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ABBREVIATIONS 

α(si)   learning coefficient  

γ  global decay constant 

δ  boolean switch designating cell types 

θ(n,v,si)  neighbourhood function 

λA  surface lambda 

λCL  chemotaxis lambda 

λV  lambda volume 

σi̅  virtual cell by type (i)̅ 
τ(σi̅), τ(σj̅) cell pixel interface between two cell types (σi̅, σj̅) 

χ  quality value for speed differences 

𝜔   inertia weight  

At  target surface area 

AED  adhesion differences 

BMU  best matching unit 

cn   positive constant parameter by index n 

c(x⃗ )  concentrations of chemoattractant in coms of cells 

CA  cellular automaton model 

CAM  cell adhesion molecule 

CAMA computer assisted motion analysis 

CI  confidence interval 

COM  centre of mass 

CC3D   compucell3d program 

CM   cap mesenchyme 

CPM  cellular potts model 

d  distance 

D  global diffusion constant 

D(t)   data vector with index 

E  energy term  

f  fitness function 

FGF   fibroblast growth factor 

gbest   particle’s direction to best solution regarding any particle 

GFP  green fluorescent protein 

H  effective energy 

i  particle’s index  

J  contact energy coefficient 

k  time index k   

k(d)  velocity with distance in specific model  

l  lattice’s voxel scale 

MATLAB  mathematical laboratory program 

MCS  monte carlo step 

MM   metanephric mesenchyme 

MMTV  mouse mammary tumor virus 

N  total number of particles  

n   previous iteration node 

NP   nephron progenitor 

pbest   particle’s direction from current to best solution   

P  position  
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PDGF-AA  platelet derived growth factor subunit aa 

PSO  particle swarm optimization 

PTA  pre-tubular aggregate 

r   uniformly distributed random variable  

RV  renal vesicle 

s  saturation constant 

si  iteration step index 

S  chemoattractant secretion 

SBML   systems biology markup language 

SOM  self-organizing map 

t   index number of training sample  

tc  current iteration number 

T  cell surface motility or temperature at cellular potts model  

TGF-β   transforming growth factor β  

u   index number of bmu 

UB  ureteric bud 

v   node  

v(d)  instantaneous velocity 

V  velocity  

Vt  target volume 

WNT  wingless-type mmtv integration site 

Wv  weight vector of node 

y(d,t)  distances of cells to tip in certain time 

1_REF  reference model (1) 

2_REF_ADH reference model with adhesion (2) 

3_UB  ureteric bud secreting model (3) 

4_NP  nephron progenitor cell secreting model (4) 

5_UB_ADH ureteric bud secreting model with adhesion (5) 

6_NP_ADH nephron progenitor cell secreting model with adhesion (6) 

7_UB_NP_ADH  ureteric bud and nephron progenitor cell secreting model with adhesion (7) 

8_ADH_ADH multi-adhesion model (8)
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1. INTRODUCTION 

1.1. Discovering Early Phases of Kidney Development 

1.1.1. Mammalian Kidney Development 

The mammalian kidney is the product of a highly complex, orchestrated developmental process, 

which involves not only proliferation and differentiation processes, but also directed movement 

and aggregation of progenitor cells (Krause et al., 2015). Early nephrogenesis is characterized 

by the interplay of the branching and expanding ureteric bud (UB), the epithelial precursor 

structure destined to become the urinary tract, and the ‘cap’ metanephric mesenchyme (CM) 

surrounding the tips of the UB branches (Fig. 1) (BioPortal, 2019; Blake and Rosenblum, 2014; 

Bohnenpoll and Kispert, 2014; Costantini and Kopan, 2010; Desgrange and Cereghini, 2015; 

Obara-Ishihara T, 1999).  

Fig. 1: Morphological structures in early nephrogenesis. A) First branching of ureteric bud 

(UB) surrounded by cells of metanephric mesenchyme (MM). B) Terminal branch of UB 

with cap mesenchyme (CM), pre-tubular aggregate (PTA) and renal vesicle (RV).  

The places of UBs are shown in relation to a schematic figure of final kidney. C) Schematic 

drawing of UB trunk, corner, and tip regions with CM of NP and MM cells, with targeted 

movement of NP cells. D) Tracks of NP cell (red) movements around UB (grey) in kidney 

explant culture model. Scalebar (bottom left) represents 50 µm, c.f., (Combes et al., 2016). 

E) Kidney organoid model with black areas representing UB, and GFP labelled MM cells 

(Tikka et al., 2019). D/E) Red arrows represent vectors of tip distance (dt) and corner 

distance (dc) used for analysis. Figure D was by a courtesy of Dr Alexander N. Combes 

regarding the similar figure in (Combes et al., 2016). 
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1.1.2  Formation of Pre-tubular Aggregate and Renal Vesicle 

A fraction of CM cells differentiates into the nephron progenitor (NP) cells (Fig. 1). These cells 

migrate towards the corner of the UB branches, where they condensate to form circular pre-

tubular aggregates (PTA), the earliest recognizable structure of the kidney (Little, 2012). PTA 

transforms into the renal vesicle (RV), from which the final structures of the nephron are 

derived in a process of elongation and invagination (Fig. 1) (BioPortal, 2019; Combes et al., 

2016). The nephron in essence consists of the tubules and glomeruli.  From the developmental 

biology point of view, nephron patterning reflects a time-dependent process of recruitment of 

mesenchymal progenitors into an epithelial nephron precursor (Lindström et al., 2018).  

The self-renewal and differentiation of NP cells is regulated by spatially restricted cues within 

a tissue microenvironment (Lawlor et al., 2019). The portion of MM cells that become NP cells 

can change their commitment status dependent on their location (Lawlor et al., 2019). 

1.2. Early Nephrogenesis  

1.2.1. Mechanisms Effecting Cell Patterns in Early Nephrogenesis 

While early nephrogenesis research presumed that the movement of NPs towards the PTA is 

mostly linear (Little, 2012; McMahon, 2016), recent studies indicate that NP movements may  

be semi-stochastic or swarming-like (Combes et al., 2016). It was also described that these 

movements were mostly driven by adhesion differences and/or chemotaxis (Chen et al., 2015; 

Combes et al., 2016). Previous experimental work identified several mechanical and signalling 

mechanisms to be involved in this process (Fig. 1) (Chen et al., 2015; Chi et al., 2009; Combes 

et al., 2016; Lawlor et al., 2019; Little, 2015; Little, 2012; McMahon, 2016). The molecular 

mechanisms driving NP cell induction and PTA formation have been partially unravelled 

(Chen et al., 2015; Chi et al., 2009; Combes et al., 2016; Little, 2015; Little, 2012). UB 

epithelial cells secrete various diffusible signalling proteins that may trigger the differentiation 

of MM to NP cells, as well as their chemotactic movement towards the UB corner region 

(Combes et al., 2016; Little, 2015; Saarela et al., 2017). Furthermore, the cell aggregation 

appeared to be driven by the differences in the cell-cell adhesion properties (Lefevre et al., 

2017), which could be driven by the autocrine and/or paracrine intercellular signalling (Dahl 

et al., 2002; Dudley et al., 1999; Oxburgh et al., 2011; Wallner et al., 1998). Paracrine cell 

signalling factors reach targets in a short range, whereas the autocrine ones reach farther 

distances. The former factors employ different receptors and pathways, such as Wingless-Type 

Mouse Mammary Tumor Virus (MMTV) Integration Sites (WNT), Fibroblast Growth Factors 
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(FGF), Platelet Derived Growth Factor Subunit AA (PDGF-AA), and Transforming Growth 

Factor βs (TGF-β) (Gilbert, 2000).   

1.2.2. Chemotaxis and Cell-cell Adhesion 

NP cells in my study move towards the higher concentration of the potential chemoattractant 

source (positive chemotaxis) (Rappel and Loomis, 2009). The chemotactic eukaryotic cells 

usually move in a crawling fashion that consists of three phases: the directional sensing (<10s), 

the formation of a stable leading edge with cell polarity (10-60s), and the cell motility (>60s) 

(Rappel and Loomis, 2009).  

A number of essential components for the formation of polarity have been identified (Affolter 

and Weijer, 2005; Williams and Harwood, 2003). In reality, the polarization does not 

necessarily require a gradient stimulus (Postma et al., 2003). Spontaneous polarization has been 

observed in the absence of a gradient. In that case, the polarity module works even when it 

does not receive a direct input from the directional sensing module.  

On the contrary, the motility arrives from the use of polymerization dynamics of actins, which 

comes from the adhesive contacts with the substrate (Pollard and Borisy, 2003; Rafelski and 

Theriot, 2004). Moreover, these contacts are not affected by chemotactic signalling (Andrew 

and Ewald, 2010). In this way, the movement is also influenced by the dissolution of 

extracellular membrane proteins synthesized by MM cells during early nephrogenesis (Chen 

et al., 2015; McMahon, 2016). This dissolution was described to arrive from spatial 

arrangements of the cells either in the tip or the corner region (Chen et al., 2015; Lawlor et al., 

2019). 
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1.3. Modelling 

1.3.1. Computational Models 

Computational models try to describe the salient aspects of experimentally delineated 

phenomena by means of mathematics (Cartwright, 1983). These types of models consist of 

relationships that can be described as operators, such as functions, and variables that are 

abstractions of the parameters of interest, such as the initial cell densities (Moise and Friedman, 

2019). The modelling formulas can be roughly divided into six categories according to the 

variable types and relationships: linear vs. nonlinear, static vs. dynamic (c.f., slow vs. fast), 

explicit vs. implicit, discrete vs. continuous, deterministic vs. probabilistic, deductive vs. 

inductive, or floating (Berg, 2011; Desroches et al., 2012). The respective computational model 

is the predictive explanation arising from the modelling. The most important tools for the 

biological modelling are the differential equations, probability and statistics, which roughly 

constitutes the field of bioinformatics. The model building work process consists 

approximately of five stages: 1) defining the problem, 2) creating the model, 3) developing the 

computational model for solving the problem, 4) implementation of the model, and 5) testing 

and assessing the solutions. The work process can consist of multiple trial-and-error model 

revisions if the data fed to the model is inconsistent, or if the assumptions behind the model are 

not adequately explored in the beginning (Tikka and Schaefer, 2019). 

1.3.2. Models in Kidney Development 

The computational efforts around the ureteric branching morphogenesis, interwoven to  

the early nephron formation in various levels, has advanced various models in vivo, ex vivo, in 

vitro, and in silico (Fig. 2) (Junttila et al., 2015; Lawson and Flegg, 2016; Short et al., 2014; 

Takasato et al., 2015; Zubkov et al., 2015). These models usually try to delineate with imaging 

methods the cell patterning arriving from signaling and evolving membrane interactions 

between ureteric, MM, extracellular matrix, or NP cells (Adivarahan et al., 2013; Blake and 

Rosenblum, 2014; Clendenon et al., 2013; Clevers, 2016; Krause et al., 2015). For instance, 

Lawson and Flegg (2016) created a mathematical model for the induction of the mammalian 

UB (Lawson and Flegg, 2016). Zubkov et al. (2015) established a spatially-averaged 

mathematical model of kidney branching morphogenesis (Zubkov et al., 2015). Nevertheless, 

these models did not account for the spatiotemporal evolution of NP cells and nephron 

development (Tikka and Schaefer, 2019).  
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Furthermore, computational methods have recently been introduced to mechanistically analyse 

early nephrogenesis (Combes et al., 2016; Lawlor et al., 2019). In fact, Combes et al. (2016) 

applied a convection-diffusion model, and showed that attractive and repulsive cues between 

CM cells and the UB, together with cell adhesion processes, can lead to the commitment and 

maintenance of CM in proximity to the tip (c.f., Fig. 1) (Combes et al., 2016). However, the 

underlying cellular processes leading to the observed attraction and repulsion have not been 

analysed in detail, and the study was focused on the formation and maintenance of CM rather 

than the formation of the PTA (see ‘7.1 Description of Previous Model’ for more details about 

the previous model).  

Correspondingly, Cellular Potts Model (CPM) comprises a modelling structure, which can be 

used when the particularities of the intercellular interplay are mostly constrained to factors such 

as cell size, shape, and the common contact area to other cells (Marée et al., 2007). The reason 

for this reduction was that the collective behaviour of cells cannot be deduced from their 

individual attributes due the complexities of the developing cellular systems. Accordingly, 

CPM was developed as a spatial lattice-based formalism, which can be used to study the spatio-

temporal behaviour of biological cell populations (Swat et al., 2009). The model handles the 

virtual cells as a deformable object that take their shapes from a synthesis of external and 

  
Fig. 2: Assessment of the suitability of the previous computational models used in kidney 

development research to study NP cell movements and aggregations. The evaluation of 

literature and previous experiments led to the identification of a suitable computational 

model candidate (e.g. CPM). Simulations of the model (e.g. with CC3D) yielded data 

frames of cell coordinates and chemoattractant concentrations. This data enabled 

calculation of the measure such as the cell speeds, quantities, distances and concentrations 

in the UB tip and corner regions. 
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internal forces. The energy minimisation-based CPM formalism enables to integrate these 

forces acting at different scales to the cells. In the first place, CPM has been especially 

elaborated to understand the sorting of cells. This sorting usually constitutes segregation of the 

heterotypic cell aggregates into homotypic cell clusters. The model has been used to 

demonstrate that this sorting is the consequence of the differences in the cell-cell adhesion 

molecules (CAM) between the different cell types in question. The formal demonstration is 

also called as the differential adhesion hypothesis (Glazier and Graner, 1993). This approach 

has been further improved and utilized for a large scale of phenomena in the developmental 

biology, including polycystic cystic kidney diseases (Belmonte et al., 2016). CompuCell3D 

(CC3D), a readily available and user-friendly model simulation software, is based on CPM 

(Swat et al., 2012). In the same way, it offers model example codes for various cell mechanisms. 

Partly due these reasons, CPM was redeemed a suitable model candidate in this work 

(Belmonte et al., 2016; Swat et al., 2009). In addition, new python codes and functions can be 

assessed and developed for calculating the appropriate measures from CC3D model simulation 

outcomes (Contributors, 2017). These measures could be for example the cell quantities, speeds, 

distances and the chemoattractant concentrations. 

1.3.3. Initial Computational Models for Directed Cell Movements and Aggregations 

In reality, a descriptive analysis of these processes, chemotaxis and adhesion, is possible only 

to a limited extent (Magno et al., 2015) since even simple cell-cell interactions can lead to 

complex and unexpected large-scale spatiotemporal patterns.  

Notably, a full chemotaxis model with adhesion would undoubtedly involve modelling the two-

way coupling between the ligand receptor and its downstream effectors and the actin-myosin 

cytoskeletal dynamics. In contrast, the previous work has focused on phenomenological 

models that directly relate rules of motion to external chemical gradients (Andrew and Ewald, 

2010). The early models of motion focused on simple 1D models with the cell running linearly 

from the start to the finish (Andrew and Ewald, 2010; DiMilla et al., 1991). While these models 

have some predictive power, they obviously cannot properly address the dynamics of cell shape. 

Consequently, a relatively recent work has attempted to deal with 2D representation of the cell 

shape together with the actin-myosin dynamics (Mogilner and Rubinstein, 2005).  

Much insight has been obtained regarding motility using computer assisted motion analysis 

(CAMA) (Soll et al., 2002; Wessels et al., 1998). CAMA has been mostly carried out in 2D, 

Regardless, it is also possible to perform in 3D. It traces the outskirts of the cell with a boundary 
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detection software. This outline is obtained from the video frames of the experiment. 

Henceforth, it was used to define various quantities related to cell movements, such as the cell 

speed or velocity, and directional change or persistence. 

1.4 Study Objectives 

In this study, I used a computational modelling approach to explore in detail the biophysical  

mechanisms underlying the directed movement and aggregation of NP cells, the critical first 

step of nephron development (BioPortal, 2019; Little, 2012; Tikka et al., 2019; Tikka and 

Schaefer, 2017). I extended the pioneering work of Combes et al. (2016) by a simulation study 

of the processes in question (Combes et al., 2016). This was achieved by imitating the chemical 

and mechanical cellular processes systematically with the simulations that potentially explain 

the pattern formation during early nephrogenesis. I used 3D tissue simulation approaches to 

analyse how different types of chemotaxis and adhesion differences between different cell 

types may explain the formation of both CM and the PTA. Parameter calibration and model 

validation was attained by comparison of the simulation results with both published and 

original experimental data (Combes et al., 2016; Tikka et al., 2019). 
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2. MATERIALS AND METHODS 

2.1. Model Building 

2.1.1. Cellular Potts Model 

The CC3D models used here were based on the framework of CPM (Hirashima et al., 2017; 

Swat et al., 2012). During each simulated time step of the model, here named as Monte Carlo 

Step (MCS), all cell border pixels were attempting to replace the neighbouring ones (Swat et 

al., 2012). This happened with a probability (P) according to a Boltzmann distribution, which 

depended on the change in an ‘effective energy’ H  

P = {
1                  𝑖𝑓 ∆𝐻 ≤ 0

𝑒(−∆𝐻/𝑇)    𝑖𝑓 ∆𝐻 > 0
},       Eq. (1) 

where T comes from the ‘temperature’ of CPM, which means the virtual cell surface motility. 

This means also the relative amount of cell surface random fluctuations. The main idea of  

the model is that the displacements of individual cell pixels are accepted only if the overall 

effective energy is reduced (in lower part of Eq. 2). The power in the probability function 

depended also of the inverse of the ‘temperature’, which represents the effective motility of  

the cell's membrane. If the net energy change after MCS was negative, that is ∆𝐻 ≤ 0 ,  

the index changes were adopted. In cases where ∆𝐻 > 0, the likelihood P, for a successful 

‘index-copy attempt’, followed the Boltzmann distribution in (Eq. 1; Fig. 3).  

  
Fig. 3: The driving principles of CC3D simulations. A) The principle of CPM development: 

A cell (green; 1) membrane pixel invades the pixel of a neighboring cell (blue; 2) in the 

simulations. ∆𝐻 is the effective energy. B) A cell pattern during a CC3D simulation is given 

with the definitions for the positions of the two different virtual cells, which were replicated 

to a sphere. The figure (B) denotes the designation numbers of the cells’ pixels, e.g. 1/white 

and 2/grey, and the magnified details of the cell lattice together with an individual cell and 

its calculated area in pixels. (Hirashima et al., 2017; Swat et al., 2009) 
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The formulation of the effective energy contains quantities reflecting chemical and physical 

properties of the cells, such as area and volume constraints, cell-cell surface adhesion and 

processes related to chemotaxis (Andasari et al., 2012; Swat et al., 2012). As an illustration, 

the effective energy (H) can represent a mix of true physical energies, such as the cell-cell 

adhesion, and terms that mimicked energies. The latter can be in particular as a response to a 

chemotactic gradient experienced by the cell. Meanwhile, it can also have terms that reflect the 

basic principles of the evolution of the model (Hirashima et al., 2017). All things considered,  

the effective energy used in this study was formulated as 

𝐻 = ∑ 𝐽 (𝜏(𝜎𝑖̅), 𝜏(𝜎�̅�))𝑖̅,�̅�
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

+ ∑ 𝜆𝐶𝐿(𝑐(𝑥 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) − 𝑐(𝑥 )) + 𝜆𝑉𝑖̅,�̅�
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

∑(𝑉 − 𝑉𝑡) +

𝜆𝐴 ∑(𝐴 − 𝐴𝑡),         Eq. (2) 

where the first sum denotes the adhesion energies, ∆𝐸𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 , and the second sum  

the chemotaxis energies, ∆𝐸𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠. Especially, J was defined as boundary energy per unit 

area between two different cells (𝜎𝑖̅ 𝑎𝑛𝑑 𝜎�̅�)  in the pixel interface of the cells ((𝜏(𝜎𝑖̅), 𝜏(𝜎�̅�)). 

It is commonly called as contact energy coefficient. The second chemotaxis energy term was 

calculated for the cells experiencing chemotaxis and their neighbours. However, 𝑐(𝑥 )  and 

𝑐(𝑥 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)  indicated the chemoattractant concentrations at the pixel source and its 

neighbouring pixel, respectively. In contrast, 𝜆𝐶𝐿 reflected the strength of chemotaxis (Chen et 

al., 2015; Kopan, 2014; Swat et al., 2012). Finally, 𝜆𝑉  and 𝜆𝐴  penalized deviations of cell 

volume respectively area from the preferred values 𝐴𝑡 respectively 𝑉𝑡.  

Equally important, a certain level of minimal adhesion (J) was necessary for the cell 

movements for two reasons. Firstly, the cells in a model according to (Eq. 2) without adhesion 

difference, together with only small quantities of chemoattractant, would become nearly 

immobile soon after the beginning of the simulation (Swat et al., 2012). Secondly, the small 

volume expansion at the beginning cannot sustain the movements either. Consequently, it was 

not possible to get the simulation cell speeds and patterns to a similar magnitude as observed 

experimentally merely by arbitrarily selecting the constants in (Eq. 2) such as (𝐽 ). ∆𝐻 

depended also on a separate field of the chemoattractant concentrations, and the other variables 

(Eqs 1, 2) (Swat et al., 2012). Correspondingly, the diffusion equation that governed  

the evolution of the chemoattractant concentration, 𝑐(𝑥 ), was adjusted as 

𝜕𝑐(𝑥 )

𝜕𝑡
= (𝐷𝛿)𝛻2𝑐(𝑥 ) − (𝛾𝛿)𝑐(𝑥 ) + 𝑆𝛿,      Eq. (3) 



  MATERIALS AND METHODS 

 

12 

 

where 𝐷, 𝛾, and 𝑆 were the diffusion, degradation and secretion rates for the cell in question, 

such as NP, respectively. The chemoattractant saturation was assumed negligible (see ’2.2.2 

Selection of Chemoattractant Saturation Type’). δ represent Boolean switches that were either 

1 or 0 depending on whether the concentration was located on the cell or not. If it was in the 

cell in the question, then the switch value was one. The chemoattractant diffusion field (
𝜕𝑐(𝑥 )

𝜕𝑡
) 

evolved in a separate domain independently of the cell domain. For this reason, this domain 

was similar in size as the cell domain.  

