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Abstract

Drinfeld de�ned the notion of elliptic modules, which are now called Drinfeld mod-
ules, as an analogue of elliptic curves in the function �eld setting. To prove the
Langlands correspondence in this context, Drinfeld studied moduli spaces of ellip-
tic sheaves. The categories of elliptic sheaves and Drinfeld modules are equivalent
under certain conditions. Since then, many generalizations of elliptic sheaves have
been studied, such as D-elliptic sheaves de�ned by Laumon, Rapoport and Stuhler
and Frobenius-Hecke sheaves de�ned by Stuhler. In this thesis, I introduce a new
generalization of elliptic sheaves, called generalized D-elliptic sheaves which can
be thought of as a generalization of both D-elliptic sheaves and Frobenius-Hecke
sheaves. I study their moduli space and prove a uniformization theorem. This
builds on work of Laumon-Rapoport-Stuhler, of Hartl and of Rapoport-Zink.

Zusammenfassung

Als Analogon zu elliptischen Kurven über Funktionenkörpern de�nierte Drinfeld den
Begri� eines elliptischen Moduls, die man inzwischen unter dem Namen Drinfeld
Moduln kennt. Um in diesem Kontext die Langlands Korrespondenzen zu beweisen,
studierte Drinfeld Modulräume von elliptischen Garben. Die Kategorien der elliptis-
chen Garben und die der Drinfeld Moduln sind unter bestimmten Voraussetzungen
äquivalent. Inzwischen gibt es viele Verallgemeinerungen von elliptischen Garben,
beispielsweise die D-elliptischen Garben, de�niert von Laumon, Rapoport und Stuh-
ler sowie die Frobenius-Hecke Garben, de�niert von Stuhler. In dieser Dissertation
konstruiere ich eine neue Verallgemeinerung von elliptischen Garben, die sogenan-
nten verallgemeinerten D-elliptischen Garben, die als Verallgemeinerung sowohl von
den D-elliptischen Garben als auch von den Frobenius-Hecke Garben betrachtet wer-
den können. Ich studiere deren Modulräume und beweise einen Uniformisierungs-
Satz. Dies baut auf Arbeiten von Laumon-Rapoport-Stuhler, von Hartl und von
Rapoport-Zink auf.
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1 Introduction

In the seminal papers [15], [16], Drinfeld introduced elliptic modules (nowadays
called Drinfeld modules) as analogues of elliptic curves and abelian varieties in
the function �eld setting. Drinfeld's main interest were the moduli spaces of these
objects, the so called Drinfeld modular varieties. These are the analogues of modular
curves in the function �eld setting and their l-adic cohomology realizes part of the
Langlands correspondences over global function �elds.

In the classical setting of number �elds, modular curves are attached to the group
GL2/Q and through the theory of Shimura varieties, there are generalizations of
these moduli spaces to other groups, such as symplectic and unitary groups, but also
to forms of GL2 and to more general base �elds. These generalizations are important
objects in the Langlands program. In the function �eld setting generalizations of the
Drinfeld modular varieties have also been constructed as moduli spaces of objects
that generalize Drinfeld modules. Let us explain three main generalizations.

In [35], Laumon, Rapoport and Stuhler de�ned D-elliptic sheaves and their mod-
uli varieties to prove the local Langlands correspondence. HereD stands (essentially)
for a maximal order of a division algebra. The moduli varieties mimick (and gen-
eralize) classical Shimura curves attached to an inner form of GL2 over Q. These
varieties are smooth and compact; unlike those of Drinfeld.

In [46], Stuhler de�ned Frobenius-Hecke sheaves. The Frobenius-Hecke sheaves
can be thought of elliptic sheaves that can have many �poles�. Stuhler also con-
structed moduli spaces of Frobenius-Hecke sheaves, the analogue to Hilbert modular
varieties attached to GL2 over a totally real �eld.

In [23], Hartl de�ned abelian sheaves as an analogue of abelian varieties in the
classical theory. Abelian sheaves are higher dimensional generalizations of elliptic
sheaves. In the same paper it is proved that the stack of abelian sheaves is a Deligne-
Mumford stack. Hartl studied uniformization of abelian sheaves at ∞. There is a
uniformizable locus in the stack of abelian sheaves. In [23], a uniformization theorem
is proved for this uniformizable locus. In order to prove this, Hartl introduced
analogues of Rapoport-Zink spaces. The main guides for this thesis are [35] and
[23].

What has been missing in the function �eld case so far, was the analogue of
Shimura curves over totally real �elds attached to inner forms of GL2, that are split
at all in�nite places. In this thesis we provide such a generalization. We want to
emphasize at this point that in the function �eld setting all the generalizations above
as well as our results work for GLd and not only for GL2.

In order to construct these more general moduli spaces we �rst generalize elliptic
sheaves in a new way. We call these new objects generalized D-elliptic sheaves. They
are a simultaneous generalization of both D-elliptic sheaves and Frobenius-Hecke
sheaves. They can be thought of as D-elliptic sheaves that can have many poles or
as Frobenius-Hecke sheaves with a D-action.
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In this thesis, we construct the moduli space of generalized D-elliptic sheaves.
We formulate the moduli problem of generalized D-elliptic sheaves with level I-
structure. We show that the moduli space of generalized D-elliptic sheaves has
nice algebraic properties as in the D-elliptic sheaf case. More presicely, the stack
of generalized D-elliptic sheaves is a Deligne-Mumford stack and with a non-trivial
level structure, it is even a scheme. We show that the characteristic morphism is
proper over a suitable base. In order to prove these properties, we mainly follow [35].
One big di�erence to [35] is that in [35], Laumon, Rapoport and Stuhler assumed
that a D-elliptic sheaf has �nite characteristic whereas in our case the characteristic
can be in�nite.

The second main result of this thesis is the proof of the uniformization theorem.
We uniformize the moduli space of generalizedD-elliptic sheaves at the in�nity place.
This is analogous to the classical complex uniformization of Shimura varieties which
is a very important result in the classical theory.

In future work, we hope to use our uniformization result to study arithmetic
questions about the moduli space of generalized D-elliptic sheaves. For example,
the uniformization result is needed in order to build a de�nition of modular forms
as holomorphic functions with certain transformation properties. We then plan to
study the motives attached to these forms, their good reduction properties and their
L-functions.

We will now give a more detailed overview of the results of this thesis.

1.1 Overview of the results

Let X, Y be smooth gemometrically irreducible projective curves over Fq and π :
X −→ Y be a morphism of degree t. Let∞ ∈ |Y | be a closed place and {∞1, · · · ,∞t}
be the closed places in |X| lying above ∞. De�ne F to be Fq(X). (This is the ge-
ometric analogue in the function �eld setting to passing from Q to a totally real
�eld.)
Let D be an Azumaya OX-algebra such that its stalk at the generic point η of X
is a division algebra over F . We denote by Bad the rami�ed places for D, and put
B := π(Bad). Our generalization of Drinfeld's notion of elliptic sheaf is provided by
the following de�nition:

De�nition 1.1. (De�nition 2.2)
Let S be an Fq-scheme and �x a closed immersion ψ : S ′ −→ (X r Bad) ×Fq S

such that pr2 ◦ ψ : S ′ −→ S is �nite locally free of degree t.
A generalized D-elliptic sheaf of charachteristic ψ is a tuple (E , ψ) where E =

(Ei, ji,i′ , ti)i∈Zt is a ladder (see Def. 2.1) of locally free sheaves Ei of OX×S-modules
where S is an Fq-scheme with a D-action together with injective morphisms of
OX×S-modules

ji,i′ : Ei −→ Ei′ for i ≤ i′
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ti : σ∗Ei −→ Ei+1

which are compatible with the D-action and which satisfy the following conditions:

(i) A periodicity condition: Put ` = d. deg∞ · t. We have

Ei+` = Ei(∞1, . . . ,∞t)

where Ei(∞1, . . . ,∞t) = Ei ⊗OX(∞1, . . . ,∞t).

(ii) A condition on the cokernel of ji,i′ around each ∞j.

(iii) The cokernel of ti has support on Imψ and is locally free of rank d over S ′.

We want to point out that if t = 1, generalized D-elliptic sheaves are D-elliptic
sheaves de�ned in [35]. And if D = Md(OX), we show in Proposition 2.9 that
the category of generalized D-elliptic sheaves is Morita equivalent to the category
of Frobenius-Hecke sheaves de�ned in [46]. We formulate the notion of level I-
structures on generalized D-elliptic sheaves in De�nition 2.15. We also de�ne adelic
level structures in Section 7. However, for our main results we only need level
I-structures.

Similarly to Stuhler ([46]), we will be working with generalized D-elliptic sheaves
that have certain characteristic (cf. Section 4). The generalized D-elliptic sheaves
with the condition on their characteristic are called generalized D-elliptic sheaves
relative to X/Y . We introduce those and de�ne level I-structures on them in Section
4. We denote the stack of generalized D-elliptic sheaves relative to X/Y with level
I-structure by GE``X/Y,D,I . Let us put J := π(I). Our �rst main result in this thesis
is the following:

Theorem 1.2. (Theorem 5.3) The stack GE``X/Y,D,I is an algebraic stack in the
sense of Deligne-Mumford [11] which is smooth over Y r (J ∪B∪∞). Moreover, if
I 6= ∅, it is a scheme that is a disjoint union of quasi-projective schemes.

The idea to prove this theorem is to cover it with certain Deligne-Mumford stacks
of I-stable generalized D-elliptic sheaves. We follow [35] to prove that the I-stable
generalized D-elliptic sheaves form stacks. An important tool is the stack of I-stable
vector bundles. To deal with the in�nite characteristic we use the idea of Hartl in
Proposition 5.19.

Next, we study the question of properness. We show that once we consider the
translations of generalized D-elliptic sheaves relative to X/Y as the same object,
i.e, we consider the quotient GE``X/Y,D,I/1Z, we have:

Theorem 1.3. (cf. Theorem 6.1)
The morphism

GE``X/Y,D,I/1Z −→ Y r B

is proper.
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We prove the properness by using the valuative criterion of properness.
After these global results, we now want to explain our uniformization theorem.

For that let Z denote the �ber of GE``X/Y,D,I over ∞ and ĜE``ZX/Y,D,I denote the
formal completion of GE``X/Y,D,I along Z. Let G′gen denote the moduli functor of
generalized D-elliptic sheaves relative to X/Y which are quasi-isogeneous to a �xed
generalized D-elliptic sheaves realtive to X/Y . We will explain some more details
regarding this below. Let Af denote the �nite adeles of X and let H be a compact
open subgroup of D×(Af ). Our uniformization theorem is the following:

Theorem 1.4. (cf. Theorem 16.8): We have an isomorphism of formal schemes

ĜE``ZX/Y,D,I ' D×\G′gen ×D×(Af )/H.

In order to prove the theorem, we largely follow the framework that was introduced
by Hartl in [23](building on the work of Rapoport-Zink in [43]). We want to point
out that unlike [23], our construction works for deg∞ > 1 also.

A major part of the proof of the uniformization theorem consists of showing
representability of the moduli space G′gen. We also need a Serre-Tate theorem. For
that we need an analogue of p-divisible groups and Dieudonné theory.

Hartl introduced the notions �z-divisible groups� and �Dieudonné Fq[[z]]-modules�.
These objects are the analogues of p-divisible groups and Dieudonné modules that
were used by Rapoport and Zink to prove the p-adic uniformization of Shimura
curves. We de�ne analogues of these local objects �rst for the D-elliptic sheaves
over Y . Since these are local objects they carry a D∞ := D ⊗OY O∞- action where
O∞ denotes the completion of the stalk of the structure sheaf of Y at ∞. Follow-
ing Hartl's steps, we de�ne z-divisible D∞-modules and Dieudonné D∞-modules.
Since D∞ 'Md(O∞), the category of z-divisible D∞-modules are Morita equivalent
to the category of z-divisible groups. Following [23] and [43], we work with the
moduli space of z-divisible D∞-module which are isogenous to a �xed z-divisible
D∞-module.

Generalized z-divisible D∞-modules are then de�ned as t-tuples of z-divisible
D∞-modules at each ∞i for i = 1, · · · , t. Similarly, generalized Dieudonné D∞-
modules are de�ned as t-tuples of Dieudonné D∞-modules at each ∞i for i =
1, · · · , t. As in the classical case, there is a categorical anti-equivalence between
the category of generalized z-divisible D∞-modules and generalized Dieudonné D∞-
modules. The rigidity of quasi-isogenies also holds for generalized z-divisible D∞-
modules as in the classical case (cf. Theorem 9.17).

Generalized z-divisible D∞-modules are related to generalized D-elliptic sheaves
through their Dieudonné modules, namely generalized formal D∞-elliptic sheaves.
As before a generalized formal D∞-elliptic sheaf is t-tuple of the formal D∞j

-elliptic
sheaves where j = 1, · · · , t. We will give the idea to construct formal D∞-elliptic
sheaf �rst for t = 1 case (cf. Construction 10.7). As we mentioned before, if t = 1 a
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generalized D-elliptic sheaf is a D-elliptic sheaf de�ned in [35]. Let E = (Ei, ji, ti)i∈Z
be a D-elliptic sheaf. We take the formal completion E∞ of E along the �ber over∞.
Since the periodicity of E is d deg∞, the periodicity of E∞ is also d deg∞. We take
deg∞-jumps of this sheaves, denote it by Ẽ∞ and the latter will have periodicity
d. We will use this to prove the representability of the moduli functor G′gen. Now,

if we consider a generalized D-elliptic sheaf Ê , by following same path for each ∞j,
we get formal D∞j

-elliptic sheaf for each j = 1, · · · , t. Then the generalized formal
D∞-elliptic sheaf associated to E is the t-tuple of formal D∞j

-elliptic sheaves.
By using the equivalence between generalized z-divisible D∞-modules and gen-

eralized Dieudonné D∞-modules, we obtain a certain generalized z-divisible D∞-
module. These certain generalized z-divisible D∞-modules are the generalized z-
divisible D∞-modules associated to the generalized D-elliptic sheaves. This corre-
spondence is similar to the relation between abelian varieties and their p-divisible
groups in the classical world.

Similar to the classical case, we can look at deformations of generalized D-elliptic
sheaves and deformations of generalized formal D∞-elliptic sheaves. Both categories
are equivalent via a Serre-Tate theorem:

Theorem 1.5. (Theorem 13.3) Let E be a generalized D-elliptic sheaf and let Ê
denote the generalized formal D∞-elliptic sheaf associated to E. Then, the category

of deformations of E is equivalent to the category of deformations of Ê.

Let us �nish this overview by explaining the uniformizing spaces from the uni-
formization theorem when D splits at all ∞i's. As before consider the moduli
problem G′gen of generalized D-elliptic sheaves which are quasi-isogenous to a �xed
generalized D-elliptic sheaf, say E . To have a precise result on the �eld of de�nition
of the uniformization, we use Genestier [19]. We de�ne an equivalency of functors
G′gen and Genestier's functor GO by using formal completion of generalized D-elliptic
sheaves over T. Hence, as in [19], the functor G′gen is representable by (Z × Ω̂(d))t

where Ω̂(d) is the Deligne-Mumford scheme (cf. [4], Section 4.3). This is higher di-
mension version of Drinfeld's upper plane plane which occurs in the uniformization
of Shimura curves.

Over the algebraic closure of the residue �eld at ∞, the group of quasi-isogenies
of E is D×. By using this we have an action of D× on G′gen and since D× acts
naturally on D×(Af ), we obtain a diagonal action on G′gen × D×(Af ). Putting in
the level structures, we get an isomorphism

D×\
∏

(Z× Ω̂(d))×D×(Af )/H −→ ĜE``X,D,I .

And if t = 1, we get a uniformization theorem of D-elliptic sheaves as stated in
[4]. I want to emphasise that in [4], the theorem is stated without a proof. So, the
uniformization theorem for generalized D-elliptic sheaves �lls in this gap.
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Outline of the thesis

The thesis contains three main parts: global part, local part, and the uniformization.
First part consists of Section 2 - 7. In these sections we de�ne generalized D-

elliptic sheaves as a natural generalization of Frobenius-Hecke sheaves and D-elliptic
sheaves. We de�ne (quasi-)isogenies between generalized D-elliptic sheaves in Sec-
tion 3 and give some examples. In Section 4, we look at generalized D-elliptic
sheaves of certain type, namely we put a condition on its characteristic, and con-
sider their stack. This stack is a Deligne-Mumford stack and in fact is a scheme with
non-trivial level structure. Since we have a D-action the characteristic morphism is
proper. We prove this in Section 6.

We work on the local part in Section 8-12. In Section 8-10, we de�ne generalized
z-divisible D∞-modules, generalized Dieudonné D∞-modules and generalized formal
D∞-elliptic sheaves. The latter is the generalized z-divisible D∞-module associated
to a generalized D-elliptic sheaves. We de�ne some results like rigidity of quasi-
isogenies analoguesly to the classical case. In Section 11-12, we give examples of
D-elliptic sheaves and generalized D-elliptic sheaves. By using these examples we
de�ne the moduli functors of (generalized) formal D∞-elliptic sheaves.

We connect �rst and second part by Section 13. In Section 13 we give a Serre-
Tate theorem in generalized D-elliptic sheaf case. This theorem relates deformations
of generalized D-elliptic sheaves with the deformations of generalized formal D∞-
elliptic sheaves.

The aim of the last part is to uniformize the moduli space of generalizedD-elliptic
sheaves. We prove the representability of the moduli functor in Section 15 by using
its algebraization de�ned in Section 14. We state our uniformization theorem in
Section 16 and give proof in Section 17.

This thesis also contains an appendix (Sections 18-20). In Section 18 we give
Morita equivalence for rings, sheaves and stacks. Section 19 collects the background
that we need from the theory of stacks. Section 20 we collect some facts about
vector bundles.
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2 Generalized D-elliptic sheaves
In this section, we present simultaneous generalization of D-elliptic sheaves([35]) and
Frobenius-Hecke sheaves([46]). We will give the de�nition of generalized D-elliptic
sheaves following Stuhler [46]. In his paper [46], Stuhler de�ned Frobenius-Hecke
sheaves as a generalization of elliptic sheaves to give a modular interpretation of

SLd(B) r (
t∏

j=1

Ω̂(d)
∞j
/ Spf(ÔY,∞))

where Ω̂(d) is Deligne-Mumford scheme(cf. [4], Section 4.3) around ∞j for each
j = 1, . . . , t.

Let X and Y be smooth projective geometrically irreducible curves over Fq with
function �elds F and L, respectively. Let π : X −→ Y be a �nite morphism of
degree t. Let ∞ ∈ Y be a closed point which splits completely and ∞1, . . . ,∞t

be the points of X above ∞. Regard T = {∞1, . . . ,∞t} as a closed irreducible
subscheme of X. Let A := Γ (Y −∞,OY ) and B := Γ (X − T,OX). We have the
following situation:

X

π

��

T = {∞1, . . . ,∞t} B F = Fq(X)

Y ∞ A

OO

L = Fq(Y )

OO

We will denote the completion of the local ringOX,∞i
at∞i for each i ∈ {1, . . . , t}

by O∞i
and the completion of the local ring OY,∞ at ∞ by O∞. Let zi be a

uniformizing element of OX,∞i
and z be a uniformizing element of OY,∞. Also, let

k∞i
be the residue �eld at ∞i and k∞ be the residue �eld at ∞.
Note that there are natural identi�cations of completions:

F∞j
' L∞

and
O∞j

' OY,∞.
Let OX,T =

⋂
j OX,∞j

be the semilocal ring of X in T and

k(T) := OX,T/(rad(OX,T)) '
∏

k∞i

.
Let D be an Azumaya OX-algebra with dimOX D = d2. Assume Dx is a maximal

order for each x ∈ |X|.
Denote the rami�ed places for D by Bad. Assume that no ∞i ∈ Bad i.e, D∞i

=
D ⊗O∞i

'Md(O∞i
). Put D∞ =

∏
D∞i

.
Let i = (i1, . . . , it) ∈ Zt and i+1 = (i1 +1, . . . , it+1). There is a partial ordering

on Zt:
9



i ≤ i′ ⇐⇒ ij ≤ i′j for all j = 1, . . . , t

Let S be an Fq-scheme. We denote the Frobenius endomorphism on S by σS :
S −→ S which is de�ned as the identitiy on points and as the q-power map on
the structure sheaf. Let S ′ be a closed subscheme of (X r Bad) ×k S such that
pr2|S′ : S ′ −→ S is �nite of degree t.

De�nition 2.1. A ladder over S is a system E = (Ei, ti) where Ei are locally
free OX×S-modules of rank d2 with right D-action which is OX×S-linear and the
restriction of D to the scalars is same as the action of OX . And for i, i′ ∈ Zt with
i ≤ i′ there are injective OX×S-module morphisms

ji,i′ : Ei ↪→ Ei′

ti : σ∗Ei ↪→ Ei+1

which are compatible with the D-action such that for i ≤ i′ the following diagram
commutes:

Ei+1
� � // Ei′+1

σ∗Ei �
� //

ti
<<

σ∗Ei′

ti′
<<

De�nition 2.2. A pair (E , ψ) consisting of a ladder E = (Ei, ti) and a closed im-
mersion ψ : S ′ −→ (X r Bad)×k S such that pr2 ◦ ψ : S ′ −→ S is �nite locally free
of degree t is called a generalized D-elliptic sheaf over S if the following conditions
are satis�ed:

(i) (periodicity) Put ` = d. deg∞ · t. We have

Ei+` = Ei(∞1, . . . ,∞t)

where Ei(∞1, . . . ,∞t) = Ei ⊗OX(∞1, . . . ,∞t)

(ii) Let i′ = i + (δ1, . . . , δt) where δj = 0 or 1. Then, the support of the quotient
Ei′/Ei is contained in T× S. Moreover,

(Ei′/Ei)|∞j×S ' Vi,i′,j is locally free of rank d · δj over OS

Assume δj = 1. The induced action of OX,T on Vi,i′,j factorizes over an algebra
morphism of the quotient

η
(j)

i,i′ : k(T) −→ End(Vi,i′,j).
10



Put ηi,i′ := (η
(1)

i,i′ , . . . , η
(t)

i,i′). Then, for all i ∈ Zt,

χi+1,i+2 = χi,i+1 ◦ τ

where τ : k(T) −→ k(T), x 7→ xq is the Frobenius morphism.

(iii) The cokernel of ti has support on Imψ and is locally free of rank d over S ′

Remark 2.3. 1. Let E = (Ei, ti) be a generalized D-elliptic sheaf and Vi,i′,j be a
vector bundle de�ned as in condition ii. De�ne

Li,i′,j := Vi,i′,j


1

0
. . .

0

 .

Then, Vi,i′,j ' Li,i′,j ⊗Fq F1×d
q . Now, on Vi,i′,j there is a Md(k(T)))-action,

denote it by η(j)

i,i′ . Since Md(k(T)) = k(T)⊗FqMd(Fq), the action η(j)

i,i′ = χ
(j)

i,i′⊗r
where χ(j)

i,i′ is an action of k(T) on L(j)

i,i′ and r is the natural right action of
Md(Fq) on F1×d

q .

2. We want to point out that the vector bundle Vi,i′,j in the De�nition 2.2 is
isomorphic to L⊕di,i′,j where Li,i′,j is the line bundle over OS.

3. The action χ(j)

i,i′ of k(T) on Vi,i′,j factors via the structure map

OS −→ EndS(Vi,i′,j)

. So, the action morphism χ
(j)

i,i′ may be regarded as homomorphism k(T) −→
OS. Indeed, let χ(j)

i,i′ : k(T) −→ EndS(Li,i′,j) ' OS be an action(cf. De�nition
2.8). By the previous item, we can de�ne

k(T)
χ

(j)

i,i′−−→ OS −→Md(OS) ' EndS(L⊕di,i′,j) ' EndS(Vi,i′,j).

4. Let i′ = i + (δ1, · · · , δt) where δj = 0 or 1. Note that the action of χ(j)

i,i′ is
independent of the components of i and i′ with index di�erent from j. By
condition ii, all χji,i′ is determined by χ(j)

0,1.

De�nition 2.4. The map ψ in the de�nition of generalized D-elliptic sheaf is called
the characteristic of the generalized D-elliptic sheaf.

11



Let E = (Ei, ti)i∈Zt be a generalized D-elliptic sheaf and n = (n1, . . . , nt) ∈ Zt.
Then, one can de�ne the Zt-action on E as follows:

E [n] = (Ei−n, ti−n)

where i− n = (i1 − n1, . . . , it − nt). In particular,

E [1] = E = (Ei−1, ti−1)

.

Remark 2.5. 1. Let E = (Ei, ti) be a generalized D-elliptic sheaf over S. By
condition (ii), H0((X r T) ⊗ OS, Ei) is independent of i. Moreover, if S =
SpecK where K is a �eld it is a K[τ ]-module where the τ action comes from
ti : σ∗Ei −→ Ei+1.

2. Assume t = 1 and X = Y . Then, locally OS′ ' OS and, we get a D-elliptic
sheaf ([35], De�nition 2.2). In this case the module in the previous item is
called Drinfeld-Stuher OD-module. For more details, please see [41].

Remark 2.6. (1) Assume D = Md(OX) and E = (Ei, ti) is a generalized D-elliptic
sheaf. Then, the generalizedD-elliptic sheaves are called Frobenius-Hecke sheaves
of rank d that were de�ned in [46]. In Proposition 2.9, we will see that the cat-
egory of Frobenius-Hecke sheaves and generalized D-elliptic sheaves are Morita
equivalent when D = Md(OX).

(2) In Frobenius-Hecke sheaf case, the module H0((XrT)⊗K, Ei) is considered by
Anderson in [3](Hilbert-Blumenthal t-modules) and by Stuhler in [46](Abelian
OK-module of Hilbert-Blumenthal type) separately.

Remark 2.7. We want to point out that in [46], in the de�nition of Frobenius-Hecke
sheaves item ii is di�erent. Stuhler says coker ji,i′ is free over OS. However, we want
elliptic sheaves de�ned by Drinfeld as a special case of Frobenius-Hecke sheaves, so
coker ji,i′ should be locally free over OS. We write the de�nition of Frobenius-Hecke
sheaves in the correct form below. Please also note that in this case a ladder consists
of E = (Ei, ti) where Ei are locally free OX-modules of rank d such that the obvious
diagrams commutes.

De�nition 2.8. A pair (E , ψ) consisting of a ladder E = (Ei, ti) and a closed im-
mersion ψ : S ′ −→ (X r Bad)×k S such that pr2 ◦ ψ : S ′ −→ S is �nite locally free
of degree t is called a Frobenius-Hecke sheaf if the following conditions are satis�ed:

(i) (periodicity) Put ` = d. deg∞. We have

Ei+` = Ei(∞1, . . . ,∞t)

where Ei(∞1, . . . ,∞t) = Ei ⊗OX(∞1, . . . ,∞t)

12



(ii) Let i′ = i + (δ1, . . . , δt) where δj = 0 or 1. Then, the support of the quotient
Ei′/Ei is contained in T× S. Moreover,

(Ei′/Ei)|∞j×S ' Li,i′,j is locally free of rank δj over OS

Assume δj = 1. The induced action of OX,T on Li,i′,j factorizes over an algebra
morphism of the quotient

χ
(j)

i,i′ : k(T) −→ End(Li,i′,j).

Put χi,i′ := (χ
(1)

i,i′ , . . . , χ
(t)

i,i′). Then, for all i ∈ Zt,

χi+1,i+2 = χi,i+1 ◦ τ

where τ : k(T) −→ k(T), x 7→ xq is the Frobenius morphism.

(iii) The cokernel of ti has support on Imψ and is locally free of rank 1 over S ′.

In [35],p. 224 it is mentioned that D-elliptic sheaves are Morita equivalent to
elliptic sheaves when D = Md(OX). As for D-elliptic sheaves, one can use Morita
equivalence for generalized D-elliptic sheaves also. Recall that generalized OX-
elliptic sheaves are Frobenius-Hecke sheaves by de�nition. For a review of Morita
equivalence, we refer to Section 18.

Proposition 2.9. The category of Frobenius-Hecke sheaves of rank d is Morita
equivalent to the category of generalized Md(OX)-sheaves.

