INAUGURAL - DISSERTATION
zur
Erlangung der Doktorwiirde
der
Naturwissenschaftlich-Mathematischen Gesamtfakultit
der
Ruprecht-Karls—Universitat
Heidelberg

vorgelegt von

Patrick Fuchs (M.Sc.)
aus Niirnberg

Datum der miindlichen Priifung:

Efficient and Accurate Segmentation of
Detects in Industrial CT Scans

Betreuer: Priv.-Doz. Dr. Christoph S. Garbe

Zusammenfassung

Die industrielle Computertomographie (CT) ist ein grundlegendes Werkzeug bei der zerstérungs-
freien Priifung von Leichtmetallguss- oder Kunststoffbauteilen. Eine umfassende Priifung ist nicht
nur wichtig, um die Stabilitdt und Lebensdauer eines Bauteils sicherzustellen. Sie erlaubt es auch,
durch die Unterstiitzung bei der Optimierung des Gussprozesses, die Ausschussrate zu senken und,
durch das Herstellen gleichwertiger aber filigranerer Strukturen, Material (und Gewicht) einzuspa-
ren. Mit Hilfe einer CT-Aufnahme ist es theoretisch moglich jeden Defekt im untersuchten Bau-
teil zu lokalisieren und seine Form genau zu bestimmen, was wiederum Riickschliisse auf dessen
Schadlichkeit zulasst. Jedoch ist die Datenqualitit meist nicht gut genug, sodass die Defekte nicht
mit einfachen filterbasierten Methoden segmentiert werden konnen, die direkt auf den Grauwerten
arbeiten — besonders, wenn die Prifung auf die komplette Produktion ausgeweitet wird. Im Falle
der Reihenpriifung schrianken die kurzen Taktzeiten die verfiigbare Zeit fiir das Erstellen einer CT-
Aufnahme weiter ein, wodurch diese rauschbehaftet und artefaktanfillig wird. Die weitreichenden
Fortschritte der letzten Jahre im Bereich des Deep Learnings (und insbesondere bei faltungsbasierte
neuronalen Netzen) erméglichen es, selbst kleine Objekte in iiberladenen Szenen finden. Diese Ver-
fahren bieten einen vielversprechenden Ansatz, um selbst in widrigen CT-Aufnahmen die Defekte
schnell, zuverléssig und genau zu segmentieren. Der grofle Nachteil: Diese Verfahren benétigen ei-
ne grof3e Menge sorgfaltig annotierter Trainingsdaten, welche dufierst schwierig zu beschaffen sind
- insbesondere wenn es um die Erkennung winziger Defekte in riesigen, stark artefaktbehafteten,
dreidimensionalen Voxeldaten geht.

Daher beschaftigt sich ein wesentlicher Teil dieser Arbeit mit der Beschaffung prazise annotierter
Trainingsdaten. Zunéchst untersuchen wir, wie die manuelle Annotation von CT-Daten erleichtert
werden kann: Wir erstellen eine hochqualitative CT-Aufnahme mit hoher raumlicher Auflosung und
hoher Kontrastauflosung fiir die Annotation und iibertragen die Annotationen schliefilich auf eine
ausgerichtete, ,normale“ CT-Aufnahme des gleichen Bauteils. Diese CT-Aufnahme weist alle Her-
ausforderungen auf, die wir im Produktionseinsatz erwarten. Die Annotationen sind dennoch un-
eindeutig, da sich die annotierenden Experten nicht immer einig sind, was als Defekt zu annotieren
ist und was nicht. Daher untersuchen wir auflerdem verschiedene Anséatze zum Erstellen kiinstli-
cher Trainingsdaten, fiir welche eine exakte Annotation berechnet werden kann. Prizise Annotatio-
nen sind fur ein einwandfreies Training entscheidend. Wir evaluieren (i) ,Domain Randomization®-
Ansétze, welche mittels einfacher Transformationen eine Obermenge der Realitét simulieren, (ii) ge-
nerative Modelle, die dazu trainiert werden Stichproben aus der Datenverteilung der echten Welt zu
produzieren und (iii) realistische Simulationen, welche die wesentlichen Gesichtspunkte echter CT-
Aufnahmen abbilden. Im Zuge dessen entwickeln wir eine vollautomatisierte Simulations-Pipeline,
die uns mit jeder beliebigen Menge an prazise annotierten Traningsdaten versorgt. Als erstes plat-
zieren wir kiinstliche aber plausible Fehlstellen in prozedural erzeugten, virtuellen Gussbauteilen.
Danach simulieren wir realistische CT-Aufnahmen, die alle typischen CT-Artefakte wie Streuung,
Rauschen, Strahlaufhirtungs- und Ringartefakte aufweisen. Schliefilich berechnen wir noch eine
prizise Annotation fiir jeden Voxel aus seiner Uberschneidung mit dem Fehlstellenmodell. Um zu

bestimmen, ob sich unsere realistisch simulierten CT-Daten als Trainingsdaten fiir maschinelle Lern-
verfahren eignen, vergleichen wir die Vorhersageleistung lernbasierter und nicht-lernbasierter De-
fekterkennungsalgorithmen sowohl auf simulierten Daten als auch auf echten CT-Aufnahmen.

Wir vergleichen unser neuartiges Deep-Learning-Verfahren mit Bildverarbeitungsmethoden und
herkémmlichen Methoden des maschinellen Lernens. Diese Auswertung zeigt, inwieweit die De-
fekterkennung von lernbasierten Ansitzen profitiert. Die Verfahren umfassen (i) eine filterbasierte
Anomaliedetektion, die Hinweise auf Defekte findet, indem sie die urspriinglichen CT-Daten von
einer generierten, ,defektfreien” Darstellung abzieht, (ii) eine Pixel-Klassifizierung, bei der ein Ran-
dom Forest, basierend auf dicht extrahierten, manuell definierten Merkmalen, entscheidet, ob ein
Bildelement Teil eines Defekts ist oder nicht, und (iii) eine Deep-Learning-Methode, die ein U-Net-
ahnliches Kodierer-Dekodierer-Paar dreidimensionaler Faltungen mit einem zusatzlichen Verfeine-
rungsschritt kombiniert. Das Kodierer-Dekodierer-Paar liefert dabei eine hohe Trefferquote, wo-
durch wir selbst sehr kleine Fehlstellen erkennen kénnen. Der Verfeinerungsschritt liefert eine ho-
he Genauigkeit durch das Aussortieren falsch positiver Antworten. Wir evaluieren diese Verfah-
ren ausgiebig, sowohl auf unseren realistisch simulierten CT-Aufnahmen als auch auf echten CT-
Aufnahmen, hinsichtlich ihrer ,Probability of Detection®, die uns verrat mit welcher Wahrschein-
lichkeit ein Defekt gegebener Grofie in einer CT-Aufnahme gegebener Datenqualitat gefunden wer-
den kann und hinsichtlich ihrer ,Intersection over Union®, die uns nihere Informationen iiber die
allgemeine Genauigkeit der Segmentiermaske liefert. Wihrend die lernbasierten Verfahren die Bild-
verarbeitungsmethode klar tibertreffen, besticht die Deep-Learning-Methode besonders durch ihre
Vorhersagegeschwindigkeit und ihre Vorhersageleistung auf schwierigen CT-Aufnahmen — wie sie
zum Beispiel in der Reihenpriifung vorkommen.

Schlief3lich untersuchen wir weitere Moglichkeiten und eventuelle Einschrankungen der Kombina-
tion aus unserer vollautomatisieren Simulations-Pipeline und unserem auf Deep Learning basieren-
den Modell. Da die Deep-Learning-Methode selbst bei CT-Aufnahmen mit geringer Datenqualitét
zuverlassige Ergebnisse liefert, untersuchen wir, wie weit wir die Aufnahmezeit bei gleichzeitiger
Beibehaltung korrekter Segmentierungsergebnisse reduzieren konnen. Weiterhin werfen wir einen
Blick auf die Ubertragbarkeit der vielversprechenden Ergebnisse auf CT-Aufnahmen anderer Bautei-
le verschiedener Materialien und verschiedener Herstellungstechniken — darunter Kunststoffspritz-
guss, Eisenguss, additive Verfahren und zusammengesetzte Multimaterialbauteile. Jede dieser Auf-
gaben bringt ihre eigenen Herausforderungen mit sich, wie ein erhéhtes Artefaktniveau oder ver-
schiedene Arten von Defekten, die gelegentlich selbst fiir das menschliche Auge schwer zu erken-
nen sind. Wir stellen uns diesen Herausforderungen, indem wir mit unserer Simulations-Pipeline
virtuelle Abbilder erstellen, die diese kniffligen Aspekte erfassen, und indem wir unser auf Deep
Learning basierendes Modell auf diese zusatzlichen Trainingsdaten abstimmen. Damit kdnnen wir
unseren Ansatz auf spezifische Aufgaben zuschneiden und selbst bei schwierigen Daten zuverlassige
und robuste Segmentierungsergebnisse erzielen. SchliefSlich untersuchen wir, ob die Deep-Learning-
Methode, basierend auf unseren realistisch simulierten Trainingsdaten, dazu trainiert werden kann,
zwischen verschiedenen Arten von Defekten zu unterscheiden — was der urspriingliche Grund fiir
die Voraussetzung einer prézisen Segmentierung ist — und wir untersuchen, ob die Methode un-
bekannte Daten erkennen kann, fiir die ihre Vorhersagen weniger belastbar werden, sprich eine
Unzuverlassigkeitsschatzung.

Abstract

Industrial computed tomography (CT) is an elementary tool for the non-destructive inspection of
cast light-metal or plastic parts. A comprehensive testing not only helps to ensure the stability and
durability of a part, it also allows reducing the rejection rate by supporting the optimization of the
casting process and to save material (and weight) by producing equivalent but more filigree struc-
tures. With a CT scan it is theoretically possible to locate any defect in the part under examination
and to exactly determine its shape, which in turn helps to draw conclusions about its harmfulness.
However, most of the time the data quality is not good enough to allow segmenting the defects with
simple filter-based methods which directly operate on the gray-values—especially when the inspec-
tion is expanded to the entire production. In such in-line inspection scenarios the tight cycle times
further limit the available time for the acquisition of the CT scan, which renders them noisy and
prone to various artifacts. In recent years, dramatic advances in deep learning (and convolutional
neural networks in particular) made even the reliable detection of small objects in cluttered scenes
possible. These methods are a promising approach to quickly yield a reliable and accurate defect
segmentation even in unfavorable CT scans. The huge drawback: a lot of precisely labeled training
data is required, which is utterly challenging to obtain—particularly in the case of the detection of
tiny defects in huge, highly artifact-afflicted, three-dimensional voxel data sets.

Hence, a significant part of this work deals with the acquisition of precisely labeled training data.
Firstly, we consider facilitating the manual labeling process: our experts annotate on high-quality CT
scans with a high spatial resolution and a high contrast resolution and we then transfer these labels
to an aligned “normal” CT scan of the same part, which holds all the challenging aspects we expect in
production use. Nonetheless, due to the indecisiveness of the labeling experts about what to annotate
as defective, the labels remain fuzzy. Thus, we additionally explore different approaches to generate
artificial training data, for which a precise ground truth can be computed. We find an accurate
labeling to be crucial for a proper training. We evaluate (i) domain randomization which simulates a
super-set of reality with simple transformations, (ii) generative models which are trained to produce
samples of the real-world data distribution, and (iii) realistic simulations which capture the essential
aspects of real CT scans. Here, we develop a fully automated simulation pipeline which provides us
with an arbitrary amount of precisely labeled training data. First, we procedurally generate virtual
cast parts in which we place reasonable artificial casting defects. Then, we realistically simulate CT
scans which include typical CT artifacts like scatter, noise, cupping, and ring artifacts. Finally, we
compute a precise ground truth by determining for each voxel the overlap with the defect mesh.
To determine whether our realistically simulated CT data is eligible to serve as training data for
machine learning methods, we compare the prediction performance of learning-based and non-
learning-based defect recognition algorithms on the simulated data and on real CT scans.

In an extensive evaluation, we compare our novel deep learning method to a baseline of image pro-
cessing and traditional machine learning algorithms. This evaluation shows how much defect detec-
tion benefits from learning-based approaches. In particular, we compare (i) a filter-based anomaly

detection method which finds defect indications by subtracting the original CT data from a gener-
ated “defect-free” version, (ii) a pixel-classification method which, based on densely extracted hand-
designed features, lets a random forest decide about whether an image element is part of a defect
or not, and (iii) a novel deep learning method which combines a U-Net-like encoder-decoder-pair
of three-dimensional convolutions with an additional refinement step. The encoder-decoder-pair
yields a high recall, which allows us to detect even very small defect instances. The refinement step
yields a high precision by sorting out the false positive responses. We extensively evaluate these
models on our realistically simulated CT scans as well as on real CT scans in terms of their probabil-
ity of detection, which tells us at which probability a defect of a given size can be found in a CT scan of
a given quality, and their intersection over union, which gives us information about how precise our
segmentation mask is in general. While the learning-based methods clearly outperform the image
processing method, the deep learning method in particular convinces by its inference speed and its
prediction performance on challenging CT scans—as they, for example, occur in in-line scenarios.

Finally, we further explore the possibilities and the limitations of the combination of our fully au-
tomated simulation pipeline and our deep learning model. With the deep learning method yielding
reliable results for CT scans of low data quality, we examine by how much we can reduce the scan
time while still maintaining proper segmentation results. Then, we take a look on the transferabil-
ity of the promising results to CT scans of parts of different materials and different manufacturing
techniques, including plastic injection molding, iron casting, additive manufacturing, and composed
multi-material parts. Each of these tasks comes with its own challenges like an increased artifact-
level or different types of defects which occasionally are hard to detect even for the human eye.
We tackle these challenges by employing our simulation pipeline to produce virtual counterparts
that capture the tricky aspects and fine-tuning the deep learning method on this additional training
data. With that we can tailor our approach towards specific tasks, achieving reliable and robust seg-
mentation results even for challenging data. Lastly, we examine if the deep learning method, based
on our realistically simulated training data, can be trained to distinguish between different types
of defects—the reason why we require a precise segmentation in the first place—and we examine
if the deep learning method can detect out-of-distribution data where its predictions become less
trustworthy, i. e. an uncertainty estimation.

Acknowledgments

During my journey through the fascinating world of computed tomography, aluminum casting, and,
of course, machine learning I received a great deal of support to conduct my research and lots of
motivation which particularly eased the suffering while bringing the work to paper. Therefore, I
would like to take the chance to express my deep gratitude:

1.

I would like to thank all those who made this thesis possible: Christoph Garbe who willingly
accepted the supervision of the work and stopped by even after the end of his work day. I also
would like to thank him as well as Fred Hamprecht for providing the chance for my doctoral
studies in computer science at the Faculty of Mathematics and Computer Science, Heidelberg
University. Tobias Dierig who arranged the cooperation with Volume Graphics (VG) and con-
tinued providing guidance even after he moved on to another company and Thomas Giinther
and the board of directors of VG for offering me the position as “PhD Candidate” and granting
me the freedom to carry out my work independently.

. I would like to thank Thorben Kréger, Sven Gondrom-Linke, and Jonathan Hess for their

intensive support, providing me with practical advice and with plenty of data, helping me
with the publication of research papers in application conferences and scientific journals as
well as for proof reading this work.

. I'would like to thank our CT experts for clicking through tons and tons of voxel data, minutely

labeling the casting defects in the CT scans. Furthermore, I would like to thank all the institutes
and cooperation partners who do not wish to be mentioned by name for providing further CT
scans of real parts and Daniela Handl for organizing the pairs of high-quality and “normal”
CT scans of the cast aluminum parts.

. I'would like to thank Soren Schiiller, Matthias Flefiner, and Benjamin Bertram for all the help-

ful contributions and fruitful discussions, Benjamin Maier for helping me to raise the simula-
tion pipeline to a production level, my colleagues of the material analysis team and the former
image processing team who protected me from all the rebounds originating from my time as a
working student at VG, the IT department for fulfilling all my special demands and requests, as
well as all my other colleagues at VG for their openhearted support and the pleasant working
atmosphere.

. Last but not least, I would like to thank my family, who kindly accepted that I spent my

scarce visits working on the thesis, my friends, who never got tired of inviting me over, and
in particular Anna-Maria, who bore all my whining, read through all the unpolished machine
learning and computed tomography stuff, and—what I'm most grateful for, even though I
didn’t always show it immediately—allowed me to rest my mind and managed to cheer me up
with all the little distractions.

I hope you all enjoy reading!

Contents

[Cist of Figures| xiii

[Cist of Acronyms| xvii
(I._Introduction| 1
[2. Theoretical Background and Related Work| 5
[2.1. Computed Tomography|. Lo 5
[2.1.1. Setupota CT System[. 7

212 CTReconstructionl 11

[2.1.3. Image Artifacts Impede The Detection| 14

[2.1.4. Towards a Full In-line Inspection| 17

[2.2. Automated Defect Detectionl oL 18
[2.2.1. Image Processing Methods|.00, 18

[2.2.2. Reference-based Approaches| 19

[2.2.3. What About Machine Learning?| 20

[2.3. Semantic Segmentation| oL Lo 21
[2.3.1. Fully Convolutional Neural Networks| 22

[2.3.2. The Pre-Deep Fra: Traditional Methods| 31

[3. The Quest for Data| 35
[3.1. The Challenge of Labeling Real Datal 36
[3.1.1. Sparsely Annotating Real Data| 37

[3.1.2. An Improved Labeling Process for Dense Labels|. 37

[3.1.3. The Crux With TrainingonRealData] 41

[3.1.4. Pre-Training WithReal Datal. 42

[3.2. Of Synthetic Data and Precise Labels| 42
B.21. Domain Randomizationl 43

3.2.2. Generative Modelsl 44

B.23. SimulatedDatal 47

[3.3. A Fully Automated Simulation Pipeline| 48
[3.3.1. Procedural Modeling of Defective Castings| 48

[3.3.2. Realistic Simulation of Projections| 55

[3.3.3. Bring Your Own Ground Truth| 58

4. Reference-free Defect Detection| 63
[4.1. Image Processing Techniques|. 64
[4.1.1. Adaptive Thresholding|., 64

[4.1.2. Template Matching| Lo o 65

Contents

[4.1.3. Morphological Filters[.

@2

Traditional Machine Learning]

4.2.1. Candidate Classification|
[4.2.2. Sliding Window Approach|.

7%

Deep Learning Defect Detection|

[4.3.1. Choosing an Architecture|
[4.3.2. Formulating the Target Function|
[4.3.3. The Training Process|.
[4.3.4. Tuning the Model Output]

[5. Evaluation of Highly Imbalanced Data|

5.1

Statistics of The Training Set|

B.2.

Probability of Detection|.o

[5.2.1. How to Compute the Probability of Detection|
[5.2.2. A Special Test Specimen|

[5.3.1. Computation of the Intersection over Union|
[5.3.2. Artifact Space Evaluation|
[.3.3. Instance-based Intersection over Union|.

5.

|6. Discussing Deep Learning|

6.1,

Eligibility for In-line Scenarios| 000000

[6.1.1. Scan Time Reductionl

6.2.

Transterability to Other Applications|,

[6.2.1. Plastic Injection Molding and Iron Casting|
[6.2.2. Assembled Multi-Material Parts|
[6.2.3. Additive Manufacturing|
[6.2.4. Crack Detection in Nickel-based Alloys|

6.3,

Distinguishing Gas Pores From Shrinkage Cavities|.

6.4

Model Uncertainty|.

[7. _Conclusion|

7.

[A_Data Atlas
B_Model Zod

xii

91
91
93
94
95
99
100
101
103
104
105
106

109
109
110
112
114
115
117
118
121
122
126

133
134
137

139

153

159

List of Figures

[L.1. A briefintroductionto CTdatal 2
[2.1. Differentiation between projection, slice, and volume.| 6
[2.2. Outline of an industrial CT system.| 7
[2.3. The spectrum of a tungsten target and the attenuation of EN AW 2014.| 10
[2.4. The connection between object space, Radon space, and Fourier space and the origin |
of Feldkamp artifacts in 3D reconstruction.| 13

[2.5. Examples of different types of image artitactsin CT data.| 14
[2.6. The X-ray testing pyramid.| o oo 0oL 18
[2.7. Differences in labeling data for image classification, object localization, and (seman- |
tic) segmentation.| L 21

[2.8. End-to-end deep learning vs. traditional computer vision pipelines.| 22
[2.9. An illustration of the different types of convolutional layers.| 26
[2.10. The algorithms of forward and backwardpass| 27
[3.1. A tool for the sparse annotationof CI'scans, 38
[3.2. Despite high-quality CT scans the dense labeling of CT data is difficult| 39
[3.3. The three cast aluminum parts which were scanned and labeled.| 40
[3.4. Results of training a deep neural network with sparsely labeled training data| . . . 41
[3.5. Results of training a deep neural network with densely, yet indecisively labeled train- |
ingdata) 41

[3.6. Examples of the domain randomizationdataset| 44
[3.7. Results of training a deep neural network with the precise labels of the domain ran- |
| domizationdataset] 44
[3.8. Principal outline of the GAN training process.| 45
[3.9. Examples of the refined data generated by the GAN,. 46
[3.10. Results of training a deep neural network with the refined data of the GAN| 46
[3.11. Results of training a deep neural network with the precise labels ot the realistically |
[simulated CTscans) 47
[3.12. Procedural modeling of virtual castparts.|. 49
[3.13. Procedural modeling of gaspores| o o000 51
[3.14. Procedural modeling of shrinkage cavities| 51
[3.15. Procedural modeling of solidification cracks.| 51
[3.16. A force-directed graph-layouting algorithm for the formation of defect clusters| . . 53
[3.17. The iterative formation of defect clusters). 54
[3.18. Sampling the precise per-voxel ground truth from the defect meshes| 59
[3.19. Qualitative comparison of realistically simulated CT data and real CT scans.| 60

0 61

List of Figures

[4.1. Difterences between global and local thresholding|. 65
[4.2. Detecting defects in the gradient image with a spherical template| 66
[4.3. Detecting defects in the gray-value-image with a Gabor template,| 67
[4.4. Anomaly detection with morphological filters| 68
[4.5. The GLCM of a defect, an edge, and a defect-free region| 70
[4.6. 'The computation of the curvature-based features| 70
[4.7. Importance of the GLCM-based and curvature-based features,| 71
4.8. Classification results of some selected candidates] 73
[4.9. Importance of the densely extracted, filter-based features,|. 74
14.10. Filter-based features for the voxel-classification) 75
[4.11. Grid search to find the optimal configuration for the random forest.| 76
[4.12. A slice-by-slice analysis introduces inconsistencies along the analysis direction| . . 80
[4.13. Outline of the flat model using dilated convolutions for context aggregation| 80
[4.14. Outline of the proposed two-step defect detection architecturef. 81
[4.15. A simulated CT scan with and without defects). 83
[4.16. Results of the model trained for anomaly detection.| 84
[4.17. A simulated CT scan with a relative densitymap| 85
[4.18. Results of the model trained for density regression.| 86
[4.19. Examples of augmented CT data|., 88
[4.20. The problem with defects at the material boundary and a solution.|. 89
[4.21. Detecting instances of structural loosening{. 90
[5.1. The histograms of a CT scan at different quality levels| 92
[5.2. Putting the IoU in relation to the number and size of the defects|. 93
[5.3. The methods to compute the POD: avs. aand hit/miss|. 95
[5.4. Our test specimen for a comparable computation of the POD.| 97
[5.5. The test specimen in relation with the quality of the CTscan| 98
[5.6. A quantitative comparison of the filter-based method, the traditional method, and

the deep learning method in terms of the POD). 99
[5.7. A quantitative comparison of the filter-based method, the traditional method, and

the deep learning method in terms of theIoU| 100
[5.8. Prediction performance onreal CTdata| 102
[5.9. Insights from the artifactspace.| o oo 0oL 103
[5.10. A quantitative comparison of the filter-based method, the traditional method, and

the deep learning method in terms of theiloU/| 104
[5.11. A quantitative comparison of different deep learning architectures| 105
[5.12. A quantitative comparison of the filter-based method, the traditional method, and |

the deep learning method in terms of the PRcurve| 107
[5.13. CT and deep learning vs. metallography: A comparison of the results.|. 108
[6.1. CT scans of varying image quality|. 110
|6.2. Experiments with a reduced scan time using simulations and real data,| 111
|6.3. Results of the compared methods on CT scans of reduced scan times,| 112
|6.4. Additional training data containing fast CI'scans| 113
|6.5. Qualitative results on areal in-line CTscan,| 114
[6.6. The prediction performance depends on the data quality of the CT scan| 116

Xiv

List of Figures

|6.7. Qualitative results on artifact-aftlicted CT scans of cast iron parts,| 117
[6.8. Tackling challenging CT scans of multi-material parts with fine-tuning|. 118
[6.9. A CT scan of an additively manufactured part,| 119
|6.10. Qualitative results on a real CT scan of an additively manufactured part| 120
[6.11. Additional training data for the detection of fatigue cracks.| 122
|6.12. Qualitative results on a real CT scan of a tension rod containing fatigue cracks| . . 123
|6.13. Separated labels for different defect types,| 124
|6.14. Prediction performance as a function of the minimum size requirement.|. 125
|6.15. Qualitative results of the classification of different defect types on the simulated |

validation set] 125
|6.16. Qualitative results of the classification of different defect types on real CT scans|. . 126
|6.17. Entropy histograms showing the prediction uncertainty| 129
[6.18. Qualitative evaluation of the prediction uncertainty in terms of the entropy,| 130
[6.19. Qualitative evaluation of the predicted confidencef. 131
{7.1. Outline of the extended simulation pipeline for production.|. 135
[A.l. Simulated CT scans of different materialsf. 156
|A.2. The simulated replica of the multi-material thermistor.| 157
|A.3. Examples of the simulated CT scans with large splits.| 158

XV

List of Acronyms

AM
AUC
CAD
CDF
CDD
CNN
CNR
CRF
CT
DoG
ESD
Faster R-CNN
FBP
FCN
GLCM
GPU
GAN
iloU
IoU
MAE
MDA
MDI
MSE
MTF
NDT
OOD
POD
PR curve
ReLU
ROC
ROI
RPN

additive manufacturing
area UNAET CUIVEttt ittt
computer-aided design
contrast discrimination function L
contrast detail dose
convolutional neural network i
contrast-to-noise ratio i
conditional random field
computed tomographyoiiii e
difference of Gaussians i
equivalent sphere diameter i
faster region-based CNN i,
filtered back-projection
fully convolutional network i
gray-level co-occurrence matrix i
graphics processing Unitc i
generative adversarial network
instance-based intersection over union,
Intersection OVer UMIOMttt
mean absolute error
mean decrease i ACCUTACYvutnttttnt et ettt et e,
mean decrease in impurity i
mean SqUAred €ITOTiuuutntatit ittt aeaeenn.
modulation transfer function
non-destructive testing
out-of-distribution
probability of detection
precision recall curve
rectified linear unit
receiver operating characteristics i i
region of interest

region-proposal network

List of Acronyms

SGD stochastic gradient descent i
SNR signal-to-noise ratio
SSIM structural similarity
YOLO youonly look once

xviii

1. Introduction

In the automotive and aerospace industries, light metal cast parts are widely used due to their bene-
ficial material properties: they are lightweight yet stable. The reduced weight allows resources such
as fuel to be conserved and the stability holds up a high level of durability and safety. However,
properly producing cast parts is not an easy task and usually the fabricated parts are never free of
anomalies like voids or other defects. Due to reactions with the sand of the mold or the surrounding
air while pouring the liquid metal and the material contraction during the subsequent cooling and
solidification process, various types of defects like gas pores, shrinkage cavities, and micro cracks
emerge [[1-4]]. Such defects reduce the stability of the part. A possible compensation would be mak-
ing critical regions more massive. Unfortunately, this often violates design constraints and quickly
negates the advantages of the reduced weight of light metal parts. But not all types of defects con-
tribute equally to material fatigue and, thus, are not equally harmful [1]. To ensure the durability
and reliability of the produced parts, it is necessary to ensure that only the less harmful defect types
occur and that these defects are located only in non-critical regions of the part. We can achieve this
either by using destructive methods, e. g. by cutting the part open and examining the position and
size of the defects in the cut plane, i. e. metallography [5], or by using methods of non-destructive
testing (NDT) like X-ray computed tomography (CT) [6] which allows us to reconstruct a view of
the inner parts of an object. Metallography has two major drawbacks: First, the object under ex-
amination will definitively be destroyed and cannot be used afterwards. This means the production
process needs to be stable enough to constantly yield a similar output. Second, the results like the
number of defects and their size heavily depend on where we cut the object apart [[1]. In return,
we obtain a high spatial and contrast resolution. NDT has the benefit of leaving the object under
examination unscathed and assuring that a specific part has the desired properties regarding reli-
ability and durability. Furthermore, we can precisely determine the three-dimensional size, shape,
and position of each defect instance, which is necessary to determine their harmfulness [2]. Con-
taining all this information, the CT scan can be seen as a digital twin [7] of a specific object and,
thus, can further be beneficial for other tasks like metrology, simulations, or cae!. NDT methods, in
consequence, enable us to save material on the part by creating thinner structures and to reduce the
rejection rate while guaranteeing stability and safety. In exchange, we have to deal with a reduced
spatial and contrast resolution as well as a higher artifact-affliction.

Checking an industrial CT scan for defects is a cumbersome task. A CT scan is a three-dimensional
gray-value image. As we do not only have surface information but also details about the inner life of
an object, a three-dimensional rendering is not capable of displaying all the information. Therefore,
a CT scan needs to be inspected layer by layer, i. e. two-dimensional slices, looking for deviations
in the gray-values. In Figure[1.1jwe show three examples of axis-aligned slices centered around the
same image point in the three-dimensional CT scan, i. e. the same voxel. For a human it is hard to
grasp the three-dimensional shape of a defect by only looking at those two-dimensional slice-views.
Thus, it is very hard to determine which portions are connected and which are separate instances.
Because of that, a three-dimensional rendering of a defect requires precise information about its

1. Introduction

(a) top view (b) right view (c) front view

Figure 1.1.: The three axis-aligned slices of a CT scan of a cast aluminum part are centered around the same voxel which
belongs to a shrinkage cavity defect (red cross). By going through the slice views, it is hard to determine which
of these defects are individual instances and which are actually connected.

boundary, i.e. a precise segmentation. Every voxel that belongs to a defect needs to be labeled as
such. This again requires a consistent depiction of the gray-values. Accordingly, a proper human
inspection requires standardized, calibrated monitors. While it already is quite hard to distinguish
between defective and flawless voxels—especially for smaller occurrences—image artifacts further
impede the inspection process and lead to a rapid exhaustion of the quality experts. Nevertheless, the
inspection of each and every part of the production is beneficial: Ruling out defective parts in early
stages of the production offers the opportunity to save time and money [3], for example, by avoiding
expensive post-processing steps and making sure the final product works reliably. However, the
accompanying complications raise the need for an automated inspection.

Before we start automating the inspection, we need to know what we are looking for. Hence, we
provide a brief overview of the different types of defects that typically occur in light metal castings
describing their origin and their appearance [[1}[3}8l/9]:

Gas pores There are several reasons for the emergence of gas pores [3]: (i) Gases which are dis-
solved in the liquid melt precipitate during the cooling process because with decreasing tem-
perature the solubility of the melt is reduced. If the gas cannot escape the material, bubbles
of varying size manifest in the part. (ii) When pouring the melt into the mold turbulence can
occur with the air in the mold mixing in bubbles of air. (iii) The melt further reacts with the
water in the green sand of the mold, which is necessary to keep the included clay moist and
stable, forming hydrogen and metal oxides which are trapped in the material [8]. Gas pores
typically are spherical voids with a smooth and clean surface [1].

Shrinkage cavities In general the liquid melt has a higher volume than the solid metal alloy. The
contraction of the material during the cooling and solidification process can lead to a rup-
ture of the material structure opening a void in the object. Shrinkage cavities have a rough,
irregular surface and an arbitrary, branched shape [1]].

Solidification cracks If the stress which is built up during the cooling and solidification process
exceeds a certain limit, the material separates. This type of defect occurs only at the end of the
solidification process [10]]. In the CT scan they appear as flat, sharp, and jagged discontinuities.

Structural loosening Irregularities in the structure of the material with less desirable properties
are described as structural loosening. An example is the occurrence of large sponge-like clus-

ters of tiny pores which lie close together. Because these pores cannot be resolved individually
in the CT scan, they occur as a darker region within the material.

Inclusions of foreign material Besides the previously mentioned oxide films several non-metallic
inclusions impede the structure of a cast part, for example, due to impurities in the melt. Fur-
thermore, parts of the mold can be dragged along during casting, forming sand inclusions in
the solidified product.

Besides that, geometrical defects have to be considered [[11]]: Pouring the molten metal too quickly
or under too high pressure can lead to a deformation of the mold. In contrast, pouring the molten
metal too slowly or with too little pressure can lead to an early solidification, i. e. a cold run or cold
shot. Furthermore, if the individual parts of the mold do not flush, the molten metal can escape the
form at their boundary and lead to flashes or fins. For the purpose of this work we limit ourselves to
the detection of gas pores, shrinkage cavities, and cracks in combination with regional occurrences
of structural loosening and put a special focus on cast aluminum.

For an automated inspection, a precise segmentation is necessary in order to determine properties
like the sphericity of a defect, its volume, the size of its surface, the distance to the material boundary,
or the distance to other defects. These parameters then allow for a subsequent categorization of the
found defects and a determination of their harmfulness. Furthermore, the domain experts operating
the defect detection methods do not want to need to tune some model-related parameters for each
and every data set. They just want to define what makes a defect critical and when a defect is still
acceptable. Machine learning methods offer this convenience: at least at inference-time there are no
parameters to tune. Instead, they require a training phase to set the right parameters beforehand.
Currently, deep learning methods are reported to improve the state-of-the-art in almost all fields of
machine learning. Of particular interest for this work are the successes of deep learning in semantic
segmentation [[12H14]], scene understanding [[15H17]], and especially the processing of medical data
[18-22]. Sometimes, the presented methods surpass even a human-level of performance [23-25].
Hence, deep learning represents a promising approach to support the detection and segmentation
of defects even in challenging CT scans of cast aluminum parts. However, before we establish a novel
approach for the segmentation of defects based on deep learning we need to verify that this approach
really outperforms traditional methods in terms of precision and prediction time [26]. Moreover, a
lot of labeled training data is necessary to train a deep learning model [27]], which, however, is quite
hard to obtain. Labeling objects of everyday life in images already is quite hard [28]. The annotation
of defects in CT scans additionally requires the knowledge of domain experts which further increases
the cost of generating a satisfying training set. These challenges are also known from the labeling of
medical CT scans, where we encounter similar problems [29]. Hence, we turn to realistic simulations
to provide us with enough training data. While conducting the research for the approach to train a
network only on synthetic data, this approach became more and more popular and was applied on
a grand scale in other fields, too, e. g. Microsoft’s “Synthetic Data with Digital Humans” or Unity’s
“SynthDet” which is inspired by [30].

As this work focuses on the development of a new field of application of deep learning methods, the
main contributions are the following:

+ A way to obtain enough training data with a precise ground truth such that deep learning
models can be trained to reliable detect and accurately segment defects. This is done by real-
istically simulating CT scans of cast aluminum parts.

1. Introduction

« A comprehensive comparison of reference-free defect detection methods, based on both ma-
chine learning approaches and image processing techniques.

« An extensive evaluation of how deep learning methods help to improve the detection of de-
fects in CT scans of cast aluminum and other parts.

Before diving deeper into the data, the methods, and their evaluation, we start off with a brief intro-
duction into industrial computed tomography in Chapter[2|to provide an idea of the target domain
and touch upon the challenges associated with the inspection, i. e. the artifact load of the data and
the timing constraints for the inspection. Chapter[2|also addresses the basics of semantic segmenta-
tion algorithms and in particular deals with the concepts of deep learning approaches. Furthermore,
we discuss the state-of-the-art of defect detection methods considering semi-automated approaches
which guide a human inspector as well as fully automated approaches for specific parts which,
however, rely on a defect-free reference specimen.

Then, the first issue which we tackle on our journey to a reference-free deep semantic segmentation
of defects in CT scans is the acquisition of the necessary amount of training (and validation) data
in Chapter 3| A machine learning algorithm can only be as good as the data set used for training.
For this reason, we examine how we can improve the labeling process for industrial CT data and
evaluate different approaches to create synthetic data, for which we can compute a precise ground
truth. We end Chapter 3| with carefully designing a simulation pipeline to provide an infinite source
of precisely labeled realistic training data for all sorts of CT-related NDT-tasks.

In Chapter |4/ we present the state-of-the-art methods in terms of reference-free defect detection,
i. e. methods that do not rely on a specific defect-free specimen. We present an image processing
approach, which does not use any machine learning techniques and develop a method that comprises
a traditional machine learning approach. These approaches form a sound baseline which we use for
an exhaustive comparison. At the end, we introduce our deep learning model.

A healthy mistrust is in the nature of a quality expert. Therefore, we need to thoroughly evaluate
our deep learning model. We provide a comprehensive quantitative evaluation on simulated and real
CT scans comparing our deep learning model to the traditional approaches in Chapter|[5] For this we
rely on two measures: one mostly used in the application domain, i. e. the probability of detection,
and one familiar to the image processing domain, i. e. the intersection over union. Furthermore, we
compare to results taken from other inspection techniques (namely metallography).

Finally, we discuss the vast corridor of possibilities that opens up by combining realistically sim-
ulated training data and deep learning models and tackle the most common concerns of domain
experts regarding the reliability of those models in Chapter [f] We investigate the use for in-line
inspection, explore how we can adapt our model to different tasks, and examine its prediction con-
fidence on out-of-distribution data.

Parts of this thesis were previously presented in [31,32]. Nevertheless, this thesis adds further detail
to the presented topics and additionally deals with (i) the adaptation to different types of defects,
i.e. fatigue cracks, (ii) the estimation of the confidence of the deep learning model (or rather its
uncertainty on novel data), (iii) the correlation of the probability of detection with other quality
measures of CT scans, and (iv) the classification of defects telling apart gas pores from shrinkage
cavities.

2. Theoretical Background and Related Work

This work involves a broad variety of scientific fields: We deal with light metal casting and appro-
priate inspection techniques, computed tomography as imaging domain, image processing and ma-
chine learning for automation, simulation techniques in combination with procedural modeling for
data generation, and more. Having introduced the problem of detecting defects in the introduction
(Chapter [1), we leave it to the reader to further enter the field of light metal casting. In this chap-
ter we focus on the most essential theoretical aspects relating to the input domain, i. e. computed
tomography, the state-of-the-art in defect recognition, and the exploration of semantic segmenta-
tion methods. Besides knowing about the actual task, a good understanding of the input domain is
crucial for developing a reliable machine learning model. Hence, we directly start off with a short
introduction to CT: We set up the terminology which is used throughout this work, we explain the
theoretical aspects of a CT system which are necessary to understand the simulation process, and we
discuss the image artifacts that come along with CT and impede an automated inspection. Finally,
we discuss what makes a good CT scan and how the necessary efforts conflict with the challenges of
industrial applications—and in-line scenarios in particular. Then, we briefly discuss the state-of-the-
art defect recognition methods, which are currently used to inspect CT scans of cast aluminum parts:
ranging from a guided manual inspection of individual parts to the automated in-line inspection of
a production line. Here, we explain the benefits and drawbacks of the currently used image process-
ing and anomaly detection methods, describing the improvements that were most beneficial for the
inspection process. Finally, we provide helpful insights to the field of machine learning with a focus
on the deep learning methods which, as of late, are reported to outperform traditional methods. We
again start off with an explanation of the terminology common to the field of machine learning and
semantic segmentation in particular. Then we explore the data-driven end-to-end trainable deep
learning methods for semantic segmentation and compare them to traditional approaches that con-
sist of individual steps for candidate selection, feature extraction, and classification, which have to
be tuned separately. Other, minor theoretical aspects will be explained in-place when necessary.

