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I. Abstract 
 
The acquisition of mutations within the genome of hematopoietic stem cells (HSCs) is of 

particular importance as this is a likely driver of malignant transformation for many leukemias, 

as well as a hallmark of ageing. Importantly, the study of normal physiologic mediators of HSC 

mutation acquisition is a largely underdeveloped area. The advent of next generation sequencing 

(NGS) technologies provides a route to interrogate this phenomenon but is complicated by the 

fact that a genome-wide analysis at the clonal level is necessary to determine the mutational 

signature of individual HSCs. 

 

We have developed an in vitro model that allows for the sensitive assessment of clonal mutations 

occurring within single HSCs using whole genome sequencing. In order to optimize our clonal 

mutation analysis, we performed a benchmarking exercise where we deeply sequenced an 

individual HSC colony to ~90X coverage and performed somatic nucleotide variant (SNV) analysis 

at various down-sampled coverages.  Importantly, we established that the number of mutations 

called increases in an almost linear fashion with increasing coverage, until a plateau is reached 

at around 30X coverage. We additionally  developed optimal filtering parameters, which 

demonstrated a much-improved capacity for discerning true positive and false positive mutations 

at low coverage, compared to previously published methodologies. 

 

Using this optimized sequencing pipeline, we collected and sequenced HSC clones from young 

and old mice, as well as those exposed to stress agonists known to induce HSC cycling.  We 

additionally employed a genetic label-retention system to segregate dormant and actively cycling 

HSCs in order to assess whether mutations are predominantly acquired during replication.  

Genomic coverage of the majority of these HSC colonies ranged from 30-40X.  As seen in humans, 

we found a progressive increase in mutation burden with age within the murine HSC 

compartment, corresponding to a rate of ~40 SNVs per year.  Furthermore, these HSCs had 

mutational signatures corresponding to that observed in aged human tissues.  In contrast to 

previous reports, data from the label-retention model demonstrated that this age-associated 

increase in mutation burden correlated with HSC replication, as dormant aged HSCs had similar 
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mutation burdens to young HSCs.  Seemingly contradictory to this finding, we observed no 

difference in mutation burden upon stress-induced cycling of HSCs.  However, it appears we have 

unintentionally introduced a large selection bias with regards to the agonist-treated clones and 

future work will focus on rectifying this caveat.   

 

In summary, we have developed a sensitive and specific analysis to accurately detect mutations 

within individual HSCs.   From our results we have clearly demonstrated that mutation acquisition 

within HSCs accumulates with age and that this increase correlates with an increase in replication 

history.  We envisage that these findings will be an important step towards interrogating whether 

replication stress is a biologically relevant driver of genome instability in HSCs. 
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II. Zusammenfassung 
 
Die Aneignung von Mutationen im Genom hämatopoetischer Stammzellen (HSZ) ist von 

besonderer Bedeutung, da dies wahrscheinlich ein Treiber der malignen Transformation bei 

vielen Leukämien und ein Markenzeichen des Alterns ist. Wichtig ist, dass die Untersuchung der 

normalen physiologischen Mediatoren der HSC-Mutationsakquisition ein äußerst wenig 

untersuchtes Gebiet ist. Das Aufkommen von Sequenzierungstechnologien der nächsten 

Generation (Next Generation Sequencing, NGS) bietet einen Weg zur Untersuchung dieses 

Phänomens, wird jedoch durch die Tatsache erschwert, dass eine genomweite Analyse auf 

klonaler Ebene notwendig ist, um die Mutationssignatur einzelner HSZ zu bestimmen. 

 

Wir haben ein In-vitro-Modell entwickelt, das die empfindliche Untersuchung klonaler 

Mutationen innerhalb einzelner HSZ unter Verwendung der Sequenzierung des gesamten 

Genoms ermöglicht. Um unsere klonale Mutationsanalyse zu optimieren, haben wir ein 

Benchmarking durchgeführt, bei dem wir eine individuelle HSZ-Kolonie bis zu einer ~90-fachen 

Abdeckung tiefgehend sequenziert und somatische Nukleotid-Variante (SNV)-Analysen bei 

verschiedenen heruntergesampelten Abdeckungen durchgeführt haben.  Wichtig war, dass wir 

feststellten, dass die Anzahl der entdeckten Mutationen mit zunehmender Abdeckung fast linear 

zunimmt, bis ein Plateau bei etwa 30-facher Abdeckung erreicht ist. Darüber hinaus entwickelten 

wir optimale Filterparameter, die im Vergleich zu zuvor veröffentlichten Methoden eine stark 

verbesserte Fähigkeit zur Erkennung echt positiver und falsch positiver Mutationen bei geringer 

Abdeckung zeigten. 

 

Mit Hilfe dieser optimierten Sequenzierungspipeline sammelten und sequenzierten wir HSC-

Klone von jungen und alten Mäusen sowie von Mäusen, die Stress-Agonisten ausgesetzt waren, 

von denen bekannt ist, dass sie HSZ-Zyklen induzieren.  Zusätzlich setzten wir ein genetisches 

Markierungs-Retentionssystem ein, um ruhende und aktiv zyklisierende HSZ zu segregieren, und 

um zu beurteilen, ob Mutationen vorwiegend während der Replikation erworben werden.  Die 

genomische Erfassung der Mehrheit dieser HSZ-Kolonien reichte von einer 30- bis 40-fachen 

Abdeckung.  Wie beim Menschen fanden wir innerhalb des HSZ-Kompartiments der Maus eine 



 13 

progressive Zunahme der Mutationslast mit zunehmendem Alter, was einer Rate von ~40 SNVs 

pro Jahr entspricht.  Darüber hinaus wiesen diese HSZ Mutationssignaturen auf, die den in 

gealterten menschlichen Geweben beobachteten Merkmalen entsprechen.  Im Gegensatz zu 

früheren Berichten zeigten die Daten aus dem Label-Retention-Modell, dass diese altersbedingte 

Zunahme der Mutationslast mit der HSZ-Replikation korrelierte, da schlafende HSZ im Alter 

ähnliche Mutationslasten wie junge HSZ aufwiesen.  Scheinbar widersprüchlich zu diesem Befund 

beobachteten wir keinen Unterschied in der Mutationslast beim stressbedingten Zyklus der HSZ.  

Es scheint jedoch, dass wir unbeabsichtigt eine große Selektionsverzerrung in Bezug auf die 

Agonisten-behandelten Klone eingeführt haben. Die zukünftige Arbeit wird sich darauf 

konzentrieren, diesen Fehler zu korrigieren.   

 

Zusammenfassend lässt sich sagen, dass wir eine empfindliche und spezifische Analyse entwickelt 

haben, um Mutationen innerhalb einzelner HSZ genau nachzuweisen.   Aus unseren Ergebnissen 

haben wir eindeutig nachgewiesen, dass sich der Mutationserwerb innerhalb der HSZ mit dem 

Alter akkumuliert und dass dieser Anstieg mit einer Zunahme der Replikationsgeschichte 

korreliert.  Wir gehen davon aus, dass diese Ergebnisse ein wichtiger Schritt sein werden, um zu 

untersuchen, ob der Replikationsstress ein biologisch relevanter Treiber der Genominstabilität 

bei HSZ ist. 
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III. Introduction 
 

1. Hematopoiesis  
 
The hematopoietic system is highly versatile in its functions; mediating immunity, nutrient 

transport, hemostasis and wound healing1.  This requires many different blood cell types working 

together in a highly regulated and complex system.  These include erythrocytes which transport 

oxygen throughout the body; megakaryocytes which are the cellular precursors to platelets, the 

cells responsible for blood clotting; and numerous cells which are involved the innate and 

adaptive immune systems.  All of these cells are produced within the hematopoietic system of 

mammals, which consists of the bone marrow, spleen and liver, during a process called 

hematopoiesis. 

 

1.1. Hematopoietic hierarchy 

Over the last decade, the advancement of next generation sequencing (NGS) technologies has 

provided researchers with novel methods to investigate hematopoiesis.  Assessing the 

hematopoietic system at single-cell resolution has revealed a heterogeneity in blood cell 

compartments which were previously thought to be phenotypically and functionally 

homogeneous. As a result, the classical model of the hematopoietic hierarchy has evolved1.   

 

Briefly, the classic model of hematopoiesis shows cells of equal potential within discrete groups 

and hematopoietic stem cells (HSCs) at the top of the hierarchy (Figure 1.A.).  This model relies 

on the dogma that HSCs possess a self-renewal capacity and can give rise to all blood cell lineages.  

As we “move down” the hierarchy, cells become increasingly more lineage-restricted until 

eventually producing mature blood cells2.  This model assumes that the HSCs at the top of the 

hierarchy, known as long-term (LT) HSCs have the highest potency and remain quiescent for the 

majority of their lifetime, rather relying on more differentiated short-term (ST) HSCs and 

progenitors to proliferate for the maintenance of the hematopoietic system.  
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Conversely, single-cell RNA sequencing (scRNA-seq) has highlighted the heterogeneity in blood 

cells previously thought to be of uniform potential3–5.  These results have rather argued for a 

continuum model of the hematopoietic system, instead of distinct punctuated fate decisions as 

cells differentiate (Figure 1.B.)1.  From scRNA-seq data, researchers observed a continuity in the 

distribution of the different blood cell types, from HSCs to more committed cells3,5.  As such, this 

continuum model depicts a constant  differentiation process from HSCs to progenitors to more 

committed mature blood cell types.  However, some researchers argued that although the 

continuum model tackles the  oversimplified view of the classical model, using gene expression 

data alone may not be sufficient for understanding the hematopoietic system hierarchy6.  In fact, 

key findings have demonstrated that there are distinct punctuated changes which occur across 

this continuous gene expression landscape, resulting in distinct cell groups7.  Therefore, the 

continuum model has been redefined to include these distinct changes and has been appointed 

as the punctuated continuum model (Figure 1.C.). 

 

1.2. The role of HSCs in hematopoiesis 

At the top of all of the hematopoietic system hierarchy models are HSCs.  HSCs are characterized 

by their self-renewal capacity and are responsible for the lifelong replenishment of blood cells2.  

In general, the majority of HSCs remain dormant throughout an individuals’ life and only exit out 

of dormancy when required for blood production and maintenance. However, it has been 

observed that during the lifetime of an individual these cells are forced into cycle multiple times, 

leading to their gradual depletion.  This time-associated depletion in HSC function is known as 

ageing and can result in the impaired regeneration of the blood compartment. 
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Figure 1. The evolving models of the mammalian hematopoietic hierarchy. (A) The classic model of hematopoiesis. 

(B) The continuum model of hematopoiesis. (C) The punctuated model of hematopoiesis. Mature blood cell types 

are depicted in the legend at the bottom of the figure. Different lineages are depicted in different colors and lineage 

commitment is depicted as a decrease in transparency (see legend). HSC = hematopoietic stem cell; MPP = 

multipotent progenitor; LMPP = lymphoid-primed multipotent progenitor; CMP = common myeloid progenitor; CLP 

= common lymphoid progenitor; GMP = granulocyte/macrophage progenitor; MEP = megakaryocytic/erythroid 

progenitor. (Figure from Liggett et al., 2020, reprinted with permission from Elsevier).  

 

2. Ageing 
 

2.1. Hallmarks of ageing  

Ageing is characterized by the deterioration in normal cells and tissue function over time, 

resulting in an increased risk for the development of various pathologies including cancer, 

cardiovascular diseases and many others.  With regards to the mammalian system, factors which 
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affect ageing have been broadly classified into nine hallmarks8.  These are: genomic instability, 

telomere attrition, mitochondrial dysfunction, stem cell exhaustion, cellular senescence, 

epigenetic alterations, loss of proteostasis, deregulated nutrient-sensing and altered intercellular 

communication (Figure 2).  Of importance to this study is the genomic instability and types of 

DNA damage which have been observed with ageing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Hallmarks of Ageing. Diagram from López-Otín et al. (2013) illustrating the nine hallmarks of ageing 

(reprinted with permission from Elsevier). 

 

2.2. Genomic instability and the types of DNA damage viewed with age 

It has long been hypothesized that the age-associated accumulation of DNA damage is a probable 

mechanism of stem cell ageing and attrition8,9.  Likewise, several advanced ageing, progeroid 

disorders have been linked to an increased accumulation of DNA damage due to defective or 

deficient DNA repair mechanisms10.  There are various exogenous and endogenous threats which 
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affect the stability and integrity of DNA and can result in numerous types of genetic lesions8.  

Such mutations include single nucleotide variants (SNVs), insertions and deletions (INDELs), and 

translocations, as well as telomere shortening and damage to mitochondrial DNA.  To repair such 

lesions, organisms contain highly complex and specific DNA repair mechanisms, as well as 

mechanisms to ensure the integrity of telomeres and mitochondrial DNA.  Even so, certain 

mutations persist and accumulate within the genomes of organisms, some of which have been 

associated with ageing. 

 

Accumulation of somatic mutations  

It has been observed that somatic mutations accumulate within the genomes of organisms with 

age8.  These variants include an increase SNVs11, as well as the presence of copy-number 

variations12.  Such genomic DNA alterations could disrupt transcriptional pathways and gene-

coding regions, leading to the production of mutated cells with altered cellular functions.  If these 

mutated cells are not eliminated, homeostasis can be disrupted.  This is particularly relevant to 

mutations present within adult stem cells (ASCs).  Age-associated mutation acquisition within the 

genomes of ASCs likely has a large impact on tissue health as these variants are passed on to 

progeny cells during stem cell self-renewal and replication13.  Furthermore, it has been 

hypothesized that the accumulation of mutations within ASCs underlies the initiation of age-

related diseases like organ failure and cancer13–15.   

 

Mitochondrial DNA aberrations  

Similarly to SNVs, an increase in mutations and deletions within mitochondrial DNA (mtDNA) has 

been shown to contribute to ageing and age-associated diseases16,17.  This was assumed to be 

caused by oxidative damage considering the oxidative environment of mitochondria.  However 

studies revealed that most mutations present within mtDNA were caused by replication errors 

and variant accumulation is likely a result of the inefficient mtDNA repair mechanisms.  

Conversely, an age-associated reduction in mtDNA-copy number (CN) has been observed and 

correlates with the general health of aged individuals17,18  Together, aberrations within the 
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mtDNA genomes of organisms have a prominent effect on ageing and the development of age-

associated diseases. 

 

Telomere shortening  

A sequential and cumulative shortening of telomeric sequences has been observed in 

mammalian organisms with age19.  Such shortening occurs during cellular division when 

telomeres are replicated8, a process mediated by a specialized DNA polymerase called 

telomerase.  Unfortunately, the majority of mammalian somatic cells are deficient of telomerase 

and so telomeric DNA is progressively lost during cellular replication and ageing of these cells.  It 

has been observed that various exogenous and physiological factors can also affect telomere 

length and that shorter telomeres have been associated with a decrease in health and survival, 

and an increase in disease incidence.  Furthermore, the rate at which telomeres shorten can be 

used as a potential indicator of the rate of individual ageing. 

 

2.3. DNA damage and repair mechanisms  

In order to understand how mutations arise and accumulate with age, it is not only important to 

understand what types of DNA damage there are but more so, their corresponding repair 

mechanisms and downstream effects.  When the DNA of a cell has been damaged, whether due 

to endogenous or exogenous mediators, a DNA damage response (DDR) signaling pathway is 

initiated.  DDR effectors are subsequently activated and carry out the appropriate response to 

this damage, either initiating senescence, DNA repair or initiating apoptosis20.  There are many 

types of DNA damage repair pathways including, but not limited to: base excision repair (BER), 

homologous recombination (HR), nucleotide excision repair (NER), non-homologous end joining 

(NHEJ), mismatch repair (MMR) and translesion synthesis (TLS)21, and the deregulation of each 

of these results in specific mutation types and signatures.  Depending on the cell type, responses 

to DNA damage will be different.  This is true for HSCs, where it has been observed that following 

certain types of DNA damage, these cells preferentially undergo apoptosis rather than potentially 

performing defective DNA damage repair22.  This suggests that HSCs contain some form of a 

protective mechanism against the acquisition mutations following DNA damage.  That being said, 
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various studies have still observed an increase in mutation burden with age within HSCs11,23,24.  

Considering that with age the efficiency of DDR and repair pathways decreases, this is the likely 

explanation for this observed age-associated increase in genome instability and mutation 

acquisition8.   

 

Understanding the mechanisms which impact on the age-associated accumulation of DNA 

damage is of great importance in order to prevent the incidence of age-related diseases and 

malignancies.  The advancement of NGS technologies has allowed researchers to delve deeper 

into the genetic and epigenetic changes which occur with age.  This has highlighted that, to an 

extent, the rate of ageing is controlled by DNA damage, as well as other biochemical processes8.  

As such, repair and prevention of DNA damage could potentially decrease disease incidence and 

slow the rate of ageing in individuals.  Therefore, ageing research needs to be extended to focus 

on the physiologic sources and possible mechanisms involved in the accumulation of DNA 

damage with age. 

 

3. DNA damage and ageing of the hematopoietic system 
 

Regarding the hematopoietic system, issues which arise during ageing broadly fall into two 

seemingly contradictory categories: the loss of cellular output and the massive increase in certain 

cells.  Stem cell exhaustion results in decreased cell cycle activity9 and the subsequent failure of 

HSCs to produce daughter cells, leading to a decrease in certain blood cell types8.  This is the case 

for hematologic phenotypes like anemia and myeloid malignancies.  Conversely, an excessive 

increase in the cellular output of certain blood cells is another detrimental age-associated 

phenomenon which has been observed.  This occurs when a cell acquires a gain of function 

mutation resulting in aberrant cellular function and replication, which is the case with certain 

leukemias.  Both of these phenomena have been linked to the acquisition and accumulation of 

DNA damage with age. 
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3.1. Age-associated hematologic phenotypes caused by mutation acquisition 

As people age, an increase in clonal expansion of mutated HSCs is commonly viewed11,25,26 (Figure 

3.A.).  This clonal expansion is known as clonal hematopoiesis and has been associated with an 

increased risk of hematologic malignancy development.  Although the mechanistic processes of 

how this occurs still remains largely unclear, it has been hypothesized that certain aberrant 

mutations could promote the development of this clonal expansion14,25,27, and other age-

associated hematologic malignancies.  This theory has been strengthened by the identification of 

pre-leukemic HSCs which exhibit aberrant mutations in the DNMT3a gene28, as well as other 

leukemic driver mutations29.  Furthermore, clonal hematopoiesis of indeterminate potential 

(CHIP), an age-associated phenotype of clonal hematopoiesis in the absence of hematologic 

neoplasia, has been characterized by the presence of certain somatic mutations which drive 

clonal expansion and accumulate with age during normal hematopoieisis30,31. 

Figure 3. Increase in somatic mutation burden and clonal hematopoiesis in peripheral blood from humans with 
age. (A) Prevalence of clonal hematopoiesis identified using whole-exome sequencing of DNA from peripheral-blood 
cells in donors of various ages. Colored bands represent 95% confidence intervals. Yr = year. (Reproduced with 
permission from Genovese et al., 2014, Copyright Massachusetts Medical Society). (B) Prevalence of somatic 
mutations with age identified using whole-exome sequencing of DNA from peripheral-blood cells. Colored bands 
represent the 50th, 75th and 95th percentiles. Yr = year. (Reproduced with permission from Jaiswal et al., 2014, 
Copyright Massachusetts Medical Society).  
 

3.2. Increase in somatic single nucleotide variant burden with age  

Early research of DNA damage within HSCs largely focused on the characterization of the 

different types of DNA damage, however there was a large gap in knowledge regarding the 
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downstream consequences of this damage.  An early study using lacZ-plasmid transgenic mice 

(small blue mouse model) tried to quantify the type of mutations present within HSCs as a result 

of DNA damage22,32.  However until the advent of next generation sequencing (NGS), assessing 

mutation burden of HSCs using native DNA was not possible.   

 

As previously mentioned, there is a gradual accumulation of genetic damage within various 

tissues, as well as ASCs with age33.  Likewise, this phenomenon has also been observed within 

the hematopoietic system of humans.  When looking at whole-exome sequencing data from 

peripheral-blood from various aged donors with no record of cancer or hematologic 

malignancies, researchers observed a steady increase in somatic mutation burden with age11 

(Figures 3.B.). Furthermore, it was later observed that SNVs accumulate within hematopoietic 

stem and progenitor cells (HSPCs) in a linear fashion with age and that this increase occurs 

gradually during an individual’s lifetime23,24, at approximately 14 SNVs per year (Figure 4.A. and 

B.).  This is much lower than the mutation rates viewed from more active ASCs where mutation 

accumulation occurs steadily at a rate of approximately 40 mutations per year33, highlighting the 

predominantly quiescent nature of HSCs.  

 

 

 

 

 

 

 

 

 

 

Figure 4. Increase in somatic SNV burden in human HSPC colonies. (A) Correlation of the number of SNVs within 
HSPC colonies derived from donors of different ages. (B) Annual SNV rate estimated from (A). (Figure reprinted with 
permission from Osorio et al., 2018 [DOI: 10.1016/j.celrep.2018.11.014] through the Creative Commons user 
license: https://creativecommons.org/licenses/by-nc-nd/4.0/).  
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In order to understand the mechanisms which drive the accumulation of mutations in and clonal 

expansion of HSCs under normal hematopoiesis, a retrospective analysis of DNA damage and 

mutation accumulation at various ages is required.  Currently, this is not feasible in human studies 

as sample acquisition is an invasive process and is only performed when absolutely necessary.  

Furthermore, human bone marrow aspirations are usually performed for health reasons and it is 

not often that healthy samples, with no pre-existing hematologic phenotype, are acquired.  The 

murine model provides us with an attractive alternative to assess the types of DNA damage which 

occur within HSCs during ageing and the physiological mechanisms which drive this. 

 

4. Mediators of DNA damage and ageing 
 

As previously mentioned, the quiescent nature of HSCs results in a much lower mutation burden 

compared to more active ASCs, such as those found in the small intestine, colon and liver33.  Even 

so, mutation accumulation within the genomes of HSCs can contribute to the dysfunction of 

normal hematopoiesis13,23.  However the underlying physiological sources and mechanisms of 

DNA damage and ageing of HSCs still remains largely unclear. 

 

Previous studies have studied DNA damage in HSCs exposed to ionizing radiation and alkylating 

agents22, however this is irrelevant to DNA damage acquired during normal ageing.  To date, the 

physiological sources which mediate DNA damage in HSCs during ageing remain largely unclear. 

