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Zusammenfassung

Im Rahmen dieser Arbeit wurde ein Code zur numerischen L�osung der zeitab-

h�angigen Gleichungen der relativistischen Hydrodynamik idealer Gase entwickelt.

Die Erhaltungsgleichungen wurden mit Hilfe der Diskontinuierlichen Galerkin

Methode (DGM) diskretisiert, welche eine Erweiterung der Finiten ElementMeth-

ode (FEM) ist. Im Gegensatz zu den klassischen Finiten Element Methoden ist

die DG Methode auch im Falle Advektions-dominierter Probleme numerisch sta-

bil. Die vorteilhafte Eigenschaft der FEMethoden hoher numerischerGenauigkeit

bei einer r�aumlichen Diskretisierung mittels unstrukturierte Gitter bleibt er-

halten. Eine h�ohere formale r�aumliche Ordnung kann durch die Wahl einer

entsprechenden Finiten Element Basis leicht erreicht werden. Desweiteren ist

aufgrund der diskontinuierlichen Basis eine e�ziente Parallelisierung m�oglich.

Die zeitliche Integration wird mittels eines mehrstu�gen expliziten Runge-Kutta-

Verfahrens durchgef�uhrt. Der Code bestand erfolgreich die ein- und zweidimen-

sionalen Standardtestprobleme der Newtonischen und relativistischen Hydrody-

namik. Es zeigte sich, dass die e�ektive Au
�osung der DG Methode vergleich-

bar mit der typischen Au
�osung moderner High Resolution Shock Capturing

(HRSC) Methoden ist. Der Code wurde auf das astrophysikalisch interessante

Problem der Propagation relativistischer Jets angewendet. Desweiteren wurde

die zeitliche Entwicklung einer relativistischen Akkretionsscheibe eines nicht-

rotierenden Schwarzen Lochs simuliert.

Summary

To solve numerically the problems of ideal relativistic hydrodynamics we have

developed a high-order accurate and time-explicite code. For the spatial discreti-

sation we use the Discontinuous Galerkin Method (DGM), which is a sub-class

of the Finite Element Methods (FEM). The DG methods are numerically stable

for advection-dominated problems and a high-order of spatial accuracy is reach-

able, even by using unstructured meshes for the discretisation of a computational

domain. A higher formal accuracy is easily achieved by using a higher-order

Finite Element basis. Further, a e�cient parallelisation of the DG method is

possible, due to their compact form. This code was able to solve the standard

test-problems of the Newtonian and relativistic hydrodynamics in one and two

dimensions with high accuracy. The e�ective resolution reached in the compu-

tation is comparable to that of the modern High Resolution Shock Capturing

(HRSC) methods. In addition, we applied the code to astrophysical problems of

interest, a jet propagating in a homogeneous media and relativistic accretion disc

of Black Holes.
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Chapter 1

Introduction

1.1 Simulation, a laboratory for astrophysics

The question arises why simulations are required in astrophysics? In astrophysics

the situation occurs that the typical phenomena of interest, like the formation

and evolution of stars and galaxies, as well accretion processes and their connec-

tion to the formation of jets, are located at high distances and also the typical

evolution time scales could be large compared to the human life time. Further,

the processes of these phenomena may involve extreme physical conditions which

are not possible to study by experiments on earth. The situation is further com-

plicated by the fact, that the involved physical processes of these phenomena,

may occur deep inside of the region where the measurable radiation is emitted,

and therefore, we can only get a indirect evidence of these involved processes by

observations. These are the main di�erences to most �elds in physics, where a di-

rect experimental falsi�cation of a theoretical hypothesis is possible. On the other

hand, to make the astrophysical problems analytically solvable in a theoretical

approach, the complex phenomena have to be simpli�ed, by linearising nonlin-

ear problems or reducing the degrees of freedom by introducing new parameters.

This restricts the solution to a small class of the possible phenomena evolved in

nature. By solving the problems in a numerical approach, less simpli�cations of

the models are needed, although not completely avoidable, since one is restricted

by the nowaday available computer resources, but a larger physical range of com-

plex phenomena is possible to investigate than in the analytical way. Further,

simulations can tell us how good are the assumption of the analytical model. In

no way an analytical understanding is overcome by the numerical, but the latter

one can help. In addition, analytical solutions are needed for the validation and

calibration of a new developed code, to get an estimate of the reached numerical

accuracy. After the validation of the code, one has a laboratory on the table, to

compare the theoretical models with observations. The observational evidence

of phenomena, like Active Galactic Nuclei (AGN) and their out
ows (jets), as
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well the existence of micro-Quasars in our galaxy, where relativistic e�ects are

not-negligible, implies to solve the full relativistic equations of hydrodynamics.

To mimic the relativistic e�ects of curved spacetime of Black Holes the commonly

used approach was to replace the Newtonian gravitation potential � / M=r by

the Paczy�nsky-Wiita [47] potential � /M=(r�2M) for non rotating Black Holes

or by the Pseudo-Kerr-Potential � = 1+

M

r�r

0

+

1

2

!

2

r

2

, introduced by Chakrabarti

and Khanna [10] and to solve the nonrelativistic equations of hydrodynamics. A

second commonly approach is the solving of the Post-Newtonian equations. Both

of these approaches include the disadvantage that the contribution of the inter-

nal energy to the e�ective inertia is neglected, which is a bad assumption for

relativistic hot 
uids, as well there exist no limiting of the 
ow velocities by the

speed of light.

Nowaday several codes are available, which are using a variety of numerical

schemes for the di�erent astrophysical problems. In this work, we will restrict

to the codes solving the equations of relativistic hydrodynamics. To do this, in

numerical relativity, the commonly used schemes are high order Finite Di�erence

(FD) and Finite Volume (FV) methods, as well there is a application of the

Smoothed Particle Hydrodynamics (SPH) for this problems. An introduction

into the �eld of numerical hydrodynamics in special relativity is given in the

review article of Mart�� and M�uller [39] and in the review of Font [20] for the

general relativistic case. Relativistic hydrodynamics has been applied essentially

for the two following astrophysical problems.

Relativistic accretion disc simulations. The �rst two-dimensional axisym-

metric and time-dependent simulations of accretion discs around Black Holes were

done by the pioneering work of Hawley, Smarr & Wilson [22, 23]. The relativis-

tic equations of hydrodynamic were solved in the non-conservative formulation

of Wilson [60], where the gradient of the pressure rp was evaluated as a force

term. They studied the development and evolution of non-linear instabilities of

angular momentum pressure supported tori. The code uses a second order Fi-

nite Di�erence scheme on a staggered grid, including a variety of schemes for the

advection terms. Discontinuities were stabilised by an arti�cial viscosity scheme.

An extension to three-dimension was done by Hawley [21], where the evolution

of non-axisymmetric instabilities of constant angular momentum accretion tori

was studied.

The problem of thick accretion discs was further studied by Igumenshchev and

Belodorov [26], using also the Wilson formulation of relativistic hydrodynamics.

As initial conditions they used the analytical solution of a constant angular mo-

mentum pressure-supported tori. The rotating tori are separated from the black

hole by a potential barrier of height �W . If �W > 0 the torus is unstable to any

perturbation. The authors studied the dynamics for di�erent potential barriers

�W > 0 and black hole spin parameter a = �0:9; 0; 0:9. In these simulations
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the 
ow was only irrotational in the vicinity of the potential barrier. At larger

disc radii quasi-periodical vortex motions of the 
uid were developed. Their pro-

cedure for the advection terms based on a upwind scheme, where the Piecewise

Parabolic Method (PPM) of Colella and Woodward [15] was used to evaluate the


uxes. Their scheme need no arti�cial viscosity to stabilise discontinuities.

The structure and dynamics of magneto-hydrodynamical viscous accretion

discs was studied by Yokosava [63, 62]. The viscosity based on the � viscosity

parametrisation of Shakura & Sunyaev [52]. Yokosava also used Wilson's formu-

lation. For solving the hydrodynamical part of the MHD equations the code uses

a Flux-Corrected Transport (FCT) scheme [8] , whereby the magnetic induction

equation was solved using the constrained transport method [19].

The time-dependent problem of magneto-hydrodynamical driven jet forma-

tion from relativistic accretion discs in the Kerr space was investigated by Koide,

Shibata & Kudoh [29, 30]. In their simulations, a two-component magnetised

sub-relativistic jet evolves, which is accelerate from the accretion disc. A fast in-

ner jet component, driven by high pressure region appearing in the vicinity of the

marginal stable radius, is embedded by a low velocity component, driven by mag-

netic forces. The highest poloidal velocity of the out
ow 0:4c was reached for a

counter-rotating disc (relative to the rotation of the black hole). In the co-rotating

case only a jet velocity of 0:3c was reached. In their simulations, a collimation of

the jet was not possible to achieve, since the spatial scale of the computational

domain was to small and the evolution time was to short. The equations of rela-

tivistic magnetohydrodynamics were discretised in conservative form. The 
uxes

are computed by a simpli�ed Total Variation Diminishing (TVD) scheme, where

only the largest eigenvalue �

max

of the 
ux Jacobian A = @F(U)=@U, is needed.

Relativistic jet simulations. The �rst simulation of the propagation of rela-

tivistic jets was done by van Putten [57, 58], who used a pseudo spectral scheme

for solving the equations of relativistic magnetohydrodynamics. In his �rst work

a jet in slab geometry with beam Lorentz factor W

b

= 3:25 was studied. The jet

propagation was computed to seven jet radii. In 1994 the �rst long scale runs

of axisymmetric jets, were performed by Mart�� and M�uller [38] and Duncan and

Hughes [18]. In these simulations they studied the propagation of hot relativistic

jets, i.e. jets with a low beam Mach number. The code of [38] includes a High

Resolution Shock Capturing (HRSC) scheme, which based on an approximate

Riemann solver. Duncan and Hughes [18] also studied the long term dynamics

and morphology of relativistic hot jets. Their code also includes a Godunov-type

scheme based on an approximate Riemann solver. In addition, they use an Adap-

tive Mesh Re�nement (AMR) method to reduce the computational e�ort. Both

groups derived similar results of the morphology and propagation properties of

hot jets. Typical relativistic hot jets achieve a high propagation e�ciency. The

beam and the surrounding shocked gas are nearly in pressure equilibrium and no
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dominant cocoon of back-
owing jet matter is developed. Since in the beam no

strong internal shocks are excited, the jet propagates nearly in a one-dimensional

fashion. Komissarov and Falle [33, 34] developed also a code for solving the

equations of relativistic hydrodynamics. Their code is based on an approximate

Riemann solver for the linearised equations of the primitive variables.

To study non-axisymmetric instabilities, Hughes et al. [25] and Aloy et al.

[1] extend their codes to three dimensions. Hughes and coworker studied in their

work a jet propagating through an ambient medium, including initially a density

gradient. This was computed for di�erent angles of the density gradient relatively

to the jet axis. Further they studied the propagation properties of a precessing

jet. The simulation of three dimensional MHD jets started by the work of Koide

et al. [28] and Nichikawa et al. [44, 45]. In their computations a 
uid was injected

into an ambient medium, which contains a strong ordered magnetic �eld.

Motivation for this work. This work was motivated, by the work of Khanna

and Camenzind [27], where the formation of disc dynamos in the stationary Kerr

metric of rotating Black Holes was analysed in the 3+1 split of spacetime. They

solved numerically the time-dependent relativistic dynamo equations in a hydro-

kinematic approach, where the velocity �elds were analytically given, by using a

Finite Element Method. Since this approach was kinematical, the back reaction

of the evolving electromagnetic �elds onto the matter was neglected. To ensure a

coupling between matter and the dynamo, the idea was to develop a relativistic

magneto-hydro code to solve the equations in a stationary background metric.

The �rst step to this challenging problem of relativistic computation was to de-

velop a code for the ideal relativistic hydrodynamics in the one-
uid approach.

By neglecting self-gravity of the 
uid, only the conservation laws of hydrody-

namics, living in a stationary background spacetime, have to be computed. This

assumption seems to be reasonable in the case of accretion onto compact ob-

jects like Neutron stars and Black Holes. In the vicinity of these objects the

mass of the discM

Disc

is negligible compared to the mass of the compact object,

M

C:O

� M

Disc

. This also holds for the problem of relativistic jet propagation,

where the kinetic and internal energy density of the 
uid are much larger com-

pared to the energy density of self-gravity. The code presented in this work is

able to solve the equations of the ideal relativistic hydrodynamics in Cartesian,

cylindrical and spherical coordinates including the Schwarzschild metric in two

dimensions. The scheme is based on the time explicite Runge-Kutta Discontin-

uous Galerkin Method (RKDGM) introduced by Cockburn and Shu [13] for the

Newtonian ideal hydrodynamics. Finite Element Methods play a rather exotic

part in the computational astrophysics community; therefore the DGM method

is explicitly discussed in chapter 2 for conservation laws. Since the DG method

is a Finite Element method, the advantageous properties of easy increasing the

order of approximation and high accuracy on unstructured meshes is preserved.
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In chapter 3 the test problems solved by the code are shown. Also there are

some applications on astrophysical problems, like the relativistic jet propagation

in cylindrical coordinates and a Keplerian disc in the Schwarzschild metric, of a

non rotating Black Hole, shown in chapter 4.

