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If the absorption spectrum of a sample is known
then it is often possible to work out the con-
centrations of the constituent molecules using
a spectroscopic analysis. Surely multiwavelength
photoacoustic imaging can, by analogy, provide
maps of the concentrations of the constituent
chromophores?

[Cox et al., 2009b]1 | Introduction

1.1 Motivation

Photoacoustic Imaging (PAI) is a comparatively young and emerging imaging modality that
promises real-time, noninvasive, and radiation-free imaging of optical tissue properties. With
commonly available optical imaging techniques, obtaining information on optical tissue proper-
ties is only possible on the surface or in ex vivo samples, due to high absorption and scattering of
light in the visible wavelength range of light. In contrast to other optical imaging modalities, the
most signi�cant advantage of PAI is that it can visualize optical tissue properties up to several
centimeters deep in tissue. PAI is based on the photoacoustic e�ect, which enables spatially
resolved imaging of chromophores, which are tissue molecules that absorb light, by sending very
short pulses of near-infrared laser light into tissue. Where the incident light is absorbed, sound
waves emerge in the audible and ultrasound regimes. These are created by a process called
thermoelastic expansion, which is the e�ect of changes in the volume of material induced by
changes in its temperature and vice versa. These sound waves can be measured with appropriate
detection devices such as hydrophones - i.e., piezoelectric transducers - and the measured data
can be reconstructed into a spatial image that represents the absorbed energy distribution.

When measuring Photoacoustic (PA) signals of the same structure at di�erent wavelengths of
light, knowledge on functional tissue properties can potentially be inferred. This can be achieved
with spectral unmixing techniques that are capable of computing the fractional composition of
chromophores that contribute to the measured multispectral signal. With these ratios of chro-
mophore concentrations, functional parameters such as blood oxygenation sO2 can be derived
locally in tissue on multispectral PA images. Linear unmixing algorithms are the primary choice
to solve for the concentrations of the individual chromophores. These algorithms are tasked
to identify the best �tting linear combination of a priori multispectral data of the absorption
properties of the chromophores. As such, a fundamental prerequisite for the applicability of
these methods to PA images is that the measured signal S is proportional only to the absorption
coe�cients.
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However, in reality, the measured signal S re�ects the initial pressure distribution p0 and
is therefore proportional to the temperature-dependent Grüneisen coe�cient Γ, the optical
absorption coe�cient µa, as well as the �uence φ. φ, in turn, is dependent on both µa and optical
scattering µs. Due to this interdependency of µa and φ, the quanti�cation of the PA signal is an
ill-posed inverse problem. Research in the �eld of quantitative Photoacoustic Imaging (qPAI) tries
to quantify the absolute values of the underlying optical tissue properties from PA images, how-
ever, despite ongoing research in the �eld, no general solution to the problem has been found yet.

While there has been a swift acceleration of research regarding PAI over the last three decades,
with exponential growth of the number of publications in the �eld (cf. Figure 1.1), current ap-
proaches to solve the quanti�cation problem have a more-or-less steady number of publications
over the last years. So far, the developed methods have only been shown to work in simulation
studies or precise and highly controlled experimental settings and are generally not applicable in
a robust and general manner to clinically acquired data. Reasons for this might, for example, be
ill-chosen model assumptions, dependence on a priori knowledge, lack of robustness to noise,
and long computation times.

# 
Pa

pe
rs

1

10

100

1000

1991 1994 1997 2000 2003 2006 2009 2012 2015 2018

Photoacoustic Imaging quantitative Photoacoustic Imaging

Number of papers in the field 1991 - 2018

Figure 1.1: Visualization of the number of PA papers over time. It shows an exponential increase
of PAI and an overall increase in publications on qPAI. The data shown were obtained using
Google Scholar queries isolated to single years. Search terms for blue: ("photoacoustic imaging"
OR "optoacoustic imaging" OR "photoacoustic tomography" OR "optoacoustic tomography") and
for red: (intitle:"quantitative" AND intitle:"(photoacoustic OR optoacoustic)" AND "(imaging OR
tomography)")
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1.2 Open challenges

Several fundamental problems need to be tackled to achieve a successful quanti�cation of PA
signals. These include:

C1: Solving the acoustic inverse problem:

The �rst open challenge is to perform quantitative PA image reconstruction from recorded
time series pressure data. The objective is to accurately reconstruct an image S showing
the initial pressure distribution p0 from measured time series pressure data p(t). This
inverse process of reconstructing p0 from p(t) is commonly referred to as the acoustic
inverse problem. There are several key aspects to this challenge, such as the compensa-
tion for limited view detection geometries and accurate calibration of the detection system.

C2: Solving the optical inverse problem:

This challenge describes the need to account for the light �uence distribution φ and
the Grüneisen parameter distribution Γ to obtain information on the optical absorption
coe�cient µa from the initial pressure distribution p0. This inverse process of quantitative
µa measurement from p0 is usually referred to as the optical inverse problem because
knowledge on φ needs to be obtained. The key problem is that the light propagation
through tissue is dependent on the µa distribution, which means that ideally, both µa and
φ have to be estimated in parallel by the inverse process.

C3: Performing quantitative spectral unmixing:

The process of spectral unmixing refers to the estimation of absolute concentrations of
chromophores (molecules that have distinct andmeasurable light absorption behaviors) by
using multispectral PA images. Di�erent chromophores usually di�er in their magnitude of
light absorption, which enables spectral unmixing techniques to �nd the ratios of the con-
tribution of the di�erent chromophores to the measured signal S. The key problem is that
the �uence is non-linearly dependent on the wavelength of the light and leads to spectral
coloring of the multispectral signal that has to be accounted for by the unmixing algorithm.

C4: Extraction of meaningful con�dence estimations:

Algorithms developed for the calculation of clinically relevant parameters of the health
status of a patient should be accompanied by methods that know when the model fails.
In the best case, these also know why the model fails, to minimize the risk for the patient.
Because of the ill-posed nature of the described inverse problems of qPAI, it is necessary
to develop methods that can estimate uncertainty-metrics that correlate to the expected
errors of the respective inverse model and that are capable of resolving ambiguities of the
inversion process at the same time. The key objective is to identify uncertainty estimation
methods that can be used for the qPAI inverse problems and that yield interpretable results.

A lot of di�erent PA device geometries have been proposed so far, and the listed challenges are
a lot more pronounced when considering PAI with freehand clinical handheld devices compared
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to pre-clinical tomography systems. Tomographic systems having at least a �eld of view of
180◦ usually can achieve much higher image quality and, as such, provide more information
when having to solve the acoustic inverse problem (details see section 2.3.5). However, they can
currently only be used for small animal imaging or particular use cases because of practical
constraints. Because of these limitations, methods have to be developed that enable quantitative
imaging for handheld devices such that they can be translated into clinical practice.

A major obstacle when validating qPAI methods is the fact that there exists no gold standard
method to obtain information on the light �uence or optical tissue properties in vivo or in vitro
in large or complex structures. Currently, obtaining reference measurements is only possible
either on the tissue surface by using, for example, di�use re�ectance measurements (cf. [van
Veen et al., 2004]) or with ex vivo tissue samples when the analysis is performed with complex
setups such as a double integrating sphere (cf. [Pickering et al., 1993]). As such, methods that
have been developed typically rely on mathematical models of the PA e�ect or the presence of
simulated PA data (e.g. as presented in [Akhlaghi et al., 2019]) and as such, they are often not
suitable for application in vivo.

This lack of ground truth data has led to an under-representation of machine learning techniques
towards qPAI when compared to other imaging modalities. Considering the vast parameter space
of geometrical shapes, distributions of chromophores and scattering molecules, as well as the
illumination and detection geometries that are possible when simulating PA data (amounting to
millions of unknowns), techniques need to be established that can create data-driven models
from relatively few data samples while being robust against noise, artifacts, and unknown
situations.

The primary objective of the work presented in this Ph.D. thesis is to investigate the feasibility of
developing data-driven methods to tackle the listed challenges and to explore their capabilities
towards accurate and reliable quanti�cation of PA signals based on in silico training data. Due to
the computational e�ciency of data-driven methods during inference, the successful develop-
ment of such a method could enable many clinical applications of PAI. This is true, especially in
the area of interventional monitoring of functional tissue parameters such as sO2 locally in tissue.
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1.3 Objectives
The work presented in this thesis contributes to several qPAI hypotheses that relate to the open
challenges C1-C4:

H1: Data-driven methods can be used to solve the optical and acoustic inverse problem.

The purpose of work towards H1 is to examine the feasibility of using data-driven ap-
proaches for the optical and acoustic inverse problem. The hypothesis includes the
question of how in silico simulated PA images and a priori knowledge can be used for
training of the developed algorithms.

H2: Data-driven methods can be used for spectral unmixing in a realistic context.

The purpose of work towards H2 is to examine the feasibility of employing data-driven
methods trained on simulated multispectral PA data for accurate spectral unmixing in
realistic scenarios. The main question is to determine whether the e�ect of spectral
coloring is systematic and whether it can be accounted for during the unmixing process.

H3: Con�dence estimation methods be used to gain insight into qPAI methods.

The purpose of work towards H3 is to examine whether the use of methods for uncertainty
and con�dence estimation can yield improvement on the accuracy or robustness of
the methods developed towards H1 and H2. A critical aspect of this hypothesis is to
identify state-of-the-art techniques for uncertainty quanti�cation and to investigate their
applicability to the qPAI inverse problems.
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1.4 Outline
The thesis starts with an overview of the principle knowledge necessary to follow the results of
this thesis in chapter 2 Materials and methods. It gives an overview of the PA e�ect (section 2.2),
the simulation of in silico PA images (2.3), machine learning techniques (section 2.4), and the
current state of the art (section 2.5) for model-based qPAI, functional PAI, as well as uncertainty
estimation methods. The section concludes in an overview of the open questions in qPAI that
have not been su�ciently solved yet.

The sections listed in chapter 3 Results give a detailed presentation of the work that has been
conducted towards the hypotheses H1, H2, and H3 outlined in the previous section. Table 1.1
summarises this relationship for each main chapter and also refers to the relevant papers that
have been published.

Section Challenges Hypotheses Contributions

3.1 C2 H1 [Kirchner et al., 2018a]

3.2 C1, C2 H1 [Gröhl et al., 2018a]
[Waibel et al., 2018]

3.3 C3 H2 [Gröhl et al., 2019]

3.4 C4 H3 [Gröhl et al., 2018b]
[Gröhl et al., 2018a]

Table 1.1: Overview of the methodological sections contained in the Results chapter of this thesis.

Work towards H1 is presented in sections 3.1 and 3.2. Section 3.1 introduces the concept of context
images to tackle the optical inverse problem with data-driven methods, and section 3.2 presents
the application of end-to-end deep learning methods towards both the acoustic and optical
inverse problem directly on 2-Dimensional (2D) PA images. Section 3.3 introduces work towards
H2 and presents a method that is capable of estimating functional tissue parameters in vivo
while exclusively being trained on synthetic training data. Finally, in section 3.4, several methods
are compared for estimating the uncertainty of data-driven qPAI methods. The section also
presents a technique to exploit these estimates to increase the performance of the respective
inversion method.

Chapter 4 Discussion discusses the methods and results presented in this thesis and contains a
general discussion of the advantages and limitations of using data-driven methods for the qPAI
inverse problems. It also contains a summary of the contributions of this thesis and an outlook
of the next steps that could be made towards qPAI.

A summary of the �ndings presented in this thesis is given in chapters 5 (English version) and 6
(German version).



The purpose of this paper is to establish a theo-
retical and conceptual framework for the papers
to follow. To do so we will review the current
understanding of physical processes involved in
photoacoustic [...] techniques.

[McDonald, 1986]

2 | Materials and Methods

This chapter gives an overview of the principles needed to be able to follow the content of this
thesis. It is divided into �ve main sections. The �rst two sections are an introduction to the
physics of light tissue interactions and the photoacoustic e�ect, including a short historical
overview from its discovery until today. The third section is about the simulation of PA images
by modeling the physical principles involved in PAI. The fourth section gives an overview of the
principle ideas and methods of machine learning. Finally, the �fth section covers a brief review
of the current state of the art in qPAI and explicitly points out the gaps that are addressed with
the work presented in this thesis.

17



18 CHAPTER 2. MATERIALS AND METHODS

2.1 | Light-Tissue Interactions

Further details on light-tissue interactions can be found in the textbook of Wang
and Wu [Wang and Wu, 2012], and a great description of optical properties can be
found on the omlc website by Steven L. Jacques and Scott A. Prahl (https://omlc.
org/classroom/ece532/class3/, as visited on 24.11.2019). Most of the information
presented in this section is extracted from these two resources and the references
contained within.

When light enters biological tissue, it can undergo several fundamental interactions with the
medium: (1) Light refraction and re�ection at the medium surface, which happens at the interface
between two media when there is a mismatch in the respective refractive indexes. This e�ect
is dependent on the incident angle of the light on this interface (cf. Fresnel Equations [Skaar,
2006]) and can even lead to the total re�ection of the incoming light. (2) Photon absorption by a
molecule leads to the elevation of an electron from the ground state to a higher energy state.
(3) Scattering of photons, which is the change of direction of photons caused by structures in
the medium. Scattering happens when the refractive index of the structure mismatches that
of the surrounding medium. Finally, (4) there is di�use re�ection, which happens when light
escapes the tissue surface after having undergone scattering events in the tissue. For certain
imaging techniques - such as transmitted light microscopy - the transmittance of light through
the sample is of great importance, but this is usually only relevant for very thin media, where the
probability of photons not being subject to any interactions within the sample is still very high
[Pluta and Maksymilian, 1988]. Figure 2.1 visualizes the explained e�ects in a comprehensive but
simpli�ed overview.

Biological
Tissue
Medium

incident light reflectance diffuse reflectance

scattering

transmittance

absorption

refraction

Figure 2.1: Visualization of the fundamental light-tissue interactions: refraction, re�ectance,
absorption, scattering, transmittance, and di�use re�ectance.

The two most dominant mechanisms relevant for imaging techniques in the visible to near-
infrared wavelength ranges (400-1300nm) are optical absorption and scattering. The realistic
imaging depth of optical imaging is limited by the mean free path that photons can travel before

https://omlc.org/classroom/ece532/class3/
https://omlc.org/classroom/ece532/class3/
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being subject to an interaction event. The mean free path is simply the multiplicative inverse of
the absorption and scattering interaction coe�cients. In the mentioned wavelength range, the
more dominant e�ect in biological tissue is optical scattering, where the mean free path between
photon scattering events is in the order of 0.1mm (also referred to as the optical di�usion limit).
On the other hand, the mean path length before a photon absorption event can be about 1-10
cm in normal tissues [Wang and Wu, 2012].

2.1.1 Scattering
Scattering of light is caused by changes in the refractive index of scatterers compared to their
surrounding medium or surrounding structures. Some of the most common scatterers in bio-
logical tissue are cells, nuclei, mitochondria, lysosomes, collagen �bers, and cell membranes.
Scattering is a wavelength-dependent property because the incident light is scattered the most
by structures whose size matches the wavelength of the photons. Scattering is di�erentiated in
elastic and inelastic scattering that di�er in the fact that during elastic scattering, no energy is
lost during the scattering process, but during inelastic scattering, there is a change in the particle
energy. The change of energy in inelastic scattering leads to a change of the light wavelength
and is exploited for example in Raman spectroscopy (cf. e.g. [Choo-Smith et al., 2002]). In the
near-infrared regime, elastic scattering is the dominating e�ect.
The scattering property of a medium is represented by the scattering coe�cient µs, which is
de�ned as the probability of a photon to be subject to a scattering event in a medium per unit
path length. The scattering coe�cient is determined by the volume density of the particles ρs,
their geometrical size As, and their speci�c scattering e�ciencyQs: µs = ρs ·Qs ·As. In biological
tissue, it is of the order of magnitude of 100 cm−1 and its multiplicative inverse is referred to
as the scattering mean free path. The ratio of particles that will have undergone no scattering
events (equivalent to the transmittance T (x) in a medium only subject to scattering) after photon
propagation over x unit path lengths can be calculated using Beer-Lambert law:

T (x) = e−µs·x. (2.1)

Anisotropy

The anisotropy g is a dimensionless quantity that describes the directionality of the scattering
events. Generally speaking, a certain amount of the "forward direction" of the photon is retained
during scattering.

Scattering Event

Forward direction

cos

Photon

Figure 2.2: Visualization of the photon de�ection angle relative to its forward direction.

Figure 2.2 visualizes the change of this forward direction by the de�ection angle θ. When consid-
ering an average de�ection angle for a certain scatterer, the expected value of cos(θ) is de�ned
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as g:

g =

π∫
0

p(θ) cos(θ)2π sin(θ)dθ, (2.2)

with p(θ) being the scattering pattern and where
π∫
0

p(θ)2π sin(θ)dθ = 1.

2.1.2 Absorption

Photon absorption occurs as a quantum event (all or nothing principle), where the entire energy
of a photon is transferred to a molecule, changing the electric state of the molecule. This is
because the absorption of a photon raises an electron from the ground state to an excited
state. Depending on the wavelength of the absorbed photon and the absorbing molecule, this
excitation can be relieved by mechanisms such as non-radiative relaxation, �uorescence, or
phosphorescence. For this e�ect to occur, the photon frequency must match the energy needed
for a possible (usually rotational or vibrational) energy transition of the molecule - as such,
photon absorption is also a wavelength-dependent phenomenon. The following relationship
de�nes this energy:

Energy =
h× c
λ

, (2.3)

with h being Planck’s constant, c being the speed of light in vacuum and λ being the wavelength
of the light.

Typical absorbers (chromophores) that are present in the human body are melanin, oxygenated
and deoxygenated hemoglobin, fat, water, and collagen. Due to the wavelength-dependent
nature of optical absorption, and the di�erent molecular compositions of the chromophores,
each chromophore has its characteristic spectrum (cf. �gure 2.3).

The absorption property of a medium is represented by the absorption coe�cient µa, which
- analogous to the scattering property - is de�ned as the probability of a photon to undergo
absorption in a medium per unit path length. The absorption property is determined by the
volume density of the particles ρa, their geometrical size Aa, and their speci�c absorption
e�ciency Qa: µa = ρa ·Qa ·Aa. In biological tissue, it is of the order of magnitude of 0.1 cm−1,
and its multiplicative inverse is referred to as the absorption mean free path. The ratio of
photons that will not have been absorbed (equivalent to the transmittance T (x) in a medium
only subject to absorption) after photon propagation over x unit path lengths can be calculated
using Beer–Lambert law:

T (x) = e−µa·x. (2.4)

2.1.3 The near-infrared window
Both scattering and absorption limit the mean free path of photon propagation and, as such,
limit the e�ective penetration and imaging depth. However, there is a broad window in the
wavelength range from≈ 600-1300nm, in which the combined attenuation (and hence the optical
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Absorption spectra of endogenous chromophores
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Figure 2.3: Overview over the wavelength-dependent absorption spectra of di�erent endogenous
chromophores in biological tissue. The spectra were compiled from [Jacques, 2013] and the
references within. Hb and HbO2 absorption coe�cients are calculated under the assumption of
a hemoglobin concentration of 150g/l.

and acoustic di�usion limit) is at a local minimum, and the potential imaging depth (mean free
path) is at a local maximum; the near-infrared window (cf. �gure 2.4).
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Figure 2.4: Stylized visualization of the near-infrared window. The represented penetration
depth values were adapted from [Pezzi et al., 2019] and were scaled and smoothed for better
visualization.
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2.2 | Photoacoustic imaging

PAI is a comparatively young and emerging imaging modality that promises real-time, noninvasive,
and radiation-free imaging of optical tissue properties. With commonly used optical imaging
techniques, such as multispectral imaging (e.g. [Freeman et al., 1997, Wirkert et al., 2016]) or di�use
optical spectroscopy (e.g. [van Veen et al., 2004]), obtaining information of these optical tissue
properties was only possible on the surface because of the aforementioned optical di�usion
limit due to high absorption and scattering of light in the visible and near-infrared wavelengths
of light. The most signi�cant advantage of PAI is, that - in contrast to other optical imaging
modalities - it can visualize optical tissue properties up to several centimeters deep in tissue by
exploiting the photoacoustic e�ect to ultrasonically break the di�usion limit [Wang, 2012].

2.2.1 The photoacoustic e�ect

A simpli�ed visualization of the PA e�ect is shown in �gure 2.5. The PA e�ect is based on the
principle of thermoelastic expansion, where an extremely short light pulse is able to induce a
local pressure wave inside the tissue. It enables structural imaging of molecules that absorb light
(so-called chromophores) because the acoustic scattering of the emerging sound waves is orders
of magnitude smaller than the optical scattering of the incident light in biological tissue. The
molecules that cause PA signals to arise can be categorized into two categories. Firstly, endoge-
nous chromophores that are naturally present in living organisms, of which the main contributors
are melanin, blood (or rather the red blood cells: oxygenated and deoxygenated hemoglobin),
fat, water, and collagen. And secondly, exogenous contrast agents such as nanoparticles and
dyes (for example gold, Indocyanine Green (ICG), methylene blue, and �uor)[Cox et al., 2005, Yang
et al., 2009, Wu et al., 2014, Zackrisson et al., 2014]. The physical principles of the PA e�ect are
detailed in section 2.2.3.
The PA e�ect was �rst described in 1880 by Alexander Graham Bell in his pioneering article
“Upon the production and reproduction of sound by light” [Bell, 1880]. After already having
invented the telephone, Bell was very fond of the idea of the photophone, a device to transmit
speech using light. He formulated this idea after observing that certain substances, such as
selenium, would produce sound when being exposed to a beam of modulated light. He later
also proposed the spectrophone [Bell, 1881] to examine the absorption characteristics of an
illuminated sample. Many years later, the development of modern laser technology paved the way
for the exponential increase of PA research, as seen today (see �gure 1.1). The PA e�ect regained
the attention of the scienti�c community (e.g. Kerr and Atwood [Kerr and Atwood, 1968] and
Allen Rosencwaig [Rosencwaig, 1975]), also regarding the application of PA for medical imaging
[Bowen, 1983]. Breakthroughs in PA image reconstruction (e.g. [Oraevsky et al., 1999, Xu and Wang,
2005]) and the identi�cation of in vivo applications of PAI for clinical and pre-clinical imaging
(e.g. [Oraevsky et al., 2001, Wang et al., 2003a]) followed at the beginning of the new millennium.
A comprehensive historical overview of the development of PAI and the emergence of the PAI
nomenclature can be found in the work of Manohar and Razansky [Manohar and Razansky, 2016].
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a. b. c.

Figure 2.5: Stylized images that display the mechanisms of the PA e�ect. The individual images
depict (from top to bottom) a PA transducer, a coupling agent (light blue), epidermis (dark brown),
dermis (creme), and an absorbing structure (red). a. illustrates the �uence of laser light in tissue,
b. demonstrates thermoelastic expansion of the areas where the light was absorbed, and c.
shows the propagation of the emerging sound waves.

2.2.2 Clinical applications of photoacoustic imaging

Numerous groups are working with PAI in some form or another. As such, many �elds of applica-
tion of PAI have been established over the last years. Cancer research is a �eld where PAI shows
great potential [Mallidi et al., 2011]. Here, blood is the enabling endogenous chromophore. One
of the hallmarks of cancer is sustained angiogenesis [Hanahan and Weinberg, 2011], which is
the formation of new blood vessels to supply the tumor site with blood, inducing an increase in
the total hemoglobin concentration at the tumor site, and a second hallmark is an increased
metabolism, potentially inducing a decrease in local blood oxygenation [Wang and Wu, 2012].
Much work is conducted towards using PAI for cancer research, including cancerous tissue
classi�cation [Li et al., 2019, Zhang et al., 2018a], cancer detection[Jnawali et al., 2019], and delin-
eation of tumor sites with multispectral PAI [Quiros-Gonzalez et al., 2018]. Skin melanoma and
metastasis detection and imaging [Oh et al., 2006, Weight et al., 2006, Zhang et al., 2010a, Zhang
et al., 2010b], as well as the mapping of sentinel lymph nodes [Song et al., 2008, Erpelding et al.,
2010, Garcia-Uribe et al., 2015] are further applications of PAI in the context of cancer research.

Furthermore, because in�ammatory processes change the hemodynamic behavior of tissue, PAI
is also used for visualization of in�ammatory processes such as in�amed joints [Wang et al.,
2007, Rajian et al., 2012, Jo et al., 2018] or staging of patients who have Crohn’s disease [Knieling
et al., 2017, Waldner et al., 2016]; also using endoscopic PAI devices [Lei et al., 2019]. However,
di�erent chromophores can be visualized for clinical value as well, such as the content of
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collagen in muscle as an imaging biomarker for Duchenne muscular dystrophy [Regensburger
et al., 2019].

PAI is also extensively being used in combination with other imaging modalities, especially
Ultrasound (US) imaging, in order to enhance image quality and patient care [Niederhauser et al.,
2005, Aguirre et al., 2011, Needles et al., 2013, Garcia-Uribe et al., 2015, Elbau et al., 2017, Mandal
et al., 2019]. Developed techniques are then for example used for brain imaging [Wang et al.,
2003b, Ku et al., 2005, Hu et al., 2009, Yao and Wang, 2014, Mohammadi et al., 2019] or surgical
and interventional imaging applications such as needle tracking [Kim et al., 2010, Su et al.,
2010, Allman et al., 2019, Johnstonbaugh et al., 2019].

More applications and more details on the listed examples can be found in the numerous
comprehensive literature reviews in the �eld for example in those of Luke et al. (2012) [Luke
et al., 2012], Taruttis and Ntziachristos (2015) [Taruttis and Ntziachristos, 2015], Liu and Zhang
(2016) [Liu and Zhang, 2016], Omar et al. (2018) [Omar et al., 2019], and Zhu et al. (2018) [Zhu
et al., 2018].

2.2.3 Physical Principles
For the PA e�ect to take place, the laser pulse width τl has to be su�ciently small to be within
the con�nements of two timescales: The thermal relaxation time and the stress relaxation time.
The thermal relaxation time is estimated by τth = d2c/αth, with dc being the target resolution
and αth being the thermal di�usivity of tissue. The stress relaxation time can be calculated
using τs = dc/vs, with vs being the speed of sound. From these conditions, it is evident that the
stress relaxation time is more strict than the thermal relaxation time and τl meets the stress and
thermal con�nements if τl < τs << τth. For example, when considering the properties of typical
soft tissue (αth = 0.13 mm2/s and vs = 1500 m/s) and for a target resolution of 15 µm, this would
result to τth = 1.7 ms and τs = 10 ns [Wang and Wu, 2012].

When these timescales are met, the absorbed photon energy causes an immediate change
in pressure p0 which is based on the compressibility κ of the tissue, the thermal expansion
coe�cient β, and the change in temperature T :

p0 =
β

κ
T, (2.5)

which - when considering that the temperature rise can be expressed as the absorbed energy H
times the photothermal e�ciency ηth in relation to the speci�c heat capacity CV and the mass
density ρ - can be rewritten as

p0 =
β

κ

ηthH

ρCV
. (2.6)

When combining all temperature-dependent material properties into the Grüneisen coe�cient
Γ = βηth/(κρCV ) and when considering that κ = CP /(ρv

2
sCV ), we arrive at Γ = βηthv

2
s/CP and

can express p0 as the product of the absorbed energy distribution H and Γ. Here, H is the
product of the optical absorption coe�cient µa and the �uence φ:

p0 = Γ ·H = Γ · µa · φ. (2.7)
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The time evolution of the PA waves p(t) arising from p0 can, for example, be modeled using linear
acoustics. In a lossless medium, the equations of motion, continuity, and state can be written as
[Treeby and Cox, 2010, Morse et al., 1969]:

∂u

∂t
= − 1

ρ0
∇p

∂ρ

∂t
= −ρ0∇u

p = v2sρ,

(2.8)

where u is the acoustic particle velocity, ρ is the acoustic density, and vs is the speed of sound.
Using these equations with the initial conditions p0 = Γµaφ and ∂p0/∂t = 0, one can derive a
single combined PA wave equation (for the detailed derivation see [Cox and Beard, 2005]):

∇2p− 1

v2s

∂2p

∂t2
=
−β
CV

∂H

∂t
, (2.9)

with vs being the sound speed, β the thermal expansion coe�cient, CV the speci�c heat capacity,
and H the absorbed heat energy (per unit volume and per unit time).

Computing a solution for the PA wave equation for a given p0 results in the time series pressure
data p(t) and will be denoted as the acoustic forward operator A throughout this thesis:

p(t) = A(p0, θ). (2.10)
Here, A operates on the initial pressure distribution p0 taking into consideration the acoustic
properties θ of the medium that are needed for the acoustic forward operator A (for example
containing the medium speed of sound, density, acoustic attenuation, and the positions of
detection elements). For a complete derivation of the PA wave equations confer for example [Cox
and Beard, 2005, Treeby and Cox, 2010, Wang and Wu, 2012, Antholzer et al., 2019a]. The steps
described in equations 2.5 to 2.10 are visualized in �gure 2.6, which illustrates the entire forward
process of PA signal generation.
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Figure 2.6: Stylized representation of the PA signal generation and recording process.

2.2.4 The inverse problems of photoacoustic imaging
When recording PA raw time series data p(t) with a detection device, two principle inverse
problems need to be solved in order to obtain information on the optical properties of the
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underlying tissue. The �rst is the reconstruction of an image S from recorded raw time series
data by estimating the initial pressure distribution p0 from p(t) and is referred to as the acoustic
inverse problem. The second inverse problem is that of recovering the optical tissue properties
from p0, for example, by calculating the light �uence distribution φ and is referred to as the
optical inverse problem. Descriptions of methods developed in the �eld to tackle these inverse
problems are detailed later in section 2.5.

Acoustic inverse problem

For the inverse problem of image reconstruction, the task is to infer the initial pressure distribu-
tion p0 from measured time series data of pressure p(t). For this, an inverse function A−1 for the
acoustic operator A needs to be calculated in order to reconstruct a signal image S that is an
accurate approximation of p0:

S = A−1(p(t)) ≈ p0 = µa · φ · Γ. (2.11)

Even though - for speci�c geometries - this inverse problem is well-posed and has a unique so-
lution, several factors lead to considerable di�culties in solving it [Cox et al., 2009b], sometimes
making it impossible to �nd a unique and accurate solution:

(1) Wrong model assumptions. The use of realistic tissue models that accurately represent, for
example, a heterogeneous speed of sound, tissue density, and acoustic absorption properties
complicate the wave equations and lead to an increase in computational complexity. Because
of this, homogeneous tissue assumptions are usually made, leading to inaccuracies during the
inversion.

(2) Information gets lost with some detection devices. The use of detection devices to record p(t)
that do not yield perfect broadband detection can only create imperfect reconstructions of p0,
as the PA waves are broadband by nature (see �gure 2.7). Typical high-frequency PA transducers
(such as typical US transducers) are unable to measure the low-frequency components of the PA
waves and vice versa for low-frequency transducers. Broadband transducers that are sensitive
over the whole frequency range of a PA signal, such as Fabry-Pérot interferometers (cf. e.g. [Zhang
et al., 2008, Nuster et al., 2011, Huynh et al., 2017]), are needed to be able to reconstruct a more
faithful representation of p0.

(3) Device modeling and calibration. The frequency and incident angle-dependent responses
of detection device elements need to be modeled and accounted for when analyzing the
measurements. Furthermore, p0 needs to be measured in absolute units of pressure, which
means that the detection geometry has to be calibrated, and the reconstruction algorithm has to
retain the units accurately in the reconstructed image.