Proof. (of Proposition 2.9)
Let E = (Ei, ti) be a Frobenius-Hecke sheaf over S. De�ne

F = (Fi, τi) := (Ei ⊗OX N, ti ⊗OX N)

where N = O1×d
X is a simple right Md(OX)-module. Note that Ei ⊗OX O1×d

X '
Ei ⊕ · · · ⊕ Ei where the direct sum is taken d-copies. Let us focus on the condition
(i) in De�nition 2.8. Let i′ = i+ (δ1, · · · , δj) where each δj = 0 or 1. Then we have,

Fi′/Fi = (Ei′ ⊕ · · · ⊕ Ei′)/(Ei ⊕ · · · ⊕ Ei) ' Ei′/Ei ⊕ · · · ⊕ Ei′/Ei

Hence
(
Fi′/Fi

)
|∞j×S ' (Ei′/Ei)⊕d|∞j×S ' L⊕di,i′,j where Li,i′,j is locally free over OS

of rank δj. For simplicity, put Vi,i′,j := L⊕di,i′,j. Then, Vi,i′,j is locally free of rank d · δj
over OS.

By condition (ii) in De�nition 2.8, we have an action homomorphism

13



χ
(j)

i,i′ : k(T) −→ EndS(Li,i′,j) ' OS.
Thus on

Fi′/Fi ' Li,i′,j ⊗k(T) k(T)1×d ' Li,i′,j ⊗Fq F1×d
q

we have an induced action

k(T)
χ

(j)

i,i′ // OS can //Md(OS) ' End(L⊕di,i′,j)

as OS-algebra where can is the natural action of OS on Md(OS). De�ne η(j)

i,i′ :=

can ◦ χ(j)

i,i′ . Now, let a ∈ k(T) be any. We have

η
(j)
i+1,i+2(a) = can ◦ χ(j)

i+1,i+2(a) = can ◦ χ(j)
i,i+1 ◦ τ(a) = η

(j)
i,i+1 ◦ τ(a)

where τ : k(T) −→ k(T) is the Frobenius endomorphism.
Now, let us consider the morphisms τi : Fi −→ Fi+1. As before we have

coker τi ' coker t⊕di , which is locally free of rank d over S ′. Hence, F = (Fi, τi)
is a generalized D-elliptic sheaf.

Conversely, given a generalized D-elliptic sheaf F = (Fi, τi) for D = Md(OX).
Suppose 0 ≤ δ ≤ i′ − i ≤ 1. We know that(

Fi′/Fi
)
|∞j×OS ' Vi,i′,j

is locally free over OS of rank dδj. It comes with an action of Md(k(T)) = k(T)⊗Fq
Md(Fq). De�ne

Li,i′,j := Vi,i′,j


1

0
. . .

0

 .

Then, Vi,i′,j ' Li,i′,j ⊗Fq F1×d
q .

Now, de�ne E = (Ei, ti) := (Fi ⊗Md(OX) O1×d
X , τi ⊗Md(OX) O1×d

X ). Then,

(
Ei′/Ei

)
|∞j×S ' Vi,i′,j ⊗Md(OX) O1×d

X

' Li,i′,j ⊗Fq F1×d
q ⊗Md

O1×d
X

By Remark 2.3 (i), the χ(j)

i,i′ ⊗ r-action on Li,i′,j ⊗Fq F1×d
q induces χi,i′-action of

k(T) on

Li,i′,j ⊗Fq F1×d
q ⊗Md(OX) O1×d

X ' Li,i′,j.
14



Then by de�nition, it follows that

χi+1,i+2 = χi,i+1 ◦ τ

where τ : k(T) −→ k(T) is the Frobenius endomorphism.
Now, let us consider the morphisms ti : σ∗Ei −→ Ei+1. As before, we have coker ti

is locally free of rank 1. Hence E is a Frobenius-Hecke sheaf.

De�nition 2.10. A morphism between two generalized D-elliptic sheaves E and E ′
is a morphism between locally free OX×S-modules fi : Ei −→ E ′i which respects the
D-action and compatible with ji,i′ 's and ti's.

De�nition 2.11. Let GE``X,D(S) denote the category whose objects are the gen-
eralized D-elliptic sheaves over S and morphisms are isomorphisms of generalized
D-elliptic sheaves.

Now, we are ready to de�ne stack of generalized D-elliptic sheaves. For a review
of stacks, please see Section 19.

Proposition 2.12. Let SchFq denote the category of schemes over Fq. Then the
assignement

S −→ GE``X,D(S)

de�nes a �bered category over SchFq . Moreover, it is a stack with respect to fppf-
topology.

Proof. First we will show that GE``X,D(S) is a �bered category for an Fq-scheme S
by using De�nition 19.10. Let T −→ S be a morphism of Fq-schemes and let E be
a generalized D-elliptic sheaf over S. Then, the pullback f ∗(E) is a generalized D-
elliptic sheaf over T . So, we get a functor f ∗ : GE``X,D(T ) −→ GE``X,D(S) de�ned
by taking pullback. Then, the conditions in De�nition 19.10 are satis�ed by de�tion
of pullback and by the fact that (f ◦ g)∗ = g∗ ◦ f ∗ for any two morphisms f, g in
SchFq .

To show that this �bered category is in fact a stack, it remains to show the
two conditions in De�nition 19.23. More precisely, let S be an Fq-scheme and
E = (Ek, jk,k′ , tk) and F = (Fk,Πk,k′ , τk) be two generalized D-elliptic sheaf over S.
We need to show that

� The functor
IsoS(E ,F) : SchS −→ Sets

de�ned by (f : T −→ S) 7→ {ϕ : f ∗E ∼−→ f ∗F isomorphism in GE``X,D(T )} is
a sheaf in the étale topology.

15



� Suppose T −→ S is a covering in SchFq for the fppf topology. Suppose we
have descent datum in GE``X,D. Then, these datum is e�ective.

We start with the �rst item. For simplicity we will denote the functor IsoS(E ,F)
by F . Let f : T −→ S ∈ SchS and fi : Ti −→ T be an étale covering in SchS.
Given ϕi ∈ F (Ti). Let pr1 : Ti ×T Tj −→ Ti and pr2 : Ti ×T Tj −→ Tj denote the
natural projections. Assume pr∗1(ϕi) = pr∗2(ϕj) ∈ F (Ti ×T Tj) for any i, j.

It is known that quasi-coherent sheaves over SchS form a stack ([52], Section
4.2.). Via this fact, there is an isomorphism ϕk : f ∗Ek

∼−→ f ∗Fk of locally free
sheaves. We need to show that this isomorphism ϕ : f ∗E −→ f ∗F is an iso-
morphism of generalized D-elliptic sheaves. Write f ∗E = (f ∗Ek, f ∗jk,k′ , f ∗tk) and
f ∗F = (f ∗Fk, f ∗Πk,k′ , f

∗τk). By the following diagram

f ∗Ek �
� f∗jk,k′ //

'ϕk

��

Ek′

' ϕk′

��
f ∗Fk �

� f∗Πk,k′ // f ∗Fk′
we have two morphisms ϕk ◦ f ∗jk,k′ and f ∗Πk,k′ ◦ ϕk from f ∗Ek −→ f ∗Fk′ . Since
Hom is a sheaf for quasi-coherent sheaves, we have ϕk ◦ f ∗jk,k′ = f ∗Πk,k′ ◦ ϕk.

We have a similar diagram for the morphisms ti and τi for each i ∈ Zt. Hence,
the isomorphism ϕ commutes with the morphism ji's and ti's for each i ∈ Zt. For
D-action, we have the following diagram

f ∗Ek �
�

'
ϕk //

·D
��

Fk
·D
��

f ∗Ek �
� ϕk // f ∗Fk′

Similar as before, we get two morphisms ·◦ϕk and ϕk ◦·D from Ek −→ Fk. Since
Hom is a sheaf for quasi-coherent sheaves, we have · ◦ ϕk = ϕk ◦ ·D.

Let f : Ti −→ T be a covering in SchS. Let ({E (i)}, {ψi,j}) be a descent data,
i.e E (i) = (E (i)

k , j
(i)

k,k′
, t

(i)
k ) is a generalized D-elliptic sheaf over Ti for each i. Since

the category of quasi-coherent sheaves form a stack over SchS, there are locally free
sheaves F (i)

k over Ti for each k and i, together with cartesian arrows E (i)
k −→ F

(i)
k

such that the diagram in the de�nition commutes. Let E (i) be �xed but any. Then,
we have the following diagram:

· · · � � // E (i)
k
� �
j
(i)

k,k′ //

ϕ
(i)
k
��

E (i)

k′
� � //

ϕ
(i)

k′
��

· · ·

· · · F (i)
k F (i)

k′
· · ·

where the vertical arrows are cartesian. Let Π
(i)

k,k′
: F (i)

k −→ F
(i)

k′
be the morphism of

locally free sheaves that makes the diagram above commutative, i.e, which satis�es
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ϕ′k ◦ j
(i)

k,k′
= Π

(i)
k ◦ ϕ

(i)
k . Similarly, de�ne τ (i)

k : σ∗F (i)
k −→ F

(i)
k+1. Also, by a similar

diagram we will have a D-action on each F (i)
k .

By Example 19.22, we get locally free sheaves Fk for each k. By descent of
morphisms(cf. Section 023R), we get morphism Πk,k′ : Fk −→ Fk′ and τk : σ∗Fk −→
Fk+1. For each E (i) there is a closed immersion ψ(i) : S ′ −→ (X r Bad) ×k Ti
since each E (i) is generalized D-elliptic sheaf. Similarly by descent of morphisms
we have a ψ : S ′ −→ (X r Bad) × T . Hence, we get a ladder F together with
ψ : S ′ −→ (X r Bad)×k T . We need to check that (F , ψ) = (Fk,Πk,k′ , τk) satis�es

the conditions in De�nition 2.2. Let us check the condition (??). Let C(i)
k denote

the cokernel of t(i)k : E (i)
k −→ E

(i)
k+1. Again, by the descent for quasi-coherent sheaves,

we get Ck which is the cokernel of τk : Fk −→ Fk+1 which is locally free of rank
d over S ′. Similarly by using the descent for quasi-coherent sheaves, we see that
the other conditions in De�nition 2.2 are satis�ed. Hence, (F , ψ) is a generalized
D-elliptic sheaf over T .

The commutativity of the diagram in De�nition 19.17 is equivalent to the cocycle
condition in the de�nition of the object with descent data.

Remark 2.13. Note that sending a generalized D-elliptic sheaf (E , ψ) to its char-
acteristic ψ gives us a morphism of stacks

GE``X,D −→ X rBad.

Now, we will de�ne level structures on generalized D-elliptic sheaves. Let I ⊂ X
be a closed subscheme such that I ∩ ψ(S ′) = ∅. Then, the restrictions Ei|I×S are
all isomorphic via the morphisms ji,i′ . We will denote this restriction by E|I×S.
Note also that the morphism t|I×S : σ∗E|I×S −→ E|I×S are also isomorphisms since
I ∩ ψ(S ′) = ∅.

De�nition 2.14. Let X and Y be two schemes and let F be a locally free OX-
module and G be a locally free OY -module. Let pr1 : X × Y −→ X and pr2 :
X × Y −→ Y be the natural projections. We de�ne the external tensor product of
F and G as follows:

F � G := pr∗1(F)⊗OX×Y pr∗2(G)

which is naturally a locally free OX×Y -module.

De�nition 2.15. Let I ⊂ X r Bad be a �nite closed subscheme di�erent than
T ∪ ψ(S ′). A level I-structure on a generalized D-elliptic sheaf E = (Ei, ti) is an
isomorphism of OI×FqS

-modules
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ι : DI �OS
∼−→ E|I×FqS

compatible with D-action and the Frobenius structure on S given by σS : σ∗SOS −→
OS.

Remark 2.16. Fron now on, when we de�ne a level I-structure, it is meant that I
is disjoint from T ∪ ψ(S ′).

Remark 2.17. We want to mention that we can de�ne level structures for ideals
of X, as in the case of Hilbert modular forms in the classical world.

De�nition 2.18. Let GE``X,D,I(S) denote the category of generalized D-elliptic
sheaves over S with level I-structure and whose morphisms are morphisms of gen-
eralized D-elliptic sheaves that respects the level I-structure.

Proposition 2.19. Let S be an Fq-scheme. Then, S 7→ GE``X,D,I(S) de�nes a
stack which we will denote by GE``X,D,I .

Proof. The proof is similar as to the proof of Proposition 2.12.

Remark 2.20. In Section 5, we will show that after putting a condition on the char-
acteristic of the generalized D-elliptic sheaf, we will have Deligne-Mumford stack.
Moreover, with nontrivial level structure we will have scheme.

Let E = (Ei, ti) be a generalized D-elliptic sheaf over S with level I-structure.
Let SchS denote the category of schemes over S. As in the case of D-elliptic sheaf
[[35], (2.6)], we de�ne the t-invariant elements functor

EI : SchS −→ H0(I,DI)−modules

by T 7→ (H0(I × T, E|I×T ))t=id

Remark 2.21. Note that (H0(I × T, E|I×T ))t=id = (H0(T, pr∗(E|I×T ))t=id where
pr : I × T −→ T is the natural projection.

Proof. This follows from the fact that the global section of the direct image of a
sheaf is isomorphic to the global sections of the given sheaf.

Theorem 2.22. The functor EI is represented by a �nite étale scheme over S which
is free over H0(I,DI) of rank 1.

The proof of the Theorem is similar to [35], (2.6)(comp [14], Section 2)
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Proof. Let Ab denote the category of abelian groups. Let F be a locally free OS-
module of rank m together with an isomorphism ϕ : Frob∗SF −→ F . Consider
the functor G from SchS to Ab given by T 7→ H0(T,FT )ϕ=id where FT denote
the sheaf F after base change to T . Locally on S, we have F ' OmS and denote by
Φ = (aij) ∈ GLm(H0(S,OS)) the inverse of the matrix representing the isomorphism
ϕ. Then, the functor G is represented by a closed subscheme of Gm

a,S group scheme,
denote it by G, given by the system of equations

xqj =
m∑
i=1

aij · xi (1)

It is �nite étale over S because Φ is invertible. Hence the functor G : SchS −→ Ab
de�ned by T 7→ H0(T,FT )ϕ=id is represented by a �nite étale commutative group
scheme G of order qn that is given by the system of equations (1)(See also [12]).

Now, if we consider the direct image of E|I×S under the projection mapX×S −→
S, we get a locally free sheaf over S with a FrobS-linear isomorphism. In Drinfeld
case, there is an H0(I,OI) action on the direct image. But additional to Drinfeld
we have a D-action on EI×S. So, pr∗(EI×S) is a H0(I,D)-module.

Hence, EI is represented by a �nite étale group scheme over S in H0(I,DI)-
modules of rank |H0(I,DI)|.

To show that it is free of rank 1 over H0(I,DI)-module, we follow [35]. We
may assume that the support of I is x. Then, OI is a quotient of Ox. De�ne
Ex := lim←−I′(EI′ ⊗OI OI′) where the limit is taken over all �nite closed subschemes
I ′ ⊂ X such that supp I = supp I ′. Then, Ex is a Dx = Md(Ox)-module. Now, by
[15], Proposition 2.2 and since the order of EI is |H0(I,DI)|, it follows that Ex is a
free Ox module of order d2. So, Ex is a Md(Ox)-module and free Ox-module of rank
d2. Then, Ex is free over Md(Ox) of rank 1 by Nakayama's lemma. More precisely,
let mx be the maximal ideal of Ox and let κ(x) denote the residue �eld. By the
classi�cation of simple Md(κ(x))-modules, we have

Ex ⊗Ox/mx 'Md(κ(x)).

Let e ∈ Ex be an element that maps to a generator of Ex ⊗Ox/mx. Then,

Md(Ox) −→ Ex, a 7→ e

is surjective by Nakayama's lemma. Since Md(Ox) and Ex are both free over Ox of
the same rank, they are isomorphic (cf [10], 26.24 (iii)).

Remark 2.23. Note that (DI �OS)t=id �OS
∼−→ DI �OS

Lemma 2.24. Let E = (Ei, ti) be a generalized D-elliptic sheaf over a connected S.
Then, the set of level I-structures on E are in 1-1 correspondence with the set of
isomorphisms of H0(I,DI)-modules

EI(S)
∼−→ H0(I,DI)
19



Proof. Suppose that S is connected. Then taking t-invariants thus gives an isomor-
phism DI

∼−→ DI of DI-modules. And by the previous remark the latter isomorphism
uniquely determines the former one.

We will use this lemma to de�ne adelic level structures in Section 7.

Remark 2.25. By the previous lemma, we see that for connected S, the set of
I-level structures is a torsor over the unit group D×I . More precisely, Let S be an
Fq-scheme. Then, the morphism

rI′,I(S) : GE``X,D,I′(S) −→ GE``X,D,I(S)

which associates a level I ′-structure to its restriction gives us a GI′,I-torsor over
X r I ′, i.e, the �nite group GI′,I acts on the set of level I ′-structures transitively
and freely.

Remark 2.26. The multiplicative group of the algebra H0(I,DI) = H0(I,D) acts
on the set of level structures via the composition

DI×S g
// DI×S '

ϕ
// EI×S

Proof. (of Remark 2.25)
Let ϕ1 and ϕ2 be two level I ′-structures on a generalized D-elliptic sheaf (Ei, ti)

over an S-scheme T such that ϕ1|I ' ϕ2|I . By Remark 2.23, instead of the diagram

DI′ �OT

g′ ''

ϕ1

'
// EI′×T

DI′ �OT

' ϕ2

OO

we can consider the following

(DI′ �OT )t=id

g ((

ψ1

'
// (EI′×T )t=id

(DI′ �OT )t=id

' ψ2

OO

where g ∈ Isom((DI′ �OT )t=id) = Isom((E|I×S)t=id). Then, by Theorem 2.22, we
know that g ∈ H0(I ′,DI′). Since ψ1|I ' ψ2|I , we have

g ∈ Ker
(
GL1

(
H0(I ′,DI′)

)
−→ GL1

(
H0(I,DI)

))
.

So, the GI′,I action is transitive.
On the other hand,

ϕ1 ◦ g = ϕ1 ⇐⇒ ϕ−1
1 ◦ ϕ1 ◦ g = id,

hence the action is free. Therefore, for every S, the morphism rI′,I(S) is a GI′,I-
torsor.
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Remark 2.27. We want to remark that the functor EI is de�ned for a �xed gen-
eralized D-elliptic sheaves E . If we want to consider the functor for two di�erent
generalized D-elliptic sheaves E and F , we will write EI(E) and EI(F)(e.g Con-
struction 16.3).
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3 Isogenies

In this section we will de�ne and give some examples of (quasi-)isogenies of gener-
alized D-elliptic sheaves. First, we want to recall the following de�nition [25], page
109:

De�nition 3.1. Let (X,OX) be a ringed space and F be an OX-module.

1. We say F is free if it is isomorphic to a direct sum of copies of OX .

2. We say F is locally free if X can be covered by open sets U for which F|U is a
free OX |U -module. In that case the rank of F is the number of copies of the
structure sheaf needed(�nite or in�nite).

Remark 3.2. If X is connected, the rank of a locally free sheaf is same everywhere.

De�nition 3.3. 1. An isogeny between two generalized D-elliptic sheaves E and
E ′ is a morphism f : E −→ E ′ such that for all i ∈ Zt

(a) fi : Ei −→ E ′i is injective,
(b) locally on S, there is an e�ective divisor D ⊂ X such that coker fi is

supported on D× S,
(c) coker fi is locally free of �nite rank as an OS-module.

2. A quasi-isogeny between two generalized D-elliptic sheaves E = (Ei, ti) and
E ′ = (E ′i , t′i) is, locally on S, a pair (f,D) where f : E −→ E ′ is an isogeny for
an e�ective divisor D ⊂ X.

Example 3.4. Let E = (Ei, ti) be a generalized D-elliptic sheaf over S and let
a ∈ F× be an arbitrary element. Then, multiplication by a is a quasi-isogeny on E
since multiplying by a sends Ei into Ei((a)∞) where (a)∞ denotes the pole divisor of
a.

Example 3.5. 1. Let E = (Ei, ji,i′ , ti) be a generalized D-elliptic sheaf. The
morphism f : E [1] −→ E which given by the sequence of maps (ji−1,i : E [1] =
E i−1 −→ E i) is an isogeny. Indeed by condition ii, we know that coker ji−1,i

is locally free of �nite rank over OS and coker ji−1,i is supported on T× S for
the e�ective divisor T of X.

2. Let (E , ψ) be a generalized D-elliptic sheaf such that the subscheme S ′ of
X × S via ψ is supported on T × S then the sequence (ti) de�nes an isogeny
σ∗E [1] −→ E . This follows since we know that coker ti is locally free of �nite
rank over OS and coker ti is supported on T× S.

3. Let (E , ψ) is a generalized D-elliptic sheaf such that the subscheme S ′ of X×S
is supported on p×S for p in XrT , then by item (ii) the (ti) de�ne an isogeny
σ∗E [1] −→ E where the e�ective divisor of X in the de�nition 3.3 is {p}.
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4 Categories of generalized D-elliptic sheaves
In the following we will use the fact that a scheme S is identi�ed by its functor of
points hS. Let B denote the image of Bad under the �nite covering map π : X −→ Y
of degree t.

Generalized D-elliptic sheaves relative to X/Y
Recall that the Hilbert scheme Hilbt(U) for any open subset U ⊂ X is the repre-
sentable functor SchFq −→ Sets de�ned by

S 7→ {closed subschemes S ′ ⊂ U ×Fq S | pr2|S′ : S ′ −→ S is �nite of degree t}.

Now, the functor that assigns to a generalized D-elliptic sheaf (E , ψ) to the graph
of its characteristic morphism ψ : S ′ −→ (X r π−1(B))×k S de�nes a morphism

GE``X,D −→ Hilbt(X r π−1(B))

(E , ψ) 7−→ Γψ

We have a morphism

can : hY rB −→ Hilbt(X r π−1(B))

de�ned by (T −→ Y r B) 7→
(

(X r π−1(B)) ×Y rB T
f−→ (X r π−1(B)) ×Fq T

)
for

any Y r B-scheme T . Note that can(∞) = {∞1, · · · ,∞t}. For simplicity assume
X r π−1(B) = SpecM , Y r B = SpecR and T = SpecS. Then, f : M ⊗Fq S −→
M ⊗R S is de�ned by α ⊗Fq β 7→ α ⊗R β. Since R is a Fq-module, f is surjective,
i.e, f : X r π−1(B)×Y rB T −→ X r π−1(B)×Fq T is a closed immersion. Moreover

pr2 ◦ f : X r π−1(B)×Y rB T −→ X r π−1(B)×Fq T −→ T

is of degree t. Indeed, since M is an S-module of degree t, we have:

M ⊗R S ' Rt ⊗R S ' St

which is of rank t over S.
Using these natural morphisms we will de�ne a new stack:

De�nition 4.1. The algebraic stack GE``X/Y,D is de�ned as the pullback

GE``X,D

��
hY rB can

//Hilbt(X r π−1(B))
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It is a stack over Y r B. The objects of GE``X/Y,D(T ) for a Y r B-scheme T
is called generalized D-elliptic sheaf relative to X/Y . More precisely, for a given
Y r B-scheme ξ : T −→ Y , such a generalized D-elliptic sheaf is given by

(E , can(ξ) : (X r π−1(B))×Y rB T −→ (X r π−1(B))×Fq T )

Remark 4.2. Note that this puts a condition on the characteristic of a generalized
D-elliptic sheaf, namely we want ψ to be the map (X r π−1(B))×Y rB T −→ (X r
π−1(B))×Fq T where ψ is the characteristic of generalized D-elliptic sheaf (E , ψ).

Generalized D-elliptic sheaves relative to X/Y with level struc-

ture

By Proposition 2.19, we know that the category of generalized D-elliptic sheaves
with level I-structure forms a stack where I is a closed subscheme of X rBad that
is disjoint from T ∪ pr2(Γψ).

Let J = π(I) and assume that J ∪ B = ∅. We will de�ne the relative objects for
schemes over Y r (J ∪ B).

As before, we have two morphism:

GE``X,D,I −→ Hilbt(X r
(
π−1(B) ∪ supp(I))

)
(E , ψ, ι) 7−→ ψ

where ι : DI �OS
∼−→ Ej|I×FqS

is the level I-structure and

Y r (J ∪ B) −→ Hilbt
(
X r (π−1(B) ∪ supp(I)

)
)

(T −→ Y r (J ∪ B)) 7→ ((X r (Bad ∪ supp(I)))×Y r(J∪B) T −→ (X r (Bad ∪ supp(I)))×Fq T )

De�nition 4.3. The algebraic stack GE``X/Y,D,I is de�ned as the pullback

GE``X,D,I

��
Y r (J ∪ B) can

//Hilbt(X r (π−1(B) ∪ supp(I)))

It is a stack over Y r (J ∪ B). The objects of GE``X/Y,D,I(T ) for a Y r (J ∪ B)-
scheme T are called generalized D-elliptic sheaves relative to X/Y with level I-
structure. More precisely, let ζ : T −→ Y r (J ∪B) be a Y r (J ∪B)-scheme. Then,
the generalized D-elliptic sheaf is given by

(
E , can(ζ) : (Xr(π−1(B)∪supp(I)))×Y r(J∪B)T −→ (Xr(π−1(B)∪supp(I)))×FqT, ι

)
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Remark 4.4. 1. In the next section we will prove that it is a Deligne-Mumford
stack and moreover if I is nontrivial it is a disjoint union of quasi-projective
schemes.

2. By considering relative objects, we put a restriction on the characteristic of
the generalized D-elliptic sheaves with level I-structures.

25



5 The Deligne-Mumford stack of generalized D-elliptic
sheaves

In this section, we will prove that the stack of generalized D-elliptic sheaves relative
to X/Y with a level I-structure is a smooth Deligne-Mumford stack. Moreover, for
nontrivial I, it will be represented by a scheme. Throughout the next two sections,
we will write only generalized D-elliptic sheaves instead of generalized D-elliptic
sheaves relative to X/Y .

De�nition 5.1. For any n ∈ Z de�ne the substack GE``nX/Y,D,I of GE``X/Y,D,I
consisting of generalized D-elliptic sheaves (Ei, ti) with �xed degree deg E0 = n.

It follows from the de�nition that, we have

GE``X/Y,D,I =
∐
n

GE``nX/Y,D,I (2)

Theorem 5.2. The stack GE``nX/Y,D,I is of �nite type which is smooth over Y r
(J ∪ B ∪∞). Moreover if I 6= ∅, it is actually a quasi-projective scheme.

This theorem together with the decomposition in (2) will give us the following
theorem:

Theorem 5.3. The stack GE``X/Y,D,I is an algebraic stack in the sense of Deligne-
Mumford [11] which is smooth over Y r (J ∪ B ∪ ∞). Moreover, if I 6= ∅, it is a
scheme that is a disjoint union of quasi-projective schemes.

To prove the Theorem 5.2, we will follow the steps of [35], Section 4. The
smoothness follows from the following lemma:

Lemma 5.4. ([33], Lecture 2)
Consider the diagram of stacks over Fq

W //

��

U
(FrobU ,id)
��

V
π
��

(α,β) // U × U

Y
where Y is a scheme, U is algebraic and locally of �nite type over Fq, V is algebraic
and locally of �nite type over Y , the morphism (π, α) : V −→ Y ×U is representable
and the square is 2-cartesian.

Then, W is algebraic and locally of �nite type over Y and the diagonal morphism
W −→ W ×W (which is representable, separated and of �nite type) is everywhere
unrami�ed and therefore quasi-�nite.
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Moreover, if we assume that U is smooth over Fq and that (π, α) : V −→ Y × U
is smooth of pure relative dimension n, the algebraic stack W is smooth of pure
relative dimension n over Y .

To prove theorem 5.2, we need to introduce new stacks.

De�nition 5.5. 1. Let E be a locally free sheaf on X × S of rank r with a level
I-structure, i.e, with an isomorphism η : OrI×S

∼−→ E|I×S.

2. We say (E , η) as in (1) is I-stable if for any geometric point s −→ S of S and
for any locally free sheaves F on X × S which is properly contained in Es, we
have

degF − deg I

rank(F)
<

deg(Es)− deg I

rank(Es)

(cf [45], 4.I, Dé�nition 2)

De�nition 5.6. (i) We denote by GE``stX/Y,D,I the open substack of the stack of
generalized D-elliptic sheaves consisting of (Ei, ti) such that E0 is stable as a
vector bundle.