 

4.1. Stem cell replication  

Although reduced HSC proliferation has been noted as a harmful side-effect of ageing, excessive 

replication can result in the decreased potency and exhaustion of HSC niches8.  As such, 

replication stress has been noted as a potential source of DNA damage within HSCs34.  Replication 

stress results in the stalling of the replication fork during DNA replication, leaving the genome 

exposed to stressors, and can result in DNA strand breaks35.  This of course highlights some issues, 

as replication stress is understandably a concern for actively proliferating cells, which is not the 

case for HSCs as they are believed to remain predominantly quiescent throughout their lifetime.  
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That being said, many studies have observed an increase in DNA damage foci, namely gH2AX, 

within old murine HSCs compared to young9,34,36 (Figure 5).  While some believe that this increase 

in DNA damage is due to the impairment of DNA damage repair mechanisms with age9, others 

have argued that such DNA damage foci are actually representing replication stress34.  Further 

complicating the matter, another study argued that DNA damage accumulates in HSCs because 

repair mechanisms are reduced during their normal quiescent state, and that HSC replication 

results in this DNA damage being repaired due to the reactivation of DNA damage repair 

mechanisms36.  Of course, these studies assessed DNA damage accumulation in HSCs by only 

using DNA damage response foci.  Since then, sequencing studies have shown that mutation 

acquisition increases with age so the idea that HSC replication repairs DNA damage does not 

seem feasible.  Furthermore, using a label-retaining mouse model, researchers showed that age-

related phenotypic changes of HSCs was dependent on their divisional history37.  That is, HSCs 

which cycled more were less functionally potent and lost their self-renewal capacity, while those 

which remained dormant throughout their lifetime closer resembled those with LT-HSC capacity.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Accumulation of gH2AX foci in old murine HSCs. (Figure from Flach et al., 2014, reprinted with permission 

from Springer Nature). 

 

To summarize, it has been shown that there is an increase in DNA damage foci within older 

murine HSCs compared to young, and there is an age-associated increase in mutation burden 
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within aged human HSCs.  Furthermore, HSCs which have replicated more have exhibited 

decreased functionality and self-renewal potential; phenotypes which have also been observed 

in aged HSCs.  Taken together, it could be hypothesized that this age-associated increase in DNA 

damage results in an increase in mutation burden within HSCs and that this could be a result of 

replication history.  However, it still remains unclear whether this age-associated increase in DNA 

damage foci results in an increase in mutation burden within HSCs. 

 

4.2. Stress-induced replication 

Besides the natural cycling of HSCs for normal hematopoiesis, stress-induced hematopoiesis by 

factors like infection, blood loss, and endogenous and exogenous toxins can occur multiple times 

throughout an individuals’ lifetime38.  Exposure to these stresses promotes the exit of HSCs from 

quiescence, into proliferation38–40.  It has been shown that stress-induced cycling severely affects 

the functionality of HSCs, leading to their diminished self-renewal and proliferation potential, 

functional exhaustion and an increase in apoptosis9.  As such, chronic exposure to such stress 

factors can result in hematopoietic system failure38–41.   

 

Numerous studies have demonstrated that HSCs exposed to infection exhibit an inflammatory 

response which subsequently forces them into cycle.  Separate studies where mice were treated 

with pIpC38, an agonist which is structurally similar to and mimics a virus infection, and a 

Mycobacterium avium infection39 both showed an activation of inflammatory response via 

interferon-alpha (IFNa) and interferon-gamma (IFNg), respectively.  In addition, activating 

dormant HSCs via IFNa treatment rendered these newly cycling HSCs sensitive to the 

chemotherapeutic agent 5-fluoro-uracil (5FU), contrary to their previously 5FU-resistant 

dormant state38.  Furthermore, chronic exposure to pIpC and IFNa resulted in an increase in DNA 

damage foci within HSCs, and loss of functionality40,41.  Taken together these observations 

highlighted the fact that replicating HSCs are more sensitive to chemotherapeutics and DNA 

damage, and dormancy seems to protect HSCs from damage. 
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This stress-induced HSC activation and subsequent increase in DNA damage foci was observed 

for various physiological challenges (Figure 6. A. and B., respectively)40.  As previously mentioned, 

the increase in DNA damage foci does not necessarily represent an increase in mutation burden 

within HSCs.  However, a recent study using whole genome sequencing (WGS) demonstrated that 

in the absence of functional DNA damage repair mechanisms, stress-induced DNA damage via 

treatment with reactive aldehydes resulted in an increase in mutation burden within these 

HSCs42.   Although this highlights a different route of potential DNA damage accumulation within 

HSCs, it goes to show that stress-induced DNA damage, whatever the cause, can result in an 

increase in mutations within HSCs, and that NGS technologies provide an accurate method for 

interrogating this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Stress-induced replication and DNA damage within murine HSCs. (A) Treatment with different agonists 

results in the exit of LT-HSCs from dormancy. (B) Stress-induced cycling of HSCs results in the increase in DNA damage 

response gH2AX foci within LT-HSCs. Percentage of cycling and gH2AX-positive HSCs after treatment is represented 

in graphs A. and B., respectively. Error bars indicate SD. * indicates a statistical difference between treatment groups 

compared to control (ctrl) group (unpaired two-sided t test). (Figures A. and B. from Walter et al., 2015, reprinted 

with permission from Springer Nature). 
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5. Mutational processes associated with ageing  
 

Besides the presence of CHIP- and leukemic driver mutations, and the overall increase in 

mutation burden within blood cells, the presence of certain mutation signatures have also been 

correlated to ageing in humans43,44.  Mutational signatures take into account the type of DNA 

damage and subsequent DNA damage repair capacity of a particular cell.  Thus allowing 

researchers the opportunity to identify which mutational processes were present or absent 

within their samples.   

 

Mutational signatures are characterized by combinations of mutations.  Initially these mutation 

signatures were identified using SNV substitutions and classed according to their base change, 

resulting in 96 different trinucleotide base change combination categories43.  More recently, 

mutation signatures have also been identified using INDEL calls from WGS data of large human 

sequencing cancer cohorts44.  Currently the updated list of human mutational signatures which 

have been identified encompass numerous signatures based on SNVs, doublet base substitutions 

(DBS) and INDELs (https://cancer.sanger.ac.uk/cosmic/signatures). 

 

Of particular interest to this study are the signatures which have been correlated with ageing, 

signatures 1 and 5.  The mutation profile of signature 1 is dominated by C>T transitions, in 

particular ACG, CCG, GCG and TCG, and is a result of enzymatic or spontaneous deamination of 

5-methylcytosine to thymine.  While signature 5 mutation profile is dominated by an increase in 

C>T and T>C transitions, and has an unknown cause.  These signatures were initially observed to 

be correlated to the age of patients from tumor sequencing cohorts43, but were also later 

observed in non-cancerous samples derived from HSPCs from various aged humans24.  

Specifically, both of these signatures are reported to act in a “clock-like” manner and the number 

of SNVs attributed to these signatures increased in a linear fashion with age within HSPCs (Figure 

7.A.)  Furthermore, when simply looking at the 96-trinucleotide mutation profile from blood 

colonies of various aged donors with no history of hematologic malignancies, it was observed 

that the mutation spectra was dominated by C>T and T>C transitions24,45 (Figure 7.B.; top 

mutation profile).  This mutation spectra is similar to that observed in patients with myeloid 
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cancer23,45 (Figure 7.B.; bottom mutation profile) and those identified with age-related clonal 

hematopoiesis27.   

 

Although it is possible to determine mutational signatures using whole-exome and targeted 

sequencing, these methods are biased towards gene-coding regions46.  This could result in an 

overview which is not representative of the mutational processes occurring over the whole 

genome.  Therefore, in order to assess mutational signatures which are representative of the 

whole genome of a cell, accurate WGS analysis is required46.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Mutation profile and signatures identified in human HSPC colonies. (A) Contribution of SNV mutation 

signatures 1 and 5 in the genomes of HSPCs, plotted against the age of donors. P values indicate a significant increase 
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in these signatures with age (two-tailed t test). (Figure reprinted with permission from Osorio et al., 2018 

[DOI: 10.1016/j.celrep.2018.11.014] through the Creative Commons user license: 

https://creativecommons.org/licenses/by-nc-nd/4.0/). (B) The trinucleotide context of SNVs present within multiple 

colonies derived from HSPCs from a 59-year old male, compared to those identified in pooled acute myeloid 

leukemia (AML) genomes. Any AML genomes with >1500 mutations were excluded. (Figure from Lee-Six et al., 2018, 

reprinted with permission from Springer Nature). 

 

6. Whole genome sequencing of single HSC-derived colonies as a model to 
study DNA damage and ageing  

 

In order to understand how ageing affects the functionality of stem cells, it is important to 

understand the mutational processes within these cells46.  Single-cell derived colonies provide us 

with an excellent method to assess the mutation burden within individual HSCs.  By assessing the 

quantitative and qualitative mutations within stem cells derived from donors of different ages, 

researchers are able to evaluate the relationship of mutation accumulation with age and 

subsequent stem cell attrition33.  Furthermore, this technique provides us with a unique 

opportunity to investigate the roles that normal and stress-induced replication have on normal 

and aberrant mutational processes, which could ultimately lead to the development of age-

related malignancies and cancer.   

 

6.1. Rationale for using WGS of in vitro expanded colonies to assess DNA damage 

within individual HSCs  

Due to the polyclonal nature of a healthy hematopoietic system, each somatic mutation which 

occurs within an HSC is only present within a small subset of cells within the entire blood cell 

population.  Therefore, it is not possible to detect these somatic events at the stem cell level 

using bulk sequencing technologies46.  As such, the mutations of single HSCs must be assessed in 

order to determine which mutational processes are at play during HSC ageing.  Previous studies 

have shown that the mutation burden within ASCs is relatively low and variants are distributed 

across the entire genome24,33,46,47.  Hence, it is important to utilize a sequencing method which 

can accurately sequence the whole genomes of single cells without introducing many sequencing 

errors, which could potentially be falsely called as true somatic events.  Therefore single-cell 
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sequencing methods, although promising, are currently not suitable for such an analysis as the 

necessity for whole-genome amplification introduces too many sequencing errors, making it 

difficult to differentiate these errors from the low number of true somatic events within the stem 

cell48.  Additionally, ultra-deep sequencing of tissues which naturally display a degree of clonality 

has successfully been used to detect somatic mutations within clone-initiating cells25,26.  

However, extremely deep sequencing is required (~500X) and this method relies on the 

assumption that the sample in question contains clonal cell populations.  

 

6.2. Model for the identification of somatic mutations at the stem cell level in 

single-cell derived colonies 

In order to assess DNA damage across the whole genome of an individual stem cell, it is vitally 

important that you obtain sufficient DNA for the accurate assessment of variants using WGS.  

Previous human studies have utilized in vitro expansion techniques in order to overcome this 

obstacle 24,45,46.  In short, the necessary cells are isolated from a patient, whether from tissue 

biopsies or sorted stem cells, and subsequently cultured in suitable expansion medium and 

conditions (Figure 8).  Depending on the cell type, cells are allowed to expand in culture for an 

appropriate amount of time after which DNA is isolated from these cell colonies.  WGS libraries 

are prepared for each cell colony and sent for sequencing, along with an appropriate control.  

Whether using organoid or cell colony cultures, the principle behind cataloguing mutations at the 

individual stem cell level is similar.  Simply put, if a heterozygous mutation is present within the 

original stem cell, it will be present within all progeny cells and thus, will be observed at a variant 

allele frequency (VAF) of 0.5 (Figure 9.A.).  Any variants which have been acquired during in vitro 

expansion will be viewed at lower VAFs and can be filtered out using a suitable VAF cut-off (Figure 

9.B.).  As such, somatic variants within the original cell can only be identified if the sample is 

purely clonal46.   

 

The issue that arises with this model is when there is a selection for the outgrowth of a daughter 

cell, resulting in an increased VAF for in vitro expanded mutations. Coupled with the possible 
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presence of sequencing artefacts and repetitive/homologous regions within the genome, it is 

vitally important to develop strict filtering parameters which can control for such phenomena. 

 

Figure 8. Clonal expansion of single HSCs to determine somatic mutation burden. Schematic overview of 

experimental pipeline to identify mutations within single murine HSC colonies.   LT-HSCs = long-term hematopoietic 

stem cells; WGS = whole-genome sequencing. (Figure adapted with permission from Osorio et al., 2018 

[DOI: 10.1016/j.celrep.2018.11.014] through the Creative Commons user license: 

https://creativecommons.org/licenses/by-nc-nd/4.0/) 
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Figure 9. Model of variant allele frequency (VAF) distribution of heterozygous variants within single-cell derived 

cultures. (A) In vitro expansion of a single-cell derived colony. Heterozygous variants present within the original cell 

will be passed on to all progeny cells and will therefore have a VAF of 0.5 (green variant). Any variants which are 

acquired during in vitro expansion will be viewed at a lower VAF and can be filtered out (red and orange variants). 

(B) Theoretical VAF density plot of scenario depicted in (A). A VAF cutoff of 0.3 is applied to filter out variants 

acquired in vitro (Figure from Jager et al., 2017, reprinted with permission from Springer Nature). 

 

This approach has successfully been used to assess the mutation burden within ASCs derived 

from liver, small intestine and colon samples from humans33,46, as well as cells from the stomach, 

small intestine, colon and prostate from mice47.  Furthermore, this single-cell derived colony 

approach has been utilized to determine the mutation burden within single hematopoietic stem 

and progenitor cells (HSPCs) from one 59-year old male45, as well as various aged humans24.  

Similar to what was seen with bulk sequencing of human blood samples11,23, there is a  linear 

increase in mutation accumulation within the hematopoietic compartment with age24 (Figure 

4.A.).   
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Although various studies have used such a clonal culture method to identify somatic variants 

within the original stem cell using WGS, the majority of these studies have not performed an 

extensive analysis optimization prior to sequencing of their samples 24,33,45,46.  As such, there is a 

large variability in the sequencing techniques, coverage, variant analysis pipelines, filtering 

parameters and downstream analysis which has been used.   

 

6.3. Benchmarking for WGS pipeline and analysis optimization  

With the ever-increasing technical developments, WGS has become an affordable tool to assess 

variants across the whole genome of various organisms.  That being said, little has been done to 

standardize the downstream analysis of WGS data.  Although it is not feasible to broadly 

standardize WGS data analysis for all types of variant calling, it is important that individual studies 

optimize their analysis in order to accurately answer their question at hand.   

 

It has been well-documented that prior polymerase chain reaction (PCR) amplification, 

sequencing library preparation and even the sequencing itself can introduce artefacts within 

sequencing data49.  However, as new technologies are being developed, classification of 

associated sequencing artefacts is lagging behind.  Such artefacts could have profound effects on 

the ability to accurately call true somatic mutations within a sample.  Depending on the scope of 

a research project, it may not always be possible to optimize methods to reduce or eliminate 

these artefacts.  However, it is possible to tailor one’s downstream analysis to control for such 

artefacts and filter these out.   

 

Unfortunately, the majority of studies using WGS have performed little to no analysis 

optimization, including several of the clonal culture studies mentioned before.  A benchmarking 

study performed using high-coverage WGS data from cancer samples, highlighted the major 

discrepancies in WGS data analysis50.  They emphasized the need for high coverage 

benchmarking datasets for determining the optimal sequencing coverage and downstream 

analysis parameters.  Additionally they advise researchers to keep the coverage of their sample 
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and germline control within a close range (± 10%).  This appears to greatly affect downstream 

analysis as systematic artefacts can be balanced out in the control sample and subsequently 

filtered out.  Furthermore, they found little to no concordance among mutation calling pipelines 

which highlighted the lack of standards available for dealing with sequencing artefacts.  As such, 

this benchmarking study clearly demonstrates the need for prior sequencing and analysis 

pipeline optimization in order to generate consistent, high-quality WGS data from which results 

can be accurately interpreted. 

 

7. Aim of thesis 
 

The hypothesis that we wished to address in this study was that age-associated mutation 

acquisition within HSCs is, in part, mediated by replication stress and stress-induced cycling of 

HSCs results in an advanced-ageing phenotype with regards to mutation accumulation.  In order 

to interrogate this hypothesis, we performed whole genome sequencing of single HSC-derived 

colonies to address the following aims: 

 

Aim 1: Perform an extensive WGS benchmarking analysis prior to sequencing HSCs from our 

various experimental groups.  Using a high coverage benchmarking dataset, and matched 

coverage germline control, we aimed to identify the optimal parameters of our sequencing and 

analysis pipelines, and assess the effect of various confounding factors.  Such factors include the 

differences in variant calling pipelines, sequence coverage, and DNA input, as well as sequence 

filtering parameters. 

 

Aim 2:  Perform a quantitative and qualitative analysis to assess the effect of ageing on murine 

HSC genome stability.  Here we aimed to interrogate the differences in mutation burden between 

young and old HSCs, and additionally assess the differences in types of mutations present, 

mutation signatures, as well as interrogate differences in mtDNA aberrations and telomere 

length. 
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Aim 3:  Assess the effect of possible mediators of DNA damage on HSC mutation acquisition; 

including replication and stress-induced activation of HSCs.  Again, we aimed to assess the 

differences in the types of mutations present, mutation burden, mutational signatures, mtDNA 

aberrations and telomere length between the different study groups. 
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IV. Results 
 

1. Optimization of whole genome sequencing and analysis parameters 
 
 
To assess the mutation burden within single HSCs using whole genome sequencing (WGS), we 

utilized an in vitro culture method in order to obtain sufficient DNA for downstream WGS 

library preparation.  In short, we sorted single long-term hematopoietic stem cells (LT-HSCs)40 

from our experimental mice into separate wells of a 96-well plate and allowed these to expand 

in appropriate culturing medium and conditions for ~2 weeks (Figure 10).  DNA from these HSC 

colonies was later isolated and sequencing libraries were prepared, along with libraries 

generated from matched control tail DNA, and sent for sequencing (DNA isolation, library 

preparation and sequencing details can be found in Methods section 3 and 4).   

 

Prior to the sequencing of HSC colonies from our different experimental groups, we sequenced 

one HSC colony, and matched germline control, to a high depth (~90X) and used this as a 

benchmarking dataset to optimize our sequencing and analysis parameters.  Utilizing this 

dataset we performed an extensive comparative analysis of two single nucleotide variant (SNV) 

pipelines, MuTect51 and CaVEMan52, which have both been previously used in WGS studies of 

clonal samples.  This benchmarking study not only allowed us to determine which SNV pipeline 

and filtering parameters would be optimal for our downstream analysis, but also to identify 

what sequencing depth was required for the accurate assessment of somatic SNVs within single 

HSCs. 
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Figure 10. Schematic of experimental overview for WGS of single HSC colonies. HSCs were sorted for the antibodies 
shown in step 2. HSC expansion medium and incubation conditions shown in step 3. HSCs = hematopoietic stem 
cells; WGS = whole-genome sequencing; Lin- = lineage negative; pen/strep = Penicillin-Streptomycin; L-glut = L 
Glutamine; EPO = Erythropoietin; TPO = Thrombopoietin; IL = interleukin; O2 = oxygen; CO2 = carbon dioxide.  
 
 

1.1. Benchmarking analysis reveals CaVEMan outperforms MuTect for the 

detection of somatic SNVs within HSC colonies 

 

1.1.1. Filtering parameters for calling SNVs 

Prior to the sequencing of multiple murine HSC colonies, it was of high importance that we first 

perform a thorough benchmarking analysis in order to determine the optimal sequencing 

analysis and filtering parameters, as well as genome coverage for the accurate calling of somatic 

variants.  Initial single nucleotide variant (SNV) analysis of a deeply sequenced HSC colony (~90X 

for both HSC colony and matched germline control) showed a distinct peak of high frequency, 

low variant allele frequency (VAF) mutations and an almost indiscernible peak at ~0.5 VAF (Figure 

11. A. and C.).  This was an unexpected phenomena based on the clonal nature of our samples, 

where we rather expected a higher frequency of somatic variants at ~0.5 VAF and a more 

binomial distribution.  This presence of high frequency, low VAF mutations could be due to 

various reasons including a selection for the outgrowth of a daughter cell in vitro, sequencing 

artefacts, and/or repetitive regions within the genome.  Thus, it was vitally important that we 

develop optimal sequencing parameters to filter out these non-somatic variants.   
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Initially, we utilized the SNV caller MuTect51 as this pipeline has been used to call SNVs in studies 

using clonal samples.   As seen in Figure 11. A., when calling SNVs on the same deeply sequenced 

HSC colony as mentioned above, we viewed a high frequency of low VAF SNVs and a small peak 

around ~0.5 VAF.  Following the application of prescribed filters47, as well as a blacklist of 

repetitive regions (see Methods section 5.2), we were left with ~80% less SNVs spread over a 

more binomial distribution around ~0.5 VAF (initial SNV count at 89X was 2249 and 459 SNVs 

post-filtering) (Figure 11. B.).  Later, we used the SNV calling pipeline CaVEMan52 to call SNVs on 

the same HSC colony.  The reason we decided to test this pipeline was because of a collaboration 

we began with the group of Inigo Marticorena lab at the Wellcome Trust Sanger Institute in 

Cambridge once we noticed discrepancies in our analysis using MuTect, which will be described 

at length in the following section.  Like with MuTect, the distribution of SNVs and their 

corresponding VAFs showed a high frequency of low VAF variants, and small peak around ~0.5 

VAF (Figure 11. C.).  Notably, CaVEMan called ~40% less variants than MuTect (initial SNV counts 

of 2249 and 1313 for MuTect and CaVEMan, respectively).  Following the application of filters 

and a blacklist, implemented with the help from the Martincorena lab, a prominent peak around 

~0.5VAF was observed (Figure 11. D.).  This blacklist was generated at the Wellcome Trust Sanger 

Institute and was comprised of repetitive and homologous regions to ignore, which were 

detected using multiple “control/normal” mouse genomes.  Furthermore, CaVEMan filtering 

parameters not only focused on read depth, but also mapping and sequence read quality of reads 

covering each variant  (see Methods section 5.2. for further details).  An additional VAF filter was 

added based on the VAF distribution of the remaining SNVs, whereby low VAF, sub-allelic variants 

were filtered out (Figure 11. E.).  This VAF-cutoff was based on the rationale that these mutations 

were not in the original HSC clone, but rather were acquired during in vitro culture.  This left us 

with 206 SNVs, 84% less than the pre-filtered SNVs called by CaVEMan and 55% less than filtered 

MuTect calls, again illustrating the large difference between the amount of SNVs called by each 

pipeline.  
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Figure 11. Variant allele frequency distributions for pre- and post-filtered MuTect and CaVEMan SNVs. Distribution 

of SNVs within a deeply sequenced (~90X, matched germline control), in vitro expanded colony derived from a single 

HSC, called by MuTect (A) pre-  and (B) post-filtering. Distribution of SNVs called by CaVEMan on the same HSC, (C) 

pre- and (D) post-filtering, as well as (E) filtered by VAF.  