2.1. Computed Tomography

If we would like to simply have a look into an object, we would not need an expensive computed
tomography, which comprises plenty of projections taken from different angles. We could use a
simple X-ray radiograph, i. e. a single projection. The great benefit of CT, in contrast, is that we end
up with a digital representation of an object with the full volumetric information, i. e. we can precisely
tell where a defect is located and how it is shaped, instead of just knowing that there is a defect in
the part under examination. In addition, we can use the depth information of a CT scan to determine
whether the part matches its model and whether we would open a defect during post-processing,
as well as to conduct further simulations, for example, regarding the stability of the part.

2. Theoretical Background and Related Work

(a) (b)

Figure 2.1.: The CT scan which consists of many volumetric data points, i. e. voxels, arranged in a regular grid is referred
to as volume (c). A single layer of this volume is called slice (b). If not stated otherwise, we assume the slices to
be axis-aligned. The slices may not be confused with the projections from which the CT scan is reconstructed,
i.e. the radiographs (a).

As every domain, computed tomography has its own terminology (see Figure [2.1). Therefore, we
briefly explain a few terms that we use throughout this work first:

Voxel CT scans produce three-dimensional image data. Corresponding to the pixel in an image, the
data points in three-dimensional data are called voxel. Most commonly, the data is arranged in
aregular grid. This impliactes that each voxel has a spatial extent, representing the gray-value
within a cell of this grid. Voxels do not necessarily have to be cubical. They can also be cuboid.
For instance, in medical data we often encounter a primary scan direction [33}34], usually the
direction in which the patient is moved through the CT system. The reconstructed image
then consists of voxels which have a longer side aligned with the scan direction. However,
throughout this work we only consider isotropic (cubical) voxels.

Slice and Slab A two-dimensional set of connected voxels taken from the three-dimensional CT
scan is called slice. The slice is a part of the reconstructed CT scan and, thus, may not be
confused with a projection. Due to its two-dimensional nature a slice can be rendered easily
on the screen. With the CT scan basically being a stack of slices, we can browse through a
CT scan layer-by-layer—or better: slice-by-slice. Throughout this work, when talking about
slices, we mean axis-aligned slices. While a slice can be drawn at any arbitrary alignment, an
interpolation is involved, as long as they are not axis aligned. The combination of multiple
adjacent slices is referred to as slab (or thick slab).

Region of Interest An arbitrary selection of voxels is called a region of interest (ROI). While a ROI
can contain any combination of voxels, it usually refers to a cuboid set of adjacent voxels.
The voxels within a ROI are typically selected according to a semantic meaning. For example,
a ROI can be created to frame critical connections within a part or simply separate the part
from the background.

Volume The complete set of voxels within the gray-value-grid, i.e. the data of the CT scan as
a whole, is referred to as volume. In contrast to polygon meshes, which are also three-di-
mensional data representing a surface or material boundary, in a volume we have further

2.1. Computed Tomography

'
rotation axis C §)

cone beam i
trajectory plane ~‘~\
-------------------------- K.
e —
T manipulator
1
focus-object-distance (FOD) '
focus-detector-distance (FDD)
source object detector

Figure 2.2.: The principal setup of an industrial (cone beam) CT system. The source is usually fixed at one side of the
system. The detector, opposite of the source, is movable so that the focus-detector-distance can be adjusted.
In between source and detector the part under examination (object) is mounted on a manipulator (the rotary
plate) which rotates the object during the scan. The manipulator is movable as well so that the focus-object-
distance is adjustable, too.

information about the inner structure of a part. This additional data makes it hard to render
all the information on a two-dimensional screen at once.

Gray-value Each voxel contains a value, representing the average linear attenuation coefficient at
a given point in space. As this value is usually depicted in gray-scale on the screen, it is called
a gray-value.

This shall not be another CT-textbook. Therefore, in this section, we only explain what is necessary
for a realistic simulation of CT scans, present the (almost) inevitable image artifacts that impede an
automated inspection, and provide a brief guide on how to prepare a high-quality CT scan while
explaining why timing constraints render such CT scans impossible—particularly in in-line inspec-
tion scenarios. For further details we refer to [33-35]]. If not stated otherwise, we adhere to [33]]
throughout this chapter.

2.1.1. Setup of a CT System

The typical setup of a CT system comprises an X-ray source to produce the necessary radiation, a
detector to measure the attenuated X-ray spectrum after penetrating an object, and a rotary plate
on which the part under examination is mounted. All components are mounted on a solid platform
to minimize influences of the environment—each subtle vibration can introduce further artifacts to
the final image. In industrial CT we usually deal with much higher energies than in medical CT to
acquire the projections for a CT scan. Thus, the CT system has to be placed in a special radiation
protection chamber. Figure[2.2|shows an outline of a typical system for cone beam CT as it is used, for
example, in quality laboratories. The individual components are presented in more detail below.

2. Theoretical Background and Related Work

The Source. The source produces X-ray radiation by accelerating free electrons and shooting
them towards a target anode. The free electrons originate from a heated coil at the cathode. The an-
ode in a typical source is usually a tungsten coated copper element, which additionally disperses the
emerging heat. Two processes in the anode are involved in producing the X-ray radiation: Firstly,
there is the bremsstrahlung. When penetrating the dense material of the target anode, various pro-
cesses decelerate the accelerated electrons (e”). For example, when it comes to the interaction with
the nucleus of an atom in the target material, Coulomb forces change the direction and velocity of
the e™. The differences in energy are converted into heat and bremsstrahlung. The bremsstrahlung
creates a continuous spectrum of different wave lengths (see Figure[2.3a). Secondly, if an electron e
collides with another electron ey of an atom in the material of the target anode, the ey is shot out
of its place in the inner shell K of that atom. Since both electrons leave the atom, the empty space is
immediately filled by an electron e; of an outer shell L. As the inner places are energetically more
favorable this process releases energy. The resulting difference in energy is converted into X-rays of
a characteristic wave length. This portion of the radiation is responsible for the characteristic peaks
K, and Kjp in the polychromatic spectrum (see Figure . Where K represents the shell with the
empty slot and « represents the shell from which the replacing electron originates, i. e. the next shell
(L). Accordingly, beta corresponds to the M shell.

The important parameter here is the acceleration voltage, which defines the minimum wave length
of the polychromatic spectrum. The current further changes the number of free electrons which are
accelerated. Thus, these parameters define the contrast resolution. In plain radiography we can focus
on an area of interest and tune the current to obtain the best possible contrast for the penetration
length in this area. Other areas of different penetration lengths are either over-exposed or under-
exposed. In CT, however, we need to obtain at least some contrast for all penetration lengths. Thus,
it is better to increase the voltage and introduce photons of higher energies instead of just increasing
the number of photons (refer to the following paragraph “The Object.”). The full contrast is restored
due to the combination of multiple projections of different angles during reconstruction. Note that
the X-ray photons emerge from the full penetration length of the electrons in the target material,
not just from the point where they meet the anode. That means even for a low voltage and current,
i.e. at low power, where the electron beam is more focused the effective focal spot is still larger
because of the penetration depth of the electrons in the anode. Hence, the focal spot is an important
factor limiting the possible spatial resolution.

The Object. Between source and detector, we place the part under examination, i. e. the object.
While it is typical for medical CT that source and detector evolve on a fixed path around the patient,
in industrial CT the object is placed on a rotary plate and source and detector are kept at fixed
positions. This allows to vary the distances between source and object, object and detector, as well
as between source and detector and with that the magnification of the object. If the object is closer
to the source, we have a higher magnification (with a magnification factor m > 2). Here, the size
of the focal spot limits the spatial resolution. If the object is closer to the detector, we have less
magnification (with a magnification factor 1 < m < 2). Here, the size of the image elements of the
detector limits the spatial resolution. Furthermore, when deciding about the magnification we have
to consider the absolute distances. With the distance square law telling us we only obtain a quarter
of the intensity at the detector when doubling the distance, we in consequence would lose contrast
resolution.

2.1. Computed Tomography

When penetrating the object, the X-rays interact with the material of the part and are attenuated
by several physical effects. Most important are Rayleigh scattering, the photoelectric effect, and
Compton scattering. For energies above 1.022 - 10° eV there further is the effect of pair production.
However, as we deal with standard CT we stay below that limit throughout this work. Rayleigh
scattering describes the process of a photon, which has not enough energy to free an electron, in-
teracting with the atoms in the material of the object. These photons are just deflected without a
change in their energy. The photoelectric effect describes the process of a photon passing its entire
energy to an electron of an atom in the material of the object. The energy of the photon is completely
absorbed and helps an electron of an inner shell to escape its bound state. Compton scattering de-
scribes the process of a photon interacting with a valence electron of an atom in the material of
the object. These electrons are only weakly bound and do not need the entire energy of the photon.
Hence, the photon is deflected and moves on with a lower energy after helping the electron to es-
cape its bound state. For lower energies the total attenuation is dominated by the photoelectric effect.
When moving to higher energies the photons are more likely to pass the material or to be subject to
Compton scattering (see Figure [2.3b). Note that different materials have different absorption prop-
erties, inducing characteristic peaks in the attenuation depending, for example, on the energy that
is necessary to disentangle an electron of an inner shell. Moreover, denser materials have a higher
attenuation as the probability of an interaction is increased. Thus, the attenuation not only depends
on the penetration length s (the thickness of the material) but also on the energy E of the photons
and the properties of the material, i. e. its atomic number and its density. The intensity I which is
measurable at the detector is then defined according to the Lambert-Beer law (see Equation (2.1)),
where I is the initial energy emitted by the source and y the attenuation coefficient.

[=1- e JofusE)dsdE (2.1)

To obtain the best possible contrast resolution we, therefore, need to ensure penetration lengths
which are as uniform as possible so that we can adjust the voltage of the source to penetrate the
longest side of the object just enough to avoid underexposure. That means that elongated objects,
for example, should be mounted upright on the rotary plate. Due to the higher energies the contrast
resolution of the individual projections often is less desirable, but this effect is mitigated by the high
number of projections used to create a CT scan.

The Detector. Opposite of the source, the detector measures the remaining X-ray radiation. Flat
panel detectors which consist of three layers are typical in industrial CT: The sensors which com-
prise a photo diode and thin film transistor for converting visible light into an electronic signal are
printed on a glass substrate as carrier material via thin film coating. On top of the electronics layer
there is a scintillating layer which converts the X-rays into visible light. Important properties of
the scintillating layer are its conversion rate, i. e. how many X-ray photons are converted into how
many photons of visible light, and its decay time, i. e. how long does it take until no more photons
of visible light are emitted after the last incident of a X-ray photon. Especially the latter is impor-
tant for CT because we have to make hundreds of consecutive projections in a short period of time.
During exposure, the photo diodes turn the visible light of the scintillating layer into an electric
charge which is proportional to the incoming amount of X-rays. The thin film transistors then start

2. Theoretical Background and Related Work
K : 10 .
0.08 4 a« — no filter —— photoelectric effect
=== 1mm copper Compton scattering
0.07 4 — . .
TE 103 4 —— Rayleigh scatt.ermg
¥ 0.06 S —— total attenuation
%) e 102 4
S 0.05 - 2
] 9
< T
Q 4
“ 0.04 S 104
5 s
b ® o
S 3 104
. I
©
. y 10-14
1
000 E T T T T T T T T T T
25 50 75 100 125 150 175 200 225 10° 10! 102
energy [x103eV] energy [x103%eV]

(a) Spectrum of a tungsten target at 225kV with the charac- (b) The attenuation coefficient of the aluminum alloy EN AW 2014 [36] as
teristic peaks K, and Kjp. The filter removes 74 % of the function of the energy of the photons. The two peaks in the attenuation
photons in total. are characteristic for aluminum and copper.

Figure 2.3.: With the information about the polychromatic spectrum of the X-ray source and the attenuation in the object,
we can compute the intensity that arrives at the detector.

the reading process, passing the charge on to the read-out electronics which amplify the signal and
convert it to a digital representation.

The read-out electronics need to be as low-noise as possible so that subtle differences can be mea-
sured. Nevertheless, it is best to operate the detector in a way that about the lowest ten percent of
the possible value range are not used. These values typically vanish in the static electronic noise of
the device [37]. In addition, it is important to avoid an overexposure. At this point there would be
no measurable differences anymore as further X-rays arrive at the detector. Furthermore, the quan-
tization that takes places when digitizing the analog signal limits the contrast resolution. Signals of
similar strength are binned in the same digital representation. As a consequence, very subtle differ-
ences cannot be captured. The size of the individual image elements of the detector is another factor
that limits the spatial resolution. In particular, this carries weight when the object is placed close to
the detector. For higher magnifications the focal spot is the limiting factor. Even though the crystals
of the scintillating layer are applied to direct any photons directly to the underlying photo diode it
is possible that some of them escape and hit other image elements of the detector. This in-detector
scatter is another source of artifacts which harm the effective spatial resolution.

There are other types of detectors such as photon counting detectors. Here, every image element
emits a signal when hit by a single photon [38]. These detectors promise a higher possible spatial
resolution due to smaller image element sizes, a higher contrast resolution due to a better conversion
efficiency, reduced beam hardening and metal artifacts due to an equal weighting of all photons (of
different energies), and as they do not require a scintillating layer they do not suffer from afterglow.
Yet, there are still some challenging aspects to solve. For example, these detector elements have
a hard time dealing with the number of photons that arrive at the detector each second. Further-
more, there is an increase in in-detector scattering due to effects like partial energy deposition and
Compton scattering which can cause the same photon to be counted twice—in different image ele-
ments [39]. Throughout this work we only consider flat panel detectors because of their prevalence
in the industrial market.

10

2.1. Computed Tomography

The Exposure. Now we almost have all the ingredients necessary to simulate a realistic radio-
graph. However, the projections would be too perfect as we are missing the condiment, i. e. the noise
which occurs during an actual exposure. The emitting of X-rays at the source, the attenuation in the
object, and the sensing of the remaining intensity at the detector are all stochastic processes and,
hence, subject to noise: In the source, within the focal spot, there is a large number of atoms of
the target material each of which can be hit by an accelerated electron (and in consequence emit a
photon) at a very low probability. Therefore, the photon emission of the source can be described by
a binomial process. The Poisson limit theorem, in consequence, tells us that the generation of X-rays
can be approximated by a Poisson distribution. Due to the quantum nature of the photons and be-
cause we can consider the object as a sequence of disjoint sections, where each section has uniform
absorption properties, the different attenuation processes in the object can be statistically described
as a binomial process, too. Finally, in the detector, we have similar processes: each of the atoms in
the scintillating layer can be hit by a photon (and as a result emit visible light which is then detected
by the photo diode) at a very low probability. Again, this describes a binomial process. The bino-
mial selection drawn from a Poisson distribution follows a Poisson distribution itself. Therefore, we
can describe the overall process of exposure with a Poisson distribution. For a precise derivation,
we refer to [33]. This means for the simulation of a projection, we have to compute the theoretical
intensity n that would be measured at the detector but draw the actual gray-value according to a
Poisson distribution with y = n.

A measure of the quality of a projection is its signal-to-noise ratio (SNR), where SNR = % The
characteristic property of our Poisson distribution is 4 = 0. With p = n, the expected number of
photons which is a measure for the intensity of the X-ray radiation, we obtain SNR = % = n.
This means that—in the best case—the quality of the image is improved only by the square root of
the intensity of the X-ray radiation, i. e. to double the SNR we have to use four times the dose.

Additionally, the projections suffer from other sources of noise, which, for instance, emerge from
the read-out electronics of the detector. This noise can be modeled by constant Gaussian noise [40]].
During simulation the normally distributed noise is superimposed on the final projection.

But before we dive deeper into the different artifact types which impede an automated inspection,
we need to reconstruct the volumetric information of the CT scan from the individual projections.

2.1.2. CT Reconstruction

In the previous section we described the basic setup to obtain the information about the attenuation
of an object at different angles, which is necessary for CT. Now, we need to reconstruct the three-
dimensional volume of the CT scan from the individual two-dimensional projections.

In other words, we would like to compute a volumetric image of our object, which explains all the
projections we captured. In mathematical terms we, therefore, have to solve an inverse problem,
i.e. drawing a conclusion about the cause from an observation. Because these problems are hard to
solve—if solvable at all—we either have to invest plenty of computation time or make some relax-
ations. A widely used algorithm for the three-dimensional reconstruction is the Feldkamp algorithm
(or FDK, short for Feldkamp, Davis, and Kress), a filtered back-projection (FBP) algorithm, which
projects the captured intensities from the detector back into the object space (see Equation (2.2)).
Its principal idea is to approximate the reconstruction of the three-dimensional object by treating

11

2. Theoretical Background and Related Work

the three-dimensional cone-beam reconstruction as a set of two-dimensional fan-beam reconstruc-
tions, one for each detector row. This leads to a blurring outside the trajectory plane, which be-
comes stronger the bigger the angle between the detector row and the trajectory plane gets (see
Figure and Section [2.1.3). The approximation, however, allows for a fast and parallelized com-
putation, which contributed to the widespread use of this algorithm.

2 D2 D
f(x’ Y, Z) - /; (D + xCOSﬁ +y Sinﬁ)z (\/mpﬁ(y, §)> o (5) dﬁ (22)

J

pre-weighting

filtering

weighted back-projection

Note that we only consider the case of having a flat-panel detector as it is more common to indus-
trial CT. The curved detector panels which are often used in medical devices require an adapted
algorithm. The Feldkamp algorithm can be divided into the following three steps:

1. Weighting. The individual pixels in the projections are circularly weighted according to their
fan-angle (which is the opening angle defined by the pixel ¢ and the center of the detector
row), their cone-angle (which is the opening angle of the detector row y to the center row, i. e.
the trajectory plane), and the distance D from the focal spot to the detector in order to cope
for variations in the intensity as each ray has a different penetration length through the field
of measurement. Note that if we do a bright image correction, we do not need this weighting
step, because we obtain more detailed weights from the bright image, which further consider
the properties of individual detector pixels.

2. Filtering. Each detector row is filtered with a one-dimensional high-pass filter kernel & to cope
for the over-emphasis of low frequencies, which is explained by the Fourier-slice theorem (see
down below).

3. Back-projecting. The final step is to compute the actual attenuation value f for each voxel de-
noted by its coordinates x, y, and z by summing over all projections pg, which were taken at
the rotation angle . Note that f can be sampled at arbitrary positions, but it is highly recom-
mended that the voxels should not be too small. The ideal voxel size is given by the pixel size
of the detector and the magnification of the scan geometry. For smaller voxels the available
information is only interpolated. Using bigger voxels, in contrast, allows to bin more infor-
mation into a single voxel, which leads to a better contrast resolution. The back-projection is
further distance weighted due to the divergence of the rays of the fan-beam. The rays of a fan-
beam pass different voxels at different depths in different angles. Therefore, they contribute
differently to each voxel and need to be weighted accordingly.

There exist plenty of variations of this three-dimensional FBP algorithm for the reconstruction of
cone-beam CT, which mostly differ in small implementation details. Most of them utilize acceler-
ating hardware like a graphics processing unit (GPU) to massively parallelize the reconstruction:
The pre-processing can be parallelized over the projections, the back-projection over the z-slices.

12

2.1. Computed Tomography

Fourier transform

Feldkamp artifact

Radon transform object space
missing R
information

Rt S$2p

-1
Sip

\® | S1ip

Fourier-slice-theorem

15 S S S N
1Y SHERENEEERIEEE

=

source detector b detector source .
(position 1) (position 2) objects (position 1) (position 2) Radon space Fourier space

@ (b)

Figure 2.4.: (a) Feldkamp artifacts (red area) occur in the reconstructed CT scan as a simple circular trajectory does not
sample the Radon space completely. The missing information can be recovered by additional projections out-
side the trajectory plane, for example, by moving the source upwards (as indicated by the dashed lines) or
adding a second circular trajectory which is orthogonal to the first one. (b) The Fourier slice theorem forms
the connection of the Radon space and the object space in the Fourier domain, this figure illustrates the two-
dimensional case as an example. The one-dimensional Fourier transform §;p of a projection taken at the
angular step f corresponds to a slice through the two-dimensional Fourier transform §,p under the angle .
With all projections going through the center of the Fourier space, this explains the over-emphasis of low
frequencies in the center of the Fourier transformed object.

Throughout this work we use the FBP implemented in the CT reconstruction module of VGSTUDIO
MAX (Volume Graphics GmbH).

Radon Transform. The Radon transform is the foundation of CT, telling us that any two-dimen-
sional function f(x,y) (in our case f describes a plane in our object) can be reconstructed from
the mean of all one-dimensional line integrals pg(¢) (in our case ps describes the projection at the
angular step). The principal goal in CT is to obtain f from a set of p by inverting the Radon
transform. In the three-dimensional case we need to consider that a single circular trajectory does
not fully sample the complete Radon space, which is particularly noticeable for large objects, which
require wide opening cone-angles: In regions which are out of the trajectory plane we do not get a
parallel view through the object and, thus, cannot precisely determine whether we are dealing with
a flat surface or a conical structure (see Figure 2.4a). This means that the reconstruction can only be
an approximation.

Fourier-Slice Theorem. The Fourier-slice theorem connects the Radon space spanned by p and
the object space f within the Fourier domain (see Figure [2.4b). The one-dimensional Fourier trans-
formed projection pg taken at the angular step f is the slice with angle f8 in the two-dimensional
Fourier transform F of f. In consequence of taking the projections from many angles the sampling
within the low frequencies (in the center of F) is much denser than the sampling within the high fre-
quencies. This explains the over-emphasis of low frequencies and motivates the high-pass filtering
of the projections before back-projecting them.

13

2. Theoretical Background and Related Work

(@) (© (d

Figure 2.5.: Different types of artifacts: (a) cupping artifacts in an actually homogeneous material caused by beam hard-
ening, (b) ring artifacts caused by an insufficiently calibrated detector, (c) aliasing artifacts caused by radial
under-sampling using too few projections, and (d) Feldkamp artifacts caused by the simplifications introduced
by the reconstruction algorithm. The line shows the gray-value profile which is sampled at the dashed
white line.

Shepp-Logan Filter. To suppress the over-emphasis of low frequencies, the projection data p
is filtered with a high-pass filter h, which is usually done in the Fourier domain. However, we do
not use a simple ramp filter as it would introduce so called sidelobes, i.e. echos of the filter in
actually homogeneous regions of the image. Furthermore, we need a band limitation of the filter
to avoid an accidental over-emphasis of the noise in higher bands. The most commonly used filter,
that satisfyingly fulfills all these demands, is the Shepp-Logan filter which (in the Fourier domain)
combines a rectangle with a sinc-function, i. e. H(g) = |g|rect(g)sinc(q).

Besides the FBP there are other algorithms like the iterative algebraic reconstruction, which yields
less artifacts but is significantly more computationally expensive, or the helix CT, which acquires
a full sampling of the Radon space and, therefore, allows for a direct reconstruction but requires a
different CT setup.

2.1.3. Image Artifacts Impede The Detection

Due to the physical limitations it is hard to obtain a CT scan of high image quality. Usually, a CT
scan contains a broad variety of image artifacts. These artifacts are particularly challenging when it
comes to an automated inspection, as they introduce fluctuations in the gray-values which easily can
be confused with actual features like defects. There is a long list of artifacts that occur at different
strengths in any CT scan. The ones which influence the automated detection of defects the most are
listed in this section.

Noise Wild spontaneous fluctuations occurring in the gray-values of a volume are probably caused
by noise. As mentioned above there is plenty of source for noise, which all depends more or
less on the number of photons arriving at the detector. Therefore, it is important to obtain
a good illumination of the detector. Especially in the dark regions of a projection, i. e. where
the material attenuates most of the radiation, we need to ensure that enough photons arrive
at the detector and stay above a certain threshold which should be about 5% to 15 % of the
un-attenuated radiation. Furthermore, it is recommendable that the un-attenuated intensity
is at about 90 % of the available detector range [37]]. The portion of coherent noise, which is,

14

2.1. Computed Tomography

for example, introduced by the electronics in the detector, can be explained away by longer
exposure times, i. e. taking more photons into account. If there is still too much noise in the
projection images, the averaging of multiple projections helps to get rid of the coherent noise
produced by the detector. This is especially important as we cannot use arbitrarily long ex-
posure times without introducing other artifacts (e. g. focal drift, see below). The incoherent
noise which occurs due to the stochastic processes during the attenuation (e. g. due to scatter-
ing) and during the detection (e. g. during the conversion to visible light), in contrast, cannot
be mitigated by averaging multiple projections.

Cupping Ifthe gray-values in a CT scan of an actually homogeneous material appear to be brighter
in the outer regions of the CT scan and become darker towards the center, it is called a cup-
ping artifact (see Figure [2.54). These artifacts are usually caused by beam hardening. When
passing through the material of the object under examination, the outer regions receive the
full polychromatic spectrum of photons. As mentioned above, photons of lower energies are
preferably attenuated. Therefore, the inner regions only receive photons of higher energies,
i.e. the hard part of the polychromatic spectrum, which cannot be attenuated as easily. Hence,
the total attenuation on the inner parts is lower, the gray-values in the reconstructed CT scan
become darker. Filtering the spectrum at the source helps to mitigate the effects of beam hard-
ening by suppressing low energetic photons ab initio so that all regions of the object under
examination receive only the hard part of the polychromatic spectrum. Figure shows the
comparison of an unfiltered and a filtered spectrum of a tungsten target at the same voltage
and current. However, this comes at the cost of an overall reduced number of photons.

Rings The radiation is focused on the center of the detector which means that its edges are less
illuminated. Moreover, due to differences and static noise in the electronics the detector also
yields a signal even if the source is turned off. To obtain a meaningful reconstruction we
need to compensate the decrease in illumination and the unwanted signals by calibrating
the detector. The decrease in illumination towards the edges of the detector is covered by the
bright image Iz which is acquired by averaging several projections without any object present.
The unwanted signals are covered by the dark image Ip, i. e. a projection taken without any
object present and with the source turned off. The corrected projection image I, which is used
for reconstruction, is obtained from the raw projection image L,y as defined in Equation (2.3).
If this calibration is done poorly, for example, by acquiring a noisy bright image, the same
error is introduced to every projection. These errors manifest in the reconstructed CT scans
as concentric rings of varying gray-values, i. . the ring artifacts (see Figure [2.5b).

I= faw ~Ip (2.3)
Is-1Ip

Another source of ring artifacts are dead detector pixels, which always yield the same re-
sponse independently of their exposure. (Usually, they always yield no signal, i. e. zero, or the
maximum possible value.) The dead pixels need to be eliminated for reconstruction as well,
e. g. by interpolating between unimpaired neighboring pixels.

Scatter Scatter causes similar artifacts in the reconstructed CT scan as beam hardening. As scatter
alters the direction (and energy) of photons, it causes some detector elements to receive less
intensity than expected while especially those detector elements which are behind highly

15

2. Theoretical Background and Related Work

attenuating material receive more intensity. Beside the scattering within the object there are
also back-scattered photons from the environment, e. g. the radiation protection chamber or
other components of the CT system, and there is in-detector scattering. Scatter is a significant
source of image artifacts in CT scans and is hard to mitigate. The amount of scattering from
the object and the environment can be reduced by using a proper collimation which absorbs
photons that do not originate directly from the source. Nevertheless, there still remains the
in-detector scatter which additionally blurs the edges of the projected object and, thus, is not
negligible [41]].

Blurring Depending on the magnification, either the size of the focal spot or the size of the detector
elements has the most significant influence on the (un-)sharpness of the CT scan. The larger
the magnification, the more significance has the focal spot size (dfocal spot* (7 ~1)/m). The closer
the object is to the detector, the more significance has the pixel size of the detector (dpixel/m).
dy refers to the diameter of the focal spot and the diameter of a detector pixel, respectively.
On top of this, there are many other factors that contribute to the blurring of a CT scan, such
as subtle movements of the object or the components of the CT system cause a deviation from
the setup which is expected for reconstruction and, therefore, cause additional blurring in the
final CT scan. A geometrical imprecision can be caused by a tilted rotation axis, deviations in
the rotation steps, or simply micro movements of source, object, or detector due to vibrations
induced by the environment or the system itself. Another source can be focal drift: During
long-time exposures the focal spot can start to wander or change its appearance. This con-
tributes to further blurring and cannot be corrected. Instead of increasing the exposure time of
a single projection, it can be beneficial to average multiple projections from the same angle to
increase the effective exposure time while avoiding a focal drift. Furthermore, image artifacts
like scattering contribute to the blurring of a projection as mentioned above.

Aliasing The acquisition of a CT scan is a sampling process and, thus, we have to fulfill the sampling
theorem. This means that if the number of projections falls below a certain minimum number,
the object is radially under-sampled and we end up with aliasing artifacts, which manifest as
shadows of the object in the CT scan (see Figure [2.5¢). The minimum number of projections
corresponds to the minimum number of detector elements which are necessary to capture
the object under examination. This is explained by Equation (2.4), where N, is the number of
projections, Dy the minimum number of detector elements, drop is the diameter of the field
of measurement, and dyetj the diameter of the detail we would like to resolve. However, in
practice the number of projections required to obtain an acceptable reconstruction depends
on plenty of other parameters like the opening angle of the source or the shape of the detail
we would like to resolve.

2drom

Np ~ Dmm > (2.4)

Adetail

Partial volume If the object under examination only partially covers a voxel, during reconstruc-
tion this voxel partially receives information from the un-attenuated radiation and the attenu-
ated radiation. If the object exactly covers half of the voxel, the FBP reconstruction algorithm
would expect the signal to be half the signal of a fully attenuating voxel, i.e. we compute
In(avg(lp/I)) where it would actually be avg(In(fy/I)). This leads to an underestimation of the

16

2.1. Computed Tomography

attenuation and, therefore, to artifacts which can appear as streaks in the CT scan if the partial
information comes from all projections.

Feldkamp As described in Section the FDK reconstruction algorithm is only an approxima-
tion and becomes less precise when moving farther away from the trajectory plane (compare
Figure [2.4a). Figure shows an example of the resulting artifacts in the reconstructed CT
scan, the so called Feldkamp artifacts. To avoid these artifacts we need to switch the recon-
struction method and the acquisition of the projections, for example, by turning to a helical
scan pattern.

Having described the principal CT setup and the reconstruction process as well as knowing about
the cause of image artifacts, we can derive some guidelines for making a good CT scan. This will
further help us to determine a good baseline for our simulations. In general it is better to increase
the voltage, in order to obtain a good penetration in all regions of the object so that we get at least
some contrast in all occurring thicknesses of the object. Moreover, higher voltages (in combination
with a suitable pre-filter) will mitigate the effects of beam hardening. The limited contrast steps will
be mitigated by the total number of projections used to reconstruct the CT scan. Hence, the more
projections we make the better will be the CT scan. Furthermore, this avoids running into aliasing
artifacts due to under-sampling. To make the most out of the scarce information of the few photons
arriving at the detector, it is better to use less pixels and so bin more photons in a single detector
element to receive a stable signal without a high noise induction. The proper detection of defects
usually does not require a detector with more than 2000 by 2000 pixels. Finally, the longer the total
exposure time the better will be the final CT scan.

2.1.4. Towards a Full In-line Inspection

When it comes to a full inspection of an entire production line, the tight cycle times additionally
limit the time we have for the acquisition and inspection of a CT scan. Here, we usually have to cut
back on data quality. Coming from a high quality scan that follows the guidelines described above,
we can reduce the exposure time to achieve the desired high throughput, having only some minutes
for a CT scan. In exchange, we have to decide between keeping a high spatial resolution or keeping a
high contrast resolution. We either have to introduce artifacts to the CT scan (most notably noise), or
we have to accept more blurring and fewer voxels. Partially, the adverse effects of reducing the scan
time can be mitigated by using more sophisticated (and more expensive) components, the laws of
physics, however, cannot be overridden. As Figure 2.6|indicates, a CT scan is always a consideration
of spatial resolution, contrast resolution, the cycle time, and (up to a certain extent) the facility
costs [[42]].

As mentioned in the beginning, despite all the efforts, inspecting each part before it leaves the pro-
duction site can be beneficial not only for safety relevant parts. Ruling out defective parts in early
stages of the production process saves time and money. The tough cycle times, however, render
a manual inspection infeasible. It requires automated inspection techniques which are capable of
dealing with the low achievable data quality, supporting the quality specialists in their assessment.
In the following section we explore the state-of-the-art methods in automated defect detection.

17

2. Theoretical Background and Related Work

cycle
high time
throughput 1t
spatial D S » facility
: costs
resolution
component
small focal spot, .
quality
more voxels +
contrast) .
high signal to

noise ratio

Figure 2.6.: The X-ray testing pyramid: Acquiring a CT scan is always a consideration of spatial resolution, contrast res-
olution, and desired cycle time. Up to a certain extent the quality of a CT scan can be influenced by better
components, the laws of physics, however, cannot be overridden [42].

2.2. Automated Defect Detection

In CT scans defects manifest in a variation of the gray-values within the material region. These
variations can be very subtle and, thus, have the potential to vanish in the noisiness of the data. A
manual inspection which involves a human inspector slicing through the CT scan layer-by-layer
looking for these variations takes time. An inspection can easily fill a complete working day keep-
ing an expert busy—especially because we need to plan with pauses. An expert cannot stare eight
hours nonstop at the data. Furthermore, the manual inspection requires special hardware like stan-
dardized monitors which precisely display gray-values always the same way. Therefore, we need
algorithms which support the experts in their work and automatize the inspection process in or-
der to enable a full in-line inspection. The state-of-the-art algorithms usually go for an anomaly
detection approach: They identify the material region and look for deviations in the gray-values.
While presenting the most prevalent approaches in automated defect recognition, we also collect
requirements for an improved method, which we will consider during the development of our deep
learning defect detection method.

Requirement: The first requirement we can add to our list is the inference speed. The model
needs to be very fast to keep up with the short cycle times of an in-line inspection.

2.2.1. Image Processing Methods

The typical approaches to defect detection are threshold methods which yield a response if the
deviations in the gray-values exceed a certain threshold. The high artifact-affliction of CT scans
usually does not allow us to use a global threshold for the entire CT scan. Hence, the threshold is
defined on a relative scale and locally adaptive methods which consider the gray-value distribution
within the neighborhood of each voxel are used to segment the defects. The results are usually
limited to the material region of the CT scan to eliminate potential false positive responses in the

18

2.2. Automated Defect Detection

background. This usually solves the task for CT scans of high data quality, which we encounter,
for example, in quality laboratories when doing a sample inspection. In Section we present a
locally adaptive thresholding technique which we further use as one of our baselines to compare
our deep learning algorithm with.

The next step is to do a connected component analysis to find the individual defect instances and
compute some statistics like their volume, their surface area, or their sphericity. We can then filter
the instances according to their statistics. Tiny instances, for instance, are more likely to be false
positive responses due to image noise and can be ignored—especially if they are below a certain size
which renders them uncritical anyway.

However, it still can happen that we obtain too many false positive responses or completely miss out
critical defects in particularly artifact-afflicted regions of the CT scan. In such a case we can further
subdivide the analysis region and use different sets of parameters for each region. We can imagine
that tuning all the parameters of the (locally adaptive) threshold methods and the filters is a tedious
and time-consuming job. Furthermore, this is hard to automate. We need to guarantee that each CT
scan of our inspection system shows the same gray-value distribution. If we slightly deviate from
the optimal operating point, our inspection method is likely to produce false results.

Requirement: We need a method which works independently of local variations in the gray-
values and without the necessity to tune an excessive amount of parameters.

2.2.2. Reference-based Approaches

More sensitive and more precise are reference-based anomaly detection methods. Here, the CT scan
of each inspected part is compared to a defect-free specimen, the so called “golden part” [[43-45]. The
golden part captures the same artifacts as the CT scans of the individual parts under examination.
Hence, it is easier to distinguish artifacts from actual defects. This procedure requires all CT scans
to capture the part under examination at the exact same angle and with the exact same parameters
to avoid false alarms. Therefore, this approach is only used for the in-line inspection of serial parts
utilizing robots to ensure an exact placement [44]]. Another benefit of this approach is that it is not
limited to defects in the material region but also can detect other deficiencies like cold runs. The
golden part is, for example, computed as the mean or median of multiple (> 100) CT scans of the
same part [43] or a simulated replica of the real part [44].

The method described in [[45]] is a more general approach which does not require a precise repeatable
scan process but a higher scan quality that allows for a precise alignment. Their pipeline comprises
five steps: (1) the enhancement of the CT scan, (2) the alignment with the golden part, (3) the com-
putation of the difference image, (4) the derivation of the segmentation mask, and (5) the refinement
of the segmentation mask. In step (1) noise in the CT scan is reduced using a Wiener filter (which
suppresses noise by means of the mean squared error) and the gray-value distribution is adjusted
by performing a histogram equalization. The alignment step (2) compensates for deviations in the
orientation of the scanned part based on the gray-value distribution of the CT scan and the golden
part. An optimization algorithm estimates the parameters of an affine transformation reducing the
cost function given by the divergence of the two gray-value distributions. Then, the element-wise

19

2. Theoretical Background and Related Work

absolute difference of the CT scan and the golden part is computed (step (3)). The segmentation mask
results from thresholding the difference image (step [4). In [45] the threshold is chosen to maximize
the sum of the entropy values of foreground and background. As the segmentation mask might still
contain some false positive alarms induced by image noise, in step (5) a morphological opening fil-
ters smaller indications. Finally, the remaining anomalies can further be classified whether they are
pores, cold runs or other defects.

Besides the tedious setup of the inspection pipeline, this method has the drawback of being heavily
tailored towards a specific part and casting geometry. The smallest change in the casting process or
the smallest deviation in the inspection process can raise a false alarm. The casting process, however,
is changed by the casting engineers on a regular basis: For example, they often have to change the
gates or risers, which are only removed in post-processing steps after the inspection, to compensate
for environmental changes or minor changes in the material composition. With that the new CT
scans heavily deviate from the golden part in the region of the intentional changes, which requires
a time-consuming update of the golden part.

Requirement: We need a method which does not depend on a reference part and, therefore, is
invariant to (minor) changes in the part under examination.

2.2.3. What About Machine Learning?

We observed that only in recent years machine learning algorithms were introduced to directly
solve NDT-related x-ray CT tasks, e. g. in [46]]. Most machine learning algorithms in NDT literature
focus on processing two-dimensional radiographs like [47]] or tackle the question whether a part
(or a pre-selected area of a part) is “okay” or “not okay” like [48]. In terms of the detection and
segmentation of casting defects in three-dimensional CT scans we found an approach that utilizes a
traditional method to find defect candidates in the CT scans and then uses a random forest to reduce
false positive responses [49]. We explain this method in more detail in Section[4.2.1} One reason for
the absence of machine learning approaches for the detection and segmentation of defects could be
the lack of a suitable labeled data set which we address in this work by using simulations.