1.2 The reliability of hydrodynamical approxi-

mation

The reliability of the macroscopical approach of approximate a gas or plasma by

a compressible continuous 
uid depends on the involved microscopical physics

of the single particles and their interactions. The hydrodynamical approach is

reliable if the microscopic collisional mean free path length �

p

of a particle is neg-

ligibly small compared to characteristic length scales of the investigated system

L, or, in other words, the microscopic collision time � has to be small compared

to the dynamical time t of the problem. Further, the forces between the particles

have to saturate over small scales, if not collective e�ects must to be taken into

account like self-gravity, electro-magnetic mean �elds and di�usion.

1.3 Equations of ideal relativistic hydrodynam-

ics

The dynamics of a perfect 
uid moving with the 4-velocity u

�

in a general space-

time, with 4-metric g

��

, is determined by the local conservation laws of the

hydrodynamics and Einstein's equations. In the following we use the conven-

tion of Misner, Thorne and Wheeler [43] for the normalisation of the 4-velocity,

g

��

u

�

u

�

= �1. We use units where the constant of gravitation G and the vacuum

speed of light c are G = c = 1. The velocities are measured in units of the light

speed. The equations of the relativistic hydrodynamics are given by the equation

of local particle conservation

r

�

�

�

= 0; (1.1)

where r

�

is the covariant derivation, and by the local conservation of the energy-

momentum

r

�

T

��

= 0 ; (1.2)

where �

�

= �u

�

is the four particle current and the energy-momentum tensor of

a relativistic perfect gas is given by T

��

= �hu

�

u

�

+ pg

��

. The rest-mass density

� and relativistic speci�c enthalpy h = 1 + � + p=� are de�ned in the rest frame

of the 
uid. The system is closed by an equation of state p = p(�; �), which is

for ideal compressible 
uids given by p = (
 � 1)��. In general, the metric of

spacetime is coupled by the Einstein's equations

G

��

= 8�T

��

(1.3)
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to the energy-momentum of the 
uid. By the assumption of negligible contribu-

tion of the 
uids energy-momentum to the energy-momentumgiven for a compact

object G

��

� 8�T

c:o:

��

, the metric is decoupled from the 
ow. The dynamics of a

perfect 
uid is then determined by the background metric, the initial and bound-

ary conditions of the 
ow and the conservation laws (1.1), (1.2). The special case

of a axisymmetric, @

�

g

��

= 0, and stationary, @

t

g

��

= 0, solutions of Einstein's

equations, like the Kerr metric for rotating Black Holes and the Schwarzschild

solution for the non-rotating case, leads to the existence of the Killing �elds

�

(t)

�

= @

t

and �

(�)

�

= @

�

and the presence of global conserved quantities. The

line element of these types of spacetimes can always be written in the form

ds

2

= g

tt

dtdt+ 2g

t�

dtd�+ g

��

d�d�+ g

AB

dx

A

dx

B

: (1.4)

The metric coe�cient g

��

are only functions of the coordinates x

A

; x

B

, with the

connection to the Killing �elds �

(t)

�

�

(t)

�

= g

tt

, �

(t)

�

�

(�)

�

= g

t�

and �

(�)

�

�

(�)

�

= g

��

.

By contracting the energy-momentum tensor by the Killing �elds one gets the

energy current

e

�

= T

�

�

�

(t)

�

(1.5)

and momentum current

p

�

= �T

�

�

�

(�)

�

(1.6)

with the properties

r

�

e

�

= 0 and r

�

p

�

= 0 : (1.7)

By using u

0

= u

�

�

(t)

�

and u

�

= u

�

�

(�)

�

, this leads to the advection equations of

energy

�

�

r

�

(u

0

h) = 0 (1.8)

and angular momentum

�

�

r

�

(u

�

h) = 0 (1.9)

therefore the quantities E = hu

0

and L = hu

�

are conserved along the stream

lines of the 
ow. Additionally, from these properties it follows that the speci�c

angular momentum l = u

�

=u

0

is also a conserved quantity advected by the 
ow.

1.4 The ADM formalism or splitting spacetime

into space and time

In the ADM formalism or the 3+1 split of spacetime, introduced by Arnowitt,

Deser &Misner [2], the spacetime is foliated into slices of nonintersecting spacelike

hypersurfaces �

t

. The position of an event e

t

in the hypersurfaces �

t

and the

time advanced position of the event e

t+dt

in �

t+dt

are connected by the lapse

function � which describes the rate of advance of time along a timelike unit

vector orthogonal to the hypersurface �

t

. The spacelike shift vector �

i

describes
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the motion of the coordinates of an event in �

t

to the time advanced new position

in the hypersurface �

t+dt

. From this choice, the line element is then split into

ds

2

= ��

2

dt

2

+ 


ij

(dx

i

+ �

i

dt)(dx

j

+ �

j

dt) ; (1.10)

where 


ij

is the three-metric introduced on each spacelike hypersurface. The

connection to the corresponding coe�cients g

��

of the 4-metric are therefore

"

g

tt

g

tj

g

it

g

ij

#

=

"

(�

k

�

k

� �

2

) �

j

�

i




ij

#

.

The generalisation of a Newtonian Euler observer, in the 3+1 split of spacetime,

is given by an observer with 4-velocity w

�

= (1;��

i

)=�, who lives in general in

an accelerated frame. The 3-velocity v

i

of a 
uid element in �

t

, measured in the

frame of the observers, follows from the projection of the 
uid's 4-velocity u

�

orthogonal to the 4-velocity w

�

of the observer. De�ning the projection operator

P

��

= g

��

+w

�

w

�

, the spacelike component of the 
uid's 4-velocity in the observer

frame is given by

Wv

�

= P

�

�

u

�

= u

�

+ �

�

u

t

;

where W = �u

t

= 1=

q

1� 


ij

v

i

v

j

is the Lorentz factor of the 
uid de�ned by

the observers. The density D, energy E and the three momentaM

i

of the 
uid,

measured in the frame of these observers follow from the contraction of the 4-

density current �

�

with the observer's 4-velocity

D = w

�

�

�

= �W (1.11)

and energy density by parallel projection, to the observers 4-velocity, of the 4-

energy-momentum current w

�

T

��

E = w

�

w

�

T

��

= �hW

2

� p (1.12)

The 
uid momenta are the orthogonal components of the 4-energy-momentum

current

M

�

= P

��

w

�

T

��

= �hW

2

v

i

: (1.13)

SinceM

�

is orthogonal to w

�

, only the spatial coe�cients of the momenta are not

vanishing, M

�

= (0;M

i

). Additionally, the equation of local energy conservation,

measured in the frame of an observer with four velocity w

�

, follows from the

projection of the divergence rT of the energy-momentum tensor parallel to the

observer's 4-velocity w

�

w

�

r

�

T

��

= 0 ; (1.14)

where the equations of local momentum conservation are recovered by projection

of the divergence of T perpendicular to the four-velocity of the observer.

P

��

r

�

T

��

= 0 : (1.15)
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Since the continuity equation

r

�

�

�

= 0 (1.16)

is scalar-like no additional projection is needed. Following Banyuls et al. [4] we

introduce the vector of conservative variables

U(w) = (D;M

i

; E) =

�

�W; �hW

2

v

i

; �hW

2

� p

�

, (1.17)

where D;M

i

; E are the density, the three-momenta and energy of the 
uid mea-

sured in the frames of the �ducial observers. By the de�nition of the vectors of

the corresponding 
uxes

F

k

(w) =

0

B

@

D(v

k

�

1

�

�

k

)

M

i

(v

k

�

1

�

�

k

) + p�

k

i

E(v

k

�

1

�

�

k

) + pv

k

1

C

A

; (1.18)

it is possible to formulate the system of nonlinear equations of a perfect relativistic


uid, in a stationary spacetime, in a �rst order conservative hyperbolic form

@

t

p


U(w) + @

k

p

�gF

k

(w) =

p

�gS(w); (1.19)

where

p

�g = �

p


 is determinant of 4-metric and

p


 the corresponding deter-

minant of the 3-metric 


ij

. The vector of source terms

S(w) =

0

B

@

0

(@

�

g

�i

� �

�

��

g

�i

)T

��

�(T

�0

@

�

ln�� �

0

��

T

��

)

1

C

A
(1.20)

includes only functions of the metric coe�cients, their derivatives

�

�

��

=

1

2

g

��

(@

�

g

��

+ @

�

g

��

� @

�

g

��

)

and algebraic functions of the primitive variables w = (�; v

i

; p), i.e. no derivatives

of the conserved quantities U and primitive variables w are present in the source

terms. This conservative formulation, Eq. (1.20), of the equations of relativistic

hydrodynamics is advantageous for problems involving discontinuities, like shocks

and contact discontinuities, due to the application of modern schemes developed

for hyperbolic conservation laws. Since in the energy E the rest-mass energy

�W

2

is included, numerical problems are arising if the internal energy is only

a small fraction of E. Therefore, instead of solving the conservation law for E

we solve the equation for the conservative variable � = E �D, like Mart�� et al.

[38]. The vector of the conservative variables evolved in time is then given by

U = (D;M

i

; � ).

It must be noted here, that the recovering of the primitive variables w =

(�; v

i

; p) from the conserved ones, in the case of the ideal relativistic hydrody-

namics, is not possible in a direct way, since the primitives are nonlinear functions
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of the conserved ones and a closed formulation is not possible. To solve these

nonlinear equations the iterative Newton-Raphson method is used. The explicite

scheme is discussed in appendix B. In contrast to this, in the case of Newtonian

hydrodynamics, the primitive variables

w =

0

B

@

�

v

i

p

1

C

A

=

0

B

@

D

M

i

=D

(
 � 1) (E �M

i

M

i

= (2D))

1

C

A

(1.21)

are easily recovered from the conserved quantities (D;M

i

; E). The iterative re-

covering of the primitive variables, which are needed for the evaluation of the


uxes and source terms, makes the computation of relativistic hydrodynamics

more time consuming than their Newtonian counterpart.

Observers in a stationary axisymmetric spacetime: In the case of a sta-

tionary and axisymmetric spacetime, like the Kerr metric, the shift vector �

i

has

only a toroidal component �

�

and in the Schwarzschild metric the shift vector

disappears, if the Boyer-Lindquist coordinates (t; r; �; �) are introduced. In this

type of spacetime it is possible to introduce a family of distinguished observes,

which are static in r and � and do not rotate relatively to free-falling test particles

dropped initially at in�nity with zero angular momentum. These observers have

a 4-velocity w

�

= (1; 0; 0;��

�

)=� and called Zero Angular Momentum Observers

(ZAMOs) or Bardeen observers. Therefore the ZAMOs are at rest in the poloidal

coordinates (r; �), with rotation frequency �

�

relatively to a stationary observer

at in�nity. This choice of observers makes it possible that the 3-metric 


ij

is

stationary and diagonal, with the line element given by:

ds

2

= �(�

2

� �

�

�

�

)dt

2

+ 2�

�

dtd�+ 


ij

dx

i

dx

j

: (1.22)

Here the lapse function is

� =

�

�

p

� ; (1.23)

the components of the shift vector are

�

r

= �

�

= 0 ; �

�

= �! =

2aMr

�

2

; (1.24)

and the coe�cients of the 3-metric are given by




rr

=

�

2

�

; 


��

= �

2

; 


��

= ~!

2

and 


ij

= 0 for i 6= j (1.25)

with de�nitions

a �

J

M

; � � r

2

� 2Mr + a

2

; �

2

� r

2

+ a

2

cos

2

� (1.26)
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�

2

� (r

2

+ a

2

)

2

� a

2

sin

2

�; ~! �

�

�

sin � : (1.27)

M is the irreducible mass and J the angular momentum of the rotating Black

Hole. The event horizon is located, where the lapse function is zero, � = 0, and

therefore r

h

=M +

p

M

2

� a

2

.

A disadvantage, using this type of observers in numerical relativity, is the

presence of a coordinate singularity at the event horizon r

h

, leading to a diver-

gence of the conservative variables U = (D;M

i

; � ). Since this singularity at the

horizon is not physical, it is possible to remove it by choosing a set of appropriate

coordinates. This reformulation was introduced by Papadopoulos and Font [48]

for the wind accretion problem onto rotating Black Holes. In their computations

of wind accretion, it was possible to locate the inner numerical boundary inside

the horizon.

