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GLOSSARY 

RT   Radiation therapy (radiotherapy)  

EBRT   External beam radiotherapy 

LINAC  Linear accelerator 

IR   Ionizing radiation 

SC   Second cancer 

SCR   Second cancer risk 

HL   Hodgkin’s Lymphoma 

Gy   Gray (Joule ∙ kg−1) 

3D-CRT  Three-dimensional-conformal radiotherapy 

CT   Computed tomography 

IMRT   Intensity-modulated radiotherapy 

PTV   Planning target volume 

VMAT   Volumetric-modulated arc therapy 

IGRT   Image-guided radiotherapy 

CBCT   Cone-beam computed tomography 

DRR   Dose-response relationship 

ABS   Atomic bomb survivors 

RR   Relative risk 

TTT   Time to tumor 

eV / keV / MeV Electron Volts / kilo-eV (103 eV) / Mega-eV (106 eV) 

LET   Linear energy transfer 

DSBs   Double-strand breaks 

HRR   Homologous recombination repair 

NHEJ   Non-homologous end-joining repair 

ATM   Ataxia telangiectasia mutated  

Tp53   Tumor protein 53 

P53   Protein 53  

LFS   Li-Fraumeni syndrome 

LOH   Loss of heterozygosity 

AP/PA   Anterior-posterior/posterior-anterior 

C273   Cysteine codon 273 

XX/XY  Female/male  

F1/2   Filial generation 1 and 2 

L1 – L11   Litters 1 – 11 

DVR    Dose to volume relationship 

DVH   Dose to volume histogram 

HDV   High dose volume 

BHDV   Bordering high dose volume 

LDV   Low dose volume 

NIRV   Non-irradiated volume 

FFPE   Formalin-fixed paraffin-embedded 

H&E   Hematoxylin and eosin 

gDNA   Genomic DNA 

PCR   Polymerase chain reaction 

bp   Base pair 

Gapdh   Glyceraldehyde-3-phosphate-dehydrogenase 

kb   Kilo-bases (103 bases) 
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1 INTRODUCTION 

1.1 Second cancer risk after radiation therapy 

Radiation therapy (radiotherapy, RT), an essential component of cancer treatment in more than 

half of all oncological cases, significantly improves patient survival 1-3. The most frequently 

used treatment method in radiation oncology is external beam RT (EBRT), in which high-

energy x-rays, emitted by a clinical linear accelerator (LINAC), specifically hit a target tumor 

volume. EBRT is indeed indispensable as a single treatment method, especially for tumors 

poorly treated by surgery or chemotherapy. Unfortunately, in some cancer survivors, ionizing 

radiation (IR) may promote the development of new, radiation-induced primary malignant 

neoplasms 4. However, not all second-primary tumors, called second cancer (SC), are radiation-

induced. Several non-iatrogenic reasons such as age at first cancer diagnosis, genetic 

susceptibilities to cancer development 5-8, population-specific traits as well as obesity 9 or 

consumption of alcohol 10,11 and tobacco 12,13 can trigger SC. Cancer chemotherapy may also 

promote SC development. For example, a four-fold increased second breast cancer risk have 

been reported in childhood cancer survivors treated with high-dose alkylating agent and 

anthracycline chemotherapy, compared with the general population 14. Nevertheless, an 

increase in SC risk (SCR) in childhood cancer survivors has long been associated with RT used 

as a single treatment modality or in combination with chemotherapy against first cancer 15-19. 

Thus, children with Hodgkin lymphoma (HL) receiving no RT have a substantially lower SCR 

than those treated with RT (5% vs. 25%) 20. Therefore, minimizing the risk of radiation-

associated SC is important, especially for young patients 21. 

According to global cancer statistics, approximately 8% – 18% of all cancer survivors develop 

SC at all 22,23, which is the most common reason for the mortality of first cancer survivors, 

irrespective of gender 24. An analysis of epidemiological studies on adult cancer patients 

estimates that only about 0.67% (3266 of 485481 persons) of all SC cases could be associated 

with radiation after 15 years follow-up of the first cancer treated with RT alone 25. While the 

radiation-related SCR appears to be low in adult cancer survivors, it is expected to be higher in 

long-term survivors of childhood and early adolescence cancer treated with RT 26. Thus, the 

risk for second and continuing new malignancies increases over time in childhood cancer 

survivors, especially for former patients with HL, a disease, which incidence rates peaks in 

children and adolescents 15,19,22,27-32. For example, after 30 years of follow-up, the estimated 
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cumulative incidence of SC among European childhood cancer survivors treated with RT for 

leukemia, HL, and non-HL, was 2.43%, 12.7%, and 2.5% respectively 33. 

Notably, the SCR after RT of HL patients is much higher in long-term survivors of childhood 

diseases than in adults 12,18,34,35. Nevertheless, the advantages of RT in treatment of HL 

outweigh the possible disadvantages of IR. Thus, more than 90% of HL patients are cured 

successfully and their life expectancy increases since year 2000 due to improvements in 

oncology, and particularly in RT, which is often used as a single treatment approach for early 

stage I and II diseases 36-40. 

Since the risk of developing radiation-associated cardiac and pulmonary abnormalities rises 

with increased minimum threshold doses, especially in pediatric HL patients 41, a limited field- 

and dose- RT for thoracic HL treatment recommended, as a reliable risk mitigating solution 42-

46. On the other hand, analysis of long-term complications after HL-therapy showed a doubled 

cumulative mortality due to SC compared to cardiac and other causes 47. 

 

1.2 Radiation dose to volume relationships and SC development 

Since the development of a radiation-induced SC depends on the distribution of the radiation 

dose within the body volumes planned for radiation (irradiated volume), it is associated with 

RT planning and RT delivery technology. Radiation dose describes a quantity of energy 

absorbed per unit of mass expressed by a dose-unit Gray (Gy, Joule ∙ kg−1) named in honor of 

the British physicist and founder of radiobiology, Louis Harold Gray. Thus, the dose 

distribution in RT means how much energy is ultimately absorbed from the irradiated volume. 

The precision of irradiation correlates with better clinical outcome and, therefore, is of great 

importance. Modern RT planning systems enable to perform highly personalized therapy plans 

for each patient individually. Personalized RT today considered as being the most sensible 

strategy for efficient treatment of cancer and protection of normal tissues from undesirable 

radiation dose toxicity. 

The implementation of a three-dimensional- conformal RT (3D-CRT), after the adoption of 

computed tomography (CT) into daily RT practice in the 1990s 48, was a big step towards 

advanced RT. The 3D-CRT techniques shape the radiation beams to include the 3D anatomic 

configuration of the target tissue volume, for precise delivering of therapeutic doses, while 

sparing surrounded normal tissues from undesirable higher doses. During the following years, 

3D-CRT has become increasingly important and continuously developed to a highly conformal 

RT-technique called intensity-modulated radiotherapy (IMRT). IMRT precisely concentrates 
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therapeutic doses to the planning target volume (PTV) and protects healthy (normal) tissues 

from high-dose-toxicity at the expense of increasing the volume receiving low- and moderate- 

radiation doses 49. Its advanced rotational variant volumetric-modulated arc therapy (VMAT) 

covers the PTV with the highest doses in sub-millimeter accuracy while substantially reducing 

unwanted doses to a minimal level by expanding low-dose exposed volume 50-53. Thus, IMRT 

and VMAT generate a so-called “low-dose bath” within the normal tissue while 3D-CRT 

burdens the normal tissue with substantial higher doses due to fewer beam directions. 

A long-standing dogma in radiation oncology postulates that IMRT can increase (almost 

double) SCR compared to conventional 3D-CRT owing to more beam directions and enlarged 

healthy tissue volumes receiving low doses 54-58. Therefore, 3D-CRT has established as a 

conventional technique for the treatment of mediastinal HL, especially for young patients. 

However, which of the two dose-distribution patterns, ‘a little to a lot vs. a lot to a little’ (IMRT 

vs. 3D-CRT), carries the greater risk of SCs remains undecided 46. 

Besides the improvements in modern radiation planning systems, the volumetric accuracy in 

advanced RT has been additionally improved by the implementation of image-guided RT 

(IGRT) 59, such as e. g., in modern RT of prostate cancer 60-63. The image-guidance is performed 

with a low-energy x-ray-based cone-beam CT (CBCT), delivering very low doses to the tissues 

during rotational scanning of the RT-planning body region before a patient receives a next RT 

fraction. The use of specific software matching a CBCT with an irradiation plan results in 

correct patient-couch-position for highly precise irradiation of the target and protection of 

normal tissues. Little is known whether CBCT can increase SCR. However, calculations based 

on the organ absorbed doses estimate an additional 3% to 3.5% increase in SCR when using 25 

to 30 CBCT fractions to the chest 64, probably due to an underlying 3% to 5% increase in 

mutagenic risk 65. It should be noted here that no preclinical study has yet shown the 

disadvantage of additional very lower doses compared to higher doses in terms of the increase 

in SCR. 

 

1.3 Dose-response-relationships for radiation-induced cancer 

The opinion that lower doses may increase the risk of SC compared to high doses, is explained 

by the assumption that irradiated cells may survive the low-grade DNA damage caused by low 

radiation doses, while being killed by high doses 66. Based on this still acceptable assumption, 

established prediction models estimate increased SCR after low compared to high dose 67-74. 
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Because the tumor cells carry substantial genomic alterations and proliferate more rapidly than 

the normal cells, radiation kills tumor cells more efficiently. It is expected that only a part (about 

one-third) of exposed cells could be killed with approximately 2 Gy, which is the most common 

fraction dose in fractionated RT. In more details, this is a highly complex scenario of killing 

and repopulation events of huge cell cohorts along the tracks of radiation paths. The response 

of human cells to a fractionated radiation exposure is therefore determined based on the 

relationship between cell killing and cell repopulation events and is given by the ratio of α/β 

tissue-specific factors, according to the linear-quadratic model 74,75. This model helps to 

determine the therapeutic window for fractionated total doses, as it is described in the manuals 

for radiotherapists 71,76. Furthermore, the mechanistic model for predicting cancer induction 

after fractionated RT bases on the same linear-quadratic response model 77. 

Reflecting the cell repopulation kinetics, the risk prediction models consider an increase in 

dose-response relationship (DRR) for radiation-induced SC after cumulatively received doses 

below 1 Gy, an exponential elevation at a dose range of 1 Gy to 2.5 Gy, and either an increase, 

reaching a plateau or even a decrease at doses above 2.5 Gy 73. However, all of these models 

may contain significant uncertainties in predicting the dose-response relationship at very low 

doses and at very high doses (lower than 0.5 Gy and higher than 10 Gy) because no in vivo 

results exist. Thus, all known SCR models are based on the same and unique epidemiological 

lifespan data of Japanese atomic bomb survivors (ABS) from Hiroshima and Nagasaki 70,78,79. 

However, it is to note that the uncontrolled whole-body exposure of ABS to radiation doses 

lower than 2.5 Gy is not fully comparable to a locally applied fractionated RT performed in 

cancer patients. The whole-body response to low doses of ABS differs additionally from the 

response to local RT doses because the organ-specific sensitivities to the radiation dose, 

determines the risk of radiation carcinogenesis 70. The relative excess risk per Gy among ABS 

at age of 70 years was increased linearly with estimated received dose to the lungs and female 

breast while it was decreased for stomach and thyroid cancers or reached a plateau for rectal, 

pancreatic, colon, bladder, and brain tumors 21. For the exposure to high-dose fractionated local 

RT, a linear increase in relative risk (RR) was associated with breast cancer and brain tumors, 

whereas a plateau estimated for colon, rectal and stomach cancers, and a decrease observed 

only for thyroid and pancreatic tumors 80. Interestingly, evidence for decreased second lung 

cancer risk after lower compared to higher integral dose expositions was recognized in female 

patients treated with whole-breast RT 81. 

Whereas there are some uncertainties in dose-response below 1 Gy in patients treated for their 

childhood cancer with RT alone, certain linearity in the increase of second bone and soft tissue 
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sarcoma incidences were registered after exposure to estimated integral doses of above 10 Gy 

80,82,83. Thus, the results calculated from 28 retrospective studies, including sixteen childhood 

cancer studies, a linear dose-response relationship observed for several SCs developed after HL 

treatment with RT. An exception was second thyroid cancer, showing an increased risk up to 

maximum received dose of about 20 Gy and then either a downturn or an enrichment to a 

plateau at higher doses. The combined risk for all SCs was 5 to 10 times higher for patients 

receiving doses of above 40 Gy, compared with those receiving very low or no radiation doses 

80.  

Most importantly, several retrospective clinical studies indicate secondary sarcomas and 

carcinomas mostly within the PTV or closely adjacent normal tissues exposed to the highest 

doses during RT 84,85. All the dose-response facts mentioned above more likely indicate higher 

toxicity of high doses compared to low doses that contradicts the assumed disadvantages of low 

doses vs. high doses. 

 

1.4 Dose to latency relationships for radiogenic tumor development 

There is reported evidence for association of specific latency times with distinct entities of 

radiation-induced tumors among Japanese ABS who received survivable whole-body doses. 

According to the information of the radiation effects research foundation, the earliest most 

neoplastic disease detected after two to six years of exposure to atomic bomb radiation was 

leukemia. In contrast, an increased risk of solid tumors was not observed during the first decade 

after exposure. However, the increase in incidence rates of solid tumors was discovered in 1956 

first, shortly after the tumor-registries were established in Japan. In a continuing retrospective 

life span study on ABS published in 2003, the relative lifetime-attributable risk of radiation-

associated solid tumors appeared at least four times lower compared to second leukemia, but it 

was still more than five times increased compared to non-exposed populations 86.  

The time from irradiation of a patient to the occurrence of a second malignancy can be 

considered as the latency time to tumor (TTT). There are differences observed between the 

times of occurrence of different SCs in patients who received chemotherapy, RT, or 

‘chemoradiotherapy’ 87. Thus, the prevalent development of second leukemia after 

chemotherapy alone and second solid cancers after RT alone or ‘chemoradiotherapy’ has been 

observed in childhood HL survivors. Therefore, the latency of second solid tumors can certainly 

be associated with expected tumor entities in former RT patients, as shown in the literature 

12,28,34,35,38,88. Accordingly, second lymphomas mostly arise during the first decades of HL 
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follow up, however, relatively earlier than lung carcinomas, to which the approximated TTT 

takes up to two decades. Most solid SCs of esophagus, connective tissue, stomach, thyroid, and 

female breast appear commonly after two to more than three decades of follow up, whereby the 

rate of solid tumors exceeds the rate of leukemia. 

The relationship of RT doses to the latency of radiation-induced different tumors remains 

largely unexplored on an experimental level. 

 

1.5 Characteristics and effects of ionizing radiation 

Ionization means the process of the ejections of electrons from the atoms. There are two main 

types of IR, particle radiation (electrons, protons, α particles, and heavy ions) and 

electromagnetic (photon) radiation (x-rays and γ rays). 

Medical x-rays are produced by the acceleration of electrons in an x-ray tube of a LINAC and 

their deceleration by the collision with the target of gold or tungsten resulting in photon streams 

called ‘bremsstrahlung’ – an original term of x-ray radiation, coined by its discoverer, the 

German engineer Wilhelm Conrad Röntgen in 1895. 

During the generation of x-rays, a fraction of kinetic energy of accelerated fast electrons is 

converted into streams of highly energetic photon packets (quants) with a wavelength ranging 

from 0.01 to 10 nm. The energy of the x-rays is inversely proportional to the wavelength 

expressed by the equation Ex = h ∙ c/λ (where h is Planck’s constant (6.62607015 ∙ 10−34 Joule 

∙ seconds), c is the velocity of light, and λ is the wavelength of radiation. This energy is 

commonly given in electron Volts (eV) so that the x-rays with the wavelength of 0.1 nm have 

the energy of about 124 kilo-electron Volts (keV, 103 eV) while 1 eV = 1.602176638 ∙ 10−19 

Joule. X-rays belong thus a type of IR that can be controlled by choosing the most favorable 

acceleration energies for certain plans. While corpuscular radiation species typically can only 

penetrate about a centimeter deep into the mater, an increase in energy for the acceleration of 

the electrons proportionally increases the depth of maximum doses within the living mater. The 

higher this energy, the deeper the highest dose in the substrate (dose depth). The ability to 

control the dose depth prerequisites the basis for the conformality of photon beam RT. For 

example, x-rays with six Mega-electron Volt (MeV, 106 eV) acceleration energy have an 

approximated maximum dose-depth of about 1.5 cm in water or in the human or animal body. 

A descriptive specification of the penetrating nature of radiation energy is referred to as 

radiation quality – ionization density. A measure of the average energy rate directly transmitted 

along the track of photons or particles per unit distance is defined as linear energy transfer 
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(LET, expressed as keV/µm). The sparsely ionizing x-rays (≈ 0.3 keV/μm), as well as γ-rays 

and electrons, are characterized by a low LET in contrast to densely ionizing high-LET-

radiation types such as e. g. α particles (≈ 100 keV/μm). Therefore, high LET radiation species 

are biologically more effective than low LET radiation. While particles ionize the molecules 

directly, x-rays and γ-rays damage the living matter indirectly, via radiolysis of water and 

generation of H2O
+ interacting with the neighboring water molecule and generating H3O

+ and 

free reactive hydroxyl radicals [OH∙]. Approximately two thirds of the tissue damages irradiated 

with x-rays are caused by indirect actions of photons with water. There are two well-studied 

ionization mechanisms of x-rays known. While the photoelectric effect appears to be relevant 

for radiological low-energy x-rays, the Compton effect, that is the elastic collision of a photon 

with an electron, dominates in RT. This accelerated electron leaves its path and ionizes the 

neighboring atom. Thus, Compton’s effect multiplies the damage of the atoms along the tracks 

of high energetic photons.  

The time scale of radiation effects on the living system comprises three main phases: the 

physical phase of ionization lasting up to approximately 10-18 seconds, followed by a chemical 

phase of the breakage of chemical bonds (10-3 seconds), and a subsequent biological phase from 

DNA repair to the early and late adverse effects lasting from few seconds to many years and 

sometimes even lifelong 71,76. 

The relative biological effectiveness, which is determined experimentally, bases on the effects 

of different types of radiation on the survival rates of different organisms, differs between 

electromagnetic and corpuscular radiation species owing to their specific LET. The 

international atomic energy agency for radiation protection differentiates between deterministic 

(not accidental) and stochastic (random) radiation effects. The deterministic radiation damage 

has a threshold dose below which no damage can expected. After exceeding this threshold, the 

damage increases strongly with increased dose. By contrast, no threshold dose assumed for 

stochastic damage. The most critical adverse effect is radiation carcinogenesis, which is 

dependent on absorbed radiation doses. Thus, radiation protection considered two main dose 

concepts. The organ equivalent dose (organ dose) is defined as an absorbed cumulative dose in 

an organ, multiplied by the specific radiation weighting factors that determine the effectiveness 

of one type of radiation in comparison with reference effects of x-rays and γ-rays (assumed as 

1). The high LET radiation types having a weighting factor of 2 for protons or 20 for the α-

particles and heavy ions. In addition to the equivalent dose, which already involves the 

weighting factors of the different types of radiation, the effective dose also takes into account 

the different sensitivity of the organs and it is calculated by a multiplying the organ equivalent 
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doses with the organ-weighting factors. The international commission on radiological 

protection – ICRP, recommends factor 0.4 for bladder, esophagus, liver and thyroid gland, 0.01 

for the skin, bone surface, brain and salivary glands, and 0.12 for the bone marrow, lungs, 

female breast, stomach, colon and all other organs and tissues that together make 1.0 89. 

Taken together, biological effects of radiation depend on radiation quality, LET, the different 

sensitivity of irradiated organs to doses, temporal dose rate, homogeneity of received doses, 

and so on, but also on factors associated with the individual person.  

 

1.6  Somatic context of radiation carcinogenesis 

Radiation biology provides an understanding of biological mechanisms of the early responses 

of neoplastic and normal tissues such as DNA damage, tumor cell killing and repopulation, 

hypoxia, re-oxygenation but also long-term effects including non-neoplastic adverse alterations 

of normal tissues as well as the development of SCs. 

The highly reactive free radicals damage biomolecules, including DNA, by the uptake of missed 

electrons from affected molecules. DNA is the most important target for radiation-induced 

damage in exposed cells. A radiation dose of about 1 Gy may cause approximately 10000 

ionizations per cell, and consequently about 1000 DNA single-strand breaks and 20 – 40 DNA 

double-strand breaks (DSBs). 

Radiation is also able to induce large deletions and multiple rearrangements within the genome, 

such as several DNA-DNA or DNA-protein cross-links.  

DNA-damage is followed by a biochemical phase of the repair taking approximately 0.5 to 1.5 

hours in most human cells. 

In response to radiation-induced DNA damage, animal cells activate various specific cellular 

mechanisms for the cell cycle-arrest and DNA repair processes. DSBs are the most difficult 

damage for irradiated cells that must be repaired by two alternative mechanisms: a homologous 

recombination repair (HRR) either or a non-homologous end-joining (NHEJ) repair. HRR is 

only available if a homologous allele (sister chromatid) is intact for the use as a template for 

the error-free repair. However, due to the high complexity of radiation-induced chromosome 

aberrations, which increases with increasing radiation doses, mammalian cells preferably use 

the NHEJ repair mechanism which is unable for an error-free repair of processing ends of the 

broken DNA strand. 

Recent radiobiological findings show that in response to radiation-induced DNA damage, an 

exposed cell, either repairs the radiation-damaged DNA, undergoes apoptosis, or retains a 
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mutation and passes it on to progeny. It is believed that radiation-associated cancer is induced 

due to unrepaired or residual DNA-damage in a single exposed cell that proliferates to the clonal 

cell populations. However, several further mutations are required in the cell, to form rapidly 

proliferating aggressive tumor cell populations with persistently increasing genomic instability 

based on the step by step accumulated alterations or completely lost mechanisms such as e.g. 

molecular controlling of cell cycle checkpoints 71,76. 

Mutations occur also spontaneously over time, but radiation may specifically increase the 

likelihood of DNA alterations. However, only specific driver mutations, some of that described 

below, may promote the carcinogenesis, while the silence passenger mutations may not. The 

driver mutations in different genes may predispose humans to the development of tumors, 

including radiation-induced SC. For example, the risk of SC increases with increasing RT doses 

to patients with inactivated tumor suppressor genes Breast Cancer 1 and 2 (BRCA1/2) 6,90,91. 

SCR also increases in breast cancer patients with mutated Ataxia Telangiectasia Mutated (ATM) 

gene 5, acting as a key sensor and signal transducer for DNA-DSB repair 92. Downstream of the 

serine/threonine kinase activity in ATM, a key signal transducer to cell cycle arrest for DNA 

repair is mediated by a transcription factor for several effector genes, the major tumor-

suppressor gene Tumor Protein 53 (TP53) encoding tumor suppressor protein 53 (p53) 93. Loss 

of p53 in tumor cells is a prerequisite for the onset and progression of malignity because of loss 

of cell-cycle regulation and initiation of programed cell death (apoptosis) 94. Hereditary 

heterozygous mutation in one allele of the human TP53 gene causes Li-Fraumeni syndrome 

(LFS), which dramatically increases the risk for spontaneous 95,96 and radiation-induced 97,98 

tumor development. 

Most notably, radiation may promote genome-wide alterations in aggressive second bone 

sarcomas and soft tissue sarcomas in pediatric RT patients 99. The loss of second intact Tp53 

allele in heterozygous mutants, loss of heterozygosity (LOH), have been equally observed in 

many tumor types in humans 98-105, and also in experimental small animals 106-110. Whether the 

aggressiveness of the radiation-induced SC could be specifically shaped by radiation-induced 

Tp53-LOH remained clarified insufficiently. 

 

1.7 Research question and experimental system 

As mentioned previously, there is an experimentally unproven assumption that IMRT will 

increase SCR compared to conventional 3D-CRT in the body volume exposed to low and 

moderate doses, especially in childhood and adolescent cancer survivors. Therefore, radiation 
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physicians are currently advised against IMRT applications for young HL patients who are 

irradiated with the less dose-sparing 3D techniques such as e.g. two opposite anterior-

posterior/posterior-anterior (AP/PA) beam irradiation. However, under consideration of above-

mentioned retrospective data about the relationships of high-doses to SC development, the 

predicted doubling of SCR from low-dose exposure during IMRT may not hold true in clinical 

practice. Moreover, the theory of disadvantages of IMRT owing to enlarged low-dose volume 

compared to 3D-CRT appears less plausible because it was never been confirmed or refuted by 

in vivo experiments. 

A cancer-prone Tp53 functional knockout line of Wistar-rats, established by a target selected 

mutagenesis driven nonsense mutation in the cysteine codon 273 (C273) of the Tp53 gene 108,110-

112, in which the Tp53-mediated tumor-suppression is impaired, seemed to be a suitable 

experimental model for radiation-induced cancer research. In this heterozygous (Tp53+/C273X) 

rat model, the gene defect is not the trigger but an ‘enhancer’ of tumor development, similar to 

the mutation of TP53 in patients with LFS. 

 

1.8 Purpose 

The main purpose of the study was to compare radiation-associated tumor induction after 

mediastinal irradiation with VMAT (rotational IMRT) and AP/PA irradiation in cancer-prone 

Tp53+/C273X rats, simulating mediastinal RT in HL patients. Thus, the study aimed to provide a 

biological rationale to the clinical practice about the justification of withholding IMRT from 

young patients. The main uncertainty – ‘a little to a lot or a lot to a little’ – had to be investigated 

by testing the possible disadvantages of IMRT compared to conventional 3D CRT in rats. 

In order to meet the challenge, the following objectives were pursued: 

 development of a suitable study design and establish the heterozygous Tp53+/C273X rat 

model to demonstrate the development of radiation-induced cancer, 

 comparison of the rates of tumors in rats irradiated with different radiation doses and 

techniques and between the body-volumes exposed to different doses, 

 further analyzes of the life span in differently exposed animal groups and the 

measurements of the TTT from the time point of irradiation, and 

 Determination of the properties of tumors on a pathological and molecular level. 