The current modelling handled three cell types (UB, NP, MM) as the sources and receivers of 

the values of the field in the equation (3). Therefore, this partial differential equation in question 

can be expanded into three different equations; namely  
𝜕𝑐(𝑥 )𝑈𝐵

𝜕𝑡
 , 

𝜕𝑐(𝑥 )𝑁𝑃

𝜕𝑡
, and  

𝜕𝑐(𝑥 )𝑀𝑀

𝜕𝑡
. 

Similarly, all the constants and variables in each of the equations can be subscripted with the 

respective name of the cell, for example ‘𝐷𝑁𝑃’ (Swat et al., 2012). The ordinary differential 

equations for the signal transduction, metabolic or genetic pathways could have been also used 

in respect to subcellular processes, markedly with integrating CC3D codes to Systems Biology 

Markup Language (SBML) (Hucka et al., 2003). Notwithstanding, SBML was not considered 

so as to minimize the model assumptions, complexities and interdependencies. One example 

of the complexities was that the CPM algorithm tried to modify all of the parameters together 

with the concentration field simultaneously when minimizing the sum in (Eq. 2). 

2.1.2. Model Construction 

I applied and adjusted the previously described CPM to describe the behaviour of movements 

and aggregations of NP and MM cells during early murine nephrogenesis, postconceptional 

day 12 (Combes et al., 2016; Lefevre et al., 2017; Saarela et al., 2017; Tikka et al., 2019).  

For this purpose, I utilized the CC3D software. Explicitly, the following general assumptions 

were made to adjust CPM together with CC3D simulations  (Combes et al., 2016; Saarela et 

al., 2017): 

1. NP, MM, and matrix cells are able to migrate by cell sorting as described in the next 

chapter regarding CPM (Combes et al., 2016; Lawlor et al., 2019). 

2. Matrix cells are chemically and physically neutral in comparison to other cells 

(Combes et al., 2016). 

3. Only NP cells are able to perform chemotaxis, while UB, NP, or both cell types can 

secrete a chemoattractant (Junttila et al., 2015; Ricono, 2008).  
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4. UB cells are static (see ‘drift corrected UBs’ in (Combes et al., 2016)).  

5. All cell types undergo neither proliferation nor apoptosis during the period of the 

observation (Combes et al., 2014; Lindström et al., 2018; Little, 2012). 

The initial (3D) CC3D model setting comprised of two L-shaped structures composed of 64 

UB cells each separated by a space filled with MM and NP cells (n=196 each), and a matrix 

compartment comprising all remaining empty (pixel) space (Swat et al., 2009). The setting 

mimicked the spatial structure of two adjacent UB branches with surrounding metanephric 

mesenchyme (c.f., Figs 1, 4) (Combes et al., 2016; Krause et al., 2015). CM cells initially 

surrounding the UB tips consisted of MM cells, which have similar cell volumes, masses, and 

general regulation mechanisms (Fig. 1C). NP cells were induced from CM cells at the outset 

of the modelled period (Lawlor et al., 2019). All cells were set to cubical shape, with initial 

cell surface areas of 375 µm3 for MM and NP cells, and 1000 µm3 for UB cells.  

The distal end of the UB branch structure was denoted as ‘tip region’ and the origin of the inner 

angle of UB as ‘corner region’ (Figs 1C, 4A). My primary interest was to analyse the model 

cell outcomes in the corner region, where the PTA was formed (Figs 1C-E). 

  
Fig. 4: Two-dimensional (A-D) and three-dimensional (E-H) simulation patterns obtained 

with model 7_UB_NP_ADH. A/E) Initial cell patterns with uniform (A) and random (E) 

cell positions; tip distance (dt; [40,50]) and corner distance (dc; [20,40]) vectors are depicted 

in (A). B/F) Initial chemoattractant gradient patterns.  C/G) Final cell patterns.  D/H) Final 

chemoattractant patterns. In panels A, C, E, and G, UB cells are depicted in red, NP cells in 

green and MM cells in blue, while matrix space appears in black. In panels B, F, D, and H, 

standardized chemoattractant concentration gradients are depicted by coloured areas (2D) 

or sheets (3D), ranging from 0 (blue) to 1 (red). Example choice of coordinates are given in 

(A/E). 
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2.2. Model Simulation Studies 

2.2.1. Model Variants  

Eight model variants were constructed to simulate the impact of (a) chemotaxis of NP cells 

related to chemoattractant secretion from NP and/or UB cells separately or together with (b) 

adhesion-based cell sorting related to adhesion differences between different cell types. The 

model characteristics are listed in (Table 1). These variants represented the mechanisms 

potentially driving the cells in the studied experimental biological systems (ex vivo kidney and 

renal organoid), which corresponded the evaluated in vivo early nephrogenesis (Combes et al., 

2016).  

Table 1: Model parameters with pre-set values applied in 3D simulations.            

Parameter Pre-set value Models Ref. 

Target volume (𝑉𝑡) 375 x 10-18 m3 1-8 this work,  

(Combes et al., 2016) 

Lambda volume (𝜆𝑉) 20 x 109 kgm-4 

s-2 

1-8 (Osborne et al., 2017; 

Swat et al., 2009)  

Target surface area (𝐴𝑡) 312 x 10-12m2 1-8 this work,  

(Combes et al., 2016) 

Surface lambda (𝜆𝐴) 0.1 x 10-3 kgm-2 

s-2 

1-8 (Osborne et al., 2017; 

Swat et al., 2009)  

Time step (MCS) 0.017 h 1-8 (Osborne et al., 2017; 

Swat et al., 2009)  
Surface motility or CPM temperature 
(T) 

20 1-8 (Osborne et al., 2017; 

Swat et al., 2009)  

Contact energy coefficient (J) (all cells): 5 x 

10-15 kgs-2  

(NP&MM): 13 

x 10-15 kgs-2  

1,3-4; 

2, 5-7, 

8* 

(Osborne et al., 2017; 

Swat et al., 2009)  

Chemoattractant secretion (S) 3 DU/s 3-7 (Osborne et al., 2017; 

Swat et al., 2009)  

Chemotaxis lambda (𝜆𝐶𝐿) 100 x 10-27 

kgm2s-2 

3-7 (Osborne et al., 2017; 

Swat et al., 2009)  

Global diffusion constant (D) 1.0 x 10-12 m2s-1 3-7 (Brown, 2011; 

Osborne et al., 2017; 

Swat et al., 2009) 

Global decay constant (𝛾) 1.0 x 10-7s 3-7 (Osborne et al., 2017; 

Swat et al., 2009) 

   *see Table 2 for description of multiple adhesion interfaces in model 8. 

 

The first model variant (1_REF) did not include the mechanical or chemical differences 

between different cell types, but NP and MM cells showed patterns of ‘random walking’. This 
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model served as a reference, or minimum model. The second model (2_REF_ADH) assumed 

differences in adhesion energies between NP and MM cells (Lefevre et al., 2017), but no 

chemotaxis processes. Models 3 and 4 introduced chemotaxis of NP cells, assuming 

chemoattractant secretion either from UB (3_UB) or NP cells themselves (4_NP), while 

adhesion properties of NP and MM cells were set equal. In the following models (5 and 6), the 

models 3 and 4 were augmented by adding adhesion energy differences between NP and MM 

cells (5_UB_ADH, 6_NP_ADH). The seventh model included all features. i.e. the chemotaxis 

of NP cells, adhesion differences between NP and MM cells, and chemoattractant secretion by 

both NP and UB cells (7_UB_NP_ADH). Finally, a multi-adhesion model (8_ADH_ADH) 

was tested with the adhesion differences between all cells in the model (except UB-UB). For 

analysis and interpretation, the models (3, 5, and 7) were categorized as ‘UB secreting models’, 

and the models (4 and 6) as ‘NP secreting models’. Finally, the models (1, 2, and 8) were 

categorized as ‘non-secreting models’ and the models (2, 5, 6, 7, and 8) additionally as 

‘adhesion-based models’.  

The following model characteristics were permutated in the models to test their effect on the 

cell movements and aggregations in the different model variants: (i) initial (NP and MM) cell 

positions; (ii) initial spread of the chemoattractant from UB or NP or both (Combes et al., 2016); 

(iii) cell-cell adhesion properties, especially of the moving NP and MM cells (Lefevre et al., 

2017). For this purpose, I test simulated NP and MM cells with random (R) or uniform (U) 

initial cell distribution together with the chemoattractant with or without the initial presence of 

a chemoattractant field (Figs 4-6). The initial uniform and random cell patterns of two-

dimensional (2D) and three-dimensional (3D) models have been outlined in (Fig. 5). By the 

same fashion, the initial chemoattractant patters have been depicted in (Fig. 6).  
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Fig. 5: Initial cell patterns of the models in 3D and their central 

transversal cuts in 2D. A/C) Uniform pattern in (2D/3D). B/D) 

Random pattern in (2D/3D). 

 

 
Fig. 6: The initial chemoattractant patterns of the models with an initial field in 3D (D-

F) and their central transversal cuts in 2D (A-C). A/D) The NP secreting models. B/E) 

The UB secreting models (3, 5). C/F) The UB and NP secreting model (7). The relative 

distributions (0,1) of chemoattractant vary between small (blue) and high (red). See Fig. 

4 and for more information about the chemoattractant and the models. 
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Each model variant was simulated 30 times with a predefined set of parameters and initial 

conditions. The repetition was done with the aim to extract an average behaviour from the 

inherently stochastic simulations. During each of these basic simulations (8x30x4=960), I 

recorded both the coordinates in the centre of masses (COMs) of the moving cell types (NP 

and MM) and the relative amount of chemoattractant in these COMs over 1000 MCS. With 

these COM values, I calculated the average cell speeds, quantities, distances, and the local 

concentration of the chemoattractant separately in the tip and corner regions (Fig. 1C).  

Nevertheless, the cells in the basic model simulations accelerated for a relatively long time, 

300MCS, due the lack of the initial concentration field. Consequently, it was added as one of 

the initial conditions (Fig. 6). As a result, the cells then almost immediately jumped to  

the constant chemotaxis speed at the start of the simulation. Hence, I did not calculate the first 

10 MCS steps, and obtained reasonable cell speeds with only comparatively small effects to 

the final cell patterns. 

The cell speeds in the corner and tip regions were denoted as ‘corner speeds’ and ‘tip speeds’, 

respectively. Similarly, the distances of these cells from the outermost point of the UB tip were 

denoted as ‘tip distances’ and the distances from the UB corner as ‘corner distances’ (Figs 

1D/E, 4A/E). For direct comparison to experiments, I calculated the ratio of the tip to the corner 

values of the cell quantities, speeds, and distances in the simulations and experiments.  

The ratios were also needed because the corner distances of NP cells were within a certain 

range. Primarily, this range roughly extended to the diameter of perceived PTA in relation to 

simulation space, that is ~50 µm (Fig. 1). Albeit, the moving cells were in between the two UB 

trunks. Then again, the tip distances of NP cells were in an even smaller range in between the 

two tips. Hence, the ratio between tip and corner distances required to be below one.  

In the experimental data of Combes et al. the tip per corner NP cell speeds fluctuated relatively 

highly compared to the values in the test model simulations. This was one of the reasons for 

giving corner speeds separately. The other reason was that NP cells between or in the tips 

moved in swarming fashion. In addition, I calculated the chemoattractant ratios from the model 

simulation data, but not from the experiments. It was not technically feasible to measure the 

constant change of chemoattractant concentrations during the ex vivo and organoid experiments 

(see ‘2.5.1 Experimental Data Sources’).  
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2.2.2. Selection of Chemoattractant Saturation Type 

There are three types of chemoattractant saturation in CC3D: (a) ‘regular’, (b) ‘saturating’, and 

(c) ‘linearly saturating’. The names indicate how the chemoattractant is spread to the virtual 

grid in CC3D. The ‘regular’ type of saturation (a) occurs when the chemoattractant spreads 

with a constant speed. By contrast, the ‘saturating’ type of saturation (b) indicates a propagation 

with a logarithmic curve across the simulation time. On the contrary to (a), the dissemination 

of the chemoattractant during the ‘linearly saturating’ type of a saturation (c) happens 

according to a straight line with a slope more than one. Consequently, the effective energy 

relating to the chemotaxis is different depending on the saturation method (Swat et al., 2017). 

The corresponding formulas as in (Swat et al., 2017) for the free energy as ‘saturating’ (sat) or 

‘linearly saturating’ (linsat) are below 

∆𝐸𝑠𝑎𝑡 = 𝜆 (
𝑐(𝑥 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)

𝑠+𝑐(𝑥 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)
−

𝑐(𝑥 )

𝑠+𝑐(𝑥 )
),       Eq. (4) 

∆𝐸𝑙𝑖𝑛𝑠𝑎𝑡 = 𝜆 (
𝑐(𝑥 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)

𝑠∙𝑐(𝑥 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)+1
−

𝑐(𝑥 )

𝑠∙𝑐(𝑥 )+1
),     Eq. (5) 

This energy is constituted of three factors: 1) the saturation constant (s), 2) the chemotaxis 

lambda (λ), and 3) the concentration of the chemoattractant (𝑐(𝑥 ); c.f., Eq. 3).  

There were three reasons to assume the regular saturation (a) in all secreting models (3-7). First 

of all, the previously mentioned polarity module of the chemotaxis. It works even when it does 

not receive a direct input from the directional sensing module (Pollard and Borisy, 2003). This 

can happen when the levels of concentration or saturation are very low. Then one could insert 

(𝑠 = 0) in the previous equation (4, 5), and easily see that the free energies arriving from the 

alternative saturation types (b, c) disappear. Secondly, the regulation and feedback mechanisms 

of the secretion type (a, b, c) and magnitude (s, 𝑐(𝑥 )), or how cell respond to it (λ), were not 

directly available for the cells in the early nephrogenesis (E11-13) (Barasch et al., 1997; 

Desgrange and Cereghini, 2015; Ricono, 2008; Stuart et al., 2003). In this case, one could try 

to insert a large saturation (𝑠 = ∞) to the previous equations (4, 5), since it was known that the 

chemotaxis affected cell movements (Ricono, 2008). As a result, the linear saturation 

corresponded the regular saturation. In reality, the concentration of the chemoattractant cannot 

be enforced to infinity at will. It should be continuous and sufficiently large (c.f., Eq. 2). Thirdly, 

it was inconceivable to consider different types of saturation separately for UB and/or NP 

secreting models. For instance, it was unlikely that all secreting cells would turn their secretion 

on pro rata simultaneously with the same small magnitudes.  
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2.2.3. Model Simulations 

The correspondence of the simulation time unit (MCS) as an experimental one depended on 

the voxel (3D) scale (l), and the maximum speed of the relevant experiments (𝑣𝑚𝑎𝑥) (Andasari 

et al., 2012; Swat et al., 2012). Henceforth, it can be calculated together with the physically 

maximum allowed speed (0.2
𝑣𝑜𝑥𝑒𝑙𝑠

𝑀𝐶𝑆
) of the simulations 

𝑡𝑀𝐶𝑆(𝑠) = 0.2
𝑣𝑜𝑥𝑒𝑙𝑠

𝑀𝐶𝑆
∙

𝑙

𝑣𝑚𝑎𝑥
        Eq. (6) 

In this work, I supposed that cells crawled on a substrate of an experiment with a speed of 

approximately 0.2 
µ𝑚

𝑚𝑖𝑛
. For the simulations, I also assumed that 1 µm corresponded to 1 pixel 

in length. In other words, the lattice scale (l) was one 
µ𝑚

𝑝𝑖𝑥𝑒𝑙/𝑣𝑜𝑥𝑒𝑙
. Then, the maximum time per 

MCS was 0.2 ∙ 1 / 0.2/60 [seconds/minute] seconds = 60 seconds. Thus, the maximum real 

experimental time that can be assigned to 1000 MCS was ~16.7h (Combes et al., 2016). (Eq. 

6) also allowed the conversion of the model speeds to same scope as the experimental speeds. 

By contrast, a single CC3D simulation in 2D models typically took 30 seconds, and for 3D 

models 30 minutes. Be that as it may, there were no differences in the chemoattractant spread 

mechanisms between the different initial conditions of the simulations, such as U and R models 

with or without an initial chemoattractant field, as also indicated in (‘2.2.2 Selection of 

Chemoattractant Saturation Type’). Exemplary tests of 2D model simulation in CC3D with 

these conditions are shown in Figures 7 and 8. The CC3D simulations (Swat et al., 2012) 

consisted of 3-6 python code files of dynamic/static kind (see ‘7.3.1. Example of Dynamic 

CompuCell3D Coding File’) (Tikka, 2019b): 

1. (Static file) for simulation configurations, which has for instance the Potts variables 

and parameters. Obtains values from the next (dynamic) file. 

2. (Dynamic file) for simulation constraints and recording measurements, saving cell 

coordinates of each MCS to a file.  

3. (Static files) for initial cell and signaling configuration, which can be modulated/ 

randomized with the codes of the previous (dynamic) file. 

4. (Static files) for all parameters and parameter scan values, such as for the adhesion 

differences and chemotaxis strength. (see ‘2.3.1 Initial Estimation of Parameters’).  
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Fig. 7: CC3D (2D) simulation tests for finding appropriate cell and chemoattractant patterns 

for PTA formation at the end of simulations. A-D) Start (A/C) and end (B/D) cell/chemo 

(A-B/C-D) patterns of the uniform model (4). E-H) All similarly (as in A-D), but with the 

random model (3). In panels A, C, E, and G UB cells are depicted in red, NP cells in green 

and MM cells in blue, while matrix space appears in black. Non-standardized 

chemoattractant concentration gradients are depicted by coloured areas (2D), ranging from 

blue (low value) to red (high value). 

 

 
Fig. 8: CC3D (2D) simulation tests for finding cell and chemoattractant patterns that are 

within the range of the model assumptions (Tikka et al., 2019). A/B) UB secreting model 

with high secretion rate, and small gap between UBs. C/D) The NP secreting model with 

low secretion rate, and the small gap. E/F) UB model with low secretion rate, and big gap 

between UBs (closer to final version). G/H) The NP secreting model with low secretion 

rate, and one big UB. G/H) A test model for dissociation-reaggregation of NP and MM cells 

next to oval UB. In panels A, C, E, and G UB cells are depicted in red, NP cells in green 

and MM cells in blue, while matrix space appears in black. In panels B, F, D, and H, 

standardized chemoattractant concentration gradients are depicted by coloured areas (2D), 

ranging from 0 (blue) to 1 (red). 
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2.3.  Computational Estimation of Model Parameters 

2.3.1. Initial Estimation of Parameters 

The process of the model parameter estimation was initiated by varying the values of a cell-

sorting (2D) simulation in the CC3D software (Swat et al., 2012). The parameter modulation 

strategy was implemented as a back-inducing one, as will be described below (Andasari et al., 

2012; Combes et al., 2016; Osborne et al., 2017; Swat et al., 2009; Swat et al., 2012).  

The initial parameters of spatial relationships (such as 𝜆𝐴 , 𝜆𝑉 , 𝑉𝑡, 𝐴𝑡  in Eq. 2) and the cell 

numbers were chosen to be in comparable ranges as observed in the explant culture and kidney 

organoid experiments (see ‘2.5.1. Experimental Data Sources’, and Figs 1-4). These initial 

settings constituted the reference model (1; Fig. 9). The other initial parameter ranges were 

taken from the respective literature (Chen et al., 2015; Osborne et al., 2017; Swat et al., 2009).  

This especially applied to the contact energy coefficient (J), which refers to the cell-cell 

adhesion differences (Chen et al., 2015; Lefevre et al., 2017), and chemotaxis strengths (𝜆𝐶𝐿)  

(Chen et al., 2015; Combes et al., 2016; Little, 2015; Little, 2012) in the other 2D models (2-

8). The parameter values for all 2D models were subsequently scaled to 3D settings by 

multiplying with two as explained in (Magno et al., 2015), given the neighbourhood order of 

three. The final parameter values of the 3D models have been given in (Table 2).  
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Table 2: PSO optimized parameter values are bolded in each model (1-8). Values are presented 

as: Random (Uniform), for example in 6_NP_ADH: 7.9 (13). [*] 8_ADH_ADH assumed nine 

cell-cell adhesion interfaces: [1-3] ‘Wall (UB) and NP/MM/Medium’, [4] ‘NP and NP’, [5] NP 

and MM’, [6] ‘MM and MM’, and [7-9] ‘Medium and NP/MM/Medium’.  

The parameters of spatial relationships (𝑉𝑡, 𝐴t, 𝜆𝑉, NO), except 𝜆𝑆, and the ones not mentioned 

here were constant (see Table 1). 

 

 REF 

(1) 

ADH 

(2) 

UB  

(3) 

UB_ 

ADH (4) 

NP  

(5) 

NP_ 

ADH (6) 

UB_NP_

ADH (7) 

ADH_ADH  

(8) 

Chemoattractant  

secretion rate 

(DU/s) 

 0 0 3 3 3 3 6.91 0 

Chemotaxis 

lambda  

(10-27; kgm2s-2) 

 0 0 4.22 

(4.19) 

43.90 

(43.76) 

67.94 

(71.28) 

74.54 

(74.27) 

1.41 0 

Global diffusion  

constant  

(10-12; m2s-1) 

 0 0 1 1 1 1 1.83 0 

Global decay 

constant (s) 

 0 0 1 x 10-7 1 x 10-7 0.002 0.002 4.69 x 

10-7 

0 

Surface motility 

or CPM 

temperature 

(DU) 

 10 25 25 25 25 25 49.8 25 

Surface lambda  

(10-3; kgm-2 s-2) 

 0.01 0.01 0.01 0.01 0.01 0.01 8.11 0.01 

Contact energy 

coefficient 

between  

cell types    

(10-15; kgs-2) 

 5.0 
[5] 

7.9 
[5] 

5.0 [5] 6.68 [5]  

(6.98 [5]) 

5.0 [5] 7.9 [5] 

(13 [5]) 

7.86 [5] 21.07 [1],  

25.17 [2],  

1.75 [3],  

0.50 [4], 

33.33 [5],  

7.68 [6],  

35.83 [7],  

29.74 [8],  

1.57 [9] 

(26.59 [1],  

47.81 [2],  

29.53 [3],  

0.50 [4],  

20.47 [5],  

0.52 [6],  

24.09 [7],  

1.54 [8],  

38.09 [9]) 

Best Quality 

Value of PSO  

 -61, 

269 

-56, 

436 

-201, 

902 

-206, 

525 

-202, 

545 

-205, 

261 

-213, 

787 

-340,361 
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The simulation strategy for the models (2-8) was to produce NP cell aggregates, preferably 

close to spheroidal shape, by permutating the previously mentioned initial parameters 

(Andasari et al., 2012; Lefevre et al., 2017; Saarela et al., 2017; Swat et al., 2009). Particularly, 

I aimed that the aggregation was to be directed to towards the corner region at the end of  

the simulations (Figs 1-3). Accordingly, the initial literature estimates were modified one at 

the time, including in the following order:  

1. 𝜆𝐶𝐿 of NP cells. 