1.5 The characteristics of hyperbolic conserva-

tion laws

A typical characteristic of hyperbolic conservation laws is the existence of a max-

imum speed of information exchange, in other words the hyperbolic equations are

causal. Therefore, the domain of in
uence of an event, after advancing in time,

is limited by the maximum characteristic speed involved in the problem. These

characteristic speeds �

p

and the their corresponding waves !

p

are recovered from

a spectral decomposition of the 
uxes. An introduction in this �eld is given by

LeVeque [36]. A nonlinear system of conservation laws

@

t

U+r

k

F

k

(U) = 0 (1.28)

is linearised by

@

t

U+A

k

r

k

U = 0 (1.29)

where

A

k

= @F

k

=@U (1.30)

is the Jacobian of the 
uxes. The system is called hyperbolic, if the 
ux Jacobian

is diagonalisable with real eigenvalues �

p

, i.e. there exists the decomposition

A = R�R

�1

; (1.31)

where

� = diag(�

1

; :::; �

p

) (1.32)

is the diagonal matrix of real eigenvalues and R = (r

1

; :::; r

m

), R

�1

= (l

1

; :::; l

m

)

are the matrices of the corresponding right and left eigenvectors, r

p

, and l

p

. In

the absence of discontinuities, the right eigenvectors are locally small amplitude
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perturbations of the waves !

p

moving with the characteristic wave speeds �

p

.

The characteristic variables are recovered from

! = R

�1

U (1.33)

and the linearised system of equations (1.29) is after transformation

@

t

! + �

k

r

k

! = 0 (1.34)

decoupled into m scalar equations.

Linear hyperbolic system: Now we restrict ourselves to a linear, @�=@U = 0,

one-dimensional problem with wave speeds �

p

constant in time and space. The

solution for each characteristic variable, at the time t, is then given by

!

p

(x; t) = !

p

(x� �

p

t; 0) for t � 0 ,

where !

p

(x; 0) = R

�1

U(x; 0) is the initial state of the pth characteristic vari-

able. This is a typical causal solution, since the domain of in
uence d

p

at time

t for an event at (x

0

; t = 0) is d

p

2 [x

0

; x

0

� �

p

t] and discontinuities in the pth

characteristic variables move with the corresponding wave speed �

p

.

Nonlinear hyperbolic system: A system is nonlinear if the wave speeds �

p

are functions of state vector U, i.e.,

@�

p

@U

r

p

6= 0 for all U; (1.35)

where r

p

is the right eigenvector of the pth wave. These systems including the

phenomena of wave breaking, the evolving of discontinuities, in a �nite time,

even if the initial states are smooth functions in space. The eigenvalues of the

Newtonian Euler equations of a perfect compressible gas in one dimension are

�

p

=

8

>

<

>

:

�

�

= v � c

�

0

= v

�

+

= v + c;

(1.36)

where v is the local velocity of the 
uid and c is the local sound speed. The

characteristic speeds �

�

, �

+

are the propagation speeds of the acoustic waves

of the 
uid, which moves with the velocity v relatively to the laboratory frame.

The contact discontinuities in the characteristic variable !

0

are transported with

the characteristic speed �

0

= v, i.e. the local velocity of the 
uid. In the frame

moving with the 
uid velocity v we see that �

�

describes a left going acoustic

wave, where �

+

is the right going counterpart. The characteristic speeds of the

relativistic conservation laws are explicitely given in appendix A.
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Now we look at the characteristic speed in the vicinity of point at x = x

0

+dx.

Here we de�ne the characteristic speeds as: �

L

p

(x! x

0

) and �

R

p

(x x

0

). A shock

evolves in the characteristic variable !

p

if �

L

p

�

R

p

< 0 and �

L

p

> 0. A rarefaction

of !

p

is evolving if �

L

p

�

R

p

< 0 and �

L

p

< 0.

To solve the nonlinear hyperbolic equation locally at a point x

0

in one di-

mension one starts from a initial value problem de�ned by the two conditions

U

L

= U(x ! x

0

), U

R

= U(x

0

 x) at both sides of x

0

, separated by a

discontinuity. The corresponding initial states of the primitive variables are

w

L

= (�

L

; v

L

; p

L

) and w

R

= (�

R

; v

R

; p

R

). This initial two state problem for a

perfect gas, if v

L

= v

R

= 0, is called the Riemann problem, which is analyti-

cally solvable if initially only two constant states exist in the domain of interest.

The analytic solution for the relativistic Riemann problem is given in Mart�� and

M�uller [38]. Numerical methods based on Riemann solvers use the Riemann solu-

tion. The two initial states U

L

, U

R

are then de�ned at both sides of the interface

�

L;R

of two connecting computational sub-domains 


L

, 


R

. After solving the

local Riemann problem at the interface �

L;R

, the new states U

�

L

, U

�

R

are derived

in the left and right sub-domains.
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Chapter 2

The Discontinuous Galerkin

Method

For solving numerical the problems of hydrodynamics (HD) and magnetohydro-

dynamics (MHD), where advection plays an important part, stable, accurate

and e�cient methods have to be applied. High accuracy is needed, since the

numerical solution depends strongly on the resolution of the occurring physi-

cal discontinuities, of purely convective nonlinear problems, where a rich and

complicated 
ow structure is developed. In addition using high order accurate

schemes make it possible to use a lower grid resolution to resolve these structures

and, therefore, these schemes are more computational e�cient for the solving

of multi-dimensional problems. The remarkable development of High Resolution

Finite Di�erence (HRFD) and Finite Volume (HRFV) methods for nonlinear hy-

perbolic conservation laws, by applying of suitably de�ned numerical 
uxes and

slope limiters, include these properties. Therefore, the question arises, why using

a Finite Element Method? Finite Element methods (FEM), like the Continuous

Galerkin method (CGM), are able to solve most types of partial di�erential equa-

tions on unstructured grids and complicated computational domains with a high

accuracy and a large convergence rate towards the true solution, depending on

the applied order of �nite element space. Unfortunately, this is not the case for

problems where convection plays an important role, since a local conservation of

the conserved quantities is not guaranteed and at discontinuities the FE methods

become unstable.

The development of the Discontinuous Galerkin Method (DGM), introduced

in 1973 by Reed and Hill [50] for the neutron transport problem, and further

developed by several researchers in the nineties, overcome these di�culties, when

applying the Finite Element schemes on advection dominated problems. Nowa-

day, several DG methods have been developed and analysed for solving the New-

tonian Euler, Navier-Stokes, MHD and Maxwell equations. An overview of these

schemes is given in the Lecture Notes of Cockburn, Karniadakis and Shu [12]. Due

to their �nite element nature, the DG methods are not very sensitive to the struc-

20



ture of the grid and the formal order of accuracy depends on the degree of used

approximating polynomials if the solution of the problem changes smoothly in the

computational domain. Applying the DG method to these nonlinear problems,

the resulting system of ordinary di�erential equations is compact and indepen-

dent of the order of space approximation, since only the connecting sub-domains

are coupled by the suitably de�ned numerical 
uxes. This property makes the DG

method very e�cient for parallel computing as well as for using implicit schemes.

Since space discontinues basis functions are used, the advantageous schemes, for

solving the nonlinear conservation laws, of the High Resolution Finite Volume

methods, like slope limiter and numerical 
ux construction are available for the

DG method. In the following sections, the explicite Runge-Kutta DG method,

developed by Cockburn and Shu [13], is reviewed and applied onto the system of

relativistic Euler equations.

2.1 Space discretisation

Given is a system of equations in the conservative form

@

t

U+ @

k

F

k

(U) = S (U) in (x; t) 2 
� (0; T ) (2.1)

where 
 is the bounded domain in IR

d

with boundary conditions

U = 
 (x; t) ;

@U = @
 (x; t) at @


and initial conditions

U

0

= U (x; 0) at t = 0.

The main di�erence between the FV and DG methods is the way of space

discretisation. Finite volume methods achieve higher order space accuracy by

the involvement of more ambient node values U

I

to construct the 
uxes F

I

=

F (U

I�N

; :::; U

I

; :::; U

I+N

) at the cell interfaces. These enlarged domains of in-


uence are di�cult to implement unstructured meshes and limit a e�cient im-

plementation on parallel computer. In contrast, by using the DG Method, the

computational domain 
 is subdivided into 1; : : : ; N sub-domains 


E

. In each

sub-domain 


E

the solution for U (x; t) is approximated by a set of discontinu-

ous basis functions �

E

(x) =

h

�

1

(x); : : : ; �

n(p)

(x)

i

of polynomial order p, with the

property

Z




�

A

�

T

E

d
 = �

AE

Z




A

�

A

�

T

E

d
 ; (2.2)

where �

AB

= 1 for A = B and equal zero otherwise. Due to this property, it is

possible to use di�erent degrees of order p = p(


E

) in each sub-domain 


E

and

di�erent types of sub-domains, like triangular and rectangular elements for 2D
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problems. The formal accuracy of the scheme, in space, is given by the order p

of the polynomial expansion of the basis functions �. Therefore it is relatively

easy to increase locally the accuracy, by using higher order polynomial functions,

only where it is needed. On the other hand it also possible and easy to re�ne the

computational sub-domains, like in the Finite Volume methods. After expanding

the solution in terms of the set of basis functions, the local approximate solution

is then given by

U

E

(x; t) � U

h

(x; t) =

n(p)

X

a=1

U

a

(t)�

a

(x) in 


E

and the global solution is given by

U (x; t) =

N

X

E=1

U

E

(x; t) in 
.

The coe�cients U

a

are the new unknowns which are recovered by a integral

projection into the space of test functions �

Z




E

�(x)U

h

(x) d
 = U

b

Z




E

�

a

(x)�

b

(x) d
 =ME

b

a

U

b

:

ME is called the Mass-matrix. Since we use discontinuous test functions the

Mass-matrix ME is block-diagonal with dimension equal to the dimension n (p)

of the used local �nite element space �. Therefore, ME can be inverted locally

U

a

=ME

b

a

�1

Z




E

�(x)U

h

(x) d
 (2.3)

for each computational sub-domain 


E

. The properties of ME, depending on the

�nite element space �, are analysed in section 2.3. Now the system of equations

(2.1) is projected into discontinuous �nite element space

Z




�(x)

�

@

t

U

h

+ @

k

F

k

(U)

�

d
 =

Z




�(x)S (U

h

) d
 ;

partial integration and after some arrangement results

@

t

U

Z




��

t

d
 +

I

@


�F

k

(U) d�

k

=

Z




�S (U

h

) d
 +

Z




F

k

(U

h

) @

k

�d
 :

Due to the property (2.2),

ME@

t

U+

I

@


E

�F

k

(U) d�

k

=

Z




E

�S (U) d
 +

Z




E

F

k

(U) @

k

�d
 : (2.4)

Since local discontinuous basis functions are used, there is no coupling at this

stage between the neighbouring computational sub-domains 


e

and the surface
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integral in (2.4) is not uniquely de�ned. The coupling between neighbouring sub-

domains is enforced, like in �nite volume methods, by replacing the physical 
ux

F (U) by a constructed numerical 
ux F

k

num

(U) = F

k

num

(U

h;in

;U

h;ex

) de�ned at

the connecting surface @


A;B

. To ensure local conservation of the method, the

following property of the numerical 
ux is required:

F

num;A

(U

h;A

; U

h;B

) + F

num;B

(U

h;B

; U

h;A

) = 0 at x : 


A

\ 


B

= @


A;B

and di�erent conservative 
ux construction schemes, known from �nite volume

methods, can be used. The numerical 
uxes used by the code are reviewed in

section 2.5. Since only the states of the physical quantities U

h;int

(x), U

h;ext

(x)

at the interface boundary x 2 @


A;B

of neighboured sub-domains 


A

, 


B

are

needed for the construction of the numerical 
ux, the region of dependence is not

a�ected by the used order p of polynomial approximation. This property makes

the DG method e�cient for higher order parallel computation and time implicit

schemes.

At the computational boundaries @
 the external valuesU

h;ext

are replaced by

the appropriate boundary conditions 
 projected into the space of discontinuous

basis function:

I

@


E

�F

k

num

(U

h;int

;U

h;ext

) d�

k

=

I

@


E

6=@


�F

k

num

(U

h;int

;U

h;ext

) d�

k

+

I

@


E

=@


�F

k

num

(U

h;int

; 
) d�

k

. (2.5)

Thus after applying the DG method on the conservation law (2.1), the resulting

spatial discretisation is given by

ME @

t

U

h;int

=

Z




E

�S (U

h;int

) d
 +

Z




E

F

k

(U

h;int

) @

k

�d


�

I

@


E

�F

k

num

(U

h;int

;U

h;ext

) d�

k

�

I

@


�F

k

num

(U

h;int

;
) d�

k

. (2.6)

2.2 Time discretisation

The system of conservation laws (2.1), after using the DGM Ansatz (2.4), is now

a system of ordinary di�erential equations

dU

h

dt

= L

h

(U

h

;
) (2.7)

with

L

h

=ME

�1

�

Z




E

�S (U

h

) d
 +

Z




E

F

k

(U

h

) @

k

�d
 �

I

@


E

�F

k

num

(U) d�

k

�

;
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which can be integrated in time by several methods. The code uses the explicite

TVD multi-step Runge-Kutta (RK) time discretisation method, developed by

Shu and Osher [53, 54] which was adapted to the DG Method by Cockburn and

Shu [13]. It makes sense to use the equal order K = p+ 1 of accuracy in time if

�nite elements �(P

p

) with spatial accuracy p+1 are used. For each time interval

�t

n

= t

n+1

� t

n

the values U

n

h

are updated by:

1. set U

(0)

h

= U

n

h

;

2. for i = 1; : : : ;K compute the intermediate value

U

(i)

h

=

"

i�1

X

k=0

�

ik

U

(k)

h

+ �

ik

�t

n

L

h

�

U

(k)

h

; 


h

�

t

n

+ d

k

�t

n+1

��

#

; (2.8)

3. set U

n+1

h

= U

(K)

h

.