Thus, this is the first experimental preclinical study of its kind to test the hypothesis of the 

increased carcinogenicity of modern IMRT compared to older 3D-CRT techniques in living 

animals. 
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2 MATERIALS AND METHODS 

2.1 MATERIALS 

 

2.1.1 Animal husbandry and handling 

 

2.1.2 Radiation delivery and CT  

LINAC Versa HD/Agility MLC Elekta AB, Stockholm, SWE 

Philips Brilliance Big Bore Philips GmbH Market DACH, Hamburg, DE 

Rat standard 1500 cm2 cage Tecniplast, Hohenpeissenberg, DE 

Rat 1500 cm2 IVC cage Tecniplast, Hohenpeissenberg, DE 

SUMC 501 cm2 filter hood IVC Tecniplast, Hohenpeissenberg, DE 

SSNIFF grain-based regular diet SSNIFF Spezialdiäten, Soest, DE 

Rollenpflaster FL TRA 10 m × 2.5 cm Gothaplast, Gotha, DE 

RS-Müllkompressen 5×5 cm, 7.5×7.5 cm TZMO Deutschland, Biesenthal, DE 

F.S.T. Finger Loop Ear Punch (1 mm) Fine Science Tools, Heidelberg, DE 

Small animal isoflurane vaporizer AbbVie Deutschland, Wiesbaden, DE 

Polycarbonate narcosis box with sliding lid Orthopedics laboratory UMM, Mannheim, DE 

Injekt disposable syringes 2 ml, 5 ml B. Braun, Melsungen, DE 

Tuberculin syringes with 0.01 ml graduation Dieckhoff & Ratschow, Longuich, DE 

Neoject cannulas: 22G, 18G, 20G, 25G  Dispomed Witt, Gelnhausen, DE 

CLiP neo safety catheter, 26G (0.6×19 mm) Vygon - Vigmed, Aachen, DE 

Combi stopper PE closing cones  B. Braun, Melsungen, DE 

Luer-lock connector/adaptor, m/m, f/m Shop.lowcostexperiments.de 

PORTEX® PE hose tubes (0.58/0.96 mm) A. Hartenstein, Würzburg, DE 
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SOMATOM force Siemens Healthcare Diagnostics, Eschborn, DE 

Micro-CT Y.FOX YXLON GmbH, Hamburg, DE 

 

2.1.3 Pharmaceuticals and chemicals 

Bepanthen® Augen- und Nasensalbe GP Produktions, Grenzach-Wyhlen, DE 

Isotonic saline solution 0.9% 500 ml B. Braun, Melsungen, DE 

Midazolam-ratiopharm® 15 mg/3 ml Ratiopharm, Ulm, DE 

Domitor® (medetomidin 1 mg/ml) Orion Corporation, Espoo, FIN 

Fentanyl-Janssen® 0.1 mg Janssen-Cilag, Neuss, DE 

Naloxon-Actavis® (naloxon 0.4 mg/ml) Actavis, München-Riem, DE 

Anexate® (flumazenil 0.5 mg/5 ml) Roche Pharma, Grenzach-Wyhlen, DE 

Antisedan® (atipamezol 5 mg/ml) Orion Corporation, Espoo, FIN 

FORENE® (isoflurane 100% V/V) AbbVie Deutschland, Wiesbaden, DE 

Imeron®-300 Bracco Imaging, Konstanz, DE 

 

2.1.4 Histology 

Devices: 

LEICA HistoCore Arcadia H Leica Biosystems, Nussloch, DE 

LEICA RM2245 Microtome Leica Biosystems, Nussloch, DE 

LEICA EG 1150 C Leica Biosystems, Nussloch, DE 

LEICA HI1210 Leica Biosystems, Nussloch, DE 

LEICA Autostainer XL Leica Biosystems, Nussloch, DE 

LEICA CM3050 S – Cryostat Leica Biosystems, Nussloch, DE 

Prutscher S/TA/120/1297 Prutscher Laboratory Systems, Neudörfl, DE 
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HERAsafe® KSP12 Thermo Elictron LED, Langenselbold, DE 

Panasonic MDF-DU700VH Freezer PHC Europe, Etten-Leur, NL 

Heraeus® drying cupboard Thermo Scientific Heraeus, Dreieich, DE 

LEICA DMBRE upright light microscope Leica Mikrosysteme, Wetzlar, DE 

Leica DFC 450 Leica Mikrosysteme, Wetzlar, DE 

Supplies: 

MaiMed absorbent pads MaiMed, Neuenkirchen, DE 

30×30 cm Rotilabo®-Presskork-Untersetzer Karl Roth, Karlsruhe, DE 

ROTIPURAN® 37% formaldehyde solution Carl Roth, Karlsruhe, DE 

Dulbecco’s phosphate buffered saline (PBS) Merck KGaA, Darmstadt, DE 

NeoLab Embadding cassettes NeoLab Migge, Heidelberg, DE 

Tissue-Tek® O.C.T.™ Compound Sakura Finetek, Alphen, NL 

Decalcifier soft Carl Roth, Karlsruhe, DE 

Roti®-Histokitt mounting medium Carl Roth, Karlsruhe, DE 

Microscope object slides, 76×26×1 mm Fisher Scientific, Schwerte, DE 

Microscope Cover Glasses 15H 24×50 mm  Fisher Scientific, Schwerte, DE 

FEATHER carbon steel blades C35 Feather safety Razor, Osaka, JPN 

FEATHER stainless steel blades R35 Feather safety Razor, Osaka, JPN 

Sample beakers, with screw cap 100 ml Carl Roth, Karlsruhe, DE 

Fine brushes (#1 and #3) Science Services, München, DE 

Surgical disposable scalpels B. Braun, Melsungen, DE 

Fine scissor - sharp/blunt, 22×900 mm Fine Science Tools, Heidelberg, DE 

Strabismus scissors, 23×115 mm Fine Science Tools, Heidelberg, DE 

Scissors straight, sharp/blunt,14.5 cm Medicon, Tuttlingen, DE 

Tissue forceps - 1×2 teeth, 2×1.5×145 mm Fine Science Tools, Heidelberg, DE 
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Dumont #5 forceps, 0.1×0.06×110 mm  Fine Science Tools, Heidelberg, DE 

Standard pattern forceps 2.8×1.4×130 mm Fine Science Tools, Heidelberg, DE 

Cover Glass forceps, 4×0.6×105 mm Fine Science Tools, Heidelberg, DE 

 

2.1.5 Molecular biology 

Equipment: 

Reference PhysioCare concept pipets Eppendorf, Hamburg, DE 

Agarose gel electrophoresis chamber Biozym, Landgraaf, NL 

OwlTM EC-105 compact power supply Thermo Fisher Scientific, Langenselbold, DE 

INTAS Gel iX20 imager Intas Science Imaging, Gottingen, DE 

Microbalance scale BP301 S  Sartorius, Göttingen, DE 

Accuracy scale LP 620 S Sartorius, Göttingen, DE 

Eppendorf® Bio photometer Eppendorf, Hamburg, DE 

Eppendorf® Thermomixer Compact Eppendorf, Hamburg, DE 

Heraeus Biofuge Pico Heraeus Deutschland, Hanau, DE 

Heraeus MEGAFUGE 8 centrifuge Thermo Fisher Scientific, Langenselbold, DE 

Eppendorf centrifuge 5810 R Eppendorf, Hamburg, DE 

Ice maker machine Manitowoc Deutschland, Herborn, DE 

 

Supplies: 

KAPA Express Extract Kit Merck, Darmstadt, DE 

mi-PCR50 Purification Kit Metabion, Planegg/Steinkirchen, DE 

Rapid PCR Cleanup Enzyme Set New England BioLabs, Frankfurt, DE 

KAPA2GTM Fast PCR Kit VWR International, Darmstadt, DE 
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GoTag®Long PCR Master Mix Promega Deutschland, Mannheim, DE 

GoTaq® colorless PCR Master Mix Promega Deutschland, Mannheim, DE 

2-Log DNA Ladder New England BioLabs, Frankfurt, DE 

Agarose Roti®garose Low Melt Carl Roth, Karlsruhe, DE 

Loading Dye 6× Purple New England BioLabs, Frankfurt, DE 

Gel Red INTAS, Göttingen, DE 

TRIS ≥ 99.9 %;121,14 g/mol Carl Roth, Karlsruhe, DE 

Acetic acid ≥ 95.9 %; 60,05 g/mol Carl Roth, Karlsruhe, DE 

EDTA ≥ 99 %; 292.25 g/mol Carl Roth, Karlsruhe, DE 

LightRun® Barcodes Eurofins GATC Biotech, Konstanz, DE 

 

Primer 

Description 5´- 3´ direction 

Rat-Tp53-for1  GCTGAGTATCTGGACGACAGG 

Rat-Tp53-for2  GTACCGTATGAGCCACCTGAG 

Rat-Tp53-for3  CGGCCCATCCTTACCATCATC 

Rat-Tp53-rev2 AGAAACCACAGCCTCAGAGC 

Rat-Tp53-rev3 TGCGCTCTGACGATAATGTCATAG 

Rat-Tp53-rev4 GAGAGGAGCTTGTGCTGGTG 

Rat-Chr10-for CTTCGGTCTCTTCTCTGACT 

Rat-Chr10-rev CAACTGACCGGATAGGATTT 

Rat-Gapdh-for  GGTGAAGGTCGGTGTGAACGG 

Rat-Gapdh-rev CCACTTCCAGCCACACTTGCC 
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Tp53/TP53 reference sequences: 

R. norvegicus_strain mixed ch.10, Rnor_6.0_NC_005109.4_8531-9606_bp 

R. norvegicus strain BN chromosome 10 CRA_213000034379661 

R. norvegicus_p53_X2, mRNA_XM_006246595.2 

H. sapiens Tumor Protein 53 (TP53), Ref. Seq. Gene (LRG_321) on chromosome 17, 

NG_017013.2. NCBI GenBank 

 

2.1.6 Software 

Intas capture software INTAS Science Imaging, Göttingen, DE 

A plasmid Editor (ApE); v2.0.49 University of Utah, Salt Lake City, UT, USA 

GraphPad Prism 6.0 GraphPad Software, San Diego, CA, USA 

Monaco® version 5.0 ELEKTA AB, Stockholm, SWE 

MOSAIQ® ELEKTA AB, Stockholm, SWE 

Syngo.via Siemens Healthcare, Erlangen, DE 

RadiAnt DICOM viewer Medixant, Poznan, POL 

Microsoft Office® Microsoft, Redmond, WA, USA 

 

2.1.7 Data repository 

WD Server (4 TB) #WCC4E2NJO3Y6 WD® NL B. V. Hoofddorp, NL 
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2.2 METHODS 

2.2.1 Cancer-prone rat model and experimental design 

The experiment was carried out after approval by the regional ethics board 

(Regierungspräsidium Karlsruhe) and following the legal guidelines of the federation of 

european laboratory animal science associations – FELASA. 

Heterozygous Tp53+/C273X rats (Crl:WI(UL)-Tp53m1/Hubr) were kindly provided by colleagues 

from Hubrecht institute for developmental biology and stem cell research, department of 

biomedical genetics, Utrecht, the Netherlands. 

The main ‘roadmap’ of the experiment is shown schematically in Figure M1. 

 

 

 

 

Figure M1 

 

 

 

 

 

 

 

 

 

 

 

Schematic overview of work-steps. Heterozygous rats (n = 90), derived from both heterozygous or 

heterozygous and homozygous parents (F1 and F2 respectively) were distributed into the two control 

groups (AN or CBCT only) and four groups for irradiation with different radiation techniques (VMAT 

or AP/PA) and doses (3×5 Gy or 3×8 Gy). Animals were followed up and sacrificed when a solid tumor 

was detectable. The material and data obtained were used to compare tumor rates, latency time to tumors, 

and tumor properties of irradiated and non-irradiated groups of rats and between body volumes exposed 

to different doses. 

Abbreviations: Tp53+/-, heterozygous for tumor protein 53 gene; F1/2, filial generation 1 and 2; AN, 

anesthesia only control group; CBCT, cone-beam computed tomography controls; VMAT, volumetric-

modulated arc therapy; AP/PA, anterior-posterior/posterior-anterior; CT, computed tomography; Gy, 

Gray; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy; TTT, time to tumor. 
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Two control groups were formed: one for the treatment with anesthesia only (AN group) and 

another for additional positioning scanning with CBCT (CBCT group). Rats belonging to 

further four radiation treatment groups were aimed to receive, additionally to anesthesia and 

CBCT, either 15 Gy or 24 Gy total doses divided into three equal fractions and delivered every 

other day with VMAT or AP/PA irradiation techniques: 3×5 Gy VMAT, 3×5 Gy AP/PA, 3×8 

Gy VMAT, 3×8 Gy AP/PA. Each group consisted of n = 15 rats. 

Animals were followed up until they showed tumor-associated symptoms and a tumor was 

detectable. Rats were euthanized for the further standardized autopsy to prepare tumors and 

normal tissue samples for subsequent pathological and molecular characterizations. 

 

2.2.2 Animal housing 

Rats were housed in conventional rat cages, (rat standard 1500 cm2 cage, Tecniplast, 

Hohenpeissenberg, Germany) in the animal facility of the medical research center of the 

medical faculty Mannheim of Heidelberg University, under controlled conditions (12-hour 

light/dark cycle, room temperature 22 ± 2°C, 45% ± 5% relative humidity). 

Animals were supplied by a grain-based regular diet (SSNIFF Spezialdiäten) and water (ad 

libitum). 

The results of the quarterly hygienic screenings were always negative for any new pathogens 

for the entire breeding and living period of animals. This was made to excludes possible 

influences of infections on the standardization of the experimental model and thus on the 

experimental results. 

 

2.2.3 Animal breeding 

The accurately performed genotyping-guided breeding method, daily monitoring, and 

controlled environmental conditions provide an optimal basis for lifespan experiments with 

p53-insufficient rats. 

Local breeding was carried out to produce experimental Tp53+/C273X rats. Breeding animals 

were placed into the individually ventilated cages (Rat 1500 cm2 IVC cage) under controlled 

conditions: temperature 22 ± 2°C, humidity 45% ± 5%, ventilation 10 – 15 air changes per hour, 

and a lighting cycle of 12 hours light/dark. The offspring (aged 4 weeks) were separated from 

the mother before the weaned animals received their identities (Table A1). From this time on 
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rats were housed in sex-separated groups of maximal four animals per standard 1500 cm2 rat 

cage.  

Due to an expected accumulation of spontaneous mutations in Tp53 knockout rats, the mating 

age was kept as low as possible: median 110 days for females (XX) and 89 days for males (XY), 

with a 75% confidence interval of [86 – 160] and [76.8 – 160] for XX and XY respectively. 

Heterozygous n = 37 rats of filial generation 1 (F1) belonging to litters 1 – 3 (L1 – L3) were 

derived from 2 male and 3 female parents with the same heterozygous Tp53+/C273X genotype. 

The F2 rats (n = 53) of L4 – L11 were provided from homozygous (Tp53C273X/C273X) males (n 

= 8) and wild type (Tp53C273/C273) females (n = 7) of F1 generation. Taken together, only five 

ancestral knockout allele variants are drifted among all experimental animals of F1 and F2 

generations (Table M1, Table A1 and Table A2).  

The outbreeding trend was maintained. 

 

 

 

 

Table M1 

Recruitment of rats to experimental groups. Tp53+/C273X rat litters (L1-L11) of the F1 and F2 

generations were randomized in order to balance the ancestral background. The numbers indicate the 

rats. 

 

Rats per litter 

and group 

F1 F2 Total 

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 

AN 4 - 5 2 0 0 0 0 4 0 0 15 

CBCT 5 1 4 3 0 0 2 0 0 0 0 15 

VMAT 3×5 Gy  6 - 3 1 0 0 4 0 1 0 0 15 

AP/PA 3×5 Gy  5 1 3 4 0 0 1 0 1 0 0 15 

VMAT 3×8 Gy  0 0 0 0 1 4 0 3 0 4 3 15 

AP/PA 3×8 Gy  0 0 0 0 1 5 0 2 0 2 5 15 

Total 20 2 15 10 2 9 7 5 6 6 8 90 

 

Abbreviations: F1 and F2, filial generation 1 and 2; L1 – L11, litters L1 – L11; AN, anesthesia only 

group; CBCT, cone-beam CT only; VMAT, volumetric-modulated arc therapy; AP/PA, anterior-

posterior/posterior-anterior irradiation; Gy, Gray; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy. 
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The weight of animals at the treatment was well-balanced by the gender-balanced distribution 

of rats among treatment groups, however, with some insignificant variability, as shown in Table 

M2.  

 

 

 

 

Table M2 

Weight and age of female and male rats at treatment. The median values (with minimum to 

maximum intervals) of the weight of female and male rats per group are arranged separately and those 

of the age are combined.  

 

Parameters per 

group and sex 

Weight (gram) Age (days) 

XX XY XX/XY combined 

median [min. – max.] median [min. – max.] median [min. – max.] 

AN 162.5 [150 – 190], n = 6 205.0 [175 – 305], n = 7   82.0 [63 – 108], n = 13 

CBCT 182.5 [155 – 200], n = 8 272.5 [175 – 295], n = 6 69.0 [64 – 96], n = 14 

VMAT 3×5 Gy  180.0 [170 – 185], n = 7 242.5 [225 – 280], n = 8 68.0 [58 – 85], n = 15 

AP/PA 3×5 Gy  185.0 [155 – 225], n = 9 250.0 [225 – 285], n = 5 68.0 [58 – 85], n = 14 

VMAT 3×8 Gy  215.0 [185 – 225], n = 7 287.5 [220 – 335], n = 6 106.0 [81 – 124], n = 13 

AP/PA 3×8 Gy  205.0 [180 – 215], n = 7 285.0 [215 – 330], n = 8 106.0 [81 – 116], n = 15 

 

Abbreviations: XX, female; XY, male; n, number; AN, anesthesia only; CBCT, cone-beam CT only; 

VMAT, volumetric-modulated arc therapy; AP/PA, anterior-posterior/posterior-anterior irradiation; Gy, 

Gray; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy. 

 

 

 

 

The median age (gender-mixed) was 37.5 days higher for the 3×8 Gy irradiated groups 

compared to all other groups (106 [81 – 124] vs. 68.5 [58 – 108] days, respectively). The 

possible impact of the age variability on treatment outcomes is discussed below in section 4.6. 

Taken together, these preparations helped to standardize the experimental model for 

comparison of experimentally obtained data between groups containing subjects with relatively 

similar risk factors. 
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2.2.4 Identification of animals  

For identification of animals an ear marking method was used. The incidental tissue sample 

was used for subsequent genotyping. Therefore, an animal was placed in a polycarbonate 

narcosis box (made by the orthopedics laboratory of the university medical center Mannheim) 

saturated with isoflurane using a small animal vaporizer device. Prior to the ear punching rats 

received short (< 1 minute) inhalation anesthesia (isoflurane, FORENE® 100% V/V). An ear 

punch tool (Fine Science Tools) was used for earmarking making samples with a diameter of 2 

mm. The earmarking scheme, according to Ackert-Bicknell 113, is shown below in Figure M2.  

 

 

 

 

Figure M2 

 

 

Fig. M2. Earmarking. A combination of punches represents the identity. The arrow directed from the 

caudal to the cranial direction (dorsal view). 

 

 

 

Earmarking. A combination of the ear punches represents the identity. The arrow directed from the 

caudal to the cranial direction (dorsal view). 

 

 

 

 

2.2.5 Preparation of animals for CT and RT 

Prior to irradiation and CT scanning, rats underwent continuous narcosis to sleep over the whole 

procedure duration, which was in the range of about 1 hour for a foursome group of animals. 

For this purpose, the initial sedation was made by a short inhalation of FORENE®, as mentioned 

in section 2.2.4. Subsequently, rats received a subcutaneous injection of an anesthesia mixture 

of 0.15 mg medetomidine (Domitor®), 2.0 mg midazolam (Midazolam-ratiopharm® 15 mg/3 

ml) and 0.005 mg fentanyl (Fentanyl-Janssen® 0.1 mg) per kg body mass. 
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For transportation of an anesthetized rat, a single use individually ventilated transport cage 

(SUMC, 501 cm2) was used, which is equipped with a microfiber filter hood protecting animals 

from pathogens (Figure M3). 

 

 

 

 

Figure M3 

 

 

 

 

 

 

 

 

 

Preparation of rats for irradiation and CT. (a) Shown is a foursome group of narcotized male rats 

fixed in disposable cage for transportation. (b) An anesthetized female rat with an inserted tail vein 

catheter for the infusion.  

 

 

 

 

Narcotized rats were placed in the cages and secured to the bottom of the cage by tapping the 

extremities and tails using tape (Rollenpflaster). 

To absorb anesthesia-related urinary urgency, 3 – 4 compresses (RS-Mullkompressen 7.5×7.5 

cm) were put underneath the animals. 

An eye ointment (Bepanthen® Augen- und Nasensalbe) was applied to rats to prevent the cornea 

from drying out during the narcosis. 

For rehydration, narcotized animals received subcutaneous depot-injection of 2 ml 0.9% 

isotonic saline solution per 250 g of their body mass using 22G Neoject cannulas and 2 ml or 5 

ml single use syringes (Injekt Disposable Syringes).  

The cages with narcotized and fixed rats were closed with filter hoods remaining over the whole 

transport and radiation procedure period, for the pathogen-safety. 

a b 
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After experimental procedures were finished, to antagonize the residual anesthetics, sleeping 

rats received a subcutaneous injection of 0.3 mg naloxon (Naloxon Actavis® 0.4 mg/ml), 0.5 

mg flumazenil (Anexate® 0.5 mg/5ml), and 2.5 mg atipamezole (Antisedan® 5 mg/ml). 

Shortly prior to CT examination, a contrast agent was injected intravenously using a self-

constructed catheter system consisting of a 26 g CLiP® neo safety intravenous catheter (Vygon 

- Vigmed), which was connected to a flexible polyethylene tube (PORTEX® PE with 0.58/0.96 

mm inner/outer diameter) with luer-lock connectors, and was terminated by a closing cone 

(Combi stopper PE closing cone). The catheter was inserted into a tail vein of an animal (Figure 

M2b). The catheter was charged with isotonic saline solution to avoid the impermeability of 

the tubes during the transportation. The contrast media applied via the catheter using tuberculin 

syringes. 

 

2.2.6 Radiation planning and dose delivery 

Two template CTs for radiation planning were taken from 250 g male (large) and 170 g female 

(small) rats using a routine clinical planning CT device (Philips Brilliance Big Bore,120 kV). 

For the contouring of the body structures for irradiation planning a Monaco® (version 5.0) 

treatment planning system from ELEKTA was used. 

The whole-body (‘patient’) volume of the rat and organ-structures at radiation risk were 

contoured separately on each of two planning CTs (small and large): head, brain, heart, 

diaphragm, thymus, sternum, neck, spine, liver, stomach, colon and bladder as well as the right 

and left lungs, chest walls, axilla, forelimbs, dorsal muscles and kidneys. Representative dose 

to volume relationships (DVR) for these structures at risk of 3×5 Gy delivered with small or 

large VMAT and AP/PA plans are given in Table A4. 

A cylindrical 296 mm3 PTV with an approximated radius of 0.5 mm and a high of 10 mm within 

the mediastinum of the rat, was similarly defined on both planning CTs. 

Based on these two planning CT datasets, the plans for the dose delivering techniques (360° arc 

VMAT and two opposing AP/PA beams) were constructed separately for each body masses 

(plan size). 

Recruitment of n = 30 female and n = 27 male rats to each treatment plan size (small, ≤ 215 g 

or large, ≥ 220 g), the total doses (3×5 Gy or 3×8 Gy), and irradiation techniques (VMAT or 

AP/PA) is given in Table M3. 
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Table M3 

Recruitment of female and male rats to particular radiation plan size. Given are applied irradiation 

plans (large or small), dose delivering technique (VMAT or AP/PA), and prescribed doses (3×5 Gy or 

3×8 Gy). The numbers indicate rats without dropout animals. 

 

Plan size for XX and XY 

rats per treatment group 

XX XY 

large plan  small plan  large plan  

VMAT 3×5 Gy  0 7 8 

AP/PA 3×5 Gy  1 8 5 

VMAT 3×8 Gy  3 4 6 

AP/PA 3×8 Gy  0 7 8 

Total 4 26 27 

 

Abbreviations: XX, female; XY, male; VMAT, volumetric-modulated arc therapy; AP/PA, anterior-

posterior/ posterior-anterior irradiation; Gy, Gray; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy. 

 

 

 

 

The fraction dose to the PTV was defined as 5 Gy for 3×5 Gy and 8 Gy for 3×8 Gy irradiation. 

The beam on time of the delivery of 5 Gy to the PTV was approximately 45 seconds for full arc 

VMAT and 30 seconds for AP/PA. These were expanded to 60 seconds and 45 seconds for the 

delivery of 8 Gy respectively VMAT and AP/PA. Thus, the estimated dose rate (Gy/minute) 

for VMAT was higher than for AP/PA. The dose rates were not affected by the different 

treatment plan sizes (small or large). 

Representative images of contoured organs (structures) at radiation risk and the PTV, as well 

as DVRs and dose-volume histograms (DVHs) in a rat thorax irradiated with VMAT or AP/PA 

beams, shown in Figure M4. 

For the irradiation accuracy, an image-guided irradiation method performed using CBCT. For 

this procedure, rats in transport cages were initially positioned using laser beams (Figure M5a).  

CBCT was taken from each rat before each treatment fraction to match it with prescribed 

treatment plans and to correct the position of the PTV as precisely as possible using positioning 

software MOSAIQ® (Figure M5b – c). The deviations in each of the three-dimensional 

directions between treatment plans and CBCT were scarcely different between animals, as 

exemplarily shown in Figure M5c. 
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VMAT AP/PA

Figure M4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Radiation planning for VMAT and AP/PA. (a) Contouring of the ‘structures’ at radiation risk (color 

panel) and the PTV (red) in the mediastinum of the rat (coronal view). (b) Radiation dose distribution 

for VMAT and AP/PA techniques (colored area). (c) The DVHs for the PTV, and integral dose 

(‘patient’) for VMAT or AP/PA irradiation (permanent and dashed, respectively). (d) DVHs for selected 

thoracic organs at risk and the PTV for VMAT and AP/PA. (e – f) Total DVHs of 5 Gy fraction delivered 

with (e) VMAT or (f) AP/PA. Screenshots are from the small treatment plans. 