2. 𝐷, 𝛾, and 𝑆 of the chemoattractant coming from UB and/or NP cells. 

3. J between NP, MM, and/or UB cells. 

4. 𝜆𝑉 and 𝜆𝐴 of NP and MM cells. 

5. 𝑉𝑡 and 𝐴𝑡 of NP and MM cells. 

2.3.2. Particle Swarm Optimization of Parameters 

The Particle Swarm Optimization (PSO) technique was used to optimize the model parameters 

(Anum et al., 2016; Sluka et al., 2018). It improves the candidate solutions for parameters with 

respect to a given measure of quality (Bonyadi and Michalewicz, 2017; Zhang et al., 2015). 

The PSO was set to maximise the number of NP cells at the surface of UB in models (1, 2, 3, 

5 and 8), mimicking the patterns in the kidney organoid experiments, while simultaneously 

minimizing the difference between simulated and experimental (UB) tip cell speeds (Anum et 

al., 2016; Lefevre et al., 2017). In the NP secreting models (4, 6 and 7), the common surface 

area between NP cells for forming PTA was maximized with the similar handling for the corner 

 
Fig. 9: Cell patterns at the end of CC3D simulations of the reference model (1). A) The 

model pattern in 2D. B) The model pattern in 3D. 
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cell speeds. Hence, the speed differences and NP cell coverages could be used to calculate the 

measures of quality.  

The optimization of the simulated cell speeds was achieved by the use of the experimental data 

of Combes et al. (2016) (see ‘2.5.1 Experimental Data Sources’) (Anum et al., 2016; Combes 

et al., 2016). It was assumed that CM cells, described in that study, corresponded to NP cells 

in my model. Simulated cell speeds were also compared to the movement of MM cells observed 

in a kidney organoid model (see ‘2.5.1 Experimental Data Sources’). It was presumed that these 

cells corresponded to both NP and MM cells in my simulations. The cells attached or close to 

the UB tip in the organoid model were considered MM cells in the simulations, while the 

remaining MM cells were assumed to be NP cells (Figs 1C-E). CC3D development program 

‘Twedit++’ incorporated various model coding components for the model PSO codes, and are 

hence presented in (Tikka, 2019b).  The  details of the PSO algorithm are discussed both in the 

next chapter and in the supplement (see ‘7.3.2 Shortened Python Code of Particle Swarm 

Optimization Method’). Simulation settings, parameters and constants that were optimized 

together using the PSO algorithm were referred to as ‘PSOed’. 

2.4.  Particle Swarm Optimization 

2.4.1. Algorithm of Particle Swarm Optimization 

The PSO algorithm solves the parameters by using a population of the candidate solutions 

(Bonyadi and Michalewicz, 2017; Zhang et al., 2015). These solutions are called swarms. The 

algorithm handles the individual candidate solutions, also known as particles. These items are 

moved around the search-space according to their position and speed. The movement of the 

swarms is influenced by their own best-known positions. The movements are also guided 

towards the best-known position across all particles in the swarm. These best solution places 

are then updated as better positions are found. This process moves the swarm towards the best 

solutions (Fig. 10). 
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PSO makes only few assumptions about the problem being optimized. It can therefore search 

very large parameter spaces efficiently. In (Zhang et al., 2015) it was formulated as 

𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑘=1,…,tc 

[𝑓(𝑃𝑖(𝑘))],      Eq. (7) 

𝑔𝑏𝑒𝑠𝑡(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑖=1,…,𝑁𝑝

𝑘=1,…,tc 

[𝑓(𝑃𝑖(𝑘))],      Eq. (8) 

where pbest in (Eq. 7) is the direction from the current position to the best solution  

the particular particle has found so far is. Similarly, gbest in (Eq. 8) is the direction to the best 

solution regarding any particle in the swarm has found so far (Zhang et al., 2014). Furthermore, 

i denotes the particle index together with 𝑁𝑝, which is the total number of particles in a range 

 

Fig. 10: The principle of the particle swarm optimization for the parameter estimation. 

(Mukhopadhyay and Hazra, 2015) 
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that is to say i:[1, 2,…,Np], tc the current iteration number, f the fitness function as defined 

below, and 𝑃𝑖(𝑘) the position for time k. The fitness function f maps the values of the particles 

to a real value, and rewards those particles that are closest to the optimization criterion. The 

‘velocity’ V and position P of the particles are updated by the following equations  

 

𝑉𝑖(𝑡 +  1)  =  𝜔𝑉𝑖(𝑡)  +  𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑡)  −  𝑃𝑖(𝑡))  +  𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡(𝑡)  −  𝑃𝑖(𝑡)),  

      Eq. (9) 

 

𝑃𝑖(𝑡 +  1) =  𝑃𝑖(𝑡) + 𝑉𝑖(𝑡 +  1),         Eq. (10) 

 

where V in (Eqs 9, 10) denotes the ‘velocity’, composed of a vector of the same dimension as  

the parameter search space, 𝜔 is the inertia weight used to balance the particles momentum 

with the global and local exploitations, r1 and r2 are uniformly distributed random variables 

within a range [0, 1], and 𝑐1 and 𝑐2 are positive constant parameters used to weight the local 

and global affects, respectively.  

In my case, the momentum and scaling factors in (Eq. 9) were 𝜔 =0.73 and 𝑐1=𝑐2=1.5. The 

maximum speed for a parameter was limited by the parameter's allowed maximum value, that 

is to say Vmax was set to one. It is common to set an upper bound for the speed parameter to 

keep particles from flying out the allowed search space (Shahzad et al., 2014). If a particle's 

next movement would carry it out of the allowed parameter space, the particle is ‘reflected’ by 

the parameter space wall and the particle ‘rebounds’ back into the allowed search space. 

Important to realize was that the search space was already limited by the initial ranges of the 

parameters in each model. With this in mind, I studied maximum of seven parameters in PSOs. 

Example ranges are given in the next chapter (‘2.4.2 Constraints and Ranges of Parameters in 

Particle Swarm Optimization’).  

2.4.2. Constraints and Ranges of Parameters in Particle Swarm Optimization 

In order to minimize the time used for an appropriate convergence of the CC3D algorithm,  

I applied and restricted the following static constraints during the PSO iterations: chemotaxis 

lambda (𝜆𝐶𝐿), secretion rate (S), the diffusion constant (𝐷) as well as the decay constant (𝛾) by 

the upper bounds of 100, 30, 0.5 and 0.001, respectively. The initial contact energy coefficients 

(J) between NP and MM cell values in the adhesion increment models (2, 5, 6, 7, 8) were 13, 

and in the other models (1, 3, 4) J was 5. Typical swarm parameter ranges were: D:[0.1, 2.0], 
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𝛾:[10-8, 10-6], J:[2.0,8.0], 𝜆𝐶𝐿: [10.0, 150.0], S:[0.3, 30.0], T:[5, 50.0], and 𝜆𝐴:[0.001, 10]. PSOs 

yielded a variable number of PSOed parameters depending on the model variant (Table 2).  

Consequently, 7_UB_NP_ADH_R was considered the most technologically advanced model 

in comparison to others, since it contained all the parameters that other models had and more. 

Hence, it’s parameter and quality values were used as a maximum appraisal that the other 

models should not exceed. Moreover, the PSO algorithm used in this work penalized the overall 

quality value with specific χ2 values that were derived from the previously mentioned speed 

differences in each time point (Anum et al., 2016). Despite, these speed quality values were 

smaller than the quality value of the surface coverage (Combes et al., 2016). Accordingly, the 

speed quality values in each time point for every model were also multiplied by a scaling factor 

(of 100) that corresponded 20% of the maximum quality value from NP coverage at UB in 3D 

7_UB_NP_ADH_R. It was deemed unlikely that the speed quality values were higher in the 

other models. For example, 4_UB_R had a nominal quality value of 199475 in one PSO, where 

the contribution of the surface area was 186264, and the speed value was -13211.  

By comparison, a quality value in the previous model (7) reached a plateau value of 220750 

with example contributions of 198675 and -22015 respectively for the area and speed.  

As an illustration, PSOs were run with 60 iterations using 4 independent swarms and 8 particles 

per swarm. Each simulation was run three times, and used the average result, since the CC3D 

simulations were stochastic. As a result, the replicate runs with the same parameter set did not 

give identical results. Example ranges of parameters and simulation lengths during the model 

(7) optimization are given in the supplement (‘7.2 Example Ranges of Parameters and 

Simulation Lengths During Optimization’). 

2.5. Experimental Design 

2.5.1. Experimental Data Sources 

In this study, two sources of ex vivo experimental data were used to calibrate and validate  

the simulation models (Combes et al., 2016; Tikka, 2019c). These comprised the results 

obtained with an explant culture model reported by Combes et al. (2016), and original results 

reported in this work obtained with a dissociation-reaggregation kidney organoid model 

(Combes et al., 2016; Costantini and Kopan, 2010; Saarela et al., 2017; Tikka, 2019c).  

The recorded data frames consisted of the number of samples per number of time points. The 

sizes of these frames were 15 x 50 for the explant culture in 15h, and 1x15 for the kidney 
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organoid study in 2.5h (see ‘2.6. Technical Workflow of Analysis’ for more details) (Tikka, 

2019c). The explant culture experiments of Combes et al. (2016) comprised of 500 NP cells, 

whereas the kidney organoid studies presented here comprised of 500-2000 MM cells (Combes 

et al., 2016). Outliers were replaced with a moving average of three previous data values, c.f., 

python code ‘rolling mean’ (Tikka, 2019d). 

2.5.2. Kidney Organoids 

Embryonic kidneys were dissected from embryonic day 11.5 mouse embryos from crossing of 

Wnt4Cre (Shan et al., 2010) and tomato floxed Rosa26 Green fluorescent protein (GFP; 

mT/mG) reporter mice (Muzumdar et al., 2007) as described in (Junttila et al., 2015).  

Intact UBs were treated with GDNF and dissociated MM with BMP7 and FGF2 as in (Junttila 

et al., 2015). The intact UB was reaggregated with MM cells and incubated overnight to form  

a kidney organoid. The organoids were set to grow in a FiZD culture (Saarela et al., 2017) for 

time-lapse imaging into a temperature and gas controlled on-stage incubator (OkoLab, Italy) 

on a Zeiss LSM780 confocal microscope. 

2.5.3. Microscopy, Image Processing and Data Segmentation 

For the purpose of tracking and distinguishing MM cells from UB cells, MM cells were set to 

express GFP. The fluorescence microscopy of this work was performed with a Zeiss LSM 

780 confocal microscope (Carl Zeiss, Germany) using 25x/0.8 Zeiss LCI PlanNeofluar water 

immersion objective with a 488nm wavelength for excitation, and a range of emission between 

490-601nm. Out of original images of 250 µm x 300 µm x 29 µm (XYZ), an area of two close 

and relatively static UBs, approx. 150 µm x 100 µm, was selected with the Zen Blue  

(Carl Zeiss, Germany) imaging program. There were 16 Z-layers in the z axis stack, from 

which all were selected. Here, a XYZ pixel size was 0.24 µm x 0.24 µm x 1.46 µm, and  

the temporal resolution was given by 16-time frames with 10 min between the frames.  

The video of the moving MM cells in the kidney organoid experiment has been given stack-

by-stack in an online repository (Tikka and Skovorodkin, 2019). Deconvolution was used to 

improve image signal to noise ratio, contrast and resolution. This process was done with 

Huygens Professional program (Scientific Volume Imaging, The Netherlands) using 

distilled PSF, with background value of 3.5, S/N value of 10, autobleach correction off, and 

saving the resulting deconvolved image as 16-bit tiff file format (Saarela et al., 2017; Tikka, 

2019c). The segmentation of the tiff file of the deconvolved image was done with a previously 

compiled MATLAB code (Saarela et al., 2017). I specified the cell diameter range between 
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0.5-20 µm. The code produced a raw data file ‘.csv’ of the positions, sizes and speeds of all of 

the cells by identifying objects that it redeemed as cells from the images.  

2.6. Technical Workflow of Analysis 

The purpose of the current workflow was to develop appropriate ways to calculate measures 

from the recorded model data, and the data obtained from the experimental studies of kidney 

organoid and explant culture models (Combes et al., 2016; Tikka, 2019c). The primary goal 

was to calculate the regional cell quantities, speeds, distances and concentrations of the 

chemoattractant from the data. This enabled the comparison and analysis between the different 

data. Hence, the analysis required five coding phases, see below.  

Before the calculations, the data frames were imported to a coding platform, such as Spyder 

with python version 3 (Contributors, 2017; Tikka, 2019d). The file extensions of these frames 

were ‘.xlsx’ for experiments and ‘.csv’ for models. With this information, these frames were 

then made similar in size with python’s PANDA package. This was needed for the remaining 

primary operations and calculations (Fig. 11).  

 

Accordingly, I constructed up to five functions for calculating each measure from the model 

data (see ‘7.3.3. Shortened Python Code of 2D and 3D Data Analysis’) (Tikka, 2019c; Tikka, 

2019d). The basic flow of routine was the same for each measure: 1) selection of the previously 

  
Fig. 11: Study design of computational analysis workflow. Experimental and model data 

was importer to Spyder and converted to symmetrical matrices. The calculation of NP cell 

speeds and positions were done after selecting matching samples of experiments and 

models, and plotted with own functions. 
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preselected NP or MM cells in either tip or corner regions, 2) checking zero or NAN values 

out of the data, 3) calculating the measure for one/all conditions, 4) calculating the averages 

and confidence intervals (CI) of the measure across all of the previously selected data  

(in routine 1), 5) exporting the resulting data to ‘.csv’ files. The experimental tip and corner 

distances and quantities of cells were normalized to [0, 1], and the transformed cell distances 

or quantities were multiplied by the model averages. The speeds and concentrations were not 

scaled between the simulations and experiments. 

In the first place, the calculations were done with the NP and MM cells near to the left-hand 

side of the two simulated UBs for various reasons (c.f., Figs 1D/E, 4A). In their original 

analysis Combes et al. (2016) considered NP cell coordinates near one UB, whereas I simulated 

the behaviour of both NP and MM cells between two adjacent UB tips (Combes et al., 2016; 

Tikka et al., 2019). The latter was similar to the kidney organoid experiments of this work.  

In my spatio-temporal model setting, the cells surrounding either of the UB tips reacted 

presumably first to the chemoattractant coming from that UB (Short et al., 2014), as was 

illuminated in the previous similar experimental studies (Lefevre et al., 2017). In the other case, 

the proximity of the chemoattractant source to force cells go closer to that source, applied also 

to the chemoattractant secreting NP cells themselves (Figs 4, 7, 8). Either way, to have 

comparable results, I calculated the average measures and CIs for those NP and MM cells that 

were closer to left-hand side of the previous structure in silico. The experimental vectors have 

been outlined previously in (Figs 1D/E). Finally, the results were visualized in Excel together 

with the scaled experimental measures.  

The reliability of the model simulation outcome was assessed by monitoring in tandem the 

dimensionless concentration levels or cell patterns during CC3D simulations (Figs 6, 9, 12-15). 

In comparison to the reference model (1; Fig. 9), the cell patterns (c.f., Figs 9, and 13, 14) in 

the secreting models (3-7) should be more coherent, and the levels of the concentration (c.f., 

Figs 6, and 15) higher. On the contrary, the outcome of the other non-secreting models (1, 2, 

8), which did not allow for any chemoattractant secretion, should be different than the previous 

model outcomes (c.f., Figs 12, and 13, 14). 
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Fig. 14: Cell patterns at the end of CC3D simulations of the UB secreting models in 3D: 

A) 3_UB_R, B) 5_UB_ADH_R, C) 7_UP_NP_ADH_R. 

 

 
Fig. 13: Cell patterns at the end of CC3D simulations of the non-secreting models in 3D: 

A) 1_REF_R, B) 2_REF_ADH_R, C) 8_ADH_ADH_R. 

 

 
Fig. 12: Cell patterns at the end of CC3D simulations of the 

NP secreting models in 3D: A) 4_NP_R, B) 6_NP_ADH_R. 
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Fig. 15: Chemoattractant patterns at the end of CC3D simulations. The primary patterns for 

the UB and NP secreting models. A) 3_UB and 5_UB_ADH, B) 4_NP and 6_NP _ADH,  

C) 7_UP_NP_ADH. The relative distributions (0,1) of chemoattractant vary between small 

(blue) and high (red). See Fig. 4 and for more information about the chemoattractant and 

the models. 

 

 

 

 

 

 

 

 

 

2.7. Analysing Data with Self-Organizing Maps 

2.7.1. Introduction 

The Self-Organizing Map (SOM) approach, an iterative machine learning method (Kohonen, 

1982; Kohonen, 2007), was applied to identify and compare the stable cell speed regions in the 

simulations and experiments. Specifically, I was interested in the different behaviour of the 

simulated and real NP cells at the tip and corner regions. For this purpose, the python function 

‘MiniSom’ (Vettigli, 2018) was applied to perform the SOM speed analysis, to my simulations 

and the experimental data as described above (Combes et al., 2016; Tikka et al., 2019).  

2.7.2. Self-Organizing Maps 

SOM is a machine learning method involving an artificial network to represent the original 

experimental or simulation data. The method resembles mathematical iteration by conducting 

an unsupervised learning to compress the data to 2D map of nodes. The primary relationships 

of the data elements, such as the cell names and their different coordinates, can be conserved 

with a neighbourhood function. (Kohonen, 1982) 

The iteration routine consisted of giving weights to the real distances between the network 

nodes and the data. The node, whose weight vector was most similar to the data, was called  

the best matching unit (BMU). The weights of the BMU, and nodes close to it in the SOM grid, 

were adjusted towards the input vector. The magnitude of the change decreased with time and 

with the grid-distance from the BMU. The iteration equation for a node v with weight vector 

Wv was 
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Ws(si + 1) = Wv(si) + θ(u, v, si)α(si)D((t) − Wv(si)),     Eq. (11) 

where D(t) in (Eq. 11) was the data vector, si was the iteration step index number, t was  

a randomly or otherwise selected index number of the training sample, u was the index number 

of the BMU for D(t), and α(si) was a monotonically decreasing learning coefficient. Finally, 

θ(n,v,si) was the neighbourhood function. It gave a distance between the previous node (n) and 

the node (v) in the iteration step (si) (Kohonen, 1982). A use of computer program techniques 

was needed for performing this kind of an iterative calculation.  

Several options were available to perform the iteration (DZone, 2019; NG and Soo, 2017; 

Vettigli, 2018; Wittek et al., 2017). The most convenient for elementary purposes was  

the ‘MiniSom’ python function developed earlier (Vettigli, 2018). Shortly, it required four 

instructions: 1. Importing and normalizing the initial experimental or simulation data, which 

consisted here of all the cell speeds together with their respective COMs, 2. Specifications for 

the node map; the size of the node map matrix, learning coefficient, initial spread of 

neighborhood function as gaussian, and the neighborhood function, which was here the 

Mexican hat’ as long as to gather all 2D nodes inside an oval, 3. principle component analysis 

style weighted BMUs done in a random-like fashion, and finally 4. the primary iteration, which 

was by default a random training of 5000 times, since more than 300 did not enhance the 

accuracy significantly (Vettigli, 2018).  

The other parameter values for SOM were: sigma=4, learning rate=0.5, and the size of the 

random seed was 10. The routine took about 15-40 minutes depending on the original size of 

the initial data, in other words the memory space used by the computer. All SOM nodes were 

plotted with gradually increasing colors in respect to their closeness to the original data  

(Fig. 16). To find the cell speed regions with SOM, I identified all COMs and deduced the 

changes in the speed trends from these COMs. This was especially needed if the data was noisy, 

such as the segmented data of the kidney organoid experiments (Tikka, 2019c). In that case, 

the noise-cell coordinates were back-deduced to correspond their respective real cells by using 

the mean areas and speeds of the cells (50 µm2, 0.15 µm/min) (see ’7.3.4. Shortened Python 

Code of Self-Organized Maps’). In other words, SOM improved the original segmentation 

accuracy and its interpretation (see ‘2.5.3 Microscopy, Image Processing and Data 

Segmentation’) (Stegmaier et al., 2016). 
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SOM node matrix was devised as size as 10 times 10 due computational efficiency (Vettigli, 

2018). The method typically found after the iterative training 10-30 (from 100) nodes that were 

closest to the original data. Subsequently, only eight closest groups to the data were chosen 

(see ’7.3.4. Shortened Python Code of Self-Organized Maps’). I further selected the groups, 

where the cell speeds were 95 % similar in the beginning and in the end (Fig. 16). This was 

because the regions of interests were the ones where the cell speeds remained approximately 

similar across the entire experimental or simulated time. There were usually three groups from 

the previous eight. Finally, I remapped these groups back to normalized space by recasting 

them to their original COMs, and plotted the speed contours with the representative images of  

the corresponding experiments or simulations in the background. 

