictions and not compare them to the ground truth. Visual inspection

reveals a high segmentation quality. The figure highlights particularly difficult cases

with cysts, kidney displacement, missing kidneys as well as particularly large and small

tumors.

For the evaluation of the challenge the predicted segmentations were submitted to the

challenge organizers. In the final ranking, our method outperformed all 105 competitors

and took the first place with a composite Dice score of 91.23 and a margin of 0.59 to

the second place.

3.3.5. Discussion

In this section we have developed three 3D U-Net variants for kidney and kidney tu-

mor segmentation. The three variants, namely a standard U-Net, a U-Net with residual

blocks in the encoder as well as a U-Net with pre-activation residual blocks in the en-

coder. We trained all architectures in a five-fold cross-validation on the 206 training

cases and selected the best performing method, the U-Net with residual connections

for the test set submission. Our method obtained the first place in the KiTS 2019 chal-

lenge, which is a notable achievement considering that KiTS was the most competitive

challenge at this venue with 106 participating teams.

Even though the residual U-Net ended up being selected for the test set predictions,

its performance on the training set cross-validation relative to the standard U-Net was
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surprisingly similar to the standard U-Net implementation. The difference between the

models is only 0.35 Dice scores, which is in the same range we would expect the noise

on this dataset to be. This difference is also less than the margin to the second place

in the challenge, suggesting that the standard U-Net implementation could also have

achieved the first place had it been used for the test set prediction.

Training the same model several times will always result in a certain amount of noise

in the scores. The experiments done in this section therefore do not allow a definitive

conclusion about which U-Net model really performs the best on the KiTS dataset. The

residual U-Net variants both performed marginally better then the standard U-Net, but

without rerunning the experiments several times and doing a statistical analysis of the

distribution of scores no definitive conclusions can be drawn from this study. While

this may appear disappointing at the first glance, it definitely is a win for the standard

U-Net whose performance was much higher than the literature would suggest. This is

particularly surprising considering that the residual U-Nets have more parameters and

more convolutional layers, which should have allowed them to learn more expressive

features [9, 84].

In this study we designed the models to utilize the same amount of GPU memory during

training disregarding the number of layers or parameters the models have. This design

choice was made intentionally for several reasons: First of all, we wanted to allow each

of the methods to play to their strengths. Second, we believe that setting an equal

number of parameters or layers is not a sensitive constraint in the context of medical

image segmentation. Most experiments are constrained by practical limitations, such

as the GPU memory consumption, long before overfitting becomes a concern. It would

certainly be interesting to see how the performance of the models changes with different

constraints in place.

3.4. Discussion

In this Chapter we have conducted three case studies on semantic segmentation prob-

lems in the medical domain: brain tumor segmentation in multimodal MRI, cardiac

substructure segmentation in cine MRI as well as kidney and kidney tumor segmenta-

tion in CT. We have developed state of the art algorithms for each of these problems

and evaluated them on competitions to objectively and indisputably demonstrate their

effectiveness. Our performance on the BraTS 2018 and KiTS 2019 challenges are hereby

particularly noteworthy due to them being the most competitive and influential chal-

lenges in the domain: BraTS 2018 is the most recent iteration of BraTS, one if the

oldest and influential competitions in the domain [38]. A total of 61 teams competed

in 2018 among which were many high ranking institutions and industry players. KiTS
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2019 was the most competitive challenge at the MICCAI conference 2019 with over

100 participating teams. The open leaderboard, even though it has only existed for

less than a year now, has already over 700 submissions.

The segmentation problems treated in this chapter were quite different from each other,

with each dataset having its own unique properties: With a typical size of 160×190×160

and a spacing of 1×1×1 mm, BraTS images are isotropic and nearly have cubic shape.

Strong class imbalances, in particular for the enhancing tumor region can cause issues

if not properly addressed. ACDC on the other hand is very anisotropic with a typical

shape of 9× 256× 256 and a corresponding spacing of 10× 1.56× 1.56 mm impeding

smooth transfer of information between slices. Slice misalignments further reduce the

amount of useful information that can be transferred, causing 3D networks to not fully

utilize the additional information. KiTS has a typical shape of 107 × 512 × 512 with

a corresponding spacing of 3 × 0.78 × 0.78 mm and thus sits in between BraTS and

ACDC in terms of anisotropy. Image sizes vary substantially, however, with the largest

image being above 500×500×500 voxels. Given memory limitations on modern GPUs

trade off need to be made between image size and the retained granularity of details

to enable the patch size to capture sufficient contextual as well as texture information.

The diversity of the datasets treated in this chapter and the solutions we came up

with to address them teach valuable lessons about what design choices relate to good

performance in a segmentation model. The perhaps most surprising result of this

chapter is the strength of the plain U-Net. This architecture is very often used as a

baseline and has been ’outperformed’ numerous times. Yet, on all of the three datasets

tested we used the standard U-Net formula to either define a new state of the art or

closely match it. This observation is closely related to our discussion of the state of

the art in medical image segmentation (see Section 2.5) where we hypothesized that

the conclusions drawn in papers proposing new bells and whistles regarding network

architecture may lack generality and a sufficiently thorough evaluation.

We believe that a key aspect contributing to the success of the U-Nets defined in this

chapter lies in our dataset-specific adaptation. While all standard U-Nets we devel-

oped followed the basic concept of the architecture (i.e. encoder-decoder with skip

connections, segmentation map generated at output stride 1, feature extraction with

plain convolutions only (no residual, dense, ... connections)), we paid careful attention

to the properties of the dataset and the need for adapting the network topology ac-

cordingly. In general, increasing the patch size (upper bounded by the image size) as

much as the GPU memory allows provided great results on all tested datasets. Hereby,

the patch size should be adapted to the anisotropy of the dataset, resulting for exam-

ple in a patch size of 128 × 128 × 128 for the isotopic BraTS and 10 × 224 × 224 for

the anisotropic ACDC dataset. Depending on the patch size and the spacing of the

73



3. Manual Design of Segmentation Pipelines

corresponding dataset, the network topology needs to be appropriately adapted. All

networks need to contain sufficient pooling operations such that the field of view of

the encoder spans the entire input patch. This needs to be determined for each axis

independently and sometimes pooling must be done for certain axes only in order to

accommodate input dimensions with very low spatial size.

A part from the network topology, the experimental setting is an important variable

that contributes to the success of failure of methods. In both BraTS and ACDC, not

downsampling the images (by choosing the typical image spacing as resampling target)

and thus training on the full image resolution provided the best results. In KiTS,

however, the image data had to be downsampled in order to guarantee a proper field

of view for the input patch size. Based on our observations on the ACDC dataset a 2D

network may provide a better segmentation performance if the dataset is anisotropic

and slice misalignments are present.

Dynamic, dataset-specific adaptations aside, we also observed several components of

our pipelines to be consistent across all datasets, indicating that they constitute robust,

well-performing design choices that can be considered generalizable across the diverse

datasets encountered in the domain. These are for example the Dice loss function,

extensive data augmentation, ensembling of models as well as resampling of training

data to a common voxel spacing.
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Pipelines

In the following chapter we will present nnU-Net, our framework for automating the

design of segmentation methods in the biomedical domain. This chapter is based on

the following publications ([30] and [23]):

Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P. F., Kohl, S., ... &

Maier-Hein, K. H. (2018). nnu-net: Self-adapting framework for u-net-based medi-

cal image segmentation. arXiv preprint arXiv:1809.10486. https://arxiv.org/abs/

1809.10486

Isensee, F.*, Jaeger, P. F.*, Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2020).

Automated design of deep learning methods for biomedical image segmentation. arXiv

preprint arXiv:1904.08128. https://arxiv.org/abs/1904.08128

(*: shared first authorship)

The two publications above describe different versions of the same method, nnU-Net,

which is the key contribution described in the following chapter. While the initial

version (first paper) was conceptualized, developed, implemented and evaluated by

me, its further development (second paper) was done in collaboration with my co-

author Paul F. Jaeger. Paul in particular contributed to discussions leading to the

final version of the method. We furthermore collaborated on the interpretation of

the results, a systematic analysis of the significance of this approach as well as its

presentation. The final implementation of the approach, experiments and evaluation

are my work.
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4.1. Motivation

In order to achieve maximum performance, deep learning-based segmentation methods

must be tediously adapted to the dataset they are dealing with, specifically targeting

the properties and peculiarities of the associated segmentation problem. Considering

the drastic variations in dataset properties encountered in the medical domain (see

also Figure 1.2), it becomes evident that existing methods that were geared towards

one specific dataset can not readily be transferred to arbitrary datasets or segmenta-

tion problems. It is important to emphasize that the success of a method depends

on much more than the type of architecture that is being used. As we have seen in

Chapter 3, state of the art performance can be achieved even with the standard U-Net

architecture, but critically depends on appropriately selecting all the remaining hy-

perparameters under consideration of co-dependencies, hardware constraints as well as

dataset-specific adaptations. Typical hyperparameters that need to be optimized are

the target spacing for resampling, intensity normalization scheme, exact architecture

topology (not architecture type), batch size, patch size, learning rate, momentum, data

augmentation, postprocessing and many more. Among the segmentation pipelines we

developed in Chapter 3, it is for example straightforward to see why the method de-

veloped for cardiac substructure segmentation (Section 3.2) cannot be used to segment

kidneys and kidney tumors (Section 3.3): The data preprocessing is inappropriate,

with the target spacing of the cardiac dataset being far too anisotropic for the kidney

and kidney tumor segmentation task (KiTS), and the z-score intensity normalization

technique being suboptimal for processing CT images. Furthermore, due to the im-

portance of aggregating information across axial slices, a 2D network is unlikely to

perform well on the KiTS dataset and the patch size selected in the 3D network does

not consider sufficiently many slices. Since KiTS requires a different patch size for

training a 3D U-Net, the topology of the architecture would also need to be adapted

so that its receptive field properly covers the entire input. As a result, the memory

footprint may change, requiring an adaptation of the batch size, which in turn can

affect the learning rate required for optimal model training. While this example only

covers the most obvious incompatibilities that can be identified at first glance, many

of the other design choices regarding the training and inference scheme may also not

transfer well to the KiTS task. In order to successfully transfer this method to KiTS,

one would thus have to exhaustively identify and re-tune all the incompatible aspects

of the cardiac substructure segmentation method, a process that needs expertise, time

and compute resources. Intuitively, going through this entire process seems wasteful,

error prone and it unlikely to result in optimal segmentation performance on the target

task.

Surprisingly, this process plays a fundamental role in the current literature landscape
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where new models are proposed by demonstrating superior performance relative to some

baseline algorithm. These baselines were seldomly developed on the same dataset as

newly proposed methods. In order to enable a meaningful comparison, authors are

forced to manually adapt the baseline algorithm and re-tune them to their dataset at

hand, often resulting in suboptimal baseline performance. To ease this process, authors

often reduce baseline methods to their network architecture, such as the U-Net [43, 44]

or V-Net [25], strip away all the other parts of the method and then proceed to utilize

their own set of hyperparameters for the entire pipeline. With the resulting lack of a

performance guarantee, it becomes increasingly difficult to discern whether newly pro-

posed methods really constitute a veritable and long lasting improvement or whether

they simply outperform a weak baseline. The availability of a standardized dataset-

agnostic state of the art baselines would enable researchers to make more credible

claims and make it easier for the reader to discern the value of the proposed method.

Baselines aside, the dataset dependency has other far reaching consequences for the

field of medical image segmentation. When developing new segmentation methods,

authors generally avoid going through the effort of manual tuning for multiple datasets

and therefore only use one (type of) dataset to demonstrate its effectiveness. While this

may not be an issue with niche methods that specifically target certain requirements of

one particular dataset, general methodological claims (such as ’a residual U-Net beats

a plain U-Net’ or ’our new loss function is better than the Dice loss’) can simply not be

made in this environment. This issue is amplified by the small size of datasets encoun-

tered in the biomedical domain. Even the largest datasets only have several hundreds

of training cases [15, 35, 29, 45, 38], resulting in the potential for overfitting when only

a limited number of datasets are being used. The small size of the datasets also causes

large variations in performance when training the same method multiple times while

varying the random seed, an issue that is not yet properly addressed in the literature.

If newly proposed methods could be evaluated on multiple datasets without tedious

manual re-tuning, both of these issues could be addressed, enabling researchers to bet-

ter identify good design concepts and provide convincing proof thereof. Finally, the

current situation has detrimental effects on users and researchers from other domains

that require working segmentations algorithms for their work. They may not have the

expertise to go through the manual adaptation process and thus do not get access to

state of the art segmentation methods.

It is surprising that the dataset dependency of segmentation methods has so far not

been identified as a major problem that is inhibiting the field from moving forward

effectively. We hypothesize that this may be due to a persisting belief that specialized

solutions are required for each of the diverse datasets and that a one-fits-all solution

simply cannot exist or, if it does, not deliver acceptable performance. We strongly

disagree with this assessment and will show as part of this chapter that segmentation
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methods can indeed be designed without the dataset dependency in place and at the

same time deliver or even exceed state of the art performance across a large variety of

different datasets.

In this chapter we present nnU-Net, our framework for automated segmentation method

design for biomedical image segmentation. It breaks the dataset dependency of con-

ventional segmentation methods and thus directly addresses the aforementioned issues.

In order to achieve this, we need to distance ourselves from the traditional fixed hyper-

parameter setting of segmentation methods and instead define nnU-Net as a method

template that is dynamically and automatically adapted to each new dataset it encoun-

ters. The core idea behind nnU-Net is to dissect the many codependent hyperparameter

choices that make up a segmentation pipeline into three categories: the blueprint pa-

rameters which remain constant for each of the datasets, the inferred parameters which

encode those parts of the pipeline that need to be dynamically adapted to cope with

the specific requirements of the dataset and finally the empirical parameters which are

the ones that cannot be determined a priori and must be learned from data. Hereby,

the experience gained from developing state of the art segmentation methods, such as

the ones presented in Chapter 3, will be leveraged for assigning each hyperparameter

to one of these groups and determining how they should be set.

4.2. Method

The principle behind nnU-Net is to redefine segmentation methods as dynamic tem-

plates that are automatically adapted to new datasets. We hereby explicitly revolve

around the standard U-Net architecture as our network architecture type in an attempt

to demonstrate how effective it can be when hyperparameters are selected appropri-

ately. This design choice, which stands in stark contrast with the overwhelming focus

of recent publication on searching better network architectures, coined the name of our

framework: ”No New Net” = nnU-Net. Note that this does not mean that nnU-Net

is bound to use the U-Net. Any segmentation architecture can be integrated into the

framework and adapted in a similar fashion.

In the following we first provide a broad overview of how nnU-Net works relative to

traditional model design, followed by a deeper dive into its components. The differ-

ences between traditional method design and nnU-Net are highlighted in Figure 4.1. As

shown in a), when developing a new segmentation method or adapting an existing one

to a new dataset, researchers need to go through an iterative loop of manual method

adaptation, changing the network architecture, preprocessing, training scheme, etc.

while monitoring performance on a held-out validation set. This process is repeated

until the performance is deemed satisfactory by the expert. Finally, the resulting model
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Figure 4.1.: Manual vs. automated Method design. a) highlights the iterative trial
and error process required to manually identify a good segmentation model. It
represents the entire optimization process, from preprocessing, over the exact
hyperparameters used for training, all the way to the selected network architec-
ture and postprocessing. This iterative process is non-standardized, seldomly
documented in the associated publications and can cause wildly varying results
depending on the expertise of the researcher. b) gives a condensed overview of the
systematic approach taken by nnU-Net. First, a dataset fingerprint is extracted.
Together with nnU-Nets empirical and inferred parameters, this fingerprint is
then used to generated three separate segmentation pipelines. These are then
trained in a cross-validation on the training cases. Finally, the best (ensemble
of) configuration(s) as well as appropriate postprocessing are determined. Figure
reproduced from [23].
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can be applied to the test set. As we have discussed before, this form of model de-

velopment is non-standardized, rarely documented in the associated publications and

the resulting model performance largely depends on the expertise and skill of the re-

searcher. nnU-Net on the other hand approaches the design process systematically (as

shown in b)). First, the dataset is analyzed with respect to its key properties, such

as number of training cases, image sizes and voxel spacings to create what we call

a dataset fingerprint. nnU-Net then configures three segmentation pipelines (repre-

sented by pipeline fingerprints), each with a different type of U-Net-base architecture

at its core: a 2D U-Net that operates slice-by-slice, a 3D U-Net that operates on full

image resolution and a cascade of two 3D U-Nets where the first U-Net generates seg-

mentations at a low resolution which are then refined by the second, full resolution

U-Net. The previously mentioned blueprint parameters hereby define the fixed (i.e.

not adapted) parts of the pipelines, such as the loss function, training hyperparame-

ters and architecture template. The inferred parameters encode how nnU-Net utilizes

the dataset fingerprint to make dataset-specific adaptations to preprocessing, network

topologies, batch sizes and patch sizes used for training. Each pipeline is then trained

as a five-fold cross-validation on the training cases of the dataset. Finally, nnU-Net

automatically determines the best method or ensemble of methods as well as an appro-

priate postprocessing technique. The final output of nnU-Net are fully trained state

of the art segmentation models that can be deployed to make predictions on unseen

images.

In the following we describe the various parts of nnU-Net in detail. The overarching de-

sign principles should hereby also be interpreted as our best practice recommendations

for developing and adapting segmentation methods.