Abbreviations: PTV, planning target volume; VMAT, volumetric-modulated arc therapy; AP/PA, 

anterior-posterior/ posterior-anterior; Gy, Gray; DVRs, dose to volume relationships; DVHs, dose to 

volume histograms; NIRV, non-irradiated volume. 
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Figure M5 

 

 

 

 

 

 

 

 

 

Positioning for image-guided irradiation. (a) An anesthetized rat located under the gantry of the 

LINAC using positioning laser beams (green); (b – c) CBCT matching with the planning CT scan 

(magenta/green) and correction of the couch position for irradiation accuracy. 

Abbreviations: LINAC, linear accelerator; CBCT, cone-beam computed tomography; CT, computed 

tomography. 

 

 

 

 

2.2.7 Observation phase 

During the entire follow-up period (median 254 [91 – 431] days), rats were monitored daily to 

detect typical signs of a sickness such as rough hair coat, porphyrin staining, apathy, abnormal 

breathing, orbital tightening, limb paralysis, or a visible tumor mass. 

From the age of four weeks all rats underwent weekly weight controls to collect individual 

growth data and to define a progressive weight loss of more than 10% – 20% of the attained 

body weight. Obtained growth data was documented, ordered by various parameters, and 

assembled in Table A1C – F. 

 

2.2.8 Tumor detection using high-resolution low-dose CT 

In addition to regular health checks, animals were examined with a high-resolution ultra-low 

dose (spatial resolution 0.24 mm, < 50% compared to conventional systems) CT scanner 

SOMATOM Force®. This dual-source CT system was aimed to deliver high-quality images 

even at very fast respiratory and cardiac activities in rats (60 – 170 breaths per minute and 300 

a b c 
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– 500 heartbeats per minute, respectively). It has also been supposed that these parameters could 

decrease substantially due to narcosis. 

An iodinated contrast agent (Imeron®-300) was applied by intravenous administration via a 

catheter inserted in a tail vein (2 – 4 µl per gram body mass). The contrast media was not used 

in some cases, in which the scans could not be assisted by the contrast agent due to technical 

errors (the catheter was impermeable or it was lost from a vein). 

During the entire follow up period most rats (n = 77) were examined by SOMATOM Force CT. 

Out of remaining n = 57 rats, n = 45 were examined repeatedly (final CT) as most of that 

appeared to be ill. A list of SOMATOM Force data is compiled in Table A6. The analysis of 

the CT-reconstructions (total body and thorax windows), for an improved image display, was 

performed using versatile imaging software (Syngo.via,). RadiAnt DICOM Viewer was also 

used to visualize the DICOM (digital imaging and communications in medicine) data. 

Representative images are shown below, in Figure M6a. 

For technical reasons, it was not possible to perform final Force CT scans of six rats with 

tumors. However, one of these rats, which had a mediastinal tumor, and another - an axillary 

tumor - were scanned with a micro-CT modified for preclinical applications (Y. FOX) 114,115. 

But these micro-CT scans resulted in images of unsatisfactory quality. Out of the remaining 

four animals, two rats had mediastinal solid tumors located exactly within the HDV, one had a 

bone tumor on the sacral vertebra, and an additional small tumor on a rib. The last one was 

affected by a solid tumor sitting on the right scapula. Thus, these last four malignancies were 

identified during the necropsy and assigned to corresponding predefined volumes. 

 

2.2.9 Euthanasia 

All rats were euthanized using CO2 overdoses. Therefore, animals were placed in a standard rat 

cage with a flat Plexiglas® top connected to the CO2 source with a flexible tubule. The gas was 

delivered during 10 – 15 minutes, with very low pressure with a barely audible flow, until the 

signs of death were identified (cardiac and respiratory arrest). 

 

2.2.10 Assessment of detected tumors to different dose-volumes 

For the assessment of tumors to initially received radiation dose, tumor positions on the final 

CTs were compared with radiation plans using RadiAnt DICOM Viewer and the volumes of 

tumors were visually assigned to the corresponding isodose levels of the radiation plan used. 
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The assignment of tumors to related dose-volume by adjusting the Monaco® treatment plans 

with SOMATOM force® CT images is represented in Figure M6a. 

 

 

 

 

Figure M6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Allocation of tumor positions to different dose volumes. (a) Representative VMAT plan and final 

SOMATOM force CT images of the rat developing rib bone sarcoma within the LDV (upper left and 

right, respectively) and AP/PA plan and final CT with mediastinal lymphoma in the HDV (lower left 

and right). Both are native CTs without contrast media injection. Arrows show the positions of tumors. 

(b) A scale (Monaco®) of the dose distribution in the irradiated volume and assignment of the isodoses 

to the predefined HDV (90 – 107% of the prescribed dose), BHDV (50 – 90%), LDV (5 – 50%), and 

NIRV (< 5%) volumes. 

Abbreviations: VMAT, volumetric-modulated arc therapy; AP/PA, anterior-posterior/posterior-anterior; 

CT, computed tomography; PTV, planning target volume; HDV, high-dose volume; BHDV, bordering 

high-dose volume; LDV, low-dose volume; NIRV, non-irradiated volume. 
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Based on estimated dose-volume relationships for tumor-affected volumes, isodoses were 

assigned to three predefined dose-volume levels at risk of radiation-induced tumor 

development: high-dose volume (HDV) exposed to at least 90% of the total target doses (3×5 

Gy or 3×8 Gy), bordering high-dose volume (BHDV) receiving 50% – 90%, and low-dose 

volume (LDV) receiving 5% – 50% of total doses (Figure M6b). 

Tumors outside these dose-volumes were assigned to the non-irradiated volume (NIRV) at risk 

of < 5% of the doses.  

Based on Monaco® statistics, the HDV, BHDV, and LDV comprised approximately 0.8 cm3, 

3.9 cm3
, and 22.2 cm3 for the large VMAT-plan while for the large AP/PA-plan 2.5 cm3, 4.3 

cm3 and 12.0 cm3 were measured respectively. For smaller animals (plan size small), the 

volumes to the HDV, BHDV, and LDV were about 0.7 cm3, 2.9 cm3, and 12.4 cm3 for VMAT 

and 1.3 cm3, 3.4 cm3, and 7.4 cm3 for AP/PA. 

The DVRs of tumors, corresponding to different body volumes receiving different doses or no 

doses before tumors arose, are given in Table A3E – H and Table A4. 

 

2.2.11 Necropsy 

Sacrificed rats were fixated on a dissection cork plate (30×30 cm Rotilabo®-Presskork-

Untersetzer), covered with a pulp-made pad (20×40 cm MaiMed Absorbent Pads), and 

moistened with 70% ethanol. 

First the skin was incised across the inguinal-pelvic area and cut up to the mandible, prior to 

open abdominal and thoracic cavities using strabismus scissors and tissue forceps. The thorax 

and the abdomen were then opened for visual inspection by making a longitudinal incision 

along the length axis. 

All visible organs in the abdominal and thoracic cavities, head, neck, and extremities were 

visually examined for abnormalities such as swelling, changes in the consistency of the tissue 

surfaces, fluid accumulation, differences in size and displacements of the organs, and, 

especially for additional tissue. 

An example of a rat dissection is shown in Figure M7a. 
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Figure M7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gross necropsy and tissue sampling. (a) Representative autopsy of a female rat: (1) trachea, (2) 

thymus, (3) heart, (4) aortic arch, (5) lungs, (6) ribs, (7) lymph node, (8) mamma, (9) diaphragm, (10) 

liver, (11) right kidney, (12) stomach, (13) spleen, (14) pancreas, (15) colon, (16) cecum, (17) right 

ovary, (18) oviduct, (19) uterus, and (20) bladder. (b) Schematic workflow of tissue analyses.  

Abbreviations: FFPE, formalin-fixed paraffin-embedded; H&E, hematoxylin and eosin; gDNA, 

genomic DNA; PCR, polymerase chain reaction; LOH, loss of heterozygosity. 

 

 

 

 

2.2.12 Collecting tissue samples 

For the preparation of the tissue samples, entire thoracic and abdominal organs including lungs, 

heart, thymus, trachea, esophagus, lymphatic tissues, large thoracic blood vessels, diaphragm, 

chest wall with ribs, thoracic vertebrae, liver, spleen, pancreas, bladder, and other evidently 

altered organs/tissues as well as tumors were removed separately using surgical disposable 

scalpels, straight scissors, and standard pattern forceps. 
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Tissue samples were preserved in 3.7% buffered formalin into the 100 ml sample beakers for 

at least 48 hours. The formalin solution consisted of 800 ml distilled water, 100 ml 10× 

phosphate-buffered saline (PBS; 80 g NaCl, 2 g KCl, 2.4 g KH2PO4 ∙ 2H2O; set on pH 7.4), and 

100 ml 37% formaldehyde solution (ROTIPURAN® 37% formaldehyde solution. 

Small fragments of the tumors for DNA-extraction from n = 40 rats were shock-frozen in liquid 

nitrogen and stored at - 80 °C in a freezer (Panasonic MDF-DU700VH Freezer). 

The representative workflow of removing and preparations the tissues for subsequent 

pathological and molecular examinations is expressed above in Figure M7b. 

 

2.2.13 Histopathology 

Organ samples from irradiated and unirradiated rats were prepared similarly. 

These organs collected during the necropsy and saved in formalin were sectioned in about 0.5 

cm thick slices under the cell bench (HERAsafe® KSP12) using scalpel (Surgical Disposable 

Scalpels), forceps (a standard pattern forceps, and a tissue forceps), and scissors (Fine scissor - 

sharp/blunt) 

Chest organs such as the lungs (at least 4 samples), trachea (1), solid blood vessels (2 - 4), 

esophagus (1) with surrounding fat and mesothelium were cut axially at the PTV level. 

Liver tissue samples (1-2) were taken from the apical parts of the medial lobe. Further tissue 

sections of diaphragm (at least 1), stomach (1 – 2), spleen (1) pancreas (1), colon (2 – 3), bladder 

(2 – 3), reproductive organs (2 – 3), brain (2 – 4), as well as left and right chest wall sections (2 

– 4) with the nearest mamma fragments were cut always along the axial plane. 

Soft tissue tumors were cut across the middle of the mass to visualize its center and periphery 

(at least 2 sections). Large tumors thereof were further sliced successively in approximately 0.5 

cm thick sections (2 – 4). The neoplastic bone tissue structures were sectioned similarly to soft 

tissue tumors and soaked in a solution containing ethylenediaminetetraacetic acid (Decalcifier 

Soft), for at least 3 days. 

The formalin-fixed tissue pieces were placed into the tissue cassettes (neoLab embedding 

cassettes) for dehydrogenizing by about 55 °C overnight in a drying cupboard (Heraeus®), 

before preparing formalin-fixed paraffin-embedded (FFPE) tissue blocks, which were poured 

on a paraffin-casting machine (Leica HistoCore Arcadia). 

FFPE tissue blocks were cooled on a cooling plate unit (Leica EG 1150 C) before slicing in 4 

– 6 µm sections with a microtome (Leica RM2245) using C35 carbon steel blades, common 

fine brushes and a Dumont #5 forceps. 
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To remove paraffin before the staining, FFPE tissue sections were placed on 76×26×1 mm 

microscope object-slides using 38 °C warm water bath (LEICA HI1210) and then incubated at 

about 55 °C overnight into the Heraeus® drying cupboard. 

Histopathological staining of the tissue slides with hematoxylin and eosin (H&E) was carried 

out on an automatized tissue staining station (Leica Autostainer XL). The H&E-stained tissue 

samples on the object slides were embedded in a mounting medium (Roti®-Histokit), covered 

gently with covering glasses (Microscope Cover Glasses 15H 24×50 mm) using a forceps 

(Cover Glass Forceps 4×0.6×105 mm), and saved to dry overnight at room temperature in an 

air-flow safety bench (Prutscher S/TA/120/1297). 

Morphological evaluation of samples was done using an upright microscope equipped with a 

digital microscope camera (LEICA DMBRE with Leica DFC 450). This final evaluation of 

H&E-stained tissue slides was performed in the Medical Research Center and the Institute of 

Pathology of the University Medical Center Mannheim by experienced pathologists. 

 

2.2.14 Extraction of genomic DNA 

For the extraction of genomic DNA (gDNA), the frozen tumor samples were fixed on a cryostat 

(Leica CM3050-S cryostat) using an adhesive compound (Tissue-Tek® O.C.T.™) to cut that in 

6 µm thick layers using stainless steel R35 blades. The gDNAs were similarly extracted from 

ear punches and frozen tumor samples using an extraction kit (KAPA Express Extract Kit). The 

representative compilation of gDNA extraction mixtures is given in Table M4. 

 

 

 

 

Table M4 

Extraction of the gDNA. Components per 2 – 3 ear-punches or 3 – 5 tumor slices (6 µm). 

 

Components Ear tissue samples Frozen tumor samples  

10 × KAPA Express Extract Buffer  5 µl 10 µl 

KAPA Express Extract Enzyme (1U/µl) 1 µl 2 µl 

PCR grade H2O  44 µl 88 µl 

 

Abbreviations: gDNA, genomic DNA; PCR, polymerase chain reaction. 
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The extraction was performed by an initial lysis step (15 – 20 minutes at 75 °C) and followed 

by enzyme inactivation (5 minutes at 95 °C). 

The extraction was carried out in standard 1.5 ml tubes (Eppendorf, Hamburg, Germany), and 

the thermo-chemical part of the procedure made using a thermo-mixer (Eppendorf® 

Thermomixer Compact). For long-term storage, gDNA extracts were saved at - 20 °C. 

 

2.2.15 DNA amplification using PCR 

Amplification of core fragments of endogenous Tp53 gene from each 1 µl crude extracts, 

containing about 10 – 30 ng template gDNA per reaction, was performed using KAPA2G Fast 

PCR Kit. The PCR primer positions at the rat Tp53, flanking the thymine to adenine substitution 

site at the mutational hotspot site within C273 coding triplet, are represented in Figure M8. 

 

 

 

 

Figure M8 

 
 

 

 

 

 

 

PCR primer-positions at the rat Tp53 DNA. Schematic representation of Chr10 fragment of Rattus 

norvegicus containing the Tp53 gene with a T/A 56196114 alteration of the mutational hotspot codon 

C273 in 6th exon. Boxes and lines represent exons and introns, respectively. Arrows indicate the 

approximate positions of the PCR primers used in the experiment. 

Abbreviations: Tp53, Tumor protein 53; for, forward; rev, reverse; T, thymine; A, adenine; Chr10, 

chromosome 10.  

The illustration was published in Sci Rep. 2019 Oct 29;9(1):15489. 
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As a positive gDNA control, the 240 bp spanning fragments of the rat housekeeping gene 

Glyceraldehyde-3-phosphate-dehydrogenase (Gapdh) were amplified from the gDNA extracts 

of ear-punches and tumor samples using a self-designed specific primer-pair Gapdh-for and 

Gapdh-rev. 

The purity of the reactions was tested by negative control PCRs containing H2O instead of 

template DNA. 

The expected sizes of the PCR products corresponding to used Tp53 primer pairs were compiled 

in Table M5. See also Appendix (Sequence information A1 and A2) 

 

 

 

 

Table M5 

PCR primer pairs and expected sizes of corresponding amplicons.  

 

 

Abbreviations: Tp53, Tumor protein 53; for, forward; rev, reverse; Chr, chromosome; bp, base pairs. 

 

 

 

 

The forward primers Rat-Tp53-for1, Rat-Tp53-for2, or Rat-Tp53-for3 were combined with 

reverse primers Rat-Tp53-rev1, Rat-Tp53-rev3, or Rat-Tp53-rev4 to amplify 772 – 879 base 

pairs (bp) long fragments of the Tp53 gene containing C273 coding site (Table M5 and Table 

M6a – a´).  

Forward primer Reverse primer Product size 

Rat-Tp53-for1 Rat-Tp53-rev3 879 bp 

Rat-Tp53-for1 Rat-Tp53-rev4 729 bp 

Rat-Tp53-for2 Rat-Tp53-rev3 834 bp 

Rat-Tp53-for3 Rat-Tp53-rev2 772 bp 

Rat-Chr10-for Rat-Chr10-rev 4523 bp 

Rat-Tp53-for1 Rat-Chr10-rev 2650 bp 

Rat-Chr10-for Rat-Tp53-rev3 2752 bp 

Gapdh-for Gapdh-rev 270 bp 
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Table M6 

PCR amplification of the rat Tp53 gDNA: (a) rat and tumor genotyping Tp53 PCR, (b) PCRs for 

tumor genotyping and Tp53 LOH analyses, (c) nested Tp53 PCR products. (a´ – c´) The cycler programs 

for the reactions given in a – c.  

 

 

PCR for 772 – 879 bp products  50 µl/sample 

KAPA2G PCR mix 25 µl 

Rat-Tp53-for1, Rat-Tp53-for2 or Rat-Tp53-for3 5 – 10 pmol/µl 

Rat-Tp53-rev2, Rat-Tp53-rev3 or Rat-Tp53-rev4 5 – 10 pmol/µl 

Template (gDNA) 0.5 – 1.5 µl 

H2O up to 50 µl 

 

 

 

PCR for 4523 bp products 50 µl/sample 

GoTag®Long PCR Master Mix 25 µl 

Rat-Chr-10for 5 – 10 pmol/µl 

Rat-Chr10rev 5 – 10 pmol/µl 

Template (gDNA) 1 – 1.5 µl 

H2O up to 50 µl 

 

 

 

Nested PCR for 2650 bp and 2752 bp products 50 µl/sample 

GoTag® colorless PCR Master Mix 25 µl 

Rat-Chr10-for or Rat-Tp53-for1 5 – 10 pmol/µl 

Rat-Tp53-rev3 or Rat-Chr10-rev 5 – 10 pmol/µl 

Template (4523 bp PCR product) 0,5 – 1 µl 

H2O up to 50 µl 

 

 

 

a 

b 

c 
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Reaction steps PCR for 772 – 879 bp products 

Temperature Time  

Hot-start* 50 °C 3 – 5 minutes 

Initial denaturing 95 °C 2 minutes 

Denaturing** 95 °C 20 – 45 seconds 

Annealing** 57 – 62 °C 20 – 45 seconds 

Elongation** 72 °C 1 – 1.5 minutes   

Final elongation 72 °C 3 – 5 minutes 

* If required; ** steps were repeated in 34 – 36 cycles. 

 

 

Reaction steps PCR for 4523 bp amplicons 

Temperature Time  

Initial denaturing 94 °C 3 minutes   

Denaturing* 95 °C 30 – 45 seconds 

Annealing* 60 °C 15 – 20 seconds 

Elongation* 60 – 72 °C 5 minutes 

Final elongation 72 °C 12 minutes 

* 32 or 34 cycles. 

 

 

Reaction steps Nested PCR products 

Temperature Time  

Initial denaturing 94 °C 3 minutes   

Denaturing* 95 °C 15 seconds 

Annealing* 60 °C 15 seconds 

Elongation* 72 °C 3 minutes 

Final elongation 72 °C 9 minutes 

* 34 or 36 cycles. 

Abbreviations: Tp53, Tumor protein 53; gDNA, genomic DNA; PCR, polymerase chain reaction; for, 

forward; rev, reverse; Chr, chromosome; bp, base pair. 

b´ 

a´ 

c´ 
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The 4523 bp long PCR copies of Tp53 were amplified with Rat-Ch10-for and Rat-Ch10-rev 

primer pair from approximately 0.5 – 1 µl tumor gDNA extracts using a long PCR kit 

(GoTag®Long PCR Master Mix), and an adapted protocol to optimize the yield of PCR products 

as given in Table M6b – b´. 

The 4523 bp spanning PCR products were used as templates for the nested amplification of 

2650 bp (Tp53-for1/Chr10-rev) or 2752 bp (Chr10-for/Tp53-rev3) DNA fragments (Table 

M6c – c´). These long sequence amplifications were performed to check the integrity of the 

C273 coding site within the Tp53 gene locus. 

For some PCRs producing DNA copies being not enough for purification and sequencing or 

could be poorly detected in agarose gels, a further nested PCR approach performed using primer 

pairs either Tp53-for1/Tp53-rev3 or Tp53-f2/Tp53-rev3 and GoTag® colorless PCR Master 

Mix. 

 

2.2.16 Agarose gel electrophoresis 

Agarose gels were prepared in 50 ml or 100 ml 1× TAE (121.14 g/mol TRIS [tromethamine ≥ 

99.9%], 60.05 g/mol acetic acid [≥ 95.9%], and 292.25 g/mol EDTA [≥ 99%]) buffer with 1% 

– 1.2% agarose (Roti®garose Low Melt). Gels were stained with 6 µl DNA dye (Gel Red) per 

100 ml gel volume. 

For quality control of the PCR products, each 2 µl reaction was mixed with 2 µl loading buffer 

(Purple Loading Dye 6×) and filled with water, up to 12 µl total volume, to load on an agarose 

gel. 

The electrophoretic separation of the PCR product DNA was done under electrical power, with 

a potential of 80 – 100 millivolt and a charge of 70 – 116 milliampere, for 0.5 – 1.5 hours using 

the standard gel-electrophoresis chamber. The chamber was filled with 1× TAE buffer and 

connected with a source (OwlTM EC-105 Compact Power Supply). 

As molecular mass standard, a 0.1 – 10 kb (kilo-bases, 103 bases) DNA ladder (2-Log DNA 

Ladder, New England BioLabs, Frankfurt, Germany) was used. 

The template-free negative controls for each PCR were also loaded on the gels to secure the 

purity of the PCR master mixes. 

The PCR products stained in agarose gel during electrophoresis visualized using an ultra-violet 

transilluminator imager (INTAS Gel iX20). The data was documented with gel documentation 

device INTAS capture software. Representative gel images are shown below in results section 

3.7. 
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2.2.17 DNA purification 

PCR products purified either using column chromatography (mi-PCR50 Purification Kit) or 

enzymatically using a cleanup kit containing Exonuclease I and a shrimp alkaline phosphatase 

rSAP (Rapid PCR Cleanup Enzyme Set). 

The column chromatography carried out according to the manufacturer’s manual with variable 

elution volumes: 25 µl, 50 µl, and 100 µl. 

For the enzymatic purification, each 1 µl Exonuclease I and 1 µl rSAP were added to 5 µl PCR 

product and incubated at 37 °C for 5 minutes prior to thermal inactivation of enzymes at 80 °C 

for 10 minutes in a thermal block (Eppendorf® Thermomixer Compact). 

The concentration of purified PCR-products was ensured by photometry (Eppendorf Bio 

Photometer). For these measurements, 2 µl of each purified PCR products were mixed with 98 

µl water and measured by specific extinction at λ = 260 nm in comparison to a blank sample 

(100 µl H2O). 

 

2.2.18 DNA sequence analysis 

The PCR products were sequenced for genotyping of animals as well as analyzing of LOH in 

tumors. 

For Sanger sequencing, about 10 – 100 ng/µl of purified PCR products were mixed with 5 µM 

either forward primers (Tp53-for1, Tp53-for2, Tp53-for3) or reverse primer Tp53-rev4 and 

filled with nuclease-free water up to 10 µl total volume in 1.5 ml Eppendorf tubes. Samples 

were incubated for 5 minutes at 95 °C to eliminate possible protein contaminations before 

labeling with Sample barcodes (LightRun Tube® Barcodes), and sent to Eurofins GATC 

Biotech to accomplish the sequencing reaction and data supply. 

A plasmid Editor (ApE, v2.0.49) was used for the design of PCR-primers (which were 

synthesized by Metabion international AG, Germany) and for the analysis of the sequences 

based on Rattus norvegicus data version 6.0 (Rnor_6.0; INSDC Assembly GCA_000001895.4, 

July 2014). 

The heterozygosity (Tp53+/C273X) of experimental rats was ensured by recognizing the transition 

of C273 coding TGT to TGA (stop codon) in one of two Tp53 alleles localized on chromosome 

10 of the rat. Heterozygous Tp53+/C273X genotype, in which the C273-encoding triplet appears 

mutated in only one allele, was recognized by relatively similar levels of T/A nucleotide peaks 
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on the sequencing chromatograms. In contrast, LOH (Tp53C273X/C273X) in tumors identified by 

an A/T ratio of ≥ 2.0. 

Examples of sequencing chromatograms are shown below in results 3.7. 

 

2.2.19 Inflammation analysis 

Investigation of visible structural changes occurred evenly in cross-sections of irradiated and 

unirradiated chest organs, proposed to provide new information on the relationships between 

radiation-induced inflammation and SC development. 

Inflammation in irradiated thoracic tissues from n = 19 rats developing tumors in the NIRV and 

n = 22 controls (AN/CBCT, combined) were analyzed microscopically (1 – 4 slides per rat) by 

a pathology professional at the institute for pathology at the university medical center 

Mannheim. 

Agglomerations of lymphocytes, which were almost exclusively detected in the lungs during 

microscopy. These lymphocytes foci, assumed to be indicators of inflammation, were graded 

as 0 (none), 1 (rare), 2 (moderate), or 3 (frequent), according to their frequency.  

The events detected by pathological inflammation analysis were compared between irradiated 

and non-irradiated animals and in animals treated with VMAT vs. AP/PA. 

 

2.2.20 Storage and availability of data and samples 

All experimental data are documented in laboratory books 1 and 2 which also refers to the data 

saved on WD Server (#WCC4E2NJO3Y6, WD®) comprising all the microscopy images, 

photos, as well as SOMATOM force CT data generated and saved on the server 

(‘RADWIPACS’) of the department of clinical radiology and nuclear medicine of the university 

medical center Mannheim. 

All collected materials such as frozen tissue fragments, FFPE tissue blocks, and derived H&E-

stained tissue slides, gDNA extracts, and PCR-Products are saved at the cellular and molecular 

radiation oncology laboratory of the department of radiation oncology of the university medical 

center Mannheim. 
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2.2.21 Statistical analyses 

The frequency of tumor development in differently exposed volumes (HDV, BHDV, LDV) and 

non-exposed volume (NIRV), as well as the appearance of LOH in tumors and inflammation in 

tumor-free lungs, were compared using Fisher’s exact test or Chi-square test (retrospective 

contingency analyses). 

The lifespan between radiation treated and control groups was compared using Kaplan-Meier 

survival curves and the Gehan-Breslow-Wilcoxon test. 

The latency TTT, from treatment time point to appearance of tumors, was tested using the 

Mann-Whitney test. 

The comparisons were made with respect to treatment techniques (VMAT or AP/PA), radiation 

doses (3×5 Gy or 3×8 Gy), isodose levels (LDV, BHDV, and HDV), used treatment plan size 

(small or large), weight categories, sex, and the age at the treatment of animals. 