The parameters for the second and third order RK algorithm are listed below in

Table 2.1. A Fourier stability and convergence analysis of the discrete hyperbolic

equations gives an upper limit of the time step �t

n

depending on the size �s of

the sub-domain 


E

and on the highest wave speeds �

E

, given by the maximum

eigenvalue of the Jacobian of the 
uxes A =

@F

@U

, explicitly shown in Appendix A.

The upper limit of �t is then given by the well known Courant number CFL (p)

for explicite time marching schemes:

CFL (p) � �

�t

�s

,

like in other explicite methods. A stability analysis of the DG method by Atkins

and Shu [3] shows that there is also a restriction for the time step �t depending on

the order p of the �nite element space �. By increasing the order p of polynomial

expansion the Courant number CFL (p) has to decrease

CFL (p2) < CFL (p1) for p2 > p1:

The Courant number CFL (p;K) as a function of the order of �nite element space

p and the order of accuracy in time K, for the one-dimensional linear scalar

advection problem

@

t

U + �@

x

U = 0

is listed in Table 2.2. By comparing the DG method with �nite di�erence and

volume methods of equal order of accuracy and comparable number of variables

this disadvantageous property of the DG method disappears by using less �ner

grids to get the same accuracy.
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order �

ik

�

ik

d

k

2 1 1 0

1

2

1

2

0

1

2

1

3 1 1 0

3

4

1

4

0

1

4

1

1

3

0

2

3

0 0

2

3

1

2

Table 2.1: Parameters for the second and third order Runge-Kutta algorithm.

p K

1 2 3

0 1.0 1.0 1.256

1 0.001 0.333 0.409

2 - 0.06 0.209

3 - 0.02 0.13

4 - 0.01 0.089

Table 2.2: Maximum Courant number CFL (p;K) depending on the order of the

�nite element space p (order p + 1) and the used Runge-Kutta stage K. Values

from Atkins and Shu [3] for the scalar advection problem (- denotes unstable

method).
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2.3 The basis function for rectangular elements

The characteristic properties of the method are not a�ected by the choice of the

basis and degrees of freedom, since they are determined by the discontinuous

element space, the construction of the numerical 
uxes and the scheme of time

discretisation. In each sub-domain 


E

a basis of local coordinates � 2 [�1; 1]

and � 2 [�1; 1] is de�ned with the transformation properties regarding to the

physical coordinates x

1

; x

2

x� x

0

= J

 

�

�

!

with

J �

@ (x

1

; x

2

)

@ (�; �)

:

The basis functions are polynomials (1; �; �; ��; �

2

; �

2

; : : :) of the local coordinates.

Since it is time consuming to invert the local mass matrixME of a non-orthogonal

basis, especially in the case of higher order p approximations, a local orthogonal

basis is demanded. The resulting mass matrix ME is in this case diagonal and

easy to invert by hand and therefore less computational operations are needed

ME =

Z




E

��

T

d
 � �

E

diag (: : :) :

The resulting orthogonal basis is then given by

� =

�

1; �; �; ��; �

2

�

1

3

; �

2

�

1

3

; � � �

�

;

where the �nite element basis �(�

0

; ::; �

n(p)

) for the piecewise constant approxi-

mation P

0

is � = (1), for the piecewise linear approximation P

1

: � = (1; �; �)

and for the piecewise parabolic approximation P

2

the basis is given by � =

�

1; �; �; ��; �

2

�

1

3

; �

2

�

1

3

�

, with the corresponding degrees of freedom

U

a

(t) =

�

�

U (t) ; U

�

(t) ; U

�

(t) ; U

��

(t) ; U

��

(t) ; U

��

(t) ; : : :

�

evolved in time. In section 2.4 it is also shown that a local orthogonal basis

requires less computational e�ort for use of slope limiting, which is needed for

higher order p � 1 �nite elements. In the case of an orthogonal basis, the mean

values

�

U in 


E

of the approximated solution U

h

are nothing but the coe�cient

of the P

0

: U

0

h

part of U

h

, since:

�

U

E

=

1

�


E

Z




E

U

h

d
 =

1

�


E

Z




E

n(p)

X

a=1

U

a

�

a

d
 = U

1

= U

0

h

in 


E

.
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2.3.1 Mass Matrix for the P

1

and P

2

basis

For the polynomial expansion of order P

1

in two dimensions the approximate

solution is given by

U

h

(x; t) = U

0

(t) + U

�

(t)�

1

(�) + U

�

(t) 

1

(�) (2.9)

with the property

Z




E

U

h

(x; t) d
 = U

0

(t)�


E

where U

0

is the mean value

�

U of U

h

in the sub-domain 


E

. The basis is orthog-

onal, and therefore the mass matrix

ME(P

1

) =

Z




E

��

T

d
 = �


E

diag

�

1;

1

3

;

1

3

�

(2.10)

is diagonal. For the P

2

expansion

U

h

(x; t) =

3

X

i=1

U

i

(t)�

i

(�; �) (2.11)

the resulting mass matrix is given by

ME(P

2

) == �


E

diag

�

1;

1

3

;

1

3

;

1

9

;

4

45

;

4

45

�

: (2.12)

.

2.4 The slope limiter

For elements of order p = 0, the piecewise constant element space, the numeri-

cal viscosity is large enough, due to the constructed numerical 
uxes, to ensure

stability of the scheme, but with the disadvantage of a large smoothing of dis-

continuities. In the case of higher order p � 1 elements the numerical viscosity

is too small to ensure stability of the method. At discontinuities spurious oscil-

lations are arising in the solution and are not damped out. To get a stable high

order DG method, Cockburn and Shu [13] introduce a local conservative slope

limiting to the DG Method and preserve a total variation bound in the means

(TVBM) of the conservative variables. Here the slope limiter is applied onto a

scalar hyperbolic equation.

� The following properties of the slope limiting operator �� are required:

1. In the case of small variation of the approximate solution u

h

the order

of accuracy should not be a�ected

��U

h

= U

h

. (2.13)
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2. Local conservation of the conservative variable U

h

Z




E

��U

h

d
 =

Z




E

U

h

d
 =

�

U (2.14)

3. The gradient of ��U

h

is not larger than that of U

h

@

(�;�)

��U

h

� @

(�;�)

U

h

(2.15)

The assumption is made that spurious oscillations are present in U

h

only if they

are also present in the piecewise linear part P

1

of U

h

: U

1

h

=

P

n(p=1)

a=1

U

a

�

a

. In the

case that no oscillations are present in U

1

h

:

��U

1

h

= U

1

h

then it is assumed that there are no nonlinear oscillations in U

h

2 P

p

and therefore

no limiting, formally �� = 1:

��U

h

= U

h

.

If

��U

1

h

6= U

1

h

,

then there are oscillations in U

1

h

, and therefore in U

h

and all degrees of freedom

U

a

2 U

�2

h

are set to zero.

U

a(p�2)

= 0

and limiting the remaining P

1

part U

1

h

:

��U

h

= ��U

1

h

.

The slope limiting operator �� is applied to the K stage Runge-Kutta method

by:

1. set U

(0)

h

= U

n

h

;

2. for i = 1; : : : ;K compute and limit the intermediate value

U

(i)

h

= ��

"

i�1

X

k=0

�

ik

U

(k)

h

+ �

ik

�t

n

L

h

�

U

(k)

h

; 


h

�

t

n

+ d

k

�t

n+1

��

#

; (2.16)

3. set U

n+1

h

= U

(K)

h

.
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2.4.1 Slope limiting operator �� for rectangular sub-domains

In the case of rectangular sub-domains with the properties dx

1

=

@x

1

@�

d�, dx

2

=

@x

2

@�

d� the properties 2.13, 2.14 and 2.15 of the limiter are achieved by the following

construction:

The limiting is only applied on the piecewise linear degrees of freedom in the

sub-domain 


I;J

 

U

�

U

�

!

= J

 

@

x

1

@

x

2

!

U in 


I;J

(2.17)

The inner sub-domain gradient of the P

1

part of U

h

in direction x

1

is

�

E

= @

�

U

1

h

= U

�

in 


I;J

(2.18)

and the outer gradients of the mean values

�

U of neighbouring left 


I�1;J

and

right 


I+1

J

sub-domains are de�ned by

�

+

=

�

U

I+1;J

�

�

U

I;J

=

1

�


I+1;J

Z




I+1;J

U

h

d
�

1

�


I;J

Z




I;J

U

h

d
; (2.19)

�

�

=

�

U

I;J

�

�

U

I�1;J

=

1

�


I;J

Z




I;J

U

h

d
�

1

�


I�1;J

Z




I�1;J

U

h

d
: (2.20)

The function �m is the TVB corrected minmod function de�ned by

�m (�

E

;�

+

;�

�

) =

(

�

E

, if j�

E

j �M�x

2

1

m (�

E

;�

+

;�

�

) otherwise

(2.21)

where M the TVB parameter and the minmod function is de�ned by

m (�

E

;�

+

;�

�

) =

(

s min j�

i

j , if s = sign�

E

= sign�

+

= sign�

�

0 otherwise:

(2.22)

The new coe�cients are achieved by integral projection into the P

1

�nite element

space �

1

Z




I;J

�

1

�m d
 (2.23)

and, since the P

1

part of U

h

is orthogonal the second requirement for conservation,

(2.14) is realised. The �rst requirement (2.13), not to change the order of the

method near smooth extrema where the values of u

�

or u

�

is of order O (��

2

), is

satis�ed by the TVB parameter M > 0. The method is not sensitive in a large

range ofM , but by settingM too small the method is reduced independent of the

expansion p mostly to second order accuracy. An estimate of the TVB parameter

can be done by a Fourier analysis, showing that the local variations should be in

a linear regime. By taking too large values of M and the variations of U

h

are in
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the nonlinear range, spurious oscillations can occur. Like Cockburn and Shu [13]

the code use a TVB parameter M = 50.

Working with an orthogonal basis, less computational e�ort is needed, since

in this case the mean values

�

U are given by the P

0

part of the expansion of U

h

,

i.e., the expansion coe�cient U

0

�

+

=

�

U

I+1;J

�

�

U

I;J

= U

0 I+1;J

� U

0 I;J

; (2.24)

�

�

=

�

U

I;J

�

�

U

I�1;J

= U

0 I;J

� U

0 I�1;J

: (2.25)

2.4.2 Slope limiting for systems of equations

For systems of nonlinear equations, like 2.1, it is possible to apply the slope

limiter �� directly to each component of the vector of the conservative variables

U

h

, like in the case of a scalar equation. But a better resolving of discontinuities

is achieved by limiting the vector of the corresponding characteristic variables

C (U

h

) of the conserved ones:

�

E

= R

�1

U

�

in 


I;J

�

+

= R

�1

�

�

U

I+1;J

�

�

U

I;J

�

(2.26)

�

�

= R

�1

�

�

U

I;J

�

�

U

I�1;J

�

and then apply the scalar limiter to each component� and transform the solution

back to the system of conservative variables, by

��U

h

= R
�
m:

R and R

�1

are the matrices of the right and left eigenvectors, which diagonalise

the Jacobian of the 
ux:

R

�1

@F

�

�

U

I;J

�

@

�

U

R = � ,

speci�ed in appendix A. A comparison between the slope limiting applied on the

conserved and the limiting of the characteristic variables is shown in �gure 2.1

for a one-dimensional Riemann problem. By limiting the conservative variables

spurious oscillations are visible and the contact discontinuity is less resolved than

in the case of limiting the characteristic variables.

2.5 The numerical 
uxes

The numerical 
uxes F

num

= F

num

(U

h

(x

int

2 @
); U

h

(x

ext

2 @
)) are computed

from the physical states at the interfaces of connecting sub-domains. To enforce
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Figure 2.1: Results of a low resolution 1D Riemann shock tube problem at time

t = 0:16. The upper panel shows the density d and velocity v for slope limiting of

the conservative variables U. The lower panel shows the results for slope limiting

of the characteristic variables C. The analytical solution is shown by the solid

line, (+) numerical with a grid resolution of 50 elements in the computational

domain..

local conservation of the scheme, the following property

F

num;a

(U

h;a

(x

int

); U

h;a

(x

ext

) + F

num;b

(U

h;b

(x

int

); U

h;b

(x

ext

) = 0; (2.27)

at @


ab

2 


a

\


b

has to be required for the construction of the numerical 
uxes.