(4) Limited view geometries. As demonstrated in �gure 2.8, many di�erent detection geometries
have been developed and proposed for PAI. For 2D image acquisition, these can, for example, be
split into these categories: ring arrays [Xia et al., 2012, Xia and Wang, 2013], arc arrays [Kruger
et al., 2003], curved linear arrays [Gamelin et al., 2008], and linear arrays [Zeng et al., 2004]. For
some of these detection geometries, such as linear US transducers, p0 has to be reconstructed
from incomplete data, leading to non-uniqueness and, therefore, ill-posedness of the inversion,
while also giving rise to distinct reconstruction artifacts.
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Figure 2.7: Representation of frequency ranges of PA waves and the frequency responses of typical
PA detection devices. Data compiled from [Zhang et al., 2009, Treeby et al., 2010, Sethuraman
et al., 2007, Ma et al., 2014, Buchmann et al., 2017a, Li et al., 2017]. For accurate and non-stylized
values please refer to the cited sources.
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Figure 2.8: PA device detection geometries.

Optical inverse problem

Assuming a su�ciently accurate reconstruction of p0 from p(t), the second problem that arises
is the task to estimate the underlying optical properties (absorption µa, scattering µs, and
anisotropy g) of the tissue. Of these, the main property of interest is the optical absorption µa,
as it unlocks the potential for functional imaging of tissue (see next section 2.2.5). Principally, to
calculate µa one only needs to account for the Grüneisen parameter Γ and the �uence φ:

µa =
p0
φ · Γ

. (2.12)

However, several factors make this problem ill-posed and generally very hard to tackle [Cox et al.,
2009b]:

(1) Wrong model assumptions. Accounting for a spatially varying Grüneisen parameter Γ and
scattering coe�cient µs is a challenging task. As such, most approaches to qPAI have assumed



28 CHAPTER 2. MATERIALS AND METHODS

constant Γ and µs, which can both spatially vary, and Γ is also dependent on the temperature of
the medium, which again, might spatially vary. Thus, an approach for the optical inverse problem
that has these homogeneous parameter assumptions may be subject to signi�cant errors.

(2) The inverse problem is ill-posed and non-linear. There is assumed to be a non-uniqueness of
the optical inverse problem, where di�erent pairs of µa and µs will result in the same absorbed
energy distributionH , making it an ill-posed inverse problem, further complicating the inversion
[Shao et al., 2011]. At the same time, estimation of the �uence φ is di�cult, due to the non-linear
dependence of �uence on the optical absorption µa and scattering µs. Due to this, when trying
to estimate µa, one needs to solve a non-linear inverse problem.

(3) Spectral coloring. The �uence is dependent on the wavelength λ, due to wavelength-
dependent changes in µa and µs, which leads to spectral coloring of p0. Furthermore, this e�ect
ampli�es for deeper structures, where the light has been subject to more absorption leading to
a non-linear change in p0 spectra.

(4) Noise and artifacts. As eluded to in the previous section, the signal detection process is
sensitive to reconstruction artifacts and noise from various stochastic or systematic sources. An
inversion method needs to be able to cope with or at least identify these noise sources in order
to be able to produce reliable quanti�cation results.

With these considerations in mind, equation 2.7 for p0 should instead be written as:

p0(x, λ) = µa(x, λ) · φ(x, λ, µa(x, λ), µs(x, λ)) · Γ(x, T (x)) + ε(x, λ), (2.13)

better representing the complexity of the optical inverse problem, with x being a spatial location
in the imaged medium, λ being the wavelength of the laser light, T (x) being the spatially varying
temperature, and ε(x, λ) being a term to represent the noise.

2.2.5 Multispectral photoacoustic imaging

One way to remedy the dilemmas of the inverse problems is to use multispectral PAI data,
i.e., using the information from PA images acquired at multiple wavelengths. The main goal
of multispectral PAI is to gain information on the distribution and concentrations of di�erent
chromophores in tissue in order to be able to calculate functional tissue properties [Taruttis and
Ntziachristos, 2015, Brunker et al., 2017]. One of the most prominent and promising applications
of multispectral PAI for various clinical use cases is the estimation of local blood oxygenation sO2

from multispectral PA images, as oxygenated hemoglobin HbO2 and deoxygenated hemoglobin
Hb are two of the main absorbers in the near-infrared. sO2 can be calculated by computing the
relative ratio of the concentrations of Hb (CHb) and the concentration of HbO2 (CHbO2

). This ratio
can be estimated using a process called spectral unmixing (see next section):

sO2 =
CHbO2

CHbO2
+ CHb

. (2.14)

This approach is possible because the absorption coe�cient of di�erent chromophores usually
distinctively vary with regard to the wavelength (see �gure 2.9).
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(1) Multispectral PA Images (2) Chromophore specific absorption spectra (3) Spectrally unmixed images

Figure 2.9: Idealized visualization of how multispectral PAI works. An area is imaged at multiple
di�erent wavelengths (1), and with knowledge of the absorption coe�cients of chromophores (2),
the images are spectrally unmixed and yield the distribution of the chromophores (3). This �gure
was primarily inspired by [Taruttis and Ntziachristos, 2015] and [Brunker et al., 2017].

Spectral unmixing

Spectral unmixing refers to the process of estimating the contribution of di�erent chromophores
to a multispectral PA signal. When assuming that every chromophore contributes linearly to the
absorption coe�cient present in a speci�c spatial location x, one can use the following linear
mixing model:

µa(x, λ) =

K∑
k=1

Ck(x) · ak(λ), (2.15)

where Ck(x) is the concentration of chromophore k at the spatial location x, and ak(λ) is the
absorption coe�cient of k at wavelength λ. The process of unmixing the speci�c concentrations
of chromophores from the total absorption can be tackled by solving a simple system of linear
equations when assuming a linear relationship of the mixing components: µa(x, λ1)

...
µa(x, λN )

 =

 a1(x, λ1) . . . aK(x, λ1)
...

. . .
...

a1(x, λN ) . . . aK(x, λN )


 C1(x)

...
CK(x)

 . (2.16)

Assuming this linear relationship, at least N = K wavelengths need to be recorded to be able to
solve for the concentration coe�cients Ck for K chromophores.

Why linear spectral unmixing models do not work

Despite the promising applications of multispectral PAI, PA images of H or p0 cannot simply be
used for quantitative and accurate spectral unmixing to estimate chromophore concentrations.
The reason for this is that one cannot easily solve for µa, as the �uence φ is unknown and has
traditionally been immeasurable in complex turbid media. When substituting equation 2.15 into
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equation 2.13, which is derived by considering all problems of the optical inverse problem, one
can arrive at the following equation for the initial pressure distribution p0:

p0(x, λ) =

(
K∑
k=1

Ck(x)ak(x, λ)

)
·φ(x, λ,

(
K∑
k=1

Ck(x)ak(x, λ)

)
, µs(x, λ))·Γ(x, T (x))+ε(x, λ). (2.17)

From this equation, it is evident, that knowledge of the chromophore absorption spectra is
not enough, in order to use reconstructed p0 data for spectral unmixing. Instead, a successful
application of linear unmixing techniques requires careful modeling or experimental examination
of the imaged tissue sample, taking into account, for example, the tissue morphology, likely sO2

range, and image formation process [Hochuli et al., 2019]. Alternatively, methods have to be
identi�ed that can estimate φ, µa and the relative concentrations of chromophores at the same
time in order to be able to derive quantitative estimations for the concentrations Ck.



2.3. PHOTOACOUSTIC DATA SIMULATION 31

2.3 | Photoacoustic data simulation

This section gives an overview of computational methods that can be used to simulate the
Photoacoustic (PA) imaging process in order to obtain in silico PA images from optical tissue
properties. The model representation of the PA device that was used in the simulation experi-
ments is shown in section 2.3.1. The entire simulation process is divided into four major steps
(cf. �gure 2.10): light transport in tissue (section 2.3.2), sound propagation (section 2.3.3), noise
modeling (section 2.3.4), and PA image reconstruction (section 2.3.5).

PA time 
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Noisy PA time 
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PA Image
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formation
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Figure 2.10: Stylized representation of the individual forward simulation steps needed for the
generation of in silico PA images.

2.3.1 Reference hardware setup

This section introduces the speci�c assumptions for the model of the PAI device geometry that
was used for image acquisition and as a template for the forward simulation. To this end, the
device was modeled in each of the respective simulation frameworks using the schematics and
assumptions detailed in this section.

DiPhAs PA probe

The PAI device that is modeled in this thesis is a custom build device based on the combination of
a Fraunhofer DiPhAs US research system (Fraunhofer IBMT, St. Ingbert, Germany). It is combined
with a fast tuning laser system (Phocus Mobile, Opotek, Carlsbad, USA) which can generate laser
light pulses in the wavelength range from 690 nm to 950 nm, with a pulse repetition rate of 20
Hz, and a laser pulse energy of up to 50 mJ [Kirchner et al., 2016, Kirchner et al., 2019]. Thomas
Kirchner implemented the communication software for these two major hardware components
during his master’s thesis and early Ph.D. work in the lab. The device was used for all initial
experiments conducted in the lab. The principle setup is shown in �gure 2.11 and is built around
a 128-element linear US transducer with a 7.5 MHz center frequency, a bandwidth of 80%, and an
element pitch of 0.3mm (L7-Xtech, Vermon, Tours, France). A laser output �ber slit with a width
of 2.45 cm is attached to either of the sides of the US transducer at a distance of 0.83 cm, with a
tilt of 22◦, and an opening angle with a standard deviation of 12◦.
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a) symmetric illumination geometry b) linear array detection geometry

    transducer width 3.84 cm

128 transducer elements
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Figure 2.11: Schematic representation of the DiPhAs PA device showing a) the illumination geometry
and b) the detection geometry.

2.3.2 Optical forward modeling
This section gives an overview of di�erent methods to model photon transport in biological
tissue. It contains a brief overview of the analytical model Radiative Transfer Equation (RTE) and
its approximation with di�usion theory and a more detailed insight into the numerical Monte
Carlo method, which is considered to be the gold standard method to model the RTE [Wang and
Wu, 2012].

Radiative transfer equation

The RTE is derived from the principle of conservation of energy, where four contributions to
energy changes in a medium are considered. (1) beam divergence dPdiv, (2) photon extinction
dPext, (3) photon scattering dPsca and (4) the photon source dPsrc. In the RTE it is assumed that
there exist no other signi�cant contributions to the total change in energy dP . The energy change
in a volume element is negatively impacted by beam divergence, and by photon extinction,
and positively impacted by photon scattering and the existence of photon sources. Hence, it is
required that

dP = −dPdiv − dPext + dPsca + dPsrc. (2.18)

When substituting the analytical solutions to the individual contributions into this equation, one
can arrive at the RTE [Wang and Wu, 2012]:

∂L(~r, ŝ, t)/c

∂t
= −ŝ · ∇L(~r, ŝ, t)− µtL(~r, ŝ, t) + µs

∫
4π

L(~r, ŝ′, t)P (ŝ′ · ŝ)dΩ′ + S(~r, ŝ, t), (2.19)
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where L/c is the propagating energy per unit volume per unit solid angle, ŝ is the photon
propagation direction, dΩ is a di�erential solid angle element around ŝ, µt is the probability
of extinction by absorption or scattering per unit path length, µs is the probability for photon
scattering per unit path length, and S is the energy produced by the source. A detailed derivation
of all parts of the equation can be found in [Wang and Wu, 2012].

Di�usion theory

For most applications, the RTE is approximated using di�usion theory because of the six inde-
pendent variables of the RTE, which make it di�cult and computationally expensive to solve.
The Di�usion Equation (DE) assumes that the in�uence of scattering is orders of magnitudes
higher than that of absorption (µa << µs · (1− g)) and that scattering can be considered to be
approximately isotropic. A general formulation of the DE is derived in [Wang and Wu, 2012]:

∂φ(~r, t)

c∂t
+ µaφ(~r, t)−∇ · [D∇φ(~r, t)] = S(~r, t), (2.20)

where φ(~r, t) is the �uence rate, S(~r, t) is an isotropic source, andD is referred to as the di�usion
coe�cient as is de�ned as

D =
1

3(µa + µs · (1− g))
. (2.21)

For a point source and when assuming time independence, the solution for the �uence rate
simpli�es drastically to a Beer-Lambert law [Graa� and Hoenders, 2005]:

φ(r) =
S0e

(−µe�r)

4πDr
, (2.22)

where φ(r) is the �uence rate, r is the distance from the source, µe� =
√
µa/D, and S0 is the

incident light source energy.

Monte Carlo simulation of light transport in tissue

In general, Monte Carlo methods use a statistical approach, for example, to investigate di�erential
equations prevalent in the natural sciences [Metropolis and Ulam, 1949]. Sometimes, �nding a
solvable or computable solution to the mathematical formulation of a physical process can be
impossible, unfeasible, or computationally too expensive. The idea of Monte Carlo methods is to
�nd a set of rules to model the underlying process by performing numerous repetitions of the
same random experiment that will eventually produce the expected value.

For a Monte Carlo method to work for light propagation in tissue, a �tting model has to be
constructed that can be repeated a large number of times. Here, the propagation of individual
photons - being modeled as particles - through tissue, has been a promising approach. Photon
propagation is modeled using a ’Hop-Drop-Spin-Roulette’ algorithm [Jacques, 2014]. The purpose
of this algorithm is to account for two of the fundamental interactions that photons can undergo
in tissue during propagation: absorption and scattering while considering spatially modeled
optical properties µa, µs, and g. Pseudocode for the algorithm is listed in the following:
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def random ( ) :
return Uniform (0 , 1 )

def monte_carlo_l ight_propagation ( tissue_model , i l lumination_geometry ) :

ENERGY_THRESHOLD = 1e−4 # small value > 0 and << 1
SURVIVAL_PERCENTAGE = 0 . 1 # small value > 0 and << 1

for number_of_photons :

photon = launch_photon ( i l lumination_geometry , random ( ) )

while photon . i s _ a l i v e :

# ( 1 ) Propagation (Hop )
photon . step ( )

# ( 2 ) Absorption ( Drop )
photon . deposit_energy ( tissue_model )

# ( 3 ) Scat te r ing ( Spin )
photon . change_direction ( tissue_model , random ( ) )

# ( 4 ) Roulet te
i f photon . energy < ENERGY_THRESHOLD :

i f random ( ) < SURVIVAL_PERCENTAGE :
photon . energy /= SURVIVAL_PERCENTAGE

else :
photon . i s _ a l i v e = False

A photon is modeled as a point element that has an energy and is launched from a source. Here,
the source is modeled based on the illumination geometry. The position vector and direction
vector of the photon are initialized with plausible values that are derived from the model
representation of the illumination geometry that is created within the Monte Carlo program. After
launch, the photon undergoes interactions with the optical tissue model in each iteration of the
’Hop-Drop-Spin-Roulette’ loop. The parameters that are needed for these tissue interactions are
the optical absorption coe�cient µa, the scattering coe�cient µs, and the scattering anisotropy g.

(1) Hop - photon propagation. In the Monte Carlo model, photons propagate with step size s. This
step size is dependent on its mean free path between scattering events and can be calculated
using s = − ln(rnd)/µs with rnd being a random value subject to rnd ∈ ]0, 1]. Every time the hop
method is called, the step size is calculated based on the optical parameters at the photons
position vector, and the photon takes one step into its current direction.

(2) Drop - photon absorption. In contrary to the real physical interaction of photon absorption,
in the Monte Carlo program, the photon does not get absorbed in its entirety and deposits all
its energy into the tissue. Instead, the e�ect of optical absorption is modeled by having the
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photon deposit fractions of its energy into the tissue. With this, the number of photons that
are needed for a high-resolution simulation can be reduced. The energy deposited at each step
∆E is calculated with the local optical absorption coe�cient and the remaining energy E of the
photon (for example ∆E = E · (1− e−µa·s) in [Jacques, 2014]).

(3) Spin - photon scattering. After each step, the e�ect of scattering in the medium is simulated
by changing the photon direction vector by a de�ection angle θ and an azimuthal angle ψ. The
scattering model is visualized in �gure 2.12.

Scattering Event

Photon trajectory
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deflection
angle

azimuthal
angle

Photon

Figure 2.12: Visualization of the photon scattering model in Monte Carlo simulations.

Usually, ψ is altered by a random amount ψ = 2π rnd, and the de�ection angle is calculated
based on the scattering anisotropy using the Henyey-Greenstein-Function and a randomly drawn
number rnd ∈ ]0, 1]:

cos θ =

1 + g2 −
(

1− g2

1− g + 2g rnd

)
2g

. (2.23)

(4) Roulette - photon termination. Because the optical absorption is modeled statistically using
the Monte Carlo method, photons are not naturally terminated in the medium. To counteract this
problem, a roulette method is implemented that terminates the photons once their energy falls
below a certain threshold, in order to prevent low energy photons from endlessly propagating
without having a signi�cant contribution to the deposited energy. When this happens, a random
number between 0 and 1 is drawn. If this random number is below a survival chance of for
example 10%, their energy is increased by the inverse of the survival probability to account for
the loss in energy by early photon termination (For example, if the chance of survival is 10%,
then the photon energy is increased by a factor of ten). If the random number is above this
threshold, the photon is terminated.

In order to save valuable computational resources, calculations can be performed using the
reduced scattering coe�cient µ′s = µs · (1− g) instead of the scattering coe�cient µs. The theory
behind this is that N = 1/(1− g) anisotropic steps of length 1/µs through the tissue may result
in the same spatial location as a single random step of length 1/µ′s. When using the reduced
scattering coe�cient for simulating the scattering events, all scattering events are assumed to
happen isotropically. In this scenario, g would be set to zero in equation 2.23, and hence, and the
de�ection angle would be calculated using θ = 2π rnd. A detailed derivation of the formulations
used in this method, as well as further literature, can be found in the textbook of Wang and Wu
[Wang and Wu, 2012], as well as in the Ph.D. thesis of Roman Hochuli [Hochuli, 2016]. Well known
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and broadly used implementations of the Monte Carlo method for photon propagation include
MCXYZ [Jacques, 2014] and MCX [Fang and Boas, 2009].

2.3.3 Acoustic forward modeling
For a pressure wave to travel in a medium, the medium needs to be compressible to allow
dynamic changes of, for example, the pressure, density, particle velocity. These changes can be
described by a set of �rst-order partial di�erential equations as done in section 2.2.1 and are
usually combined into a single second-order wave equation:

∇2p− 1

c2
∂2p

∂t2
=
−β
CV

∂H

∂t
, (2.24)

with c being the sound speed, β the thermal expansion coe�cient, CV the speci�c heat capacity,
and H the absorbed heat energy (per unit volume and per unit time). In order to simulate the
progression of waves through such a medium, numerical methods need to be implemented that
solve either the system of �rst-order equations or the second-order combined equation.

k-Wave Toolbox

One of the most utilized frameworks to numerically solve this equation is the MATLAB k-Wave tool-
box [Treeby and Cox, 2010]. It uses the “k-space pseudo-spectral” method to solve the acoustic
equations [Bojarski, 1982, Bojarski, 1985]. The main advantage of this method is the computa-
tional e�ciency, especially in terms of memory requirements on expensive 3-Dimensional (3D)
calculations, which is mainly achieved by the combination of a spatial Fourier transform and a
discretization of the needed time derivative. In the method, the solution of the wave equation is
calculated in several steps using a staggered spatio-temporal grid.

The authors numerically solve the set of �rst-order wave equations instead of the second-order
combined equation, as it allows to include mass distributions and force sources into the equa-
tions easily. Because the computation of the derivatives using Fast Fourier Transform (FFT) would
cause waves reappearing on the other side of the computational grid when they left on one
side, k-Wave implements an absorbing boundary, which is referred to as a Perfectly Matched
Layer (PML). In the PML, all waves traveling within it and normal to the boundary are absorbed.

A more detailed description of the k-Wave toolbox and the underlying methods can be found
in the k-Wave user manual (http://www.k-wave.org/manual/k-wave_user_manual_1.1.pdf, as
visited on 24.11.2019) and the respective publications [Treeby and Cox, 2010, Cox and Treeby,
2010].

http://www.k-wave.org/manual/k-wave_user_manual_1.1.pdf
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2.3.4 Sources of error in photoacoustic imaging
In general, sources of error can be distinguished to be of epistemic or aleatoric origin [Kendall
and Gal, 2017]. Here, aleatoric uncertainty refers to uncertainty in the observation, such as a
noisy data acquisition or motion artifacts. This source of uncertainty cannot be reduced by
data-driven approaches, no matter the available amount of data. On the other hand, epistemic
uncertainty refers to uncertainty caused by systematic errors in the model of the process that
can be reduced by increasing the amount of data available during training.

PAI is subject to noisy and erroneous data acquisition and image reconstruction. These er-
rors have three distinct manifestations: stochastic noise and image artifacts, which can be
categorized as aleatoric errors, and systematic errors that can be categorized as epistemic
errors. The stochastic signal noise in PAI originates from the physics of the detection geometry,
i.e., in case of piezoelectric elements caused by random changes in the measurement voltage.
Signal artifacts can be caused by several reasons in PAI. For one, typical US artifacts, such as
reverberation artifacts or mirroring artifacts [Kremkau and Taylor, 1986], can sometimes be
found in PA images, because the two modalities are so closely related. On the other hand,
PAI introduces new potential sources for artifacts, where the most prominent example is the
transducer artifact, which arises from photons that back-scatter into the detection geometry
and induce a pressure wave there [Singh et al., 2017]. Finally, systematic errors emerge from the
models of the optical or acoustic forward processes and encompass, for example, spatial light
variations, the imperfectness of the theoretical model, or the in�uence of other components of
blood [Sivaramakrishnan et al., 2007].

When simulating PA images, the imaging noise can be modeled as having an additive component
(with stochastic origin), which is independent of the measured signal, and a multiplicative com-
ponent (with systematic cause) that is proportional to the PA signal amplitude. The stochastic
noise component on the time series data is usually represented using Gaussian noise models
[Tarvainen et al., 2013, Allman et al., 2018c] modeled as zero-mean noise. The standard deviation
of these models is usually set to a value that relates to a relevant dataset (for example 2% of the
maximum signal value [Antholzer et al., 2019a]).

A more sophisticated approach can also be to create a model of the system-speci�c noise
by measuring an empty measurement setup [Tarvainen et al., 2013] to also capture spatial
correlations of the noise and systematic noise sources. In contrast to the other noise models, this
might be very useful, as the device-speci�c noise does not have to be centered around zero and, as
such, might introduce a bias into the measurement. For example, one could take a measurement
I of N images of the empty setup at the same wavelength I = {p(t, λ)0, p(t, λ)1, ..., p(t, λ)N}, and
then create a Gaussian noise model εmeasured for I by using the mean signal avg(I) and standard
deviation of the signal std(I). Such measurements would also be capable of capturing and
including the transducer artifact into the simulation.
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2.3.5 Image reconstruction
Many techniques for image reconstruction are currently being investigated. This is true for PAI as
well as for other imaging modalities such as US [Solberg et al., 2007], Computed Tomography (CT)
[Padole et al., 2015], or Magnetic Resonance Imaging (MRI) [Geethanath et al., 2013]. For the
reconstruction of an image from PA time series data, the recorded pressure data needs to be re-
constructed into a spatial and human-readable image. Performance metrics for these algorithms
include the accuracy of the recovery of initial pressure (for quantitative PA applications) and
Signal-to-Noise Ratio (SNR)-based metrics (for qualitative PA applications). There are several
comprehensive overview and review papers regarding PA image reconstruction in acoustically
homogeneous and heterogeneous media [Hristova et al., 2008, Rosenthal et al., 2013, Haltmeier
and Nguyen, 2019, Poudel et al., 2019]. In the context of PAI, one especially needs to distinguish
between the well-posed case, where full view time series data is available, and the ill-posed
case, where only limited view data is available.

(1) Full view reconstruction. For ring arrays with an angle covering 360◦, the reconstruction
problem is referred to as the full view problem, which is well-posed, as the signal can be
su�ciently sampled. In these cases, very similar to CT imaging, an inverse of the radon trans-
formation [Kuchment, 2013], i.e. �ltered back-projection, is applied [Gamelin et al., 2008, Xu
and Wang, 2005]. There have been many e�orts in the �eld to adapt the reconstruction method,
for example, to also take into account variable speed of sound [Haltmeier et al., 2019] or to
suppress arising streak artifacts using adaptive back projection [Cai et al., 2019]. In addition,
di�erent model-based iterative reconstruction methods have been developed [Ding et al.,
2017b, Prakash et al., 2019], sometimes also using deep learning in parts of the reconstruc-
tion methods [Antholzer et al., 2018, Boink et al., 2018, Antholzer et al., 2019b], for example, to
eliminate artifacts from under-sampling when using less detection elements [Davoudi et al., 2019].

(2) Limited view reconstruction. Theoretically, the full view reconstruction methods can also
be used for limited view geometries but will introduce reconstruction artifacts due to the ill-
posed nature of the problem introduced by the limited angle coverage of the detector elements.
Due to this, much e�ort is put into the development of limited view reconstruction methods.
One popular method is the Delay-And-Sum (DAS) beamforming [Thomenius, 1996] as well as its
Delay-Multiply-And-Sum (DMAS) adaptation [Matrone et al., 2014], which have been adapted and
improved on in many di�erent ways [Moza�arzadeh et al., 2017, Kirchner et al., 2018b, Rostami
et al., 2019, Su et al., 2019, Fournelle and Bost, 2019, Paridar et al., 2019]. In the DAS algorithm, the
signal SDAS(x, y) for signal originating at position (x, y) is reconstructed by summing up all pixels
corresponding to a speci�c time delay in the raw time series data as measured by transducer j
(τ(x, y, j)):

SDAS(x, y) =

N∑
j=1

S(j, τ(x, y, j)) ·Ax(j), (2.25)

where Ax(j) is an apodization function. The time delay can be calculated using:

τ(x, y, j) =

√
y2 + |x− j ·∆x|2

c
. (2.26)

More detailed information on the DAS, DMAS, and one of its derivatives, the signed Delay-Multiply-
And-Sum (sDMAS) algorithm, can be found in [Kirchner et al., 2018b].
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Figure 2.13: a Illustration of a signal S originating at depth y and lateral position x relative to
a transducer array with example element j and propagating as a spherical acoustic wave with
speed c; b Illustration of the same scenario in the time series domain, where τ(x, y, j) denotes the
propagation time of S. Figure reprinted and caption adapted from the CC-BY licensed publication
[Kirchner et al., 2018b].

Model-based iterative image reconstruction schemes are also being developed and optimized
[Qin et al., 2019, Moza�arzadeh et al., 2018, Tick et al., 2016] and quite recently also machine
learning techniques have been applied to image reconstruction [Schwab et al., 2019a, Schwab
et al., 2019b, Shan et al., 2019, Liu et al., 2019a] and have been used for artifact removal [Allman
et al., 2018a].
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2.4 | Machine learning

This section gives an overview of the basic underlying machine learning principles, as the
methods presented in this thesis mostly utilize data-driven machine learning approaches. The
term machine learning refers to a collection of data-driven clustering, pattern recognition, and
inversion techniques and is often categorized as a sub�eld of arti�cial intelligence [Kononenko,
2001]. This use of nomenclature has gained popularity due to the dominant emergence of deep
learning techniques over the last decade. There is a clear distinction, however, because the
key objective of arti�cial intelligence research is to “seek a coherent theory for explaining the
nature and mechanisms of both natural and arti�cial intelligence [Wang, 2009]”, whereas the
key objective of machine learning in the context of data science is to “build models of data
[VanderPlas, 2016]”, which - at most - can be classi�ed as an application of weak or narrow
arti�cial intelligence [Goertzel and Pennachin, 2007]. Finally, the term deep learning refers to a
set of algorithms “that exploit many layers of non-linear information processing for supervised
or unsupervised feature extraction and transformation [Deng and Yu, 2014]”.

2.4.1 Supervised and unsupervised learning
In the �eld of machine learning, it is attempted to adjust an algorithm in a way such that it learns
to make sense of a collection of data. The data usually is separated into the data the algorithm
should learn from (referred to as features), and the data describing what the algorithm should
learn from the data (referred to as labels). However, there is a principle distinction between
supervised and unsupervised learning. The main driver for this distinction is the nature of the
underlying data, where supervised learning uses labeled data (cf. �gure 2.14), and unsupervised
learning uses unlabeled data.

Features

Labels

Estimated
Label

Unseen
Feature

TRAINING INFERENCE

Model
Model

Figure 2.14: Visualization of supervised machine learning. During training, a model is tasked
to learn from data features and corresponding labels. During inference, the model gives label
estimates for previously unseen features.

The idea behind supervised learning is to train a learning algorithm to �nd a mapping from
feature space into label space by being able to see examples of corresponding features and
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labels. By learning from a training data set, the algorithm is tasked to learn a function to map
previously unseen data from the feature space into the label space. The two most common
subcategories of supervised learning are classi�cation and regression tasks. In classi�cation,
the label space usually consists of a �nite number of discrete values, whereas in regression, the
label space is continuous [VanderPlas, 2016]. An overview of many di�erent classical supervised
machine learning techniques can be found in [Caruana and Niculescu-Mizil, 2006].

In unsupervised learning, on the other hand, the machine learning algorithm is tasked to �nd
hidden patterns in data sets to which no or only limited labeled training data exists. Principal
component analysis [Wold et al., 1987], clustering analysis [Wagsta� et al., 2001, Reynolds, 2015],
and self-supervised learning [Masood et al., 2015] are some of the main categories of methods
that are used in unsupervised learning. Common applications of this technique are for example
density estimation [Escobar and West, 1995], dimensionality reduction of data [Dash et al., 1997],
and feature extraction [Fleming and Cottrell, 1990].

2.4.2 Deep learning

The term deep learning refers to a collection of machine learning methods and is based on
arti�cial neural networks, which are graph models that try to mimic the behavior of biological
neurons. The networks are built from neurons that have non-linear activation functions and
weighted connections to other neurons (cf. �gure 2.15). The output of a single neuron ŷ can be
computed as

ŷ = g(

n∑
i=1

xi · wi + b · w0), (2.27)

where g is the non-linear activation function, and b is the bias (which is typically either one or
zero). Each of the weights w0, ..., wn represents a tunable parameter that is adjustable during
the network training process.

b

x1

...

xn

Inputs Weights Sum ActivationFunction Output

w0

w1

...

wn

Figure 2.15: The basic building blocks of deep learning networks.

In these building blocks, the activation function of the node has the task of transforming the
weighted sum of the inputs to the output value. In nature, a neuron also has a similar principle,
the all-or-none law, where the charge along the neuron membrane has to exceed a speci�c value
in order for an action potential to be unleashed and to travel along the axon. This could be
modeled with a binary activation function:
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g(x) =

{
0, if x ≤ threshold
1, if x > threshold (2.28)

When choosing between activation functions for arti�cial neural networks, non-linear activation
functions have to be prioritized. This is because a concatenation of several linear activation
functions can also be expressed by a single linear activation function. For example, stacking three
activation functions of form ai · x+ bi, which would have the form (a3 · (a2 · (a1 · x+ b1) + b2) + b3)
would yield the result (a1 ·a2 ·a3) ·x+ (a2 ·a3 · b+a3 · b2 + b3), which is still linear. With non-linear
activation functions, complex representations can be created even with the use of only a few
arti�cial neurons. Commonly used activation functions include sigmoidal functions such as the
tangens hyperbolicus

g(x) = tanh(x) =
ex − e−x

ex + e−x
, (2.29)

or piecewise linear functions, such as the Recti�ed Linear Unit (ReLU)

g(x) = ReLU(x) =

{
0, if x ≤ 0
1, if x > 0

. (2.30)

State-of-the-art neural networks are typically more complex and are built from multiple layers
that can be composed of di�erent functions, such as convolutions, pooling operations, nor-
malizations, or linear transformations. A network that does exclusively contain convolutional
operations (that is only learning �lter operations) is called a fully Convolutional Neural Net-
work (CNN). These network architectures �nd huge success in the �eld of computer vision, where
deep learning has become the state of the art to tackle problems such as object segmentation
[Qi et al., 2017], multi-instance segmentation (like pedestrian detection in images [Zhang et al.,
2018b]), human pose estimation [Toshev and Szegedy, 2014], 3D face modelling from 2D images
[Richardson et al., 2016], clothing identi�cation [Ge et al., 2019], or even detection on potentially
malicious face swapping on videos [Güera and Delp, 2018].