Most other approaches use machine learning as a pre-processing step, trying to improve the data
quality of the CT scans to pave the way for simpler detection methods. Removing noise artifacts from
CT scans is of interest not only in the industrial sector. In medical imaging, the ability of removing
noise on the software side allows for lower doses. Therefore, the denoising of low dose CT is a highly
explored field of application [50l/51]. Yet, these image enhancement algorithms still include the risk
of removing small but important details from the image, as they try to optimize the overall image
quality in terms of a global cost function. Despite most of them being edge preserving, small defects
in homogeneous material regions can be removed erroneously. Nevertheless, these enhanced CT
scans can be used for a huge variety of tasks like measurement and nominal/actual comparisons
and ease the processing of the data by a human expert. Other artifact reduction techniques like
the deep scatter estimation [52] work on the projection data instead of the reconstructed CT scan.
For example, the deep scatter estimation uses a deep neural network to approximate the result of a
Monte-Carlo scatter estimation from a two-dimensional projection, which is then used to remove
the scatter component from the projection. This approach is more likely to also preserve small details

20

2.3. Semantic Segmentation

Defect

(a) classification (b) localization (c) segmentation

Figure 2.7.: These images illustrate the differences between image classification, object localization, and (semantic) seg-
mentation. In (a) we only distinguish between defective or not for the CT scan as a whole, in (b) we locate the
defect within a given CT scan, and in (c) we precisely determine the boundaries of the defect which enables
us to further compute derived metrics like its volume or sphericity. Note that from left to right not only the
amount of information increases but also the necessary labeling effort.

as it does not alter the data directly but only removes the portion of information in the projections
which contributes to scatter artifacts.

Requirement: We need a method which is capable of dealing with image artifacts—particularly
with the noise present in fast CT scans.

2.3. Semantic Segmentation

Semantic segmentation is the combination of localization and classification on a pixel (or voxel)
level. A segmentation describes a set of individual image points belonging together according to a
given criterion. This can be the clustering by local proximity and similarity of properties, for in-
stance, a similar gray-value or color intensity distribution, i. e. a super-pixel segmentation [/53,/54],
or the detection of edges which separate different regions in an image [55]. While both approaches
segment areas in an image which are inherently similar, theses segmented objects do not neces-
sarily need to represent semantic objects. For example, such an algorithm could split a person into
upper body (shirt) and lower body (trousers), i. e. an over-segmentation. Therefore, we need to as-
sign one of a limited number of class labels to each pixel, giving the pixels a semantic meaning, but
we do not need to distinguish between different instances (which would describe an instance seg-
mentation). Figure [2.7)illustrates the differences between classification, localization, and (semantic)
segmentation. Note that the increasing richness in details of the labels also necessarily entails more
annotation effort.

Semantic segmentation is a typical machine learning task in computer vision. Using this scenario as
an example, this section provides a short introduction to machine learning and briefly introduces the
tools which are necessary throughout this work. But let us discuss some basic terminology first.

21

2. Theoretical Background and Related Work

. candidate feature D
input . . classification output
selection extraction

input end-to-end deep learning output

Figure 2.8.: When moving from traditional machine learning pipelines to end-to-end trainable deep learning, the major
effort of creating a successful method is shifted from the sophisticated design of proper features and candidate
selection algorithms towards the creation of a meaningful training set and the proper regularization of the
powerful deep model.

While segmentation itself can be an unsupervised process (using, for example, a clustering method),
semantic segmentation requires a set of labeled data from which the method can derive the necessary
values for its parameters—it is a supervised learning process. Therefore, common to all supervised
methods is the need for labeled training data. Besides the labeling effort mentioned above, this comes
with certain risks: What is not covered by the training set is rather unlikely to be recognized by
the trained model. That means there is the risk to introduce an unwanted bias to the model by an
inconsiderate data selection. Furthermore, if the training set is too small or too undifferentiated,
there is the chance that the model is tied too closely to the data used for training, such that it
completely fails on unseen data, i. e. the model overfits to the training set. To check for overfitting,
the total amount of labeled data is usually split in a training set and a (smaller) validation set. If
the trained model performs equally well on the training set and the validation set, which was not
considered during training, it indicates an ideal fit. The model is more likely to perform well in
practical use. One way to prevent a model from overfitting is to introduce additional boundary
conditions and penalty parameters during training. This process is referred to as regularization. Too
much regularization, on the other hand, can cause poor performance as well, i. e. underfitting.

2.3.1. Fully Convolutional Neural Networks

In the last decade the trend in computer vision—and more generally in machine learning—moved
from the traditional machine learning pipelines towards end-to-end trainable deep learning methods.
While the traditional approaches require a lot of domain knowledge to find the best algorithms and
methods for the selection of candidates and the extraction of sophisticated, hand-designed features,
in deep learning approaches the effort is shifted towards the creation of training data and the proper
regularization of the powerful models which comprise candidate selection, feature extraction, and
classification (see Figure[2.8). In the traditional methods a “shallow” classifier takes a decision based
on few explainable features which are extracted from the input data. In contrast, deep end-to-end
trainable methods are trained on a vast amount of annotated training data to solve the task by
learning how to extract features and how to draw conclusions based on these features at the same
time. Thereby, “deep” refers to the huge number of trainable parameters or the large number of
consecutive layers they are arranged in. The successive processing of the input by a large number
of layers not only increases the capacity of the model by adding further parameters, it also enables
the model to build an abstraction of the input step-by-step.

22

2.3. Semantic Segmentation

While neural networks—at least in principal—were known to the machine learning world since
the 1960s [56], it took three major steps for deep learning to become successful, beginning with
LeNet [57] for recognizing handwritten digits and AlexNet [58] for image classification in the late
1990s and early 2010s, respectively:

Huge labeled data sets As mentioned above, deep learning models have a huge number of free
parameters which need to be trained. The training process, therefore, requires lots and lots
of labeled training data—the deeper the model, the more training data is necessary. Thus, the
emergence of large labeled training sets for image classification, like ImageNet [59]] or Mi-
crosoft COCO [60], and scene understanding, like PascalVOC [61] or KITTI [62]], significantly
contributed to the success story of deep learning models.

Powerful acceleration hardware Another important aspect that comes with the increased a-
mount of parameters is the number of operations that have to be computed in order to train
the models and to obtain a result during inference. Fortunately, deep learning models mostly
comprise linear algebra and element-wise operations. These operations allow for massive par-
allelization. Hence, they are well suited for modern GPU architectures, which are particularly
designed to perform the same operation on a large amount of data in parallel [[63]. With the
rise of open source frameworks it was now possible to conduct experiments on standard con-
sumer hardware—without the necessity to have access to an expensive compute cluster.

Efficient training algorithm The final ingredient is the development of an efficient training al-
gorithm which is necessary to tune the millions of free parameters of a deep learning model.
The main idea of this algorithm is to propagate the error which we observe at the output
layer backwards through the network to compute the error gradient for each parameter on
the way, i. e. the back-propagation algorithm, and then use a stochastic gradient descent (SGD)
algorithm to actually update these parameters [64]. More on the training process below.

Building a Deep Learning Model. A deep learning model arranges a vast amount of simple
linear classifiers, the neurons, in a large number of consecutive layers. The artificial neuron follows
its biological model albeit in a very simplified way: all input values are combined by a weighted
sum (plus adding a bias term) and then passed through a non-linear function, the so called activation
function, which decides about the output of the neuron. This output is then passed on to the neurons
in the next layer. In contrast to real neurons we are not dealing with a continuous process but with
discrete time steps.

A typical activation function is the rectified linear unit (ReLU) [65]]. It convinces by its simplicity:
It is zero for negative input values and passes on the input value otherwise. Compared to other
activation functions like the hyperbolic tangent it does not suffer from a vanishing gradient—except
for negative input values, which, however, can be beneficial to enforce sparsity. If “dying” neurons
need to be avoided, there exist plenty of variations of the ReLU, for example, the leaky ReLU which
outputs the input value reduced by a given factor ¢ # 1 for negative input values, where c is usually
smaller than 1 [66].

The weights (and the bias terms) of the neurons are the trainable parameters of the deep learning
model—the artificial neural network. The neurons (or nodes of the network) are connected in a
series of consecutive layers. The weights can be seen as attached to the edges of the resulting graph.

23

2. Theoretical Background and Related Work

Here, we can choose from different types of layers in which the individual neurons are arranged
differently. The most important types are described below.

Fully connected The fully connected layer is a set of nodes each of which is connected to every
node of the previous layer. This type is common to classification networks: in the output layer
of the network, each node represents a class and is trained to yield large output values, if the
input corresponds to that class. The huge drawback is that these layers are tied to a fixed
input size, which introduces limitations to their applicability in computer vision tasks. Yet, it
is possible to convert a fully connected layer to a convolutional layer using a kernel size of 1
(see next item). This, for example, allows to coarsely locate objects in larger images.

Convolution Especially in computer vision tasks the size of the inputs quickly gets out of hand.
Therefore, the nodes are only connected to a small window of the input, which is then sled
across the entire input. In every step, the nodes use the same weights to determine their
output—they are shared over the input. This describes a simple convolution (see Figure [2.9a).
The only difference is that, instead of using a predefined kernel, the weights of the kernel are
learned to fit the data. The benefits are that we have to learn less parameters and that we are
independent of the size of our input. The number of nodes again corresponds to the number
of features computed. They are also referred to as channels. As the nodes only see a small
portion of the input at a time, they are able to recognize certain features at any location of the
input, which makes the features of convolutional layers translation invariant.

Depending on the kernel size k the kernel needs a certain amount of input values to compute
an output value. Thus, the size of the input will be reduced by |k/2]. If this reduction is not
desired, the input values need to be padded by p = |k/2] (see Figure [2.9a). Usually, a simple
padding with zeros is used to preserve the input size.

k further determines the receptive field of a convolutional layer, i. e. the part of the input that
can be seen at once. With the concatenation of multiple convolutional layers the total recep-
tive field of the neural network grows. For example, a model of two successive convolutional
layers with k = 3 has a theoretical receptive field of 5. However, due to small weights and the
selection process in pooling layers, which theoretically would at least double the receptive
field (see next item), the effective receptive field is much smaller than the theoretical recep-
tive field.

Pooling Pooling layers, which are hardwired layers to combine a certain amount of input values to
a single output value, serve the purpose of context aggregation and lower the spatial resolution.
This creates room for more features. In a pooling layer typically a window with size k = 2 is
sled across the input with a stride s = k = 2, i.e. only considering every second position to
reduce the spatial extent by half. The output value is either the maximum value (max pooling)
or the average value (average pooling) of the input values.

Dropout Often listed as a separate layer, the dropout basically discards the results of the preceding
layer element-by-element with a given probability p [67]]. During training p is set to a value
greater than zero (usually p = 0.5) so that the model only has a part of the information avail-
able. This acts as regularizer to avoid overfitting. At inference time p is set to zero, i.e. the
dropout layer is skipped so that the model can operate on the full set of information to make
a reliable decision.

24

2.3. Semantic Segmentation

Strided convolution Another approach to reduce the spatial resolution is introducing a stride to
the convolutional layer, only considering every n-th position in the input (see Figure [68].
Here, the reduction method is not hard-wired. Instead, we let the model learn the necessary
weights to figure out how to optimally combine the input values. The benefit, however, is also
the drawback: we introduce more parameters which have to be trained.

Un-pooling For a precise semantic segmentation the size of the output of our deep learning model
needs to correspond to the size of the input. Thus, we have to increase the spatial resolution
when done with the feature extraction, i. e. after the so called bottleneck. A straight forward
approach is to simply multiply the values of the input. That means making four output pixels
out of one input pixel or correspondingly eight output voxels out of one input voxel.

Transposed convolution This type of layer turns the tables: instead of combining multiple inputs
to a single output, a single input is broadcast to multiple outputs. The individual broadcast re-
sults are combined by summing them up. This alone does not serve the purpose of increasing
the spatial resolution. The next layer is only increased by 2 - | k/2] pixels. To be the equivalent
to an un-pooling layer we again need to introduce a stride—this time in the output layer. As
it happens that the broadcast output values only partially overlap, this method is prone to
introduce checkerboard artifacts to the output. This type of layer is often referred to as convo-
lution with fractional stride, because the stride on the input seems to be fractional to increase
the output size, or erroneously as deconvolution, even though it is not a deconvolution in a
mathematical sense.

Dilated convolution Instead of (or in addition to) reducing the spatial resolution for the aggre-
gation of context information it is possible to spread open the input of the filter kernel (see
Figure[2.9¢). These dilated convolutions further widen the receptive field of the model and so
enable the processing of more contextual information.

Besides the layer types described above, which form the most principal building blocks for the neural
network architectures used for classification and segmentation tasks, there exist plenty of other
types which are not discussed here. Furthermore, compositions of the above types are sometimes
listed as individual layer types. One example for a compound layer is the residual layer, which adds
the result of several consecutive convolutions (and non-linearities) as correction to its original input
(compare Section and Figure [4.14). The nesting of layers allows to comprehensively describe
even more complex network architectures like the ResNet [69]. Additionally, element-wise operations
(like an addition) and the concatenation of results are often listed as individual layer types.

By concatenating convolutional layers for the feature extraction, pooling layers for the context ag-
gregation, and fully connected layers for the feature combination and classification, we obtain typi-
cal image classification networks like AlexNet [58] or VGG-Net [[70]]. In accordance with the name-
giving layer type, the convolutional layer, this type of architecture is referred to as convolutional
neural network (CNN). These were the first models to come close to a human-level performance
on the ImageNet image classification challenge with 10 000 different classes [59]. Instead of using
fully connected layers to obtain a single classification, we can up-scale the results with the help of
un-pooling layers and transposed convolutional layers to obtain a classification per image element,
i.e. a semantic segmentation. Prominent architectures are, for example, the U-Net [[18] or the fully
convolutional network (FCN) [12].

25

2. Theoretical Background and Related Work

(a) standard convolution (b) strided convolution (c) dilated convolution

Figure 2.9.: Illustration of the different types of convolutional layers. The blue squares represent the input data. The white
squares with the dashed outline are the padded input data. The red squares represent the output data of the
convolution. The squares which are shaded in red are the values which the kernel uses to compute the single
output value denoted in darker red. All three convolutions use a kernel size of 3 x 3. The strided convolution
uses a stride of 2 x 2 (denoted by the light blue squares and the arrows) and the dilated convolution a dilation
of 2x 2.

The Training Process. In this section we briefly explain how the training process of a neural
network works in principal, sticking closely to [71], to which we also refer for a more detailed
mathematical derivation. To obtain a prediction we successively pass the input values on through
the different layers of the network (the so called forward pass, outlined in Figure [2.10a). Of course,
with an untrained model the results will be as random as the initialization of its weights. Hence, we
need an optimization algorithm to train the weights to some values which match our task. The many
non-linearities in the model, induced by the activation functions, render the optimization problem
to be non-convex. This has the consequence that neural networks are trained using an iterative,
gradient-based optimizer and, therefore, end up in a local optimum instead of finding the global
minimum of the cost function [[71]. However, as the neural network maps its input to a very high
dimensional latent space any local minimum is approximately as good as the global optimum [[71].
Here, we explain the typical optimization procedure for neural networks, called “training”, along
with some implementation details of specific optimizers.

As mentioned above, we use the back propagation algorithm to pass the information of the prediction
error backward through the neural network. With that we can compute the error gradient for each
weight and use a stochastic gradient descent algorithm to update the weights accordingly and expect
the prediction error in the next forward pass to be smaller. The error of the prediction is determined
according to aloss (or cost) function which is used to define the desired output of the neural network.
The necessary loss functions will be explained in-place where necessary. For now it is only important
that the loss function provides the initial gradient information. The back propagation algorithm now
recursively applies the chain rule (of calculus) to trace this error all the way back to the input yielding
a gradient for every trainable parameter in the neural network (as outlined in Figure 2.10b). With
the gradient information g we update the parameters 6 of our model such that 6;,; = 6, — a g, i.e.
a gradient descent, where « is denoted as the learning rate. As mentioned before, neural networks

26

2.3. Semantic Segmentation

h©® «— x g — V5L (y.y)
fork=1,2,...K do fork=K,K-1,...1do
a® h-DW® 4 pk g—gof (a®)
h®) f (a®) Yyl — g+ AWVynR
end for Vw(k)ﬁ — g h(k-0T 4 /Ww(k)R
end for
(a) forward pass (b) back propagation

Figure 2.10.: During training we perform a forward pass (a) of the input data x through the K-layered neural network
storing the activations a and the output h of each layer, where a is computed as the dot product of the output
of the previous layer and the weights W of the current layer and adding the bias term b of the current layer.
Then, a is passed through the non-linear activation function f to yield the output of the current layer. The
output of the K-th layer is the final prediction y of the neural network. A loss function £ compares y to
the actual labels y of the input and its derivative with regard to y gives us the initial error gradient g for
the back propagation (b). For back propagation we iterate backwards through the K layers of the neural
network, first updating g by the element-wise product of g with the results of the derivative of the activation
function. Then, we can compute the gradient information for the parameters (W and b) of this layers. Note
that we also include a regularization loss R which is added (weighted by 1) to the gradient. The task of
the regularization loss is to keep the weights in a proper value range which contributes to the avoidance
of overfitting. Finally, we compute the derivative of the outputs of the next (or rather previous) layer with
regard to £ by computing the dot product of g with the transposed weights of the current layer. The gradient
information for the parameters is stored for the update with the SGD algorithm. During inference, we only
need the forward pass (a).

are trained with very large data sets. Training would take an eternity when computing the complete
gradient information g for all data points in each iteration. Hence, we only use a small subset of the
data points (a mini-batch) which is randomly chosen in each iteration and update the parameters of
our model using an estimate g of the actual gradient which is the mean gradient of the mini-batch.
The larger the mini-batch we use in the (mini-batch) SGD algorithm the less noisy becomes the
estimated gradient (even though this scales only sub-linearly) and the larger can be the learning
rates.

A common problem is that the gradient estimated from one mini-batch can point in one direction,
while the gradient estimated from the next mini-batch can point in another direction, sharing only
a small portion pointing in the same direction. To address this, we can add a momentum information
to the SGD algorithm. We introduce another variable v which corresponds to the “velocity” of the
learning, i. e. the direction and speed of the parameter changes. In each iteration we update v; =
p1vi-1 — a g and only with v, we actually update the parameters 6,,; = 6, + v;. The parameter
B1 € [0,1) determines how fast the learning responds to changes in the direction of the estimated
gradient.

The second challenging aspect of training is the condition of the gradients: exploding and vanishing
gradients can cause the training to fail. While here the topology of the loss surface and the depth
of the neural network play an important role, the effects can be mitigated by choosing the right
learning rate. Furthermore, the right learning rate can change during training. In the beginning, a
high learning rate can be beneficial to quickly land near a local minimum. Then, already close to a
low cost local minimum a low learning rate is necessary to actually find the minimum instead of
meandering around it. Therefore, the learning rate is one of the most important, yet most difficult,

27

2. Theoretical Background and Related Work

hyper-parameters to tune [[71]]. A simple decay of the learning rate over time is a good starting point
to solve this issue. More sophisticated algorithms like AdaGrad, RMSprop, and Adam use adaptive
learning rates for each parameter individually and, hence, allow for larger initial learning rates.
These algorithms are basically some sort of evolution from one another, starting with AdaGrad, a
coinage of “adaptive gradients”, which weights the learning rate by the square root of the sum of the
squared magnitude of all gradients ever occurred. The gradient history is updated by r; = r,_; + g
and the parameters by 6;.1 = 6, - % o g. In contrast, RMSprop (root mean square propagation) uses
an exponentially weighted running average with an additionally controllable hyper-parameter f, to
store the gradient history for the adaption of the learning rate, i.e. r; = ff, ;-1 + (1 - f3;) g°. Finally,
Adam [72]], standing for “adaptive moment estimation”, combines RMSprop with momentum. Hence,
the algorithm maintains first moment estimates and second moment estimates of the gradient: s; =
Bisii+(1-p)gandr, = B,y + (1 -) g° Then, a bias correction is performed as especially
the first steps would be heavily biased towards the initial values of r and s. The bias-corrected
moment estimates are §; = 1%%1, and 1; = 1%}35 Finally, the parameters are updated according to

01 = 6; - %[© s;. Throughout this work we will train our deep neural networks using the Adam
optimizer, unless stated otherwise.

Before we can start optimizing (or training) our parameters they need to be initialized with some
values—another crucial aspect of deep neural networks. The initialization can decide upon the con-
vergence of the training process and the generalization of the model to unseen data. Typically, deep
neural networks are initialized at random to ensure that nodes which are connected to the same
input (and have the same activation function) are initialized with different values. Otherwise these
nodes will always receive the same updates using a deterministic training algorithm. In addition, the
boundaries of the random values are important. While larger values help to avoid a vanishing gradi-
ent as larger weight values yield larger activations, overly large values might again lead to exploding
gradients. The Glorot initialization suggests drawing the initial values from an uniform distribution

U (— [- fnout’ | - fnout), while the He initialization simple suggests using U (— | n%, ’n%) includ-

ing the ReLU in their analysis [23]. The bias parameter are usually initialized to be zero, except for
the output layer where it can be beneficial to initialize the biases to reflect the biases in the target
distribution. Despite the initialization being a hard problem, it was found that CNNs tend to learn
similar edge and color blob feature detectors in their early layers. This brings the advantage that
once we have a working deep neural network we can use its parameters as an initialization for a new
deep neural network. This is often referred to as transfer learning. The tasks, however, which these
models have to solve need to be sufficiently similar. Furthermore, we need to reduce the learning
rate on the transferred layers to avoid destroying the contained information.

Finally, with the large amount of free parameters and the concomitant huge capacity of deep neural
networks, overfitting becomes a serious issue. Therefore, the training process requires good reg-
ularization strategies. One of them, the dropout, was already explained in the previous section.
Another approach is to directly address the parameters (outlined in Figure [2.10b). The idea of the
L,-regularization, for example, is to continuously push the parameters towards zero as long as they
do not receive any updates which clearly push them in another direction. This further keeps the
weights in a numerically stable float range so that there are no large differences in the order of mag-
nitude between input, activations and parameters. Finally, data augmentation is a common regular-
ization technique. It describes the artificial extension of the training set by transforming the existing
training samples [71]]. Data augmentation includes all kinds of transformations, ranging from rigid

28

2.3. Semantic Segmentation

transformations, like rotating and mirroring the data samples, over affine transformations, like scal-
ing and shearing, and arbitrary elastic transformations up to all sorts of color transformations, like
contrast variations, color shifts, and the introduction of artificial white noise. Furthermore, the cre-
ation of augmented data samples can be learned by a generative model. This, however, goes beyond
the scope of this introduction and we refer to 73] for more details.

Object Detection. Knowing how to build a deep neural network and how to train all the free
parameters of the model, we can now deal with some task-specific network architectures to find
out how to solve our problems. First, we survey the mere localization of our target structures (i. e.
object detection) as the localization can be further combined with a more precise segmentation mask
in a second step. Typical representatives are the faster region-based CNN (Faster R-CNN) [74] and
the you only look once (YOLO) [75] architectures which are inspired by more traditional voting
approaches.

The approach of the Faster R-CNN is to utilize the features computed by the last convolutional layer
of an image classification network as input for a region-proposal network (RPN) which is trained
to predict K candidates for bounding boxes and their probability of being part of an object. The
RPN is implemented as a three-layered network. First, a convolutional layer with a kernel size of
k = 3 computes some intermediate features from the input feature map obtained by the classifica-
tion network, then two convolutional layers with a kernel size of k = 1 predict the bounding box
candidates and the probability of belonging to an object in parallel. After that, the features from
the last convolutional layer of the image classification network within a given candidate region are
pooled to a fixed size and serve as input for the final prediction. Each candidate predicts a bounding
box and a corresponding object class. Finally, a non-maximum suppression helps to clean up the
results. This model further can be augmented to predict a segmentation mask for each object. The
Mask Faster R-CNN [76] does so by predicting C binary segmentation masks—one for each of C
possible classes—for each of the candidates. The predicted segmentation mask, however, has a fixed
size: the size of the pooled input region. Because of the necessity to up-sample segmentation mask
to match the original size of the region the result sufferes from a certain lack of details, especially
for larger objects.

The approach of YOLO is similar, but instead of using a RPN to create candidates the input im-
age is subdivided into S x S patches, each of which votes for K candidates for object bounding
boxes, a confidence value and an according class label. Therefore, we end up with way less candi-
date bounding boxes of which most of the irrelevant ones have a low predicted confidence so that
the non-maximum suppression can be omitted.

Even though these architectures have been tested successfully on images of crowded scenes with
plenty of objects [|76]], they can only detect a limited number of objects at once, which renders them
unsuitable for our task. We cannot limit the number of detectable defects because we do not know
in advance if there are only a few large defects in a CT scan or many smaller ones. We also cannot
arbitrarily increase the number of predicted candidates because each additional candidate vector
further occupies valuable space on the GPU. For theses reasons, this type of architecture will not
be considered in this work. Instead, we go straight for the semantic segmentation and compute the
position and extent of individual instances from the segmentation mask.

29

2. Theoretical Background and Related Work

Semantic Segmentation. The principal idea behind the various segmentation architectures is
to generate a latent feature representation of the input and to then up-sample the results to the
original size of the input to obtain a per-pixel segmentation mask. In contrast to the object detection
architectures which yield a given number of bounding boxes and class labels per forward-pass, the
segmentation architectures yield a class label for every pixel in the input which leaves us with C
segmentation masks (one for each of C classes). The determination which pixel belongs to which
instance has to be done in a post-processing step. Typical representatives are the FCN [12]], U-Net
[18]], and SegNet [77].

The concept behind the FCN is that any classification architecture, which was pre-trained, for in-
stance, on ImageNet, can be turned into a segmentation architecture by converting the fully con-
nected layers into convolutional layers and placing the pre-trained weights of the fully connected
layers in the convolutional layers. This transfer process is often referred to as network surgery.
As the pooling layers reduce the spatial resolution, the predicted results have to be up-sampled to
match the size of the input. In the FCN this is done with transposed convolutions. In [12] two archi-
tectures are compared: (i) one which directly up-samples the output of the converted classification
layer to the full image size, the FCN-32s (as a 32x up-scaling is necessary) and (ii) one which includes
additional information, “Combining what and where” [12]], by up-sampling the classification result
step-by-step and adding additional predictions, which are inferred from the output of the pooling
layers with corresponding output size, to the intermediate results before up-sampling them again.
This model is referred to as FCN-8s (as not all pooling layers are used to add information and the
final up-sampling is an 8x up-scaling). The FCN-8s is found to perform significantly better, cap-
turing more details in the segmentation mask. The great benefit of this approach is that only the
layers which up-sample the prediction have to be trained. That means only a smaller amount of
precisely labeled training data is necessary, as the down-stream part of the network is trained on a
classification data set. A similar approach is taken by DeepLab [13]. Here, however, the result of the
converted classification layer is up-sampled using a bi-linear interpolation and then refined using
a fully connected conditional random field (CRF) [13]]. The CRF ties the coarse classification results
to the pixel boundaries in the image.

U-Net and SegNet take this procedure to the next level: They utilize symmetric encoder-decoder-
pairs, where the decoder contains the same amount of layers as the encoder and each layer in the
decoder has the same number of channels as its corresponding layer in the encoder. For each pool-
ing layer in the encoder there is a corresponding un-pooling layer in the decoder. So called skip-
connections provide the decoder with the necessary detail information by concatenating (or, in case
of the SegNet, adding) the features with the same level of detail of the encoder to the up-sampled re-
sults of the decoder. Consequently, the network has a lot more parameters which have to be trained
from scratch when coming from a classification architecture and, therefore, need more precisely
labeled training data.

Nevertheless, the increased up-sampling effort pays off: These models significantly improve the
prediction performance for common image scene understanding challenges like PascalVOC [61] or
Cityscapes [17] and are at least a part of all state-of-the-art segmentation pipelines. Furthermore,
these models have been successfully used on three-dimensional medical data sets [78]], for example,
to segment tumors in the brain [[79], the liver [80], or the lung [81]. Hence, these architectures seem
to be a promising starting point for our purposes.

30

2.3. Semantic Segmentation

2.3.2. The Pre-Deep Era: Traditional Methods

Traditional methods, in contrast, usually follow the approach described in the beginning: First, we
need to select distinctive candidate regions from salient points in the data. From these candidate re-
gions and their surroundings, we extract specific hand-designed features. Finally, we use a suitable,
“shallow” machine learning model that tells apart the different classes and filters false positive re-
sponses from the candidate selection process. The great benefit of traditional approaches is that they
are designed to be explainable. Because the extracted features usually are engineered to resemble
ideas of human vision and to capture typical properties of the target structures, these approaches
should not be neglected. To see if deep learning is really the better choice, we need to form a sound
baseline. The actual algorithms forming the baseline are explained in Chapter [4 Here, we focus on
the necessary basic concepts.

Candidate Selection. The purpose of the candidate selection is to propose possible instances of
the target object in the data for further consideration. Therefore, the candidate selection algorithm
needs to scan the entire input. This requires that the algorithm is able to process a large amount of
data in a reasonable time. Furthermore, the candidate selection algorithm needs to be quite sensitive,
finding every possible instance of the target object. Each instance which is not found in this stage
remains undetected. Simple filter-based image processing techniques, for example, are promising
candidate selection algorithms. They are able to quickly scan the input data for salient points of
a given size. Salient points such as edges and corners in particular are usually characterized by a
high content of information, which arises from a large local variance in gray-values and renders
them less prone to noise. Homogeneous regions, in contrast, show only little to no variance in their
gray-values. Hence, the effect of noise in these regions is much stronger.

The property that there is a large variance in gray-values near salient points is exploited, for instance,
by the Harris corner detector [82] and the blob detectors which are described by a difference of
Gaussians (DoG) [83]]. The latter comes in handy especially in the detection of defects, which more
or less have a spherical outline that match the DoG filter. To directly detect more complex objects
we can use template matching approaches which correlate entire objects (or their individual parts)
with the input data [84H86]]. Here, it is often helpful to operate on more abstract representations of
the image to find suitable candidates. For instance, we can use an edge image in order to eliminate
disturbing influences of probably unnecessary information like specific colors or the illumination
of the image.

In the case of semantic segmentation we further need to propose a segmentation mask in each
candidate region. Depending on the candidate selection algorithm we can derive a segmentation,
for example, by applying a threshold to the filter responses or by growing the candidate region
starting from a seed point which we determined from a non-maximum suppression of the filter
responses. Here, we refer to [|82] and [[87] for more details on the algorithms.

Feature Extraction. The features serve the purpose of (a) describing the target object and (b)
to tell apart different objects from one another or a cluttered background. Furthermore, it usually
cannot be assured that the target object always has the same orientation or size within the data.
A good feature, therefore, not only has to be distinctive, it also needs to be invariant to changes

31

2. Theoretical Background and Related Work

in scale, rotation, translation, and even illumination. More distinctive features make a classification
easier and allow for simpler classifiers. Such high-level features are usually more object-specific and
tailored towards particular tasks. In contrast, low-level features like gray-value, color, or gradient
statistics [88-91]] are more general and applicable to a broad variety of tasks. This requires the
classifier to be trained towards properly combining the low-level features for a reliable decision. For
more details on how to compute different feature we refer to [82]. In this work we deal with rather
simple structures. Hence, we stick to rather simple features which comprise gray-value and gradient
statistics.

Classification. The final step is to make a decision about each candidate whether it is part of
the target class or not. Therefore, we have to choose a classification model from the huge machine
learning toolbox, which serves our needs best. Here, we refer to [92]] for more details. One exam-
ple is the random forest [93], which is explained in more detail down below. In the field of defect
detection we will explore the approach the traditional object detection pipeline described in [49] in
Section [4.2.1] which uses a random forest to classify defect candidates based on their gray-values
and their curvature.

Pixel-level Classification. A slightly different approach which is more reminiscent of the end-
to-end strategies of deep learning approaches is the pixel-classification described in [94]]. Instead of
extracting features from pre-selected instances, we extract the features for each and every pixel in
the image. To contain the run time these features are usually less complex than those extracted for
a few individual instances. Furthermore, in this case we do not yet have a subdivision of the image
which would allow us to tailor the extracted features more towards the object we actually like to
find. Examples for features which can easily be extracted for each pixel are filter-based features
like gradient filters. More on them in Section [4.2.2] These features are not only applicable to defect
detection but to the analysis of all kinds of images. However, it is important that the extracted
features cover fine structures, for a precise segmentation, and the entire target object, for a proper
recognition.

Here, we focus on the classification step: A random forest assigns a class label to each pixel based
on the densely extracted features. The random forest is an ensemble method using bootstrap aggre-
gation (bagging). The principal of bagging is to use the mean prediction over a set of strong boot-
strapped classifiers. This reduces the variance of the results of the individual (noisy) classifiers [92]].
This approach contrasts to boosting in terms of (i) the classifiers each contributing equally to the
results, (ii) the individual classifiers being strong classifiers (it is not sufficient that they are barely
better than guessing), and (iii) the classifiers being independent of one another. That means each
decision tree Ty of the random forest, which in total consists of B trees, is trained with randomly
chosen samples of the training set. The probability y of a pixel belonging to a certain class is the
mean of the results of all T, which make their decision based on the features x (see Equation (2.5)).
Alternatively, for a hard class assignment we can use a majority vote.

oo)

1 B
y==) Tyx) (2.5)
b=1

2.3. Semantic Segmentation

The training algorithm of a random forest is straight forward: For each tree in the ensemble we first
bootstrap-sample, i. e. sampling with replacement, a set of n feature-label pairs (x, y) from the com-
plete training set (where x is a vector of m features and y contains the according class assignment).
Then we grow a decision tree based on the sampled training data by (i) randomly picking m" of our
m features, (ii) given the m" features determining the threshold which separates the different classes
in the node best, i. e. the best split, and (iii) introducing two child nodes according to the split. We
do this until each leaf node only contains elements of a single class, i. e. a pure node, or an early stop
criterion is fulfilled. These criteria act as regularizing hyper-parameters and are explained below.
First, we need to define how to determine the best possible split. Our goal is to minimize the impurity
in the child nodes. That means we are looking for the best split point s along our m" features that
minimizes our cost criterion Q in both child nodes R; and R»: msin [O(R;) + Q(Ry)]. As cost function

we can use, for example, the cross-entropy (see Equation (2.6)) or the Gini index (see Equation (2.7)),
where p; is determined by the portion of instances with class i in the region. Both are differentiable
and, therefore, suited for optimization methods. Furthermore, compared to using a misclassification
error as cost function, both cost functions prefer the creation of pure nodes.

C C
Qx—entropy == Z bi 10g bi (26) QGini = Z pi (1 - Pz) (27)

To tune the random forest, we can, for example, vary the number of trees in the ensemble and define a
maximum depth of the decision trees, i. e. a maximum number of splits we have to compute to receive
a decision. Both parameters have an influence on the complexity of the model and directly affect
the prediction time. However, there are more hyper-parameters which can be tuned when training a
random forest. These have a regularizing effect as well but only indirectly affect the prediction time:
(i) We can choose the maximum number of leaf nodes which limit the size of the trees but allow
for very deep unbalanced trees, (ii) we can define the minimum number of samples in a leaf node
allowing impure leaf nodes in the final decision tree, and (iii) we can define a minimum necessary
decrease in impurity for a split to be made. These hyper-parameters can be tuned, for example, by
using a random search. In our case, we found it most beneficial to focus on the number of trees and
their maximum depth.

With that, we have introduced the necessary theoretical background and discussed the relevant
related work. Further details will be introduced when necessary. In the next chapter, we ask the
question how we can acquire the necessary amount of training data to properly train our machine
learning algorithms for the detection of defects in CT scans of cast aluminum parts.

33

3. The Quest for Data

The supervised training of machine learning models requires labeled training data from which they
derive (or “learn”) the values of their free parameters. This training data contains samples drawn
from distribution of data in the real world, from which the models build up a statistical abstraction
from reality, which is then used to extrapolate to unseen data. The more data, i. e. the more samples
of the real data distribution, they have at their disposal, the better this abstraction becomes, as it is
more likely to cover all the different aspects we encounter in the real world. The actual amount of
data which is necessary to build a good abstraction also depends on the number of free parameters
a particular model has: The more free parameters are available, the more training data is necessary.
Furthermore, using more data prevents the model from simply learning its training data by heart
and increases the chances that the model grasps more relevant aspects of its task. Especially deep
learning models have a large amount of free parameters, in the order of magnitude of hundreds of
thousands or even millions. Therefore, they crave vast amounts of labeled data for a proper super-
vised training. This leads to an increased interest in semi-supervised and unsupervised methods to
reduce the necessity for large amounts of labeled data [[95-98]].

For many tasks there already exist ever-expanding labeled data sets: For image classification, for
example, there are ImageNet [59,/99]], PASCAL VOC [61]], and Microsoft COCO [60] with hundreds
of thousands of images of thousands of categories. They contain objects of all shapes and sizes
ranging from small insects over mammals and plants to all kinds of man-made structures like cars,
airplanes, and ships. Even for more specific tasks there are data sets. For example, for road scene
understanding we have CamVid [100,|101]], KITTI [62]], Cityscapes [17], and many more to train
our models. These data sets contain labels of different complexity ranging from a simple distinction
between road and background to a detailed instance segmentation of pedestrians, cars, traffic signs,
and so on. In the field of three-dimensional volumetric data there are, for example, several medical
data sets like BraTS [79], SLIVER [102], LIDC-IDRI [81], or LiTS [80]]. They contain CT scans (or
magnetic resonance imaging scans) with labels that either outline individual organs or tumorous
tissue in the image.

When looking for an appropriate data set for the detection (and segmentation) of defects in CT scans
of cast aluminum parts, however, things become much more difficult. In the field of non-destructive
testing there is a great silence regarding data. This can have various reasons: (i) Compared to road
scene understanding and medical image processing it is not as publicly present. (ii) The amount of
data produced by industrial CT quickly exceeds the terabyte-scale. Gathering the amount of data
which is necessary to properly train a deep learning model is quite expensive—especially because
labeling requires the knowledge of domain experts. (iii) Finally, CT scans reveal everything about the
part under examination. This raises concerns about the intellectual property of the manufacturer.
Nevertheless, for radiographic tasks, there is the GDXray [103]] data set. It contains data for a broad
variety of applications: security checks of luggage, quality checks of food, the inspection of welds,

3. The Quest for Data

and even the inspection of cast aluminum parts. But, for our task we require CT scans which cannot
be computed from the single radiographs in this data set.

If the available labeled data is not sufficient to properly train a model, often synthetic data is called in.
For example, there exist various approaches to generate synthetic data for road scene understand-
ing like Virtual KITTI [[104] which resembles the data of KITTI in a simulated world. This allows to
easily vary the conditions of weather and daylight in the images. Another approach uses existing
realistic simulations to generate synthetic training data: video games [[105]]. Simulations are also
used in models which made it to production-level. For example, the pose estimation model which is
used in Microsoft Kinect is trained with the help of synthetic depth maps [106]]. A different example
is the gaze estimation model developed by Apple. They use images of synthetic eye models which
come with a precise ground truth and refine them with adversarial training to look even more real-
istic [107]]. Another field of application which heavily exploits simulations and synthetic data is the
training of autonomous robots and drones via reinforcement learning. Here, training in a simulated
environment has the huge benefit of avoiding actual damage on the hardware, i. e. the robot or the
drone. However, transferring the trained models to the real world is challenging [[108H111]]. The big
problem with synthetic data is the (sometimes large) gap between the domain of real images and the
domain of synthetic images. This domain gap is often referred to as the “reality gap” [109]]. As a re-
sult, synthetic data is often used for pre-training only. Nevertheless, the more realistic the synthetic
data is, the better the results.