 

1.1.2. Sensitivity assessment of SNV callers 

In order to determine what coverage we required for the accurate analysis of somatic variants 

within HSC-derived colonies using Whole Genome Sequencing (WGS), we performed an initial 

sensitivity assessment of our SNV callers, MuTect and CaVEMan, as well as an INDEL caller, 

Pindel53.  In brief, we downsampled our deeply sequenced HSC colony and matched germline 

control (both ~90X) in increments of 10X, using the Picard “DownsampleSAM” tool, and called 

variants on matched coverage between HSC colonies and DNA from tail samples (downsampling 

repeated in triplicate; see Methods section 5.3 and Table 4 for downsampling fractions).  That is, 

bam files from the HSC colony and matched tail sample which had both been downsampled to 
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10X coverage, were used as input to call variants, and this was repeated for every coverage 

fraction.  Initially this analysis was only performed using MuTect but after careful consideration 

of the results, we felt that MuTect was not the optimal pipeline for calling SNVs within our clonal 

samples.  As such, we established a collaboration with the Martincorena lab at the Wellcome 

Sanger Institute, which has expertise in calling true somatic variants in clonal samples.  The 

following results comparing the sensitivity of MuTect and CaVEMan will illustrate why MuTect 

did not meet our analysis requirements.  

 

As mentioned before, MuTect calls a much higher number of SNVs than CaVEMan, however these 

increase exponentially with coverage and only begin to plateau at around 60X coverage (Figure 

12. A., purple line).  As previously mentioned, after applying the additional filters we see a 

dramatic decrease in SNVs called (Figure 12. A., orange line).  However, an unusual result we 

observed was that there were more SNVs post-filtering at lower coverages, with the highest SNV 

count viewed at 20X, than at higher coverages (mean SNVs at 20X = 823; mean SNVs at 90X = 

463).  This seemed counterintuitive as we expected more SNVs to pass the filtering parameters 

at higher coverages.  Not only because there is a higher read depth across the whole genome 

which would increase the confidence in SNV calls, but also there were more SNVs being called by 

MuTect at higher coverages pre-filtering.  It is unclear why this phenomena occurred when 

analyzing our clonal samples and has not been noted in other studies where MuTect was used to 

call SNVs.   

 

In comparison, although CaVEMan called fewer SNVs than MuTect at each matched coverage 

fraction, variant calls plateaued at a much lower coverage of ~30X (Figure 12. B., purple line).  

Furthermore, after applying additional filtering steps to these SNVs not only did we see a large 

decrease in variants calls, but variant calls plateaued again at ~30X (Figure 12. B., orange line).   

 

1.1.3. Specificity assessment of SNV detection 

In addition to assessing the sensitivity of each SNV caller for determining optimal WGS 

parameters, we also analyzed their specificity for calling true variants.  The idea of this analysis 
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was adapted from Alioto, Buchhalter, Derdak et al.50.  In short, for each SNV pipeline we have 

called the SNVs identified at the highest coverage and corresponding filtering parameters the 

“gold standard” of true SNVs.  We used these gold standard SNVs for each pipeline and 

determined the overlap in SNVs (post-filtering) called at each downsampled coverage.  

Overlapping SNVs were called our “true positives”, while any additional variants called that were 

not present within the gold standard were denoted as “false positives”. 

 

As seen in Figure 12. C.,  with MuTect the number of true positives keeps increasing with 

increasing coverage at an almost exponential rate (green line).  Additionally, the number of false 

positives (red line) also increases with coverage until 20X, after which they decrease dramatically, 

in an almost inverse relationship to true positives.  This high proportion of false positives at 20X 

is due to unexpected phenomena we viewed before, where there was an increased amount of 

filtered SNVs called at 20X compared to higher coverages.  This high proportion of false positives 

at lower coverages is of concern as this means that until ~60X coverage, where the proportion of 

true and false positives is roughly equal at ~60%, the majority of filtered SNVs being called by 

MuTect are false positives.  Therefore, in theory we would need to sequence each HSC clone to 

atleast ~60X to be confident that roughly half of the SNVs we are calling are true SNVs.  Not only 

was this inadequate for our downstream analysis, but also not feasible due to financial and 

sample restrictions. 

 

Like MuTect, the rate of true positives called by CaVEMan increases with coverage (Figure 12. D., 

green line).  However, unlike MuTect, the rate of increasing true positives begins to plateau at 

around 30X where ~75% of true positive SNVs are called.  Furthermore, the rate of false positive 

calls (red line) appears to be stable regardless of coverage, maintaining a proportion of 10-17% 

until 60X, after which the rate of false positives decreases with coverage until the gold standard 

coverage of 90X.    

 

In summary, although MuTect calls many more SNVs than CaVEMan, regardless of the coverage 

or filtering parameters, CaVEMan outperformed MuTect both in terms of sensitivity and 
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specificity.  While variant calls which passed pipeline filtering only plateaued at ~60X coverage 

for MuTect, SNVs which passed CaVEMan filtering plateaued at ~30X (purple line, Figures 12. A. 

and B.).  Unexpectedly, we viewed an increase in filtered calls at 20X compared to higher 

coverages with MuTect (orange line, Figure 12. A.) and observed that the majority of these SNVs 

are false positives (Figure 12. C., red line).  Furthermore, the rate of true positives (Figure 12. C., 

green line) with coverage increased in an almost exponential fashion, while the inverse was 

viewed for false positives.   

Conversely, we viewed a gradual increase in the rate of filtered SNVs called per coverage with 

CaVEMan, which began to plateau at ~30X (orange line, Figure 12. B.).  Similarly, the rate of true 

positives versus coverage initially increased dramatically until beginning to plateau at around 

30X, where ~75% of true positives were called (Figure 12. D., green line).  Furthermore, the false 

positive rate was stable for CaVEMan (10-17% false positive SNVs), regardless of the coverage 

(Figure 12. D., red line).  Taken together, we determined that sequencing each HSC colony to 

~30X was sufficient for our downstream analysis using CaVEMan and lower coverages would be 

sub-optimal for confidently calling true SNVs within an HSC clone.   

 

1.1.4. Sensitivity and specificity assessment of INDEL caller 

In addition to calling SNVs, we were also interested in looking at insertions and deletions (INDELs) 

present within our HSC colonies.  As such, we performed sensitivity and specificity analyses of 

our chosen INDEL calling pipeline, Pindel, using the same deeply sequenced HSC colony.  We 

decided to use this INDEL calling pipeline following the advice from our collaborator’s at Sanger 

who have also used Pindel to call somatic variants within clonal samples.  The concepts for the 

sensitivity and specificity analyses are the same as described above in our SNV caller 

comparisons.  In Figure 12. E., we see an almost linear increase in INDELs called with coverage 

(purple line).  However, after filtering out non-clonal mutations by applying a cut-off of >0.3 VAF, 

not only did the amount of INDELs called decrease dramatically per coverage, but the rate at 

which INDELs increased with coverage also reduced (orange line).  This rate plateaued at ~30X, 

with very few additional INDELs being called beyond this coverage.  Furthermore, when assessing 

the rate of true positives with coverage, we could see it begin to plateau at around ~50X (Figure 
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12. F., green line).  However at 30X, 70% of the true INDELs were called. The rate of false positives 

versus coverage was less stable than viewed for CaVEMan, but the proportion of false positives 

is less than 33% of total INDELs per coverage, regardless of the coverage (Figure 12. F., red line).  

Therefore, for HSC colonies sequenced to ~30X, we can be confident that the majority of the calls 

are true positive (~70%), while false positives encompass a smaller proportion of the calls (~30%).  

Given the small number of INDELs called at 30X coverage (mean = 30 INDELs), we felt these 

proportions of true and false positives would be adequate for our ongoing analysis of mutation 

burden in HSCs under different experimental conditions. 
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Figure 12. Effect of filtering parameters and coverage on the ability to call variants in HSC colonies using WGS. (A), 

(B) and (E) Sensitivity assessment of variant callers MuTect, CaVEMan and Pindel, respectively. Plots show the 

number of variants called at various downsampled coverages of a deeply sequenced HSC colony (against matched 
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coverage germline control). Purple line denotes all variants which passed the variant pipeline filters. Orange line 

denotes all variants which passed additional filtering. (C), (D) and (F) Specificity assessment of variant callers MuTect, 

CaVEMan and Pindel, respectively. Plots show the proportion of true positive (green line) and false positive (red line) 

variants per coverage. All plots: downsampling per coverage was performed in triplicate. Each dot represents the 

mean and error bars indicate SD.   

 

1.1.5. Assessment of overlapping SNVs called by MuTect and CaVEMan  

Due to the requirements of our downstream analysis, it was important for our SNV calling analysis 

to be highly sensitive and specific.  As such, we wanted to assess whether using the overlapping 

SNVs called by the two pipelines was more suitable for our analysis than only using one.  In Figure 

13. A. we observed that although MuTect (red line) called many more SNVs than CaVEMAn (blue 

line) at any given coverage, the number of overlapping SNVs was similar to those called by 

CaVEMAn at all coverages (green line).  It should be noted that these were filtered SNV calls and 

that the red line in Figure 13. A. corresponds to the orange line in Figure 12. A. above, while the 

blue line in Figure 13. A. matches that of the orange line in Figure 12. B..  This was further 

demonstrated when we looked at the proportion of SNVs from each caller within the overlapping 

SNVs (Figure 13. B.).  This proportion was calculated as the amount of SNVs called by pipeline A 

which were present within the subset of overlapping SNVs between pipeline A and B at coverage 

X.  That is, how many of the total SNVs called by either MuTect/CaVEMan which were present 

within the MuTect and CaVEMan overlapping SNVs at any given coverage.  Here we can we see 

that from 20X onwards, there was a plateau where just under 90% of the SNVs called by CaVEMan 

were present within the overlapping subset of SNVs (blue line).  Therefore, CaVEMan was able to 

call 90% of the SNVs which were called by both pipelines and as such, only called an additional 

~10% of SNVs which were not called by MuTect.  Conversely, the proportion of MuTect filtered 

SNVs present within the overlapping SNVs from both pipelines was relatively low and increased 

with increasing coverage (Figure 13. B., red line).  This illustrates that even at the highest 

coverage of ~90X, less than 40% of the variants called by MuTect are present within the overlap 

of both pipelines.  Therefore, MuTect calls over 60% more SNVs at any given coverage which do 

not overlap with CaVEMan SNVs.   
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Additionally, we performed a similar analysis to that described above but this time looking at the 

overlap in true positives called by each pipeline.  Therefore, MuTect-assigned true positives 

illustrated in Figure 12. C. above (green line), are depicted in Figure 13. C. as the red line.  While 

CaVEMan-assigned true positives (Figure 13. C., blue line) correspond to the true positives 

depicted in Figure 12. D. (green line).  Similar to Figure 13. A., there was an increase in the number 

of MuTect-assigned true positives with coverage (Figure 13. C., red line), while there was a 

plateau in the number of CaVEMan-assigned true positives (blue line), as well as overlapping true 

positives (green line) from ~30X onwards.  The number of overlapping true positives was very 

close to that observed for CaVEMan-assigned true positives whereby from 20X onwards, over 

85% of CaVEMan-assigned true positives were present within the overlapping true positives from 

both pipelines (Figure 13. D., blue line).  Furthermore, although over 60% of MuTect-assigned 

true positives were present within the overlapping true positives from 10X, after 60X the 

proportion of MuTect-assigned true positives present within the overlapping true positives starts 

to decrease (red line).  This was due to the observed ever-increasing rate of true positives called 

by MuTect with increasing coverage. This demonstrates that although MuTect calls more true 

positives with increasing coverage, the majority of these are additional true positives which are 

not present within the overlap of both pipelines.  

 

To summarize, although using the overlap of SNV calls from two pipelines increases the specificity 

of calling true SNVs, we found that there was little difference between the results from the 

overlapping SNVs of both MuTect and CaVEMan, and those from CaVEMan alone.  CaVEMan was 

able to call close to 90% of SNVs found within the overlapping SNVs from both pipelines, and over 

90% of the overlapping true positives from 20X onwards.  Therefore, due to the small number of 

SNVs called per HSC colony, using a combination of two pipelines to call SNVs does not increase 

the specificity of our analysis enough to warrant the extra work.  Furthermore, this would be an 

unnecessary waste of time and resources and as such, for our analysis of HSC colonies we chose 

to use CaVEMan alone to call SNVs. 
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Figure 13. Assessment of results from individual SNV callers, MuTect and CaVEMan, compared to the overlapping 

results from both. (A) Comparison of the number of filtered SNVs called by MuTect (red line), CaVEMan (blue line) 

and the overlap of both (green line). (B) Proportion of MuTect (red line) and CaVEMan (blue line) filtered SNVs 

present within the overlapping SNVs from both pipelines. (C) Comparison of the number of MuTect-assigned true 

positive SNVs (red line), CaVEMan-assigned true positives (blue line) and overlapping true positives (green line). (D) 

Proportion of MuTect-assigned (red line) and CaVEMan-assigned (blue line) true positives present within the 

overlapping true positive SNVs from both pipelines.  

 

1.2. Comparison of quality control output from sequenced HSC clones 

Once we had established the optimal variant analysis parameters and determined a minimum 

coverage depth of ~30X for the accurate and sensitive analysis of our HSC colonies, we proceeded 

to sequence multiple colonies from various age and treated mice.  In brief, we sequenced three 

mice per age/treatment group and aimed to sequence 2-4 HSC colonies per mouse, as well as 

corresponding germline control per mouse (tissue from the tail).  Thus, in total, we have 

sequenced over 70 HSC colonies, and their matched germline controls, from young, old, pIpC- 

and TPO-treated mice, as well as label-retaining and non-label-retaining cells (LRC and non-LRC, 
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respectively) from old mice which have been labelled with GFP in their HSC compartment (scltTa 

H2B GFP).  We additionally sequenced HSC colonies from a mouse which had been treated with 

Mycobacterium avium.  However due to an issue with missing samples we were only able to 

sequence colonies from one mouse and have therefore excluded data from these colonies from 

our analysis.  Besides HSC colonies which had clear contamination, all sequenced colonies were 

analyzed and their results presented in this thesis. 

 

1.2.1. Sequencing coverage obtained was on average higher than the target coverage  

By sequencing one HSC sample/germline control per lane on the Illumina HiSeqX Ten platform 

(150bp paired-end), we were able to obtain an average sequencing depth over 35X for HSCs from 

all groups (Figure 14. A.), and their corresponding germline controls.  Although the library 

preparation protocol that was used stipulated a minimum DNA input of 100ng, the majority of 

the colonies were not large enough to obtain 100ng.  As such, we optimized the fragmentation 

and PCR amplification steps of the protocol to account for lower DNA inputs (see methods section 

4.1.2 and supplementary Figure 4).  Thus, we successfully sequenced HSC colonies with DNA 

inputs between 25-100ng.   

 

1.2.2. Higher duplicate rates correlated with lower sequencing coverage, but not lower DNA 

inputs 

On closer inspection of the sequencing alignment quality control (QC) assessments (provided by 

the DKFZ ODCF), we noted that six HSC colonies did not pass quality control.  These HSC colonies 

failed due to a high duplicate rate (duplicate rate cut-off threshold is 25%).  Interestingly, 5 of the 

6 HSCs were from either pIpC- or TPO-treated mice, while the remaining colony was from the 

non-LRC group.  All of these six colonies had a coverage lower than 35X, with the lowest being 

23X.  This was the lowest coverage viewed across all of our sequenced HSC colonies.  As expected, 

we saw a trend where samples with a higher duplicate rate had a lower coverage (Figure 14. B.).    

However, only ~50% of the variability can be accounted for when assessing the impact of 

duplicates on coverage using a simple linear regression (R2 = 0.5381).  Surprisingly, lower DNA 

input did not have a strong correlation with higher duplicate rate (R2 = 0.2540) (Figure 14. C.).  
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Even though 4 of the 6 colonies which failed duplicate rate QC had DNA inputs lower than 50ng, 

there were three times as many HSC colonies which had DNA inputs lower than 50ng but still 

passed QC.  Therefore, lower DNA input did not necessarily result in a higher duplicate, and 

subsequently lower coverage.  Lastly, although we previously illustrated that coverage impacts 

on the number of variants called (Results section 1.2. above), we saw no correlation between the 

number of SNVs called and coverage (R2 = 0.0041; Figure 14. D.).  A similar result was viewed 

looking at INDELs (R2 = 0.0022; Figure 14. E.).  Taken together, we were able to achieve a 

sequencing depth for all of our colonies which was sufficient for an accurate analysis of mutation 

burden.  Therefore, differences in mutation burden are not due to variability in coverage but are 

rather an intrinsic feature of the individual HSCs.   

 



 50 

Figure 14. Effect of genomic DNA input and alignment quality control measures on mutation burden. (A) Mean 

coverage of HSC colonies across age and treatment groups. Error bars indicate SD. (B) Percentage duplicates and 

coverage per HSC colony. (C) Percentage duplicates and DNA input (ng) per colony. (D) Number of SNVs and coverage 

per HSC colony. (E) Number of INDELs and coverage per HSC colony. For plots (B) - (E): each dot represents one HSC. 

Color of dots represents group using the same legend as in (A). Simple linear regression model was performed on 

the HSC colonies and R2 value is indicated on the plot.  
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2. Age-associated mutation burden accumulation within murine 
hematopoietic stem cells 

 

2.1. SNV mutation acquisition increases with age 

To assess whether the rate of SNV acquisition is associated with ageing, we sequenced HSC clones 

from young (~8 months of age) and old (~22 months of age) C57BL/6 mice (Figure 15. A.).  From 

here on, young and old mice are denoted as “young” and “old”, respectively.  Three mice were 

sequenced per age group and four HSC colonies, as well as matched germline control, were 

sequenced per mouse (n = 12 HSC colonies per age group).  We viewed a statistically significant 

difference in the number of SNVs between young and old mice HSCs (p = 0.0001; unpaired two-

tailed t test; Figure 15. B.), with a positive correlation between the age of the mouse and HSC 

SNV burden (p < 0.05; simple linear regression; Figure 15. C.).  This indicates that there is a gradual 

accumulation of SNVs within the HSC compartment of a mouse during its lifetime.  Using the 

results from the simple linear regression model, we could estimate an annual rate of 39.8 SNVs 

per year per HSC clone (95% confidence intervals (CIs) are 22.3-57.2, respectively; Figure 15. D.).   

 

We then repeated the same analysis as above, this time taking into account our biological 

replicates.  This was done to validate that we did not introduce a bias in our analysis by inflating 

the effective sample size when assessing SNV differences using all HSC colonies per group as our 

data input.  Therefore we compared the SNV burden of the three mice from our young group, 

with the three mice from our old.  We simply took the averages of all SNVs from the HSC colonies 

per mouse, and then repeated the unpaired t test analysis using the average SNV burden per 

mouse (n =3 for young group; n = 3 for old group).  We viewed similar results whereby there was 

a statistically significant difference in SNV burden between young and old mice (p = 0.0008; 

unpaired two-tailed t test; Figure 16. A.), with a positive correlation of increasing SNV burden in 

HSCs with age (p < 0.05; simple linear regression; Figure 16. B.).  These similar results were likely 

due to the SNV burden across HSCs within each group being relatively stable, therefore there is 

minimal skewing of the data.  We performed a multiple comparisons test comparing the average 

SNV burden per mouse using an ordinary one-way ANOVA.  There was no significant difference 

between mean SNV burden per mouse in the young (p = 0.8277; Figure 16. C. and D.) and old 
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group (p = 0.7193; Figure 16. E. and F.).  Therefore, there is a stable distribution of SNV burden 

across HSCs for each group and no significant differences in SNV accumulation between mice 

from the same age group.  As such, comparing HSCs between young and old groups does not 

inflate our effective sample to such a degree where our results are biased. 

 

2.2. INDEL mutation acquisition increases with age 

Although we detected a limited number of INDELs, we still observed a statistical difference in 

INDEL burden between HSC colonies from young and old mice (p value = 0.0387; unpaired two-

tailed t test; Figure 15. E.), with a positive correlation between the number of INDELs and age (p 

< 0.05; simple linear regression; Figure 15. E.).  Based on the results from the simple linear 

regression model, we could estimate an annual rate of 4.8 INDELs per year per HSC (95% 

confidence intervals (CIs) are 0.3-9.4, respectively; Figure 15. G.).   

 

Similar to the SNV results above, we saw a stable distribution of INDELs across HSCs for each 

group and no significant differences in INDEL burden between young mice (p value = 0.6397; 

ordinary one-way ANOVA; Figure 17. C. and D.) and old mice (p value = 0.5577; ordinary one-way 

ANOVA; Figure 17. E. and F.).  Furthermore, there was a statistical difference in INDEL burden 

between young and old mice (p = 0.0432; unpaired two-tailed t test; Figure 17. A.), where INDEL 

burden positively correlated with age (p < 0.05; simple linear regression; Figure 17. B.).   
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Figure 15. Age-associated increase in mutation burden within HSC colonies. (A) Schematic overview of ageing 

mouse cohort.  Analyzed HSC colonies from three young (~8 month old; denoted as “Young”) mice and three old 
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(~24 month old; denoted as “Old”) mice. (B) Mean number of SNVs in Young and Old HSCs. Each data point 

represents one HSC colony. Error bars  indicate SD. Bar indicates a statistical difference between the number of SNVs 

in HSCs from Young and Old mice (unpaired two-sided t test; *** = p < 0.001). (C) Correlation of the number of SNVs 

per genome with age. Each dot represents a single HSC colony. Simple linear regression was performed and the p 

value is indicated above the plot (unpaired two-sided t test). (D) Annual SNV rate estimated using the linear 

regression model in (C). Error bars indicate the 95% confidence intervals of the slope estimation. (E) Mean number 

of INDELs in Young and Old HSC colonies. Each data point represents one colony. Error bars indicate SD. Bar indicates 

a statistical difference in INDEL burden between Young and Old HSCs (unpaired two-sided t test; * = 0.01 < p < 0.05). 