4.2.1. Dataset fingerprint extraction

The very first processing step done by nnU-Net is to crop all images to the central

nonzero region. The reasoning behind this step is that some datasets, typically those

with segmentation tasks in the brain (see also Section 3.1) may contain large zero-

valued areas around the region of interest. Excluding these non-informative areas from

the following steps reduces the computational burden without sacrificing performance.

nnU-Net then extracts the dataset fingerprint, which is essentially a collection of the

dataset properties that are required for the dataset-specific adaptation of segmentation

pipelines. Specifically, nnU-Net collects all image sizes (i.e. number of voxels per

spatial dimension) before and after cropping, voxel spacings (i.e. the physical size each

voxel represents, typically measured in mm), the type and number of image modalities,

the number of training cases and the number of classes that need to be segmented. For

each input modality that is labeled as CT, nnU-Net furthermore computes the mean,
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standard deviation as well as the 0.5 and 99.5 percentiles of the intensity values found

in any of the foreground classes across all training cases.

4.2.2. Blueprint parameters

Blueprint parameters are the parts of the nnU-Net pipeline that remain fixed and are

not adapted between datasets. These are use of a U-Net-like architecture template,

the training schedule, data augmentation as well as the way inference is implemented.

Note that while the architecture template is always the same, the actual topology of

the network is heavily influenced by the inferred parameters. It may furthermore seem

counter intuitive to use fixed settings for the training scheme and also in particular for

the data augmentation. Empirical evidence suggests, however, that these do not need

to be adapted to obtain good performance.

4.2.2.1. Architecture template

As we have shown in the previous chapter, state of the art segmentation results can be

achieved on a range of datasets by properly adapting the standard U-Net architecture

appropriately. Thus, all networks generated by nnU-Net follow the same, U-Net [44, 43]

inspired template. We emphasize the use of the word template in this context because,

while our network architecture follows the same design patterns as the U-Net, the

implementation is dynamic and can be adapted to match the requirements of each

dataset (see Adaptation of Network topology, patch size, batch size below). Specifically,

all networks make use of the encoder-decoder pattern with skip connections and output

stride 1. Notably, we do not use any of the recently proposed architectural variations

such as residual connections [25, 9, 84], dense connections [93, 94], attention modules

[97], dilated convolutions [77, 34] or squeeze and excitation modules [95, 96]. We make

only minor necessary changes to the original U-Net formula. Motivated by the success

of our manually tuned segmentation pipelines, nnU-Net enables large patch sizes at

the cost of a smaller batch size. As we will see below, hardware limitations dictate

that most of our 3D U-Nets only operate with a batch size of 2. In this context, batch

normalization [139], which is commonly used to stabilize or speed up the training, does

not perform well due to unreliable batch statistics [145, 182]. We therefore replace it

with instance normalization [137] in all U-Net models. We furthermore observed an

increase in training stability by replacing the standard ReLU nonlinearity with leaky

ReLUs (negative slope 0.01) [138]. Motivated by our models from Sections 3.1.2 and 3.3,

all networks are trained with deep supervision by adding additional segmentation heads

and by applying corresponding losses to all but the two lowest resolutions. Gradient-

based training causes the network to learn the simplest decision rules it can make

to successfully solve the segmentation task on the training cases. Thus, if possible,

81



4. Automatic Design of Segmentation Pipelines

networks could end up using only the low level features from the upper layers in the

U-shape. The resulting decisions, while possibly appropriate for the training set may,

however, not generalize to the validation set and the test case. Our auxiliary losses

inject gradients deeper into the network, forcing it to use all its layers and preventing

it from bypassing the deep U-shape and making suboptimal decisions. All networks

configure by nnU-Net use the common configuration of two blocks per resolution in

both the encoder and decoder, with each block consisting of a convolution, followed

by instance normalization and a leaky ReLU nonlinearity. Inspired by the concept

of representational bottlenecks in [8], we implement downsampling by increasing the

output stride of the first convolution in each resolution step of the encoder. Upsampling

in the decoder is implemented by a convolution transposed. To strike a balance between

representational power and GPU memory consumption, all networks are initialized with

32 feature maps at the highest resolution. This number is doubled (halved) with each

downsampling (upsampling). Depending on the input patch size, the network can

have up to 7 down- and upsampling operations (sometimes even more) which would

result in 32 ∗ 27 = 4096 feature in the bottleneck. To prevent such an explosion in

feature representations, the associated computational cost and unreasonable number

of parameters, we do not allow the number of features to exceed 320 for 3D and 512

for 2D networks.

4.2.2.2. Training schedule

Based on the experience gathered in chapter 3, longer training schedules typically

resulted in better training performance. Therefore, we let all U-Nets train for a total

of 1000 epochs, with each epoch being defined as 250 iterations. Although we have

repeatedly used the Adam optimizer in previous sections (see Sections 3.1 and 3.2), we

observed in KiTS (Section 3.3) that better results can be obtained by swapping it out

with stochastic gradient descent, an observation that is also in line with the literature

[183]. All networks are thus trained with stochastic gradient descent with an initial

learning rate of 0.01 and nesterov momentum (µ = 0.99) as optimizer. The learning

rate is decayed over the course of the training by applying the following formula at the

end of each epoch: lr = (1− ep/epmax)0.9 [77], where ep is the current epoch, epmax is

the total number of epochs (here 1000) and lr is the current learning rate.

Even though the Dice loss specifically handles any class imbalance present in the

dataset, it can only do so when voxels of the foreground classes are present in the

patches. For patches with background only, the nominator of the Dice loss is 0, thus

resulting in a missing penalty for false positive detections. Therefore, several mea-

sures are taken to facilitate the learning process. First of all, the Dice loss [24] is

complemented with the categorical cross-entropy loss, which is effective even if only
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background is present and can thus suppress false positive detection. Furthermore, we

employ oversampling to increase the proportion of the patches containing foreground

classes: During training, minibatch are constructed by first randomly selecting training

cases from the current training set. 33.3% of training samples are guaranteed to contain

at least one of the foreground classes. This is implemented by randomly selecting one of

the foreground classes that is present in the corresponding case and then cropping the

patch around a randomly chosen voxel belonging to this class. The remaining 66.7% of

patches are selected from random locations. We furthermore identify networks where

the image size is expected to be much larger than the patch size (for example all 2D

U-Nets and the 3D full resolution U-Net if a 3D low resolution U-Net is present) and

change the way the Dice loss is computed for these cases. Typically, the Dice loss would

be computed for each sample of the minibatch independently (’sample Dice’) and then

averaged over the samples to obtain the overall value of the loss. As discussed before,

this can result in false positives not being punished properly in samples that only con-

tain background voxels. Therefore, we adapt the Dice loss computation in the affected

networks so that all samples in the minibatch are treated jointly as a large pseudo-

volume (’batch Dice’). With the oversampling in place, this approach guarantees the

presence of foreground voxels and thus a better optimization. We should note that the

lack of false positive penalization could also have been achieved by explicitly optimiz-

ing the background class with the Dice loss, or by adding a constant value to both

the nominator and denominator of the Dice loss. Empirically, however, the proposed

approach of Dice and cross-entropy loss, oversampling and ’batch Dice’ (if appropriate)

resulted in overall superior segmentation performance.

The loss is computed independently for each of the segmentation heads of the network.

The auxiliary segmentation outputs at lower resolution are herefore paired with cor-

respondingly downsampled versions of the reference annotation. The overall training

objective is the weighted sum Ltotal = w1 ∗ L1 + w2 ∗ L2 + w3 ∗ L3 + ... of the losses

Li computed at different resolutions (with higher i denoting lower resolution). Due to

the lower spatial extent of the auxiliary segmentation heads their respective losses are

down weighted the closer to the bottom of the U-shape they are located, resulting in

w2 = 1
2
w1;w3 = 1

4
w1 etc. The weights of the losses are normalized so that they sum to

1.

As we have seen in our previously configured segmentation methods, data augmenta-

tion is pivotal to enable good generalization even when using only a limited number

of training cases. We therefore apply a broad variety of data augmentations on the fly

during training: scaling, rotation, Gaussian noise, Gaussian blur, contrast, brightness,

gamma, low resolution simulation and mirroring along all spatial axes. Note that each

of the augmentation is associated with a probability of being applied. All augmenta-
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tions are implemented with our publicly available batchgenerators toolkit1. Please refer

to the Appendix A.1 for an exhaustive description of the data augmentation techniques

used.

4.2.2.3. Inference

Images are predicted with a sliding window approach. Hereby, the network is slided

across the image and processes windows of the same size as the patch size used during

training. Adjacent predictions overlap by half the patch size. Predictions are merged

by averaging the softmax outputs of the network across all predictions. Due to the

padding of convolutions, the accuracy decreases towards the edges of the individual

predictions. To prevent stitching artifacts, we use a Gaussian importance weighting

that gives higher weights to the center voxels during softmax aggregation. We further-

more apply test time augmentation in the form of mirroring for a slight increase in

segmentation accuracy.

The use of a sliding window approach over fully convolutional prediction is motivated by

potential GPU memory constraints with large CT images as well as the use of instance

normalization. Although we have used fully convolutional inference with this type of

normalization before (Section 3.3), this approach yields bad segmentation accuracy

when the patch size is very different from the image size and can therefore not be

applied universally in a framework that is designed to process arbitrary datasets. The

underlying reason for this lies in the zero padding of convolutions: during training,

the feature maps in the lower layers of the U-shape will have a narrow spatial extent

(all the way down to only 4 voxels, see below). Here, padding the feature maps such

that subsequent convolutions produce representations of the same size results in a large

proportion of zeros creeping in from the sides. During training, these zeros substantially

influence the normalization of feature maps through instance normalization (which

computes the mean and variance of each feature map) and the network weights are

trained with the resulting shift in intensity distribution in mind. If the input size

during inference is then substantially larger than the patch size used for training, the

relative proportion of zero or near zero-valued voxels is lower, resulting in a different

output of the normalization and thus incompatibility with the trained network weights.

4.2.3. Inferred parameters

The inferred parameters establish a direct link between the dataset fingerprint and large

parts of the pipeline that is generated by nnU-Net. They are effectively determined

by a set of heuristic rules which encode our expert knowledge on how segmentation

1https://github.com/MIC-DKFZ/batchgenerators
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methods must be designed in order to be effective. These rules reflect our expertise in

the domain, which stems from many years of experience, multiple winning contributions

in segmentation competitions (as described for example in Sections 3.1.3, 3.2 and 3.3)

as well as the design of high impact clinical pipelines (see Section 3.1.2).

4.2.3.1. Intensity Normalization

Intensity normalization is an essential preprocessing step aiming at reducing hetero-

geneities in the data that could impede the learning process. The default normalization

scheme is used for all imaging modalities except CT. Hereby, each image is normalized

individually by subtracting their mean and dividing by their standard deviation. If

the cropping resulted in an average size decrease of 25% or more on the training cases,

nnU-Net creates a nonzero mask and applies the normalization to the voxels within

this mask only, leaving the remaining voxels at zero. The default scheme is extremely

robust and has proven its value in previous chapters: it effectively reproduces the nor-

malization used for brain tumor segmentation (Section 3.1) and cardiac substructure

segmentation (Section 3.2).

As we have already discussed in Section 3.3, CT intensity values encode how much

radiation is absorbed at a specific spatial location, thus representing physical properties

of the tissue. Therefore, unlike in MRI, voxel intensities are standardized between

scanners, allowing us to leverage a level-window like approach which clips the image

intensities to the range of interest. This approach is similar to the way clinicians interact

with these images [184]. In clinical practice, appropriate windowing is determined by

looking up standardized values for the organ of interest. Since this information is not

accessible to nnU-Net, it determines the windowing directly from the training cases:

The previously computed intensity statistics within the foreground region are used for

this purpose (see 4.2.1): Image intensities are clipped to the 0.5 and 99.5 percentiles

and then normalized by subtracting the mean and dividing by the standard deviation.

4.2.3.2. Resampling

Datasets in the biomedical domain are rarely homogeneous with respect to the voxel

spacing of the individual images. The voxel spacing encodes how much space in the

physical world each voxel represents. CNNs, and thus also all networks designed by

nnU-Net operate on voxel grids only and cannot represent or interpret this property.

Ignoring the voxel spacing altogether would result in the sizes, aspect ratios and tex-

tures of the objects of interest to be non-representative of their real-world distribution.

While having variation in the data can be beneficial to some degree, for example by

varying the scales and aspect ratios slightly via data augmentation, unrealistic and un-

controlled variations make it substantially harder for the networks to detect the objects
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properly, resulting in overfitting and poor test set performance. Therefore, there is a

great interest in homogenizing the voxel spacings within a dataset.

For images, nnU-Nets default interpolation method is third order spline interpolation.

It deviates from this method only for anisotropic data (defined as maximum axis spacing

> 3 × minimum axis spacing). Anisotropic spacings can cause large variations between

slices which often result in interpolation artifacts with third order spline interpolation.

To suppress these artifacts, nearest neighbor interpolation is used for interpolation

along the out-of-plane axis (in-plane resampling is still done with spline interpolation).

Segmentations are resampled by first converting them to a one hot encoding. Then

each class is interpolated separately by linear interpolation. Finally, the segmentation

map is recovered with the argmax operation. For anisotropic images, the out of plane

axis is again resampled with nearest neighbor interpolation.

4.2.3.3. Target spacing

We have already touched on the importance of the target spacing for resampling in

Section 3.3.3.1 in the context of the KiTS challenge. The target spacing controls how

large the objects of interest are (in voxels). Selecting a low target spacing results in

high resolution images and large objects whereas choosing a large target spacing results

in low resolution image and small objects. Higher image resolutions retain more texture

information, but with given hardware limitations, make it difficult to configure patch

sizes which would allow for sufficient contextual information to be collected. Low image

resolutions enable the network to potentially see all the context they need, but suffer

from poor detail in the remaining texture. Furthermore, the segmentations generated

at low resolution are lacking fine grained details that cannot be recovered. When

designing a segmentation method, one must find a careful balance between contextual

information on the one hand and the retained texture information and fine structures

on the other. If domain knowledge is available, the decision can be swayed in either

direction depending on the properties of the segmentation task. In a framework such

as nnU-Net, dataset-specific domain knowledge is not available and we must rely on

empirical evidence to select the proper target spacing. This is the reason for configuring

two separate 3D U-Net pipelines: The full resolution 3D U-Net and the U-Net cascade.

The full resolution 3D U-Net, as the name implies, operates at the original image

resolution of the dataset. It partly ignores the fact that it may potentially not collect

sufficient contextual information (partly because nnU-net still attempts to make the

patch size as large as possible, see 4.2.3.4). However, considering that the voxel spacings

within a dataset are seldomly homogeneous, this is not as straightforward as it may

appear. In some datasets, there can be large variations, sometimes even as large as

a factor of 5 between the highest and lowest resolution images [35]. To find a proper
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target spacing for this configuration, we assume that the typical image in the dataset

will have a voxel spacing that is appropriate for the task at hand. Thus, per default,

nnU-Net selects the median of all the voxel spacings found in the training cases as the

target spacing. This is computed for each axis independently. Once again, anisotropic

cases are treated differently. Due to potential large variations between slices, it is

beneficial to select a lower target spacing (=higher resolution) for the out-of-plane

axis. Here, anisotropy is defined as having both a voxel and spacing anisotropy > 3

(computed based on median spacing and median size in voxels). The target spacing

for the out-of-plane axis of anisotropic datasets is selected as the 10th percentile, but

is not allowed to deceed the in-plane spacing.

Similarly to the 3D full resolution U-Net, the 2D U-Net also processes the images at

full resolution. Since it operates on in-plane slices only, resampling is also done only

along those axes and the out-of-plane axis is left unchanged. The target spacing for the

in-plane axes if hereby selected following the same principle as for the 3D full resolution

U-Net by simply picking the median value found across all training cases for that axis.

Note that the two-dimensional nature of the network enable nnU-Net to configure

substantially larger patches, which is why we assume that the 2D network always

covers sufficient contextual information and does not require a cascaded approach.

Note that the configuration of the 3D U-Net cascade is more involved because it is en-

tangled with the configuration of the exact network topology. This process is described

separately in Section 4.2.3.5.

4.2.3.4. Adaptation of Network topology, patch size, batch size

Considering the segmentation problems treated in Chapter 3 it quickly becomes clear

that there exists no combination of network topology and patch size that could satisfy

the requirements of arbitrary datasets. In BraTS (Section 3.1.3), for example, the

image size was approximately isotropic with about 160×190×160 being a typical image

shape. This meant that a patch size of 128 × 128 × 128 seemed like an appropriate

choice: it covers a large part of the input and its cubic shape provides a receptive

field that is equally large along all axes. In ACDC 3.2, the typical image shape is

9 × 256 × 216. Its anisotropy must be reflected in the patch size used to segment

it: 10 × 224 × 224. Applying the BraTS patch size to this dataset would not make

sense due to the excessive padding and wasted computation in the first axis. In KiTS

(Section 3.15), the patch size (80× 160× 160) was quite a bit smaller than the image

size after resampling (128× 248× 248) and followed the aspect ratio of the resampled

images. Using the ACDC patch size for this dataset may have resulted in insufficient

context aggregation along the first axis whereas the BraTS patch size would have

overemphasized contextual information along this axis (note that the target spacing of
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KiTS was anisotropic: 3.22×1.62×1.62 in mm and the BraTS patch size was isotropic

in voxels). For each of the datasets, the topology was carefully designed to optimally

deal with the respective patch size.

Designing appropriate network topologies is a difficult problem that requires careful

considerations. Given some desired input patch size, the networks must ensure that the

receptive field at the bottleneck spans the entire input patch so that as much contextual

information as possible can be extracted. Depending on the size of the patch, this may

require a different number of pooling operations. Following our network template

which dictates the use of two computational blocks (2× (convolution - instance norm -

lReLU)) per resolution, this implicitly couples the network depth to the patch size - a

sensible design choice given that larger patches are more difficult to aggregate and may

require more expressive, and therefore deeper network architectures. The anisotropy

of the patch size must furthermore be considered: if the spacing discrepancy between

axes is too large, aggregation of information across slices may have harmful effects on

the networks performance, as we discussed already for the ACDC dataset in Section

3.2.6. Furthermore, anisotropic axes may require less or sometimes even no pooling

operations at all. Finally, the memory footprint of the network is one of the major

constraints that must be integrated into the design process. Without it in place, we

would simply set our patch size to match the image size in a dataset and then configure

the architecture to match it. With it in place this is often not possible, and we need

to resort to an iterative optimization scheme to design the network.