(ii) De�ne the substack GE``st,nX/Y,D,I of GE``stX/Y,D,I via the pullback diagram

GE``stX/Y,D,I

��
GE``nX/Y,D,I // GE``X/Y,D,I

Theorem 5.7. The stacks GE``st,nX/Y,D,I are representable by quasi projective schemes

when I 6= ∅. In particular, they are of �nite type.

To prove this theorem we will de�ne more stacks.

De�nition 5.8. 1. Let V ecX,I (and V ecnX,I ) denote the stack over SchFq of
vector bundles over X (i.e. over X × S for any Fq-scheme S) of rank d2 with
level I-structure (and degree n).

2. Denote the substack V ec∗,stX,I of V ec
∗
X,I where ∗ ∈ {∅, n} classifying the I-stable

vector bundles (of degree n if ∗ = n) in the sense of De�nition 5.5

De�nition 5.9. 1. Let V ecX,D,I denote the stack of vector bundles over X with
level I-structure and D-action. It carries a natural morphism π : V ecX,D,I −→
V ecX,I .
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2. Let V ec∗X,D,I denote the inverse image of V ec∗X,I where ∗ is n, st or {n, st}
under π.

Proposition 5.10. (Seshadri), ([31], Theorem 1.4.1)
The open substack of I-stable vector bundles with �xed rank r and degree d

V ectr,d,stX,I ⊂ V ectrX,I

is a smooth quasiprojective scheme with dimension r2(g − 1 + deg I). In particular,
it is of �nite type.

Lemma 5.11. The morphism

V ecX,D,I −→ V ecX,I

is relatively representable and a�ne.

Proof. [35], Lemma 4.4.

Remark 5.12. The stack V ecstX,D,I is representable by a disjoint union of quasi-
projective schemes if deg I > 0 and V ecX,D,I is smooth over Fq([35], Lemma 4.5).

De�nition 5.13. 1. Consider the sequence

· · · � � // Ei �
� ji,s // Es �

� js,k // Ek �
� // · · ·

for i ≤ s ≤ k where Ei is a locally free sheaf over X×S with D-action and the
morphisms ji,s which are compatible with the D-action satisfy the conditions
(i) and (ii) in the De�nition 2.2.

2. Let I ⊂ X rBad be a �nite closed subscheme di�erent than T∪ψ(S ′). Then
the restrictions Ei|I×T are all isomorphism via the morphisms ji,i′ . So, we will
write E|I×S for the restriction Ei|I×S A level I-structure for such a sequence
is collection of level I-structures ιi : DI � OS −→ E|I×S that are compatible
with ji.

3. Let t-SeqX,D,I denote the stack classifying the sequences as above with level
I-structure. And let t-SeqstX,D,I denote the open substack of t-SeqX,D,I such
that E0 is stable with level I-structure.

Proposition 5.14. The morphism t-SeqX,D,I −→ V ecX,D,I sending an element

· · · � � // Ei �
� ji,s // Es �

� js,k // · · ·
to E0 is relatively representable by a product of �ag varieties, in particular it is
smooth.
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Proof. Let E0 on X × S be given. Then, the chain (Ei)i∈Zt corresponds to a �ag
subsheaves via periodicity

{0} ⊂ Ẽ1 ⊂ · · · ⊂ Ẽd deg∞−1 ⊂ E0(∞1, · · · ,∞t)/E0

such that the successive quotients are locally free over OS and which are stable with
respect to the D-action, i.e under the action of D⊗OX

∏t
i=1 κ∞i

=
∏
D⊗OX κ(∞i).

Now the resulting �ag for each i is exactly the type of �ag considered in the proof
of [35], Lemma 4.6. Morevoer by [35], Lemma 4.6, for each i this �ag is relatively
representable by a �ag variety. Hence, the morphism t-SeqX,D,I −→ V ecX,D,I is
relatively representable by the t-fold product of the �ag varieties from [35].

Remark 5.15. Note that our de�nitions of objects are slightly di�erent than [35].
Our indices are elements of Zt eventhough indices in [35] are elements of Z. We
will indicate that in the future also by putting t before objects, e.g, we don't have
SeqX,D,I as in [35] but t-SeqX,D,I .

De�nition 5.16. Let S be an Fq-scheme and ψ : S ′ −→ (X rBad)×k S such that
pr2 ◦ ψ : S ′ −→ S is �nite locally free. Let I be a closed subscheme of X such that
I ∩ψ(S ′) = ∅. We de�ne t-HeckeX,D,I to be the stack classifying pairs consisting of
a map ψ as above and a commutative diagram

· · · � � // Ei �
� ji,s // Es �

� js,k // Ek �
� // · · ·

· · · � � // E ′i−1
� �
j′i,s //

ti−1

OO

E ′s−1

ts−1

OO

� �
j′s,k // E ′k−1

� � //

tk−1

OO

· · ·
where the �rst and second row are elements of t-SeqX,D,I and the morphisms ti
satisfy the condition (iii) in the De�nition 2.2.

Mapping a pair (ψ, commutative diagram) as above to ψ de�nes a morphism of
stacks

π : t-HeckeX,D,I −→ Hilbt(X r π−1(B))

Since coker ti are supported on the graph Γψ of the morphism ψ : S ′ −→ X×S,
we can de�ne a morphism of stacks t-π : HeckeX,D,I −→ Hilbt(X r π−1(B)) by
assigning a diagram to S ′.

The stacks de�ned above form a 2-cartesian diagram:
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GE``X,D,I //

��

t-SeqX,D,I

(Frob,id)

��
t-HeckeX,D,I

π
��

(α,β) // t-SeqX,D,I × t-SeqX,D,I

Hilbt(X r π−1(B))

(3)
where (α, β) is given by (1st row, 2nd row) of a diagram in t-HeckeX,D,I .

De�nition 5.17. Recall the morphism Y r B −→ Hilbt(X r π−1(B)) de�ned in
Section 4. We de�ne t-HeckeX/Y,D,I via the pullback diagram

t-HeckeX,D,I

��
Y r B //Hilbt(X r π−1(B))

Similarly as diagram 3, we have the following:

GE``X/Y,D,I //

��

GE``X,D,I //

��

t-SeqX,D,I

(Frob,id)

��
t-HeckeX/Y,D,I

π

��

// t-HeckeX,D,I

��

(α,β) // t-SeqX,D,I × t-SeqX,D,I

Y r B //Hilbt(X r π−1(B))

To proceed we need to de�ne another stack as in [23], Section 3. The Hilbert
scheme Hilbt(X/Fq) parametrizes the closed subschemes of X. The Quot scheme
is de�ned as the functor that parametrizes the quotients of locally free sheaves on
X. For more details on Quot schemes one can see [51].

De�nition 5.18. Let X be a scheme of �nite type over S. Let E be a locally free
sheaf over X. De�ne the functor QuotE/X/S from the category of S-schemes by
sending an S-scheme T to equivalence class (F , q)/ ∼ where F is a coherent sheaf
over XT which is �at over T and q : ET −→ F is an epimorphism together with an
equivalence relation de�ned as follows:

(F , q) ∼ (F ′, q′) :⇐⇒ ker(q) = ker(q′)

Let the base stack be T := Hilbt(X r π−1(B))× t-SeqX,D,I
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Over T we have a universal vector bundle E0 of rank d2 over X × T coming
from the 0-th term of t-SeqX,D,I . The datum in Hilbt(Xrπ−1(B)) over T de�nes a
closed substack T ′ of X ×T , say given a by a closed immersion Ψ. By the de�ning
property of Hilbt(X r π−1(B)), the induced morphism T ′ → T is �nite locally free
of degree t.

Pulling back E0 along T ′ −→ X ×T gives us a vector bundle F0 over T ′ of rank
d. The bundle F0 is �nite �at over T of degree d2t. Over T ′ the bundle F0 carries
a D-action.

We will consider the Quot scheme QuotdtF0/T ′/T . The quotients of F0 are sup-
ported on T ′. Those where are locally free over T of rank dt are classi�ed by
QuotdtF0/T ′/T . For a diagram in t-HeckeX,D,I over T , the coker t−1 over T de-
�nes an element in QuotdtF0/T ′/T . It also carries a D-action not parameterized
by Quot-scheme. We shall deal with this in Proposition 5.19.

Now, QuotF0/T ′/T is a stack over T . We know that t-SeqX,D,I is a stack over Fq.
Then we have the following pullback diagram

T

��
t-SeqX,D,I // Fq

We will denote the pullback object t-SeqX,D,I × T by t-SeqX,D,I/T and regard
it as a stack over T . Let V ecT denote the stack of vector bundles over T . By the
morphism in Lemma 5.14, we have a map t-SeqX,D,I/T −→ V ecT . So we can form
the �ber product over V ecT

t-SeqX,D,I/T

��
QuotdtF0/T ′/T

// V ecT

which is a stack over T .

Proposition 5.19. (cf. [23], Lemma 3.8.) The morphism

t-HeckeX,D,I −→ QuotdtF0/T ′/T ×V ecT t-SeqX,D,I/T

de�ned by assigning a diagram in t-HeckeX,D,I to (coker t−1, 2
nd row) is represented

by a closed immersion.

Proof. Note that �rst line of t-HeckeX,D,I is already in the stack T and so on the
stack QuotdtF0/T ′/T ×V ecT t-SeqX,D,I/T one has both lines and the universal quotient.
So, to get a diagram in t-HeckeX,D,I we need to de�ne the morphism ti and check
that the necessary conditions are satis�ed. One can de�ne t-HeckeX,D,I by the
following conditions:
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1. E ′−1 equals the kernel of the morphism from E0 to the universal quotient,

2. for each −` ≤ i ≤ −2 the sheaf E ′i is contained in the intersection of Ei+1 and
E ′−1 which we view as subsheaves of E0 via ji+1,0 and t−1

3. if we let ti be the inclusion Ei′ ⊂ Ei+1 then coker ti is supported on ImΨ for
ψ : S ′ −→ X r π−1(B)× S, and it is locally free of rank d over S ′

4. t−1 is induces an isomorphism of level I-structures on E ′−1 and on E0

5. t−1 is D-equivariant.

Let us de�ne t−1 : E ′−1 −→ E0 as the isomorphism of E ′−1 with the kernel of the
universal quotient map. So, for j, s ≥ 1, we have

· · · � � // E−i �
� // E0

� � // Es �
� // Ek �

� // · · ·

· · · � � // E ′−i−1
� � // E ′−1

� � //

t−1

OO

E ′s−1
� � // E ′k−1

� � // · · ·
For simplicity assume i = −2. Condition (ii) tells us that if coker(j−1,0) ◦ t−1 ◦

j′−2,−1 = 0 then we can de�ne t−2 : E ′−2 −→ E−1. More precisely, assume coker(j−1,0)◦
t−1 ◦ j′−2,−1 = 0. We have (j′−2,−1 ◦ j−1,0)(c) ∈ Im(j−1,0), and hence we can de�ne a
map E ′−2 −→ E−1. De�ne t−2 to be this map. Then, the following diagram

E−1
� � j−1,0 // E0

E ′−2

?�

t−2

OO

� �
j′−2,−1 // E ′−1

?�

t−1

OO

is commutative. Consider the following short exact sequences:

0 // coker t−2
// coker(j−1,0 ◦ t−2) // coker j−1,0

// 0

0 // coker j′−2,−1
// coker(t−1 ◦ j′−2,−1) // coker t−1

// 0

We know that
(

coker(ji,i′)
)
|∞j×S is locally free of rank d over OS. Then, via diagram

we see that coker t−2 is locally free of rank dt over OS.
Therefore t-HeckeX,D,I is a substack of QuotdtF0/T ′/T ×V ecT t-SeqX,D,I/T . And

since each condition can be expressed in terms of algebraic relations, t-HeckeX,D,I
is a closed substack.

Theorem 5.20. ([35], Theorem 5.2)
There exists a constant c > 0 with the following property: Let I be any closed

subscheme of XrBad of degree > c. Then for any generalized D-elliptic sheaf with
level I-structure (E , ψ, ι) over SpecL, where L is an algebraically closed �eld, the
vector bundle E0 is I-stable.
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The proof goes similarly as in [35], Theorem 5.2. Below, we will give the idea.
The proof uses Harder-Narasimhan �ltration of a vector bundle and some related
properties. A Harder-Narasimhan �ltration of a vector bundle used to determine
the unstability-stability of a vector bundle in general. For more details, please see
[35], Section 5.

Let E be a vector bundle over X. The slope of E is de�ned as

µ(E) =
deg E
rank E

.

Let F be a subbundle of E . De�ne

jumpE = µmin(F)− µmax(E/F)

where µmin is the minimal slope of the nontrivial quotients of F and µmax is the
maximal slope of the nonzero vector subbundles of E/F . We will denote by E (i) the
i-th term of the Harder-Narasimhan �ltration of E .

Proof. Let α1, · · · , αr ∈ Γ (X r T,D) be generators of Γ (X r T,D) as a Γ (X r
T,OX). Since the orders of the poles are bounded we �nd a constant n with αj ∈
Γ (X,D(n · ∞)) for j = 1, · · · , r.

Now let (Ei, ti) be a generalized D-elliptic sheaf over SpecL. Then, via period-
icity, we have αj · Ei ⊂ Ei+nd·deg∞. Then, for each i ∈ Z one gets an upper bound
jumpEi ≤ P (n, d, deg∞) for every non-zero proper subbundle F ⊂ Ei (cf [35], 5.3).
Here P (t, d, deg∞) stands for an expression in t, d and deg∞.

As the constant in the theorem, take c := (d2 − 1)2 · d2 · P (n, d, deg∞). By
de�nition of the slope and I-stability of a vector bundle and Harder-Narasimhan
�ltration it is enough to show that

µ(E (1)
0 )− µ(E0) ≤ (d2 − 1)P (n, d, deg∞)

where E (1)
0 denotes the �rst nonzero element in the Harder-Narasimhan �ltration of

E0. We have

µ(E (1)
0 )− µ(E0) ≤ µ(E (1)

0 )− µ(E0/Er−1
0 )

=
r−1∑
j=1

(µ(E (j)
0 /E (j−1)

0 )− µ(E j+1
0 /E (j)

0 ))

=
r−1∑
j=1

jumpE0(E (j)
0 )

≤ (d2 − 1)P (n, d, deg∞)

(4)
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where the �rst inequality comes from the Harder-Narasimhan �ltration of E0. For
the other (in)-equalities, use the fact that r ≤ d2 = rank(E0) and the upper bound
P (n, d, deg∞) for the jumpE0 .

Proof. (of Theorem 5.7)
We have morphism of stacks

GE``X/Y,D,I −→ t-HeckeX,D,I −→ Quot ×t-SeqX,D,I −→ t-SeqX,D,I −→ V ecX,D,I

where the �rst two morphisms are closed immersions, the last one is representable
by a product of �ag varieties and the other is represented by a quasi-projective
morphism.

Now, by Theorem 5.10, we know that V ecn,stX,D,I is a quasi-projective scheme if
deg I > 0. Consider the inverse image of V ecn,stX,D,I under the composition of maps
above. We get the substack GE``n,stX/Y,D,I of GE``X/Y,D,I(cf. [31], Proposition 1.4.6).

Now, we are ready to prove our �rst theorem:

Proof. (of Theorem 5.2) Let GI′,I := Ker
(
GL1

(
H0(I ′,DI′)

)
−→ GL1

(
H0(I,DI)

))
.

Note that GE``st,nX/Y,D,I′ is stable with respect to GI′,I-action. By Remark 2.25, the

quotient GE``st,nX/Y,D,I′/GI′,I is quasi-projective scheme if I 6= ∅ and in particular of
�nite type.

Since any vector bundle becomes stable for some I ′ with degree big enough (cf.
Theorem 5.20), the quotients

GE``st,nX/Y,D,I′/GI′,I

cover GE``nX/Y,D,I as I ′ vary and so GE``nX/Y,D,I is of �nite type. Moreover, if I 6= ∅,
it is a quasi-projective scheme.

Corollary 5.21. The stack GE``X/Y,D,I is union of algebraic stacks of �nite type.

Proof. Since we can cover GE``X/Y,D,I by
⋃
n GE``nX/Y,D,I , the proof follows from the

previous theorem.

Corollary 5.22. The stack GE``stX/Y,D,I is a disjoint union of quasi-projective schemes.

Proof. Since one can write GE``stX/Y,D,I =
∐

n GE``
st,n
X/Y,D,I , the proof follows from the

Theorem 5.7.
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Proof. (of Theorem 5.3)
Let I ′ ⊂ X r {T∪ψ(S ′)} be a �nite closed subscheme with deg I ′ > 0 such that

I ⊂ I ′ ⊂ X. By Remark 2.25, the morphism

rI′,I ;GE``X/Y,D,I′ −→ GE``X/Y,D,I

is a torsor over X r I ′ under the �nite group GI′,I = Ker
(
GL1

(
H0(I ′,DI′)

)
−→

GL1

(
H0(I,DI)

))
.

Note that r−1
I′,I(GE``stX/Y,D,I) ⊂ GE``stX/Y,D,I′ and the open substack GE``stX/Y,D,I′

is stable under the �nite group GI′,I . So, we can de�ne the quotients

GE``stX/Y,D,I′/GI′,I

which are stacks in the sense of Deligne-Mumford since GI′,I is �nite étale ([20],
Section 2.3). Since any vector bundle becomes stable for some I ′ with degree big
enough (cf. Theorem 5.20), these quotients cover GE``X/Y,D,I as I ′ vary. And so,
GE``X/Y,D,I′ is itself a Deligne-Mumford stack.
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6 Properness

The main aim of this section is to prove the following:

Theorem 6.1. The morphism

GE``X/Y,D,I/1Z −→ Y r B

is proper.

Remark 6.2. We want to point out that our properness is stronger than the one
in [35]. Namely, the image of our morphism can meet with the poles whereas in [35]
it can't.

We will prove this by checking the valuative criteria of properness.

Theorem 6.3. (Valuative Criterion of Properness) Let f : X −→ Y be a morphism
of schemes of �nite type and quasi-separated. Then, f is proper i� the following
condition holds: Let R be a valuation ring with quotient �eld K, let T = SpecR,
U = SpecK and let i : U −→ T be the morphism induced by R ⊂ K. For every
morphism U −→ X and T −→ Y forming a commutative diagram

U //

��

X

��
T

>>

// Y

there exists a unique morphism T −→ X making the whole diagram commutative.

Proof. [21], Theorem 15.9.

Lemma 6.4. The characteristic morphism GE``X/Y,D,I/1Z −→ Y r B is of �nite
type and quasi-separated.

Proof. By the action of Zt, we can write

GE``X/Y,D,I =
∐

0<n<d deg∞

GE``nX/Y,D,I

where GE``X/Y,D is the stack of generalized D-elliptic sheaves (Ei, ti) with deg E0 = n
is �xed. Then, by Theorem 5.2, the stack GE``X/Y,D,I/1Z is a stack of �nite type.
So, the characteristic morphism GE``X/Y,D/1Z −→ Y r B is of �nite type.

By the previous section, the stack GE``X/Y,D,I is a Deligne-Mumford stack,
which means the diagonal morphism ∆ : GE``X/Y,D,I ×GE``X/Y,D,I −→ GE``X/Y,D,I
is quasi-compact and separated ([20], De�nition 2.20), equivalently ∆ is quasi-
separated (Tag 04YW ). So, the morphism GE``X/Y,D,I/1Z −→ Y r B is quasi-
separated.
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Before we start the proof of Theorem 6.1, we want to introduce some notations.
Let R ⊃ Fq be a complete discrete valuation ring with quotient �eld K, perfect
residue �eld κ and uniformizing element $. Since R is a discrete valuation ring,
SpecR has only two points, SpecR = {η, s} where η is the generic point and s is
the special point. Consider X ×Fq SpecR. Let η′ be generic point of X ⊗Fq κ. Note
that via the composition

η′ −→ X ⊗ κ −→ X ⊗R

one can see η′ as a point of X ⊗ R. Denote by R′ the local ring OX⊗R,η′ at η′. Let
K ′ be the fraction �eld of R′ and κ′ be the residue �eld of R′. Then, R′ is a discrete
valuation ring (cf. Lemma 00PD) with uniformizing element $, quotient �eld K ′

and residue �eld κ′ (Note that κ′ = Frac(F ⊗κ) = FF (X⊗κ), i.e the function �eld
of X ⊗ κ and K ′ = Frac(F ⊗K) = FF (X ⊗K), i.e the function �eld of X ⊗K).

Theorem 6.5. ([13], Proposition 3.1) The category of locally free sheaves F̃ over
X⊗R is equivalent to the category of pairs (F , N) where F is locally free sheaf over
X ⊗K and N is R′-lattice in FK′ = Fη′

Proof. We will sketch the proof here. Let η′ = Spec(K ′) be the generic point of
X ⊗K. Now let us consider the diagram

X ⊗R X ⊗K
f

oo

SpecR′

g

OO

SpecK ′

g′

OO

f ′
oo

Let F̃ be a locally free sheaf over X ⊗ R. Then, F := F̃ |X⊗K and N :=

H0(Spec(R′), g∗F̃) such that we have α : (f ′)∗(N)
∼−→ (g′)∗(F).

Now, let F be a locally free sheaf over X ⊗K and let N be a R′-lattice in FK′
such that they are isomorphic over SpecK ′. Then, F̃ := g∗(N) ∩ f∗(F).

Remark 6.6. For the details of the proof one can also check [18], Corollary 2.9.

Now we will start our proof. Let E = (Ei, ti) be a generalized D-elliptic sheaf
over K. We want to apply valuative criteria, i.e, we want to extend E to X×SpecR.
Put V := Ei,η′ the stalk of Ei at the generic point η′ of X ⊗ K. By de�nition of
stalk this is a module over OX×SpecK,η′ = FF(X⊗K) = K ′ of �nite rank, i.e a �nite
dimensional K ′-vector space, so Ei,η′ is independent of i. De�ne ϕ := ti,η′ as the
stalk of ti at η′. Then, ϕ is idF ⊗ FrobK-linear endomorphism of V . The D-action
on Ei's induces a D-action on V and ϕ is D-linear. We will construct R′-lattices
in V using ϕ so that we can use the equivalence of categories to get a locally free
sheaves over X ⊗R.
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Let L be an R′-lattice in V . We say L is admissible if the induced map

ϕ̄ : L/$L −→ L/$L

is not nilpotent, i.e, ϕdimVL ( $L. Now, in his paper [13], Drinfeld de�ned admis-
sible lattices and proved the following:

Proposition 6.7. ([13], Proposition 3.2)

1. There exists a ϕ-invariant lattice M0 in V containing all other ϕ-invariant
lattices. If M0 is not admissible then there are no admissible lattices in V .

2. After replacing K by a �nite extension K1, which means changing V with
V ⊗K1 and ϕ with ϕ⊗ FrobK1, there exists admissible lattices in V .

Remark 6.8. In [35], Laumon, Rapoport and Stuhler remarked after Proposition
6.6 that eventhough Drinfeld proved Proposition 6.7 in the rank 2 case only, it is
valid in general. Di�erently from [35], we have a �nite covering X −→ Y and
multi-t-indices.

After passing to a �nite extension K1 of K if necessary, we may assume that the
maximal ϕ-invariant R′-lattice M0 is admissible, i.e, the induced map

ϕ̄ : M0/$M0 −→M0/$M0

is not nilpotent, i.e, ϕdimVM0 6⊂ $M0. Note that M0 is D-stable since ϕ is D-linear
and M0 is maximal. So, we have an R′-lattice in a K ′-vector space V together with
locally free sheaves Ei over K. Then, by the equivalence of categories in Theorem
6.5, we have a ladder of locally free sheaves over Y ⊗R:

Ẽi+1
� �
j̃i,i′ // Ẽi′+1

σ∗Ẽi �
�

σ∗j̃i,i′

//

t̃i
==

σ∗Ẽi′
t̃i′

==

Now, via the D-action on Ei and categorical equivalence in Theorem 6.5, there
is a D-action on Ẽi's and all morphisms are D-linear. Moreover, we have Ẽi+` '
Ẽi(∞1, . . . ,∞t) where ` = d · deg∞.

Let i′ = i+ (δ1, . . . , δt) where each δj = 0 or 1. Since

supp(Ẽi′/Ẽi) ⊂ supp(Ẽi(∞1, . . . ,∞t)/Ẽi) = T×R,

the support of Ẽi′/Ẽi is contained in T× R. We have to prove that Ẽi′/Ẽi is locally
free of rank d over SpecR around each∞j with δj = 1. Since (Ei, ti) is a generalized
D-elliptic sheaf over X ⊗K, coker j̃i,i′ 's are locally free of rank dδj over ∞j ×K for
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i′ = i+ (δ1, · · · , δt) with δj = 0 or 1. By categorical equivalence from Theorem 6.5,
we also know that Ẽi|X⊗K = Ei. Then, by Nakayama's lemma, we have

dδj ≤ dimκ

(
(Ẽi′/Ẽi)|∞j×R ⊗ κ

)
since we have a D-action on Ẽi′/Ẽi, we see that dimκ

(
Ẽi′/Ẽi

)
= dδj

We have ψ : Xrπ−1(B)×Y rBSpecK −→ (Xrπ−1(B))×FqSpecK. Then, by the

natural morphism SpecK −→ SpecR, we get the morphism ψ̃ : (Xrπ−1(B))×Y rB

SpecR −→ X r π−1(B)×Fq SpecR.

Assume that we have a morphism ψ̃ : S ′ −→ (X r Bad) ×k SpecR. We want
to show that (Ẽi, t̃i, ψ̃) is a generalized D-elliptic sheaf over X ⊗ R. There are two
cases:

(i) R′ · ϕ(M0) = M0

(ii) R′ · ϕ(M0) $M0.
We will show that in the �rst case the cokernel of t̃i is supported on the image

of ψ̃ and locally free of rank dt over R and if D is a division algebra second case
cannot occur.

Lemma 6.9. In the �rst case, the triple (Ẽi, t̃i, ψ̃) is a generalized D-elliptic sheaf
over SpecR.

Proof. The only thing remaining to show is that the coker ti has support on Imψ̃
and locally free of rank dt over R.

Consider the stalk of coker t̃i at the generic point Specκ′ of X⊗κ. Over Specκ′,
the coker t̃i is same as the coker ϕ̄ where ϕ̄ : M0/$M0 −→ M0/$M0. Since we are
in the �rst case and κ is perfect, ϕ̄ is surjective. So, Specκ′ /∈ Supp(coker t̃i), so
Specκ′ ( Supp(coker t̃i). Hence coker t̃i has support on Im ψ̃. We need to show that
coker t̃i is locally free of rank d · t over R. To show this we will use:

Lemma 6.10. Let f : X −→ Y be a proper morphism of locally Noetherian schemes,
F be a coherent sheaf on X which is �at over Y . Let Xy := X ×Y Speck(y) denote
the �ber over y of f and Fy denote the sheaf F ⊗OY k(y) on Xy where k(y) is the
residue �eld of y. Then the function Y −→ Z de�ned by

y 7→ χ(Fy) =
∑

(−1)p dimk(y)Hp(Xy ,Fy)

is locally constant on Y .

Proof. [38], Chapter II, Section 5, Corollary 1.

Now, consider the function SpecR −→ Z de�ned as in the previous lemma. Since
SpecR = {η, s}, the open sets containing s is ∅, {η}, SpecR. Then, as the function
χ is locally constant via previous lemma, we have that χ(Ẽi ⊗ κ) = χ(Ẽ). Then,
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dimκ t̃i ⊗ κ = χ(Ẽi+1)− χ(Ẽi) = χ(Ei+1)− χ(Ei) = dimK coker ti

Hence, coker t̃i is locally free of rank dt over R. Therefore (Ẽi, t̃i, ψ̃) is a general-
ized D-elliptic sheaf over SpecR.

Lemma 6.11. If D is a division algebra, the second case cannot occur.

Proof. The proof goes similarly as in [35]. Let M0,M0, ϕ, ϕ̄ be as before. In the
second case, ϕ̄ is neither surjective nor nilpotent. Let us consider the �ag of κ′-vector
spaces:

M0 ) Im ϕ̄ ) Im ϕ̄2 ) · · · ) Im ϕ̄n = Im ϕ̄n+1 = · · · )

which becomes stationary.
On the other hand Im ϕ̄i/ Im ϕ̄i+1 is a D ⊗ κ′-module, so its dimension over κ′

is divisible by d. Therefore, n ≤ d − 1. Moreover, if we put N = Im ϕ̄n then
dimN = rd where 0 < r < d.