 
Fig. 16: SOM procedures. The model or experimental data was iterated towards a node map 

with specific rules. The node groups that had the appropriate elements, such as speeds and 

coordinates, were converted back to real space, checked, and plotted as contour plots 

together with the perimeters or background images of the experiments or model simulations 

(Combes et al., 2016; Tikka et al., 2019). 
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3. RESULTS 

3.1.  Initial Model Parameter Estimation 

The initial parameter settings for 𝜆𝐴, 𝜆𝑉, 𝑉𝑡, 𝐴𝑡, and J (see Eq. 2; Table 1) defined the reference 

model (1_REF; c.f., Fig. 9) together with the predefined spatial relationships (Tikka et al., 

2019). Starting from these settings, the contact energy coefficients (J) between NP, MM, UB 

cells and the matrix were modified, yielding the adhesion-based models (2, 8; Fig. 17A/B).  

 

The purpose of this modification was to identify the range of contact energy coefficients 

required to induce cell aggregations, and to explore the aggregation behaviour of NP and MM 

cells in the CC3D model space (Andasari et al., 2012; Combes et al., 2016; Osborne et al., 

2017; Swat et al., 2009). Examples of the initial aggregation tests have been given earlier in 

the methods (Figs 7, 8). 

Next, I investigated the impact of chemotaxis and its source on cell patterning. Accordingly,  

I assumed the secretion of chemoattractants from either UB cells and/or NP cells themselves 

(Fig. 15). To that end, I modified the parameters related to chemoattractant secretion (S), 

diffusion (D), degradation (γ), and chemotaxis strength (𝜆𝐶𝐿; see Eqs 2, 3). First, NP cells 

(model 4; Fig. 17C) were assumed as the alternative source of the chemoattractant secretion 

with the intention to derive plausible value ranges for these parameters and explore the effect 

  

Fig. 17: Cell patterns at the end of optimized (2D) model simulations without initial field. 

A) 8_ADH_ADH_U, B) 2_ADH_U, C) 4_NP_U, D) 6_NPADH_U, E) 3_UB_U,  

F) 5_UB_ADH_U, G) 7_UB_NP_ADH_U, H) 7_UB_NP_ADH_U with 50% less NP cells.  

The colours of the cells are in UB (red), NP (green), MM (blue), and Matrix (black). 
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of chemotaxis on cell clustering. Secondly, the combined effects of the contact energies and 

chemotaxis were considered in the following model (6; Fig. 17D). Finally, the same procedure 

was done with UB cells in the ensuing models (3, 5; Figs 17 E/F) and the secretion sources 

combined in the final model (7; Figs 15C, 17 G/H). 

3.2.  Formation of Patterns 

The eight model variants yielded distinctly different final cell and chemoattractant patterns (Fig. 

15, 17). The initial conditions and parameters had only a limited effect to the final patterns in 

3D (Figs 18, 19). For this reason, the following description refers to the model patterns obtained 

with optimized simulations using random initial cell distribution and no pre-formed 

chemoattractant gradient, unless otherwise specified. The results of the other initial conditions 

and 2D patterns are given in (Tikka, 2019a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 18: The start (A/C) and end (B/D) cell patterns of CC3D simulations of the 

reference model (1) with two random initial positions (A/C). The contribution of 

the initial to the final aggregation patterns (B/D) are indicated with red arrows. 

Cell names (and colours): UB (red), NP (green), MM (blue), and Matrix (black). 
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The reference model yielded a cell pattern without coherent clustering over time (Figs 9, 18). 

In the models assuming adhesion differences between MM, NP, or other cells, but no 

chemotaxis, streak- or ball-like clusters emerged throughout the inter-UB area (Figs 12,  

17A/B). The models involving chemoattractant secretion by NP cells with and without cell 

adhesion differences resulted in cell aggregates between the UB tips without adherence to the 

UB surface (Figs 13A/B, 17D/F). In the models involving UB cell chemoattractant secretion, 

NP cells aggregated along the UB surface, with a preference to the corner regions (Figs 14, 

17E-H,). Directed migration and preferential aggregation of NP cells in the UB corner was 

observed in the previously mentioned models (3, 5, and 7; Figs 14, 17E-H), resembling the 

formation of PTA in the corner region during nephrogenesis (Fig. 1C). The most consistent 

formation of NP cell clusters resembling PTAs was observed with the most advanced model 

(7; Fig. 17G/H). It involved the chemoattractant secretion by both UB and NP cells and a 

stronger adhesion between NP and MM cells relative to other models (Figs 17, 20B/E/H, Table 

2). The video of the model (7) behaviour can be viewed online (Tikka, 2019e). 

 

 

 

 

 
Fig. 19: Cell patterns at the end of CC3D simulations. The NP secreting model (4_NP) was 

simulated with the initially A) uniform and B) random cell patterns (defined in Fig. 4). Cell 

names (and colours): UB (red), NP (green), MM (blue), and Matrix (black).  
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Fig. 20: Representative final cell configurations obtained with the optimized models using 

initial chemoattractant fields. The model simulations were either in 2D (A-C) or 3D  

(D-I), depicting 5_UB_ADH_R (A/D/G) and 7_UB_NP_ADH_R (A/D/G and B/E/H), 

and assumed both the normal 50% or 25% (C/F/I) NP cells among total CM cell 

population. 3D views (G-I) are displayed together with their central transversal cuts (D-

F). UB cells are depicted with red, NP cells with green, and MM cells with blue colors. 

(Tikka et al., 2019) 
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3.3. Experimental Studies 

The cell movement analysis performed on the data of the explant culture model experiments of 

Combes et al. (2016) and the kidney organoid model experiments of this work (Tikka et al., 

2019) are provided in (Fig. 21) (Combes et al., 2016; Lawlor et al., 2019; Lefevre et al., 2017; 

Tikka et al., 2019).  

 

The observed overall NP cell speed averages were 0.15±0.02 µm/min in the explant cultures, 

and similarly with MM cells’ 0.13±0.01 µm/min in the kidney organoid. The histograms of  

the experimental cell coordinates and their speeds are shown in (Figs 22, 23). The distribution 

of the respective cell positions was largely normal (Fig. 22). However, as can be seen in Fig. 

22F, the z axis data of the explant culture experiments was skewed. Nevertheless, the 

histograms of the experimental speeds were left-bound (Figs 23A/B). The data of model 7 is 

given as a comparison to the experiments (Fig. 23C). 

 

 

 

  
Fig. 21: Tip and corner (2D) speeds from the x and y coordinates of the experiments.  

A) The average speeds of the kidney organoid experiments (Tikka et al., 2019). B) 

Similarly, in the explant culture experiments (Combes et al., 2016). Corner cells are blue 

and tip cells are orange. Black stripes indicate confidence intervals. 
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Fig. 22: Histograms of the calculated cell speeds during the A) explant culture (Combes et 

al., 2016) and B) kidney organoid experiments (Tikka et al., 2019), and C) the model 7.  

The frequency of cell speeds is given in arbitrary units (AU) due differences in the cell 

quantities or coordinates between different simulations or experiments (c.f., Fig. 22). 

 

 

 

 

 

 

 

 

 

While cell speeds in the explant culture fluctuated considerably more than in the kidney 

organoid experiments, in both experimental settings the two cell types moved at different rates 

depending on their location relative to the UB tip (Fig. 21). In the corner region, the average 

cell speeds were 0.16±0.02 µm/min in the explant culture experiments and 0.15±0.01 µm/min 

in the kidney organoid (Combes et al., 2016). Average speeds in the tip region were 0.12±0.01 

µm/min in both experimental settings. The calculated averages of corner and tip distances at 

the end of the experiments are given at (Table 3). 

 

 
Fig. 23: Histograms of the cell coordinates (x,y,z) during A) kidney organoid (Tikka et al., 

2019), and B) explant culture experiments (Combes et al., 2016). 
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Table 3: The final cell speed and distance values averaged from the last 10% of the values in 

the experiments (Combes et al., 2016; Tikka et al., 2019). The 3D values of the explant culture 

experiment have been estimated due to the abnormal z axis values (c.f., Fig. 22F). 

Experiment Corner speed 

(µm/min) 

Tip speed 

(µm/min) 

Corner 

distance (µm) 

Tip distance 

(µm) 

Explant Culture (2D) 0.125±0.033 0.122±0.032 28.45±0.19 19.8±0.14 

Kidney Organoid (2D) 0.104±0.005 0.092±0.004 25.41±0.55 21.34±0.46 

Explant Culture (3D)1 
0.154±0.033 0.150±0.032 32.07±0.22 22.77±0.16 

Kidney Organoid (3D) 0.129±0.005 0.113±0.004 28.14±0.64 24.39±0.54 

 

3.4. Comparing Cell Behaviours Between Models and Experiments 

3.4.1. Estimation of Final Parameters with Particle Swarm Optimization 

The parameter ranges for PSO were chosen according to the initial model parameter estimates 

and the additional PSO algorithms (see ‘2.4.2 Constraints and Ranges of Parameters in Particle 

Swarm Optimization’ and ‘7.3.2 Shortened Python Code of Particle Swarm Optimization 

Method’) (Tikka, 2019d). All models were subjected to PSO, where the optimization procedure 

aimed at maximising the amount of NP cells at the UB surface, while simultaneously aligning 

NP cell speeds in the model to the cell speeds observed experimentally in the explant culture 

setting, as mentioned in the methods. The final model parameter values obtained by the PSO 

technique were given in (Table 2).  

The improvement of the models achieved by the application of PSO was illustrated by the Best 

Quality Values (Table 2; lower numbers indicating better quality). The best model quality was 

obtained with the model 7, while the other models showed either substantially lower quality or 

a spuriously high quality without matching the experimental situation. This applied in 

particular for the NP secreting models (4 and 6) and the adhesion model (8). In the latter model, 

NP cells did not aggregate towards the UB surface in the first place. Examples of running PSO 

quality values and parameters in the model 7 are given in the following graph (Fig. 24), and in 

the supplemental table (Table S1). 
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Fig. 24: An example of the quality and parameter value developments during PSO.  

A) Quality values during (3D) 7_UB_NP_ADH_R the swarm iterations of PSO. Legend 

indicates different swarms. B) The adhesion differences (AED) during the same 

optimisation. i) The values of AED have been multiplied with 10-15 (kgs-2). 
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Nevertheless, the optimized adhesion difference (J) values for each model, except for models 

1, 3, 4, and 8, were close to non-optimized ones. Markedly, 5_UB_ADH had (J of) 6.68, which 

is in the similar magnitude as 3_UB’s 5. Even so, 8_ADH_ADH had the greatest variety of 

adhesion differences as expected; for example in the uniform model with: 0.50279 (‘NP and 

NP’) to 47.808 (‘Medium and NP’), and random model with: 0.50203 (‘NP and NP’) to 37.680 

(‘MM and MM’; Table 2). Finally, the chemotaxis lambda values (𝜆𝐶𝐿) were higher in the NP 

secreting models than in the UB secreting ones.  

3.4.2. Speeds of Cells at Tip and Corner Regions 

The slower relative cell movements of both MM and NP cells around the UB tip region was 

also apparent, when expressed as the tip-to-corner speed ratio, which was below one (1) for 

most of the observation time (Fig. 25). Average cell speeds in their average coordinates are 

given in (Fig. 26). In addition, averages of the final corner and tip speeds of the simulated NP 

and MM cells are given in the supplementary tables (Table S2, S3). 
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Fig. 25: Average tip-to-corner speed ratios of NP and MM cells in the simulation studies of 

different models together with the results from experiments. A/B) NP cells in the models 

(see legend) with the cells in the explant culture experiments (scaled to model 3 and 4) 

(Combes et al., 2016). C/D) MM cells in the models similarly scaled with cells in the kidney 

organoid experiments (Tikka et al., 2019). A/C) Simulations before the optimization. B/D) 

Simulations after the optimization. Vertical bars indicate 95% confidence intervals.   
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The optimization procedure resulted in a more accentuated difference in the corner and tip cell 

speeds of the models (3, 5, 7) involving chemoattractant secretion by the UB as seen in (Fig. 

27). At the same time, the tip-to-corner speed ratio of NP cells in these models decreased with 

time, aligning with NP cell speed ratio observed towards the end of the explant culture 

experiments (c.f., Figs 25B, 26A). By contrast, MM cell speeds in the kidney organoid 

experiments were better matched by the optimized NP secreting models (4 and 6; c.f., Figs 

26B/C, 27D). In the secreting models (3-7), the overall speeds of NP cells both in the tip and 

corner regions, consistently exceeded those of MM cells (0.13±0.03 vs. 0.03±0.02 µm/min; 

Fig. 27).  

 

 

 
Fig. 26: Average cell speeds with average locations during the entire simulation or 

experimental time. A)  The explant culture experiment (Combes et al., 2016). B) The kidney 

organoid experiment (Tikka et al., 2019). C) The NP secreting model (4). The speed scale 

goes from small (red; 0) to fast (green; 1). The contour of underlying UB is drawn with a 

light blue colour. 
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3.4.3. Self-Organizing Maps Applied to Speeds of Cells 

According to 2D SOM analysis (Fig. 28), stable speeds in the explant culture data were 

0.19±0.02 µm/min in the corner, and 0.14±0.01 µm/min in the tip region (Combes et al., 2016; 

Kohonen, 1982). 2D analysis was performed, because 3D data, or more specifically z axis data, 

of the explant culture experiments was found regularly skewed (Fig. 22F). Stable cell speeds 

of the kidney organoid data calculated by 3D SOM analysis were 0.25±0.02 µm/min in the 

corner and 0.18±0.02 µm/min in the tip region, respectively. The different speed of motion of 

 

  
Fig. 27: Average speeds of NP cells in tip (A/B) and MM cells in corner (C/D) with 

confidence intervals of the respective experiments in Explant Culture (A/B; red) (Combes 

et al., 2016), and Kidney Organoid (C/D; red) (Tikka et al., 2019)). Measured during 

multiple simulations for the random models: Before PSO (A/C) and After PSO (B/D) 

emphasizing covering UBs with NP cells. Black stripes indicate 95% confidence intervals.  
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cells in the tip and corner regions is illustrated in the coloured speed contours of the transformed 

SOM plots (Fig. 28). 

 

 

3.4.4. Quantities of Cells at Tip and Corner Regions 

The number of NP or MM cells accumulating in the corner region was increased by the 

optimisation procedure with the UB secreting models (Fig. 29). Similarly, the development of 

cell quantities in the different models at the tip region have been given in (Fig. 30). 

 

 

 

  
Fig. 28: The cell speed contours (A-C) of the best SOM groups (Kohonen, 1982). A) NP 

cells in the explant kidney culture (Combes et al., 2016), B) MM cells in the kidney 

organoid model (Tikka et al., 2019), C) NP cells in the optimized model (7). The speeds 

and the coordinates (x) have been normed to [0, 1]. The experimental and simulation images 

in the background reflected the cell regions. 
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Fig. 29: Enrichment of NP and MM cells in the corner region of the simulation studies of 

different models together with the results from experiments. A/B) NP cells in the models 

(see legend) with the cells in the explant culture experiments (scaled to model 3 and 4; see 

legend) (Combes et al., 2016). The model (7) is presented with NP cell quantities of 50% 

(black; regular) and 25% (grey with %; scaled). C/D) MM cells in the similar models with 

cells in the kidney organoid experiments (scaled) (Tikka et al., 2019). A/C) Simulations 

before the optimization. B/D) Simulations after the optimization. Vertical bars indicate 95% 

confidence intervals.   
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Fig. 30: Average NP (A/B) and MM (C/D) cell quantities at the tip in the simulation studies 

of different models together with the results from experiments. A/B) NP cells in the models 

(see legend) with the cells in the explant culture experiments (scaled) (Combes et al., 2016). 

C/D) MM cells in the models (see legend) with the cells in the kidney organoid experiments 

(scaled; see legend) (Tikka et al., 2019). A/C) Simulations before the optimization. B/D) 

Simulations after the optimization. Vertical bars indicate 95% confidence intervals. 
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3.4.5. Distances of Cells to Tip and Corner 

In the optimized models, the calculated total distance travelled by NP cells during  

the simulation period was between 90-160 µm. Regardless, the relative tip-per-corner cell 

distances of around 0.66 with the explant culture experiments were closest to the UB secreting 

models (3, 5, 7; c.f., Figs 7, 8, 20, 31A/B) (Combes et al., 2016). Even though,  

the relative distances in the kidney organoids were best recapitulated by the optimized 

adhesion-based or NP secreting models (1, 2, 4, 6; c.f., Figs 7-13, 31C/D).  

  
Fig. 31: Tip-to-corner distance ratios of NP (A/B) and MM (C/D) cells in the simulation 

studies of different models together with the results from experiments. A/B) NP cells in  

the models (see legend) with the cells in the explant culture experiments (scaled to model 3 

and 4) (Combes et al., 2016). C/D) MM cells in the models similarly scaled with cells in  

the kidney organoid experiments (Tikka et al., 2019). A/C) Simulations before the 

optimization. B/D) Simulations after the optimization. The tip and corner distances have 

been outlined in (Fig. 1, Fig. 4). Vertical bars indicate 95% confidence intervals. 
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3.4.6. Chemoattractants in Cells at Tip and Corner Regions 

The average tip-to-corner concentration changes in the cells have been given in (Fig. 32).  

The NP secreting models exhibited relative higher amounts of chemoattractant than the UB 

secreting ones (c.f., Fig. 15, 32B/E). Comparatively, the tip-per-corner concentrations 

highlighted the differences in the UB and NP cell secretion magnitudes between the UB and 

NP secreting models (Fig. 32). The final chemoattractant patterns of the models have been 

depicted at (Fig. 33). 

 

 

  
Fig. 32: Average tip per corner concentration changes in COMs of NP and MM cells in  

the simulation studies of different models together with the results from experiments.  

A/B) NP cells in the models (see legend) with the cells. C/D) MM cells in the models.  

A/C) Simulations before the optimization. B/D) Simulations after the optimization.  

Vertical bars indicate 95% confidence intervals. (Tikka et al., 2019) 
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Correspondingly, I also tested the model simulations with 10000MCS, in order to assess the 

impact of longer simulation times to the spread of the chemoattractant and other measurement 

values as seen in (Figs 34, 35) (c.f., ‘2.2.2 Selection of Chemoattractant Saturation Type’).  

The impact of the longer simulation time to the NP secreting model (4, 6) simulations was that 

the chemoattractant quantities in MM cells at the corner region increased significantly more 

than during the regular simulation time (1000MCS vs. 10000MCS; c.f., Figs 32D, 35D).  

 

Fig. 33: The final chemoattractant patterns of all models in 2D (D-F, J-L), and 3D (A-C, 

G-H). The NP secreting models are at (A/D/G/J), The UB secreting models are at 

(B/E/H/K), and the UB and NP secreting models at (C/F/I/L). A)-F) Model outcomes 

without the initial field. G)-L) Model outcomeswith the initial field. The relative 

distributions (0,1) of chemoattractant vary between small (blue) and high (red). See Fig. 4 

and for more information about the chemoattractant. 
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By contrast, the UB secreting models drove NP cells fastest to the corner region (Fig. 34B). 

Similarly, the tip-per-corner speeds of both cells types in all models, except in the UB secreting 

model (3), appeared to converge towards the value of one (1; Figs 34A, 35A). The same general 

trend of the secreting model (7) was seen in the tip-per-corner distances, where NP cells were 

closest to the corner region after the simulations (Fig. 34C). However, this was not necessarily 

the case for MM cells (Fig. 35C). 

 

 

 

Fig. 34: The average measures for NP cells in the secreting models (3-7) simulated three 

times with optimized parameters 10000MCS. A) Tip-per-corner speeds, B) Cell quantities, 

C) Tip-per-corner distances, D) Tip-per-corner concentrations. The model definitions are 

given at the legend of subfigure (B) and (Fig. 30). CIs were not given due to the limited 

repetitions of the time-consuming simulations (here: 3).  
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Fig. 35: The average measures for MM cells in the secreting models (3-7) simulated three 

times with optimized parameters 10000MCS. A) Tip-per-corner speeds, B) Cell quantities, 

C) Tip-per-corner distances, D) Tip-per-corner concentrations. The model definitions are 

given at the legend of subfigure (B) and (Fig. 30). CIs were not given due to the limited 

repetitions of the time-consuming simulations (here: 3). 
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4. DISCUSSION 

In this work, I used a computational modelling approach to explore the biophysical 

mechanisms driving the committed nephron progenitor (NP) cells to move towards and form 

the pre-tubular tubular aggregates (PTA), the early nephron precursor structure during kidney 

organogenesis (Little, 2012; Tikka et al., 2019). The simultaneous movements and 

aggregations of the cap mesenchyme (CM) cells were studied using a Cellular Potts model, 

which was modulated to simulate the relative impact of chemotaxis and cell-cell adhesion 

forces (Allena et al., 2016; Belmonte et al., 2016; Swat et al., 2012). The movements of NP 

cells towards the corner regions of the branching ureteric bud (UB) and the formation of  

the cell aggregates was best reproduced by assuming a combination of chemotactic and 

differential cell adhesion forces. The parameter estimates were validated and optimized by 

analysis of the cell behaviours in two experimental models of early nephrogenesis. I observed, 

both ex vivo and in silico, an accelerating speed of motion of committed NP cells as they 

migrate from the UB tip to the corner region.       

CM cells have been described to move in a quasi-stochastic fashion between the corner and tip 

regions of the branching UBs following certain environmental cues (Combes et al., 2016; 

Lawlor et al., 2019). While the bulk of metanephric mesenchymal (MM) cells have been 

considered as static, an emerging subpopulation of MM cells, namely NP cells, was believed 

to move linearly from the UB tip to the corner region (Little, 2012). In order to reproduce these 

movement patterns in silico, several assumptions had to be made. These assumptions related 

to the initial spatial structure, cell quantities and properties. Equally importantly, they were 

founded on both experimental evidence and on the established insights of cellular biophysics.  