In the �eld of medical imaging, the same techniques are being applied with great success
[Esteva et al., 2019]. There has been a great variety of applications that include radiology tasks,
such as pneumonia detection [Rajpurkar et al., 2017], brain tumor segmentation [Havaei et al.,
2017], whole body bone segmentation [Klein et al., 2018, Klein et al., 2019], or free-text report
classi�cation [Chen et al., 2017]. Also, a large number of di�erent tasks have been examined,
for instance, the building of augmented reality microscopes [Chen et al., 2019], classi�cation of
age-related macular degeneration based on Optical Coherence Tomography (OCT) images [Lee
et al., 2017], and applications in bioinformatics [Min et al., 2017]. However, the �eld of medical
image computing traditionally has su�ered from the lack of high-quality data to learn from
due to ethical and data privacy concerns. Generally speaking, only well-trained experts have
su�cient expertise to analyze and annotate medical images.

Training a deep learning algorithm and testing its performance on a training data set usually
follows the work�ow depicted in �gure 2.16. All available data is split into a training and a test
data set. In an ideal case, to avoid any unnecessary biases, the test data set is left untouched
and only evaluated once to calculate the �nal results. The training data set is then used to adjust
the parameters within the neural network, with the goal to minimize the loss function. This
is done in an iterative update scheme, where for nepochs epochs, the network is shown nbatches
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Data
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all training data
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2. Calculate gradients and update model 
    weights (optimizer + learning_rate)

Validation All validation data

1. Calculate validation loss
2. Calculate test metrics
3. Monitor model performance

Testing (only once) All test data

1. Calculate test loss
2. Calculate test metrics
3. Create nice visualizations

~20%

Needs to be a sufficient amount 
of data in order to draw 
meaningful conclusions.

Validation
~10-20%

Only used for internal 
monitoring of training 

performance.

Training
~60-70%

Needs to represent
the entire data 

distribution.

Only if model performance 
on validation set is 
satisfactory

The collected data 
representing the 

entire data 
distribution relevant 

for the research 
question.  

Figure 2.16: The deep learning training work�ow.

batches of size batch_size that are extracted from the training data. An epoch is usually de�ned
as one iteration through all samples the data set, but can also be de�ned as a certain number
of batches (which can be useful, for example, when drawing random samples from the data
set for each batch). With the use of a loss function, a value that describes the performance
of the neural network is calculated, and the weights are updated with the gradient of the loss
in a process called backpropagation. A small percentage of the training data (the validation
set) is held out from this iteration process and used, for example, once per epoch to supervise
the learning process. This is critical in order to detect over�tting of the neural network to the
training data. Over�tting refers to a process in which the neural network is too closely �t to the
training data points, signi�cantly impeding its ability to generalize to previously unseen data
samples. This ability is an attribute of machine learning algorithms referred to as generalization.
The �nal results on the validation set can be regarded as a good approximation for the model
performance on the test set and can then be used to tune the hyperparameters of the training
process to obtain the most optimal results.

One of the more astounding recent developments in the �eld of deep learning has been the
implementation of all-optical neural networks, potentially enabling inference at the speed of
light (cf. e.g. [Miscuglio et al., 2018]).
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2.4.3 Machine learning models used in this thesis
This section introduces the speci�c machine learning algorithms that were used in this thesis.

Random forests

One of the strategies to make machine learning methods less prone to over�tting is the use
of ensemble methods, which rely on aggregating over a collection of estimators. The random
forest is one of these ensemble methods, where these estimators are binary regression trees. To
train a regression tree, the entire training data set is split among the leaf nodes in a top-down
approach. For each step down the tree, the data is split into two subsets that are distributed
onto the two new leaf nodes. When a node has to consider n sorted data items for the split, it
tests all options to split the data and then tries to �nd the optimal split based on a metric such
as the variance, the sum of squared di�erences, or the mean squared error. This process of data
splitting is usually continued until a maximum depth, or a minimum amount of data in a leaf
node is reached [Wilkinson, 2004]. A simple visualization of such a regression tree is shown in
�gure 2.17.

Orange

ApplePear

is it orange?

yesno

yesno

is it round?

Root Node
Apple or
Pear or
Orange

Apple
or Pear

Figure 2.17: Visualization of a simple regression tree.

During inference, the trained tree is traversed to obtain a prediction. For this, the feature vector in
question follows the decisions of the tree until it reaches a leaf node. At this point the estimated
label ŷ for the feature vector is computed as the average over all N training labels in the leaf
node ln:

ŷ =
1

N

∑
yi∈ln

yi. (2.31)

A random forest consists of many of these decision trees. Each of the decision trees is di�erent
from the others by being randomized. This is done in a process called bootstrap aggregation,
which is mainly performed by using (1) a di�erent subset of the training data for each tree or (2)
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by only allowing the tree to consider a certain fraction of the features for each split. Due to this
creation of diversity, many regression trees that have signi�cant individual biases or that have
over�tted on the data might still be able to generalize quite well on average. In regression tasks,
the �nal result of the forest is computed by the average over all estimates of the individual trees.
In case of classi�cation tasks majority voting can be performed.

Feed-forward neural network

A feed-forward neural network is a network in which the nodes do not form cycles. The most
straightforward implementation of this is a multi-layer perceptron, which consists of at least
three layers of neurons: an input layer, 1 to n hidden layers, and an output layer. The energy
of each neuron in this network is calculated by the weighted sum of all incoming connections,
modi�ed by a non-linear activation function, as described earlier in section 2.4.2. In this thesis,
leaky ReLUs are used as the activation functions, that transform the output neuron energy ŷ in
the following way:

leaky ReLU(ŷ) =

{
ŷ, ifŷ ≥ 0
c× ŷ, otherwise (2.32)

The feed-forward neural networks implemented throughout the upcoming chapters use fully
connected layers, which means that the output of each neuron from a layer is connected to each
input of each neuron in the next layer. Furthermore, dropout layers are used after each layer
that randomly deactivate the weights of a certain percentage of neurons in a layer during the
forward calculation. This is done to counteract over�tting by taking away the opportunity to rely
on speci�c neurons during inference.

Figure 2.18: A feed-forward neural network design. The �gure is reprinted from the CC-BY licensed
publication [Gröhl et al., 2019].

U-Net

The U-Net was originally developed by [Ronneberger et al., 2015] for the segmentation of
biomedical images. It has since then exploded in popularity and is the best performing network
architecture for numerous di�erent use cases [Isensee et al., 2018]. The principle idea of the
architecture is to use the power of convolutional layers to create data representations on
increasingly high abstraction levels, while still being able to estimate label space outputs for
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each pixel.

The U-Net is a fully convolutional neural network that consists out of a contracting half and an
expanding half that goes through a bottleneck. On the contracting side, each layer consists out of
3× 3 convolutions, followed by a non-linear activation function and 2× 2 pooling operations for
down-sampling. During each pooling operation, the number of feature channels is increased by
a factor of two. In each pooling step, The expanding side of the network is also built using 3× 3
convolutions followed by a non-linear activation function, but before this, up-convolutions are
used for up-sampling of the data that also decrease the number of feature channels by a factor of
two. With this strategy, with each pooling step, the semantic expressivity of the network increases
at the cost of spatial resolution. In order to remedy the loss of high-frequency information,
skip connections are used at each pooling step, in which data from the contracting part of the
network is concatenated to the data of the expanding half of the network. In the modi�cation of
the U-Net used throughout this thesis, the skip connections also contain a convolution layer
that enables the input and output to be of di�erent sizes. Furthermore, dropout layers are
used throughout the network for “implicit data augmentation [Ronneberger et al., 2015]” and to
increase its robustness against over�tting (cf. Figure 2.19).

Figure 2.19: The U-Net. Reprinted from the CC-BY licensed publication [Gröhl et al., 2018a].
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Conditional Invertible Neural Networks

Invertible Neural Networks (INNs) are a particular subset of neural networks that are designed to
be bijective. Such methods were developed by several groups in the �eld, for example, [Dinh et al.,
2016, Kingma and Dhariwal, 2018, Ardizzone et al., 2018]. As such, they are by nature invertible,
and some even have a tractable Jacobian determinant. In principle, INNs represent a function
fθ that is subject to the model weights θ and is tasked to map an input distribution q(x) into a
Gaussian latent distribution p(z). During training, a maximum likelihood loss (see equation 2.33)
is used to transform q(x) into the Gaussian latent space. During inference, Gaussian samples can
be taken from p(z) and can be mapped into the input domain.

q(x) p(z) = 

f(x) = z

f-1(z) = x

Figure 2.20: Visualization of the distribution mapping of an invertible neural network.

This is achieved with the usage of a�ne coupling blocks (cf. �gure 2.21) in the network architecture,
in which the output can be used to reconstruct the input. On a forward pass, the input data is
split into two parts u1 and u2, which are transformed by the learned functions si and ti. The
output is calculated by concatenating the partial results v1 and v2. With some arrangements, the
input can be recovered from the output in a backward pass, by computing the inverse operations
within the a�ne coupling layer.

Forward pass:

Backward pass:

input output

v2

v1

u2

u1

s2 t2 s1 t1

x +

x +

input output

v2

v1

u2
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s2 t2 s1 t1

/ -

/ -

Figure 2.21: Visualization of the a�ne coupling layers that make up the INN architecture. Green
blocks denote parts of the input and output data, blue circles denote mathematical operations,
and red pentagons denote learned functions for data transformation. Here, "x" denotes element-
wise multiplication and "/" denotes element-wise division.

Conditional INNs are a special class of the INN, where a conditional input distribution q(x|c) is
transformed into a conditional latent distribution p(z|c).
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q(x | c) p(z | c) = 

f(x, c) = z

f-1(z, c) = x

Condition c =

Figure 2.22: Visualization of the distribution mapping of a conditional invertible neural network.
The conditional distributions are now subject to a prior condition c, which is represented by a
graph in the �gure.

They were introduced by [Ardizzone et al., 2019] and have the distinct advantage that they are
very robust and stable during training. The authors concatenate the conditioning data to the
internal functions s1, s2, t1, and t2 of the network, which enables the forward and backward
usage of the INN with the condition. During inference, when keeping a �xed condition c, the
conditional INN architecture allows random sampling from the latent space p(z|c), which enables
the reconstruction of the full posterior distribution q(x|c).

When assuming a Gaussian distribution for the latent distribution, one can arrive at the following
maximum likelihood loss to train the conditional INN using standard coordinate transform theory
and Bayes theorem:

qθ(x|c) = p(fθ(x, c)) · | det Jxfθ(x, c)|
log(qθ(x|c)) = log(p(fθ(x, c)) · | det Jxfθ(x, c)|)

= −1

2
||fθ(x, c)||2 + log |det Jxfθ(x, c)|.

(2.33)

This loss is optimized during training, where the two components of the loss can be inter-
preted in the way that −1/2||fθ(x|c)||2 pulls the mass of the latent distribution towards zero,
and log |Jxfθ(x|c)| ensures a standard deviation of one. In order to formulate the loss for a
minimization problem, one has to change the sign of the derived equation:

− log(qθ(x|c)) =
1

2
||fθ(x, c)||2 − log |det Jxfθ(x, c)|. (2.34)

In the thesis, a deep conditional INN was used, in which �ve a�ne coupling blocks were concate-
nated. For the learned functions s1, s2, t1, and t2 within these, shallow fully connected networks
with a single 128-dimensional hidden layer were used.
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2.5 | Related work

This section gives an overview of related state-of-the-art research papers. The goal is to give an
insight into the main methodological ideas in the �eld but not to explain every cited paper in
great detail. For further reading, one can follow the cited papers and the references within these.
The section’s structure is aligned with the primary �elds that are studied in this thesis: model-
based quantitative Photoacoustic Imaging (qPAI), machine learning-based qPAI, functional PAI,
and uncertainty estimation. In the end, it is concluded how the research hypotheses correlate
with the gap in the state-of-the-art research progress.

2.5.1 Model-based quantitative photoacoustic imaging

The �eld of quantitative Photoacoustic Imaging (qPAI) strives to obtain the ability to quantita-
tively estimate the optical properties of tissue from recorded PA images. This is highly relevant
for any multispectral PA applications with the goal of estimating chromophore concentrations
to yield quantitative, accurate, and reliable results. There have been several review papers
describing the objectives and challenges towards qPAI, for example, [Cox et al., 2009b] and [Cox
et al., 2012].

Research towards qPAI can broadly be divided into three categories: (1) methods focusing on
the optical inverse problem only, (2) methods solving the acoustic and optical inverse problem
sequentially, and (3) methods that try to solve both inverse problems simultaneously.

Optical Inverse problem. To solve the optical inverse problem, one needs to obtain estimates
for µa from the initial pressure distribution p0 or the deposited energy distribution H , when Γ is
known. The �rst proposed approach towards qPAI was an iterative reconstruction scheme for the
optical parameters (cf. �gure 2.23) [Cox et al., 2005, Cox et al., 2006, Yuan and Jiang, 2006].

When attempting to solve the optical inverse problem with this reconstruction scheme, one
creates an initial guess for the optical tissue properties. For each step k in the process, a forward
simulation of the initial pressure or the deposited energy distribution H(k) is computed. The
simulation result is compared to the measured data Ĥ . As long as the di�erence between these
two images above a certain threshold, the optical parameter maps for simulation step k + 1 are
updated using H(k) and Ĥ .

Usually, solutions for the Radiative Transfer Equation (RTE) are used as the optical forward model.
Alternatively, the forward simulation is conducted using the Di�usion Equation (DE) [Tarvainen
et al., 2017, Pulkkinen et al., 2015, Wang and Zhou, 2017]. Because the RTE is very di�cult to
solve, Finite Element Models (FEMs), or other numerical solutions to the RTE are commonly seen
[Yuan and Jiang, 2009, Naser et al., 2018]. In these, the image medium is discretized and divided
into piecewise polynomial functions [Richling et al., 2001]. Alternatively, Monte Carlo methods
have been used as the optical forward model [Hochuli et al., 2016, Liu et al., 2016, Fonseca et al.,
2017, Buchmann et al., 2017b, Kaplan et al., 2017, Buchmann et al., 2019b]. Monte Carlo methods
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Figure 2.23: The basic principle of iterative PA reconstruction schemes. From a PA measurement,
an initial guess for the optical properties is created. A synthetic image H(k) is simulated using a
forward model, and the initial guess is then updated with a gradient that is computed using H(k)

and Ĥ .

are considered the gold standard for forward modeling [Cox et al., 2012], however, they can
be computationally expensive for a high number of simulated photons and a large number of
voxels in the computational grid. Only very recently has an implementation of this method been
applied to in vitro phantom measurements [Buchmann et al., 2019a]. This was possible with the
use of a Fabry-Pérot interferometer as a broadband detection device and careful choice of the a
priori assumptions.

Sequential approaches. In these, �rst, the energy deposition H is calculated from the time
series data. Then the absorption coe�cients are estimated by estimating the �uence φ and
calculating µa = H/φ. [Banerjee et al., 2008] propose an approach to solve for φ analytically
using the Di�usion Equation (DE) by employing several simplifying assumptions (such as a
di�usion coe�cient that is only dependent on µs, and a known and constant µs in tissue). This
approach was tested in silico, and as long as their assumptions hold, they even showed that it
is theoretically feasible to get rid of the costly iteration process. Other common assumptions
include modeling of the absorption distribution as a piecewise constant functional [Naetar
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and Scherzer, 2014, Beretta et al., 2015]. However, the derived methods from these assumptions
have also only been tested in silico. One also needs to be mindful of the assumptions that are
made, as in some cases, the expected result has been used as the a priori initial guess for the
reconstruction scheme [Liu et al., 2019b].

Single-stage approaches. Single-stage methods directly estimate optical properties from the raw
time series data. The main advantage is that a direct calculation does not rely on intermediate
results and, as such, might be less a�ected by uncertainty in the input data (for example, caused
by noise). These approaches have been thoroughly investigated [Haltmeier et al., 2015, Pulkkinen
et al., 2016, Pulkkinen et al., 2017, Javaherian and Holman, 2019]. The results of this body of
work show that in silico it is feasible to directly reconstruct optical absorption and scattering
distributions directly from raw time series data. However, the lack of successful translations of
the proposed techniques into practice is evident.

Apart from iterative reconstruction schemes, di�erent ideas have also been employed to try to
solve the inverse problems of qPAI. A simple but e�ective method that is applicable in vitro is to
account for the changes of the �uence depending solely on the depth inside the tissue sample.
One approach to this is to perform �uence correction with a pre-simulated �uence map that
is obtained assuming homogeneous parameters [Bu et al., 2012, Zhao et al., 2017, Perekatova
et al., 2017, Vogt et al., 2019]. When the homogeneous assumptions for the simulated medium
match the average optical properties of the actual imaged samples, these approaches have
shown in vitro to be of bene�t. Furthermore, this strategy has been improved on by manually
creating a segmentation map of the imaged tissue �rst and then calculating a customized �uence
distribution based on a priori assumptions on the segmented tissue properties [Brochu et al.,
2016]. Using this strategy, the authors showed that they were able to compensate for the drop of
the �uence inside of a tubular phantom in vitro.

Other approaches try to remedy the ill-posedness of the problem by acquiring more information
for the inversion algorithm. For example, di�use re�ectance measurements can be included
into the reconstruction algorithms [Nykänen et al., 2017, Bauer et al., 2011], or the in�uence of
multiple light sources is investigated [Zemp, 2010, Song et al., 2014, Mastanduno and Gambhir,
2016, Alessandrini et al., 2017, Wang et al., 2018b]. One of these approaches - multiple irradiation
sensing - uses several measurements with di�erent source-detector distances to estimate the
optical properties of the background tissue using the DE [Held et al., 2016].

Another direction of research is the application of acousto-optics, which is ultrasonic tagging of
light and has been postulated to be able to measure the light �uence for subsequent �uence
correction of the recorded signal [Hussain et al., 2018]. Here, photons that traverse the modulated
region have a small probability of undergoing inelastic scattering, which causes a shift in their
wavelength that is related to the sound wave frequency [Mahan et al., 1998]. This causes a shift
in the speckle pattern of the light that escapes the medium, making it possible to isolate the
amount of light coming from the modulated region.
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2.5.2 Machine learning-based quantitative photoacoustic imaging
Machine learning methods have only recently become part of the research in the �eld of qPAI,
essentially starting in mid-2017 with the pre-print publication of the paper “Context encoding
enables machine learning-based quantitative photoacoustics [Kirchner et al., 2018a]” (cf. section
3.1). In addition to the e�orts of data-driven image reconstruction, machine learning-based
approaches have since then been used towards solving the optical inverse problem and towards
more accurate spectral unmixing.

In late 2018, Cai et al. [Cai et al., 2018] have proposed to use a residual U-Net implementation to
estimate the absolute concentrations of ICG and to estimate sO2 maps in silico. In a residual
architecture, the input of a particular convolutional substructure is again concatenated to its
output. To validate the method, the authors create a multispectral in silico data set with a circular
structure of 1 cm radius at 5 nm spaced wavelengths from 700nm to 800nm. The method is
also validated on another in silico data set extracted from a digital mouse phantom (Digimouse
[Dogdas et al., 2007]).

In work from Ho�er et al. [Ho�er-Hawlik and Luke, 2019] in mid-2019, a U-Net has been used
for the estimation of tissue oxygenation in silico as well. Here, an in silico data set with 125
phantoms is generated at two wavelengths (700nm and 900nm), and the method is validated on
another in silico data set. Later, in November 2019, an adaptation of this method was published
[Luke et al., 2019] for simultaneous sO2 estimation and vessel classi�cation by using two adjacent
U-Net pathways. This architecture is referred to as the O-Net by the authors.

Yang et al. [Yang et al., 2019] have also presented a neural network approach to in silico sO2

estimation with an Encoder-Decoder architecture (EDA-Net) in October 2019. Here, the authors
use a numerical breast phantom to simulate initial pressure distributions using Monte Carlo
methods and raw time series data with the k-Wave toolbox. The method is validated on a
held-out test set of the simulated data set.

2.5.3 Functional photoacoustic imaging
As already eluded to in section 2.2.5 and as evident in the previous section, the recovery of func-
tional tissue parameters is one of the primary objectives of multispectral PAI. The linear spectral
unmixing method for sO2 recovery from PA signals is analogous to spectral unmixing techniques
from the �eld of hyperspectral imaging and remote sensing [Keshava and Mustard, 2002, Keshava,
2003]. Here, one tries to �nd the ratio of known extinction spectra of chromophores [Laufer et al.,
2006] by calculating the best �tting linear mixture of the a priori assumptions to the measured
signal. In the past decade, the linear unmixing method has been rigorously investigated, and
many improvements to the linear unmixing method have been proposed [Tzoumas et al., 2013, Li
et al., 2018].

One of these improvements is to impose the constraint to the unmixing algorithm that the result
can only feature non-negative contributions [Ding et al., 2017a] because negative chromophore
concentrations are physiologically impossible. A multispectral application of the classical itera-
tive qPAI reconstruction methods for direct or indirect sO2 recovery has also been investigated
[Cox et al., 2009a], as well as the application of non-linear unmixing models for example based
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on minimizing the mutual information between the independent chromophores [An et al., 2017].
Mutual information is an approach that measures the degree of dependence I(A,B) of two
distributions A and B, which can, for example, be calculated by I(A,B) = H(B) − H(B|A),
where H(B) is the entropy of B and H(B|A) is the conditional entropy of B given A [Maes et al.,
1997]. Another approach presented by [Radrich and Ntziachristos, 2016] uses measurements of
isosbestic points of chromophores to account for the e�ects of scattering in tissue.

Other methods try to include di�erent sources of information into the unmixing minimization
algorithm. For instance, Gao et al. [Gao et al., 2015] propose to estimate tissue sO2 while using
only one wavelength by also using information obtained from simultaneous di�use re�ectance
measurements. Ulrich et al. [Ulrich et al., 2019] published a method for spectral correction that
is based on using near-infrared optical imaging in re�ection mode as additional information for
the inversion process.

A promising approach to spectral unmixing was the eigenspectra Multispectral Optoacoustic
Tomography (eMSOT) approach proposed by [Tzoumas et al., 2016] and [Ole�r et al., 2018]. Here,
the principle idea is to calculate the eigenvectors of pixel-wise �uence distributions in tissue and
to add these eigenvectors to the inversion process to represent the �uence term in p0 = µa · φ.
However, because the solution space of this formulation of the problem has a lot of local minima,
the minimization needs to be heavily constrained in order to predict correct results.

2.5.4 Uncertainty estimation

Uncertainty quanti�cation and its incorporation in medical use cases is an essential research
objective in computer sciences and has been studied extensively in various �elds, including
image-guided navigation [Maier-Hein et al., 2011, Alterovitz et al., 2008], multi-modal image
registration [Sykes et al., 2009, Risholm et al., 2013], and lesion detection [Nair et al., 2019].

Some of the principal goals of uncertainty estimation in science are (1) to have the ability to
assign a quantity to a measured value that represents the standard (expected) error of this
value and (2) to resolve ambiguity in the measured quantity and gain the ability to identify
multiple modes in the value distribution [Adler et al., 2019a]. In a standard, highly calibrated
measurement setup, the goal is to measure all possible sources of uncertainty independently
and then use these to calculate the standard error of the �nal result (for example, using error
propagation). With data-driven approaches, knowledge on the uncertainty of the input data
acquisition process and of ambiguity in the label space is not always present. As such, methods
need to be investigated, which can yield such metrics of uncertainty for the estimated values.

Current popular methods for obtaining con�dence intervals or uncertainty estimated for neural
network predictions are all principally related and include ensemble methods, Bayesian models,
dropout sampling, or the sampling from a latent space (see �gure 2.24).

Ensemble methods. Ensemble methods combine many machine learning models to derive single
estimates (e.g. [Lakshminarayanan et al., 2017, Smith and Gal, 2018]). The random forest (cf.
section 2.4.3) is a prominent example of an ensemble technique, where the predictions of many
di�erently trained decision trees are combined into a single more robust estimate. Having access
to various di�erent estimates also allows for the calculation of uncertainty statistics, such as the
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a. Ensemble methods b. Bayesian models

c. Dropout sampling d. Latent space sampling
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Figure 2.24: Overview of how diverse output samples are generated with di�erent uncertainty
estimation methods. a. shows ensemble methods, where each model in the ensemble generates
an output, b. is a visualization of how Bayesian models estimate a probability function for the
output, c. shows how many samples are generated by deactivating di�erent neurons on each
pass through the network, and d. shows how the drawing of random samples from a latent space
can lead to diverse output estimates.

standard deviation of the estimates.

Bayesian models. For Bayesian inference, the goal is to model the network weights as probability
distributions and not as a deterministic variable. Creating such machine learning models
that can be trained and evaluated in polynomial time has proven to be di�cult and, as such,
approximations (such as dropout sampling) are needed [Miller et al., 2018]. Related literature
includes e.g. [Feindt, 2004, Zhu and Zabaras, 2018, Kohl et al., 2018].

Dropout sampling. In dropout sampling, a certain number of neurons get deactivated during
each pass through the network (see e.g. [Srivastava et al., 2014, Li and Gal, 2017, Leibig et al.,
2017]). Gal et al. [Gal and Ghahramani, 2016] suggested that performing dropout during training
is “mathematically equivalent to an approximation to the probabilistic deep Gaussian process
[i.e. Bayesian inference]”, which has been met with criticism towards the technical correctness
of this view (cf. e.g. [Hron et al., 2017]). In practice, one of the major bene�ts of using dropout
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is that it also forces the network to learn a robust and more generalized representation of the
input data and to create redundancies within the network, as it cannot rely on the individual
weights of a single neuron.

Latent space sampling. The latent space refers to a feature representation in the neural network.
In Autoencoders [Ng, 2011], the term latent space typically refers to the bottleneck layer, but it
might refer to the feature representation at any level. In some work, for example, in variational
autoencoders [Kingma and Welling, 2013], it is attempted to subdivide this bottleneck layer
into a representation for the mean estimate and the standard deviation of the estimate. This
allows taking di�erent samples from the latent representation of the standard deviation for the
decoding part of the network and, as such, to obtain di�erent inference results for the same input
feature vector. This principle idea of introducing variation in a speci�c feature representation of
the network for reconstruction is also used in other approaches, such as [Kingma and Welling,
2013, Mescheder et al., 2017, Ardizzone et al., 2018, Ardizzone et al., 2019, Adler et al., 2019b].

Uncertainty estimation in photoacoustic imaging

The sensitivity, stability, and uncertainty of qPAI inversion schemes have been investigated
[Fonseca et al., 2016, Bonnetier et al., 2019, Tick et al., 2016], mostly in the framework of Bayesian
modeling of the optical or acoustic inversion [Tarvainen et al., 2013, Tick et al., 2018, Hänninen
et al., 2018]. Bayesian techniques yield a posterior distribution for the properties in question and
thus enable the recovery of uncertainty estimates. These investigations show that uncertainties
in a priori assumptions can negatively impact model-based inversion schemes and that adding
more degrees of freedom to the inversion method can signi�cantly improve inversion accuracy. It
is further shown that inversion stability deteriorates exponentially with increasing depth within
the medium.

2.5.5 Conclusions
Qualitative PAI has had great success featuring numerous clinical applications. However, most of
this work either correlate metrics with arbitrary unit PA signal intensities or use linear spectral
unmixing techniques to obtain estimates of the oxygen saturation of tissue. For the clinical
translation of PAI, this poses a problem, as these practices fall short of the theoretical potential
of the imaging technique and might cause sub-optimal, if not wrong, diagnosis and treatment of
patients.

As evident from the literature overview in the previous sections, much e�ort has been put
into the development of techniques for qPAI. The most promising of these is the iterative
approach proposed by Cox et al. in 2005 [Cox et al., 2005] which has been extensively vali-
dated in silico and also in vitro [Buchmann et al., 2019b]. Other approaches try to circumvent
the quanti�cation problem by directly working with multispectral data. With the use of so-
phisticated unmixing algorithms that, for example, take into account natural constraints on
the physiological value ranges or the underlying �uence distributions, these methods show
great promise in achieving more accurate sO2 estimation results compared to naïve linear
unmixing techniques. Nevertheless, despite the e�orts, the translational gap of application of
qPAI in clinical practice has yet to be overcome. Table 2.1 summarizes this translational gap
of the developed techniques for both µa quanti�cation as well as direct sO2 unmixing techniques.
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in silico in vitro in vivo
small animal clinical

accurate sO2

estimation
3 3 (3) 7

cf. e.g. cf. e.g. cf. e.g.
[Laufer, 2006] [Held, 2016] [Tzoumas 2016]
[Yang 2019] [Gehrung, 2019] [Ole�r 2018]

[Li, 2018]
[Vogt, 2019]
[Ulrich, 2019]

accurate µa
quanti�cation

3 (3) 7 7

cf. e.g. cf. e.g. cf. e.g.
[Cox, 2005] [Buchmann, 2017] [Yuan, 2019]
[Cox, 2009b] [Buchmann, 2019]
[Pulkkinen 2015]
[Yuan, 2006]
[Bannerjee, 2008]
[Bu, 2012]
[Yang, 2019]

Table 2.1: Tabulated, impertinent view of a selection of papers presenting methods to tackle the µa
quanti�cation and sO2 estimation problems at the di�erent translational stages from simulated
data (in silico) over phantom measurements (in vitro) to measurement in living organisms (in
vivo).

While very �rst advances have been made to apply model-based quanti�cation schemes to in
vitro settings, the accuracy with which the unknown parameters have to be determined in order
to obtain accurate results has hindered fast advancement of these methods. Other methods for
functional PA imaging (for example, the eMSOT method) have been proven to work exceptionally
well in certain scenarios, limited by the need for speci�c constraints for the inversion and have
yet to be shown to work in a general fashion. The potential use of uncertainty estimation methods
towards the inverse problems of qPAI is also vastly unexplored, and it should be investigated
how estimations of the inversion uncertainty or the respective standard error could be used to
either improve the inversion results or to improve patient care.

Data-driven approaches, on the other hand, show great promise to remedy at least some of the
shortcomings of the model-based approaches but su�er from a lack of ground truth data, and
the absence of well-curated (even unlabeled) data sets to learn from reliably. As such, all work
in this direction has exclusively been conducted in silico.

Being faced with this gap, and keeping in mind the key challenges of qPAI (C1-C4 presented in
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section 1.2), the key objectives of this thesis are (1) to explore the potential of data-drivenmethods
towards bridging the translational gap of qPAI and (2) to also explore the use of state-of-the-art
uncertainty estimation techniques in this context.
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Absolute quantitative PA measurement of oxy-
genation and temperature in deep tissue remains
a challenge, mainly due to the unknown local
optical �uence [...]. New imaging methods and
mathematical models are needed to better map
the optical properties of the tissue.

[Wang and Yao, 2016]

3 | Results

This results chapter is the central part of the thesis. It comprises four sections where each
introduces experiments that were conducted in pursuit of the three hypotheses that were
constructed in the introduction (chapter 1):

H1: Data-driven methods can be used to solve the optical and acoustic inverse
problem.

H2: Data-driven methods can be used for spectral unmixing in a realistic context.

H3: Con�dence estimation methods be used to gain insight into qPAI methods.

Section 3.1 is aligned to research objective H1 and introduces a data-driven method for the
optical inverse problem of qPAI by estimating the local light �uence in tissue. The core idea of the
method is to encode the acquired signal and a priori information of the illumination geometry
in a hand-crafted feature vector individually for each voxel in the imaging plane. The assump-
tion is that this feature vector can be used to generate many unique training samples from a
single 3D volume and that it can easily be calculated for a newly measured signal during inference.

Section 3.2 is also aligned research objective H1 and investigates the feasibility of employing
state-of-the-art end-to-end deep learning algorithms towards the inverse problems of qPAI.
The core idea is to use the U-Net and apply it to investigate the optical and acoustic inverse
problems in isolation and as a combined problem. In contrast to the previous section, the
methods developed here do not consider single voxel feature vectors, but instead, process entire
2D images at once.