The limit of significance for all statistical tests was defined as α < 0.05. 

GraphPad Prism 6.0 (GraphPad Software, San Diego, CA, USA) was used for data visualization 

and statistical comparisons. 
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3 RESULTS 

3.1 Tumor incidence in different dose volumes 

The occurrence of tumors was expected in both irradiated and non-irradiated body volumes of 

cancer-prone rats. The aim was to compare the rates of radiation-associated tumors between 

differently exposed volumes (LDV, BHDV, and HDV) with the rates of sporadic tumors in 

non-exposed volumes (NIRV). 

At least one tumor (index tumor) was detected in n = 84 animals, while n = 6 animals were lost 

due to other causes and, therefore excluded from the analysis (Table A1 and Table A3). 

The data collected from n = 84 rats were used to analyze tumor development after VMAT vs. 

AP/PA and to specify tumorigenesis in the volumes receiving different radiation doses.  

 

 

 

 

Table R1 

Tumor incidence in unirradiated and irradiated body volumes. Numbers represent rats with index 

tumors. The total sums indicate the number of animals with index tumors within the same dose volume 

and the assignment of these animals to the treatment groups.  

 

Incidence per group NIRV LDV BHDV HDV Total 

AN 13 0 0 0 13 

CBCT 14 0 0 0 14 

VMAT 3 × 5 Gy  5 2 1 7 15 

AP/PA 3 × 5 Gy  7 1 1 5 14 

VMAT 3 × 8 Gy  9 0 0 4 13 

AP/PA 3 × 8 Gy  3 4 1 7 15 

Total 51 7 3 23 84 

 

Abbreviations: NIRV, non-irradiated volume; LDV, low-dose volume; BHDV, bordering high-dose 

volume; HDV, high-dose volume; AN, anesthesia only controls; CBCT, cone-beam computed 

tomography only controls; VMAT, volumetric-modulated arc therapy; AP/PA, anterior-

posterior/posterior-anterior irradiation; Gy, Gray; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy. 
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The analysis showed that, in both control groups (AN/CBCT), all n = 27 tumors were found in 

the sham NIRV of rats, similar to n = 24 of n = 57 animals from four irradiated groups with 

tumors in the corresponding NIRV.  In contrast to this (p < 0.0001), tumors in n = 33 irradiated 

rats were found in the irradiated thoracic volume (LDV/BHDV/HDV, combined) (Figure R1a).  

 

 

 

 

Figure R1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Development of sporadic and radiation-induced tumors. (a) All tumors in combined AN/CBCT 

controls were found within sham NIRV, similar to irradiated animals that developed tumors in NIRV 

and unlike rats with tumors found in the irradiated volume (LDV/BHDV/HDV) (Chi-square test). (b) 

Tumor rates between NIRV and LDV/BHDV/HDV were not significantly different after 3×5 Gy and 

3×8 Gy (Fisher’s exact test). (c) Proportions of tumors in either dose volumes were similar after 3×5 Gy 

vs. 3×8 Gy (Chi-square test). (d) Tumors in NIRV and LDV/BHDV/HDV similarly occurred in rats 

treated with VMAT and AP/PA (Fisher’s exact test).  

Abbreviations: AN, anesthesia only; CBCT, cone-beam computed tomography only; NIRV, non-

irradiated volume; LDV, low-dose volume; BHDV, bordering high-dose volume; HDV, high-dose 

volume; VMAT, volumetric-modulated arc therapy; AP/PA, anterior-posterior/posterior-anterior 

irradiation; Gy, Gray; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy. Connecting with a slash means 

combined volumes or groups. 

 

a b 

c d 

R
a

ts
 (

n
)

N IR V L D V /B H D V /H D V

0

1 5

3 0

4 5

A N C B C T 3 X 5  G y /3 X 8  G y

p <  0 .0 0 0 1

R
a

ts
 (

n
)

N IR V L D V /B H D V /H D V

0

5

1 0

1 5

2 0
p  =  1 .0

3 X 5  G y 3 X 8  G y

R
a

ts
 (

n
)

N IR V L D V /B H D V /H D V

0

5

1 0

1 5

2 0

p  =  0 .4 4

V M A T A P /P A

R
a

ts
 (

n
)

3 X 5  G y  3 X 8  G y

0

5

1 0

1 5

N IR V L D V B H D V H D V

p  =  0 .9 2



RESULTS 

44 

The incidence of radiation-associated tumors in the LDV/BHDV/HDV and in NIRV did not 

differ significantly (p = 0.1) between rats treated with 3×5 Gy (n = 17 and n = 12) compared to 

3×8 Gy (n = 16 and n = 12) (Figure R1b). 

Importantly, the majority (n = 23) of n = 33 radiation-associated tumors were detected inside 

the volume receiving highest doses (HDV), only n = 3 in the BHDV, and n = 7 in the LDV (3×5 

Gy/3×8 Gy combined). Thus, the total number of rats with a tumor within the HDV was more 

than doubled compared to the number of rats (n = 10) developing tumors in volumes exposed 

to relatively lower doses (BHDV/LDV, combined). 

In rats treated with 3×5 Gy, compared to 3×8 Gy, no significant difference could be observed 

between the incidence frequencies within LDV, BHDV, HDV, and NIRV (Figure R1c). 

Most notably, no increased tumor induction was observed in the volume irradiated with VMAT 

compared to AP/PA (14 of 28 vs. 19 of 29, p = 0.44) (Figure R1d). Thus, the RR of tumor 

development after VMAT (IMRT) was not increased compared to AP/PA (3D-CRT) treatment 

(RR = 0.79 with a 95% confidence interval of 0.46 – 1.34). 

Taken together, no increased risk of radiation-induced tumors observed in the volumes exposed 

to lower doses compared to higher doses or in rats treated with VMAT compared to AP/PA. 

 

3.2 Frequency distribution of tumors in different dose-volumes 

To illustrate the frequency distribution of tumors developed in different dose-volumes (LDV, 

BHDV, or HDV) and NIRV, a ‘part of whole’ analysis performed. The test aimed to indicate 

the contingency or eventuality of tumor development in differently exposed and unexposed 

volumes. The sizes of unirradiated and uniformly irradiated volumes (Table A3F) summed, 

therefore, to determine the overall size (total volume in cm3) of all tumor-affected NIRVs, 

LDVs, BHDVs, and HDVs (Table A4). 

The frequency distribution of neoplastic events was calculated and displayed for each summed 

volume (NIRV, LDV, BHDV, and HDV), as the ratio of the events per unit volume (cm3), in 

relation to the prescribed total doses (3×5 Gy and 3×8 Gy), treatment modalities (VMAT and 

AP/PA) (Table A4 and Figure R2). 
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Figure R2 
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Frequency distribution of cancerous events in different dose-volumes. (a – d) Shown are the part of 

the whole diagrams of tumor-affected volumes receiving different doses. The numbers of index tumors 

reflect the numbers of the incident events within the NIRVs, LDVs, BHDVs, and HDVs receiving < 

0.75 Gy, 0.75 – 7.5 Gy, 7.5 – 13.5 Gy, and 13.5 – 15 Gy during 3×5 Gy irradiation or < 1.12 Gy, 1.12 

– 12 Gy, 12 – 21.6 Gy, and 21.6 – 24 Gy of the total of 3×8 Gy respectively. The percentages represent 

the portions of the total amounts of uniformly exposed volumes and portions of the total events grouped 

by (a) 3×5 Gy and (b) 3×8 Gy or (c) VMAT, and (d) AP/PA treatments. (c) The frequency distributions 

of tumors per NIRVs, LDVs, BHDVs, and HDVs was increased with increased estimated doses to 

normal tissue without significant differences between 3×5 Gy or 3×8 Gy and VMAT or AP/PA (Chi-

square test). 

Abbreviations: NIRV, non-irradiated volume; LDV, low-dose volume; BHDV, bordering high-dose 

volume; HDV, high-dose volume; VMAT, volumetric-modulated arc therapy; AP/PA, anterior-

posterior/posterior-anterior irradiation; Gy, Gray; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy. 

 

 

 

 

Neither parameter was notably different between the NIRV and LDV while the frequency was 

somewhat increased for the BHDV, and was drastically raised to higher levels for the HDV. In 

particular, after 3×5 Gy (combined VMAT/AP/PA groups), the yield of tumors in the overall 

HDV was about 3.6 folds and 7.3 folds higher than in the BHDVs and LDVs respectively, 

whereas it was increased dramatically in comparison with NIRV (113.3 folds). A similar trend 

of tumor development was observed in the HDV vs. BHDV, LDV, and NIRV (4.6, 6.7, and 

124.1 folds, respectively) after 3×8 Gy treatment. A comparison by treatment technique (3×5 

Gy/3×8 Gy, combined) showed similar trends: VMAT and AP/PA (4.2, 22.5, 216 folds after 

VMAT, and 3.5, 4.8, 90 folds after AP/PA, for BHDV, LDV, and NIRV, respectively). 

Thus, the frequency of cancerous events per unit volume was increased with increased doses to 

irradiated volume and not with enlarged volume receiving any lower doses in this experimental 

model.  

Notably, no statistically significant difference between the effects of prescribed doses (3×5 Gy 

vs. 3×8 Gy; p = 0.99) nor irradiation technique (VMAT vs. AP/PA; p = 0.84) could be observed 

(Figure R2e).  

Overall, an increased expectancy of tumors was directly associated with higher local doses to 

the normal tissue and not with an increased low dose volume after IMRT (VMAT). 
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3.3 Survival in unirradiated and irradiated rat groups  

The observation phase from birth until tumor detection was median 348 [minimum to 

maximum: 175 – 504] days. 

Notably, no animal developed any detectable tumor before attaining an incidence-free age 

border of at least 175 days from birth. Interestingly, this tumor-free time was equally valid for 

all groups (Figure R3a).  

 

 

 

 

Figure R3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Survival of the rats. The Kaplan-Meier survival curves illustrate the declining fractions of living rats 

per time (attained age from birth). (a) No significant differences were observed between Kaplan-Meier 

survival curves of AN and CBCT groups, and (b) groups treated with 3×5 Gy VMAT or AP/PA. (c) The 

curves were significantly decreased for 3×8 Gy groups vs. combined AN/CBCT controls, however, not 

specifically for VMAT vs. AP/PA (d). Gehan-Breslow-Wilcoxon test. 

Abbreviations: AN, anesthesia only controls; CBCT, cone-beam computed tomography only controls; 

VMAT, volumetric-modulated arc therapy; AP/PA, anterior-posterior/posterior-anterior irradiation; Gy, 

Gray; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy. Connecting with a slash means combined groups. 
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Kaplan Meier survival curves, representing the attained age from birth, for control rat groups, 

were similar: median 379 [228 - 499] vs. 364 [205 - 504] days (p = 0.92). Thus, the effect of 

exposure to low doses of CBCT was not detectable in the presented experimental model. 

Therefore, the data belonging to each control group were combined (AN/CBCT) for 

comparison with irradiated groups. 

No statistically significant differences were observed between survival curves for groups 

treated with 3×5 Gy VMAT (p = 0.33) and 3×5 Gy AP/PA (p = 0.223) compared to AN/CBCT: 

median 357 [182 – 451] days for VMAT and 338.5 [208 – 478] days for AP/PA vs. 366 [205 – 

504] days for AN/CBCT (Figure R3b). By contrast, treatment with 3×8 Gy led to a 

significantly shortened lifespan due to earlier tumor appearance in both VMAT and AP/PA 

treated rats (Figure R3c). The difference compared to controls appeared marginally significant 

for VMAT (p = 0.02) and highly significant for AP/PA (p = 0.0005): median 298 [198 – 390] 

days for VMAT and 282 [202 – 390] days for AP/PA vs. AN/CBCT. 

Most interestingly, comparison of the curves for radiation treatment groups, 3×5 Gy and 3×8 

Gy combined, by RT techniques, did not reveal any significant evidence for a specifically 

decreased survival of the rats treated with VMAT compared to AP/PA (median 342 [182 – 451] 

days vs. 305 [202 – 478] days; p = 0.364; Figure R3d). Although not statistically significant, 

a 12% longer median ‘survival’ was observed in rats treated with VMAT vs. AP/PA. 

Taken together, high radiation doses were able to shorten the tumor-prone lifespan in 

Tp53+/C273X rats, without regard to VMAT and AP/PA treatments. These observations 

demonstrated the first in vivo evidence for significantly decreased attained age (that corresponds 

to survival) in the rat groups irradiated with high local doses. 

 

3.4 Dose to volume relationship for the latency time to tumors 

Since the lifespan was shortened for rats from the high-dose groups (3×8 Gy), it was tested how 

far this shortening could be related to different radiation doses delivered to the defined 

irradiated volumes. Detailed analysis of the time span, from the first day of treatment to the 

tumor-related killing of the animals, showed that the TTT for n = 12 tumors found within the 

NIRV in rats treated with 3×5 Gy was quite similar to the TTT of sporadic events in AN/CBCT 

control groups (medians, with minimum to maximum, 295.5 [121 – 359] days vs. 296 [128 – 

484] days, p = 0.74; Figure R4a). 
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Figure R4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The latency of radiation-induced and spontaneous tumors. (a) Compared to combined controls 

(AN/CBCT), the TTT was significantly decreased for all tumors developing after 3×8 Gy but not 3×5 

Gy. (b) No significant differences in TTT after VMAT vs. AP/PA treatments were observed at either 

dose level (3×5 Gy or 3×8 Gy) for tumors in the LDV/BHDV/HDV. (c) The median TTT was borderline 

significantly reduced for tumors in the LDV (all combined) while it was highly decreased for tumors 

developed within the volumes receiving the highest doses (combined BHDV/HDV). The Mann-Whitney 

test. Plots show individual values and medians. 

Abbreviations: TTT, time to tumor; NIRV, non-irradiated volume; LDV, low-dose volume; BHDV, 

bordering high-dose volume; HDV, high-dose volume; Gy, Gray; AN, anesthesia only controls; CBCT, 

cone-beam computed tomography only controls; VMAT, volumetric-modulated arc therapy; AP/PA, 

anterior-posterior/posterior-anterior irradiation; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy; 

Connecting with a slash means combined volumes or rat groups. 
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Similar to the NIRV, n = 17 tumors occurred in the irradiated volume (LDV/BHDV/HDV, 

combined) after 3×5 Gy treatment, did not show a statistically significant decrease in TTT 

compared to sporadic tumors (AN/CBCT): median 258 [137 – 408] days vs. 296 [128 – 484] 

(p = 0.27). 

A significant decrease in TTT compared to AN/CBCT was measured for rats (n = 12) with 

tumors within the NIRV after 3×8 Gy irradiation: median 227 [135 – 297] vs. 296 [128 – 484] 

days, (p = 0.0085). A highly significant decrease in TTT in comparison to AN/CBCT was 

observed, however, in n = 16 rats with tumors in the LDV/BHDV/HDV receiving planned 

doses: median 169.5 [102 – 283] vs. 296 [128 - 484] days, (p < 0.0001). 

Regarding the effects of dose, volume, and radiation modality, no significant difference in TTT 

was detected between tumors that arose within the LDV (3×5/3×8 Gy, combined), 3×5 Gy 

BHDV/HDV, and 3×8 Gy BHDV/HDV after VMAT vs. AP/PA treatment: median 267.5 [218 

– 317] vs. 231 [135 – 259] days (p = 0.57); 292.5 [191 – 380] vs. 257 [137- 408] days (p = 

0.81); and 159 [105 – 202] vs. 149.5 [102 – 283] days (p = 0.933), respectively (Figure R4b). 

A maximum decrease in TTT compared to AN/CBCT revealed for tumors within the 

BHDV/HDV after 3×8 Gy treatment: median 153.5 [102 – 283] vs. 296 [128 – 484] days (p < 

0.0001) (Figure R4c). Next to this, tumors detected in the LDV (3×5 Gy/3×8 Gy, combined) 

also showed a borderline significant reduction in TTT: median 231 [135 – 317] vs. 296 [128 – 

484] days (p = 0.046). 

Possible uncertainties in these comparisons regarding the somewhat older age of some rats in 

3×8 Gy treated groups compared to other groups are discussed below in section 4.6. 

Most importantly, no disadvantages of VMAT vs. AP/PA or enlarged low-dose volume (‘low-

dose bath’) compared to smaller volumes exposed to highest doses were confirmed. 

Furthermore, the most of earliest tumors thereof rather arose in the volumes receiving higher 

doses, unlike lower doses. 

 

3.5 Tumor detection using high-resolution low-dose CT 

In some rats, tumors were recognized as palpable swellings that were not far from the body 

surface (e. g., tumors on the ribs and extremities). Deep-seated tumors (e. g., inside the thoracic 

or abdominal cavity or in the inner organs) were detected by high-resolution CT examination 

using SOMATOM Force CT. 

A list of SOMATOM Force data for each scan is given in Table A6. 
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Bone tumors were easily determined on CT scans, based on skeletal alterations appearing as 

bulged regions, as it is shown in Figure R5a. 

The majority of non-osseous solid tumors could be detected on native CTs as uncommon 

hyperplastic formations or deformed anatomical structures that were abundantly supplied with 

blood vessels and, therefore, more clearly visible in rats receiving an intravenous injection of 

the contrasting media Imeron®-300 before CT scans. 

The representative CT images of rats developing tumors within the HDV are shown in Figure 

R5b – c. 

 

 

 

 

Figure R5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detection of tumors using clinical CT. (a) A rib bone tumor within the LDV after 3×8 Gy AP/PA 

irradiation (native CT), (b) a native CT of rhabdomyosarcoma in the HDV after 3×8 Gy VMAT, and (c) 

contrast-enhanced (Imeron-300, approx. 2 µl/g body mass) CT of mediastinal rhabdomyosarcoma in 

the HDV after 3×8 Gy AP/PA treatment. Axial, sagittal, and coronal (below) views are shown. Arrows 

indicate the position of tumors. 

Abbreviations: CT, computed tomography; LDV, low-dose volume; AP/PA, anterior-

posterior/posterior-anterior irradiation; HDV, high-dose volume; BHDV, bordering high-dose volume; 

VMAT, volumetric-modulated arc therapy; 3×8 Gy, three fractions of 8 Gray. 

The illustration was published in Sci Rep. 2019 Oct 29;9(1):15489. 

a b c 
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3.6 Entities and the latency of radiation-induced and sporadic tumors 

Based on histopathology, n = 71 index tumors could be assigned to seven different primary 

origins (entities): bone sarcoma, soft tissue sarcoma (rhabdomyosarcoma and fibrosarcoma), 

lymphoma (unclear subtypes), carcinoma (adenocarcinoma or squamous cell carcinoma), breast 

cancer (obviously all carcinomas), malignant mesothelioma, and brain tumors. The entities of 

further n = 13 index tumors described below remained non-determined. 

The estimated entities of tumors are compiled in Table R2 and detailed in Table A7C – J. The 

representative microscopy images of these tumors are shown in Figure R6. 

 

 

 

 

Table R2 

Tumor entities in rats. Numbers represent index tumors of different entities belonging to control and 

irradiated groups (the volumes of tumor incidence are given in parentheses). 

 

Tumor entities per volume and group BSA SSA LY MM CA BC BT ND 

AN (sham NIRV) 4 0 0 0 3 2 1 3 

CBCT (sham NIRV) 9 1 0 0 1 0 1 2 

3×5 Gy VMAT/AP/PA comb. (NIRV) 4 1 0 0 2 0 0 5 

3×8 Gy VMAT/AP/PA comb. (NIRV) 5 0 0 0 2 1 1 3 

3×5 Gy VMAT (LDV/BHDV/HDV) 3 2 3 1 1 0 0 0 

3×5 Gy AP/PA (LDV/BHDV/HDV) 0 2 4 0 1 0 0 0 

3×8 Gy VMAT (LDV/BHDV/HDV) 0 1 2 1 0 0 0 0 

3×8 Gy AP/PA (LDV/BHDV/HDV) 2 6 3 0 1 0 0 0 

Total 27 13 12 2 11 3 3 13 

 

Abbreviations: BSA, bone sarcoma; STSA, soft tissue sarcoma; LY, lymphoma; MM, malignant 

mesothelioma; CA, carcinoma; BC, breast cancer (all CA); BT, brain tumor; and ND, non-determined; 

AN, anesthesia only controls; CBCT, cone-beam computed tomography only controls; NIRV, non-

irradiated volume; LDV, low-dose volume; BHDV, bordering high-dose volume; HDV, high-dose 

volume; Gy, Gray; VMAT, volumetric-modulated arc therapy; AP/PA, anterior-posterior/posterior-

anterior irradiation; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy. Connecting with a slash means 

combined volumes or rat groups. 
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Figure R6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Representative microscopy images of different tumors. Tumor types (entities) detected in the 

experiment: (a) bone sarcoma, (b) bone sarcoma lung metastasis (osteoid), (c) soft tissue sarcoma 

(rhabdomyosarcoma), (d) soft tissue sarcoma (fibrosarcoma), (e) lymphoma, (f) lymphoma 

(lymphosarcoma), (g) malignant mesothelioma, (h) carcinoma (adenocarcinoma), (i) carcinoma 

(squamous cell carcinoma), (j) brain tumor, (k) non-determined testicular tumor, and (l) non-determined 

pelvic tumor. Shown are microscopy images of 4 – 6 µm thick tissue slices (stained with H&E). Blue-

enriched (oxidized) hematoxylin is due to acidic DNA while proteins are dyed red by eosin. Scale bars: 

200 µm and 50 µm. 

The illustration was published in Sci Rep. 2019 Oct 29;9(1):15489. 
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Bone sarcoma appeared as cartilaginous and ossified masses of tissue that aggressively invaded 

neighboring structures such as muscles, skin, thoracic or pelvic organs and, in some cases, 

metastasized to distant organs (e.g., lungs). Upon microscopic evaluation of the H&E-stained 

tissue slides, bone sarcoma was recognized by an increased occurrence of calcified cell masses 

(inside), and rapidly dividing osteoblasts (many mitotic figures) outwards of the center of the 

tumor mass (Figure R6a). Most bone sarcomas appeared as highly aggressive tumors attacking 

also distant organs. Thus, multiple lung metastases, mostly in form of multiple macroscopic 

osteoids (Figure R6b), found in 5 out of 23 rats with bone sarcomas of the scapula, tailbone, 

femur, tibia, or sacral vertebra. 

The majority (12 of 13) of soft tissue sarcomas were solid tumor masses that originated from 

the muscles and revealed rhabdomyosarcoma morphology. Under the microscope, 

rhabdomyosarcoma cells displayed anaplastic nuclei, scattered mitotic figures, and a few 

apoptotic bodies. Also, one fibrosarcoma was detected as a large, aggressively grown solid 

tumor invading the surrounded thoracic organs and in the liver. Fibrosarcoma cells, commonly 

derived from differentiated fibroblasts, show large nuclei and variable protein rates. 

Representative images of these mesenchymal soft tissue malignancies are shown in Figure R6c 

– d. 

The group of lymphomas (n = 12), a disease that usually can take many forms in animals and 

can spread into almost any tissue in the body, contained tumors aggressively incorporating into 

the neighboring normal tissues. Lymphomas mostly looked like white to slightly yellowish, 

relatively uniform cell masses (clumps), sometimes with necrotic tissues in the center of the 

mass. Under the microscope, these tumors were distinguishable due to lymphocyte-derived 

rounded cell cohorts disseminating into the neighboring normal tissues (Figure R6e – f). 

Two thoracic malignant mesotheliomas were found as relatively large tumors that widely 

occupied the thoracic space and were ingrown in adjacent tissues. Out of further two abdominal 

mesotheliomas, one was invaded in the pancreas and another in the pelvic organs (both NIRV). 

Malignant mesotheliomas were occurred as uniformly formed cell masses attacking normal 

tissues as shown in Figure R6g.  

Carcinomas were represented by lung adenocarcinomas or squamous cell carcinomas with 

intensive proliferated, variably-sized and shaped clusters of arranged epithelial tumor cells 

derived from different organs (Figure R6h – i). 

All three animals with brain tumors showed coordination disorders and problems with 

movement. One tumor was found between the frontal lobes, another one at the cerebellum, and 

a further one was scattered within the cortex and cerebellum. Entities of these brain tumors 
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could not be determined exactly. However, the morphological appearance of these tumors 

argues for sarcoma or gliosarcoma rather than for classical glioma (Figure R6j). 

As mentioned above, the tumor entities could not be exactly specified in some rats developing 

pelvic and abdominal none-osseous tumors: n = 8 (NIRV), n = 3 (AN), and n = 2 (CBCT). 

These tumors were assumed as tumors with non-determined entities. Exemplary images of such 

non-determined, testicular and pelvic tumors are shown in Figure R6k – l. 

In n = 11 rats one or more tumors of a different type (entity) were found in addition to the index 

tumor. These malignancies were not included in the analysis of index tumors. The entities and 

the locations of additional tumors are given in Table A8.  

Tumors of the same entities were grouped by their appearance in the different dose volumes 

and compared to indicate whether a particular tumor entity might be typical of unirradiated or 

irradiated body parts. In addition, it was tested, whether any type of found tumors could be 

specific for low dose volumes or high dose volumes. Upon evaluation of sporadic tumors in 

control rats and tumors from the NIRV, no lymphoma was detected, whereas the most frequent 

tumors were bone sarcoma (n = 22) or carcinoma (n = 8). Other tumors entities like soft tissue 

sarcoma (n = 2), malignant mesothelioma (n = 2), breast cancer (n = 3), and brain tumors (n = 

3) were rare (Table R2 and Figure R7a). In contrast to NIRV, lymphoma (n = 12) and soft 

tissue sarcoma (n = 11) were the most frequently detected tumors in the irradiated volume while 

bone sarcoma (n = 5), malignant mesothelioma (n = 2), and carcinoma (n = 3) were also found. 

Thus, lymphoma (p < 0.0001) and soft tissue sarcoma (p = 0.0001) were strongly associated 

with irradiated volume in contrast to bone sarcoma detected predominantly in NIRV. 