Let E i := Ẽi|X⊗κ. The stalk of E i at the generic point of X ⊗ κ is M0. De�ne
F i ⊂ E i to be the locally free OX⊗κ-submodule generated by N , i.e, the maximal
locally free OX⊗κ-submodule of E i with stalk at the generic point N ⊂M0. Now, by
the maximality, F i is a D ⊗ κ-submodule of E i and we have the following diagram

E i �
� // E i′

F i �
� //

OO

F i′

OO

and F i+d deg∞ = F i(∞1, · · · ,∞t). Now, the quotients
(
F i′/F i

)
|(∞j)×κ are (D ⊗

k∞j
)⊗ κ-modules. Note that
rd deg(∞) = dim(F i/F i(−∞1, · · · ,−∞t) < dim(E i/E i(−∞1, · · · ,∞t) = d2deg(∞)

Hence there exists ij ∈ {i, · · · , i+ d deg∞− 1} such that(
F ij+1/F ij

)
|∞j⊗κ = 0. (5)

By using this observation we will prove there exists i for all j ∈ {1, · · · , t} such that(
F i′/F i

)
|∞j⊗κ = 0, i.e, F i = F i+1.

We want to remark that if we �x the jth entry of ij and change the other entries
of ij, the equation 5 still works. So, we may assume that all entries of ij is zero
except ij. Let i1 = (i11, 0, · · · , 0), i2 = (0, i22, · · · , 0), · · · , it = (0, · · · , 0, itt). We
de�ne i = (i11, · · · , itt) and we claim that

(
F i+1/F i

)
|∞j⊗κ = 0.

We want to recall that Ẽi is independent of i on the a�ne part. Then, we have:
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Ẽij |((XrT)∪∞j)⊗κ Ẽi|((XrT)∪∞j)⊗κ

E ij |((XrT)∪∞j)⊗κ E i|((XrT)∪∞j)⊗κ

F ij |((XrT)∪∞j)⊗κ

⊆

F i|((XrT)∪∞j)⊗κ

⊆

(6)
So, F ij = F i around ∞j. Now, consider the following diagram

E ij+1
� � // E i+1

E ij
� � //

>>

E i

==

Since F i ⊂ E i for each i ∈ Zt, we have a similar diagram for F i's:

F ij+1
� � // F i+1

F ij
� � //

==

F i

<<

(7)
We know by the Equation 5 that F ij+1/F i = 0 around ∞j. By Diagram 6 we

have F ij = F i around ∞j. Similarly, we have F ij+1 = F i+1. Then, in the previous
diagram around ∞j we have

F ij+1 F i+1

F ij F i

<<

which implies that
(
F i+1/F i

)
|∞j⊗κ = 0 for any j = 1, · · · , t.

Consider the following diagram

E i // E i′

σ∗E i−1

t̄i−1 ??

// σ∗E i′−1

??

F i

OO

F i′

OO

σ∗F i−1

OO

//

??

σ∗F i′−1

??

OO
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The dotted arrows in the diagram are de�ned via the maximality of F i's. So,
we have a morphism t : σ∗F i −→ F i whose stalk at the generic point is equal to
ϕ̄|N : N −→ N . Since ϕ̄|N is bijective, t is injective. As degF i = deg σ∗F i, we
conclude that t is an isomorphism. By Galois descent data, we conclude that F i is
of the form

F i = F ′ ⊗ κ

where F ′ is a locally free sheaf over X. Moreover, F ′ is a D-module and its rank over
OX is equal to rd = dimN . Then the generic stalk F ′F is a D-module of dimension
rd < d2 over F . If D is a division algebra such a module cannot exist.
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7 Adelic Level structures

We have de�ned level I-structures on a generalized D-elliptic sheaf for closed sub-
schemes I of X r Bad which is disjoint from T ∪ imψ in De�nition 2.15. Now, we
will de�ne level structures in the adelic point of view. The main tool for this section
is Lemma 2.24.

In Section 2, we have de�ned the t-invariant functor EI and in Theorem 2.22
we have shown that EI is a free H0(I,DI)-module of rank 1. Recall that B =

Γ (X r T,OX) and de�ne B̂ :=
∏

x∈Xr(T∪Bad) Bx. De�ne the functor

EB̂ : SchS −→ D(B̂)-modules

by T 7→ lim←−I′ EI′(T ) where the limit is taken over all closed subschemes I ′ ofXrBad
that are disjoint from T ∪ pr2(Γψ).

Remark 7.1. Note that

EB̂(S) ' lim←−
I′

EI′(S) ' lim←−
I′

Md(BI′/I
′) = D(B̂)

where BI′ := H0(I ′,OI′).

Suppose S is connected. Let ι : s −→ S be a geometric point. Since each
EI is representable by an étale scheme by Theorem 2.22 and EB̂ is an D(B̂)-
module, we may see EB̂ as an D(B̂)[π1(S, s)]-module ι∗EB̂(s). Consider the set
Isom(EB̂,D(B̂)) := IsomD(B̂)(ι

∗EB̂(s),D(B̂)) of isomorphism of D(B̂)-modules. By

de�nition, there is a right action of D(B̂) and a π1(S, s)-action from the left on
IsomB̂(EB̂,D(B̂)).

De�nition 7.2. Let H ⊂ D(B̂) be a compact open subgroup. An H-level structure

on a generalized D-elliptic sheaf E is an H-orbit in Isom(EB̂,D(B̂)) which is �xed
by π1(S, s).

Remark 7.3. 1. The condition to be �xed by π1(S, s) tells us that the level
structure is independent of the choice of the base point.

2. If H = ker(D(B̂) −→ D(I)) then an H-level structure is a level I-structure
(De�nition 2.15).

Now, we will modify the de�nition of an H-level structure. Let Af denote the
�nite adeles of the function �eld F of X. For a generalized D-elliptic sheaf E , de�ne
the functor

EAf : SchS −→ D(Af )-modules
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by T 7→ D(Af )⊗D(B̂) EB̂.
Assume S is connected and let ι : s −→ S be an algebraically closed point. As be-

fore, we may see EAf as anD(Af )[π1(S, s)]-module ι∗EAf (s). Consider Isom(EAf ,D(Af )) :=
Isom(ι∗EAf (s),D(Af )). Once more by de�nition, there is a right action of D(Af )
and a left action of π1(S, s) on this set.

De�nition 7.4. Let H ⊂ D(Af ) be a compact open subgroup. A rational H-level
structure on a generalizedD-elliptic sheaf E over S is anH-orbit in Isom(EAf ,D(Af ))
which is �xed by π1(S, s)

Remark 7.5. 1. Again the condition to be �xed by π1(S, s) implies that the
level structure is independent from the choice of the base point.

2. In Section 16, we will see that a quasi-isogeny will give us an H-level structure.
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Part II Divisible groups

The work on p-divisible groups is useful to study p-adic structure of abelian varieties
and their local study. In this chapter we will give an analogy of some of the main
objects such as p-divisible groups, Dieudonné modules and isocrystals that was used
by Rapoport-Zink [43], stating �rst the analogues de�nitions in abelian sheaf case
[23]. In the theory of Rapoport-Zink there are three main theorems and we will give
analogues of the �rst two:

1. Rigidity of quasi-isogenies of p-divisible groups

2. Serre-Tate theorem

3. Grothendieck-Messing theorem

In this part in each section, we will �rst consider the case when t = 1 and so X =
Y . So we will be looking at the D-elliptic sheaf case. Then, by using these objects,
we will de�ne the objects for generalized D-elliptic sheaf case. We will consider
certain analogues of p-divisible groups with D∞-action (resp, Dieudonné modules)
which we call z-divisible D∞-module (resp, Dieudonné D∞-modules) generalizing
the work of Hartl in [23], and de�ne the corresponding moduli functors. By using
z-divisible D∞-module , we will de�ne z-divisible D∞-modules.

8 Generalized z-divisible D∞-modules

First we will consider the case when t = 1 and X = Y . So we have only one
∞ ∈ |X|. In the classical case p-divisible groups are sequence of �nite �at group
schemes with certain conditions. Similarly, we will use �balanced group schemes�
de�ned by Poguntke in [42].

8.1 Balanced Group Schemes

This part is a summary of the �rst 5 sections of [42].
Let S = SpecR be an a�ne scheme over Fq. Denote by GrS the category whose

objects are �nite �at a�ne commutative group schemes over S locally of �nite
presentation.

An Fq-action on a group scheme G ∈ GrS is a ring homomorphism:

Fq −→ EndGrS G

Assume locally on S there exists an Fq-equivariant closed embedding G ↪→ GN
a

for some �nite set N . Such group schemes are called of Fq-additive type.
Let C denote the category of objects G ∈ GrS that are of Fq-additive type and

that in addition carry an Fq-action.
45



Take any G ∈ C. One can write G = SpecA. By using the group structure on
G, we have the following maps on A:

m : A −→ A⊗ A the co-multiplication map
η : A −→ R the augmentation(or co-unit) map
ι : A −→ A the co-inverse map

making A a Hopf algebra.

De�nition 8.1. Let G = SpecA be an a�ne group scheme over S = SpecR with
an Fq-action: Fq −→ EndGrS G. Let I := ker(η) be the augmentation ideal. Now,
we get an induced F∗q-action on I. The corresponding eigenspaces are:

Ij = {x ∈ I|α.x = αjx, ∀α ∈ F∗q}

for 0 < j < q where the multiplication on the LHS is the F∗q-action.

De�nition 8.2. 1. Let G = SpecA be an a�ne group scheme over S = SpecR.
De�ne the space of primitive elements of A as

Prim(A) = {x ∈ I|m(x) = x⊗ 1 + 1⊗ x}

2. De�ne Primj(A) := Prim(A) ∩ Ij

Remark 8.3. 1. One can write

I = ⊕q−1
j=1Ij.

By [48], Lemma 2, one can �nd orthogonal idempotents e1, . . . , eq−1 of End(I)
such that Ij = ejI.

2. Similar to (1), if PrimBG is �at, one can write PrimA = ⊕q−1
j=1 Primj A.

De�nition 8.4. For s ∈ N, de�ne the p-Frobenius map

fs : Primps A −→ Primps+1(A) as x 7→ xp

Proposition 8.5. Let G = SpecA ∈ C. The R-module PrimA is locally free and
ordG = prk(PrimA).

Proof. [42], Proposition3.6

Proposition 8.6. Primj A 6= 0 only if j = ps for some s ∈ N

Proof. [42], Theorem5.10

De�nition/Theorem. Let G = SpecA ∈ C. We say G is a balanced group scheme
if one of the following equivalent conditions hold:
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1. For 0 ≤ s < r − 1, the maps fs are bijective

2. The map de�ned by composition of p-Frobenius maps

f ′ : Prim1(A) −→ Primpr−1(A)

x 7→ xp
r−1

is injective.

3. The rank of Primps(A) as an R-module is same for all 0 ≤ s ≤ r − 1

4. The order of G is equal to qrankR(Prim1(A))

Proof. [42], Lemma 5.12

Remark 8.7. The balanced group schemes are categorically equivalent to �nite
locally free strict Fq-module schemes" as de�ned in [24]. A �nite locally free Fq-
module scheme G is a strict Fq-module scheme if it has a deformation carrying a
strict Fq-action which lifts the Fq-action on G. It is proved in [1] that �nite locally
free strict Fq-module schemes are categorically equivalent to the category of "�nite
Fq-shtukas" ( cf. Remark 9.3 below).

Example 8.8. Recall that q = pr. The group scheme αps := Spec(A[x]/(xp
s
)) for

s ∈ N with the usual Fq-action is balanced i� r|s.

Remark 8.9. Note that the additive group scheme is not in the category C since it
is not �nite, and so not a balanced group scheme.

Lemma 8.10. Let G,H ∈ C. If two of G,H and G × H are balanced, then so is
the third.

Proof. [42], Lemma 5.19

8.2 z-divisible D∞-module

Before we de�ne D∞-groups, we need to introduce some notation:
Notation: Let q∞ := qdeg∞. Recall that z is a uniformizer of OX,∞. Identify

its completion, O∞, with k∞[[z]] and F∞ with k∞((z)). Let ζ be an indeterminant
over k∞ and k∞[[ζ]] be the ring of formal power series. From now on, all base
schemes S will be schemes over Spec k∞[[ζ]]. Relate k∞[[z]] with k∞[[ζ]] by �xing the
characteristic map f : Spec k∞[[ζ]] −→ X such that f ∗(z) = ζ. We will use the
notation z as a uniformizer of OX,∞ and ζ as an element of OS.
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We denote by Nilpk∞[[ζ]] the category of schemes over Spf k∞[[ζ]], viz., the category
of schemes over Spec k∞[[ζ]] on which ζ is locally nilpotent.

Denote by k(d)
∞ the �eld extension of k∞ such that [k

(d)
∞ : k∞] = d. Let ∆ be the

central O∞-algebra k(d)
∞ [[Π]] where

Πl = z,Π.aq∞ = a.Π ∀a ∈ k(d)
∞

Let S ∈ Nilpk∞[[ζ]].

De�nition 8.11. 1. Let R be a ring. An R-module scheme over S is a �at
commutative S-group scheme E with a ring homomorphism

R −→ EndS(E).

2. An R-module scheme E is �nite of order r if E −→ S is �nite �at of degree r.

3. A morphism of R-module schemes is a morphism between underlying S-group
schemes which is compatible with the R-action.

De�nition 8.12. Let G be a commutative group scheme over S and let ε : S −→ G
be its unit section. Then ωG := ε∗Ω1

G/S is its co-Lie module.

De�nition 8.13. ([24], De�nition 7.1) Let h ∈ Z>0. A z-divisible group of height h
is an inductive system of �nite O∞-module schemes over S

(E1
i1−→ E2

i2−→ E3
i3−→ . . .)

such that for each integer n ≥ 1

1. En ' En+1[zn] where En+1[zn] := ker(zn : En+1 −→ En+1)

2. The underlying group scheme of En is a balanced group scheme(cf. Appendix
8.1), denote it by Gn

3. the order of En is qhn∞ ,

4. locally on S, there exists e ∈ Z>0 such that (z − ζ)e = 0 on ωE := lim←−ωEn .

A morphism of z-divisible groups over S is a morphism of inductive systems of
O∞-module schemes.

De�nition/Remark: By Lemma 8.2 and Theorem 10.7 in [24], ωE is a locally free
OS-module and the rank of ωE is locally constant on S. We de�ne the dimension
of E as rk(ωE)

Now, we will consider z-divisible groups with a D∞-action.
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De�nition 8.14. A z-divisible D∞-module of height h and dimension e is a z-
divisible group of height dh and dimension de with an O∞-algebra homomorphism
D∞ −→ EndO∞(E) extending the action of O∞.

Remark 8.15. Assume deg∞ = 1 and D∞ = O∞. Then, one can identify O∞
with Fq[[z]]. In this case, the z-divisible O∞-module is same as a z-divisible group
in De�nition 8.13

Remark 8.16. Our de�nition of z-divisible D∞-modules are similar to Tate and
called in the classical case Barsotti-Tate groups. In [37], Messing de�ned p-divisible
groups in the classical case in a di�erent, but equivalent, way than Tate in [50]. In
[24], Hartl and Singh, de�nes z-divisible groups following [37] so that it is an fppf
sheaf of Fq[[z]]-modules. Then, they show that it is equivalent to the De�nition 8.13.
Following [24], one can give a de�nition of z-divisible D∞-modules as in [37] and
then state that the two de�nitions are equivalent. Since it is technical and very
similar to the case [24], we will give the idea brie�y:

Let E = (En, in) be a z-divisible D∞-module. Then, G := lim−→n∈NEn de�nes us a
commutative fppf sheaf of groups. Now, G is z-divisible, i.e, the morphism z : G −→
G is an epimorphism. By condition (1) And G is z-torsion, i.e, G = lim−→n∈NGn where
Gn = ker(zn : G −→ G). Also, by the condition (2) in the de�nition of z-divisible
group, each Gn is representable by a balanced group scheme.

Remark 8.17. Let E be a z-divisible D∞-module over S. Then, pulling back E
under the morphism of schemes S ′ −→ S gives us a z-divisible D∞-module over S ′.
We will use this in Proposition 9.17.

Morita equivalence for z-divisible D∞-modules

Proposition 8.18. The category of z-divisible O∞-modules of height h and di-
mension d and z-divisible D∞-modules of height hd and dimension de are Morita
equivalent.

Proof. Let E = (En, in) be an z-divisible O∞-module over S. Consider the functor

E 7→ E ′ = (E ′n, i
′
n) := (En ⊗O∞ N, in ⊗O∞ N)

where N is the O∞-Md(O∞)- bimodule O1×d
∞ . Note that En ⊗N is same as taking

d copies En× · · · ×En of En, so En⊗N is �nite O∞-module scheme and the group
scheme underlying En ⊗ N is balanced(cf. Lemma 8.10). Therefore, we have an
inductive system

(E ′1
i′1−→ E ′2

i′2−→ E ′3
i′3−→ . . .)

of �nite O∞-module schemes. Note that z acts on each En⊗O∞N through only �rst
factor. And, there is an D∞ 'Md(O∞)-action on E ′ extending the action of O∞.
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Now, let us consider the order of E ′n. For simplicity, assume En := SpecAn
where An is a OS-module of rank qhn since ordEn = qhn. Now, OE′n = OEn×···×En =
An ⊗ · · · ⊗An where all operations are taken with d copies, the order of E ′n is qdhn.

Since ωE′ = ωE⊕···⊕E ' ωE ⊕ · · ·ωE, it follows that E ′ has dimension de.
Therefore, E ′ = (E ′n, i

′
n) is a z-divisible D∞-module.

A morphism of z-divisible D∞-modules is a morphism of z-divisible groups which
is compatible with the D∞-action. Let E = (En, in) and E ′ = (E ′n, i

′
n) be two z-

divisible D∞-modules. Denote by HomD∞(E,E ′) the set of morphisms E −→ E ′ of
z-divisible D∞-modules and EndD∞(E) := HomD∞(E,E).

Isogenies of z-divisible D∞-modules

De�nition 8.19. Let S be an Fq-scheme and X, Y be two OS-module schemes.
De�ne the sheaf HomS as U 7→ HomS(X(U), Y (U)) on the Zariski site over S. This
sheaf is called sheaf of germs of morphisms on S.

Recall that we can see z-divisible D∞-modules as fppf-sheaves Remark 8.16.
Now, we will de�ne isogenies of z-divisible D∞-modules by seeing them as fppf
sheaves.

De�nition 8.20. A morphism between two z-divisible D∞-modules E and E ′ is an
isogeny :⇔ it is an fppf-epimorphism between E and E ′ whose kernel is represented
by a �nite locally free group scheme.

Example 8.21. The multiplication by z on a z-divisible D∞-module E is an isogeny.
We will denote this isogeny by [z].

Remark 8.22. Note that the composition of two isogeny is again an isogeny.

Proposition 8.23. Let E and E ′ be two z-divisible D∞-modules over S. The group
of morphisms HomD∞(E,E ′) is torsion free k∞[[z]]-module.

Proof. Let Φ : E −→ E ′ be a morphism of z-divisible D∞-modules, i.e, Φ is an
inductive system of morphisms Φn : En −→ E ′n. Assume that

[z]nΦ = 0 for some n. (8)

Consider the diagram

En+m
[zn] //

Φm+n

��

Em

Φm
��

E ′n+m

[zn] // E ′m
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By assumption, we have [zn] ◦ Φn+m = 0 and hence Φm ◦ [zn] = 0. The latter
means im[zn] ⊂ ker Φm. Since [zn] is surjective, we see that Φm = 0 for all m ∈ N.
Hence, Φ = 0.

Now, we will de�ne quasi-isogenies for z-divisible D∞-modules.

De�nition 8.24. A quasi-isogeny ρ between two z-divisible D∞-modules E,E ′ is
a global section of the sheaf HomS(E,E ′) ⊗k∞[[z]] k∞((z)) of k∞((z))-modules on S
such that locally on S there exists an n ∈ Z for which znρ is an isogeny. Denote by
QIsogS(E,E ′) the set of quasi-isogenies between E and E ′.

De�nition 8.25. The category C of z-divisible D∞-modules up to isogeny has z-
divisibleD∞-modules as objects and all global sections of the sheaf HomS(E,E ′)⊗k∞[[z]]

k∞((z)) as morphisms.

Remark 8.26. Let E,E ′ be two z-divisible D∞-modules over S. Then, E and E ′

are isomorphic in C i� they are isogeneous. More precisely, let ρ : E −→ E ′ be an
isogeny. By de�nition we have an exact sequence

0 // H ι // E
f // E ′ // 0

where H denotes the kernel of f . Note that f ∈ HomS(E,E ′). We claim that
f ⊗ 1 ∈ HomS(E,E ′) ⊗k∞[[z]] k∞((z)) is an isomorphism of objects in C. The latter
holds i� ι ⊗ 1 = 0. We know that ordH is �nite, say n. Then, nι = 0. But then,
we have

ι⊗ 1 = ι⊗ n

n
= nι⊗ 1

n
= 0⊗ 1

n
= 0.

and hence f ⊗ 1 is an isomorphism.

De�nition 8.27. 1. Let ρ : E −→ E ′ be an isogeny between two z-divisible
D∞-modules over S. The rank of the kernel of ρ is a power of q. If the rank
is constant, say qh, we call h the height of the isogeny ρ.

2. Let ρ : E −→ E ′ be a quasi-isogeny between E,E ′. Then, by de�nition locally
on S there is n ∈ Z such that znρ is an isogeny. Let h be the smallest of such
n's. We de�ne h to be the height of the quasi-isogeny ρ.

Remark 8.28. 1. Note that the number h in item 2 need not to exist.

2. We want to remark that any isogeny or quasi-isogeny between two z-divisible
D∞-modules is, by de�nition, compatible with D∞-action.

Let ρ : E −→ E ′ be a quasi-isogeny of z-divisible D∞-modules. By de�nition,
locally on S, there exists n ∈ Z such that znρ is an isogeny. The question is: Is
there a characterization that will tell us when ρ is an isogeny itself to begin with?
The answer is given by the following lemma:
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Lemma 8.29. Let E = (En, in) and E ′ = (E ′n, i
′
n) be two z-divisible D∞-modules

over S. Let ρ : E −→ E ′ be a quasi-isogeny of z-divisible D∞-modules. Let n ∈ Z
such that znρ is an isogeny. Then

ρ is an isogeny ⇐⇒ znρ : E[n] −→ E ′[n] is the zero morphism

where E[n](resp, E ′[n]) denotes the kernel of multiplication by zn on E (resp. E ′).

Remark 8.30. 1. Note that in the lemma, the n that satis�es the considition
znρ to be an isogeny and the n in the condition znρ : E[n] −→ E ′[n] is the
zero morphism are same.

2. Let f : E −→ E ′ be a morphism of z-divisible D∞-modules. Note that since
E[n] ⊂ E and E ′[n] ⊂ E ′ we can restrict the morphism f on these subsets.
We denote both the restriction and the morphism on E and E ′ by f . So, one
can de�ne znf as the composition

E[n]
f // E ′[n] zn // E ′

Since f is a morphism of z-divisible D∞-modules, it sends E[n] to E ′[n] and
the composition znf is the zero morphism. The key point to say that the
composition is zero is the fact that E[n] mapped to E ′[n], i.e, f respects the
group structure.

Proof. (of Lemma 8.29) Let ρ be an isogeny. Then, by de�nition znρ is the zero
morphism on En.

Conversely, let us assume that

E[n]
ρ // E ′[n] zn // E ′[n]

is the zero morphism.
Assume for now that ρ is a morphism. Since [zn] is an isogeny, ker[zn] = E[n]

is �nite locally free group scheme. Since znρ is the zero morphism, we have ker ρ ⊂
ker(znρ) = E[n] and so ker ρ is also �nite locally free group scheme. So, we only
need to prove that ρ : E −→ E ′ is a morphism. We denote n-shift of E ′ by
E ′(n), i.e, E ′(n) = (E ′j−n, ij−n). The image of zn : E −→ E lies in E(n). Since
znρ : E[n] −→ E ′[n] is the zero morphism, we get an isogeny znρ : E −→ E ′(n).
And z−n : E ′(n) −→ E ′ is a morphism. Then, ρ = z−n ◦ znρ is composition of
morphisms, hence a morphism.

Proposition 8.31. Let α : E −→ E ′ be a quasi isogeny of z-divisible D∞-modules
over S. The functor de�ned on Nilpk∞[[ζ]] by

T 7→ {f ∈ Hom(T, S) | f ∗α is an isogeny }

is representable by a closed subscheme of S.
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The proof of this proposition will follow from the following lemma:

Lemma 8.32. Let α : E −→ F be a morphism of OS-modules on a scheme S.
Assume F is �nite locally free. The functor de�ned on SchS by

T 7→ {f ∈ Hom(T, S) | f ∗α = 0}

is representable by a closed subscheme of S.

Proof. [43], Lemma 2.10.

Proof. (of Proposition 8.31) Let α : E −→ E ′ be a quasi-isogeny of z-divisible D∞-
modules over S. Then, locally on S, there is an n such that znρ is an isogeny. Let
f : T −→ S be a morphism of schemes such that f ∗α is an isogeny. By Lemma 8.29,
it is equivalent to say that zn(f ∗α) is zero. Note that znf ∗α = f ∗(znα). But then
by Proposition 8.32, the functor is representable by a closed subscheme of S.

De�nition 8.33. ([23], De�nition 6.6) A z-divisible O∆-module over S is a z-
divisible group E over S with an action O∆ → EndO∞ E of O∆, which prolongs the
natural action of O∞. A morphism of z-divisible O∆-modules which is an isogeny
of z-divisible groups is called an isogeny.

Remark 8.34. The height and dimension of a z-divisible O∆-module is the height
and the dimension of the underlying z-divisible group.

De�nition 8.35. ([23], De�nition 6.7) A z-divisible O∆-module E which as a z-
divisible O∞-module is of height r` and dimension d` over S ∈ Nilp

Spf k
(`)
∞ [[ζ]]

is called

special if the action of O∆ induced on ωE, makes ωE into a locally free k(`)
∞ ⊗ OS-

module of rank d.

De�nition 8.36. (a)A z-divisible D∞⊗O∆-module over S of height h` and dimen-
sion e` is a z-divisible O∆-module E of height dh` and dimension de` together with
an action D∞ ⊗O∆ −→ EndS(E)

(b) A z-divisible D∞ ⊗ O∆-module E over S ∈ Nilp
Spfk

(d)
∞ [[ζ]]

of height hl and
dimension el is called special if the action of D∞ ⊗ O∆ makes ωE a locally free
k

(d)
∞ ⊗OS-module of rank e.

De�nition 8.37. 1. A morphism of z-divisible D∞⊗O∆-modules is a morphism
of z-divisible D∞-modules that respects the D∞ ⊗O∆-action.

2. A morphism of z-divisible D∞⊗O∆-modules which is an isogeny of z-divisible
D∞-module is called an isogeny
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8.3 Generalized z-divisible D∞-modules

We will extend the de�nition of z-divisible groups in the setting of generalized D-
elliptic sheaves. Denote by Ej the zj-divisible D∞j

-module at ∞j for j = 1, . . . , t.

Put D∞ =
∏t

j=1D∞j
and z = (z1, . . . , zt). Let k

(d)
∞j denote the �eld extension of

k∞j
of degree d and put q∞j

:= qdeg∞j . For each j = 1, . . . , t, de�ne the k∞j
-algebra

∆j := k
(d)
∞j((Πj)) where

Πd
j = zi,Πj · aq∞j = a · Πj for all a ∈ k(d)

∞j

Put ∆ :=
∏

∆j. Note that if t = 1 then ∆ is same as in the section of z-divisible
D∞-module (Section 8). Let S ∈ Nilpk∞[[ζ1,··· ,ζt]]

De�nition 8.38. A generalized z-divisible D∞-module over S is t-tuple

E = (E1, · · · , Et)

where each Ej is a zj-divisible D∞j
-module. Note that D∞ acts on E by acting on

j-component via the projection onto j-factor.

De�nition 8.39. Let E = (E1, · · · , Et) and E ′ = (E ′1, · · · , E ′t) be two generalized
z-divisible D∞-modules. A morphism f : E −→ E ′ is a t-tuple (f1, · · · , ft) of
morphisms of zj-divisible D∞j

-modules fj : Ej −→ E ′j.