General assumptions included the assertion that all, and only, NP cells were committed to  

the formation of PTA. The assumptions presumed also that the changes in the three main 

energies should stir the movements and aggregations of NP and MM cells. These energies were 

the contact surface energies, chemotaxis energy, and cell size changes. Yet, the impact of cell 

sizes was minimal. This was because the initial most expansive phases were discounted in  

the simulation. This left chemotaxis and cell-cell adhesion as the main energies to drive cell 

sorting between regions. Indeed, there has been substantial experimental evidence to support 

the notion that the sorting of NP cells between the tip and corner regions was established by 

cell-cell adhesion differences and both inductive and chemotactic molecular signalling from 
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UB epithelia (Albert and Schwarz, 2016; Brown et al., 2013; Karner et al., 2011; Lefevre et al., 

2017; Ricono, 2008). Previous studies identified different CAMs such as cadherins, to drive 

the cell sorting (Junttila et al., 2015; Lefevre et al., 2017). Likewise, the extracellular signals 

inducing NP cell commitment involved the secretion of WNT11, BMP7, FGF9, and WNT9B, 

which upregulates WNT4 (Bohnenpoll and Kispert, 2014). NP cell induction has also been 

shown to activate of Notch and additional signalling pathways (Lindstrom et al., 2015; 

Perantoni et al., 2005). Concurrently, MM cells require SMAD1/5-mediated BMP signalling 

to transition towards a state in which they can receive the inductive cues (Brown et al., 2013). 

While WNT9B was the first secreted molecule attributed a role as a chemoattractant for NP 

cells, subsequent studies identified PDGF-AA, FGF8, BMP4 and CXCL12 as further potential 

effectors driving NP cell chemotaxis (Atsuta and Takahashi, 2015; Carroll et al., 2005; 

Grieshammer et al., 2005; Ricono, 2008). Recently, evidence has been provided that, NP cells 

within the UB tip region do not move in a linear fashion, but exhibit  

a nearly stochastic swarm-like behaviour (Combes et al., 2016). Moreover, NP cell 

commitment and migration towards the corner region may not be a unidirectional irreversible 

process (Lawlor et al., 2019). A subset of NP cells at the corner region were observed to migrate 

back to the tip region to re-enter the uncommitted MM cell pool, losing WNT4 expression. 

This behaviour was tentatively explained by a semi-stochastic cell movement with exposure of 

NP cells to different cues depending on their spatial position, with prolonged or additional 

signals to NP cells being required for persistent clustering in the corner region and PTA 

formation. 

Subsequently, I performed various model simulations to test the impact of chemotaxis and 

adhesion driven cell sorting on NP cell trafficking and clustering towards the corner region, 

where PTA could form. The initial model setup and simulation studies were followed by  

a validation and optimization step, where the explant culture and organoid experiments were 

utilized to further align the model parameters to fit the cell movements and aggregations 

observed ex vivo. 

As a result, my simulation studies support an important role of the chemoattractant gradients 

arising from the UB surface for a net directed NP cell movement. The model variants lacking 

UB chemoattractant secretion resulted in an ectopic NP cell aggregation. Moreover, differential 

cell-cell adhesion properties appear to be required for the formation of NP cell aggregates. 

Paracrine chemotactic signalling by NP cells may play a role in this process, as suggested by 

the optimal performance observed with a model combining adhesion differences with 
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chemoattractant secretion by both the UB and NP cells in the respective model (7) (Dahl et al., 

2002; Dudley et al., 1999; Oxburgh et al., 2011; Wallner et al., 1998). My model also 

adequately recapitulated the semi-stochastic movement of NP cells around UBs. Both  

the average cell speed and their net travelled distance fitted the speeds and distances observed 

in the explant culture system. Notably with the model variant 7, one even observed  

the individual cells returning from the corner to the tip region, recapitulating the recent 

experimental findings (Lawlor et al., 2019).  

Another remarkable finding was the faster NP cell speeds in the corner as compared to the tip 

region. This was obtained both in the analysis of the explant culture data and by computational 

modelling and confirmed by self-organized speed mapping. My model simulations indicated 

that the acceleration of NP cells approaching the UB corner was due to the high chemoattractant 

gradient present in this region. Although this may be true, I also tested the previous finding 

with extended simulation times (10000MCS). Indeed, under those circumstances all NP cells 

reached the corner region faster with the UB secreting models (3, 5, 7) than with the NP 

secreting models (4, 6). 

I discovered during the initial construction of the models that the value of the chemotaxis 

secretion rate (S) multiplied by chemotaxis lambda (𝜆𝐶𝐿) should be less than twenty, especially 

in the UB secreting models. If the product threshold was exceeded, one experienced a loss of 

virtual cells, which would arrive from the disruption of the virtual cell membranes. It is possible 

that the same may apply in early nephrogenesis. That is to say that the amount, source and 

location of the chemoattractant secretion, as well as the cells’ responsivity to chemotaxis would 

require some degree of regulation.  

The different magnitudes of UB and NP cell secretion highlighted the effect of the different 

propensities between the UB and NP secreting models. Particularly, the secretion gradient from 

UB cells swayed more prominently to chemotaxis of NP cells towards UB than the similar 

gradient from NP cells. Similarly, after optimization the concentration levels near NP cells 

became wider between the UB and NP secreting models. In contrast, the levels narrowed near 

MM cells. This primarily meant that, the amount of the chemoattractant near that NP cells 

increased and lowered near MM cells. In other words, the amount of the concentration near 

MM cells did not discharge chemoattractants from NP cells. In fact, the relative amounts of  

the chemoattractant near MM cells in both model types approached one. Thus,  

the concentration near MM cells did not play a significant role for the movement of NP cells.  



  DISCUSSION 

57 

 

MM cells did not move in the first place by chemotaxis but rather due the adhesion differences 

in the models. 

Consequently, the behaviour of cells in the dissociation-reaggregation kidney organoid culture 

experiments was more challenging to simulate. This was also because there were no markers 

available for differentiating native MM from committed NP cells. As in the explant culture 

study, persistently faster cell movement was observed in the corner region and slower 

movement in the tip region. Correspondingly, my model simulations suggested UB as the 

predominant source of the chemoattractant in the explant culture experiments. On the contrary, 

the regional cell speeds and quantities in the organoid studies were best captured by another 

computational model (6). The respective simulations imitated the chemoattractant release from 

NP cells as well as the differences in the cell-cell adhesion energies. This difference might have 

been caused by the altered secretory functions of UB epithelia following the dissociation and 

reaggregation of the cells. Other reason for this difference could have been the shorter 

experimental time period utilized in the kidney organoid model. These organoids were 

primarily designed to study early MM cell movement patterns. Nonetheless, model 6 indicated 

that MM cell movements may be primarily driven by auto/paracrine chemotaxis of MM cells 

(Dahl et al., 2002; Dudley et al., 1999; Gilbert, 2000; Oxburgh et al., 2011; Wakabayashi et al., 

1994; Wallner et al., 1998). 

While my work demonstrates the suitability of a relatively simple computational model  

to reproduce the main cellular events in early nephrogenesis, several limitations should be 

emphasized. First, I did not allow for continuous recruitment of NP cells from MM cell pool, 

but assumed fixed cell quantities during the time window of the analysis. Moreover, the lack 

of in vitro models deficient in the individual components of the biological system, which 

prevented an external validation of the performance of my model in simulating impairments of 

nephrogenesis under abnormal conditions. Finally, the current model system did not allow to 

explore the roles of individual molecular signalling pathways or more than a single 

chemoattractant gradient. Such models would have required far more granular spatiotemporal 

biochemical information than was currently available. Given these limitations, it was even 

more remarkable that NP cell migration and PTA formation can be accurately modelled based 

on two biophysical mechanisms, namely chemotaxis and cell-cell adhesion difference.



  SUMMARY 

58 

 

5. SUMMARY 

During early kidney organogenesis, nephron progenitor cells move from the tip to the branch 

of the ureteral bud to form the so-called pretubular aggregate, the precursor structure of the 

later nephron. It is assumed that cell pattern formation during this critical phase of 

organogenesis is primarily controlled by chemotactic mechanisms and differential cell-cell 

adhesion. The spatial-temporal organization of this process is not yet fully understood. In recent 

studies, a nonlinear swarm-like pattern of cell movement has been observed. 

In order to gain a better understanding of these processes, I elaborated a three-dimensional 

mathematical Cellular Potts model, and carried out, validated and applied corresponding model 

simulations. The model parameters were estimated from experimental data obtained in ex vivo 

kidney explant and dissociation-reaggregation organoid culture studies. 

The simulations showed that an optimal enrichment and aggregation of nephron progenitor 

cells in the corner niche of the ureteral bud branch depends on three factors: the secretion of 

chemoattractant molecules by a) the epithelial cells of the ureteral bud and b) the nephron 

progenitor cells themselves, and c) by different adhesion energies between the different cell 

types. Furthermore, it was observed both experimentally and in the model simulation that 

nephron progenitor cells move at a higher speed in the corner region of the ureteral bud 

branches than in their region of origin at the tip of the bud from which they originate. The 

existence of different cell velocity domains along the ureteral bud was also evaluated with the 

self-organizing map technique. 

In summary, I was able to confirm in the present work the suitability of the Cellular Potts model 

approach for simulating cell movements and pattern formation during early nephrogenesis. A 

further refinement of the model should allow the effects of developmental changes the cell 

phenotypes and the molecular interactions during organ development. 
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6. ZUSAMMENFASSUNG 

Während der frühen Nierenorganogenese bewegen sich Nephron-Vorläuferzellen (NP-Zellen) 

von der Spitze zum Abgangsbereich des Ureterknospen-Zweigs, um dort das sog. prätubuläre 

Aggregat (PTA) zu bilden, die Vorläuferstruktur des späteren Nephrons. Es wird angenommen, 

dass die Zellmusterbildung während dieser kritischen Phase der Organogenese vor allem durch 

chemotaktische Mechanismen und differentielle Zell-Zell-Adhäsion gesteuert wird.  

Die räumlich-zeitliche Organisation dieses Prozesses ist bisher nicht vollständig verstanden. In 

kürzlichen Studien wurde ein nichtlineares, schwarmartiges Zellbewegungsmuster beobachtet. 

Um ein besseres Verständnis dieser Vorgänge zu erreichen habe ich ein dreidimensionales 

Cellular Potts Modell erstellt und entsprechende Modell-Simulationen durchgeführt, validiert 

und angewendet. Die Modellparameter wurden anhand experimenteller Daten geschätzt, die in 

ex vivo Nierenexplantations- und Dissoziations-Reaggregations-Organoid-Kulturstudien 

erhalten wurden. 

Die Simulationen zeigten, dass eine optimale Anreicherung und Aggregation von NP Zellen in 

der Ecknische des Ureterknospenzweigs von drei Faktoren abhängig ist: der Sekretion von 

chemoattraktanten Molekülen durch a) die Epithelzellen der Ureterknospe und b) die NP-

Zellen selbst, und c) durch unterschiedliche Adhäsionsenergien zwischen den verschiedenen 

Zelltypen. Weiterhin wurde sowohl experimentell als auch in der Modellsimulation beobachtet, 

dass sich NP-Zellen mit höherer Geschwindigkeit in der Eckregion der Ureterknospenzweige   

bewegen als in ihrer Ursprungsregion an der Knospenspitze, aus der sie stammen. Die Existenz 

verschiedener Zellgeschwindigkeits-Domänen entlang der Ureterknospe wurde mit Hilfe  

der Self-Organizing Map (SOM)-Technik bestätigt.  

Zusammenfassend konnte ich in der vorliegenden Arbeit die Eignung des Cellular Potts-

Modell-Ansatzes zur Simulation von Zellbewegungen und -musterbildungen während  

der frühen Nephrogenese aufzeigen. Eine weitere Verfeinerung des Modells sollte es 

ermöglichen, auch die Auswirkungen von entwicklungsbedingten Veränderungen  

der Zellphänotypen und der molekularen Interaktionen während der Organentwicklung 

abzubilden. 



  REFERENCES 

60 

 

7. REFERENCES 

Adivarahan, S., Menshykau, D., Michos, O. and Iber, D. (2013). Dynamic image-based 

modelling of kidney branching morphogenesis. Paper presented at: Computational 

Methods in Systems Biology (Berlin, Heidelberg: Springer). 

 

Affolter, M. and Weijer, C. J. (2005). Signaling to cytoskeletal dynamics during chemotaxis. 

Dev, Cell 9(1), 19-34, doi: 10.1016/j.devcel.2005.06.003. 

 

Albert, P. J. and Schwarz, U. S. (2016). Dynamics of cell ensembles on adhesive 

micropatterns: bridging the gap between single cell spreading and collective cell 

migration. PLoS Comput Biol 12(4), e1004863, doi: 10.1371/journal.pcbi.1004863. 

 

Allena, R., Scianna, M. and Preziosi, L. (2016). A cellular potts model of single cell 

migration in presence of durotaxis. Math Biosci 275, 57-70, doi: 10.1016/ 

j.mbs.2016.02.011. 

 

Andasari, V., Roper, R. T., Swat, M. H. and Chaplain, M. A. (2012). Integrating intracellular 

dynamics using compucell3d and Bionetsolver: applications to multiscale 

modelling of cancer cell growth and invasion. PLoS One 7(3), e33726, doi: 10.1371/ 

journal.pone.0033726. 

 

Andrew, D. J. and Ewald, A. J. (2010). Morphogenesis of epithelial tubes: insights into tube 

formation, elongation, and elaboration. Dev Biol 341(1), 34-55, doi: 10.1016/ 

j.ydbio.2009.09.024. 

 

Anum, R., Imran, M., Hahsim, R., Mahmood, A. and Majeed, S. (2016). A hybrid particle 

swarm optimization (PSO) with chi-square and stable mutation jump strategy. Int 

J Adv Appl Sci 3(12), 5. 

 

Atsuta, Y. and Takahashi, Y. (2015). FGF8 coordinates tissue elongation and cell 

epithelialization during early kidney tubulogenesis. Development (Cambridge, 

England) 142(13), 2329-2337, doi: 10.1242/dev.122408. 

 

Barasch, J., Qiao, J., McWilliams, G., Chen, D., Oliver, J. A. and Herzlinger, D. (1997). 

Ureteric bud cells secrete multiple factors, including bFGF, which rescue renal 

progenitors from apoptosis. Am J Physiol 273(5), F757-767, doi: 10.1152/ajprenal. 

1997.273.5.F757. 

 

Belmonte, J. M., Clendenon, S. G., Oliveira, G. M., Swat, M. H., Greene, E. V., Jeyaraman, S., 

Glazier, J. A. and Bacallao, R. L. (2016). Virtual-tissue computer simulations define 

the roles of cell adhesion and proliferation in the onset of kidney cystic disease. 

Mol Biol Cell 27(22), 3673-3685, doi: 10.1091/mbc.E16-01-0059. 



  REFERENCES 

61 

 

 

Berg, V. (2011). Mathemathical models of biological systems, 1. edn, Oxford University 

Press, U.S.A., p. 256. 

 

BioPortal (2019). Biomedical ontologies.  National Center for Biomedical Ontology, URL: 

https://bioportal.bioontology.org/ [as of 18.4.2019]. 

 

Blake, J. and Rosenblum, N. D. (2014). Renal branching morphogenesis: morphogenetic 

and signaling mechanisms. Semin Cell Dev Biol 36, 2-12, doi: 10.1016/j.semcdb. 

2014.07.011. 

 

Bohnenpoll, T. and Kispert, A. (2014). Ureter growth and differentiation. Semin Cell Dev 

Biol 36, 21-30, doi: 10.1016/j.semcdb.2014.07.014. 

 

Bonyadi, M. R. and Michalewicz, Z. (2017). Particle swarm optimization for single 

objective continuous space problems: a review. Evol Comput 25(1), 1-54, doi: 10.11 

62 /evco_r_00180. 

 

Brown, A. C., Adams, D., de Caestecker, M., Yang, X., and Friesel, R. (2011). FGF/EGF 

signaling regulates the renewal of early nephron progenitors during embryonic 

development. Development 138(23), 5099-5112, doi: 10.1242/dev.065995. 

 

Brown, A. C., Muthukrishnan, S. D., Guay, J. A., Adams, D. C., Schafer, D. A., Fetting, J. L. 

and Oxburgh, L. (2013). Role for compartmentalization in nephron progenitor 

differentiation. Proc Natl Acad Sci U S A 110(12), 4640-4645, doi: 10.1073/pnas.121 

3971110. 

 

Carroll, T. J., Park, J. S., Hayashi, S., Majumdar, A. and McMahon, A. P. (2005). Wnt9b plays 

a central role in the regulation of mesenchymal to epithelial transitions underlying 

organogenesis of the mammalian urogenital system. Dev Cell 9(2), 283-292, doi: 

10.1016/j.devcel.2005.05.016. 

 

Cartwright, N. (1983). How the laws of physics lie, Vol 34, Oxford University Press, p. 513. 

 

Chen, S., Brunskill, E. W., Potter, S. S., Dexheimer, P. J., Salomonis, N., Aronow, B. J., Hong, 

C. I., Zhang, T. and Kopan, R. (2015). Intrinsic age-dependent changes and cell-cell 

contacts regulate nephron progenitor lifespan. Dev Cell 35(1), 49-62, doi: 10.1016/ 

j.devcel.2015.09.009. 

 

Chi, P., Kwon, Y., Moses, D. N., Seong, C., Sehorn, M. G., Singh, A. K., Tsubouchi, H., 

Greene, E. C., Klein, H. L. and Sung, P. (2009). Functional interactions of meiotic 

recombination factors Rdh54 and Dmc1. DNA Repair 8(2), 279-284, doi: 10.1016/ 

j.dnarep.2008.10.012. 

 



  REFERENCES 

62 

 

Clendenon, S. G., Ward, H. H., Dunn, K. W. and Bacallao, R. (2013). High resolution 4-

dimension imaging of metanephric embryonic kidney morphogenesis. Kidney Int 

83(4), 757-761, doi: 10.1038/ki.2012.464. 

 

Clevers, H. (2016). Modeling development and disease with organoids. Cell 165(7), 1586-

1597, doi: 10.1016/j.cell.2016.05.082. 

 

Combes, A. N., Lefevre, J. G., Wilson, S., Hamilton, N. A. and Little, M. H. (2016). Cap 

mesenchyme cell swarming during kidney development is influenced by attraction, 

repulsion, and adhesion to the ureteric tip. Dev Biol 418(2), 297-306, doi: 10.1016/ 

j.ydbio.2016.06.028. 

 

Combes, A. N., Short, K. M., Lefevre, J., Hamilton, N. A., Little, M. H. and Smyth, I. M. 

(2014). An integrated pipeline for the multidimensional analysis of branching 

morphogenesis. Nat Protoc 9(12), 2859-2879, doi: 10.1038/nprot.2014.193. 

 

Contributors, T. S. W. (2017). Spyder program.  Spyder Doc Contributors MIT License, URL: 

https://www.spyder-ide.org/ [as of 15.11.2017]. 

 

Costantini, F. and Kopan, R. (2010). Patterning a complex organ: branching 

morphogenesis and nephron segmentation in kidney development. Dev Cell 18(5), 

698-712, doi: 10.1016/j.devcel.2010.04.008. 

 

Dahl, U., Sjödin, A., Larue, L., Radice, G. L., Cajander, S., Takeichi, M., Kemler, R. and Semb, 

H. (2002). Genetic dissection of cadherin function during nephrogenesis. Mol Cell 

Biol 22(5), 1474-1487, doi: 10.1128/mcb.22.5.1474-1487.2002. 

 

Desgrange, A. and Cereghini, S. (2015). Nephron patterning: lessons from xenopus, 

zebrafish, and mouse studies. Cells 4(3), 483-499, doi: 10.3390/cells4030483. 

 

Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H. M. and Wechselberger, 

M. (2012). Mixed-mode oscillations with multiple time scales. SIAM Review 54(2), 

211-288, doi: 10.1137/100791233. 

 

DiMilla, P. A., Barbee K Fau - Lauffenburger, D. A. and Lauffenburger, D. A. (1991). 

Mathematical model for the effects of adhesion and mechanics on cell migration 

speed. Biophys, J. 60(4), 15-37, doi: 10.1016/S0006-3495(91)82027-6. 

 

Dudley, A. T., Godin, R. E. and Robertson, E. J. (1999). Interaction between FGF and BMP 

signaling pathways regulates development of metanephric mesenchyme. Genes 

Dev 13(12), 1601-1613, doi: 10.1101/gad.13.12.1601. 

 

DZone (2019). Self-organizing maps. URL: https://dzone.com/articles/self-organizing-maps 

[as of 31.5.2019]. 



  REFERENCES 

63 

 

Fish, D. t. (2019). How to convert strings to floats in pandas dataframe. URL: 

https://datatofish.com/convert-string-to-float-dataframe/ [as of 30.1.2019]. 

 

Gilbert, S. (2000). Developmental biology: paracrine factors 6th edition. edn, Sunderland 

(MA): Sinauer Associates. 

 

Glazier, J. A. and Graner, F. (1993). Simulation of the differential adhesion driven 

rearrangement of biological cells. Physical Review E 47(3), 2128-2154, doi: 10.1103/ 

PhysRevE.47.2128. 

 

Grieshammer, U., Cebrian, C., Ilagan, R., Meyers, E., Herzlinger, D. and Martin, G. R. (2005). 

FGF8 is required for cell survival at distinct stages of nephrogenesis and for 

regulation of gene expression in nascent nephrons. Development 132(17), 3847-

3857, doi: 10.1242/dev.01944. 

 

Hirashima, T., Rens, E. G. and Merks, R. M. H. (2017). Cellular potts modeling of complex 

multicellular behaviors in tissue morphogenesis. Dev Growth Differ 59(5), 329-339, 

doi: 10.1111/dgd.12358. 

 

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., 

Bornstein, B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. 