Interestingly, the shortening of the TTT for malignancies after 3×8 Gy vs. 3×5 Gy treatment 

was not associated with either tumor entity (Figure R7b). An exception was lymphoma, with 

a decreased median TTT after 3×8 Gy compared to 3×5 Gy: 143 [102 – 202] vs. 258 [154 – 

408] days (p = 0.0101).  
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Figure R7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tumors grouped by their entities and occurrence in different volumes. (a) BSA predominantly, but 

no LY, and only two STSA were detected in AN/CBCT controls and the NIRV of irradiated rats. In 

contrast, LY was exclusively, and STSA was specifically developed in the irradiated volume 

(LDV/BHDV/HDV) and bone sarcoma in the NIRV (Fisher’s exact tests). (b) Median TTTs were not 

significantly different between tumor types after either dose treatment, while it was reduced only for LY 

developed in the volume irradiated with 3×8 Gy vs. 3×5 Gy (Fisher’s exact test). Received dose levels 

for each groupe are shown. See also Table R2. 

Abbreviations: BSA, bone sarcoma; CA, carcinoma, STSA, soft tissue sarcoma; BT, brain tumor; BC, 

breast cancer; LY, lymphoma; MM, malignant mesothelioma; ND, not determined; TTT, time to tumor; 

AN, anesthesia only controls; CBCT, cone-beam computed tomography only controls; NIRV, non-

irradiated volume; LDV, low-dose volume; BHDV, bordering high-dose volume; HDV, high-dose 

volume; Gy, Gray; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy. Connecting with a slash means 

combined volumes or groups. 
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3.7 Loss of Tp53+/C273X heterozygosity in radiation-associated and sporadic tumors 

From the idea that radiation-associated tumor development might be driven by the loss of intact 

Tp53 allele (LOH), n = 40 index tumors from irradiated and non-irradiated rats were genotyped 

for the presence of mutations in Tp53 gene core fragment (Table A7K – L).  

To test whether the missed second intact Tp53 allele (LOH) could be associated with radiation, 

tumors were grouped either by the volume of their origin (irradiated or unirradiated), initially 

prescribed doses (3×5 Gy or 3×8 Gy), or used dose delivery technique (VMAT or AP/PA). The 

analysis revealed no notable difference between the fractions of tumors with and without LOH 

developed in controls (8 of all tested 11), in the NIRV (4 of 12), or in LDV/BHDV/HDV (10 

of 17) (Table R3). 

Interestingly, in all tumors, LOH showed the same T/A mutation, and no other gained sequence 

changes in tested Tp53 fragments were found. Representative PCR products and sequencing 

chromatograms for different rat Tp53 genotypes are shown in Figure R8. 

A further comparison of the tumor genotypes (Tp53+/C273X or LOH) indicated that LOH was not 

specifically appeared in tumors developed within the irradiated volume (10 of 17 in irradiated 

LDV/BHDV/HDV vs. 12 of 23 unirradiated AN/CBCT/NIRV, p = 0.76; Figure R9a). 

 

 

 

 

Table R3 

LOH of Tp53+/C273X in tumors. LOH in sporadic and radiation-related tumors in different volumes. 

 

Events per 

volume 

Sham-NIRV NIRV LDV/BHDV/HDV 

< 0.04 Gy 3×5 Gy 3×8 Gy 3×5 Gy 3×8 Gy 

LOH 8 3 1 3 7 

Tp53+/C273X 3 2 6 5 2 

 
Abbreviations: LOH, loss of heterozygosity; Tp53+/C273X, heterozygous for Tp53; AN/CBCT, combined 

controls receiving anesthesia/cone-beam computed tomography only; NIRV, non-irradiated volume; 

LDV/BHDV/HDV, entire low-dose, bordering high-dose, and high dose volumes; Gy, Gray; 3×5 Gy or 

3×8 Gy, three fractions of 5 or 8 Gy. Connecting with a slash means combined volumes. 
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Figure R8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. R8. Genotyping of normal and tumor Tp53. (a) PCR copies of 834 bp spanning Tp53 and 240 

bp Gapdh DNAs alongside negative controls (MMs)*. (b) A purified 834 bp PCR product before 

sequencing. (c) A 4523 bp spanning Chr10 amplicon from tumor gDNA with derived 2752 bp nested 

PCR product, and a 240 bp tumor Gapdh. (d) Nested PCR product with 2650 bp length amplified from 

4523 bp PCR product. Typical sequencing chromatogram fragments for (e) Tp53C273/C273, (f) 

Tp53C273X/C273X, and (g) Tp53+/C273X. (h) LOH (Tp53C273X/C273X) in a tumor expressed as a strongly 

declined T-peak compared to A (the small T level may refer to tumor-adjacent residual normal tissue). 

Numbers above the nucleotide sequences represent readable base positions. 

Abbreviations: gDNA, genomic DNA; M, marker; bp, base pair; Tp53, Tumor protein 53; Gapdh, 

Glycerinaldehide-3-phosphate-dehydrogenase; MMs, master mixes; PCR, polymerase chain reaction. 
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Figure R9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOH analysis in tumors. (a) LOH was similarly occurred in tumors detected in irradiated 

(LDV/BHDV/HDV) and unirradiated (AN/CBCT/NIRV) body regions and no statistically significant 

differences in proportions of radiation-induced tumors with and without LOH in the LDV/BHDV/HDV 

between (b) 3×5 Gy and 3×8 Gy or (c) VMAT and AP/PA treated rats. (d) Analysis of different index 

tumors with and without LOH. e) LOH was more specific for sarcoma (BSA/STSA) compared to all 

other tumor types combined (Fisher’s exact test). 

Abbreviations: LOH, loss of heterozygosity; Tp53+/C273X, heterozygous for Tumor protein 53; BSA, bone 

sarcoma; CA, carcinoma, STSA, soft tissue sarcoma; BT, brain tumor; BC, breast cancer; LY, 

lymphoma; MM, malignant mesothelioma; ND, non-determined; AN, anesthesia only controls; CBCT, 

cone-beam computed tomography only controls; NIRV, non-irradiated volume; LDV/BHDV/HDV, 

low-dose, bordering high-dose, and high dose volumes combined; Gy, Gray; 3×5 Gy or 3×8 Gy, three 

fractions of 5 or 8 Gy. Connecting with a slash means combined volumes, rat groups, or tumor entities. 
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LOH in tumors developed in the LDV/BHDV/HDV could not be specifically associated with 

prescribed total doses (3 of 8 tumors after 3×5 Gy vs. 7 of 9 tumors after 3×8 Gy, p = 0.15; 

Figure R9b) or with VMAT or AP/PA treatments (4 of 7 tumors after VMAT vs. 6 of 10 tumors 

after AP/PA, p = 1.0; Figure R9c).  

Interestingly, most soft tissue sarcomas (6 out of 7) and bone sarcomas (9 of 11) revealed LOH 

in contrast to other tumors (7 of 22, p = 0.0015; Figure R9d – e).  

A comparison of the median latency TTT and lifespan of n = 18 rats with Tp53+/C273X tumors 

with corresponding median values of n = 22 rats with tumors with LOH resulted in slightly 

reduced values for animals with tumors containing LOH led to slightly reduced values for 

animals with tumors with LOH, compared to those with heterozygous Tp53+/C273X tumors 

(Figure R10).  

 

 

 

 

Figure R10 

 

 

 

 

 

 

 

 

 

 

LOH and the latency of tumors. The Kaplan-Meier survival curves represent the proportions of living 

rats that decrease over time. (a) The median latency TTT from treatment of tested n = 22 rats developing 

tumors with LOH was somewhat but insignificantly shortened vs. rats developing tumors with 

Tp53+/C273X genotype (n = 18). (b) A similar trend shown in (a) was detected for attained days (full 

lifespan). 

Abbreviations: LOH, loss of heterozygosity; TTT, time to tumor; Tp53+/C273X, heterozygous for Tumor 

protein 53. 

An analogous illustration was published in Sci Rep. 2019 Oct 29;9(1):15489. 
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Thus, the median TTT for tumors with LOH was 45.5 days shorter in comparison to tumors 

with Tp53+/C273X: 249.5 [135 – 380] days vs. 295 [134 – 417] days, (p = 0.12). Accordingly, 

also the median lifespan was shortened by 36 days for tumors with LOH vs. Tp53+/C273X: 395 

[222 – 499] days vs. 323.5 [216 – 451] days (p = 0.12). Therefore, no significant difference 

between the latency of tumors with and without LOH could be observed.  

 

3.8 Inflammatory alterations in irradiated and unirradiated rat lungs 

Testing whether the malignant effects of radiation in rats could be influenced by radiation-

specific inflammatory late alterations in irradiated thoracic volumes, several H&E-stained 

histology slides from thoracic organs were examined (Table A7M).  

The numbers of rats with and without inflammatory events in the lungs are given in Table R4. 

Pathological examination of the thoracic tissue samples derived from the rats with tumors 

outside the thoracic region indicated predominant pulmonary inflammatory changes – multiple 

microscopic inflammatory foci appeared as agglomerated lymphocytes scattered into the 

normal cell community (Figure R11a).  

 

 

 

 

Table R4 

Inflammation in the lungs: scored as none (0), rare (1), moderate (2) and frequent (3) grade events. 

 

Events per group Grade 0  Grade 1 Grade 2 Grade 3 Total 

AN 2 4 2 3 11 

CBCT 3 2 6 0 11 

VMAT 3×5 Gy  1 1 1 0 3 

AP/PA 3×5 Gy  3 1 0 0 4 

VMAT 3×8 Gy  1 5 3 0 9 

AP/PA 3×8 Gy  1 1 1 0 3 

 

Abbreviations: AN, anesthesia only controls; CBCT, cone-beam computed tomography only controls; 

NIRV, non-irradiated volume; VMAT, volumetric-modulated arc therapy; AP/PA, anterior-

posterior/posterior-anterior irradiation; Gy, Gray; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy. 
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Figure R11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inflammation in irradiated and unirradiated lungs. (a) Microscopically small inflammatory clusters 

in a tumor-free lung at a segmental bronchus. Arrows indicate the lymphocyte foci. H&E stain. Scale-

bars: 500 μm and 50 µm. (b) Inflammation (any grades 1 – 3) was similarly detected in irradiated (3×5 

Gy/3×8 Gy) and unirradiated (AN/CBCT) rat lungs (Fisher’s exact test). (d) No significant connection 

of VMAT to inflammation, compared to AP/PA, was detected (Fisher’s exact test). Connecting with a 

slash means combined groups or combined inflammation grades. 

Abbreviations: AN, anesthesia only controls; CBCT, cone-beam computed tomography only controls; 

VMAT, volumetric-modulated arc therapy; AP/PA, anterior-posterior/posterior-anterior beams; Gy, 

Gray; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy.  

The images (a) and (b) were published in Sci Rep. 2019 Oct 29;9(1):15489. 
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No notable relationships between inflammation and irradiated volume or VMAT and AP/PA 

treatment could be detected in this experiment (R11b – c). Thus, both presence and absence of 

recognizable inflammation of any grade (1 – 3) were not significantly different between 

unirradiated and irradiated rats (n = 17 and n = 5, AN/CBCT vs. n = 13 and n = 6, 3×5 Gy/3×8 

Gy respectively; p = 0.73). These events were also not significantly different for the rats treated 

with VMAT compared to AP/PA (n = 10 and n = 2 vs. n = 3 and n = 4, presence and absence 

respectively; p = 0.13).  

 

3.9 Sex-associated features of tumors 

The next question that was derived from the results obtained was, whether the malignant effects 

of radiation could be influenced by individual parameters such as sex. It was mentioned above 

that sex is related to the size of the rats and therefore to the size of the irradiated and non-

irradiated volumes (see Table M3 and Table M4).  

There was no difference between the numbers of female and male rats in terms of the yield of 

tumors in NIRV or combined LDV/BHDV/HDV (Figure R12a). 

The median TTTs in female and male rats developing tumors within the irradiated 

LDV/BHDV/HDV after irradiation with small or large radiation plans respectively were 

insignificantly (p = 0.17) different:  231 [134 – 408] days vs. 201 [102 – 322] days for n = 15 

females and n = 18 males (Figure R12b). However, soft tissue sarcoma was frequent and 

lymphoma - rare in female rats, while inversely, fewer soft tissue sarcomas and more 

lymphomas were found in male rats: n = 18 sarcomas and n = 3 lymphomas compared to n = 2 

sarcomas and n = 9 lymphomas (p = 0.0048) (Figure R12c). 

An additional comparison of the median latency TTT for female sarcoma with corresponding 

TTT for male lymphoma resulted in an insignificant difference: 239 [134 – 380] days vs. 210 

[102 – 298] days (p = 0.52), respectively (Figure R12d). 

Taken together, the incidence of sarcoma and lymphoma within the volume exposed to highest 

doses in this experiment were coupled with female and male sex respectively while no notable 

difference in the TTT between these tumor types observed. See also discussion section 4.6. 
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Figure R12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some sex-linked traits of tumors. (a) Tumor development in irradiated and unirradiated volumes in 

female and male rats was not notably different. (b) No significant difference between median TTTs of 

radiation-associated tumors in female vs. male rats detected. (c) Significantly more LY than STSA were 

found in male rats in comparison to female rats that predominantly developed STSA. (d) No significant 

difference between TTTs for female STSA and male LY were detected.  

Abbreviations: XX, females; XY, males; NIRV, non-irradiated volume; LDV/BHDV/HDV, low dose-, 

bordering high dose-, and high dose volumes combined; TTT, time to tumor; LY, lymphoma; STSA, 

soft tissue sarcoma. Connecting with a slash means combined dose volumes. 
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4 DISCUSSION 

4.1 State of the art and aim of the study 

There are prognostic studies predicting a worldwide increase in cancer incidence in the future 

116,117. Consequently, an increasing number of cancer patients will receive RT, also because of 

the increasing availability of RT centers worldwide. Due to improvements in oncology, and 

especially in RT, the rate of patients surviving cancer will be much higher in the future than 

ever before. Accordingly, the overall incidence of radiation-associated SC could rise with the 

increasing number of cancer survivors who underwent RT. Hence, it is becoming increasingly 

important to reduce the risk of radiation-associated SC. 

There is an experimentally unproven dogma that IMRT can increase the risk of SC compared 

to 3D-CRT. Modern IMRT techniques are consequently avoided in many cases because of 

supposed disadvantages of low doses that conflict recommended reduction of unwanted high 

doses to normal tissue for prevention of radiation-related side effects. 

The assumption of an additional increase in SCR after multi-beam IMRT, compared to 3D-

CRT, have been estimated due to the longer irradiation time that IMRT requires to deliver the 

same radiation dose to the target volume than conventional 3D-CRT. Longer exposure times 

correlate with increased exposure to secondary low radiation doses (integral doses), and 

extended integral doses may increase the dose-response, especially in young RT patients 54-58. 

However, the modern high-speed VMAT technique can reduce integral doses, due to advanced 

planning drafts, compared to older multi-beam IMRT. 

In contrast to low doses, conventional 3D-CRT delivers more unwanted high doses to normal 

tissue than modern IMRT, and therefore, can even increase the dose-response (toward adverse 

effects including SC) as recognized by retrospective epidemiological studies 80,82,84,118.  

It is consistent with clinical findings indicating that the risk of SC and other normal tissue 

complications decreases in childhood cancer survivors over the last decades with increased RT 

conformality 31,40,45. Therefore, a reduction in the volume of normal tissue receiving high doses 

by high-conformal IMRT techniques, could even decrease the risk of SC. So, withholding 

modern IMRT techniques from patients because of the suspected disadvantages of a low-dose 

may increase the risk of side effects associated with high doses. 

At the time of this study, no in vivo results were available that investigated to what extent 

different RT modalities can positively or negatively influence the risk of radiation-associated 

SC. The present study provides the first experimental evidence that SCR may increase with 

increased radiation dose to normal tissue and not specifically after IMRT vs. 3D-CRT (VMAT 



DISCUSSION 

66 

vs. AP/PA), at least in a cancer-prone rat model. Since the presented experiment was a single 

study, more translational studies have to be done that may lead to a reevaluation of the common 

practice of withdrawal modern IMRT techniques from juvenile patients especially. 

 

4.2 Relationships of radiation dose and RT technique to tumor development 

At the beginning of the experiment, it was expected that radiation-induced tumors would occur 

within the irradiated body volume of rats and sporadic tumors within the NIRV. Since all 

sporadic tumors in controls were detected within the sham-NIRV and n = 33 treated rats 

developed tumors in the irradiated thoracic volume, tumors that developed in the sham-NIRV 

and NIRV were assumed to be spontaneous, and the tumors found in the irradiated volume 

assumed as radiation-induced or, at least, associated with radiation. 

The AN control group was not exposed to any radiation other than follow-up CT scans and 

aimed to be a unirradiated reference group. The CBCT control group was used in the experiment 

to assess any possible effect of very low doses applied to rats during positioning on LINAC. In 

the absence of an accurate dosimetry method for calculating the radiation doses to which the 

rats were exposed during the CBCT scan, the CBCT fraction dose was roughly estimated at 

approximately 0.04 Gy per cm3 exposed volume, according to the manufacturer's information. 

Therefore, rats belonging to this control group were exposed to cumulatively estimated doses 

of about 0.12 Gy during 3×CBCT-positioning, similar to those from radiation treatment groups. 

As illustrated in Figure M5b, the cone-beam covers almost the entire body of the rat from the 

head to the pelvic area. Thus, these CBCT doses are approximately comparable to the whole-

body doses to which Japanese ABS were exposed. Since no notable differences in tumor 

incidence sites and TTTs were recognized between AN and CBCT controls, the rat model with 

applied experimental settings was unable to show any response to very low doses.  

Modeling of radiation-induced carcinogenesis generally assumes a linear DRR in the low-dose 

region reaching saturation at higher doses 74,77,119-121. The main uncertainty in SCR prediction 

bases on the dogma that 3D-CRT will lead to lower risk compared to IMRT. It rests on the 

assumption that the DRR increases linearly approximately between 4 – 8 Gy received doses 

with no further increase at higher doses 66,120. This is explained by the proposed theory that 

exposed cells could survive low doses and cause SC while being sterilized by higher doses. The 

results obtained from the presented experiment, in contrast, do not confirm the increase in tumor 

induction in the tissues receiving lower doses compared to higher doses and are rather consistent 

with the results of epidemiological studies on cancer survivors assuming a linearly increase in 
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dose-response to RT for second sarcomas, basal cell carcinoma, meningioma, salivary gland 

cancer, glioma, breast cancer 80,122,123. The predominant development of irradiated volume-

associated tumors (23/33) in the HDV (receiving 13.5 – 15 Gy or 21.6 – 24 Gy) in the 

experiment further mirrors the evidence of clinical studies showing that most SCs after RT 

develop near the edge or inside the PTV and only approximately 20% in tissues receiving lower 

doses 15,84. 

As indicated in Table A4 and illustrated in Figure R3, the frequency distribution of tumors 

(the ratio of events per unit volume) was much higher in smaller-sized HDVs than in larger 

BHDVs and LDVs, without the specific influence of VMAT vs. AP/PA.  

Most notably, no increased response to VMAT compared to AP/PA was observed with regard 

to radiation-induced tumor development, and therefore, no disadvantages of IMRT compared 

to 3D-CRT could be recognized. 

 

4.3 Latency time of tumors related to local high-dose irradiation 

In the experiment, an incidence-free follow-up period of at least 175 days was observed in 

which no detectable tumors occurred in any of 84 rats (both control and irradiated). A most 

simple, but indeed plausible explanation could be that aging determines the incidence time of 

tumors in these heterozygous rats. After translating the lifespan of rats into the lifespan of 

humans, the incidence-free follow-up period of 175 days in rats is comparable to around 12.7 

years in humans because 13.8 days of life in rats correspond to one year of life in humans 124,125. 

Thus, the tumor-free period in rats actually appears as translatable to a long-term SC-free period 

in humans, indicating that the animal model used in this study was suitable for studying the 

long-term response to high-dose radiation. 

As expected previously, radiation-associated tumors may have some specific features that differ 

from sporadic tumors. At the end of the experiment, there was evidence found that the lifespan 

of some rats was shortened due to the decreased TTT latency for malignancies within the HDV 

exposed to the highest target dose (Figure R3 and Figure R4). 

Most importantly, the observed decrease in lifespan in 3×8 Gy treated rats was not stronger 

associated with VMAT than AP/PA since a median 16 days longer lifespan (282 days) after 

treatment with VMAT than AP/PA detected, compared to controls. According to the translation 

of the lifespan from rats to humans, every rat day equals approximately 34.8 human days, as 

described in Sengupta et al 125. This could mean that the median lifetime after VMAT was by 

about 1.52 human years (557 human days) longer in contrast to AP/PA. Albeit such a 
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hypothetical translation may not seem plausible for RT professionals, the trend remains still 

conceivable. Thus, reducing undesirably high doses to normal tissue using IMRT could at least 

hypothetically postpone the development of SCs at later time points.  

Since shortened lifespan and TTT in 3×8 Gy treated groups were caused by a specific decrease 

in TTT values for soft tissue sarcomas and lymphomas occurring within the HDV after 3×8 Gy 

treatment, the early development of these tumors could be directly associated with high doses 

and, correspondingly, with the increased response of tissues exposed to high doses. However, 

this does not imply that tissues that receive low doses had been protected against the 

development of radiation-related tumors. Even cumulative doses between 7.5 Gy and 12 Gy are 

more likely to cause cancer in this animal model, but such LDV tumors cannot be detectable 

due to the killing of the animals developing earlier sporadic or HDV tumors. Indeed, some 

irradiated animals euthanized also because of spontaneous tumor development. Otherwise, 

these animals might someday develop radiation-induced tumors in the LDV, HDV, and HDV.  

It should be noted that the initial Tp53+/C273X heterozygosity in the original rat line was 

associated with shortened telomeres and decreased telomerase activities, but also prolonged 

tumor latency, in contrast to Tp53C273X/C273X homozygosity leading to early malignancies having 

longer telomeres 124. This implies the hypothesis that the telomere context could have an impact 

on radiation carcinogenesis. In particular, studies of telomeres in radiation-induced and 

spontaneous tumors can provide interesting information about the telomere context in the case 

of radiation-induced shortening of the latency of Tp53-mutated tumors.  

Interactions between radiation doses and genetic conditions in radiation carcinogenesis are 

interesting research subjects for which further experiments could address this problem. 

 

4.4 Characteristics of radiation-associated and sporadic tumors 

Radiation-related and sporadic tumor entities 

Because both cumulatively applied doses (15 Gy and 24 Gy) in the experiment were responsible 

for the induction of radiation-associated tumors within the irradiated volume and a shortening 

of the TTT after 3×8 Gy irradiation was observed, it was questioned whether these effects could 

be specifically related to the recognized tumor entities. The hypothesis was that the entities 

might differ between tumors in differently irradiated and unirradiated volumes. Pathological 

examination of tumors detected in the experiment demonstrated that bone sarcoma and 

carcinoma were developed predominantly in the NIRV and sham NIRV, while all lymphoma 

and most soft tissue sarcoma were associated with the irradiated volume. 
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In the studies by van Boxtel et al 108 and Hermsen et al 124, most of the sporadic tumors in 

Tp53+/C273X rats were either bone sarcoma or soft tissue sarcoma whereas no carcinoma was 

detected. Unlike this, half of all sporadic tumors in another heterozygous Tp53tm1[EGFP-pac] rat 

line were lymphomas, while about a quarter of detected tumors were hemangiosarcomas and 

breast cancers, while sarcomas rarely occurred 110. The homozygous rats of mentioned both 

lines mostly developed hemangiosarcomas but rarely also fibrosarcomas, rhabdomyosarcomas, 

B-type lymphomas, carcinomas, and some very rare non-determined tumors. These facts 

indicate that the spectra of sporadic tumors could vary between rats carrying different Tp53 

mutations. 

The data obtained by the presented experiment show, however, no evidence of a sporadic 

specificity of lymphomas and soft tissue sarcomas (mostly rhabdomyosarcoma). Indeed, the 

specific appearance of lymphoma and sarcoma in irradiated body volumes (receiving doses of 

at least 13.5 Gy – 24 Gy) indicates the specific association of these tumor entities with high 

radiation doses. These translational findings are rather consistent with retrospective clinical 

data, showing the association of the second lymphoma and soft tissue sarcoma with volumes 

irradiated with high RT doses 80,82-85. 

Out of all n = 31 bone sarcomas in the study, two were developed at the vertebra, two at the 

ribs, and one at the sternum in irradiated rats, while nine were found in the NIRV, nine in CBCT 

controls, and four in AN control group (Table A7B – C). Apparently, bone sarcoma was a 

highly metastatic tumor in p53 insufficient rats since the development of pulmonary metastases 

was observed in the presented experiment (Figure R6a – b). Sporadic bone sarcoma was also 

found in other Tp53+/C273X and Tp53tm1[EGFP-pac] rats mentioned above. Although five index and 

four additional bone sarcomas detected in the irradiated volume, this tumor type could not be 

truly associated with radiation. Since bone sarcoma predominantly occurred in NIRVs and 

controls in the presented experiment, and also in the studies by van Boxtel and Hermsen et al, 

that could be mostly assumed as sporadic tumors in this rat line. However, in patients, also 

second bone sarcomas have been evidently associated with high radiation doses 80.  

Malignant mesothelioma is a relatively uncommon tumor in labor rats, but it was also found in 

the experiment. In particular, index mesotheliomas were detected in the mediastinum of two 

rats, one irradiated with 3×5 Gy VMAT (BHDV) and another with 3×8 Gy VMAT (HDV), but 

also in the NIRV, additionally to carcinomas, in the abdomen of two rats receiving anesthesia 

only (Table A7B, F). Therefore, it is not clear whether these mesotheliomas were surely related 

to radiation. However, it is to note that the second mesotheliomas were rarely detected within 

the large cohort of patients cured with RT against HL or non-HL 125. 
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There is no plausible reason to associate found carcinomas with radiation, as eight of these 

epithelial malignancies have occurred in parts of the body distant from the chest volume and 

only three cases were found in irradiated lungs. This either indicates that carcinomas can be 

only marginally associated with radiation, or the animal model and the methods used in this 

experiment were limited to study radiation-induced epithelial tumors. Moreover, the 

development of second carcinomas could be a species-specific sign of humans but not of rats 

used in the presented study.  

The tumor developing sites in the animals of this study are given in Table A7B. Most of the 

tumors in control animals and in the NIRV of irradiated animals were developed at specific 

body parts such as limb bones or pelvic organs. These body parts may have an elevated cancer 

risk than other sites.  