In the following we describe how network architectures for the 3D full resolution U-Nets

(both cascaded and non-cascaded) and the 2D U-Net are designed in nnU-Net. The

design of the low resolution stage of the cascade is described below in Section 4.2.3.5.

The network architecture design requires the median image shape of the dataset after

resampling as well as the target voxel spacing as input. Figure 4.2 a) provides an

overview of the network design process.

Initialization

The patch size is initialized to the median image shape of the dataset. Since U-Net-like

architectures require input patch sizes that are divisible by 2num pool (where num pool

is the number of downsampling operations), the patch size is padded appropriately.

Architecture topology

nnU-Net then generates a network topology that optimally uses the given patch size.

The topology follows the template defined in 4.2.2.1: U-Net-like encoder-decoder with

skip connections and output stride 1, two computational blocks per resolution in both

encoder and decoder. It is configured by determining the number of downsampling
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Figure 4.2.: Iterative optimization of network topology and U-Net cascade. a) shows
how the network topology, patch size and batch size are determined depending on
the median image shape and corresponding voxel spacing. b) demonstrates the
configuration of the 3D low resolution U-Net configuration of the U-Net cascade.
The target spacing is successively increased in an outer loop, thus reducing the
image size. The patch size, topology and batch size are optimized in an inner
loop following the same principle as in a). The outer loop is terminated once
the patch size is larger than 25% of the median image shape. Figure reproduced
from [23].
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operations along each axis depending on the spacing and size of the input patch. To

this end, the stride of the convolutions used for downsampling is set to 2 to aggregate

contextual information along the high resolution axes. Once the spacing of all axes is

within a factor of 2, downsampling is performed for all axes simultaneously. Downsam-

pling is terminated when further downsampling would either result in a feature map

size < 4 in the bottleneck or the feature maps have become anisotropic.

The default kernel size is 3 × 3 × 3 and 3 × 3 for all feature map generating 3D and

2D convolutions, respectively. Based on our observations in the ACDC dataset 3.2,

aggregation across slices with a spacing anisotropy should be avoided. Therefore, the

convolutional kernel size is set to 1 for the out of plane axis if its spacing is > 2× the

spacing of the other axes. Note that once the kernel size was set to be isotropic, it

remains this way and cannot go back to use a size of 1 along any of the axes.

The kernel size and output stride of the convolution transposed in the decoder are set

to match the stride of the corresponding downsampling operation in the encoder.

Adaptation to GPU memory budget

As we have stated before, the amount of GPU memory available is the major constraint

when configuring a network architecture. Initially, most patch sizes configured in the

Initialization will be far too large. Take, for example, the Liver and Liver Tumor

dataset [35] where the typical image shape is 432 × 512 × 512 (which is what would

be used as initial patch size) and compare this with the maximum patch size that we

could configure in the KiTS section: 80× 160× 160.

In particular when considering nnU-Nets intended use as an out-of-the-box segmenta-

tion tool, it is important to keep the GPU requirements in check: most users will not

have access to large GPU cluster or even single expensive datacenter-grade GPUs such

as the Nvidia V100 (32GB) or recently announced A100 (40GB). In order to target a

large audience, we configure nnU-Net to be compatible with regular, consumer grade

GPU hardware: All networks nnU-Net configures should be guaranteed to run on a

Nvidia RTX 2080ti with 11GB of GPU memory. That said, nnU-net can naturally also

be configured to fill the additional space available on larger graphics cards, if desired.

Based on our experience in the previous chapter, we enforce a minimum batch size of

2. The smaller the batch size, the noisier the gradients the network will be trained

with are going to be. We feel that a minimum batch size of 2 provides a good trade-off

between the patch size that can be configured and training stability.

In order to adapt the patch size, and with it the network architecture, to match our

hardware constraint, we first need to estimate what the GPU memory consumption

is going to be. This is not a straightforward process, given that different convolution
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algorithms may be selected by Nvidia’s cuDNN library. Nonetheless, we empirically

observed that the memory consumption largely and predictably correlates with the

total number of voxels encountered in all feature maps in the network. This makes

sense given that the largest proportion of the GPU memory must be used to store

the feature map activations during the forward pass so that they can be used in the

backward pass for gradient computation. The memory required for network parameters

is negligible in comparison. Thus, we use the number of voxels of a manually configured

topology with known GPU memory consumption as our reference value against which

new topologies can be compared during their optimization.

Thus, once a network topology has been configured, we estimate its memory consump-

tion with the aforementioned heuristic. If the network does not fit into the GPU with a

batch size of at least 2, the patch size and thus the network topology must be adapted.

To this extent, the axis that is proportionally largest relative to the median image

shape is identified and its size is reduced by 2n where n is the number of downsampling

operations of that axis. Then, a new network topology is generated that is optimally

adapted to the new patch size. This process, which is indicated by the circle ’Archi-

tecture configuration → Fits into GPU memory? → Reduce Patch size’ in Figure 4.2

a), is repeated until the patch size is small enough.

Batch size

Especially in segmentation problems where batch sizes are often quite small, larger

batch sizes substantially reduce the noise in the gradients used to train the network.

If the initial patch size was small enough and the corresponding topology immediately

passed the check for the GPU memory constraint, there may be additional headroom

to increase the batch size used for training. The same heuristic that was also used in

the previous paragraph is then used to increase the batch size until the entire GPU

memory is used. Note that, in order to prevent overfitting, the batch size is capped so

that the voxels contained in the minibatch do not exceed 5% of the total number of

voxels in all training cases.

4.2.3.5. Configuration of 3D U-Net cascade

The 3D U-Net cascade is intended to alleviate issues arising from missing contextual

information in the 3D full resolution U-Net if the images are very large. In a sense, it

constitutes the best of both worlds: The 3D low resolution U-Net operates on a low

spacing and thus sees all the context it needs. The resulting coarse segmentations are

then refined by the second U-Net that operates at the same voxel spacing as the 3D

full resolution U-Net. For this purpose, the upsampled coarse segmentations of the

low resolution U-Net are concatenated to the high resolution image data and processed

91



4. Automatic Design of Segmentation Pipelines

by the network. Hereby, the coarse segmentations substitute the potentially missing

contextual information while the network can extract additional fine grained structures

and textural information directly from the image. The configuration of the 3D full

resolution U-Net is identical to the non-cascaded 3D U-Net and is handled by the

process described in Section 4.2.3.4. The configuration of the low resolution U-Net is

more involved, because it must be designed such that the patch size covers a significant

proportion of the input images to enable the collection of the contextual information.

To achieve this, a separate downsampled version of the training data must be generated,

the target spacing, and thus the resulting image shapes of which must be optimized

jointly with the network topology.

The process of configuring the cascade is summarized in Figure 4.2 b). Note that the

cascade is not configured for datasets where the 3D full resolution U-Net already covers

a large proportion of the image size. Specifically, it is omitted if the patch size of the

3D full resolution U-Net exceeds 12.5% of the median image shape after resampling

(indicated by ’Cascade triggered’ in the Figure). If the cascade is triggered, nested

optimization loops are used to identify a suitable configuration. In the outer loop,

the target spacing for the low resolution data is successively adapted. It is initialized

to be the same target spacing as is also used for the full resolution training. In each

iteration, it is multiplied by 1.01. If the spacing is anisotropic, only the spacing of

the high resolution axes is increased until all axes have a spacing within a factor 2.

The resulting new median image shape (along with the spacing) are then used to

configure a network topology using the process described in 4.2.3.4 (inner loop). The

target spacing is successively increased until the configured patch size exceeds 25% of

the current median image shape and the configuration of the low resolution U-Net is

complete.

4.2.4. Empirical parameters

The pipeline parameters that cannot be estimated solely based on the dataset finger-

print are summarized in this chapter.

4.2.4.1. Model selection and ensembling

As discussed previously, nnU-Net generates up to three different U-Net pipelines, the

2D U-Net, the 3D full resolution U-Net and the 3D U-Net cascade. Each of these

pipelines comes with its own advantages and disadvantages, and it may be difficult to

predict which of them should be selected for which dataset (see also our discussion in

Section 4.4). Thus, nnU-Net trains all configured pipelines in a five-fold cross-validation

on the training cases and empirically selects the best performing configuration (or

ensemble of configurations) based on the average Dice score. Inference is always done
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using the five models stemming from the training set cross-validation. If an ensemble

is selected, the five models of each ensemble member are utilized. Note that ensembles

never exceed two configurations to limit the inference time.

4.2.4.2. Postprocessing

nnU-net furthermore empirically determines whether connected component analysis

improves the results of the selected configuration(s). To this end, it uses the predic-

tions of the five-fold cross-validation. It first treats all foreground classes as one and

determines whether removing all but the largest connected component increases the

average Dice score on the training cases. Then, it uses the result of this first stage to

determine whether removing all but the largest component individually for each class

further improves the result.

4.3. Results

nnU-Net overcomes the narrow definition of traditional segmentation methods, where

all parts of the pipeline used to be manually tuned for a single dataset. Instead,

nnU-Net provides a dynamic method template that is molded fully automatically to

meet the requirements of any dataset in the domain. This is made possible by con-

densing expert knowledge about the design of segmentation pipelines into inductive

biases which shortcut the high dimensional optimization problem that needed to be

solved previously. We used the training set of the 10 datasets provided by the Medical

Segmentation Decathlon (MSD)2 [29] for the development of nnU-Net. Specifically,

five-fold cross validation or single train-val splits were used to find all heuristic rules

found in the inferred parameters, optimize the fixed blueprint parameters and identify

the concepts behind the empirical parameters. These 10 datasets provided sufficient

variability to ensure generalization to other, previously unseen datasets in the domain.

In the following we demonstrate that, despite its automated nature, nnU-Net achieves

state of the art performance across a variety of datasets without requiring any manual

intervention. Naturally, our evaluation only includes datasets stemming from inter-

national segmentation competitions, allowing us to compare our segmentation perfor-

mance against the respective state of the art on each of the datasets. We furthermore

show how nnU-Net can be used for method development and evaluation on multiple

datasets and why this evaluation scheme should be used for robust decision making.

4.3.1. nnU-Net handles a variety of datasets and image properties

We apply nnU-Net to the 10 datasets originating from the Medical Segmentation De-

cathlon. To truly test its generalization to unseen tasks, we identified 9 additional
2http://medicaldecathlon.com/
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segmentation competitions that provide one dataset each for a total of 19 diverse

datasets spanning 49 different segmentation tasks. These 19 datasets are the same

as the ones presented in Figure 1.2 which highlights their diversity by extracting the

respective dataset fingerprints. For each of the datasets, nnU-Net is applied without

manual intervention: we simply let nnU-Net analyze the datasets, configure and train

its pipelines and finally choose which models and postprocessing it should use. The

resulting configuration was then applied to the holdout test sets. Note that for some

datasets, in order to ensure proper stratification of training data, we manually inter-

fered in the data splits used for cross-validation (details are disclosed in the Appendix

A.2).

Figure 4.3 shows qualitative segmentation results of nnU-Net on 12 different datasets.

All examples shown originate from their respective test set. In each example, an overlay

of the raw image data with the generated segmentation is shown to the left and a 3D

rendering highlighting the tree dimensional nature of the segmentation tasks is shown to

the right. As can be seen in the Figure, nnU-Net handles all segmentations effortlessly,

generating high fidelity and accurate delineations. In particular, the diversity of the

imaging modalities used for evaluation is highlighted: CT images (a, d, e, h, i, l),

different types of MRI (c, f, g, j, k), multi-modal MRI (c, j) as well as serial section

Transmission Electron Microscopy (b).

4.3.2. nnU-Net outperforms specialized, manually tuned state of the art

pipelines

Figure 4.4 provides an overview of the quantitative results achieved by nnU-Net. Each

of the 49 segmentation tasks is displayed separately. nnU-Net is show as a red dot

while all competing methods are shown in blue. Even though nnU-Net is a generic

segmentation method that needs to adapt itself to each of the 19 different datasets, it

was able to outperform all competitors on 29 out of the 49 segmentation tasks. In the

remaining 20 segmentation tasks, nnU-Net is very competitive with scores close to the

top of the leaderboard. This is a remarkable result given that the competing methods

were all hand tuned by experts to the respective datasets at hand.

4.3.3. nnU-Net designs appropriate segmentation pipelines

ACDC dataset

In order to demonstrate the nnU-Net indeed generates appropriate segmentation pipelines

we picked two example datasets, ACDC [4] and LiTS [35], and discuss the choices made

by nnU-Net.
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Figure 4.3.: nnU-Net handles a broad variety of segmentation tasks, input modal-
ities and dataset properties. Examples originate from the test set of their
respective dataset. left: overlay of nnU-Net’s segmentation with raw data, right:
volume rendering (generated with MITK [181]). a: heart (green), aorta (red), tra-
chea (blue) and esophagus (yellow) in CT images [185]. b: synaptic clefts (green)
in electron microscopy scans (https://cremi.org/). c: liver (yellow), spleen (or-
ange), left/right kidney (blue/green) in T1 in-phase MRI [186]. d: thirteen
abdominal organs in CT images [36]. e: liver (yellow) and liver tumors (green)
in CT images [35]. f: right ventricle (yellow), left ventricular cavity (blue) my-
ocardium of left ventricle (green) in cine MRI [4]. g: prostate (yellow) in T2
MRI [42]. h: lung nodules (yellow) in CT images [29]. i: kidneys (yellow) and
kidney tumors (green) in CT images [15]. j: edema (yellow), enhancing tumor
(purple), necrosis (green) in MRI [29]. k:left ventricle (yellow) in MRI [29]. l:
hepatic vessels (yellow) and liver tumors [29]. Figure reproduced from [23].
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Figure 4.4.: nnU-Net outperforms manually designed segmentation pipelines on
a variety of segmentation tasks. We tested nnU-Net by applying it to 19
diverse datasets spanning 49 different segmentation tasks. Each task is plotted
separately. Competing methods are shown in blue, nnU-Net’s result in red. Over-
all, nnU-Net sets a new state of the art on 29 out of the 49 testes segmentation
tasks. DC: Dice score. SL: Score (lower is better). SH: Score (higher is better).
Figure reproduced from [23].
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Figure 4.5.: Network topologies generated by nnU-Net for the ACDC dataset. The
2D U-Net is shown at the top and the 3D full resolution U-Net at the bottom.
The U-Net cascade was not configured for this dataset because the patch size of
the full resolution 3D U-Net already covers entire images. Key dataset properties,
target spacings as well as corresponding median image shapes are shown to the
right. Figure reproduced from [23].
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Figure 4.5 summarizes the network architectures generated by nnU-Net for the ACDC

dataset [4]. With the modality being cine MRI, nnU-Nets default intensity normal-

ization scheme is used. Thus, all images are normalized independently by subtracting

their mean and dividing with their standard deviation. The target spacing for in-plane

resampling is selected as the median value found in the training cases: 1.56mm. Due

to the anisotropic nature of the images, the out of plane target spacing is selected

as the 10th percentile and is thus set to 5mm for the 3D full resolution U-Net (in-

stead of 10mm, which would be the median). The 2D U-Net processes patches of size

256 × 224 with a batch size of 58. It uses 5 pooling operations, resulting in a feature

map size in the bottleneck of 8× 7, guaranteeing a sufficiently large receptive field for

good segmentation performance. The 3D full resolution U-Net processes patches of size

20× 256× 224. At the selected target spacing, the median image shape of the training

cases is 18 × 237 × 208. When comparing median image size and patch size, while

also considering that the feature map size in the bottleneck is just 5 × 10 × 8 it be-

comes evident that this network topology has a receptive field that virtually sees entire

training cases at once and can thus make optimal segmentation decisions. Note that

the 3D full resolution U-Net uses 1× 3× 3 kernels for the convolutions at the highest

resolution to prevent aggregation of information across slices, a design choice that was

missing in our manually tuned approach (Section 3.2) and may have caused suboptimal

performance. Another critical improvement of nnU-Net is the target spacing for the

out-of-plane axis. While we manually selected 10mm in Section 3.2.3.1, a choice that

caused interpolation artifacts on all cases with a lower voxel spacing, nnU-Net selects

5mm target spacing. The 3D U-Net cascade is not configured for this dataset.

RV MLV LVC mean

2D 0.9053 0.8991 0.9433 0.9159

3D fullres 0.9059 0.9022 0.9458 0.9179

Ensemble 0.9145 0.9059 0.9479 0.9227

Postprocessed 0.9145 0.9059 0.9479 0.9228

Test set 0.9295 0.9183 0.9407 0.9295

Table 4.1.: ACDC results. All reported Dice scores (except the test set) were computed
using five fold cross-validation on the training cases. Postprocessed denotes the
cross-validation Dice scores of the ensemble after applying nnU-Nets postprocess-
ing. The Dice scores for the test set are computed with the online platform. The
online platform reports the Dice scores for end diastolic and end systolic time
points separately. We averaged these values for a more condensed presentation.
Table reproduced from [23]

The superiority of nnU-Nets approach regarding the 3D full resolution becomes clear
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when analysing the cross-validation results reported in table 4.1. Compared to our

manually tuned algorithm, which achieved an average Dice score of only 0.8930 for

the 3D U-Net (see table 3.4), the 3D U-Net configured by nnU-Net has substantially

higher cross-validation performance with an average Dice score of 0.9179. nnU-Nets 2D

U-Net was approximately on par with our previous, manually designed method with

a score of 0.9159 (versus 0.9173). The better performance of the 3D full resolution

U-Net is also reflected in the test set results where the ensemble selected by nnU-

Net achieved an average Dice of 0.9295 which is marginally higher than our challenge

winning contribution, which achieved 0.9275 with a very similar approach.