D., Ginkel, M., Gor, V., Goryanin, I. I., Hedley, W. J., Hodgman, T. C., Hofmeyr, J.-

H., Hunter, P. J., Juty, N. S., Kasberger, J. L., Kremling, A., Kummer, U., Le Novère, 

N., Loew, L. M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E. D., Nakayama, Y., 

Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu, T. 

S., Spence, H. D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., Wang, J. and 

Forum, a. t. r. o. t. S. (2003). The systems biology markup language (SBML): a 

medium for representation and exchange of biochemical network models. 

Bioinformatics 19(4), 524-531, doi: 10.1093/bioinformatics/btg015. 

 

Hunter, J., Dale, D., Firing, E., Droettboom, M. and team, M. d. (2019). Algorithm of 

matplotlib.pyplot.xticks.  Matplotlib, URL: https://matplotlib.org/3.1.1/api/_as_gen/ 

matplotlib.pyplot.xticks.html [as of 2.2.2019]. 

 

Junttila, S., Saarela, U., Halt, K., Manninen, A., Parssinen, H., Lecca, M. R., Brandli, A. W., 

Sims-Lucas, S., Skovorodkin, I. and Vainio, S. J. (2015). Functional genetic targeting 

of embryonic kidney progenitor cells ex vivo. J Am Soc Nephrol 26(5), 1126-1137, 

doi: 10.1681/ASN.2013060584. 

 

Karner, C. M., Das, A., Ma, Z., Self, M., Chen, C., Lum, L., Oliver, G. and Carroll, T. J. (2011). 

Canonical Wnt9b signaling balances progenitor cell expansion and differentiation 

during kidney development. Development 138(7), 1247-1257, doi: 10.1242/dev. 

057646. 

 



  REFERENCES 

64 

 

Kohonen, T. (1982). Self–organized formation of topologically correct feature maps. 

Biological Cybernetics 43(1), 59-68, doi: doi.org/10.1007/BF00337288. 

 

Kohonen, T., Honkela, T (2007). Kohonen network.  Scholarpedia, 2(1):1568., URL: 

http://www.scholarpedia.org/article/Kohonen_network [as of 19.3.2019]. 

 

Kopan, R., Chen, S., and Little, M (2014). Nephron progenitor cells: shifting the balance of 

self-renewal and differentiation. Curr. Top. Dev. Biol. 107, 293-300, doi: 10.1016/ 

B978-0-12-416022-4.00011-1. 

 

Krause, M., Rak-Raszewska, A., Pietila, I., Quaggin, S. E. and Vainio, S. (2015). Signaling 

during kidney development. Cells 4(2), 112-132, doi: 10.3390/cells4020112. 

 

Lawlor, K. T., Zappia, L., Lefevre, J., Park, J.-S., Hamilton, N. A., Oshlack, A., Little, M. H. 

and Combes, A. N. (2019). Nephron progenitor commitment is a stochastic process 

influenced by cell migration. eLife 8, e41156, doi: 10.7554/eLife.41156. 

 

Lawson, B. A. J. and Flegg, M. B. (2016). A mathematical model for the induction of the 

mammalian ureteric bud. J Theor Biol 394, 43-56, doi: 10.1016/j.jtbi.2015.12.025. 

 

Lefevre, J. G., Chiu, H. S., Combes, A. N., Vanslambrouck, J. M., Ju, A., Hamilton, N. A. and 

Little, M. H. (2017). Self-organisation after embryonic kidney dissociation is driven 

via selective adhesion of ureteric epithelial cells. Development 144(6), 1087-1096, 

doi: 10.1242/dev.140228. 

 

Lefevre, J. G., Combes, A. N., Little, M. H. and Hamilton, N. A. (2016). Analysed cap 

mesenchyme track data from live imaging of mouse kidney development. Data 

Brief 9, 149-154, doi: 10.1016/j.dib.2016.08.053. 

 

Lindström, N. O., De Sena Brandine, G., Tran, T., Ransick, A., Suh, G., Guo, J., Kim, A. D., 

Parvez, R. K., Ruffins, S. W., Rutledge, E. A., Thornton, M. E., Grubbs, B., McMahon, 

J. A., Smith, A. D. and McMahon, A. P. (2018). Progressive recruitment of 

mesenchymal progenitors reveals a time-dependent process of cell fate acquisition 

in mouse and human nephrogenesis. Dev Cell 45(5), 651-660.e654, doi: https://doi. 

org/10.1016/j.devcel.2018.05.010. 

 

Lindstrom, N. O., Lawrence, M. L., Burn, S. F., Johansson, J. A., Bakker, E. R., Ridgway, R. 

A., Chang, C. H., Karolak, M. J., Oxburgh, L., Headon, D. J., Sansom, O. J., Smits, R., 

Davies, J. A. and Hohenstein, P. (2015). Integrated beta-catenin, BMP, PTEN, and 

Notch signalling patterns the nephron. Elife 3, e04000, doi: 10.7554/eLife.04000. 

 

Little, M. H. (2015). Kidney development, disease, repair and regeneration, 1. edn, 

Academic Press, United Kingdom.  

 



  REFERENCES 

65 

 

Little, M. H., McMahon, A. P. (2012). Mammalian kidney development: principles, 

progress, and projections. Cold Spring Harb Perspect Biol 4(5), doi: 10.1101/ 

cshperspect.a008300. 

 

Magno, R., Grieneisen, V. A. and Maree, A. F. (2015). The biophysical nature of cells: 

potential cell behaviours revealed by analytical and computational studies of cell 

surface mechanics. BMC Biophys 8, 8, doi: 10.1186/s13628-015-0022-x. 

 

Marée, A. F. M., Grieneisen, V. A. and Hogeweg, P. (2007). The cellular potts model and 

biophysical properties of cells, tissues and morphogenesis. In: Single-Cell-Based 

Models in Biology and Medicine, eds. Anderson, A. R. A., Chaplain, M. A. J. and 

Rejniak, K. A., Birkhäuser Basel, Basel, pp. 107-136. 

 

McMahon, A. P. (2016). Development of the mammalian kidney. Curr Top Dev Biol 117, 

31-64, doi: 10.1016/bs.ctdb.2015.10.010. 

 

Midha, R. (2019). Data visualization with matplotlib.  Guthub, URL: https://rohitmidha23. 

github.io/Matplotlib-Explained/ [as of 1.2.2019]. 

 

Mogilner, A. and Rubinstein, B. (2005). The physics of filopodial protrusion. Biophys J 89(2), 

782-795, doi: 10.1529/biophysj.104.056515. 

 

Moise, N. and Friedman, A. (2019). Rheumatoid arthritis - a mathematical model. J Theor 

Biol 461, 17-33, doi: 10.1016/j.jtbi.2018.10.039. 

 

Mukhopadhyay, S. and Hazra, L. (2015). Pareto optimality between width of central lobe 

and peak sidelobe intensity in the far-field pattern of lossless phase-only filters for 

enhancement of transverse resolution. Appl Opt 54(31), 9205-9212, doi: 10.1364/ 

AO.54.009205. 

 

Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. and Luo, L. (2007). A global double-

fluorescent Cre reporter mouse. Genesis 45(9), 593-605, doi: 10.1002/dvg.20335. 

 

NG, A. and Soo, K. (2017). Self-organizing maps tutorial Algobeans: layman tutorials in 

analytics, URL: https://annalyzin.wordpress.com/2017/11/02/self-organizing-map/  

[as of 10.5.2019]. 

 

Obara-Ishihara T, K. J., Niswander L, and Herzlinger D (1999). The surface ectoderm is 

essential for nephric duct formation in intermediate mesoderm. Development 

126(6), 1103-1108. 

 

 

 



  REFERENCES 

66 

 

Osborne, J. M., Fletcher, A. G., Pitt-Francis, J. M., Maini, P. K. and Gavaghan, D. J. (2017). 

Comparing individual-based approaches to modelling the self-organization of 

multicellular tissues. PLOS Computational Biology 13(2), e1005387, doi: 10.1371/ 

journal.pcbi.1005387. 

 

Oxburgh, L., Brown, A. C., Fetting, J. and Hill, B. (2011). BMP signaling in the nephron 

progenitor niche. Pediatr Nephrol 26(9), 1491-1497, doi: 10.1007/s00467-011-1819-

8. 

 

Perantoni, A. O., Timofeeva, O., Naillat, F., Richman, C., Pajni-Underwood, S., Wilson, C., 

Vainio, S., Dove, L. F. and Lewandoski, M. (2005). Inactivation of FGF8 in early 

mesoderm reveals an essential role in kidney development. Development 132(3859-

3871), doi: 10.1242/dev.01945. 

 

Pollard, T. D. and Borisy, G. G. (2003). Cellular motility driven by assembly and 

disassembly of actin filaments. Cell 112(4), 453-465, doi: 10.1016/s0092-8674(03) 

00120-x. 

 

Postma, M., Roelofs, J., Goedhart, J., Gadella, T. W. J., Visser, A. J. W. G. and Van Haastert, 

P. J. M. (2003). Uniform cAMP stimulation of dictyostelium cells induces localized 

patches of signal transduction and pseudopodia. Mol Biol Cell 14(12), 5019-5027, 

doi: 10.1091/mbc.e03-08-0566. 

 

Rafelski, S. M. and Theriot, J. A. (2004). Crawling toward a unified model of cell mobility: 

spatial and temporal regulation of actin dynamics. Annu Rev, Biochem 73(1), 209-

239, doi: 10.1146/annurev.biochem.73.011303.073844. 

 

Rappel, W.-J. and Loomis, W. F. (2009). Eukaryotic chemotaxis. Wiley Interdiscip Rev Syst 

Biol Med 1(1), 141-149, doi: 10.1002/wsbm.28. 

 

Ricono, J. M., Wagner, B., Gorin, Y., Arar, M., Kazlauskas, A. (2008). PDGF receptors 

modulates metanephric mesenchyme chemotaxis induced by PDGF-AA. Am J 

Physiol Renal Physiol. 296(2), F406–F417, doi: 10.1152/ajprenal.90368.2008. 

 

Saarela, U., Akram, S. U., Desgrange, A., Rak-Raszewska, A., Shan, J., Cereghini, S., 

Ronkainen, V. P., Heikkila, J., Skovorodkin, I. and Vainio, S. J. (2017). Novel fixed z-

direction (FiZD) kidney primordia and an organoid culture system for time-lapse 

confocal imaging. Development 144(6), 1113-1117, doi: 10.1242/dev.142950. 

 

Santarcangelo, J. (2019). From python nested lists to multidimensional numpy arrays. 

URL: https://cognitiveclass.ai/blog/nested-lists-multidimensional-numpy-arrays  

[as of 1.3.2019]. 

 



  REFERENCES 

67 

 

Shahzad, F., Masood, S. and Khan, N. K. (2014). Probabilistic opposition-based particle 

swarm optimization with velocity clamping. Knowledge and Information Systems 

39(3), 703-737, doi: 10.1007/s10115-013-0624-z. 

 

Shan, J., Jokela, T., Skovorodkin, I. and Vainio, S. (2010). Mapping of the fate of cell lineages 

generated from cells that express the Wnt4 gene by time-lapse during kidney 

development. Differentiation 79(1), 57-64, doi: 10.1016/j.diff.2009.08.006. 

 

Short, K. M., Combes, A. N., Lefevre, J., Ju, A. L., Georgas, K. M., Lamberton, T., Cairncross, 

O., Rumballe, B. A., McMahon, A. P., Hamilton, N. A., Smyth, I. M. and Little, M. H. 

(2014). Global quantification of tissue dynamics in the developing mouse kidney. 

Dev Cell 29(2), 188-202, doi: 10.1016/j.devcel.2014.02.017. 

 

SignalProcessing (2019). Given position measurements, how to estimate velocity and 

acceleration.  Stackexchange, URL: https://dsp.stackexchange.com/questions/9498/ 

given-position-measurements-how-to-estimate-velocity-and- 

acceleration [as of 11.11. 2018]. 

 

Sluka, J. P., Shaikh, A. and Glazier, J. A. (2018). Parameter fitting in a multiscale model: 

parameter scanning vs. particle swarm optimization. IMAG/MSM Meeting 1(1), 1. 

 

Soll, D. R., Wessels D, Heid, P. and Zhang, H. (2002). A contextual framework for 

characterizing motility and chemotaxis mutants in dictyostelium discoideum. J 

Muscle Res Cell Motil 23(7-8), 659-672, doi: 10.1023/a:1024459124427. 

 

StackOverflow (2019a). Accessing the index in 'for' loops?  StackOverflow, URL: 

https://stackoverflow.com/questions/522563/accessing-the-index-in- 

for-loops [as of 15.2.2019]. 

 

StackOverflow (2019b). Compute a confidence interval from sample data.  StackOverflow, 

URL: https://stackoverflow.com/questions/15033511/compute-a-confidence-interval-

from-sample-data [as of 10.1.2019]. 

 

Stegmaier, J., Amat, F., Lemon, W. C., McDole, K., Wan, Y., Teodoro, G., Mikut, R. and 

Keller, P. J. (2016). Real-time three-dimensional cell segmentation in large-scale 

microscopy data of developing embryos. Dev Cell 36(2), 225-240, doi: 10.1016/j. 

devcel.2015.12.028. 

 

Stuart, R. O., Bush, K. T. and Nigam, S. K. (2003). Changes in gene expression patterns in 

the ureteric bud and metanephric mesenchyme in models of kidney development. 

Kidney Int 64(6), 1997-2008, doi: 10.1046/j.1523-1755.2003.00383.x. 

 



  REFERENCES 

68 

 

Swat, M. H., Belmonte, J. M. and Glazier, J. A. (2017). Chemotaxis. URL: https://compu 

cell3dreferencemanual.readthedocs.io/en/latest/chemotaxis_plugin.html#chemotaxis 

[as of 15.2.2019]. 

 

Swat, M. H., Hester, S. D., Balter, A. I., Heiland, R. W., Zaitlen, B. L. and Glazier, J. A. (2009). 

Multicell simulations of development and disease using the compucell3d 

simulation environment. Methods Mol Biol 500, 361-428, doi: 10.1007/978-1-59745-

525-1_13. 

 

Swat, M. H., Thomas, G. L., Belmonte, J. M., Shirinifard, A., Hmeljak, D. and Glazier, J. A. 

(2012). Multi-scale modeling of tissues using compucell3d. Methods Cell Biol 110, 

325-366, doi: 10.1016/B978-0-12-388403-9.00013-8. 

 

Takasato, M., Er, P. X., Chiu, H. S., Maier, B., Baillie, G. J., Ferguson, C., Parton, R. G., 

Wolvetang, E. J., Roost, M. S., Chuva de Sousa Lopes, S. M. and Little, M. H. (2015). 

Kidney organoids from human iPS cells contain multiple lineages and model 

human nephrogenesis. Nature 526(7574), 564-568, doi: 10.1038/nature15695. 

 

Tikka, P. (2019a). Additional supplementary figures of thesis.  FigShare, URL: https://doi. 

org/10.6084/m9.figshare.10315910.v1 [as of 16.11.2019]. 

 

Tikka, P. (2019b). CC3D model example codes.  GitHub, URL: https://github.com/paulitikka/ 

CC3D-Model-Example-Codes [as of 16.11.2019]. 

 

Tikka, P. (2019c). Data of non-optimized and optimized CC3D models and kidney 

organoid experiments.  FigShare, URL: https://figshare.com/projects/Research_Data/ 

71801 [as of 16.11.2019]. 

 

Tikka, P. (2019d). Model data analysis.  GitHub, URL: https://github.com/paulitikka/Model-

Data-Analysis [as of 16.11.2019]. 

 

Tikka, P. (2019e). Video of model 7. URL: https://figshare.com/articles/Optimized_Model_7_ 

s_video/10315904 [as of 25.11.2019]. 

 

Tikka, P., Mercker, M., Skovorodkin, I., Saarela, U., Sluka, J., Glazier, J. A., Marciniak-

Czochra, A. and Schaefer, F. (2019). Computational modelling of nephron 

progenitor cell movement and aggregation during kidney organogenesis. 

Publication in Preparation. 

 

Tikka, P. and Schaefer, F. (2017). Computational modelling of early nephrogenesis. 

Nephron 137(2), 155-167, Eurenomics joint annual meeting abstract, doi: 10.1159/ 

000477523. 

 



  REFERENCES 

69 

 

Tikka, P. and Schaefer, F. (2019). Methods of computational analysis in kidney 

development. Methods Mol Biol 1926, 235-246, doi: 10.1007/978-1-4939-9021-4_19. 

 

Tikka, P. and Skovorodkin, I. (2019). The video of kidney organoid experiments. URL:  

https://figshare.com/articles/Kidney_Organoid_Experiments_video/10315895  

[as of 25.11.2019]. 

Vettigli, G. (2018). Minisom self organizing maps.  GitHub, URL: https://github.com/ 

JustGlowing/minisom [as of 15.1.2019]. 

 

Wakabayashi, H., Cavanaugh Pg Fau - Nicolson, G. L. and Nicolson, G. L. (1994). Responses 

to paracrine chemotactic and autocrine chemokinetic factors and lung metastatic 

capability of mouse RAW117 large-cell lymphoma cells.  70(6), 1089-1094, doi: 10. 

1038/bjc.1994.453. 

 

Wallner, E., Yang, Q., Peterson, D., Wada, J. and Kanwar, Y. (1998). Relevance of 

extracellular matrix, its receptors, and cell adhesion molecules in mammalian 

nephrogenesis. Am J Physiol 275(4), F467-477, doi: 10.1152/ajprenal.1998.275.4. 

F467. 

 

Waskom, M. (2019). Visualizing the distribution of a dataset.  Seaborn, URL: 

https://seaborn.pydata.org/tutorial/distributions.html [as of 14.1.2019]. 

 

Wessels, D., Voss, E., Von Bergen, N., Burns, R., Stites, J. and Soll, D. R. (1998). A computer-

assisted system for reconstructing and interpreting the dynamic three-

dimensional relationships of the outer surface, nucleus and pseudopods of 

crawling cells. Cell Motil, Cytoskeleton 41(3), 225-246, doi: 10.1002/(SICI)1097-

0169(1998)41:3<225::AID-CM4>3.0.CO;2-I. 

 

Williams, H. P. and Harwood, A. J. (2003). Cell polarity and dictyostelium development. 

Curr Opin, Microbiol 6(6), 621-627, doi: 10.1016/j.mib.2003.10.008. 

 

Wittek, P., Gao, S. C., Lim, I. S. and Zhao, L. (2017). Somoclu: an efficient parallel library 

for self-organizing maps. J Stat Softw 78(9), 1-21. 

 

Zhang, Y.-D., Balochian, S., Agarwal, P., Bhatnagar, V. and Houshia, O. (2014). Artificial 

intelligence and its applications, Vol 2014, p. 10. 

 

Zhang, Y., Wang, S. and Ji, G. (2015). A comprehensive survey on particle swarm 

optimization algorithm and its applications. Math Probl Eng 2015(1), 38, doi: 10. 

1155/2015/931256. 

 

Zubkov, V. S., Combes, A. N., Short, K. M., Lefevre, J., Hamilton, N. A., Smyth, I. M., Little, 

M. H. and Byrne, H. M. (2015). A spatially-averaged mathematical model of kidney 

branching morphogenesis. J Theor Biol 379, 24-37, doi: 10.1016/j.jtbi.2015.04.015. 



  SUPPLEMENT 

70 

 

8. SUPPLEMENT 

8.1. Description of Previous Model 

In short, Combes et al. (2016) solved a steady state convection-diffusion model for  

the observed distribution of tip distances y(d) (Combes et al., 2016; Lefevre et al., 2016). The 

purpose was to test whether the pattern of attraction and repulsion was sufficient to maintain 

the cap cells in proximity to ureteric tip. Combes et al. (2016) presumed that the movement of 

NP cells towards or way from the tip surface was a combination of an undirected diffusion D, 

independent of tip distance, convection, and the instantaneous velocity v(d) (Combes et al., 

2016). This velocity was a function of the tip distance (d), where the positive values 

corresponded to repulsion and the negative ones to attraction to the tip. It was assumed that the 

distribution of cap cells with distance and time, y(d,t) in (Lefevre et al., 2016), satisfied 

𝐷
𝜕2𝑦

𝜕𝑥2 = 𝑣
𝜕𝑦

𝜕𝑥
.          Eq. (12) 

Although individual cells moved significantly, they also assumed that the overall distribution 

of tip distances y(d) was approximately stable and considered the well-known steady state 

solution 

𝑦(𝑑) = 𝑦(0)𝑒∫ 𝑘(𝑢)𝑑𝑢
𝑑
0 ,        Eq. (13) 

where  

𝑘(𝑑) =
𝑣(𝑑)

𝐷
,         Eq. (14) 

and in principle, the function k(d) was described as the velocity, especially for D being 1. 

Otherwise, k(d) was presumed to be constant k1 if d < d1, or k2 if d > d2, and vary linearly 

between d1 and d2. This four-parameter model was fitted to the observed tip distances using  

a maximum likelihood method. This statistical method estimated its parameters towards  

the observed values in a certain way. Particularly, it attempted to find the parameter values that 

maximized a likelihood function, given the observations. The resulting estimate was called  

the maximum likelihood estimate. As a result, the fitted model gave 𝑑1 = 0.005 ± 0.381, 

𝑑2 = 14.95 ± 0.18 , 𝑘1 = 0.293 ± 0.010 , 𝑘2 = −0.098 ± 0.001.  Since d1 was not 

significantly different form 0 they simplified the model: 

𝑘(𝑑) = {
0.293 − 0.026𝑑, 0 ≤ 𝑑 ≤ 14.95

−0.098, 𝑑 > 14.95
,     Eqs (15a,b)
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It appeared, that after around 15 µm radius from the tip, NP cell movements started to slow 

down and eventually switch direction and move backwards towards tip (Eq. 15b). And after  

a cell had returned to the tip effecting domain of less than around 15 µm, the cell would start 

to accelerate towards tip until the cell would have attained the maximum velocity of 0.293 

µm/min precisely at the tip location (Eq. 15a).   