The primary origin of evidently non-osseous tumors, developed outside the thoracic volume in 

control and irradiated rats (n = 5 and n = 8, respectively), could not be determined exactly with 

H&E histology only. Additional tests on tumors using antibody-based immunohistochemistry 

can provide more information about the exact subtypes of these malignancies. 

Taken together, there was a clear difference between the entities of tumors from irradiated and 

non-irradiated volumes. Thus, the development of lymphoma and soft tissue sarcoma was more 

likely related to irradiation, while bone sarcoma, malignant mesothelioma, carcinoma, breast 

cancer, brain tumors, and other non-determined tumors appeared to be sporadic tumors.  

The next interesting topic was to review the possible relationship between a particular tumor 

type and corresponding TTT. 

It must be mentioned again here that most of the rats remained tumor-free over a long period, 

without any detectable behavioral or conditional abnormalities during this time. Sick animals, 

by contrast, showed more than 10% weight loss of attained body masses and displayed several 

abnormalities of the general condition, coordination, activity, food and water uptake, or social 

behavior. These symptoms (not always all of them) appeared in rats a few days before tumors 

were discovered.  

The TTTs could be possibly influenced by the entities of occurred tumors because some tumor 

types probably could tend to develop or grow more rapidly than the others. Therefore, the 

observed shortening of the TTT after a cumulative dose of about 24 Gy for tumors developed 

in HDV could be influenced by certain tumor entities. In addition, it should not be 

underestimated that the individual predisposition of rats to earlier cancer development 

somehow influenced the entity and latency of sporadic and radiogenic tumors in the present 

experiment. 
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In order to closely study the developmental properties of tumors at the cellular and molecular 

level, further investigations of the tumor samples are required. For example, a comparison of 

the activity of the marker of proliferation Ki-67 in tumor samples may provide evidence about 

the velocity of the tumor development in rats because Ki67 is an established marker of tumor 

growth, in particular for breast cancers in women 126-128.  

An interesting trait of radiation-associated lymphomas in the experiment was the significantly 

earlier (by median 115 days) appearance in the HDV after 3×8 Gy compared to 3×5 Gy, as 

described in section 3.6 and shown in Figure R7b. This observation indicates that high 

radiation doses promote the early development of radiation-associated lymphoma in p53 

insufficient rats. Anyway, a significant shortening of the TTT after 3×8 Gy irradiation was an 

effect of cumulatively received the highest doses that were responsible not only for the 

induction of radiation-associated tumors in the HDV but also suitable to shorten the latency of 

these tumors.  

The findings concerning tumor entities are limited to some extent by restricted sample sizes. 

Further studies have to be conducted to verify the obtained research results. Expanding the 

groups of experimental subjects could possibly achieve greater statistical significance and thus 

clearer results. Indeed, a detailed characterization of radiation-related tumors in preclinical 

models could have important translational relevance for radiation-induced SC research.  

LOH in radiation-related and sporadic tumors 

The likelihood of spontaneous tumor development in mammals increases with Tp53 

insufficiency because the Tp53 gene protects mammals from cancer, primarily through its role 

in cell cycle control, DNA repair, and apoptosis-mediated cell death 100,106,129,130. Consequently, 

TP53 mutations are found in approximately half of all and, mainly, in highly aggressive 

metastatic human tumors 94,131. Loss of Tp53 leads to dissemination and migration and, 

therefore, to tumor cell aggressiveness triggered by downregulation of cell adhesion signaling 

pathways 132,133. Under these circumstances, LOH of Tp53+/C273X heterozygosity in rats may 

also result in an aggressive growth of tumors in rats. As detected in the experiment, at least 57% 

of all tested n = 40 tumors had LOH (Table R3 and Figure R9). This data appears to be at least 

partially consistent with results reported by van Boxtel et al 108 and Hermsen et al 124 as LOH 

was detected in almost all (22 of 23) sporadic tumors (in both reports combined).  In line with 

this, almost all tested bone and soft tissue sarcomas (83%, 15 of 17 combined) displayed LOH 

of the Tp53 gene, in contrast to about a third (31.8%, 7 of 22) of all other tumors in our study. 
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It indicates that both bone and soft tissue sarcomas were highly prone to Tp53+/C273X LOH 

relative to other tumors.  

A study comparing the hyper-reactivity of CpG dinucleotides between sporadic und radiation-

related human tumors reveals evidence for specificity of TP53 mutational ‘hot spot codons’ 

134, 135, and 237 for radiation tumorigenesis in contrast to codons 175, 248, 273, 282, and 

245, that are frequently found in human sporadic tumors 97. In the present study, however, none 

of the homologous of these mutations recognized in tested tumors besides Tp53+/C273X shown 

in Figure R8h. Despite this, it is unknown whether other radiation-induced mutations than 

Tp53C273X/C273X LOH were involved in the tumorigenesis in this experiment. 

In summary, LOH was not associated with radiation generally, with any lower or higher target 

doses (3×5 Gy or 3×8 Gy) as well as with irradiation modality (VMAT or AP/PA). More likely, 

LOH was of the same origin (C273X) in spontaneous and radiation-associated tumors. This 

may indicate that the Tp53C273/X LOH was rather spontaneous than radiation-induced.  

 

4.5 Inflammatory alterations in irradiated and unirradiated tumor-free lungs 

The development of SC in RT patients seems certainly not only due to the residual DNA 

damage that has occurred in a single cell. A study dealing with cancer evolution across the tree 

of life reports that cancer is generally characterized by a breakdown of the central features of 

the multicellularity, including proliferation, cell death, division of labor, resource allocation, 

and, extracellular environmental maintenance 134. Presumably, there are various intrinsic and 

extrinsic causative factors acting over many years to establish a pre-cancerous environment, 

promoting SC in cancer survivors. Other findings have demonstrated that the quality of the 

changes in micro- and systemic- environments may promote radiation carcinogenesis135-137. 

Thus, the microenvironment appears to play an important role in promoting radiation dose-

dependent effects that can emerge due to the anti-inflammatory effect of low doses 138 or pro-

inflammatory effects caused by high doses 139. Therefore, radiation used in the experiment 

could have caused some radiation-induced abnormalities, such as inflammation or fibrosis, 

paving the way for radiation-induced tumor development in irradiated normal tissues. So, it has 

been hypothesized that radiation can trigger SC development via determining the late effects 

within the irradiated normal tissue. 

To recognize detectable non-neoplastic alterations in tumor-free lungs and mediastinal tissues, 

non-irradiated and irradiated tumor-free thoracic organ samples were examined by microscopy. 

However, this test revealed no significant differences in the number of inflammatory foci 
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between irradiated and unirradiated rat lungs or lungs exposed to different target doses (3×5 Gy 

or 3×8 Gy) or dose delivering techniques (VMAT or AP/PA) (Figure R11b – c). The lower 

incidence after AP/PA, in contrast to VMAT, relates there to a lower number of rats with tumor-

free thorax after AP/PA treatment. Moreover, no other alterations, such as typical radiation-

associated pneumonitis and/or fibrosis detected among these samples.  

In general, inflammation in the tumor-free lungs of tested rats could not be specifically linked 

to radiation and, thus, also not with radiation-induced tumor development.  

 

4.6 Study design 

Animal model  

As introduced above, only a small fraction of second primary cancers being considered 

radiation-induced in RT-treated cancer survivors.  In line with this, wild-type rats are not well 

compatible for radiation-induced carcinogenesis experiments since the rate of expected 

radiogenic tumors would be very low and scarcely detectable in these animals. Since Tp53 

mutant rats develop spontaneous tumors, they should also be prone to radiation-induced cancer. 

Indeed, the detection of radiation-associated tumors in this experimental setup was only 

possible due to the susceptibility to tumors caused by the Tp53 mutation. It was also taken into 

account that, due to earlier tumor development, homozygous rats have a very short life 

expectancy compared to wild-type and heterozygous animals 108,124. For these reasons, 

functionally p53-haploinsufficient heterozygous rats, with expected longer survival than 

homozygous ones, were preferred for the experiment. Indeed, the Tp53+/C273X rat model was 

quite well suited to study the dose-response relationships of local irradiation and radiation-

induced tumor development. 

As mentioned above, cancer-prone Tp53+/C273X rats are haploinsufficient for p53 owing to a 

nonsense mutation in one of the Tp53 sister alleles. This genetic condition mimics the genetic 

background of LFS in humans, as both rats and humans develop spontaneous tumors of various 

entities. In addition, specific point mutations have been found in LFS families that, due to their 

position within the TP53 gene appear to be functionally similar to C273X of Tp53 gene in rats. 

Due to evolutionary conservation, there are actually not large differences between DNA 

sequences of the core DNA-binding domain of the rat Tp53 and human TP53 genes. An 

example of a Tp53 core fragment conserved evolutionary between humans and rats is shown in 

Appendix (Sequence Information A1 – A2). 
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In Tp53+/C273X rats, codon C273 of the Tp53 gene corresponds to codon 275 in human TP53. 

The neighboring mutational ‘hotspot codons’ H273 and R282 are similar to C273X in rats and 

frequently found in human tumors, including tumors in persons with LFS 102. All these 

mutations are located within the same central fragment of the gene (rat exon 6 and human exon 

8, respectively), encoding the core DNA-binding protein domain. Accordingly, the Tp53+/C273X 

haploinsufficiency in the experimental animal model increases the likelihood of radiation-

associated cancer development similarly to LFS families. However, even small differences 

could influence the functions of genes. About 30% of mutations in human tumors, recorded in 

the somatic mutation database of the international agency for research on cancer – IARC, are 

missense mutations 97,104. In contrast, C273X is a nonsense mutation, which does not result in 

a detectable truncated p53 protein in rats because of nonsense-mediated mRNA decay 108, while 

the missense mutations may result in new proteins with aberrant activities 93,94,140. Thus, the 

Tp53C273X mutation causes a real p53 insufficiency in the presented rat model, without possible 

residual effects of a truncated p53 variant.  

Animal experiments are indispensable in biomedical research to examine very complex 

processes in a living system. At the same time, limiting the number of test animals to a necessary 

minimum is a prerequisite for the approval of an animal experiment by the competent 

authorities. As a guideline, the ethical principle of 3R [replace, reduce, refine] coined by 

William Russell and Rex Burch in 1959 should be implemented 141. Since the aim of the 

experiment was to compare the number of rats developing radiation-induced malignancies 

between non-irradiated control groups, a sufficient number of control animals were required. 

In particular, for the Kaplan-Meier survival analysis, at least 12 – 14 animals per group is 

required, as described in Yan et al. 110. Taking into account a possible dropout of about 10% of 

the animals, 15 rats per group considered as sufficient for such a study. The expected loss of 

experimental rats believed because of developing undetectable tumors or other non-tumor-

related reasons. In the study, six rats were lost during the entire follow-up period, about 6.7% 

of all experimental animals (n = 90). 

In addition to the main tumor-suppressive function, Tp53 is involved in distinct essential cell-

signaling pathways that regulate the development, metabolism, and self-renewal capacity of the 

cells 142,143. Apparently, Tp53 is not a key gene of laboratory rat development since homozygous 

mutants are born. Moreover, the reproduction of rats of this line in the presented study was 

possible as at least six male zero mutants were able to produce F2 generation through mating 

with wild-type females (also see Table A1 and Table A2). Based on PCR amplification and 

sequence analysis of Tp53 DNAs, n = 35 experimental rats with heterozygous Tp53+/C273X 
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genotype were selected from F1 rat generation. Other experimental rats (n = 55) were not 

genotyped because these were the progeny of F1 wild-type female and homozygous male rats 

producing heterozygous progeny only. Thus, all rats used in the experiment had the same 

Tp53+/C273X background. Using homozygous males and wild-type females for breeding 

significantly reduces the total number of animals required for generating the Tp53+/C273X rats 

compared with heterozygous parents. The low number of ancestor rats limits the individual 

genetic heterogeneity in this experimental model and provides the possibility to compare 

radiation effects in genetically closely related animals. The balanced allocation of rats from 

each litter to different treatment groups done to balance possible false positive or negative 

influences of the ancestral background (Table M1 and Table A2). At the same time, a possibly 

balanced distribution by sex, as well as the age and weight of rats at the treatment, aspired 

(Table M2, Figure A1 – A2). 

Other p53-insufficient animal species would also have an interesting translational meaning for 

local dose-response research in order to determine the typical dose-response patterns that were 

conserved through the evolution between different species. Unlike Tp53C273X rats, in 

Transformation-related protein 53 (Trp53) knockout mice used in other studies, exon 2 – 6 has 

been replaced by the neo gene insert 144-146. Also in Tp53tm1[EGFP-pac] rats, exon 2 – 5 fragment 

of Tp53 gene is replaced by a reporter gene cassette 147. Although some differences in Tp53 

mutational signatures, there are general similarities, in terms of the type and the latency of 

sporadic tumors, between the other animal models mentioned above and rats used in this study. 

It is not clear, however, if the minor mutational differences between these models may influence 

the risk of radiation-induced carcinogenesis. Anyway, the comparison of the DRRs between 

these models could help to distinguish between radiation-specific and genetic-specific 

responses. However, it will be a long-lasting, very time-consuming, and expensive purpose.  

Taken together, all experimental rats, whether recruited to controls or radiation treatment 

groups, had a similar genetic background and living conditions. Therefore, a similar 

background risk was expected. Ultimately, it was well possible to study the relationships 

between simulated SCs and different irradiation techniques with the chosen, standardized 

tumor-prone animal model. 

Radiation planning and delivery 

No published data were available on irradiation of rats of the strain used in this experiment. 

Therefore, it was assumed that the planned total doses are theoretically similar to the total doses 

of 19 Gy and 36 Gy recommended by the German Hodgkin study group for the treatment of 



DISCUSSION 

76 

mediastinal HL. This consonance between rats and humans remains limited translatable, 

because exact dose-response models for rats do not exist. 

A body size of a rat allows the radiation treatment carried out with a modern clinical LINAC 

equipped by a multi-leaf collimator system able to form the beam with a very small width at 

isocenter. It is less limited for rats than for smaller mice. However, there could be some 

limitations by means of precision in dose delivery to rats. 

An accuracy of irradiation was ensured by an advanced beam-forming collimator system. Given 

the width of the x-ray beam, the collimator system of the LINAC used in this experiment 

enabled to cover a 300 mm3 PTV with target doses while protecting the adjacent tissues, only 

a few millimeters distant from the PTV, from high doses. 

The precision in irradiation could be negatively impaired in rats due to the high-frequency heart- 

and lung activities. On the other hand, after CBCT-positioning using the MOSAIQ® platform, 

the differences between the particularly used radiation plan and the actual position of the PTV 

were usually decreased as maximally as possible. 

Both, the early and late effects of irradiation, can be influenced by the fractionation schedule 

148. The hypofractionated radiation regimen for every other day in the conducted experiment 

possibly helped to minimize expected negative physiological consequences of extensive 

anesthesia on successive days and to extend the total treatment time-window to five days.  

Regarding radiation protection of radiosensitive organs such as, for example, spine and lungs, 

which are commonly also protected in patients during RT. The irradiation plans, therefore, were 

made with an avoiding the delivery of high doses to these organs as maximally as possible. 

Taken together, all technical requirements were meet for creating radiation plans that are 

generally translatable in clinical VMAT and AP/PA plans. 

Sex-associated differences in tumor development 

In addition to organ-specific sensitivities to radiation in humans or even in rats, the induction 

of radiation-induced cancer can be influenced by the sex of an irradiated subject. An update of 

atomic bombing survivor’s data in 2007 showed that the rates of solid tumors per Gy was higher 

for women than man (58% vs. 35%) 78. In another study, cumulative SC incidence at 25 years 

after HL cure, was about 19% for females and 14% for males, whereas, excluding female breast 

cancer and prostate cancers, females have lower absolute risk for SC than males 22. 

The sex-specific difference in dose-response after thoracic irradiation of women and men, 

especially in HL treatment, is represented by increased female second breast cancer incidence, 

as described in the literature 28,88,149. Interestingly, although all four post-axillary mammary 
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glands in female rats were exposed to initial low doses during VMAT, no thoracic breast cancer 

could be observed in the low-dose volumes in female rats. Apparently, this rat model is also not 

notably prone to spontaneous breast cancer especially, since only three sporadic inguinal breast 

cancers were found in unirradiated volumes (Table R3). 

The weight at treatment and the growth increment were lower in female than in male rats, but 

the treatment weight was balanced between the groups and there was no notable difference 

observed in the growth pattern of unirradiated and irradiated rats (Figure A1). Somewhat more 

variability in the body sizes at treatment and during the growth was observed between male 

rats, while the weight of female rats was more invariant. Since female rats were irradiated with 

small radiation plans and males with large plans, the overall number of irradiated cells should 

be lower in females than males. This could have consequences for dose-response toward tumor 

incidence and latency. However, a comparison showed that neither the incidence nor the TTT 

was significantly different for radiation-associated tumors between female and male rats 

(Figure R12). 

By taking into the focus the entities of radiation-related tumors and to test a possible sex-

specificity of tumors, radiation-associated lymphoma and soft tissue sarcoma appeared to be 

coupled with sex, without any notable variability between the median TTTs. Therefore, the 

strong TTT shortening after 3×8 Gy treatment could not be influenced by sex-coupled incidence 

of lymphoma and soft tissue sarcoma. 

The increase in lymphoma incidence could also be related to increased received doses by larger 

thymus of male rats compared to females. This organ was exposed to high doses since located 

within the volume receiving more than 50% of each prescribed dose (3×5 Gy or 3×8 Gy). 

Age at treatment and attained age 

Childhood RT patients with mediastinal HL have an elevated risk of SC compared to adults 

18,19,28,88. An increase in risk of radiation-induced SC in children compared to adults has been 

supposed to be based on these three main reasons: first, the higher sensitivity of children to RT 

due to accelerated stem and progenitor cell proliferation rates, second, more critical response 

of the small body size of children to secondary scattered radiation, and third, genetic 

susceptibilities based on the frequent somatic mutations among pediatric cancer patients which 

are very rare 30,31,56,150. Therefore, younger rats could have a bit higher risk for radiation-induced 

tumor development than older congeners. However, this was not confirmed in the presented 

experiment, since the age in 3×8 Gy irradiated groups (gender-mixed) was median 37.5 days 

higher compared to other groups (106 [81 – 124] vs. 68.5 [58 – 108] days), with insignificant 
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small variability between rats recruited to VMAT compared to AP/PA treatment groups (Figure 

A2a). According to the literature 151,152, laboratory rats are approximately 60 to 120 postnatal 

days in the young adult phase of their life. Therefore, all rats in the six experimental groups 

were young adults at the time of treatment and should have relatively similar background risks 

for tumor development. The main aim of the study, however, was to compare the response 

between two RT modalities and not between two different doses. 

For the compensation of the older age in 3×8 Gy treated rats a rough simulation of the data by 

addition of the median 37.5 days to the TTTs was performed. Although the extension of the 

TTTs by 37.5 days, the simulated TTT compared to AN/CBCT remained significantly 

decreased for the malignancies developed in the HDV after 3×8 Gy irradiation only (191 [139.5 

– 320.5] days, p = 0.0005), but no more for other tumors: median 264.5 [172.5 – 334.5] days 

for tumors in the NIRV, p = 0.23 and 261 [172.5 – 296.5] days for tumors within the 

LDV/BHDV combined, p = 0.22; Figure A2b). This indicates that a slightly older age should 

not be assumed to have a significant influence on the shortened latency of tumors after 3×8 Gy 

treatment of rats. Thus, there is clear evidence that high total doses could shorten the latency 

period for radiation-induced tumors, at least in cancer-prone rats. 

Potential risk modifiers 

The scenario of radiation-induced tumor development comprises several very complex 

successive events that are generated over time and interact with each other. In line with this, 

the risk of radiation-induced malignant late effects could be partly based on distinct early effects 

of the exposed normal tissues that display specific DRRs 118.  Indeed, it is currently believed 

that radiation carcinogenesis is the result of radiation-induced earlier and later effects on normal 

tissues, which can include multiple systemic reactions, such as premature aging, inflammation, 

genetic instability, vascular and immunity disorders, etc 153-157. 

In this context, an increased risk for the development of radiation-associated breast cancer in a 

translational mice model has been associated with locally established tumor micro-environment 

135-137,158,159.  

Anyway, the micro-environment of tumors and the immune response of exposed tissues to 

different radiation doses will be a substantial topic for future studies as it is also described in 

different studies compiled in a paper by Deloch et al 160. 

Overall, translational RT research is faced with the challenge of further expanding 

interdisciplinary and cross-thematic areas in order to determine in-depth knowledge of possible 

risk modifiers and to take this into account for clinical oncology and especially for RT.  
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5 CONCLUSION 

The development of SC related to radiation treatment of cancers has been over a long time 

associated with received low doses based on the dose-response data derived from ABSs. Recent 

technological advances in RT allow treatment beams to be precisely tailored to different tumor 

geometries, achieving high conformality and avoiding high doses to normal tissue. A 

consequence of such highly conformal IMRT technology (such as VMAT) is that larger 

volumes of healthy tissue are exposed to low and moderate radiation doses. However, a widely 

accepted dogma in radiation oncology postulates that IMRT increases the risk of SC compared 

to conventional simple 3D-CRT techniques, such as AP/PA irradiation.  For this reason, IMRT 

is avoided in patients, especially young patients, expected to survive long-term, and the 

withholding of the benefits of dose-sparing IMRT from patients, accepting thereby high dose-

related risks for heart, breast, and other critical organs. 

Challenging the assumption of increased late toxicity of IMRT by performing the first-of-its-

kind experiment with cancer-susceptible rats irradiated with either VMAT or AP/PA, resulted 

in a predominant appearance of radiation-induced tumors in the regions receiving high doses 

unlike to low doses. The results obtained do not support the hypothesis that a larger low-dose 

volume during IMRT can increase the risk of SC, but rather suggest a greatly increased risk of 

SC per unit volume at higher doses. Most importantly, no increased tumor rates or decreased 

latency after VMAT vs. AP/PA were observed. Furthermore, the results for the first time 

demonstrated a significantly decreased latency time to tumors developing in the volume 

exposed to very high doses (24 Gy). Obtained results corroborate recent evidence from 

localized RT assuming a linear increase in a DRR up to 4 – 8 Gy received doses and does not 

support classical radiation carcinogenesis models assuming a saturation or even a decrease 

above this dose range, with no further increase at higher doses. 

Because a reduction of doses and irradiated volumes in the treatment of childhood cancer has 

led to fewer SC and serious complications within the healthy tissue after RT, the reduced high-

dose volume in modern conformal IMRT might decrease the risk of SC and possibly balance 

the hypothetical increase in risk associated with larger low-dose volumes. 

Future translation studies looking at a more detailed characterization of dose-response 

relationships and the underlying mechanisms of radiation carcinogenesis after RT in living 

animals should be conducted to support the clinical use of modern IMRT techniques as safer 

modalities for cancer treatment as older RT techniques. 
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8 APPENDIX 

 

Sequence information A1 

Rat and human DNA-binding Tp53 fragments. (a) An exemplary sequence of endogenous rat Tp53 

DNA containing exon 6 with a C273X nonsense mutation TGT/TGA (asterisk, stop codon) at position 

817. (b) Representative human TP53 exon 8 containing sequence, showing deep similarity to the 

orthologous DNA and amino acid sequences of the rat. Evolutionary conserved (identical) amino acid 

sequences are colored green and red are the alterations. The triplets coding the rat C273 (817 – 819), 

and its orthologous human C275 (TGT 824 – 826), are underscored. The two major mutational sites in 

exon 8 of the human Tp53, CpG hotspot codons H273 and R282, are italicized. 