LiTS dataset

The LiTS dataset [35] consists of CT images with a median image size of 482×512×512

after resampling (3D full resolution configuration). It has a high, nearly isotropic

resolution with a median spacing of 1 × 0.77 × 0.77 mm in the training cases. The

nnU-Net-generated pipelines for this dataset are summarized in Figure 4.6. Due to the

image modality being CT, nnU-Net utilizes the global normalization scheme based on

the foreground voxel statistics computed across the training cases (see Section 4.2.1).

Each image is normalized by first clipping to [−17, 201] and then normalizing with

mean 99.4 and standard deviation 39.39.

The 3D full resolution U-Net pipeline uses the aforementioned median spacing of the

training cases as target spacing for resampling. Its patch size of 128×128×128 reflects

the voxel and spacing isotropy of the dataset. However, due to the size of the images,

this network only sees 1
60

of the image at a time. Therefore, nnU-Net also configures

the 3D U-Net cascade for this dataset. As described previously, the full resolution

part of the cascade uses the same settings as the 3D full resolution U-Net, but takes

the segmentations generated by the low resolution U-Net as additional guidance by

concatenating them to its input. As can be seen in the Figure, the 3D low resolution

U-Net operates on images that were downsampled to 2.47× 1.90× 1.90 mm, resulting

in a median image shape of 195 × 207 × 207. At this resolution, the input size of the

low resolution U-Net (128×128×128) correctly covers 25% of the median image shape

(as described in Section 4.2.3.5) and can thus collect sufficient contextual information.

Note that the network topology and input patch size of the 3D low resolution U-Net

are only coincidentally identical to its full resolution counterpart. On datasets with

anisotropic voxel spacing, low and full resolution U-Nets will have a different topology.
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Figure 4.6.: Network topologies generated by nnU-Net for the LiTS dataset. The
2D U-Net is shown at the top, the 3D full resolution U-Net in the middle and
the 3D low resolution U-Ne at the bottom. The input patch size of the 3D full
resolution is much smaller than the median image shape U-Net, causing the U-
Net cascade to be triggered. Key dataset properties, target spacings as well as
corresponding median image shapes are shown to the right. Figure reproduced
from [23].
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liver cancer mean

2D 0.9547 0.5603 0.7575

3D fullres 0.9576 0.6253 0.7914

3D lowres 0.9585 0.6161 0.7873

3D cascade 0.9609 0.6294 0.7951

Best Ensemble* 0.9618 0.6539 0.8078

Postprocessed 0.9631 0.6543 0.8087

Test set 0.9670 0.7630 0.8650

Table 4.2.: LiTS results. Note that all reported Dice scores (except the test set) were
computed using five fold cross-validation on the training cases. Best ensemble
on this dataset was the combination of the 3D low resolution U-Net and the
3D full resolution U-Net. Postprocessed marks the Dice scores after nnU-nets
postprocessing is applied to the ensemble. Note that the Dice scores for the test
set are computed with the online platform. Table reproduced from [23].

nnU-Nets results on the LiTS dataset are summarized in Table 4.2. Due to inter-slice

information being not accessible to it, the 2D U-Net is by far the worst performing

pipeline. Interestingly, despite the missing contextual information, the 3D full reso-

lution U-Net achieved an average score of 0.7914, which is not far off the 3D U-Net

cascade (0.7951). This could indicate that the availability of contextual information is

not essential for solving this segmentation problem. Among the 3D results, the 3D low

resolution performed the worse with 0.7873, which is most likely due to the coarseness

of the generated segmentations (note that all evaluations are done on the original voxel

spacing of the images, requiring the generated segmentations to be resampled). The

best ensemble for this dataset was the combination of the low and full resolution U-Net,

which provides a substantial improvement over either of the single model configurations

with an average score of 0.8078 before and 0.8087 after postprocessing. It is unclear

whether one should draw any conclusions from the model selection for the ensemble

since the second best combination, the ensemble of the 3D full resolution U-Net and the

cascade was not far off with a score of 0.8086. On the test set, nnU-Net achieved Dice

scores of 0.9670 for the Liver (first place) and 0.7630 for the Tumor class (rank 6 out

of 119). While it would be interesting to compare nnU-Nets results and methodology

with other leaderboard entries, the LiTS leaderboard 3 unfortunately neither links its

entries to corresponding publications nor does it enforce comprehensible usernames.

Furthermore, the use of external data is specifically allowed, potentially contaminat-

ing the leaderboard with entries benefiting from it and making it difficult to discern

methodological from data advantages. When compared to the original challenge win-

3https://competitions.codalab.org/competitions/17094#results
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ner of the 2017 challenge [26], who achieved liver and tumor scores of 0.961 and 0.722

(without using external data), respectively, nnU-Net has far superior performance.

A comprehensible summary of all challenge participations and generated segmentation

pipelines is provided in the Appendix A.2.

4.3.4. Evaluation across multiple datasets enables more robust design choices

Throughout this manuscript we have repeatedly stated that evaluation of new segmen-

tation methods should be done on as many datasets as possible to avoid overfitting and

to increase the credibility of methodological claims. In the medical domain in partic-

ular, the small size of the datasets can result in substantial noise in the reported Dice

scores and, if not handled properly, result in the wrong conclusions being drawn. Here

we illustrate how nnU-Net can be used to explore the value of different methodological

variants addressing different parts of the pipeline. We implement them into nnU-Net

and then use its generic nature to evaluate them via 5-fold cross-validation on the 10

training datasets of the Medical Segmentation Decathlon [29]. It should be emphasized

that implement once - evaluate on many datasets was impossible previously: authors

had to manually redesign and tune appropriate segmentation pipelines for each dataset

they evaluate on. Given the complexity of this process, authors regularly did not go

through the effort causing most recently published methods to be evaluated on just a

single (type of) dataset.

The variants we exemplarily selected are: two alternative loss functions (plain Cross-

entropy (CE) and TopK10, a variant of CE in which only the worst 10% of the predic-

tions are used for gradient computation [187], the introduction of residual connections

[9] in the encoder of all generated U-Nets, using three convolutions per resolution in

both encoder and decoder instead of two (resulting in a deeper network architecture),

two modifications of the optimizer (replacing SGD with Adam [140] and using a smaller

momentum term of 0.95 instead of nnU-Nets 0.99), replacing instance normalization

[137] with batch normalization [139] and removing all data augmentation. Through

their integration into nnU-Net, these variants only need to be implemented once, but

can still be tested on an arbitrary number of datasets. Here we configured all of them

to use the same GPU memory constraint as nnU-Net’s base model to ensure a realistic

and fair comparison.

Figure 4.7 shows the results of applying these variations to the 10 MSD datasets.

The bars represent the distribution of rankings across bootstrap samples, first for each

dataset separately and finally aggregated over all datasets. These volatility of the

rankings underline the danger of evaluating new methods on a small number of datasets:

While five out of the 9 tested variants achieved the highest rank in at least one of the

datasets, none of them was able to consistently outperform the nnU-Net baseline.
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Figure 4.7.: Evaluation across multiple datasets reduces noise and enables more
robust design choices. We implemented nine different pipeline variations into
nnU-Net and evaluated them across the ten Medical Segmentation Decathlon
datasets against nnU-Nets baseline configuration. The results are shown both
independently for each dataset (a-j) as well as aggregated over all datasets (k).
The distribution over ranks is generated by generating 1000 virtual validation
sets via bootstrapping. Even though five of the nine tested variants achieved
the first rank in one of the datasets, none of them could consistently outperform
nnU-Nets baseline. Figure reproduced from [23].
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Looking forward, we would like to see generalizing frameworks such as nnU-Net to

be rigorously used for method development. nnU-Net’s dynamic nature requires re-

searchers to implement their changes only once while enabling them to evaluate on an

arbitrary number of datasets. Hereby, the default nnU-Net configuration should be

used as a robust, dataset-agnostic state of the art baseline.

4.3.5. nnU-Net is freely available as an out-of-the-box tool

nnU-Net is open source and freely available at GitHub (https://github.com/MIC-DKFZ/

nnUNet). It can also be installed via the Python Package Index (PyPi). Please refer

to the nnU-Net GitHub page for an extensive documentation on how to use it. The

source code also comprises a large number of nnU-Net variations, including the ones

used in Section 4.3.4, which can be used as starting points for learning how to modify

nnU-Net. We furthermore make pretrained models for all datasets used in this Chapter

available for download. They are accessible at https://zenodo.org/record/3734294

or via the nnU-Net command line interface.

4.4. Discussion

In this Chapter we have presented nnU-Net, the first generalizable out-of-the-box seg-

mentation framework. It takes away with the narrow hard coded definition of tradi-

tional segmentation methods and instead formulates a dynamic pipeline template that

is automatically adapted to the properties of each dataset at hand, thus breaking for

the first time the dataset dependency that held back methodological research in the

domain.

Despite its generic nature, nnU-Net was able to outperform manually designed and

highly optimized methods on a broad range of segmentation challenges, setting a new

state of the art in the majority of segmentation tasks it was tested on. This is par-

ticularly noteworthy because there previously seemed to be a belief that handcrafted,

specially designed segmentation methods are required to achieve state of the art per-

formance.

Instead of going through the complex, high dimensional optimization problem that

is traditional segmentation method development for each of the datasets, nnU-Net

uses domain knowledge in the form of inductive biases to shortcut the process: Its

careful selection of fixed blueprint parameters, dataset-dependent dynamic adaptations

with the inferred parameters as well as data driven empirical parameters enables it to

narrow down the vast search space of possible methods to just three configurations: a

2D U-Net, a 3D U-Net that operates on full resolution images as well as a 3D U-Net

cascade.
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Perhaps surprisingly, the strong performance of nnU-Net was achieved by intelligently

adapting the standard U-Net architecture and combining it with well-optimized and

proven concepts. In a literature landscape that focuses so heavily on finding elaborate

architectural variants, these results raise important questions about the validity of the

evaluation that are being performed when proposing new concepts. Despite the small

datasets size in our domain, authors still demonstrate methodological improvements

only on a single (type of) dataset and using non-standardized baselines. In Section

4.3.4, we have demonstrated how this process is inherently flawed and may result in

the wrong conclusions being drawn. To overcome this problem, we propose to use

nnU-Nets dynamic method template for model development, allowing authors to roll

out their changes to arbitrarily many datasets. The standard nnU-Net should hereby

be used as standardized state of the art baseline.

As highlighted in the qualitative as well as quantitative results (Sections 4.3.1 and

4.3.2), the segmentations generated by nnU-Net are highly accurate. Since we require

no user intervention, nnU-Net is the first segmentation tool that can truly be used out

of the box on any dataset in the biomedical domain. It requires reasonable compute

resources: anyone with a standard Nvidia 2080ti graphics card or better now has access

to the state of the art in semantic segmentation. This empowers users who do not have

the expertise, time or compute resources to do model development themselves.

Previous research done in the field of Automated Machine Learning (AutoML) ad-

dressed similar questions to nnU-Net: how can we find good machine learning methods

with as little human intervention as possible [101, 100]? The problem, however, was so

far approached from a different angle.

Existing research in AutoML predominantly attempts to empirically find the very best

specialized method for a given dataset. These methods are mostly data-driven and di-

rectly optimize some validation metric. As a result, they share the same disadvantages

as traditional manually designed algorithms: their output is a fixed set of hyperparam-

eters that is optimal only for the one dataset they were optimized for. When they need

to be applied to a new dataset, the optimization process needs to start all over again,

entailing large requirements with respect to compute resources. nnU-Net on the other

hand focuses on maximal generalization and keeps the amount of empirical decisions

to a bare minimum. This is achieved by our unique combination of blueprint, inferred

and empirical parameters. nnU-Net is the culmination of years of experience in de-

signing state of the art semantic segmentation methods combined with a development

process that explicitly included multiple datasets for finding and validating all design

choices. This allowed us to identify which parameters need changing when confronted

with a new dataset and which parameters can remain constant (blueprint parameters).

Among the parameters that need changing, we were able to identify underlying con-
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cepts which can be used to derive the overwhelming majority of them automatically at

virtually no computational cost (inferred parameters), leaving solely the model selec-

tion and postprocessing as our empirical parameters.

Essentially, speaking in terms of bias-variance trade-off, nnU-Net is highly biased and

uses strong regularization in the form of explicitly implemented domain knowledge for

its decision making. Compared to previous AutoML-based approaches, the number of

hyperparameters that need to be optimized in nnU-Net are purposefully minimal. This

allows nnU-Net to design entire segmentation pipelines while remaining within a real-

istic computational budget and preventing it from overfitting to the dataset at hand.

While existing research in AutoML also encodes expert knowledge to some extent, in

particular through search space restrictions and search heuristics, their larger number

of empirically determined parameters naturally translates into a higher variance and

thus a more pronounced tendency to overfit. Particularly in the medical domain, where

datasets are comparatively small, this can be detrimental.

To the best of our knowledge, there exists no other AutoML-based method that is

able to optimize the pipeline in its entirety, from preprocessing over the network ar-

chitecture, training scheme all the way to postprocessing. One likely reason for this is

that the search space that would need to be defined for the corresponding optimiza-

tion is difficult to identify even for single parts of segmentation pipelines. Attempting

to optimize the pipeline as a whole, and then on top of that making this optimiza-

tion compatible with the diverse datasets encountered in medical image segmentation

appears insurmountably complex and would require compute resources that only the

very largest institutions could afford. Thus, unlike nnU-Net, there also exists no tool

based empirical AutoML approaches that can be downloaded and used by anyone to

achieve state of the art segmentations. But even when moving the focus away from the

design of the entire pipeline and concentrating on AutoML methods that only optimize

specific parts of the pipeline it becomes clear that these methods are still not ready

for real world applicability. We conducted a thorough analysis of the leaderboards

of current segmentation challenges and found that traditional AutoML-based meth-

ods are surprisingly absent. Specifically, we have analyzed all 100 entries in the KiTS

competition4 [28] as well as the winning contributions to multiple other competitions

[35, 45, 38, 188, 186]. With the sole exception being the 18th place of KiTS 5 (which

uses simple grid search for hyperparameter optimization), we have not been able to find

any other AutoML-based approaches. It is difficult to say why that is. We hypothesize

that a combination of several factors could be contributing to their absence: as dis-

cussed above, the compute requirements for current empirical AutoML-based methods

are still quite large and may discourage participants to use them in the particularly

4http://results.kits-challenge.org/miccai2019/
5http://results.kits-challenge.org/miccai2019/manuscripts/peekaboo_2.pdf
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computationally intensive task that is 3D image segmentation. Furthermore, with at

best only a couple hundred training cases, datasets in medical image segmentation are

fairly small in comparison with datasets in classical computer vision (CIFAR-10 has

50.000 training examples and ImageNet over one million), making overfitting a real

problem. nnU-Net on the other hand has been applied successfully to a large number

of competitions spanning 19 diverse datasets in the domain, underlining its real world

impact and usefulness as an out-of-the-box segmentation tool.

That said, we do not intend to disregard the usefulness of empirical AutoML-based

methods by any stretch of the imagination. Just because right now, possibly due to

the limited size of datasets available for automated model design, a convincingly suc-

cessful application to medical image segmentation is missing, this will certainly not

continue to be the case. With the availability of larger datasets as well as improved

computational efficiency of empirical AutoML-based methods in the future, we ex-

pect their impact to increase substantially. Essentially, we see nnU-Net as orthogonal

to empirical AutoML-based methods. As pointed out previously, empirical AutoML

methods excel at optimizing certain parts of a pipeline, making them a prime candi-

date for replacing certain parts of the nnU-Net pipeline. We can very well imagine

Neural Architecture Search [111, 117, 116] taking over the network architecture design

or methods like AutoAugment [189] improve upon nnU-Nets fixed data augmentation.

While nnU-Net shows exceptionally strong performance across the 49 tested segmenta-

tion tasks, it has its limitations. Right now, its decisions are made purely based on the

dataset fingerprint as well as limited data-driven experiments. When confronted with

a segmentation task that needs a different evaluation metric than the Dice score, or

can only be solved by incorporating dataset-specific expert knowledge into the pipeline

it may struggle to deliver competitive performance. We have seen this on the synaptic

cleft segmentation task of the CREMI dataset (https://cremi.org). While nnU-Net

delivered competitive results (rank 6/39), electron-microscopy-specific preprocessing,

data augmentation as well as a specialized loss function appear to be necessary to

surpass the state of the art [190]. In highly domain-specific cases such as this one,

nnU-Net should be seen as a strong starting point for making necessary modifications.

Despite its strong performance, we merely consider nnU-Net a first step in the direc-

tion of fully flexible and automatic segmentation frameworks. There are multiple ways

on how it could be improved. For example, some pipeline parameters, such as the

data augmentation, are currently part of the blueprint parameters. While this works

reasonably well, one could attempt to derive dataset-dependent adaptations to, for ex-

ample, the data augmentation to improve the performance even further. Also, as we

have seen for the CREMI dataset, some modalities might require different preprocess-

ing techniques. For recurring cases, one could therefore consider including additional
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heuristics to specifically address them.
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Semantic segmentation is one of the most researched tasks in medical image comput-

ing. Numerous new methods are proposed each year, complemented by a thriving

landscape of segmentation competitions enabling objective comparison of methods in

a standardized environment.

In Chapter 3 we have taken a close look at three fundamentally different segmentation

problems and designed specialized methods with highly competitive segmentation per-

formance.