Section 3.3 introduces a method towards research objective H2: the accurate spectral unmixing
of multispectral PA images. The goal is to achieve quantitative blood oxygenation measurements
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directly from multispectral initial pressure distributions that su�er from spectral coloring. The
core idea of the method is to create a data set on which a machine learning model can learn to
account for the wavelength-dependent non-linear variations of the �uence on the multispectral
initial pressure distribution.

Finally, in line with research objective H3, section 3.4 investigates the applicability of state-of-
the-art uncertainty estimation methods to the estimation of parameters from PA images. Several
di�erent methods are introduced and systematically compared. The core idea is to investigate the
capability of the methods to improve on the accuracy of the aggregated result when strategically
removing an increasing amount of the most uncertain estimates from a prede�ned region of
interest.



[Photoacoustic] quanti�cation e�orts focus on retrieving the
light �uence distribution, which is unknown and depends on
the distribution of both absorption and scattering coe�cients
within the sample.

— [Brochu et al., 2016]

3.1 | Quantitative photoacoustic imaging with context en-
coding

Disclosures to this work:

The core idea of this work has been developed by Lena Maier-Hein, Thomas Kirchner,
and myself during my master’s thesis [Gröhl, 2016]. During my Ph.D., a more rigorous
validation scheme was implemented, and more diverse data sets were simulated.
Furthermore, the feasibility experiments were also conducted using deep learning
for the inversion. Parts of this work have been published in the Journal of Biomedical
Optics [Kirchner et al., 2018a].

3.1.1 Introduction
The optical absorption coe�cient of tissue is a highly interesting property, as knowledge of it
allows for spectroscopic analysis of functional tissue parameters, such as the blood oxygena-
tion sO2, which is a clinically relevant parameter of the health status of a patient. While the
Photoacoustic (PA) signal S is dependent on the optical absorption µa and as such - in theory -
enables measurements of it, S is also dependent on the Grüneisen parameter Γ and the �uence
φ leading to S ∝ µa · Γ · φ. The �uence, however, is also non-linearly in�uenced by µa, which
makes the estimation of φ or µa from S an ill-posed inverse problem.

When the Grüneisen parameter is assumed to be constant throughout tissue, the robust and
accurate estimation of φ is the most crucial aspect for achieving quanti�cation of PA sig-
nals. Challenges related to the associated inverse problem include spectral coloring and the
absorption-scattering non-uniqueness [Brochu et al., 2016]. Here, spectral coloring is caused
by the non-linear wavelength dependent and spatially varying behavior of φ. The absorption-
scattering non-uniqueness refers to the inherent ambiguity in PAI, where di�erent combinations
of optical absorption and scattering can lead to the same �uence distribution or the same
measured PA signal.

In order to be able to estimate φ based on a measured PA signal, the entire 3D image context has
to be considered in order to be able to account for the distribution of light within the medium
correctly. In the case of 2D handheld clinical PA transducers, this is a major challenge, as only 2D
tomographic slices can be acquired. Out-of-plane chromophores can have a profound in�uence
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on the local φ in the imaging plane, which can be ampli�ed depending on the nature of the
illumination geometries.

To tackle this problem, a data-driven method Context Encoding Quantitative Photoacoustic
Imaging (CE-qPAI) is presented that can estimate the light �uence by using a 3D signal image
created from a series of 2D scans of the medium. The core principle of CE-qPAI is the development
of a hand-crafted feature vector (the Context Image (CI)) that encodes the signal and with respect
to a priori knowledge of the illumination geometry for each speci�c voxel in the imaged medium.

Given the lack of ground truth knowledge of the optical parameters in a complex medium in vivo,
the di�culty of fabricating acoustically and optically realistic tissue phantoms, the complexity of
obtaining reliable reference measurements for the optical properties in vitro, an in silico study
to determine the feasibility of the envisioned approach is conducted. In a series of in silico
experiments, it is examined whether it is feasible to use CE-qPAI to estimate local �uence on a
voxel-wise level with only a few hundred simulated tissue structures.

Hypothesis investigated in this chapter

H1: Data-driven methods can be used to solve the optical and acoustic inverse
problem.

The main focus of the work presented in this section is to examine the general
feasibility of the application of data-driven approaches to the optical in-
verse problem of qPAI. To this end, twomain research questions are addressed:

1) Is it possible to encode the voxel-speci�c 3D context into a single low-
dimensional feature vector to derive a voxel-wise estimate of the local �uence?

2) Is the calculation of voxel-wise feature vectors from only a limited number
of simulated volumes su�cient for generalization given the large possible
parameter space of the distribution of optical properties?

3.1.2 Methods
The proposed method is the �rst to apply machine-learning methods to the optical inverse
problem of qPAI. It uses hand-crafted feature vectors with corresponding labels to learn the light
�uence φ on a voxel level. The inferred knowledge on the local φ can then be used to correct the
initial pressure distribution p0 to deduce the corresponding optical absorption µa.

The core principle of CE-qPAI is the introduction of a hand-crafted voxel-based low-dimensional
feature vector, the Context Image (CI), that encodes the complete context information of the
target signal voxel together with a priori characteristics of the imaging system in a single feature
vector.

This is done by relating the recorded initial pressure distribution with a priori created simulations
on the distribution of light in a homogeneous medium, represented by Fluence Contribution
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Maps (FCMs) (see section 3.1.2). Because a CI is calculated for each voxel of the central imaging
plane of a 3D sweep, this enables tackling the challenge of �uence estimation as single voxel
regression within the framework of machine learning techniques and allows for the generation
of large amounts of training samples from the relatively few simulations that can be computed
in a reasonable amount of time.

During the training phase, a regressor is presented the voxel-speci�c context images CI(v) as
feature vectors that are labeled with the local �uence φ(v). These data pairs are calculated
for every voxel v for each volume in the training data. During inference, the regressor is then
presented a context image CI(v) and is tasked to estimate the corresponding local �uence φ(v).

Figure 3.1: Context encoding approach to qPAI. CIs are calculated for each voxel in the imaging
plane using both (1) the 3D signal context and (2) a priori knowledge on the imaging system. A
regression algorithm is trained with tuples of CIs and corresponding �uence values. Reprinted
with permission from the CC-BY licensed publication [Kirchner et al., 2018a].

Figure 3.1 explains the core principle of the CE-qPAI method.

For training of the algorithm and using a realistic PA illumination geometry as a template, 3D
signals of initial pressure and �uence are generated using a Monte Carlo simulation of light
propagation for many di�erent absorption coe�cient distributions (1). Furthermore, using the
same illumination geometry, voxel-speci�c Fluence Contribution Maps (FCMs) are simulated for
each voxel in the imaging plane (2). For each of the simulated 3D volumes, the signal context
is combined with all FCMs to create Context Images (CIs) for each voxel of the imaging plane.
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The CIs are then labeled with the corresponding �uence values obtained from the Monte Carlo
simulation and presented to the machine learning algorithm for training. With this process,
numerous training examples (as many as there are voxels in the imaging plane) can be extracted
from each of the 3D signals.

During inference, a previously unseen 3D image is measured with the PA device that was used as
the template in the simulation. Using the same FCMs from the training process, CIs are generated
for each voxel of the central imaging plane of the measured volume. These CI are then presented
to the trained machine learning algorithm in order to obtain estimates for the light �uence in
the medium of the unseen image.

Fluence Contribution Map

An Fluence Contribution Map (FCM) is an arti�cial construct that is designed to contain a priori
knowledge on how light propagates in a homogeneous medium. An FCM always corresponds to a
speci�c voxel v in the volume and stores information on the �uence of all photons remaining
when discarding those that do not traverse voxel v in their path through the medium. It can
also be interpreted as the probability map for v, which contains the probability of a photon to
traverse any given voxel v′ in the volume before it reaches the detector voxel v. As such, FCMv(v′)
is the probability that a photon arriving in v has traversed v′.

Figure 3.2: Visualization of the calculation of CIs for three voxels (v1, v2, v3). The FCMs contains
information on how light propagates in a homogeneous medium. For each voxel vi, all tuples of
3D signal and FCM are determined and combined into the CI histogram. This �gure was reprinted
with permission from the CC-BY licensed publication [Kirchner et al., 2018a].

Context Image

The Context Image (CI) corresponding to a voxel v is a histogram that contains value pairs of
corresponding FCMs and PA signals S. In other terms, the CI is a set of the data pairs of S and
FCM for all voxel positions v′: {(S(v′), FCM(v′))|v′ ∈ N(v)}. Here, it becomes evident that S is
the same for each CI for the volume. The FCMs, however, are individual for each voxel location,
leading to variations in the calculated CIs. N(v) is the neighborhood around v where the FCM
probability that photons traversed it before reaching v is above a certain threshold ε.
As such, N(v) is de�ned as {v′|FCMv(v′) > ε}, and its purpose is to save valuable computational
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resources by excluding voxels v′ that would only have a negligible contribution to the �uence in
v. Figure 3.2 illustrates how the FCMs and signal volume are used to create the CIs.

Experimental design

The presented CE-qPAI method was tested in an in silico experiment, which had the goal to
estimate the �uence distribution of 3D volumes composed from 2D initial pressure p0 slices
simulated with a handheld transducer illumination geometry as described in section 2.3.1. To this
end, in silico volumes were simulated that consisted out of vascular structures in a homogeneous
background medium. To approximate partial volume e�ects, the distribution of absorption
coe�cients was post-processed using a Gaussian blur with a sigma of 0.6 mm. Every simulation
was performed using the Monte Carlo method for photon transport (in this case using mcxyz by
Steven L. Jacques [Jacques, 2014]) with 2× 106 photons for all training sets and 108 photons for
the respective test and validation sets.

Training data simulation Variations on four di�erent parameters were examined: the vessel
radius, number of vessels, absorption coe�cient of the vessel structures, and the absorption
coe�cient of the background medium. From these parameters, six di�erent data sets were
created: one with no variation, one with variations of all of the parameters, and four where
each of the parameters was varied in isolation (see Table 3.1). For each volume, the values were
randomly sampled from a uniform distribution in the speci�ed range. The optical absorption
(µa) parameter ranges used in the respective data sets were chosen to re�ect the entire range
of absorption coe�cients found in physiological tissue [Jacques, 2013]. A constant scattering
(µs) parameter of 15 cm−1 and an anisotropy (g) of 0.9 were used throughout all data sets.
Furthermore, a constant Grüneisen parameter of 1 was assumed in the data set, e�ectively
disregarding it for the conducted experiment.

Tissue and Geometry Parameters

data set radius [mm] vessel µa [cm−1] num vessels backg. µa [cm−1]

DSbase 3 4.7 1 0.1

DSradius 0.5 - 6 4.7 1 0.1
DSabsorb 3 1 - 12 1 0.1
DSvessel 3 4.7 1 - 7 0.1
DSbackg. 3 4.7 1 10−4 - 0.2

DSmulti 0.5 - 6 1 - 12 1 - 7 10−4 - 0.2

Table 3.1: The design parameters of the in silico data sets (DS) for the quantitative evaluation of
the CE-qPAI method. DSbase is the baseline data set with minimal variations, whereas DSradius,
DSabsorb, DSvessel, and DSbackg. each introduce variations in one of the design choice parameters.
Finally, DSmulti contains variations of all of the parameters.

The simulated data were divided into a training set with Ntrain = 150 volumes for training of
the respective regression algorithm, a validation set with Nvalidation = 25 volumes for tuning of
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the hyperparameters and supervision of the convergence of the training process, and a test set
with Ntest = 25 volumes on which the �nal results were calculated. Each of these 3D volumes
was composed of 31 2D scans resulting in a size of 64 × 47 × 62(x × z × y) with an isotropic
spacing of 0.6 mm per voxel. Here x is the axis along the US transducer elements, z is the
depth axis, and y is the axis orthogonal to the imaging plane. To reduce the number of needed
forward simulations, each simulated 2D x-z plane was added twice into the composed 3D volume.
Furthermore, the number of training volumes was increased to 400 for this data set to account
for the high complexity of variation in DSmulti.

The background signal level of the simulated data was (4.2± 2.8) [a.u.]. Several di�erent noise
levels were applied to the data sets to investigate the robustness to noise. In this context, three
di�erent Gaussian noise models were used:

1. 2% multiplicative and (0.125± 0.125) a.u. additive noise

2. 10% multiplicative and (0.625± 0.625) a.u. additive noise

3. 20% multiplicative and (1.25± 1.25) a.u. additive noise

In cases where negative signals were produced during the application of the Gaussian noise,
these values were set to 0. The test set results were evaluated twice: �rst on all voxels of the
image and then only in an Region Of Interests (ROIs) containing voxels corresponding to vessel
structures and having a signal higher than a noise equivalent threshold (calculated using a
Contrast-to-Noise Ratio (CNR) > 2 [Welvaert and Rosseel, 2013]).

CI and FCM parameters For all experiments, FCMs were simulated using the background optical
parameters of µa = 0.1, µs = 15, and g = 0.9. To achieve a similar photon count over all detector
voxels v, the number of simulated photons was varied depending on the depth of v. The CIs
were created using 12 logarithmically scaled bins corresponding to the signal and FCM axes. The
value ranges of the bins were set to be 0 < log(S) < log(255) and log(ε) < log(FCM) < −1), with ε
being set to 10−5. S and FCM values larger than the upper boundary were included in the last
bin, whereas S and FCM below the lower threshold were excluded.

Regression methods In the experiments, two machine learning methods are examined. The �rst
method was a random forest [Breiman, 2001], which, as detailed in section 2.4.1, is a supervised
learning method, in which a collection of decision trees is formed based on random subsets of
the training data. For this implementation, the python scikit-learn random forest implementation
[Pedregosa et al., 2011] with default hyperparameters and 100 regression trees was used.
The second method was a fully connected feed forward neural network, as detailed in section
2.4.2, with a total of four layers containing leaky recti�ed linear units and dropout connections
to prevent over�tting. For training, the network was given the same computational budget of
100 epochs, with 1000 batches per epoch and 1000 (CIs, φ) pairs per batch on all data sets. The
pytorch [Paszke et al., 2017] Adam optimizer [Kingma and Ba, 2014] with a learning rate of 10−4

and an L1-loss function were used as the training hyperparameters.

CE-qPAI for functional parameter estimation

A second experiment was designed to determine whether it would be feasible to use the proposed
CE-qPAI method to directly estimate blood oxygenation (sO2) from CIs. In order to extend the
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CE-qPAI method to a functional use case, multispectral PA images have to be acquired. For this
experiment, the wavelengths 750, 800, and 850nm were chosen.

A new data set DSoxy was simulated that consisted of 240 multispectral training volumes with
homogeneous oxygenation values randomly drawn from a uniform sO2 distribution U(0%, 100%).
The test data consisted of 11 volumes, each simulated with 11 homogeneous oxygenation levels
(0%, 10%, ..., 90%, 100%). The optical absorption coe�cients of the background and the vessels
were calculated based on blood volume fraction, the wavelength, and the tissue oxygenation, as
described by [Jacques, 2013]. The blood volume fraction was chosen to be 0.5% in the background
medium and 100% in blood vessels. Hemoglobin concentration was assumed to be 150 g/L. A
constant scattering (µs) parameter of 15 cm−1 and an anisotropy (g) of 0.9 were used throughout
all volumes.

Blood oxygenation was estimated using three di�erent methods: (1) linear spectral unmixing (cf.
section 2.2.5) of the initial pressure data as a baseline. (2) Linear spectral unmixing of the signal
after correction by the CE-qPAI estimated �uence. (3) Direct estimation of sO2 using an adaptation
of CE-qPAI, where CIs at the same spatial location of all three wavelengths were stacked into
one feature vector and assumed contain the multispectral information needed for the inversion.
During training, the algorithm was then presented tuples ((CI750(v),CI800(v),CI850(v)), φ(v)).
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3.1.3 Results
Monospectral random forest regression

Table 3.2 summarizes the descriptive statistics of the relative �uence estimation errors for
the experiments on absorption estimation using random forest regression. As the relative
�uence estimation error does not follow a normal distribution, the median and Interquartile
Ranges (IQRs) are reported for all data sets. The results show that even for the most complex
data set DSmulti with variations of multiple parameters, CE-qPAI yields a median overall relative
�uence estimation error below 3%.

All voxels ROI voxels
data set Median IQR Median IQR

DSbase 1.1 (0.5, 2.0) 4.4 (2.0, 8.0)
DSradius 1.5 (0.6, 3.4) 5.8 (2.5, 11.9)
DSabsorb 1.3 (0.6, 2.9) 13.8 (5.2, 31.8)
DSvessel 1.9 (0.7, 6.0) 6.9 (3.1, 13.5)
DSbackg. 0.8 (0.4, 1.6) 4.3 (2.0, 7.6)
DSmulti 2.3 (0.8, 19.8) 14.0 (6.1, 30.8)

Table 3.2: Descriptive statistics of all CE-qPAI results using a random forest as the regressor. For
each of the data sets, the median error, as well as the IQR are shown for all voxels and exclusively
on voxels in the ROI.

Previously proposed qPAI approaches reveal high drops in estimation performance when dealing
with noisy data (cf. e.g. [Beretta et al., 2015]). To remedy this, methods have been proposed
to incorporate more accurate noise representations into model-based reconstruction algo-
rithms[Tarvainen et al., 2013, Tarvainen et al., 2017]. The validation of CE-qPAI under di�erent
levels of noise shows that it yields stable accuracy even under unrealistically high noise levels
of up to 20% multiplicative noise (cf. �gure 3.3).

Figure 3.3: Overview of the in�uence of di�erent noise levels on the relative �uence estimation
errors when using a random forest as the inference model. Each data set is represented by a
di�erent color/symbol combination.
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Qualitative random forest results on the baseline data set DSbase with 20% noise:

Figure 3.4: Visualization of the performance of CE-qPAI when using a random forest as the
inference model. Three representative examples are randomly chosen from the DSbase data
set and show the estimated �uence, the simulated signal, the estimated absorption calculated
by �uence correction of the signal, and the ground truth absorption coe�cients. For images
corresponding to the worst, best, and average case on the 0% noise data set, refer to the journal
publication [Kirchner et al., 2018a].
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Qualitative random forest results on the completely randomized data set DSmulti with 20% noise:

Figure 3.5: Visualization of the performance of CE-qPAI when using a random forest as the
inference model. Three representative examples are randomly chosen from the DSmulti data set
and show the estimated �uence, the simulated signal, the estimated absorption calculated by
�uence correction of the signal, and the ground truth absorption coe�cients.
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Monospectral deep learning regression

Table 3.3 summarizes the descriptive statistics of the relative �uence estimation errors for the
experiments on absorption estimation using deep learning regression. In line with section 3.1.3,
the median error and IQRs are reported for all data sets. The results show that even for the
most complex data set DSmulti with variations of multiple parameters, CE-qPAI yields a median
overall relative �uence estimation error below 5% when regarding all voxels, except for the most
complicated data set, where the median error regarding all voxels is 7.0%.

All voxels ROI voxels
data set Median IQR Median IQR

DSbase 2.5 (1.2, 4.4) 7.7 (3.6, 14.1)
DSradius 3.1 (1.4, 5.9) 12.7 (5.7, 23.8)
DSabsorb 3.5 (1.6, 6.5) 21.8 (8.9, 43.9)
DSvessel 4.8 (2.1, 10.5) 15.3 (6.7, 28.7)
DSbackg. 2.5 (1.2, 4.4) 7.8 (3.6, 14.0)
DSmulti 7.0 (3.0, 19.6) 21.9 (10.5, 36.7)

Table 3.3: Descriptive statistics of all CE-qPAI results using a fully connected feed forward neural
network as the regressor. For each of the data sets, the median error, as well as the IQR, are
computed for all voxels and exclusively on voxels in the ROI.

The validation of deep learning-based CE-qPAI with various noise levels on the data shows that
even though there are variations in the results, there is no systematic increase of the estimation
error even under unrealistically high noise levels of up to 20% (cf. �gure 3.6).

Figure 3.6: Overview on the in�uence of di�erent noise levels on the relative �uence estimation
errors when using a fully connected feed forward neural network as the inference model. Each
data set is represented by a di�erent color/symbol combination.
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Qualitative deep learning results on the baseline data set DSbase with 20% noise:

Figure 3.7: Visualization of the performance of CE-qPAI when using a feed forward neural network
as the inference model. The same examples as in the random forest regression are taken from the
DSbase data set and show the estimated �uence, the simulated signal, the estimated absorption
calculated by �uence correction of the signal, and the ground truth absorption coe�cients.
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Qualitative deep learning results on the completely randomized data set DSmulti with 20% noise:

Figure 3.8: Visualization of the performance of CE-qPAI when using a feed forward neural network
as the inference model. The same examples as in the random forest regression are taken from the
DSmulti data set and show the estimated �uence, the simulated signal, the estimated absorption
calculated by �uence correction of the signal, and the ground truth absorption coe�cients.
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Functional CE-qPAI

For the multispectral PAI data set, the �uence estimation error performance yielded a median
error in the ROI of 5.7% for random forest regression and 5.8% for deep learning. The absolute
oxygenation saturation estimation error for the direct sO2 estimation method was 3.8% when
using random forest regression and 2.7% when using deep learning. The complete descriptive
statistics of the results for both methods are shown in table 3.4.

Random Forest Deep learning
Median IQR Median IQR

rel. φ error (all) [%] 1.8 (0.8, 3.4) 3.5 (1.7, 6.2)
rel. φ error (ROI) [%] 5.7 (2.6, 11.0) 5.8 (2.6, 11.0)
abs. sO2 error (all) [%] 2.1 (0.7, 6.1) 2.3 (1.0, 4.9)
abs. sO2 error (ROI) [%] 3.8 (1.3, 10.2) 2.7 (1.2, 5.8)

Table 3.4: Functional CE-qPAI results. The φ estimation errors are shown as relative errors in
percent, and the sO2 estimation results show the absolute errors in percentage points.
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Figure 3.9: Qualitative results of functional CE-qPAI. The results are shown for (1) random forest
regression and (2) deep learning for an example signal patch containing a vascular structure
with oxygenation levels of 0%, 50%, and 100%. Naïve unmixing is the application of least square
regression directly on the multispectral signal image, CE-qPAI unmixing refers to the application
of least squares regression after CE-qPAI �uence correction, and fCE-qPAI unmixing refers to the
direct estimation of sO2 based on multispectral CIs.

Figure 3.9 shows qualitative sO2 estimation results for three di�erent spectral unmixing methods:
naïve linear unmixing based on the multispectral input images, linear unmixing after �uence
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correction of the input images using CE-qPAI, and direct sO2 estimation using Functional CE-
qPAI (fCE-qPAI). While the data set contained eleven distinct oxygenation samples, only three of
them are shown in the �gure (0%, 50%, and 100%). The CE-qPAI methods were applied using (1)
random forest regression and (2) a fully connected neural network.

3.1.4 Discussion
This work addresses one of the most critical challenges related to PAI: the quanti�cation of
the optical absorption coe�cient. In contrast to other approaches, the CE-qPAI method uses
machine learning to estimate the light �uence in a voxel to deduce the corresponding optical
absorption. Comprehensive in silico experiments demonstrate the potential of this approach
to estimate local light �uence and subsequently, the optical absorption coe�cients as well as
derived functional properties, even in the presence of high additive and multiplicative Gaussian
noise.

Discussion of results

The conducted experiments show that it is feasible to estimate local �uence from CIs with
regression techniques such as random forest regression and deep learning. Even though the
random forest outperformed the deep learning network on the �uence estimation tasks by a
large margin, there was only a negligible di�erence between random forest and deep learning
regression for functional CE-qPAI. The comparatively weak deep learning results have much room
for improvement. For this feasibility examination, only a relatively small �xed computational
budget in terms of epochs, batches size, and batches per epoch was chosen. Also, a static
learning rate might be non-optimal in this case, and the results might be better when considering
di�erent loss functions. When �ne-tuning all adjustable hyperparameters, it should be possible
to get deep learning results on the same scale if not better compared to using random forests,
but this optimization was not the aim of this work.

While the experimental results of CE-qPAI demonstrate the general feasibility of the method,
the conclusions that can be drawn are limited. Firstly, a very low scattering coe�cient was
chosen, which enables a deeper penetration depth of the light, but is not likely to occur in
any clinically relevant scenarios, where the scattering is usually an order of magnitude higher.
Furthermore, the method has only been tested on in silico data, and also exclusively been tested
on data simulated by a single Monte Carlo framework. The robustness of the CE-qPAI method
remains an open question independent of the regression algorithm when regarding the imprecise
reconstruction of the initial pressure distribution, for example, due to limited view problems,
inaccurate calibration of the PA device, systematic noise or imaging artifacts, or other in�uences.
Unfortunately, the CE-qPAI method, as presented in its current state, is not applicable in vivo or
even in vitro, as a near-perfect reconstruction of the initial pressure distribution is needed that
is only subject to Gaussian noise.

Discussion of methodology

The introduction of a priori knowledge in the form of the FCMs was the main contribution of
this work, as they allow to “disassemble” the initial pressure distribution to encode the 3D p0
context with respect to the voxel-speci�c �uence contribution. However, the calculation of the
FCMs imposes practical constraints. Firstly, the FCMs have to be calculated for each voxel of the
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imaging plane in the medium (potentially reducible to less when symmetries in the illumination
geometry are present), and these simulations have to be conducted using many photons because
of the relatively small amount of photons traversing the respective detector voxel. Secondly,
due to the nature of the Monte Carlo simulation, the resulting FCMs are calculated on a �xed
computational grid that is of a speci�c size with a speci�c voxel spacing. This leads to the
limitation that the FCMs can only be used for calculations with p0 images of the same spacing.
For di�erent settings, the FCMs would have to be calculated anew. The settings chosen in this
work already represented the feasibility limitations of the currently available hardware in terms
of computation time and storage needed for the FCMs.

One of the biggest strengths of machine learning-based approaches is their universally high
computational e�ciency after the training process. A trained CE-qPAI regressor can provide
estimates for the �uence in a few milliseconds on powerful hardware. However, online esti-
mation of the light �uence for the application with clinical handheld 2D PAI probes would not
be achievable due to the high computational cost of compounding several 2D slices into a 3D
volume and subsequently calculating the histograms for the context images. In this case, the
�uence could only be estimated on a sweep-by-sweep basis. However, this drawback could
potentially be remedied with the use of 3D PAI probes.

The CE-qPAI results demonstrate high robustness to noise when estimating the �uence, but the
direct estimation of the absorption coe�cient would be preferable. This is because the e�ects of
noisy data can be mitigated when not using it for subsequent calculations. This becomes even
more relevant for low SNR signals because performing �uence correction in these cases does
not only enhance the signal but also ampli�es the noise, which can have detrimental e�ects, for
example, on the performance of classical multispectral unmixing algorithms for sO2 estimation.
Very promising in this direction was the applicability of the CE-qPAI method to functional PAI,
which yielded highly accurate and very smooth results. It is to be expected that the direct
functional CE-qPAI approach does not signi�cantly lose accuracy when having to face noise in
the input data, whereas unmixing based on �uence corrected images is heavily impeded when
there is an increase in the overall noise level.

Transfer to reality

Despite the promising results in silico, the method could not successfully be applied to real
measured PA data. The main reason for this is the fact that perfect deposited energy distributions
were used for the creation of the CIs for the training of the machine learning algorithm. With
clinical handheld transducers, due to limited view artifacts and limited sensitivity, only very rough
approximations of the initial pressure distribution are possible. Furthermore, factors such as the
temperature-dependent Grüneisen parameter or a rigorous calibration of the detection device
are usually neglected. The most important step towards the applicability of the CE-qPAI method
to real data is the generation of realistic PA signals in a well-validated simulation pipeline. Such a
realistic simulation might incorporate heterogeneous scattering coe�cients and a heterogeneous
Grüneisen parameter map and should also consider acoustic forward modeling and suitable
image reconstruction, in order to obtain rough approximations of the initial pressure similar to
realistic scenarios.
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Related work

While state-of-the-art techniques for the estimation of the light �uence exist in the form of
iterative model-based approaches [Cox et al., 2005], the CE-qPAI method was not compared to
these in this thesis. The main reason for this is the long computation times that these methods
are associated with in complex 3D scenarios. However, future work on a systematic comparison of
many di�erent �uence estimation methods on a well-designed data set would be highly relevant
and exciting.

3.1.5 Conclusion
In this work, two questions were derived from the overarching hypothesis H1, whether the
application of data-driven approaches to the inverse problems of qPAI is feasible:

1) Is it possible to encode the voxel-speci�c 3D context into a single low-dimensional feature
vector to derive a voxel-wise estimate of the local �uence?

In regard to this question, the concept of the context image was developed that combines the
information of a measured 3D map of initial pressure with a priori information of the illumination
geometry. To this end, a 2D histogram is computed that contains correspondences of initial
pressure and voxel-speci�c �uence contribution. The conducted in silico experiments suggest
that this hand-crafted feature vector indeed contains enough information to enable the inference
of voxel-speci�c �uence, which - in principle - allows for the correction of the initial pressure
distribution to obtain estimates of the optical absorption coe�cient.

2) Is the calculation of voxel-wise feature vectors from only a limited number of simulated volumes
su�cient for generalization given the large possible parameter space of the distribution of optical
properties?

Even with the use of modern hardware infrastructure, the computational time for the forward
simulation of a few thousand tissue samples is in the order of magnitude of days. As such, the
number of samples available for training is limited. In this work, it was shown that 150 composed
volumes (created from a total of 4800 simulations) were su�cient in order to generalize well
enough to predict values for previously unseen situations accurately. This was investigated using
both random forests as well as a neural network for inference. Furthermore, the analysis showed
that the method is very robust to noise as long as the noise is accurately modeled in the training
data set.

While the results in silico are promising, further work needs to be conducted to establish the
potential of the methods in realistic in vitro scenarios or in vivo clinical applications. This future
work should include the investigation on how to generate realistic training data and might also
include a rigorous analysis of the upper bound of the achievable accuracy of the method in
di�erent scenarios, for example, by gradually increasing the amount of training data until a
saturation limit can be detected. The presented approach might be applicable in reality when
accurate reconstructions of p0 is possible. With this in mind, the development and of very
broadband detectors, such as the Fabry-Pérot interferometer, to PAI is an exciting trend (cf. e.g.
[Buchmann et al., 2017a]).
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When training a neural network with synthetic or simulated
data, it is expected that performance will increase when the
simulated data closely resembles the real environment.

— [Allman et al., 2018b]

3.2 | Quantitative photoacoustic imagingwith end-to-end
deep learning

Disclosures to this work:

Lena Maier-Hein supervised this work and was - along with Thomas Kirchner, Tim
Adler, and Dominik Waibel - part of the development of the methodology and
involved in the writing process of related publications. Parts of this work have been
published in the Journal of Imaging [Gröhl et al., 2018a] and in the proceedings of
the BiOS Photons Plus Ultrasound meeting of the SPIE Photonics West conference
in 2018 [Waibel et al., 2018].

3.2.1 Introduction
The identi�cation of fast, accurate, and reliable quanti�cation methods to obtain optical tissue
property distributions from photoacoustic imaging is one of the primary goals for photoacoustic
research. Model-based iterative methods for the optical inverse problem in quantitative photoa-
coustic imaging su�er from long computation times, high sensitivity to noise, and the potential
uncertainty of necessary a priori assumptions. Methods to tackle the acoustic inverse problem
have to deal with imaging artifacts, the limited view problem, and detector noise in order to be
able to obtain accurate estimates of the initial pressure distribution.