Without labeled data at hand, we have to come up with our own data set. In this chapter we, there-
fore, explore two different ways to obtain annotations for real data: the sparse annotation of indi-
vidual voxels by looking at their neighborhood and the creation of dense annotations with the help
of high-quality CT scans. Furthermore, we explore three different approaches to generate realistic
synthetic data, which promise to bridge the “reality gap”. These are domain randomization, genera-
tive models, and realistic simulations. Finally, we develop an automated simulation pipeline which
allows us to generate an arbitrary amount of precisely labeled training data.

3.1. The Challenge of Labeling Real Data

Labeling the data for defect detection in CT scans of cast aluminum parts is considerably harder than
labeling images for image classification or road scene understanding. Most notably, this is because
(i) we have to deal with three-dimensional volumetric data. This type of data is particularly hard to
grasp, as we have to go through individual slices in all three dimension to get the necessary con-
textual information. (ii) Additionally, we are looking for structures without an inherent shape. Due
to their daily lives, humans are more familiar with road scenes than they are with casting defects.
No pedestrian quite looks like another, but that doesn’t hinder humans to recognize them. Defects,
in contrast, have an arbitrary shape and are rarely seen. Nevertheless, the shapes of different types
of defects follow different rules, but it requires the knowledge of domain experts to recognize them.
(iii) Moreover, the sometimes heavy image artifacts which arise from scatter, beam hardening, and
insufficient exposure times further impede the labeling process. This demands an increased con-
centration from the experts and contributes to their exhaustion (which also is an argument for an
automated inspection). When labeling medical images we encounter similar problems, e. g. the la-
beling of tumorous tissue. Here, the spatial resolution and the contrast sensitivity are further limited

36

3.1. The Challenge of Labeling Real Data

due to the reduced dose a patient can bear. We now explore two labeling strategies to ease the effort
for our experts.

3.1.1. Sparsely Annotating Real Data

The first approach is to sparsely label single voxels whether they are either part of a defect or of a
structural loosening or are not part of a flaw. To ease the labeling process for our experts, we develop
a small application with a simple web interface (see Figure 3.1a). Here, the experts label the CT scans
voxel by voxel with a simple click on one of the “Decision”-buttons. To provide our experts with
contextual information we show a neighborhood of 33 x 33 voxel around the current target voxel by
means of the axis aligned slices. In addition, we mark the target voxel with a red cross. Our experts

then have to decide which class the voxel belongs to: “defect”, “structural loosening”, or “no defect”.
If they are not sure, they are allowed to mark the voxel as “unclear”.

The volume data which we obtain from each CT scan ranges in the order of magnitude of a bil-
lion voxels. Labeling every voxel in each volume would not be feasible. Furthermore, the data only
contains few defects so that selecting voxels which belong to a defect by randomly choosing voxels
from the volume is rather unlikely. Hence, we use an existing filter-based defect detection algorithm
to provide us with an initial guess where to find defective voxels. Then, we especially sample close
to these candidates and add only a few random voxels from the rest of the volume. To obtain infor-
mation about as many defects as possible, we configure the candidate selection algorithm to have a
high recall. Due to the high recall we also include many artifacts and other characteristics of a CT
scan which easily are confused with defects. Some examples of the sparsely labeled CT scans are
shown in Figure We assign a label to each voxel, as long as at least 66 % of our experts agree
in their decision. Otherwise we assign the label “unclear”.

We abandon this approach because of several severe drawbacks: (i) This procedure requires too much
time to generate a sufficient amount of labeled data. (ii) Particularly interesting for the training of
machine learning algorithms are the corner cases, for example, at the transition of material and
defect. This information is necessary to obtain a crisp segmentation later on. However, the voxels in
these regions are rarely labeled and if so, the labels are ambiguous. (iii) Many voxels are labeled as
“unclear” because the necessary context is missing. The experts cannot be sure if the voxel belongs
to a defect or a structural loosening. In these cases it could be beneficial to “scroll” through the
data, taking the preceding and subsequent slices into account. This is a deficiency of the labeling
tool. (iv) Even though our candidate selection process has a high recall, the smallest of the defects
seem to be missed out. We see better chances to obtain the necessary amount of training data by
improving the creation of dense labels.

3.1.2. An Improved Labeling Process for Dense Labels

Our second approach is to tackle at least one issue which impedes the creation of dense labels: the
image artifacts. Having to deal with industrial CT and cast aluminum parts has the benefit that the
object under examination does not mind higher doses and does not change unexpectedly over time.
This permits the usage of higher energies and longer exposure times when making the CT scan. We,
therefore, acquire two CT scans of the same object. A high-quality scan with as little image artifacts

37

3. The Quest for Data

Human Defect Detector

Logged in as fuchs. You classified 142 candidates o far. Our top-performing expert has classified 685.

Top
Front Decision

(a) The web interface of the labeling tool to create sparse annotations for (b) A few examples of labeled defective and defect-free vox-
real CT scans. It shows the three axis-aligned slices centering at the els. We see that we only have very few information per
voxel which is to be labeled, and the possible decisions. volume, which is not enough to train a confident and ro-

bust classifier.

Right Help

Figure 3.1.: To ease the process of labeling individual voxels, i.e. sparsely labeling the CT scans we have, we develop a
small web interface that allows our experts to click through the data set.

as possible (see Figure [3.2a) and a “normal” scan which holds all the challenges for training (see
Figure [3.2b). Now, the idea is to densely label the high-quality scan and transfer the annotations to
the “normal” scan which is used for training later on.

We hope that the better the high-quality scan is, the better the labels become. If we acquire a CT
scan in which thresholding the gray-values already yields a pretty good segmentation, it should
considerably ease the task of labeling. Compared to the “normal” scan, the high-quality scan has
a higher spatial resolution and a much higher contrast-to-noise ratio (CNR), i. e. lower noise-level.
This requires very long exposure times. The exact scan parameters, however, depend on the part
under examination and are provided for the individual parts later on. Having the CT scan of high
image quality, we hand them over to our eight experts and ask them to label each voxel of which
they think it belongs to a defect—not considering if it could be harmful or not. For this task, we
allow them to use all the functionality available in VGSTUDIO MAX (Volume Graphics GmbH) as
it is the software they are used to work with.

Now, we need to combine the individual labels of our eight experts and transfer the result to our CT
scans of “normal” image quality which are more artifact-afflicted and have lower spatial resolution.
The challenge here is the diversity of the labels produced by our experts: Some label single voxel
defects in the high-quality scan, others were labeling not as accurately and not as precisely. Some
try to include information about how much of a voxel belongs to a defect yielding a soft transition
between material and defect, others create a binary mask which only coarsely includes the defect.
Each mask is stored as 8 bit unsigned integer volume data with a maximum value of 255. That means
the binary labels either assign 0 or 255 to a voxel and the smooth transition of the other labels lies
somewhere in between. First of all, we remove instances which contain less than 8 voxels as they
are not visible in the “normal” scan. Then, we add up all labels, resulting in a mask with a maximum

38

3.1. The Challenge of Labeling Real Data

4
s i ' R ! Eﬁ‘ ‘_% L .,ﬂ
“ . e s 3 %::!ﬁ'n

. . -
-]

- # {: ﬂu'_

(a) A patch of the high-quality scan with (b) A patch of the “normal” scan for train- (c) Different experts label the data differ-
high spatial resolution and low noise- ing. It contains all the challenges we en- ently, leaving us with ambiguous labels
level for labeling. counter in the quality laboratory. ranging from full accordance () to

only a single expert labeling a voxel (red).

Figure 3.2.: To ease the process of densely labeling entire CT scans, we make two CT scans of the same part: a high-quality
scan for labeling (a) and a “normal” scan for training (b). However, our eight experts have different opinions
about what a defect is, which leads to ambiguous labels (c). Especially the actual extent of a defect remains
unclear and varies from defect to defect.

value of 8 - 255 = 2040. Using this value as confidence, we can compute the mean confidence and
the maximum confidence for each labeled defect. If the mean confidence is much smaller than the
maximum confidence, we have an instance where our experts are particularly indecisive. Here, it
is helpful to do a binary erosion of the label mask, as the difference might result from a too coarse
labeling of an individual expert. Finally, we remove all instances which were not labeled by at least
two experts, or are smaller than 8 voxels after performing the erosion. We store the combined ground
truth again as 8 bit unsigned integer volumes, linearly mapping the values to the range [0; 255].

Having the combined ground truth of all of our eight experts, we need to transfer it from the high-
quality scan to the “normal” scan. Unfortunately, the corresponding scans were not necessarily done
right after another, so they differ in position and orientation. However, for the transfer we need
them to be aligned precisely. Therefore, we use the “advanced surface determination” of VGSTUDIO
MAX to compute the precise material boundaries of the object in both CT scans. Then, we use
the “registration algorithms” of VGSTUDIO MAX to align both CT scans guided by their material
boundary. Finally, we re-sample the ground truth mask of the high-quality scan to match the voxel
grid of the “normal” scan.

Despite all the effort of making high-quality scans, the labels remain ambiguous (see Figure [3.20).
Furthermore, some of our experts label every tiny defect, while others only consider instances that
have a minimal size. Some of our experts tend to label a structural loosening as defect, some label
only “darker parts” of a structural loosening as defect, and others do not consider a structural loos-
ening as defect at all. This could be explained by using different monitors which display the same
gray-value at a different intensity, but even worse is that there are examples of structural loosening
in the data set that none of our experts consider as defect—not even those who label other occur-
rences of structural loosening. The combined label mask we obtain allows us to take the accordance
of our experts into account. The more our experts agree on a voxel being part of a defect the higher
the value in the combined label mask is. The problem that follows for the process of training is
where to draw the line? What should we tell our machine learning method about what actually is a
defect? Even when labeling objects of our daily lives the boundaries are not really clear [28]. In med-

39

3. The Quest for Data

(a) A break caliper of a rear wheel of a car. (b) A material sample taken from a (c) A pivot cap of a laser scanner.
larger aluminum part.

Figure 3.3.: The cast aluminum parts which we scan for our data set of real CT scans. We make two CT scans of each part:
a high-quality scan for labeling and a “normal” scan which holds the challenges for our algorithms.

ical data we encounter the same problem. For example, when annotating tumors in the lung [29].
Here, the usual procedure is to take every voxel as part of the target class that is labeled by at least
one expert and rather model a probability distribution of being labeled [29]. The idea is to provide
the specialist who has to cross-validate the results with an indication of every possible incidence
and to give him a notion of what other experts would think about this incidence and its extent.
For evaluation, the result is not compared against a binary ground truth but is evaluated on how
well the predicted distribution matches the probability distribution given by the experts, e.g. by
calculating the generalized energy distance [112]. This approach accepts higher false positive rates
and the higher run time which is necessary to generate the samples for the estimated probability
distribution. We, however, need a precise segmentation of each defect instance which is in the part
under examination instead of a probability distribution, in order to compute derived measures like
its volume, compactness, or sphericity. We need this information to draw further conclusions about
its associated fragility and criticality.

In a first run, we make a high-quality and a “normal” scan of three cast aluminum parts: a brake
caliper of the rear wheel of a car (see Figure [3.3a), a material sample of a larger cast aluminum part
of a car (see Figure3.3b), and a pivot cap of a laser scanner (see Figure[3.3c). The break caliper has a
size of 150 mm x 140 mm x 80 mm and is scanned with 295 kV at 320 pA and a filter of 1.0 mm copper.
The material sample has a size of 80 mm x 120 mm x 70 mm and is scanned with 295kV at 320 pA
and a filter of 1.0 mm copper. The pivot cap has a size of 80 mm x 80 mm x 40 mm and is scanned
with 180 kV at 160 HA and a filter of 0.5 mm copper. The high-quality scans were reconstructed with
a voxel size of 41 pm from 2000 projections with a total scan time of 120 min, while the “normal”
scans were reconstructed from only 1500 projections with a total scan time of 15 min and have a
larger voxel size of 82 pm. Unfortunately, the CT scan of the break caliper was not very useful for
our purposes. Firstly, it contains only very few tiny defects and one large structural loosening and
secondly, there still was a steel screw in the part during the scan process, which renders severe
metal artifacts into the final scan. Thus, for now we only create a ground truth for two of the real
cast aluminum parts: the pivot cap and the aluminum part.

40

3.1. The Challenge of Labeling Real Data

3.1.3. The Crux With Training on Real Data

Combining all annotated voxels from Section we roughly have 1000 samples of which about
100 are “defective”. With this small amount of data we are not able to train a robust model which
can precisely segment defects in the broad variety of artifact-afflicted CT scans we encounter in
production. The lack of information in the boundary regions of the defects exacerbates this effect.
Here, most of the experts either chose “unclear” or contradicted each other. Nevertheless, we give
it a shot and train a small CNN for classification. As we only have very few labeled samples, we
build the net with only three convolutional layers for feature extraction and a fully connected layer
which yields the final decision. For training we crop patches of 32 x32x32 voxel around each labeled
voxel and let the net predict if the given patch is “defective” or not, i. e. whether the center voxel was
labeled as “defective” by our experts. Later, for inference, we can use a sliding window to predict the
likelihood of a voxel being “defective” patch by patch. To speed up the inference we can convert the
model to a FCN by converting the fully connected layer into a convolutional layer with a kernel size
of 1x1x1. To obtain a probability for each voxel, we need to upscale the probability map we get from
the FCN. Even though we end up with a much smaller probability map which we have to upscale,
the results of the sliding window and the naive FCN are pretty similar. However, the results end up
being fuzzy and indistinct (see Figure due to missing information about boundary regions and
the lack of spatial resolution in the decision making layers.

-
[3 '* k. E
r ']
-
h :
Figure 3.4.: The overlay shows the prediction of the trained model. Using the scarce labels from our sparsely

annotated CT scans for training, the results become fuzzy and indistinct. This is because we lack precise labels
for the more interesting parts, i. e. the boundary regions between defect and material, and have to upscale the
results to the full image size.

Figure 3.5.: With the densely annotated CT scans we can train a FCN to output a more refined segmentation mask. How-
ever, we still miss precise information about the boundary regions of the defects which is reflected by the
results. Even though the defects are better located, the segmentation remains fuzzy and misses small defects.
Again, the overlay shows the prediction of the trained model.

41

3. The Quest for Data

With dense labels we have much more information available and consequently are able to train a
more sophisticated FCN which takes the information contained in earlier layers into account while
up-scaling the predicted probability map. Even though we use dense labels for training, we do not
achieve considerably better results. The defects are located more properly, but we are far from a
crisp segmentation of individual instances (see Figure [3.5). Most notably, this is because the labels
which we use for training are ambiguous. If we have regions which are labeled as being part of a
defect and similar regions which are labeled as “flawless”, the error-gradient can be imagined as
pointing in one direction or the exact opposite direction, respectively. These disturbances become
more destructive when the model does not see the whole training data at once as it is the case when
training deep neural networks. Therefore, the trained model cannot yield precise predictions for
ambiguously labeled data.

We did not yet consider to use more sophisticated labeling tools which, for example, utilize random
forests to enable a guided segmentation by simply annotating the most relevant regions [[94]. Such
tools often require an extensive introduction and data preparation and expert time is expensive.
Instead, we decide to use the two CT scans for which we already have dense labels for validation
and move to using synthetic data for training.

3.1.4. Pre-Training With Real Data

But there is another way we can use any real CT scan—labeled or not: The unsupervised pre-training
of a neural networks as warm-up for their kernel weights and to give them a notion about the
data they are going to work with [97,/98,|113}(114]]. The idea arises from transfer learning. Neural
networks which are trained to solve similar tasks tend to learn similar features, i.e. filter kernel
weights, in their early layers. Using these weights to fine-tune the model for a new but similar task,
we need less training data and the fine-tuned model better generalizes to unseen data [[115]]. Pre-
training utilizes this effect to bring randomly initialized networks closer to their purpose by letting
them work with all the available (partially unlabeled) data. The pre-training tasks can, for example,
involve the reconstruction of the input data after passing it through the bottleneck of the model,
i. e. training an auto-encoder [116]. A variant of this method further adds noise to the input so that
the model is trained as denoising auto-encoder [117]]. This, however, might be less beneficial for CT
data, as it has a high inherent noise-level, which means the denoising auto-encoder never learns to
remove all the noise. Another task is the reconstruction of artificially removed patches with help of
the remaining data [[118-120]]. Additionally, we can add more supervision by including meta data
into the training process. For CT data, we can use the information about the acquisition of the scan
to pre-train our model by letting it predict the distance to the rotation center or the optical axis [[114].
Unfortunately, pre-training does not help in our case: ambiguous labels lead to fuzzy results, with
and without pre-training. Even though the model which was pre-trained to auto-encode the CT
scans is able to reconstruct edges and corners, it yet fails to yield a crisp segmentation mask.

3.2. Of Synthetic Data and Precise Labels

Learning methods, especially deep methods, require a lot of labeled data, which is cumbersome and
expensive to obtain. Other fields have proven that utilizing synthetic data can boost the training

42

3.2. Of Synthetic Data and Precise Labels

process when applied properly [[105H108]]. For the synthetic data the ground truth can be computed
precisely. However, as mentioned before, synthetic data usually does not match all aspects of the real
world [[109]]. Thus, there exist several approaches to bring synthetic data closer to reality, bridging
the “reality gap”. In this section we will explore (i) domain randomization which arbitrarily alters
non-essential aspects of the data [[108H111]], (ii) generative models which learn how to generate
realistic data by trying to fool an expert model [[107,/121,[122]] and (iii) realistic simulations which
use sophisticated ray-tracing methods to come as close to reality as possible [[104}/105}/123]].

3.2.1. Domain Randomization

When trying to synthesize a large amount of precisely labeled training data in a short amount of
time, the resulting data probably is far from reality as too many abstractions in favor of computa-
tion time had to be added. We then arbitrarily alter the non-essential configurations of the scene
regardless of restrictions from reality, hoping that the trained model is able to generalize to real
data [|[108}/124]. Basically, we create a superset of reality. For example, we change the color or tex-
ture of the target object or its background, or change some environmental conditions to include
all possible—and impossible—combinations [108]]. This further reduces the probability that the net-
work learns to recognize an object by its background or a small detail in its texture [125] and guides
the model to learn features which we would consider as crucial. Domain randomization is widely
used when training real-life agents via reinforcement learning, which requires a lot of trial and er-
ror [[109)110]. This involves many failures like hitting the wall with the robot or the drone. Therefore,
the initial learning has to be done in virtual worlds; doing this in the real world would lead to an
expensive hardware abrasion. The challenge is to transfer the actions which the agents learn in the
virtual world to the real world, which is basically the same we would like to do. This is where domain
randomization comes into play: If these agents are able to navigate through a superset of reality, they
should be capable of navigating through reality without expensive adaptations [[109}/110,(124}/126]).

In case of performing domain randomization for CT data, we start off by creating simple gray-value
grids which contain our essential information. We would like to detect defects in cast aluminum
parts. Thus, we need a material shape which is represented by a high gray-value in the CT scan,
surrounded by air which has a low gray-value. Inside the material we place our defects which again
have a low gray-value. It is crucial that the defects have a lower gray-value than the material in
which they lie, but they do not need to have the same gray-value as the surrounding air. Then, we
apply our domain randomization modifications consisting of (i) a Gaussian filter to blur the data
(which corresponds to a variation in the focal spot size), (ii) superimposing linear and spherical
gray-value gradients to the data at arbitrary positions (which corresponds to the cupping artifacts
introduced by the effect of beam hardening), (iii) adding white noise to image (which emulates to the
Poisson noise we encounter in the individual projections of real CT scans), and (iv) rendering dark
streaks and rings into the data in arbitrary directions (which corresponds to ring artifacts and partial
volume effects). To generate the initial gray-value grids, we sample the meshes from Section [3.3.1]
and then randomize them by applying our parametrizable modifications (see Figure[3.6). This allows
us to render more interesting defect shapes in the data than mere spherical blobs.

The great benefit of synthetic data is that it comes with precise ground truth. If we now use this
data and domain randomization for training, the results look promising and we obtain the crisp
segmentation map we like to have (see Figure [3.7). Nevertheless, the trained model fails to detect

43

3. The Quest for Data

v

Figure 3.6.: We begin with a simple rendering of a defective aluminum cast part as gray-values (left image) and randomly
add modifications to that rendering (right images). We blur the data, superimpose gray-value gradients, add
noise, and so on. Note that all four images are used for training, even the unmodified rendering.

e .?‘_‘ 1_*-.‘ = 'l

Figure 3.7.: When training with our simplistic synthetic data set and domain randomization we are already able to achieve
a crisp segmentation mask. Yet, the model misses small defects and does not generalize well to the broad
variety of different CT scans of cast aluminum parts we encounter in production. The orange overlay shows
the prediction of the trained model.

small defects and does not generalize well to real data. For example, it is not able to cope with
higher artifact levels. The approach of domain randomization has another drawback: The generated
training data is not necessarily explainable to domain experts, which, however, is necessary to build
up the trust in deep learning technologies among the NDT community.

3.2.2. Generative Models

Our next approach is to train a neural network to close the “reality gap”. To tell this generator model
G how it has to manipulate our synthetic data to look more realistic, we first train a discriminator
model D which learns to distinguish between real and synthetic data. Then we train G to fool D, i. e.
to produce images where D cannot tell whether they are real or synthetic [[127]]. As it is possible that
G simply discovers a small detail which is sufficient to lead D up the garden path instead of producing
more realistic images, we iterate the training process: We update D to again distinguish between
images which are generated by G and images which are taken from real-life examples. Additionally,
we show D generated images from previous iterations to prevent G from altering between two states
instead of advancing towards more realistic images. To keep the precise labels valid, we further add
the L1-norm of the difference between synthetic input and refined image as constraining loss. This
type of generative adversarial network (GAN) is, for example, used to improve synthetic data for
eye tracking or gaze estimation [107]. Figure [3.8] shows an outline of the basic training setup. By

44

3.2. Of Synthetic Data and Precise Labels

|

D — L

real vs.
synthetic

synthetic refined

Figure 3.8.: The very basic training setup of a generative adversarial network which allows us to refine our synthetic data,
for which we have a precise ground truth, to look more realistically. The generator G modifies the synthetic
input image and tries to fool the discriminator D which has to distinguish real samples from synthetic ones.

adding Gaussian noise to the synthetic input image, we enable G to render more realistic structures
into the wide flawless regions and the background, which otherwise would have all the same gray-
value and, therefore, the same appearance in the refined image. As loss function £ we use a simple
Wasserstein metric [|[128]] which is also known as “earth movers distance”, i. e. how much does it cost
to transform one pile of dirt (or in our case a probability distribution) into another.

In the end, we can use the refined images generated by G with the precise labels of the synthetic
data to train our segmentation net. Figure [3.9|shows some examples of the refined images. Unfortu-
nately, the images only look realistic on first sight. They do not stand up to closer inspection. When
comparing the input image to the refined images, we notice that the defects in the refined images
become much larger. Furthermore, the generator seems to have a hard time generating images with
a fine-grained noise distribution. This might be because the variation in the gray-values are more
subtle for noise than for edges in the image. In addition, more complex types of artifacts,like ring or
streaking artifacts are missing, too, due to the limited receptive field of the generator. While these
images might fool the layman, to the domain expert it is pretty obvious that they are fake. GANs are
part of a wide and open field of research and the proper training of a GAN is quite hard. This leads
to a vast amount of different architectures with different auxiliary loss functions which have been
used to avoid exploding gradients, drifting into the generation of unrealistic images, and other is-
sues. One example is the cycle consistency loss introduced by the CycleGAN architecture [1291/130].
Here, another generator tries to reconstruct the original image from the synthetic one. Another chal-
lenging aspect when training a GAN is the mode collapse [[131H133], i. e. the generator producing a
limited sample variance only. It might focus only on a small detail which is currently necessary to
fool the discriminator: If we train a GAN to produce images of handwritten digits, it might be that
the generator only produces sevens because for the current state of the discriminator they could
be particularly hard to distinguish from real examples. With the adaptation of the discriminator to
detect the generated images, the generator might then start to meander between different modes,
never serving all the possible modes [[132]]. While using the Wasserstein metric as loss function lim-
its the possibility of mode collapse, it does not entirely prevent it. Instead, the weight clipping which
is used to enforce the Lipschitz constraint also limits its capability [[134]]. Therefore, a growing num-

45

3. The Quest for Data

TH=B

Figure 3.9.: The refined images produced by the generator look more realistic at first sight. However, a closer look reveals
two major problems: The defects become noticeably larger compared to the original mask which is used as
input for the generator and all the generated images lack the fine-grained noise of typical CT scans.

w i " .
e
Wy -
]
C -
h :
Figure 3.10.: The results of the segmentation net which is trained using the refined samples of the generator are not as
good as we expect them to be. Most notably, the model is way more restrained in labeling defects and the
labels are slightly off. Furthermore, it struggles with larger defects. The reason could be that the refined

images do not match with the labels anymore, even though we prevent changes by penalizing inconsistent
transformations. The overlay shows the prediction of the trained model.

ber of approaches try to prevent the mode collapse, for example, by adding different regularization
losses and constraints to the network, while keeping the full model capability [[134-137].

As the generator changes the appearance of the defects, the labels do not correspond as precisely to
the defects anymore. Even though we use a consistency loss, the defects often appear to be larger
and shifted by a few voxels so that the labels are slightly off. We also observe this in the results of the
segmentation model which is trained with the refined images (see Figure [3.10). We only find parts
of the larger defects and the predicted labels are slightly shifted to one side of the defect. Moreover,
we find that the segmentation model has much more trouble in dealing with noisy CT scans. To
improve the results it would be necessary to further constrain the generator to adhere more to its
input or to transform the labels in a similar fashion.

Using GANSs to generate additional training data for classification tasks can be a worthy aim. For
example, in realistic images of cylinder heads are generated from coarse labels. The generated
images contain defects close to the regions defined in the labels. Here, the parts are classified as a
whole, so the generator does not need to maintain the precision of its input. In contrast, we need
to precisely segment individual defects within a part. Consequently, training a GAN to refine the
training data for a precise labeling task is a hard endeavor with an uncertain outcome. The GAN
tends to alter the shape information so that the data does not match the labels anymore. Using
too restrictive consistency constraints inhibits the possibilities of the GAN to add more realism to the

46

3.2. Of Synthetic Data and Precise Labels

data. Moreover, the generated CT scans are not explainable to domain experts. Hence, we abandoned
this approach.

3.2.3. Simulated Data

The last approach for closing the gap between synthetic and real data is to model the physical
conditions of the real world more accurately. More realistic simulations, which even domain experts
have a hard time recognizing, should improve the predictions of our model, too. Basically, there are
two ways to achieve more realistic simulations: (i) we can build upon existing real-world CT data
and render artificial defects in real-world CT scans. If we further have the projection data, we can
superimpose the defect in the projections and later reconstruct the CT scan from the manipulated
projections. It is conceivable to use more sophisticated techniques of superimposition, which respect
the laws of physics, altering the attenuation instead of the gray-values directly [[139]]. (ii) we can
simulate the complete data, including the shape of the cast part, all the defects, and all the artifacts
which occur in the real world [[140-142]]. Using approach (i) we need to consider that the CT scan in
which we place our artificial defects might already show real defects, as cast aluminum parts usually
are never free of flaws. These need to be considered in the labels, too. Furthermore, a defect has not
only an influence at the position where the defect actually is but on the entire CT scan. These effects
would not be considered. Approach (ii) yields by far the most realistic synthetic data which is able to
even fool domain experts. We are able to simulate all the effects a defect has throughout the entire
CT scan and, in contrast to GANs, which are limited by their receptive field, the simulation also
considers global artifacts like ring or streaking artifacts. On top of that, realistic simulations already
have been successfully used to carry out experiments regarding the evaluation of measurement
uncertainty in CT scans [143|/144]]. Therefore, we decide to go for this approach, even though it
entails a considerable computational effort.

Using this realistically simulated data with precise labels for training, we obtain crisp edges and
are able to detect even small defects (see Figure 3.11). Another benefit is that we use data which is
explainable to domain experts. The process to obtain realistic training data is shown in Section 3.3
Of course, we cannot find each tiny defect. An instance needs to have at least three voxels in diameter
in order for the model to properly distinguish between defect and noise. More detailed results on
that follow in the next chapters.

Figure 3.11.: The model which is trained with precisely labeled and realistically simulated CT scans yields a crisp seg-
mentation mask and manages to detect even small defects. However, instances which are smaller than three
voxels in diameter remain undetected. More detailed results are shown in Chapter [5| and Chapter [§] The

overlay shows the prediction of the trained model.

47

3. The Quest for Data

3.3. A Fully Automated Simulation Pipeline

Simulating the necessary amount of data manually by shaping and placing defects in computer-aided
design (CAD) files, setting up the virtual scanner for every scan and operating the reconstruction
and ground truth generation is not feasible at all. Therefore, we have to automate each of these steps:
First, we procedurally generate the meshes of materials and defects; then, we script the simulation
of realistic projections; and, finally, we automatically reconstruct the CT scans and compute the
ground truth. With this pipeline at hand, we are able to obtain the necessary amount of precisely
labeled three-dimensional volumetric data for training.

3.3.1. Procedural Modeling of Defective Castings

The first step is to automate the generation of virtual cast parts. We decided to generate their shapes
instead of using real CAD models. This avoids both compliance issues and unintended bias towards
specific shapes of real cast parts. However, we need to be able to generate any number of differ-
ent shapes to cover the essential aspects of real cast parts. Hence, we design our virtual cast parts
in a way that they cover randomly chosen aspects of real parts, for example, inlets, thin webs, or
drill holes. In the development of computer games we encounter similar requirements, for example,
for the generation of trees. They should all look alike, but neither should look like the other for a
more realistic experience. Thus, they are often created by an algorithm which randomly “grows”
them segment by segment [[145,146]. This is called “procedural modeling”. Another application is,
for example, the creation of buildings from combining elementary components like walls, roofs,
windows, and doors. They are combined following certain rules which define where doors and win-
dows can be placed and how many components are allowed [[146,/147]. With such methods it is
possible to generate entire worlds. Certainly, a realistic appearance requires sophisticated and well
chosen rules. [[146]. To automatically generate a wide range of virtual cast parts, we utilize some
fundamental techniques of procedural modeling.

Our goal is to generate our virtual cast parts as objects of different shapes with varying penetration
lengths. The occurring partial volume effects render dark streaks in the CT scans and make them
more challenging. We, therefore, define a set of basic elements E and a set of operations © to combine
and refine them. Then we can randomly chose from E and O to create any number of differently
shaped and more complex elements. E includes a cube, a prism, a frustum, a regular polyhedron,
and a toroidal polyhedron. The cube is defined by its edge length a. The frustum is defined by the
radius ry; of its basis, the radius ry,, of its top, its height & and the number of sides n. Basically, the
prism is a frustum with ry; = r,,,. The regular polyhedron is defined by its radius r and the number
of sides n. The toroidal polyedron is defined by its major radius ry, its minor ry,, the number of
segments nys along ry and the number of segments n,, along r,,. Furthermore, we create two more
sophisticated elements: a fin structure and screw threads (see Figure [3.12a). They are defined by
their number of edges n, their height A, their major radius ry, their minor radius r,,, and their
alternation distance d of wide and narrow parts. These elements are grown by face extrusion from
a prismatic basis, altering their diameter between ry; and r,,. For the fin structure we chose n = 4
with r,, << ry. For the screw threads we have n = 64 and a much smaller difference between r,, and
ry. Additionally, all elements of E further have a location p and an orientation .

48

3.3. A Fully Automated Simulation Pipeline

Inset faces

_—
face center

Bevel edges

original edge
~

(a) The fin structure and a screw thread. (b) The inset and bevel operations. (c) Example of a virtual cast part.

Figure 3.12.: Our virtual cast parts are generated procedurally by randomly choosing from a set of basic elements and set
of operations to combine and refine the basic elements.

The set of operations O is defined as follows:

Boolean operations These operations are defined in terms of the difference \, the union u, and
the intersection n of the volumes which the meshes enclose. These operations require the
meshes to be “watertight”, i. e. a 2-manifold without boundary. This is necessary to properly
define the intersection points of the two meshes. While these operations are mathematically
well defined, the actual implementations most probably suffer from floating point imprecision
which might break the 2-manifold of the resulting mesh [148].

Subdivide surface As the low-polygonal nature of our basic elements limits their variety, we de-
fine a surface subdivision operator S to split large faces into multiple smaller faces by placing
n equally distributed cuts along each edge.

Inset faces The inset operation 7 either produces an indent or an elevation of the faces of the mesh.
It duplicates the corner vertices of a face, and moves them towards the center of the face by
d. Then, these vertices are duplicated again and moved into the volume or out of it by h (see
Figure . To maintain the 2-manifold, the faces are re-wired after the duplication of the
vertices. We define d and h as a fraction of the edge length of the face.

Bevel edges When a cast aluminum part comes out of its mold and before it is machined, its edges
tend to be rounded off. Therefore, we use the bevel operation /3 which introduces n additional
faces at the edges of a given mesh and distributes their corner vertices in a given radius r over

the edge to round it (see Figure [3.12D).

Simple deformations For further variations the deformation operations “twist” 7, “bend” D, and
“roughen” R manipulate the meshes. T rotates the vertices of one end against the vertices of
the other end by « around a given axis. D compresses the vertices of one side of the volume
and expands the vertices on the other side by f on a given axis. R works on the surface of
the mesh: it subdivides large faces to a fine grid and randomly moves the vertices a bit along
their normal. With that we can simulate the rough surface of unmachined parts.

With the formula of Equation (3.1), for instance, we generate the virtual die cast M which is shown
in Figure While arbitrary random combinations are conceivable, this could lead to severe

49

3. The Quest for Data

problems: self-intersections and holes which both yield non-manifold meshes. This means, we have
to rule out all malicious combination. Instead of defining complex rules how to chose from E and @
and how to configure the elements and operations, we simply select a set of 25 different combinations
and additionally define two models as validation data. As we have scans of different configurations
for each part we consider this amount of data as sufficient. If the need for more data emerges, we
can come back to this step at any time.

M=T (B (I (I (S (]Eprism (ra; ha, na))))) \]Eprism (rb, hyp, nb)) (3'1)

All our virtual cast parts are designed to have about the same size. We create them to have a penetra-
tion length of about 80 mm. Therefore, for the example given in Equation (3.1), we chose r, = 40 mm,
hs, = 45mm, and n, = 6 and r, = 10mm, hj, > hy,, and n, = 64, respectively. Both Epsy, are posi-
tioned at p = (0,0, 0) with an upright orientation ¢ = (0, 0, 0). For simplicity, we omit the parameters
of the modifiers.

Having our virtual cast parts in place, we need to fill them with flaws and defects—our actual target
class. To get as close to reality as possible, we need to model different types of flaws: gas pores,
shrinkage cavities, solidification cracks, structural loosening, and inclusions of foreign material.
Furthermore, each category requires a different placement strategy. For the creation of the defect
meshes we adhere to current guidelines and standards which deal with the classification of differ-
ent defect types [1,/9,/149]. During our research, we also examined hundreds of examples of real
defects and extracted some polygon meshes of the surface of those defects to gain more information
about their shape. We could simply place these extracted defect meshes in our virtual cast parts
over and over again, varying orientation and size. Instead, we again do not use the models of real
defects to avoid an unintended bias towards specific shapes but come up with the following rules to
procedurally model an arbitrary amount of unique defects.

Gas pores A roundish, compact appearance characterizes this type of defect. It seems logical to
start off with a sphere and step by step add further spheres using Boolean operations. However,
this increases the risk to violate the 2-manifold of the defect mesh, e. g. by creating holes in
the mesh or by introducing self-intruding or mis-oriented faces due to possible floating point
imprecision in the implementation of the Boolean operations. Hence, we start with a cube
instead and extrude its side faces to alter its appearance. Then, we smooth the surface, which
introduces new vertices. To increase the variety of the gas pores we now move individual
vertices along their normal. Finally, we need to restore the roundish character of the gas pores

by a second smoothing (see Figure [3.13).

Shrinkage cavities Those cavities have a rugged surface with spikes and sharp edges and corners.
Again we start off with a cube. This time, however, we extrude its sides iteratively, as we do
not need to maintain a roundish shape. After smoothing the surface, we randomly move the
individual vertices, too. For the rugged surface we further select a few vertices which are
farther dragged out. Finally, the surface is smoothed again (see Figure [3.14).

Solidification cracks With their sharp corners they tend to wind through the material. Here, we
start with a cuboid and define a special rule for the face extrusion: A flat element like the
starting cuboid can only be extruded at its small sides by a distance smaller or equal the width
of the small side. This new part then is a corner. At corners only the long faces can be extruded

50

3.3. A Fully Automated Simulation Pipeline

B80S

Figure 3.13.: Procedural modeling of gas pores: We start with a cube and randomly extrude some of its faces to create
the basic shape of our bubble. Then, we do a first smoothing of the surface. This introduces new vertices to
our bubble. To make it more interesting and unique, we randomly move the individual vertices along their
normal. Finally, we smooth out the surface to obtain a roundish bubble again.

9y & ¥

Figure 3.14.: Procedural modeling of shrinkage cavities: Again, we start with a cube. This time we iteratively extrude
random faces to create the basic shape. Then, we do a first smoothing of the surface and randomly move
individual vertices along their normal. To attain the rugged surface with spikes and sharp edges, we pick a
few vertices again and increase their translation. Finally, we smooth the surface again to obtain the shrinkage
cavity.

to form either a second corner part or a new flat element. For now we only have rectangular
bends in the cracks, but it is conceivable to introduce arbitrary angles by converting the corner
parts to trapezoids. Then, we again subdivide the surface and randomly move the vertices
along their normal. Optionally, we twist or bend each instance to get more variety into our
cracks (see Figure [3.15).

Structural loosening Modeling a loosening of the structure is quite a hard problem: usually it is
an accumulation of small pores or a sponge-like pore network, in which the individual pores
cannot be resolved individually by the CT scan. These pores, thus, appear as an area of lower
material density. Simply placing a myriad of tiny gas pores to simulate a structural loosening

LAY & 4

Figure 3.15.: Procedural modeling of solidification cracks: Here, we start with a cuboid. During the iterative extrusion of
faces we distinguish to cases: (i) the creation of corners and (ii) the creation of sides. Next, we subdivide
the surface, randomly move the vertices along their normal, and add a little twist to obtain the small cracks
which wind themselves through the cast aluminum part.

51

3. The Quest for Data

tremendously increases the computational effort. Moreover, we need to take care of the 2-
manifold when merging the meshes of the individual pores. Growing a large blob throughout
the virtual cast part produces less computational effort, but it introduces a quite abrupt change
in material density, while a real structural loosening has a more smooth transition. To model
the smooth transitions we try star-like spikes around the grown structural loosening so that
the density slightly decreases. However, this star pattern appears in the CT scan—especially
if the spikes are orthogonal to the projection plane. Therefore, we abandoned this approach
and go with the simple blobs for now. We grow the instances of structural loosening similarly
to the shrinkage cavities: We only create them larger and leave out the creation of spikes. The
growing process is guided so that the structural loosening avoids the boundaries of the virtual
cast part.