In Section 3.1 we have developed two separate algorithms for brain tumor segmenta-

tion in multimodal MRI. Brain tumor segmentation is characterized by isotropic image

spacings, a stark class imbalance, uncertainty in the expert annotations as well as am-

biguous and difficult to discern tumor regions.

First, in a more clinically motivated setup (Section 3.1.2), we developed a U-Net with

residual connections in the encoder, a lightweight decoder and deep supervision. This

network was trained on a large in-house dataset and evaluated on a large scale multi-

institutional cohort, where we were able to show that our model has good generaliza-

tion and radiologist-level segmentation performance. More importantly, we were able

to demonstrate that tumor progression analysis based on our volumetric segmentation

maps was significantly more robust than the clinical state of the art, which consists

of manually drawn perpendicular diameters and a set of heuristics. The method de-

veloped in this project was furthermore evaluated on the BraTS 2017 competition in

which it obtained the third place out of 47 competing methods.

Second, in Section 3.1.3 we approached brain tumor segmentation from a different

angle: instead of using an elaborate network architecture, we purposefully restricted

ourselves to use a standard U-Net-like network and attempted to maximise segmen-

tation performance by optimizing the remaining parts of the pipeline. Surprisingly,
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this method based on a plain architecture obtained the second place out of over 60

competitors.

In Section 3.2 we investigated cardiac substructure segmentation in cine MRI. These

images are notoriously anisotropic, with the in-plane spacing being multiple times

lower than the out-of-plane spacing. This poses several challenges in network design:

aggregation of information across slices can introduce errors and negatively impact

the performance of segmentation networks, but is ultimately required to make optimal

segmentation decisions. Again we make use of the standard U-Net architecture: Our

proposed approach was an ensemble of standard 2D and 3D U-Nets. Even though

the 3D U-Net was vastly outperformed by its 2D counterpart on our five-fold cross-

validation we still observed a small gain in the most difficult region, the right ventricle,

when the two methods were combined. This highlights the importance of inter-slice in-

formation even if it causes a drop in segmentation accuracy when used in a standalone

model. Our approach was evaluated in the ACDC segmentation competition where it

outperformed all competing methods and won the challenge.

Finally, in Section 3.3 we tackled kidney and kidney tumor segmentation in CT im-

ages. These images are much larger than the maximal input patch size that can be

processed under realistic hardware constraints. This required us to downsample the

original images to effectively increase the receptive field of the networks. Since down-

sampling comes at the price of less fine-grained texture information as well as coarser

segmentations, the target spacing had to be selected carefully. We furthermore took

the large training dataset as an opportunity to make an attempt at outperforming the

standard 3D U-Net architecture by designing two counterparts that make use of resid-

ual connections in their encoders. Even though one of the residual variants ended up

being the best performing method (and thus selected for test set prediction) the differ-

ence to the 3D U-Net was marginal, preventing us from declaring a clear winner. Our

segmentation method was evaluated as part of the highly competitive KiTS challenge

where it outperformed over 100 competing methods and won the competition. We are

confident that the plain 3D U-Net, had we selected it for test set prediction, would also

have achieved the first place of the challenge.

Considering the current literature landscape, it appears surprising that we were able

to surpass or match state of the art segmentation performance with standard archi-

tectures embedded in well-tuned pipelines on multiple different segmentation tasks

and challenges. This raises important questions about the current state of research

where new segmentation methods focusing on finding elaborate network architectures

[95, 97, 191, 94, 34], loss functions [192, 193, 194, 195], pretraining schemes [196] and

even neural architecture search [116, 197] are regularly proposed. Despite the over-

whelming effort that is put into designing these methods, none of them constitute a

necessary condition for good performance in segmentation challenges: We have re-
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peatedly outperformed competitors by utilizing the ’baseline’, a well tuned 3D U-Net.

This dichotomy is quite interesting: How can methods, when they are proposed, be

demonstrated to outperform some baseline and then proceed to be outperformed by it

when tested in a standardized environment where proper tuning effort was put into it?

Why does the review process of newly proposed papers not require a, or ideally mul-

tiple, successful challenge participation? And why are there no standardized, properly

tuned baselines against which the proposed methods can be compared? The current

research landscape indeed appears like an impenetrable jungle of methodologies where

it becomes increasingly difficult to discern which of the methods really constitute a

veritable and long lasting improvement.

In the discussion of the state of the art (Section 2.5) as well as the motivation in

Chapter 4, we hypothesize that the underlying cause of this replication crisis lies in the

combination of a high dataset diversity (see Figure 1.2) with a strong dataset depen-

dency of segmentation methods. Traditional segmentation methods have a fixed set

of hyperparameters, pre- and postprocessing scheme as well as network architecture,

causing them to be either incompatible or not performing well on other datasets than

the one they were optimized for. This is detrimental when attempting to adapt existing

state of the art and baseline methods to the dataset one is currently working with, a

process that is inconsistent, error prone and ultimately results in an underperforming

reference which in turn makes it easier to propose a new, ’better’ method. It really can-

not be overstated how important evaluation in a standardized challenge environment,

or, if unavailable, the use of a standardized baseline is! We should, however, not stop

there. It seems to be common practice to evaluate new design concepts on only a sin-

gle dataset or type of dataset (such as two different liver segmentation datasets). Yet,

despite the narrow problem-specific evidence, authors readily make generalizing claims

about their method. We have highlighted in Section 4.3.4 why conclusions being drawn

from such a setup should be treated with suspicion: the small size of the datasets in

our domain causes a substantial amount of noise in the results and may cause subopti-

mal configurations to sporadically perform better than a more generalizing and robust

baseline. When running experiments for any of the proposed segmentation methods

in this thesis, we observed variations in average Dice scores of up to 5% depending on

the dataset. We therefore conclude that the ideal setup for proposing new methods

should be to participate in as many competitions as possible, collecting indisputable

evidence for the value of the proposed methods by outperforming other highly opti-

mized segmentation methods on the respective datasets. If suitable competitions are

absent, the least authors should do is choose a standardized baseline that is configured

very carefully to give good performance.

As a side-effect of the dataset dependency of traditional segmentation methods, there
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exists no out-of-the-box tool with which non-experts and researchers from other do-

mains could get access to state of the art segmentation performance for their custom

datasets. This constitutes a substantial problem, in particular in the medical domain

where new unique datasets are regularly created to address new segmentation problems

or address existing segmentation problems with different imaging modalities. These

datasets are often created by clinicians who may not have experts at their disposal

that are experienced enough to make the best out of the dataset. Even if experts are

available, there is often no incentive for them to spend a lot of time on this type of

task: Developing a solid segmentation method for a new dataset is unrewarding, as the

resulting method rarely provides sufficient novelty to qualify for publication.

In this thesis, specifically in Chapter 4, we have taken a first step towards breaking the

dataset dependency of segmentation methods. Our proposed framework, nnU-Net, re-

moves the barriers imposed by a rigid method definition and instead provides a method

template that is molded to each dataset it is applied to. This process is fully auto-

matic and requires neither expert knowledge nor user interaction. It is made possible

by transforming the domain knowledge gathered in developing the segmentation meth-

ods in Chapter 3 into inductive biases that shortcut the high-dimensional optimization

process that is segmentation method development in the biomedical domain. nnU-Net

uses nothing more but well-adapted and tuned standard U-Net architectures in its de-

signs. We evaluated nnU-Net in the harshest possible environment by competing in 19

diverse datasets originating from 10 different international segmentation competitions.

On each of the respective datasets, we competed against the best of the best: manually

tuned algorithms that were hand-crafted to optimally solve the segmentation task at

hand. Despite it’s generic nature and fully automated application to these datasets,

nnU-Net was not only able to compete, but in fact set a new state of the art on the

majority of segmentation tasks. These results highlight how careful method develop-

ment under consideration of multiple datasets as a collective training set enabled us to

overcome the noisiness of the results and make more robust design choices.

While its fully automated nature qualifies nnU-Net as the ideal out-of-the-box seg-

mentation tool that makes state-of-the-art segmentation available to experts and non-

experts alike, we see its most impactful contribution in the way it will enable segmen-

tation method development looking forward. Not only can it act as a standardized

baseline against which newly proposed models should be compared regardless of the

dataset the evaluation is being done. Crucially, nnU-Net is a framework into which

changes can be incorporated easily. Researchers can benefit from it by using it to im-

plement their methodological variant and exploit its dynamic method template to run

evaluation of said variant on an arbitrary number of datasets.

We expect nnU-Net to substantially impact the way method development will be done
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looking forward. It is already being adopted by numerous researchers in the domain

who either use it as a baseline or as a framework for developing new concepts. We

make nnU-Net available to the community as an open source tool and are excited to

see how it will be improved in the future.
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A. nnU-Net details

A.1. Details on nnU-Net’s Data Augmentation

The text contained in this section is reproduced from [23]. It was written by me and

describes my implementation of data augmentation in nnU-Net.

”A variety of data augmentation techniques is applied during training. All augmenta-

tions are computed on the fly on the CPU using background workers. The data augmen-

tation pipeline is implemented with the publicly available batchgenerators framework
1. nnU-Net does not vary the parameters of the data augmentation pipeline between

datasets. Sampled patches are initially larger than the patch size used for training.

This results in less out of boundary values (here 0) being introduced during data aug-

mentation when rotation and scaling is applied. As a part of the rotation and scaling

augmentation, patches are center-cropped to the final target patch size. To ensure

that the borders of original images appear in the final patches, preliminary crops may

initially extend outside the boundary of the image. Spatial augmentations (rotation,

scaling, low resolution simulation) are applied in 3D for the 3D U-Nets and applied in

2D when training the 2D U-Net or a 3D U-Net with anisotropic patch size. A patch

size is considered anisotropic if the largest edge length of the patch size is at least three

times larger than the smallest. To increase the variability in generated patches, most

augmentations are varied with parameters drawn randomly from predefined ranges.

In this context, x ∼ U(a, b) indicates that x was drawn from a uniform distribution

between a and b. Furthermore, all augmentations are applied stochastically according

to a predefined probability. The following augmentations are applied by nnU-Net (in

the given order):

1https://github.com/MIC-DKFZ/batchgenerators
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1. Rotation and Scaling. Scaling and rotation are applied together for improved

speed of computation. This approach reduces the amount of required data inter-

polations to one. Scaling and rotation are applied with a probability of 0.2 each

(resulting in probabilities of 0.16 for only scaling, 0.16 for only rotation and 0.08 for

both being triggered). If processing isotropic 3D patches, the angles of rotation (in

degrees) αx, αy and αz are each drawn from U(−30, 30). If a patch is anisotropic

or 2D, the angle of rotation is sampled from U(−180, 180). If the 2D patch size

is anisotropic, the angle is sampled from U(−15, 15). Scaling is implemented via

multiplying coordinates with a scaling factor in the voxel grid. Thus, scale factors

smaller than one result in a ”zoom out” effect while values larger one result in a

”zoom in” effect. The scaling factor is sampled from U(0.7, 1.4) for all patch types.

2. Gaussian Noise. Zero centered additive Gaussian noise is added to each voxel in

the sample independently. This augmentation is applied with a probability of 0.15.

The variance of the noise is drawn from U(0, 0.1) (note that the voxel intensities in

all samples are close to zero mean and unit variance due to intensity normalization).

3. Gaussian Blur. Blurring is applied with a probability of 0.2 per sample. If this

augmentation is triggered in a sample, blurring is applied with a probability of 0.5

for each of the associated modalities (resulting in a combined probability of only 0.1

for samples with a single modality). The width (in voxels) of the Gaussian kernel

σ is sampled from U(0.5, 1.5) independently for each modality.

4. Brightness. Voxel intensities are multiplied by x ∼ U(0.7, 1.3) with a probability

of 0.15.

5. Contrast. Voxel intensities are multiplied by x ∼ U(0.65, 1.5) with a probability of

0.15. Following multiplication, the values are clipped to their original value range.

6. Simulation of low resolution. This augmentation is applied with a probabil-

ity of 0.25 per sample and 0.5 per associated modality. Triggered modalities are

downsampled by a factor of U(1, 2) using nearest neighbor interpolation and then

sampled back up to their original size with cubic interpolation. For 2D patches or

anisotropic 3D patches, this augmentation is applied only in 2D leaving the out of

plane axis (if applicable) in its original state.

7. Gamma augmentation. This augmentation is applied with a probability of 0.15.

The patch intensities are scaled to a factor of [0, 1] of their respective value range.

Then, a nonlinear intensity transformation is applied per voxel: inew = iγold with

γ ∼ U(0.7, 1.5). The voxel intensities are subsequently scaled back to their original

value range. With a probability of 0.15, this augmentation is applied with the voxel

intensities being inverted prior to transformation: (1− inew) = (1− iold)γ.
8. Mirroring. All patches are mirrored with a probability of 0.5 along all axes.

For the full resolution U-Net of the U-net cascade, nnU-Net additionally applies the

following augmentations to the segmentation masks generated by the low resolution
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3D U-net. Note that the segmentations are stored as one hot encoding.

1. Binary Operators. With probability 0.4, a binary operator is applied to all labels

in the predicted masks. This operator is randomly chosen from [dilation, erosion,

opening, closing]. The structure element is a sphere with radius r ∼ U(1, 8). The

operator is applied to the labels in random order. Hereby, the one hot encoding

property is retained. Dilation of one label, for example, will result in removal of all

other labels in the dilated area.

2. Removal of Connected Components. With probability 0.2, connected compo-

nents that are smaller than 15% of the patch size are removed from the one hot

encoding.

” [23]

A.2. Summary of nnU-Net Challenge Participations

The text contained in this section is reproduced from [23]. It was written by me

and describes my experimental evaluation of nnU-Net on 19 different datasets in the

biomedical domain.

”In this section we provide details of all challenge participations. In some challenges,

manual intervention regarding the format of input data or the cross-validation data

splits was required for compatibility with nnU-Net. For each dataset, we disclose all

manual interventions in this section. The most common cause for manual intervention

was training cases that were related to each other (such as multiple time points of the

same patient) and thus required to be separated for mutual exclusivity between data

splits. A detailed description of how to perform this intervention is further provided

along with the source code. For each dataset, we run all applicable nnU-Net configu-

rations (2D, 3D fullres, 3D lowres, 3D cascade) in 5-fold cross-validation. All models

are trained from scratch without pretraining and trained only on the provided training

data of the challenge without external training data. Note that other participants may

be using external data in some competitions. For each dataset, nnU-Net subsequently

identifies the ideal configuration(s) based on cross-validation and ensembling. Finally,

The best configuration is used to predict the test cases. The pipeline generated by

nnU-Net is provided for each dataset in the compact representation described in Sec-

tion A.2.2. We furthermore provide a table containing detailed cross-validation as well

as test set results. All leaderboards were last accessed on December 12th, 2019.” [23]

A.2.1. Challenge Inclusion Criteria

”When selecting challenges for participation, our goal was to apply nnU-Net to as many

different datasets as possible to demonstrate its robustness and flexibility. We applied

the following criteria to ensure a rigorous and sound testing environment:
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Figure A.1.: ”Decoding the architecture. We provide all generated architectures in a
compact representation from which they can be fully reconstructed if desired.
The architecture displayed here can be represented by means of kernel sizes [[1,
3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]] and strides [[1, 2, 2], [2, 2, 2],
[2, 2, 2], [1, 2, 2], [1, 2, 2]] (see description in the text)” [23]. Figure reproduced
from [23].

1. The task of the challenge is semantic segmentation in any 3D imaging modality

with images of any size.

2. Training cases are provided to the challenge participants.

3. Test cases are separate, with the ground truth not being available to the challenge

participants.

4. Comparison to results from other participants is possible (e.g. through standardized

evaluation with an online platform and a public leaderboard).

The competitions outlined below are the ones who qualified under these criteria and

were thus selected for evaluation of nnU-Net. To our knowledge, CREMI 2 is the only

competition from the biological domain that meets these criteria.” [23]

A.2.2. Compact Architecture Representation

”In the following sections, network architectures generated by nnU-Net will be pre-

sented in a compact representation consisting of two lists: one for the convolutional

kernel sizes and one for the downsampling strides. As we describe in this section, this

representation can be used to fully reconstruct the entire network architecture. The

condensed representation is chosen to prevent an excessive amount of figures. Figure

A.2.2 exemplary shows the 3D full resolution U-Net for the ACDC dataset (D13). The

2https://cremi.org/leaderboard/
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architecture has 6 resolution stages. Each resolution stage in both encoder and decoder

consists of two computational blocks. Each block is a sequence of (conv - instance norm

- leaky ReLU), as described in 4.2. In this figure, one such block is represented by an

outlined blue box. Within each box, the stride of the convolution is indicated by the

first three numbers (1,1,1 for the uppermost left box) and the kernel size of the convolu-

tion is indicated by the second set of numbers (1,3,3 for the uppermost left box). Using

this information, along with the template with which our architectures are designed,

we can fully describe the presented architecture with the following lists:

• Convolutional Kernel Sizes: The kernel sizes of this architecture are [[1, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]]. Note that this list contains 6 elements,

matching the 6 resolutions encountered in the encoder. Each element in this list

gives the kernel size of the convolutional layers at this resolution (here this is three

digits due to the convolutions being three dimensional). Within one resolution, both

blocks use the same kernel size. The convolutions in the decoder mirror the encoder

(dropping the last entry in the list due to the bottleneck).