(F) Correlation of the number of INDELs with age. Each dot represents a single colony. Simple linear regression was 

performed and the p value is indicated above the plot (unpaired two-sided t test). (G) Annual rate of INDELs 

estimated using the linear regression model in (F). Error bars indicate the 95% confidence intervals of the slope 

estimation.  
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Figure 16. Comparison of SNV burden between mice from young and old groups. (A) Mean number of SNVs in 

Young and Old mice. Each data point represents one mouse. Error bars indicate SD. Bar indicates a statistical 

difference between the number of SNVs in mice from Young and Old groups (unpaired two-sided t test; *** = p < 
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0.001). (B) Correlation of the number of SNVs per mouse with age. Each dot represents a single mouse. Simple linear 

regression was performed and the p value is indicated above the plot (unpaired two-sided t test). (C) Comparison of 

the mean SNV burden per young mouse using a one-way ANOVA. Ns bar indicates no significant difference (p > 0.05). 

(D) Plot depicting the difference in means between mice from the young group. Bar depicts 95% confidence interval. 

(E) Comparison of the mean SNV burden per old mouse using a one-way ANOVA. Ns bar indicates no significant 

difference (p > 0.05). (F) Plot depicting the difference in SNV means between mice from the old group. Bar depicts 

95% confidence interval.  
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Figure 17. Comparison of INDEL burden between mice from young and old groups. (A) Mean number of INDELs in 

Young and Old mice. Each data point represents one mouse. Error bars indicate SD. Bar indicates a statistical 

difference between the number of INDELs in mice from Young and Old groups (unpaired two-sided t test; * = 0.01 < 
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p < 0.05). (B) Correlation of the number of INDELs per mouse with age. Each dot represents a single mouse. Simple 

linear regression was performed and the p value is indicated above the plot (unpaired two-sided t test). (C) 

Comparison of the mean INDEL burden per young mouse using a one-way ANOVA. Ns bar indicates no significant 

difference (p > 0.05). (D) Plot depicting the difference in means between mice from the young group. Bar depicts 

95% confidence interval. (E) Comparison of the mean INDEL burden per old mouse using a one-way ANOVA. Ns bar 

indicates no significant difference (p > 0.05). (F) Plot depicting the difference in INDEL means between mice from 

the old group. Bar depicts 95% confidence interval.  
 

3. Mutation burden within HSCs increases with replication history 
 

3.1. SNV mutation acquisition increases with proliferation 

Next we wanted to assess whether the extent of DNA replication and HSC has undergone is a 

primary driving force behind mutation acquisition rate during ageing.  To do this, we utilized a 

label-retention model, in which the HSC compartment of mice is transiently labelled with a GFP-

H2B fusion protein which, when switched off using doxycycline treatment, is diluted with every 

subsequent cell division54.  Using this model, we were able to separate and expand label-retaining 

(LRC) and non-LRC HSCs from three old mice (~22 months of age) (Figure 18. A.).  These represent 

HSCs which have remained predominantly dormant throughout their lifetime and those which 

have undergone HSC cycling, respectively.  From here on, label-retaining colonies will be denoted 

as LRC HSCs and non-label-retaining colonies will be denoted as non-LRC (“old LRC” and “old non-

LRC” in figures).  Twelve LRC (4 HSCs from each mouse; n = 12) and eleven non-LRC (4 HSCs from 

2 mice, 3 HSCs from 1 mouse n = 11) HSC colonies from the same three mice were sequenced, as 

well as their matched germline controls.  There was a statistically significant increase in SNV 

burden in non-LRC HSCs compared to LRC HSCs (p = 0.0093; unpaired two-tailed t test; Figure 18. 

B.).  Furthermore, we saw a similarity in the average SNV burden between the non-LRC HSCs and 

normal old HSCs (mean of old group = 160.3; mean of non-LRC group = 155.9 SNVs), while the 

average SNV burden of the LRC HSCs was significantly closer to that of the young HSCs (mean of 

LRC group = 122.3; mean of young group = 107.3 SNVs).  Considering that the mice from this 

label-retention model are ~22 months of age and mice from the old group are ~24 months old, 

and the majority of HSCs are non-LRCs after such a lengthy chase period, it was unsurprising that 

their SNV burden is similar.  On the other hand, HSCs from the same ~22 month old mice which 
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still retained their GFP label had a much lower SNV burden which closer represented those from 

~8 month old young mice.  This could indicate that replication is a key mechanism of ageing and 

mutation burden within HSCs, and that HSCs which have replicated less throughout their lifetime 

exhibit a “younger” SNV burden phenotype.  As such, there was no statistical difference in the 

number of SNVs between old and non-LRC HSCs (p = 0.6486; unpaired two-tailed t test; Figure 

18. B.), but SNV burden between old and LRC HSCs was statistically different (p = 0.0009; unpaired 

two-tailed t test; Figure 18. B.).  Furthermore, no statistical significance was viewed between SNV 

numbers from young and LRC HSCs (p = 0.2587; unpaired two-tailed t test; Figure 18. B.), but SNV 

burden of young HSCs was statistically different from those of non-LRC (p = 0.0012; unpaired 

two-tailed t test; Figure 18. B.).   

 

The correlation between the age of young and non-LRC, and the age of young and LRC HSCs was 

plotted using a simple linear regression model (Figure 18. C.).  There was a positive correlation 

between age and HSC SNV burden when comparing young and non-LRC HSCs (p < 0.05).  However 

no statistically significant correlation of SNV burden with age was viewed when comparing young 

and LRC HSCs (p > 0.05).  This indicates that there is a gradual accumulation of HSC SNVs with 

replication, while SNV acquisition remains stable within dormant HSCs.  Using these results, we 

could estimate an annual rate of 41.6 SNVs per year for non-LRC HSCs (95% confidence intervals 

(CIs) are 18.5-64.8, respectively), which is similar to the annual SNV rate viewed in our old group 

(Figure 18. D.).  Conversely, the estimated annual rate when comparing SNV burden between 

young and LRC HSCs is much lower at 12.9 SNVs per year (95% confidence intervals (CIs) are -

10.1376 - 35.8560, respectively). 

 

When taking into account SNV burden per mouse for each group, SNV burden between LRC and 

non-LRC HSCs was statistically significant (p = 0.0409; unpaired two-tailed t test; Figure 19. A.).  

Furthermore, SNV burden correlated with age for HSC colonies from the non-LRC group (p < 0.05; 

simple linear regression; Figure 19. B.), but there was no correlation between SNV burden and 

age observed when assessing HSC colonies from the LRC group (p > 0.05; simple linear regression; 

Figure 19. B.).  We again saw a stable distribution of SNV burden across HSCs for each group and 
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no significant differences in SNVs between analyzed mice from our label-retention model (p value 

= 0.5240; ordinary one-way ANOVA; Figure 20. A. and B.).  Furthermore, when assessing 

differences in mice, taking into account the label status of each HSC, we saw no differences in 

SNVs between the mice for non-LRC HSCs (p value = 0.6850; ordinary one-way ANOVA; Figure 

20. C. and D.) and for LRC HSCs (p value = 0.2570; ordinary one-way ANOVA; Figure 20. E. and F.). 

These results show no different conclusions compared to the results mentioned above where 

SNV burden was assessed across all HSCs for each group. 

 

3.2. INDEL mutation acquisition increases with proliferation 

Like the SNV results above, we noted a significant increase in INDEL burden within non-LRC HSCs 

compared to LRC HSCs (p value = 0.0241; unpaired two-tailed t test; Figure 21. A.).  Therefore, 

INDEL burden also increased in HSCs with replication.  Furthermore, we observed no significant 

difference in INDEL burden between old and non-LRC HSCs (p = 0.0.0577; unpaired two-tailed t 

test), although the overall distribution of INDELs appears to be lower than those observed in the 

old group.  Conversely, the number of INDELs is significantly lower in LRC HSCs compared to HSCs 

from the old group (p = 0.0001, respectively; unpaired two-tailed t test).  As no statistical 

difference was observed between INDELs viewed in young and non-LRC, and young and LRC HSCs, 

we did not perform a linear regression model to determine annual INDEL rate (p = 0.5954 and p 

= 0.1928, respectively; unpaired two-tailed t test).  

 

Similar to the results above, the average INDEL burden per mouse for LRC and non-LRC HSCs was 

statistically significant (p = 0.0253; unpaired two-tailed t test; Figure 21. B.).  Additionally, we saw 

a stable distribution of INDELs across HSCs for each group and no significant differences in INDEL 

burden between analyzed mice from our label-retention model (p value = 0.54600; ordinary one-

way ANOVA; Figure 22. A. and B.).  Furthermore, when taking into account the label status of 

each HSC, we saw no differences in INDELs between the mice for non-LRC HSCs (p value = 0.6251; 
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ordinary one-way ANOVA; Figure 22. C. and D.) and for LRC HSCs (p value = 0.6603; ordinary one-

way ANOVA; Figure 22. E. and F.).   

Figure 18. Replication-associated increase in mutation burden within HSC colonies. (A) Schematic overview of 

label-retention model. Label-retaining (GFP+) FACS sorted HSCs represent HSCs which have remained dormant, 

while non-label-retaining (GFP-) HSCs represent HSCS which have undergone replication. Analyzed label-retaining 
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(denoted as “old LRC”) and non-label-retaining (denoted as “old non-LRC”) HSC colonies from 3 ~22 month old mice. 

(B) Mean number of SNVs in Old, Old non-LRC and LRC  HSCs. Each data point represents one HSC colony. Error bars 

indicate SD. Bar indicates statistical difference between groups (unpaired two-sided t test; ** = 0.001 < p < 0.01; *** 

= p < 0.001; ns = p > 0.05). (C) Correlation of the number of SNVs per genome with age. Each dot represents a single 

HSC colony. Simple linear regression was performed and the p value is indicated in the plot (unpaired two-sided t 

test). Correlation between Young and Old non-LRC HSCs is indicated by a purple line and correlation between Young 

and Old LRC HSCs is indicated by a blue line. (D) Annual SNV rate estimated using the linear regression model in (C). 

Error bars indicate the 95% confidence intervals of the slope estimation. (E) Mean number of SNVs in Young, Old 

non-LRC and LRC  HSCs. Each data point represents one HSC colony. Error bars indicate SD. Bar indicates a statistical 

difference between groups (unpaired two-sided t test). 

 

Figure 19. Comparison of SNV burden between mice from LRC and non-LRC groups reveals an increase in SNVs 

with replication. (A) Mean number of SNVs in Old, Old non-LRC and Old LRC mice. Each data point represents one 

mouse. Error bars indicate SD. Bar indicates a statistical difference between groups (unpaired two-sided t test; * = 

0.01 < p < 0.05; *** = p < 0.001; ns = p > 0.05). (B) Correlation of the number of SNVs per mouse with age. Each dot 

represents a single mouse. Simple linear regression was performed and the p value is indicated above the plot 

(unpaired two-sided t test). 
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Figure 20. Comparison of SNV burden between mice from LRC and non-LRC groups. (A) Comparison of the mean 

SNV burden per mouse from the label-retention model using a one-way ANOVA. Ns bar indicates no significant 

difference (p > 0.05). (B) Plot depicting the difference in SNV means between mice from the label-retention model. 
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Bar depicts 95% confidence interval. (C) Comparison of the mean SNV burden per mouse for non-LRC HSCs using a 

one-way ANOVA. Ns bar indicates no significant difference (p > 0.05). (D) Plot depicting the difference in SNV means 

between mice from the non-LRC HSCs group. Bar depicts 95% confidence interval. (E) Comparison of the mean SNV 

burden per mouse for LRC HSCs using a one-way ANOVA. Ns bar indicates no significant difference (p > 0.05). (F) Plot 

depicting the difference in SNV means between mice from the LRC HSCs group. Bar depicts 95% confidence interval.  
 

Figure 21. Replication-associated increase in mutation burden within HSC colonies. (A) Mean number of INDELs in 

Old, Old non-LRC and Old LRC HSCs. Each data point represents one HSC. Error bars indicate SD. Bar indicates a 

statistical difference between groups (unpaired two-sided t test; * = 0.01 < p < 0.05; *** = p < 0.001; ns = p > 0.05). 

(B) Mean number of INDELs in Old, Old non-LRC and Old LRC mice. Each data point represents one mouse. Error bars 

indicate SD. Bar indicates a statistical difference between groups (unpaired two-sided t test; * = 0.01 < p < 0.05; ** 

= 0.001 < p < 0.01; ns = p > 0.05). 
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Figure 22. Comparison of INDEL burden between mice from LRC and non-LRC groups. (A) Comparison of the mean 

INDEL burden per mouse from the label-retention model using a one-way ANOVA. Ns bar indicates no significant 
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difference (p > 0.05). (B) Plot depicting the difference in INDEL means between mice from the label-retention model. 

Bar depicts 95% confidence interval. (C) Comparison of the mean INDEL burden per mouse for non-LRC HSCs using 

a one-way ANOVA. Ns bar indicates no significant difference (p > 0.05). (D) Plot depicting the difference in INDEL 

means between mice from the non-LRC HSCs group. Bar depicts 95% confidence interval. (E) Comparison of the 

mean INDEL burden per mouse for LRC HSCs using a one-way ANOVA. Ns bar indicates no significant difference (p > 

0.05). (F) Plot depicting the difference in INDEL means between mice from the LRC HSCs group. Bar depicts 95% 

confidence interval.  
 

4. Mutation burden within HSCs does not increase with induced HSC 
proliferation 

 

4.1. Comparison of mutation burden within HSCs from age-matched untreated, 

pIpC- and TPO-treated mice shows no difference in SNV and INDEL mutation 

acquisition 

Based on the results from our label-retention model where we observed an increase in mutation 

burden within murine HSCs with replication, we wanted to identify whether induced HSC 

proliferation results in a subsequent increase in mutation burden.  As such, we chose two 

separate treatment regimens, Polyinosinic:polycytidylic (pIpC) and Thrombopoietin (TPO) 

treatment, which have previously been shown to induce HSC cycling40.  Figure 23. A. illustrates 

these treatment regimens.  In short, mice were treated with three rounds of either pIpC or TPO.  

One round of treatment encompasses two injections with a prescribed dosage of agonist per 

week for four weeks (see Methods section 2.2 and 2.3 for treatment dosages), followed by a four 

week recovery period.  After three rounds of treatment, the mice are ~8 months of age.  Three 

mice were sequenced per treatment group and at least two HSC colonies, as well as their 

matched germline controls, were sequenced per mouse (pIpC n = 7, 3 HSCs from 1 mouse and 2 

HSCs from 2 mice; TPO n = 9, 4 HSCs from 1 mouse, 3 HSCs 1 mouse, 2 HSCs from 1 mouse).  No 

statistically significant differences in the number of SNVs were viewed between age-matched 

untreated HSCs (~8 month old young group) and HSCs from pIpC- (p = 0.8127; unpaired two-

tailed t test) or TPO-treated mice(p = 0.2446; unpaired two-tailed t test; Figure 23. B.).  Similarly, 

we viewed no difference in the number of INDELs between young and pIpC-treated (p = 0.6983; 



 67 

unpaired two-tailed t test), and young and TPO-treated HSCs (p = 0.5515; unpaired two-tailed t 

test; Figure 23. C.).   

 

When assessing the differences in mutation burden between mice from the same group, we 

again saw no difference in the number of SNVs and INDELs between young and pIpC-treated (p 

= 0.5696 for SNVs and p = 0.5338 for INDELs; unpaired two-tailed t test), and young and TPO-

treated HSCs (p = 0.2326 for SNVs and p =  3896 for INDELs; unpaired two-tailed t test; Figures 

24. A. and B.).  Furthermore, we saw no differences in SNV (p value = 0.8975; ordinary one-way 

ANOVA; Figure 25. A. and B.) and INDEL (p value = 0.3488; ordinary one-way ANOVA; Figure 26. 

A. and B.) burden between pIpC-treated mice, and no differences in SNV (p value = 0.4465; 

ordinary one-way ANOVA; Figure 25. C. and D.) and INDEL (p value = 0.5869; ordinary one-way 

ANOVA; Figure 26. C. and D.) burden between TPO-treated mice.  As such, the distribution of 

SNVs and INDELs across HSCs for each group was stable resulting in no different conclusions than 

the ones made above when assessing mutation burden of all HSCs within a group. 

 

4.2. Reduced HSC colony size from treated mice could have potentially introduced 

a selection bias 

Considering that we saw an increase in mutation burden with proliferation, it was an unexpected 

result that pIpC- and TPO-induced HSC cycling did not result in differences in mutation burden.  

However, it must be noted that an unintentional bias in sample selection has occurred.  As 

previously mentioned, we were able to optimize our library preparation protocol in order to 

sequence smaller HSC colonies with genomic content between 25-100ng.  Although this was a 

sufficient threshold for all other analyzed groups, we were not able to sequence the majority of 

the pIpC- and TPO-treated colonies because they were too small to obtain the required minimum 

input DNA amount of 25ng.  This is due to a phenomenon we have previously observed where 

HSC colonies from pIpC- and TPO-treated mice have a decreased clonogenicity potential.  That is, 

HSCs sorted from pIpC- and TPO-treated mice gave rise to smaller colonies with lower cell counts 

compared to PBS/untreated, age-matched controls (Figure 23. D. and E.).  This difference in HSC 

colony size between PBS- and pIpC-treated mice, and PBS- and TPO-treated mice was statistically 
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significant (unpaired two-tailed t test; clonogenicity analysis performed by Ruzhica Bogeska and 

Marleen Büchler-Schäff for pIpC and TPO, respectively).  Figure 23. F. illustrates this difference 

between HSC colony size where we can see that colonies from PBS-treated mice are much larger 

than those from pIpC- and TPO-treated mice.   

As such, when selecting HSC colonies to sequence, we were only able to prepare libraries and 

sequence larger colonies from pIpC- and TPO-treated mice.  Therefore, we have potentially 

selected more “functional” HSCs which have a better proliferation capacity, and excluded less-

functional and possibly more damaged HSCs from our analysis. 
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Figure 23. Murine HSCs exposed to replication-inducing agonists show no increase in mutation burden and a 

decrease in clonogenicity potential. (A) Schematic overview of pIpC and TPO treatment regimen. Mice are treated 

with three rounds of treatment (Tx) after which mice are ~8 months old. Three pIpC-treated mice (denoted as “pIpC) 
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and three TPO-treated mice (denoted as “TPO”) were analyzed. (B) Mean number of SNVs in Young, pIpC and TPO 

HSCs. Each data point represents one HSC colony. Error bars indicate SD. Ns bar indicates no significant difference 

between groups (unpaired two-sided t test; p > 0.05). (C) Mean number of INDELs in Young, pIpC and TPO HSC 

colonies. Each data point represents one colony. Error bars indicate SD. ns bar indicates no significant differences in 

INDEL burden between groups (unpaired two-sided t test; p > 0.05). (D) Clonogenicity assay comparing HSC colony 

sizes between PBS- and pIpC-treated mice.  Dots in the middle of the boxes indicate the average colony size per 

group. Bar indicates a statistical difference between the two groups (unpaired two-sided t test; *** = p < 0.001). (E) 

Clonogenicity assay comparing HSC colony sizes between PBS- and TPO-treated mice.  Middle line with dot within 

box and plot indicates the average colony size per group. Bar indicates a statistical difference between the two 

groups (unpaired two-sided t test; *** = p < 0.001). (F) Microscopy images of two PBS- and two pIpC-treated HSC 

colonies (all images taken at 2.5X magnification and not edited after). 

 

 

 

 

 

 

 

 

 

 

Figure 24. Comparison of SNV and INDEL burden between mice from young, pIpC- and TPO-treated groups reveals. 

(A) Mean number of SNVs in Young, pIpC- and TPO-treated mice. Each data point represents one mouse. Error bars 

indicate SD. Ns bars indicate no statistical difference between groups (unpaired two-sided t test; p > 0.05). (B) Mean 

number of INDELs in Young, pIpC- and TPO-treated mice. Each data point represents one mouse. Error bars indicate 

SD. Ns bars indicate no statistical difference between groups (unpaired two-sided t test; p > 0.05). 
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 Figure 25. Comparison of SNV burden between mice from Young, pIpC- and TPO-treated groups. (A) Comparison 

of the mean SNV burden per pIpC-treated mouse using a one-way ANOVA. Ns bar indicates no significant difference 

(p > 0.05). (B) Plot depicting the difference in SNV means between pIpC-treated mice. Bar depicts 95% confidence 

interval. (C) Comparison of the mean SNV burden per TPO-treated mouse using a one-way ANOVA. Ns bar indicates 

no significant difference (p > 0.05). (D) Plot depicting the difference in SNV means between TPO-treated mice. Bar 

depicts 95% confidence interval.  
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Figure 26. Comparison of INDEL burden between mice from Young, pIpC- and TPO-treated groups. (A) Comparison 

of the mean INDEL burden per pIpC-treated mouse using a one-way ANOVA. Ns bar indicates no significant difference 

(p > 0.05). (B) Plot depicting the difference in INDEL means between pIpC-treated mice. Bar depicts 95% confidence 

interval. (C) Comparison of the mean INDEL burden per TPO-treated mouse using a one-way ANOVA. Ns bar indicates 

no significant difference (p > 0.05). (D) Plot depicting the difference in INDEL means between TPO-treated mice. Bar 

depicts 95% confidence interval. 

 

5. Assessment of SNV burden among age and treatment groups controlling 
for discrepancies in coverage by normalizing for callable genome size 

 

As mentioned before, we observed an increase in mutation burden with age and proliferation.  

This was the case for both SNVs and INDELs.  However, we did note a few outliers within each 
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group where certain HSCs had dramatically more SNVs than the majority of HSC colonies for that 

group.  For example, three colonies (each from a different mouse) from the young group had 

much higher SNV burdens than the rest of the colonies from that group.  These outliers within 

the young group and across all groups can be seen in Figure 27. A.  Similarly, we saw variability 

in INDELs in HSC colonies from the same groups (Figure 27. B.). As such, we wanted to assess 

whether these outliers are true phenomenon representing HSCs with higher SNV burden or if this 

variability was rather due to variability in coverages. 