Large splits Another type of defects are large splits which meander through out a large part of the
material and branch often. These defects often occur due to material fatigue [[150]. To model
these splits we start off with a two-dimensional plane of n x m vertices. To give the split its
meandering appearance we use the “twist” and “bend” operations which we defined for the
creation of our virtual cast parts. Then, we randomly move the vertices along their normal
to get a more rugged surface. Finally, we extrude all faces at once by a small distance to give
the split a volume. Instead of branching, we simply create two overlapping splits, which we
combine using the union operation.

Inclusions of foreign material They occur, for example, when the admixtures in an aluminum
alloy react with the oxygen in the mold [8]]. This way, small portions of foreign material can
be formed, which have different material properties than the alloy itself, e. g. spinel, which is
harder than the surrounding aluminum alloy. Thus, we model them as small, simple blobs and
assign them a proper material of higher density later on.

Now that we can model the different defect types, we need to place them in our virtual cast parts. The
different defect types have different requirements regarding their placement. For some it is okay to
just place them randomly, others require a more sophisticated strategy to make the final simulation
look more realistic.

Random positioning The most simple positioning strategy is to choose random points inside a
given mesh. While this method is pretty fast, it offers no control about where the defects are
placed—except for being placed somewhere inside a given mesh, even close to the surface.

Surface distribution The same holds for the surface distribution strategy. Here, we chose random
points, too, but this time we explicitly sample on the surface of the mesh, i.e. our material
boundary. This allows us to create a separate class which only contains those defects which
penetrate the surface of our virtual cast part. This is necessary as our machine learning de-
fect detection algorithms tend to yield false positive predictions at the material boundary, for
example, in screw threads, when only training “defect vs. defect-free”. Using a separate class
for surface defects, we are able to shift the false positives to this separate class so that we get
more pure results for the inside of a cast part. (Training with screw threads in the training set
further improves the results, see Section [4.3.4])

Cluster forming When exploring the different types of defects, we often came across agglomera-
tions of defects. Therefore, we like to model these defect clusters explicitly. Instead of using

52

3.3. A Fully Automated Simulation Pipeline

TTem
i

7

<——> repelling force
attracting force
— — — virtual graph

(a) We assign a node to every defect and randomly draw connec-
tions between them to obtain our virtual graph. Between every
node there is a repelling force which drags them apart and be-
tween connected nodes there is an additional attracting force.
Further a repelling force from the wall keeps the defects inside
the virtual cast part.

—2.5 -

displacement [mm]

—5.0

—— repelling force
—— attracting force
— repelling force (wall)
total force

—10.0 T T T T
0 1 2 3 4 5

distance to other defect [mm]

—7.5

(b) The displacement (the strength of the force) as a function of
the distance from another defect. Additionally, we added the
repelling force induced by a wall. Positive displacement values
push our defect closer to the other defect, negative forces pull
them farther apart. In the optimum djpt, repelling and attracting
forces cancel each other out.

Figure 3.16.: We use a force-directed graph-layouting algorithm to distribute our defects so that they form clusters.

time-consuming and expensive casting simulations, we make a little abstraction and approx-
imate this behavior, borrowing a method from the visualization of graph structures: We use a
modified version of the force-directed graph-layouting algorithm, known as the Fruchterman-
Reingold algorithm [151f]. The goal of visualizing a graph is that connected nodes stay close
together while other nodes move apart—and of course, the nodes should not overlap. The
Fruchterman-Reingold algorithm achieves this goal by defining a repelling force between each
and every node and additionally assigning an attracting force to connected nodes. For our
purpose we need to define a virtual graph referencing our defects. Each defect represents a
node of this graph. Then, we randomly draw connections from one node to other nodes which
are close by. This forces the formation of defect clusters. Furthermore, it is necessary to add
repelling forces between each defect and the material boundary which is defined by our vir-
tual cast part (in fact, it could be any mesh). Figure gives a notion of how the algorithm
works.

In the original algorithm the repelling force is defined as f, = ~k?/d and the attracting force as
fa = d?/k, where k is an optimal distance which is defined in terms of the available space, the
number of nodes, and an experimental factor [[151]. As we employ a strict boundary instead of
a vague “available space” we define our optimal distance in terms of the radii of the involved
nodes/defects u and v as dypt = Copt (7w + o). The minimal distance is defined analogous as
dmin = Cmin (7w + 1v). The factors copt and cyin control the density of the clusters with the
constraint cmin < Copt- The actual distance dyctual is defined as the Euclidean distance of the
center of the nodes. With these distances we define our forces as shown in Equations (3.2),
(3.3), and (3.4). Figure shows for two defects and a wall how the forces manage to move
the defect in its (locally) optimal position.

53

3. The Quest for Data

'a)O. b)4 f:)20 d)ISO .. ¢
1= R 1= ® ® 1= ® ® 1=
el e ¢ °f .. o
° LX)) (]
oo @ °® P ®
. @ ¢ . K °
[J ce°® i [® @ ("}
° ° ® o
. oo ° ¢ L)
¢ o ° @00

Figure 3.17.: Defect placement: The Figures a — d show the process of forming three clusters from a random distribution
at different iterations i. We form a compact cluster of densely connected nodes (dark blue), a ring (light blue)
where each node is connected to two neighboring nodes, and a star-shaped cluster (red) where each node is
connected to a central node. Furthermore, the ring and the densely connected cluster are connected by two
nodes so that these clusters stay close together.

2)2
(dopt = dimin) (3.2) £ %, if is inside (3.4)
fall dyctual + dmin, Ootherwise '

fr=

dactual - dmin
2
(dactual - dmin)
dopt - drnin

f a= (3‘3)

The force-directed graph-layouting is an iterative algorithm. In each iteration we compute the
strength and direction of all f,, f, and f, ,, for each node and add them up. For simplicity we
do not calculate any repelling forces if dactyal > dinfluence> Where dinfluence 1S @ given distance
beyond which we say that the defects are independent of another (or the wall). This gives us
the desired displacement for all defects, which can be quite huge, e. g. when one defect u is
close to a group of other defects, they all put strong repelling forces upon u, which all point in
about the same direction. Therefore, the displacement A; of a node in iteration i is bounded
by the current “temperature” t; of the system: p;,; = p; + Ai/|A;] - min (£, |A;]), where p; is the
position of a node (or defect) in iteration i. After updating the position of all nodes we “cool
down” t; by a cooling factor ceooling = 0.95. The initial value of ¢ depends on the size of our
virtual cast part and is about 10 % of its diameter. The iteration stops after we (a) reach a given
maximum number of iterations, or (b) the nodes do not move anymore. Figure coarsely
outlines the process of defect placement.

In each of our virtual cast parts we try to place about 650 inner defects using the cluster forming
strategy. For the inner defects we randomly choose from gas pores, shrinkage cavities, and small
cracks. Up to now the large splits are only part of a proof of concept dealing with fatigue cracks oc-
curring, for instance, in nickel alloys (see Section and, hence, are not included in the data set.
We remove instances which either penetrate the material boundary defined by our virtual cast part
or intersect with surface defects. Furthermore, we rule out instances which are not a 2-manifold any-
more. Therefore, the exact number of defects can only be determined afterwards. Usually, we end up
with about 610 defects per virtual cast part. The diameter d of an inner defect is chosen from a normal
distribution N’ (/1 =0.7mm, o = 0.6 mmz) and limited to the range [0.2 mm; 3.0 mm]. After creat-
ing the actual shape of a defect, it is scaled to fit in a bounding sphere with diameter s. This might
cause the actual defect to have a far smaller volume than its original bounding sphere. Moreover,
we place place about 50 defects with d = N (,u =2.0mm, 0° = 1.0 mmz) capped at [1.0 mm; 3.0 mm]

54

3.3. A Fully Automated Simulation Pipeline

using the surface distribution strategy. To consider structural loosening in our training set, we grow
40 instances throughout our virtual cast parts originating at randomly chosen seed points. Addi-
tionally, we grow another 10 smaller instances inside the other instances of structural loosening.
This adds an additional variation to the material density and such adds a little more realism to the
data. Finally, we randomly place 75 inclusions of foreign material in the virtual cast part. Their size
is drawn from an uniform distribution ¥ (0.3 mm, 0.8 mm). To ensure that the inclusions do not
float in the void of another defect, we first subtract all defects from the virtual cast part and use the
resulting mesh as input for the random positioning.

Currently, we are using Blender (Blender Foundation) to automate the creation of our virtual cast
parts and the different defect meshes. However, as we only use simple mesh operations, switching
the underlying framework to, for example, a game engine should be easily possible if needed.

For our training set of cast aluminum parts we currently restrict our algorithms to the detection of
gas pores, shrinkage cavities, small cracks, occurrences of structural loosening, and inclusions of
foreign materials. Although the deep learning method which is trained with this data set of cast alu-
minum parts also works quite well, in other domains like additive manufacturing (see Section [6.2.3)
we have to come back to the mesh creation to further improve the results. To really make the tran-
sition from cast aluminum to additive manufacturing, we have to consider new defect types which
are unique to additive manufacturing like inclusions of remaining powder or flatter gas bubbles (see

Section [6.2.3).

3.3.2. Realistic Simulation of Projections

Realistic simulations involve a considerable computational effort. To realistically simulate the pro-
jections for the CT scans, we use a ray-casting method [141]]. For each pixel on the detector, a number
of rays is cast throughout the scene starting at the X-ray source. When passing through the scene
the poly-chromatic spectrum each ray carries is attenuated according to the absorption coefficients
of the material which is penetrated. For this ray-based simulation of realistic projections we use
aRTist (Federal Institute For Materials Research and Testing, Germany) [[141f], which is widely ac-
cepted among the domain experts. As the application by default produces single projections, we
extend it with a plug-in module which allows us to automate the acquisition of a CT scan, i. e. au-
tomatically rotating the virtual cast part and simulating a projection at defined angles. The plug-in
module further automates the loading of the meshes of our virtual cast parts and setting up the CT
system to pre-defined configurations.

Before we setup the CT system, we configure the scene by composing our virtual cast part from the
individual meshes which we created in the previous step. In aRTist the meshes override each other
when it comes to the calculation of the attenuation: For overlapping meshes, only the mesh that
comes last in the scene tree is considered. Therefore, we need to place the boundaries of our virtual
cast part first, followed by the structural loosening meshes and the inclusions. Lastly, we place the
defect meshes. Then, we assign a material to each mesh, which defines its absorption coefficients.
In aluminum casting pure aluminum is used rarely. To alter the strength, hardness, formability, or
other properties of the final product, an alloy with admixtures like copper, manganese, or silicon is
used. These admixtures have an influence on the absorption coefficients of the material as shown in
Section[2.1.3] As we like to have a realistic simulation and to train a classifier with a broad application

55

3. The Quest for Data

spectrum, we choose an universal alloy which is widely used in automotive and aerospace industries.
It is defined by the standard EN AW 2014 [36]] and has admixtures of copper, iron, silicon, and a few
others. The material has a density of 2.80 gcm™. In fact, the simulation pipeline would allow us
to alter the material in every scan. For reasons of simplicity and because the resulting CT scans
of different aluminum alloys look quite similar from an image processing point of view, we only
choose a single material. The instances of structural loosening are assigned the same material as
the virtual cast part—only at lower density. We randomly assign them a density of 95 %, 90 %, 85 %,
or 80 % of the density of the material we use for the virtual cast part, making sure that overlapping
instances of structural loosening are assigned different densities. The inclusions in our training set
are formations of spinel (MgAl,Oy4) with a density of 3.60 g cm™.

Now that we have our virtual cast part composed and ready, we need to configure the virtual CT
system. However, the parameter space of a CT system is huge and offers a vast amount of possible
configurations (as we show in Section [2.1.1). Again, from an image processing point of view many
of the possible combinations of parameters yield quite similar gray-value images and only slightly
affect the detection rates of defect detection algorithms. We assume that an operator of a CT system
knows how to tune the individual parameters to make a CT scan in which the smallest defects which
are to be found can at least barely be resolved. This allows us to simplify the parameter space for
the realistically simulated CT scans of our virtual cast parts keeping most of the parameters fixed.
Then, we only need to vary those parameters which most significantly cause the image artifacts
which impede an automated defect detection. Thus, we set up our system, using a 225kV source
at 1 mA. With that we can maintain a focal spot size of 225 pum x 225 pym. As we only need to scan
parts with an edge length of about 80 mm we choose a relatively small detector with 1000 x 1000
pixels and a pixel size of 200 um x 200 pm. The distance from the source to the detector is 1000 mm
and the distance from the source to the object is 450 mm. This gives us a magnification of about
1.82 and we, therefore, end up with a voxel size of 110 pm x 110 pm x 110 um. With our smallest
defects having a diameter of 200 um they barely have a diameter of two voxels and, hence, are the
most challenging instances in our data set. To explicitly simulate impeding artifacts in our data, we
(i) change the exposure time to vary the amount of image noise, we (ii) change the thickness of the
filter of the source to vary the influence of beam hardening, and we (iii) change the quality of the
detector calibration to vary the strength of ring artifacts in the reconstructed CT scan. We so reduce
the parameter space of a CT system to a three-dimensional sub-space, the “artifact space”, which is
described as follows:

Noise The noise in CT scans mostly arises from the quantum nature of X-rays, i. e. the variations
in the number of photons reaching the detector (quantum noise) [[40}/152]. This type of noise
can be modeled using a Poisson distribution. Other sources of noise arise from electrical noise
of the detector, which is of particular significance in under-exposed regions, and quantization
errors due to limits in the dynamic range of the sensor [33,[34]. While the quantum noise
can be mitigated by longer exposure times and averaging of multiple projections, the other
types of noise require more sophisticated hardware. In aRTist the image noise is added after
doing a “perfect” simulation depending on the gray-value in the projection using a Poisson
distribution [40,{140]. To span up a range of different noise-levels we use a virtual exposure
time of (i) 1s, (ii) 0.5 s, and (iii) 0.25 s. This yields CT scans with a CNR of about 12, 6, and 3,
respectively.

Beam hardening Actually, this category should be named “cupping artifacts”. However, as we

56

3.3. A Fully Automated Simulation Pipeline

tackle only the portion of cupping artifacts that arises from beam hardening, we decide to
name this dimension of the artifact space “beam hardening” for clarity. Instead of using a
computational intensive Monte Carlo simulation which describes the stochastic absorption
and scattering processes in detail for every projection, aRTist uses a ray-casting approxima-
tion based on the attenuation law taking into account the penetration length and the energy
spectrum [140]]. To span up a range of different levels of cupping artifacts, we vary the pre-
filter of the source which reduces the amount of low-energy photons. We use (i) no filter at
all, (ii) 0.5 mm of copper, and (iii) 1.0 mm of copper.

Ring artifacts This type of artifact is not simulated in aRTist as it is rendered into the data while
doing the reconstruction of the CT scan. In real world CT scans ring artifacts arise from an
inadequately calibrated detector [[153}|154]]. Therefore, for our simulations, we artificially dis-
tort the calibration files which are used during reconstruction. For now, we only change the
noise-level of the bright image (Ig). To create more severe ring artifacts, it is conceivable to
further manipulate the dark image (Ip), or to even manipulate the projections to introduce
bad pixels. To span up a range of different levels of ring artifacts, we use bright images with
(i) 20 %, (ii) 60 %, and (iii) 100 % of the noise of the actual projections when reconstructing the
CT scan.

Instead of random sampling, we simulate all three gradations of each artifact type for each of our
virtual cast parts. This allows us to draw conclusions about the effect of individual artifacts on
the automated detection of defects (see Section [5.3.2). Because not all artifacts can be mitigated by
varying a parameter of the CT system, we do not vary the severity of those artifacts but set them to
a realistic level and simulate them in the same fashion throughout all CT scans.

Scatter. Scatter is a significant influence factor impeding the detection of defects. Unfortunately,
it is pretty hard to mitigate the effect of scattering with proper collimation [33}/155]]. Therefore, we
simulate the same amount of scattering in all our CT scans without using any collimation. For the
simulation of scatter, aRTist uses a Monte Carlo method which traces a given number of photons
(in our case 2 - 107) throughout the scene and simulates Compton scattering along that path [141]].
The photons are traced until they hit the detector or leave the frustum of the scanner. For all pixels
of the detector to be hit by at least a single photon, we would need to simulate many more photons.
Thus, aRTist interpolates between the pixels that contain a piece of information from the simula-
tion. As this method is highly computationally expensive, aRTist offers a relaxation: The precise
scatter simulation is done only every x projections and stored in a separate scatter image which is
then added to every projection. However, aRTist only considers the scattering that happens between
source and detector and neglects the scatter introduced by the surrounding walls of the chamber
of the CT system. Unfortunately, aRTist also neglects the internal scattering in the detector, which,
nonetheless, has a huge influence on the outcome. The internal scattering has an opposing effect
to the scattering in the object. The scattering in the object brightens the outer regions close to the
material boundary, the reconstructed object appears smaller. The internal scattering of the detec-
tor brightens the regions of the detector which are covered by the object, the reconstructed object
appears to be larger [41].

57

3. The Quest for Data

Partial Volume Effect. Typically, parts should be placed in the CT system in a way which avoids
widely varying penetration lengths and edges which are aligned orthogonal to the detector [[33}/153,
154]. The first is to ease the effects of beam hardening; the latter to avoid impediments from partial
volume effects. Despite that, we do not tilt our virtual cast parts, which would mitigate the artifacts
arising from the partial volume effect, because not all geometries allow a proper placement. This
way we obtain more artifacts in our CT scans, but this prepares our algorithms for CT scans in
which these effects cannot be mitigated easily.

Aliasing Artifacts. We acquire full 360° scans but only simulate 720 projections, i.e. one pro-
jection every 0.5°. This leads to an under-sampling and, thus, introduces minor aliasing artifacts
[33,/153}/154]. These artifacts are especially visible in the outer regions of the CT scan because, here,
the gap introduced by the angle step is wider than the voxel size. This presents another challenge
for our defect detection algorithms.

Usually, the parts are placed in some kind of mount. We do not model these mounts yet. Most of
the times, they are made of plastics which in contrast to our aluminum parts are easy to penetrate.
When switching to other materials the mounts can be critical, but for now their effect on the scan
is negligible. Neither do we change the appearance of the focal spot yet. We use a perfect Gaus-
sian distribution. However, it is possible that the focal spot has a more elliptical shape and probably
changes throughout the scan as the source heats up [156}/157]]. This happens especially when using
long exposure times. This is denoted as focal drift and leads to further inaccuracies in the recon-
struction of the CT scans. The photons which arrive at the detector are not (yet) counted directly.
There is a scintillating layer on the detector which converts the X-ray photons into visible light, be-
fore the detector responds to that signal [33]. The “translated” photons can, therefore, scatter within
the detector. Moreover, this “translation” is not a binary effect; the scintillating layer glows for some
time, after being hit by a X-ray photon. This means, if the time between two projections is too short
there is an afterglow of the previous projection in the current one [[158]. Both effects can have an
impact on the CT scan but are not yet part of the simulation.

To automate the simulation of CT scans we need to extend aRTist by writing a plug-in. The plug-in
scans a given directory for model definitions, i. e. the virtual cast parts from the previous step. Then,
it automatically loads these virtual cast parts including their defects one after another into the scene.
Given our set of configurations, the plug-in configures the parameters of the virtual CT system and
orchestrates the CT scan, i.e. making the realistic projections and rotating the virtual cast part.
Currently, the plug-in is restricted to cone beam CT, but different imaging techniques like helix CT
can be implemented analogously. Finally, with the help of the VG PROJECT SDK (Volume Graphics
GmbH), our plug-in module creates the project files which contain the location of our projections
on the hard drive and the instructions how to reconstruct the CT scan. These project files form the
entry point for the next step of our fully automated simulation pipeline.

3.3.3. Bring Your Own Ground Truth

For the reconstruction of the CT scan from its individual projections we use the CT reconstruc-
tion module of VGIinLINE (Volume Graphics GmbH). This connects seamlessly into our pipeline: It

58

3.3. A Fully Automated Simulation Pipeline

|/

(a) The defect mesh is precisely aligned with (b) Viaray-based sampling we determine the (c) The computed ground truth is stored as
the gray-value grid of the CT scan. fraction of each voxel which lies within an 8 bit mask.
the defect mesh.

Figure 3.18.: Exemplary computation of the precise ground truth, which we need for a proper training. The
shows the defect mesh which was used to simulate the underlying gray-value grids. The dashed outline in
Figure (a) corresponds to the patch which is shown in more detail in Figure (b).

looks for new project files which we create in the previous step and processes the reconstruction
information they contain. The last step is to compute the ground truth.

Knowing exactly how our virtual cast part and its defects are placed in our virtual CT system allows
us to precisely align the mesh data of the defects with the reconstructed voxel grid (see Figure[3.18a).
Thus, we can determine for each voxel the fraction which lies inside the given mesh, i. e. the fraction
which is part of a defect. For an easier computation we approximate this value by placing a regular
grid of nx nx n sample points in each voxel and determine for each sample point whether it is inside
or outside of the mesh. The sample points lie inside the voxel not at its boundaries. So we avoid
sampling two (or even eight times) at the exact same position (see Figure [3.18D).

Actually, we cast nx n rays through each row of voxels storing their state inside or outside. The initial
state is outside. Then, we determine the intersection points of each ray with the given mesh. Each
intersection changes the state. This approach significantly speeds up the ground truth computation.
In exchange, it introduces a new source of errors: if we miss an intersection even though the mesh is
“watertight”, for example, due to the limited accuracy of single precision floating point numbers, we
end up with long streaks which extend over the entire volume. To mitigate these artifacts we scan
the volume three times; once along every axis. Then, we combine the three masks using a majority
vote. Figure shows a simplified two-dimensional version of this approach with n = 2.

For our ground truth we choose n = 8, so we get 512 sample points per voxel. We store our ground
truth as 8 bit unsigned integer, which holds up to 256 different values. This means we have 1 bit
redundancy. Figure shows an example of how the voxel-precise ground truth looks like. For
training, however, we often require a binary mask. Depending on the threshold t we use to binarize
the mask we are able to steer the sensitivity of the trained classifier. For example, with t = 16, i.e.
only 6.25 % of the voxel belong to a defect, the trained classifier will recognize way more voxel as
“defective” than a classifier trained with t = 128 (50 %).

To obtain a more precise ground truth, we introduce a sub-sampling factor which allows us to get

59

3. The Quest for Data

Figure 3.19.: A comparison of patches taken from real CT scans to patches of our realistically simulated training set.
The top row shows the real images, the bottom row the simulated images. A closer look reveals the most
significant drawback of the simulations: The simulated CT scans lack the fine details of real CT data. For
example, we miss out the small fluctuations in the density of the material. Thus, the simulated CT scans have
a more homogeneous structure.

eight, 27 or even 64 ground truth voxels per data input voxel. This way, we can compute an arbitrarily
precise ground truth, limited only by the amount of data it produces.

Currently, the algorithm only works as expected if the voxel grid has a larger extent than the mesh
for which the ground truth should be computed because we assume that each ray starts in the state
outside. To work with arbitrary voxel grid and mesh combinations we need to introduce a check for
the starting point of each ray whether it is inside or outside the given mesh.

The realistically simulated data set. In the first run we use our fully automated simulation
pipeline to simulate 675 realistic CT scans for training. This corresponds to 25 virtual cast parts,
each of which is simulated with 27 different artifact gradations of the artifact space. With these
CT scans we simulate about 420 000 defects. Each CT scan has a size of 1000 x 1000 x 1000 voxel
and is stored as 16 bit unsigned integer. Therefore, the complete training set has a size of 1.35 TB.
The validation set is generated in the same manner from two additional virtual die casts to yield
54 CT scans. These CT scans have the same size as the CT scans in the training set, which adds
another 0.11 TB to the data set. Simulating training and validation data takes about two weeks, using
four Intel Xeon E5-2687 CPUs with 10 cores each and hyper-threading. That is quite a long time,
considering that other approaches like domain randomization or generative models yield their data
in next to no time. However, the robust results and the trust of domain experts justify the increased
effort for data preparation. Figure provides a brief overview of how the simulated data looks
like compared to patches taken from real CT scans.

A huge benefit of this simulation pipeline is its flexibility to be easily adapted to other applications.
All we need is a mesh and some material specifications. For example, we could extend the pipeline
to simulate data for the inspection of fiber composite materials. Here, hand-labeling can be even
harder because the tiny fibers and the surrounding matrix often consist of materials with similar
absorption coeflicients. With the simulation pipeline we just need to place meshes of fibers in a
virtual matrix material and can compute a precise ground truth. Another possibility is the detection
of specific parts in a CT scan of assembled objects. With the simulation pipeline we simulate, for

60

3.3. A Fully Automated Simulation Pipeline

(a) A model of a set of teeth based on [159]. (b) A simulated dental cone-beam CT scan (c) A real dental cone-beam CT scan [160]
They form the basis of the simulation. with the mesh (orange outline) as precise with the results of the prediction model
ground truth. as orange overlay.

Figure 3.20.: We can adapt the simulation pipeline to create realistic simulations of other fields of application of com-
puted tomography. For example, with we can simulate dental cone-beam CT to produce data for precise
segmentation of teeth in low-dose CT scans.

instance, a given set of screws in a broad variety of different background materials. The trained
segmentation model then should be able to find these screws in the assembled part. Furthermore,
it can be extended to serve in the field of medical CT. The challenging aspect of medical data is
that the variation in shape matters. For example, when segmenting organs in a CT scan of a human
body, they all have a distinct shape which, however, varies from human to human and the organs
are packed tight but may not overlap. This needs to be considered when creating the meshes.

We demonstrate the potential for medical analyses by means of segmenting teeth in dental cone-
beam CT. To simulate our dental data we utilize existing meshes of teeth and add the root
canals and the hollow jawbones (see Figure . Then, we simulate a scan using 110kV at 0.5 mA
using a coarse detector of 512x512 pixel with a pixel size of 400 pm =400 pm. The source and detector
are 500 mm apart, the virtual head is placed centered between source and detector (at a distance of
250 mm to the source). We only make 180 projections and use an exposure time of only 0.1s per
projection. An example of the simulated training data is shown in Figure Finally, we evaluate
the trained segmentation model on real dental cone-beam CT data [[160]. As this data comes without
ahand-labeled ground truth, Figure[3.20/shows a qualitative example of the results. These look quite
promising, however, the model sometimes confuses parts of the jawbone with teeth and struggles if
amalgam crowns are present in the scans as they are not part of the training set. Nevertheless, these
simulations offer the opportunity to fine-tune pre-trained models on realistic simulations of the jaw
of a specific patient. Thus, the models can be fine-tuned to cope with severe image artifacts which
arise from low-dose CT. This further allows to reduce the dose for the patient during the actual CT
scan.

61

4. Reference-free Defect Detection

Our goal is to create a novel defect detection and segmentation algorithm which not only outper-
forms state-of-the-art methods but is also invariant to changes and adaptations in the actual shape of
the part under examination. Reference-based approaches can, therefore, not be considered because
they need a “golden part” that exactly matches the examined parts. Due to its successes in other se-
mantic segmentation tasks [[14,15,/22-25[], deep learning is promising to be as well applicable in the
field of non-destructive testing, more precisely the defect detection (and segmentation) in CT scans.
Whereby, we initially focus on CT scans of cast aluminum parts. So far, in literature deep learning
is mostly used to artificially improve the data quality of the CT scans to ease the inspection with
traditional methods. This is done by reducing the strength of image artifacts like scatter [52]], metal
artifacts [[161]], or noise due to a low dose CT [50,51]]. In contrast, we develop a deep defect detection
model which is able to cope with the image artifacts in the CT scan and directly focuses on the task
of semantic segmentation. Hence, we need to clarify two major issues: On the one hand, we need to
check whether our realistically simulated data is good enough to serve as training data for machine
learning methods—and deep learning methods in particular. On the other hand, we need to check if
deep learning really is the best approach for this task or if traditional machine learning methods or
even plain image processing techniques are more suited.

Our requirements for a reference-free defect detection algorithm, i.e. an algorithm that needs no
prior knowledge about the exact part under examination (compare to Section [2.2.2), are the follow-
ing: (1) Firstly, the results need to be precise and consistent to enable reliable decisions. (2) Secondly,
the algorithm needs to be able to deal with the increased artifact-levels which we encounter, for
example, in in-line scenarios. (3) Finally, the inference time needs to be short enough so that the
algorithm can keep up with the high throughput in in-line scenarios. In this chapter we explore
different methods for each of the three categories (i) image processing techniques, (ii) traditional
machine learning, and (iii) deep learning, and check their suitability. We discuss the benefits and
drawbacks of each method and carefully select the three most competitive ones to form the sound
baseline which we use for further comparison: (i) a filter-based anomaly detection approach using
morphological filters, (ii) a sliding window approach comprising densely computed filter-based fea-
tures and a random forest, and (iii) an end-to-end trainable two-step fully convolutional network
using an inspection step with a high recall and a downstream refinement step with a high precision
output.

At this point we like to note that even though there are commercial methods available which would
mostly belong to the category of image processing techniques and achieve really good results, we
do not include them in our study to maintain full transparency and not rely on black box mod-
els which merely allow us to tune some parameters but do not reveal any insight in their actual
implementation.

4. Reference-free Defect Detection

4.1. Image Processing Techniques

The idea of image processing is to carve out the target class so that it can be separated from the
background by applying a simple threshold on the processed image. As opposed to learning-based
techniques, the choice of individual processing steps and the choice of how to concatenate these
steps into an image processing pipeline is made by the human designer of the algorithm. Often,
the algorithms are based on precisely formulated mathematical concepts such as averaging and
derivatives or draw inspiration from physics, e. g. by applying differential equations to gray-values.
An important consideration is that the pipeline of image processing steps can be explained to “make
sense” for the application domain to other experts. These methods often compute statistics of the
image, operating within a small locally restricted neighborhood, i. e. the window, which is then sled
across the entire image. Examples are the smoothing with Gaussian filter kernels, i. e. computing the
mean weighted by the distance [87], or the edge detection with Sobel filter kernels, i. e. computing
the discrete gray-value gradient along a given axis [87]]. Beyond that, there are more sophisticated
non-local techniques. For example, for the denoising of images, there is the non-local means [[162]
(which actually is implemented semi-locally [[163]) or the computation of the total variation [164,
165]. Both methods reduce the overall image noise while preserving as much edge information
as possible. Depending on the chosen parameters, these denoising methods, however, also remove
smaller defects from the CT scan. Therefore, we shy away from pre-processing the images and rather
look for methods which are capable of dealing with image noise. For reference-free defect detection
we take a closer look at (i) locally adaptive thresholding [166H168]], which chooses the threshold in
relation to the contrast within a local neighborhood, (ii) template matching [49,84,185},/169], which
convolves the image with an quintessential pattern of the target class, and (iii) a morphological
method [49,/170}/171]] which aims for an anomaly detection approach by creating a “defect-free” part
to evaluate the deviations.

4.1.1. Adaptive Thresholding

Simply applying a global threshold to the plain gray-value image is doomed to fail [87.{168]]. Due to
cupping artifacts which arise from the effects of beam hardening and scatter, we are usually never
able to find a globally optimal threshold #,p: which separates all defects from the material in all
regions. While a chosen t,,; might be good to segment defects which are close to the outer material
boundaries, the segmentation can become more fragile in regions closer to the center of the CT
scan because there typically is less contrast due to cupping artifacts. Locally adaptive thresholding
techniques try to cope with local changes in image contrast by taking local statistics within a given
region, i. e. the window or neighborhood, around each voxel into account [[166-168].

Following Equation (4.1), we implement our locally adaptive threshold by means of comparing each
voxel to the weighted sum of its neighborhood. The binary segmentation mask B at a position p
which is denoted by its coordinates x, y, and z is either 1 if the input image I at p is smaller than
the locally defined threshold ¢, . or 0 otherwise.

1, if I(x,y,z)<t
(6,2 < by , with ty ,, = Z (a)i’j’kl(x +Ly+j,z+ k)) -c (4.1)
ij.k

B(x,y,2) = [

0, otherwise

64

4.1. Image Processing Techniques

(a) Using a global threshold we have to weigh up re- (b) Using a locally adaptive threshold we obtain a pre-

ceiving false negatives in the low contrast regions cise segmentation in the low contrast regions as
of the image against precisely segmenting the de- well as in the high contrast regions. Nevertheless,
fects in the high contrast regions. the method still is susceptible to image noise.

Figure 4.1.: For a global threshold to be applicable, the image needs a constant contrast and a low noise-level. However, the
contrast is subject to strong fluctuations due to beam hardening, scatter, and other artifacts. A locally adaptive
threshold, therefore, yields more consistent results. The overlay shows the binary segmentation mask.

To compute 2y, , we sum up all gray-values I within the window of given size N centered around
p, weighted by w; ;. Whereby, we choose w;j; to form a Gaussian around p, i.e. we weight the
values of I by their distance to the center voxel. For our data set we choose ¢ = 5.0 to capture the
local contrast. Then, we subtract ¢ = 0.2 to obtain the local threshold. In other words: we smooth
the image using a Gaussian filter kernel with edge length N = 60, subtract the constant ¢ and then
look for values in the image which are smaller than their corresponding averaged value to obtain
our segmentation. In Figure we compare using a global threshold to using a locally adaptive
threshold. The CT scan has a region of low contrast and a region of higher contrast. While the
results both look quite good at first sight, we see that by choosing a globally optimal threshold
(Figure [4.1a), we have to use a lower value to avoid false negative responses in the region of low
contrast. This, however, has an impact on the region of higher contrast: here, we lose portions of the
defects in their boundary region—the segmentation becomes less precise. In contrast, with a locally
adaptive threshold (Figure [4.1b), we are able to avoid false positive responses in the region of low
contrast and completely segment the defect in the region of higher contrast.

While this method is very fast and would allow for a high throughput, it, still, has a hard time to
yield precise and robust results for everyday inspection tasks. Using a locally adaptive threshold
mitigates the effects of local changes in image contrast, however, the challenges of image noise
remain. Therefore, this method still requires a high scan quality and such demands for long exposure
times which are not always feasible. For example, in in-line scenarios every second counts.

4.1.2. Template Matching

To deal with image noise, we need to include the information of several voxels. Therefore, we use a
kind of a voting approach, where each voxel within a given neighborhood votes for the center voxel
whether it is part of a defect or not. We implement this by means of a cross correlation [84] of the
CT scan with an abstract defect specimen, i.e. the template. The more voxels match the template
the more significant the filter response becomes. If the responses of the cross correlation are above
a given threshold, we locate a defect instance, i. e. a match.

65

4. Reference-free Defect Detection

L}

(a) Spherical template (b) Result of the correlation of the spherical tem- (c) Result of the correlation of the spherical tem-
plate (r = 1) with the gradient magnitude image plate (r = 8) with the gradient magnitude image
of the CT scan. of the CT scan.

Figure 4.2.: To detect defects in CT scans via template matching we turn towards more abstract shapes, as defects have
no definite form. We correlate a spherical template (a) of different sizes with the gradient magnitude image
of the CT scan. This method is less prone to image noise, yet, it leads to more fuzzy results (b and c). The

overlay shows the filter response of the correlation of the gradient magnitude image with the template
at different sizes.

This means we need a basic notion of what we are looking for. But, defects do not have a single
typical shape—or size. To tackle the shape issue, we turn to more abstract representations. In CT
scans, defects usually are characterized by an abrupt change in the gray-values, which exceeds the
change induced by image noise, i. e. they have a high image gradient. Therefore, we should be able
to find defects by looking for roundish structures within the gradient magnitude image of the CT
scan. This further allows for a better treatment of image noise as we do not rely on the gray-values
directly. We use the Scharr operator [172] to compute the individual gradients along each dimension
and so slightly smooth the CT scan and mitigate the influence of image noise. Moreover, the spherical
template has the benefit of being rotation invariant so that the orientation of a defect does not
lower the filter response. To tackle the size issue, we use a pyramidal approach. We correlate the
template with different resolutions of the CT scan. In exchange, the inference time is increased
with each additional cross correlation. Figure shows the center slice of the three-dimensional
spherical template which we use to find defect instances in the gradient magnitude image of the CT
scan. In Figure [4.2b] we see the result of the cross-correlation of the CT scan of our aluminum part
with a spherical template with r = 1 voxels. In Figure we see the corresponding result when
using a spherical template with r = 8 voxels. The smaller template also yields high responses in the
boundary region of larger defects. For larger template sizes (or smaller resolutions of the CT scan)
the results become very fuzzy. This fuzziness prevents a precise segmentation. Therefore, we have
to try a different template.

Another abstract template is formed by a combination of different Gabor filters [88]]. A Gabor filter
is a combination of a sinusoidal wave and a Gaussian. It analyses an image for given frequencies. By
merging multiple Gabor filters with different orientations, we obtain a blob detector which we can
use to find defects directly in the gray-values of a CT scan (see Figure [4.3a). In our case we combine
three Gabor filters which are oriented along the three spatial axes of the gray-value grids of the CT
scan. The individual filter kernels are combined using convolutions. The filter template has large
negative values at its center and is surrounded by large positive values. Due to the combination

66

4.1. Image Processing Techniques

. -

(a) Gabor template (b) Result of the correlation of the Gabor template (c) Result of the correlation of the Gabor template
(r = 1) with the gray-value image of the CT (r = 8) with the gray-value image of the CT scan.
scan.

Figure 4.3.: Using a Gabor template (a), the results become less fuzzy but still do not allow for a precise segmentation (b
and c). In particular, we observe stronger responses in the noisier flawless parts of the material. The
overlay shows the filter response of the correlation of the gray-value image with the template at different
sizes.

with the Gaussian the values quickly move towards zero with their distance to the center. With
defects having lower gray-values than their surroundings we receive low negative values from the
center and large positive values from the surroundings, which in total yields a strong response
when template and defect align. In Figure we see the result of the cross-correlation of the CT
scan of our aluminum part with the Gabor template with » = 1voxels. In Figure we see the
corresponding result when using a Gabor template with r = 8 voxels. The results of this approach
are less fuzzy than with the plain spherical template, however, they are still too fuzzy to be used as
precise semantic segmentation.

Due to their fuzziness, the results of the template matching approaches, however, only allow for
an indication of where a defect might be. For a precise segmentation we then have to use another
method in the indicated region, which would slow down the computation. This is why template
matching filters usually are part of more complex pipelines, for example, to filter the responses of a
candidate selection process [49].

4.1.3. Morphological Filters

The strength of reference-based approaches lies in the comparison to a defect-free specimen. By
evaluating the differences of the (possibly) defective part and the defect-free reference part we find
any deviations. To make this anomaly detection approach independent of any defect-free reference
part, we need a method to compute the reference from any defect-afflicted part. While a Gaussian
filter merely blurs the CT scan until the defects (end every other structure) eventually vanishes,
we go for morphological filters [49,171] which propagate the maximum or minimum gray-value
within a local neighborhood. By combining those filters we create a defect-free part from which we
subtract the originally defect-afflicted part to detect the anomalies, i. e. to find the defects. Applying
a threshold to this residual image yields a relatively precise semantic segmentation of the defects. As
this method takes a local neighborhood into account it is less sensitive to image noise than the plain

67

4. Reference-free Defect Detection

(a) Anomalies in the CT scan: The larger the gray- (b) The difference image allows for a relatively precise
value in the difference image, the more we deviate segmentation of the defects.
from the generated defect-free specimen.