• Downsampling strides: The strides for downsampling here are [[1, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2], [1, 2, 2]]. Each downsampling step in the encoder is represented by

one entry. A stride of 2 results in a downsampling of factor 2 along that axis which a

stride of 1 leaves the size unchanged. Note how the stride initially is [1, 2, 2] due to

the spacing discrepancy. This changes the initial spacing of 5× 1.56× 1.56 mm to a

spacing of 5×3.12×3.12 mm in the second resolution step. The downsampling strides

only apply to the first convolution of each resolution stage in the encoder. The second

convolution always has a stride of [1, 1, 1]. Again, the decoder mirrors the encoder,

but the stride is used as output stride of the convolution transposed (resulting in

appropriate upscaling of feature maps). Outputs of all convolutions transposed have

the same shape as the skip connection originating from the encoder.

Segmentation outputs for auxiliary losses are added to all but the two lowest resolution

steps.” [23]

A.2.3. Medical Segmentation Decathlon

Challenge summary

”The Medical Segmentation Decathlon3 [29] is a competition that spans 10 different

segmentation tasks. These tasks are selected to cover a large proportion of the dataset

variability in the medical domain. The overarching goal of the competition was to en-

courage researchers to develop algorithms that can work with these datasets out of the

box without manual intervention. Each of the tasks comes with respective training and

3http://medicaldecathlon.com/
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test data. A detailed description of datasets can be found on the challenge homepage.

Originally, the challenge was divided into two phases: In phase I, 7 datasets were pro-

vided to the participants for algorithm development. In phase II, the algorithms were

applied to three additional and previously unseen datasets without further changes.

Challenge evaluation was performed for the two phases individually and winners were

determined based on their performance on the test cases.” [23]

Initial version of nnU-Net

”A preliminary version of nnU-Net was developed as part of our entry in this competi-

tion, where it achieved the first rank in both phases (see http://medicaldecathlon.com/results.html).

We subsequently made the respective challenge report available on arXiv [30].

nnU-Net has since been refined using all ten tasks of the Medical Segmentation De-

cathlon. The current version of nnU-Net as presented in this publication was again sub-

mitted to the open leaderboard (https://decathlon-10.grand-challenge.org/evaluation/results/),

and achieved the first rank outperforming the initial nnU-Net as well as other methods

that held the state of the art since the original competition [117].” [23]

Application of nnU-Net to the Medical Segmentation Decathlon

”nnU-Net was applied to all ten tasks of the Medical Segmentation Decathlon without

any manual intervention.” [23]

BrainTumour (D1)

”Normalization: Each image is normalized independently by subtracting its mean

and dividing by its standard deviation.” [23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 1 x 1 1 x 1 x 1 -

Median image shape at

target spacing:
NA x 169 x 138 138 169 138 -

Patch size: 192 x 160 128 x 128 x 128 -

Batch size: 107 2 -

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [2, 2, 2]]
-

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]
-

Table A.1.: ”Network configurations generated by nnU-Net for the BrainTumour
dataset from the Medical Segmentation Decathlon (D1). For more in-
formation on how to decode downsampling strides and kernel sizes into an archi-
tecture, see A.2.2” [23]. Table reproduced from [23].
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A.2. Summary of nnU-Net Challenge Participations

edema non-enhancing tumor enhancing tumour mean

2D 0.7957 0.5985 0.7825 0.7256

3D fullres * 0.8101 0.6199 0.7934 0.7411

Best Ensemble 0.8106 0.6179 0.7926 0.7404

Postprocessed 0.8101 0.6199 0.7934 0.7411

Test set 0.68 0.47 0.68 0.61

Table A.2.: ”Decathlon BrainTumour (D1) results. Note that all reported Dice scores
(except the test set) were computed using five fold cross-validation on the training
cases. * marks the best performing model selected for subsequent postprocessing
(see ”Postprocessed”) and test set submission (see ”Test set”) Note that the
Dice scores for the test set are computed with the online platform and only two
significant digits are reported. Best ensemble on this dataset was the combination
of the 2D U-Net and the 3D full resolution U-Net” [23]. Table reproduced from
[23].

Heart (D2)

”Normalization: Each image is normalized independently by subtracting its mean

and dividing by its standard deviation.” [23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 1.25 x 1.25 1.37 x 1.25 x 1.25 -

Median image shape at

target spacing:
NA x 320 x 232 115 x 320 x 232 -

Patch size: 320 x 256 80 x 192 x 160 -

Batch size: 40 2 -

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [2, 1]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2]]
-

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3], ]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]
-

Table A.3.: ”Network configurations generated by nnU-Net for the Heart dataset
from the Medical Segmentation Decathlon (D2). For more information
on how to decode downsampling strides and kernel sizes into an architecture, see
A.2.2” [23]. Table reproduced from [23].
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A. nnU-Net details

left atrium mean

2D 0.9090 0.9090

3D fullres * 0.9328 0.9328

Best Ensemble 0.9268 0.9268

Postprocessed 0.9329 0.9329

Test set 0.93 0.93

Table A.4.: ”Decathlon Heart (D2) results. Note that all reported Dice scores (except
the test set) were computed using five fold cross-validation on the training cases.
* marks the best performing model selected for subsequent postprocessing (see
”Postprocessed”) and test set submission (see ”Test set”). Note that the Dice
scores for the test set are computed with the online platform and only two sig-
nificant digits are reported. Best ensemble on this dataset was the combination
of the 2D U-Net and the 3D full resolution U-Net” [23]. Table reproduced from
[23].

Liver (D3)

”Normalization: Clip to [−17, 201], then subtract 99.40 and finally divide by 39.36.”

[23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 0.7676 x 0.7676 1 x 0.7676 x 0.7676 2.47 x 1.90 x 1.90

Median image shape at

target spacing:
NA x 512 x 512 482 x 512 x 512 195 x 207 x 207

Patch size: 512 x 512 128 x 128 x 128 128 x 128 x 128

Batch size: 12 2 2

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [2, 2], [2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [2, 2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [2, 2, 2]]

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3], [3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

Table A.5.: ”Network configurations generated by nnU-Net for the Liver dataset
from the Medical Segmentation Decathlon (D3). For more information
on how to decode downsampling strides and kernel sizes into an architecture, see
A.2.2” [23]. Table reproduced from [23].
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A.2. Summary of nnU-Net Challenge Participations

liver cancer mean

2D 0.9547 0.5637 0.7592

3D fullres 0.9571 0.6372 0.7971

3D lowres 0.9563 0.6028 0.7796

3D cascade 0.9600 0.6386 0.7993

Best Ensemble* 0.9613 0.6564 0.8088

Postprocessed 0.9621 0.6600 0.8111

Test set 0.96 0.76 0.86

Table A.6.: ”Decathlon Liver (D3) results. Note that all reported Dice scores (except
the test set) were computed using five fold cross-validation on the training cases.
* marks the best performing model selected for subsequent postprocessing (see
”Postprocessed”) and test set submission (see ”Test set”). Note that the Dice
scores for the test set are computed with the online platform and only two sig-
nificant digits are reported. Best ensemble on this dataset was the combination
of the 3D low resolution U-Net and the 3D full resolution U-Net” [23]. Table
reproduced from [23].

Hippocampus (D4)

”Normalization: Each image is normalized independently by subtracting its mean

and dividing by its standard deviation.” [23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 1 x 1 1 x 1 x 1 -

Median image shape at

target spacing:
NA x 50 x 35 36 x 50 x 35 -

Patch size: 56 x 40 40 x 56 x 40 -

Batch size: 366 9 -

Downsampling strides: [[2, 2], [2, 2], [2, 2]] [[2, 2, 2], [2, 2, 2], [2, 2, 2]] -

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3],

[3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3]]
-

Table A.7.: ”Network configurations generated by nnU-Net for the Hippocampus
dataset from the Medical Segmentation Decathlon (D4). For more in-
formation on how to decode downsampling strides and kernel sizes into an archi-
tecture, see A.2.2” [23]. Table reproduced from [23].
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A. nnU-Net details

Anterior Posterior mean

2D 0.8787 0.8595 0.8691

3D fullres * 0.8975 0.8807 0.8891

Best Ensemble 0.8962 0.8790 0.8876

Postprocessed 0.8975 0.8807 0.8891

Test set 0.90 0.89 0.895

Table A.8.: ”Decathlon Hippocampus (D4) results. Note that all reported Dice scores
(except the test set) were computed using five fold cross-validation on the training
cases. * marks the best performing model selected for subsequent postprocessing
(see ”Postprocessed”) and test set submission (see ”Test set”). Note that the
Dice scores for the test set are computed with the online platform and only two
significant digits are reported. Best ensemble on this dataset was the combination
of the 2D U-Net and the 3D full resolution U-Net” [23]. Table reproduced from
[23].

Prostate (D5)

”Normalization: Each image is normalized independently by subtracting its mean

and dividing by its standard deviation.” [23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 0.62 x 0.62 3.6 x 0.62 x 0.62 -

Median image shape at

target spacing:
NA x 320 x 319 20 x 320 x 319 -

Patch size: 320 x 320 20 x 320 x 256 -

Batch size: 32 2 -

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [2, 2]]

[[1, 2, 2], [1, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2], [1, 2, 2]]
-

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3]]

[[1, 3, 3], [1, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3]]

-

Table A.9.: ”Network configurations generated by nnU-Net for the Prostate
dataset from the Medical Segmentation Decathlon (D5). For more in-
formation on how to decode downsampling strides and kernel sizes into an archi-
tecture, see A.2.2” [23]. Table reproduced from [23].
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A.2. Summary of nnU-Net Challenge Participations

PZ TZ mean

2D 0.6285 0.8380 0.7333

3D fullres 0.6663 0.8410 0.7537

Best Ensemble * 0.6611 0.8575 0.7593

Postprocessed 0.6611 0.8577 0.7594

Test set 0.77 0.90 0.835

Table A.10.: ”Decathlon Prostate (D5) results. Note that all reported Dice scores (ex-
cept the test set) were computed using five fold cross-validation on the training
cases. * marks the best performing model selected for subsequent postprocessing
(see ”Postprocessed”) and test set submission (see ”Test set”). Note that the
Dice scores for the test set are computed with the online platform and only two
significant digits are reported. Best ensemble on this dataset was the combina-
tion of the 2D U-Net and the 3D full resolution U-Net” [23]. Table reproduced
from [23].

Lung (D6)

”Normalization: Clip to [−1024, 325], then subtract −158.58 and finally divide by

324.70.” [23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 0.79 x 0.79 1.24 x 0.79 x 0.79 2.35 x 1.48 x 1.48

Median image shape at

target spacing:
NA x 512 x 512 252 x 512 x 512 133 x 271 x 271

Patch size: 512 x 512 80 x 192 x 160 80 x 192 x 160

Batch size: 12 2 2

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [2, 2], [2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2]]

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3], [3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

Table A.11.: ”Network configurations generated by nnU-Net for the Lung dataset
from the Medical Segmentation Decathlon (D6). For more information
on how to decode downsampling strides and kernel sizes into an architecture,
see A.2.2” [23]. Table reproduced from [23].
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A. nnU-Net details

cancer mean

2D 0.4989 0.4989

3D fullres 0.7211 0.7211

3D lowres 0.7109 0.7109

3D cascade 0.6980 0.6980

Best Ensemble* 0.7241 0.7241

Postprocessed 0.7241 0.7241

Test set 0.74 0.74

Table A.12.: ”Decathlon Lung (D6) results. Note that all reported Dice scores (except
the test set) were computed using five fold cross-validation on the training cases.
* marks the best performing model selected for subsequent postprocessing (see
”Postprocessed”) and test set submission (see ”Test set”). Note that the Dice
scores for the test set are computed with the online platform and only two sig-
nificant digits are reported. Best ensemble on this dataset was the combination
of the 3D low resolution U-Net and the 3D full resolution U-Net” [23]. Table
reproduced from [23].

Pancreas (D7)

”Normalization: Clip to [−96.0, 215.0], then subtract 77.99 and finally divide by

75.40.” [23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 0.8 x 0.8 2.5 x 0.8 x 0.8 2.58 x 1.29 x 1.29

Median image shape at

target spacing:
NA x 512 x 512 96 x 512 x 512 93 x 318 x 318

Patch size: 512 x 512 40 x 224 x 224 64 x 192 x 192

Batch size: 12 2 2

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [2, 2], [2, 2]]

[[1, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2]]

[[1, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [2, 2, 2]]

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3], [3, 3]]

[[1, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

Table A.13.: ”Network configurations generated by nnU-Net for the Pancreas
dataset from the Medical Segmentation Decathlon (D7). For more
information on how to decode downsampling strides and kernel sizes into an
architecture, see A.2.2” [23]. Table reproduced from [23].

130



A.2. Summary of nnU-Net Challenge Participations

pancreas cancer mean

2D 0.7738 0.3501 0.5619

3D fullres 0.8217 0.5274 0.6745

3D lowres 0.8118 0.5286 0.6702

3D cascade 0.8101 0.5380 0.6741

Best Ensemble * 0.8214 0.5428 0.6821

Postprocessed 0.8214 0.5428 0.6821

Test set 0.82 0.53 0.675

Table A.14.: ”Decathlon Pancreas (D7) results. Note that all reported Dice scores (ex-
cept the test set) were computed using five fold cross-validation on the training
cases. * marks the best performing model selected for subsequent postprocessing
(see ”Postprocessed”) and test set submission (see ”Test set”). Note that the
Dice scores for the test set are computed with the online platform and only two
significant digits are reported. Best ensemble on this dataset was the combi-
nation of the 3D full resolution U-Net and the 3D U-Net cascade” [23]. Table
reproduced from [23].

Hepatic Vessel (D8)

”Normalization: Clip to [−3, 243], then subtract 104.37 and finally divide by 52.62.”

[23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 0.8 x 0.8 1.5 x 0.8 x 0.8 2.42 x 1.29 x 1.29

Median image shape at

target spacing:
NA x 512 x 512 150 x 512 x 512 93 x 318 x 318

Patch size: 512 x 512 64 x 192 x 192 64 x 192 x 192

Batch size: 12 2 2

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [2, 2], [2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2]]

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3], [3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

Table A.15.: ”Network configurations generated by nnU-Net for the HepaticVessel
dataset from the Medical Segmentation Decathlon (D8). For more
information on how to decode downsampling strides and kernel sizes into an
architecture, see A.2.2” [23]. Table reproduced from [23].
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A. nnU-Net details

Vessel Tumour mean

2D 0.6180 0.6359 0.6269

3D fullres 0.6456 0.7217 0.6837

3D lowres 0.6294 0.7079 0.6687

3D cascade 0.6424 0.7138 0.6781

Best Ensemble * 0.6485 0.7250 0.6867

Postprocessed 0.6485 0.7250 0.6867

Test set 0.66 0.72 0.69

Table A.16.: ”Decathlon HepaticVessel (D8) results. Note that all reported Dice scores
(except the test set) were computed using five fold cross-validation on the train-
ing cases. * marks the best performing model selected for subsequent postpro-
cessing (see ”Postprocessed”) and test set submission (see ”Test set”). Note
that the Dice scores for the test set are computed with the online platform and
only two significant digits are reported. Best ensemble on this dataset was the
combination of the 3D full resolution U-Net and the 3D low resolution U-Net”
[23]. Table reproduced from [23].

Spleen (D9)

”Normalization: Clip to [−41, 176], then subtract 99.29 and finally divide by 39.47.”

[23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 0.79 x 0.79 1.6 x 0.79 x 0.79 2.77 x 1.38 x 1.38

Median image shape at

target spacing:
NA x 512 x 512 187 x 512 x 512 108 x 293 x 293

Patch size: 512 x 512 64 x 192 x 160 64 x 192 x 192

Batch size: 12 2 2

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [2, 2], [2, 2]]

[[1, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [2, 2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2]]

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3], [3, 3]]

[[1, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

Table A.17.: ”Network configurations generated by nnU-Net for the Spleen dataset
from the Medical Segmentation Decathlon (D9). For more information
on how to decode downsampling strides and kernel sizes into an architecture,
see A.2.2” [23]. Table reproduced from [23].
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A.2. Summary of nnU-Net Challenge Participations

spleen mean

2D 0.9492 0.9492

3D fullres 0.9638 0.9638

3D lowres 0.9683 0.9683

3D cascade 0.9714 0.9714

Best Ensemble * 0.9723 0.9723

Postprocessed 0.9724 0.9724

Test set 0.97 0.97

Table A.18.: ”Decathlon Spleen (D9) results. Note that all reported Dice scores (except
the test set) were computed using five fold cross-validation on the training cases.
* marks the best performing model selected for subsequent postprocessing (see
”Postprocessed”) and test set submission (see ”Test set”). Note that the Dice
scores for the test set are computed with the online platform and only two signif-
icant digits are reported. Best ensemble on this dataset was the combination of
the 3D U-Net cascade and the 3D full resolution U-Net” [23]. Table reproduced
from [23].

Colon (D10)

”Normalization: Clip to [−30.0, 165.82], then subtract 62.18 and finally divide by

32.65.” [23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 0.78 x 0.78 3 x 0.78 x 0.78 3.09 x 1.55 x 1.55

Median image shape at

target spacing:
NA x 512 x 512 150 x 512 x 512 146 x 258 x 258

Patch size: 512 x 512 56 x 192 x 160 96 x 160 x 160

Batch size: 12 2 2

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [2, 2], [2, 2]]

[[1, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2]]

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3], [3, 3]]

[[1, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

Table A.19.: ”Network configurations generated by nnU-Net for the Colon dataset
from the Medical Segmentation Decathlon (D10). For more information
on how to decode downsampling strides and kernel sizes into an architecture,
see A.2.2” [23]. Table reproduced from [23].
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A. nnU-Net details

colon cancer primaries mean

2D 0.2852 0.2852

3D fullres 0.4553 0.4553

3D lowres 0.4538 0.4538

3D cascade * 0.4937 0.4937

Best Ensemble 0.4853 0.4853

Postprocessed 0.4937 0.4937

Test set 0.58 0.58

Table A.20.: ”Decathlon Colon (D10) results. Note that all reported Dice scores (except
the test set) were computed using five fold cross-validation on the training cases.
* marks the best performing model selected for subsequent postprocessing (see
”Postprocessed”) and test set submission (see ”Test set”). Note that the Dice
scores for the test set are computed with the online platform and only two signif-
icant digits are reported. Best ensemble on this dataset was the combination of
the 3D U-Net cascade and the 3D full resolution U-Net” [23]. Table reproduced
from [23].