 

Although we previously noted that the average sequencing coverage per group was fairly stable 

(Figure 14. A.), when we looked at the coverage per HSC colony we not only viewed variability in 

coverage across all HSCs, but also within groups (Figure 27. C.).  In order to determine whether 

this variability in coverage plays a role in the variability in SNV burden within HSCs from the same 

groups, we decided to assess SNV burden per callable genome.  Here the callable genome 

represents the size of the genome which was actually used for SNV calling.  Details of determining 

the size of the callable genome per HSC is described in the Methods (section 5.4) but briefly, we 

subtract the regions which were not analyzed by CaVEMan from the reference genome in order 

to obtain the size of the callable genome in giga base pairs (Gbs).  After identifying the callable 

genome sizes for each HSC colony, we were able to compare the number of SNVs per Gb per HSC 

colony.  Encouragingly, we observed very similar results than those described before (Figure 27. 

D. and E.).  Again when performing unpaired two-tailed t tests, we saw significant differences 

between young and old HSCs (p = 0.0001; unpaired two-tailed t test), non-LRC and LRC HSCs (p = 

0.0093), young and non-LRC (p = 0.0019), and old and LRC HSCs (p = 0.0004; Figure 27. D.).  

Furthermore, no statistical differences were observed between young and LRC HSCs (p = 0.3299), 

old and non-LRC HSCs (p = 0.4618), young and pIpC-treated HSCs (p = 0.8143), and young and 

TPO-treated HSCs (p = 0.8143) (all comparisons performed using unpaired two-tailed t test).  

Additionally, we observed that the high SNV burden outliers still remain.  This was due to the fact 

that even though there were some differences in global coverages across HSC colonies, the actual 

callable genome size was relatively similar between colonies from the same groups (Figure 27. 

F.).  Therefore, we did not view any outlier colonies with higher SNV burden which also had a 
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larger callable genome, but rather the callable genome size was stable within groups.  As such, 

this would indicate that these higher SNV burden HSC colonies are actually true events, 

demonstrating heterogeneity between HSCs from the same mouse that has not been viewed 

before. 
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Figure 27. Variability in SNV burden across HSC colonies does not depend on differences in global coverage. (A) 

Number of SNVs per HSC across all analyzed groups. Figure legend is indicated on the top left. Letters in brackets in 

the legend represent an abbreviated version of each group name. Bars indicate which HSC colonies come from which 

mouse, with the code underneath indicating group, mouse and colony. (B) Number of INDELs per HSC across all 
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analyzed groups. Figure legend is indicated on the top left. Letters in brackets in the legend represent an abbreviated 

version of each group name. Bars indicate which HSC colonies come from which mouse, with the code underneath 

indicating group, mouse and colony. (C) Coverage per HSC across all analyzed groups. Figure legend is indicated on 

the top left. Letters in brackets in the legend represent an abbreviated version of each group name. Bars indicate 

which HSC colonies come from which mouse, with the code underneath indicating group, mouse and colony. (D) 

Mean size of callable genome (Gb) per group. Each dot represents one HSC. Error bars indicate SD. Bar indicates a 

statistical difference between groups (unpaired two-sided t test; ** = 0.001 < p < 0.01; *** = p < 0.001). (E) Number 

of SNVs per group. Each dot represents one HSC. Error bars indicate SD. Bar indicates a statistical difference between 

groups (unpaired two-sided t test; ** = 0.001 < p < 0.01; *** = p < 0.001). (F) Size of the callable genome per group. 

Error bars indicate SD. Bar indicates a statistical difference between groups (unpaired two-sided t test). 

 

6. Mutational profile and signature analysis revealed an increase in signatures 
correlated with ageing 

 

6.1. Mutation spectra did not differ between groups 

Although we saw a significant increase in SNVs with ageing and proliferation, the genomic 

distribution of these SNVs remained stable throughout the groups (Figure 28. A.).  That is, the 

majority of SNVs occurred within non-coding regions of the genome (intergenic, intronic and non-

coding RNA within introns), while we observed less SNVs within protein-coding genes (exonic 

SNVs).  We observed no other significant differences in the distribution of SNVs within other 

genomic regions between the groups.  Unsurprisingly, we observed no statistically relevant 

differences in the number or type of exonic SNVs between the groups; that is, synonymous, 

nonsynonymous or stop gain variants (Figure 28. B.).  This was due to the low number of exonic 

variants present within HSCs across the groups, ranging from 0-6 exonic SNVs per HSC colony.  

That being said, we did observe the presence of more nonsynonymous SNVs across all groups 

except in the young group (6 nonsynonymous SNVs and 7 synonymous SNVs across 12 HSC 

colonies).  Furthermore, we observed a large difference in the number of nonsynonymous versus 

synonymous SNVs within the TPO-treated group (14 nonsynonymous SNVs and 3 synonymous 

SNVs across 9 HSC colonies).  But again it must be noted that this was highly variable between 

the individual HSCs within groups and numbers were too low for statistical relevance. 
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As seen in Figure 28. C. and Figure 29., the mutational spectra of transitions and transversions 

did not differ between the HSC groups.  Likewise, the mutational spectra of different INDEL types 

did not differ between the groups (Figure 28. D.).  Taken together, these results suggest that the 

underlying mechanisms of mutation acquisition are the same throughout the groups.  

Considering that these colonies were all generated from the same cell type, HSCs, this could 

explain the lack of variability in the mutational spectra of HSCs from our various groups.  

 

Figure 28. Genomic distribution of mutational changes revealed no distinct pattern between groups. (A) 

Distribution of SNVs per group found in each genomic region. The total number of SNVs and analyzed HSCs per group 

is indicated on the side of each bar. (B) Mean number and type of exonic SNVs for all HSCs per group. Error bars 

indicate SD.  No statistically significant difference was observed between any groups (unpaired t test). (C) Relative 

contribution of each SNV mutation type per group. The total number of SNVs and analyzed HSCs per group is 
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indicated on the side of each bar. (D) Relative contribution of each INDEL mutation type per group. The total number 

of INDELs and analyzed HSCs per group is indicated on the side of each bar. 

 

Figure 29. Mutational profiles of total SNVs per group. Total 96-trinucleotide context for all SNVs in: (A) young, (B) 
old, (C) non-LRC, (D) LRC, (E) pIpC, and (F) TPO HSCs.   
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6.2. Contribution of mutational signatures between samples 

 

6.2.1. Mutational signature analysis of individual HSCs 

Although the types of mutations and mutation profiles did not differ much between groups, we 

wanted to assess whether we saw any differences with regards to mutational signatures.  To 

identify these signatures, we performed a supervised analysis of mutational signatures within 

our HSCs using the package YAPSA55 and the updated COSMIC mutational signatures44.  COSMIC 

encompasses 49 SNV mutational signatures which were identified de novo from data from the 

PCAWG (Pan-cancer Analysis of Whole Genomes) consortium using two different calling 

algorithms, SigProfiler and SignatureAnalyzer.  YAPSA utilizes the linear combination 

decomposition (LCD) function to identify the exposure of known signatures within a particular 

mutation catalogue.  That is, when assessing our known SNVs within our cohort in the context of 

these known mutational signatures in COSMIC, we can use YAPSA to estimate the exposure of 

each mutational signature within our cohort’s SNV catalogue.  This is highly useful as YAPSA is 

not constrained by SNV catalogue or cohort size so we are theoretically able to assess the 

mutational signatures within individual HSCs.  That being said, the mutational load per HSC was 

very low which we predicted would likely affect the confidence of the detected signatures. 

 

This was confirmed when we looked at the mutational signatures per HSC across all groups 

(Figure 30. A.).  Identifiers for each HSC colony are indicated along the x-axis and correspond to 

a list of identifiers (supplementary Table 2).  From initial observation, there appeared to be no 

distinct patterns among HSCs from the same groups.  A special feature of YAPSA is the ability to 

perform signature analysis using signature-specific cutoffs.  It is known that different signatures 

have different detectability and those with high detectability will appear more often as false 

positives.  In order to account for these differences in detectability, YAPSA introduced the use of 

pre-determined signature-specific cutoffs which can improve on the sensitivity and specificity of 

the identified mutation signature calls.  Thus, after identifying exposures for each mutational 

signature, we apply these signature cutoffs.  Any signatures which have an exposure contribution 

higher than their corresponding signature-specific cutoffs, are identified.  The supervised analysis 
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of signature calling is then rerun using this subset of identified signatures and the contribution of 

each signature per sample is presented.  From Figure 30. B., it was observed that seven signatures 

were identified at higher exposures than the signature-specific cutoffs.  However, when we 

performed a cluster analysis to identify groups of samples which were exposed to similar 

mutational processes, i.e. clustering HSCs according to their exposures of these seven signatures, 

we viewed no distinct pattern for the HSCs which were clustering together (Figure 31. A.).  That 

is, HSCs from the same mice/age/treatment did not cluster together but rather clustering seemed 

to be random when assessing mutation signatures across all HSCs.  Additionally, we observed 

that the majority of clustering seemed to depend on the exposures of signatures 5, 1, 40, 3 and 

18, which all exhibited atleast a few HSCs with exposure levels above 0.2. Signatures 2 and 7c 

exhibited lower signature exposures across all HSCs.  This was further illustrated when we 

evaluated the confidence intervals (CIs) of exposures for each mutational signature per HSC 

(Figure 31. B.).  YAPSA provides 95% CIs using the concept of profile likelihood and plots these 

according to each signature exposure per sample.  In simple terms, YAPSA changes the exposure 

of a signature in an individual sample by a small value and then reruns the entire analysis using 

this alternative data model containing this newly altered exposure value and the remaining 

signatures.  Therefore, this alternative data model has one degree of freedom less than the initial 

model.  Then log-likelihoods are computed from the differences between the initial and the 

alternative model and a likelihood ratio test is performed to yield a p-value for the exposure value 

change, from which 95% CIs can be extrapolated.  We observed a high variability in signature 

exposures within HSCs from each group and across all groups (Figure 31. B.).  Furthermore, in the 

majority of the HSCs, most of the SNVs for each HSC contributed to signature 5 exposure, with 

lower levels of exposure for signatures 1, 3, 18 and 40.  Signatures 2 and 7c had minimal 

contribution across the HSCs.  Due to the low mutation burden within individual HSCs, there was 

a high degree of variance for signature exposures.  As such we decided to perform the same 

analyses but rather grouping SNVs per mice and then per group, in order to increase our mutation 

burden per sample to hopefully decrease this observed high variability in signature exposures. 
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Figure 30. Mutational signatures observed per HSC colony. Absolute exposures of (A) all mutation signatures, and 

(B) signatures which passed a signature-specific cutoff  for each HSC colony. Legend indicates HSC colony groups. 

Values indicated along the x-axis are identifiers for each HSC colony. Sig = signature; SBS = single base substitution. 
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Figure 31. Distribution of identified mutation signatures across all HSCs. (A) Clustering of HSCs and signatures based 

on the relative exposures of identified signatures across all HSCs. Legend indicates groups, exposure level and 
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clustering subtypes. Values indicated along the x-axis are identifiers for each HSC colony. Sig = signature; SBS = single 

base substitution; norm = normalized. (B) Confidence intervals of signature exposures across all HSCs. Error bars 

indicate 95% CIs.  

 

6.2.2. Mutational signature analysis of individual mice 

Here, we grouped SNVs identified for each mouse and performed the above-described 

mutational signature analysis again.  That is, SNVs identified for each HSC were grouped 

according to their corresponding mouse.  The exception was for LRC and non-LRC HSCs.  Although 

LRC and non-LRC HSCs were sequenced from the same three mice, we grouped the SNVs from 

LRC HSCs for one mouse together, and SNVs from non-LRC HSCs from the same mouse together,  

and  repeated this for each mouse.  Therefore, instead of us analyzing three mice/samples from 

the label-retention model, we essentially analyzed six samples; three LRC samples and three non-

LRC samples.  As such, we analyzed SNVs from six groups, three mice per group. 

 

As seen before when assessing mutation signatures per HSC, we initially observed no distinct 

patterns among mice from the same groups (Figure 32. A.).  After applying signature-specific 

cutoffs, we observed six mutation signatures whose exposures were above the pre-determined 

thresholds (Figure 32. B.).  Six of these signatures were the same as those identified before in the 

HSC mutation signature analysis.  These are signatures 1, 2, 3, 5, 18 and 40.  Signature 7c was no 

longer viewed when grouping SNVs per mouse, therefore this signature was likely a false positive 

due to the decreased number of SNVs per HSC.  When we performed a cluster analysis, we 

observed an interesting, albeit surprising pattern (Figure 33. A.).  From this analysis, we observed 

four subtypes in our data.  Subtype 1 was comprised of mice which had high signature 5 exposure.  

Signature 5 has an unknown mutational process but this signature has been reported to act in a 

“clock-like” manner in humans.  That is, the exposure of this signature seems to correlate with 

the age of individual (https://cancer.sanger.ac.uk/cosmic/signatures/SBS/SBS5.tt).  This subtype 

was comprised of two old mice, one young mouse, two TPO-treated mice, two non-LRC and two 

LRC mice.  Considering that the majority of these mice are ~22 months and older, with the 

exception of the one young mouse and two-treated mice, the high exposure of this signature in 

these samples appears to correlate with the concept of it acting as an ageing/clock signature.  
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Subtype 2 contains four mice, one non-LRC, one LRC, one old and one young.  This subtype seems 

to be characterized by a moderate exposure, ~0.4, of signature 5 and 40.  The mutational process 

of signature 40 is also unknown but has been correlated with the age of patients for some types 

of human cancers (https://cancer.sanger.ac.uk/cosmic/signatures/SBS/SBS40.tt).  Subtype 3 is 

comprised of three mice with the lowest exposures for signature 5, moderate to high exposure 

of signature 40 and the highest exposure of signature 1 of all the mice (>0.2).  Furthermore, these 

three mice seem to cluster according to similar exposures of signatures 18 and 2.  Signature 1 

occurs via enzymatic or spontaneous deamination of 5-methylcytosine to thymine which results 

in G:T mismatches in double-stranded DNA 

(https://cancer.sanger.ac.uk/cosmic/signatures/SBS/SBS1.tt).  Failure to repair this DNA damage 

results in C>T substitution fixation.  Like signatures 5 and 40, signature 1 correlates with the age 

of an individual.  Signature 18 has been associated with damage by reactive oxygen species, while 

signature 2 has been attributed to activity of APOBEC cytidine deaminases in human cancer 

(https://cancer.sanger.ac.uk/cosmic/signatures/SBS/SBS18.tt, 

https://cancer.sanger.ac.uk/cosmic/signatures/SBS/SBS2.tt).  The activation of these 

deaminases in cancer has been linked to previous viral infection, tissue inflammation or 

retrotransposon jumping.  Interestingly, this subtype is comprised of three ~8 month old mice, 

two of which were pIpC-treated mice which could explain the higher exposure of signature 2 (the 

other was one young mouse).  Lastly, subtype 4 was comprised of two mice, one pIpC- and one 

TPO-treated, which had a moderate signature 5 exposure (>0.3) and the highest exposures of 

signature 3 across all mice (>0.3).  Signature 3 has been associated with defective homologous 

recombination-based (HR) DNA damage repair which often exhibits as small INDELs, genome 

rearrangements, as well as SNVs (https://cancer.sanger.ac.uk/cosmic/signatures/SBS/SBS3.tt).  

However, both of these mice had the lowest INDEL burden compared to other pIpC- and TPO-

treated mice and had comparable INDEL numbers to young untreated mice (Figures 26. A. and 

C., Mouse 1; Figure 24. B.).   

 

Lastly, we observed a high variability in signature exposures between mice from the same groups 

(Figure 33. B.), especially with regards to signatures 3, 18 and 40 where we observed that some 
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mice from within each group had minimal to no exposure of these signatures.  This is the likely 

reason for the surprising cluster patterns we observed, where one or two mice from one group 

would cluster away from each other.  This was unexpected due to mice from the same group 

being housed together in the same conditions.  
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Figure 32. Mutational signatures observed per mouse. Absolute exposures of (A) all mutation signatures, and (B) 

signatures which passed a signature-specific cutoff  for each mouse. Legend indicates groups. Values indicated along 

the x-axis are identifiers for each mouse. Sig = signature; SBS = single base substitution. 
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Figure 33. Distribution of identified mutation signatures across all mice. (A) Clustering of mice and signatures based 

on the relative exposures of identified signatures across all mice. Legend indicates groups, exposure level and 
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clustering subtypes. Values indicated along the x-axis are identifiers for each mouse. Sig = signature; SBS = single 

base substitution, norm = normalized. (B) Confidence intervals of signature exposures across all mice. Error bars 

indicate 95% CIs. 

 

6.2.3. Mutational signature analysis of individual groups 

Finally, we performed the mutational analysis on each group.  That is, we grouped SNVs from 

HSCs from mice of the same group together and assessed the differences in mutation signatures 

across the groups.  Again, we separated the LRC and non-LRC HSCs into separate groups.  It must 

be noted that we had sequenced fewer HSC colonies from pIpC- and TPO-treated mice due to 

DNA input limitations.  Therefore the amount of SNVs for each of these groups was lower than 

that seen in other groups.  That being said, although we only sequenced 9 HSC colonies from 

TPO-treated mice, we had a total SNV burden similar to that of the young group where we 

sequenced 12 HSCs (total SNVs for TPO=1206; total SNVs for young=1278; Figure 34. A.).  From 

our initial mutation signature analysis, we observed a large contribution of signature 5 within the 

old, LRC, non-LRC and TPO-treated groups (Figure 34. A.).  After applying signature-specific 

cutoffs and rerunning the analysis, we observed that signature 5 was the main contributor to the 

mutational spectra of all groups, except for the young and pIpC-treated groups where signatures 

1, 5 and 40 appeared to have equal contributions (Figure 34. B.).  Furthermore, as with the 

mutational signature analysis of mice above, signatures 2, 3 and 18 were also present.   

 

After clustering the groups according to exposure to these six signatures, we again observed four 

subtypes (Figure 35. A.).  Subtype 1 contained SNVs from the young group and was composed of 

moderate to high exposure of signature 40, as well as lower signature 5 exposure compared to 

the old, non-LRC, LRC and TPO-treated groups.  Interestingly, although distinct subtypes (young 

= subtype 1; pIpC = subtype 3), the young and pIpC-treated groups clustered together under the 

same node.  This was due to their lower exposure of signature 5, and higher exposures of 

signatures 1 and 40, which were the highest observed across all groups.  The pIpC-treated group 

was classified as a distinct subtype from the young group due to its higher exposure of signatures 

3, 18 and 2, which have been associated with defective HR DNA damage repair, DNA damage by 

reactive oxygen species, and APOBEC cytidine deaminase activity linked to previous viral 
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infection, tissue inflammation and retrotransposon jumping.  The TPO-treated group also 

exhibited higher exposures of signatures 3, 18 and 2 which indicates a similar underlying 

mutational process within these two treatment groups.  However, that is where the similarities 

stopped as the TPO-treated group clustered with the old group, which was classified by a high 

signature 5 exposure.  Although, the old and TPO-treated groups had similar exposure levels to 

signatures 1 and 5, they differed with regards to the four remaining signatures.  Namely, the old 

group had lower levels of signatures 3, 18 and 2 than the TPO-treated group, but a higher 

exposure of signature 40.  Higher exposures of signatures 5 and 40 indicate that mutations 

present within this group are correlated with age.  Lastly, subtype 4 contained the LRC and non-

LRC groups and exhibited the highest exposure of signature 5 compared to all other groups.  

There was minimal difference in exposures across all signatures between these two groups which 

indicates that although we observed a higher SNV burden within non-LRC HSCs compared to LRC 

HSCs, the underlying mutational processes of these groups are the same.  This makes sense 

considering these HSCs are from the same mice.  Therefore difference in mutation burden 

between LRC and non-LRC HSCs was likely due to replication alone and not differing mutational 

processes. 

 

Not surprisingly, we observed less variance in exposures per signature across all groups, with the 

exception of signatures 3 and 40 (Figure 35. B.).  It is unsure why this occurred but was likely due 

to the low mutation burden across all HSCs. The limited number of SNVs present within HSCs 

limits the capacity of this analysis to accurately assess mutational signatures present per HSC and 

mouse.  As such, combining SNVs according to their experimental groups to perform this 

supervised mutational signature analysis, was the best option for performing a clustering analysis 

of biological relevance.  However, more sequencing of HSCs per group would be required to 

resolve the observed variances.  
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Figure 34. Mutational signatures observed per group. Absolute exposures of (A) all mutation signatures, and (B) 

signatures which passed a signature-specific cutoff  for each group. Legend indicates groups. Sig = signature; SBS = 

single base substitution. 
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Figure 35. Distribution of identified mutation signatures across all groups. (A) Clustering of groups and signatures 

based on the relative exposures of identified signatures across all groups. Legend indicates groups, exposure level 
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and clustering subtypes. Sig = signature; SBS = single base substitution; norm = normalized. (B) Confidence intervals 

of signature exposures across all groups. Error bars indicate 95% CIs. 

 

7. Telomere length and mitochondrial DNA copy number analyses revealed 
no significant changes with ageing of HSCs 

 

Besides assessing the quantitative and qualitative differences in murine HSC mutation burden 

with age, replication and stress; we additionally aimed to assess whether we could detect the 

presence of other ageing phenotypes using our WGS data.  Two such ageing phenotypes which 

have been viewed in humans, include telomere shortening and the reduction of mitochondrial 

DNA copy number (mtDNA-CN).  Using TelomereHunter56 to assess telomere content per HSC 

genome, we initially observed what appeared to be a shortening of telomeres within the old 

group compared to the young, however this was not statistically significant (p = 0.2685; unpaired 

two-tailed t test; Figure 36. A.).  Nonetheless, we did observe a significant decrease in telomere 

length between young and non-LRC HSCs (p = 0.0159; unpaired two-tailed t test), and young and 

LRC HSCs (p = 0.0435; unpaired two-tailed t test).  Considering that HSCs from these two groups 

were isolated from ~22 month old mice, this may indicate that telomere shortening is occurring 

with age but we likely need to increase our sample size in order to view clear differences between 

the groups.  No difference in telomere content was observed between non-LRC and LRC HSCs (p 

= 0.5814; unpaired two-tailed t test), demonstrating that telomere shortening with age is likely 

not a replication-dependent mechanism.  No other significant differences in telomere content 

were viewed between the groups.  