While the proposed iterative methods have been demonstrated to produce accurate results
on simulated data sets, an application of the methods in real settings has only been achieved
once with careful modeling of the expected values for the unknowns as well as additional
ad hoc corrections [Buchmann et al., 2019a]. The main reasons for this apparent gap are the
practical limitations of the model-based method that make the inverse problem - which is
complicated as it is - even more challenging to solve. As machine learning methods are, in
principle, capable of mapping arbitrary functions, the main objective of the experiments outlined
in this chapter is to determine whether it is feasible to use deep learning for the optical and
acoustic inverse problems of qPAI. The �nal goal of these techniques is to lay the foundation to
obtain quantitative estimates for the optical absorption distribution.

In the method introduced in the previous chapter - Context Encoding Quantitative Photoacous-
tic Imaging (CE-qPAI) - a priori knowledge was used in the form of the Fluence Contribution
Maps (FCMs) to create a hand-crafted feature vector (Context Image (CI)) for each image pixel and
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then a machine learning regressor was used to estimate the target property based on this feature
vector. In the �eld of theoretical machine learning, it has long been shown that hand-crafted
features are usually inferior to features that are chosen by the machine learning algorithm and
specially tailored to the data set (cf. e.g. [Liao et al., 2013]).

In the experiments demonstrated in this chapter, it is investigated how deep learning methods
trained in an end-to-end manner can cope with the optical and acoustic inverse problems based
on data simulated on the basis of the DiPhAs handheld photoacoustic probe design (see section
2.3.1). To this end, to investigate the optical inverse problem, a convolutional neural network
- speci�cally the widely used U-Net - was trained to infer optical absorption coe�cients from
2D images of initial pressure data and 2D raw time series data corresponding to a linear array
geometry. Towards the acoustic inverse problem, the same network architecture was used to
reconstruct initial pressure distributions from raw time series data.

Hypothesis investigated in this chapter

H1: Data-driven methods can be used to solve the optical and acoustic inverse
problem.

Similar to chapter 3.1, this chapter deals with the �rst research hypothesis.
In contrast to the other work, however, the experiments presented in this
chapter try to determine whether it is feasible to employ end-to-end deep
learning models for the inverse problems of qPAI. Following the principle
ideas of the prior work in literature, three research questions are examined
regarding the hypothesis:

1) Is it feasible to solve the acoustic inverse problem with end-to-end deep
learning?

2) Is it feasible to solve the optical inverse problem with end-to-end deep
learning?

3) Is it feasible to solve the combined inverse problem with a one-stage
end-to-end deep learning method?

3.2.2 Methods
Regarding the H1 hypothesis, it is attempted to solve the acoustic and optical problems sep-
arately, as well as in a combined approach. Each of the approaches is then validated in a set
of experiments. In order to formulate these approaches in the framework of end-to-end deep
learning, it is crucial to correctly de�ne the input data (features), as well as the output data
(labels) for the respective approach.

In the context of the qPAI inverse problems, the label domain of the optical inverse and the
combined approach is the distribution of optical absorption coe�cients µa, and the label domain
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of the acoustic inverse approach is the initial pressure distribution p0. The feature domain of the
optical inverse approach is p0, and the feature domain of the acoustic inverse approach and the
combined approach is the raw time series data p(t) (see table 3.5 and �gure 3.10) .

Target approach Feature domain Label domain

Acoustic inverse approach p(t) p0
Optical inverse approach p0 µa
Combined approach p(t) µa

Table 3.5: Feature and label domains for the end-to-end deep learning approaches.

A regression implementation of the U-Net [Ronneberger et al., 2015] is used for all of these
experiments (cf. section 2.4.3). While this model architecture had already been proposed in 2015,
it is still regarded as the best architecture for medical image segmentation problems, frequently
winning international benchmark challenges [Isensee et al., 2018].

time series pressure data

initial pressure

initial pressure

optical absorption

optical absorption(symmetric)
optical model

(asymmetric)
acoustic model

(asymmetric)
combined model

time series pressure data

Figure 3.10: Overview �gure of the acoustic inverse approach, the optical inverse approach, and
the combined approach. When instructing the network to learn a mapping from raw time series
data to a spatial distribution of interest, asymmetric U-Net derivatives have to be used, as the
time-domain axis needs to be resampled to match the spatial domain.

When applying this architecture to the acoustic inverse approach and the combined approach, it
has to be considered that the "depth-axis" of the feature domain is of a di�erent shape than
the label domain, as there are way more time-step samples in p(t) than spatial pixels in the
discretization of µa or p0. An asymmetric U-Net derivative has to be used to remedy this, as the
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time-domain axis needs to be resampled to match the spatial domain. This was implemented
with the introduction of asymmetric skip connections in the network that can scale the input
by a �xed factor. Due to this, a sampling rate needs to be chosen for the experimental design,
which allows the time samples to be an integer multiple of the number of spatial pixels when
covering the same imaging depth.

Experimental design

A total of four di�erent data sets were created for the experimental validation of the proposed
end-to-end deep learning methodology. These are described in detail in the next section. They
were simulated using well-known frameworks that implement the respective forward models.
The optical forward process was simulated with the Monte Carlo method using the Monte Carlo
eXtreme (MCX) framework [Fang and Boas, 2009], which enables running the simulation on a
GPU, e�ectively increasing the simulation speed by an order of magnitude. For the acoustic
forward simulation of the wave equations, the k-Wave Matlab toolkit was chosen, which is “based
on a k-space pseudo-spectral time domain solution to coupled �rst-order acoustic equations
for homogeneous or heterogeneous media [Treeby and Cox, 2010]”. The k-Wave toolkit also
features GPU support and can provide solutions in a reasonable amount of time. In both of these
frameworks, the DiPhAs photoacoustic probe (see section 2.3.1) is modeled, and the parameters
listed in tables 3.6 and 3.7 are chosen for the frameworks. As the illumination geometry of
the probe is already designed to account for the refractive index mismatch from air to a �uid
medium, a refractive index is not modeled in the optical forward simulation.

Optical forward model

Parameter Value [Units]

Pixel spacing 0.3 [mm]
Number of photons 107

Laser pulse energy 50 [mJ]
Tissue temperature 37◦ [C]
Grüneisen parameter 0.2

Table 3.6: Optical forward model parameters. The value for the Grüneisen parameter was
calculated from the formula given in [Wang and Wu, 2012] for a temperature of 37◦ C.

The optical tissue parameters (listed in table 3.7 and detailed for the respective data sets) were
chosen with great care to resemble close approximations of reality regarding the di�erent setups.
In this regard, single-voxel resolved distributions for the optical absorption and scattering were
used. The acoustic properties (listed in table 3.7), on the other hand, have been assumed to be
homogeneous throughout the medium. The main reason for this was that acoustic scattering
and the e�ect of acoustic attenuation is orders of magnitude smaller than that of the optical
counterparts.
The relative estimation error erµ is calculated to evaluate the performance of each of the ap-
proaches and reported in the results section:
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Acoustic forward model

Parameter Value [Units]

Speed of sound 1540 [m/s]
Alpha coe�cient α 0.1 [dB/(MHzγ cm)]
Alpha power γ 1.5
Medium density 1000 [kg/m3]
Sampling rate 66.6 [MHz]
Detector central frequency 7.5 [MHz]
Detector bandwidth 80 [%]

Table 3.7: Acoustic forward model parameters.

erµ =
|µ̂− µGT|
µGT

× 100[%], (3.1)

where µ refers to the property in question (in this case, either µa or p0), µ̂ refers to its estimate,
and µGT refers to its ground truth value. The median value is reported as a metric that is robust
to outliers and does not need to be derived from a Gaussian distribution to be meaningful. The
error is calculated only for those parts of the image, where there were vascular structures in the
a priori tissue geometry, and where the CNR of the initial pressure distribution is greater than 2.
For this case, the CNR is calculated as CNR = (I −mean(Inoise))/std(Inoise), where I is the pixel
intensity, and Inoise is the distribution of pixel intensities in the background.

Data sets

The proposed methods are validated on a total of four di�erent data sets. Two of these are
representative of blood �ow phantoms in which a vessel structure is submerged in a milk
bath, and the other two are created to resemble tissue-realistic setups. Of all data sets, 400
variations of the contained structures are created and imaged at �ve di�erent wavelengths
that are in the imaging range of all conventional photoacoustic devices: 700nm, 750nm, 800nm,
850nm, and 900nm. In order to circumvent o�-plane �uence e�ects, the simulated volumes are
constant along the y-axis, which enables the end-to-end estimation on 2D images recorded with
a handheld linear array transducer, without introducing an unknown error term.

The twomilk bath phantoms aremodeled with a wavelength-independent background absorption
and scattering, which were set to µ′s = 10 cm−1 (µs = 100 cm−1, and g = 0.9), and µa = 0.1 cm−1.
The �rst phantom contains one tubular structure that is always placed at a depth of around 0.5
cm in the center of the phantom with a variation of (± 2mm) in the x-axis and (± 1mm) in the
z-axis. The second setup contains one to two tubular structures that are located freely within
a spawn area in the phantom in a depth of 4 to 10 mm. In both cases, the vessel structures
are modeled to have a hemoglobin concentration of 150g/l and are each assigned a random
oxygenation between 0% and 100%. There is a margin of 4 mm to either side of the phantom to
avoid the unrealistic clipping of structures. A graphical representation of the composition of
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both phantoms is shown in �gure 3.11.
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Figure 3.11: Graphical representation of the simple static phantom setup (a.) and the phan-
tom setup with varying target structures (b.). Except for the shown distance measures, this
representation is not to scale.

One of the tissue-realistic setups resembles a tissue model containing 68% water and 0.5%
blood in the background with a mean blood oxygenation of 50%. It contains 3 to 12 tubular vessel
structures which are freely distributed in the tissue. The �nal tissue realistic setup was created
to mimic the human forearm, including models of epidermis, dermis, muscular homogeneous
background, arteries, veins, and bones. In order to increase the variation in the volumes, zero to
three random vascular structures were added to the realistic forearm model in the same spawn
area as in the previous models. A graphical representation of the composition of both phantoms
is shown in �gure 3.12.
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d. Forearm Model Setup
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Figure 3.12: Graphical representation of the complex realistic tissue setup (c.) and the forearm
model setup (d.). Except for the shown distance measures, this representation is not to scale.

The optical properties of the di�erent structures are modeled as reviewed by Jacques [Jacques,
2013] and the multispectral absorption coe�cient curves are taken from the paper, and the
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omlc website of Scott Prahl https://omlc.org/spectra/index.html (as visited on the 8th of
November 2019) and a constant anisotropy of g = 0.9 is assumed. The homogeneous muscle
tissue is assumed to have 0.5% blood volume fraction and water content of 68% [Forbes et al.,
1953]. The dermis is modeled to be 2.3 ± 1.2mm thick and to have a water volume fraction of
58% [Forbes et al., 1953], and the epidermis is assumed to be 0.22 ± 0.1mm thick [Oltulu et al.,
2018], to not contain water, and to have a mean melanin concentration of 2.2% ± 1% [Alaluf et al.,
2002]. The radii of the radial and ulnar artery are simulated to be 1.65mm ± 0.2mm [Ashraf
et al., 2010], and their accompanying veins are modeled to have a radius of 1 ± 0.2mm [Yang and
Chung, 2018]. The radius of the interosseous artery is set to 0.3 ± 0.125mm [Hubmer et al., 2004]
and the accompanying veins are modeled to be of half the size as the radial and accompanying
ulnar veins. Several subcutaneous veins with a pitch not smaller than 5mm are simulated at
a depth of 1.5 ± 0.7mm and a radius of 0.4 ± 0.3mm. The oxygenation of an arterial vessel is
modeled to be 90% - 100% [Merrick and Hayes, 1976], and the oxygenation of venous oxygenation
is assumed to be around 70% ± 10% [Molnar and Nemeth, 2018]. The two bones that are present
in the model (radius and ulnar) are modeled to have a water content of 19% ± 1% [Timmins and
Wall, 1977] and to have a mean separation of 32mm [Christensen et al., 1968]. Other parameters,
such as the depth of the arteries and sizes of the bones, were experimentally determined based
on photoacoustic (of healthy human volunteers) and CT images of forearms. For all data sets, a
gel pad layer was added to the simulation, which is usually used in conjunction with the DiPhAS
PAI device design in order to reduce the amplitude of the transducer artifact caused by light
absorption of the US transducer membrane.

Deep learning hyperparameters

The simulated input and output images were pre-processed to be of the size of a power of two.
For this, a center crop operation was performed, and the p0 and µa images were cropped to a
width of 128 pixels and a height of 64 pixels (after removing the air and gel layer), corresponding
to 3.84 and 1.92 cm with a spacing of 0.3mm. With a speed of sound of 1540 m/s and a sampling
rate of 66.6 MHz, a depth of 1.92 cm corresponds to roughly 831 samples. As such, the p(t) data
was cropped to 832 = 13 × 64 samples. An integer multiple is necessary in order to be able to
use the asymmetric U-Net implementation - in this case, with a scaling factor of 13 in the skip
connections. The training was performed for 500 epochs, using the Adam optimizer [Kingma and
Ba, 2014], a mean squared error loss function, an initial learning rate of 10−3, and a batch size of
50. For the time series input data experiments, the batch size had to be reduced to 20 due to
memory limitations, and for the combined approach, the number of epochs was increased to
1000, due to slower convergence. The learning rate was reduced to 95% of the previous value
every 20 epochs, leading to a steady decrease in the learning rate throughout the experiment.
For each new training batch, the input features were noised with a Gaussian multiplicative white
noise of 5% standard deviation. All training was performed on a Ubuntu 18.04 workstation with a
Ryzen 5 processor, 32 GigaBytes (GB) Random Access Memory (RAM), and an Nvidia GTX 1080 Ti
graphics card with 11GB RAM.

3.2.3 Results

This section will state the quantitative results of the experiments evaluated in the ROI and will
show sample images of the estimation results on all four data sets that are representative of the
median estimation error.

https://omlc.org/spectra/index.html
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Quantitative description of results

Table 3.8 shows the descriptive statistics of the recovery of the optical absorption coe�cient
(and the initial pressure distribution for the acoustic inverse model). While the results are not
comparable due to their di�erent complexities, the optical inverse models achieved the lowest
errors all data sets, achieving a median estimation error of up to 8.1% when trained on and
applied to the tissue model data set. The performances of the acoustic inverse models were
roughly between that of the combined approach and the optical inverse approach, except for the
forearm model data set, where the acoustic inverse model performed the worst with a median
relative error of 34.3%. The performance of the combined models was generally the worst on
the data sets, averaging on a median relative error roughly twice as high as that of the optical
inverse models.

Static phantom Varying phantom Tissue model Forearm model
Method Med. IQR Med. IQR Med. IQR Med. IQR

AIP 13.0 (6.1, 22.8) 17.1 (8.1, 31.0) 15.2 (7.0, 26.7) 34.3 (16.4, 58.1)
OIP 10.6 (4.8, 19.7) 13.0 (5.9, 22.2) 8.1 (3.8, 15.0) 13.3 (6.2, 23.4)
Combined 17.0 (7.7, 31.8) 20.9 (9.6, 38.8) 19.8 (9.5, 35.0) 27.9 (13.3, 47.2)

Table 3.8: Descriptive results of the three di�erent deep learning inversion methods. The median
error (Med.), as well as the interquartile ranges (IQR), are shown in the table for each of the
methods on each of the data sets.

The distribution of the errors regarding all approach/data set combinations are shown in �gure
3.13, which shows violin plots and box plots of the error distributions.

Figure 3.13: Violin plots and box plots visualizing the distribution of the relative estimation errors
of the approach and data set combinations.

One question that now arises is how the accuracy of the direct approach compares to a sequential
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application of the acoustic inverse model and the optical inverse model. Here, it would be
expected that a sequential application would perform much worse, due to the propagation of the
errors of the �rst model to the second. Figure 3.14 shows the results of this sequential application
of the inverse models compared to the combined inverse model. The results reveal an explosion
of the relative µa estimation error when the two inverse models are being applied sequentially.

Figure 3.14: Violin plots of the direct approach versus a sequential application of the acoustic
and optical inverse models. The combined model is displayed in the same color as in �gure 3.13.

Qualitative visualization of results

In the following pages, sample results for the combinations of the three examined methods and
data set are shown. In order to show a representative example, the datum that produced the
median performance was chosen in each case. Because of this way of choosing the representative
image, di�erent representative images from the test data set might be chosen for each method.
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Acoustic inverse problem:

Figure 3.15: Representative results for the acoustic inverse model for the static phantom, varying
phantom, tissue model, and forearm model data sets (from top to bottom). The images are the
input data, the estimated output labels, the ground truth output labels, and the ROI with error
estimates (from left to right). The caption contains the median error of the estimates in the ROI.
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Optical inverse problem:

Figure 3.16: Representative results for the optical inverse model for the static phantom, varying
phantom, tissue model, and forearm model data sets (from top to bottom). The images are the
input data, the estimated output labels, the ground truth output labels, and the ROI with error
estimates (from left to right). The caption contains the median error of the estimates in the ROI.
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Combined inverse problem:

Figure 3.17: Representative results for the combined inverse model for the static phantom, varying
phantom, tissue model, and forearm model data sets (from top to bottom). The images are the
input data, the estimated output labels, the ground truth output labels, and the ROI with error
estimates (from left to right). The caption contains the median error of the estimates in the ROI.
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3.2.4 Discussion
Based on the conducted experiments and given the constraints of the used data sets, it appears
that the creation of models that are capable of tackling the optical inverse problem in an end-
to-end manner is indeed feasible. However, the experiments also revealed that the integration
of the acoustic inverse problem introduced large errors in the obtained estimates.

Discussion of results

The experiments contained three inversion methods: (1) acoustic inversion, (2) optical inversion,
and (3) combined inversion, which were evaluated on four di�erent data sets.

(1) acoustic inversion: The acoustic inversion resulted in median estimation errors as low as
13% on the most simple data set, but increased to 34% on the forearm data set. Qualitatively
the estimation results look adequate. However, there seems to be a systematic error in the
reconstructions in terms of the amplitude of the reconstructed signal. It is also evident that
deeper structures could not be reconstructed as well as more super�cial structures. This is
especially apparent in the sample image taken from the forearm data set. A possible reason for
this might be the loss of information due to the depth-dependent acoustic attenuation. However,
such systematic errors can usually be tackled by increasing the amount of training data [Kendall
and Gal, 2017]. Further modi�cations of the architecture for the acoustic inversion should be
considered as well and are discussed at a later stage.

(2) optical inversion: The optical inversion resulted in median estimation errors as low as 8%
on the generic tissue data set, but increased to 13% on the forearm data set. Qualitatively
the results appear to be very promising, only really struggling when di�erent structures were
overlapping as apparent in the sample image from the generic tissue data set. It can be expected
that an increase in the amount of training data can drastically improve the performance of the
optical inversion model.

(3) combined inversion: The combined inversion resulted in median estimation errors as low as
17% on the most simple data set, but increased to 28% on the forearm data set. One thing to
note in the qualitative samples from the data set is that the combined approach seemed to
struggle with accurately estimating the sizes of the chromophore structures. Furthermore, after
a certain depth, the combined inversion model was not able to correctly predict the presence of
absorbers, but instead predicted the presence of absorbers in places where there were none.
One of the reasons this might have happened is that only slight noise augmentation was done
during training, which might have caused the inversion model to become sensitive to slight
variations to the time series data.

Single-stage versus two-stage inversion

In addition to the isolated analysis of the three inversion methods, it has also been investigated
how the sequential application of the acoustic inverse model and the optical inverse model
compare to solving the combined inverse problem directly. Here, it has to be concluded that
the error introduced by the acoustic inverse model was ampli�ed by the optical inverse model
leading to an explosion of the error. Figure 3.18 shows the median performance of this two-stage
approach on the generic tissue data set.
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Figure 3.18: Performance of the two-stage approach regarding the generic tissue data set. The
input of the optical inverse model is the output of the acoustic inverse model.

Qualitatively looking at these results, it is evident how reliant the optical inversion model is on
an accurate reconstruction of the initial pressure distribution as an input. In this case, even
though the estimated initial pressure distributions look reasonable, the optical inversion model
cannot cope with the present deviations from the "perfect" p0 distributions it was trained on. As
a result, the estimated µa values are way too high and do not re�ect the shape of the underlying
structures. However, this crude sequential application of the two inverse models does not
re�ect the true potential of data-driven models to solve the inverse tasks (as suggested by
the performance of the combined approach). Several measures might be taken to improve the
accuracy of these results. One of these could be to train the two models in tandem, where
the optical inversion algorithm is also trained to be capable of inverting the estimates of the
acoustic inverse model. Furthermore, a sophisticated augmentation of the training data might
also be a consideration to improve the robustness of the optical inversion model. Modi�cations
to the architecture of the acoustic inversion model should also be considered and are discussed
at a later stage.

Depth dependence of the results

For the acoustic inversion and the combined inversion (when working with time series data as
the input features) structures that were deeper than about 0.5 - 1 cm could not be properly be
predicted by the inversion algorithms and no quanti�cation of the underlying tissue properties
was possible. Generally, the estimation error increased drastically for deeper structures, as
shown in �gure 3.19, especially in the approaches that had to work with raw time series data.
However, surprisingly, also the optical inverse approaches show a trend where the median
estimation error increases with increasing distance.

The acoustic inverse problem

The acoustic inverse problem has been studied extensively compared to the optical inverse
problem [Cox et al., 2012]. As such, it might be obvious to assume that the acoustic inverse
problem is more straightforward to tackle. However, the results obtained in the presented
experiments suggest that including the acoustic inverse problem and trying to tackle it in an
end-to-end manner with an architecture as presented here is a lot more di�cult than anticipated.
While the acoustic inverse problem is well-posed for certain detection geometries, in the case of
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Figure 3.19: These graphs show the development of the median estimation error when only
evaluating the pixels at a certain depth over all data sets for the three models. The optical
inverse model is shown in green, the acoustic inverse model in red, and the combined inverse
model in blue. It can be seen that the estimation error generally increases with increasing
imaging depth.

linear detector arrays, solving it is much more di�cult [Paltauf et al., 2007].

Some of the possible reasons for the di�culties of end-to-end methods when facing the acoustic
inverse problem might be the drastic loss of information due to the limited-view detection
geometry, due to errors propagated by up-sampling and smoothing operations in the transition
from the optical to the acoustic forward simulation, and the presence of acoustic attenuation,
which introduces a depth and frequency-dependent degradation of information. Presumably,
increasing the amount of training data might lead to a signi�cant improvement of the reconstruc-
tion results. This may be true, especially when including the acoustic inverse problem, as here,
the complexity of the problem is higher. Another possible reason might be the chosen model
architecture, which was an asymmetric modi�cation of the U-Net. Maybe, a fully convolutional
architecture without a decoding and an encoding part would have been a better choice. Facing
these problems, many promising machine learning-based approaches to the acoustic inverse
problem have been published lately (e.g. [Haltmeier and Nguyen, 2019, Schwab et al., 2019b, An-
tholzer et al., 2019a, Allman et al., 2019]) and in future work, it should be investigated how the
insights from these studies could be applied to the problems that were encountered in this work.
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Discussion of methodology

Data sets

The data sets were designed to be of increasing di�culty for the inverse models. The �rst two
data sets had the purpose of resembling two milk bath phantoms, where the simplest had
only one vessel structure in a con�ned space, and the second had multiple vessels in random
positions. The third and fourth data sets were designed to more closely resemble physiological
tissue. Here, the third dataset was designed to contain many vessel structures in a muscle
background to represent generic tissue, and the fourth data set was designed to contain all
structures that are present in the human forearm.

It was expected that the estimation performance of the models would re�ect this steady increase
in complexity by yielding a steady decrease in median accuracy on the respective test sets.
However, when the methods were trained on and applied to the generic tissue model, they
generally yielded better performance than models trained on some of the simpler phantom
setups. A possible reason for this could be the lower average background absorption that results
from the optical parameter assumptions that were made for muscle tissue. Furthermore, the
performances of the models on the data sets are not really comparable, as the models are
also trained on a specialized training set. Due to this, an increase in complexity in the data set
might cause the model to learn a more generalized representation of the physical model without
relying as much on speci�c constraints present in the data set. This increase in complexity and
variation within the data sets manifested mainly by an increased number of vessel structures
and multispectral changes of background scattering and absorption, which were �xed in the
phantom setups.

A multitude of informed assumptions for the morphological, optical, and acoustic tissue proper-
ties was made in the optical and acoustic forward simulation. While these were chosen carefully
with respect to literature references that were deemed as reliable as possible, these assumptions
might still not be representative of reality and, therefore, ill-chosen. Nevertheless, this does not
signi�cantly impede the results of this work towards evaluating the feasibility of data-driven
approaches to the inverse problems of qPAI. This is because the methods were trained and
tested on subsets of the same data set containing the same assumptions. It would be expected
that changes in the assumptions would not impede the inversion accuracy to the extent that
di�erent conclusions would be drawn.

Experimental design

All chromophore structures in the data sets were modeled to have a roughly circular shape.
This was done because it was computationally very e�cient to approximated vessels as tubular
structures. Due to this, the trained models learn to rely on the fact that all structures are
of circular shape. For the application of an end-to-end method in more diverse or realistic
applications, constraints need to be employed that circumvent any (unrealistic) bias towards the
shape of chromophores.

During the evaluation of the test data, no noise was applied to the input features, and only slight
noise augmentation was performed during training. This was done because prior work towards
deep learning techniques applied to the PA inverse problems showed that these algorithms are
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generally very robust to noise [Kirchner et al., 2018a]. However, in retrospect, it would have been
interesting to see the change of accuracy in relation to the imaging depth with the presence of
noisy data, as the SNR would deteriorate much faster in a noisy setting.

Due to hardware limitations, a grid size of 128 × 128 pixels was chosen for the optical forward
model. This necessitated an up-sampling of the resulting pressure distribution for the acoustic
forward model and led to a maximum possible simulated frequency of about 11MHz. These
constraints and additional processing steps could also lead to inaccuracies and the loss of
important information.

Deep learning approaches

In principle, convolutional deep learning architectures have been shown to be capable of e�-
ciently processing large 3D input data [Çiçek et al., 2016]. However, for the sake of computational
e�ciency and feasibility of data storage, the acoustic forward simulation has been performed
on 2D image slices extracted from 3D optical forward simulations of the symmetric data sets.
This simpli�cation makes it feasible to simulate the large amounts (4 × 2.000 volumes) of data
needed for the training of the algorithms in a feasible amount of time. However, it also introduces
inaccuracies in the acoustic forward model and necessitates a symmetry constraint along the
y-axis of the data set that not present in realistic scenarios. Algorithms will have to be able to
compute 3D inversions that are capable of capturing complex 3D geometries and out of plane light
absorption and changes to the �uence. From the results seen in this work, it is to be expected,
that algorithms could be capable of computing the 3D inverse problems, but it is highly likely
that a lot more training data would be needed for the algorithms to achieve comparable accuracy.

Deep learning methods have been applied to a variety of reconstruction problems [Zhang
and Dong, 2019], e.g. US image reconstruction [Nair et al., 2018, Yoon et al., 2018], CT image
reconstruction [Kang et al., 2017], or MRI image reconstruction [Wang et al., 2016]. The biggest
criticism towards these applications is the lack of robustness to unpredictable variations to the
input data or the question, whether the algorithms learn a sensible reconstruction (cf. e.g. [Wang
et al., 2018a, Zhang and Dong, 2019]). Approaches need to be established that can robustly handle
such anomalies. This might be achieved using pre-processing steps such as out of distribution
detection [Adler et al., 2019b] or by thinking about combined model-based and data-driven
approaches. Even if it can be assumed that the employed algorithms for the acoustic inverse
problem are capable of �nding a generalized model to solve the inverse problem of the wave
equations, they will �nd an approximation that is speci�cally tailored to the data set and might
not generalize to di�erent distributions and data sets. Methods would need to be developed
that ensure a generalization of the machine learning method to arbitrary solutions of these
equations. This could be achieved, for instance, by creating algorithms that are informed by the
physical models, as, for example, demonstrated by [Lan et al., 2019].

Transfer to reality

A transfer of this method to real data was not demonstrated, as the neural network trained
on the generated synthetic data was not capable of generating any plausible results for real
recorded raw time series data, and no data with adequate p0 reconstructions were available to
test the optical inverse method. In order to achieve a transfer of data-driven qPAI approaches to
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real data scenarios, methods have to be investigated that narrow the apparent domain gap.

The two next big steps that can be taken towards a transfer of these methods to realistic
scenarios are (1) the creation of more and more realistic forward simulations that are explicitly
tailored to the imaging device that is being used and (2) the development of hybrid inversion
models, where data-driven method is informed by physical models and vice versa.

Comparison to related techniques

In [Waibel et al., 2018], the results of the learned initial pressure reconstruction from time series
data were compared to that of Delay-And-Sum (DAS) beamforming. The results revealed an
insurmountable performance gap between these two methods. The main reason for this is that
the main objective of the DAS algorithm is to localize the source of the pressure wave and does
not include any compensation for the loss of information caused by the limited view problem
and the limited frequency response bandwidth of the US transducer. This is in contrast to the
learned algorithm, that is speci�cally trained to account for this loss of information and attempts
to reconstruct the full initial pressure distribution. Because of these reasons, a comparison of the
proposed method to the commonly used DAS algorithm was not considered for the evaluation
presented in this section.
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3.2.5 Conclusion
At the beginning of this chapter, three important research questions regarding the overarching
hypothesis H2 were formulated:

1) Is it feasible to solve the acoustic inverse problem with end-to-end deep learning?

To investigate this objective, acoustic simulations for four data sets were created, and it was
attempted to estimate the initial pressure distribution from the raw time series data. Some
results look promising, for example, on the simple phantom with a median estimation error
of 13% in the region of interest, which could indicate the feasibility of applying data-driven
approaches for quantitative PA image reconstruction. However, on the forearm data set, which
was created to more closely resemble structures present in real tissue, the performance was much
worse, only achieving a median estimation error of 34% in the region of interest. While these
errors seem very high, it is di�cult to estimate what magnitude of error would still be su�cient
in order for post-processing steps to work correctly. In conclusion, some of the reconstructed
images qualitatively look very promising, but the general feasibility of end-to-end learning for
accurate image reconstruction could not be su�ciently veri�ed with the conducted experiments.

2) Is it feasible to solve the optical inverse problem with end-to-end deep learning?

The models tasked to learn the optical inverse problem, on the other hand, achieved much
better results. Here, the relative median estimation errors were never above 15%, even for
the forearm data set, and the qualitative results also look very promising. As such, it can be
concluded that - within the constraints of the used data sets and the model architecture - the
estimation of the optical absorption coe�cient distribution from initial pressure data is feasible.
Of course, one of the primary constraints for this method to be applied is the presence of
accurate measurements of the initial pressure distribution p0, which raises further questions
towards the practical applicability of such an approach.

3) Is it feasible to solve the combined inverse problem with a one-stage end-to-end deep learning
method?

The model trained to estimate µa from raw time series data p(t) directly, generally performed
the worst out of all approaches. Here, the best achieved median relative estimation error was
18.1% on the most simple data set, and the approach performed the worst on the forearm
data set with a median relative estimation error of 20% in the ROI. The qualitative result
images reveal that the single-stage approach especially struggled in deeper tissue regions and
also had di�culties in identifying the size of the absorbing structures correctly. With these
results, the general feasibility of end-to-end learning for a single-stage approach, accurate
image reconstruction, and absorption estimation could not be veri�ed with the conducted
experiments. However, it was also shown that a single-stage approach can be much more accu-
rate, as the errors of the individual inversion algorithms are not propagated to the following steps.

It is apparent from the results, that is is very di�cult to learn the acoustic inverse problem in
an end-to-end manner subject to the chosen model architecture and the nature of the data
sets. There are many possible reasons why this might be the case, such as the network archi-
tecture, ill-chosen parameters in the forward model, or general di�culty of the problem. Given
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these problems, one interesting future direction is the investigation of physically constrained
data-driven approaches, where the reconstruction algorithm is informed by model-based recon-
struction algorithms that are based on the underlying physical principles of sound propagation
in tissue. This could be imagined to work in a similar fashion, as demonstrated by [Lan et al., 2019].