De�nition 8.40. Let E = (E1, · · · , Et) and E ′ = (E ′1, · · · , E ′t) be two generalized
z-divisible D∞-modules over S.

1. An (quasi-)isogeny f : E −→ E ′ between E and E ′ is a t-tuple (f1, · · · , ft)
where each fj : Ej −→ E ′j is (quasi-)isogeny of zj-divisible D∞j

-modules Ej
and E ′j. We say E and E ′ are (quasi-)isogeneous if there is an (quasi-)isogeny
between them.

2. We denote the D∞-module of isogenies between E and E ′ by IsogS(E,E ′) and
by QIsogS(E,E ′) the D∞-module of quasi-isogenies.

Remark 8.41. The composition of two isogenies is again an isogeny.

De�nition 8.42. The category of generalized z-divisible D∞-modules up to isogeny
has z-divisibleD∞-modules as objects and all global sections of the sheaf HomS(E,E ′)⊗k(T )[[z]]

k(T )((z)) as morphisms.

As in the z-divisible D∞-module case, in this case also, we have the following:
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Morita equivalence

Recall that each ∞i is split, i.e, D∞i
' Md(O∞i

). Now, let E = (E1, · · · , Et) be
a generalized z-divisible D∞-module over S. By Morita equivalence of z-divisible
D∞-modules (Proposition 8.18), we have that each zi-divisible D∞i

-module Ei is
Morita equivalent to E ′i ⊗D∞i O

d×1
∞i

where E ′i is an zi-divisible O∞i
-module. So, we

have

E =
(
(E ′1 ⊗D∞1

Od×1
∞1

), · · · , (E ′t ⊗D∞t O
d×1
∞t

)
)
' (E ′1, · · · , E ′t)⊗D∞ (

∏
Od×1
∞i

)

where (E ′1, · · · , E ′t) is z-divisible O∞-module.

De�nition 8.43. 1. We say a generalized z-divisibleD∞-module E = (E1, · · · , Et)
is a generalized z-divisible D∞ ⊗O∆-module over S if each Ei is a zi-divisible
D∞i

⊗∆i-module.

2. A generalized z-divisible D∞ ⊗O∆-module E = (E1, · · · , Et) over S is called
special if each zi-divisible D∞i

⊗∆i-module Ei is special.

De�nition 8.44. Let E = (E1, · · · , Et) and E ′ = (E ′1, · · · , E ′t) be two generalized
z-divisible D∞ ⊗ O∆-modules over S. A morphism (resp., isogeny, quasi-isogeny)
between E and E ′ is a t-tuple of morphisms (resp., isogeny, quasi-isogeny) between
zi-divisible D∞i

⊗O∆i
-modules Ei and E ′i.
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9 Generalized Dieudonné D∞-modules

9.1 Dieudonné D∞-modules

First we will de�ne Dieudonné D∞-modules for t = 1 case. Denote the structure
sheaf of the completion of X × S along ∞× V (ζ) by O∞⊗̂OS. Let S ∈ Nilpk∞[[ζ]].
We extend the map σ∗ on S to O∞⊗̂OS as follows:

σ∗(x) = xq for x ∈ OS and σ∗ = id otherwise.

Now, de�ne σ∗M = M ⊗O∞⊗̂OS ,σ∗ (O∞⊗̂OS).

De�nition 9.1. 1. ([24], De�nition 2.4) A Dieudonné O∞-module over S of di-
mension e and rank r is a pair (M,F ) where

(i) M is a locally free sheaf of O∞⊗̂OS-modules of rank r and

(ii) F : σ∗M −→M is an O∞⊗̂OS-module homomorphism where cokerF is
locally free of rank e as an OS-module.

2. A Dieudonné D∞-module of rank r and dimension e over S is a Dieudonné
O∞-module M = (M,F ) of rank rd and dimension ed over S together with
an O∞-algebra homomorphism D∞ −→ End(M) extending the action of O∞
and which F is compatible with D∞-action.

A morphism of Dieudonné modules is a morphism of locally free O∞⊗̂OS-
modules which is compatible with F and the D∞-action.

Remark 9.2. If deg∞ = 1 and D∞ = O∞, a Dieudonné D∞-module is nothing
but Dieudonné O∞-module.

Remark 9.3. ([24], ex 2.8) For every Dieudonné O∞-module M = (M,F ) over S
of rank r, we have M = lim←−(M/znM,F mod znM) where M/znM considered as
locally free OS-module of rank rn and F mod znM is an OS-module homomorphism
for every n ∈ N.

Morita equivalence for Dieudonné Modules

Let M = (M,F ) be a dieudonné O∞-module of rank r and dimension e. De�ne
M ′ = (M ′, F ′) as follows:

M ′ := M ⊗O∞ N

and
F ′ := F ⊗O∞ N
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where N = O1×d
∞ is an O∞-Md(O∞)-bimodule. Since ∞ is unrami�ed, we have

D∞ ' Md(O∞). So, M ′ is a locally free (O∞⊗̂OS)-module of rank r · d with D∞-
action and F ′ is a (O∞⊗̂OS)-module homomorphism that respects the D∞-action
with cokerF ′ ' cokerF⊕d. So, we have:

Proposition 9.4. The category of Dieudonné O∞ -modules of rank r and dimension
e is equivalent to the category of Dieudonné D∞-modules of rank r ·d and dimension
e · d.

Theorem 9.5. ([24], Theorem 8.3)
The functor E 7→ (ME, FE) gives an anti-equivalence between categories of O∞-

z-divisible groups of height h and dimension d over S and Dieudonné O∞-modules of
rank h and dimension d over S. Furthermore, the OS[[z]]-modules ωE and cokerFE
are isomorphic.

Proof. Let S ∈ Nilpk∞[[ζ]] and let Ga = SpecOS[[ξ]] be the additive group scheme
over S. There is a Frobenius endomorphism on Ga de�ned by Frob∗qξ = ξq. Let
E = (En, in) be an O∞-z-divisible group over S. De�ne the sheaf on S

ME := lim←−HomS(Gn,Ga)

where Gn is the balanced group scheme underlying En for each n. We make ME

a sheaf of OS[[z]]-modules by the multiplication by z on E, which is locally free by
[24], Lemma 8.1. Moreover, composition with σ de�nes a map

FME
: σ∗ME −→ME, f 7→ σ ◦ f (9)

So, (ME, FE) is a Dieudonné O∞-module.
Let (M,F ) be a Dieudonné O∞ module. By Remark 9.3, M = lim←−(M/znM).

Put Mn := M/znM
Claim: EM = lim−→ Spec(Sym(Mn)/fn) is a z-divisible group where SymMn de-

notes the symmetric algebra of Mn and fn is the ideal (x⊗q − Fnx|x ∈Mn)
Proof : One can easily see that the kernel of the map zn : Mn+1 −→ Mn+1 is

Mn. We need to show that for each n ≥ 1, Spec(Sym(Mn)/fn) is a balanced group
scheme. The comultiplication and the Fq-action are given by

∆(x) = x⊗ 1 + 1⊗ x and α.x = αx

Via the surjective map SymMn � SymMn/fn, we get an embedding

Spec(SymMn/fn) ↪→ GN
a

for some set N . Moreover, the products {
∏
xmii } where xi ∈ Mn and mi ∈

{0, . . . , q − 1} form a basis of SymMn/fn. Therefore, ord(Sym(Mn)/fn) = qrankMn ,
hence Spec(SymMn/fn) is a balanced group scheme over S by De�nition 8.1, (iv).
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This also gives us the third condition since rankOSMn = hn. The last condition
follows from [24], Theorem 8.3(e).

Corollary 9.6. The functor E 7→ (ME, FE) gives an anti-equivalence between cate-
gories of z-divisible D∞-modules of height h and dimension d over S and Dieudonné
D∞-modules of rank h and dimension d over S. Furthermore, the O∞⊗̂OS-modules
ωE and cokerFE are isomorphic.

Proof. Let E = (En, in) be a z-divisible D∞-module over S. Then by Morita equiv-
alence, (En, in) = (E ′n ⊗O∞ N, i′n ⊗ id) where (E ′n, i

′
n) is an O∞-z-divisible group

and N = Od×1
∞ . By Theorem 9.5, there is a Dieudonné- O∞-module (M,F ). So, by

Morita equivalence we get the Dieudonné D∞-module (M ⊗O∞ O1×d, F ⊗O∞ O1×d)
corresponding to the z-divisible D∞-module (En, in).

Conversely, let M = (M,F ) be a Dieudonné D∞-module. We can express M as
(M ′ ⊗O∞ N,F ′ ⊗O∞ N) where (M ′, F ′) is a Dieudonné O∞-module and N = Od×1

∞ .
Then, by Theorem 9.5, there exists a O∞-z-divisible group E = (En, in). By Morita
equivalence there we get a z-divisible D∞-modules (En ⊗O∞ Od×1

∞ , in ⊗O∞ Od×1
∞ ).

To get the classi�cation of p-divisible groups in the classical case, one works with
isocrystals. In [23], the isocrystals are de�ned in the case of abelian sheaves:

De�nition 9.7. A Dieudonné Fq((z))-module over S is a tuple (M,F ) where M is
�nite locally free OS[[z]][1/z]-module and F : σ∗M −→M is an isomorphism

Example 9.8. Let (M,F ) be a Dieudonné Fq[[z]]-module over S. Its corresponding
Dieudonné Fq((z))-module is :

M [1/z] :=
(
M ⊗OS [[z]] OS[[z]][1/z], F ⊗ id

)
We de�ne the quasi-isogeny between two Dieudonné Fq[[z]]-modules by using

their isocrystals:

De�nition 9.9. A quasi-isogeny between Dieudonné Fq[[z]]-modules f : (M,F ) −→
(M ′, F ′) is an isomorphism of the corresponding Dieudonné Fq((z))-modules

f : M ⊗OS [[z]] OS[[z]][1/z]
∼−→M ′ ⊗OS [[z]] OS[[z]][1/z]

such that f ◦ F = F ′ ◦ σ∗(f).

By using Morita equivalence we can also de�ne a quasi-isogeny between Dieudonné
D∞-modules M and M ′ by using the isocrystals of the corresponding Dieudonné
O∞-modules:
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De�nition 9.10. 1. LetN,N ′ be two Dieudonné D∞-modules. Then, by Morita
equivalence N = M ⊕ · · · ⊕M and N ′ = M ′ ⊕ · · · ⊕M ′ for some Dieudonné
O∞-modules M,M ′. A quasi-isogeny f : N −→ N ′ is an isomorphism (M ⊕
· · ·⊕M)[1/z] −→ (M ′⊕· · ·⊕M ′)[1/z] which is compatible with the D∞-action.

2. We will denote the group of quasi-isogenies between two Dieudonné D∞-
modules M and M ′ by QIsogD∞(M,M ′).

Remark 9.11. Note that the map E 7→ (ME, FE) in Theorem 9.6 sends isogenies
to isogenies and quasi-isogenies to quasi-isogenies.

Now, we can de�ne the Newton polygon of a Dieudonné Fq[[z]]-module. For this
we need the slope decomposition as in the classical case.

Let m/n be a rational number written in lowest term with n ≥ 0. De�ne the
Dieudonné Fq[[z]]-module V(m/n) = (V , F ) over S = SpecFq as follows:

V = (Fq((z)))n , F =

 0 . . . zm

1 . . . .... . . . . .
1 0

 · σ∗ : σ∗V → V .

As an analogue to the classical case as in [43], we have the following

Theorem 9.12. ([23], Theorem 7.6) Let K be an algebraically closed �eld with
SpecK ∈ NilpFq [[ζ]]. Then, every Dieudonné Fq[[z]]-module (M,F ) over SpecK is
isomorphic to a decomposition

⊕i V(mi/ni)⊗K((z)) (10)

where m1/n1 ≤ m2/n2 ≤ . . . are determined uniquely. The Dieudonné Fq[[z]]-
modules V(mi/ni) are called the component of slope mi/ni.

Let M = (M,F ) be a Dieudonné Fq[[z]]-module over SpecK where SpecK ∈
NilpFq [[z]]. By Theorem 9.12, we know that over an algebraically closed extension
of K, the module M decomposes as (10). Then, the Newton polygon of M is the
polygon passes through the points

(n1 + · · ·+ ni,m1 + · · ·+mi)

for all i and extend linearly between these points.

Remark 9.13. The Newton polygon begins at (0, 0) and ends at (rk(M), dim(M)).

De�nition 9.14. 1. Let M = (M,F ) be a Dieudonné Fq[[z]]-module over S =
SpecK where K is a �eld. We say M is isoclinic if M has only one slope
appearing in the slope decomposition.
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2. Let M = (M,F ) be a Dieudonné D∞-module. then, by Morita equivalence
there is a Dieudonné O∞-module M ′ such that M = M ′ ⊗D∞ Od×1

∞ . We say
that M is isoclinic if its corresponding Dieudonné O∞-module is isoclinic.

Similarly, one can de�ne a Hodge polygon ofM over S = SpecK ∈ NilpFq [[z]]. The
Hodge polygon of a Dieudonné Fq[[z]]-module is de�ned by the elementary divisors of
the K[[z]]-module cokerF . The Hodge polygon has same initial and terminal point
as the Newton polygon. An analogue of a theorem of Grothendieck-Katz ([30]) and
Katz's constancy theorem([27], Theorem 2.7.1) in the function �eld world is stated
in [23].

Let M be a Dieudonné D∞-modules over S. For a morphism f : S ′ −→ S in
Nilpk∞[[ζ]] we can de�ne the pullback of M = (M,F ) to the Dieudonné D∞-module

(M ⊗O∞⊗̂OS (O∞⊗̂OS′), F ⊗ id)

over S ′. We have the following rigidity theorem for Dieudonné D∞-modules:

Proposition 9.15. Let M and M ′ be two Dieudonné O∞-modules over S. We
denote the group of quasi-isogenies between M and M ′ by QIsogS(M,M ′). Let
ι : S̄ ↪→ S be a closed scheme de�ned by a sheaf of ideals I that is locally nilpotent.
Then,

QIsogS(M,M ′) −→ QIsogS̄(ι∗M, ι∗M ′)

is a bijection.

Proof. We may assume that Iq = (0). Then, the Frobenius morphism FrobS : S −→
S factors as

S
j // S̄

ι // S
where j : S −→ S̄ is the identity map between the underlying topological spaces
|S̄| = |S|. On the structure sheaves, we have

OS ι∗ // OS̄
j∗ // OS

de�ned by x 7→ x mod I 7→ xq. So, we have σ∗f = j∗(ι∗f) for f ∈ QIsogS(M,M ′).
We have the diagram

M
f //M ′

σ∗M
j∗ι∗f //

F

OO

σ∗M ′

F ′

OO

Let f, g ∈ QIsogS(M,M ′) such that ι∗f = ι∗g. Via a similar diagram as above
we have

f ◦ (F ⊗ id) = (F ⊗ id) ◦ j∗ι∗f = (F ⊗ id) ◦ j∗ι∗g = g ◦ (F ⊗ id)
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where the last equality comes from considering a diagram as above for the quasi-
isogeny g. Hence, we have f = g, which shows the injectivity. The surjectivity
also follows directly from the diagram above and the fact that σ∗f = j∗ι∗f for a
quasi-isogeny f .

Proposition 9.16. Let N,N ′ be two Dieudonné D∞-modules over S. Let ι : S̄ ↪→ S
be a closed subscheme de�ned by locally nilpotent sheaf of ideals. Then,

QIsogD∞(N,N ′) −→ QIsogD∞(ι∗N, ι∗N ′)

Proof. Let f ∈ QIsogD∞(N,N ′) be any. by de�nition f gives us a quasi-isogeny
g : M −→ M ′ of Dieudonné O∞-modules such that fD∞ = D∞f . By Proposition
9.15, we have ḡ ∈ QIsogS(ι∗M, ι∗M ′) with ḡD∞ = D∞ḡ. By using ḡ we get an
f̄ ∈ QIsogD∞(ι∗M, ι∗M ′).

By Remark 9.11, we can rewrite the rigidity theorem as follows:

Proposition 9.17. Let E and E ′ be two z-divisible D∞-modules over S. Let ι :
S̄ −→ S be a closed subscheme of S de�ned by a sheaf of ideals that is locally
nilpotent. Then,

QIsogS(E,E ′) −→ QIsogS̄(ι∗E, ι∗E ′)

is a bijection.

By using this theorem, we can prove the rigidity for generalized D∞-z-divisible
groups:

Theorem 9.18 (Rigidity theorem). Let ι : S ′ −→ S be a closed subscheme de�ned
by a locally nilpotent sheaf of ideals. Let E and E ′ be two generalized D∞-z-divisible
groups. Then, every (quasi-)isogeny ρ′ : ι∗E −→ ι∗E ′ lifts uniquely to a (quasi-
)isogeny ρ : E −→ E ′.

Proof. Let ρ′ : ι∗E −→ ι∗E ′ be a quasi-isogeny between generalized D∞-z-divisible
groups E = (E1, · · · , Et) and E ′ = (E ′1, · · · , E ′t) where each Ei and E ′i is a D∞i

-z-
divisible groups. Then, by de�nition we have quasi-isogenies ρ′i : ι∗Ei −→ ι∗E ′i. By
Theorem 9.17, ρ′i lifts uniquely to a quasi-isogeny ρi : Ei −→ E ′i. Hence, ρ′ liftly
uniquely to a quasi-isogeny ρ := (ρ1, · · · , ρt).
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9.2 Generalized Dieudonné D∞-modules

Let S be as before. Denote the formal completion of X × S along the closed sub-
scheme T× S by X̂ × ST×S

. Then,

X̂ × ST×S
=
∐

Spf(O∞i
⊗̂OS)

Let us denote the structure sheaf of the completion of X × S along the closed
subscheme {∞j} × V (ζj) by O∞j

⊗̂OS where j ∈ {1, . . . , t}.

De�nition 9.19. A generalized Dieudonné D∞-module of rank r and dimension e
M over S is t-tuple (M1, · · · ,M t) of Dieudonné D∞j

-modules M j = (Mj, Fj) of
rank r and dimension e for j = 1, · · · , t.

De�nition 9.20. LetM = (M,F ) =
(
(M1, F1), · · · , (Mt, Ft)

)
andM ′ = (M ′, F ′) =(

(M ′
1, F

′
1), · · · , (M ′

t , F
′
t)
)
be two generalized Dieudonné D∞-modules over S.

1. An (quasi-)isogeny between two generalized Dieudonné D∞-modules M and
M ′ is a t-tuple of (quasi-)isogenies between Dieudonné D∞j

-modules.

2. We denote the set of quasi-isogenies between two generalized Dieudonné D∞-
modules M and M ′ by QIsog(M,M ′).

Theorem 9.21. There is a categorical equivalence between the category of general-
ized D∞-z-divisible groups and the category of generalized Dieudonné D∞-modules.

Proof. The proof follows from the fact that a generalized D∞-z-divisible group (resp.
a generalized Dieudonné D∞-module) is tuples of D∞j

-zj-divisible groups (resp.
Dieudonné D∞j

-modules) and Theorem 9.5.

Remark 9.22. Similar in the D-elliptic sheaf case, Theorem 9.21 sends quasi-
isogenies to quasi-isogenies.

Morita Equivalence

Let (M,F ) =
(
(M1, F1), · · · , (Mt, Ft)

)
be a generalized Dieudonné D∞-module. We

know that each (Mi, Fi) is Morita equivalent to a Dieudonné O∞i
-module (M ′

i , F
′
i ).

Hence, (M,F ) is Morita equivalent to
(
(M ′

1, F
′
1), · · · , (M ′

t , F
′
t)
)
.
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10 Generalized Formal D∞-elliptic sheaves

10.1 Formal D∞-elliptic sheaves
We are back to the case when X = Y . Let S ∈ Nilp

k
(d)
∞ [[ζ]]

. Recall that we denote

the structure sheaf of the completion of X×S along∞×V (ζ) by O∞⊗̂OS. Denote
the sheaf O∆ ⊗O∞ (O∞⊗̂OS) on S by O∆⊗̂OS.

De�nition 10.1. (a) ([23], De�nition 7.11)Let S ∈ Nilp
k

(d)
∞ [[z]]

. A formal abelian

sheaf of rank r and dimension e over S is a sheaf F̂ of O∆⊗̂OS-modules on S
together with an isomorphism of O∆⊗̂OS-modules F : σ∗F̂ −→ F̂ such that
(F̂ , F ) is a Dieudonné O∞-module over S of rank r` and cokerF is locally free
of rank e as an k(`)

∞ ⊗OS-module.

(b) A morphism of formal abelian sheaves is a morphism of the corresponding
Dieudonne O∞-modules.

De�nition 10.2. Let S ∈ Nilp
k

(d)
∞ [[ζ]]

. A formal D∞-abelian sheaf over S of rank
r and dimension e is a formal abelian sheaf of rank rd and dimension ed with an
O∞-algebra homomorphism D∞ −→ End(F̂).

Remark 10.3. 1. Let F̂ = (F̂ , F ) be a formal D∞-abelian sheaf. Then, F has
an (D∞⊗O∞O∆)⊗̂OS-action and so F respects the (D∞⊗O∞O∆)⊗̂OS-action.

2. We want to note that a formal D∞-abelian sheaf is in particular a Dieudonné
D∞-module.

De�nition 10.4. A morphism of formal D∞-abelian sheaves is a morphism of
Dieudonné D∞-modules that is compatible with the (D∞ ⊗O∞ O∆)⊗̂OS-module
action and the D∞-action.

We can extend Theorem 9.6 to special z-divisible D∞ ⊗O∞ O∆-modules and
formal D∞-elliptic sheaves:

Theorem 10.5. The functor E 7→ (ME, FE) is an anti-equivalence of categories
between the category of special z-divisible D∞ ⊗ O∆ of height rl and dimension el
and the category of formal D∞-abelian sheaf of rank r and dimension e.

Proof. We know by Theorem 9.6 that the category of z-divisible D∞-modules and
the category of Dieudonné D∞-modules are anti-equivalent and cokerF and ωE are
isomorphic. The condition on ranks of cokerF and ωE as k(`)

∞ ⊗OS-modules follows
immediately.
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De�nition 10.6. An (quasi-)isogeny of formal D∞-abelian sheaves is an (quasi-
)isogeny between the corresponding Dieudonné D∞-modules that are compatible
with the (D∞ ⊗O∆)⊗̂OS-module action and the D∞-action.

In the next example we will construct a formal D∞-abelian sheaf associated to a
D-elliptic sheaf. We will call this formal D∞-abelian sheaf associated to a D-elliptic
sheaf formal D∞-elliptic sheaf. In the classical case, one can obtain a p-divisible
group associated to an abelian variety. By this construction, we will get the z-
divisible D∞-module associated to a D-elliptic sheaf.

Construction 10.7. Let S ∈ Nilpk∞[[ζ]] and E = (Ei, ji, ti) be a D-elliptic sheaf over
S. Assume deg(∞) = m, so k∞ = Fqm . We will denote by σ∞ = σ|Fqm the relative
Frobenius with respect to Fqm and σ = idX ×σ∞.

Since deg∞ = m the periodicity of the D-elliptic sheaf E is dm. Assume there
is a morphism β : S −→ Spec k

(d)
∞ [[ζ]]. We will de�ne the formal D∞-elliptic sheaf

corresponding to the D-elliptic sheaf E . Now, we de�ne

E∞i := Ei ⊗OX×S (O∞⊗̂FqOS)

We want to note that E∞i 's have periodicity dm since Ei's have periodicity dm.
Note that there is a D∞ = D ⊗OX O∞-action on each E∞i as D and O∞ acts on Ei
and O∞⊗̂OS, respectively. We can de�ne the maps j∞i and t∞i via the morphisms
ji and ti's of E :

j∞i : E∞i −→ E∞i+1

t∞i : σ∗E∞i −→ E∞i+1

We put
E∞ = (E∞i , j∞i , t∞i )

De�ne Ẽ∞ := (Ẽ∞i , j̃∞i : Ẽ∞i −→ Ẽ∞i+1, t̃
∞
i : σ∗Ẽ∞i −→ Ẽi+1) as follows:

Ẽ∞i := E∞mi,

j̃∞i := j∞mi+m−1 ◦ · · · ◦ j∞mi : E∞mi −→ E∞mi+m (11)

and

t̃∞i : (σ0)∗t∞mi+m−1 ◦ · · · ◦ (σm−1)∗tmi : σ∗E∞mi −→ E∞mi+m (12)

We want to note that Ẽ∞ has periodicity d by de�nition. Now, de�ne

Ê := ⊕d−1
i=0 Ẽ∞i
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We let λ ∈ kd∞ act on Ẽ∞i as the scalar β∗λq
i
. De�ne F : σ∗Ê −→ Ê by 12. We can

express Π, λ and F as block matrices:

Π =


0 . . . zj̃∞d−1

j̃∞0
. . . .... . . . . .

j̃∞d−2 0

 , λ =


β∗λ Idd

β∗λq Idd . . .
β∗λq

d−1
Idd

 and

F =


0 . . . zt̃∞d−1

t̃∞0
. . . .... . . . . .

t̃∞d−2 0

 .

It can be easily seen that FΠ = ΠF and FΛ = ΛF . Then, Ê is a sheaf of
O∆ ⊗OS-modules. Moreover we have:

1) Ê has rank d3 over O∞⊗̂OS,

2) cokerF has rank d2 over OS,

3) cokerF has rank d over k(d)
∞ ⊗OS.

Now, via 1) and 2), (Ê , F ) is a Dieudonné D∞-module of rank d3 and dimension
d2. And, via 3) we conclude that (Ê , F ) is a formal D∞-elliptic sheaf.

Remark 10.8. Any quasi-isogeny of a D-elliptic sheaf induces a quasi-isogeny of a
formal D∞-elliptic sheaf.

Remark 10.9. We can reconstruct E∞ from a given Ẽ∞. For this we will use the
fact that there is a D∞⊗̂OS-action on Ẽ∞. Note that we have

D∞⊗̂FqOS = (D ⊗Fq Fqm)⊗̂FqmOS = (D∞e1 ⊕ · · · ⊕ D∞em)⊗̂OS

Now let Ẽ∞ = (Ẽ∞, j̃∞, t̃∞i ) be as in the Construction 10.7. More precisely, recall
that Ẽ∞i = F∞mi. De�ne for j ∈ {0, · · · ,m− 1}

E∞mi+j = ⊕j−1
j′=0(σj

′
)∗Ẽ∞i+1ej′ ⊕⊕m−1

j′=j (σj
′
)∗Ẽ∞i ej′ .

Then, we have E∞mi+j ⊂ E∞mi+j+1 because (σj)∗Ẽ∞i ⊂ (σj)∗Ẽ∞i+1 and we de�ne j∞i as
the inclusion E∞mi+j ⊂ E∞mi+j+1. Now, we will de�ne t

∞
i 's. First observe that

σ∗(E∞mi+j) =
(
⊕jj′=1 (σj)∗Ẽ∞i+1ej′

)
⊕
(
⊕m−1
j′=j+1 (σj

′
)∗Ẽ∞i ej′

)
⊕ (σm)∗Ẽ∞i e0
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Now, note that t̃∞i is de�ned from the last compontent (σm)∗Ẽ∞i e0 of (σm)∗Ẽ∞i
to Ẽ∞i+1. Hence, we can de�ne t∞i : σ∗E∞i −→ E∞i+1 as the identity on the �rst m− 1

components and as t̃∞i on the last component. Therefore we have (E∞i , j∞i , t∞i ).

Remark 10.10. 1. A formal D∞ abelian sheaf Ê = (Ê , F ) carries an action of
O∆. The latter contains k

(`)
∞ as a sub�eld. Denote this action by ϕ. We can

therefore decompose Ê into eigenspaces for the k(`)
∞ -action as follows:

Ẽi := {α ∈ Ê | ϕ(λ) · α = β∗λq
i

α, ∀λ ∈ k(`)
∞ }

Then, Ê = ⊕`i=1Ẽi. Note that if Ê is constructed from a D-elliptic sheaf E and
d = `, these eigenspaces recover precisely Ẽ∞ in the Construction 10.7.