 

To determine whether there are differences in mtDNA-CN in HSCs between our analyzed groups, 

we performed an analysis described by Longchamps et al.57.  In brief, mtDNA-CN estimates are 

calculated by comparing the proportion of mtDNA mapped reads, to the total number of mapped 

reads per HSC genome.  We noted no differences in mtDNA-CN between young and old (p = 

0.9142; unpaired two-tailed t test), and non-LRC and LRC HSCs (p = 0.8513; unpaired two-tailed 

t test; Figure 36. B.).  However, we did observe an increase in the mean proportion of mtDNA-CN 

in pIpC HSCs compared to: young (p = 0.0307; unpaired two-tailed t test), old (p = 0.0234; 
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unpaired two-tailed t test), and TPO-treated HSCs (p = 0.0205; unpaired two-tailed t test).  

Nevertheless, it is important to note that we did observe a large variability in mtDNA-CN 

estimates in HSC colonies from the pIpC-treated group.  Together with the fact that we 

sequenced fewer HSC colonies from pIpC-treated mice compared to the other analysis groups,  

additional pIpC HSCs need to be sequenced to accurately assess this variance.  

 

Figure 36. Age-associated telomere shortening and reduction in mitochondrial DNA copy number was not 

observed in murine HSCs. (A) Telomere content estimates per HSC across all analyzed groups. Each dot represents 

one HSC. Error bars indicate SD. Bars indicate statistically significant differences between groups (unpaired two-

sided t test). (B) Proportion of mtDNA-CN within each HSC genome, across all groups. Each dot represents one HSC. 

Error bars indicate SD. Bars indicate statistically significant differences between groups (unpaired two-sided t test). 
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V. Discussion 
 
 

Ageing of stem cells has been linked to an increase in genomic instability and a decrease in 

functionality8.  Stem cells have often been proposed as the likely cells of origin of various 

cancers33,58,59 and the random acquisition of mutations within ASCs is thought to have a large 

impact on cancer risk33.  Furthermore, advanced ageing, progeroid syndromes have been linked 

to an accumulation in DNA damage33, and individuals with these syndromes could potentially 

have differences in cellular mutation burden and type compared to healthy individuals59.   

 

The advent of next generation sequencing (NGS) technologies has provided researchers with a 

means of assessing the quantitative and qualitative differences in mutations within organisms.  

As such there has been an explosion in research focused on identifying driver mutations of 

cancer, but less so for normal cells.  With regards to the hematopoietic system, multiple studies 

have identified leukemic driver mutations within HSCs28,29, as well as candidate driver mutations 

for pre-malignant phenotypes like clonal hematopoiesis25 and CHIP30,31.  This is largely because 

of the fact that it is easier to assess somatic mutations within these samples due to their clonal 

nature. However, little focus has been placed on assessing the mutational differences within 

individual HSCs during normal hematopoiesis and ageing.  Furthermore, it is not yet understood 

how the pre-malignant evolution of HSCs proceeds with time and which mediators drive this.  

 

In this study we performed WGS on in vitro expanded murine HSC colonies from: (i) young and 

old mice, (ii) mice from a label-retention model whereby we could separate HSCs which had 

cycled more from those which had remained predominantly dormant throughout their lifetime, 

as well as (iii) mice which had been treated with agonists known to drive HSC cycling.  Our goal 

was to identify whether there are quantitative and qualitative differences in mutations between 

these various groups in order to understand the possible physiologic mediators of HSC ageing 

and subsequent attrition. 
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1. Mutation burden accumulates within HSCs during ageing 
 

Separate studies have reported an age-associated increase in DNA damage foci within murine 

HSCs34,36,60, as well as an increase in SNVs within human HSPCs23,24.  A previous study using a 

similar single-cell culture method as we did, observed a gradual increase in SNV burden within 

human HSPCs with age, at a rate of approximately 14 SNVs per year24.  Likewise, we too observed 

a statistically significant increase in SNV burden within murine HSCs with age.  Using a linear 

regression model, we were able to extrapolate an annual rate of ~40 SNVs per year.  This is much 

higher than that of human HSCs and actually closer resembles that observed in human ASCs from 

more active tissues like the colon, liver and small intestine46.  This is likely due to the shorter 

lifespan of mice and possibly demonstrates an overall increase in cell activity in mice compared 

to humans.  Considering the maturational rate of mice does not correlate linearly to that of 

humans but is overall faster than humans61, such an explanation seems feasible.  Interestingly, 

we also observed a significant increase in INDEL burden within murine HSCs with age, which has 

not yet been viewed in human HSPCs24.  Using a linear regression model, we extrapolated an 

annual INDEL rate of 5 INDELs per year, however the 95% confidence intervals spanned a large 

range from 0.3-9.4 INDELs, likely due to the limited number of INDELs we detected per HSC.   

 

It must be noted that although a linear regression can be performed using only two time points, 

the interpretation is somewhat tricky as it cannot be accurately determined whether the change 

over time is truly linear, or rather exponential.  As such, increasing our dataset to include more 

timepoints would help us in determining a true mutation rate.  As part of our collaboration with 

the Martincorena lab at the Wellcome Trust Sanger Institute, we have done exactly that- we have 

sent HSC colonies from various aged mice to the Martincorena lab and together, hope to assess 

the true mutation rate within murine HSCs with age. 
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2. HSC replication history directly correlates with mutation burden 
accumulation during ageing 

 

Once we had established that murine HSCs accumulate mutations with age, the obvious next step 

in our study was to determine which physiological sources mediate these DNA changes.  It is well 

known that unavoidable, random mutations occur during DNA replication33, therefore we 

hypothesized that replication may be a possible mechanism of mutation acquisition within HSCs.  

As previously mentioned, various studies have observed an increase in DNA damage response 

foci within old murine HSCs9,34,36.  However, the mechanism which drives this DNA damage 

accumulation still remains questionable, with one study stating that this increase is due to an 

impairment in DNA damage repair mechanisms with age9, while another argued that these foci 

actually represent replication stress34.  An additional study hypothesized that HSCs accumulate 

DNA damage during quiescence and HSC replication activates the DNA repair pathways, resulting 

in the repair of this damage36.  However, none of these studies took into account the proliferation 

status of these HSCs.  Using a label-retention model, we were able to definitively identify and 

separate HSCs which had cycled more (non-LRC HSCs) throughout their lifetime from those which 

had remained predominantly dormant (LRC HSCs).  From our results, we observed a significant 

increase in SNV and INDEL burden within HSCs which had cycled more compared to those which 

remained quiescent for the majority of their life.  Furthermore, the SNV burden of these active 

HSCs was similar to that of the HSCs from our old group, illustrated by a lack of significant 

difference between the two groups.  Conversely, the SNV burden of the predominantly dormant 

HSCs was similar to that of the young group and showed no significant difference.  Considering 

the fact that HSCs from our label-retention model were isolated from ~22 month old mice and 

our old group of mice were ~24 months old, this highlights a direct link between replication and 

age-associated mutation burden.  This observation was further emphasized when we assessed 

the annual SNV rate of our cycling and dormant HSCs.  The SNV rate of cycling HSCs was very 

close to that of our old group at ~41 SNVs per year, while the rate of SNV acquisition within 

predominantly dormant HSCs was much lower than that of both the cycling and old group HSCs.  

Considering that this annual SNV rate within HSCs from our cycling and old groups is almost 3X 
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more than that viewed in humans, this could potentially indicate that murine HSCs replicate at a 

faster rate compared to humans, which could mediate their increased maturation rate.  

Our results directly contradict the hypothesis that DNA damage accumulates within quiescent 

HSCs and that this damage is repaired upon replication36.  Rather, a large proportion of mutations 

acquired during ageing appear to have been acquired during homeostatic replication of HSCs. 

Therefore demonstrating that dormancy protects the genome of HSCs.  We are the first to 

definitively show this link between age-associated mutation burden and replication of HSCs. 

 

3. Stress-induced HSC replication using pIpC and TPO treatment did not 
result in an advanced-ageing phenotype with regards to mutation 
acquisition 

 

In line with our observation that active cycling of HSCs resulted in an increase in mutation 

acquisition, previous studies observed an increase in DNA damage response foci within HSCs 

when cycling was induced38–41.  Here, these studies noted that treating mice with various non-

DNA-damaging agonists which mimic endogenous and exogenous stressors, resulted in HSC 

activation and subsequent increase in DNA damage response foci.  These agonists represented 

various mechanisms of stress-induction, including an inflammatory response triggered by pIpC 

treatment, and the stimulation of HSC proliferation for the replenishment of certain blood cell 

types by Thromboietin and G-CSF treatment, as well as chronic blood loss40.  Although they 

observed an increase in HSC replication and subsequent accumulation of DNA damage response 

foci, the question still remained whether this resulted in an increase in mutation burden.  

Considering our observation that replication mediates mutation acquisition within HSCs, we 

hypothesized that stress-induced cycling of HSCs results in an increase in mutation burden and 

that this could be a potential mechanism of HSC mutation acquisition and ageing. However, when 

we induced HSC proliferation via pIpC and TPO treatment, we did not see an increase in mutation 

burden compared to age-matched, untreated HSCs.   

 

A possible biological explanation for this observation could be that these HSCs are effectively 

repairing DNA damage, which would explain the accumulation of DNA response foci observed 
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after both pIpC and TPO treatment by Walter et al. (2015).  Considering the study by 

Garaycoechea et al. (2018), who observed an increase in mutation burden upon treatment with 

alcohol only in the absence of effective repair mechanisms, this explanation could be possible as 

we have treated wild type mice with functional DNA repair mechanisms.  In the future, additional 

sequencing of pIpC- and TPO-treated HSCs from mice absent of certain DNA repair mechanisms, 

would be beneficial for investigating this further.  Our lab has previously demonstrated that pIpC 

treatment of mice with a defective Fanconi anaemia DNA repair pathway resulted in bone 

marrow failure, while those treated with saline were fine40.  Therefore, it is possible that such 

agonists result in an increase in mutation burden only in the absence of functioning DNA repair 

mechanisms.  Furthermore, long-term treatment with such agonists would be a valuable addition 

to this study.  By doing this, we could investigate whether the age-associated mutation increase 

within HSCs is potentially mediated by the gradual impairment of certain DNA repair mechanisms 

with age as previously proposed9, and whether this phenomenon can be further exacerbated by 

long-term stress-induced HSC cycling.   

 

A more likely explanation is that we introduced a large, unintentional bias into our study.  Due to 

the limitations of DNA input for our WGS library preparations, we were not able to sequence the 

majority of our pIpC- and TPO-treated HSC colonies as they were too small to obtain sufficient 

DNA.  This is a phenomenon we have previously observed whereby treatment of mice with pIpC 

or TPO resulted in HSC colonies of decreased clonogenicity potential.  That is, these HSCs 

appeared to be defective in their proliferation capacity and gave rise to smaller colonies with 

lower cell counts compared to saline-treated, age-matched mice.  As such, we selected the larger 

colonies for sequencing and could have potentially chosen more “functional” HSCs with better 

proliferation capacities and excluded less-functional, possibly damaged HSCs from our analysis.  

Furthermore, due to the majority of these HSC colonies being too small to sequence, we 

sequenced fewer colonies from these groups compared to the other groups.   

 

Although pIpC and TPO treatment have been shown to push the majority of HSCs into cycle, a 

portion of HSCs still remain dormant.  It could be possible that we have sequenced these HSCs 
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which have remained predominantly quiescent and retained their potency.  From our previous 

results from the label-retention model, we believe that quiescence protects the genome of HSCs, 

resulting in a lower mutation burden.  If we did indeed unintentionally select HSCs which had 

remained predominantly dormant, this could explain why the mutation burden of these pIpC- 

and TPO-treated HSCs was so low.  Unfortunately, it would be fairly complicated to prove this 

point.  A more pertinent direction would be to rather focus on reducing this selection bias we 

have introduced.  As such, we have initiated two follow-up experiments to overcome this.   

 

Firstly, we will focus on sequencing the smaller colonies which we excluded from our analysis.  

Through our collaboration with the Martincorena lab and the Wellcome Trust Sanger Institute, 

we are looking into different library preparation protocols which would allow us to sequence 

smaller colonies to a similar whole-genome depth.  Secondly, we have begun experiments using 

an apoptosis-deficient mouse model (Bak-/- Baxf/f SclCreERT2).  Bak and Bax are known members 

of the Bcl-2 family which regulate apoptosis62, therefore their removal would result in the 

absence of apoptosis within selected cells .  Simply put, by knocking out apoptosis within the HSC 

compartment (the SCL transcription factor is only present within HSCs), regardless of the amount 

and type of DNA damage accrued within these HSCs, they will not die via apoptosis.  Our 

hypothesis is that by knocking out apoptosis within HSCs, we would not only be able to culture 

more HSC colonies in vitro from these mice, but could also acquire larger HSC colonies as progeny 

cells from these apoptosis-deficient HSCs will not die from apoptosis during in vitro expansion.  

With regards to pIpC- and TPO-treatment, this will be important for overcoming the caveat of 

decreased in vitro clonogenicity potential of these HSCs.   

 

4. Mutational processes within murine HSCs are stable with age and mimic 
those observed in human HSCs 

 

As seen in other studies, somatic mutations are typically distributed within non-coding regions 

and are depleted in exonic regions33.  This was also the case for our study when we assessed 

which regions of the genome contained somatic SNVs.  From our results we observed that the 

majority of SNVs fell within non-coding regions, while very few coding variants were present 
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within the HSC genomes.  Considering that both the murine and human genomes contain more 

than 90% non-coding DNA, and protein-coding regions only encompass about 5% of the 

genomes, this was an expected result63.  Furthermore, we observed no difference in genomic 

region distribution of SNVs across our study groups.  This demonstrates that there was no 

selection for certain genomic regions between the groups, but rather SNVs were spread 

randomly across the various HSC genomes.  Although we identified very few exonic SNVs across 

the groups, we did observe a higher presence of nonsynonymous SNVs for the majority of the 

groups compared to synonymous SNVs.  However, the differences between nonsynonymous and 

synonymous variant counts within groups was very low and showed no statistical relevance.  

Interestingly, although we sequenced fewer colonies from the TPO group and the mutation 

burden was not significantly different from that of HSCs from untreated, age-matched mice, we 

did observe an increase in exonic variants within the TPO group.  This could potentially suggest 

that TPO-treatment is selecting for more exonic SNVs, indicating a possible impairment of certain 

DNA repair mechanisms following TPO-treatment.  However, there was a high variability 

between TPO-treated HSCs and additional sequencing of more TPO colonies is required if we are 

to delve deeper into this. 

 

With regards to the mutational spectra of transitions and transversions, as well as INDEL 

mutational spectra, we noted no differences between the HSC groups.  A similar mutation profile  

has been observed in a previous study for both  human HSPC and MPP colonies24.  It can therefore 

be assumed that there is no variability in mutation spectra between these different groups 

because the mutational processes underlying these variants are similar.  This is not surprising as 

they are all derived from the same cell type and would indicate that mutational processes which 

occur within human HSCs are similar to that of murine HSCs.  This was further highlighted when 

we looked at the 96-trinucleotide mutational profile of SNVs from each group.  Not only did we 

observe an uniformity in mutational profiles across the groups, we also noted that these 

mutational profiles looked very similar to those seen in human blood colonies and acute myeloid 

leukemia samples45.  These mutational profiles were dominated by C>T and T>C transitions and 

have been observed in blood samples from ageing individuals with no history of hematologic 
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malignancies24,45, as well as within blood samples from patients with age-related clonal 

hematopoiesis27.  C>T and T>C transitions are dominant within the “clock-like” mutational 

signatures 1 and 5, so it was of no surprise when we observed an increase in both of these 

signatures within our HSC groups.  Similar to the previously mentioned study assessing mutation 

burden within HSPC colonies from humans of different ages24, we noted that signature 5 was the 

main contributor to the mutational spectra of all older groups, as well as the TPO-treated group.  

As such, for the most part it appears as if signature 5 increases with age within murine HSCs, 

which has also been noted in human HSCs.  Interestingly, TPO-treated HSCs cluster with the older 

groups and have a higher exposure of signature 5 compared to the age-matched young and pIpC 

group.  Taken together with the large heterogeneity we saw in mutation burden between TPO-

treated HSC colonies, as well as the high incidence of exonic variants, it appears as if TPO-

treatment could potentially affect the type of mutations acquired and overall mutational 

processes.  Sequencing of additional TPO-treated HSC colonies will hopefully make this more 

clear.  We observed a clear separation between our old groups, plus TPO, from our young groups 

based predominantly on a lower signature 5 exposure.  pIpC-treated colonies closer resembled 

those from the age-matched young group, however these two groups were still represented as 

two distinct subtypes based on their mutational signatures.  Clustering of these two groups was 

mostly due to their higher exposures of signatures 1 and 40 compared to the other groups.  

Considering both of these signatures have been correlated with age, this was an unexpected 

result for which we have no explanation as yet.  Besides these three signatures, both the pIpC- 

and TPO-treated groups contained higher exposures of signatures 2, 3 and 18.  These signatures 

have been correlated with APOBEC cytidine deaminase activity which has been linked to viral 

infection and tissue inflammation, defective homologous recombination (HR) DNA damage 

repair, and DNA damage by reactive oxygen species, respectively.  One could assume that this 

represents a similarity in the underlying mutational processes between the two groups; however 

as we have highlighted before, we have introduced a large bias in our analysis of these two groups 

and require additional sequencing before we can make any conclusive remarks regarding stress-

induced mutational mechanisms.  
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Beyond increasing our sample size of these two groups, in order to gain any meaningful insights 

regarding the mutational signatures and processes at play, we would need to increase the sample 

size of all of our groups.  The limited number of SNVs present within HSCs limits the capacity of 

this analysis to accurately assess mutational signatures present across different groups.  

Furthermore, YAPSA performs a supervised signature analysis using mutation signatures which 

have been identified within human cancer samples.  It could be possible that mice contain 

different mutational signatures than humans with regards to their trinucleotide context.  

Therefore we must extend this analysis to perform de novo mutation signature extraction.  

Furthermore, it would be interesting to look into INDEL mutational signatures at a later stage. 

 
5. Differences in mutation burden among HSCs from the same groups 

indicates an unexplored heterogeneity  
 

Even though we saw an overall similarity in the mutation profiles across the groups, we noted a 

heterogeneity within HSCs from the same mice and groups.  As previously mentioned, we noted 

a large variability in mutation burden between TPO-treated HSC colonies.  This heterogeneity 

was also observed within the other study groups, whereby some colonies had a much higher or 

lower mutation burden compared to the other HSCs from the same group.  In order to assess 

whether this heterogeneity was a true phenomenon or rather due to differences in sequencing 

coverages, we normalized SNV counts per HSC according to their callable genome size.  

Calculating the callable genome size is highly important for downstream analysis because even if 

the global coverage of two samples is the same, the callable regions may differ between the two.  

This could be due to differences in procedures like DNA extraction, library preparation, and even 

sequencing run quality46.  Therefore, to accurately assess the difference in mutation burden 

between two samples, the differences in callable genome size must be accounted for.  This is 

unfortunately something which has not been taken into account in the majority of WGS studies, 

including similar studies utilizing  clonally-expanded ASC colonies. 

 

Following normalization, we saw no difference in our overall results and the observed 

heterogeneity in mutation burden within HSCs from the same group still remained.  Therefore, it 
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appears as if this heterogeneity between HSCs from the same mice and groups is real.  Previous 

single-cell studies have hinted at this phenomenon before1,3, however none have shown this 

heterogeneity clearly.  It will be an important next step in HSC and ASC research to look into this 

phenomenon of heterogeneity further, as this could potentially shed light on why some ASCs 

clonally expand and out-compete others or undergo malignant transformation. 

 

6. Whole genome sequencing and analysis optimization is crucial for 
accurate somatic mutation assessment 

 

Previous studies utilizing WGS of in vitro expanded clonal cultures performed little to no 

sequencing and analysis optimization24,33,45,46.  As such, not only were their methods of DNA 

extraction, library preparation and sequencing  different, but also their sequencing depth 

thresholds and downstream analysis protocols varied.  Although all of these studies agreed upon 

applying a hard VAF cut-off of 0.25-0.3 VAF in order to filter out in vitro expanded variants, 

additional filtering parameters varied between each study.  Of course, this is normal as analysis 

should be optimized for each study according to the dataset they have in hand, however there 

was a gross lack of such optimization among the majority of these studies.   

 

We are the first of this type of study to have produced a benchmarking dataset specifically for 

the optimization of our sequencing and analysis parameters.  By performing an extensive 

downsampling analysis, we were able to determine which SNV calling pipeline was best suited 

for our downstream analysis.  Furthermore, by using a blacklist to exclude repetitive regions and 

focusing our filtering on read and mapping quality, we were able to filter out the majority of the 

artefacts present.  This was demonstrated by the low rate of false positives detected at all 

coverages using CaVEMan and our stringent filtering parameters.  Furthermore, we were able to 

determine the ideal sequencing coverage of 30X required for the accurate assessment of somatic 

mutations within HSC colonies.  At 30X we were able to call the majority of true positive variants 

(~75%), while only including less than 10% of false positives.   
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An important note is that we did not view much of a difference when we compared overlapping 

SNV calls from both MuTect and CaVEMan, to SNVs from CaVEMan only.  Not only did this 

illustrate that our optimized analysis was specific enough to use CaVEMan alone, but also 

demonstrated the fact that different SNV pipelines are specific for different types of datasets and 

that this needs to be taken into account before performing your analysis.  For example, although 

MuTect was not sensitive and specific enough for our study, a previous benchmarking study using 

WGS data from tumor samples found that MuTect was highly specific for the detection of somatic 

SNVs within these cancer samples50.  This highlights the need to standardize analysis pipelines to 

deal with different types of artefacts or better yet, to perform more artefact detection studies in 

order to develop extensive WGS artefact blacklists which can be used by everyone. 

 

7. Limitations and future directions 
 

One of the major requirements of this study was that single-sorted HSCs must self-renew and 

remain undifferentiated in order to give rise to large enough colonies for WGS46.  Unfortunately 

this was not the case with many of our HSC colonies, especially those derived from our pIpC- and 

TPO-treated mice.  Many of these cells either did not tolerate the in vitro expansion or lacked the 

potential to proliferate and give rise to colonies.  As such, we cannot perform this analysis  on a 

lot of cells, reducing the comprehensiveness of this study.  Furthermore, previous studies utilizing 

such a clonal culture expansion method have noted the requirement of a large concentration of 

input DNA for the accurate mutation analysis of the original cell33,46.  Although we were able to 

successfully optimize our method for much smaller DNA inputs than previous methods46, this was 

still a limiting factor in our study.  With regards to the pIpC- and TPO-treated colonies, this 

restriction introduced a large bias in our analysis.   Furthermore, we are not able to validate our 

detected SNVs using targeted resequencing as all of the DNA extracted was used for library 

preparation for the majority of our colonies.  An additional caveat of this clonal culture method 

is the possibility of sample contamination.  As long as the HSC colony is clonal, the analysis 

presented here can accurately determine the mutation burden of the original HSC.  That being 

said, we analyzed sequenced HSCs which appeared to be contaminated i.e. mutation burden was 

several times larger than the rest of the HSC colonies.  These samples had to be discarded from 
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our analysis and although this did not occur often, this poses a limitation of the method as non-

clonal samples can only be identified after sequencing. 