First and foremost, it was questionable to make a velocity dependent only regards to the 

distance of one spatial domain, that is to say the tip. One can notice the problem of this model 

from the first fitted distance, d1, which was described to be close to zero, even though the 

variance of it was not. That was to say that, the biggest value of it, for instance ‘precise’ tip 

location, could have been 0.386 µm away from the tip in respect to any random direction.  

The model should have accounted other domains around static UB, such as the corner below 

tip, the domain above T or L-shaped tip, and all the cells around UB swarming this or that 

direction, not necessarily bluntly away or towards tip. These different places most likely would 

have had a differential expression of the chemoattractant and the adhesion molecules. 

8.2. Example Ranges of Parameters and Simulation Lengths During Optimization 

An example set of optimized parameter values for the advanced model (7) were: D=1.83× 

(10-12)m2s-1 (with the respective integer values) between [1, 2] with (the averages during PSO 

run) [1.42±0.39], and 𝛾 =4.7×10-7×10-7s between [1×10-8, 1×10-6] with [7.2×10-7±1.7×10-7].  

It also had J=7.90×10-15 kgs-2 between [2, 8] with [6.49±2.23], 𝜆𝐶𝐿  =14.1×10-27kgm2s-2 

between [10, 150] with [15.2±5.1], S=6.91DU/s between [0.3, 30] with [5.46±2.05], T=49.8 

DU between [5, 50] with [48.14±1.15], and finally 𝜆𝑆=8.1×10-3kgm-2 s-2 between [0.001, 10] 

with [8.30±0.83]. With this in mind, the quality value reached a plateau value of 10809.  

32 PSO simulations were run in parallel and the total time required for a particular model was 

consequently 60x4 times the time of a single run. This was because I had an access to a 32-

node computer cluster. A complete PSO run for a particular model included 60x4x8x3=5760 

simulations. Consequently, the elapsed time for a complete PSO run was approximately 2 hours 

for the 2D models and 5 days for the 3D models. Notwithstanding, the simulations took 

different period of time to perform depending on the amount and interdependence of the 

parameters. For example, with the previous cluster computer, 3D PSO simulations could take 

several weeks, whereas 2D PSO simulations required about one day. The 2D version of the 

model (7) took 3.3h for the 60 iterations, whereas the 3D model took 20.7 days using the same 

PSO setup.  
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8.3. Codes 

8.3.1. Example of Dynamic CompuCell3D Coding File 

The dynamic file named as ‘steppables’ (c.f., 1b at ’2.2.3 Model Simulations’) consists of 

‘ConstraintInitializer’ and ‘Newsimulation’ classes. The first class constraints the variables, 

while the other initiates a new simulation. 

 

class ConstraintInitializerSteppable(SteppableBasePy): 

    def __init__(self,_simulator,_frequency=1): 

        SteppableBasePy.__init__(self,_simulator,_frequency) 

    def start(self): 

        NPCell_count = 0 

        ACell_count  = 0 

        for cell in self.cellList:  

            cell.targetVolume=375 

            ...(shortened) 

            if cell.type == 1: #cell.type is important variable to insert for recording sim data(!) 

                NPCell_count +=1 #similarly for MM cells, here ‘A’ cells 

    ..(shortened) 

        # randomly reassign the cell types (NP and A cells) to give a random starting  

        # configuration, make sure though that the total number of NP cells stays the same 

controlled by a parameter in the parameters file 

        if p.randomizeCells == 1:  # 1=yes, 0=no 

            print "\n\nRandomizing cell types.\nNumber of NPCell and ACell intitally 

=",NPCell_count,ACell_count 

           ..(shortened) 

 

class NewSimulationSteppable(SteppableBasePy): 

    def __init__(self,_simulator,_frequency=1): 

        SteppableBasePy.__init__(self,_simulator,_frequency) 

    def start(self): 

        # actually, better to put directly to the analysis folder: 

        FileName2="distances.csv"        

self.File2,self.fullFileName2=self.openFileInSimulationOutputDirectory(FileName2,"w")  

self.File2.write("cell_no,cell_type,time_mcs,cell_dist_to_corner,cell_dist_to_tip,x_position_

(px),y_position_(px), z_position_(px),cell_field, field_mean\n") #recording cell types enables 

analysis of simulations with (initial) random cell positions 

# load a file with the starting field for Wint9b controlled by a parameter in the parameters file 

        if p.loadWntFieldFile == 1:   

            print "\n\nLoading Wnt file." 

           ..(shortened) 

            csv_reader = csv.reader(fieldDataFile, delimiter='\t') 

            for aLine in csv_reader:  # aLine is a python list of values on the line of the input file 

                x=int(aLine[0]);  y=int(aLine[1]);  z=int(aLine[2]);  conc=float(aLine[3]) 

                field[x,y,z] = conc 

            fieldDataFile.close()   

    def step(self,mcs): 

         # only do this every 10 MCS 

        if mcs % 10 == 0: 
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            field=self.getConcentrationField("Wnt9b") 

    #       to get the global mean one needs extra coding; for individual mean: meanValue = 

np.mean(field[55,55,0]) 

            averVol = 0.0, numberOfCells = 0, meanValue =[] 

            for i in range(110)...(shortened for j and k): meanValue.append(field[i,j,k]) 

            meanValue_mcs=np.mean(meanValue) 

            for cell in self.cellListByType(self.NPCELLS,self.ACELLS):  

#distances to the static uretic bud is irrelevant              

self.File2.write(str(cell.id)+","+str(cell.type)+","+str(mcs)+","+str(self.distance(_from=[20, 

40, 50],_to=[cell.xCOM,..(same to y and z)]))+","+str(self.distance(_from=[40, 50, 50],\           

_to=[cell.xCOM,..(short)]))+","+str(cell.xCOM)..(short)..str(field[int(cell.xCOM), ..(short))]) 

+","+str(meanValue_mcs)+"\n") 

        if mcs == p.mcs-1:   

# do this on the last mcs step (i.e. not beautiful fix for "finish" not working): self.File2.close()    

    def finish(self): 

        # this closing is needed for getting the total files, in order to 'flush' them from memory: 

        self.File2.close() 

8.3.2. Shortened Python Code of Particle Swarm Optimization Method 

 

PSO code procedures summarized from James Sluka’s original codes given personally or partly  

found at (Bonyadi and Michalewicz, 2017; Sluka et al., 2018).  

 

1) Import packages, such as Slurm (system management) and OS (operations) in python. 

 

2) Set PSO parameters and options with a function and submit the set of simulations via 

Slurm. 

 

3) Load the parameters with a function that returns a list of parameter names, and min and 

max values. 

 

4) Create the working directories with a function that returns matrix indexed by swarm 

number, then particle number, with value of the directory's path. The working directories 

are all created in the same directory as the .cc3d file. There is a folder for each particle in 

each swarm. The folders are named: S00001_P00001 for particle 1 of swarm 1.  

 

5) Create a function for each particle instance, which contains:  

a) position, b) velocity, c) pBest[], d) pBestE, which mean:  

a) vector of current x values of particles, b) vector of current x velocities of particles,  

c) vector of x the values in the best solutions of particles (from .pos[]]), and  

d) value (e.g., energy, criteria) at pBest[]. 

 

6) The particle swarm optimization algorithm (class) does the particle instance algorithm 

(function) globally and contains: 

a) solution, b) swarm, c) gBest, d) gBestE. The function updates the parameters in the 

*_parameters.py file for the CC3D jobs. The new values are added to the end of the 

existing file in each of the job directories, since the parameters file is a python script the 

last assignments is what is used during the simulation. In addition, this method retains a 

history of all the parameter sets and energy value, see below, for each particle. Also add 

the best energy for the particular particle so it can be used to terminate CC3D runs when 
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the residual error exceeds the previous best residual error. Finally, write the results 

(self.gBest, lastIterWchange, self.gBestE, iter) to file. The final optimization algorithm 

(in the class) is thus in short: 

 

    def optimize(self): 

        for iter in range(iterations): 

            self.updateParams(iter) / self.theResults=submitJobs(iter) 

            for iS in range(numSwarms):   

                if iter%5 == 0: 

                    print "iter %4i swrm %2i gBestE %9.3f  " % ..(shortened))” 

                #Update the personal (particle) best positions: 

                for iP in range(swarmSize): 

                    E = self.theResults[iS][iP] 

                    if E < self.swarm[iS][iP].pBestE: 

                        self.swarm[iS][iP].pBest = list(self.swarm[iS][iP].pos ..shortened) 

                        self.swarm[iS][iP] 

                        print "   new particle gBest",[iS],[iP],'E=%8.2f (' % E…(shortened)) 

                #Get the global (within the particular sub-swarm) best particle: 

                for iP in range(swarmSize): 

                    E = self.theResults[iS][iP]   #E = self.f(self.swarm[iS][iP].pBest)                   

                    if E < self.gBestE[iS]: 

                        self.gBest[iS] = list(self.swarm[iS][iP].pBest)self.gBestE[iS] = E     

                        print "new SWARM gBestE,gBest",[iS],[iP],'E=%8.2f (..shortened) 

                        lastIterWchange = iter 

            self.runningLog(iter) 

            for iS in range(numSwarms):               

                #Update position of each particle 

                for iP in range(swarmSize): 

         self.swarm[iS][iP].updateVelocities(self.gBest[iS])/positions/constraints        (..shortened) 

        return self.gBest, lastIterWchange, self.gBestE, iter 

 

8.3.3. Shortened Python Code of 2D and 3D Data Analysis 

The following shortened python coding routines are for the calculations of speeds, distances 

and concentrations of the models (2D/3D). The codes are compiled from various sources (Fish, 

2019; Midha, 2019; Santarcangelo, 2019; SignalProcessing, 2019; StackOverflow, 2019a; 

StackOverflow, 2019b). The codes for cell quantities are separately at the end of this chapter. 

 

1) Import the packages, e.g.: 

import pandas as pd #for importing files 

import glob #for importing files 

import numpy as np  #for calculations, array manipulations, and fun, i.e. functions 

import matplotlib.pyplot as plt #for scientifical plots 

 

2) Import the data: 

all_files2=(glob.glob(C://Model data//3d..// *distances.csv"))  

#distances file contains also concentrations and coordinates 

# Create the list for the three DataFrames you want to create: 

for filename in all_files2: 
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dataframes.append(pd.read_csv(filename)) 

 

3) Create a function that select either NP or MM cells in the tip or corner regions  

(of U or R): 

 

def crit_fun(dataframes,x0,x1,y0,y1,z0,z1): 

    dataframes2 = [] 

    crit1=dataframes['x_position_(px)']>=x0 

   ... (shortened)    

    criteria_all=crit1 & crit2 & crit3 & crit4 & crit5 & crit6     

    dataframes2=dataframes[criteria_all]  

return dataframes2  

# Auxiliary function for intersecting values in list needed for the next function   (speed3_preli): 

    def intersection(lst1, lst2):  

        lst3 = [value for value in lst1 if value in lst2]  

        return lst3 

 

def speed3_preli(dataframes,cond,conda): 

    df_dist_adh3d=dataframes 

    if conda == 'rnd':        

…(shortened)    

        dfcell_names3d.ix[:,1]=list(np.where(dfcell_names3d.ix[:,1] > 1, 'ACells', 'NPCells')) 

        dfcell_names3da=dfcell_names3d.ix[:,0:2]  

    elif conda == 'norm': 

        dfcell_names3d= pd.read_csv('all cells uniform3d_v2.csv', delimiter=";", header=None) 

        dfcell_names3da=dfcell_names3d[[0,1]]             

# selecting common indices in the list of lists of indices  

dfoki22=[], setti=[], settit=[], time=[] 

    if cond == 'both': dfcell_names3da.columns=['a','b'] 

…(shortened)    

    else: 

        setti=dfcell_names3da[dfcell_names3da.ix[:,1]==cond].ix[:,0] #adequate quantity, 

len(setti)=196 

    dfoki22=df_dist_adh3d.set_index("cell_no"), dfoki22=dfoki22.loc[list(setti),:] 

settit=list(crit_fun(dfoki22,0,66,0,81,24,76).index.unique()) 

    #   'corner': 

    setti2=intersection(setti, settit)   

…(shortened)    

    c1=(40 >= dataframesa['y_position_(px)']) 

... (shortened)    

#  'tip': 

    c3=(40 <= dfoki22['y_position_(px)']) 

... (shortened)    

return settit, setti22, setti3 #both, corner, tip (regions) 

 

4) Symmetrize matrices and remove nan values: 

 

def x_y_z_dis_fun(dataframes,setti,time): 

    from random import randrange, uniform #just in case here, needed for random indexing     

#The X values: 
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Append model values from file with your indeces (with 'for loop') to obtain a list of lists 

    dfJEE=dataframes.set_index("cell_no") 

    index = 0, mmf=[], t_jee=time 

    for index in setti:  

        mmf.append(np.array(dfJEE.ix[index,'x_position_(px)']))  

#    Removing 'nans' 

    for i in range(len(mmf)): 

        mmf[i][np.where(np.isnan(mmf[i]))]=+0.1 

        for j in range(len(mmf[i])): 

            if mmf[i][j] == +0.1: 

                lenin=int(round(len(mmf[i])/4)) # latest previous values 

                mmf[i][j] == abs(mean(mmf[i][-lenin:-2])) # replacing the latest prev. with mean val.  

# The symmetrical numpy matrix made from this list of lists by padding constant values to the 

# end of those lists that are below the amount of cells  

    mtt=np.zeros((len(setti),t_jee)), mmf=np.array(mmf) 

    if mtt.shape == mmf.shape: 

        mtt=mmf 

    elif mtt.shape != mmf.shape: 

        for i in range(len(mmf)): 

            Ashape=mmf[i].shape[0], new_shape=t_jee  

            shape_diff = np.asarray(new_shape) - np.asarray(Ashape) 

            mtt[i,:]=np.lib.pad(mmf[i], (0,shape_diff), 'constant', constant_values=(0.1)) 

(Similarly for y and z values) 

return mtt, mtt2, mtt3 #correspond x, y, and z 

 

5) Calculate/report 3D a) speeds, b) distances, or c) concentrations from the previous: 

a) for j in range(index_time-1):  r[:,j] = np.sqrt((x[:,(j+1)]-x[:,j])**2+(y[:,(j+1)]-

y[:,j])**2+(z[:,(j+1)]-z[:,j])**2)) 

b) 'cell_dist_to_corner' and 'cell_dist_to_tip' are recorded in the data frames  

c) Concentration is calculated with COMs and a new function: 

 

def concentration(dataframes,setti,time): 

    COM= x_y_z_dis_fun(dataframes,setti,time) 

    #Selecting the correct spaces 

    index_cells=len(setti),    index_time=time 

    C=np.zeros((index_cells,index_time))  

    for j in range(index_time-1): 

        C[:,j] = abs((COM[:,(j+1)]- COM [:,j])) 

    ctot=C[:,0:(time)]    

return ctot 

 

6) Calculate confidence intervals: 

 

    def mean_confidence_interval(data, confidence=0.95): 

        a = 1.0 * np.array(data), n = len(a), m, se = np.mean(a), scipy.stats.sem(a) 

        h = se * scipy.stats.t.ppf((1 + confidence) / 2., n-1) 

        return m, m-h, m+h 
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7) Gather all the calculated data as per regions: 

    for i in range(len(dataframes)): 

        tot.append(speed3_preli(dataframes[i],cond,conda)) 

        tot2.append(speed_fun(dataframes[i],tot[i][0],tot[i][1],tot[i][2],time,dt))  

    for i in range(len(dataframes)): 

        frames.append(tot2[i][0]), frames2.append(tot2[i][1]), frames3.append(tot2[i][2]) 

    result = pd.concat(frames),  result2 = pd.concat(frames2), result3 = pd.concat(frames3) 

    for i in range(time): 

        yes.append(mean_confidence_interval(result[[i]], confidence=0.95)) 

        yes2.append(mean_confidence_interval(result2[[i]], confidence=0.95)), #yes3 similarly 

 

8) Change the variable types and save the resulting file: 

yes[1] = yes[1].astype(float) (and similarly for yes2 andyes3) 

resulti = pd.concat([yes, yes2, yes3], axis=1, sort=False) 

    resulti.columns = ['Speed_tip_avg', 'Speed_tip_CI_min', 'Speed_tip_CI_max', 

'Speed_corner_avg', 'Speed_corner_CI_min','Speed_corner_CI_max','Speed_overall_avg', 

'Speed_overall_CI_min', 'Speed_overall_CI_max', 

resulti.to_csv(name,index=False,header='infer')  

 

9) The cell quantities of either NP or MM cells in the regions are calculated: 

 

def crit_funt(dataframes,y0, cond1): 

    if cond1 == 'tip': (shortened), elif cond1 == 'corner': (shortened) 

return dataframes2  

 

def amount(dataframes, cond, cond1, conda): 

    dataframes2=crit_funt(dataframes,40,cond1), df_dist_adh3d=dataframes2 

    if conda == 'pers':       #shortened 

        dfcell_names3d= pd.read_csv('all cells uniform3d_v3a.csv', delimiter="\t", header=None) 

    elif conda == 'no-pers': #shortened 

        dfcell_names3d= pd.read_csv('all cells uniform3d_v2.csv', delimiter=";", header=None) 

    elif conda == 'pers2':       #shortened 

        dfcell_names3d.ix[:,1]=list(np.where(dfcell_names3d.ix[:,1] > 1, 'ACells', 'NPCells')) 

    if cond == 'NPCells': #shortened 

        setti=dfcell_names3da[dfcell_names3da.ix[:,1]==cond].ix[:,0] 

    elif cond == 'ACells': #shortened 

        setti=dfcell_names3da[dfcell_names3da.ix[:,1]==cond].ix[:,0]    

    dfoki22=df_dist_adh3d.set_index("cell_no"), dfoki22=dfoki22.loc[list(setti),:] 

    dfoki22=dfoki22.dropna(), a=dfoki22['time_mcs'] 

    from itertools import groupby 

results = ‘value: len(list(freq)) for value, freq in groupby(sorted(a))’ #check the syntax 

return results 

 

def Amount_3D_ci(dataframes,cond,cond1,conda,time,name): 

    tot2 = [], frames2=[], yes=[] 

    for i in range(len(dataframes)): 

        tot2.append(amount(dataframes[i],cond,cond1,conda)) #ub half 

    for i in range(len(dataframes)): 

        frames2.append(pd.DataFrame(([v for v in tot2[i].values()]))) 

    result2 = pd.concat(frames2, axis=1) 
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    for i in range(time): 

        yes.append(mean_confidence_interval(result2.ix[i], confidence=0.95)) 

    yes=pd.DataFrame(yes)   

    for i in range(time): 

        yes.loc[i,1]=float(yes.loc[i,1]), yes.loc[i,2]=float(yes.loc[i,2]) 

    yes[1] = yes[1].astype(float), yes[2] = yes[2].astype(float)  

    resulti = pd.concat([yes], axis=1, sort=False) 

    resulti.columns = ['Cells_region_avg', 'Cells_region_CI_min', 'Cells_region_CI_max'] 

    resulti.to_csv(name, index=False, header='infer')  

return resulti    

 

8.3.4. Shortened Python Code of Self-Organized Maps 

The original SOM code has been described elsewhere (Vettigli, 2018). Here is a shortened and 

explained version of the code with the original transformations for the resulting data and plots 

(Hunter et al., 2019; Midha, 2019; Waskom, 2019), where the syntax and content have been 

shortened. 

 

1) Import the packges, e.g. python’s MiniSom, PANDA and NUMPY packages. 

 

2) Import and symmetrize the experimental and model data frames, e.g. for explant culture: 

dfc_experim2 = pd.read_excel('C:/python/' + 'mmc4.xlsx') 

 

3) Calculate speeds: (d_som is the data frame) 

d_som['speed']=(np.sqrt(d_som['dx']**2+d_som['dy']**2)/d_som['time_interval_sec']) 

 

4) Perform SOM to these speeds and coordinates with preliminary steps: 

from minisom import MiniSom 

data = np.genfromtxt( 

'C:/python/SOM_REF_EXPS AND MODS/irist.csv', delimiter=',', usecols=(1,2,3,4)) 

#check the used columns (nos) per dataset, model or various experiments 

#% Data normalization: 

data = np.apply_along_axis(lambda x: x/np.linalg.norm(x), 1, data) 

 

# Initialization and training: 

som = MiniSom(10, 10, 4, sigma=4, learning_rate=0.5,  

              neighborhood_function='mexican_hat', random_seed=10) 

#for mexican hat:seed=10, sigma=2, learning_rate=0.3 are good,  

som.random_weights_init(data) 

som.pca_weights_init(data) 

print("Training...") 

som.train_random(data, 5000)  # random training 

print("\n...ready!") 