2. Let Ê = (Ê , F ) and Ê
′
= (Ê ′, F ′) be two formal D∞-elliptic sheaf. Let f̂ : Ê −→

Ê
′
be a quasi-isogeny. By (1), we can write Ê = ⊕`i=1Ẽi and Ê ′ = ⊕`i=1Ẽ ′i . By

de�nition, f̂ commutes with the O∆-action, in particular with the k(d)
∞ -action.

Therefore, f̂ sends Ẽi to Ẽ ′i . This means that quasi-isogenies between formal
D∞-elliptic sheaves is componentwise.

Proposition 10.11. The category of formal O∞-elliptic sheaves of rank r and di-
mension e is Morita equivalent to the category of formal D∞-elliptic sheaves of rank
r and dimension e.

Proof. Let (Ê , F ) be a formal O∞-elliptic sheaf of rank r and dimension e. Then,
(Ê , F ) is a Dieudonné O∞-module of rank r` and dimension e`. Similar to the
previous sections, de�ne

(Ê ′, F ′) = (Ê ⊗ O1×d
∞ , F ⊗ id).

By Morita equivalence for Dieudonné D∞-modules, (Ê ′, F ′) is a Dieudonné D∞-
module of rank r` · d and dimension e`. Now, the fact that cokerF ′ is locally free
of rank ed over k(`)

∞ ⊗OS follows.

De�nition 10.12. We say a formal D∞-elliptic sheaf is isoclinic if it is isoclinic as
a Diedonné D∞-module.

Theorem 10.13. Let Ê = (Ê , F ) be a formal D∞-elliptic sheaf over S. Then, Ê is
isoclinic.

Proof. By Morita equivalence of D∞-elliptic sheaves we can write Ê ' F̂ ⊗ Od×1
∞

where F̂ is a formal O∞-elliptic sheaf. Since dim F̂ = 1 and rkF̂ = d, there is only
one choice of slope in the decomposition. Therefore, Ê has only one slope in its slope
decomposition, hence isoclinic.
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10.2 Generalized Formal D∞ elliptic sheaves

Now, we are in the situation that π : X −→ Y is of degree t ≥ 1.
Let S ∈ Nilp

k
(d)
∞ [[ζ1,··· ,ζt]]

.

De�nition 10.14. A generalized formalD∞-abelian sheaf Ê of rank r and dimension
e is t-tuple (Ê1, · · · , Ê t) of formal D∞j

-abelian sheaves of rank r and dimension e
for j = 1, · · · , t.

De�nition 10.15. A morphism(resp, (quasi)-isogeny) f : Ê −→ F̂ between two
generalized formal D∞-abelian sheaves Ê = (Ê1, · · · , Ê t) and F̂ = (F̂1, · · · , F̂ t) is
t-tuple (f1, · · · , ft) where each fj : Ê j −→ F̂ j is a morphism (resp, (quasi)-isogeny)
of formal D∞j

-abelian sheaves.

Remark 10.16. (Morita equivalence) Let S ∈ Nilp
k

(d)
∞ [[ζ1,··· ,ζt]]

and let Ê = (Ê , F ) =(
(Ê1, F1), · · · , (Êt, Ft)

)
be a generalized formal D∞-elliptic sheaf over S. By Propo-

sition 10.11, we know that each (Êj, Fj) is Morita equivalent to a formal O∞j
-elliptic

sheaf (Ê ′j, F ′j). So, Ê is Morita equivalent to ((Ê ′1, F ′1), · · · , (Ê ′t, F ′t)).

Theorem 10.17. The category of generalized formal D∞-elliptic sheaves is anti-
equivalent to the category of generalized special z-divisible D∞ ⊗O∆-modules.

Proof. Let E = (E(1), · · · , E(t)) be a generalized special z-divisibleD∞⊗O∆-module,
i.e, each E(j) is a special zj-divisible D∞j

⊗∆j-module. By Theorem 10.5, we know
that via the functor E 7→ (ME, FE) the category of special z-divisible D∞ ⊗ O∆-
modules is anti-equivalent to the category of formal D∞-elliptic sheaves. By using
this functor at each component we see that the category of generalized z-divisible
D∞⊗O∆-modules is anti-equivalent to the category of generalized formal D∞-elliptic
sheaves.

Construction 10.18. : Let S ∈ Nilpk∞[[ζ1,··· ,ζt]] and let E = (Ei, ti) be a generalized
D-elliptic sheaf over S. We will denote the structure sheaf of the formal completion
of X ×S along the closed subscheme∞j ×V (ζj) by O∞j

⊗̂OS for each j = 1, · · · , t.
Assume deg(∞j) = m, so k∞j

= Fqm . We will denote by σ∞j = σ|Fqm the
relative Frobenius with respect to Fqm and σ = idX ×σ∞. Since deg∞ = m the
periodicity of the D-elliptic sheaf E is dm. Assume there is a morphism β : S −→
Spec k

(d)
∞ [[ζ1, · · · , ζt]]. Now, for each j = 1, · · · , t by proceeding as in the Construction

10.7 we get formal D∞j
-elliptic sheaves Ê

(j)
. Hence

Ê = (Ê
(1)
, · · · , Ê

(t)
)

is the generalized formalD∞-elliptic sheaf corresponding to the generalizedD-elliptic
sheaf E .
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Remark 10.19. Let Ê = (Ê
(1)
, · · · , Ê

(t)
) be a generalized formal D∞-elliptic sheaf.

We know by Theorem 10.13 that each Ê
(j)

has only one slope, namely 1
d
in its slope

decomposition. So, the generalized formal D∞-elliptic sheaf has (1
d
, · · · , 1

d
) as its

slope decomposition.
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11 Moduli space of formal D∞-elliptic sheaves

11.1 Main Example

In this section we will consider the case when t = 1 and hence X = Y . We will
construct an example of D-elliptic sheaf. First we will assume that deg∞ = 1 and
then deg∞ > 1.

We will de�ne the objects around∞ and on the a�ne part U := Xr∞, and by
glueing we will get D-elliptic sheaves (see Section 20.2). Recall that for a D-elliptic
sheaf (Ei, ji, ti), we had Ei ' Ei+1 on U . In the following bac denotes the integer
part of the given rational number a.

CASE 1(deg∞ = 1):
Let X be a smooth projective geometrically irreducible curve with constant �eld

Fq and let S = SpecFq. Assume deg∞ = 1. We will de�ne D-elliptic sheaf over
X × Fq with E0 = D ⊗ Fq. Since Ei|Xr∞×S is the same for all i, the construction is
by gluing and by exploring the D-elliptic sheaf near ∞.

De�ne the decreasing chain of O∞-lattices in F d
∞:

Li := ⊕dj=1O∞zb(d−j−i)/dc.

De�ne Ei,∞ := Hom(L0, Li). Then, we have E0,∞ = Md(O∞) ' D∞. Clearly,
Hom(L0, Li) ⊆ Hom(L0, Li+1), i.e, Ei,∞ ⊂ Ei+1,∞. Note that each Ei,∞ is anMd(O∞)-
module. Now, de�ne

ji : Ei −→ Ei+1

by the natural inclusion Hom(L0, Li) ⊆ Hom(L0, Li+1). And directly by de�nition
of Li's, one can see that

Ld ' L0(∞).

which means we have the periodicity ` = d deg∞ = d. And, since deg∞ = 1, we
have σ∗ = id. So, one can de�ne

ti : σ∗Ei −→ Ei+1

as ji.
Now, we glue Ei,∞'s with M := Γ (X r {∞} ⊗ Fq,D ⊗ Fq) and get locally free

sheaves Ei over X × S.
Then, E = (Ei, ji, ti)i∈Z is a D-elliptic sheaf.
CASE 2(deg∞ > 1)
Let X be a smooth projective geometrically irreducible curve over Fq and let

S = SpecFqm wherem = deg∞. Note thatO∞⊗OS = ⊕m−1
i=0 O∞i

, whereO∞i
' O∞

for each i ∈ {0, . . . ,m− 1}.
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Similarly in the deg∞ = 1 case, we will de�ne D-elliptic sheaf over X × Fqm
with E0 = D ⊗ Fqm . Since Ei|Xr∞×S is same for all i, the construction is by gluing
and investigating the D-elliptic sheaves around ∞.

We de�ne

Ls,i = ⊕d−1
j=0z

b i−1−s−jm
md

+1cejO∞s

where ej's are the bases at ∞s

Now, put Ei,∞ := ⊕m−1
s=0 Hom(Ls,i, Ls,0). We glue Ei,∞ with M = Γ (X r {∞} ⊗

Fqm ,D ⊗ Fqm) and get locally free sheaves Ei over X × Fqm .
De�ne the morphisms ji : Ei −→ Ei+1 via the inclusions Hom(Ls,i, Ls,0) ⊆

Hom(Ls,i+1, Ls,0). One can easily see that we have a periodicity E`,∞ = Ed·deg∞,∞ =
E0(∞).

Now, we need to de�ne ti's. Note that σ interchange ∞i's, say σ(∞i) = ∞i+1

for i = 0, · · · ,m − 2 and σ(∞m−1) = ∞0. Let us consider E0,∞. For each s =
0, · · · ,m− 1, we have

Hom(Ls,0, L0,0) 'Md(O∞s)

And σ sends Md(O∞i
) to Md(O∞i+1

) for i = 1, · · · ,md − 1 and Md(O∞t) to
Md(O∞1). Therefore, σ∗E0 ' E0. So de�ne t0 by using this isomorphism : t0 :
σ∗E0 −→ E0 −→ E1. Now we need to de�ne ti for i = 1, . . . ,md. Note that

σ∗Ei,∞ = ⊕m−1
s=0 Hom(σ∗Ls,i, σ

∗Ls,0)

= Hom
(
σ∗(⊕d−1

j=0z
b i−1−s−jm

md
+1cejO∞s), σ

∗(⊕d−1
j=0z

b−1−s−jm
dm

+1cejO∞s)
)

= ⊕m−2
s=0 Hom

(
⊕d−1
j=0 z

b i−1−s−jm
dm

+1cejO∞s+1 ,⊕d−1
j=0z

b−1−s−jm
dm

+1cejO∞s+1

)
⊕ Hom

(
⊕d−1
j=0 z

b i−m−jm
dm

+1cejO∞0 ,⊕d−1
j=0z

b−m−jm
dm

+1cejO∞0

)
And

Ei+1,∞ = ⊕m−1
s=0 Hom(Ls,i+1, Ls,0)

Hom(⊕d−1
j=0z

b i−jm
dm

+1cejO∞0 ,⊕d−1
j=0z

b 1−jm
dm

+1cejO∞0)

⊕⊕m−1
s=1 Hom

(
⊕d−1
j=0 z

b i−s−jm
dm

+1cejO∞s ,⊕d−1
j=0z

b−s−jm
dm

+1cejO∞s

)
Now, it is easy to see that one gets the components of each O∞s 's change by a

multiple of z1/md. Hence, we de�ne ti : σ∗Ei −→ Ei+1. We also want to note that if
i 6= `m or a multiple of `m, then we have Ei+1 = Ei + ti(σ

∗Ei).
Therefore we have a D-elliptic sheaf, again denote it by E . And, as in the

Construction 10.7, we can compute the formal D∞-elliptic sheaf corresponding to
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E . Denote this formal D∞-elliptic sheaf by Ê = (Ê , F ). Now, by Theorem 10.5,
there exists a z-divisible D∞ ⊗O∆, which we will denote by E.

11.2 The Moduli functor

Now, we will de�ne a moduli functor for the formal D∞-elliptic sheaves which are
quasi-isogeneous to Ê in the example in section 11.1 similar to [23], in which the
author refers to [12] and [43]. As in previous cases, the solution of our moduli
problem will be a formal scheme over Spf k∞[[ζ]].

Let S ∈ Nilpk∞[[ζ]]. Denote by S̄ the closed subscheme of S given by the sheaf of

ideals ζOS. If β : S −→ Spf k
(`)
∞ [[ζ]] is a morphism of formal schemes, let β̄ : S̄ −→

Spec k
(`)
∞ denote the restriction of β to the special �bers.

De�nition 11.1. (Moduli Problem) De�ne the functor G : Nilpk∞[[ζ]] −→ Sets as

S 7−→
{

Isomorphism classes of triples (β, F̂ , α̂) where

• β : S → Spf k(d)
∞ [[ζ]] is a morphism of formal schemes,

• F̂ is a formal D∞-elliptic sheaf of rank d and dimension 1 over S ,

• α̂ : F̂ S̄ → β̄∗Ê is a quasi-isogeny of formal D∞-elliptic sheaves.
}

Two triples (β1, F̂1, α̂1) and (β2, F̂2, α̂2) are isomorphic if β1 = β2 and there is
an isomorphism between F̂1 and F̂2 over S that is compatible with α̂1 and α̂2.

By Theorem 10.5, we can reformulate the moduli problem as

Proposition 11.2. The functor G from De�nition 11.1 is equivalent to the functor
Nilpk∞[[ζ]] −→ Sets such that

S 7−→
{

Isomorphism classes of triples (β,E, γ) where

• β : S → Spf k(d)
∞ [[ζ]] is a morphism of formal schemes,

• E is a special z-divisible D∞ ⊗O∆-module of height d2 and dimension d over S ,

• γ : β̄∗E→ ES̄ is a quasi-isogeny of special z-divisible D∞ ⊗O∆.
}

Lemma 11.3. Let G̃ be the functor Nilpk∞[[ζ]] −→ Sets de�ned by

S 7−→
{

Isomorphism classes of triples (β,E ′, ρ′) where

• β : S → Spf k(d)
∞ [[ζ]] is a morphism of formal schemes,

• E ′ is a special z-divisible O∆-module of height d2 and dimension d over S ,

• ρ : β̄∗E′ → E ′S̄ is a quasi-isogeny of O∞-z-divisible O∆-modules.
}
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Then, the functor G is Morita equivalent to G̃.

Proof. We de�ne the natural transformation η : G̃ −→ G. De�ne ηS : G̃(S) −→
G(S) as follows:

(β′, E ′, ρ′) 7→ (β,E ′ ⊗O∞ O1×d
∞ , ρ)

where ρ : β
∗
(E) −→ (E ′ ⊗O∞ O1×d

∞ )S̄. Note that the height of E ′ ⊗O∞ O1×d
∞ '

E ′n ⊕ · · · ⊕ E ′n is d3 and the dimension of E ′ ⊗O∞ O1×d
∞ is d2.

G̃(S)
G̃(f)

//

ηS

��

G̃(S ′)

η′S
��

G(S)
G(f)

// G(S ′)

Note that by Proposition 8.18, for every S ∈ Nilpk∞[[ζ]], the component ηS is an
isomorphism. Therefore, we have an isomorphism of functors.
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12 Moduli space of generalized formal D∞-elliptic
sheaves

12.1 Main Example

Now, we are back to the case where π : X −→ Y is a �nite morphism of degree t.
We will construct example of generalized D-elliptic sheaves using gluing Section 20.

Example 12.1. (deg∞ = 1 case:)
Recall that for each j = 1, · · · , t, we have k∞j

' k∞. Assume deg∞ = 1. So,
k(T ) =

∏
k∞i

= k⊕t∞ ' Ftq. Let S = SpecFtq. Let D be an Azumaya algebra
of dimension d2 over OX . We will construct generalized D-elliptic sheaf over X ×
Ftq with E0 = D ⊗ Ftq. As in the D-elliptic sheaf case since for a generalized D-
elliptic sheaf Ei|XrT×S is same for all i, our construction will be base on gluing and
investigating the generalized D-elliptic sheaf around ∞j's.

Before we continue, let us make a remark. Let i = (i1, · · · , it) ∈ Zt be any. Each
ij stands for each ∞j, i.e, every change in one ij means to modify around that ∞j.
Keeping this in mind we will de�ne lattices. Let i = (i1, · · · , it) and s ∈ {1, · · · , t}.
De�ne

Li,∞s := ⊕dj=1O∞sz
b(d−j−is)/dc
s

and

Li,T := ⊕ts=1Li,∞s .

De�ne Ei,∞s := Hom(L0,∞s , Li,∞s) and let

Ei,T := ⊕ts=1Ei,∞s .

We glue Ei,T with Γ (X r T× Ftq,D ⊗ Ftq) to get locally free sheaves Ei over X × S.
By de�nition, we have

E0,T = Md(O∞1)⊕ · · · ⊕Md(O∞t) ' D∞1 ⊕ · · · ⊕ D∞t

Let i′ ∈ Zt be such that i ≤ i′. By de�nition we have Ei,∞s ⊆ Ei′,∞s
for each ∞s.

We de�ne the morphisms ji,i′ : Ei −→ Ei′ via this natural inclusion. The periodicity

Li+d·t,T ' L0,T(∞1, · · · ,∞t)

also directly follows from de�nition. Now, we will de�ne the morphisms ti : σ∗Ei −→
Ei+1.

Now, let us de�ne the maps ti for i ∈ Zt. Since S = SpecFtq, we have σ∗ = id.
De�ne ti : σ∗Ei −→ Ei+1 to be the monomorphisms ji,i+1 that were de�ned above.
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Therefore, we get a generalized D-elliptic sheaf E = (Ei, ti)i∈Zt . As before, one
can construct corresponding generalized formal D∞-elliptic sheaf, Ê . By categorical
equivalence, we get a generalized special z-divisible D∞ ⊗O∆-module, E.

Remark 12.2. We want to note that in the example above we have S ′ = T× S.

Example 12.3. (deg∞ > 1case):
Now, assume deg∞ = m > 1. Let S = SpecFtqm . Then we have

O∞k
⊗OS ' ⊕m−1

s=0 O∞k,s

for each ∞k ∈ T where O∞k,s
' O∞k

. Now, for each ∞k ∈ T de�ne

Lks,i = ⊕d−1
j=0z

b is−1−s−jm
md

+1cejO∞k,s

where ej's are the bases at ∞k,s. Now put

Ei,∞s,k
= Hom(Lks,i, L

k
s,0)

De�ne
Ei,∞k

:= ⊕m−1
s=0 Ei,∞s,k

and

Ei,T = ⊕tk=1Ei,∞k

Note that by de�nition we have

Ei,T =
([

Md(O∞1,1)⊕ · · · ⊕Md(O1,m)
]
⊕ · · · ⊕

[
Md(O∞t,1)⊕ · · · ⊕Md(O∞t,m)

])
We glue Ei,T with Γ (X r T⊗ Ftqm ,D ⊗ Ftqm) and get locally free sheaves Ei over

X × Ftqm .
Let i, i′ ∈ Zt with i ≤ i′. Then, by de�nition we have Ei,∞k

⊂ Ei′,∞k
for each∞k.

We de�ne the morphisms ji,i′ : Ei −→ Ei′ by this inclusion. We have the periodicity

Ei+dtdeg∞ ' Ei(∞1, · · · ,∞t)

by de�nition. We only need to de�ne the morphisms ti : σ∗Ei −→ Ei+1. Note that

σ∗Ei,T = ⊕tk=1σ
∗Ei,∞k

= ⊕tk=1 ⊕m−1
s=0 σ∗Ei,∞s,k

= ⊕tk=1 ⊕m−1
s=0 Hom(σ∗Lks,i, σ

∗Lks,0)

Similarly as in Example 11.1, Case 2, we de�ne ti : σ∗Ei −→ Ei+1.
Hence (Ei, ti) is a generalized D-elliptic sheaf. We will denote this also by E .

74



12.1.1 Generalized Moduli Functor

Let S ∈ Nilpk∞[[ζ1,··· ,ζt]]. We will consider the generalized special z-divisible D∞⊗O∆-
modules which are isogeneous to E which is de�ned in Example 12.1 and then show
that this is equivalent to product of the moduli schemes of the D∞j

-zj-divisible
groups at each ∞i, as in [46].

De�nition 12.4. De�ne the functor Ggen from Nilpk∞[[ζ1,··· ,ζt]] −→ Sets

S 7−→
{

Isomorphism classes of triples (β, Ê , α̂) where

• β̂ : S → Spf k(d)
∞ [[ζ1, · · · , ζt]] is a morphism of formal schemes,

• Ê is a generalized formal D∞-elliptic sheaf over S ,

• α̂ : Ê S̄ → β̄∗Ê is a quasi-isogeny of generalized formal D∞-elliptic sheaves.
}

By Theorem 10.17, we can reformulate the moduli problem as follows:

De�nition 12.5. The functorGgen is equivalent to the functor fromNilpk∞[[ζ1,··· ,ζt]] −→
Sets de�ned by

S 7−→
{

Isomorphism classes of triples (β̄, E, α) where

• β̄ : S → Spf k(d)
∞ [[ζ1, · · · , ζt]] is a morphism of formal schemes,

• E is a generalized special z-divisible D∞ ⊗O∆-module over S ,

• α : ES̄ → β̄∗E is a quasi-isogeny of generalized D∞-z-divisible groups.
}

Proposition 12.6. The moduli functor Ggen of generalized special z-divisible D∞⊗
O∆-modules is

Ggen ' G× · · · ×G

where G is the moduli functor of special z-divisible D∞ ⊗ O∆-modules de�ned in
De�nition 11.2.

Proof. The proof follows by de�nition of a generalized special z-divisible D∞⊗O∆-
modules.
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13 The Serre-Tate Theorem

In [23], Hartl gives an analogue of classical Serre-Tate theorem in the abelian sheaf
case. In this section, we will adapt his result to the generalized D-elliptic sheaf case.
Namely, we will show that the deformation of a generalized D-elliptic sheaf is same
as the deformation of a generalized formal D∞-elliptic sheaf.

Let S ∈ Nilp
k

(d)
∞ [[ζ1,··· ,ζt]]

and ι : S̄ ↪→ S be a closed subscheme of S that is de�ned
by the sheaf of ideals I which is locally nilpotent.

De�nition 13.1. 1. Let E be a generalized D-elliptic sheaf over S̄. We say a
generalized D-elliptic sheaf Ẽ over S is a deformation of E if there exists an
isomorphism of generalized D-elliptic sheaves f : ι∗Ẽ ∼−→ E

2. Two deformations (Ẽ , f) and (F̃ , g) of a generalized D-elliptic sheaf E are
isomorphic if there exists an isomorphism of generalized D-elliptic sheaves
α : Ẽ −→ F̃ such that the following diagram is commutative:

ι∗Ẽ
f

��

ι∗α // ι∗F̃
g

��
E // E

Let E be a generalized D-elliptic sheaf over S̄. The category of deformations of
E has

� objects: pairs of deformations (Ẽ , f)

� morphisms: isomorphisms of deformations

Similarly, one can de�ne the category of deformations of a generalized formal D∞-
elliptic sheaf. Let Ê denote the generalized formal D∞-elliptic sheaf corresponding
E .

De�nition 13.2. 1. We say a generalized formal D∞-elliptic sheaf F̂ is a defor-
mation of Ê if there exists an isomorphism of generalized formal D∞-sheaves
g : ι∗F̂ ∼−→ Ê .

2. Two deformations (F̂ , g) and (Ĝ, h) are isomorphic if there is an isomorphism
of generalized formal D∞-elliptic sheaves F̂ ∼−→ Ĝ that is compatible with g
and h.

The category of deformations of a generalized formal D∞-elliptic sheaf Ê has
pairs (F̂ , g) as objects and isomorphisms of deformations as morphisms.
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Theorem 13.3 (Serre-Tate Theorem). Let S ∈ Nilp
k

(d)
∞ [[ζ1,··· ,ζt]]

and let ι : S̄ ↪→ S

be as before. Then, the category of deformations of a generalized D-elliptic sheaf E
and the category of deformations of its corresponding generalized formal D∞-elliptic
sheaf Ê are equivalent.

To prove this theorem, we need some preparations. The following proposition
tells us, together with rigidity of generalized D∞-z-divisible groups, that the set of
morphisms of category of deformations is non-zero.

Proposition 13.4. Let E be a generalized D-elliptic sheaf and Ê be its generalized
formal D∞-elliptic sheaf. Let Ĝ be a generalized formal D∞ such that there exists a

quasi-isogeny α̂ : Ĝ −→ Ê. Then, there exists a generalized D-elliptic sheaf F and a
quasi-isogeny γ : F −→ E which is an isomorphism over X ′ × S where X ′ = X rT
such that its completion is isomorphic to α̂, i.e., there exists an isomorphism F̂ −→
Ĝ such that the following diagram commutes:

F̂
γ̂

��

' // Ĝ

α̂
��
Ê

Moreover, γ is unique up to isomorphism. So, we will denote the generalized
abelian sheaf F by α̂∗E.

To prove this proposition, we will get the lattices around each ∞j and vector
bundle on the a�ne part so that we can glue them to get a generalized D-elliptic
sheaf on X × S. For more on gluing lattices around ∞ and vector bundles on the
a�ne part, please see Section 20.2 and Section 20. We want to recall that for a
generalized D-elliptic sheaf E = (Ei, ti), the module Ei|(XrT)×S is independent of i
(cf. Remark 2.5).

Proof. Let E be a generalized D-elliptic sheaf and Ê be its generalized formal D∞-
elliptic sheaf. Write Ê = (Ê

(1)
, · · · , Ê

(t)
) and Ĝ = (Ĝ

(1)
, · · · , Ĝ

(t)
). Recall that a quasi

isogeny α̂ : Ĝ −→ Ê is a t-tuple (α̂(1), · · · , α̂(t)) of quasi-isogenies α̂(j) : Ĝ
(j)
−→ Ê

(j)

of formalD∞j
-elliptic sheaves. By de�nition of quasi-isogenies of formalD∞j

-elliptic
sheaves, we have isomorphisms of the corresponding isocrystals

α̂(j)[1/z] : Ĝ
(j)

[1/z]
'−→ Ê

(j)
[1/z]

By Remark 10.10(i), we can write Ĝ
(j)

= ⊕mi=1G̃
j
i . Then by Remark 10.10 (ii), we

know that a quasi-isogeny between two formal D∞-elliptic sheaves is a quasi-isogeny
componentwise:

α̃(j) : G̃∞j −→ Ẽ∞j
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Now, by Remark 10.9, construct G∞j from each G̃∞j . Then, by the quasi-isogeny
α̂(j), we have an injection

G∞j

i ↪→ Ê [1/z]

Therefore, we can glue G∞j

i , · · · ,G∞j

i with Ei|(XrT)×S to get locally free sheaves Fi
on X×S. Since each Ê (j) has a D∞j

-action and E has a D-action, there is a D-action
on each Fi. By the morphisms Π′ and F ′ of the generalized formal D∞-elliptic sheaf
Ĝ and by the morphisms ji,i′ : Ei −→ Ei′ and ti : σ∗Ei −→ Ei+1, we get morphisms

j′i : Fi −→ Fi+1 and t
′
i : σ∗Fi −→ Fi+1.

Therefore, we get a generalized D-elliptic sheaf F = (Fi, j′i, t′i). By construction, we

see that the generalized formal D∞-elliptic sheaf F̂ corresponding to the generalized
D-elliptic sheaf F is isomorphic to Ĝ and there is a quasi-isogeny ρ : F −→ E .

Proposition 13.5. Let ι : S̄ −→ S be a closed subscheme of S de�ned by a sheaf of
ideals that is locally nilpotent. Let E = (Ei, ti) and E ′ = (E ′i , t′i) be two generalized D-
elliptic sheaves over S. Then, every quasi-isogeny ι∗E −→ ι∗E ′ gives a quasi isogeny
E −→ E ′ in a unique way.

Proof. The proof goes similar to the rigidity of quasi-isogenies of Dieudonné D∞-
modules. We may assume by induction that Iq = (0). Then, Frobenius σS on S
and Frobenius σS̄ on S̄ factors as

S
j // S̄ ι // S

and

S̄
ι // S

j // S̄
where j is the identity between the underlying topological spaces |S̄| = |S|.

Recall that by using the morphisms ti : σ∗Ei −→ Ei+1 and t′i : σ∗E ′i −→ E ′i+1, one
can de�ne isogenies t : σ∗E [1] −→ E and t′ : σ∗E ′[1] −→ E ′ (cf. Example 3.5). Here
E [1] denotes the shift by 1, i.e, E [1] = (Ei−1, ji−1, ti−1).