 

As previously mentioned, in order to overcome this caveat of small colony sizes, we have 

introduced an apoptosis-deficient mouse model in the hope that knocking out apoptosis rescues 

this phenotype of small HSC colonies observed in pIpC- and TPO-treated mice.  Furthermore, we 

plan to optimize the library preparation step of our WGS protocol to generate libraries from DNA 

inputs lower than 25ng.  At the rate that sequencing technologies are developing, it is likely that 

WGS will become cheaper, allowing us to rectify some of our limitations and discrepancies 

between samples by increasing out sample set.  As such, we are currently looking into 

transitioning over to the NovaSeq platform which will allow us to sequence more HSC colonies 

to 30X at a fraction of our current costs. 

 

Besides increasing the number of HSC colonies sequenced per group, it will also be important to 

extend this study further by assessing the mutation spectrum of HSCs from mice which have been 

treated with different stressors, as well as mice from clinically relevant mouse models.  We 

already have HSC colonies from a mouse infected with M. avium in hand and plan on getting 

more from a collaborator in the future.  Furthermore it would be interesting to treat mice with 

cytotoxic stressors and chemotherapies with known mutagenic potential, as well as assess the 

mutation burden within HSCs from mice harboring known age-associated, leukemic driver 

mutations like DNMT3A and TET264.  The quantitative and qualitative assessment of mutations 

within these mice can help us understand the mutagenic effects that leukemic driver mutations, 

cancer therapies and a combination of both can have on the mutational spectra of an individual.   

Additionally we plan to sequence in-vivo expanded HSC colonies in order to determine whether 

in vitro expansion results in different types of mutations than those gained within a mouse during 

HSC expansion under normal hematopoiesis42.  In our lab, we have performed single-cell HSC 

transplants using HSCs from label-retaining mice.  These HSCs contain a label which is passed on 

to their progeny cells during division.  Therefore, by transplanting single, label-retaining HSCs into 

a wild type mouse, we are able to identify and sort all progeny cells which originated from that 
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single HSC.  This is essentially a clonal colony similar to that of our in vitro expanded colonies but 

without introducing potential in vitro expansion-specific artefacts.   Not only will this allow us to 

strengthen our blacklist by identifying and adding in vitro expanded artefacts, but this will also 

be of some clinical relevance as various transplant methods require prior ex-vivo expansion 

before transplantation and it is not yet known how culture expansion can affect the genomic 

integrity of cells.   

 

Lastly, we now have a large dataset of high-quality WGS data from various HSC colonies in hand.  

It will be important to extend our analyses further to look at larger genetic aberrations like 

structural and copy number variants, as well as assess whether the exonic variants we observed 

were present within any known cancer driver genes.  Additionally, although we did not observe 

a difference in mtDNA-CN across the various groups except the pIpC group, assessment of 

mitochondrial DNA mutations will be an important analysis as these are known to contribute  to 

ageing and age-associated diseases16,17.  Furthermore, we did not observe a statistically 

significant decrease in telomere length with age, although we did observe a decrease in telomere 

length between the young and old LRC groups.  This suggests that telomere shortening with age 

is occurring but we likely need to increase our sample size to observe clear differences between 

the groups.  Surprisingly, when comparing active and predominantly dormant HSCs, we observed 

no difference in telomere length with increasing replication history.  This was an unexpected 

result as telomere shortening is known to occur during cellular division and studies have observed 

a reduction in telomere length following increased HSC cycling post-transplantation65.  It will be 

important to investigate this further by not only increasing our overall sample size, but also 

utilizing more sensitive methods of quantifying telomere length, as assessing telomere length 

using WGS data is a fairly new and developing field.  Extending our downstream analyses, as well 

as our sample number and groups, will allow us to delve deeper into the potential mechanisms 

and drivers of age-associated mutation acquisition and attrition of HSCs. 
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8. Summary and working model 
 

We have successfully optimized our experimental pipeline in order to accurately assess the 

quantitative and qualitative differences in somatic mutations between HSCs of different ages, 

replication history and treated with different stressors.  Our method of clonally expanding single 

HSCs in culture has allowed us the opportunity to assess the mutational spectra of HSCs across 

the entire genome using WGS, an advancement which is not yet possible with single-cell 

sequencing technologies.  By initially generating a benchmarking dataset, we were able to 

accurately assess the true and false positive rates across various coverages and not only identified 

the optimal coverage for our analysis, but also the necessary filtering steps for the accurate 

detection of true somatic variants within our HSC colonies.  Therefore, we now have a tailored 

WGS analysis in hand which is not only highly sensitive but also highly specific for the detection 

of somatic mutation events within individual HSCs.  We are the first of this type of study to have 

produced such a benchmarking dataset specifically for the prior optimization of our sequencing 

and analysis parameters.    

 

Using our optimized analyses, we were able to definitively show that, like with human HSCs, there 

is a gradual age-associated increase in mutation accumulation within murine HSCs under 

homeostatic conditions.  Furthermore, we demonstrated that this age-associated increase in 

mutation burden correlates with the replication history of the HSC.  Namely, HSCs which have 

replicated more throughout their lifetime have a higher mutation burden than those which 

remain predominantly quiescent.  These results clearly contradict the classical model of 

hematopoiesis which shows HSCs as remaining largely quiescent throughout their lifetime, rather 

relying on ST-HSCs and progenitors to replenish and maintain the hematopoietic system1.  That 

is, if HSCs remained quiescent for the majority of their life, we would not observe this age-

associated increase in mutation burden which appears to correlate with proliferative history.  

These results rather indicate that over time HSCs replicate and divide, resulting in an 

accumulation of DNA damage.  With every division, it is probable that not all of this damage is 

effectively repaired by DNA repair mechanisms and is subsequently passed on to progeny cells 

and accumulates within the HSCs with age.   
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When we induced HSC replication using stress agonists pIpC and TPO, we did not observe an 

increase in mutation burden.  Considering our results which demonstrated that increased HSC 

replication correlates with an increase in mutation burden, this was an unexpected result.  

However, we believe we have introduced a large selection bias within these cohorts due to our 

DNA input limits and the decreased clonogenicity potential of pIpC- and TPO-treated HSCs.  

Therefore, future work will focus on rectifying this caveat and increasing our sample set to 

include more clinically relevant phenotypes.  

 

To conclude, we have developed and validated our analysis pipeline and are the first of this type 

of study to perform such an extensive benchmarking optimization analysis.  Using our optimized 

pipeline, we are the first to definitively observe a causal link between replication history and age-

associated mutation acquisition within HSCs.  As such, we have clearly demonstrated the power 

of such a study to investigate ageing and the physiologic mediators which drive age-associated 

genomic instability.  Going forward, as researchers delve into the process of mutation acquisition 

more, performing such an analysis will be critical in the setting of understanding phenotypes like 

malignant transformation, as well as looking deeper at the molecular heterogeneity in disease 

settings.   

 



 109 

 

Figure 37. Graphical overview of our optimized experimental and analysis pipelines to accurately assess the 

quantitative and qualitative differences in mutation burden between HSCs. 
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VI. Materials and methods 
 

1. Mouse models and collection of primary material 
 

1.1. Mouse lines 

Mice used in this project were housed in pathogen-free, individually ventilated cages within the 

DKFZ animal facility.  All experimental procedures involving said mice, were approved by the 

Animal Care and Use Committees of the German “Regierungspräsidium Karlsruhe für Tierschutz 

und Arzneimittelüberwachung”. We obtained C57BL/6J mice from Harlan Laboratories, Charles 

River Laboratories, or Janvier Laboratories and these mice were utilized in the ageing, pIpc- and 

TPO-treatment experiments (all C57BL/6J mice used for this project were female).  For the label-

retention assay, scltTa H2B GFP mice were bred on a C57BL/6J background (all scltTa H2B GFP 

mice used in this project were male). The genotype of sclttTa H2B GFP was confirmed with an 

established PCR protocol.  At the time of starting each experiment, mice were between 8-16 

weeks of age.   

 

1.2. Organ harvest and isolation of lineage negative bone marrow cells 

At the endpoint for each mouse experiment, mice were sacrificed by cervical dislocation and 

spine, tibias, femurs and hips were collected from each mouse.  The flesh from the bones was 

removed as much as possible, as well as the spinal cord, with careful note to keep bones from 

individual mice separate.  Additionally, a portion (~1cm in length) of tail from each mouse was 

harvested and stored at -20°C for later DNA extraction and sequencing as a germline control for 

each mouse.  First, both femurs for each mouse were flushed in 2mLs of 2% FCS (Gibco) PBS 

(Sigma-Aldrich) and a 30µL aliquot was taken for measuring cell numbers using a Hemavet 950 

(Drew Scientific) or Scil Vet ABC+ (scil animal care company GmbH). The remaining bones were 

then crushed by mortar and pestle in a solution of Iscove’s modified Dulbecco’s medium (IMDM, 

Life Technologies), followed by filtering of this cell suspension through a 40µm filter (Greiner bio-

one).  This was then pooled with the remaining cell suspension from the flushed femurs and spun 

down at 1500rpm for 5 min at 4°C.  The cell pellet was resuspended in 4mL 2% FCS PBS and the 

total cell count was measured using a Hemavet or Scil Vet.  A lineage depletion antibody cocktail 
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(see Table 1; all antibodies from BD Bioscience) was then added to the cells at a concentration of 

112.6µL per 1 x 108 cells and incubated on a roller at 4°C for 30 min.  Cells were washed with 

50mL of ice-cold PBS and centrifuged at 1500rpm for 5 min at 4°C post-incubation, and the cell 

pellet was resuspended in 3mLs of 2% FCS PBS for subsequent lineage depletion.  In brief, 1mL 

of pre-washed Dynabeads suspension (Thermo Fisher Scientific) was added to the cell suspension 

and incubated for 45 min at 4°C on a roller.  The bead and cell suspension mixture was placed in 

a Dynal magnet (Thermo Fisher Scientific), allowing lineage positive cells which were bound by 

antibodies within the lineage depletion mix and subsequently the Dynabeads, were bound to the 

side of the tube by the magnet and the remaining cell suspension containing lineage negative 

bone marrow cells was harvested into a fresh tube for an additional separation step in the Dynal 

magnet.  The beads in the initial tube were resuspended in 7mLs of ice-cold 2% FCS PBS and 

placed in the magnet for another round of depletion. This step was repeated one more time and 

the three cell suspensions, containing lineage negative cells, were pooled and spun down.  The 

cell pellet was resuspended in 1mL of 2% FCS PBS, lineage negative cell count was measured 

using a Hemavet or Scil Vet, and the remaining cell suspension was kept on ice for subsequent 

processing. 

 

Table 1. Lineage depletion antibody mix*. 

Antibody Dilution 

CD5 (Ly-1) Biotin IgG2a, k   1:200 

B220 (CD45R) IgG2a, k  1:300 

Mac-1 (CD11b), IgG2b, k  1:320 

CD8a (Ly-2), IgG2a, k  1:200 

Gr-1 (Ly-6G), IgG2b, k  1:350 

Ter-119 (Ly-76), IgG2b, k  1:320 

* all antibodies are from BD Bioscience. 
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2. Treatments to induce HSC cycling 
 

2.1. Label-retention assay 

For the label-retaining cell (LRC) assays, 8-week-old sclttTa H2B GFP mice were treated with 

doxycycline citrate (Sigma) which was supplemented in the mice’ drinking water at a 

concentration of 2mg/mL, along with 20mg/ml of sucrose.  Experimental mice were fed the 

doxycycline-supplemented water for an 18-month label chase period. 

 

2.2. Polyinosinic:polycytidylic acid treatment 

In order to mimic an inflammatory response, mice were injected intraperitoneally (i.p.) with 

5mg/Kg of polyinosinic:polycytidylic acid (pIpC, InvivoGen), which had been resuspended in 

sterile saline according to the manufacturer’s instructions.  The treatment regime is illustrated  

in Figure 23.  Mice were treated with three rounds of pIpC.  One round of treatment encompasses 

two injections with a prescribed dosage of agonist per week for four weeks, followed by a four 

week recovery stage40.  At the end point of the experiment, pIpC-treated mice were ~8 months 

old. 

 

2.3. Thrombopoietin treatment 

Treatment of mice with Thrombopoietin (TPO, PeproTech) was carried out using the same regime 

as described above for pIpC, however TPO dosage was 200µg/Kg as recommended in Walter et 

al., 2015.  TPO was dissolved in sterile saline as per the manufacturer’s instructions and diluted 

to the desired concentration before treatment.  Mice were treated with three rounds of TPO 

treatment and at the end point of the experiment, these mice were ~8 months old. 

 

3. Methodology to assess mutation burden at the hematopoietic stem cell 
level 

 
3.1. Fluorescence activated cell sorting of LT-HSCs 

The lineage depleted cell suspension was stained at a density of 1 x 107 cells/mL with the LT-HSC 

antibody mix (diluted in 2% FCS PBS) described in Table 2 and incubated on a roller at 4°C for 30 
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min.  The cells were then washed with 2% FCS PBS, spun down at 1500rpm for 5 min at 4°C, and 

the cell pellet was resuspended to a concentration of 1 x 107 cells/mL in  2% FCS PBS and filtered 

into a FACS tube using a 40µm strainer.  Single LT-HSCs were sorted using either the Aria or Fusion 

(both BD Bioscience) fluorescence activated cell sorters (FACS) at ~2500 events/sec using a 

100µm nozzle.  A gating scheme for sorting LT-HSCs can be found in the supplemental 

information (supplementary Figure 1).  LT-HSCs were sorted for Lin-, sca-1+, c-kit+, CD150+, CD48-

, CD34-.  

 

Table 2. LT-HSC antibody mix*. 

 

 

 

 

 

 

 

* all antibodies are from BD Bioscience. 

 

3.2. In vitro culture of HSC colonies 

Single LT-HSCs were sorted into 96-well round bottom plates (Sigma-Aldrich) containing 150µL 

per well of expansion medium comprised of serum-free medium (StemSpan SFEM) (STEMCELL 

Technologies), Penicillin-Streptomycin (Sigma-Aldrich), L-Glutamine (Gibco) and the necessary 

recombinant murine (rm) cytokines which facilitate the growth and in vitro differentiation of 

HSCs into erythroid, megakaryocytic and myeloid cells (Table 3).  These sorted single LT-HSCs 

were allowed to expand in vitro for a period of 12-14 days in an incubator under hypoxic 

conditions (5% O2, 37°C, 5% CO2), after which size of these HSC colonies were manually assessed 

using light microscopy (Leica DM IL LED microscope).  Individual HSC colonies of an appropriate 

size (estimated ~500 cells or more) were then collected into separate 1.5mL Eppendorf 

Antibody Fluorochrome 

Lineage: CD5, CD8a, CD11b, B220, Gr-1, Ter119, Streptavidin PE-Cy7 

cKit/CD117 BV711 

Sca1 APC-Cy7 

CD150 PE-Cy5 

CD48 PE 

CD34 FITC 
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microtubes, spun down at 1500rpm for 3-5 min in order to discard the supernatant and the cell 

pellet was snap-frozen with liquid nitrogen and subsequently stored at -80°C. 

 

Table 3. Expansion medium for single LT-HSC colony growth*. 

StemSpan serum Free Expansion Medium (SFEM) 1 mL 
  Final concentration Stock concentration Volume (µL) 
penicillin/streptomycin 1%  - 10 
L-Glutamine 1%  - 10 
Flt3 ligand 10 ng/mL 100 ng/µL 0.1 
SCF 50 ng/mL 100 ng/µL 0.5 
TPO 10 ng/mL 100 ng/µL 0.1 
IL-3 5 ng/mL 100 ng/µL 0.05 
IL-11 10 ng/mL 100 ng/µL 0.1 

EPO 0.3 IU/mL 1 IU/µL  0.3 

IL-7 20 ng/mL 100 ng/µL 0.22 
*All cytokines from PeproTech. Pen/strep and L-glut from Sigma-Aldrich and Gibco, respectively. 

 

4. Whole Genome Sequencing of HSC colonies 
 

4.1. Sequencing library preparations 

 
4.1.1. Tagmentation protocol for sequencing of benchmarking dataset  

DNA was isolated from one large HSC colony from a two year old, pIpC-treated mouse (8 rounds 

of treatment), using the DNeasy Blood & Tissue Kit (Qiagen) according to the manufacturer’s 

instructions.  DNA libraries for WGS were generated according to the tagmentation-based 

protocol66.  This protocol was initially designed for whole-genome bisulfite sequencing, however 

we adapted it for our purposes by excluding the bisulfite conversion step. This method utilizes a 

hyperactive Tn5 transposase in combination with DNA adapters to simultaneously fragment and 

ligate adapters to the ends of the input DNA fragments.  For each library, we used up to 5ng of 

DNA input and adapted the amount of transposase required for the amount of DNA input.  

Finished libraries were validated using a High Sensitivity DNA chip and BioAnalyzer (Agilent 

Technologies) according to the manufacturer’s instructions.  In order to obtain a very high 

sequencing depth for our benchmarking datasets, we sequenced five individually prepared single 
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libraries and one quadriplex library for both the HSC colony and germline control.  Each library 

was sequenced on one lane using the Illumina HiSeq V4  platform (125bp paired-end).  

Bioanalyzer results from the prepared libraries for the HSC colony and germline control can be 

found in supplementary Figures 2 and 3, respectively. 

 

4.1.2. TruSeq Nano protocol for sequencing of HSC clones and germline controls for mutation 

comparisons  

DNA was isolated from the HSC colonies and corresponding germline control (tail) using the 

DNeasy Blood & Tissue Kit (Qiagen) according to the manufacturer’s instructions, with the 

adjustment of eluting the DNA in 60µL (two elution steps of 30µL each) resuspension buffer 

provided by the Illumina library prep kit.  Due to the small size of the HSC colonies, 5µL of the 

DNA was used to measure the DNA concentration was measured with a Qubit in order to get an 

accurate reading.  DNA libraries for WGS were generated using the Illumina TruSeq Nano DNA 

Library Prep kit according to the manufacturer’s instructions with two minor adjustments; 

depending on the concentration of input DNA, the number of PCR amplification cycles was 

between 8-10 cycles, and the last washing step was repeated twice in order to prevent carry-over 

of magnetic beads in the final DNA library.  Although the Illumina protocol specified that 100ng 

of DNA should be used as input, we were not always able to obtain this amount of DNA from our 

HSC colonies.  As such, we optimized the sonification step (sonification of DNA carried out using 

the Covaris M220) of the library prep protocol to allow lower DNA inputs between 25-100ng 

(supplementary Figure 4).  Sonicated DNA and finished DNA libraries were validated using a High 

Sensitivity DNA chip and BioAnalyzer (Agilent Technologies) according to the manufacturer’s 

instructions.  All HSC colonies, and corresponding controls, were sequenced (150bp paired-end, 

one lane per sample) using the Illumina HiSeqX Ten sequencers.  Bioanalyzer results from the 

prepared libraries for the HSC colonies and corresponding germline controls can be found in 

supplementary Figures 5 - 19. 
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5. Whole genome sequencing analysis 
 

5.1. Read Alignment 

Sequence reads were mapped against the GRCm38mm10 reference genome using the Burrows-

Wheeler Aligner v0.7.15 mapping tool67.  Sequence reads were marked for duplicates and 

merged using Sambamba v0.6.5 and aligned bam files were subsequently indexed using 

SAMtools v0.1.19.  Read alignment and quality score analyses were performed by the DKFZ Omics 

IT and Data Management Core Facility (ODCF).  

 

5.2. Variant calling and filtering  

Raw single nucleotide variants (SNVs) for were called using two different SNV calling pipelines; 

MuTect51 v.1.1.4 and CaVEMan52 via the cgpCaVEManWrapper.  Both SNV pipelines were used in 

our benchmarking analysis in order to determine ideal sequencing and filtering parameters to 

accurately call true variants of the original single LT-HSC within the HSC colony.  Following the 

benchmarking analysis, CaVEMan was used to call SNVs within individual HSC colony samples 

against their corresponding controls.  SNV calling parameters and raw SNV filters for each 

pipeline are as follows. MuTect was run using default settings and the additional option 

“excludeIntervals”, whereby a file which defined regions of consistently higher coverage was 

used as a blacklist to exclude certain regions of the genome from analysis.  This blacklist was 

generated by Dr. Charles Imbusch at the DKFZ using the BEDTools utilities68.  Raw SNV calls were 

filtered to exclude variants containing the string “REJECT”, followed by filtering for variants which 

were covered by 15 or more reads and a minimum variant allele frequency (VAF) of 0.25 to 

exclude in vitro expanded SNVs.  CaVEMan was run with the default settings using a blacklist file 

of regions to ignore, which was generated by the Wellcome Trust Sanger Institute using multiple 

“control” mouse genomes to search for repetitive and homologous regions to be excluded from 

analysis.  Raw SNV calls from CaVEMan which were annotated with “PASS” were used and 

additionally filtered with the following parameters; ASRD>= 0.94, CLPM ==0, and a minimum of 

0.3 VAF. In brief, ASRD accounts for mapping quality of the reads covering the variant allele i.e. a 

read length adjusted alignment score, and CLPM filters for sequence read quality, that is, it gives 

a value for how many variant supporting reads contain soft clipped bases.  With our filtering 



 117 

parameters, we essentially filter out any variants which have an alignment score of less that 94%, 

and contain any variant supporting reads which have soft clipped bases.  These parameters were 

recommended by the Martincorena lab at the Wellcome Trust Sanger Institute for analysis of 

SNVs within clonal samples.  For the identification of insertions and deletions (INDELS) within HSC 

colonies, Pindel53 was run using singularity to execute the INDEL calling pipeline from the 

cgpCaVEManWrapper.  Default settings for running Pindel were used and due to the clonality of 

our samples, we chose to filter INDELs which had a minimum VAF of 0.3 to exclude in vitro 

accumulated mutations.  