While this work has demonstrated that the application of data-driven approaches to the photoa-
coustic inverse problems is not straightforward, the initial results look very promising, especially
considering the results regarding the optical inverse problem. Data-driven approaches promise
fast inference times and can be tailored speci�cally for speci�c use cases by intelligently choosing
the training data for the model. However, it has to be concluded that more work has to be
conducted towards the application of data-driven methods for the photoacoustic problems in
order to be able to exploit their full potential on clinically acquired data.



Structural distortion and spectral coloring are two manifesta-
tions of the same phenomenon, namely the e�ect of the �uence
on the photoacoustic image.

— [Cox et al., 2012]

3.3 | Functional photoacoustic imaging with learned spec-
tral decoloring
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3.3.1 Introduction
In healthcare, knowledge of blood oxygen saturation (sO2) is a critical indicator of the health
status of a patient. However, state-of-the-art methods to obtain this value are limited as they
are either invasive (for example, blood gas analysis especially when drawing arterial samples
[Kelly, 2010]), lack practicability and accuracy (for example, Blood Oxygen Level Dependent
MRI (BOLD MRI) [Haacke et al., 1995] or functional Near-Infrared Spectroscopy (fNIRS) [Tak and Ye,
2014]), or only yields a rough estimate from peripheral vasculature (for example, pulse-oximetry
[Severinghaus and Honda, 1987]). None of these techniques can give real-time, spatially-resolved
sO2 estimates. Due to its non-invasive nature, the live and spatially-resolved monitoring of
sO2 is considered to be one of the main applications of Photoacoustic Imaging (PAI). Typically,
this is achieved by using Linear Unmixing (LU) (see section 2.2.5) of the optical absorption
spectra for the two relevant chromophores (oxyhemoglobin HbO2 and hemoglobin Hb) from
multispectral PA images. The core assumption for these algorithms is that the signal intensities
of the reconstructed PA image S (which is an approximation of the underlying initial pressure
distribution p0) are only proportional to the optical absorption coe�cients µa of the chromophore
distribution:

S ≈ p0 ∝ µa. (3.2)
However, as explained in detail in section 2.2.1, this assumption is generally speaking not true,
because (even when assuming the Grüneisen parameter to be constant) the reconstructed image
is proportional to both the optical absorption coe�cients µa and the light �uence φ:

S ≈ p0 ∝ µa · φ. (3.3)

99
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Due to this non-linear relationship, the �uence has a considerable in�uence on the recorded
multispectral signal. As the optical absorption and scattering coe�cients change with wave-
length, so does the �uence, which leads to changes in the multispectral images that are very
hard to predict. More speci�cally, this e�ect occurs due to wavelength-dependent absorption in
the surrounding tissue and is generally referred to as spectral corruption [Tzoumas et al., 2016]
or spectral coloring [Cox et al., 2012]. For example, even small absorption coe�cients in the
background medium can lead to more or less pronounced coloring e�ects depending on the
depth in the medium. Figure 3.20 shows the results of simulation experiments to demonstrate
the non-linear changes in recorded p0 spectra at di�erent locations in a vessel structure. All
parameters except the vessel radius are kept constant for the demonstration.
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Figure 3.20: Illustration of spectral coloring in a simulation experiment. The green and blue lines
show the di�erences in p0 spectra in two di�erent geometric scenarios a and b, where all optical
parameters are constant, and only the vessel radius is changed. The colored boxes highlight the
respective pixel that the spectra were extracted from. The red line shows the used absorption
spectrum of the blood within the tube.

The work presented in this chapter introduces a data-driven approach to tackle the problem
of sO2 estimation by introducing Learned Spectral Decoloring for quantitative Photoacoustic
Imaging (LSD-qPAI). LSD-qPAI is based on the assumption that a data-driven algorithm can learn
how the p0 spectrum is colored at di�erent depths in tissue when presented enough data to
analyze. While other approaches try to quantify the underlying optical absorption coe�cients
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�rst and then perform LU on the estimation results, LSD-qPAI directly estimates sO2 from pixel-
wise p0 spectra. It is trained on in silico training data and applied to various in silico, in vitro,
and in vivo data sets. According to the results, sO2 estimates using LSD-qPAI exhibit a higher
dynamic range and seem more plausible than those of LU techniques.

Hypothesis investigated in this chapter

H2: Data-driven methods can be used for spectral unmixing in a realistic
context.

The two previous chapters investigated the principle feasibility of using
data-driven methods for the inverse problems of qPAI. In contrast to that,
this chapter focuses on two research questions derived from hypothesis H2:

1) Can a data-driven method be used to obtain quantitative sO2 estimates in
the presence of spectrally colored data?

2) Can such a model trained solely on simulated data be applied in a realistic
scenario and still yield plausible results?

3.3.2 Methods
Concept overview

LSD-qPAI is a data-driven regressor that approximates a function fLSD-qPAI that maps initial
pressure p0 spectra Sp0 to blood oxygenation saturation sO2 values:

fLSD-qPAI : Sp0 =

 p0λ1
. . .
p0λn

 ∈ Rn → sO2 ∈ R (3.4)

with n being the number of recorded wavelengths. fLSD-qPAI is a neural network that is trained to
compensate for di�erent extents of spectral coloring and learns a many-to-one mapping, where
many di�erently colored p0 spectra correspond to the same sO2 value. As there is an inherent lack
of ground truth sO2 values for real p0 measurements, the method is trained on simulated data
sets that can be optimized for the speci�c applications and wavelengths (see section 3.3.2). When
sampling single-pixel spectra from di�erent spatial locations within the same image, various
degrees of spectral coloring are simulated. Examples for this are shallow or deep samples within
the homogeneous background. Here, the absorption of water is more expressed for deep samples,
as there has been a greater amount of interaction of the light with the respective chromophore.
A graphical representation of the spectra extraction from simulated p0 data is shown in �gure 3.21.

During training, the algorithm is presented tuples (Sp0 , sO2), with Sp0 ∈ Rn and sO2 ∈ R. Each
spectrum Sp0 is normalized such that

n∑
i=1

Sp0λi
= 1 (3.5)
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Figure 3.21: Overview of the core idea of extracting di�erently colored spectra from the same a
priori simulation in LSD-qPAI. Various geometrical a priori tissue assumptions are generated,
and light delivery is simulated at multiple wavelengths. Pixel-wise spectra are extracted from the
multi-wavelength simulation by following the p0 intensity at a �xed pixel location as a function
of wavelength.

Because the extracted training p0 spectra are normalized, the spectra acquired from in vitro or in
vivo settings need to be normalized as well. This sacri�ces the valuable amplitude information of
the spectra to eliminate the need to calibrate the in silico training data to the acquisition device
and the speci�c target domain. For quantitative recovery of not just the ratios but absolute
concentrations, an accurate calibration would be preferred, but in this case, the calculation of
the sO2 ratio is in focus.

Data sets

Several data sets were used in this work to provide means of training and evaluation of the
LSD-qPAI method. These evaluation data comprise (a) in silico simulated data, (b) in vitro
recorded phantom data from a blood �ow phantom, (c) in vivo animal data of an open porcine
brain, and (d) in vivo data from forearms of healthy human volunteers.

(a) Synthetic data. A total of three simulated data sets were generated to train the models and
test the method in di�erent scenarios.

1) The �rst was a generalized data set of similar composition as the tissue model presented in
section 3.2.2. It contained several randomly distributed vessel structures and a homogeneous
background structure and were initialized with the same random blood oxygenation. All oxygena-
tions were drawn from a uniform distribution from 0% to 100% oxygenation. The background
scattering was set to µs = 10 cm−1, while all other parameters were the same as reported in
section 3.2.2. The vessel phantoms were simulated with 26 wavelengths equidistant from 700
nm to 950 nm (in 10 nm steps) using a multithreaded adaptation of the Monte Carlo framework
mcxyz [Jacques, 2014] with 107 photons for each simulation. In this data set, only simulated
spectra corresponding to vessel structures were included, e�ectively eliminating background
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spectra from the data set.

Flow Phantom Reference Setup

Background
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r=0.5-2.5 mm

12 mm

12 mm

25 mm

agar structure
r=9.5 mm

Light source

Figure 3.22: Schematic representation of the in silico �ow phantom data set. A circular vessel
structure with varying radius (0.5-2.5mm) is embedded in a circular agar structure with a radius of
9.5mm. A single point light source illuminates the phantom which is placed inside a background
medium that is not optically active.

2) The �ow phantom data set was simulated in order to closely resemble the geometrical setup
of the oxygenation �ow phantom depicted in �gure 3.22. The phantom was simulated to be a
tubular agar phantom with a reduced scattering coe�cient µ′s of 5 cm−1 and a water content of
50% - 100%. The phantom contains a single tubular structure containing blood with a radius
between 0.5 and 2.5 mm. It is submerged in a solution which is assumed to have negligible
absorption and scattering. Even though the radius of the tubular structure was known a priori,
the radius of the simulated tubular structure was varied in order to obtain more diverse samples
and to reduce the e�ects from voxel discretization. These structures were simulated with the
same wavelengths that were used for the �ow phantom data acquisition {660nm, 664 nm, 680nm,
684 nm, 694 nm, 700nm, 708nm, 715 nm, 730nm, 735 nm, 760nm, 770 nm, 775 nm, 779 nm, 800nm,
850nm, 950nm}. For this data set, the Monte Carlo eXtreme (MCX) simulation framework [Fang
and Boas, 2009, Yu et al., 2018] was used due to its fast computational speed with 107 photons
for each simulation. Spectra were extracted exclusively from an Region Of Interest (ROI) de�ned
as vessel structures where the signal at the isosbestic point of 800 nm was higher than a noise
equivalent level (determined by calculating the pixel-wise CNR and setting a threshold of CNR
≥ 2).

3) The forearm model data set was exactly created, as described in section 3.2.2. Here, phantoms
were also simulated with 26 wavelengths equidistant from 700 nm to 950 nm in 10 nm steps,
also using the MCX simulation framework with 107 photons for each simulation. Only spectra
corresponding to vascular structures and expressing a CNR ≥ 2 were included in the data set.
This is done because frequency responses of the detection device and detection noise make
it impossible to extract any meaningful information that deep in a blood vessel within in vivo
images.

(b) Blood �ow phantom data. Three data sets of PA data from a blood �ow phantom setup,
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including reference blood oxygenation measurements provided by partial oxygen pressure (pO2)
needle probes, were generously provided by Lina Hacker of the VisionLab led by Prof. Dr. Sarah
Bohndiek at Cambridge University. These data sets contained measurements of two human
blood samples and a rat blood sample. A schematic of the measurement setup is reprinted from
the original publication [Gehrung et al., 2019] from the lab in �gure 3.23. The data was measured
using an MSOT inVision 256-TF imaging system (iThera Medical GmbH, Munich, Germany). The
blood samples were �rst chemically oxygenated and then chemically deoxygenated during the
measurement process, with continuous reference measurements of the pO2 needle probes.
These pO2 measurements were translated into sO2 estimates using the Severinghaus equation
[Severinghaus, 1979, Collins et al., 2015]:

sO2(%) =

((((
pO3

2 + 150 · pO2

)−1 × 23, 400
)

+ 1
)−1)

× 100 (3.6)

A detailed description of the data acquisition process can be found in the original publication.

Figure 3.23: Overview of the �ow system as presented in [Gehrung et al., 2019]. (1) Injection site for
introducing �uids into the �ow system; (2) spectrometer setup for reference measurements; (3)
needle probes measure the temperature and partial pressure of oxygen (pO2); (4) the PA imaging
system; (5) touch-screen monitor to display temperature and oxygen data; (6) data interface via
an Arduino; (7) peristaltic pump to induce blood circulation; This �gure is reprinted from the
original (CC BY 4.0) publication from [Gehrung et al., 2019]. Figure description adapted.

For the evaluation of the method on this data set, the tube structure was automatically seg-
mented by only taking into consideration pixels, where the signal at 800 nm was greater than
2× 104 MSOT signal units. This threshold was arbitrarily chosen and validated to yield a good �t
of the vessel structure for each of the data sets. This step was necessary, as the tubular structure
was subject to slight movements over the imaging duration, and, as such, using a constant
hand-drawn ROI for all images was not feasible.

(c) Porcine brain data. A multispectral image series was taken from a previous animal experi-
ment [Kirchner et al., 2019] in which a porcine brain was imaged by E. Santos, M. Herrera, and
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A. Hernández-Aguilera during open brain surgery. These images were recorded at the same
wavelengths as in the training data set (700-950nm in 10 nm steps). The images were normalized
by the recorded laser energy and reconstructed with the delay-and-sum algorithm using a
hamming window. These images were recorded using the DiPhAs imaging system (see section
2.3.1). Further details on the general image acquisition can be found in the publication of the
previous experiment [Kirchner et al., 2019]

(d) Human forearm data. Multispectral images of the forearms of 15 healthy human volunteers
were acquired. The images were taken at two di�erent distances from the radiocarpal joint: at
the "watch location" of 2-3 cm and at a distance of 5-6 cm, leading to a total of N=30 multispectral
images of forearm structures. For each recording, the person operating the handheld PAI device
tried to either capture the arteria radialis or the arteria ulnaris in the center of the imaging
plane. These vessels could be identi�ed by their pulsating motion induced by the heartbeat
when slightly increasing the pressure of the probe. The data sets were recorded using the iThera
MSOT Acuity Echo PAI device. The images were taken at a wavelength range from 660-1300nm in
10 nm steps, and the matching wavelengths to the training data (700-950nm in 10 nm steps) were
extracted in a post-processing step. The last �ve images of the recording of each wavelength
were averaged to account for laser intensity �uctuations and increase the robustness against
motion artifacts.

Implementation details

Deep learning models
For each of the training data sets, a separate fully connected feed forward neural network (for
the architecture details see 2.4.3) was trained. The number of input features was set to the
number of wavelengths (26 for the forearm and generic data set and 17 for the �ow phantom
data set), and the size of the hidden layers was set to be twice the size of the input vector. The
models were trained for 100 epochs, where one epoch was de�ned to contain 500 batches
of size 104. The initial learning rate was set to 10−2 and was updated every two epochs to
newlr = 10−2 × 0.9(epoch/2). Tracking of the validation losses over the number of epochs showed
that the validation loss did not signi�cantly decrease after as little as ten epochs using this
training scheme.

Linear unmixing
LU (cf. section 2.2.5) served as a reference method to compare the LSD-qPAI method to. It was
performed using literature absorption spectra of pure Hb and HbO2 as reviewed by Steven L.
Jacques [Jacques, 2013], downloaded from the OMLC website and contained in the mcxyz package
as spectralLIB.dat (https://omlc.org/software/mc/mcxyz/index.html, as visited on 4.12.2019).
The implementation of the unmixing was done in Python 3.7., using the minimize function of
the scipy python package that implements the SLSQP (Sequential Least SQares Programming)
algorithm for �nding the minimum. The unmixing was done for Hb and HbO2 assuming initial
values of 0.5 and imposing a non-negativity constraint on the result.

While LU is used as a reference method for the in vitro and in vivo results, the in silico data
set is designed to contain a high degree of spectral coloring. Because applying LU techniques
to systematically colored data is not feasible and visually only results in quasi-random sO2

estimates, the results of the LU algorithm are omitted for the in silico results.

https://omlc.org/software/mc/mcxyz/index.html
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3.3.3 Results
This chapter shows the results of the LSD-qPAI method on the simulated in silico data sets, on
the in vitro �ow phantom data sets, and on the in vivo porcine brain and human forearm data.

In silico results

Figure 3.24 shows the performance of the respective deep learning model when tasked to predict
sO2 values for a held-out test set from the generic data set, the �ow phantom data set, and
the forearm data set. Here, the relative sO2 estimation error is reported, which is calculated as
esO2

= |sOEST2 − sOGT2 |/sO
GT
2 , with sO

EST
2 being the estimated oxygen saturation and sOGT2 being the

ground truth oxygen saturation.

(a) Generalized data set. (b) Flow phantom data set. (c) Forearm data set.

Figure 3.24: In silico estimation results for the generalized data set (a), the �ow phantom data set
(b), and the forearm data set (c). The scatter plot is colored with the ground truth oxygenation
value. The violin plots show the estimated sO2 for ground truth sO2 intervals with a size of 10%.
As such, in addition to the scatter plot, there is one violin plot for all ground truth sO2 values
from 0% to 10%, one for 10% to 20%, and so forth.

The median relative sO2 estimation error for the model trained and tested on the generic tissue
model data set was 6.1%, with an Interquartile Range (IQR) of (2.4%, 18.7%). The �ow phantom
data set achieved a median relative estimation error of 9.9%, with an IQR of (3.6%, 28.5%). The
worst performing data set in silico was the forearm data set. The relative median quanti�cation
error was 16.6 %, with an IQR of (6.0%, 48.6%).

Themedian absolute sO2 quanti�cation error on the test sets was in all cases well below 10%, with
the model trained and tested on the forearm data set, achieving 8.8% absolute sO2 estimation
error.
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In vitro results

The provided in vitro �ow phantom data consisted out of two human blood samples and one rat
blood sample, that were chemically oxygenated and then deoxygenated over a period of about
40 minutes each. Ten consecutive frames of the same wavelength were averaged to account
for laser pulse energy �uctuations, and the averaged multi-wavelength stack was analyzed in
the ROI, which was de�ned as: MSOT signal > 20,000. For the analysis, three sources of sO2

estimation are visualized in �gure 3.25: spectral unmixing using LU, spectral unmixing using the
proposed LSD-qPAI approach, and pO2 probe reference measurements. For both the LU and
LSD-qPAI approach, the mean and standard deviation of the estimates are shown on the graphs.
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Figure 3.25: The mean oxygenation estimation results over time on three di�erent blood samples
with three di�erent measurement methods: (1) LSD-qPAI spectral unmixing in blue, (2) LU in red,
and (3) pO2 reference measurement in green. The standard deviation of the estimations within
the ROI for LU and LSD-qPAI unmixing is visualized in the corresponding color around the mean
estimate.

All three of these measurements showed a monotonous decrease of the blood oxygenation
over the time frame of the experiment. The LU unmixing results exhibited a dynamic range of
≈ 85% − 40%, whereas LSD-qPAI unmixing exhibited a dynamic range of ≈ 95% − 5% on all
three data sets. It has to be noted that the temporal calibration of the "human_6" data set was
manually adjusted by 1,000 seconds, as the curves did not seem to match initially and that the
pO2 reference was prematurely stopped in the "Rat_2" data set.

Figures 3.26 and 3.27 show qualitative oxygenation estimation results of the "human_2" and
"Rat_2" data sets. At three points in time - at the beginning, the middle, and the end of the
deoxygenation time - these �gures show the spatially resolved sO2 estimations of the proposed
method, as well as the LU result for comparison.
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Qualitative results of the "human_2" data set
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Figure 3.26: Qualitative spatially resolved images of estimated sO2 for the "human_2" data set of
the �ow phantom data. From left to right, three points in time are shown, and from top to bottom
the �gure shows the MSOT signal at 800nm, the LSD-qPAI sO2 estimate, the LU sO2 estimate, and
violin/box plots of the distribution for LSD-qPAI (blue) and LU (orange).
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Qualitative results of the "Rat_2" data set
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Figure 3.27: Qualitative spatially resolved images of estimated sO2 for the "Rat_2" data set of the
�ow phantom data. From left to right, three points in time are shown, and from top to bottom
the �gure shows the MSOT signal at 800nm, the LSD-qPAI sO2 estimate, the LU sO2 estimate, and
violin/box plots of the distribution for LSD-qPAI (blue) and LU (orange).
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In vivo results

The proposed LSD-qPAI method was also applied to two in vivo data sets: a multispectral PA
image of a porcine brain and PA images of the human forearm.

Porcine brain results:

Figure 3.28: The results of LSD-qPAI in vivo on an open porcine brain with a deep learning model
trained on the generic tissue data set. The LSD-qPAI results are compared to the LU results. The
red rectangle identi�es an ROI which corresponds to the mean sO2 estimate at the bottom of
the two lower sub�gures.

In the porcine brain image, LSD-qPAI estimated generally higher values for sO2 than compared to
sO2 values obtained with LU. In general, LSD-qPAI was observed to increase the dynamic range
of the predictions while maintaining the same tendency (high values were mapped to higher
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values, and low values were mapped to lower values). For reference, a manually placed ROI was
included in �gure 3.28. The mean estimated sO2 in this region was 68.0% for LU and 89.6% for
LSD-qPAI.

Forearm data results:

Figure 3.29 shows the sO2 distributions as estimated by LU and the proposed LSD-qPAI method.
The results are analyzed on all spectra and over spectra that correspond to an ROI. This ROI was
hand-selected in each image to contain one arterial vessel structure from each recorded image.
The estimations on all spectra reveal a systematic positive shift of the median from ≈ 30% to
≈ 45% when using LSD-qPAI compared to LU. The same trend can be seen in the ROI spectra,
where the median estimate is shifted from ≈ 75% to ≈ 95%. The LU results are exclusively
between 0% and 100% because of the non-negativity constraint in the optimization, but the
LSD-qPAI approach also predicts outside of these values.

sO2 distribution comparison (LU vs LSD unmixing)
(ALL spectra) (ROI spectra)

Figure 3.29: Comparison of the distributions of LU versus LSD-qPAI unmixed forearm spectra of
N=30 multispectral PA images. Green denotes LU estimates, and blue denotes LSD-qPAI estimates.
On the left, the estimates of all spectra are shown, and on the right, only the spectra from a
single arterial vessel structure (ROI) from each forearm image was taken into consideration.

Figure 3.30 shows two randomly chosen but representative examples of the in vivo forearm data
set. The LSD-qPAI estimates were obtained from a deep learning model trained on the synthetic
forearm data set. The results are compared to data analyzed with LU. On the left image, the
selected vessel structure is estimated to have a blood oxygenation of 76.9% with LU and 97.5%
with LSD. On the right image, LSD-qPAI estimates a blood oxygenation of 98.4%, while LU yields
70.7%. On the right image, one can clearly distinguish the artery from its accompanying vein.
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Figure 3.30: The results of LSD-qPAI in vivo on a human forearm, where the LSD-qPAI model
speci�cally trained on the forearm data set. The results are compared to data analyzed with LU.
The top row shows the PA signal at 800nm, the middle row shows the LU results, and the bottom
row shows the LSD-qPAI sO2 estimates.

3.3.4 Discussion

Discussion of results

The conducted experiments demonstrate the promising potential of the LSD-qPAI approach.
The results of the synthetic data set suggest that accounting for various degrees of spectral
coloring can be feasible. The more realistic variation with respect to the target structures was
included in the respective simulated data set during forward simulation, the more inaccurate
the sO2 inversion results became. This is most noticeable in the forearm data set. This data set
was the only data set, where background and vessel structures were allowed to take di�erent
oxygenation values. This is expected to signi�cantly increase the complexity of the inversion, as
this might add more ambiguity to the problem.

The results of the in vitro �ow phantom data show that the method can be applied to real
multispectral PA images. Here, the sO2 estimates of the proposed method follow the same trend
of a monotonous decrease in sO2 as reference pO2 and LU measurements. Furthermore, the
LSD-qPAI sO2 estimates also exhibit a higher dynamic range on the spectra of the �ow phantom
data set than classical LU approaches.
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The results of the in vivo data sets suggest that LSD-qPAI is capable of yielding physiologically
plausible sO2 measurements in vivo. The forearm sO2 estimates included values higher than
100% and lower than 0%. This can be potentially be explained by several di�erent e�ects. On
the one hand, the noise on the spectra might be di�erent in the recorded images compared to
the simple noise model that was applied to the simulated data. On the other hand, the approach
does not exhibit the boundary exceeding values behavior in simulated data, which might indicate
a domain mismatch between the simulation domain and the "real" domain. This is evident
when inspecting the sO2 estimates of the skin signal in the forearm images. In the simulation,
the epidermis was simulated not to contain blood, and therefore could not be assigned an
oxygenation value. Because the inference of sO2 was the goal of the LSD-qPAI algorithm, the
epidermis spectra were excluded from the training data set. Because of this, spectra dominated
by melanin are not known by the inversion model, and they are often mapped to negative or
very low sO2 values. This might potentially be remedied by using constraints on the solution
space either during the training of the algorithm or during inference / as a post-processing step.

Discussion of methodology

The proposed LSD-qPAI methodology su�ers from two distinct drawbacks: (1) it works only on
single-pixel spectra and (2) the inversion model is wavelength dependent.

(1) Single-pixel estimates might not be enough to guarantee an unambiguous and accurate
inversion. This is because there is a trade-o� regarding simplicity versus accuracy. A pixel-wise
approach enables the use of a simple model and allows for a straightforward simulation of
training data, whereas a spatially constrained approach would sacri�ce these conveniences for
the potential bene�ts of taking the signal context into account. Based on the results of the
Context Encoding Quantitative Photoacoustic Imaging (CE-qPAI) method presented in section
3.1, it is to be expected that the use of spatial regularization, for example, by including more
spatially co-located pixel spectra into the inversion can improve the accuracy of the inversion
method. One of the reasons that only single-pixel spectra were taken into account is that the
inverse problem is very easy to formulate and that training and application of a model is very
straightforward. Furthermore, an approach that takes into consideration multiple estimates from
a neighborhood also introduces further assumptions that have to be respected when trying to
apply the method to new data. One of these assumptions is, for example, the pixel spacing. With
further assumptions on the tissue geometry and the discretization grid, it would be crucial to
simulate more realistic images, and the training process and live inversion capabilities would be
more complicated and not as straightforward as with the proposed single-pixel approach.

(2) The proposed implementation of the LSD-qPAI method is wavelength dependent, which
means that the sO2 estimation is only possible for speci�c wavelengths. This is a signi�cant
restriction compared to LU techniques that allow arbitrary combinations of wavelengths, as long
as the absorption coe�cients at these points are known, this is a big restriction. For each set of
wavelengths that should be unmixed, a new model would need to be trained. This also makes
the comparison of the method regarding more or less input wavelengths di�cult, as the model
complexity is dependent on the number of wavelengths. However, in clinical routine, it is most
likely common practice to always use the same set of wavelengths for a speci�c use case. In
such a scenario, this limitation might not be as impactful.
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Figure 3.31: Overview visualization of the e�ect of spectral coloring in the �ow phantom data
sets. The three upper graphs show the absolute oxygenation estimates when only considering
pixels of a certain depth within the tube. The three lower graphs show the absolute di�erences
of the oxygenation estimates when comparing the estimated oxygenation at the surface of the
tube (depth of 0.1mm) with the estimated oxygenation in di�erent depths (0.2mm and 0.4mm).
The red lines denote the LU results, and the blue lines denote the LSD-qPAI unmixing results.
The dashed green lines in the lower graphs denote a perfect result only achievable if no spatial
dependence is present in the data.

The authors of the �ow phantom publication [Gehrung et al., 2019] included an analysis of
the in�uence of spectral coloring into their work, by analyzing the oxygenation estimates over
di�erent depths of the tubular vessel structure. They observed that their sO2 estimations
based on LU with hemoglobin spectra obtained from online spectrometer measurements had a
tendency to decrease with increasing depth. LU based on literature spectra [Jacques, 2013] had a
tendency to estimate lower oxygenation for deeper locations inside the tube when overall oxy-
genation was high and higher oxygenation deep inside the tube when overall oxygenation was low.

The bottom graphs of �gure 3.31 demonstrate this behavior, where the red plots denoting the
LU results exhibit the described tendency. In an ideal case, stable unmixing results would not
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have a spatial dependence on the depth of the tube, and the di�erences of the estimates would
lie around 0%, as depicted by the dashed green line in the graphs. The results of the LSD-qPAI
method on the "Rat_2" data set look very promising, while the LSD-qPAI performance seems to
have the opposite e�ect as the LU results. In this context, one needs to be careful to attribute all
changes in sO2 estimates to the depth of the vessel tube to spectral coloring. Blood is a viscous
liquid, and Poiseuille’s law shows that viscous liquids move in di�erent circulation speeds at
di�erent locations in a tube [P�tzner, 1976], which might also lead to a heterogeneous oxygenation
distribution within the liquid that correlates to the tube depth.
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Figure 3.32: Visualization of spectral coloring on the �ow phantom data set "human_2" data set
comparing LU and LSD-qPAI at two points in time: 4.2min (left) and 38.2min (right). For each of
these time points, the upper images show the MSOT image and the signal intensity based ROI.
The lower left image shows the LSD-qPAI sO2 estimates, and the lower right image shows the LU
sO2 estimates. The dynamic range of the color mapping is adjusted for each image to emphasize
the spatial changes of sO2 estimation.

Figures 3.32 and 3.33 show the same images as the qualitative result plots in �gure 3.26 and �gure
3.27, but with an adjusted dynamic range of the color mapping in order to emphasize the spatial
variation of the sO2 estimations. In all of the LU visualizations, the depth-dependent e�ect of
spectral coloring is visible, exhibiting a drop in sO2 for generally high sO2 values and a rise in
sO2 for generally low sO2 values.

In contrast to this, the LSD-qPAI estimates corresponding to generally high oxygenation appear
to be more homogeneous. For the low oxygenation case, the "Rat_2" LSD-qPAI estimates also
exhibit signs of spectral coloring - but of lower amplitude than with LU. Here, the "human_2"
estimates di�er completely from the previously observed coloring pattern. There appears to be
a structure in the estimates that is not only limited changes in the depth pro�le. This might be
an indication, that this e�ect is not due to spectral coloring, but instead is caused by imaging
artifacts or underlying physical phenomena, such as Poiseuille’s law. However, due to the low
number of data sets examined in this study, it is impossible to draw meaningful conclusions,
and further investigation towards the meaning and reproducibility of these �ndings needs to be
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Figure 3.33: Visualization of spectral coloring on the �ow phantom data set "Rat_2" data set
comparing LU and LSD-qPAI at two points in time: 4.7min (left) and 42.8min (right). For each of
these time points, the upper images show the MSOT image and the signal intensity based ROI.
The lower left image shows the LSD-qPAI sO2 estimates, and the lower right image shows the LU
sO2 estimates. The dynamic range of the color mapping is adjusted for each image, to emphasize
the spatial changes of sO2 estimation.

conducted.

Simulation gap to reality

One of the main challenges when trying to apply data-driven methods to PAI is that simulations
are only an approximation of the real underlying processes, where assumptions and approxi-
mations are made. As such, there is a large domain gap between simulated PA images and real
PA images. Early iterations of this work have been solely conducted on a generalized data set,
such as the generalized data set presented in this work. However, when switching the imaging
domain, for example, from the brain to the forearm - where melanin plays a crucial role but
is not modeled in the generic data set - the accuracy of the results degraded. In this regard,
a specialized training data set is expected to yield more accurate sO2 estimation results in
realistic scenarios. In this case, this was done by using a forearm model data set for the forearm
estimations that included an epidermis layer and had a �ne-tuned range of the optical scattering
and absorption coe�cients.

One key aspect also seems to be a sophisticated extraction of the pixel spectra to train on.
Background information is of very low frequency and can usually not be captured by most
detection devices. For the structures, also only areas with su�cient CNR yield meaningful
information to learn from, as most e�ects that happen in low CNR regions are not detectable in
real case scenarios and - as such - do not contribute positively to the model’s performance. This
e�ect can be seen in �gure 3.34, where the two bottom Principal Component (PC) distributions
are calculated from the generic data set, in which the entire vessel structure is used for the
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spectra extraction.

Figure 3.34: Principal component analysis of simulated and real spectra. The two upper scatter
plots show how real recorded spectra are mapped into the space of the �rst two principal
components of the forearm data set. The color of the plotted simulated spectra are annotated
with their oxygenation values ranging from 0% (blue) to 100% (yellow) in a Viridis color mapping
(cf. e.g. the color bar in �gure 3.30). The two lower scatter plots show the same for the generic
data set. Real data is plotted in red, where the two plots to the left show the mapping of brain
spectra, and the two mappings to the right show the mapping of forearm spectra.