2.5.1 The Lax-Friedrich 
ux

The Lax-Friedrich 
ux is simple to construct, needs less computational e�ort

and enforces the entropy conditions at shocks and rarefaction waves, but for the

prize of introducing a higher intrinsic numerical viscosity into the scheme than

other 
ux reconstruction methods. Since only an estimate of the biggest eigen-

value of the 
ux Jacobian is needed, the Lax-Friedrich 
ux is useful for systems

of equations, where the eigenvalues are not known, of complicated structure or

computationally expensive to recover

F

num

(U

int

; U

ext

) =

1

2

h

F

k

(U

int

) n

k

+ F

k

(U

ext

) n

k

� � (U

ext

� U

int

)

i

. (2.28)

n

k

is the outward directed unit vector of the sub-domains surface. The conserved

variables U

int

, U

ext

are evaluated at the interface of neighbouring sub-domains
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and the numerical viscosity parameter � is an estimate of the largest eigenvalue,

in absolute values, of the mean values

�

U

int

,

�

U

ext

in the connecting sub-domains

� = max (j�(

�

U

int

)j; j�(

�

U

ext

)j) .

2.5.2 The Marquina 
ux

This concept of 
ux vector splitting, introduced by Marquina [17], is less nu-

merically viscous than the Lax-Friedrich 
ux, but needs the knowledge of the

characteristic system of the conservation laws

�

l

= R

�1

lm

F

m

, !

l

= R

�1

lm

U

m

: (2.29)

The corresponding eigenvalues �

l

are de�ned that for �

l

> 0 the l characteristic

waves are outward directed at the connecting surface @ 
 = 


int

\ 


ext

. Then

for each di�erent wave l, of both sides of the connecting domains, it is analysed

if there is an in
ow, out
ow, shock or a rarefaction wave. The outward directed

wave de-composite �

+

l

is therefore

�

+

l

=

8

>

<

>

:

0 if �

int

l

< 0 and �

ext

l

< 0

�

int

l

if �

int

l

> 0 and �

ext

l

> 0

1

2

(�

int

l

+ �

l

!

int

l

) if �

int

l

�

ext

l

< 0,

(2.30)

with �

l

= max(j�

int

l

j; j�

ext

l

j) and the inward directed part �

�

l

of the 
ux is given

by

�

�

l

=

8

>

<

>

:

0 if �

int

l

> 0 and �

ext

l

> 0

�

ext

l

if �

int

l

< 0 and �

ext

l

< 0

1

2

(�

ext

l

� �

l

!

ext

l

) if �

int

l

�

ext

l

< 0.

(2.31)

The superscript

int

stands for the computational domain 


int

surrounded by the

surface @
 and the superscript

ext

stands for the neighbouring domains 


ext

. The

Marquina 
ux for the conserved variables is then given by

F

num

l

=

�

R

int

lm

�

+

m

+R

ext

lm

�

�

m

�

: (2.32)

In the case of �

int

l

�

ext

l

> 0 the Marquina 
ux reduces to the Steger-Warming [55]

splitting, up-winding of the l-wave characteristic variables. At shocks and rar-

efaction waves, the internal and external eigenvalues have di�erent signs and the

Marquina scheme reduces to the Lax-Friedrich method in the system of charac-

teristic variables. Since for each surface integral the 
uxes have to be transformed

into the system of characteristic variables and a controlling by IF-clauses has to

be made, the Marquina 
ux scheme needs more computational time than the

Lax-Friedrich recipe.
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2.6 Numerical quadrature of surface and vol-

ume integrals

The numerical integration is done by the method of Gauss. The analysis in [11]

shows that for a polynomial basis P

p

of order p the numerical quadrature of

surface integrals must be exact of order 2p + 1 and the quadrature rules for the

volume integral of order 2p. This comes from fact that the hydrodynamical 
uxes

and sources are nonlinear functions of the conservative variables U

h

. Depending

on the used order p, the Gauss rules for the surfaces are

I

1

�1

f(s)ds �

n(p)

X

i=1

!

i

f(p

i

) (2.33)

and for the volume integral a tensor product is used

Z




f(x; y) d
 �

n(p)

X

i=1

n(p)

X

j=1

!

i

!

j

f(�

i

; �

j

) , (2.34)

where �

i

are the Gauss points with corresponding weights !

i

. The numerical

quadrature becomes more computational time consuming by increasing order p

of polynomial expansion and most of CPU-time is needed to calculate the element

integrals. In the case of relativistic hydrodynamics a further increase of compu-

tational e�ort occurs, since at each Gauss point �

i

a nonlinear algebraic equation

has to be solved to recover the primitive variables from the conserved ones, by

using a one dimensional Newton-Raphson routine, discussed in the following sec-

tion 2.7. To circumvent the numerical quadrature, a quadrature-free approach

was developed by Atkins and Shu [3, 12] for the nonrelativistic Euler equations.

By applying this approach to nonlinear conservation laws a specially handling of

the conserved variables, the corresponding 
uxes and sources becomes absolutely

essential. If this approach is also applicable on the relativistic equations has to

be analysed.

p Gauss points �

i

Weights !

i

1 �1=

p

3, 1=

p

3 1, 1

2 �

q

3=5, 0,

q

3=5 5=9, 8=9, 5=9

Table 2.3: Parameters for the Gauss quadrature.
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2.7 Recovering the primitive variables

To compute the 
uxes, sources and for applying the slope limiter on the char-

acteristic variables, the primitive variables w = (�; v

i

; p) of the system have to

be computed. The recovering of the primitive variables from the conserved ones

is easy for ideal Newtonian hydrodynamics, but in the case of ideal relativistic

hydrodynamics the recovering procedure can not be formulated in closed form.

Therefore, a one-dimensional Newton-Raphson method, introduced by Mart��,

Ib�a~nez and Miralles [37], is used for the recovering of the primitive variables, by

�nding the root of:

f(p) = (
 � 1)��� p (2.35)

The explicit algorithm is explained in appendix B. A further way to recover the

primitives was introduced by Duncan and Hughes [18]. They solved iteratively

the quartic equation

h


v (E �Mv)�M

�

1� v

2

�i

2

�

�

1� v

2

�

v

2

(
 � 1)

2

D

2

= 0; (2.36)

where M =

p

M

i

M

i

is the momentum and D, M

i

, E are the conservative vari-

ables of the 
uid measured in the lab frame.

In regions, where the states of the 
ow vary smoothly, the Newton-Raphson

routine requires one to 4 iterations to reach a relative accuracy of 10

�10

. At

discontinuities the required iterations are in the range of 10. Simulating highly

relativistic 
ows with Lorentz factor W > 10 in 2D it happens some times, if

discontinuities are involved, that the requested accuracy could not be reached.

In this case the calculation is repeated at time t

n

and the time step is decreased

by a factor of two.
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Chapter 3

Code testing

The Newtonian test problems are computed with the relativistic version of the

code, to check if the code can handle low velocity v � 1 and low speci�c in-

ternal energy � � � well. One-dimensional test problems are solved by the two

dimensional version of the code. For integration in time the two-step Runge-

Kutta method was used and the CFL number was set in all computations to

CFL=0.3, except if the recovering of the primitive variables was not possible,

which some times occurs in two-dimensional highly relativistic simulations at

discontinuities. The space was discretised by rectangular sub-domains and a P

1

basis was used, therefore the method is second order in space, except at disconti-

nuities. The Lax-Friedrich method 2.28 was used to compute the 
uxes, which is

slightly more di�usive at contact discontinuities than the computationally more

expensive Marquina 
ux.

3.1 The Woodward and Colella test problems

This section deals with the three test problems investigated in the fundamental

article of Woodward and Colella [61]. In their review article an extensive com-

parison study of various numerical methods for simulating ideal hydrodynamic


ows in the Newtonian limit was discussed. Each of these tests inhere di�er-

ent problems to be solved by the code. The two-dimensional test problems are

also studied in the article of Cockburn and Shu [13] using the DG method with

a P

1

and P

2

polynomial basis and for domains discretised by rectangular and

unstructured triangular elements.

3.1.1 Newtonian 1D interacting blast wave problem

This one-dimensional test problem involves multiple interaction of strong shocks

and rarefaction with each other and contact discontinuities, caused by initial

three di�erent states of pressure in the domain of computation of size x 2 [0 :
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1] with re
ecting boundaries. In the hole range initially the rest mass density

� is set to a constant value 10

5

and the velocity is set to zero. In the range

x 2 [0; 0:1] the pressure is given by p = 10

3

, for x 2]0:1; 0:9[ p = 10

�2

and

for x 2 [0:9; 1] the pressure is set to p = 10

2

. The gas has a adiabatic index

of 
 = 1:4. The space and time units are renormalised to the speed of sound

given by c

s0

=

q


p

0

=� with p

0

= 1. Since the rest mass density � � p, the

problem is intrinsically nonrelativistic. The resulting distributions of rest mass

density at time 0.038, for di�erent resolution in space are shown in Figure 3.1.

Compared to the results presented in the article of Woodward and Colella [61]

the accuracy of the solution is between that of the MUSCL scheme and that of

the Piecewise Parabolic Methods (PPM), but the very good resolution of the

contact discontinuity of the PPM codes is not reached.
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Figure 3.1: The rest mass density �10

5

of the interacting blast wave problem at

time t=0.038. The resolution of the left �gure is �x = 1=400 and of the right one

�x = 1=1200. The solid line in both �gures was obtained from a computation

with a very high resolution of �x = 1=3000.

3.1.2 Newtonian 2D double Mach re
ection

This test problem was also studied by Woodward and Colella with di�erent nu-

merical methods. Initially a Mach 10 shock in air, 
 = 1:4 is re
ected by a

wall which makes an 60

�

angle to the right propagating shock front. The re-


ecting wall lies in the range x 2 [1=6; 4] of the x-axis at y = 0. In the region

x� y= tan 60

�

< 1=6 initially the values are set to the post-shock conditions and

elsewhere to the states of the pre-shocked air. At the upper boundary, at y = 1,
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the boundary condition is time dependent to follow the motion of the shock. This

is done by setting post shock values for

x < x

s

(t) =

Mc

s

cos 30

�

t+ 1=6 + 1= tan 60

�

,

where M is the Mach number and c

s

is the sound speed of the un-shocked air,

and pre-shock values otherwise. To be in the Newtonian limit, � � �, and all

values are renormalised to the values of the Woodward and Colella calculation.

At evolution time t=0.2 a complicated 
ow pattern develops characterised by

two re
ected Mach shocks with two contact discontinuities. The re
ected shock

and the inclined shock merge at the leading triple point. At the re
ecting wall a

jet-like structure with a mushroom-shaped head develops and propagate to the

right behind the strong Mach shock. In �gure 3.2 the density at time 0.2, with

di�erent element resolution, is shown. Compared to the results of Woodward and

Colella the accuracy is between that of the MUSCL scheme and that of the PPM

method, similar to the interacting blast wave problem. Even in the low resolution

run (�x = 1=30) all 
ow patterns are developed and are located at the correct

position. Further a calculation with a non-uniform spacing of elements, shown in

the �gures 3.3 and 3.4, was done, to study how the solution of the re
ected and

moving shock is in
uenced by the use of non-uniform grid scaling. Like in the

case of uniform grid scaling the 
ow pattern is correctly developed.
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Figure 3.2: The density of a double Mach re
ection of a Mach 10 shock wave

from a wall is shown at evolution time t=0.2 for a uniform element resolution.