Now, let ρ̄ : ι∗E −→ ι∗E ′ be a quasi-isogeny. Consider the shift by 1 and pullback
under j and we have

j∗ρ̄[1] : j∗ι∗E [1] −→ j∗ι∗E ′[1]

Hence, we get the following diagram

E ρ // E ′

σ∗SE [1] = j∗ι∗E [1]
j∗ρ̄[1]//

t

OO

σ∗SE ′[1] = j∗ι∗E ′[1]

t′

OO

which gives us a quasi-isogeny ρ : E −→ E ′. It follows from the diagram that ι∗ρ = ρ̄
and ρ is de�ned uniquely by ρ̄.
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Proof. (of Theorem 13.3)
Let F be a deformation of E with f : ι∗F ∼−→ E . Let Ê and F̂ denote the

generalized formal D∞-elliptic sheaf corresponding E and F respectively. Then, F̂
is a deformation of Ê . So, we have a functor sending a deformation (F , f) of E to
the corresponding deformation (F̂ , f̂) of Ê . Denote this functor by F .

Let (F , f) and (F ′, f ′) be two deformations of E . Then, the map

HomD(F ,F ′) −→ HomD∞(F̂ , F̂
′
)

is injective and surjective by Proposition 13.4 and 13.5. We will show that F is
essentially surjective.

Let (F̂ , f̂) be a deformation of Ê where f̂ : ι∗F̂ ∼−→ Ê is an isomorphism of
generalized formal D∞-elliptic sheaves. As before, it is enough to consider the case
when the ideal sheaf I of S̄ satis�es Iq = (0). Then, the Frobenius σS on S factors
as

S
j // S̄ ι // S

Consider the sheaf E ′ := j∗E [1] = (j∗Ei−1, j
∗ti−1). By using the morphisms ti's

of E , we get a quasi-isogeny t : ι∗(σ ∗ E [1]) −→ E that is an isomorphism over
X ′(cf. Example 3.5). But σ∗E [1] = ι∗j∗E [1] = ι∗E ′. So, we have a quasi-isogeny

t : ι∗E ′ −→ E . Consider the generalized formal D∞-elliptic sheaf Ê
′
corresponding to

the generalized D-elliptic sheaf E ′. We have t̂ : ι∗Ê
′
−→ Ê and we obtain a diagram

ι∗F̂

t̂−1◦f̂   

f̂

'
// Ê

ι∗Ê
′

t̂

OO

where α̂′ := t̂−1 ◦ f̂ is a quasi-isogeny of generalized formal D∞-elliptic sheaves.

By Theorem 9.17, the quasi-isogeny α̂′ extends uniquely α̂ : F̂ −→ Ê
′
. Then, by

Proposition 13.4, there is a generalized D-elliptic sheaf F that is quasi-isogeneous to
E ′ via α : F −→ E ′ so that the corresponding generalized formal D∞-elliptic sheaf
of F is F̂ . By the diagram

F

t◦α
""

α // j∗E [1]

t
��
E

the tuple (F , t ◦ α) is a deformation of E .
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Part III Uniformization

14 Algebraization

Assume t = 1 and so X = Y . Recall that in this case a generalized D-elliptic sheaf
is called D-elliptic sheaf (cf. Remark 2.5 (ii)). We will give an interpretation of
the moduli space G that was de�ned in Section in 11.1. Let S ∈ Nilpk∞[[ζ]] and
let S̄ be the closed subscheme of S de�ned by ζ = 0. One can de�ne a morphism
G −→ Spf k

(d)
∞ [[ζ]] by (β, F̂ , α) 7→ β. We will de�ne an action of Gal(k

(d)
∞ /k∞) on

G. Note that Gal(k
(d)
∞ /k∞) = Gal(k

(d)
∞ [[ζ]]/k∞[[ζ]]). Take any γ ∈ Gal(k

(d)
∞ /k∞). We

de�ne γβ via the diagram

Sγ
γS //

γβ
��

S

β
��

Spf k
(d)
∞ [[ζ]]

γ // Spf k
(d)
∞ [[ζ]]

(1)

where γS is the composition S −→ Spf k
(d)
∞ [[ζ]]

γ−→ Spf k
(d)
∞ [[ζ]]. We write Sγ for S

considered as a Spf k
(d)
∞ [[ζ]]-scheme via γS. Then, we de�ne the action of γ on G(S)

by

γ · (β, F̂ , α̂) := (γβ, γSF̂ , γSα̂) ∈ G(Sγ)

that is compatible with D∞-action.

De�nition 14.1. De�ne the functor G′ : Nilpk∞[[ζ]] −→ Sets as

S 7−→
{

Isomorphism classes of pairs (F , α) where

• F is a D-elliptic sheaf over S ,
• α : F S̄ → E S̄ is a quasi-isogeny of D-elliptic sheaves.

}
Two such pairs (F , α) and (F ′, α′) are isomorphic if there is an isomorphism of

D-elliptic sheaves between F and F ′ that is compatible with α and α′.

Theorem 14.2. The functors G and G′ ×Spf k∞[[ζ]] Spf k
(d)
∞ [[ζ]] are isomorphic as

Gal(k
(d)
∞ /k∞)-modules where Gal(k

(d)
∞ /k∞) acts trivially on G′

Proof. The proof goes similarly as in [23], Theorem 10.2. Let (F , α) ∈ G′(S) and
β : S −→ Spf k

(d)
∞ [[ζ]]. By Construction 10.7, we get a formal D∞-elliptic sheaf F̂

and the quasi-isogeny α of D-elliptic sheaves gives a quasi isogeny of formal D∞-
elliptic sheaves α̂ : F̂ S̄ −→ β̄∗Ê . So, we get a triple (β, F̂ , α̂) ∈ G(S). Since
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Gal(k
(d)
∞ /k∞) acts trivially on G′ and by de�nition of the Galois action, the map

G′ × Spf k
(d)
∞ [[ζ]] −→ G is Gal(k(d)

∞ /k∞)-equivariant.
Conversely, let (β, F̂ , α̂) ∈ G(S). By Proposition 9.17, there is a unique lift of α̂

to ρ̂ : F̂ −→ Ê over S. Then, by Proposition 13.4, we get a D-elliptic sheaf, say F
whose corresponding formal D∞-elliptic sheaf is F̂ and a quasi-isogeny ρ : F −→ E .
So, (F , ρS̄) ∈ G′(S). Therefore, we get a map G −→ G′ × Spf k

(d)
∞ . The fact that

the map is Gal(k(d)
∞ /k∞)-equivariant follows by de�nition. Now, one can easily see

that the two maps are mutually inverse.

De�nition 14.3. The tuple (F , α) ∈ G′(S) associated to a (β, F̂ , α̂) is called alge-

braization of (β, Ê ′, α̂).

14.1 Algebraization of generalized moduli functor

Let S ∈ Nilpk∞[[ζ1,··· ,ζt]] and S be its closed subscheme of S. De�ne the functor
G′gen : Nilpk∞[[ζ1,··· ,ζt]] −→ Sets as

S 7−→
{

Isomorphism classes of pairs (F , α) where

• F is a D-elliptic sheaf over S ,
• α : F S̄ → E S̄ is a quasi-isogeny of D-elliptic sheaves.

}
Recall that Ggen be the moduli functor of generalized formal D∞-elliptic sheaves

that was de�ned in De�nition 12.4. We will write ⊗̂k∞[[ζ[[ for

k∞[[ζ]]⊗̂k∞ · · · ⊗̂k∞k∞[[ζ]]

where completed tensor product is taken for t-copies and write ⊗̂k(d)
∞ [[ζ]] for

k(d)
∞ [[ζ]]⊗̂k∞[[ζ]] · · · ⊗̂k∞[[ζ]]k

(d)
∞ [[ζ]].

where in both cases, we have t factors in the tensor product.

Theorem 14.4. The functors Ggen and G′gen ×⊗̂k∞[[ζ]] ⊗̂k
(d)
∞ [[ζ]] are isomorphic as

Gal(k
(d)
∞ /k∞)t-modules.

Proof. The proof goes similarly as in Theorem 14.2. Let βj : S −→ k
(d)
∞ [[ζ[[ be a

k∞[[ζ]]-morphism for j = 1, · · · , t. Put

β :=
∏
j

βj : S −→ k(d)
∞ [[ζ]]⊗̂k∞[[ζ]] · · · ⊗̂k∞[[ζ]]k

(d)
∞ [[ζ]].
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Then we have an action of Gal(k
(d)
∞ /k∞)t on k

(d)
∞ [[ζ]]⊗̂k∞[[ζ]] · · · ⊗̂k∞[[ζ]]k

(d)
∞ [[ζ]] where

each Gal(k
(d)
∞ /k∞) act on each βj as in the diagram 1.

Now, the functor G′gen −→ Ggen is de�ned by the Construction 10.18, and the
functor Ggen −→ G′gen is de�ned by using Proposition 13.4 as in Theorem 14.2.

The following theorem gives us another interpretation of Ggen:

Theorem 14.5. We have

G′gen ' (G′ × · · · ×G′)×⊗̂k∞i [[ζi]] ⊗̂k
(d)
∞i
[[ζi]]

where G′ is the functor de�ned in De�nition 14.1.

We will use the algebraization of the moduli functors G and G′ to algebraize the
moduli functor Ggen.

Proof. By de�nition of generalized formal D∞-elliptic sheaves, we have

Ggen ' G× · · · ×G

where G is the moduli functor of formal D∞-elliptic sheaves that was de�ned in
Theorem 11.1. Then, by algebraization in D-elliptic sheaf case (Theorem 14.2), we
have

Ggen ' (G′⊗k∞1 [[ζ1]]k
(d)
∞1

[[ζ1]])×· · ·×(G′⊗k∞t [[ζ]]k
(d)
∞t
[[ζt]]) ' (G′×· · ·×G′)×⊗̂k∞i [[ζi]]⊗̂k

(d)
∞i
[[ζi]].

Corollary 14.6. The functors G′gen ' G′ × · · · ×G′.
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15 Representability of the Moduli Functor

15.1 Representability of G′

In this Section we will prove that the functor G′ that was de�ned in De�nition 14.1
is representable by Z × Ω̂(d). For the de�nition and some of the properties of Ω̂(d)

we refer to [4], Section 4.3 and [46], Section 4. Our main reference for this section
is [19]. We want to recall the D-elliptic sheaf E de�ned in Section 11.1. By using
Construction 10.7, one can de�ne the formal D∞-elliptic sheaf associated to E . We
will denote this formal D∞-elliptic sheaf by Ê .

De�nition 15.1. ([19], Chapter I, De�nition 4.3.3) De�ne the functor GO from
Nilpk∞[[ζ]] to Sets by sending an S ∈ Nilpk∞[[ζ]] to the isomorphism class of triples(
(Mi,Πi, Fi)i∈Z, R0

)
where

1. Mi is locally free k∞[[ζ]]⊗̂OS-module of rank d

2. the morphisms
Πi :Mi −→Mi+1

Fi : σ∗Mi −→Mi+1

are morphism of k∞[[ζ]]⊗̂OS-modules such that the following conditions are
satis�ed for i ∈ Z:

(a) The diagram

σ∗Mi
Fi //

σ∗Πi
��

Mi+1

Πi+1

��
σ∗Mi+1

Fi+1 //Mi+2

is commutative

(b) We haveMi+d 'Mi(∞) by the composition

Mi
Πi−→Mi+1 −→ · · · −→Mi+d

(c) (cf. De�nition 9.1 1, item 1ii)

There exists a locally free B-module ωi such that cokerFi = Γ∗ωi where

Γ : O⊗̂B −→ B

a⊗̂b 7→ β(a)b

Here β : Od −→ B gives B an Od-algebra structure where Od is the
maximal unrami�ed extension k(d)

∞ [[π]] ⊂ O∆ = k
(d)
∞ [[Π]].
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(d) There exists n ∈ N(cf. Construction 10.7) such that the composition

(Idk∞[[ζ]] ⊗̂Frn)∗M0

(Idk∞[[ζ]] ⊗̂Frn−1)∗F0 // (Idk∞[[ζ]] ⊗̂Frn−1)∗M1
// · · ·

· · · Fn−1 //Mn/Mn(∞)

is the zero morphism.

3. the map
R0 :Mi,S̄ ⊗k∞[[ζ]] k∞((ζ))

'−→ Êi,S̄ ⊗k∞[[ζ]] k∞((ζ))

is an isomorphism that satis�es the following commutative diagram:

Put Ni,S̄ :=Mi,S̄ ⊗k∞[[ζ]] k∞((ζ)) and Fi,S̄ := Êi,S̄ ⊗k∞[[ζ]] k∞((ζ))

(Idk∞ ⊗̂Fr)∗N0,S̄

F0,S̄⊗Idk∞ //

(Idk∞ ⊗Fr)∗R0

��

N1,S̄

R1

��
(Idk∞ ⊗Fr)∗F0,B0

F0,S̄⊗Idk∞ // F1,S̄

4. if n ∈ N such that

R0(M0,S̄) ⊂ Ên,S̄ ⊂ Ê0,S̄ ⊗k∞[[ζ]] k∞((ζ))

then Ên,S̄/R0(M0,S̄) is locally free over S̄ of rank n.

As one can see from the de�nition, one can think of the triples (Mi,Πi, Fi) as a
ladder over O∞.

Proposition 15.2. The functors GO and G′ are naturally isomorphic.

Proof. We de�ne a functor G′ −→ GO and leave the veri�cation of details to the
reader.

Let (F , ρ : F S̄ −→ E S̄) ∈ G′(S). By taking completion along the �ber over ∞
as in the Construction 10.7, we get a ladder F̃∞ over O∞ which almost satis�es the
necessary conditions in De�nition 15.1 since the D-elliptic sheaf E satis�es similar
conditions.

Let dρ denote the degree of the quasi isogeny ρ : F S̄ −→ E S̄. De�ne (F̂i,Πi, τi)
as F∞ shifted by dρ

Then R0 is the isomorphism

F̂dρ [1/z] −→ Ê0[1/z]

Then, we have the following theorem:
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Theorem 15.3. The functor G′ is representable by Z× Ω̂(d) over O∞.

Proof. By [19], in Chapter III, Section 3(Theorem 3.1.1 together with Lemma 3.3.1)
we know that GO is representable by Ω̂(d) over O∞. By the Proposition 15.2, we
conclude that G′ is representable by Z× Ω̂(d) over O∞.

15.2 Representability of G′gen

Theorem 15.4. the functor G′gen is representable by
∏

i(Z× Ω̂(d))

Proof. The proof follows immediately by Corollary 14.6 and Theorem 15.3.
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Part IV Uniformization

16 The Uniformization Theorem

16.1 The group of quasi-isogenies for D-elliptic sheaf
Recall the de�nition of E in 11.1. In [5], it is proved that the space of quasi-
morphisms between abelian sheaves is isomorphic to the space of morphisms between
the generic �bres η of X×S. Similar to the abelian sheaf case, we have the following

Proposition 16.1. Let E = (Ei, ji, ti) and E ′ = (E ′i , j′i, t′i) be two D-elliptic sheaves
of the same rank and same characteristic over S = SpecL where L is a �eld. Then,
Q-vector space QIsogD(E , E ′) is isomorphic to the group of units of the space of
morphisms between the �bers at the generic point η of X × S

{f0,η : E0,η −→ E ′0,η | f0,η ◦ j−1
0,η ◦ t0,η = (j′0,η)

−1 ◦ t′0,η ◦ σ∗(f0,η)}

We will use this theorem to compute the group of quasi-isogenies of E .

Theorem 16.2. The group of quasi-isogenies of E = (Ei, ji, ti) over the algebraic
closure kalg∞ of k∞ in the example 11.1 is equal to D∗, the invertible elements of the
division algebra D.

Proof. By Proposition 16.1 in [5], it is enough to consider the morphisms between
the �bers at the generic point η :

E0,η −→ (E0(∞))η = (E0 ⊗OX×S(∞))η (1)

Recall that by de�nition E0 = D and Dη = D. Let ρ : E −→ E be a quasi-isogeny.
By the Proposition 16.1, it is enough to consider ρ0,η : E0,η −→ (E0(B))η where B is
an e�ective divisor of X, i.e, we are looking for the group of morphisms

f : D ⊗ Fqm −→ D ⊗ Fqm .

such that the following diagram commutes:

D ⊗ Fqm f
// D ⊗ Fqm

D ⊗ Fqm

j−1
0

OO

D ⊗ Fqm

j−1
0

OO

D ⊗σ σ∗Fqm

τ0

OO

σ∗f
// D ⊗σ σ∗Fqm

τ0

OO

Note that σ∗Fqm = Fqm ⊗Fqm ,σ Fqm and consider the following diagram:

86



Fqm ϕ
// Fqm

Fqm ⊗σFqm Fqm

g

OO

σ∗ϕ
// Fqm ⊗σFqm Fqm

g

OO

Fqm

'h

OO

ϕ
// Fqm

'h

OO

where the maps g : Fqm ⊗σFqm Fqm −→ Fqm is de�ned by α ⊗ β 7→ α.σ(β) and
h : Fqm −→ Fqm⊗σFqm Fqm is de�ned by γ 7→ 1⊗γ. Hence the composition of vertical
arrows in the diagram is σ. So, we have by the second diagram above, σ ◦ϕ = ϕ◦σ.
Therefore, we have (D ⊗ Fqm)Gal(Fqm/Fq) = D, and so, the group of quasi isogenies
of the D-elliptic sheaf is D∗.

16.2 The Uniformization Theorem

Following the way of p-adic uniformization of Shimura curves and uniformization of
stack of abelian sheaves, we will use the scheme Ω̂(d) representing the moduli functor
G′. We know that the moduli functor G′gen is represented by

∏
Z × Ω̂(d). We will

use this to uniformize generalized D-elliptic sheaves. Before we continue we want to
recall our conventions:

X

π

��

T = {∞1, . . . ,∞t} B = Γ (X r T,OX) F = Fq(X)

Y ∞ A = Γ (Y r {∞},OY )

OO

L = Fq(Y )

OO

We will use the symbol D× for both the group of units of D and the algebraic
group of units of the division algebra D de�ned by

D×(R) = (D ⊗R)×

where R is an F -algebra. Let

Af =
{

(ax) ∈
∏̂

x/∈T
Fx | ax ∈ Bx for almost all x

}
denote the �nite adeles and de�ne

D×(Af ) =
∏
x/∈T

(Dx,Dx) =
{

(ax) ∈
∏
x/∈T

Dx | ax ∈ Dx for almost all x
}
.

Let (DT)× =
∏

x/∈TD×x = (
∏

x/∈TDx)×. And (DT)×I denote the kernel of the group
homomorphism

(DT)× −→ H0(X,D ⊗OX OI)×
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where the morphism (DT)× −→ H0(X,D ⊗OX OI)× de�ned as (a ⊗ bx)x∈X′ 7→
(a ⊗ b̄x)x∈I . We want to construct an isomorphism over Af for a generalized D-
elliptic sheaf that is quasi-isogeneous to the generalized D-elliptic sheaf E that was
constructed in Examle 12.1. We will use this isomorphism to de�ne the action of
(DT)×I .

Construction 16.3. Let S ∈ Nilpk∞[[ζ1,··· ,ζt]] and let S̄ be its closed subscheme
de�ned by ζj = 0 for all j. Recall the generalized D-elliptic sheaf E = (Ei, ti)
over SpecFtq that was de�ned in Example 12.1. Consider the pullback of E along
s : S̄ −→ SpecFtq. Denote this pullback by E ′, i.e, E ′ = (E ′i , t′i) = (s∗Ei, s∗ti). On
X ′ = X r T, all E ′i|X′×S̄ are isomorphic via the morphisms j′i,i′ . So, we denote this
sheaf by E|X′×S̄. Similar for the morphisms ti's, we get a map t′|X′×S̄ : σ∗E|X′×S̄ −→
E|X′×S̄. Recall the t-invariant functor EB̂ de�ned in Section 2 and consider EB̂(S).
Now,

EB̂(S) = lim−→
I′⊂X′

EI′(S) ' lim−→
I′

Md(BI′/I
′) = D(B̂)

where BI′ = H0(I ′,OI′). We denote this isomorphism by f . Clearly, (D(∞))×I acts
on D(B̂).

The isomorphism f gives rise to an isomorphism

ψ : EAf
∼−→ D(Af )

which induces a rational H-level structure on E .
Let F be a generalized D-elliptic sheaf over S which is quasi-isogeneous to E

via α : F −→ E . As in the previous paragraph, we can look at lim−→EI′(F). The
composition α ◦ ψ gives us an isomorphism

ψ ◦ α : lim−→EI′(F)⊗D(B̂) D(Af ) −→ D(Af )

So, we get a level structure on F .

Let S ∈ Nilpk∞[[ζ1,··· ,ζt]]. Let (F , ρ) ∈ G′gen be any where ρ : F S̄ −→ E is a
quasi-isogeny. Then, by Construction 16.3, we get a level structure η on F . So, we
can de�ne

G′gen ×D×(Af )/(DT)×I −→ GE``X/Y,D,I ×SchFq Nilpk∞[[ζ1,··· ,ζt]]

((F , α), a(DT)×I ) 7→ (F , a−1η) (1)

Remark 16.4. Note that (DT)×I is a compact open subgroup of D×(Af ).
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Now, let us de�ne the D×-action on G′gen ×D×(Af )/(DT)×I . We want to recall
that the group of quasi-isogenies of E is D×.

Let g ∈ D× and let F be a generalized D-elliptic sheaf that is quasi-isogeneous
to E via ρ : F S̄ −→ E S̄. Then the action of g on α is de�ned by

F S̄
ρ // E S̄

gS̄ // E S̄(D)

where gS̄ denotes ι∗g with ι : S̄ −→ S. By using this action we can de�ne the action
of D× on G′gen as follows:

(g · (F , ρ)) := (F , gS̄ ◦ ρ)

which is compatible with the D-action.
On the other hand, by the diagonal embedding D× ↪→ D×(AT

Q), we have an
action of D× on G′gen ×D×(Af )/(DT)×I by(

(F , ρ), ā
)
7→
(
(F , gS̄ ◦ ρ), g · ā

)
Let Z be the pullback de�ned by the diagram

GE``X/Y,D,I // Y r B

Z

OO

//∞

OO

We denote the formal completion of GE``X/Y,D,I along the closed subscheme Z

by ĜE``ZX/Y,D,I . Before we continue, we want to recall that the stack of gener-
alized D-elliptic sheaves GE``X/Y,D,I with nontrivial level structures is actually a

scheme(Theorem 5.3). So, when we take the formal completion ĜE``ZX/Y,D,I we have
a formal scheme. For an introduction to formal schemes we refer to [17].

Now, put

X := D×\G′gen ×D×(Af )/(DT)×I

Y := ĜE``
Z

X,D,I

Before we continue, we need to understand the double coset space D×\G′gen ×
D×(Af )/(DT)×I better. For convenience, put H := (DT)×I .

Let diH be representatives of the quotientD×\D×(Af )/H. Now, stabD×(diH) :=
{d ∈ D× | ddiH = diH}. Let d ∈ stabD×(diH) be any. We have

d ∈ stabD×(diH) ⇐⇒ ddiH = diH ⇐⇒ d ∈ diHd−1
i

Hence, d ∈ diHd−1
i ∩D×. Let us denote the group diHd−1

i ∩D× by Γi. Note that
Γi is a discrete subgroup of D×. Indeed, by the Strong Approximation Theorem, we
know that D× is discrete in D×(A). This implies that D∗ is discrete in D×(

∏
i F∞i

).
Then, Γi is discrete since any subgroup of a discrete group is discrete.

Then we have:
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Proposition 16.5. D×\G′gen ×D×(Af )/H =
∐

iG
′
gen/Γi.

Proof. ConsiderD×\D×(Af )/H. We can write it as a �nite disjoint union
∐
D×diH.

Then,
G′gen ×D×(Af ) =

∐
i

G′gen ×D×diH.

Therefore, we can write D×\D×(Af )/H as
∐

i Γi\G′gen which is nothing but just∐
i Γi\(Ω̂(d))t.

Proposition 16.6. Assume t = 1 and hence X = Y . In this case we are only
considering D-elliptic sheaves. Then, the double coset space D×\G′×D×(Af )/H is
a formal scheme if Γi is discrete and torsion free.

Proof. By the previous proposition, we know that the double coset space is isomor-
phic to Γi\(Ω̂(d)). We know that Ω̂(d) is a formal scheme. By [40], Theorem 3.1 ( or
Section 3 in [26]), Ω̂(d)/Γi is a formal scheme since Γi is discrete.

Proposition 16.7. In t > 1 case, we can state a similar result. Namely, with the
notation and assumptions as before, (Ω̂(d))t/Γi is a formal scheme.

Proof. The proof is analogous to [39] and [40].

We have de�ned the action of (DT)×I on G′gen ×D×(Af ) in Section 16.2. So, we
have morphism

G′gen ×D×(Af )/H −→ GE``X,D,I .

We also de�ned the action of D× on G′gen ×D×(Af )/H so that we get a morphism

D×\G′gen ×D×(Af )/(DT)×I −→ GE``X,D,I

Now, this morphism factors through ĜE``ZX,D,I . Indeed, on the left, we have a
formal scheme de�ned by ζ-completion, so the left side is of the form lim←−X/(π)n.
And if I denotes the ideal sheaf of Z, we see that X/(πn) mapsto Y/In, i.e, In
mapsto to ζn. So, we can de�ne

θ : X −→ Y

Now we can state our main theorem:

Theorem 16.8. One has an isomorphism of formal schemes

ĜE``ZX/Y,D,I ' D×\G′gen ×D×(Af )/(DT)∗I .
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Remark 16.9. We want to remark that if the proof of the previous proposition is
worked out in a details then, we can recover Stuhler's result on uniformization of
Frobenius-Hecke sheaves in [46].

Recall the representability theorem in Section 15, Theorem 15.4.

Theorem 16.10. We can reformulate the Theorem 16.8 as follows:

ĜE``ZX/Y,D,I ' D×\
( t∏
i=1

(Z× Ω̂(d))
)
×D×(Af )/(DT)∗I

Remark 16.11. Let us assume t = 1 and so we have D-elliptic sheaves. We want to
note that in [4], Blum and Stuhler consider D-elliptic sheaves with a normalization
condition. In this case G′ is representable by Ω̂(d). Hence our theorem becomes:

Ê``X,D,I ' D×\Z× Ω̂(d) ×D×(Af )/(D∞)×I .

where E``X,D,I denotes the stack of D-elliptic sheaves with level I-structure. This
theorem is stated in [4], Theorem 4.4.11 without a proof.
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17 Proof of Uniformization Theorem

Let S ∈ Nilpk∞[[ζ1,··· ,ζt]]. We will prove that the stack X ×Y S is a scheme and that
we have an isomorphism of schemes

X ×Y S
∼−→ S

Proposition 17.1. The morphism θred : Xred −→ Yred is bijective on K-points
where K is a �eld, i.e, the morphism θred(K) : X (K) −→ Y(K) is an isomorphism.

Proof. First we will show the surjectivity. Let s ∈ Yred be a point. Since it is
isoclinic ( Theorem 10.13), there is a quasi-isogeny ρ : Es −→ E . We can assume, by
multiplying with a quasi-isogeny of E if necessary, that ρ respects the level structure.
The induced quasi-isogeny F s −→ ρ̂∗Es is also compatible with the level structures.
Hence, s lies in the image.

Now, let s1 :=
(
(F1, α1), h1H

)
and s2 :=

(
F2, α2), h2H

)
be two elements in

Xred(S). Assume θred
((
F1, α1), h1H

))
= θred

((
F2, α2), h2H

))
. We will show that

s1 and s2 lie in the same orbit wrt the D×-action.
Since (F1, h1H) = (F2, h2H), we have a quasi-isogeny ϕ : F1 −→ F2. Consider

the diagram

(F1)S̄
α1 //

ϕ̄

��

E S̄
f

��
(F2)S̄

α2 // E S̄
where f is de�ned vis the diagram. We claim that f = gS̄ for some g ∈ D×. This
will follow from the next lemma.

Lemma 17.2. Let S ∈ Nilpk∞[[ζ1,··· ,ζt]] and let S̄ be its special �ber. Assume S̄ =
SpecK where K is an algebraically closed �eld. The map

D× −→ QIsogS(ES)

de�ned by g 7→ gS̄ is surjective.

Proof. Recall the generalized D-elliptic sheaf E de�ned in Example 2. We consider
E over S, denote it by EK = E ×K. Let f : EK −→ EK(D) be an isogeny for some
e�ective divisor D of X which is an isomorphism over (X r T) × S. Consider the
diagram

EK
f // EK(D)

σ∗(EK)
σ∗f //

t

OO

σ∗(EK(D))

t⊗ id

OO
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Note that σ∗(EK) = σ∗(E ⊗K) = E ⊗ σ∗K by de�nition of E .
Note that σ∗Kn ' Kn.
Note that σ∗(EK) = σ∗(E ⊗ K) = E ⊗ σ∗K ' E ⊗ Kn. Then the morphism

t : σ∗(EK) −→ EK is represented by a matrix T . Over F = Fq(X), the matrix T is
invertible. Hence, we have σ∗f = f and therefore lies in Fq.