Figure 4.4.: Using morphological filters we create a defect-free specimen, from which we then subtract the original part to
obtain the residual image (a) which enables us to find anomalies. Within the material boundaries these usually
are defects. The overlay shows the difference to the generated flawless part.

gray-value-based threshold. By combining this approach with an adaptive thresholding instead of
using a global threshold, we obtain a more robust result which is less sensitive to changes in the
image contrast, too.

Common to all image processing techniques is that they require a well defined analysis area. We
need to restrict the region in which we apply the analysis to the material of the part—or at least
where we expect it to be. Otherwise we obtain false positive results especially in the boundary
region of the material and sometimes even in the background.

With the morphological filters, we are able to create a fast defect detection algorithm, which solely
builds up on image processing methods. Furthermore, this method is the first step in the candidate
selection pipeline which is used in [49] to pre-select possible defects. As it already yields satisfy-
ing segmentation results without any post-processing or classification, we include it as standalone
method in our further experiments. This method is further referred to as “filter-based method”.

4.2. Traditional Machine Learning

With image processing methods, it typically becomes harder to keep the balance between false
positive and false negative responses as the artifact-level rises. Using a second step which filters un-
desirable false positive responses allows the detection method to be more sensitive but still achieve
a high precision. For the filter process, it is beneficial to employ more global statistics (from several
CT scans), i. e. machine learning. One way to further subdivide the class of machine learning ap-
proaches is by the way the input data is processed. A machine learning algorithm either classifies
(i) pre-selected instances, for example, given by a filter-based method [|86,89], (ii) groups of image
elements like super pixels generated by clustering algorithms [173}/174]], or (iii) individual image
elements which in our case are the plain voxels [94]/175]. For (i) the extracted features can be more

68

4.2. Traditional Machine Learning

complex reflecting the knowledge of domain experts, which tend to be more computationally inten-
sive. For we need simpler features which can be computed quickly as we have to compute the
features for billions of voxels. For (ii) we need to find the right balance of complexity and computa-
tional effort. In this section, we evaluate two methods: an instance-based approach which follows a
traditional classification pipeline and a voxel-based approach which outputs a probability for each
voxel.

4.2.1. Candidate Classification

This method comprises three steps: the candidate selection, the feature extraction, and the actual
classification. We follow the “learning-based automatic defect recognition” approach [49], even
though the method is tailored towards the detection of roundish gas pores. Hence, we need to make
some adjustments for the method to detect flaws of arbitrary shape.

The candidate selection process uses the filter-based method which we describe in Section [4.1.3]
The result is then processed with a Gabor filter kernel, i.e. the template matching approach (see
Section [4.1.2). This filters most of the smaller false positive responses arising from image noise but
also restricts the result to roundish defects of a given size. Applying a threshold to the output of the
template matching step gives us the seed points of the candidates. The actual candidate region, then,
is computed by comparing the defective part to a precisely aligned defect-free reference part, follow-
ing a reference-based “golden part” approach. We, however, need a more general and reference-free
approach. Therefore, we skip the restricting template matching and use the output of the filter-based
method directly as seeds for our candidate regions. Instead of comparing the defective part with a
defect-free reference part, we use a locally optimal threshold [176] to refine the candidate region.
This should provide us with a candidate selection which is independent of the actual defect shape
and the actual part. The subsequent classification should be sufficient to distinguish between false
positive responses arising from image artifacts and actual defects.

The feature computation remains unchanged. For each of the refined candidates, we extract the
same 29 features [49]. These features comprise 25 gray-value-based features from the candidate
region itself and its surrounding as well as 4 curvature-based features of the candidate region. The
computation of the gray-value features requires a minimum diameter of 4 voxels and the comparison
to a defect-free reference part. For our reference-free adaption, we use the defect-free specimen
generated by the morphological filters during the candidate selection. The features are computed as
follows:

Gray-value-based features These features are computed by means of the gray-level co-occur-
rence matrix (GLCM) [177]]. The GLCM describes how often a given gray-value occurs as a
neighbor of any other gray-value at a given distance d and a given direction 8 [[177]. As in [[49]
we compute three GLCMs with d = 1, d = 2, and d = 3 for the candidate region and another
three for its surrounding. For each GLCM, we combine the statistics of six directions, i. e. of
the six directly adjacent gray-values. (Note that in the original paper 12 directions are used.
Unfortunately, it is not stated which ones and there is no common unique way to choose 12 of
26 neighbors.) Figure |4.5| shows three exemplary GLCMs of a defect, an edge, and a flawless
region. In addition to the three GLCMs of the candidate region, we compute three GLCMs
of the surrounding region of the candidate. To compute the surrounding region we dilate the

69

4. Reference-free Defect Detection

0 250 250

200 00 200 %
o i
PO
150 150 E

150
100 100

50 100 150 200 250 50 100 150 200 0 50 100 150 200 250

Figure 4.5.: The gray-value-based features are computed from the GLCM. From left to right we show the GLCM of a defect,
an edge, and a defect-free sample. In red we show the GLCM of the candidate region and in blue the GLCM of
the border region, respectively. The border region is defined by the dilated candidate mask (which is enlarged
by 6 voxels) minus the original candidate mask.

Figure 4.6.: The curvature-based features are computed from the second derivatives of the defect candidate and its flawless
counterpart. To be more precise, we compute the scalar shape index from the principal curvatures. From
left to right we show the defective sample and the corresponding shape index values as well as the flawless
counterpart and its corresponding shape index values.

candidate mask by 6 voxels and subtract the original mask. In the original implementation,
they use the same radius for the dilation as they use for the morphological filter. However, if
we use larger radii in order to find larger defects, it could happen that there are other flaws in
the border region of the candidate we are looking at. Because these defects have the potential
to disturb the GLCM of the border region, we fix the radius to 6 voxels. The resulting region
should still contain sufficiently many voxels for a meaningful statistic but avoid conflicts with
other defects. Per GLCM we compute the energy, contrast, entropy, and standard deviation as
features, which are 24 features in total. The last gray-value-based feature is the mean residual
value within the candidate region, i. e. the mean response of the candidate selection filter.

Curvature-based features The principal curvatures are approximated by computing the voxel-
wise second derivatives. Depending on the principal curvatures [[178]] a “shape descriptor” is
computed for each voxel within the candidate region [49]. The shape descriptor assigns each
voxel one of the categories knob, ridge, saddle, cleft, or bag. The mean, standard deviation, and
entropy of the shape descriptors form three of the four curvature-based features. However,
we find it more useful to use the shape index instead of the shape descriptor because
it is a more continuous measure without further hand-crafted decision boundaries. The last
curvature-based feature is the mean difference in the shape index of the original gray-value
image and the defect-free specimen which in our case is generated using morphological filters.
Figure[4.6]visualizes the shape index distribution for a defect and the corresponding generated
defect-free specimen.

70

4.2. Traditional Machine Learning

candidate region shape mean
candidate region mean shape difference
candidate region shape std

border region GLCM entropy (d = 2)
border region GLCM entropy (d =3)
border region GLCM energy (d = 3)
border region GLCM entropy (d=1)
border region GLCM std (d = 3)

border region GLCM contrast (d = 3)
border region GLCM energy (d = 2)
candidate region mean grayvalue difference
border region GLCM std (d = 2)

border region GLCM std (d =1)

border region GLCM energy (d =1)
candidate region GLCM contrast (d = 3)
candidate region GLCM contrast (d = 2)
border region GLCM contrast (d = 2)
border region GLCM contrast (d =1)
candidate region GLCM contrast (d=1)
candidate region shape entropy I
candidate region GLCM entropy (d=1)
candidate region GLCM std (d =1)
candidate region GLCM energy (d=1)
candidate region GLCM std (d = 2)
candidate region GLCM std (d = 3)
candidate region GLCM energy (d = 2)
candidate region GLCM entropy (d = 2)
candidate region GLCM energy (d = 3)
candidate region GLCM entropy (d = 3)

0 5 10 15 20 25
MDI [%]

(a) Mean decrease in impurity (Gini importance).

candidate region shape mean
candidate region shape std

border region GLCM contrast (d =3)
candidate region mean shape difference
border region GLCM entropy (d = 3)
border region GLCM contrast (d =1)
candidate region GLCM contrast (d = 3)
candidate region shape entropy
candidate region GLCM contrast (d = 1)
border region GLCM energy (d = 3)
candidate region mean grayvalue difference
border region GLCM entropy (d = 2)
border region GLCM energy (d =2)
candidate region GLCM contrast (d = 2)
border region GLCM entropy (d=1)
border region GLCM contrast (d =2)
border region GLCM energy (d =1)
candidate region GLCM std (d =1)
candidate region GLCM energy (d = 3)
border region GLCM std (d = 2)
candidate region GLCM entropy (d = 3)
candidate region GLCM std (d = 3)
candidate region GLCM entropy (d = 1)
candidate region GLCM energy (d = 1)
candidate region GLCM std (d = 2)
border region GLCM std (d = 1)
candidate region GLCM entropy (d = 2)
candidate region GLCM energy (d = 2)
border region GLCM std (d = 3)

0 5 10 15 20 25
MDA [%]

(b) Mean decrease in accuracy (permutation importance).

Figure 4.7.: When measuring the importance of the individual features proposed by [49], we see that most of the gray-
value-based features do not contribute much to the output of the individual decision trees of the random
forest. Whereby, the GLCM of the border region of the defects contributes more to the class purity within
the decision trees than those of the actual candidate region. The most significant features are the mean shape
index and its difference to the defect-free specimen. This makes sense as open false positive responses at the
material boundary have different shape indices than closed inner defects or noisy particles.

Based on these 29 features a random forest [93]], finally, decides whether a candidate is a surface
defect, an inner defect, or a false positive response due to an image artifact. The random forest
consists of 256 decision trees with a maximum depth of 32 decisions each. For training, we extract the
29 features for each precisely labeled defect of our realistically simulated training set, which meets
the required minimal diameter of 4 voxels. Computing 29 complex features takes quite a while. We,
therefore, run a feature relevance analysis computing the mean decrease in impurity (MDI) which
measures by how much the impurity of the child nodes of a decision tree is decreased when a given
feature was involved in the decision [180], i.e. Gini importance (see Figure , and the mean
decrease in accuracy (MDA) which measures by how much the accuracy is decreased when the
values of a given feature are shuffled [180], i.e. permutation importance (see Figure [4.7D). We see
that the most important features are the curvature-based features and that most of the gray-value-
based features computed from the GLCMs do not contribute much to a proper decision. The mean
gray-value difference does not contribute much either. This probably is due to the fact that it is
used to select the candidates, which means that all candidates have a minimum mean gray-value
difference. If we need to tune the inference speed, we could reduce the amount of features easily.

For testing, we apply the full machine learning pipeline on our simulated validation set and our
two real CT scans. The largest defects in our data set have a diameter of 27 voxels. Therefore, we
choose a radius of 15 voxels for the filter kernel of the candidate selection. For the local refinement

71

4. Reference-free Defect Detection

of the defect boundary, we consider the region of the original segmentation and add a margin of
6 voxels. However, we have quite a hard time to tune the threshold for the filter response which
provides us with the initial candidates: If the filter is too sensitive, we get a lot of tiny false positive
responses which tremendously increase the computation time as we need to extract the features for
each candidate. On the other hand, if the filter is too restraining, we get about the same result for
the larger defects as the filter-based method but miss out all the smaller instances. Moreover, we
cannot use a fixed threshold for all the data in the validation set. Due to the variance in data quality
each CT scan has its individual threshold which suits it best. As the original intent of this method
is to serve in in-line (or at-line) scenarios, the threshold usually has to be tuned once and should
be applicable to all the following CT scans—which should look similar. To obtain a higher recall,
i.e. finding more candidates, we reduce the optimal threshold for the candidate selection by 10 %
and see whether we can filter the false positive responses that come along. The optimal threshold is
defined in terms of the optimal result of the filter-based method. Adding a filter which removes all
instances which do not meet the minimal size after the local refinement, yields more robust results
but does not significantly improve the prediction performance.

Our realistically simulated validation set contains 54 CT scans of two parts which have 479 and
459 defects with d = 4voxels, respectively. For the CT scans with a high scan-quality, i.e. low
artifact-levels, we obtain about 610 and 570 candidates for the two parts, respectively. Out of these
candidates about 420 are categorized as defect with a mean probability of 72 %. 410 are correctly
identified defects, the remaining 10 false positives mainly occur in image noise. Even though the
missing defects are found by the candidate selection, they are discarded with a probability of only
30 %. Here, the classifier is too indecisive. Yet, the misclassified defects cannot be clearly categorized,
they range in all sizes and positions in the data set. For the CT scans with a low scan-quality, i. e.
high artifact-lavels, we obtain about 420 and 430 candidates for the two parts, respectively. Out
of these candidates about 340 are categorized as defect with a mean probability of only 54 %. The
number of false positives is reduced to only one or two instances per scan. In total, most of the
false positive responses are ruled out, which means we do not need to restrict the analysis area
to the material anymore. Nevertheless, we lose a lot of actual positives due to the indecisiveness
of the classifier. Sometimes multiple actual defects are merged to one large candidate, sometimes
the defects might be too large so that the mean shape index is not as meaningful as it is for other
defects, but sometimes this also has no obvious reason. In Figure [4.8) we show a few examples from
the simulated validation set. These comprise correctly discarded false positives which occur at screw
threads, streaking artifacts or ring artifacts as well as a few examples of misclassified instances.

The classifier itself yields good results, as long as the candidate region fits the actual defect. The
extent of the candidate region has a huge impact on the feature computation. A drawback of an
instance-based method is that the defect is either in the final segmentation mask as it is or it is
removed completely. This becomes more severe if the classifier relies on a precise segmentation—
which cannot be guaranteed in an artifact-afflicted CT scan. If, for example, the candidate region
is too wide, it contains too many defect-free voxels and changes the appearance of the GLCM and
shifts the mean curvature more towards defect free samples. We, therefore, test the classifier on the
features which we extract form perfect candidate regions. We obtain these regions from the precise
ground truth of our validation set. The features are extracted from CT scans of defective and from
CT scans of defect-free parts which are scanned with the same parameters. For each set of features
of a defect there is a set of features from its defect-free counterpart. Here, the classifier achieves an

72

4.2. Traditional Machine Learning

flawless 66.2% flawless 88.2% flawless 56.5% defective 67.5%
]
| |
| |
g Rl
B n | |
k . L N | - ‘ .. w n n ‘ i 1
| ° |
B 5 | N 1 I - ! L

]
| : - B flawless 100.0% defective 48.6% defective 43.5%

L

Figure 4.8.: Results of the candidate classification: In the top row we see that most of the common false positive responses
of the candidate selection which, for example, occur near screw threads, in streaking artifacts, or in ring
artifacts, are correctly classified as flawless. In addition, we obtain high defect probabilities even for those in-
stances which are not roundish. However, there are many false classifications, too (bottom row). Inner defects
are classified as surface defects, surface defects are mistaken to be flawless, and especially in noisy regions
noise particles are classified as defect. Additionally, some defects have a quite low probability of being a defect
despite the roundish appearance. Notably, this applies to larger defect instances.

accuracy of 99.25 %.

Due to the complexity in the tuning of the parameters, the restrictions of the minimal diameter, and
the dependence on a precise candidate selection, we abandoned this approach. It probably is quite
useful for the exact application it was designed for, but we find it very hard to generalize to our
needs.

4.2.2. Sliding Window Approach

For this approach, we move from an instance-level classification to a voxel-level classification. We
extract the features for each voxel in the entire CT scan and predict for each voxel the probability of
being part of a defect by sliding a random forest across the CT scan. This method is inspired by the
pixel classification work flow of ilastik (European Molecular Biology Laboratory) [94], which is, for
example, used to segment cells in neuro-biological images. Furthermore, a similar approach is used
to segment objects of daily life [[175].

Typical hand-crafted features which are computationally efficient are, for instance, the plain gray-
values of the CT scan, the gradient information like direction or magnitude which is extracted using
Sobel filters [87]], and the DoG filters which act as blob detectors. Moreover, we evaluate the
output of the filter-based method as feature. On top of that, it would be conceivable to use the
information from the second derivatives like the structure tensor and other more complex fea-
tures like SIFT [90], SURF or HOG [89]. However, they are more time-consuming to compute
and might exceed the strict time constraints we encounter, for example, in in-line scenarios. To re-
duce the features to a minimum of the most important ones, we again evaluate the MDI and the
MDA (see Figure [4.9a) and Figure[4.9b] respectively). The most important feature is the output

4. Reference-free Defect Detection

smoothed morphological (o= 1) smoothed morphological (o=1)
morphological DoG (o1 = 5,02, =3.3)
DoG (01 = 5,0z =3.3) smoothed gray-values (0 =5)
smoothed morphological (o= 5) morphological

smoothed gray-values (o =5) gray-values I

smoothed gray-values (o=1) smoothed gray-values (0=1) I
gray-values smoothed morphological (o= 5)
DoG (01 = 1,02 =0.6) DoG (o1 =1,0: =0.6)
gradient magnitude gradient magnitude
smoothed gradient magnitude (o=1) smoothed gradient magnitude (o=1)
smoothed gradient magnitude (o= 5) smoothed gradient magnitude (o0 =5)

0 5 10 15 20 25 30 0 5 10 15 20 25 30
MDI [%] MDA [%]
(a) Mean decrease in impurity (Gini importance). (b) Mean decrease in accuracy (permutation importance).

Figure 4.9.: The most important features are the responses of the filter-based method and the DoG filter, as they provide a
clear indication of where to find defects. The gray-value features seem to only provide guidance to distinguish
defects from false positive responses. While we include the gradient magnitude with the intention to precisely
define the boundary of a defect, theses features seem to be rather unimportant to the random forest.

of the filter-based method, which is equivalent to the difference to a generated flawless part, and
the filter response of the DoG with a large kernel size, i. e. the blob detector. This seems legit as the
filter-based method serves as a defect detection method on its own. The other features then improve
the distinction to false positives. While the gradient magnitude information seems important to de-
termine the boundaries of a defect, it only contributes little to the decrease in impurity of the nodes.
The plain gray-values probably are less important as their information is included in the difference
image which we obtain from the filter-based method.

For our production-level classifier, we select the following eight features:

Gray-value First, we compute the weighted mean of the gray-values using two Gaussian filters to
capture local effects of image noise (see Figures and [4.10¢). We compute the Gaussians
with o = 1voxels and with ¢ = 5 voxels, respectively. We do not include the plain gray-values
in our set of features as they are encoded the difference image of the filter-based method.

Gradient magnitude We use the mean gradient magnitude to include information about the de-
fect boundaries. Again, we compute the mean via two Gaussian filters with ¢ = 1 voxels and

o = 5voxels, respectively (see Figures|4.10d|and [4.10e).

Difference of Gaussians Then, we include two difference of Gaussians features [83[]. The first
DoG is computed using o3 = 1voxels and oz = 0.6 voxels and is designed to detect small
defects (see Figure[4.10f). The second DoG is computed using o7 = 5 voxels and o, = 3.3 voxels,
respectively, and designed to detect the larger defects (see Figure [4.10g).

Morphology Finally, we use the output of the filter-based method which computes the difference
to a defect-free specimen which is generated by applying a morphological filter. Additionally,
we compute its local mean using a Gaussian filter with o = 1voxels (see Figures and

4.10i).

74

4.2. Traditional Machine Learning

- - -

® (h) @@

Figure 4.10.: In (a) we show the original gray-values of an exemplary defect and the according filter-responses follow
along: (b) The mean gray-values, computed by means of a Gaussian with ¢ = 1.0 and (c) a Gaussian with
o = 5.0. (d) The mean gradient magnitude, computed by means of a Gaussian with o = 1.0 and (e) a Gaussian
with ¢ = 5.0. (f) The DoG with ¢; = 1.0 and o, = 0.6 and (g) with o; = 5.0 and 0, = 3.3. (h) The difference to a
defect-free part computed by means of the filter-based method and (i) the mean difference image computed
by means of a Gaussian with ¢ = 1.0.

Using all voxels of our realistically simulated data set for training would be an exaggeration. How-
ever, when reducing the amount of training samples, we need to carefully sample the training in-
stances; a mere random sampling would not cover all the corner cases. Therefore, we come up with
a sampling strategy to select the most valuable data points for training. We randomly choose train-
ing samples (i) from the defects and (ii) their surrounding region, within a 6 voxels dilation radius.
This covers the interesting parts containing the transition from defect to material. Secondly, we
(iii) randomly sample around the material boundary to distinguish actual defects from the material
boundary and screw threads in particular. The region from which we take our training samples is
computed as the difference of the dilated surface mask and the eroded surface mask. The radius

75

4. Reference-free Defect Detection

[s] awn aduBI3)ul
o

12
10

May,
Ximuy e, 6
"Pth 4

8

2 2

(a) Log loss (b) Inference time

Figure 4.11.: To decide on how to reduce the inference time of the random forest, we evaluate the log loss, i. e. how much
do the predicted probabilities differ from the ground truth, while varying the number of trees in the random
forest and their maximal depth. Furthermore, we have a look at the inference time itself. We see that the
log loss reaches a plateau as we reach a depth of about 10 decisions per tree. For a low number of trees we
observe a peak of high loss values for deeper trees, which indicates an overfitting to the training set. The
depth of the trees seems to be less significant for the inference time. However, reducing the number of trees
by half also reduces the inference time by half. Note that for reasons of legibility we switch the point of
view in the two plots. The red cross marks the configuration we use for our random forest: 128 trees with a
maximum depth of 10 decisions.

for the dilation and the erosion are both 6 voxels. Then, we (iv) sample around the rotation axis to
explicitly tackle the influence of ring artifacts. Finally, we sample (v) randomly in the material and
(vi) in the background. In total, we extract 27 million samples for training of which 3 million are
taken from defects.

It is conceivable to further reduce the amount of features without a significant drop in accuracy,
e.g. by removing the least important features (here: the gradient magnitude features). However,
compared to the classification part, the feature extraction is way less time-consuming. The only
concern that would suggest to reduce the number of features is the huge memory consumption: we
need eight times the memory to compute and to store the features. The block-wise processing of the
input volume allows us to reduce the memory footprint of the computation. We, therefore, rather use
more features and tune the properties of the random forest to gain inference speed. The inference
speed of a random forest is mainly defined by the number of decisions that have to be made. Thus,
we need to limit its capability in favor of inference speed. To restrict the number of decisions we can
reduce the number of decision trees in the random forest (which further limits the dynamic range
of the output) or the maximum depth of each tree (which limits the decisions within each tree and
with that their precision). The optimized classifier not only should be precise in its final decisions
but also yield confident predictions with a high probability. In consequence, we evaluate the log loss
and, of course, the inference time while varying the number of decision trees and their maximum
depth performing an extensive grid search (see Figure and Figure respectively.). When
increasing the depth of the decision trees the log loss gets smaller, i. e. the predictions become more
confident. For a low number of decision trees, however, we observe an increasing log loss for deeper
trees. This indicates an overfitting to the training data. The inference time is halved as we halve the

76

4.3. Deep Learning Defect Detection

number of trees in the random forest. Nevertheless, reducing the maximum depth of each decision
tree is less significant. We choose to use 128 decision trees with a maximum depth of 10 decisions.
This provides us with a sufficient dynamic range of the probability output and the random forest
can develop a high confidence in its results without overfitting.

The voxel-classification is far less artifact-prone than a mere image processing method and, more-
over, does not rely on a precise and robust candidate selection process. After tuning the performance
it takes about half an hour (1800 s) on a machine with two Intel Xeon E5-2687 CPUs to process a CT
scan of 1000 x 1000 x 1000 voxel, of which the computation of the features only takes about 300 s.
This is marginally acceptable also for in-line scenarios. We, therefore, include this approach in our
further experiments. This method is further referred to as “traditional machine learning method”,
or simply “traditional method”.

4.3. Deep Learning Defect Detection

One of the benefits of deep learning approaches is that neural networks learn to extract the necessary
image features on their own. Therefore, there is no need to design and tune hand-crafted features.
In exchange, this increases the number of free parameters and we need more data which covers
all essential aspects of the task. This shifts the effort from designing features and algorithms more
towards the design of the training data. Furthermore, we need to tune the hyper-parameters of the
architecture of the model and the training process to ensure that the trained model generalizes well
to unseen (real) data. The architecture of a model describes how to combine the different types
of layers to a meaningful entity, how many feature channels to use per layer, how big the filter
kernels are, and so on. For the training process we can choose from different loss functions which
provide direction for the training. We can apply different regularization functions to ensure that the
model learns meaningful features and generalizes better, and we can select different optimizers and
their parameters. Luckily, there already exists a broad exploratory basis and some best practices we
can start off. In this section we describe and compare different model architectures, explore different
ways to obtain a deep learning defect detector, and present our curriculum learning approach which
we use to speed up the convergence of our models.

4.3.1. Choosing an Architecture

Over the past years a vast amount of different layer types and different architectural components
have emerged and have been stacked together to form more and more complex model architectures
(see Section[2.3.1). For example, for classification tasks, there are AlexNet [58], VGG-Net [70]], ResNet
[69], and plenty of other variations of these models. Most authors agree that deeper models are
better [181]. The depth, however, is limited by the amount of memory available on the GPU; the
problem becomes worse when turning to three-dimensional data. In addition, the deeper the model,
the longer are the inference and training times. As we like to obtain a per-voxel output, we need
a fully convolutional network (FCN) [12,/18]] for the best performance. As mentioned before, object
detection architectures like YOLO [75]], SSD [182], or Faster R-CNN [74] are not suited for this task
as we require a precise segmentation mask instead of a bounding box. Furthermore, the number,
shape, and size of defects as well as the size of the input CT scans are widely varying, which is

77

4. Reference-free Defect Detection

why we neither can make use of the bounding boxes predicted by combined architectures like Mask
Faster R-CNN [76]] or the Retina-U-Net [183]]. Hence, we start with a promising, basic FCN, namely
the U-Net architecture [[18], which considers the information of the down-sampling layers during
the up-sampling process to achieve a more precise per-voxel output, i. e. the skip-connections. This
kind of model already is successfully applied to medical CT data [18}21}|183H185]. Step by step, we
add more complexity and make minor adjustments where we see the necessity to do so, to evolve our
two-step defect detection architecture. In this section, we consider increasing the capability of the
model, optimizing the convergence during training, providing the necessary context information,
and improving the generalization of the model.

The first adjustment we make to the model is replacing the maximum pooling layers by strided
convolutions [68]. In the original U-Net architecture, pooling layers are used to reduce the spatial
resolution. This widens the receptive field of the model in order to gather more context information
along the dimensions of convolution. Instead of always choosing the maximum output, we can train
a filter kernel on how to combine the outputs of the previous layer. But instead of shifting the filter
kernel voxel-wise over the input, we skip every second voxel to reduce the spatial dimensions. An
advantage of these strided convolutions over maximum pooling layers is that we enable the model
to choose the most appropriate output for its task and that the implementation is computationally
more efficient.

An essential detail of the U-Net architecture are the skip-connections which are intended to transport
the detail information about small structures from the down-sampling part of the model to the up-
sampling part [[18]]. The idea of skip-connections can also be found in the original paper proposing
fully convolutional architectures [[12], but there are two major differences between both approaches:
In [[12] the skip-connections sum up the predictions which are made at different scales and use them
as input for the next up-scaling layer, while in [|18] the feature maps of the down-scaling layers are
directly concatenated to the output of the corresponding up-scaling layer. Adding the output of one
convolution to the output of another convolution can be seen as a “correction” of the output. This is,
for example, done in residual layers [69]. Concatenating the output of two convolutions, however,
is more flexible, as the subsequent layer can learn how to combine and fully utilize the input. In the
DenseNet architecture [[186] this principle is taken to the extreme. Using a fixed function to combine
both outputs results in less trainable parameter, i. e. a smaller model, and is faster to compute. We
evaluate both approaches: While there are studies suggesting that both approaches yield equivalent
results [[187]], we find that for our task the results of the concatenating model are slightly better.
Hence, we stay with the concatenation of the skip-connections.

The skip-connections further contribute to an improved transfer of gradient information back to the
down-sampling layer. An improved gradient flow contributes to a faster convergence. We further
support the gradient flow by using leaky ReLU [23}|66] activation functions instead of the standard
ReLU [65]]. These activation functions allow a reduced amount of information to pass if the output
of the preceding layer is negative. A standard ReLU would clamp these values hard to zero. There-
fore, leaky ReLUs not only contribute to a faster convergence but further tackle the issue of “dying”
neurons. A large gradient can cause a neuron to never output any positive values again. Thus, its
output—and the gradients passing the neuron—will always be clamped to zero. To further increase
the capability of the model, we replace each convolutional layer of the original model by a residual
layer [69] which comprises two convolutions and adds its output as “correction” to its input. Our
final change to provide more gradient information to leverage the training process is adding deep

78

4.3. Deep Learning Defect Detection

supervision [[20,/188]]. For each intermediate up-sampling step, we add another transposed convolu-
tion to make a prediction based on the available information. The fractional stride of the transposed
convolution is chosen to yield a prediction which has the same size as the final output. These pre-
dictions are taken into account when computing the loss function. This allows us to directly inject
more gradient information into the deeper layers of the network.

Another crucial aspect when designing a model architecture is the amount of context information
we provide [189]). This not only includes the height and width of the receptive field, which is defined
by the kernel sizes and pooling layers but also the data we provide along the third dimension. The
original implementation of the U-Net operates on single two-dimensional slices only. Hence, there
is no context information along the third dimension. While this model is reported to achieve good
results on medical CT data [|18}/21,[183185]], it struggles to yield consistent results on our industrial
CT scans (see Figure[4.12a). Maybe this is the case because medical data usually has primary direction
which often has a different resolution [34]. Maybe this is the case because the anatomy of the human
body, the shape and relative position of the inner organs, is rather fixed and does not change much
between humans, whereas in industrial data we have to deal with human made structures which are
way more arbitrary. Especially when we train a more general model which is not tailored towards
a specific scenario. Combining multiple slices to a multi-channel input, i. e. a thick slab, is a simple
way to include more context along the analysis direction. In [[190]], for example, the thick slabs are
converted to a two-dimensional slice using a three-dimensional convolution, while we use the thick
slab directly as input for our model. With the additional context of only two adjacent slices, i.e. a
slab thickness of three, the inconsistencies along the analysis direction already begin to vanish (see

Figure [4.12b).

Nevertheless, only when switching from two-dimensional convolutions to full three-dimensional
convolutions we gather the full context information within the three-dimensional receptive field.
We are able to capture the entire defect and have no more inconsistencies in the analysis result (see
Figure[4.12c). The benefit of using single slices as input is, of course, the increased inference speed:
On a 1000 x 1000 x 1000 voxel CT scan the single slice U-Net needs about 180 s-200 s to compute
a result, while with the full context and three-dimensional convolutions it takes about 500 s—540 s
(measured on a NVIDIA TITAN RTX).

A different approach avoiding expensive three-dimensional convolutions would be to run individ-
ual predictions on, for example, the three axis-aligned slices and then combine their results. The
combination may either be by a majority vote, a simple average or even by asking another neural
network [21]. This setup, on the other hand, at least triples the inference time as compared to a
simple slice-by-slice approach. These run-times would bring us within the realm of our proposed
fully three-dimensional convolutions.

Reducing the spatial resolution is one way to gather context information. Dilated convolutions rep-
resent another way [[13}[191}/192]]. We evaluate this in a separate model, the dilation model. With the
down-sampling introduced by the strided convolutions we loose spatial information which proba-
bly cannot be fully restored by the skip-connections. Therefore, the idea of the dilation model is to
use a flat architecture without any down-scaling (see Figure [4.13). Gathering the necessary context
information via standard convolutions, however, is not possible: We would need too many layers to
be able to fit all of them into the limited memory of the GPU—each layer with n channels occupies n
times the memory of the input. Dilated convolutions do not sample their input from adjacent voxels

79

4. Reference-free Defect Detection

(a) single slice (b) thick slab (c) full context

Figure 4.12.: Predicting the defect probability in a CT scan slice-by-slice (a) introduces severe inconsistencies along the
analysis direction (in our case from left to right). By using thick slabs which are composed of multiple slices
(in our case three) and, thus, include more context information, these inconsistencies begin to vanish (b).
With the full three-dimensional context there are no inconsistencies in the result anymore (c). The
overlay shows the prediction output of the respective model.

Channels: 1 16 16 16 3
[—
1 2 3 4 3 2 1 1 1
Input Dilated convolutions with dilation 1, 2, 3, 4 Refinement Prediction

Figure 4.13.: The dilation model: A flat model architecture without any down-sampling or up-sampling. The increasing
and decreasing dilation of the filter kernel resembles the context aggregation of the down-sampling layers
without loosing spatial information. An additional refinement step should yield a more precise prediction
from the extracted features.

but add a spacing between the sample points of their input [[191]. With that it is possible to increase
the receptive field of a model in fewer layers. This idea arises from the field of remote sensing in
which we encounter similar problems as for the defect detection: We need to find very small ob-
jects of only few pixels diameter, which can occur in clusters of many instances [[192]]. Despite the
similarity, the smallest instances in the remote sensing images are still larger than the smallest de-
fect instances we need to find. Unfortunately, we find the results of the dilation model to be slightly
worse than the results of a model with down-sampling. This is probably due to the limited capability
of the network.

Image matting algorithms, i. e. algorithms that separate foreground and background in images, face
similar problems as we do: They need to segment fine structures like hair to separate them from the
background. To precisely segment structures with only very few pixel in diameter, “deep image mat-
ting” proposes a two-stage architecture comprising an encoder-decoder-pair for feature extraction
and a refinement stage for an optimal output [193]]. Learning from this approach, we add a refine-
ment step to our architecture. This step takes all the intermediate results which we have from the
deep supervision, the segmentation output of the encoder-decoder-pair, and the original gray-value
input into account. The output of the refinement step is then added to the output of the encoder-
decoder-pair as a correction. Finally, we add four dropout layers [[67] with a dropout rate of 50 %
after the four convolutional layers in the final encoding stage. These act as additional regularizer

30

4.3. Deep Learning Defect Detection

16 16 16 16 16 16 3

32 32 32

Refined
Output

64 64 64 64 64 64

II//I/I/

[

128128 128 128 128
> Intermediates

16*

Residual Layer Encoder-Decoder-Pair Refinement-Step

Figure 4.14.: The proposed two-step defect detection architecture combines a U-Net-like encoder-decoder-pair with a

refinement-step. The encoder uses residual layers () to create a latent representation of the input (
). The residual layers comprise two convolutional layers () and adds their output to the original
input as a correction. After each convolutional layer () we use a leaky ReLU (red) as activation function.

To gather more contextual information and to reduce the spatial resolution we use strided convolutions (

). These layers also include a leaky ReLU, which is not depicted explicitly. Dropout layers (brown) in the
final encoding step further prevent overfitting during training. The decoder up-samples the encoded results
using transposed convolutions (blue). These layers also include a leaky ReLU, which is not depicted explicitly.
The output of the corresponding encoding layer is integrated in the decoding branch by concatenation (gray).
Then, in the refinement-step, all available information is combined using three more convolutional layers
with a leaky ReLU (dark yellow) and an additional convolution () producing the refinement output.
Finally, the refinement output is added to the intermediate output yielding the final segmentation mask
(green). The number above each layer denotes the number of channels, the number to the left the size of the
patches used for training. For all convolutions we use a kernel size of 3 x 3 x 3. The strided convolutions have
a stride of 2 x 2 x 2.

to further prevent our model from overfitting. Figure shows a schema of the fully modified
U-Net-like architecture of our defect detection net. It comprises strided convolutional layers to re-
duce the spatial resolution and to gather context information, three-dimensional convolutions to
fully utilize the available context, and concatenated skip-connections to add detail information dur-
ing up-sampling. The convolutional layers all have a kernel size of 3 x 3 x 3. Including the bias term
they have 27c¢jycout + Cout trainable parameters, where cj, denotes the number of channels in the
previous layer and ¢,y the number of channels in this layer. The transposed convolutions have a
kernel size of 5 x 5 x 5 which increases their number of trainable parameters to 125¢i, Cout + Cout- In
total this model architecture has 6 899 060 trainable parameters. Compared to the about 60 million
parameters of AlexNet or the almost 140 million parameters of VGG-Net this number is
quite low. However, we only need to detect low-level objects and do not need to distinguish between
thousands of categories. Furthermore, increasing the number of filters would require more space on
the limited GPU memory. The theoretical receptive field of this model covers 191 x 191 x 191 voxel,
but the effective receptive field usually covers only a fraction of the theoretical receptive field. Due
to the learned weights, not all regions contribute equally to the result which renders the determina-
tion of the effective receptive field much harder [194]. The effort to determine the effective receptive
field is disproportionate to the benefit, as long it covers the largest defects in our training set, which
have diameters of about 27 voxels.

31

4. Reference-free Defect Detection

To select the most promising architecture, we compare the three models mentioned above: (i) First,
we evaluate a standard U-Net. Here, we process a given CT scan slice by slice along all three spatial
dimensions and combine the results using a maximum operation. (ii) Then, we evaluate the flat
dilation architecture. This model uses three-dimensional convolutions and, therefore, only needs a
single forward pass. (iii) Finally, we evaluate the defect detection architecture, which comprises an
encoder-decoder-pair for feature extraction and a separate refinement step. While all three methods
yield quite comparable results, method (ii) performs slightly worse than the other methods. This
might be due to the limited depth of the model and the inherent limited capability. Method (iii) yields
slightly better results than (i) and (ii). Here, the utilization of the full three-dimensional context
might be marginally superior to the combination of the three runs of (). We add a quantitative
discussion in Section[5.3.4]as soon as we introduced the necessary metrics. As there is no difference in
inference speed between (iii) and (i) we decide to go with (i), i. e. our defect detection architecture.

4.3.2. Formulating the Target Function

Depending on how we design the output of the model, there exist many different ways to implement
a deep learning defect detection algorithm. Each of these approaches requires its own type of labels
and its own loss function while the network architecture stays the same. In this section we discuss
the following three approaches: (i) The first approach is to resemble the principle of the filter-based
method to create a defect-free specimen based on the defect-afflicted part and then to find the defects
by evaluating their differences, i. e. an anomaly detection approach. (ii) Alternatively, the model can
be used to predict the relative density of the material in the CT scan. The material has a relative
density of 1.0, defects a density of 0.0 and occurrences of structural loosening lie somewhere in
between. (iii) Finally, the model can be trained to directly yield a segmentation mask, i. e. assigning
each voxel a pseudo-probability of being part of a defect or not. This method is a voxel-classification
approach, similar to our traditional machine learning method, a typical image segmentation task.
The labels, which we create from the precise annotations generated in Section represent the
goal we like to reach and the loss function is designed to guide our model there during training. For
each of the approaches we explore what it takes to build a reliable deep defect detector.