For the generic data set, the �rst PC is corresponding to the degree of spectral coloring, and
one can see how the real recorded spectra (of both brain and forearm) are mapped to the left
of this distribution. This might indicate the possibility that the spectral coloring inside the
vessel structures is not captured in the PA data when using clinical ultrasound detection devices,
because of limitations regarding, for example, the detection bandwidth and detectable SNR. In
the two upper PC distributions, only those spectra were extracted from the forearm data set
that corresponded to vascular structures and were above a CNR threshold. This data set did not
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contain the same extreme spectral coloring e�ects as the previous data set, and the real recorded
spectra (especially from the forearm data set) aremapped very nicely into the in silico distribution.

Reference methods

The accuracy of the measurements of the used pO2 probe and the accuracy of the Severinghouse
equation to translate the measurements into sO2 values in this context is questionable. While
the trend of a monotonous decrease is the same for all methods, both LU and LSD-qPAI show
di�erent rates of progression of the drop in sO2 over time. For absolute ground truth reference,
a phantom setup would be needed in which, a priori, the absolute concentrations of the mixed
chromophores are known very accurately.

The proposed LSD-qPAI method was only compared to LU, as it is the most commonly used
method for sO2 estimation from multispectral PAI used in literature. A comparison to adjacent
methods (such as eigenspectra Multispectral Optoacoustic Tomography (eMSOT) [Tzoumas
et al., 2016]) would be very insightful, however, in this case, properly constraining eMSOT to
handheld detection geometries has proven to be infeasible. In this regard, a thorough review
and comparison of current spectral unmixing methods on well-designed data sets captured with
various detection and illumination geometries would be highly interesting.
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3.3.5 Conclusion
At the beginning of this section, two important research questions regarding the overarching
hypothesis H2 were stated:

1) Can a data-driven method be used to obtain quantitative sO2 estimates in the presence of
spectrally colored data?

Three highly spectrally colored data sets representing di�erent use cases were simulated for the
training of the LSD-qPAI models. In order to investigate the feasibility of accounting for spectral
coloring, the models were evaluated on a held-out test set. This analysis revealed that the
models were indeed capable of accounting for spectral coloring as encountered in the training
data. It has to be noted that the more variation was included in the data sets, the less accurate
the sO2 estimations became. The median absolute sO2 estimation error was well below 10% for
all of these data sets.

2) Can such a model trained solely on simulated data be applied in a realistic scenario and still
yield plausible results?

The results of this work demonstrate that it is indeed feasible to apply a data-driven method
that is solely trained on in silico training data to realistic scenarios. Plausible results were
demonstrated on phantom data, on porcine brain data, and on forearm data, with three di�erent
models that were all trained on di�erent in silico data sets. The phantom results suggested that
LSD-qPAI is capable of estimating a high dynamic range of sO2 values, whereas the results on
the in vivo data sets suggest that LSD-qPAI is capable of recovering plausible sO2 estimates in
arterial blood samples. In this case, it was possible because the proposed LSD-qPAI method does
not see the entire image domain in which there is a huge domain gap to reality but instead a very
condensed representation of the simulated data in the form of single-pixel spectra. Furthermore,
a Principal Component Analysis (PCA) of the training spectra revealed that there is merit in
carefully modeling the tissue geometry of the imaged region in order to obtain a better �t of the
simulated spectra and the real recorded spectra.

It is to be expected that more careful consideration of imaging noise and artifacts, variations in
laser pulse intensities, as well as spatial regularization techniques can lead to an improvement
in the accuracy and robustness of LSD-qPAI or related techniques. In future work, it would be
interesting to test the limitations of the technique, for example, in the minimum number of
wavelengths needed to still be able to account for coloring artifacts as well as the in�uence of the
choice of wavelengths for unmixing. Furthermore, an extension of the method of the estimation
of di�erent functional parameters or the recovery of absolute chromophore concentrations
would be highly desirable.

Nevertheless, data-driven spectral unmixing techniques could be of great potential bene�t for
the clinical translation of PAI, as these methods are capable of accurate real-time estimation of
functional tissue parameters and can easily be optimized for the respective clinical application
by considering all relevant parameters in the training data.
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Clinically, the use of [arti�cial intelligence] in tandem with PAI
can potentially result in better disease management and patient
outcomes by augmenting the qualitative assessments made by
clinicians and introducing earlier interventions.

— [Attia et al., 2019]

3.4 | Uncertainty estimation for quantitative photoacous-
tic imaging

Disclosures to this work:

Lena Maier-Hein has supervised this work. She, Tim Adler, and Thomas Kirchner
have been part of various stages of the research process. L. Hacker and S. Bohndiek
contributed the oxygenation �ow phantom data. Parts of the methodological work
of this chapter have been published in the Journal of Imaging [Gröhl et al., 2018a]
and the proceedings of the SPIE Photonics West: Photons plus Ultrasound 2018
conference [Gröhl et al., 2018b].

3.4.1 Introduction
So far, throughout this thesis, it has been demonstrated that data-driven methods can be
suitable to tackle problems within the framework of photoacoustic imaging. However, it has
also been discussed that many of these methods might not be usable in real-world scenarios,
let alone in clinical practice. One of the reasons for this can be seen in the lack of robustness
caused by systematic errors in a priori modeling assumptions, such as the illumination and
detection geometry, calibrations, or the optical tissue properties. As such, developing methods
to quantify the estimation uncertainty of these methods and to investigate the nature of er-
ror sources would be of great bene�t for moving data-drivenmethods toward clinical applicability.

As introduced in section 2.3.4, sources of error in photoacoustic imaging can be di�erentiated
into aleatoric and epistemic sources. Here, aleatoric uncertainty refers to stochastic uncertainty
that is introduced, for example, by statistic �uctuations during the imaging process. Epistemic
uncertainty, on the other hand, describes systematic errors in the model of the underlying
process that can either be introduced by errors in the a priori assumptions or - especially for
data-driven methods - it can be caused by a lack of representative data.

For clinical PAI applications, it is common to evaluate the photoacoustic signal or derived
functional tissue parameters in an Region Of Interest (ROI) (for example, in a boxed region such
as in [Hu et al., 2010]). This ROI is usually hand-drawn by the attending physician, and many
times it is complemented by using an Signal-to-Noise Ratio (SNR)-based threshold in order
to minimize the in�uence of aleatoric uncertainty in the derived results for the ROI. However,
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this approach does not take into account the uncertainty accompanying the inferred functional
parameter values. As uncertainty quanti�cation for data-driven approaches is an essential
research objective in computer sciences, many approaches to achieve this have been proposed
to this date, such as Bayesian inference, latent space sampling, and ensemble techniques (for
details and references see section 2.5.4). This work investigates the merit of applying such
techniques to the inverse problems of photoacoustic imaging in order to improve on the accuracy
of the parameter estimations by re�ning a purely SNR-based ROI with the use of uncertainty
estimates.

Hypothesis investigated in this chapter

H3: Con�dence estimation methods be used to gain insight into qPAI methods.

All previous sections have investigated the feasibility of the application
of data-driven methods to obtain quantitative estimates of optical tissue
properties or derived functional parameters. In order to successfully apply
these in a clinical context, robust and reliable methods are needed that o�er
the attending surgeon an insight into the uncertainty of the given estimates.
In this context, two research questions are derived from the overarching
hypothesis:

1) Can a systematic exclusion of relatively uncertain estimates from a region
of interest lead to a change of the aggregated estimate?

2) Are there di�erences between di�erent state-of-the-art techniques for
uncertainty estimation?
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3.4.2 Methods
One of the goals of uncertainty estimation is to have the ability to calculate a con�dence interval
that the actual value is likely to reside in. In this work, the ability to estimate the standard error
will be regarded as su�cient towards this goal, even though the ability to calculate the full
posterior distributions would be preferential. The obtained estimates are then integrated into a
multi-step approach, as demonstrated in �gure 3.35.

+

input inference
model

estimate aleatoric
ROI

combined
ROI

aleatoric
uncertainty

+

epistemic
uncertainty= low uncertainty

= medium uncertainty

= high uncertainty

Figure 3.35: Overview �gure for the uncertainty estimation work�ow. In the �rst step, the prop-
erties of interest are calculated with an inference model from the input data. Secondly, the
resulting estimate is masked with an SNR-based approximation of the aleatoric uncertainty,
and �nally, the SNR-based ROI is re�ned using a measure of the estimation uncertainty of the
inference model to approximate the epistemic uncertainty.

Four di�erent methods for retrieving estimation uncertainty are used and compared in this
chapter: (1) dropout sampling, (2) the estimation of conditional probability densities instead of
point estimates, (3) using an external model to estimate the expected error of the regressor, and
(4) latent space sampling with a conditional INN:

(1) Dropout sampling

Dropout sampling was proposed as a method for network regularization to tackle the problem
of over�tting [Srivastava et al., 2014]. The principle idea is to take away the possibility for the
network to rely on individual nodes in the graph, by randomly ignoring (dropping out) a certain
number of them in each forward pass. It was later also introduced as a method that attempts
to approximate Bayesian processes in a neural network [Gal and Ghahramani, 2016]. Here, the
input is evaluated multiple times, and one can compute the expected value as well as metrics
for the variance from the samples (see �gure 3.36). Even with the emergence of criticism towards
the technical correctness of this approach [Hron et al., 2017] and with the emergence of more
sophisticated methods for uncertainty estimation (such as variational approaches [Kohl et al.,
2018]), it is still frequently being used as a well-understood benchmark and is, therefore, used
for comparison in this thesis.
In this case, dropout sampling was implemented by adding dropout layers with a dropout
probability of 20% into the network. During inference, the dropout layers remained active, and
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Figure 3.36: Visualization of dropout sampling for uncertainty estimation. With multiple forward
passes, several estimations can be created that allow the computation of metrics such as the
expected value and the estimation variance.

N=100 estimates were obtained by means of multiple forward passes through the network. The
15.87, 50.0, and 84.13 percentiles were then calculated from the obtained samples and used as
estimates for the expected value and the surrounding error interval.

(2) Conditional Probability Densities

In 2004, [Feindt, 2004] proposed the use of neural networks to predict probability densities for
one-dimensional labels during inference instead of single-point estimates. The purpose of this is
to approximate Bayesian inference by interpreting the network output as a posterior probability
distribution. To achieve this, the label space of the target variable has to be pre-processed,
and the network inference results have to be interpreted with care. These processes are brie�y
explained in the following steps. For a detailed description of the steps refer to the original
publication [Feindt, 2004]:

1) Pre-processing: The one-dimensional label space y is transformed into a uniform distribution
F : y → s between zero and one, such that s(ymin) = 0 and s(ymax) = 1. This transformation is
done by sorting the label space according to y and assigning the ith element in the list the value
s(yi) = i/Ny_samples, where Ny_samples is the number of samples in the label distribution. This
mapping has to be stored, as it is used at a later stage for value reconstruction during inference.

2) Discretization: The newly constructed uniform probability distribution G(s) is now discretized
into bins at N equidistant levels. A total of N + 1 intervals are de�ned to ensure that G(0) = 0
andG(1) = 1. In order to create the new training data set, each training label s(yi) is transformed
into these bins, by setting every bin value to -1, where s(yi) is still smaller than the maximum
value in the bin. Every bin value is set to 1, where s(yi) is higher than the minimum bin value,
and an interpolated value between -1 and 1, representing the position within the bin where the
label value resides in (see �gure 3.37).

3) Network training: The same base feed forward network architecture is used as explained in
section 2.4.3, but in this case, for each discretization bin, a separate output node is added to
the architecture. During training, an L2 loss function and the Adam optimizer are used, which
essentially means that the nodes learn to regress values between -1 or 1 in the classi�cation
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Figure 3.37: Visualization of the label space transformations to enable estimation of conditional
probability densities. The label distribution is transformed into a uniform distribution. Afterward,
the uniform distribution is discretized, and the labels are transformed into a new label space.
Here, the bins are assigned -1, if the label value is lower than the bin value, and 1 if the label
value is higher. The bin where the label value resides in is assigned a value that represents the
precise position within the bin.

problem whether the actual value is above or below the threshold value represented by the bin.
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Figure 3.38: Visualization of how conditional probability density estimates are transformed back
into the label distribution. The output is re-scaled to [0, 1], and the bin values are �tted with
a b-spline. This enables the extraction of percentiles in the uniform "s" distribution which can
then be mapped back into the label distribution.

4) Inference: After the network converged during training, the output is re-scaled to [0, 1].
Then, the bin estimates are �tted with a b-spline that is forced through 0 and 1 at the extreme
values. From this spline curve, relevant quantities of interest such as the median and the
surrounding error intervals (in this case de�ned as the 0.1587, 0.5, and 0.8413 percentiles) can
now be calculated in s space and then reconstructed into the original label space by performing
a sorted search for the closest values in the original mapping list and by performing linear
interpolation between these points (see �gure 3.38).

(3) External observing network

An external observing network was developed and presented in [Gröhl et al., 2018a]. The idea is
to create a model that is capable of estimating the expected error completely independently of
the algorithm doing the inference (see �gure 3.39). The observing model observes the inference
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model and, by doing that, learns to predict the expected error. The expected error can then be
used to compute con�dence intervals for the estimates of the inference model.

input inference
model

estimate

expected
error

observing
model

= high

= medium

= low

observes

Figure 3.39: Visualization of using an observing model for uncertainty estimation. An inference
model estimates the target properties given an input. The observing model is tasked to estimate
the expected error of the inference model. It is being trained on observations of the inference
model’s performance on a validation set.

The observing network is trained on a validation data set, that the inference method is tasked to
predict. The ground truth values for this data set are available and computed, and the observing
model is tasked to estimate the expected error of the inference method on the validation data set.
The external observing network has the advantage of being very �exible and independent of the
inference method. However, it is limited to the fact that it cannot produce posterior estimation
distributions.

(4) Conditional Invertible Neural Networks

Recently, [Ardizzone et al., 2019] have presented an extension to Invertible Neural Networks (INNs),
in the form of a conditional INN. During training, the conditional INN learns to map the label
distribution into a Gaussian latent distribution under the condition of the input features. This
creates an easy-to-sample-from latent distribution, and during training, multiple latent samples
are taken and inversely propagated through the network under the condition of the input features.
With this approach, conditional INNs are capable of recovering full posterior label distributions
given the input features as a condition. A more detailed description of the training process is
given in section 2.4.3.

Experimental design

The primary hypothesis that should be investigated by the experiments is whether there is
merit in excluding pixel estimates from a region of interest when they exhibit a high estimation
uncertainty. With this in mind, the monitored thing of interest is the progression of the estimation
error when excluding an increasing amount of estimates from the set of all estimates in a data
set based on the coinciding uncertainty value.

Section 3.4.3 �rst brie�y introduces the results from the previous publications where uncertainty
estimation was investigated regarding the CE-qPAI method [Gröhl et al., 2018b] and end-to-end
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Figure 3.40: Visualization of using a conditional Invertible Neural Network (INN) for uncertainty
estimation. During training, the INN learns to map the label distribution into a Gaussian distri-
bution under the condition of the input features. During inference, one can sample from the
Gaussian latent distribution, and together with the input feature conditions, the INN is capable
of producing a full posterior distribution. The posterior distribution can then, for example, be
used to calculate metrics for the median and the error interval.

deep learning for qPAI [Gröhl et al., 2018a]. Section 3.4.3 then reports detailed results in the con-
text of sO2 estimation with the LSD-qPAI methodology. To this end, the four presented methods
for uncertainty estimation were systematically investigated on the in silico �ow phantom data
set the LSD-qPAI method was trained on in order to be able to estimate sO2 results for the in vitro
�ow phantom data (see section 3.3). For each method, the absolute sO2 quanti�cation error and
a metric for the standard deviation were calculated on the test set. Then the median absolute
sO2 estimation error was calculated with respect to a threshold in the maximum permissible
standard deviations in the results, which was gradually decreased from 20% to 0%.

The quantitatively and qualitatively best performing method in terms of uncertainty estimation
was applied to the in vitro recorded data. These results are qualitatively displayed on the
"human_2" and "Rat_2" data sets and serve the purpose to qualitatively determine whether the
envisioned application of uncertainty information has the expected e�ect also on real data.

3.4.3 Results

The results section of this chapter will present both previously published results using some
of the presented methodologies in section 3.4.3, and the results of the comparison of all four
presented uncertainty estimation methods in section 3.4.3.

Previously published results

This section will brie�y introduce prior applications of some of the presented methods: (1) the
estimation of conditional probability densities was applied to the Context Encoding Quantitative
Photoacoustic Imaging (CE-qPAI) method [Gröhl et al., 2018b] and (2) an external observing
network was applied to the end-to-end deep learning qPAI methodology [Gröhl et al., 2018a].
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(1) Con�dence estimation for context encoding qPAI

In [Gröhl et al., 2018b] it was examined, whether the method of [Feindt, 2004] for uncertainty
estimation could be utilized to improve the Context Encoding Quantitative Photoacoustic Imaging
(CE-qPAI) results. To this end, it was investigated whether the �uence estimation error and
the estimation uncertainty are correlated and if systematically excluding estimates with lower
uncertainty would lead to an improvement in overall accuracy. Figure 3.41 shows the results of
this study.

Figure 3.41: The results of applying the uncertainty method proposed by Feindt to the CE-qPAI
method. The upper plots show the correlation between the relative �uence estimation error and
the epistemic con�dence estimate in a scatter plot. The lower plots show the behavior of the
relative estimation error when only evaluating the n% most con�dent estimates. The left plots
show the results on all voxels, and the right-hand side plots show the results on the Region Of
Interest (ROI). The �gure was reprinted with permission from [Gröhl et al., 2018b].

The results in this work are calculated on the high-noise, multi-vessel data set, as presented
in section 3.1. When evaluating the 2.5% most con�dent estimations exclusively, the median
relative �uence estimation error calculated from Region Of Interest (ROI) estimates (within vessel
structures with an SNR threshold above a noise equivalent level) dropped by up to 12 percentage
points to 12%. Even more drastic was the increase in performance when considering all estimates,
where the error dropped by up to 5 percentage points to 0.7%. It was concluded that the use of
the proposed uncertainty estimation method from [Feindt, 2004] could potentially be of great
bene�t in the context of CE-qPAI.
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(2) Con�dence estimation for end-to-end deep learning qPAI

In [Gröhl et al., 2018a], it was investigated how well an external observing neural network could
estimate the uncertainty of the end-to-end 2D qPAI problem, as also presented in section
3.2. The performance of the observing network was evaluated with the same methodology as
described above, where it was investigated whether systematically excluding estimates with
lower uncertainty can lead to an improvement in overall accuracy. The approach was applied to
di�erent strategies of µa estimation: (1) direct estimation of µa and (2) estimation of the �uence
φ and correcting the input signal. These two methods were applied using either initial pressure
or raw time series data as the input features. The main results are reproduced in �gure 3.42.
In addition to the four µa estimation combinations, the observing model was also applied to
the hypothetical case, that the image is corrected using a simulated homogeneous �uence map
(referred to as the "naïve" approach in the �gure).

Figure 3.42: The results of using an external model to estimate the uncertainty of various 2D
quanti�cation methods. Each color shows the error distribution of one method when 100%, 50%,
or 10% of the most con�dent estimates are being used for evaluation referred to as a con�dence
threshold (CT)). Green shows the results for the naïve method of �uence compensation with
a �uence map obtained from a homogeneous tissue assumption, yellow and purple show the
results for �uence compensation, where the �uence is learned by a deep learning model, and
red and blue show the results of direct µa estimation - also learned by a deep learning model.
Reprinted from the CC-BY licensed publication [Gröhl et al., 2018a].

The results were calculated for the ROI estimates, which was again de�ned as voxels within vessel
structures that exhibited an SNR value above a noise equivalent threshold. On all methodologies,
a steady decrease in the error when excluding more pixels with a higher estimated expected
error could be seen. When only considering the top 50% most con�dent estimates, this approach
led to a decrease in the absorption estimation error of up to ≈ 30% (increasing to up to a ≈ 50%
improvement when evaluating only the top 10% of the most con�dent estimates). The violin
plots visualize the changes in the distribution of the absorption estimation error when applying
di�erent con�dence thresholds (referred to as CT in the �gure). These visualizations reveal a
meandering of the distribution toward lower error values.
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Results on the LSD-qPAI method

This chapter will �rst present the results of all four methods for uncertainty estimation applied
to the in silico �ow phantom data set, which was simulated with 17 di�erent wavelengths using
the mcx Monte Carlo implementation (for details on the data set and the Monte Carlo method
see sections 3.3.2 and 2.3.2). For each of the methods, a regressor was trained to estimate sO2

based on a 17-dimensional single-pixel p0 spectrum.

Performance of the methods on the in silico �ow phantom data set

In this section, the results of the four presented methods of uncertainty estimation are pre-
sented in the same order as they were introduced: (1) dropout sampling, (2) the estimation
of conditional probability densities instead of point estimates, (3) using an external model to
estimate the expected error of the regressor, and (4) latent space sampling with a conditional INN.

Method Dropout Cond. Probability External Conditional
sampling densities model INNs

Fractional change
of median error

0.85 0.63 0.64 0.53

Table 3.9: This table shows the fraction ofthe original value that themedian relative sO2 estimation
error could be reduced to when excluding 50% of the most uncertain estimates as determined
by the respective method (lower is better). A value of 0.6 would mean that the error, when
excluding 50% of the most uncertain estimates, would be 60% of the error when evaluating on
all estimates.
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(1) Results when using dropout sampling:

The median absolute sO2 estimation error of the N=100 dropout samples when computing the
median on all samples was 3.4%, with an Interquartile Range (IQR) of (1.2%, 8.1%). When computing
the results on half the data set, excluding the half with the highest estimated uncertainty, the
error decreases to a median of 2.9%, with an IQR of (1.1%, 7.6%). Figure 3.43 shows which estimates
were excluded by this process.

Figure 3.43: Scatter plots of sO2 estimates with annotated dropout uncertainty. The left plot
shows all samples, and the right plot shows 50% of the samples with the highest estimation
con�dence.

Figure 3.44 shows a more detailed progression of the median error when it is computed while
excluding estimates below a certain uncertainty threshold.
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Figure 3.44: Detailed progression of the sO2 estimation error when excluding an increasing
amount of estimates based on their dropout uncertainty. The x-axis shows the threshold of the
uncertainty value that is permissible for the estimates. The red graph shows the progression of
the median sO2 estimation error, and the blue graph shows the number of remaining estimates.
The upper dashed green line shows the performance for 100% of estimates, and the lower green
line shows the performance when considering 50% of estimates.
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(2) Results when using conditional probability densities:

The median absolute sO2 estimation error of the estimate reconstructions when computing the
median on all samples was 5.4%, with an Interquartile Range (IQR) of (2.6%, 12.4%). When com-
puting the results on half the data set, excluding the half with the highest estimated uncertainty,
the error decreases to a median of 3.4%, with an IQR of (1.9%, 5.7%). Figure 3.45 shows which
estimates were excluded by this process.

Figure 3.45: Scatter plots of sO2 estimates with annotated dropout uncertainty. The left plot
shows all samples, and the right plot shows 50% of the samples with the highest estimation
con�dence.

Figure 3.46 shows a more detailed progression of the median error when it is computed while
excluding estimates below a certain uncertainty threshold.
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Figure 3.46: Detailed progression of the sO2 estimation error when excluding an increasing amount
of estimates based on their reconstructed uncertainty. The x-axis shows the threshold of the
uncertainty value that is permissible for the estimates. The red graph shows the progression of
the median sO2 estimation error, and the blue graph shows the number of remaining estimates.
The upper dashed green line shows the performance for 100% of estimates, and the lower green
line shows the performance when considering 50% of estimates.
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(3) Results when using an external observing model:

The median absolute sO2 estimation error of the inference model when computing the median
on all samples was 4.4%, with an Interquartile Range (IQR) of (1.9%, 9.1%). When computing the
results on half the data set, excluding the half with the highest estimated uncertainty according
to the external observing network, the error decreases to a median of 2.8%, with an IQR of (1.3%,
5.1%). Figure 3.47 shows which estimates were excluded by this process.

Figure 3.47: Scatter plots of sO2 estimates with annotated dropout uncertainty. The left plot
shows all samples, and the right plot shows 50% of the samples with the highest estimation
con�dence.

Figure 3.48 shows a more detailed progression of the median error when it is computed while
excluding estimates below a certain uncertainty threshold.
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Figure 3.48: Detailed progression of the sO2 estimation error when excluding an increasing
amount of estimates based on their dropout uncertainty. The x-axis shows the threshold of the
uncertainty value that is permissible for the estimates. The red graph shows the progression of
the median sO2 estimation error, and the blue graph shows the number of remaining estimates.
The upper dashed green line shows the performance for 100% of estimates, and the lower green
line shows the performance when considering 50% of estimates.
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(4) Results when using Conditional Invertible Neural Networks:

The median absolute sO2 estimation error of the N=1000 latent samples when computing the
median on all samples was 5.7%, with an Interquartile Range (IQR) of (2.3%, 12.8%). When com-
puting the results on half the data set, excluding the half with the highest estimated uncertainty,
the error decreases to a median of 3.0%, with an IQR of (1.3%, 5.6%). Figure 3.49 shows which
estimates were excluded by this process.

Figure 3.49: Scatter plots of sO2 estimates with annotated dropout uncertainty. The left plot
shows all samples, and the right plot shows 50% of the samples with the highest estimation
con�dence.

Figure 3.50 shows a more detailed progression of the median error when it is computed while
excluding estimates below a certain uncertainty threshold.
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Figure 3.50: Detailed progression of the sO2 estimation error when excluding an increasing
amount of estimates based on their dropout uncertainty. The x-axis shows the threshold of the
uncertainty value that is permissible for the estimates. The red graph shows the progression of
the median sO2 estimation error, and the blue graph shows the number of remaining estimates.
The upper dashed green line shows the performance for 100% of estimates, and the lower green
line shows the performance when considering 50% of estimates.
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Performance on the in vitro �ow phantom data set

After evaluation of the methods on the in silico data set, the conditional INNs were applied
to the recorded phantom data on ten equidistant time points between the start and the end
of the experiment. The "human_2" data set (�gure 3.51) and the "Rat_2" data set (�gure 3.52)
were evaluated for this purpose. The images that are shown here are representative of the
entire data set and correspond to a rather early point in time, where the oxygenation in the
vessel tube was still high (after approximately ten minutes), and a later point in time (after
approximately 30 minutes), where the oxygenation had already decreased by a signi�cant margin.
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Figure 3.51: The result images of conditional INN implementation of LSD-qPAI and the uncertainty
method on the �ow phantom "human_2" data set at two points in time (5.5 min (left) and 25.4
min (right)). The red circle corresponds to the ROI that was identi�ed by an SNR metric. The
top-left plot shows the MSOT signal; the lower-left plot shows the estimated oxygenation in the
ROI; the top-right plot shows the error interval of the sO2 estimations; and the lower-right plot
shows the sO2 estimates in the re�ned uncertainty-aware ROI. The bottom violin plots show the
distribution of sO2 estimates in the entire ROI (left) and the uncertainty re�ned ROI (right).

The proposed method for incorporating uncertainty estimates into the estimations was im-
plemented in the way that �rst, a purely SNR-based ROI was created, and afterward, the 50%
estimates with the highest corresponding error interval were removed from it to obtain the
re�ned ROI.
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Figure 3.52: The result images of conditional INN implementation of LSD-qPAI and the uncertainty
method on the �ow phantom "Rat_2" data set at two points in time (5.5 min (left) and 25.4 min
(right)). The red circle corresponds to the ROI that was identi�ed by an SNR metric. The top-left
plot shows the MSOT signal; the lower-left plot shows the estimated oxygenation in the ROI; the
top-right plot shows the error interval of the sO2 estimations; and the lower-right plot shows the
sO2 estimates in the re�ned uncertainty-aware ROI. The bottom violin plots show the distribution
of sO2 estimates in the entire ROI (left) and the uncertainty re�ned ROI (right).

These qualitative results show that in most images, the estimation uncertainty increases with
depth inside the tube. Only in the "human_2" data set, at some points in time, there were other
variations as well. In most instances, the re�nement of the ROI led to a slight shift in the mean
estimated sO2 value and had a tendency to decrease the standard deviation of these slightly.

Model calibrations

Modern neural network architectures have been demonstrated to produce wrongly calibrated
uncertainty estimates if not properly trained [Guo et al., 2017]. This is, because of the large
number of parameters in the networks and because of the sensitivity of the calibration to the
choice of hyperparameters, such as the batch size or the loss functions. As evident from the blue
graphs in the �gure, none of the proposed methods produced calibrated uncertainty estimates
directly after training. The conditional INN seemed to overestimate the uncertainty, whereas the
other three methods (dropout sampling, the estimation of probability densities, and the use of
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an external model) seemed to underestimate the uncertainty of their estimates.
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Figure 3.53: Uncertainty calibration curves for (left to right, top to bottom) dropout sampling, esti-
mating the standard error with an external model, estimating probability densities, or sampling
from a conditional INN model. Shown are the vanilla calibration curves (blue) and the corrected
calibration curves (orange), where the correction factor is estimated from the validation set. The
green dashed line shows the curve for optimal calibration.

One tool to investigate the calibration of uncertainty estimation methods is the calculation of
calibration curves. In these, it is systematically examined if the uncertainties re�ect the actual
accuracy of the estimated values.
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In order to re-calibrate the model uncertainty, a correction factor was introduced that was
optimized on the validation set and then applied on the test set. This simple calibration method
seemed to have a great e�ect in this case and produced results very similar to the optimal
calibration on the test set, with dropout sampling being the only outlier. Figure 3.53 shows
the calibration curves of the examined methods on the in silico data set before and after the
application of a simple post-hoc correction method.
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3.4.4 Discussion

Discussion of results

All presented results revealed that there is a bene�t in excluding estimates with a relatively
high corresponding uncertainty estimate. However, the in silico results revealed that there are
distinct di�erences between the four approaches:

(1) Dropout sampling: In the case of dropout sampling, there is a clear tendency, that lower and
higher ground truth sO2 values were estimated with higher uncertainty. The error progression
analysis showed that this behavior is correct to a certain extent. However, after a certain
threshold, the estimation error started to increase again.

(2) Conditional probability densities: The model trained on predicting probability densities
showed a tendency to overestimate the ground truth sO2 value. Here, there was a slight tendency
that lower sO2 values were assigned a higher estimation uncertainty. The chosen implementation
of the method of Feindt let to artifacts at the end of the distributions: there were no estimates
smaller than ≈ 15%, and very high sO2 values were generally predicted with little variance. This
might have been caused by the small number of bins (25) that were used for the discretization of
the uniform "s" space when creating the labels.

(3) External observing model: This method also resulted in a monotonous improvement of the
median estimation error when excluding more and more uncertain estimates from the evaluation.
The uncertainty estimates also showed a tendency where lower ground truth sO2 values were
attached with higher uncertainty than higher sO2 values. Nevertheless, in contrast to dropout
sampling, this did not seem to be the only criterion, as also estimates that strayed further from
the bisector seem to correspond to higher uncertainty values.

(4) Conditional invertible neural networks: The conditional INNs showed the best correspon-
dences between distance from the bisector and the corresponding uncertainty estimate. The
median estimation error decreased monotonously with a decreasing number of estimates, until
the point where only a very small number of estimates was left. For the conditional INN, there
was no obvious correlation between the ground truth sO2 value and uncertainty. However, the
plot with only 50% of samples remaining shows a tendency, where estimates below 60% sO2

show higher variation in the estimates than above 60%.

The scatter plots of three of the four methods suggested a correlation between the ground truth
sO2 value and the corresponding uncertainty estimate, where lower sO2 values were generally
estimated with higher uncertainty. Also, the remaining method revealed a di�erence in the varia-
tion of the estimates depending on the ground truth sO2 value. It remains to be investigated in
future work whether this tendency can be reproduced on other data sets or con�rmed analytically.