Element resolution from top to down: �x = �y = 1=30; 1=60; 1=120. 30 equally

spaced density contours from the minimum to the maximum values are shown.
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Figure 3.3: The density of the DMR problem for a discontinuous scaling of the

grid in both directions. Grid scaling in x direction �x = 1=30 for x 2 [0; 1:5[,

�x = 1=60 for x 2 [1:5; 2[ and �x = 1=30 for x 2 [0; 3:5]. Grid scaling in y

direction �y = 1=120 for y 2 [0; 25], �y = 1=60 for y 2]0:25; 0:5] and �y = 1=30

for y 2]0:5; 1]. 30 equally scaled density contours from the minimum to the

maximum values are shown.
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Figure 3.4: Surface plot of the DMR problem for a discontinuous scaling of the

grid in both directions, same as in Fig. 3.3. Grid scaling in x direction �x = 1=30

for x 2 [0; 1:5[, �x = 1=60 for x 2 [1:5; 2[ and �x = 1=30 for x 2 [0; 3:5]. Grid

scaling in y direction �y = 1=120 for y 2 [0; 25], �y = 1=60 for y 2]0:25; 0:5] and

�y = 1=30 for y 2]0:5; 1]
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3.1.3 Newtonian 2D Mach 3 wind tunnel with a step

problem

This two-dimensional test problem treats of an initially uniform Mach 3 
ow

propagating to the right in a wind tunnel containing a step. The wind tunnel

is 3 length units long and 1 length unit high. The step begins 0.6 length units

from the left in
ow boundary and is 0.2 length units high. Out
ow boundary

conditions are set at the right computational boundary x = 3 and for the upper,

lower and step boundaries re
ecting conditions are applied. The corner of the

step is a singularity for the 
ow, where large numerical errors occur. In contrast

to the calculations of Woodward and Colella no special handling at the corner

of the step, like the entropy �x, was done. This leads to an erroneous entropy

layer and a spurious Mach stem at the bottom wall. Cockburn and Shu [13] show

that these numerical artifacts decrease if the mesh is re�ned at the corner of the

step. In �gure 3.5 the resulting 
ow pattern of the density at evolution time 4.0

is shown. By ignoring the numerical artifacts all shocks and discontinuities occur

at the correct location. In contrast to the solution of this problem computed by

the ZEUS code (Stone and Norman [56]), there is no large dependence of the 
ow

pattern on the grid resolution used in our computations.
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Figure 3.5: The density at time 4.0 of the Mach 3 wind tunnel with a step is

shown for a uniform element resolution. Element resolution from top to down

�x = �y = 1=40; 1=80. 30 equally scaled density contours from the minimum to

the maximum values are shown.
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3.2 The 1D mildly relativistic Riemann prob-

lem

This test problem considers the time evolution of an initially discontinuous state

of a 
uid at rest v = 0. In the range x 2 [0; 0:5] the initial values are given by

� = 10, � = 2 and in x 2]0:5; 1] they are given by � = 1, � = 10

�6

with the gas

adiabatic 
 = 5=3. The 
uid in the high pressure region on the left is relativis-

tic in the thermodynamical point of view, but develops only mildly relativistic

dynamical velocities. The formation of an intermediate state is bounded by a

shock wave propagating to the right and a transonic rarefaction wave propagat-

ing to the left side. The 
uid is accelerated by the pressure gradient to the mildly

relativistic speed v=0.72c.
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Figure 3.6: Numerical (symbols) and exact (lines) solution of the mildly rela-

tivistic Riemann problem. The �gure shows the resulting states of the proper

rest-mass density rho, pressure p, speci�c internal energy ei and 
ow Lorentz

factor W at time t=0.5. The grid resolution was set to 100 elements per unit

length.

3.3 The 1D relativistic planar shock re
ection

In this test problem the code has to handle the re
ection of strong shock waves

caused by the collision of two cold relativistic gas 
ows. The initial data are in

the range 0 � x � 1: �

L

= 1, �

L

= 2:29 10

�5

, v

L

= v

f

and for 1 < x � 2:

�

R

= 1, �

R

= 2:29 10

�5

, v

R

= �v

f

. In �gure 3.7 the physical states, at time 2.0,

of the re
ecting shock, propagating to the left, is shown for an in
ow velocity of

v

i

= 0:9c. Figure 3.8 shows the rest mass density jumps in logarithmic scale for

di�erent in
ow velocities v

f

. The largest possible in
ow Lorentz factor was given
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by 2:236� 10

4

; for higher in
ow velocities this version of the code was unable to

compute the primitive variables from the conserved ones at the discontinuities.
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Figure 3.7: Numerical (symbols) and exact (lines) solutions of the mildly rel-

ativistic planar shock re
ection problem, v = 0:9c. The �gure shows the the

distribution of the proper rest-mass density rho, pressure p, speci�c internal en-

ergy ei and 
ow Lorentz factor W at time t=2.0. The resolution was set to 200

elements per unit length.
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Figure 3.8: Numerical (symbols) and exact (lines) solutions of the relativistic

planar shock re
ection problem for di�erent in
ow velocities. The �gure shows

the resulting proper rest-mass density as a function of the in
ow velocities v at

time t=2.0 and 200 elements per unit length. The largest in
ow Lorentz factor

is W = 2:236 � 10

4
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3.4 The 1D relativistic blast wave

The initial states of the intrinsic relativistic blast wave problem are: for x � 0:5

�

l

= 1 , v

l

= 0 , p

l

= 10

3

and for x > 0:5: �

r

= 1 , v

r

= 0 , p

r

= 10

�2

. On the

left side, in the hot high pressure region, the test problem is extremely relativistic

in the thermodynamic sense, since the internal speci�c energy � is much larger

than the energy rest-mass density � of the 
uid. Figure 3.9 shows the physical

states of this test at time 0.36 with 400 elements per unit length. A thin zone of

high rest mass density is accumulated by the leading shock and becomes thinner

and thinner for higher relativistic 
ow speeds. The decreasing in size of this

region occurs, because the contact discontinuity moves with the velocity v

c:d:

of

the pressure accelerated 
ow and the shock moves with a higher velocity v

s

> v

f

.

But since the velocities must be sub-luminal, v

c:d:

< v

s

< 1, the size of the swept

up gas decreases for higher 
ow velocity. This kind of problem also occurs in the

case of ultra-relativistic jet computations and, therefore, a higher resolution in

space is needed than in the Newtonian case, to resolve the contact discontinuity

and the shocked ambient medium. A comparison between the Newtonian case

and the relativistic one is shown in �gure 3.10. To get a Newtonian 
ow, the

value of the rest-mass density was changed to �

new

= 10

5

�

rel

, therefore the ratio

of the speci�c internal energy and rest mass energy is in the Newtonian limit and

the 
ow is accelerated only to a non-relativistic velocity of v = 0:057c. Now the

region of accumulated initial cold gas is much larger than in the relativistic case

shown in the right �gure of 3.10.
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Figure 3.9: Numerical (symbols) and exact (lines) solutions at time 0.36 of the

relativistic blast wave problem. Resolution: �x = 1=400.
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Figure 3.10: A comparison study of the Newtonian and relativistic blast wave

problem. Shown is the rest-mass density � of the nonrelativistic (left) problem

at time 3.6 and the relativistic (right) case at time 0.36. The space resolution is

�x = 1=400.

47



Chapter 4

Astrophysical 
ow problems

4.1 Jet simulations

In this section the code is applied to the astrophysical problem of hydrodynamic

jet propagation in homogeneous ambient media. In the �rst part the dependence

of the evolving 
ow structure on the grid resolution of a Newtonian jet is analysed.

In the second part the propagation of relativistic jets with di�erent initial 
ow

parameters are summarised.

4.1.1 Resolution study of a hydrodynamic NewtonianMach

6 jet

In this section the dependence on the grid resolution of the developing 
ow struc-

ture of a Newtonian axially symmetric jet is investigated. For this problem the

conservation laws are solved in cylindrical coordinates. The in
uence of the grid

resolution on the evolving 
ow morphology and propagation properties of su-

personic HD and MHD jets was intensively analysed by Krause and Camenzind

[35]. Their analyses was done by using the Newtonian MHD code NIRVANA,

developed by Ziegler [64], which is a ZEUS type code.

A hydrodynamical light Mach 6 Jet is injected into a homogeneous ambient

medium. Initially, the jet and the ambient medium are in pressure equilibrium

p

b

= p

m

. The density ratio � = �

b

=�

m

between the jet and the homogeneous

mediumwas set to � = 0:1 with �

m

= 10. The internal Mach numberM = v

b

=cs

b

of the jet was set to M = 6. Rotational symmetric boundary conditions are set

at the jet axis, out
ow at the right and upper boundary and re
ecting at the

left, except for the jet injection region, where in
ow boundary conditions are

set. This corresponds to the boundary conditions used by Krause. By setting

the pressure to p

b

= 10

�4

and the rest-mass density to �

j

= 1 the problem

is nonrelativistic in the thermodynamical sense and, since the beam velocity is

given by v

b

= Mcs

b

� 1, also in the kinematical point of view. After the jet is
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injected into the homogeneous ambient medium, a high pressure cocoon develops

and interact with the supersonic beam. In the beam 
ow internal shocks are

excited, leading to a time-dependent deceleration and re-acceleration of the beam.

The evolved density structure, of the jet, is shown in Figure 4.1, for di�erent grid

resolutions of 10; 20; 40 grid points (elements) per beam radius (ppb). The time is

measured in light travelling units, where the unit-time scale is de�ned as the time

the light needs to cross the jet radius, [t] = R

j

=c, which is the natural time-scale

for relativistic computations. Compared to the corresponding solution, setup B

of Krause shown in Figure 3 in [35], the e�ective numerical resolution of this DG

method seems to be about two times higher, than the e�ective resolution of the

NIRVANA code. This behaviour is expected for codes based on Riemann solvers.
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Figure 4.1: A Newtonian Mach 6 light Jet � = 0:1 for di�erent resolutions (ppb

points (elements) per beam radius), only the element mean values of the density

are shown. Arrival times of the bow shocks at Z=9 R

b
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=
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4.1.2 Relativistic jets

The morphology and propagation properties of two-dimensional, axisymmetric

relativistic jets was intensively analysed in the last years. For this problems

Mart�� et al. [41], introduced a High Resolution Shock Capturing Scheme, which

includes a Riemann solver for solving the relativistic Euler equation in conserva-

tion form. Duncan and Hughes [18] developed a relativistic code by using a second

order Godunov-type solver. Now, there are also extensions to three-dimensional

simulations of relativistic jets present, Hughes et al. [25] and Aloy et al. [1].

Relativistic jets di�er from their Newtonian counterparts in two ways. The

�rst is the dependence of the e�ective inertia �hW

2

on the 
ow velocity v

b

and

the speci�c internal energy �, where � is the rest-mass density, W = 1=

q

1� v

2

b

the beam Lorentz factor and h = 1 + � + p=� the relativistic speci�c enthalpy.

The second di�erence is the presence of a maximum velocity, the speed of light.

In addition to the three parameters, the pressure contrast K = p

b

=p

m

, density

contrast � = �

b

=�

m

and the beam Mach numberM

b

, which completely specify the

propagation of Newtonian jets in homogeneous media, relativistic jets have to be

speci�ed by a fourth parameter, i.e., the beam velocity v

b

or Lorentz factor W

b

.

Relativistic e�ects become important if large beam 
ow velocitiesW

b

� 1 and/or

high internal energies h� 1, compared to the rest mass energy, are involved. The

pressure, for a gas with adiabatic index 
, is speci�ed by the rest-mass density

�

b

, Mach numberM

b

and velocity v

b

of the beam

p =

c

2

s

�

b




�

1�

c

2

s


�1

�

with c

s

=

v

b

M

b

. (4.1)

For relativistic hot 
ows h

b

� 1 the beam Mach number is bounded, since the

sound speed is limited by the value c

s;max

=

p


 � 1 and has to be larger than

M

b

> M

min

= v

b

=c

s;max

: (4.2)

To give an estimate of the dependence of the jet evolution properties on the beam

Lorentz factor W

b

and on the speci�c internal energy several cold jet simulations,

models A in 4.1 with di�erent rest mass density contrast � and three relativistic

hot simulations, sign as models B in 4.1 were computed. The structure of rest

mass density � and pressure p for the di�erent cold jet models, for decreasing

� are shown in the �gures 4.8. The results of cold highly relativistic jets with

Lorentz factor W

b

= 100 are shown in the �gures 4.15. The hot jet models are

shown in �gure 4.12. In addition two large scale runs for a cold and a hot jet

model (LA2, LB) were computed to investigate the in
uence of the cocoon on

the jet propagation. Regarding the results of model A1 (Fig. 4.2) , the in
uence

of the Lorentz factor is dramatical. Although, the jet is less dense as the ambient

medium � = 0:1 and a high pressure cocoon develops, but with less in
uence at

this time on the beam 
ow. The propagation e�ciency of the relativistic jet is

quit higher compared to the Newtonian model N with corresponding initial data.
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Propagation e�ciency: To understand this property, the jet propagation ef-

�ciency in one dimension, de�ned as the velocity V

j

of the working surface, is

analysed. In the rest frame S

0

of the working surface which is moving with the

velocity V

j

relatively to the rest frame of the homogeneous ambient medium S,

from the equation of local momentum conservation if initially a pressure equilib-

rium p

b

= p

m

is assumed, Mart�� et al. [41], we get

�

b

h

b

(W

0

b

v

0

b

)

2

= �

m

h

m

(W

0

m

v

0

m

)

2

; (4.3)

where v

0

b

and v

0

m

= �V

j

are the velocities of the beam and the ambient medium

measured in S

0

. Transforming the beam velocity v

b

, measured in S, into S

0

one

gets

W

0

b

v

0

b

=W

j

W

b

(v

b

� V

j

) (4.4)

and from this the jet propagation speed is parameterised by

V

j

=

p

�

1 +

p

�

v

b

; (4.5)

where

� = �

h

b

h

m

W

2

b

(4.6)

is the e�ective inertial contrast which is the counterpart to Newtonian e�ective

inertia given by the density ratio � = �

b

=�

m

. Therefore if � � 1 the jet propaga-

tion e�ciency is close to one, even if the jet is less dense as the ambient medium

� < 1. Light jets � < 1 with a high propagation e�ciency can be classi�ed by

two di�erent types. The �rst type are highly kinematic W

b

� 1 relativistic cold

jets, with negligible internal energy, h � 1, and therefore hypersonic 
ows. The

second type are hot jet, which are relativistic in the thermodynamic sense, where

a large amount of the internal energy contributes to their total energy, h� 1.