Anomaly Detection

With the anomaly detection approach, we basically resemble our filter-based method. However,
this time we train a deep neural network to generate the defect-free specimen we need for the
comparison instead of simply applying morphological filters. First of all, we need defect-free data
as label input for the training process. Thus, we revisit our simulation pipeline and simulate the
complete training set once again—this time without any defects (see Figure [4.15b). For the actual
training we have two choices: (a) We either train an auto-encoder model by providing only the
defect-free CT scans as training input (see Figure [4.15D); or (b) we train the model explicitly to
remove any defects from the data by providing the defect-afflicted CT scans as training input (see
Figure[4.154). The idea behind approach (a) is that if the model never sees any defect and only learns
how to encode flawless CT scans, it will have no clue how to encode the tiny defect structures and,
thus, will generate a defect-free specimen instead [[195}|196]]. We expect the values of the result to
be in the range [0, 1]. Hence, we use a sigmoid as activation function of the final layer.

32

4.3. Deep Learning Defect Detection

(a) realistically simulated CT scan with defects (b) flawless simulation of the same part

Figure 4.15.: When training our model to generate flawless parts we need flawless parts as label input. Therefore, we
simulate our training set again without any defects (b). As input for the model we can choose between the
flawless parts (b) training an auto-encoder or the defect-afflicted parts (a) training the model to explicitly
erase all defects.

One way to train a generative model to resemble a target image is to use a mean squared error (MSE)
loss. For the non-destructive evaluation of fabrics by means of gray-scale images, [195]] suggest to
use a structural similarity (SSIM) metric as loss function for training and evaluation. According to
their analysis, this loss functions directs the model to produce images which optimize the error
pattern, i. e. the difference image, by taking local dependencies of neighboring voxels into account.
The SSIM takes into account the luminance, the contrast and the structure of two equally sized
neighborhoods to compute a distance measure [[197]. The structural similarity loss of two patches
p and q is defined as shown in Equation (4.2), where y denotes the mean of a patch, o the standard
deviation, and the constants ¢; and ¢, serve to intercept divisions by zero.

(2tphg + c1) (20pq + 2)

/1[2,+/1§+c1) (a§+c7q2+c2)

Lssin =1~ ((4.2)

Figure shows the model output of the model trained according to method (b), using the SSIM
loss. The generated defect-free specimens do not look very convincing. Indeed, the model is not
optimized to produce realistic flawless images but to generate images which improve the structural
similarity to a flawless part. Therefore, more important are the difference image which we obtain
by subtracting the original image from the generated image (see Figure [4.16¢).

Despite the difference images looking quite promising, the results do not meet our expectations. Im-
age noise remains an impeding challenge preventing a precise semantic segmentation. Additionally,
this method requires to restrict the analysis area to the material part in the CT scan. Therefore, this
method seems to be more suited to produce indications of defects, instead of a precise segmenta-
tion.

Regression Learning

The anomalies which we try to detect and segment have one thing in common: they all have a den-
sity which is different from the actual material of the part. Consequently, we train a regression model

33

4. Reference-free Defect Detection

(a) original gray-value images (b) generated defect-free specimens (c) differences to the original CT scan

Figure 4.16.: Anomaly detection: The generated defect-free specimens (b) do not look realistic. However, the model is
trained to generate images which maintain the structural similarity to a flawless part within a local neigh-
borhood. The difference images (c), therefore, look more promising but still contain a lot of noise which
impede a precise segmentation.

to predict the material density in each voxel. However, CT does not measure the density directly
but a relative attenuation coefficient. The measured value further depends on the polychromatic
spectrum and the total penetration length. Due to physical effects like beam hardening two voxels
which represent material of the same density can have completely different gray-values. Further-
more, artifacts have a huge influence so that the gray-values vary, even though the material has a
homogeneous density. Thus, training the model to predict the actual density of 2.80 g cm™ of the
aluminum alloy which we use for our training set does not seem expedient. We choose to train the
model to predict a “relative density” which rather represents the degree of filling at given position
in the CT scan. We assign a relative density of 1.0 to voxels which are completely filled with mate-
rial. In contrast, voxels which are completely part of a defect or the surrounding air are assigned a
relative density of 0.0. The occurrences of structural loosening have any gradation in between and
inclusions of foreign material have any value greater than 1.0. Figure[4.17)shows an exemplary patch
of a CT scan and its according relative density map. We expect the values of the result to be in the
range [0, oo[. Hence, we use the linear output of the final layer directly.

Again, we could use the MSE loss to train the model. However, the MSE loss is vulnerable to outliers
and, therefore, to exploding gradients because the loss grows quadratic with the distance to the
optimal value. Less sensitive to outliers would be the mean absolute error (MAE) loss as it has a
constant gradient independent of the distance to the optimal value. This is its biggest weakness,
though: as the gradient magnitude is the same even if the value is close to a local optimum, which
makes it easy to miss the optimal value. The combination of both losses is called Huber loss [92]]. For
small values, it switches from the MAE loss to the MSE loss, whereby “small values” are defined in
accordance to a new hyper-parameter §. Another loss function which has the same benefits as the
Huber loss but is two times derivable everywhere (as it contains no abrupt changes) is the log-cosh

34

4.3. Deep Learning Defect Detection

(a) realistically simulated CT scan (b) relative densities

Figure 4.17.: Training data for the density regressor: We train the density regressor with a relative density. Our aluminum
alloy which has an actual density of 2.80 gcm™ is assigned the value 1.0. Defects and the surrounding air
have the value 0.0, the structural loosening have a density closer to 1.0 and inclusions of foreign material
a density greater than 1.0. Voxels which lie on the boundary of two materials are assigned an interpolated
value.

loss [[198] (see Equation (4.3)). This further means there is no additional hyper-parameter which
needs to be tuned.

Elog-cosh = 10g(005h(y - P)) (4-3)

Figure shows some density maps generated by the density regression model. In contrast to the
input CT scans the boundaries of the defects seem to be less crisp. This also affects smaller instances
which never reach a density value of 0.0 even though they are larger than two voxel in diameter.
Additionally, we are able to detect occurrences of structural loosening (see Figure [4.18). Yet, we
cannot fully prove that the predicted relative density matches the actual density of the structural
loosening.

Despite the results looking very promising, it is hard to obtain a precise segmentation from the
density maps as the densities are continuous values and do not allow us to draw a globally opti-
mal threshold. Nevertheless, the density map could be used as secondary output providing further
information for a subsequent decision about the severity of a defect.

Semantic Segmentation

In the end, we need a binary segmentation, so we should train our model to directly output a seg-
mentation mask by assigning a label to each voxel. This approach corresponds to the traditional
machine learning model, but instead of using hand-designed features and a downstream classifier
we combine both in a single FCN. The labels for this approach are one-hot-encoded class assign-
ments, giving each voxel a certain class. This means we have to draw a hard threshold on our ground
truth labels. Depending on where we draw the threshold we affect the sensitivity of the model. For
example, if only 10 % of a voxel need to be part of a defect to be labeled as defective, the trained
segmentation model will be more sensitive than by using a higher threshold to binarize the ground

85

4. Reference-free Defect Detection

.'..1 "'_." ’ 4
. il‘ . B,
#
i ' .
k B i,

(a) The pivot cap shows a lot of large shrink- (b) The aluminum part contains many (c)In the pivot cap we encounter large re-
age cavities and pores. smaller and widely distributed pores. gions of structural loosening, spiked with
large gas pores.

&
- L |
w
[o - -y
&]
b -
- 3
’ L

k ! B]

(d) In the CT scan of the pivot cap we clearly (e) The same holds for the aluminum part. (f) The density regressor is able to detect
find the larger defects. The smaller de- The smaller defects are farther apart and, large parts of this structural loosening
fects, however, often are clustered in a re- therefore, only occur as small blob of and further correctly identifies the con-
gion of lower density. lower density. tained gas pores.

Figure 4.18.: The results of the density regressor are very promising to provide further information about the part under
examination. However, they are not helpful for finding a precise segmentation of individual defect instances.

truth. We expect the output to be a probability distribution over the possible classes. Therefore, we
compute a softmax over the output channels of the final layer.

Normally, a segmentation model could be trained using cross entropy loss [71]. The cross entropy
loss measures how well the predicted values match the ground truth taking true negative predictions
into account, too. Due to the highly imbalanced nature of our training set this would tremendously
increase the convergence time of the model. Hence, we need a loss function which puts the focus
on the target classes, i. e. the dice loss [[19}[199/[200]. To further control the sensitivity of the trained
model, we switch to a generalized version: The Teversky loss introduces two parameters
(o and p) which allow us to control the weight of false positive and false negative predictions (see

Equation (4.4)).

TP

- 4.4
TP+a-FN +f-FP (44)

£Tversky =1

This enables us to train a high recall encoder-decoder-pair by choosing ¢« = 1.5 and § = 0.5 for
the intermediate layers. For the refinement-step, we then use a balanced dice loss (¢ = 1.0 and f =
1.0) to achieve a higher precision for the final segmentation output. Some qualitative results of the
segmentation model are shown in Figure With this model, we obtain the precise segmentation
which we need to extract further properties of the defects to provide sufficient information for a
proper subsequent assessment. This method will further be referred to as “deep learning method”.

36

4.3. Deep Learning Defect Detection

4.3.3. The Training Process

We train our model for 150 000 iterations using an Adam optimizer [[72]] with an initial learning rate
of 107 and f; = 0.9 and f3, = 0.999. With the initial learning rate we differ by a factor of 0.1 from the
recommendations which are described in the paper because we encounter exploding gradients with
higher learning rates. The benefit of the Adam algorithm is that it maintains an individual learning
rate for each parameter of the neural network and adapts it according to estimations of the first and
second moment information of the gradient.

For training, we crop patches of 128 x 128 x 128 voxel from our CT scans (which have a size of
1000x1000x 1000 voxel). Loading an entire CT scan to pick a small patch and then discarding the rest
would introduce a huge I/O overhead and considerably slow down the training process. Therefore,
we maintain a cache of ten entire CT scans in memory. For each patch, we randomly pick a CT scan
from the cache, extract the patch and put it back. A background task, the cache keeper, takes care to
continuously exchange the CT scans in the cache so that we iterate through the complete training
set. Another approach would be to extract the training patches before starting the training process.
However, this would at least duplicate the amount of data we have to store on our hard drives and
we would be limited by the bandwidth to the hard drive again instead of a much faster connection to
the main memory. Moreover, having the entire CT scans in the cache at hand, allows us to arbitrarily
increase the variety of patches by randomly shifting the patches around given positions in the CT
scan. The CT scans are stored as 16 bit unsigned integer values. Hence, we need to normalize the
values to the range [0, 1] before feeding the data to our model. We do this by subtracting the minimal
possible value and dividing by the maximal possible value, i. e. 0 and 65 535, assuming the CT scan
utilizes the full data range. This has to be considered during the inference, too, and the data has to
be normalized accordingly. Training our model on a NVIDIA TITAN RTX using a batch size of two,
it takes about three days for the model to converge. Training the standard U-Net with a batch size
of five is much faster and only needs about a day. Using the full three-dimensional context not only
comes with an increased computation time at inference time but also impacts the training process.

To prevent our model from overfitting to the training data and to further increase the variety of the
data, we use data augmentation [58,|71]]. The basic augmentation operations comprise the rotation
and mirroring of the input as well as randomly cropping smaller regions of the training images. The
latter is inherent to our training method, because we pick our training patches as parts of larger CT
scans. Changes in the color are not possible for a single channel input, however, we change contrast
and brightness of the training input and perform a gamma correction on the input data. This not only
prevents the model from overfitting but also makes it more robust against changes in the target data
distribution. The positions of the air and material peaks in the histograms of the CT scans sometimes
widely differ from those of our training set. This happens when the acquisition parameters do not
adhere to the assumptions we make for our training set. While these data augmentation techniques
are pretty similar to those of the domain randomization (see Section[3.2.1), we are more restrictive
with the selection of the parameters to stay within more meaningful boundaries. In addition, we
explicitly do not superimpose structures into the image which resemble artifacts like gray-value
gradients (cupping artifacts), rings (ring artifacts), or white noise (Poisson noise). They are contra-
dictory to the artifacts introduced by the realistic simulation. The augmentations are computed on
the fly from randomly chosen parameters. Figure shows a few examples of augmented patches.
Another step we take against overfitting is adding a regularization loss to the weights pushing them

87

4. Reference-free Defect Detection

Figure 4.19.: With well-dosed data augmentation we modify our training data to prevent our model from overfitting and
to make it more robust against variations in the scan process. For example, we change the brightness and con-
trast of the input image and perform gamma corrections with randomly chosen parameters. Some examples
are shown in the first three images from left. The right most image shows a superimposition of a gray-value
gradient, which we do not include in the final set of data augmentations because it produces patches which
show artifacts that are contradictory to those of the simulations.

slowly towards zero when not receiving any updates. For this we use a L, regularization [71] term
and weight it by 1e .

Because of the highly imbalanced nature of our data, we decide to apply a curriculum learning
strategy with fixed steps to provide our model with sufficient information about its target class,
especially in the early iterations. The learning schedule starts with patches which are randomly
chosen from defect positions, then we slowly add more and more patches showing the material
boundary and, finally, we add patches which are randomly chosen from the entire CT scan. To sup-
port data augmentation we do not always use the same position for defect but rather randomly shift
the center of the patch by £16 voxels along each axis. Another aspect of the curriculum is to slightly
increase the amount of data augmentation as the training proceeds. We start using only rotation
and mirroring augmentations (and the translation we obtain from randomly shifting the position
from which we crop our patch). We hope that an easy start allows the model to get an initial idea of
its task and to form first features and, therefore, to converge faster. After 25000 iterations, we add
adjustments in brightness and contrast and a gamma correction to the list of augmenters. Further-
more, our caching strategy contributes to the soft start of the training process, by not exposing the
full variety of our realistically simulated training set to the model at once. The patches for the first
few iterations are all chosen from the same CT scan. Then, the variety is increased little by little by
adding more and more CT scans to the cache and then by constantly replacing the CT scans.

We use TensorFlow (Google Brain) to model and train our deep neural networks. There are other
equally powerful frameworks like PyTorch (Facebook) or Apache MXNet. However, when we started
working on defect detection, TensorFlow was the only framework to support Microsoft Windows as
operating system, which is a huge advantage when developing a product for the industry. Because
of TensorFlow being already adopted by a big community, there are plenty of examples and guides,
which is helpful when encountering any technical issues. Moreover, most of the research papers
published at this point in time provide exemplary code which uses TensorFlow. Unfortunately, their
APl is not set in stone and when switching versions there is a good chance to encounter unforeseen
difficulties.

38

4.3. Deep Learning Defect Detection

4.3.4. Tuning the Model Output

Having the model architecture, the target function, and the training method at hand, it is time to
further tune the output of the deep learning method. We notice that the original model which is
naively trained to distinguish between “defective” and “flawless” has a hard time with structures
in the boundary region of the scanned part. Especially screw threads are a challenging formation
(see Figure[4.20a). This might be because our initial training set includes surface defects, i. e. defects
which penetrate the material boundary of a part, but only contains flat material boundaries.

Explicitly including screw threads in the training data, however, is not sufficient. Therefore, we
separate surface defects and inner defects in two distinct classes. The trained segmentation model,
now, not only is able to tell apart inner defects from those which penetrate the material boundaries
of the part under examination (see Figure [4.20D), but the false positive responses in small surface
structures like screw threads become less significant. This means we do not merely shift the false
positive responses from one class to another but instead enable the model to yield a more precise
segmentation by providing further information. We can provide even more information by further
training with the segmentation of occurrences of structural loosening. Even though the results in-
dicate where an instance of structural loosening occurs in the part (see Figure [4.21)), it is far from a
segmentation which is as precise as the one of the defects.

What remains to test is whether the model becomes even better and more robust if we provide
further guidance during training, e. g. by utilizing meta information of the scan and reconstruction
processes. For the proper avoidance of labeling ring artifacts as defective, it could be beneficial to
let the model additionally predict for each voxel its distance to the rotation axis. The distance to the
material boundary as additional target could (with reservations) be helpful for dealing with artifacts
which result from beam hardening. Another additional output could be the material boundary of the
part, excluding all defects. More difficult to include is the direct prediction of derived properties of
defects like their volume or sphericity as they concern defect instances and cannot be broken down
into voxel-wise labels.

-.+‘.
L e,

(a) false positive responses in screw threads (b) separation of surface defects and inner defects

Figure 4.20.: A segmentation model which is trained to simply tell apart defective and non-defective voxels, i. e. a two-
class model, often mistakes structures on the surface of the part for defects, for example, screw threads (a).
Moving the surface defects to a separate class not only allows us to distinguish between surface defects
and inner defects (b), which is beneficial because cavities on the surface of a part might be more critical, it
further reduces the significance of the false positive responses by far. The overlay in (a) shows the
defect probability output of the model which was trained to predict inner and surface defects jointly. In (b)
the predicted inner defects are shown in blue and the separately predicted surface defects in green.

39

4. Reference-free Defect Detection

E..l o [T

..-. _'_.'_-I - ;
0 By
' i 3 ; : '
¢ E _'|l I N,
- CE e i TP

Figure 4.21.: We provide even more information to the model by adding more classes to the training process, e. g. structural
loosening. However, the results are not as convincing as we would expect them to be, yet. The overlay
shows the prediction output for instances of structural loosening.

Even tough the FCN architecture would allow us to process arbitrarily large inputs, we need to
process the CT scans block-wise due to the limited amount of available GPU memory. Despite being
trained to yield results which are invariant to rotation, translation, and scale it can happen that there
is a clearly visible cut in the result when simply stitching together the block-wise outputs. This is
due to the missing context information in the border region of each block. Hence, we process a block
as large as the GPU memory allows us to, but we only use the inner part of the output for the final
result. The more overlap the blocks have, the more homogeneous the results become. We use an
overlap of 32 voxels in all dimensions. This increases the necessary computation time as we need
to process parts of the volume up to eight times but it also significantly improves the result. (This
overlap is already included in the computation time of about 500 s — 540 s we mention before, using
blocks of 320 x 320 x 320 voxel.)

After exploring and discussing several methods for the reference-free detection of defects, we now
have a deep learning approach and additionally two promising traditional methods to compare with:
(i) an image processing method which makes no use of machine learning at all, (ii) a voxel-classifi-
cation traditional machine learning pipeline using a random forest, and (iii) an end-to-end trainable
deep learning model. In the next chapter (Chapter[5) we dive deeper into the evaluation techniques
and in Chapter [6] we further explore the suitability of those models for more specific real-world
scenarios.

90

5. Evaluation of Highly Imbalanced Data

Usually we expect the majority of a cast aluminum part to be flawless. This is reflected by our valida-
tion set: Each CT scan consists of 1000 x 1000 x 1000 voxel and only few of them are part of our target
class, i. e. only 0.021 % of the data is defective. We, therefore, have to deal with highly imbalanced
data not only during training but also when validating our models. Because the fraction of “defect”-
voxels is so low, a model which labels each and every voxel as “flawless” would already achieve an
accuracy of 99.979 %. This would by no means be useful. Adding more defects to balance the data
would increase the “reality gap”: If we had 50 % of the voxels as part of defects, we would reduce
the penetration length which again would result in an unintended high scan quality. Moreover, only
about 20 % of the CT scan show the actual cast aluminum part. The rest is either air or outside the
cylindrical field of view. Neither can we increase the fraction of the cast aluminum part in the CT
scan as it would reach outside the field of view. Hence, we have to turn to measures which neglect
the prediction of true negatives and put more focus on the target class. We evaluate two measures:
(i) the probability of detection (POD) which tells us which fraction of the defects of a given size can
be found with a given confidence in a CT scan of given quality [203/204] (see Section[5.2) and (ii) the
intersection over union (IoU) which tells us more about the overall quality of the segmentation out-
put [205,206] (see Section[5.3). While the POD is well known to the domain experts [204,[207-209]],
the IoU is the standard tool for evaluating imbalanced data in the machine learning world [206]].
Furthermore, in Section [5.4| we provide a precision recall curve (PR curve) [210-212], which is the
equivalent of the receiver operating characteristics (ROC) [92,213] for highly imbalanced data to
find a good operating point. But first of all, in Section we analyze the realistically simulated
training data to put the evaluation results into context.

5.1. Statistics of The Training Set

In order to better interpret the results, it is important to get a notion of the structure of the training
and validation set. If we know how the data is composed, we know what we can expect from the
results. First, we have a look at the simulated CT data. A rough measure of the data quality of a
CT scan is its CNR. The CNR is defined as the difference of material peak and air peak divided by
the width of these peaks, i.e. CNR = (Umaterial = Hair)/ /0 * O rerial [334/34:[214]. Alternatively, we
can compute it with the help of a special test specimen, as defined in Section The CT scans
with the worst data quality in our data set have a CNR of 6.6, the ones with the best data quality
a CNR of 12.5. With that we are able to cover a wide range of data qualities during training and
validation. In addition, we take a closer look at the histograms of our CT scans. The CT scans of
our data sets utilize the full data range of 16 bit unsigned integers which allows for high gray-value
dynamics. The air and material peak of CT scans of good data quality are well defined and far apart
(see Figure [5.1a). For the CT scans of worse data quality the air and material peak are wider and
closer together (see Figure 5.1b). Of course, this is also expressed in the CNR, however, we need to

5. Evaluation of Highly Imbalanced Data

10° 10+
> >
2 1041 g 104
o 9]
=} >
o o
2 g
[t=4 [t

102+ 102+

100+ 004

0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
gray-value gray-value
(a) A histogram of a CT scans of good data quality. (b) A histogram of a CT scans of bad data quality.

Figure 5.1.: The CT scans in our training data are all stored as 16 bit unsigned integer and utilize the full data range. The
material peak (green) and the air peak (red) in the histograms of the data, however, vary depending on the
data quality. For CT scans of good data quality we have a high contrast and the peaks are far apart (a), while
for CT scans of bad data quality the peaks are close together (b). Furthermore, if the data is more noisy, the
peaks are wider.

consider the position of the air peak and the material peak also for the inference on unseen data.
Our models are trained with floating point values in the range [0.0, 1.0]. The 16 bit unsigned integer
values of the CT scans are mapped to [0.0, 1.0] so that 0 is mapped to 0.0 and the maximum possible
value of 16 bit unsigned integers, i.e. 65535, is mapped to 1.0. Therefore, during training, the air
peak is somewhere between 0.31 and 0.43 and the material peak is somewhere between 0.67 and
0.81. In production, however, the histograms may vary, for example, if they do not fully utilize the
data range. Hence, it is important to map the gray-values of the data to the range [0.0, 1.0] in a way
that the air and material peaks approximate those of our training set, i. e. the new input matches
the data domain of our training data. By augmenting contrast and brightness during training, we
mitigate the impact of an improper mapping. Nevertheless, we achieve better results using a well
defined mapping.

Next, we investigate our target class, the inner defects. In total we have 418 095 defects in the train-
ing set. However, while the training set comprises 675.00 billion voxels and of those about 94.40
billion voxels are part of our virtual cast parts, only 0.14 billion voxels actually show defects. More
important than the mere number of defects is the distribution of their size and how this affects mea-
suring the IoU. The diameters of our defects are chosen from a normal distribution with a mean of
6.36 voxels. Due to the clamping of values which are smaller than 1.82 voxels, we have more than
twice as many tiny defect instances than we have instances of other sizes (see Figure [5.24). For the
computation of the IoU, the number of voxels matters. Therefore, we calculate the maximum IoU
which is achievable when not detecting defects smaller than a given diameter. Despite having a lot
more tiny defects (with a diameter smaller than 5 voxels), their voxel count carries almost no weight
when computing the IoU. We observe the highest significance for defects with a diameter between
5 voxels and 18 voxels (see Figure[5.2b|for a more detailed correlation of the IoU and the voxel count).
This, in addition, means that by not detecting any defects smaller than 5 voxels diameter, it still is
possible to score an IoU of 97.4 %. However, for larger defects the impact of a slightly imprecise
segmentation becomes much more significant. The same gray-value and defect distributions hold

92

5.2. Probability of Detection

7-10%- 100 1 L4105
]
3
1 >
B 5 80 F3:10° @
5° 107] 2
c — 60]
9] ° 5%
S £ F2:10°9
2 3-10% c 40 G
& 5
F1-10°2
4 20 =
1-10%4 3
0 -
0 5 10 15 20 25 30 0 5 10 15 20 25 30
maximum defect diameter [vox] maximum defect diameter [vox]

(a) The histogram of the number of defects as a function of their (b) The maximum IoU which is still achievable when not detecting any

maximum diameter in dark blue. In red we plot the corre- defects which are smaller than a given minimum size is shown in
sponding normal distribution used in the simulation pipeline dark blue (considering the maximum diameter of each defect). The
to pick the defect sizes. corresponding total amount of voxels for defects with the given size

is shown in light blue.

Figure 5.2.: The peaks in the number of defects with a maximum diameter of 2voxels and 3 voxels occur due to the
clamping of the defect size to at least 0.2 mm when creating the defect meshes (a). Despite their large number,
the defects which have a diameter smaller than 5 voxels hardly influence the IoU (b).

for the validation set—only the absolute values are reduced by about a factor of 12.5.

The distribution of the surface defects is similar to the distribution of the inner defects. However, it
has a larger standard deviation and the minimum size is limited to 9.1 voxels. Smaller surface defects
are hard to distinguish from a rough surface. Initially, we place 33 750 defects, but sometimes they
are placed within screw threads and span across multiple threads. Therefore, the defects are split
into multiple smaller instances and we end up with 35 154 surface defects. This further means that
we have some instances in the data set that are smaller than the initially defined minimum size. The
surface defects make up 0.06 billion voxels in our data set. With the statistics of our data set in mind,
we now turn to the evaluation of our reference-free defect detection methods.

5.2. Probability of Detection

The POD is an instance-based measure telling us the probability at which a defect of a given size
can be found in a CT scan of a given data quality. This measure is widely used among domain
experts. Therefore, evaluating our algorithms in terms of the POD helps to further build up trust
among the user group. However, there are different ways to obtain this measure [203,[204]]: The first
method is the “hit/miss method”. This method requires a clear definition of a defect to be counted as
found, for example, a minimum confidence of 95 %. The confidence is usually defined as the fraction
of correctly found voxels of an instance. For each defect instance, we determine if it is properly
detected in accordance with the given criterion, i.e. a hit, or not, i.e. a miss. The POD for a given
defect size (or cluster of defect sizes) is then computed as POD = np;/(nhit + Nimiss), Where nyy is the
number of detected instances of a given defect size and nyss the number of instances of a given
size which is not found. The second method is the “a@ vs. a method”. This method is a non-binary
method which for each instance takes the confidence into account at which it is detected [203]. The
confidence again is defined as fraction of correctly found defect voxels. In Figure [5.3a] we compare

93

5. Evaluation of Highly Imbalanced Data

both methods. We observe that for the same data, the hit/miss method tends to lead us to believe
in the methods being better than they actually are. This is because the hit/miss method counts any
defect instance as hit which is above the confidence criterion independently of whether it is only
slightly above or at 100 % confidence. The a vs. a method in contrast further considers the difference
to 100 % confidence. Therefore, we choose the a vs. a method as it contains more information. The
following sections describe how to compute the “a vs. a method” (see Section[5.2.1) and how to put
it in context with the data quality measurements of the CT system (see Section|[5.2.2).

5.2.1. How to Compute the Probability of Detection

Computing the POD following [203] involves a lot of smoothing and re-sampling but yields more
interpretable results. First of all, we need to binarize our segmentation mask. As the POD itself
does not take false positives into account, choosing a threshold which labels everything as defective
would yield the best results. However, this would in no way be meaningful. Hence, we have to
make sure to keep the false positive predictions as low as possible and evaluate the POD for the
threshold which achieves the best IoU (see Section [5.3). For each defect instance in the ground
truth, we compute the equivalent sphere diameter (ESD), i.e. the diameter which a sphere of the
same volume as the defect would have, and the detection confidence g, i. e. how many voxels of the
defect are actually predicted as “defective”. Then, we cluster the defects by their ESD and compute the
mean /. and standard deviation o, of the confidence values for each cluster c. This has the possibility
to render some quantization artifacts into the data as smaller defects only have fewer voxels which
can be found. pi, and o, are used to perform a bootstrap re-sampling, drawing 1000 new samples from
a normal distribution N (g, o). This way, we have the same number of samples in all clusters. All
samples which are smaller than a given minimum confidence a are discarded, i. e. set to 0. Finally,
the POD for a cluster ¢ is computed as the mean of these samples (Equation (5.1)). We plot the POD
as a function of c¢. Normally, the resulting curve would be smoothed further by performing a logistic
regression, which we decide to skip to not further manipulate the results and shift the values towards
smaller defect sizes (see Figure 5.34).

1 N
POD; (c) = —

N & 10 otherwise

{“ fazd ithas N (1 00 (5.1)
In Figure 5.3b|we show the mean POD which our reference-free defect detection algorithms achieve
on our validation set. The results comprise all the CT scans of all data qualities. We set the con-
fidence threshold to 80 %. We see that, as expected, the machine learning-based methods achieve
significantly better results than the plain filter-based method. With the use of machine learning we
detect defects with a ESD of only 4 voxels at 50 % probability. To achieve the same with the filter-
based method we need to double the ESD. While the traditional method shows slight indications for
defects with an ESD smaller than 3 voxels, the deep learning method only starts to show indications
for defects with an ESD larger than 3.5 voxels. However, the deep learning method starts off with
a much higher probability, outperforming the traditional method. As we compute the POD thresh-
olding the prediction at the threshold that maximizes the IoU in each case there is a good chance
for false positive responses. Therefore, we further report the precision (measured per voxel) of our
methods. Usually, the false positive rate (or possibility of false alarms) is reported. However, this

94

5.2. Probability of Detection

100 A

80

80 1

60

o)
o
L

POD(a) [%]
POD(a) [%]

40 1 40

A A
f avs.a

201 ——- hit/miss 20

filter-based method
— traditional method
—— deep learning method

4 vs. a (smoothed)
hit/miss (smoothed)

2 3 4 5 6 8 10 15 2 3 4 5 6 8 10 15
Equivalent sphere diameter a [vox] Equivalent sphere diameter a [vox]

(a) When comparing the hit/miss method with the a vs. a method, (b) When computing the mean POD over all CT scans in the valida-

we see that the hit/miss method tends to yield better results, tion set for our three reference-free defect detection methods,
while the a vs. a method is more conservative. In addition, we we see that the machine learning methods detect smaller defects
see that by fitting a sigmoid to the results shifts the curve to- more confidently than the filter-based method. The lighter plots
wards better values. show the respective smoothed POD.

Figure 5.3.: We compare the two different methods to compute the probability of detection (a) and compare our three
defect detection methods in terms of the probability of detection using the a vs. a method (b). These results
are computed using the data of the validation set.

measure again includes the true negatives and, hence, would always be almost zero. For the filter-
based method, the traditional method, and the deep learning method we get a precision of 91.0 %,
91.7 %, and 92.4 %. The deep learning method yields the least false positive responses. A drawback
of using the ESD for this evaluation is that elongated defects which in general are much harder to
detect than roundish defects of the same ESD are put into the same cluster. If we now have much
more roundish than elongated defects in a cluster of defects with a smaller ESD and in the next
cluster we have more elongated defects, this can distort the results. This explains the dip in the POD
for a ESD of 6 voxels in Figure

A characteristic value of the POD is the aqg95 value at which a defect of given size a can be found
with a probability of 90 % at a confidence level of 95 %. For this, the POD needs to be computed with
a confidence threshold of 95 %. The domain experts define this value as the minimum defect size
which allows a trustful and reliable detection [207]]. However, using the smoothed POD curve for
this value has a huge impact on the aqg95 value. For our deep learning method we achieve an ag/95
value of 8.3 voxels on our validation set using the smoothed POD. For the traditional method we
obtain an ag,95 value of 9.3 voxels. For the filter-based method we could not compute a agg95 value
because only for the CT scan with the best data quality the filter-based method reaches a POD of
90 % at a confidence level of 95 % at all.

5.2.2. A Special Test Specimen

A very flat crack with a large extent might be far less visible than a spherical gas pore of the exact
same volume. The crack might only be one or two voxels thick, gaining its volume from its large
extent. In contrast, the gas pore has about the same diameter in every dimension. This distorts the

95

5. Evaluation of Highly Imbalanced Data

POD: We obtain a good detection for the gas bubble, while the detection confidence of the flat crack
might be considerably worse. For the computation of the POD to be independent of the actual shapes
of the defects and, therefore, to be more comparable, we design a special test specimen and use our
simulation pipeline to create realistic CT scans. This test specimen is inspired by the standards which
define how to measure the performance of a CT system (ASTM E 1441 [215] and ASTM E 1695 [216])).
Thus, we define the specimen in accordance with those standards: The test specimen has to be a
cylinder of the same material and about the same penetration length as the actual target part. Then,
we place 880 spherical defects, distributed over 11 discs with 8 rings each throughout the cylinder
(see Figure [5.4a). The size of the defects has to range from barely detectable to clearly visible. This
depends on the spatial resolution of the CT system, i. e. the size of the voxels and the focal spot size.
We suggest that the smallest defects should have a diameter of about two voxels, while the largest
defects should be bigger than two transitions from material to background plus some margin, in our
case about 10 voxels. For a smooth plot, there should be at least ten gradations in size. Each size has
to be present in each ring. This allows further evaluations of the detection rate as function of the
distance to the material boundary, i. e. the influence of beam hardening on the detection. (We will
analyze this in Section in terms of the IoU in our artifact-space.) The sizes of the defects need
to be drawn randomly (without returning) for each ring from the possible sizes so that the different
sizes are distributed equally over the possible positions. With a regular pattern strange quantization
artifacts occur, causing an early spike in prediction performance for certain defect sizes even though
the IoU is about the same for the regular pattern as for the random pattern. This is because we
compute the POD on voxel-basis, while the actual defects are continuous. Therefore, quantization
artifacts and the binarization of ground truth and prediction mask can add up beneficially for defects
of a certain size, if these instances are always aligned in the same way within the voxel grid. This can
cause the spikes which we observe in the plot (see Figure[5.5a). Additionally, the rings of defects need
to be slightly rotated against another to maintain equal penetration lengths and to avoid further build
ups of impeding effects. With all defects having one of n different sizes, we do not need to cluster the
defects by their ESD. Instead, we use the diameter of the meshes representing the defects. Figure[5.4a]
shows the arrangement of defects with randomly chosen defect sizes. The defects in our specimen
range from 100 pm to 1000 pm which corresponds to 0.91 voxels and 9.09 voxels, respectively. We
use ten different sizes (n = 10). The cylinder, in accordance with the training data, has a diameter of
80 mm and a height of 45 mm. We scan the test specimen with the same parameters which we use
for our training set (see Figure [5.4D).

As we design our POD specimen in accordance with the standards for evaluating a CT system,
we are able to combine the POD with the information we obtain from the data quality measures
which are defined in these standards, namely the modulation transfer function (MTF), the contrast
discrimination function (CDF), and the contrast detail dose (CDD).

Modulation transfer function Based on the material boundary of the test specimen, the MTF
quantifies the spatial resolution. To mitigate the disturbances of image noise, we first bin the
gray-values of all voxels which lie within a certain margin by their distance to the mate-
rial boundary. We so obtain the edge response function, i. e. the transition from material (or
foreground) to air (or background). Its derivative is the point spread function. The peak of
the point spread function which is centered around the edge encodes the information of how
wide the edge is. Using the Fourier transformation we convert the point spread function to the
MTF. For more implementation details, we refer to the standard ASTM E 1695 [216]]. In order

96

5.2. Probability of Detection

S :' ¢
.) B
[N L
'e’. N
L]
(a) Defect model of the test specimen for a more com- (b) A slice of the realistically simulated CT scan of the
parable POD calculation. test specimen.

Figure 5.4.: For a comparable POD calculation, we create a special test specimen with the defects arranged in concentric
circles. All defect sizes are distributed randomly within each ring to avoid discretization artifacts in the final
plot. This specimen further allows for the computation of data quality measurements like MTF, CDF, and CDD
in accordance with the standards ASTM E 1441 [215]] and ASTM E 1695 [216].

to compare the results to those of the POD and for the computation of the CDD, we need to
transfer the MTF back into the spatial domain, sampling the MTF at the desired feature sizes
(compare ASTM E 1441 [215])).

Contrast discrimination function Based on the inner part of the test specimen, the CDF quanti-
fies the contrast sensitivity. To compute the CDF an iteratively increasing tile pattern is used.
In each tile we compute the mean gray-value. Then, we compute the standard error in the tile
set and increase the tile size. The CDF, therefore, shows the standard errors as a function of
the tile sizes. For more implementation details, we refer to the standard ASTM E 1695 [216]).
From the CDF value with a tile size of 1, we can further compute the CNR by 3/CDF(1) [216]].

Contrast detail dose The CDD combines the MTF and the CDF with a so called physiological fac-
tor. This factor should reflect the capability of the auditor, trying to quantify what an auditor
is able to see [215]. The CDD is computed as the physiological factor times the CDF divided
by the MTF (in the spatial domain). For more implementation details and more information
on the physiological factor we refer to the standard ASTM E 1441 [215]).

Originally, all these measures are calculated using a single slice of the data taken from the center of
the CT scan. However, in our case the CDF cannot be computed in the central slice because the inner
region, which is defined by 13 r, is filled with defects which would disturb the calculation. We delib-
erately place the defects in the center slice to further obtain POD values for the best reconstruction,
i.e. the region with the least Feldkamp artifacts. Consequently, we compute the quality measures
in a slice centered between the central disk of defects and the next disc of defects, assuming that
the Feldkamp artifacts from the reconstruction do not carry as much weight at that position. With
the POD we can tell for a given system and a given CNR which defects can be recognized at which
confidence. We can now change our CT system, altering the CNR of the CT scans in order to de-

97

5. Evaluation of Highly Imbalanced Data

1001 1004 — R —
80
S 60 9 104
T =
a T
o 40 4 CDD
o 14
CDF
201 —— helical pattern —— MTF
0 —— randomly positioned —— POD
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
defect radius a [vox] Feature size a [vox]

(a) If the defects align with the voxel grid in an unfortunate way, (b) Using the test specimen, the results of the POD can be easily

discretization artifacts manifest as a strange spike in the plot. plotted side by side with the data quality measures defined in
Randomly choosing the defect sizes mitigates the discretization [215l216]). Note that the y-axis is in logarithmic scale as required
artifacts, resulting in a smooth plot. by [215]]. The CNR of the CT scan is 7.4.

Figure 5.5.: The test specimen needs to be designed properly to avoid discretization artifacts (a), but then it allows for a
comparison with the data quality measures in accordance with the ASTM standards (b).

termine how robust our defect detection method is. The idea behind comparing the POD to these
data quality measures is to enable the users of a defect detection system to scan a solid cylinder
(without defects) in accordance with the standards [215}[216]] and to, then, draw conclusions about
the results they can expect. However, correlating these measures is difficult. Even though it seems
to be a good idea to compare the MTF to the POD as the MTF measures one transition from bright
to dark, and the POD basically measure two transitions (white to dark to white) there is a signif-
icant difference between both. The MTF is measured at the outer material boundary, which only
slightly changes when decreasing the data quality. The POD, in contrast, is measured at tiny defects
in the center of the material which tremendously change their appearance when decreasing the data
quality. The CDF is also measured at the center part of the test specimen, however, it only carries
information about the image noise in the CT scan. The CDD which is a combination of MTF and
CDF could, therefore, be suited to draw conclusions about the detectability of defects. But it includes
an arbitrarily chosen factor, the physiological factor. Nevertheless, for a physiological factor of 2.0
we obtain a quite good match of the CDD-50 and the POD-50 value, i. e. the feature size for which
both curves cross the 50 % line. For the deep learning method we obtain a factor of about 1.45, for
the traditional method a factor of about 1.56, and for the filter-based method a factor of about 1.93.
While this is only a rough correlation and does not allow to provide any guarantee, it could give a
good indication of how well the system will work.