A.2.4. Multi Atlas Labeling Beyond the Cranial Vault: Abdomen (D11)

Challenge summary

”The Multi Atlas Labeling Beyond the Cranial Vault - Abdomen Challenge4 [36] (de-

noted BCV for brevity) comprises 30 CT images for training and 20 for testing. The

segmentation target are thirteen different organs in the abdomen. ” [23]

Application of nnU-Net to BCV

”nnU-Net was applied to the BCV challenge without any manual intervention.

Normalization: Clip to [−958, 327], then subtract 82.92 and finally divide by 136.97.”

[23]

A.2.5. PROMISE12 (D12)

Challenge summary

”The segmentation target of the PROMISE12 challenge [42] is the prostate in T2 MRI

images. 50 training cases with prostate annotations are provided for training. There

are 30 test cases which need to be segmented by the challenge participants and are

subsequently evaluated on an online platform5.” [23]

4https://www.synapse.org/Synapse:syn3193805/wiki/217752
5https://promise12.grand-challenge.org/
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A.2. Summary of nnU-Net Challenge Participations

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 0.76 x 0.76 3 x 0.76 x 0.76 3.18 x 1.60 x 1.60

Median image shape at

target spacing:
NA x 512 x 512 148 x 512 x 512 140 x 243 x 243

Patch size: 512 x 512 48 x 192 x 192 80 x 160 x 160

Batch size: 12 2 2

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [2, 2], [2, 2]]

[[1, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2]]

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3], [3, 3]]

[[1, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

Table A.21.: ”Network configurations generated by nnU-Net for the BCV challenge
(D13). For more information on how to decode downsampling strides and kernel
sizes into an architecture, see A.2.2” [23]. Table reproduced from [23].

1 2 3 4 5 6 7 8

2D 0.8860 0.8131 0.8357 0.6406 0.7724 0.9453 0.8405 0.9128

3D fullres 0.9083 0.8939 0.8675 0.6632 0.7840 0.9557 0.8816 0.9229

3D lowres 0.9132 0.9045 0.9132 0.6525 0.7810 0.9554 0.8903 0.9209

3D cascade 0.9166 0.9069 0.9137 0.7036 0.7885 0.9587 0.9037 0.9215

Best Ensemble * 0.9135 0.9065 0.8971 0.6955 0.7897 0.9589 0.9026 0.9248

Postprocessed 0.9135 0.9065 0.8971 0.6959 0.7897 0.9590 0.9026 0.9248

Test set 0.9721 0.9182 0.9578 0.7528 0.8411 0.9769 0.9220 0.9290

9 10 11 12 13 mean

2D 0.8140 0.7046 0.7367 0.6269 0.5909 0.7784

3D fullres 0.8638 0.7659 0.8176 0.7148 0.7238 0.8279

3D lowres 0.8571 0.7469 0.8003 0.6688 0.6851 0.8223

3D cascade 0.8621 0.7722 0.8210 0.7205 0.7214 0.8393

Best Ensemble * 0.8673 0.7746 0.8299 0.7218 0.7287 0.8393

Postprocessed 0.8673 0.7746 0.8299 0.7262 0.7290 0.8397

Test set 0.8809 0.8317 0.8515 0.7887 0.7674 0.8762

Table A.22.: ”Multi Atlas Labeling Beyond the Cranial Vault Abdomen (D11) re-
sults. Note that all reported Dice scores (except the test set) were computed
using five fold cross-validation on the training cases. Postprocessing was applied
to the model marked with *. This model (incl postprocessing) was used for test
set predictions. Note that the Dice scores for the test set are computed with the
online platform. Best ensemble on this dataset was the combination of the 3D
U-Net cascade and the 3D full resolution U-Net” [23]. Table reproduced from
[23].
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Application of nnU-Net to PROMISE12

”nnU-Net was applied to the PROMISE12 challenge without any manual intervention.

Normalization: Each image is normalized independently by subtracting its mean and

dividing by its standard deviation.” [23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 0.61 x 0.61 2.2 x 0.61 x 0.61 -

Median image shape at

target spacing:
NA x 327 x 327 39 x 327 x 327 -

Patch size: 384 x 384 28 x 256 x 256 -

Batch size: 22 2 -

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [2, 2]]

[[1, 2, 2], [2, 2, 2], [2, 2, 2],

[1, 2, 2], [1, 2, 2]]
-

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3]]

[[1, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]
-

Table A.23.: ”Network configurations generated by nnU-Net for the PROMISE12
challenge (D12). For more information on how to decode downsampling
strides and kernel sizes into an architecture, see A.2.2” [23]. Table reproduced
from [23].

prostate mean

2D 0.8932 0.8932

3D fullres 0.8891 0.8891

Best Ensemble * 0.9029 0.9029

Postprocessed 0.9030 0.9030

Test set 0.9194 0.9194

Table A.24.: ”PROMISE12 (D12) results. Note that all reported Dice scores (except
the test set) were computed using five fold cross-validation on the training
cases. * marks the best performing model selected for subsequent postprocessing
(see ”Postprocessed”) and test set submission (see ”Test set”). Note that the
scores for the test set are computed with the online platform. The evaluation
score of our test set submission is 89.6507. The test set Dice score reported
in the table was computed from the detailed submission results (Detailed re-
sults available here https://promise12.grand-challenge.org/evaluation/

results/89044a85-6c13-49f4-9742-dea65013e971/). Best ensemble on this
dataset was the combination of the 2D U-Net and the 3D full resolution U-Net”
[23]. Table reproduced from [23].
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A.2.6. The Automatic Cardiac Diagnosis Challenge (ACDC) (D13)

Challenge summary

”The Automatic Cardiac Diagnosis Challenge [4] (ACDC) comprises 100 training pa-

tients and 50 test patients. The target structures are the cavity of the right ventricle,

the myocardium of the left ventricle and the cavity of the left ventricle. All images are

cine MRI sequences of which the enddiastolic (ED) and endsystolic (ES) time points

of the cardiac cycle were to be segmented. With two time instances per patient, the

effective number of training/test images is 200/100.” [23]

Application of nnU-Net to ACDC

”Since two time instances of the same patient were provided, we manually interfered

with the split for the 5-fold cross-validation of our models to ensure mutual exclusivity

of patients between folds. A part from that, nnU-Net was applied without manual

intervention.

Normalization: Each image is normalized independently by subtracting its mean and

dividing by its standard deviation.” [23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 1.56 x 1.56 5 x 1.56 x 1.56 -

Median image shape at

target spacing:
NA x 237 x 208 18 x 237 x 208 -

Patch size: 256 x 224 20 x 256 x 224 -

Batch size: 58 3 -

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2]]

[[1, 2, 2], [2, 2, 2], [2, 2, 2],

[1, 2, 2], [1, 2, 2]]
-

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3]]

[[1, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]
-

Table A.25.: ”Network configurations generated by nnU-Net for the ACDC chal-
lenge (D13). For more information on how to decode downsampling strides
and kernel sizes into an architecture, see A.2.2” [23]. Table reproduced from
[23].
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RV MLV LVC mean

2D 0.9053 0.8991 0.9433 0.9159

3D fullres 0.9059 0.9022 0.9458 0.9179

Best Ensemble * 0.9145 0.9059 0.9479 0.9227

Postprocessed 0.9145 0.9059 0.9479 0.9228

Test set 0.9295 0.9183 0.9407 0.9295

Table A.26.: ”ACDC results (D13). Note that all reported Dice scores (except the test set)
were computed using five fold cross-validation on the training cases. * marks
the best performing model selected for subsequent postprocessing (see ”Post-
processed”) and test set submission (see ”Test set”). Note that the Dice scores
for the test set are computed with the online platform. The online platform
reports the Dice scores for enddiastolic and endsystolic time points separately.
We averaged these values for a more condensed presentation. Best ensemble on
this dataset was the combination of the 2D U-Net and the 3D full resolution
U-Net” [23]. Table reproduced from [23].

A.2.7. Liver and Liver Tumor Segmentation Challenge (LiTS) (D14)

Challenge summary

”The Liver and Liver Tumor Segmentation challenge [35] provides 131 training CT

images with ground truth annotations for the liver and liver tumors. 70 test images

are provided without annotations. The predicted segmentation masks of the test cases

are evaluated using the LiTS online platform6.” [23]

Application of nnU-Net to LiTS

”nnU-Net was applied to the LiTS challenge without any manual intervention.

Normalization: Clip to [−17, 201], then subtract 99.40 and finally divide by 39.39.”

[23]

6https://competitions.codalab.org/competitions/17094
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2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 0.77 x 0.77 1 x 0.77 x 0.77 2.47 x 1.90 x 1.90

Median image shape at

target spacing:
NA x 512 x 512 482 x 512 x 512 195 x 207 x 207

Patch size: 512 x 512 128 x 128 x 128 128 x 128 x 128

Batch size: 12 2 2

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [2, 2], [2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [2, 2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [2, 2, 2]]

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3], [3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

Table A.27.: ”Network configurations generated by nnU-Net for the LiTS challenge
(D14). For more information on how to decode downsampling strides and kernel
sizes into an architecture, see A.2.2” [23]. Table reproduced from [23].

liver cancer mean

2D 0.9547 0.5603 0.7575

3D fullres 0.9576 0.6253 0.7914

3D lowres 0.9585 0.6161 0.7873

3D cascade 0.9609 0.6294 0.7951

Best Ensemble* 0.9618 0.6539 0.8078

Postprocessed 0.9631 0.6543 0.8087

Test set 0.9670 0.7630 0.8650

Table A.28.: ”LiTS results (D14). Note that all reported Dice scores (except the test
set) were computed using five fold cross-validation on the training cases. *
marks the best performing model selected for subsequent postprocessing (see
”Postprocessed”) and test set submission (see ”Test set”). Note that the Dice
scores for the test set are computed with the online platform. Best ensemble on
this dataset was the combination of the 3D low resolution U-Net and the 3D full
resolution U-Net” [23]. Table reproduced from [23].

A.2.8. Longitudinal multiple sclerosis lesion segmentation challenge (MSLe-

sion) (D15)

Challenge summary

”The longitudinal multiple sclerosis lesion segmentation challenge [39] provides 5 train-

ing patients. For each patient, 4 to 5 images acquired at different time points are

provided (4 patients with 4 time points each and one patient with 5 time points for a

total of 21 images). Each time point is annotated by two different experts, resulting in

42 training annotations (on 21 images). The test set contains 14 patients, again with

several time points each, for a total of 61 MRI acquisitions. Test set predictions are
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evaluated using the online platform7. Each train and test image consists of four MRI

modalities: MPRAGE, FLAIR, Proton Density, T2.” [23]

Application of nnU-Net to MSLesion

”We manually interfere with the splits in the cross-validation to ensure mutual exclu-

sivity of patients between folds. Each image was annotated by two different experts.

We treat these annotations as separate training images (of the same patient), resulting

in a training set size of 2×21 = 42. We do not use the longitudinal nature of the scans

and treat each image individually during training and inference.

Normalization: Each image is normalized independently by subtracting its mean and

dividing by its standard deviation.” [23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 1 x 1 1 x 1 x 1 -

Median image shape at

target spacing:
NA x 180 x 137 137 x 180 x 137 -

Patch size: 192 x 160 112 x 128 x 96 -

Batch size: 107 2 -

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2]]

[[1, 2, 1], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [2, 2, 2]]
-

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]
-

Table A.29.: ”Network configurations generated by nnU-Net for the MSLesion
challenge (D15). For more information on how to decode downsampling
strides and kernel sizes into an architecture, see A.2.2” [23]. Table reproduced
from [23].

7https://smart-stats-tools.org/lesion-challenge
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lesion mean

2D 0.7339 0.7339

3D fullres * 0.7531 0.7531

Best Ensemble 0.7494 0.7494

Postprocessed 0.7531 0.7531

Test set 0.6785 0.6785

Table A.30.: ”MSLesion results (D15). Note that all reported Dice scores (except the
test set) were computed using five fold cross-validation on the training cases.
* marks the best performing model selected for subsequent postprocessing (see
”Postprocessed”) and test set submission (see ”Test set”). Note that the Dice
scores for the test set are computed with the online platform based on the
detailed results (which are available here https://smart-stats-tools.org/

sites/lesion_challenge/temp/top25/nnUNetV2_12032019_0903.csv). The
ranking is based on a score, which includes other metrics as well (see [39] for
details). The score of our submission is 92.874. Best ensemble on this dataset
was the combination of the 2D U-Net and the 3D full resolution U-Net” [23].
Table reproduced from [23].

A.2.9. Combined Healthy Abdominal Organ Segmentation (CHAOS) (D16)

Challenge summary

”The CHAOS challenge [186] is divided into five tasks. Here we focused on Tasks 3

(MRI Liver segmentation) and Task 5 (MRI multiorgan segmentation). Tasks 1, 2 and

4 also included the use of CT images, a modality for which plenty of public data is

available (see e.g. BCV and LiTS challenge). To isolate the algorithmic performance

of nnU-Net relative to other participants we decided to only use the tasks for which

a contamination with external data was unlikely. The target structures of Task 5 are

the liver, the spleen and the left and right kidneys. The CHAOS challenge provides

20 training cases. For each training case, there is a T2 images with a corresponding

ground truth annotation as well as a T1 acquisition with its own, separate ground

truth annotation. The T1 acquisition has two modalities which are co-registered: T1

in-phase and T1 out-phase. Task 3 is a subset of Task 5 with only the liver being the

segmentation target. The 20 test cases are evaluated using the online platform8.” [23]

Application of nnU-Net to CHAOS

”nnU-Net only supports images with a constant number of input modalities. The

training cases in CHAOS have either one (T2) or two (T1 in & out phase) modalities.

To ensure compatibility with nnU-Net we could have either duplicated the T2 image

8https://chaos.grand-challenge.org/

141

https://smart-stats-tools.org/sites/lesion_challenge/temp/top25/nnUNetV2_12032019_0903.csv
https://smart-stats-tools.org/sites/lesion_challenge/temp/top25/nnUNetV2_12032019_0903.csv


A. nnU-Net details

and trained with two input modalities or use only one input modality and treat T1 in

phase and out phase as separate training examples. We opted for the latter because

this variant results in more (albeit highly correlated) training images. With 20 training

patients being provided, this approach resulted in 60 training images. For the cross-

validation we ensure that the split is being done on patient level. During inference,

nnU-Net will generate two separate predictions for T1 in and out phase which need

to be consolidated for test set evaluation. We achieve this by simply averaging the

softmax probabilities between the two to generate the final segmentation. We train

nnU-Net only for Task 5. Because task 3 represents a subset of Task 5, we extract the

liver from our Task 5 predictions and submit it to Task 3.

Normalization: Each image is normalized independently by subtracting its mean and

dividing by its standard deviation.” [23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 1.66 x 1.66 5.95 x 1.66 x 1.66 -

Median image shape at

target spacing:
NA x 195 x 262 45 x 195 x 262 -

Patch size: 224 x 320 40 x 192 x 256 -

Batch size: 45 2 -

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [1, 2]]

[[1, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2], [1, 1, 2]]
-

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3]]

[[1, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3]]

-

Table A.31.: ”Network configurations generated by nnU-Net for the CHAOS chal-
lenge (D16). For more information on how to decode downsampling strides
and kernel sizes into an architecture, see A.2.2” [23]. Table reproduced from
[23].
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liver right kidney left kidney spleen mean

2D 0.9132 0.8991 0.8897 0.8720 0.8935

3D fullres 0.9202 0.9274 0.9209 0.8938 0.9156

Best Ensemble * 0.9184 0.9283 0.9255 0.8911 0.9158

Postprocessed 0.9345 0.9289 0.9212 0.894 0.9197

Test set - - - - -

Table A.32.: ”CHAOS results (D16). Note that all reported Dice scores (except the test
set) were computed using five fold cross-validation on the training cases. Post-
processing was applied to the model marked with *. This model (incl postpro-
cessing) was used for test set predictions. Note that the evaluation of the test set
was performed with the online platform of the challenge which does not report
Dice scores for the individual organs. The score of our submission was 72.44 for
Task 5 and 75.10 for Task3 (see [186] for details). Best ensemble on this dataset
was the combination of the 2D U-Net and the 3D full resolution U-Net” [23].
Table reproduced from [23].

A.2.10. Kidney and Kidney Tumor Segmentation (KiTS) (D17)

Challenge summary

”The Kidney and Kidney Tumor Segmentation challenge [15] was the largest compe-

tition (in terms of number of participants) at MICCAI 2019. The target structures

are the kidneys and kidney tumors. 210 training and 90 test cases are provided by

the challenge organizers. The organizers provide the data both in their original geom-

etry (with voxel spacing varying between cases) as well as interpolated to a common

voxel spacing. Evaluation of the test set predictions is done on the online platform9.