 

 

 
 

 

257  D   S   S   G   N   L   L   G   R   D   S   F   E   V   R   V   272     

769 GAC TCC AGT GGG AAT CTT CTG GGA CGG GAC AGC TTT GAG GTT CGT GTT  816 

 

273  *   A   C   P   G   R   D   R   R   T   E   E   E   N   F   R   288 

817 TGA GCC TGT CCT GGG AGA GAC CGT CGG ACA GAG GAA GAA AAT TTC CGC  864 

 

289  K   K   E   E   H   C   P   E   L   P   P   G   S   A   K   R   304  

865 AAA AAA GAA GAG CAT TGC CCG GAG CTG CCC CCA GGG AGT GCA AAG AGA  912     

 

 

 

 

 

 

257  L   E   D   S   S   G   N   L   L   G   R   N   S   F   E   V   272     

769 CTG GAA GAC TCC AGT GGT AAT CTA CTG GGA CGG AAC AGC TTT GAG GTG  816     

 

273  H   V   C   A   C   P   G   R   D   R   R   T   E   E   E   N   288     

817 CAT GTT TGT GCC TGT CCT GGG AGA GAC CGG CGC ACA GAG GAA GAG AAT  864     

 

289  L   R   K   K   G   E   P   H   H   E   L   P   P   G   S   T   304     

865 CTC CGC AAG AAA GGG GAG CCT CAC CAC GAG CTG CCC CCA GGG AGC ACT  912   

 

 

 

 

 

 

 

 

 

a 

b 
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Sequence information A2 

Representative 4523 bases long Tp53 PCR product (5´- 3´). The capitals represent exons and bolded 

are the hotspot (C273) and primer (Ch10-for and Chr10-rev) positions.  

cttcggtctcttctctgacttgctcatttcatctccctgccagatagtccaccttctttctaacctaccctttcctataggccatagttttttaattgacaaactatgcatccat

acagtacacagatgttctctctgcagataactgtcATGGAGGATTCACAGTCGGATATGAGCATCGAGCTCCCTCTGAGT

CAGGAGACATTTTCATGCTTATGGAAACTgtgagtggatcttacagggcccctgaggtgctatcccccagctgaggcctgtgagaaac

aaaactaatagtgttaaagcacggtgtgctattgggtgcctctgatccctgcacttgggaggtggagggaagggtatcacacagaagtctaagatcatccttgactat

atagcaagtttgtggctagcctggggtaagtgagattctgtctccaaagaacggaaggaaatcagcggaactaattctctgctcttgttctccagtcttcctccagatga

tattctggtaaggagccgggcaagaggggacttaggccttggtgagctggtgggttggtagcccgagagcacaatactgaggttcttctttggcccatccacaGC

CCACCACAGCGACAGGGTCACCTAATTCCATGGAAGATCTGTTCCTGCCCCAGGATGTTGCAGAGT

TGTTAGAAGGCCCAGAGGAAGCCCTCCAAGTGTCAGCTCCTGCAGCACAGGAACCTGGAACTGAG

GCCCCTGCACCCGTGGCCCCTGCTTCAGCTACACCGTGGCCTCTGTCATCTTCCGTCCCTTCTCAAA

AAACTTACCAAGGCAACTATGGCTTCCACCTGGGCTTCCTGCAGTCAGGGACAGCCAAGTCTGTTA

TGTGCACGgtcagtgggcctgaagagttgcttttcgtctgactttaaatgcctctgtctagattttggggttcctctttagcctgtggactttgactatgcctcagag

tttaatttctccctgaacctttcttagccttttatccttcctctcatattctccgcatctctccaggggacatggaactttcttccctcacattcctttcttggcttttgaaaataatc

ttctgaagccaggcacagaggcatgtgctgtagtcccagctgctagagacattgaggcaggattgcttaaggccagcctgagcattaaagcaagacccctcctcac

cagaaccaaagcagagcccagtggggtgacccacccatatctccagcactgggcaggctagggcaggagaaacaagagttcaaggccatccttgactacacag

taagatggcctctctgaaaaagagaaggcaggtgtggtggccatctctggggttgaggacagtcagggctatatagagaaactgtctcaaaaaaccagagggagg

aaaacaaactggtgtgtagactccagtcctgtcactgctggctgccgtctgccacagcactgttggacactgtctttcattagagccccactttgacccttgatccttagt

tggcttgtccgctgacctttgattctttctcctctcctacagTACTCAATTTCCCTCAATAAGCTGTTCTGCCAGCTGGCGAAGA

CATGCCCTGTGCAGTTGTGGGTCACCTCCACACCTCCACCTGGTACCCGTGTCCGTGCCATGGCCAT

CTACAAGAAGTCACAACACATGACTGAGGTCGTGAGACGCTGCCCCCACCATGAGCGTTGCTCTGA

TGGTGACGGtgagcactgggcactgcctgtggggttagaactggttgtccagggtctcccggcctctgacttattcttgctcttaggCCTGGCTCCT

CCCCAACATCTTATCCGGGTGGAAGGAAATCCGTATGCTGAGTATCTGGACGACAGGCAGACTTTT

CGGCACAGCGTGGTGGTACCGTATGAGCCACCTGAGGTCGGCTCCGACTATACCACTATCCACTAC

AAGTACATGTGCAACAGCTCCTGCATGGGGGGCATGAACCGCCGGCCCATCCTTACCATCATCACG

CTGGAAGACTCCAGgtaggaagctgtgtgccaggttgggctggcaccggtcctccccagcctcggcctgtttttgttccatgagccccgcccctacca

caggcccagccctctttaccctaccctatctacataaatgaagtctcctctgttccctggtggtcttagggacatctcttatctgtggcatcttgggttccctataaccaga

gcttcagctccagataggacaagaggagttgggaacaggtagggcctggtttacagtcaggatggagcccagctttcttactgccttgtgctgtgcctcctcttgtcc

cgggtagTGGGAATCTTCTGGGACGGGACAGCtttgaggttcgtgtttgtgcctgtcctgggAGAGACCGTCGGACAGAG

GAAGAAAATTTCCGCAAAAAAGAAGAGCATTGCCCGGAGCTGCCCCCAGGGAGTGCAAAGAGAGg

tgagcaggcaggacaaagaaggtggaggcgcccttcagcttcaccccaaagtcaccccttgctctctccttccatagCACTGCCCACCAGCACAA

GCTCCTCTCCCCAGCAAAAGAAAAAACCACTCGATGGAGAATATTTCACCCTTAAGgtaccaaggttattattg

gattaatattctaagtctaggacacaaaacgctgtatcttttgcagctgcttcttctctagCTATGACATTATCGTCAGAGCGCAtgctctgaggct

gtggtttctcacttataactaacttgagaacaccaacttataatacatacgtaatacaggtgctccgctacttaggaggggaacgtgtcttaggaaactcatcatcggttg

aaaataccatatgtcaaaatgtagttagaggcaggcctggctgacgtatgcctgtaattacagaactgaggaatgtggtacaaagctggcagggaaatgtaacccaa

gaaaggacatttgggtttaaggatgtaactcagttcagaatacgtgccaagtgtataccaagccctggactcgatccccagcggcacacagtgcatttaatccaccta

tcccactggattccacagctcagcagcaggattgccctgttaagtgtgtccccatcagtaacagcatcctactctgttcccccaactgaaaaaacccaagtttgttatac

actttctactgaatacctgttactttcacaccatcataaagacctccccaaaaaaccgataagtctagccagctcgggttggggatttagctcagtggtagagcgcttgc

ctaggaagtgtgaggccctgggtttggttcccagctccggaaaaaaaaaaaaaaagaaccaaaaaaaaaagtctagccagctcaagttggggatcaactttcagaa

agaaagttgttaaaaggatgaaagtggctctgtgactttgtccagcacttctgtcctacttcatccttgctacagATCCGTGGGCGTGAGCGCTTCG

AGATGTTCCGAGAGCTGAATGAGGCCTTGGAATTAAAGGATGCCCGTGCTGCCGAGGAGTCAGGA

GACAGCAGGGCTCACTCCAggtgagtgacctggggcagcgcctggctgtggtgcttgcccctgacctccctgagcacggcctttgtggtaaaag

acaataactaactccaccagatgtccatcgtccgccagacgatgtggttatggttactcagccctggcaaatgcaagggtcctatgaagtcttactactcaaccatttca

ggctctggaaaatgggatgagggacaaggtatggtatcatgctcctataatctcagcagtagggaagcagtaagtcaggagggtttggggaagtttgaagccttcat

aaactatataaaactttaggctagccaggactagctacatagcaagatcctgtctctcggtggtggtggtggtggtggtggtggtggtggtggtggtggtggtggtgg

tggtggtggtggtcaaagggaagatgaactgattctagaagtactccggcatattctgtgaatacacctactacccatggtagaagtcatcttaaattccctttttttcagc

ctccagcctagaaccttccaagccttgatcaagaaggaaagcccaaactgctagctcccatcacttcatccctcccttttctgtcttcctatagCTACCCGAA

GACCAAGAAGGGCCAGTCTACGTCCCGCCATAAAAAACCAATGATCAAGAAAGTGGGGCCTGACT

CAGACTGAcagcctctgcatcctgtccccatcaccagcctccccgtcccctcctttcttgccattttatgactttagggcttgttatgagagctgacaagacaatg

ctagtcccttcactgcctttttttaccttgtagatagtactcggccccctctatgcaaactggttcctggcccagattggggaatgggttggtagttgctgggtctctgctg

gtccagcgaaatcctatccggtcagttg 
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Table A1 

Rat data 1. (A) Rat identity and sex (female/male), (B) parental Tp53-background of Tp53X/C273 

individuals of the L1 - L11 litters of F1 and F2 generations derived from three female Aa, Bb, Cc and 

two male Dd and Ee allele pairs (the capital letters represent intact Tp53 alleles and the regular letters 

mean the Tp53+/C273X knock out variants); (C) weight at treatment(± 5 g); (D) attained weight (± 5 g); 

(E) weight increment (± 5 g); (F) growth rate (gram per follow up day); (G)  the age at first follow-up 

CT (days); (H) the attained age (days); and (I) the age at treatment (days).  

 

 

A B C D E F G H I 

91m F1, L1; f [A or a] × m [D or d] 250 420 170 0,78 − 287 69 

65m F1, L1; f [A or a] × m [D or d] 230 425 195 0,66 257 362 66 

5m F1, L2; f [C or c] × m [B or b] 240 435 195 0,9 − − 64 

51''m F2, L9; f [B or E] × m [a or d] 235 465 230 0,78 216 380 58 

46''m F2, L7; f [A or D] × m [b or e] 275 515 240 0,81 219 − 59 

15'f F1, L1; f [A or a] × m [D or d] 185 330 145 0,38 312 451 71 

28''f F2, L7; f [A or D] × m [b or e] 170 330 160 0,55 282 357 68 

26''f F2, L7; f [A or D] × m [b or e] 180 245 65 0,34 − 259 68 

85f F1, L3; f [B or b] × m [E or e] 180 245 65 0,3 268 300 82 

88f F1, L3; f [B or b] × m [E or e] 185 260 75 0,24 271 402 85 

14'f F1, L1; f [A or a] × m [D or d] 185 200 15 0,11 − − 71 

50''m F2, L9; f [B or E] × m [a or d] 245 400 155 0,61 216 291 58 

41''m F2, L4; f [C or B] × m [a or d] 225 400 175 0,68 216 310 61 

43''m F2, L4; f [C or B] × m [a or d] 285 485 200 1,3 − 575 61 

95f F1, L1; f [A or a] × m [D or d] 190 300 110 0,27 347 478 70 

33''f F2, L4; f [C or B] × m [a or d] 155 250 95 0,25 282 449 68 

10f F1, L3; f [B or b] × m [E or e] 175 276 101 0,44 − 301 70 

43´´´m F2, L10; f [A or D] × m [b or e] 220 310 90 0,45 243 297 95 

29´´m F2, L8; f [A or D] × m [b or e] 290 405 115 1,1 − − 93 

64''f F2, L6; f [B or C] × m [a or d] 220 250 30 0,17 263 282 107 

86''f F2, L10; f [A or D] × m [b or e] 200 225 25 0,17 − 246 116 

22´´m F2, L6; f [B or C] × m [a or d] 280 345 65 0,64 − 202 100 

27´´´m F2, L5; f [C or B] × m [a or d] 260 335 75 0,56 215 − 103 

93''m F2, L11; f [A or D] × m [b or e] 265 345 80 0,59 − 223 88 

99''m F2, L11; f [A or D] × m [b or e] 250 330 80 0,59 − 223 88 

24´´m F2, L6; f [B or C] × m [a or d] 330 440 110 0,55 235 300 100 

82''f F2, L10; f [A or D] × m [b or e] 205 240 35 0,19 246 305 116 

58''f F2, L6; f [B or C] × m [a or d] 190 220 30 0,22 − 241 107 

52´´f F2, L6; f [B or C] × m [a or d] 205 285 80 0,28 263 390 107 

60''f F2, L6; f [B or C] × m [a or d] 205 245 40 0,24 − 263 107 
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81´´f F2, L11; f [A or D] × m [b or e] 180 215 35 0,19 239 291 109 

44´´f F2, L11; f [A or D] × m [b or e] 215 265 50 0,20 256 354 107 

79f F2, L11; f [A or D] × m [b or e] 215 300 85 0,33 − − 107 

38''m F2, L4; f [C or B] × m [a or d] 225 395 170 0,63 219 330 61 

48''m F2, L7; f [A or D] × m [b or e] 280 440 160 1,32 − 176 61 

20'm F1, L1; f [A or a] × m [D or d] 245 415 170 0,48 317 − 65 

71f  F1, L1; f [A or a] × m [D or d] 165 270 105 0,34 256 383 72 

9f F1, L3; f [B or b] × m [E or e] 180 325 145 0,43 304 407 70 

39''f F2, L4; f [C or B] × m [a or d] 225 380 155 0,63 216 − 61 

16'm F1, L1; f [A or a] × m [D or d] 250 435 185 0,63 317 358 65 

63m F1, L1; f [A or a] × m [D or d] 280 490 210 0,70 257 364 66 

69f F1, L1; f [A or a] × m [D or d] 160 265 105 0,29 256 431 72 

23''f F2, L7; f [A or D] × m [b or e] 175 245 70 0,45 − − 68 

18f F1, L3; f [B or b] × m [E or e] 160 235 75 0,26 − 365 77 

89f F1, L3; f [B or b] × m [E or e] 210 290 80 0,26 271 388 85 

47´´f F2, L11; f [A or D] × m [b or e] 225 280 55 0,29 255 297 106 

37´´m F2, L8; f [A or D] × m [b or e] 330 470 140 0,48 262 390 100 

98''m F2, L11; f [A or D] × m [b or e] 240 385 145 0,71 236 293 88 

31´´m F2, L8; f [A or D] × m [b or e] 335 480 145 0,53 262 368 93 

42´´´m F2, L10; f [A or D] × m [b or e] 285 450 165 0,58 − 365 81 

6´´f F2, L5; f [C or B] × m [a or d] 220 270 50 0,20 252 373 124 

54''f F2, L6; f [B or C] × m [a or d] 200 265 65 0,26 263 − 114 

90''f F2, L10; f [A or D] × m [b or e] 185 220 35 0,19 246 305 116 

56''f F2, L6; f [B or C] × m [a or d] 215 275 60 0,31 263 298 107 

33´´´m F2, L8; f [A or D] × m [b or e] 280 435 155 0,52 − 390 93 

32´´m F2, L8; f [A or D] × m [b or e] 290 390 100 0,53 − 282 93 

36´´m F2, L10; f [A or D] × m [b or e] 330 425 95 0,70 − 216 81 

49''m F2, L7; f [A or D] × m [b or e] 295 480 185 0,69 − − 68 

75m F1, L3; f [B or b] × m [E or e] 275 490 215 0,5 249 504 73 

42''m F2, L4; f [C or B] × m [a or d] 285 500 215 0,73 − 359 68 

21'm F1, L1; f [A or a] × m [D or d] 275 485 210 0,83 397 317 65 

3´ m F1, L2; f [C or c] × m [B or b] 240 425 185 0,56 − 392 64 

59m F1, L1; f [A or a] × m [D or d] 265 455 190 0,67 257 − 66 

19f F1, L3; f [B or b] × m [E or e] 185 235 50 0,39 − − 77 

34''f F2, L4; f [C or B] × m [a or d] 165 235 70 0,23 282 − 68 

87f F1, L3; f [B or b] × m [E or e] 190 275 85 0,32 271 352 85 

96f F1, L1; f [A or a] × m [D or d] 200 280 80 0,23 310 441 96 

92f F1, L1; f [A or a] × m [D or d] 195 285 90 0,46 − 268 82 

12'f F1, L1; f [A or a] × m [D or d] 180 270 90 0,31 312 366 71 

7f F1, L3; f [B or b] × m [E or e] 165 245 80 0,23 304 304 70 

30''f F2, L4; f [C or B] × m [a or d] 155 255 100 0,28 282 − 68 

11m F1, L3; f [B or b] × m [E or e] 175 335 160 0,49 326 392 63 

35''m F2, L4; f [C or B] × m [a or d] 265 450 185 0,62 219 408 108 
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57m F1, L1; f [A or a] × m [D or d] 250 410 160 0,54 257 362 66 

13m F1, L3; f [B or b] × m [E or e] 280 490 210 0,6 316 415 64 

62m F1, L1; f [A or a] × m [D or d] 270 410 140 0,74 − 262 73 

27''m F2, L9; f [B or E] × m [a or d] 220 450 230 0,95 262 283 85 

40''m F2, L4; f [C or B] × m [a or d] 300 450 150 0,73 285 294 108 

8f F1, L3; f [B or b] × m [E or e] 185 260 75 0,24 304 379 64 

2''f F2, L9; f [B or E] × m [a or d] 150 235 85 0,59 − − 85 

4''f F2, L9; f [B or E] × m [a or d] 145 285 140 0,36 262 472 85 

94f F1, L1; f [A or a] × m [D or d] 165 300 135 0,32 313 499 82 

1''f F2, L9; f [B or E] × m [a or d] 155 290 135 0,59 262 − 85 

20f F1, L3; f [B or b] × m [E or e] 190 320 130 0,32 − 483 76 

Rats killed due to non-tumor-related causes:  

53''f F2, L6; f [B or C] × m [a or d] 210 245 35 0,2 263 − 107 

45´´f F2, L11; f [A or D] × m [b or e] 210 255 45 0,27 256 − 107 

97f F1, L1; f [A or a] × m [D or d] 180 215 35 0,38 − − 82 

21''f F2, L7; f [A or D] × m [b or e] 185 290 105 0,45 − − 68 

19'm F1, L1; f [A or a] × m [D or d] 263 435 172 0,56 − − 65 

83f F1, L3; f [B or b] × m [E or e] 190 290 100 0,64 240 − 85 

 

Abbreviations: rat identity and sex (e. g. #1´´f, number 1´´ female), m, male; F1 and F2 filial generation 

1 and 2; L1-L11, litter 1-11. 
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Table A2 

Rat breeding scheme. Generation of heterozygous Tp53+/C273X experimental rats (black) rats from 

heterozygous only or homozygous (Tp53C273X/C273X) and wild-type (Tp53wt) parents. Original Tp53 

alleles are indicated: Aa, Bb, Cc, Dd, and Ee. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Abbreviations: F1 and F2, Filial generation 1 and 2; L1-L11, litter 1-11; Tp53, Tumor protein 53; Gy, 

Gray; VMAT, volumetric-modulated arc therapy; AP/PA, anterior-posterior/ posterior-anterior; AN, 

anesthesia only; CBCT, cone-beam CT only.  

Dd Aa Cc Bb Ee

#1♀ Tp53
+/C273Х

X #3♂ Tp53
+/C273Х

#5♀Tp53
+/C273Х

X #2♂ Tp53
+/C273Х

X #6♀Tp53
+/C273Х

#19´♂ AN #3´ CBCT #8♀ AN

#57♂ AN #5´ 3×5 Gy VMAT #11♂ AN

#94♀ AN #13♂ AN

#62♂ AN #20♀ AN

#12´♀ CBCT #83♀ AN

#59♂ CBCT #7♀ CBCT

#21´ CBCT #19♀ CBCT

#92♀ CBCT #75♂ CBCT

#96♀ CBCT #87♀ CBCT

#15´♀ 3×5 Gy VMAT #9♀ 3×5 Gy VMAT

#20´♂ 3×5 Gy VMAT #88♀ 3×5 Gy VMAT

#65♂ 3×5 Gy VMAT #85♀ 3×5 Gy VMAT

#71♀ 3×5 Gy VMAT #10♀ 3×5 Gy APPA

#91♂ 3×5 Gy VMAT #18♀ 3×5 Gy APPA

#14´♀ 3×5 Gy APPA #89♀ 3×5 Gy APPA

#16´♂ 3×5 Gy APPA

#63♂ 3×5 Gy APPA

#69♀ 3×5 Gy APPA

#95♀ 3×5 Gy APPA

#97♀ 3×5 Gy APPA

#18´♂Tp53
C273X/C273X

#6´♀Tp53
wt

#35´´♂ AN

#40´´♂ AN

#30´´♀ CBCT

#34´´♀ CBCT

#42´´♂ CBCT

#39´´♂ 3×5 Gy APPA

#38´´♂ 3×5 Gy VMAT

#33´´♀ 3×5 Gy AP/PA

#41´´♂ 3×5 Gy APPA

#43´´♂ 3×5 Gy APPA

#61♂Tp53
C273X/C273X

#6´♀Tp53
wt

#6´´♀: 3×8 Gy VMAT

#27´´´♂ 3×8 Gy APPA

#61♂Tp53
C273X/C273X

#72♀Tp53
wt

#53´´♀ 3×8 Gy VMAT

#54´´♀ 3×8 Gy VMAT

#56´´♀ 3×8 Gy VMAT

#64´´♀ 3×8 Gy VMAT

#22´´♂ 3×8 Gy APPA

#24´´♂ 3×8 Gy APPA

#52´´♀ 3×8 Gy APPA

#58´´♀ 3×8 Gy APPA

#60´´♀ 3×8 Gy APPA

♀#13'Tp53
wt

#15♂Tp53
C273X/C273X

#21´´♀ CBCT

#49´´♂ CBCT

#26´´♀ 3×5 Gy VMAT

#28´´♀ 3×5 Gy VMAT

#46´´♂ 3×5 Gy VMAT

#48´´♂ 3×5 Gy VMAT

#23´´♀ 3×5 Gy APPA

#79♂Tp53
C273X/C273X

#29´´♂ 3×8 Gy VMAT

#31´´♂ 3×8 Gy VMAT

#37´´♂ 3×8 Gy VMAT

#32´´♂ 3×8 Gy APPA

#33´´´♂ 3×8 Gy APPA

#17'♂Tp53
C273X/C273X

#16♀Tp53
wt

#1´´♀ AN

#2´´♀ AN

#4´´♀ AN

#27´´♂ AN

#51´´♂ 3×5 Gy VMAT

#50´´♂ 3×5 Gy AP/PA

#68♀Tp53
wt

#81♂Tp53
C273X/C273X

#43´´´♂ 3×8 Gy VMAT

#86´´♀ 3×8 Gy VMAT

#90´´♀ 3×8 Gy VMAT

#42´´´♂ 3×8 Gy VMAT

#36´´♂ 3×8 Gy APPA

#82´´♀ 3×8 Gy APPA

#70(90)♀Tp53
wt

#45´´♀ 3×8 Gy VMAT

#47´´♀ 3×8 Gy VMAT

#98´´♂ 3×8 Gy VMAT

#44´´♀ 3×8 Gy APPA

#79´´♀ 3×8 Gy APPA

#81´´♀ 3×8 Gy APPA

#93´´♂ 3×8 Gy APPA

#99´´♂ 3×8 Gy APPA

F2, L11:

F2, L9:

X

X

F2, L5:

F2, L10:

F1, L2:

F2, L4:

F1, L3:

X

X

X

X

X

F2, L6:

F2, L7:

X

F2, L8:

F1, L1:
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Table A3 

Rat data 2. (A) Rat identity and sex (female/male). (B) Radiation treatment plan size based on 160 g 

(small) and 250 g (large) rat planning CTs. (C) Used dose delivering technique (VMAT or AP/PA). (D) 

Fraction number and the fraction dose in Gy (Gray). (E) The volume (cm3) affected by index tumors: 

high dose volume (HDV), bordering HDV (BHDV), low dose volume (LDV), and non-irradiated 

volume (NIRV); (F) the size (cm3) of volumes in which tumors were found. (G) Dose to volume 

relationships (DVRs) in percent of minimal received doses calculated using Monaco®; (H) estimated 

received total doses in Gy, and (I) time to tumor (TTT) from the first treatment fraction (days). 

 

 

A B C D E F G H I 

91m Large VMAT 3×5 Gy HDV 0.782 >90% >13.5 Gy 218 

65m Large VMAT 3×5 Gy HDV 0.782 >90% >13.5 Gy 296 

5m Large VMAT 3×5 Gy HDV 0.782 >90% >13.5 Gy 217 

51''m Large VMAT 3×5 Gy BHDV 3.884 50-90% 7.5-13.5 Gy 296 

46''m Large VMAT 3×5 Gy HDV 0.782 >90% >13.5 Gy 298 

15'f Small VMAT 3×5 Gy HDV 0.66 >90% >13.5 Gy 380 

28''f Small VMAT 3×5 Gy HDV 0.66 >90% >13.5 Gy 289 

26''f Small VMAT 3×5 Gy HDV 0.66 >90% >13.5 Gy 191 

85f Small VMAT 3×5 Gy LDV 12.394 5-50% 0.75-7.5 Gy 218 

88f Small VMAT 3×5 Gy LDV 12.394 5-50% 0.75-7.5 Gy 317 

14'f Small AP/PA 3×5 Gy HDV 1.265 >90% >13.5 Gy 137 

50''m Large AP/PA 3×5 Gy HDV 2.465 >90% >13.5 Gy 256 

41''m Large AP/PA 3×5 Gy HDV 2.465 >90% >13.5 Gy 258 

43''m Large AP/PA 3×5 Gy HDV 2.465 >90% >13.5 Gy 154 

95f Small AP/PA 3×5 Gy HDV  1.265 >90% >13.5 Gy 408 

33''f Small AP/PA 3×5 Gy BHDV 3.394 50-90% 7.5-13.5 Gy 381 

10f Small AP/PA 3×5 Gy LDV 7.369 5-50% 0.75-7.5 Gy 231 

43´´´m Large VMAT 3×8 Gy HDV 0.782 >90% >21.6 Gy 202 

29´´m Large VMAT 3×8 Gy HDV 0.782 >90% >21.6 Gy 105 

64''f Large VMAT 3×8 Gy HDV 0.782 >90% >21.6 Gy 175 

86''f Small VMAT 3×8 Gy HDV 0.66 >90% >21.6 Gy 143 

22´´m Large AP/PA 3×8 Gy HDV 2.465 >90% >21.6 Gy 102 

27´´´m Large AP/PA 3×8 Gy HDV 2.465 >90% >21.6 Gy 133 

93''m Large AP/PA 3×8 Gy HDV 2.465 >90% >21.6 Gy 135 

99''m Large AP/PA 3×8 Gy LDV 12.029 5-50% 1.2-12.0 Gy 135 

24´´m Large AP/PA 3×8 Gy LDV 12.029 5-50% 1.2-12.0 Gy 200 

82''f Small AP/PA 3×8 Gy HDV 1.265 >90% >21.6 Gy 189 

58''f Small AP/PA 3×8 Gy HDV 1.265 >90% >21.6 Gy 134 

52´´f Small AP/PA 3×8 Gy HDV 1.265 >90% >21.6 Gy 283 

60''f Small AP/PA 3×8 Gy HDV 1.265 >90% >21.6 Gy 164 

81´´f Small AP/PA 3×8 Gy BHDV 3.394 50-90% 12-21.6 Gy 182 

44´´f Small AP/PA 3×8 Gy LDV 7.369 5-50% 1.2-12.0 Gy 247 
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79f Small AP/PA 3×8 Gy LDV 7.369 5-50% 1.2-12.0 Gy 259 