In Figure we show the corresponding POD plots for the filter-based method, the traditional
method, and the deep learning method. We evaluate three different data qualities which have a
CNR of 14.8, 9.8, and 4.8, respectively. For the deep learning method, we see that it does not detect
any defects with a radius smaller than 2 voxels. After that, the detection probability quickly grows
towards 100 %. In addition, for the deep learning method, the POD curves of all data qualities lie
close together, which indicates a high robustness against changes in the data quality. However, we
observe a drop at larger defects. This probably is due to a slight under-segmentation of larger defect
instances. With the POD we observe that on CT scans of high data quality the traditional method
is slightly better than the deep learning method as it is able to detect even smaller instances. But as

98

5.3. Intersection over Union

100 A
80
= 604
G
a
O 40
o
20 filter-based method
—— traditional method
01 —— deep learning method

1 2 3 a 5 6 7 8 9
defect radius a [vox]

Figure 5.6.: What at first seems very confusing requires a brief explanation: We plot the POD which our reference-free
defect detection algorithms achieve on the test specimen at different quality-levels. The solid line shows the
POD for an average scan with a CNR of 9.8. We further plot the POD for a scan of better data quality (with a
CNR of 14.8, dashed line) and a scan of worse data quality (with a CNR of 4.8, dotted line). We see that the deep
learning method yields robust results for a wide range of data qualities (the POD curves are close together),
while the traditional method starts to loose smaller defects with a decrease in the data quality. The filter-based
method struggles heavily as soon as the data quality slightly changes. The drop we observe at larger defect
sizes in the curve of the deep learning method is due to a slight under-segmentation of larger defects. These
results are computed using the CT scans of our test specimen.

soon as the data quality recedes, the POD curves flatten, shifting a secure detection towards larger
instances. When looking at the filter-based method, this effect becomes even more apparent. A wide
gap opens up between the best and the worst data quality we evaluate the method on.

With the test specimen a more controlled evaluation is possible and we can determine a more reliable
aggy95 value. The deep learning method achieves an agg95 value of 5.6 voxels for the CT scan with a
CNR of 9.8 and the traditional method an agg95 value of 9.3 voxels. However, the filter-based method
still requires a better scan quality for a agy/95 to be computable. For the CT scan with a CNR of 14.8
it achieves an agg,95 value of 12.7 voxels which still is far behind the machine learning methods. One
drawback of this special test specimen is that it does not consider all the artifacts which might occur
in production. In particular, streaking artifacts arising from the partial volume effect are neglected
completely and the scattering probably is different for the actual object.

5.3. Intersection over Union

The IoU (or Jaccard-index) is a voxel-based measure telling us more about the overall quality of our
segmentation mask [[205]. Yet, it does not provide any information about whether a loss in IoU arises
from missing out one large instance, from missing out many tiny instances with the same combined
volume, or from introducing a lot of false positive responses, i.e. the IoU is biased towards large
instances [17]]. Therefore, we also have a brief look at the instance-based intersection over union,
which further weights the contribution of each voxel by the size of the instance it belongs to.

99

5. Evaluation of Highly Imbalanced Data

100

loU [%]

! filter-based method

201/ .
—— traditional method :
‘*— deep learning method
0 : . . .
0.0 0.2 0.4 0.6 0.8 1.0

probability threshold

Figure 5.7.: The IoU as a function of the threshold which is used to create the binary segmentation from the probability
map. The solid line shows the average IoU, the dashed line the IoU achieved on the CT scan with the best data
quality, and the dotted line the IoU achieved on the CT scan with the worst data quality.

5.3.1. Computation of the Intersection over Union

As its name suggests, the computation of the IoU is less tedious than computing the POD: It is
the intersection of the two binary masks which we like to compare, i. e. the ground truth and the
prediction, divided by their union (see Equation (5.2)) [205].

_ prediction n ground truth TP
~ prediction u ground truth ~ TP + FP + FN

(5.2)

Our predictions are non-binary probability maps. Therefore, we can plot the IoU as function of all
possible thresholds to binarize the probability map (see Figure[5.7). This plot not only provides us
with the best threshold to create the binary segmentation mask, it further gives us a notion of how
accurate and how crisp the probability map is. If the plot shows us a wide plateau, the segmentation
algorithm yields a very crisp segmentation mask. If the IoU of this plateau, in addition, is at a high
level, we, furthermore, have a very precise segmentation mask, as it is the case for the deep learning
method. Here, we almost can choose an arbitrary threshold to binarize the segmentation mask.
In contrast, if we only have a narrow peak in the plot, it indicates a more unspecific and fuzzy
segmentation mask, as it is the case for the filter-based method. Here, we have to be very careful in
choosing the right threshold. Additionally, we see that the filter-based method has the largest loss in
prediction performance when turning from CT scans with good data quality to ones with lower data
quality. The deep learning method handles this best throughout our validation set with all the results
being very close together, almost independent of the data quality. For the traditional method we see
a gap opening up between the two curves which indicates that the confidence of the method declines
as the data quality decreases and the segmentation of the defects becomes imprecise. We observe a
similar behavior on our real CT scans. In Table[5.1]we compare the IoU our methods achieve on our
realistically simulated validation set to the IoU they achieve on our two labeled real CT scans. We see
that the relative drop in prediction performance between simulated and real data is about the same
for all our methods—learning based or not. We have two explanations for this: Either the synthetic
data misses crucial aspects of the real world, or the labels of the real data are not precise enough

100

5.3. Intersection over Union

and limit the prediction performance. Nevertheless, it can be seen that the learning based methods,
which are trained solely on our simulated training set, outperform the filter-based approach. We,
therefore, argue that the precise labels of our synthetic data pay off.

method simulation real data

filter-based 48.5% (82.1 %/47.2%) | 40.7%, 29.9 %
traditional 82.6 % (86.9 %/81.0 %) | 56.6 %, 43.5%
deep learning | 85.9 % (86.6 %/85.3 %) | 60.7 %, 47.3 %

Table 5.1.: The table shows the maximum IoU which our methods achieve. The first column shows the results of our
simulated data: average (best/worst). The second column shows the results of our real CT scans: aluminum

part, pivot cap.

To give a brief insight into how the defect segmentation looks like, we show eight sample patches
with the results of our three reference-free defect detection algorithms in Figure Four patches
are taken from the CT scan of the aluminum part and four are taken from the CT scan of the pivot
cap. These patches illustrate the issues which separate our methods from being perfect classifiers.
For the filter-based method we see that it is particularly challenged with image noise. In the patches
of the aluminum part the defects are slightly under-segmented; however, by lowering the threshold
we would introduce too many false positives in the noisy areas of the CT scan. To achieve an optimal
IoU we, therefore, have to live with under-segmentation and missing the tiny defects. In contrast,
in the CT scan of the pivot cap we only obtain a good segmentation of the defects by accepting a lot
of false positive responses. The data quality is too bad to find a good globally optimal threshold for
the results of the filter-based method. The machine learning methods—the deep learning method in
particular—are good in dealing with the noisiness of the data. However, the traditional method tends
to over-segment defects in noisy environments. Nevertheless, the traditional method also yields
indications for tiny defect instances, while the deep learning method seems to completely ignore
defects smaller than a minimum size of 2 voxels.

With evaluating the POD and the IoU of our reference-free defect detection methods on simulated
and real data, we demonstrate both the eligibility of our realistic simulations as training data for
machine learning models as well as the advantages of our machine learning methods. Especially for
CT scans of low data quality, the deep learning method yields very promising results.

5.3.2. Artifact Space Evaluation

Our synthetic validation set comprises two virtual cast parts, for which we have 27 realistically
simulated CT scans with three gradations in each dimension of our artifact space (noise, beam hard-
ening, and ring artifacts). We can use those CT scans to further examine the influence individual
artifacts have on the automated detection of defects and their precise segmentation. We separate the
prediction results along one axis of the artifact space and compute the mean IoU as well as its stan-
dard deviation over the remaining axes. In Figure 5.9 we show how the prediction results degrade
when increasing noise, beam hardening, and ring artifacts individually.

From Figure we see that noise has the most considerable influence on the prediction perfor-
mance. The mean IoU drops significantly as the noise-level increases. Moreover, the standard de-

101

5. Evaluation of Highly Imbalanced Data

L | I’ et
H i 3 F--llr
- - # 3 Li' .‘
L 1 " L
i LS == j i
= I’ 1
i 5 ﬂ-qlf
I h %
. o # ;--' "
i = 5 == ||. '.'
L I’ o
i 5 F l1|r
3 :"_ ~ # B
£ - 1 ==+ ! '.'
= I’ hoa b
L
e . = i
i I' ! '.'
aluminum part pivot cap

Figure 5.8.: Prediction performance on real CT data. From top to bottom: Original gray-values, results of the filter-based
method, the traditional method, and the deep learning method. In green we show the true positive predic-
tions, in red the false negatives, and in blue the false positives. We see that the filter-based method especially
struggles with the noisiness of the data. Here, it is particularly difficult to weigh up precision and recall. We
either miss out tiny defects (patches on the left) or introduce false positive responses (patches on the right).
The traditional method is able to contain the number of false positive responses but still has some problems
with noisy data. The deep learning method, in contrast, only produces very few false positives most of which
result from a too generous labeling. Yet, it seems to have problems finding the smallest defects in this data set.

viation notably increases when moving from low noise-levels to higher ones, which means that
with a high noise-level other artifacts become more impeding, too. The filter-based method particu-
larly suffers from image noise, while the machine learning methods, most notably the deep learning
method, are less sensitive. We observe the same effect for cupping artifacts which arise from beam
hardening, albeit less significant. The drop in terms of the mean IoU is smaller when increasing the
beam hardening, but we have an overall higher standard deviation (see Figure[5.9b). This is because
the results now include all noise levels. We also observe a slight increase in the standard deviation
when increasing the effect of beam hardening, which suggests that the impact of other artifacts in-
creases when the cupping artifacts become more severe. Again, the filter-based method suffers most
from this type of image artifact. Ring artifacts seem to have the least significant influence on the
prediction performance. The mean IoU barely drops, even for predictions of the filter-based method
and the standard deviation stays at about a constant level. The high standard deviation is explained
by the influence of the two other types of image artifacts.

Up to now we keep the strength of the individual artifacts within the scope of a meaningful CT scan
as it can appear in the everyday life in the quality laboratory. With our fully automated simulation
pipeline it is conceivable to further investigate the impact of individual artifacts on the detection
algorithms beyond the current limits.

102

5.3. Intersection over Union

100 100 100
90 90 A 90 -
————————— Thr=——— mr s P e e e Dl eetesd
o kS o ? Poreomnnes & P Poosesonss 7
80 P o 80 80
X S X
S 704 S 704 S 70 4
o o o
60 - 60 - 60 -
50 1 filter-based method 50 1 filter-based method 50 1 filter-based method
-~ traditional method -~ traditional method ~C- traditional method
-@- deep learning method -@- deep learning method -@- deep learning method
0 - T T 0-— T T 0 - T T
low noise mid noise high noise low beam hard. mid beam hard. high beam hard. low ring art. mid ring art. high ring art.

CNR=15 CNR=10 CNR=7 1.0 mm Cu 0.5 mm Cu no filter

6

a) noise (b) cupping artifacts (c) ring artifacts

Figure 5.9.: Insights from the artifact space: As we simulate the different artifact types at different strengths for the same
virtual cast parts, we can further examine the impact an individual artifact-type has on the prediction per-
formance. For this, we project all results onto a single dimension of our artifact space and plot mean and
standard deviation of the IoU. This reveals the influence of the different artifact types on the outcome. We see
that noise clearly has the most significant influence on the detection of defects. Whereby, the deep learning
method seems to be very robust against noisy data. Cupping artifacts impede the precise segmentation, too.
Machine learning methods, however, clearly benefit from the statistics they draw from similar data of the
training set. Ring artifacts have the least influence, probably because severe ring artifacts only rarely occur
around the rotation axis of a scan. The small patches beneath the plot visualize the strength of the respective
artifact type. Note that we cut the y-axis so that only the relevant part from 50 % and above is displayed.

5.3.3. Instance-based Intersection over Union

Augmenting the IoU with the size information of the individual instances gives us the instance-
based intersection over union (iloU) [[17]. This measure is more complex to calculate and harder to
interpret as we have to take the sizes of the individual instance into account. It removes the bias
towards larger instances from the IoU by weighting the contribution of each instance i in relation to
the size of the average instance so that smaller instances gain higher weights and larger instances
lower weights [[17]. Compare Equation (5.3), where s; denotes the size in voxel of instance i and N
is the total number of instances.

w0, TP; . NS
2 , with w; = Y= (5.3)
>, wiTP;+ FP + Y, ;FN; S

iloU =

In Figure [5.10] we plot the iloU as a function of the probability threshold as we did for the IoU. The
iloU draws a different image. In terms of the iloU the traditional method seems to outperform the
deep learning method, as it also detects instances which are smaller than 2 voxels in diameter. This,
however, only is possible by accepting more false positive responses. Due to the crisp segmentation
the deep learning method has not that much leeway. We see this in the drop of precision when we

103

5. Evaluation of Highly Imbalanced Data

100

801

iloU [%]

filter-based method
—— traditional method H
—— deep learning method

0 ‘ : . :
0.0 0.2 0.4 0.6 0.8 1.0
probability threshold

Figure 5.10.: The iloU as a function of the threshold which is used to create a binary segmentation from the probability
map. The solid line shows the average iloU, the dashed line the iloU achieved on the CT scan with the best
data quality, and the dotted line the iloU achieved on the CT scan with the worst data quality.

use the threshold that maximizes the iloU. For the filter-based method, the traditional method and
the deep learning method we get a precision of 85.9 %, 88.1 %, and 89.0 %, respectively. Interestingly,
the differences between the CT scan with the best data quality and the one with the worst data
quality is increased for all methods. This probably is because for CT scans with worse data quality

detecting smaller defects is more challenging. Table [5.2] further shows the results for the real CT
scans.

method simulation real data

filter-based 24.6 % (56.9 %/24.4 %) | 38.5%,23.8%
traditional 63.2% (74.2 %/54.6 %) | 53.5 %, 30.8 %
deep learning | 59.7 % (63.5 %/55.1%) | 42.7 %, 26.1%

Table 5.2.: The table shows the maximum iloU which our methods achieve. The first column shows the results of our
simulated data: average (best/worst). The second column shows the results of our real CT scans: aluminum
part, pivot cap.

While the deep learning method loses ground for CT scans of good data quality, it still can make
good use of its strength for CT scans of low data quality. The deep learning method yields very
promising results especially for CT scans of low data quality (see Section|[6.1).

5.3.4. Comparing Different Model Architectures

As mentioned in Section we evaluated different model architectures. In Figure we show
a quantitative analysis of these model architectures in terms of the IoU and the POD. We eval-
uate (i) the architecture which comprises three-dimensional convolutions and context aggregation
through spatial reduction; (ii) the slice-wise processing of the input along orthogonal slices using the
U-Net architecture and an element-wise maximum to combine the results of the different directions;
and (iii) the architecture that uses three-dimensional dilated convolutions for context aggregation.

104

5.4. Precision Recall Curve

100 100
—— 3d convolutions w/ spatial reduction \/\«
tri-planar slice-wise processing
)) 80 1
95 1 3d dilated convolutions
_ R 60
X —
-)
3 Q
o
=2 E 40 4
20 1 —— 3d convolutions w/ spatial red.
tri-planar slice-wise processing
3d dilated convolutions
. g 0 -— T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 2 4 6 9 12 15 18 21
probability threshold Equivalent sphere diameter a [vox]
() intersection over union (b) probability of detection

Figure 5.11.: The quantitative results of the model architectures which we examined in Section are comparable.
The model which uses dilated convolutions to aggregate context information is slightly more vulnerable to
changes in data quality and needs larger defect sizes for a proper detection. The model which uses spatial
reduction to aggregate context information is least vulnerable to changes in data quality. The element-wise
merging of the individual results of the tri-planar slice-wise processing approach using a maximum operation
yields two spikes in the IoU. The slice-wise processing also detects some of the smaller defects. Note that
these results are from a different iteration of our validation set and, therefore, slightly differ from the results
presented before. The dashed lines corresponds to the results for the best data quality, the dotted lines to the
worst data quality and the solid lines represent the average over all data qualities.

On average the different model architectures yield about the same IoU (88.2 %, 88.6 %, and 87.8 %,
respectively). The slice-wise processing even manages to slightly outperform all other models on
CT scans with a high data quality. However, the model architecture which aggregates the necessary
context information through spatial reduction slightly outperforms the other models on CT scans
of bad data quality. The slice-wise processing and the model which uses dilated convolutions for
context aggregation seem to be more vulnerable to higher artifact-levels. The difference between
their results on the CT scan with the best data quality and the one with the worst data quality is
significantly larger (see Figure [5.11a). In addition, for the slice-wise method we observe two spikes
in the plot which probably arise due to the element-wise merging of the three individual results
using a maximum operation. In terms of the POD (Figure the slice-wise processing manages
to detect at least some of the smaller defects (which have an ESD of 4.0 voxels or less). The POD of the
dilated convolution model constantly is slightly below the POD of the other models. While the model
which aggregates its context information via spatial reduction does not detect any defects with an
ESD lower than 4.0 voxels, it achieves a higher POD for larger defects than the other models.

5.4. Precision Recall Curve

A crucial step to obtain a good segmentation from the probability output of the defect detection
method is to choose the right threshold. Here, we need to weigh the sensitivity of a classification or
segmentation system and the amount of false positives it introduces. The ROC curve offers a tool
that allows us to tune the hyper-parameters of a system by plotting the true positive rate and the
false negative rate while varying a hyper-parameter, e. g. the threshold to binarize the probability

105

5. Evaluation of Highly Imbalanced Data

output [92}213]]. Additionally, it provides a more general overview of the overall performance of
the respective method. However, the ROC takes into account the true negative predictions, which
does not allow for a meaningful comparison of our defect detection algorithms due to our highly
imbalanced data set. All the curves go through the upper left corner, far from the random classifier
which is represented as a diagonal from (0.0,0.0) to (1.0, 1.0). This suggests the methods to have
all a very high prediction performance, even though there are vast differences between them (see
Figure [5.12a). Therefore, we compute the equivalent of the ROC for imbalanced data, the PR curve.
It shows the relation of “how many of the voxels which are labeled as ‘defective’ actually are ‘de-
fective’”, i.e. the precision (see Equation (5.4)), and “how many of the total ‘defective’ voxels are
actually labeled as ‘defective’”, i. e. the recall (see Equation (5.5)), while varying the threshold which
is used to binarize the prediction [210}211] (see Figure[5.12b). The baseline in a PR curve, i. e. a ran-
dom classifier, is determined by the proportion the positive class represents in the data set, while
the curve of a perfect classifier would go through the upper right corner, i. e. finding all voxels of
the target class and not yielding any false positive responses. In our case the baseline is very close
to zero, at 0.02 % and, therefore, not explicitly included in the plot.

. TP TP

Precision = TP+ FP (5.4) Recall = TP+ FN (5.5)
From the IoU plot in Figure|5.7| we already know that the deep learning method only predicts very
confident results. Therefore, there is not much change when varying the probability threshold. This
also reflects in the PR curve which we show in Figure With the deep learning method we have
a very strong and confident classifier. For the traditional method we see that as soon as we increase
the recall to find more and more defects we rapidly start losing precision, i.e. we get more false
positive responses from image artifacts. The filter-based method never reaches a high precision, be-
cause at low recall the segmentation of the larger defects is imprecise as they are under-segmented,
and when increasing the recall we certainly obtain a better segmentation but also introduce much
more false positive responses.

A way to reduce the PR curve to a single performance measure is to compute the area under curve
(AUC) [210]). A better classifier reaches farther out to the upper right corner and, therefore, covers
more area of the plot. For the filter-based method, the traditional method, and the deep learning
method, we achieve an AUC of 0.47, 0.78, and 0.96, respectively. If we would compute the AUC with
only few support points, it would be important to consider that the interpolation between two points
of the PR curve is non-linear [|212]].

5.5. Comparisons with Destructive Methods

From Chapter [3]we know that labeling real CT scans is an almost impossible task. Thus, it is corre-
spondingly hard to carry out a reliable quantitative evaluation on real CT scans. Trying to obtain a
better ground truth for validation, we call in another imaging domain: We switch from NDT meth-
ods to destructive ones; we cut the aluminum part in half (after doing the CT scan) and label the
defects in the cut image. The cut image has a high spatial resolution as well as a very high con-
trast resolution (compare Figure[5.13a). This makes the labeling of defects much easier than in a CT
scan—especially since there is only one layer to label. However, we still cannot use this method to

106

5.5. Comparisons with Destructive Methods

1001 100 /=
< 80 1 80 1
o =
® 601 Z 601
2 S
= i1
8 401 3 401
o s
% filter-based method filter-based method
* 20| traditional method 207 traditional method
—— deep learning method —— deep learning method
% 20 40 60 80 100 % 20 40 60 80 100
false positive rate [%] recall [%]
(a) receiver operating characteristics curve (b) precision recall curve

Figure 5.12.: To determine an optimal operating point of a classification (or segmentation) system, the PR curve provides a
tool for imbalanced data sets (b), where the ROC curve would not be meaningful (a). The better the classifier
the farther the PR curve reaches towards the upper right corner. A random classifier would form a straight
line at the precision which corresponds to the portion of the target class (0.02 % in our case). The deep learning
method is the most confident method. The traditional method rapidly looses precision when reaching a
certain level of recall, indicating it introduces more and more false positive responses. The filter-based method
struggles with under-segmentation for low recall and suffers from high false positive rates at higher recall
values.

create enough training for a proper training. For a conclusive evaluation and a comparison to long-
established destructive methods a single labeled slice is sufficient. In this section we compare the
results of a cut image to the results which our deep learning method achieves on the corresponding
CT scan.

The Austrian institute for foundry (OGI) has done these measurements. As a test specimen, they
used a stepped pyramid in which they artificially placed defects by foaming the melt [217]. Then,
after performing a CT scan and cutting open the pyramid, they made a two-dimensional image of
the cut surface (see Figure [5.13a). In order for us to further evaluate our method, the OGI have
thankfully shared this data with us. Still, we find it quite hard to do a quantitatively meaningful
comparison. The hardest part is to correctly align the cut image with the CT scan. The cut image
has a much higher spatial resolution. We, therefore, see much smaller defect instances which are
not visible in the CT scan. Moreover, the voxel grid is not aligned with the cut. Thus, we have to
interpolate between voxels in order to obtain a slice which corresponds to the cut image. Finally, due
to the underlying physics of the imaging process, the CT scan is more blurry, which means defects
from adjacent slices shine through on our target slice and so do our predictions. These defects,
however, are not cut open in the cut image and, in consequence, are not visible. We align the cut
image with the CT scan as best as possible, which enables us to see a clear correlation and allows at
least for a qualitative comparison (see Figure [5.13b). A quantitative comparison, for instance, using
the IoU measure is not advisable as the slightest misalignment of the cut image and CT scan has a
tremendous effect on the IoU.

Hence, we move to a comprehensive, derived measures, for a quantitative comparison. We measure
the overall porosity of the cut image and of the corresponding region in the CT scan which is close
by. In the analysis of the OGI, the cut image shown in Figure has a porosity of 2.2 %. To be more

107

5. Evaluation of Highly Imbalanced Data

(a) a cut image of a step pyramid [217]] (b) about the same slice in the corresponding CT scan

Figure 5.13.: Another way to evaluate a novel defect detection and segmentation algorithm would be the comparison
to established methods like the destructive method of using cut images (a). However, this comparison is
challenging in multiple ways. (i) First of all the cut image usually has a much better spatial resolution than
the CT scan which makes it possible to even detect smallest defects. (ii) It is hard to correctly align the slice
with the CT scan. (iii) Due to the physics of the imaging process the CT scan is more blurry than the cut image.
Therefore, defects from adjacent slices which are not visible in the cut image shine through. Nevertheless,
we can see correlation between the cut image (a) and the corresponding slice in the CT scan (b). While it
allows a brief qualitative comparison, using it for a meaningful quantitative evaluation, however, would be
questionable. The overlay in (b) represents the prediction output of our deep learning method.

precise, 2.2 % of the material part are pores. For about the same region in the CT scan we observe a
total porosity of 2.4 % which matches the porosity determined by means of the cut image.

The first evaluations of our reference-free defect detection (and segmentation) methods are very
promising: By showing that all three methods—learning-based or not—show a drop in prediction
performance when switching from our realistically simulated data to real CT scans, we argue that
our simulated data set is sufficient to train a machine learning model for the detection of defects in
CT scans of cast aluminum parts. Moreover, we observe that the deep learning method yields the
most robust results with the least false positive responses. Yet, for CT scans with a sufficient data
quality the traditional machine learning method slightly outperforms the deep learning method by
finding smaller instances. Nevertheless, for CT scans with low data quality the deep learning method
yields the best segmentation. So far we only considered the precise segmentation of the defects. In
Chapter[6lwe will put deep learning through its paces and in Section[6.3] in particular, we will extend
it to distinguish between different types of defects. We further evaluate how well the deep learning
method performs in in-line scenarios in which we have to deal with especially challenging data and
we examine what happens when altering the modality of the input data.

108

6. Discussing Deep Learning

In the previous chapter we introduced the tools to evaluate our reference-free defect detection meth-
ods and have shown that (a) our realistic simulations serve well as training data, in particular because
of their precise labels, and that (b) the deep learning method is able to outperform other methods,
especially on CT scans of poor image quality. However, we not only need to beat another high
score [26], we like to develop a robust and reliable deep learning product which enables quality spe-
cialists to solve the inspection tasks of their daily routine more easily. With this premise in mind,
in this chapter, we further explore the possibilities and limitations of this approach. As we observe
the deep learning method to be particularly promising in CT scans of low data quality, we evaluate
the performance of our method in in-line scenarios, in Section Here, the inspection has to keep
up with tight production schedules, which means there is only little time to acquire the data neces-
sary for a reliable decision. The CT scans look accordingly: noisy and artifact-prone [42,43[]. With
our deep learning method not only being very precise but also quite fast in inference, we should
be capable of obtaining robust results and staying within the timing constraint. In Section [6.2| we
examine how we can adapt our model which we designed to segment defects in CT scans of cast
aluminum parts to different applications. Here, we encounter particularly challenging CT scans as
the materials are hard to penetrate or the target is surrounded by a material which is hard to pen-
etrate and consequently only shows a very limited contrast resolution. Inspection tasks often not
only require to detect and to precisely segment defect instances but also to classify them. For ex-
ample, cavities are considered more harmful regarding the stability of a part than gas pores [1]. We
tackle the subsequent classification of defects in Section[6.3] Finally, a major concern of some users
is the question what happens if they deviate from the intended use case. Will the model confidently
predict false positive results or will it confidently ignore true positive incidents? And how can this
be avoided? Hence, we include the model uncertainty in our analyses in Section to provide the
user with further information about the trustworthiness of the results. While we got along with
only one training set, one validation set, and two real CT scans in the last chapters, we introduce
plenty of new data sets for training and for validation as well as further real CT scans throughout
this chapter. In Appendix[A] we, therefore, provide an overview of all the data sets mentioned in this
chapter and an overview of all the models trained in Section|[6.1]and Section[6.2]in Appendix [B]

6.1. Eligibility for In-line Scenarios

When moving from a random sample inspection to a full in-line inspection of the entire production,
the time constraints become much tighter and, hence, the artifact-level of the CT scans increases.
Often, we only have up to two minutes for a CT scan of a part which has the size of a typical car
cylinder head [44]]. Unfortunately, the acquisition of a CT scan which allows for an uncomplicated
inspection is time consuming: it is necessary to take a large amount of projections to reduce sampling
artifacts and to use long exposure times per projection to mitigate image artifacts, noise above all

6. Discussing Deep Learning

\I
*\.

(a) A CT scan from the quality laboratory (b) The same part scanned under in-line (c) The CT scan after trading spatial resolu-

using an exposure time of about 1400s conditions using an exposure time of tion for contrast; scanned in 120 s but at
at 225kV and 2mA. only 120s. 320kV and 3 mA.
Figure 6.1.: CT scans of varying image quality. The arrows indicate the positions of the same features in each

scan. To increase the contrast in fast CT scans, we can go to higher energies so that more photons arrive at
the detector. This, however, leads to a lower spatial resolution, mostly caused by large focal spot sizes.

[35[43l[215]. The low data quality of the CT scans affects the semantic segmentation of the defects.
To provide an example, Figure shows a slice of a CT scan of an aluminum part as it could occur
in the quality laboratory. The scan is taken with 225kV at 2 mA using an exposure time of 1s per
projection. When examining a random sample in the quality laboratory, we usually have the time to
take care of both, the spatial resolution and the contrast resolution. We mitigate the artifacts arising
from beam hardening by using a pre-filter of 3 mm of copper. In total we acquire 1440 projections.
The slice in Figure[6.1b|shows the same part. This time, the CT scan is done within the time limit of
two minutes. While we maintain the spatial resolution, the contrast resolution significantly suffers
from the short scan time and we have to deal with a high noise-level. Furthermore, we reduced the
pre-filter to 0.5 mm of copper to increase the amount of photons arriving at the detector. The defects,
especially the smaller instances, are almost lost in the image noise. By trading spatial resolution for
contrast resolution, we keep the noise-level low. This requires to increase the power (or rather the
voltage) of the source, which on the other hand results in an increased focal spot size. When keeping
the time constraint fixed and going for higher contrast resolution, the spatial resolution will suffer
inevitably [42]). We increase the tube voltage to 320 kV. The CT scan becomes less noisy but appears
to be more blurry (see Figure [6.1¢). While the defects become more visible to human inspectors,
their representation in the image domain of the CT scan changes: The transitions from material
to background become wider, which affects the machine learning methods in particular because
they are used to crispier transitions. Therefore, we first set up an experiment to see how well our
reference-free defect detection methods handle CT scans of decreasing data quality and, then, test
the deep learning method in a real in-line scenario.

6.1.1. Scan Time Reduction

Our machine learning methods, the deep learning methods in particular, yield promising results on
CT scans of low data quality and, therefore, should be able to cope with the fast CT scans. To evaluate
by how much we can decrease the scan time before we significantly differ from a precise segmenta-

110

6.1. Eligibility for In-line Scenarios

. MR

(a) Simulated data: When reducing the total scan time by gradually decreasmg the exposure time per projection, we observe an increase
in noise. From left to right we use a total scan time of 720s, 360 s, 180 s, and 7.2 s. Each CT scan is reconstructed from 720 projections.

(b) Real data: When reducing the total scan time by reducing the number of projections, we do not only observe an increase in noise but
also the emergence of aliasing artifacts due to under-sampling. From left to right we use 3300, 825, 165, and only 33 projections to
reconstruct the CT scan. Each projection has an exposure time of 0.4 s.

Figure 6.2.: To reduce the total scan time, we can either reduce the exposure time per projection (a) or we can reduce the
number of projections (b). Both decrease the total amount of information which is available in each voxel of
the reconstructed CT scan. Reducing the number projection, in exchange, further induces aliasing artifacts to
the CT scan.

tion, we simulate 14 CT scans while decreasing the exposure per projection (see Figure[6.2a). Thus,
all CT scans have the same number of projections, i. e. 720. However, the overall simulated scan time
is reduced from 720 s to 7.2 s. For this data set we use a CT setup from our training data with low
beam hardening and medium ring artifacts, i. e. 225kV at 1 mA with a pre-filter of 1 mm of copper.
Then, we further vary the exposure time per scan. This directly reflects in the amount of noise we
observe in the reconstructed CT scans. While even small defect instances are clearly visible for long
exposure times, we can only guess if there is a defect in the fastest CT scan. In Figure [6.32] we plot
the maximum IoU as a function of the relative scan time. We see that for the filter-based method
the segmentation quality (in terms of the IoU) quickly declines as soon as we reduce the scan time.
The machine learning methods are much more robust and are able to maintain a high IoU even for
fast CT scans. At about a forth of the original scan time, the traditional method still achieves about
the same segmentation quality as the filter-based method does for the full scan time. With the deep
learning method we can even reduce the scan time to about 10 % and still obtain similar results.

To verify these results on real CT data we turn to the reduction of projections. Creating a repeatable
CT setup is quite a hard endeavor. Minor fluctuations in source and detector as well as imprecision in
the geometry and rotation of the setup influence the CT scan and the alignment of the part. More-
over, we cannot arbitrarily decrease the exposure times. Therefore, we take another high-quality
CT scan of the pivot cap with many projections, i. e. 3300. Each projection has an exposure time of
0.4 s. Then, we reconstruct the volume 8 times with a decreasing amount of projections: 3300 (which

111

6. Discussing Deep Learning

100 100
1\ P————————————————— 801
— 601 604 R
X X
> >
o
= 40 2 404 .
filter-based method filter-based method
204 7 traditional method 204 traditional method
—— deep learning method —— deep learning method
---- deep learning method (fine-tuned) ---- deep learning method (fine-tuned)
0 T y T 0 y T T T T y
100 75 50 25 1 3300 1650 825 330 165 110 55 33
scan time [%] # of projections

(a) IoU as a function of the relative scan time (evaluated on the sim- (b) IoU as a function of the number of projections (evaluated on the
ulated data shown in Figure[6.2a) real data shown in Figure[6.2b)

Figure 6.3.: We plot the maximum IoU as a function of the total scan time. The results confirm what the analysis of the
artifact space indicated: The machine learning methods are better in dealing with high image noise. While
the IoU of the filter-based method declines quickly when the data quality is decreased, the machine learning
methods can maintain a satisfying segmentation of the defects. Especially the deep learning method permits
for very fast CT scans. In the experiment on the real CT scan (b) the IoU already declines at longer scan
times than in our simulated experiment. We assume this is due to the aliasing artifacts which induce another
challenging aspect to the CT data.

corresponds to about 1300 s), 1650, 825, 330, 165, 110, 55, and only 33 (which corresponds to a total
scan time of only 13 s). This similarly reduces the total information (number of photons) we have
per voxel. However, as soon as the angle steps between the projections become larger than the voxel
size, we start under-sampling the object and introduce aliasing artifacts which manifest in the CT
scan as shadows of the actual part (see Figure[6.2b). In the outer regions of the field of view this has
a more severe impact than close to the rotation axis. In Figure[6.3b| we equivalently show the IoU as
a function of the number of projections used for the reconstruction. We observe a similar behavior
of our reference-free defect detection methods as we do for the simulated data in Figure The
IoU of the results of the filter-based method quickly starts to decrease as the data quality declines,
while the machine learning methods are able to maintain robust results even for faster CT scans.
In this experiment the drop in terms of the IoU for the machine learning methods happens a little
earlier than in the experiment with the simulated data. The IoU already starts to drop at a scan time
of about 66 s (or 165 projections). Probably, this is due to the increasing severity of aliasing artifacts
which add another challenging aspect to the CT scans.

6.1.2. Fine-tune for Fast Scans

Usually, the detection of defects is not the only objective in an in-line scenario. The CT scans are,
for example, further used for measurement tasks. These require a sufficient contrast resolution,
because it is important that a structure is resolvable before it can be measured [43]]. Therefore, if
we like to develop a reference-free defect detection method which is as well applicable to in-line
scenarios, we need to deal with CT scans which are optimized for contrast resolution (see Figures
[6.1c]or [6.5a). This means that these CT scans are significantly blurrier due to larger focal spot sizes
and, hence, clearly differ from our original training distribution, which tries to maintain crisp edges

112

6.1. Eligibility for In-line Scenarios

Figure 6.4.: Our initial training set was designed to resemble CT scans from the quality laboratory. CT scans from in-
line scenarios, however, do not meet this data quality. To adapt our deep learning method, we augment our
training set with additional CT scans which are made using large focal spot sizes and increased noise-levels.
The additional training data is then used to fine-tune our model for the low data quality we face in in-line
scenarios. The orange outlines show the precise boundary of the defects of the raw data in the top row.

using a relatively small focal spot size. The results of the deep learning method are correspondingly
bad (see Figure [6.5b). To make up for the reduced spatial resolution we encounter in most in-line
CT scans, we need to adapt our training distribution by augmenting our data set. We simulate 50
additional CT scans which resemble typical in-line CT scans. The additional data comprises CT scans
with (i) an increased noise level, which we achieve by reducing the virtual scan time, (ii) increased
cupping artifacts, which we achieve by reducing the tube voltage and the thickness of the pre-filter,
and (iii) most importantly, with a reduced spatial resolution, which we achieve by increasing the size
of the focal spot on purpose. Here, we benefit from our simulation pipeline, as we can intentionally
tune the parameters in a way to obtain CT scans of low data quality even for small parts for which
it would be hard to get a bad scan in real life. For the additional training set we operate the X-ray
source at 120 kV without using a pre-filter. To increase the noise-level we vary the exposure time
per projection between 0.06 s and 0.08 s. For the decreased spatial resolution we increase the focal
spot size to a range between 320 um and 400 pm. The increased focal spot size is justified by an
increase in the current of the source to range between 0.6 mA (for the small focal spot sizes and long
exposure times) and 1.0 mA (for the large focal spot sizes and short exposure times), respectively.
In Figure [6.4 we show some example slices of the additional CT scans which augment our training
data.

When preparing our deep learning method for its new field of application we fortunately do not
need to train them from scratch. Studies suggest that CNNs tend to learn more common features
like edge, color, or simple pattern detectors in their early layers, and only later, in the deeper layers,
evolve more task specific features [[115,[218]. We can take advantage of this behavior. We use the
kernel weights of the model which we pre-trained on our original training set, i. e. the segmentation

113

6. Discussing Deep Learning

—_— —_— —_—
l. .I .I .
- o fl,

(a) A slice taken from in-line CT data (b) The results of the original model (c) The results of the fine-tuned model

Figure 6.5.: From left to right: the raw data of a real in-line CT scan, the results of the original model, and the results of the
model which was fine-tuned on simulated low data quality in-line CT scans. The overlay represents
the prediction output of the respective models.

of defects in quality laboratory CT scans, and only adapt them to match with the in-line scenarios
by using the additional training data, i. e. we fine-tune the model for in-line scenarios. This approach
requires less training data. The model already has a notion of its task. Another benefit is that the
adaptation helps the model to better generalize on its original task—as long as the tasks do not differ
too much [115]. We fine-tune our original model with a reduced learning rate of 10> for another
25000 iterations on the additional training data, adapting all upstream and refinement layers. There-
fore, the fine-tuned model also outperforms all other models in terms of the IoU in our scan-time
reduction experiments (see Figure and it achieves significantly better results on our real in-line

data (see Figure[6.5d).

The deep learning method detects and segments defects with a high precision even in fast CT scans
of quite low data quality. The results are particularly good when fine-tuning the model for a specific
scenario, i. e. for a specific part and a specific CT setup. Furthermore, using the appropriate hardware
it is possible to keep up with the high cycle times of in