We participated in the original KiTS 2019 MICCAI challenge with a manually de-

signed residual 3D U-Net. This algorithm, described in [165] obtained the first rank

in the challenge. For this submission, we did slight modifications to the original train-

ing data: Cases 15 and 37 were confirmed to be faulty by the challenge organizers

(https://github.com/neheller/kits19/issues/21) which is why we replaced their respec-

tive segmentation masks with predictions of one of our networks. We furthermore

excluded cases 23, 68, 125 and 133 because we suspected labeling errors in these cases

as well. At the time of conducting the experiments for this publication, no revised

segmentation masks were provided by the challenge organizers, which is why we re-

used the modified training dataset for training nnU-Net. After the challenge event at

MICCAI 2019, an open leaderboard was created. The original challenge leaderboard is

retained at http://results.kits-challenge.org/miccai2019/. All submissions of the origi-

nal KiTS challenge were mirrored to the open leaderboard. The submission of nnU-Net

9https://kits19.grand-challenge.org/
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as performed in the context of this manuscript is done on the open leaderboard, where

many more competitors have entered since the challenge. As presented in Figure 4.4,

nnU-Net sets a new state of the art on the open leaderboard, thus also outperforming

our initial, manually optimized solution.” [23]

Application of nnU-Net to KiTS

”Since nnU-Net is designed to automatically deal with varying voxel spacings within

a dataset, we chose the original, non-interpolated image data as provided by the orga-

nizers and let nnU-Net deal with the homogenization of voxel spacing. nnU-Net was

applied to the KiTS challenge without any manual intervention.

Normalization: Clip to [−79, 304], then subtract 100.93 and finally divide by 76.90.”

[23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 0.78 x 0.78 0.78 x 0.78 x 0.78 1.99 x 1.99 x 1.99

Median image shape at

target spacing:
NA x 512 x 512 525 x 512 x 512 206 x 201 x 201

Patch size: 512 x 512 128 x 128 x 128 128 x 128 x 128

Batch size: 12 2 2

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [2, 2], [2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [2, 2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [2, 2, 2]]

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3], [3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

Table A.33.: ”Network configurations generated by nnU-Net for the KiTS chal-
lenge (D17). For more information on how to decode downsampling strides
and kernel sizes into an architecture, see A.2.2” [23]. Table reproduced from
[23].
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Kidney Tumor mean

2D 0.9613 0.7563 0.8588

3D fullres 0.9702 0.8367 0.9035

3D lowres 0.9629 0.8420 0.9025

3D cascade 0.9702 0.8546 0.9124

Best Ensemble* 0.9707 0.8620 0.9163

Postprocessed 0.9707 0.8620 0.9163

Test set - 0.8542 -

Table A.34.: ”KiTS results (D17). Note that all reported Dice scores (except the test set)
were computed using five fold cross-validation on the training cases. Postprocess-
ing was applied to the model marked with *. This model (incl postprocessing)
was used for test set predictions. Note that the Dice scores for the test set are
computed with the online platform which computes the kidney Dice score based
of the union of the kidney and tumor labels whereas nnU-Net always evaluates
labels independently, resulting in a missing value for kindey in the table. The
reported kindey Dice by the platform (which is not comparable with the value
computed by nnU-Net) is 0.9793. Best ensemble on this dataset was the com-
bination of the 3D U-Net cascade and the 3D full resolution U-Net” [23]. Table
reproduced from [23].

A.2.11. Segmentation of THoracic Organs at Risk in CT images (SegTHOR)

(D18)

Challenge summary

”In the Segmentation of THoracic Organs at Risk in CT images [185] challenge, four

abdominal organs (the heart, the aorta, the trachea and the esopahgus) are to be

segmented in CT images. 40 training images are provided for training and another 20

images are provided for testing. Evaluation of the test images is done using the online

platform10.” [23]

Application of nnU-Net to SegTHOR

”nnU-Net was applied to the SegTHOR challenge without any manual intervention.

Normalization: Clip to [−986, 271], then subtract 20.78 and finally divide by 180.50.”

[23]

10https://competitions.codalab.org/competitions/21145
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2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): NA x 0.89 x 0.89 2.50 x 0.89 x 0.89 3.51 x 1.76 x 1.76

Median image shape at

target spacing:
NA x 512 x 512 171 x 512 x 512 122 x 285 x 285

Patch size: 512 x 512 64 x 192 x 160 80 x 192 x 160

Batch size: 12 2 2

Downsampling strides:
[[2, 2], [2, 2], [2, 2], [2, 2],

[2, 2], [2, 2], [2, 2]]

[[1, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [2, 2, 2], [2, 2, 2]]

[[2, 2, 2], [2, 2, 2], [2, 2, 2],

[2, 2, 2], [1, 2, 2]]

Convolution kernel sizes:
[[3, 3], [3, 3], [3, 3], [3, 3],

[3, 3], [3, 3], [3, 3], [3, 3]]

[[1, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

[[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3]]

Table A.35.: ”Network configurations generated by nnU-Net for the SegTHOR
challenge (D18). For more information on how to decode downsampling
strides and kernel sizes into an architecture, see A.2.2” [23]. Table reproduced
from [23].

esophagus heart trachea aorta mean

2D 0.8181 0.9407 0.9077 0.9277 0.8986

3D fullres 0.8495 0.9527 0.9055 0.9426 0.9126

3D lowres 0.8110 0.9464 0.8930 0.9284 0.8947

3D cascade 0.8553 0.9520 0.9045 0.9403 0.9130

Best Ensemble* 0.8545 0.9532 0.9066 0.9427 0.9143

Postprocessed 0.8545 0.9532 0.9083 0.9438 0.9150

Test set 0.8890 0.9570 0.9228 0.9510 0.9300

Table A.36.: ”SegTHOR results (D18). Note that all reported Dice scores (except the
test set) were computed using five fold cross-validation on the training cases.
Postprocessing was applied to the model marked with *. This model (incl post-
processing) was used for test set predictions. Note that the Dice scores for the
test set are computed with the online platform. Best ensemble on this dataset
was the combination of the 3D U-Net cascade and the 3D full resolution U-Net”
[23]. Table reproduced from [23].

A.2.12. Challenge on Circuit Reconstruction from Electron Microscopy Im-

ages (CREMI) (D19)

Challenge summary

”The Challenge on Circuit Reconstruction from Electron Microscopy Images is sub-

divided into three tasks. The synaptic cleft segmentation task can be formulated as

semantic segmentation (as opposed to e.g. instance segmentation) and is thus com-

patible with nnU-Net. In this task, the segmentation target is the cell membrane in

locations where the cells are forming a synapse. The dataset consists of serial section

Transmission Electron Microscopy scans of the Drosophila melanogaster brain. Three
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volumes are provided for training and another three are provided for testing. Test set

evaluation is done using the online platform11.” [23]

Application of nnU-Net to CREMI

”Since to the number of training images is lower than the number of splits, we cannot

run a 5-fold cross-validation. Thus, we trained 5 model instances, each of them on

all three training volumes and subsequently ensembled these models for test set pre-

diction. Because this training scheme leaves no validation data, selection of the best

of three model configurations as performed by nnU-Net after cross-validation was not

possible. Hence, we intervened by only configuring and training the 3D full resolution

configuration.

Normalization: Each image is normalized independently by subtracting its mean and

dividing by its standard deviation.” [23]

2D U-Net 3D full resolution U-Net 3D low resolution U-Net

Target spacing (mm): - 40 x 4 x 4 -

Median image shape at

target spacing:
- 125 x 1250 x 1250 -

Patch size: - 24 x 256 x256 -

Batch size: - 2 -

Downsampling strides: -
[[1, 2, 2], [1, 2, 2], [1, 2, 2],

[2, 2, 2], [2, 2, 2], [1, 2, 2]]
-

Convolution kernel sizes: -

[[1, 3, 3], [1, 3, 3], [1, 3, 3],

[3, 3, 3], [3, 3, 3], [3, 3, 3],

[3, 3, 3]]

-

Table A.37.: ”Network configurations generated by nnU-Net for the CREMI chal-
lenge (D19). For more information on how to decode downsampling strides
and kernel sizes into an architecture, see A.2.2” [23]. Table reproduced from
[23].

Results

”Because our training scheme for this challenge left no validation data, a performance

estimate as given for the other datastes is not available for CREMI. The CREMI test

set is evaluated by the online platform. The evaluation metric is the so called CREMI

score, a description of which is available here https://cremi.org/metrics/. Dice

scores for the test set are not reported. The CREMI score of our test set submission

was 74.96 (lower is better).” [23]

11https://cremi.org/
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[47] S. Durrleman, X. Pennec, A. Trouvé, J. Braga, G. Gerig, and N. Ayache, “Toward

a comprehensive framework for the spatiotemporal statistical analysis of longitu-

dinal shape data,” International journal of computer vision, vol. 103, no. 1, pp.

22–59, 2013.

[48] G. Gerig, M. Styner, D. Jones, D. Weinberger, and J. Lieberman, “Shape analysis

of brain ventricles using spharm,” in Proceedings IEEE Workshop on Mathemat-

ical Methods in Biomedical Image Analysis (MMBIA 2001). IEEE, 2001, pp.

171–178.

[49] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Training models of

shape from sets of examples,” in BMVC92. Springer, 1992, pp. 9–18.

[50] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape

models-their training and application,” Computer vision and image understand-

ing, vol. 61, no. 1, pp. 38–59, 1995.

[51] F. De La Torre and M. J. Black, “A framework for robust subspace learning,”

International Journal of Computer Vision, vol. 54, no. 1-3, pp. 117–142, 2003.

[52] C. J. Twining and C. J. Taylor, “The use of kernel principal component analysis

to model data distributions,” Pattern Recognition, vol. 36, no. 1, pp. 217–227,

2003.

[53] T. F. Cootes and C. J. Taylor, “Using grey-level models to improve active shape

model search,” in Proceedings of 12th international conference on pattern recog-

nition, vol. 1. IEEE, 1994, pp. 63–67.

[54] G. Behiels, F. Maes, D. Vandermeulen, and P. Suetens, “Evaluation of image

features and search strategies for segmentation of bone structures in radiographs

using active shape models,” Medical Image Analysis, vol. 6, no. 1, pp. 47–62,

2002.

[55] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,”

IEEE Transactions on pattern analysis and machine intelligence, vol. 23, no. 6,

pp. 681–685, 2001.

[56] R. Cuingnet, R. Prevost, D. Lesage, L. D. Cohen, B. Mory, and R. Ardon,

“Automatic detection and segmentation of kidneys in 3d ct images using ran-

dom forests,” in International Conference on Medical Image Computing and

Computer-Assisted Intervention. Springer, 2012, pp. 66–74.

154



Bibliography

[57] T. Norajitra and K. H. Maier-Hein, “3d statistical shape models incorporating

landmark-wise random regression forests for omni-directional landmark detec-

tion,” IEEE transactions on medical imaging, vol. 36, no. 1, pp. 155–168, 2016.

[58] D. L. Pham, C. Xu, and J. L. Prince, “Current methods in medical image seg-

mentation,” Annual review of biomedical engineering, vol. 2, no. 1, pp. 315–337,

2000.

[59] N. T. Doan, J. O. de Xivry, and B. Macq, “Effect of inter-subject variation on

the accuracy of atlas-based segmentation applied to human brain structures,” in

Medical Imaging 2010: Image Processing, vol. 7623. International Society for

Optics and Photonics, 2010, p. 76231S.

[60] A. Klein, B. Mensh, S. Ghosh, J. Tourville, and J. Hirsch, “Mindboggle: auto-

mated brain labeling with multiple atlases,” BMC medical imaging, vol. 5, no. 1,

p. 7, 2005.

[61] R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers,

“Automatic anatomical brain mri segmentation combining label propagation and

decision fusion,” NeuroImage, vol. 33, no. 1, pp. 115–126, 2006.

[62] J. E. Iglesias and M. R. Sabuncu, “Multi-atlas segmentation of biomedical images:

a survey,” Medical image analysis, vol. 24, no. 1, pp. 205–219, 2015.

[63] B. Kim, J. Kim, J.-G. Lee, D. H. Kim, S. H. Park, and J. C. Ye, “Unsuper-

vised deformable image registration using cycle-consistent cnn,” in International

Conference on Medical Image Computing and Computer-Assisted Intervention.

Springer, 2019, pp. 166–174.

[64] M. P. Heinrich, “Closing the gap between deep and conventional image reg-

istration using probabilistic dense displacement networks,” in International

Conference on Medical Image Computing and Computer-Assisted Intervention.

Springer, 2019, pp. 50–58.

[65] J. Esteban, M. Grimm, M. Unberath, G. Zahnd, and N. Navab, “Towards fully

automatic x-ray to ct registration,” in International Conference on Medical Image

Computing and Computer-Assisted Intervention. Springer, 2019, pp. 631–639.

[66] D. M. Gavrila and V. Philomin, “Real-time object detection for” smart” vehi-

cles,” in Proceedings of the Seventh IEEE International Conference on Computer

Vision, vol. 1. IEEE, 1999, pp. 87–93.

[67] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of sim-

ple features,” in Proceedings of the 2001 IEEE computer society conference on

computer vision and pattern recognition. CVPR 2001, vol. 1. IEEE, 2001, pp.

I–I.

155



Bibliography

[68] C. Sommer, C. Straehle, U. Koethe, and F. A. Hamprecht, “Ilastik: Interactive

learning and segmentation toolkit,” in 2011 IEEE international symposium on

biomedical imaging: From nano to macro. IEEE, 2011, pp. 230–233.

[69] S. Berg, D. Kutra, T. Kroeger, C. N. Straehle, B. X. Kausler, C. Haubold,

M. Schiegg, J. Ales, T. Beier, M. Rudy et al., “ilastik: Interactive machine learn-

ing for (bio) image analysis,” Nature Methods, pp. 1–7, 2019.

[70] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”

Journal of machine learning research, vol. 3, no. Mar, pp. 1157–1182, 2003.

[71] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[72] J. Kleesiek, A. Biller, G. Urban, U. Kothe, M. Bendszus, and F. Hamprecht,

“Ilastik for multi-modal brain tumor segmentation,” Proceedings MICCAI BraTS

(Brain Tumor Segmentation Challenge), pp. 12–17, 2014.

[73] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE transactions on

pattern analysis and machine intelligence, vol. 35, no. 6, pp. 1397–1409, 2012.

[74] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via

graph cuts,” IEEE Transactions on pattern analysis and machine intelligence,

vol. 23, no. 11, pp. 1222–1239, 2001.
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V. Katsaros, A. Ramos, N. Bargallo et al., “Glioma imaging in europe: a survey of

220 centres and recommendations for best clinical practice,” European radiology,

vol. 28, no. 8, pp. 3306–3317, 2018.

[124] P. Y. Wen, S. M. Chang, M. J. Van den Bent, M. A. Vogelbaum, D. R. Macdonald,

and E. Q. Lee, “Response assessment in neuro-oncology clinical trials,” Journal

of Clinical Oncology, vol. 35, no. 21, p. 2439, 2017.

[125] W. Wick, T. Gorlia, M. Bendszus, M. Taphoorn, F. Sahm, I. Harting, A. A.

Brandes, W. Taal, J. Domont, A. Idbaih et al., “Lomustine and bevacizumab in

progressive glioblastoma,” New England Journal of Medicine, vol. 377, no. 20,

pp. 1954–1963, 2017.

[126] R. L. Korn and J. J. Crowley, “Overview: progression-free survival as an endpoint

in clinical trials with solid tumors,” 2013.

[127] D. Chow, J. Qi, X. Guo, V. Miloushev, F. Iwamoto, J. Bruce, A. Lassman,

L. Schwartz, A. Lignelli, B. Zhao et al., “Semiautomated volumetric measure-

ment on postcontrast mr imaging for analysis of recurrent and residual disease

in glioblastoma multiforme,” American Journal of Neuroradiology, vol. 35, no. 3,

pp. 498–503, 2014.

160



Bibliography

[128] A. G. Sorensen, S. Patel, C. Harmath, S. Bridges, J. Synnott, A. Sievers, Y.-H.

Yoon, E. J. Lee, M. C. Yang, R. F. Lewis et al., “Comparison of diameter and

perimeter methods for tumor volume calculation,” Journal of Clinical Oncology,

vol. 19, no. 2, pp. 551–557, 2001.

[129] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein, “No

new-net,” in International MICCAI Brainlesion Workshop. Springer, 2018, pp.

234–244.

[130] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein,

“Brain tumor segmentation and radiomics survival prediction: Contribution

to the brats 2017 challenge,” in International MICCAI Brainlesion Workshop.

Springer, 2017, pp. 287–297.

[131] W. Wick, R. Stupp, T. Gorlia, M. Bendszus, F. Sahm, J. E. Bromberg, A. A.

Brandes, M. J. Vos, J. Domont, A. Idbaih et al., “Phase ii part of eortc study

26101: The sequence of bevacizumab and lomustine in patients with first recur-

rence of a glioblastoma.” 2016.

[132] S. M. Smith, “Fast robust automated brain extraction,” Human brain mapping,

vol. 17, no. 3, pp. 143–155, 2002.

[133] P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and

G. Gerig, “User-guided 3d active contour segmentation of anatomical structures:

significantly improved efficiency and reliability,” Neuroimage, vol. 31, no. 3, pp.

1116–1128, 2006.

[134] R. T. Shinohara, E. M. Sweeney, J. Goldsmith, N. Shiee, F. J. Mateen, P. A.

Calabresi, S. Jarso, D. L. Pham, D. S. Reich, C. M. Crainiceanu et al., “Sta-

tistical normalization techniques for magnetic resonance imaging,” NeuroImage:

Clinical, vol. 6, pp. 9–19, 2014.

[135] N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich,

and J. C. Gee, “N4itk: improved n3 bias correction,” IEEE transactions on

medical imaging, vol. 29, no. 6, pp. 1310–1320, 2010.

[136] B. Kayalibay, G. Jensen, and P. van der Smagt, “Cnn-based segmentation of

medical imaging data,” arXiv preprint arXiv:1701.03056, 2017.

[137] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing

ingredient for fast stylization,” arXiv preprint arXiv:1607.08022, 2016.

[138] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural

network acoustic models,” in Proc. icml, vol. 30, no. 1, 2013, p. 3.

161



Bibliography

[139] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[140] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.
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