 

#%If you have already trained, your SOM is ready, and you may want to print the figure: 

plt.figure(figsize=(10, 10)) 

# Plotting the response for each pattern in the iris dataset: 

plt.pcolor(som.distance_map().T, cmap="RdYlGn")   

# plotting the distance map as background, rainbow is good: plt.colorbar() 

t=list(range(1,(len(d_som)+1))) 

#check the size of markers and colors... 
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markers =(['s', 'D','o', ',', '.','s','D']*5000+['*']*4592), colors =(['C1']*5000 +['C2']*5000+['C3']* 

5000+['C4']*5000+['C5']*5000+['C6']*5000+['C7']*5000+['C8']*4592) 

for cnt, xx in enumerate(data): 

    w = som.winner(xx)  # getting the winner, place a marker on the winning pos. for sample xx 

    plt.plot(w[0]+.5, w[1]+.5, markers[t[cnt]-1], markerfacecolor='None', 

             markeredgecolor=colors[t[cnt]-1], markersize=12, markeredgewidth=3) 

plt.axis([0,som._weights.shape[0],0,som._weights.shape[1]]) #this works! 

plt.savefig('C:/python/../SOM_REFERENCE_velocity_and_location_4.1.2019_mod.png')  

plt.show() # show the figure, do not use pyplot 

 

5) Transform the SOM plot to stable speed and coordinate groups: 

 

def groups(data,d_som,amount=8): 

    a=[], b=[], ll=[] 

    for i in range(len(data)): a.append(som.winner(data[i])) 

    #%This is how one obtains all groups: aa=pd.DataFrame(a) 

    aa.columns = ['a', 'b'], aa.index=d_som.index, oon=[] 

    for i in range(0,9): 

        for j in range(0,9): oon.append(aa.loc[(aa['a'] == i) & (aa['b'] == j)]) 

    for i in range(len(oon)): 

        ll.append(np.shape(oon[i])),  

    lll=pd.DataFrame(ll), lll.columns = ['a', 'b'] 

    d=(-np.sort(-lll['a'],axis=0))[0:amount] #descending sort 

    dd=[], d2=[] 

    for i in range(len(oon)): 

        if int(np.shape(oon[i])[0]) >= int(min(d)): 

            dd.append(int(np.unique(oon[i]['a']))), d2.append(int(np.unique(oon[i]['b']))) 

    dd=pd.DataFrame(dd), d2=pd.DataFrame(d2) 

    dd['d2'] = d2 

    dd.columns = ['dd', 'd2'] 

    for i in range(amount): 

        ooon.append(aa.loc[(aa['a'] == dd.ix[i,0]) & (aa['b'] == dd.ix[i,1])]) 

return ooon,d 

 

6) Plot the normed coordinates and speeds with joint plot function (in python): 

for i in range(len(x)): 

    os.mkdir(path[i]), os.chdir(path[i]), show(d_som,on_indexi[i]) 

    semi_som(x[i],y[i],z[i],colors[i],condition=True, c2="RdYlGn")    

    td=[] 

    td.append(pd.DataFrame({"X normed / AU": x[i], (Y and Z likewise) 

            "Speed normed / AU": colors[i], (time and distance likewise) }))    

    for i in range(len(td)):    sns.set(style="white", color_codes=True) 

sns.jointplot(x=td[i]["X normed / AU"], y=td[i]["Y normed / AU"], kind='kde',               

color="skyblue") (and similarly for other measures) 

 

7) Finally save the resulting plot with: 

result2 = test_df2.sort_values(by=["Speed potential normed / AU"],ascending=True) 

result2.plot(kind="scatter", x="X normed / AU", y="Speed normed / AU", s=10, 

                 c="Speed normed / AU", cmap='RdYlGn', ax=ax) 

pylab.savefig('plot_speed and x.png'), fig.show()    
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8.4. Tables 

Table S1: An example of running results of PSO to 7_B_NP_ADH, optimizing AED (i.e. J), 

and CL (i.e. 𝜆𝐶𝐿) with Quality (Qual) values, as explained in methods. The (2100) rows of 

individual iteration values between ‘iter’ 1-58 are not shown. 

 
iter swrm prtcl AED CL Qual Time pBestE sBestE ggBestE Individual_Qual_for_ 

multiple_runs/ 
parameter_set 

0 0 0 7.04E+00 6.65E+01 3.33E+98 1259.7 1 -- -- -199121.7662 

0 0 1 7.22E+00 8.57E+00 -1.33E+05 1601.7 1 -- -- -133649.9206 

0 0 2 7.65E+00 1.15E+02 -1.93E+05 1772.4 1 -- -- -194714.4855 

0 0 3 7.23E+00 5.32E+01 -1.97E+05 1768.8 1 1 -- -196980.3054 

0 0 4 7.26E+00 9.81E+01 -1.95E+05 1922.5 1 -- -- -193914.1285 

0 0 5 6.87E+00 3.82E+01 -1.96E+05 1885.3 1 -- -- -195940.7652 

0 0 6 6.34E+00 8.51E+01 -1.96E+05 1938 1 -- -- -197419.517 

0 0 7 3.43E+00 1.02E+02 -1.94E+05 1954.8 1 -- -- -194569.58 
           

0 1 0 4.32E+00 9.11E+01 -1.96E+05 1941.9 1 -- -- -195977.7241 

0 1 1 7.11E+00 4.78E+01 -1.97E+05 1913.3 1 -- -- -197991.3051 

0 1 2 6.16E+00 7.17E+01 -1.98E+05 1929.4 1 1 -- -196129.2983 

0 1 3 4.93E+00 4.68E+01 -1.96E+05 1935.1 1 -- -- -199050.9773 

0 1 4 2.35E+00 1.61E+01 -1.67E+05 1887.1 1 -- -- -164141.1992 

0 1 5 5.04E+00 4.37E+01 -1.96E+05 1913.3 1 -- -- -195384.9057 

0 1 6 4.53E+00 4.74E+01 -1.96E+05 1918.8 1 -- -- -196442.271 

0 1 7 2.89E+00 7.34E+01 -1.95E+05 1940.4 1 -- -- -195150.7899 

… … … … … … … … … … … 

59 2 0 6.28E+00 7.45E+01 -2.01E+05 1780 -- -- -- -197362.9088 

59 2 1 6.21E+00 7.47E+01 -2.00E+05 1784.5 -- -- -- -199803.6351 

59 2 2 6.51E+00 7.45E+01 3.33E+98 1270.2 -- -- -- 1.00E+99 

59 2 3 6.64E+00 7.47E+01 -2.01E+05 1788.9 -- -- -- -199013.3661 

59 2 4 6.60E+00 7.30E+01 -2.02E+05 1921.8 -- -- -- -200939.4041 

59 2 5 6.49E+00 7.44E+01 -2.01E+05 1925.3 -- -- -- -202486.487 

59 2 6 7.47E+00 7.22E+01 -2.02E+05 1929.7 -- -- -- -201525.9934 

59 2 7 6.84E+00 7.35E+01 -2.01E+05 1918.6 -- -- -- -200825.7131 
           

59 3 0 6.50E+00 6.92E+01 -2.02E+05 1912.5 -- -- -- -201165.8338 

59 3 1 6.51E+00 6.89E+01 -1.99E+05 1929.2 -- -- -- -199057.8997 

59 3 2 6.54E+00 6.04E+01 -2.02E+05 1914.5 -- -- -- -200621.8862 

59 3 3 6.67E+00 6.79E+01 -2.04E+05 1915.8 1 -- -- -202217.8179 

59 3 4 6.63E+00 7.34E+01 -2.01E+05 1812.9 -- -- -- -202304.0917 

59 3 5 6.31E+00 6.98E+01 -2.02E+05 1814.3 -- -- -- -201656.1594 

59 3 6 6.46E+00 7.14E+01 3.33E+98 1283.8 -- -- -- -201400.4207 

59 3 7 6.32E+00 7.32E+01 -2.03E+05 1811.9 -- -- -- -203224.0722 
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Table S2: Average corner and tip values for NP cells at the end of 2D and 3D simulations (800-

1000MCS). Distances (d), concentrations (c), and speeds are given for each model (M, 1-8) 

starting from 2D and then in 3D. The first value is for R, and second for U model type. 

M

Corner 

d (µm)
b

Tip 

d (µm)
b

Corner

c (DL/m)
c

Tip 

c (DL/m)
c

Corner 

v (µm/min)

Tip 

v (µm/min)

1

30.1±0.8,  

30.4±0.8

24.7±0.8,  

24.4±0.7

0

0

0

0

0.125±0.005,  

0.126±0.005

0.128±0.004,  

0.126±0.004

2

30.0±0.8,  

30.6±0.8

24.6±0.8,  

24.7±0.8

0

0

0

0

0.114±0.005,  

0.113±0.005

0.118±0.004,  

0.116±0.004

3

32.2±1,  

27.3±1.1

24.1±0.8,  

24.2±0.8

21.3±1.3, 

19.6±0.9

19.2±1.1,  

13.8±0.7

0.180±0.008,  

0.177±0.007

0.174±0.006,  

0.172±0.006

4

31.9±0.8,  

34.0±0.6

21.1±0.7,  

21.1±0.7

9.4±0.5,  

8.8±0.5

9.7±0.5,  

9.7±0.5

0.154±0.007,  

0.162±0.007

0.146±0.005,  

0.148±0.005

5

29.9±0.8,  

26.3±1

23.2±0.7,  

24.3±0.8

8.4±0.5,  

11.9±0.6

7.2±0.4,  

7.4±0.4

0.140±0.007,  

0.151±0.007

0.132±0.005,  

0.132±0.005

6

32.3±0.8,  

34.9±0.6

22.3±0.7,  

22.6±0.8

8.2±0.4,  

8.8±0.5

8.6±0.4,  

8.6±0.4

0.139±0.007,  

0.155±0.007

0.137±0.005,  

0.139±0.005

7

30.1±0.9,  

25.5±1

23.7±0.8,  

23.2±0.8

14.0±0.8, 

19.2±1.0

11.8±0.7,  

11.7±0.7

0.151±0.007,  

0.169±0.007

0.140±0.005,  

0.140±0.005

8

29.5±0.8,  

29.7±0.8

22.9±0.7,  

23.0±0.7

0

0

0

0

0.074±0.003,  

0.074±0.003

0.074±0.002,  

0.074±0.002

1

25.0±0.4,  

24.9±0.4

20.5±0.3,  

20.5±0.3

0

0

0

0

0.0153±0.0003,  

0.0154±0.0003

0.0153±0.0003,  

0.0153±0.0003

2

25.3±0.4,  

27.8±0.4

20.9±0.3,  

23.8±0.4

0

0

0

0

0.0166±0.001,  

0.0181±0.0004

0.0169±0.0009,  

0.0180±0.0003

3

29.6±0.7,  

31.6±0.7

20.0±0.3,  

22.1±0.3

8.4±0.2,  

6.8±0.2

7.8±0.2,  

5.5±0.2

0.1134±0.003,  

0.1456±0.0032

0.0973±0.003,  

0.1525±0.0037

4

27.2±0.5,  

26.7±0.5

20.1±0.3,  

16.9±0.2

6.5±0.2,  

5.4±0.2

6.3±0.2,  

5.2±0.2

0.0818±0.002,  

0.1105±0.0025

0.0792±0.002,  

0.1087±0.0020

5

29.8±0.6,  

30.6±0.6

22.9±0.3,  

22.3±0.4

8.3±0.2,  

6.4±0.2

7.7±0.2,  

5.1±0.2

0.1042±0.003,  

0.1446±0.0031

0.0923±0.003,  

0.1522±0.0036

6

27.2±0.5,  

25.8±0.5

20.6±0.3,  

16.7±0.2

6.1±0.2,  

4.7±0.2

6.0±0.2,  

4.5±0.2

0.0749±0.002,  

0.1079±0.0025

0.0724±0.002,  

0.1068±0.0021

7

28.6±0.5,  

29.2±0.6

18.7±0.3,  

16.7±0.3

8.1±0.2,  

7.8±0.3

8.2±0.3,  

6.9±0.3

0.0955±0.002,  

0.1276±0.0027

0.0828±0.002,  

0.1271±0.0027

8

25.5±0.4,  

25.5±0.4

21.4±0.3,  

21.3±0.3

0

0

0

0

0.0152±0.000,  

0.0154±0.0003

0.0155±0.0003,  

0.0158±0.0003  
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Table S3: Average corner and tip values for MM cells at the end of simulations (800-

1000MCS). Distances (d), concentrations (c), and speeds are given for each model (M, 1-8) 

starting from 2D and then in 3D. The first value is for R, and second for U model type. 

M

Corner 

d (µm)
b

Tip 

d (µm)
b

Corner

c (DL/m)
c

Tip 

c (DL/m)
c

Corner 

v (µm/min)

Tip 

v (µm/min)

1

30.5±0.8, 

30.6±0.8

24.7±0.7, 

25.0±0.7

0

0

0

0

0.127±0.005, 

0.126±0.005

0.127±0.004, 

0.126±0.004

2

30.1±0.8, 

29.9±0.9

25.4±0.8, 

25.0±0.8

0

0

0

0

0.114±0.005, 

0.109±0.004

0.127±0.004, 

0.126±0.004

3

32.0±1.0, 

37.1±0.7

24.1±0.7, 

23.6±0.7

21.7±1.3, 

10.7±0.6

19.4±1.2, 

13.5±0.7

0.180±0.008, 

0.183±0.008

0.176±0.006, 

0.174±0.006

4

32.5±0.9, 

29.61±1.0

22.3±0.7, 

21.2±0.7

9.5±0.5, 

9.1±0.5

9.7±0.5, 

9.9±0.5

0.152±0.007, 

0.141±0.007

0.146±0.005, 

0.145±0.005

5

30.3±0.9, 

34.5±0.7

23.3±0.7, 

23.4±0.8

8.4±0.5, 

5.3±0.3

7±0.4, 

7.1±0.4

0.138±0.006, 

0.127±0.006

0.131±0.004, 

0.131±0.005

6

31.1±0.9, 

29.5±1.0

22.2±0.7, 

22.1±0.7

8.3±0.4, 

8.2±0.4

8.3±0.4, 

8.7±0.4

0.137±0.006, 

0.124±0.006

0.135±0.005, 

0.136±0.005

7

29.9±0.9, 

34.9±0.8

23.4±0.7, 

23.3±0.7

14±0.8, 

8.1±0.5

12.1±0.7, 

11.5±0.7

0.151±0.007, 

0.134±0.007

0.140±0.005, 

0.139±0.005

8

29.6±0.8, 

29.5±0.8

23.2±0.7, 

23.2±0.7

0

0

0

0

0.074±0.003, 

0.074±0.003

0.074±0.002, 

0.074±0.002

1

24.7±0.4, 

24.8±0.5

20.7±0.3, 

20.7±0.3

0

0

0

0

0.0152±0.0003, 

0.0152±0.0003

0.0154±0.0003, 

0.0153±0.0003

2

24.9±0.5, 

27.2±0.4

21±0.3, 

24.1±0.4

0

0

0

0

0.0167±0.0011, 

0.018±0.0004

0.0154±0.0003, 

0.0153±0.0003

3

29.8±0.7, 

25.2±0.3

20±0.3, 

17.5±0.2

6.9±0.2, 

4.1±0.2

5.6±0.2, 

3±0.1

0.112±0.0034, 

0.0511±0.0012

0.0969±0.0035, 

0.0337±0.0008

4

27.3±0.5, 

27.8±0.4

20.4±0.3, 

24.5±0.2

5.3±0.2, 

3.8±0.2

5.2±0.2, 

3.7±0.2

0.0801±0.0025, 

0.0439±0.001

0.0783±0.002, 

0.0414±0.0008

5

30.1±0.6, 

28.8±0.3

23.0±0.3, 

23.7±0.2

6.5±0.2, 

2.7±0.1

5.2±0.2, 

1.8±0.05

0.1052±0.0036, 

0.0277±0.0007

0.0922±0.0037, 

0.0191±0.0004

6

27.6±0.5, 

28.8±0.3

20.9±0.3, 

23.7±0.2

4.7±0.2, 

2.5±0.2

4.4±0.2, 

2.4±0.1

0.0752±0.0026, 

0.0305±0.0008

0.0713±0.0021, 

0.03±0.0006

7

28.6±0.5, 

27.7±0.4

18.3±0.3, 

19.8±0.2

7.7±0.2, 

7.1±0.3

6.8±0.2, 

5.3±0.2

0.0948±0.0029, 

0.0409±0.001

0.0832±0.0026, 

0.0358±0.0007

8

25.7±0.4, 

25.7±0.4

21.6±0.3, 

21.7±0.3

0

0

0

0

0.0152±0.0003, 

0.0154±0.0003

0.0155±0.0003, 

0.0158±0.0003



  PUBLICATIONS AND PRESENTATIONS 

83 

 

9. PUBLICATIONS AND PRESENTATIONS 

Original publications 

1. Tikka, P. and Schaefer, F. (2017). Computational modelling of early 

nephrogenesis. Nephron 137(2), 155-167, Eurenomics joint annual meeting abstract, 

doi: 10.1159/000477523. 

2. Tikka, P. and Schaefer, F. (2019). Methods of computational analysis in kidney 

development. Methods Mol Biol 1926, 235-246, doi: 10.1007/978-1-4939-9021-

4_19. 

3. Tikka, P. (2019a). Additional supplementary figures of thesis.  FigShare, URL: 

https://doi.org/10.6084/m9.figshare.10315910.v1 [as of 16.11.2019]. 

4. Tikka, P. (2019b). CC3D model example codes.  GitHub, URL: 

https://github.com/paulitikka/CC3D-Model-Example-Codes [as of 16.11.2019]. 

5. Tikka, P. (2019c). Data of non-optimized and optimized cc3d models and kidney 

organoid experiments.  FigShare, URL: 

https://figshare.com/projects/Research_Data/71801 [as of 16.11.2019]. 

6. Tikka, P. (2019d). Model data analysis.  GitHub, URL: 

https://github.com/paulitikka/Model-Data-Analysis [as of 16.11.2019]. 

7. Tikka, P., Mercker, M., Skovorodkin, I., Saarela, U., Sluka, J., Glazier, J. A., 

Marciniak-Czochra, A. and Schaefer, F. (2019). Computational modelling of 

nephron progenitor cell movement and aggregation during kidney organogenesis. 

Publication in Preparation. 

 

Presentations 

Posters and presentations during EU-funded project of Marie-Curie International Training 

Network RenalTract (2016-19). The main presentations were held at universities of Paris, 

Manchester, Glasgow, Bidart, and Indiana (U.S.). Above all, the posters were presented 

similarly in the university-held conferences at Manchester, Berlin, and Napoli. 



  CURRICULUM VITAE 

84 

 

10. CURRICULUM VITAE  

Personal and Contact Details 

Name:              Pauli Tikka 

Telephone: +49(0) 176 21789056  

E-mail:             pauli.tikka@med.uni-heidelberg.de 

 

Education  

M.Sc. (Tech.) Biotechnology with grade 3/5    University of Turku, 12.6.2014 

M.Sc. (Tech.) Mechanical Engineering with grade 3/5    Aalto University, 18.12.2006  

Matriculation examination: Normal Lyceum of Helsinki, 3.6.2000 

Diploma of Conservatory: The Conservatory of Central Helsinki, 30.5.2000 (cello) 

 

Employment History 

• PhD student, University of Heidelberg, Medical Faculty, 1/2016- 

Part of RenalTract Consortium studying ‘modelling of nephron progenitor cell 

movements in early nephrogenesis’ 

• Research and Master’s Thesis Worker, Hans Knöll Institute, Jena, 9/2013-5/2014 

The effect of miRNAs to the regulation of triple negative breast cancer cells 

• Summer trainee, Finnish Museum of Natural History, 05/2013-08/2013 

Conducting R language testing with phylogenetic tree data and training Perl language 

• Design Engineer, Outotec Inc./Lamprotek Inc., 02/2011-06/2011 

Design engineering tasks for mineral filtering process equipment 

• Data Saver, National Institute for Health and Welfare (HW), 10/2010-11/2010 

• Statistical evaluation of the meeting procedures of the executive groups of sections 

and fields of HW for the use of strategic unit of HW 

• Design Engineer, Neste Jacobs Inc., 5/2007-11/2009 

• Responsible of the process plant equipment (e.g. filters, safety valves) tasks at plant 

design division: technical purchase requisition documents and drawings, strength 

calculations, quotation comparison and checking vendor documentation  

• Project worker, Wärtsilä Inc., 1/2006-5/2006 

• Student assignment done together with Wärtsilä Inc., Helsinki University of 

Technology and Kungliga Tekniska Högskolan (KTH, Stockholm, Sweden)  

• Master’s Thesis Worker, Outotec Research Inc., 5/2006-12/2006 

• Work was carried out in the Laboratory of Physical Chemistry at the Aalto University 

of Technology. It was a part of a project of Outotec Research Inc.  

• Assistant of Mathematics, Helsinki University of Technology, 8/2003-9/2003 

Task was to teach a mathematical program in a basic course



  ACKNOWLEDGEMENTS 

85 

 

11. ACKNOWLEDGEMENTS 

There are many people that I would like to give my wholehearted gratitude. Starting from my 

friend and friends, I would like to acknowledge Dr Sotiris Zarogiannis. With him, I had 

inspirational discussions amongst writing my works. Naturally, my indebtedness goes to 

persons such as my parents and brother, who sometimes read my writings. By the same fashion, 

my favourable connotations should reach the project workers of the RenalTract consortium and 

Zentrum für Kinder -und Jugendmedizin. The latter have been a constant support in the 

important as well as mundane matters.  

Moreover, I got many insightful advices regarding my computing works from Drs Moritz 

Mercker, James P. Sluka, and James Glazier. Not to mention to the biology related observations 

to my modelling, which I received from Drs Ilya Skovorodkin, Tanja Wlodkowski, Maria 

Bartosova and Ulla Saarela. And of course, finally, my acknowledgements go to my principal 

instructors, Drs Franz Schaefer, Anna Marciniak-Czochra, and Seppo Vainio. Thank you all 

very much for your support during the years.



  EIDESSTATTLICHE VERSICHERUNG 

86 

 

12. EIDESSTATTLICHE VERSICHERUNG   

 

1. Bei der eingereichten Dissertation zu dem Thema  

 

……………………………………………………………………………………  

handelt es sich um meine eigenständig erbrachte Leistung.  

 

2. Ich habe nur die angegebenen Quellen und Hilfsmittel benutzt und mich keiner unzulässigen 

Hilfe Dritter bedient. Insbesondere habe ich wörtlich oder sinngemäß aus anderen Werken 

übernommene Inhalte als solche kenntlich gemacht.  

 

3. Die Arbeit oder Teile davon habe ich bislang nicht an einer Hochschule des In- oder 

Auslands als Bestandteil einer Prüfungs- oder Qualifikationsleistung vorgelegt. 

 

4. Die Richtigkeit der vorstehenden Erklärungen bestätige ich.  

 

5. Die Bedeutung der eidesstattlichen Versicherung und die strafrechtlichen Folgen einer 

unrichtigen oder unvollständigen eidesstattlichen Versicherung sind mir bekannt. Ich 

versichere an Eides statt, dass ich nach bestem Wissen die reine Wahrheit erklärt und nichts 

verschwiegen habe.  

 

 

 

Ort und Datum       Unterschrift  

 