38''m Large VMAT 3×5 Gy NIRV 195.55 <5% <0.75 Gy 269 

48''m Large VMAT 3×5 Gy NIRV 195.55 <5% <0.75 Gy 121 

20'm Large VMAT 3×5 Gy NIRV 195.55 <5% <0.75 Gy 353 

71f  Small VMAT 3×5 Gy NIRV 127.59 <5% <0.75 Gy 311 

9f Small VMAT 3×5 Gy NIRV 127.59 <5% <0.75 Gy 337 

39''f Large AP/PA 3×5 Gy NIRV 203.13 <5% <0.75 Gy 247 

16'm Large AP/PA 3×5 Gy NIRV 203.13 <5% <0.75 Gy 293 

63m Large AP/PA 3×5 Gy NIRV 203.13 <5% <0.75 Gy 298 

69f Small AP/PA 3×5 Gy NIRV 131.55 <5% <0.75 Gy 359 

23''f Small AP/PA 3×5 Gy NIRV 131.55 <5% <0.75 Gy 154 

18f Small AP/PA 3×5 Gy NIRV 131.55 <5% <0.75 Gy 288 

89f Small AP/PA 3×5 Gy NIRV 131.55 <5% <0.75 Gy 303 

47´´f Large VMAT 3×8 Gy NIRV 195.55 <5% <1.2 Gy 191 

37´´m Large VMAT 3×8 Gy NIRV 195.55 <5% <1.2 Gy 290 

98''m Large VMAT 3×8 Gy NIRV 195.55 <5% <1.2 Gy 205 

31´´m Large VMAT 3×8 Gy NIRV 195.55 <5% <1.2 Gy 275 

42´´´m Large VMAT 3×8 Gy NIRV 195.55 <5% <1.2 Gy 284 

6´´f Large VMAT 3×8 Gy NIRV 195.55 <5% <1.2 Gy 249 

54''f Small VMAT 3×8 Gy NIRV 127.59 <5% <1.2 Gy 252 

90''f Small VMAT 3×8 Gy NIRV 127.59 <5% <1.2 Gy 189 

56''f Small VMAT 3×8 Gy NIRV 127.59 <5% <1.2 Gy 191 

33´´´m Large AP/PA 3×8 Gy NIRV 203.13 <5% <1.2 Gy 297 

32´´m Large AP/PA 3×8 Gy NIRV 203.13 <5% <1.2 Gy 189 

36´´m Large AP/PA 3×8 Gy NIRV 203.13 <5% <1.2 Gy 135 

49''m − CBCT 3×0.04 Gy − − − <0.04 Gy 268 

75m − CBCT 3×0.04 Gy − − − <0.04 Gy 431 

42''m − CBCT 3×0.04 Gy − − − <0.04 Gy 294 

21'm − CBCT 3×0.04 Gy − − − <0.04 Gy 252 

3´ m − CBCT 3×0.04 Gy − − − <0.04 Gy 328 

59m − CBCT 3×0.04 Gy − − − <0.04 Gy 282 

19f − CBCT 3×0.04 Gy − − − <0.04 Gy 128 

34''f − CBCT 3×0.04 Gy − − − <0.04 Gy 303 

87f − CBCT 3×0.04 Gy − − − <0.04 Gy 267 

96f − CBCT 3×0.04 Gy − − − <0.04 Gy 345 

92f − CBCT 3×0.04 Gy − − − <0.04 Gy 196 

12'f − CBCT 3×0.04 Gy − − − <0.04 Gy 295 

7f − CBCT 3×0.04 Gy − − − <0.04 Gy 352 

30''f − CBCT 3×0.04 Gy − − − <0.04 Gy 357 

11m − AN 0 − − − 0 Gy 329 

35''m − AN 0 − − − 0 Gy 300 

57m − AN 0 − − − 0 Gy 296 

13m − AN 0 − − − 0 Gy 351 
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62m − AN 0 − − − 0 Gy 189 

27''m − AN 0 − − − 0 Gy 242 

40''m − AN 0 − − − 0 Gy 205 

8f − AN 0 − − − 0 Gy 315 

2''f − AN 0 − − − 0 Gy 143 

4''f − AN 0 − − − 0 Gy 387 

94f − AN 0 − − − 0 Gy 417 

1''f − AN 0 − − − 0 Gy 228 

20f − AN 0 − − − 0 Gy 407 

53''f Small VMAT 3×8 Gy Sacrificed due to non-tumor causes 179 

45´´f Small VMAT 3×8 Gy Sacrificed due to non-tumor causes 164 

97f Small AP/PA 3×5 Gy Sacrificed due to non-tumor causes 91 

21''f − CBCT 3×0.04 Gy Sacrificed due to non-tumor causes 232 

19'm − AN 0 Sacrificed due to non-tumor causes 308 

83f − AN 0 Sacrificed due to non-tumor causes 156 

 

Abbreviations: rat identity and sex (e. g. #1´´f, number 1´´ female), m, male; VMAT, volumetric-

modulated arc therapy; AP/PA, anterior-posterior/posterior-anterior irradiation; CBCT, cone-beam 

computed tomography only controls; AN, anesthesia only controls; Gy, Gray; HDV, high-dose volume; 

BHDV, bordering high-dose volume; LDV, low-dose volume; NIRV, non-irradiated volume; TTT, time 

to tumor; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy. 
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Table A4 

Frequency distribution of tumors in different dose-volumes. The frequency distribution of tumors in 

different dose-volumes. The incident numbers and total volumes of affected NIRVs, LDVs, BHDVs, 

and HDVs were summed (based on Monaco Statistics®) and then, ordered by estimated dose levels, and 

grouped either by prescribed doses (3×5 Gy and 3×8 Gy) or by used irradiation technique (VMAT and 

AP/PA). The frequency distribution was calculated by dividing of incidence numbers by the summed 

dose-volumes. An estimate of the sizes of each particular volume, in which an index tumor was 

developed, bases on the Monaco statistics data and takes into account the particularly prescribed doses, 

applied irradiation plans (small or large), and used dose delivering modalities represented in Table A3B-

D. 

 

 

Abbreviations: NIRV, non-irradiated volume; LDV, low-dose volume; BHDV, bordering high-dose 

volume; HDV, high-dose volume; Gy, Gray. 

 

 

 

 

Dose Volume NIRV LDV BHDV HDV 

 

Estimated received dose after 3×5 Gy <0.75 Gy 0.75-7.5 Gy 7.5-13.5 Gy 13.5-15 Gy 

Number of tumors after 3×5 Gy 12 3 2 12 

Total volume in cm3 after 3×5 Gy 1977.42 32.157 10.672 17.65 

Distribution (n per cm3) after 3×5 Gy 0.006 0.093 0.187 0.68 

 

Estimated received dose after 3×8 Gy <1.12 Gy 1.12-12 Gy 12-21.6 Gy 21.6-24 Gy 

Number of events after 3×8 Gy 12 4 1 11 

Total volume in cm3 after 3×8 Gy   2165.46 38.796 6.788 16.016 

Distribution (n per cm3) after 3×8 Gy 0.0054 0.1 0.147 0.67 

 

Number of events after VMAT 14 2 1 11 

Total volume in cm3 after VMAT 2397.9 24.788 3.884 10.178 

Distribution (n per cm3) after VMAT 0.005 0.08 0.257 1.08 

 

Number of events after AP/PA 10 5 2 12 

Total volume in cm3 after AP/PA 1744.98 46.165 13.576 23.29 

Distribution (n per cm3) after AP/PA 0.0057 0.108 0.147 0.515 
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Table A5 

The organ DVRs for 3×5 Gy. Shown are the dose and volume parameter of the small and large 

irradiation plans for VMAT and AP/PA irradiation (Monaco® statistics). 

 

Structures at risk 
Irradiation 

technique 

Volume (cm3) Dmin (Gy) Dmax (Gy) 

Large Small Large Small Large Small 

PTV VMAT 0.296 0.296 13.80 13.28 15.99 16.03 

AP/PA 0.296 0.296 12.47 13.02 15.95 15.65 

Spine 
VMAT 4.14 2.4 0.003 0.007 15.1 14.8 

AP/PA 4.14 2.4 0.09 0.08 16.09 15.06 

Heart 
VMAT 1.45 1.55 0.72 0.7 14.9 16.03 

AP/PA 1.45 1.55 0.41 0.61 16.2 15.60 

Thymus 
VMAT 0.39 0.46 0.06 0.04 2.28 11.42 

AP/PA 0.39 0.46 0.23 0.18 6.04 9.58 

Sternum 
VMAT 0.74 0.54 0.02 0.02 3.27 5.58 

AP/PA 0.74 0.54 0.17 0.09 15.33 13.9 

Lung right 
VMAT 3.33 1.35 0.24 0.26 15.29 15.53 

AP/PA 3.33 1.35 0.22 0.2 15.85 15.32 

Lung left 
VMAT 2.81 0.94 0.42 0.28 15.78 15.44 

AP/PA 2.81 0.94 0.24 0.23 15.77 15.65 

Chest wall right 
VMAT 6.58 5.33 0.015 0.014 10.12 11.9 

AP/PA 6.58 5.33 0.041 0.023 15.6 14.15 

Chest wall left 
VMAT 6.51 5.21 0.015 0.014 8.57 11.90 

AP/PA 6.51 5.21 0.04 0.03 15.16 14.80 

Back muscles right 
VMAT 3.62 2.12 0.02 0.008 6.6 4.07 

AP/PA 3.62 2.12 0.014 0.015 14.62 13.32 

Back muscles left 
VMAT 3.92 2.36 0.03 0.008 6.19 5.17 

AP/PA 3.92 2.36 0.02 0.02 15.12 13.57 

Axilla (armpit) right 
VMAT 2.14 1.75 0.05 0.02 5.45 6.25 

AP/PA 2.14 1.75 0.09 0.013 2.35 0.63 

Axilla (armpit) left 
VMAT 2.14 1.77 0.04 0.005 4.85 5.45 

AP/PA 2.14 1.77 0.07 0.0 0.51 0.68 

Kidney right 
VMAT 1.39 1.21 0.014 0.007 0.14 0.06 

AP/PA 1.39 1.21 0.012 0.0 0.20 0.09 

Kidney left 
VMAT 1.4 1.21 0.012 0.011 0.11 0.07 

AP/PA 1.4 1.21 0.01 0.0 0.21 0.24 

Liver 
VMAT 12.59 7.82 0.01 0.06 11.92 12.21 

AP/PA 12.59 7.82 0.02 0.23 14.21 15.65 

Intestine 
VMAT 1.46 0.68 0.002 0.01 0.04 0.034 

AP/PA 1.46 0.68 0.0 0.07 0.16 0.015 

Stomach  
VMAT 6.8 4.9 0.014 0.05 0.46 0.69 

AP/PA 6.8 4.9 0.02 0.06 0.76 1.5 

 

Abbreviations: Dmin and Dmax, minimal and maximal doses; NIRV, non-irradiated volume; PTV, 

planning target volume; VMAT, volumetric-modulated arc therapy; AP/PA, anterior-

posterior/posterior-anterior beams.  
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Table A6 

The DICOM data list of the rat CT. The original file IDs are listed. SOMATOM Force data were 

saved on the server of the Department of Clinical Radiology and Nuclear Medicine, Medical Faculty 

Mannheim of Heidelberg University) and on WD Server (4 TB) #WCC4E2NJO3Y6 (WD® NL B. V. 

Hoofddorp, the Netherlands) under project number G184-14 (Department of Radiation Oncology of the 

University Medical Center Mannheim of Heidelberg University).  

 

 

#91m_VMAT15_1FCTn_17.02.2016  - 

#65m_VMAT15_1FCTn_23.12.2015,  #65m_VMAT15_2FCTc_06.04.2016 

#51m_VMAT15_1FCTn_08.01.2016,  #51m_VMAT15_FCTc_fin_20.06.2016 

#46´´m_VMAT15_1FCTn_08.01.2016  - 

#15´L0R2f_VMAT15_1FCTn_17.12.2015, #15'L0R2.f_VMAT15 fin.-FCTc_04.05.2016 

#28´´f_VMAT15_1FCTn_11.03.2016  #28´´f_VMAT15_FCTc_fin_25.5.16 

#26´´f_VMAT15_1FCTn_17.02.2016  - 

#85f_VMAT15_2FCTn_29.01.2016  #85f_VMAT15_1FCTn_01.03.2016 

#88f_VMAT15_1FCTn_29.01.2016  #88´´f_VMAT15_FCTc-fin_08.06.2016 

#50´´m_APPA15_1FCTn_08.01.2016  #50´´m_APPA15_2FCTn_23.03.2016 

#41´´m_APPA15_1FCTn_05.01.2016  #41´´m_APPA15c_8.4.2016 

#43´´m_APPA15_finFCTn_29.12.2016  - 

#43´´´m_VMAT24_1FCT_19.4.2016  #43´´´m_VMAT24_2-finFCT_12.6.16 

#95f_APPA15_1FCTn_29.01.2016  #95f_APPA15-160 fin. fCTc2´_08.06.16 

#33´´f_APPA15_1FCTn_11.03.2016  #33´´m_APPA24_2FCTn.19.8.16  

      #33´´f_APPA15_finFCTc_25.8.16 

#10f_APPA15_2XFCT_14.12.15  - 

#64f_VMAT24_1FCTn_20.4.2016  #64f_VMAT24_2FCTc_fin_09.05.2016 

#86´´f_VMAT24_22.4.2016   - 

#22´´m_APPA24_1FCTn_19.02.2016  - 

#93´´m_APPA24_1FCTc_06.04.2016  #99´´m_APPA24_1FCTn_06.04.2016 

#24''m_APPA24_1FCTn_23.03.2016  #24´´m_APPA24_2finFCTc_27.05.2016 

#82´´f_APPA24_22.4.2016   #82´´f_APPA24_finFCTc_20.06.2016 

#58´´f_APPA24_1finFCTc_29.03.2016  - 

#52´´f_APPA24_20.4.2016   #52f_APPA24_finFCTc_25.08.2016_2Recons 

#60´´f_APPA24_1FCTn_20.4.2016  - 

#81´´f_APPA24_1FCTn_22.4.2016  #81´´f_APPA24_finFCT_13.06.2016 

#44´´f_APPA24_1FCTn_13.4.2016  #44´´f_APPA24_2finFCTc_20.07.2016 

#38´´m_VMAT15_1FCTn_08.01.2016  #38m_VMAT15_2-2XfinFCTc_28.4.2016 

#48m_VMAT15_1FCTn_26.11.2015  - 

#20´L0R3m_VMAT15_1FCTn_22.12.2015 - 

#71(91)f_VMAT15_1FCTn_23.12.2015 #71(91)f_APPA15_28.4.2016 

#9f_VMAT15_1FCTn_17.12.2015  #9f_VMAT15_2FCTc_fin_29.03.2016 

#39´´m_APPA15_1FCTn_05.01.2016  - 

#16´L2R1m (19)-APPA15_22.12.15  #16´L2R1m_APPA15_1FCTn_02.02.2016 

#63m_APPA15_1FCTn_23.12.2015  #63m_APPA15_2FCTc_08.04.2016 

#69f_APPA15_1FCTn_23.12.2015  #69f_APPA15_FCTc_15.06.2016 

#18f_APPA15_1FCTn_16.02.2016  - 

#89´´f_APPA15_1FCTn_29.01.2016  #89´´f_APPA15_2FCTc_25.05.2016 

#47´´f_VMAT24_1FCTn_13.04.2016  #47´´f_VMAT24_2FCTc_25.05.2016 
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#37´´m_VMAT24_19.04.2016 #37´´m_VMAT24_2FCTn_19.8.16, 

#37´´m_VMAT24_3finFCTc_25.08.2016 /2Recon 

#98´´m_VMAT24_19.04.2016   #98m_VMAT24_fin-2XFCTc_15.07.2016 

#31´´m_VMAT24_19.4.2016   #31´´m_VMAT24_FCTc2-fin_03.08.2016 

#42´´´m_VMAT24_2 X fin. FCTn_19.8.16 - 

#6´´f_VMAT15-1FCTn_24_20.04.16  #6´´f_VMAT24_19.8.16_2Recons 

#54´´f_VMAT24_20.04.2016   - 

#90´´f_VMAT24_22.04.2016   #90f_VMAT24_FCTc-fin_20.06.2016 

#56´´f_VMAT24_1FCTn_20.4.2016  #56´´f_VMAT24_2FCTc_25.05.2016 

#33´´´m APPA24_fCTc.fin. 25.8.16  - 

#32´´m_APPA24_FCTc_09.05.16  - 

#36''m_APPA24_1FCTn_23.03.2016  - 

#75m_CBCT_1FCTn_05.01.2016  #75m_CBCT_16.9.16_2Recon 

#42´´m_CBCT_1finFCTc_T0_27.05.2016 - 

#21´´f _CBCT_1FCTn_11.03.2016  #21´´f_CBCT_2FCTc_fin_29.03.2016, 

#21´L3R1m _CBCT_1FCTn_22.12.2015 - 

#3m_CBCT_1FCTc_I-300_14.03.2016  - 

#59m_CBCT_1FCTn_2X_23.12.2015  - 

#19´m_CTRL_1FCTn_16.02.2016  - 

#34´´f_CBCT_1FCTn_11.03.2016  - 

#87f_CBCT_1FCTn_29.01.2016  #87f_CBCT_19. 04.2016 

#96f_CBCT_1FCTn_11.03.2016  #96f_CBCT_FCT2n_fin_20.07.2016 

#92f_CBCT_1FCTn_29.01.2016  - 

#12´R1L0f_CBCT_1FCTn_17.12.2015  #12'R1L0f_CBCT_2FCTn_09.02.2015 

#7f_CBCT_1FCTn_17.12.15   #7f_CBCT_1FCTn_13.04.16  

#30´´f_CBCT_1FCTn_11.03.2016  - 

#11m_CTRL_1FCTn_08.01.2016  #11m_CTRL_2FCTc-I300,0,6ml_14.03.2016 

#35´´m_CTRL_1FCTn_08.01.2016  #35´´m_CTRL_2, finFCTn_15.7.16 

#57m_CTRL_1FCTn_23.12.2015  #57m_CTRL_2FCTc_06.04.2016 

#13´m _CTRL_1FCTn_29.12.2015  #13´m_CTRL_2FCTn_06.04.2016 

#62m_CTRL_1FCTn_28.12.2015  - 

#27´´m_CTRL_1fCTn_14.03.16  #27´´m_CTRL_1fCTn_4.4.16 

#40´´m_CTRL_1FCTn_14.03.2016  #40''m_CTRL_2FCTn_23.03.2016 

#8f_CTRL_1FCTn_17.12.2015   #8f_CTRL_2FCTn_01.03.2016 

#4´´f_CTRL_1FCTn_14.03.2016  #4f_CTRL_10.10.16_2 recons 

#94f_CTRL_1FCTn_14.03.2016  #94f_CTRL_2FCT_16.9.16 

#1´´f_CTRL_1FCTn_14.03.2016  - 

#20f_CTRL(CBCT)_2FCTc_15.06.2016 - 

#53´´f_VMAT24_20.4.2016   - 

#45´´f_VMAT24_13.4.2016   - 

#83f_CTRL_1FCTn_29.12.2015  - 

 

Abbreviations: rat identity and sex (e. g. #1´´f, number 1´´ female); m, male; VMAT, volumetric-

modulated arc therapy; AP/PA, anterior-posterior/posterior-anterior; CBCT, cone-beam CT; CTRL 

corresponds to AN control group; 1FCT, first ‘Force CT’; fin, final; n, native; c contrast media; date of 

scanning (date, month, year).  
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Table A7 

Rat data 3. (A) Rat identity and sex. (B) The organs affected by index tumors and additional tumors 

(asterisks represented). (C – J) Tumor entities (C, bone sarcoma; D, soft tissue sarcoma; E, lymphoma; 

F, malignant mesothelioma; G, carcinoma; H, breast cancer; I, brain tumor; and J, non-determined 

tumor). (K) Loss of Tp53+/C273X heterozygosity (LOH). (L) Ratio of the A/T peaks on the sequencing 

chromatogram (LOH determined by ≥ 2 times difference between A and T peaks). (M) Inflammation in 

tumor free lungs (graded by 0, none; 1, rare; 2, moderate; and 3, frequent).  

 

 

A B C D E F G H I J K L M 

91m Mediastinum to both lungs   1      − −  

65m Mediastinum/spine* 1*  1      LOH >2  

5m Spine to lungs 1        − −  

51''m Mediastinum    1     C273X 0,3  

46''m Mediastinum/chest wall right* 1*  1      − −  

15'f Mediastinum/spine*  1* 1       LOH >2  

28''f Mediastinum, lung, chest wall      1    C273X 1  

26''f Mediastinum  1       − −  

85f Chest wall left (rib)  1        − −  

88f Chest wall left (rib)  1        C273X 0,3  

14'f Mediastinum  1       − −  

50''m Mediastinum   1      − −  

41''m Mediastinum   1      C273X 1  

43''m Thymus and mediastinum   1      − −  

95f Mediastinum/spine*  1*  1      C273X 0,3  

33''f Bronchus, lung right      1    − −  

10f Axilla right  1       LOH 5  

43´´´m Mediastinum/lungs*   1  1*    LOH 3  

29´´m Mediastinum (esophagus)  1       − −  

64''f Mediastinum, mesothelia    1     LOH 5  

86''f Mediastinum   1      − −  

22´´m Mediastinum (thymus)   1      − −  

27´´´m Mediastinum   1      − −  

93''m Mediastinum/lung right*   1 1*      LOH 2,5  

99''m Sternum, lungs 1        LOH > 6  

24´´m Spine to lungs 1        − −  

82''f Mediastinum   1      C273X 2  

58''f Esophagus  1       C273X 0,3  

52´´f Esophagus  1       − −  

60''f Mediastinum     1    LOH 2  

81´´f Thorax, liver (fs)  1        LOH 5  

44´´f Back muscles  1       LOH 3  

79f Back muscles  1        −  
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38''m Dorsal muscle left  1       LOH >10  

48''m Abdomen        1  − 0 

20'm Pelvic region, bowel        1  −  

71f  Adrenal region right, kidney        1 C273X 0,2 1 

9f Abdomen, pelvis        1 C273X 0,2 2 

39''f Pelvic region        1  −  

16'm Pelvic region, prostate, bladder     1     − 0 

63m Femur/scapula bones* right (l. m.) 1        LOH 2,5  

69f Humerus bone right 1         − 0 

23''f Pelvis soft tissue     1    LOH 7 0 

18f lumbar spine bones 1         − 1 

89f Tailbone 1         −  

47´´f Skull bone 1         − 1 

37´´m Tailbone and soft tissue (l. m.)     1     − 1 

98''m Pelvic region        1 C273X 0,3 2 

31´´m Femur bone left/prostate* 1    1*     − 1 

42´´´m Femur bone left (l. m.), lungs 1    1*    C273X 0,3 0 

6´´f Hind-limb bone, left 1         − 2 

54''f Brain       1   − 1 

90''f Adrenal region right        1 C273X 1,6 1 

56''f Mammae, inguinal       1   C273X 0,2 2 

33´´´m Pelvic region and testes        1 C273X 0,3 0 

32´´m Pelvic region, prostate     1    C273X 0,3 2 

36´´m Hind limb bone (femur), left 1        LOH 2 1 

49''m Dorsal spine, muscles 1         − 2 

75m Overarm bone right 1         − 2 

42''m Bladder, pelvis      1    C273X -0,3 1 

21'm Femur, right 1        LOH 4  

3´ m Hind-limb bone, left, (l. m.) 1        LOH 4 0 

59m Hind-limb bone, left 1        LOH 3  

19f Tongue  1        − 1 

34''f Mandible, bone 1         − 2 

87f Brain       1   − 2 

96f Shoulder right, spine 1         − 2 

92f Pelvic region        1  − 0 

12'f Oviduct right        1 LOH 3 0 

7f Sacral bone, spine (l. m.) 1        LOH >10  

30''f Sacrum bone 1         − 2 

11m Jaw, right 1        LOH 3 2 

35''m Skull bone, pelvis* 1    1*     − 1 

57m Scapula, left 1        LOH >10 2 

13m Abdomen, chest wall, left        1  −  

62m Intestine, pelvis        1  − 1 
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27''m Pelvis, bowel        1  − 3 

40''m Abdomen, pelvis*    1* 1     − 3 

8f Brain       1   − 1 

2''f Skull bone  1         − 1 

4''f Mammae, inguinal left      1    − 1 

94f Mammae, both inguinal areas       1   C273X 0,4  

1''f Uterus, oviduct, left       1    LOH >2 0 

20f Abdomen/pancreas*    1* 1    C273X 1 0 

 

Abbreviations: rat identity and sex (e. g. #1´´f, number 1´´ female), m, male; C273X, heterozygous loss 

of cysteine 273 coding triplet; LOH, loss of heterozygosity; l. m., lung metastasis. 

 

 

 

 

 

 

 

Table A8 

Additional tumors.   

 

Additional tumors Index tumor Volume Treatment 

BSA STSA BHDV-HDV VMAT 3×5 Gy 

BSA LY LDV VMAT 3×5 Gy 

BSA LY LDV VMAT 3×5 Gy 

BSA LY BHDV AP/PA 3×5 Gy 

LY STSA LDV-HDV AP/PA 3×8 Gy 

CA STSA BHDV VMAT 3×8 Gy 

CA BSA NIRV VMAT 3×8 Gy 

CA BSA NIRV VMAT 3×8 Gy 

CA BSA NIRV AN 0 Gy 

MM CA NIRV AN 0 Gy 

MM CA NIRV AN 0 Gy 

 
Abbreviations: BSA, bone sarcoma; LY, lymphoma; CA, carcinoma; MM, malignant mesothelioma; 

STSA, soft tissue sarcoma; HDV, high-dose volume; BHDV, bordering high-dose volume; HDV, high-

dose volume; VMAT, volumetric-modulated arc therapy; AP/PA, anterior-posterior/posterior-anterior 

beams; AN, anesthesia controls; Gy, Gray; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy. 
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Figure A1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Treatment body size and growth of rats. (a) The weight at the treatment of female and male rats was 

balanced between rats recruiting to VMAT or AP/PA groups (lines indicate the medians). (b) No notable 

difference in growth pattern between groups detected. Each dot represents the weight at every week of 

life. The lower and upper trails represent females or males respectively. The weight at treatment, weight 

increments and growth rates are given in Table A1, columns C – F.   

Abbreviations: see Figure A2 below.  

 

 

 

Figure A2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Age at treatment and time to tumor. (a) The age at treatment was balanced between rats treated with 

VMAT and AP/PA, while most 3×8 Gy rats were by median 37.5 days older than rats from other groups 

(Table A1, column G). (b) Although the TTT in 3 × 8 Gy groups was simulative extended by 37.5 days, 

it remains significantly decreased for BHDV/HDV tumors. Mann-Whitney test. lines indicate the 

medians (see also Table M2).  

Abbreviations: AN, anesthesia only controls; CBCT, cone-beam computed tomography only controls; 

VMAT, volumetric-modulated arc therapy; AP/PA, anterior-posterior/posterior-anterior beams; Gy, 

Gray; TTT, time to tumor; NIRV, non-irradiated volume; LDV, low-dose volume; BHDV, bordering 

high-dose volume; HDV, high dose volume; 3×5 Gy or 3×8 Gy, three fractions of 5 or 8 Gy. 
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