Short distance runs: The grid resolution of the short distance runs was 20

ppb. The computational domain spans from 0 to 10 beam radii in the axial

direction Z and from 0 to 4 beam radii in the radial directionR. The computation

was stopped if the bow-shock reached Z = 9R

j

at the jet axis. The time was

measured in light crossing times. The initial parameter of the di�erent jet models

(A,B) are listed in table 4.1. A comparison of the jet propagation e�ciency is

listed in table 4.2.

Cold jets h � 1: The cold jet models have beam Mach numbers much

higher than the minimum beam Mach number given by Eq. 4.2, M

b

� M

min

.

Cold jet are, therefore, supersonic. In �gure 4.2 the resulting rest-mass density

of model A1 and his Newtonian counterpart are shown. The rest-mass density

ratio of both jet is initially � = 0:1 and a equal beam Mach number M

b

= 6.
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Only the beam Lorentz factor was changed, from W

b

� 1:003, for the Newtonian

jet, to W

b

= 10 for the relativistic model. Visible is the decreasing in
uence

of the high pressure cocoon on the internal beam structure, by increasing beam

Lorentz factor W

b

. In the Newtonian model internal shocks are excited, leading

to a deceleration and re-acceleration of the beam. The appearance of Kelvin-

Helmholtz instabilities, leads to a mixing of the shocked ambient medium and

back 
owing beam matter. Whereas by increasing beam Lorentz factor these

instabilities have not enough time to disturb the cocoon. By decreasing the rest-

mass density ratio, model A2, with � = 0:01, and model A3, � = 0:001 the

in
uence of the high pressure cocoon on the internal beam increases.

Hot jets h � 1: The Mach number of the hot jet models (Setups B in

table 4.1) is approximately that of the minimum beam Mach number, Def. 4.2.

These models are therfore low Mach number jets. In the case of hot jets, the

beam and cocoon are nearly in pressure equilibrium (right contour plots of �gure

4.12). This leads to a reduced in
uence of the cocoon on the propagating beam.

In addition the back-
owing of shocked ambient material is suppressed and no

Kelvin-Helmholtz instabilities are visible at this time. Only in model B1, where

the rest-mass density ratio is � = 0:001 strong internal shocks are formed. But

in comparison to the cold model A3 with equal initial states except of the Mach

number, the cocoon is less dominant and the propagation speed of model B1 is

approximately three times higher than that of the cold model.

Long distance runs: The computational domain of the long distance runs

spans to 50 jet radii in the axial direction and to 10 in the radial direction. The

resolution was set to 10 elements per beam radius for R < 7. For Radii larger

than R > 7 the radial element size was geometrical increased, to reduce the

in
uence of the upper out
ow boundary on the simulations.

In the long term runs the in
uence of the internal energy on the jet morphol-

ogy is visible. The cold jet simulation LA2 shown in Fig. 4.16 develops a pressure

dominated cocoon with back-
owing beam material, leading to Kelvin-Helmholtz

instabilities at the contact surface and a mixing of the cocoon and shocked am-

bient medium. In the cocoon shocks are developed, leading to dissipation of the

kinematical energy of the back-
owing beam material, which heats the cocoon far

a way of the bow-shock. Further the higher pressure cocoon in
uence the beam

and internal shocks are arising, which decelerate and re-accelerate the beam. In

contrast to the properties of the cold model, the hot jet model LB, Fig. 4.17,

no dominant cocoon with back-
owing beam material is developed. Since the

beam and cocoon is approximately in pressure equilibrium, internal shocks are

suppressed and the jet propagates nearly in a one-dimensional fashion. These

results are in agreement with the computations of Mart�� et al. [41].
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Model Type � = �

b

=�

m

W

b

M

b

M

b

� =W

2

b

�h

b

=h

m

ppb

A1 Cold 0:1 10 6 59:17 � 10 20

A2 Cold 0:01 10 6 59:17 � 1 20

LA2 Cold 0:01 10 6 59:17 � 1 10

A3 Cold 0:001 10 6 59:17 � 0:1 20

A4 Cold 0:1 2 6 11:87 � 0:4 20

A5 Cold 0:01 100 6 591:6 � 104 20

A6 Cold 0:001 100 6 591:6 � 10:4 20

B1 Hot 0:001 10 1:020 �M

min

7:45 � 2:5 20

B2 Hot 0:01 2 1:015 �M

min

1:28 � 1 20

B3 Hot 0:01 10 1:020 �M

min

7:45 � 20:6 20

LB Hot 0:01 10 1:020 �M

min

14:49 � 20:6 10

Table 4.1: Initial physical parameters for the di�erent models with proper rest

mass ratio � = �

b

=�

m

, beam Lorentz factor W

b

and e�ective inertial ratio � =

W

2

b

�h

b

=h

m

. The adiabatic index was set to 
 = 5=3, except for the hot long

evolution model LB, where the adiabatic index was set to 
 = 4=3. The minimum

Mach number M

min

= v

b

=c

s

max

, where the maximal reachable sound speed, if

P � �, is given by c

s

max

=

p


 � 1 and the proper Mach number is given by

M

b

= M

b

W

b

=W

s

, where W

s

= 1=

q

1� c

2

s

is Lorentz factor of the sound speed.

The grid resolution (ppb) is measured by points (elements) per beam radius R

j

.
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Model Type � V

N

j

V

j

�v

j

� �

N

t

end

A1 Cold 10 0.239 0.759 0.789 1.040 3.30 11.0

A2 Cold 1 0.090 0.503 0.5 0.995 5.55 16.4

LA2 Cold 1 0.090 0.503 0.44 0.852 4.89 112.1

A3 Cold 0.1 0.031 0.243 0.199 0.821 6.42 39.1

A4 Cold 0.4 0.208 0.338 0.352 1.040 1.69 23.3

A5 Cold 104 0.091 0.911 0.931 1.022 10.2 9.13

A6 Cold 10.4 0.031 0.764 0.765 1.002 24.7 11.0

B1 Hot 2.5 0.031 0.610 0.594 0.974 19.2 13.8

B2 Hot 1 0.079 0.435 0.325 0.746 4.11 16.0

B3 Hot 20.6 0.090 0.815 0.820 1.005 9.11 10.1

LB Hot 20.6 0.090 0.815 0.813 0.997 8.99 60.27

Table 4.2: Comparison of propagation e�ciency between the 1D analytic and

the simulations for the di�erent jet models, where models LA2 and LB are long

evolution runs, jet propagation to Z = 49 R

j

. Here � is the e�ective inertial

contrast, V

N

j

is the Newtonian and V

j

is the relativistic one dimensional estimate

of the propagation velocity of the contact discontinuity (working surface) and �v

j

is the average velocity obtained from the simulations. The propagation e�ciency

of the jet is de�ned by the ratio � = �v

j

=V

j

of the two-dimensional computed jet

mean propagation velocity �v

j

compared to the one-dimensional estimate V

j

given

by Eq. 4.5. The ratio of the Newtonian jet propagation velocity V

N

j

and the two

dimensional propagation velocity is de�ned by �

N

= �v

j

=V

N

j

. t

end

is given by the

time the bow shock needs to reach Z = 9 R

j

, except for the model LA2 and LB,

where Z = 49 R

j

.
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Figure 4.2: Jet model (N, A4, A1): 30 equal spaced contours of the logarithm

of rest mass density � for the Mach 6 jet models (N, A4, A1), with rest-mass

density ratio � = 0:1 by increasing beam Lorentz factor W

b

from top to down.

The Newtonian jet has a beam Lorentz factor W

b

� 1:003, the mildly relativistic

W

b

= 2 and the relativisticW

b

= 10. The arrival times of the bow shocks to reach

Z = 9R

b

are for the Newtonian jet t � 440, for the mildly relativistic t = 23:3

and for the relativistic jet model t � 10:97

.
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Figure 4.3: N
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Figure 4.4: A4
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Figure 4.5: A1
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Figure 4.6: A2
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Figure 4.7: A3
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Figure 4.8: Cold jet models A: Rest mass density � and pressure p of the di�erent

cold jet models with beam Mach number M

b

= 6. The �rst three panels, from

top, showing the resulting 
ow pattern for the Newtonian jet W

b

� 1:003, the

mildly relativistic model A4 with W

b

= 2 and the relativistic model A1 W

b

= 10

with rest mass density contrast � = 0:1. The two lower panels are the results of

models A2 and A3 for increasing density contrast � = 10

�2

; 10

�3

. The di�erent

initial parameters are listed in table 4.1 and propagation e�ciency and time scale

in table 4.2.
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Figure 4.9: B1
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Figure 4.10: B2

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10

R
 [

J
e

t 
ra

d
ii]

Z [Jet radii]

30 Logarithmic Density Contours, Resolution: 20 ppb

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10

R
 [

J
e

t 
ra

d
ii]

Z [Jet radii]

30 Logarithmic Pressure Contours, Resolution: 20 ppb

Figure 4.11: B3
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Figure 4.12: Hot jet models B: Contour plots of rest mass density � and pressure

p of the di�erent hot low beam Mach numberM

b

�M

min

jet models. The models

from the top are B1,B2 and B3. The di�erent initial parameters are listed in table

4.1 and propagation e�ciency and time scale in table 4.2.

Figure 4.13: A5
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Figure 4.14: A6
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Figure 4.15: Cold high relativistic jet models (A5,A6) W

b

= 100: Contour plots

of the logarithm of rest mass density � and pressure p.
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Figure 4.16: Long evolution run of the jet model LA2 at time t = 112:1
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Figure 4.17: Long evolution run of the jet model LB at time t = 60:27
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4.2 Spherical Bondi accretion in the Schwarzschild

spacetime

In this section the code is tested on the one-dimensional accretion models of

Bondi for transonic stationary 
ows in the metric of a non-rotating Black Hole

with gravitational mass M . New source terms, from the gravitation and coor-

dinates are involved. The time is measured in light-crossing times t

g

= r

g

=c,

where the gravitational radius is given by r

g

. The Schwarzschild radius is give

by r

E:H:

= 2r

g

. At �rst it was investigated if the code is able to keep an ana-

lytic solution stationary. This was done by using the analytical solution as initial

data and evolving over the typical times scales, the free-fall time t

ff

�

q

2=r

3

out

.

In the second test the code has to �nd the true solution by advection of the

appropriate boundary conditions inwards. Following Hawley et al. [21] the sta-

tionary transonic solution of an adiabatic, � / T

n

, with T = P=� = (
 � 1) and

n = 1= (
 � 1), accretion 
ow is derived from the particle number conservation

@

r

�

p

�GDv

r

�

= @

r

�

r

2

�U

r

�

= 0: (4.7)

Therefore, the mass accretion rate

r

2

�U

r

= C

1

(4.8)

is a constant of motion and, from the energy conservation,

@

r

�

�

p

�G(E + p)v

r

�

= @

r

�

�r

2

�U

r

hW

�

= 0 , (4.9)

it follows that the energy accretion rate

�r

2

�hWU

r

= C

2

(4.10)

is also a constant of motion. By the de�nition

C

3

=

�

C

2

C

1

�

2

= (�Wh)

2

= �

4

h

2

U

t

2

, (4.11)

since U

t

= W=� and by using the normalisation of the four velocity g

��

U

�

U� =

�1 the time component of the four velocity is then given by U

t

2

= (1 + g

rr

(U

r

)

2

) =g

tt

.

Like in Hawley et al. [21] the sonic radius r

s

is selected to determine the constants

of motion, C

1

and C

2

.

The initial states of the �rst test problem are given by the analytical solution

of an initial transonic 
ow with critical point at r = 30r

g

. The radial range was

r 2 [2:5; 110] with 100 non-equally spaced elements. After the evolution time

t = 2000 � 2:8t

ff

, some in
uence from the boundaries are visible in the results

(Fig.4.18), but the code remain close to the analytical solution. A quite lower

grid resolution run, of 50 non-equally spaced elements in the range 2:5 < r <
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2:25� 10

3

, with sonic radius at 10r

g

was computed, till t = 10

4

[t

g

]. In �gure 4.19

the numerical results are compared to the analytical solution. In the third test

problem the code has to �nd the true solution by advection of the appropriate

boundary values inwards. 50 non-equally spaced elements in the radial range

2:5 < r < 92 were used. After the evolution time t = 8:0 � 10

3

the analytical

solution is nearly reached, as shown in Fig. 4.20.
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Figure 4.18: The states of a stationary relativistic Bondi accretion model with

sonic radius r

s

= 30r

g

. Shown are the analytic solutions (solid lines) and the

numeric solutions at time t = 2000[t

g

]. Some in
uence of the boundary is visible

in the �gures.
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Figure 4.19: The states of a stationary relativistic Bondi accretion model with

sonic radius r

s

= 10r

g

. Shown are the analytic solutions (solid lines) and the

numeric solutions at time t = 10

4

[t

g

]
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Figure 4.20: Time-dependent test problem: Advection from the outer boundary.