 

5.3. Coverage downsampling for benchmarking analysis 

Downsampling of coverage was performed on one deeply sequenced LT-HSC colony (initial 

coverage of 89X) and a deeply sequenced tail control (initial coverage of 97X) from the same 

mouse.  Downsampling fractions were calculated to obtain samples in approximately 10X 

increments, that is; 10X, 20X, 30X, continuing until 89X (Table 4).  Variants were called for each 

coverage fraction using the appropriate coverage-matched HSC:control downsampled BAM and 

indexed BAM files.  For downsampling, the Picard v1.61 (http://broadinstitute.github.io/picard/) 

DownsampleSAM tool was used, adjusting for differing coverage fractions within the 

“PROBABILITY” input.  Downsampling per coverage fraction was repeated in triplicate using 

different seeds to generate three bam files per sequencing coverage, each containing different 

reads which were selected at random via the Picard downsampling algorithm.  Prior to variant 

calling, using CaVEMan, MuTect and Pindel, the downsampled bam files were sorted and indexed 

using Sambamba v0.6.6 with default settings69.  Coverage of downsampled fractions was 

assessed using Samtools -depth option70. 
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Table 4. Downsampling fractions calculated for benchmarking analysis. 

Sample Fraction to downsample by Coverage (X) 

HSC colony 0.113 10 

HSC colony 0.225 20 

HSC colony 0.339 30 

HSC colony 0.45 40 

HSC colony 0.575 50 

HSC colony 0.675 60 

HSC colony 0.8 70 

HSC colony 0.9 80 

HSC colony 0 89 

Tail control 0.104 10 

Tail control 0.206 20 

Tail control 0.312 30 

Tail control 0.412 40 

Tail control 0.530 50 

Tail control 0.624 60 

Tail control 0.739 70 

Tail control 0.832 80 

Tail control 0.912 89 

 

5.4. Normalization for mutations per actual genome covered analysis 

In order to calculate the actual coverage of the genome used for calling SNVs via CaVEMan, we 

utilized the command-line tool Mosdepth71 via Anaconda (linux version Anaconda3.2019.07).  

Calculating the callable genome was broken down into three steps.  Firstly, for each HSC colony 

we created a bedfile of the regions which were analyzed by CaVEMan using the BEDTools 

“substract” option.  CaVEMan generates a bedfile of the regions which were excluded from the 

SNV calling analysis, and by subtracting these regions from the reference genome, we could 

generate a file of the analyzed regions.  Secondly, this bedfile was then used as the input for 

Mosdepth to calculate coverage from, with default settings and a critical read fragment depth 

threshold of 4 i.e. Mosdepth calculates the coverage of the genome by analyzing regions with 

atleast 3X read depth.  Lastly, the intersection of the CaVEMan-analyzed regions file and the 
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mosdepth file of regions which had a coverage of at least 3X, was generated and this output file 

was used to calculate the callable genome size.  With this, we were able to normalize SNV counts 

per HSC colony according to their callable genomes.  

 

5.5. Mitochondrial DNA copy number analysis 

Mitochondrial DNA copy number (mtDNA-CN) assessment of each HSC colony was performed 

according to the protocol described by Longchamps et al.57, whereby mtDNA-CN was calculated 

per sample as the proportion of mtDNA mapped reads compared to the total number of mapped 

reads per genome.  For this, we utilized SAMtools70 v1.10 options “idxstats” to determine the 

number of mtDNA mapped reads and “flagstat” to determine the total number of mapped reads 

per HSC colony.  Therefore, mtDNA-CN was represented as a proportion and these were 

compared between sample groups.  

 

5.6. Telomere length analysis 

Assessment of telomere length for each HSC colony was performed using the TelomereHunter 

software56.  TelomereHunter was run using Anaconda3 v5.1.0 using the default settings.   

 

5.7. Mutational profile and signature analysis 

Supervised mutation signature profiling of each HSC colony was performed using the YAPSA (Yet 

Another Package for Signature Analysis) package55 on the most updated mutational signature 

catalogue44 (https://cancer.sanger.ac.uk/cosmic/signatures).  Relevant mutational signatures 

were selected using a signature-specific probability cut-off developed within YAPSA.  Cluster 

analysis of these signature exposures was performed using the ComplexHeatmap package72.   

 

5.8. Mutation annotation analysis 

For each HSC colony, identified SNVs called by CaVEMan were annotated using the ANNOVAR 

tool73.  ANNOVAR settings used to annotate these variants from mouse HSCs were as follows; “—

buildver mm10 –protocol refGene –operation g” in order to generate gene-based annotation 

output for each HSC colony.  Each variant was classified either as exonic, splicing, ncRNA, UTR5, 
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UTR3, intronic, upstream, downstream or intergenic and frequencies of each type were 

compared between sample groups.  

 

 

6. Statistical analysis 

R v4.0.0, via an RStudio Server account provided by DKFZ ODCF, and GraphPad Prism v8.4.3 were 

used for performing the statistical analysis and graphical representation of the results for this 

project, unless otherwise indicated.  Unless indicated differently, the data are presented as mean 

values +/- standard deviation (SD).   Statistically significant differences are indicated as follows: 

ns (p > 0.05), * (0.01 < p < 0.05), ** (0.001 < p < 0.01), and *** (p < 0.001).   For comparisons of 

two groups, two-sided unpaired non-parametric t-tests were performed.  For comparisons 

between more than two groups, an ordinary one-way analysis of variance (ANOVA) was 

performed.  In order to assess whether there was a correlation between age and mutation rate 

for our various groups, we used a simple linear regression model. 
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VIII. Supplementary 
 
 

1. Supplementary figures 
 
 

Supp. Figure 1. Sorting scheme for LT-HSC sort. 
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Supp. Figure 2. Bioanalyzer images from sequencing libraries prepared for the benchmark colony dataset. A – I. 
Fragment distribution of single and quadriplex libraries. Ladder is on the far left. Titles above indicate library name. 
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Supp. Figure 3. Bioanalyzer images from sequencing libraries prepared for the benchmark tail dataset. A – I. 
Fragment distribution of single and quadriplex libraries. Ladder is on the far left. Titles above indicate library name. 
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Supp. Figure 4. Bioanalyzer images from DNA fragment sonification optimization. A – F. Fragment distribution of 
sonicated DNA. Ladder is on the far left. Titles above indicate the amount of input DNA and how long it was sonicated 
for. 
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Supp. Figure 5. Bioanalyzer images from sequencing libraries prepared for mouse 9A-1R of the young group. A – 
D. Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library name. 
 
 

 
Supp. Figure 6. Bioanalyzer images from sequencing libraries prepared for mouse 9A-2L of the young group. A – 
D. Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library name. 
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Supp. Figure 7. Bioanalyzer images from sequencing libraries prepared for mouse 9A-4RR of the young group. A – 
D. Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library name. 
 
 

Supp. Figure 8. Bioanalyzer images from sequencing libraries prepared for mouse 4A-3RL of the old group. A – D. 
Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library name. 
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Supp. Figure 9. Bioanalyzer images from sequencing libraries prepared for mouse 4A-2L of the old group. A – D. 
Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library name. 
 

 
Supp. Figure 10. Bioanalyzer images from sequencing libraries prepared for mouse 4B-3RL of the old group. A – D. 
Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library name. 
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Supp. Figure 11. Bioanalyzer images from sequencing libraries prepared for mouse 43-4 of the pIpC group. A – D. 
Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library name. 
 
 
 
 

Supp. Figure 12. Bioanalyzer images from sequencing libraries prepared for mouse 43-5 of the pIpC group. A – C. 
Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library name. 
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Supp. Figure 13. Bioanalyzer images from sequencing libraries prepared for mouse 43-6 of the pIpC group. A – C. 
Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library name. 
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Supp. Figure 14. Bioanalyzer images from sequencing libraries prepared for mouse 49-1 of the TPO group. A – E. 
Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library name. 
 

Supp. Figure 15. Bioanalyzer images from sequencing libraries prepared for mouse 49-5 of the TPO group. A – D. 
Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library name. 
 

 
Supp. Figure 16. Bioanalyzer images from sequencing libraries prepared for mouse 49-6 of the TPO group. A – C. 
Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library name. 
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Supp. Figure 17. Bioanalyzer images from sequencing libraries prepared for mouse LRC old 1 of the LRC and non-
LRC groups. A – I. Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library 
name. 
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Supp. Figure 18. Bioanalyzer images from sequencing libraries prepared for mouse LRC old 2 of the LRC and non-
LRC groups. A – H. Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library 
name. 
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Supp. Figure 19. Bioanalyzer images from sequencing libraries prepared for mouse LRC old 3 of the LRC and non-
LRC groups. A – I. Fragment distribution of the single libraries. Ladder is on the far left. Titles above indicate library 
name. 
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2. Supplementary tables 
 
Supp. Table 1. Overview of sequencing parameters for each library. 

Sample Group Coverage (X) Duplicates (%) PCR cycles DNA input (ng) 

RB17-6 single lib. 1 Benchmark colony 

89 

N/A 10 4 

RB17-6 single lib. 2 Benchmark colony N/A 10 4 

RB17-6 single lib. 3 Benchmark colony N/A 10 4 

RB17-6 single lib. 4 Benchmark colony N/A 10 4 

RB17-6 single lib. 5 Benchmark colony N/A 10 4 

RB17-6 quad. lib. 1 Benchmark colony N/A 10 4 

RB17-6 quad. lib. 2 Benchmark colony N/A 10 4 

RB17-6 quad. lib. 3 Benchmark colony N/A 10 4 

RB17-6 quad. lib. 4 Benchmark colony N/A 10 4 

RB17-6 tail single lib. 1 Benchmark tail 

98 

N/A 10 4 

RB17-6 tail single lib. 2 Benchmark tail N/A 10 4 

RB17-6 tail single lib. 3 Benchmark tail N/A 10 4 

RB17-6 tail single lib. 4 Benchmark tail N/A 10 4 

RB17-6 tail single lib. 5 Benchmark tail N/A 10 4 

RB17-6 tail quad. lib. 1 Benchmark tail N/A 10 4 

RB17-6 tail quad. lib. 2 Benchmark tail N/A 10 4 

RB17-6 tail quad. lib. 3 Benchmark tail N/A 10 4 

RB17-6 tail quad. lib. 4 Benchmark tail N/A 10 4 

9A-2L_G3 Young 39.45 19.79 8 100 

9A-2L_E7 Young 39.92 14.46 8 100 

9A-2L_G4 Young 39.71 14.6 8 100 

9A-2L_G8 Young 43.46 15.46 8 100 

9A-2L_tail Young 41.5 N/A N/A N/A 

9A-1R_G4 Young 37.75 22.35 8 85.5 

9A-1R_F5 Young 43.06 18.08 8 100 

9A-1R_G12 Young 41.87 15.71 9 53 

9A-1R_H3 Young 40.47 14.91 9 54 

9A-1R_tail Young 39.6 N/A N/A N/A 

9A-4RR_F12 Young 43.73 14.6 9 92 

9A-4RR_E12 Young 44.13 14.34 8 100 

9A-4RR_E3 Young 36.75 14.94 10 63 

9A-4RR_F6 Young 36.26 18.67 10 43 

9A-4RR_tail Young 45.44 N/A N/A N/A 

4B-3RL_C11 Old 38.96 16.62 8 88 

4B-3RL_E7 Old 40.93 13.93 8 73 
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4B-3RL_C7 Old 38.63 17.91 8 71 

4B-3RL_G3 Old 35.84 24.24 10 41 

4B-3RL_tail Old 35.83 N/A N/A N/A 

4A-2L_E12-2 Old 36.85 18.18 10 50 

4A-2L_D11 Old 36.78 18.89 10 48 

4A-2L_D10 Old 30.26 24.67 10 47.9 

4A-2L_F12 Old 42.72 16.11 8 66.8 

4A-2L_tail Old 36.02 N/A N/A N/A 

4A-3RL_D3 Old 38.83 18.69 8 115 

4A-3RL_F9 Old 39.69 19.68 8 65 

4A-3RL_F11 Old 40.49 17.96 8 110 

4A-3RL_D4 Old 38.86 19.51 8 110 

4A-3RL_tail Old 31.56 N/A N/A N/A 

43-4_15 pIpC 35.04 16.3 10 46 

43-4_12 pIpC 42.06 13.58 8 79 

43-4_11 pIpC 35.33 28.65 9 51 

43-4_tail pIpC 36.68 15.23 8 100 

43-5_2 pIpC 41.31 16.39 8 57.2 

43-5_10 pIpC 35.42 23.95 8 27 

43-5_tail pIpC 40.46 14.09 8 100 

43-6_12 pIpC 32.17 35.98 10 42 

43-6_10 pIpC 42.69 18.91 8 72 

43-6_tail pIpC 42.57 13.35 8 100 

49-1_D11 TPO 41.7 19.57 8 74.4 

49-1_A4 TPO 29.08 33.17 10 30.6 

49-1_A12 TPO 37.02 20.67 8 46 

49-1_C4 TPO 33.97 20.75 10 39 

49-1_tail TPO 41.56 14.11 8 100 

49-5_A7 TPO 23.13 44.95 10 33 

49-5_D5 TPO 35.73 24.44 8 32 

49-5_H3 TPO 40.06 23.92 9 51.48 

49-5_tail TPO 41.09 14.49 8 100 

49-6_B8 TPO 31.85 32.1 8 28 

49-6_D11 TPO 42.6 21.57 9 56.1 

49-6_tail TPO 36.92 15.34 8 100 

LRC_old1_C7_pos Old LRC 38.22 18.98 8 85 

LRC_old1_D3_pos Old LRC 34.11 15.24 8 89.5 

LRC_old1_C5_pos Old LRC 41.47 15.51 8 113 

LRC_old1_C3_pos Old LRC 40.66 16.8 8 109 
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LRC_old1_F3_neg Old non-LRC 34.38 22.11 10 111.5 

LRC_old1_E8_neg Old non-LRC 38.76 16.38 8 112 

LRC_old1_D6_neg Old non-LRC 38.58 15.68 8 132 

LRC_old1_B3_neg Old non-LRC 42.1 15.86 8 94 

LRC_old1_tail Old LRC and non-LRC 43.08 17.22 8 100 

LRC_old2_C2_pos Old LRC 39.14 18.95 8 100 

LRC_old2_A6_pos Old LRC 42.6 18.09 8 100 

LRC_old2_B7_pos Old LRC 42.09 15.04 8 100 

LRC_old2_C4_pos Old LRC 37.76 18.98 8 100 

LRC_old2_G11_neg Old non-LRC 40.36 12.75 9 50 

LRC_old2_F12_neg Old non-LRC 38.19 16.69 9 50 

LRC_old2_H3_neg Old non-LRC 37.38 22.12 9 54 

LRC_old2_tail Old LRC and non-LRC 45.06 14.22 8 100 

LRC_old3_G6_pos Old LRC 34.95 19.41 9 100 

LRC_old3_G7_pos Old LRC 37.42 17.37 8 43.6 

LRC_old3_F2_pos Old LRC 37.91 19.29 9 26.7 

LRC_old3_G4_pos Old LRC 38.37 16.48 9 75.8 

LRC_old3_A5_neg Old non-LRC 42.14 13.81 8 70.9 

LRC_old3_B10_neg Old non-LRC 34.88 21.9 9 57.4 

LRC_old3_B8_neg Old non-LRC 41.02 15.38 8 100 

LRC_old3_B7_neg Old non-LRC 38.57 18.55 9 54 

LRC_old3_tail Old LRC and non-LRC 46.57 12.57 8 100 
 
 
Supp. Table 2. Overview of HSC colony and mouse identifiers used for mutational signature analysis. 

Colony Colony 
identifier 

Group Mouse Mouse 
identifier 

9A-2L_G3 91241 Young 

9A-2L 10001 9A-2L_E7 91242 Young 

9A-2L_G4 91243 Young 

9A-2L_G8 91244 Young 

9A-1R_G4 91111 Young 

9A-1R 10002 9A-1R_F5 91112 Young 

9A-1R_G12 91113 Young 

9A-1R_H3 91114 Young 

9A-4RR_F12 91441 Young 

9A-4RR 10003 9A-4RR_E12 91442 Young 

9A-4RR_E3 91443 Young 

9A-4RR_F6 91444 Young 

4B-3RL_C11 42331 Old 4B-3RL 20001 
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4B-3RL_E7 42332 Old 

4B-3RL_C7 42333 Old 

4B-3RL_G3 42334 Old 

4A-2L_E12-2 41221 Old 

4A-2L 20002 4A-2L_D11 41222 Old 

4A-2L_D10 41223 Old 

4A-2L_F12 41224 Old 

4A-3RL_D3 41331 Old 

4A-3RL 20003 4A-3RL_F9 41332 Old 

4A-3RL_F11 41333 Old 

4A-3RL_D4 41334 Old 

43-4_15 43415 pIpC 
43-4 30001 43-4_12 43412 pIpC 

43-4_11 43411 pIpC 

43-5_2 43502 pIpC 
43-5 30002 

43-5_10 43510 pIpC 

43-6_12 43612 pIpC 43-6 30003 
43-6_10 43610 pIpC 

49-1_D11 49101 TPO 

49-1 40001 49-1_A4 49102 TPO 

49-1_A12 49103 TPO 

49-1_C4 49104 TPO 

49-5_A7 49501 TPO 
49-5 40002 49-5_D5 49502 TPO 

49-5_H3 49503 TPO 

49-6_B8 49601 TPO 49-6 40003 
49-6_D11 49602 TPO 

LRC_old1_C7_pos 10101 Old LRC 

LRC old1 50001 LRC_old1_D3_pos 10102 Old LRC 

LRC_old1_C5_pos 10103 Old LRC 

LRC_old1_C3_pos 10104 Old LRC 

LRC_old1_F3_neg 10201 Old non-LRC 

LRC old1 50011 LRC_old1_E8_neg 10202 Old non-LRC 

LRC_old1_D6_neg 10203 Old non-LRC 

LRC_old1_B3_neg 10204 Old non-LRC 

LRC_old2_C2_pos 20101 Old LRC 

LRC old2 50002 LRC_old2_A6_pos 20102 Old LRC 

LRC_old2_B7_pos 20103 Old LRC 

LRC_old2_C4_pos 20104 Old LRC 
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LRC_old2_G11_neg 20201 Old non-LRC 
LRC old2 50022 LRC_old2_F12_neg 20202 Old non-LRC 

LRC_old2_H3_neg 20203 Old non-LRC 

LRC_old3_G6_pos 30101 Old LRC 

LRC old3 50003 LRC_old3_G7_pos 30102 Old LRC 

LRC_old3_F2_pos 30103 Old LRC 

LRC_old3_G4_pos 30104 Old LRC 

LRC_old3_A5_neg 30201 Old non-LRC 

LRC old3 50033 LRC_old3_B10_neg 30202 Old non-LRC 

LRC_old3_B7_neg 30203 Old non-LRC 

LRC_old3_B8_neg 30204 Old non-LRC 
 
 

3. Abbreviations and acronyms 
 
A 
ANOVA = analysis of variance 
ASC = adult stem cell 
B 
BER = base excision repair 
C 
CO2 = carbon dioxide 
CHIP – clonal hematopoiesis of indeterminate potential 
CN = copy number 
D 
DBS = doublet base substitutions 
DNA = deoxyribonucleic acid 
E 
EPO = Erythropoietin 
F 
Fig = Figure 
H 
HR = homologous recombination 
HSC = hematopoietic stem cell 
HSPC = hematopoietic stem and progenitor cell 
I 
INDEL = insertions and deletions 
IL = interleukin 
IU = international unit 
L 
Lib = library 
L-glut = L Glutamine 
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Lin- = lineage negative 
LRC = label-retaining cell  
LT = Long-term 
M 
Min = minute  
MMR = mismatch repair 
mtDNA = mitochondrial DNA 
N 
N/A = not applicable 
Neg = negative 
NER = nucleotide excision repair 
ng = nanogram   
NGS = next generation sequencing 
NHEJ = non-homologous end joining 
Norm = normalized 
O 
O2 = oxygen 
P 
PCR = polymerase chain reaction 
pen/strep = Penicillin-Streptomycin 
pIpC = polyinosinic:polycytidylic acid 
Pos = positive 
Q 
Quad = quadriplex 
R 
Rm = recombinant murine 
RNA = ribonucleic acid 
S 
SBS = single base substitution 
SCL = stem cell leukemia 
scRNA-seq = single-cell RNA sequencing 
Sec = second 
Sig = signature 
SNV = single nucleotide variant 
Supp = supplementary 
ST = short-term 
T 
TPO = thrombopoietin 
TLS = translesion synthesis 
V 
VAF = variant allele frequency  
W 
WGS = whole genome sequencing 
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Figure 21. Replication-associated increase in mutation burden within HSC colonies. 
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Supp. Figure 17. Bioanalyzer images from sequencing libraries prepared for mouse LRC old 1 
of the LRC and non-LRC groups. 
 
Supp. Figure 18. Bioanalyzer images from sequencing libraries prepared for mouse LRC old 2 
of the LRC and non-LRC groups. 
 
Supp. Figure 19. Bioanalyzer images from sequencing libraries prepared for mouse LRC old 3 
of the LRC and non-LRC groups. 
 
 

5. List of tables 
 
Table 1. Lineage depletion antibody mix. 
 
Table 2. LT-HSC antibody mix. 
 
Table 3. Expansion medium for single LT-HSC colony growth. 
 
Table 4. Downsampling fractions calculated for benchmarking analysis. 
 
Supp. Table 1. Overview of sequencing parameters for each library. 
 
Supp. Table 2. Overview of HSC colony and mouse identifiers used for mutational signature 
analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 153 

IX. Contributions 
 
The work presented in this thesis would not have been possible without the contribution from 
several people: 
 
Dr. Michael Milsom and Prof. Dr. Benedikt Brors for supervision of this study. 
 
Dr. Inigo Martincorena and Dr. Alex Cagan at the Wellcome Trust Sanger Institute. 
 
The DKFZ-MOST research grant for funding my PhD. 
 
Dr. Charles Imbusch 
 
Julia Knoch 
 
Dr. Ruzhica Bogeska 
 
Marleen Büchler-Schäff, M.Sc. 
 
Dr. Susanne Lux 
 
The Genomics and Proteomics DKFZ Core Facility 
 
The Omics IT and Data Management DKFZ Core Facility 
 
The Flow Cytometry DKFZ Core Facility  
 
The Light Microscopy DKFZ Core Facility 
 
 