Remark 17.3. 1. Note that by the rigidity in Proposition 13.5, we can reformu-
late the previous lemma as

D× −→ QIsogS̄(ES)
'−→ QIsogS(ES)

2. We also want to point out that the morphism D× −→ QIsogS̄(ES) de�ned in
the lemma is in fact an isomorphism of groups.

Proposition 17.4. The morphism θred is radicial.

Proof. By [2], Chapter VI, Proposition 5.2, it is enough to show that for any �eld
K, the map of K points θred(K) : Xred(K) −→ Yred(K) is injective. This follows
from the previous proposition.

Proposition 17.5. The morphism θ is formally étale.

Proof. This follows from the fact that quasi-isogenies of z-divisible groups extend
uniquely to deformations in the category Nilpk∞q [[ζ1,··· ,ζt]]

, which is satis�ed by Serre-
Tate theorem.

Let I and J be ideal of de�nition of X and Y , respectively. Put Xn :=
(X ,OX/In+1) and Yn := OY/J n+1. Then, Xn and Yn are schemes locally of �-
nite type over S = Spec k∞[[ζ1, · · · , ζt]] for each n. Denote the restriction of θ to Xn

by θn.

Proposition 17.6. The morphism Xn −→ Yn is locally of �nite type.

Proof. This follows from Lemma 01T8.

Proof. (of the Uniformization Theorem)
By the previous lemmas, we have

X ×Y Yn
∼−→ Yn

where Yn := Spec(OY/ζn)(We want to note that ζ is an ideal of de�nition of Y
since Z is the vanishing locus of ζ.)

Since the morphism θ is locally of �nite type and formally étale, θ is étale. Since
it is also radicial, it is an open immersion. So, θ is open immersion and bijection on
points which means that it is an isomorphism.
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Appendix

18 Morita Equivalence

In this part, we will explain Morita equivalence, which later we will use it to show
some categorical equivalences. For the proofs and more on Morita equivalence please
see [6] and [28], Section 19.5.

De�nition 18.1. Let R and S be two rings. We say R and S are Morita equiva-
lence if Mod−R and Mod−S are equivalent where Mod−R( respectively, Mod−S)
denotes the category of right R(resp, S)-modules .

Theorem 18.2. (Eilenberg-Watts Theorem) If F : Mod−R −→ Mod−S is an
equivalence, then there exists an R-S-bimodule Q such that F ' −⊗R Q

We can apply Theorem 18.2, to Morita equivalence. Let F : Mod−R −→
Mod−S be an equivalence with inverse G : Mod−S −→ Mod−R. By Theorem
18.2, F is given by −⊗R Q where Q is an R-S bimodule and G is given by −⊗S P
where P is an S-R bimodule. Hence,we have the following characterization of Morita
equivalence:

Theorem 18.3. The rings R and S are Morita equivalent i� there exists an R-S
bimodule Q and S-R-bimodule P such that P ⊗R Q ' S (as S-S bimodules) and
Q⊗S P ' R(as R-R bimodules).

Remark 18.4. Let R and S be two Morita equivalent rings and Proj-R( respec-
tively, Proj-S) denote the category of projective modules over R(resp, S). Then
Proj-R and Proj-S are Morita equivalence. In general, any property de�ned cate-
gorically is preserved by Morita equivalence.

Example 18.5. Let S = Md(R). Then, R and S are Morita equivalent with R-
Md(R) bimodule Q = R1×d, row vectors, and Md(R)-R bimodule P = Rd×1, column
vectors. That is

F : Mod−R −→ Mod−Md(R)

is given by A −→ A⊗R Q and

G : Mod−Md(R) −→ Mod−R

is given by B −→ B ⊗Md(R) P

Remark 18.6. Note that an R-S-bimodule is just a left module over the ring
R⊗Z S

op where Sop is the opposite ring of S.
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One can de�ne Morita equivalence for sheaves in a similar way, roughly speaking
by simply replacing modules with sheaf of modules [see Example 9.1]. More generally,
one has Morita equivalence for stacks, for more please see [28], Prop. 19.5.2. , which
says that if we have an equivalence between OX stacks then there exists a certain
sheaf of modules such that equivalence functor is given by tensoring with that sheaf
of modules.

Morita Equivalence for Sheaves and Stacks

In this section we will see that there is Morita equivalence for more general cate-
gories. We will start with Morita equivalence for OX-modules where (X,OX) is a
ringed space. The main reference is [21], Section 8.12.

Morita Equivalence for Sheaves

Let (X,OX) be a ringed space and E be an OX-module. One can associate the
Hom-sheaf to E which is an OX-algebra End(E) = HomOX (E , E). Recall that E∨ :=
HomOX (E ,OX). For U ⊆ X one can de�ne the maps

End(E)× E(U) −→ E(U) given by (v, u) 7→ vU(s)

E∨(U)× End(E)(U) −→ E∨(U) given by (λ, v) 7→ λ ◦ v

make E a left End(E)-module and E∨ a right End(E)-module. So, we get functors

F : OX-Mod −→ End(E)-LeftMod, F 7→ E ⊗OX F

G : End(E)-LeftMod −→ OX-Mod, H −→ E∨ ⊗End(E) H

Theorem 18.7. ([21], Proposition 8.26) Let E be a �nite locally free OX-module
such that Es 6= 0 for all x ∈ X. Then, F and G are quasi-inverse to each other.

Remark 18.8. If E = OnX then End(E) ' Mn(OX). Hence, we obtain an equiva-
lence between the category of OX-modules and the category of Mn(OX)-modules.

Morita Equivalence for Stacks

So far, we had Morita equivalence for modules over a ring and for OX-modules. One
has Morita equivalence for OX-stacks also.

Let (X,OX) be a ringed site, i.e, a site X together with a sheaf of commutative
rings OX on X. Let Ri be a sheaf of OX-algebras on X.

Proposition 18.9. ([28], Proposition 19.5.2) Let P be an R1⊗OX R
op
2 -module. the

following are equivalent:
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(i) There is an R2⊗OXR
op
1 -module Q such that P ⊗R2Q ' R1 as an R1⊗OXR

op
1 -

modules and Q⊗R1 P ' R2 as an R2 ⊗OX R
op
2 -module.

(ii) P ⊗R2 − : Mod−R2 −→ Mod−R1 is an equivalence of OX-stacks

(iii) HomR1(P,−) : Mod−R1 −→ Mod−R2 is an equivalence of OX-stacks.

Moreover, under the condition of (i), Q is isomorphic to HomR1(P,R1) and to
HomRop2 (P,R2) as an R2 ⊗OX R

op
1 -module.

Remark 18.10. We stated only some parts of the proposition above to see the
relation with the previous categories. To see the remaining items in the proposition
please see [28].

Theorem 18.11. (Morita Equivalence) Let Φ : Mod−R2 −→ Mod−R1 be an
equivalence of OX-stacks. Then, there exists an R1 ⊗OX R

op
2 -module P satisfying

one of the equivalent conditions in the previous proposition such that P ⊗R2 − ' Φ
and HomR1(P,−) ' Φ−1

Proof. [28], Theorem 19.5.4.

19 Stacks

The main source for this part is [20], [47] and [52]. In this section we will give a
summary of stacks.

Stacks can be thought of as a generalization of schemes in the following sense.
In schemes the points are sets while in stacks the points are categories. So di�erent
than schemes in stacks each point comes with a set of automorphisms. A stack is a
scheme i� the set of automorphisms of each point is trivial (Lemma 19.34). This fact
plays a role in the representability by a scheme of the moduli problems. To have the
representability by a scheme one usually puts extra conditions on automorphisms
to satisfy. That is one of the reason that in the main body of this work we consider
objects with level I-structures. In the presence of a non-trivial level structure,
we prove that moduli functor is representable by a scheme. There are examples
however where even after adding big level structures, the moduli functor still is not
representable by a scheme(E.g [23], Section 3). In [23], Section 4, Hartl gives an
example of a moduli functor which is not representable by a scheme.

Let S be a scheme. One can see S by its functor of points. One can de�ne
stacks as 2-functor, which emphasises that stacks are generalizations of schemes([20],
De�nition 2.10). Here, we will de�ne stacks as categories. Note that these two
de�nitions of stacks are equivalent. Then, we will put some condition on stacks so
that we can see them as geometric objects.
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De�nition 19.1. A category over C is a category F together with a covariant
functor ρF : F −→ C. If X ∈ ObF(resp. ϕ is a morphism) and T ∈ C such that
ρF(X) = T (resp ρF(ϕ) = f), we say that X lies over T (resp. ϕ lies over f).

De�nition 19.2. Let F be a category over C. A morphism ϕ : X −→ X ′ is called
catresian if for any other object Y ∈ ObF with a morphism ψ : Y −→ X ′ and
factorization

ρ(Y ) h // ρ(X)
ρ(ϕ) // ρ(X ′)

of ρ(ψ), there exists unique morphism λ : Y −→ X such that ϕ◦λ = ψ and ρ(λ) = h.

In a picture expression:

Y
λ //

��

ψ

$$
X

ϕ //

��

X ′

��
ρ(Y ) h // ρ(X)

ρ(ϕ) // ρ(X ′)

De�nition 19.3. 1. A category F over C is called �bered category if given an
object X of F and an arrow f : T −→ ρF(X) of C, there exists a cartesian
arrow ϕ : X ′ −→ X of F over f , i.e, so that ρF(ϕ) = f .

2. Let F be a �bered category and T ∈ Ob C. We de�ne the �ber of F over T
as the full subcategory of F whose objects lie over T and whose morphisms
lie over idT . We denote this �ber by F(T ).

De�nition 19.4. 1. A groupoid is a category in which every morphism is iso-
morphism.

2. We say a �bered category F is �bered in groupoids if all �bers are groupoids.

Proposition 19.5. Let F be a category over C. Then F is �bered in groupoids over
C if and only if the following two conditions hold.

1. Every arrow in F is cartesian.

2. Given an object η of F and an arrow f : U −→ ρF(η) of C, there exists an
arrow ϕ : ζ −→ η of F with ρF(ϕ) = f .

Proof. [52], 3.22.

Remark 19.6. 1. the condition (1) implies that the morphism ϕ : ζ −→ η in the
condition (2) is unique up to isomorphism: Assume there exists ϕ1 : ζ1 −→ η
and ϕ2 : ζ2 −→ η as in the condition (2). Then by (1), there exists unique
map λ : ζ1 −→ ζ2. By swaping ζ1 and ζ2, we see that λ is an isomorphism.
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2. Condition (2) also implies that ϕ : X −→ X ′ is an isomorphism ⇐⇒ ρF(ϕ)
is an isomorphism in C.

Convention: For each X ′ ∈ ObF and any f : T −→ T ′ with X ′ over T ′ choose
an X as in the condition one. Note that the map from X ′ −→ X is unique by
18.6(1). We will denote this lift X by f ∗X ′(or by X ′|T ). From now on we �x such
choices for all f and X ′. This kind of choice is called a cleavage.

Remark 19.7. From the previous remark, we see that any morphism in F(T ) is
an isomorphism.

De�nition 19.8. 1. A morphism of �bered categories F −→ G is a functor
f : F −→ G such that

(i) ρG ◦ f = ρF

(ii) f sends cartesian morphisms in F to cartesian morphisms in G.

2. Let f, g : F −→ G be two morphisms of �bered categories. A base preserving
natural transformation α : f −→ g is a natural transformation of functors
such that for every X ∈ F the morphism αX : f(X) −→ g(X) in G projects
to the identity morphism in SchS.

De�nition 19.9. Let F −→ C be a �bered category. A �bered subcategory G of
F is a subcategory of F , such that the composite G ↪→ F −→ C makes G into a
�bered category over C, and such that any cartesian arrow in G is also cartesian in
F .

Fibered category associated to a pseudo functor

De�nition 19.10. ([52], De�nition 3.10) Let C be a category. A pseudo-functor Φ
on C consist of the following data

1. For each object U of C a category ΦU

2. For each morphism f : U −→ V in C a functor f ∗ : ΦV −→ ΦU

3. For each object U of C an isomorphism εU : id∗U ' idΦU of functors ΦU −→ ΦU

4. For each pair of morphisms U
f−→ V

g−→ W an isomorphism

αf,g : f ∗g∗ ' (gf)∗ : ΦW −→ ΦU

of functors ΦW −→ ΦU

These data are required to satisfy the following conditions:
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(a) If f : U −→ V a morphism in C and η is an object of ΦV , we have

α idU ,f (η) = εU(f ∗η) : id∗U f
∗η −→ f ∗η

and

αf, idU (η) = f ∗εV (η) : f ∗ idV η −→ f ∗η

(b) Whenever we have morphisms U
f−→ V

g−→ W
h−→ T and an object θ of ΦT the

diagram

f ∗g∗h∗θ
αf,g(h∗θ)

//

f∗αg,h(θ)

��

(gf)∗h∗θ

αgf,h(θ)

��
f(Y1)

αf,gh(θ)
// g(Y2)

commutes.

By [52] Section 3.1.3, one can get a �bered category associated to a psedo-functor
and vice versa. Moreover, these two procedures are inverse to each other(up to an
isomorphism of �bered categories).

Example 19.11. Let SchS denote the category of schemes over a �xed base scheme
S. For each scheme U we de�ne QCoh(U) to be the category of quasi-coherent
sheaves on U . Given a morphism f : U −→ V , we have a functor f ∗ : QCoh(V ) −→
QCoh(U).

However, in general for U
f−→ V

g−→ W , (g◦f)∗ 6= f ∗◦g∗, so U −→ QCoh(U) is not
a functor. But (g ◦ f)∗ and f ∗g∗ are canonically isomorphic since (gf)∗ = f∗g∗ and
f ∗ is left adjoin to f∗, Yoneda lemma induces the canonical isomorphism between
functors (g ◦ f)∗ and f ∗ ◦ g∗. One can also check that the isomorphisms above
satisfy the conditions in the de�nition. So we get a pseudo-functor, hence a �bered
category QCoh/S. For details please see [52], 3.2.1.

From now on unless stated otherwise assume that C = SchS is equipped with
the étale topology. Before we continue we want to recall the de�nition of a sheaf in
a Grothendieck topology.

De�nition 19.12. ([47], Section 2.2)
Let C be a category with Grothendick topology. A presheaf on C is a functor

F : Cop −→ Sets
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De�nition 19.13. Let C be a category with Grothendieck topology. A presheaf F
on C is a sheaf if for every U ∈ Ob C and covering {Ui −→ U}i∈I the sequence

F (U) //
∏

i∈I F (Ui) //
//∏

i,j∈I F (Ui ×U Uj)
is exact, where the two maps on the right are induced by the two projections Ui×U
Uj −→ Ui and Ui ×U Uj −→ Uj.

Remark 19.14. To say that the sequence above is exact means that the map
F (U) −→

∏
i∈I F (Ui) identi�es F (U) with the equalizer of the two maps∏

i∈I F (Ui) //
//∏

i,j∈I F (Ui ×U Uj)

Stacks

Let F be a �bered category over a C. For any object S of C and any two objects ζ
and η in F(S), de�ne the presheaf on (C/S):

HomS(ζ, η) : (C/S)op −→ Sets

De�nition 19.15. We say a �bered category F is a prestack if for every choice of
S, ζ, η the presheaf HomS(ζ, η) is a sheaf.

De�nition 19.16. Let C be a site and F be a �bered category over C. Let U be
an object of C. Given a covering U = {Ui −→ U}. Set

Uij = Ui ×U Uj
and

Uijk = Ui ×U Uj ×U Uk.
An object with descent data

(
{ζi}, {ϕij}

)
on U is a collection of objects ζi ∈ F(Ui)

together with isomorphism

ϕij : pr∗2ζj
∼−→ pr∗1ζi in F(Ui ×U Uj)

such that the following cocycle condition is satis�ed:

pr∗13ϕik = pr∗12ϕij ◦ pr∗23ϕik : pr∗3ζk −→ pr∗1ζi

De�nition 19.17. We say that an object with descent data
(
{ζi}, {ϕij}

)
in F(U) is

e�ective if there exists an object ζ of F(U) together with cartesian arrows ζi −→ ζ
over fi : Ui −→ U such that the following diagram

pr∗2ζj ϕij
//

��

pr∗1ζi

��
ζj

!!

ζi

~~
ζ

commutes.
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De�nition 19.18. A stack is a prestack such that for every cover (Ui −→ U) in the
chosen Grothendieck topology, all descent data relative to (Ui −→ U) are e�ective.

Example 19.19. Given a scheme S, we have constructed (QCoh/S) of quasi-
coherent sheaves, whose �ber of a scheme U over S is the category QCoh(U) of
quasi-coherent sheaves on U . The �bered category (QCoh/S) over (Sch/S) is a
stack with respect to the fpqc topology (cf. [52], Theorem 4.23).

De�nition 19.20. Let C be a site and F −→ C a stack. A substack of F is a �bered
subcategory that is a stack.

Example 19.21. ([52], Example 4.19) Let C be a site, F −→ C a stack, G a full
subcategory of F satisfying the following two conditions.

1. Any cartesian arrow in F whose target is in G is also in G.

2. Let {Ui −→ U} be a covering in C, η an object of F(U), ηi pullbacks of η to
Ui. If ηi is in G for all i, then η is in G.

Then G is a substack.

Example 19.22. The full subcategory of (QCoh/S) consisting of locally free sheaves
of �nite rank satis�es the two conditions, hence it is a substack.

Stacks �bered in groupoids

De�nition 19.23. A stack in groupoids is a category �bered in groupoid F such
that the assignement

SchS −→ Set

given by U 7→ F(U) is a sheaf of groupoids, i.e,

1. For all scheme T and pair of objects X, Y of F over T (i.e, pair of objects in
F(T )), the contravariant functor

IsoT (X, Y ) : SchT −→ Sets

de�ned by (f : T ′ −→ T ) 7→ {ϕ : f ∗X
'−→ f ∗Y an isomorphism in F(T ′)} is a

sheaf (in the étale topology).

2. All descent data are e�ective.

Remark 19.24. We want to point out that the stack in De�nition 19.23 is di�erent
than the one in the De�nition 19.18. In De�nition 19.23, we de�ne � stacks in
groupoids�. We will usually supress the word "groupoid" in the "stack in groupoids".
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De�nition 19.25. 1. Morphisms (resp. isomorphisms) of stacks are de�ned to
be morphisms (resp. isomorphisms) of �bered categories over SchS

2. We denote by HomS(F ,G) the category whose objects are morphisms of stacks
and whose morphisms are base preserving natural transformations.

We can relate the two de�nitions of stack:

De�nition 19.26. Let F −→ C be a �bered category. The category �bered in
groupoids associated with F is the subcategory Fcart of F , whose objects are all the
objects of F , and whose arrows are the cartesian arrows of F .

Remark 19.27. The stack Fcart is a groupoid stack.

Proposition 19.28. Let C be a site, F −→ C a �bered category. Let Fcart be the
associated category �bered in groupoids.

1. If F is a stack, so is Fcart.

2. If F is a prestack and Fcart is a stack, then F is also a stack.

Proof. [52], Proposition 4.20.

By using morphisms we can form a new stack, namely �ber product of stacks.

De�nition 19.29. Let F1,F2 and G be stacks. Given two morphisms f : F1 −→ G
and F2 −→ G, we de�ne the �ber product F1 ×G F2, as follows.

� The objects of F1 × F2 are the triples (X1, X2, α) where Xj ∈ ObFj lie over
the same scheme U and α : f(X1) −→ g(X2) is an isomorphism in G(in other
words ρG(α) = idU).

� A morphism from (X1, X2, α) to (Y1, Y2, β) is a tuple (ϕ1, ϕ2) of morphisms
ϕj : Xj −→ Yj that lie over the same morphisms of schemes h : U −→ V such
that the following diagram commutes

f(X1) α //

f(ϕ1)

��

g(X2)

g(ϕ2)

��
f(Y1)

β
// g(Y2)

The �ber product satisfy the universal property of �ber products.

Theorem 19.30. The �ber products exist in the category of stacks stacks

Proof. [22], Lemma 4.14.
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Example 19.31. Let T be a scheme over S. Consider SchT the category of schemes
over T . De�ne the functor SchT −→ SchS by the composition V −→ T −→ S for
any V ∈ SchT . Then, SchT becomes a stack. We will denote also this stack by T .

De�nition 19.32. 1. We say a stack F is representable by a scheme T if it is
isomorphic to the stack associated to T .

2. A morphism of stacks ϕ : F −→ G is called representable if for all T ∈ ObSchS
and morphisms T −→ G the �ber product of stacks T ×G F is representable
by a scheme.

3. Let "P" be a property of morphisms of schemes which is local on the target
and stable under base-change (e.g: smooth, étale, surjective, of �nite type
etc).We say that a representable morphism f : F −→ G has "P" if for any
T −→ G the induced morphism of schemes T ×G F −→ T has the property
"P".

Remark 19.33. One can de�ne the representability of a stack by algebraic spaces
similarly as above. Since we will only use representability by a scheme, we won't
give the de�nition of an algebraic space.

We have the following very useful lemma that shows us an obsticle to be repre-
sentable.

Lemma 19.34. If a stack has an object which has a nontrivial automorphism then
the stack cannot be respresentable by a scheme.([20], Lemma 2.17)

Lemma 19.35. ([20], Lemma 2.18) Let F be a stack and T a scheme. The functor

u : HomS(T,F) −→ F(T )

given by (f : SchT −→ F) 7→ f(idT ) gives us an equivalence of categories.

Remark 19.36. 1. Note that the previous lemma tells us that an object of F
that lies over T is equivalent to a morphism of stacks from T −→ F .

2. We want to note this the previous lemma is the 2-Yoneda lemma(cf. [52],
3.6.2)

Let F be a stack and let ∆F : F −→ F ×F be the obvious diagonal morphism.
A morphism from a scheme T to F ×F is equivalent to two objects X1, X2 ∈ F(T )
by the previous lemma. By taking the �ber product we have

IsomT (X1, X2) //

��

F
∆F
��

T
(X1,X2)

// F ×S F
Hence the group of automorphisms of an object is encoded in the diagonal morphism.
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Proposition 19.37. Let F , X1, X2 be as above. the following are equivalent:

1. The morphism ∆F is representable.

2. The stack IsomT (X1, X2) is representable for all T,X1 and X2.

3. For any scheme T , every morphism T −→ F is representable.

4. For all schemes T1, T2 and morphisms T1 −→ F and T2 −→ F , the �ber
product T1 ×F T2 is representable.

[32], Cor. 2.12. , [[52], Prop. 7.13]

De�nition 19.38. (Deligne-Mumford stack)
Let SchS be the category of S-schemes with étale topology. Let F be a stack

and let ∆F : F × F be the obvious diagonal morphism. Assume

1. The diagonal ∆F is representable.

2. There exists a scheme U (called atlas) and a surjective and étale morphism
u : U −→ F
Then, we say that F is a Deligne-Mumford stack.

By the Proposition 19.37 and by the fact ∆F is representable, we see that the
morphism u : U −→ F in (2) in the de�nition is representable. So, the notion of
étale is well-de�ned for u.

De�nition 19.39. Let SchS be the category of S-schemes with the fppf topology.
Let F be a stack. Assume

1. The diagonal ∆F is representable.

2. There exists a scheme U and a smooth(hence locally of �nite type) and sur-
jective morphism u : U −→ F .
Then, we say that F is an Artin stack.

Example 19.40. Now, we will give the example "quotient stack" following [11],
Example 4.8.

Let X be a scheme over S. Let G be a group scheme over S that is étale,
separated and of �nite type over S. Assume G acts on X. De�ne the stack [X/G]
over S as follows: Its category of sections over an S-scheme T is the category of
principal homogeneous spaces over T under GT . The principal homogeneous space
G×X over X together with the morphism G×X −→ X is a section of [X/G] over
X. The corresponding morphism X −→ [X/G] is étale and surjective, so [X/G] is
a Deligne-Mumford stack.

The stack [X/G] is representable ⇐⇒ X is a principal homogeneous space over
a scheme Y .
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Remark 19.41. 1. Note that this example tells us that if G is étale over S, then
the quotient stack [X/G] is a Deligne-Mumford stack. We are using this fact
in Section 5, Proof of Theorem 5.3.

2. For more details on the "moduli quotient", we refer to [20]. In the introduction
he talks about "quotient scheme" vs "quotient stack" and in Section 3, he
compare moduli scheme vs moduli stack of vector bundles.

There are some conditions on G to decide when the quotient of a group is a stack
and when the quotient of a stack is a Deligne-Mumford stack. We collect some of
them in the following proposition.

Proposition 19.42. 1. If G is smooth and a�ne then the groupoid [X/G] is a
stack.

2. If the stabilizers of the geometric points of X are �nite and reduced then [X/G]
is a Deligne-Mumford stack.

Proof. 1. [32], 2.4.2

2. [52], Example 7.17

Moduli stacks

For this section one can look at [47], Introduction.
Moduli spaces are spaces that answers the problem of classifying objects. These

problems are called moduli problems. And the moduli problems are usually de-
scribed by functors. We say that a functor F is representable by a scheme M if F
is isomorphic to Hom(−,M) where Hom(−,M) is the functor of points. Then, the
scheme M is called a �ne moduli space. This means that there is a 1-1 correspon-
dence between families of objects parametrized by B and the morphisms B −→M .
So, a �ne moduli space has a universal family U corresponding to the identity
morphism idM ∈ Hom(M,M) together with a morphism U −→ M . We say that
two points on M are isomorphic if they correspond the isomorphic(or geometrically
same) objects.

Often a �ne moduli is desired but not obtained. Instead one obtains a coarse
moduli space. A coarse moduli space is a scheme M with a morphism of functors
F −→ Hom(−,M) that is universal for morphisms from F to representable functors
and such that for any algebraically closed �eld k the induced map F (Spec(k)) −→
Hom((Spec(k),M) = M(k) is a bijection. So, a coarse moduli space is a space that
has the right information on points., i.e, if we only consider points not families,
coarse moduli space has the right information.
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Sometimes the moduli functor cannot be represented by a scheme and it has nei-
ther �ne moduli space nor a coarse moduli space. The reason for that is the objects
that are parametrized has nontrivial automorphisms(recall Lemma 19.34). One can
solve this problem by considering isomorphisms. More precisely, consider the ob-
jects parametrized by B with only morphisms between them are isomorphisms. By
remembering isomorphisms, we get a moduli stack.

20 Vector bundles over X × S
Let∞1, · · · ,∞n be closed places of X and let A = Γ (X r {∞1, · · · ,∞n},OX). We
denote the function �eld of X by F/Fq.

The main reference for this is [53], Section 2.

Theorem 20.1. Let S be an Fq-scheme. Given the data (M, E∞j
, ιj) where

� M is vector bundle of rank d over SpecA× S

� E∞j
is vector bundle of rank d over OX,∞ × S

� ιj :M⊗A F ' E∞j
⊗OX,∞j F an isomorphism

there exists (up to isomomorphism) a unique vector bundle F on X × S such that

(MF = F|SpecA×S, EF ,∞ = F ⊗OX×S OX,∞j
× S, canj :MF ⊗A F ∼= EF ,∞j

⊗ F )

where canj is the canonical isomorphism.

Proof. In [53], Proposition 2.69, the theorem is proved for the case n = 1. Now, the
proof follows by induction on n.

Therefore, one can think of a locally free space over X × S as in two parts: the
a�ne part and the part around ∞. The isomorphism serves as gluing morphism.

Example 20.2. Let X be a smooth connected curve over K, and let U ⊂ X be
a non-empty a�ne open subset of X with U = SpecR. Denote by F the function
�eld of X, i.e, F = K(X) = Frac(R). Then, there is a bijection up to isomorphism
between

1. rank n vector bundles on X

2. Data: (M, (Lx)x∈X−U , (ix)x∈X−U) where M is a rank n projective R-module,
for each x ∈ X−U , Lx is a rank n free OX,x-module and ix is an isomorphism

ix : M ⊗R F ' Lx ⊗OX,x F.
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