The states of a stationary relativistic Bondi accretion model with sonic radius

r

s

= 10r

g

. Shown are the analytic solutions (solid lines) and the numeric solutions

at time t = 8� 10

3

[t

g

].
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4.3 A relativistic Keplerian accretion disc in 2.5D

In this section we apply the code to a model of a relativistic Keplerian disc in the

stationary Schwarzschild metric, by neglecting self-gravity of the disc, M

disc

�

M

BH

. This problem was also tested by Koide et al. [30]. The space and time units

are given by the gravitational radius r

g

and the light-crossing time t

g

= r

g

=c. The

computational domain was discretised by 80 � 80 elements. The computational

mesh was uniformly spaced in � direction, from ��=2 � � � �=2, where the

equatorial plane is at � = 0. In the radial direction the mesh ranges from r

in

=

2:4 r

g

to r

out

= 50 r

g

with non-equally spaced elements �r =

q

g

��

=g

rr

��. At

both axis of symmetry, � = ��=2 and � = �=2, rotational symmetric boundary

conditions were set. At the inner boundary r

in

we set out
ow conditions and at

the outer boundary r

out

in
ow conditions.

Initial conditions: Initially the disc rotates with the Keplerian velocity

v

K

=

1

q

2(

1

2

r � 1)

and was surrounded by a hot stationary accreting Bondi solution of section 4.2

with the sonic-radius r

s

= 4r

g

and states �

C

(r), v

C

(r), p

C

(r). The adiabatic index

of the gas was set to 
 = 5=3. This accreting corona was supersonic for radii

smaller than r

s

. The inner disc radius r

D

was set to the radius of the marginal-

stable orbit r

m:s:

= 6r

g

. Therefore, initially there exists a gap between the event

horizon and the disc. The disc height scales initially with H

D

(r) = 0:1r. The

initial data for the velocities are

(v

r

; v

�

; v

�

) =

(

(v

C

; 0; 0) if r < r

D

and jzj > H

D

(r)

(0; 0; v

K

) if r � r

D

and jzj � H

D

(r)

(4.12)

and for the density

�(r; �) =

(

�

C

(r) if r < r

D

and jzj > H

D

(r)

�

D

= �

C

(r)f(z) if r � r

D

and jzj � H

D

(r)

; (4.13)

with f(z) = 100e

�z=h

s

and scale height h

s

= 0:6r

g

. At the equator, � = 0, the

density of the disc, �

D

, was therefore 100 times the density of the corona, �

C

.

The global pressure was set to that of the corona

p(r; �) = p

C

(r): (4.14)

Results: Initially the disc was not in a hydrostatic equilibrium. At the begin-

ning, t > 0, the matter of the corona falls fast into the black hole. The region

of the gap between the horizon and the disc can not be fed fast enough by the
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ambient matter and is rare�ed. This leads to a pressure decrease in this region.

Driven by this pressure gradient, at the inner disc boundary, the inner part of the

disc falls slightly inwards. Further, at the same time, there is a pressure gradient

present in the disc, since initially p

D

= p

C

(r), which accelerates the outer part

of disc matter further outwards. These circumstances leads to a excitation of

pressure and density waves inside the disc, which are moving to larger disc radii.

These waves also interacts with the accretion corona. A quasi stationary state was

reached after approximately four rotational periods of the inner disc. In �gure

4.21 the rest mass density measured in the rest frame of the 
uid and the veloci-

ties measured in the frame of the Zero Angular Momentum Observers (ZAMOs)

are shown after � 5:5 Keplerian rotations of the inner disc. The excited density

and pressure wave in the disc and their interaction with the accretion corona are

visible.
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Figure 4.21: The Keplerian disc after 5.5 Keplerian rotations at the radius r

ms

=

6 r

g

of the marginal stable orbit: In the upper �gure the isolines of the logarithm

of proper rest mass density � and normalised poloidal velocity vectors are shown.

The lower �gure shows the isolines of the rotation velocity v

^

�

= r! and the

poloidal velocity vectors, measured by the ZAMOs.
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Chapter 5

Discussion

What has been done. In this work we have developed a new time-explicite

code for solving the time-dependent problems of the ideal relativistic hydrody-

namics in two dimensions. The equations are solved in their conservative form of

the 3+1 split of spacetime. The code can solve the conservation laws in Cartesian,

cylindrical, spherical coordinates and in the spherical Schwarzschild metric. The

spatial discretisation scheme is based on the Discontinuous Galerkin Method for

nonlinear hyperbolic conservation laws, introduced by Cockburn and Shu [13] for

the Newtonian Euler equation. This is a stable Finite Element method with high

accuracy even on unstructured meshes. The spatial order of accuracy is given by

the order of the discontinuous Finite Element basis. Since the coupling between

the computational sub-domains is not in
uenced by the FE basis, the method

remains compact, independent of the spatial order of accuracy. Only the 
uxes

between the connecting sub-domains have to be computed. This property is of

advantage for the implementation on parallel computers. To get a stable second

or higher order method, a slope limiting of the conservative variables has to be

applied. If the slope limiting is applied on the characteristic variables, by using

the Total Variation Bounded (TVB) minmod limiter, a high resolution method

is achieved in more than one dimensions, even without the use of approximate

or exact Riemann solvers. The code solved successfully a variety of Newtonian

and relativistic test problems in one and two dimensions. We conclude that the

e�ective numerical resolution for the piecewise linear element basis P

1

is be-

tween the resolution of the second order MUSCL scheme and the resolution of

the piecewise parabolic method (PPM). This conclusion only holds if the surface

and volume integrals are numerically evaluated with the appropriate order for

the exact integration of the polynomial order of the basis functions.

We applied the code on the astrophysical problem of the relativistic jet prop-

agation through an homogeneous ambient medium. In the short-scale runs a

variety of axisymmetric jet models was studied. To compare the long-term evo-

lution of a light cold jet and a relativistic hot jet two larger scale runs were

simulated. The results are in agreement with the results obtained by other high
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resolution schemes.

The time-dependent evolution of a Keplerian disc in the Schwarzschild back-

ground-metric was studied. The simulation runs over several rotations of the inner

disc boundary, which was initially located at the marginal stable radius of six

gravitation radii. The disc was initially surrounded by a stationary hot accreting

Bondi solution, which was supersonic for radii lower than four gravitational radii.

Since these initial conditions are not really stationary a small amount of disc

matter is accreted into the Black Hole. In addition, oscillations are excited in the

disc, which are interacting with the surrounding hot accretion corona. A quasi

steady solution was reached after approximately four rotations of the inner disc.

Future work: In the numerical point of view, to reduce the computational

e�ort an Adaptive Mesh Re�nement (AMR) method should be included, as well

as a parallelisation of the code is useful. From the physical point of view, the

equations of magnetohydrodynamics have to be included, since in a large range

of astrophysical problems magnetic �elds are relevant for the dynamics. This

happens for example in the problem of the jet formation, where magnetic �elds

are believed to be the engine for the acceleration and collimation of the jets.

Further, the coupling between magnetic �elds and the 
uid in
uence the angular

momentum transport in accretion discs. Also the inclusion of dissipative e�ects

of non-ideal 
uids, like viscosity and radiative cooling is needed for the simulation

of more realistic models of accretion discs. The M�uller-Israel-Stewart theory of

causal thermodynamics include a �nite propagation speed for viscous and heat

signals. This property is more physical than the in�nite signal speeds of the

classical theory of non-ideal hydrodynamics, especially, if relativistic velocities are

involved. Peitz and Appl [49] have formulate the theory of dissipative relativistic

hydrodynamics in the formalism of the 3+1 split of spacetime. These equations

should be numerically solvable if modern high resolution methods are applied.

Since the characteristic �elds of these equations are complicate, a method which

is not based on Riemann solvers seems to be rather e�cient to solve this problem.
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Appendix A

Characteristic �elds of the ideal relativistic hy-

drodynamic conservation laws

In this appendix the characteristic �elds of the homogeneous part

@U

@t

+

@F

k

(U)

@x

k

= 0 (A.1)

of the ideal relativistic conservation laws are reviewed. The left and right eigen-

vectors and the corresponding eigenvalues are explicitly shown, needed for the

slope limiting of the characteristic variables and for the use of the Marquina


ux splitting. The notation follows the report of Aloy et al [1]. The analytical

expression for the corresponding characteristic decomposition

A = R�R

�1

(A.2)

of the 5� 5 Jacobian matrix

A

i

=

@F

i

(U)

@U

(A.3)

of the 
uxes F

i

(U) was elaborated by Donat et al. [16]. The characteristic �elds

are explicitly shown for A

x

, whereas the cases y and z follows from symmetry.

The eigenvalues are

�

�

=

1

1� v

2

c

2

s

�

v

x

�

1� c

2

s

�

� c

s

q

(1 � v

2

) [1� v

x

v

x

� c

s

(v

2

� v

x

v

x

)]

�

(A.4)

and

�

0

= v

x

: (A.5)

The matrix of eigenvalues � is then given by

� = diag [�

�

; �

0

; �

0

; �

0

; �

+

] ; (A.6)
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which reduces for small velocities v

i

� 1 and small internal energies compared to

the rest mass energy to the Newtonian form � = diag [v

x

� c

s

; v

x

; v

x

; v

x

; v

x

+ c

s

].

The upper bound of the eigenvalues is given by the speed of light, j�

l

j < 1. By

de�ning the quantities:

~� =

1

�

@p

@�

�

�

�

�

�

�

, K �

~�

~�� c

2

s

, A

�

�

1� v

x

v

x

1 � v

x

�

�

; (A.7)

the right eigenvectors are

r

�

= (1; hWA

�

�

�

; hWv

y

; hWv

z

; hWA

�

� 1) ; (A.8)
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; v
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y
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; 1�

K
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; (A.9)
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; (A.10)
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�
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v

z

v
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�
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v

z

�Wv

z

�

; (A.11)

which are the columns of the matrix

R = [r

�

jr

1

jr

2

jr

3

jr

+

] : (A.12)

The corresponding left eigenvectors are:
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with

� = h

3

W (K � 1) (1� v

x

v

x

) (A

+

�

+

�A

�

�

�

) ; (A.14)

the determinant of the matrix of the right eigenvectors R.

l

1

=

W

K� 1

(h�W;Wv

x

;Wv
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;�W ) ; (A.15)
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These eigenvectors are the rows of the matrix

R

�1

= [l

�

; l

1

; l

2

; l

3

; l

+

] : (A.18)
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Appendix B

The Newton-Raphson algorithm for recovering

the primitive variables

We use the procedure of Mart�� et al. [37] for the recovering of the primitive

variables. The primitive variables w = (�; v

i

; p) are computed from the conserved

ones

U =

0

B

@

D

M

i

�

1

C

A

=

0

B

@

�W

�hW

2

v

i

�hW

2

� p �D

1

C

A

; (B.1)

by solving the implicit equation

f(p) = (
 � 1)�

�

�

�

� p = 0 ; (B.2)

by the one-dimensional Newton-Raphson algorithm

@f

n

(p)

@p

�p

n+1

= f

n

(p) : (B.3)

The variables �

�

and �

�

are given by

�

�

=

D

W

�

(B.4)

and

�

�

=

� +D(1 �W

�

) + p(1�W

2

�

)

DW

�

; (B.5)

where the Lorentz factor is given by

W

�

=

1

q

1 � g

ij

v

j

�

v

j

�

(B.6)

and the velocity components are

v

j

�

=

M

j

� +D + p

: (B.7)
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Since the value of the velocity is limited by the speed of light, jvj < 1, there exists

a lower bound of the pressure

p

min

=

q

g

ij

M

j

M

j

� (� +D): (B.8)

Therefore, the physical value of the pressure has to be in the physically allowed

range p 2 ]p

min

;1[ and the zero of f(p) in this range determines the pressure.

The absolute value of velocity is computed directly from equation (B.7) and the

remaining primitive variables �; v

i

are computed from equations (B.1) and from

the de�nition of the Lorentz factor W . The Jacobian f

0

(p) of the function f(p)

is approximated by

f

0

� v

2

�

c

2

s�

� 1; (B.9)

where c

s�

is the sound speed

c

s�

=

s

(
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�
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