When analyzing the in silico results, one has to take into consideration the number of remaining
estimates after applying the uncertainty threshold. This is because the median error estimate
cannot be representative if only very few estimates remain. This can be seen in the very sharp
rise or drop in the error towards the end of many of the graphs.

Furthermore, comparing the di�erent uncertainty methods showed that there were noticeable
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di�erences in the estimation accuracy (the median absolute estimation error when evaluating
all samples) of the di�erent models. One reason for this may be that di�erent neural network
architectures were used due to the di�erences in the number of input and output features,
which lead to di�erent total amounts of adjustable parameters in the networks. Furthermore,
there were di�erences in the chosen loss functions (for example, a mean squared error loss
for the simple feed forward architecture versus a maximum likelihood loss for the conditional
INN). There were even di�erences when evaluating the same network in the dropout sampling
and external model case. Here, exactly the same trained network had been used; however, for
dropout sampling, the median over one hundred estimates was computed, which seemed to
marginally improve the accuracy when compared to doing a single forward pass in evaluation
mode.

Discussion of methodology

In this work, uncertainty estimation was used in order to calculate a con�dence interval, in
which the actual value is likely to reside in. In this case, the standard deviation was used, which
means that in ≈ 68% of cases, the true value is inside the reported µ ± σ interval. However,
this approach o�ers only a narrow view of uncertainty estimation and does not exploit the
full impact that the computation of a full posterior distribution could have had. This is true,
especially with regards to the recovery of ambiguities in multi-modal distributions, which
would get lost when not being able to produce the full correct posterior distribution [Ardiz-
zone et al., 2018]. The post-processing that is done in the proposed method to evaluate the
width of the posterior distributions (for example, represented by the standard deviation or the
IQR) or the estimation value (for example, represented by the median or the mean) are not
suitable in a multi-modal scenario. The mean would estimate the average of all modes, and
the median might fall into one of the modes, depending on the number of samples for the modes.

In this context, the proposed observing neural network by design cannot produce the full
posterior distribution and is only capable of estimating the standard error of the estimate.
Dropout sampling has been shown not to be able to produce accurate posterior distributions as
well [Ardizzone et al., 2018, Hron et al., 2017]. INNs, on the other hand, have been demonstrated
to be capable of recovering these full posterior distributions, if adequately trained.

Out of distribution detection as presented by [Adler et al., 2019b] for optical imaging might be
crucial. This is because data-driven approaches might not know what they do not know and, as
such, might con�dently estimate systematically wrong values when tasked to do inference on
out of distribution input samples.
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3.4.5 Conclusion
Two research questions were derived from the overarching hypothesis H3 that was addressed in
this chapter:

1) Can a systematic exclusion of relatively uncertain estimates from a region of interest lead to a
change of the aggregated estimate?

In order to investigate this question, the progression of the relative median estimation error
when excluding more and more uncertain estimates from the aggregated result was examined.
This was done for all three quanti�cation methods presented in this thesis: on one of the CE-qPAI
data sets, on the direct inversion of entire PA images, and on the LSD-qPAI in silico �ow phantom
data set. The results achieved in all of these scenarios suggest that there can be great merit in
excluding uncertain estimates from the result calculation. In all cases, the median estimation
error could be reduced (by up to a factor of two in the best case) when excluding 50% of the
estimates from the evaluation. One of the uncertainty estimation methods was also applied
in vitro and generally showed an increase in uncertainty for increasing depth in the vessel
structures. Excluding 50% of the most uncertain estimates in the ROI usually led to a slight
change of the median estimated sO2 and to a decrease of the standard deviation of the estimates.

2) Are there di�erences between di�erent state-of-the-art techniques for uncertainty estimation?

Four di�erent methods were compared in their performance using the LSD-qPAI method on
the in silico �ow phantom data set. This analysis showed that there are di�erences in the
quantitative performance, such as the fractional change of median error when evaluating on 50%
of estimates, where the conditional INN performed the best with a fractional change of the error
of 0.53. A qualitative performance assessment showed that di�erent types of estimates were
identi�ed as being uncertain by the di�erent algorithms. Here, the conditional INN performed the
most as expected (estimates furthest from the bisector were estimated as the most uncertain),
whereas, with dropout sampling, high and low sO2 estimates were systematically assigned a high
uncertainty. Furthermore, dropout sampling has been shown not to be able to produce correct
posterior distributions, and the observing neural network only estimates the standard error
by design. Methods that are capable of estimating the full posterior distribution, such as the
conditional INNs, should be preferred for application in a clinical context, as they enable the
identi�cation of multi-modal distributions.

The results suggest that the reduction of the estimation error within an ROI is feasibly by
discarding those estimates that are labeled with high uncertainty as estimated with a suitable
method. Here, in silico experiments show a consistent improvement in the estimation accuracy
of a parameter in various di�erent settings and experiments. Initial results on real data show
that these methods yield practical and interpretable results. As the development and use of
reliable methods for uncertainty quanti�cation are mandatory for the successful translation
of qPAI methods to clinical applications, future work should investigate the potential of such
methods in clinically relevant contexts.

Such future work might include the integration of one or several of the compared methods into
a toolkit that is easily usable by physicians and allows for usability and impact studies that
determine the value of uncertainty estimation methods in combination with the quanti�cation
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algorithms. Such a toolkit should also contain amethod for detecting out-of-distribution samples,
and it should be analyzed how well the uncertainty estimation methods would be capable of
handling �ctitious scenarios not su�ciently contained in the training data set as well as the
robustness to noise and imaging artifacts.



All these technological advancements can poten-
tially enable not only the oxygenation quanti�-
cation but also other functional and molecular
applications. Although challenges remain, none
of them are beyond reach.

[Li et al., 2018]

4 | Discussion

A key challenge for the successful translation of photoacoustic imaging into the clinical routine is
the lack of robust and accurate methods for quantifying the measured signals. State-of-the-art
techniques in the �eld of qPAI tackle the associated inverse problems by using iterative model-
based inversion algorithms. However, due to practical limitations, these have not successfully
been applied in realistic scenarios. The experiments and methods presented in this thesis face
this challenge and pioneer the application of data-driven methods to the inverse problems
of qPAI. Three overarching hypotheses were investigated that postulated the feasibility of the
application of data-driven methods towards (1) the optical and acoustic inverse problem of qPAI,
(2) the accurate recovery of functional tissue parameters from multispectral PA images, and (3)
the estimation of uncertainty for the inverse qPAI models.

4.1 Summary of Contributions

Several approaches towards quantitative Photoacoustic Imaging (qPAI) using clinical handheld
PA devices were presented in this thesis. The speci�c contributions to the �eld of qPAI presented
in this thesis can be summarized using the aforementioned overarching hypotheses:

H1: Data-driven methods can be used to solve the optical and acoustic inverse problem.

The contributions to this hypothesis were two-fold. It was investigated if the light �uence can
be estimated from distributions of initial pressure in the case of 3D PAI. For this, a method was
developed that allows for the calculation of voxel-wise feature vectors that can be used for
voxel-wise �uence estimation in a machine learning framework. Extensive in silico validation
demonstrated the robust and versatile usability of this approach, and the results were published
in the Journal of Biomedical Optics [Kirchner et al., 2018a].

In further experiments, it was investigated if a direct estimation of optical absorption µa from 2D
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PA initial pressure distributions p0 and raw time series data p(t) is potentially feasible as well. To
this end, state-of-the-art deep learning models were applied to these problems on specially
designed in silico data sets. The results of these analyses on multiple di�erent data sets suggest
that an estimation of µa directly from 2D images is indeed principally feasible. However, the
integration of the acoustic inverse problem into this framework has proven di�cult and requires
careful investigation in future work. The methods used towards this end were published in
the Journal of Imaging [Gröhl et al., 2018a]. Initial work towards the acoustic inverse problem
was published in the proceedings Photons Plus Ultrasound: Imaging and Sensing of the SPIE
Photonics West conference in 2018 [Waibel et al., 2018].

H2: Data-driven methods can be used for spectral unmixing in a realistic context.

A method has been developed that allows pixel-wise spectral unmixing of multispectral PA
images. The method is completely trained on in silico data. Because linear unmixing techniques
break under the non-linear in�uence of the light �uence, the primary purpose of the method is
to have the ability to map spectrally colored multispectral signals to blood oxygenation sO2. The
approach has shown to be able to account for an extensive range of degrees of spectral coloring
within multiple in silico experiments. Additionally, it has successfully been applied to real in
vitro data acquired from a blood �ow phantom and demonstrated a better dynamic range than
linear unmixing techniques.

Furthermore, the use of the method for in vivo imaging applications of sO2 estimation using
a porcine brain recording and human forearm images showed that also in these situations, it
exhibited a better dynamic range and was capable of yielding physiological results. Here, in
thirty images from �fteen healthy volunteers, the measured arterial blood oxygenation was very
close to the expected value of 98-100%. Early results of this work have already been published
on arXiv [Gröhl et al., 2019].

H3: Con�dence estimation methods can be used to gain insight into qPAI methods.

The capability of several state-of-the-art methods to predict the uncertainty of parameter
estimates was investigated, and a new method was proposed that can potentially estimate the
expected error of any method. In rigorous in silico experiments, it was tested how well these
uncertainty estimates correlate to the actual estimation error. The results of these experiments
showed that there is great potential value in systematically excluding parameter estimates
with corresponding high uncertainty. For nearly all uncertainty estimation approaches, the
accuracy continuously improved with the exclusion of more and more estimates corresponding
to high uncertainty. Applications of the uncertainty estimation techniques shown in this thesis
were published in the proceedings Photons Plus Ultrasound: Imaging and Sensing of the SPIE
Photonics West conference in 2018 [Gröhl et al., 2018b] and in the Journal of Imaging [Gröhl et al.,
2018a].

4.2 Discussion of results
While a detailed discussion of the results of the experiments is included in each results section,
this section more generally discusses the resilience of the obtained results of the experimental
validation.
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Acoustic inverse problem

Many research groups have been working with the reconstruction of PA images from raw time
series data in the past decades, and the acoustic inverse problem is generally considered to
be well-understood. Because of this, one of the more astounding �ndings in the results of
the conducted experiments was that the achieved parameter estimation accuracy drastically
deteriorated when including the acoustic inverse problem. However, one needs to consider that
PA image reconstruction algorithms are generally not optimized to quantitatively reconstruct the
initial pressure distribution p0 from the raw time series data p(t).Their primary focus is instead
to optimize related image quality metrics such as the peak SNR. Furthermore, the accuracy
of the inversion can be expected to be much lower, as p(t) does not contain all information
present in p0. This is mainly because of two main limitations: limited view and limited band-
width. The limited view of clinical probe designs is due to the nature of the geometry of the
detection elements, which are usually arranged in a linear array or an array that only has a
slight curvature. With such arrays, a large amount of the wavefronts is not detectable, and this
information is lost. The limited bandwidth is another limiting factor, which arises because the
frequency responses of the detection elements might not ideally overlap with the frequencies
present in the PA waves. For example, an ultrasound transducer with a central frequency
of 4MHz and a bandwidth of 80% would neither be capable of detecting the low-frequency
main bulk of the signal in the Kilohertz regime nor the high-frequency tail of the signal (cf. �g. 2.7).

Section 3.2 introduced an asymmetric derivation of the U-Net to tackle the acoustic inverse
problem. Based on the results, it has to be concluded that this type of architecture might not
be ideal for solving the acoustic inverse problem. This might be the case, due to the loss of
information caused by the introduction of convolutional layers in the skip connections. It can be
expected that changes in the network architecture and a compilation of better and more training
data might signi�cantly improve the accuracy of end-to-end data-driven approaches towards
the acoustic inverse problem. However, many of the problems could be averted using careful
design of the detection geometry and using very broadband detection elements.

Optical inverse problem

The results of the work presented in sections 3.1 and 3.2 demonstrate that data-driven approaches
show great promise towards the optical inverse problem. With the usage of pixel-wise calculated
feature vectors, as well as with direct usage of entire 2D images, it was possible to obtain accurate
estimations of the underlying �uence or the optical absorption parameters. Even under the
in�uence of multiple di�erent noise levels, the results remained stable in silico. When facing high
noise scenarios, direct µa estimation methods are expected to outperform �uence correction
approaches. This is because the �uence correction approaches are more directly in�uenced by
the SNR of the PA image.

While the methods were extensively validated in silico, the biggest question that remains is how
these methods could be translated into realistic scenarios and how they would perform in such
a context.

Transfer to reality

A straightforward application of the proposed methods for the optical or acoustic inverse
problem to realistic scenarios is unfortunately not possible. The main reason for this is the
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large domain gap between the simulation domain and the real imaging domain. Simulated PA
images, while accurately representing the physical phenomena subject to the constraints of
the underlying physical models, show distinct di�erences to real recorded images, for example,
in the noise and artifact patterns or the morphological variety of the chromophores. As such,
there are two approaches at hand that could be pursued towards a transfer of these methods to
reality.

The �rst could be to try and bridge the simulation gap with more rigorous and accurate measure-
ments of the underlying initial pressure distribution. The more accurate these become, the more
likely it is to be able to model them accurately. When such measurements are performed on
well-known phantoms, some of these phantom measurements could also potentially be used to
extend the training data set.

The second approach could be to extend the simulation framework and bridge the simulation
gap. For example, one could add hand-crafted artifact patterns or sophisticated noise models.
However, maybe the use of neural networks to learn the di�erence and to augment the simulated
data would also potentially be bene�cial. Bridging of similar domain gaps in di�erent �elds
has been proposed, for example, using generative adversarial networks (cf. e.g. [Hong et al.,
2018, Bousmalis et al., 2018, Frangi et al., 2018, Liu et al., 2018]).

Functional tissue parameter estimation

Despite the encountered di�culties of the application of data-driven approaches to real data
due to the domain gap, a method was proposed in this thesis that was able to obtain plausible
parameter estimates in vitro and in vivo. This method was tasked with the estimation of a
functional tissue parameter that can be derived from the relative chromophore concentrations
of hemoglobin Hb and oxyhemoglobin HbO2, namely, the oxygen saturation sO2. The method
analyses the normalized multispectral behavior of the PA signal at a single pixel in order to
derive oxygenation estimates. Because of the normalization and the isolated analysis of single
pixels, the domain gap can be reduced signi�cantly. This is because the main property of interest
here is the relative change of the signal with respect to the wavelength.

Considering that the LSD-qPAI approach is one of the �rst machine learning-based approach
towards accurate sO2 estimation, the in vitro and in vivo results were very convincing. Not only
did the algorithm exhibit a higher dynamic range than linear unmixing, but it also produced
plausible and physiological results in a multitude of di�erent real imaging settings. Together
with the general advantages of machine learning-based methods, being the fast inference speed
and high adaptability, there might be a lot of potential applications of the method.

It can be expected that adding constraints to the inversion will result in an increase in overall
accuracy. Such constraints could be included in the form of value constraints (for example, that
the sO2 estimate cannot be below 0% or above 100%), or in the form of spatial regularization
where also neighboring pixels are used during inference. Such spatial regularization schemes
might, for example, assume that sudden changes in sO2 for neighboring pixels are unlikely.
However, adding such constraints might come at the cost of a decreased ease of use or longer
computation times, and the advantages and disadvantages will have to be considered carefully.
Further improvements might be achieved by more closely approximating the tissue to be imaged,
by improving on the simulation pipeline, or by adding more information to the inversion, such as
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measurements obtained with other optical sensing techniques or the co-registered ultrasound
signal.

Uncertainty estimation

In this work, four di�erent methods for the recovery of uncertainty estimates have been examined.
These methods have been applied in multiple di�erent scenarios and have all demonstrated
the ability to yield meaningful uncertainty estimates. In this context, it was investigated if it is
possible to gain a boost in estimation accuracy by excluding less certain estimates from the
evaluation and subsequent calculation of derived parameters. The results showed that system-
atically excluding estimates with corresponding high uncertainty can improve the estimation
accuracy by a large margin. In the conducted experiments, the exclusion of 50% of the most
uncertain estimates was able to decrease themedian estimation error by up to 50% in some cases.

However, analysis of the results showed that the estimates need to be interpreted with care, as
none of the techniques was capable of initially yielding well-calibrated uncertainties. The calibra-
tion would need to be improved using post hoc calibration techniques or a rigorous modi�cation
of the hyper-parameters. It also has to be noted that dropout sampling led to unstable results,
where when applied to functional parameter estimation, high and low estimates were systemati-
cally correlated to high uncertainty, which was not su�ciently correlated with the estimation error.

In future work, it should be investigated how the additional information of estimation uncertainty
can be integrated into clinical use cases to be of bene�t for the physician.

4.3 Solving inverse problems with data-driven methods

This thesis has focused on the application of data-driven techniques to the inverse problems
of quantitative PA imaging. Machine learning-based methods have shown great success in
various applications, and research is continuously conducted in the �eld, leading to more and
more advanced methods and techniques. This section will explore the general advantages and
opportunities as well as threats of using machine learning techniques and will then discuss their
application to the modeling of physical processes and the physical phenomena of PAI.

Advantages and opportunities for data-driven methods

One of the primary advantages of machine learning-based methods is their ability to create a
complex non-linear model to represent the training data. This has the main advantage that they
become applicable to problems, where �nding an analytic solution is very complex, for example,
when solving partial di�erential equations, or to problems where no connection can be found
at �rst glance (cf. e.g. [Sun et al., 2014, Han et al., 2018]). This is especially useful when dealing
with highly dimensional and complex data, for example in the �eld of radiomics (c.f. e.g. [Larue
et al., 2017, Vial et al., 2018]) or genomics (c.f. e.g. [Park and Kellis, 2015, Zou et al., 2019]), where
data-driven approaches have been applied with great success. Machine-learned models have
shown to outperform many classical data and image processing techniques, for example, in the
�eld of medical image computing [Esteva et al., 2019].
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Another advantage of machine learning models is their fast computation during model inference.
Once trained, depending on the underlying algorithm and model complexity, a model is usually
able to yield estimations on the order of magnitude of milliseconds. This is critical, for example
for systems that need to react in time to their environment such as in autonomous driving [Treml
et al., 2016, Sallab et al., 2017] or in robotics [Pierson and Gashler, 2017, Levine et al., 2018], in
which inference speed is of key importance. One of the most exciting directions in this regard is
the development of all-optical neural networks that potentially allow for inference at the speed
of light [Lin et al., 2018].

A great opportunity that data-driven approaches o�er is the possibility for continuous learning.
This is commonly tackled with strategies to keep improving with the availability of new data
or by also solving related tasks. Fields of research where machine learning methods learn to
improve themselves are commonly classi�ed as meta learning, which is the umbrella term for
techniques that enable learning to learn. Specialized �elds of research derived from this broader
area are, for example, continuous learning [Liu, 2017], multi-task learning [Caruana, 1997], or
meta networks [Munkhdalai and Yu, 2017].

Disadvantages and risks of data-driven methods

While the fast inference time of machine learning algorithms is a great bene�t of machine
learning algorithms, it comes at the cost of immense computational resources that are needed
for model training. Especially in the area of deep learning, without the use of specialized
hardware, training times can be as high as hours to days, depending on the data set size and
model complexity.

Another disadvantage of machine learning techniques is their dependence on the presence of
well structured and curated data sets and the subsequently high error susceptibility of these
techniques. The machine learning algorithm can generally only be as good as the quality of the
training data set allows it to be, and any biases in the data set can lead to terrible inference results
on previously unseen input features. In the domain of medical imaging, the availability of such
data sets is very sparse, and as such, methods have to be developed that can learn from synthetic
data [Mahmood et al., 2018] or have the ability to learn from only a few examples [Ross et al., 2018].

Finally, a commonly seen criticism for machine learning methods is the lack of interpretability
of the results. Machine learning algorithms are often referred to as a "black box", in which an
input is transformed to an output. It is inherently di�cult to reconstruct the exact steps to the
decision. Because of this, entire �elds of machine learning research are dedicated to the goal of
making machine learning methods more interpretable. These are, for example, concerned with
explainability [Holzinger et al., 2017] and latent space interpretability [Donahue et al., 2017] such
that the results can be understood by human experts.

Learning physical processes

There are many examples, where machine learning methods are applied to the forward simulation
of physical processes, such as the motion of smoke [Chu and Thuerey, 2017], growth of plants
[Hädrich et al., 2017], �uid dynamics [Kim et al., 2019], multiple light scattering in clouds [Kallweit
et al., 2017], and subsurface scattering of light in 3D rendering applications.
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In these papers, the assessment of feasibility when using machine learning algorithms often
encompasses a critical discussion on the speed versus accuracy trade-o�. While the unparalleled
inference speed of machine learning methods is a great bene�t, they usually are not as accurate
as their model-based counterparts. These tend to be rather slow as they usually have to approxi-
mate the solution to a partial di�erential equation numerically. Depending on the application,
these inaccuracies might be tolerable, for example, in 3D modeling, where the algorithm only
needs to fool a human observer. However, this might be di�erent in physical simulations where
the results are used as an intermediate step for other computations, and estimation errors might
unfavorably propagate.

In the case of PAI, the propagation of light and sound through turbid media are the physical
phenomena that need to be modeled. Here, researchers are interested in fast forward models,
for example, to speed up the iterative qPAI algorithms or for the fast generation of data to train
data-driven models. In addition, they are also interested in creating accurate models to solve
the inverse problems of reconstructing the physical process when only being able to observe
the result. In this regard, the accuracy of the models is of great importance, as the quantitative
estimation of the optical tissue properties is an important step to derive clinically relevant
functional tissue parameters.

4.4 Data-driven quantitative photoacoustic imaging

This section will discuss the principle limitations and opportunities and general considerations
that should be regarded when applying data-driven approaches to qPAI.

The data famine

The primary bottleneck for the application of data-driven approaches to the �eld of qPAI is
the lack of training data. This is because obtaining ground truth values for the optical tissue
properties is inherently di�cult. In vivo, the main limiting factor is the penetration depth of
optical imaging techniques, and when analyzing ex vivo samples, the optical properties of the
sample are bound to change, for example, due to the change of blood perfusion. There are two
potential strategies to circumvent this inherent problem.

The �rst strategy was also pursued in this thesis and is the simulation of training data. When
attempting to do this, accurate and fast forward models are needed, and these need to be
integrated into a framework that is capable of producing simulation results that are as close
to reality as possible. This strategy has the advantage of high �exibility and the possibility to
easily create massive data sets, however, bears the risk of learning from a biased data set, in
which assumptions might be ill-chosen or which has a vast domain gap to real images, making it
extremely hard to be able to infer plausible values on real data.

The second strategy could be to create well-understood tissue phantoms and image these. This
enables a generation of a data set with an excellent reference for the underlying optical and
acoustic medium properties. A model adequately trained on such a data set might be capable of
inferring the optical properties. However, this approach has the disadvantage of being limited to
the structures and parameter ranges that can be created in a solid phantom in vitro.
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Inversion strategies

To approach a problem within the framework of machine learning techniques, one needs to
carefully design the input and output domains in order to be able to learn the mapping between
the two. For this, two principle strategies were pursued in this thesis: (1) single-pixel estimation
and (2) whole image estimation.

For single-pixel estimation, data corresponding to a single pixel location in the image is used as
the input feature vector, and the label for that one pixel is estimated. Usually, there is not enough
information in single-pixel values, especially for the complex non-linear optical inverse problem.
Because of this, a feature vector that contains relevant information for the inversion is needed
for inference. In the CE-qPAI method (cf. section 3.1), this feature vector was a context image
that comprised the 3D signal context relative to the light �uence in a homogeneous medium,
and the LSD-qPAI method (cf. section 3.3) exploited multispectral information for each pixel.
Such a pixel-wise approach allows for the generation of thousands of training samples from a
single simulated image, which is very handy when facing modern data-hungry machine learning
techniques. Furthermore, when using simulated images, a single-pixel approach yields a greater
abstraction from the simulation domain, and, as such, the domain gap might not be as evident.

On the other hand, the extraction of hand-crafted features for the machine learning algorithm
might not be optimal to represent the problem. It might be of bene�t to let the algorithm learn
which features to extract from the whole image information. This is done, for example, by learning
the �lter weights when using convolutional neural networks. However, when directly working
with 2D or 3D images, careful creation and pre-processing of the image data is needed, as it is
easy to have a huge domain gap in the training data domain versus the real data domain.

Multispectral information

Another strategic decision that needs to bemade is the consideration of whether to usemonospec-
tral image data for the inversion or whether to use multispectral image data. While monospectral
information should, in theory, be su�cient for the estimation of the optical parameters, the
multispectral behavior of the signal yields additional information regarding the underlying
chromophore distribution, which could - in turn - help to more accurately estimate the optical
absorption at a speci�c wavelength. Furthermore, only a multispectral signal can be used to
derive functional tissue properties, as these are calculated based on the relative ratios of the
chromophore distributions. When considering the application with data-driven approaches, the
multispectral estimation of optical absorption coe�cients could be formulated as a multi-task
approach. Here, multiple labels would be de�ned, for example, each label corresponding to the
absorption coe�cients at a particular wavelength. Additional labels could be de�ned by also
including the derived functional parameters into the estimation. Such an approach might be a
good idea because multi-task approaches have been shown to have the potential to improve the
performance of the individual tasks.

4.5 Uncertainty-aware parameter estimation

In clinical applications, the quanti�cation of uncertainty for data-driven estimates is of crucial
importance. When the parameter estimates are used by a physician to determine the next steps



4.6. CONCLUSION 151

of the patient’s intervention, the estimation con�dence is a crucial piece of information for the
physician to consider. In this thesis, several approaches for such uncertainty quanti�cation
techniques have been demonstrated.

There is a principal distinction that needs to be made regarding these methods, though, as some
of these methods are only capable of yielding single point estimates for the expected error, while
other techniques are capable of reconstructing the full posterior parameter distribution. Having
access to the full posterior distribution is desirable, as it enables getting an unbiased view
without arti�cially imposing a Gaussian distribution. Furthermore, it allows the identi�cation of
multiple modes in the posterior, which would not be detectable when only having access to, for
example, the standard deviation.

Another exciting direction of research in regard to uncertainty estimation is the ability to auto-
matically estimate out-of-distribution samples [Adler et al., 2019b]. When being tasked to predict
data that is not within the distribution of the training data, a data-driven method might very
con�dently predict a completely wrong value, which could potentially lead to dire consequences
for the patient. In future work, it should be examined if the computation of the techniques
mentioned above for con�dence estimation and out-of-distribution detection could be used for
a robust derivation of clinically relevant parameters for use in clinical routine.

4.6 Conclusion
This thesis shows that data-driven approaches have the potential to solve many of the challenges
of achieving quantitative photoacoustic imaging. To this end, three hypotheses were formulated
and investigated in this thesis:

(H1) Data-driven methods can be used to solve the optical and acoustic inverse problem:

The capability of data-driven methods to estimate the light �uence or the optical absorption
coe�cients was examined in two rigorous in silico studies. Each of these was conducted on
several di�erent data sets of di�erent di�culty levels. To this end, an algorithm was developed
that can encode the entire three-dimensional signal context in a voxel-speci�c low-dimensional
feature vector. Furthermore, state-of-the-art deep learning algorithms were used to estimate the
optical absorption distribution directly on two-dimensional photoacoustic images. The results of
these experiments show the general feasibility of data-driven approaches in the photoacoustic
imaging context and also reveal the current limitations of these methods.

(H2) Data-driven methods can be used for spectral unmixing in a realistic context:

A data-driven approach was developed that was trained on simulated data and enabled the
estimation of functional tissue properties in both in vitro and in vivo settings. Here, the capa-
bility of the method to predict plausible results for blood oxygenation in various contexts was
demonstrated. The method continuously outperformed linear unmixing techniques in terms of
the estimated dynamic range and overall agreement of the estimates with the expected values.

(H3) Con�dence estimation methods can be used to gain insight into qPAI methods:
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Four di�erent techniques for uncertainty estimation were examined towards their applicability to
photoacoustic imaging. The conducted experiments revealed that the integration of uncertainty
estimates during result aggregation could potentially be of great bene�t.

In conclusion, for sure, more work is required to achieve a successful and robust application
of data-driven quanti�cation of photoacoustic signals. This work, however, revealed the great
potential of data-driven methods in this context and outlined several possible ways of applying
them to the associated inverse problems. By now, other research groups have also applied
data-driven approaches to the inverse problems in photoacoustic imaging, both to the acoustic
inverse problem (cf. section 2.3.5) and the optical inverse problem (cf. section 2.5.2), further
substantiating this conclusion. As such, in conjunction with the promising results of this Ph.D.
thesis, it can con�dently be assumed that the combination of model-based and data-driven
approaches will form the foundation for a successful translation of quantitative photoacoustic
imaging into clinical practice.

Outlook

In prior work (e.g. [Cox et al., 2009b]) as well as in this thesis, it has been hypothesized and
demonstrated in silico that the estimation of optical tissue properties from PA signals is prin-
cipally possible. Based on the experiments conducted during this thesis, I believe that the
quanti�cation of the optical tissue properties of photon absorption and photon scattering is
also feasible in practice. To this end, I hypothesize that a successful qPAI algorithm will have to
be subject to at least several of the following constraints:

1. It is a hybrid algorithm and combines the advantages of data-driven approaches while
being informed or regularized by rigorous models of the underlying physical principles.

2. It performs the inversion on 3D images that are recorded in real-time with a probe specially
designed for the target application.

3. It directly works with the raw time series data in order not to unnecessarily discard valuable
information and in order to be able to include the most accurate recovery of p0 possible.

4. It performs the inversion on multispectral PA images in order to exploit the wavelength-
dependent behavioral characteristics of the PA signal.

5. It is speci�cally targeted to a particular clinical use case. To this end, it might utilize
a specially designed data set that contains a combination of simulated, as well as real
recorded data.

6. It utilizes US imaging in order to exploit the naturally obtainable structural information of
the imaged tissue to make educated a priori guesses on the tissue composition.

7. It uses more experimentally determined information on the imaged tissue using other
imaging or sensing techniques. In an ideal case, these techniques are integrated into the
PA device, such that they are instantly available as a priori knowledge for the inversion
algorithm.
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This thesis shows that data-driven approaches have the potential to solve many of the challenges
of achieving quantitative photoacoustic imaging. To this end, rigorous in silico evaluation of
machine learning algorithms for the inverse problems associated with photoacoustic imaging
is conducted, a data-driven approach for blood oxygenation estimation from multispectral
photoacoustic measurements is applied in vitro and in vivo, and methods for uncertainty
estimation for the developed algorithms are analyzed.

Photoacoustic imaging is an emerging imaging modality in healthcare. It promises noninvasive
and radiation-free imaging of optical tissue properties. In contrast to commonly used optical
imaging techniques, it can visualize optical tissue properties up to several centimeters deep
in tissue. Photoacoustic imaging is based on the photoacoustic e�ect, which enables spatially
resolved imaging of optically absorbing chromophores. When pulsed laser light is sent into tissue
and is absorbed by chromophores, sound waves emerge at the location of the absorption event.
These can be measured with ultrasound transducers and are reconstructed into a spatial image
of absorbed energy. When using multiple measurements of the absorbed energy at di�erent
wavelengths of light, knowledge on clinically relevant functional tissue parameters, such as
blood oxygenation, can be derived.

However, one of the critical challenges in photoacoustic imaging remains unsolved. This chal-
lenge is accurate and reliable quanti�cation of the underlying optical tissue properties. Especially
the estimation of the optical absorption coe�cient of the tissue is essential for the derivation
of functional tissue parameters. However, the absorbed energy is not only proportional to the
optical absorption coe�cients, but instead, it is also proportional to the light �uence. The
�uence describes the distribution of light in tissue, which is predominantly determined by the
optical absorption and scattering properties. Due to this, there is a non-linear interaction of
optical absorption and �uence with respect to the absorbed energy and quanti�cation of the
signal is an ill-posed inverse problem, to which no general and easy-to-compute solution yet
exists.
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In the �eld, iterative model-based approaches have been proposed and thoroughly investigated.
In numerous in silico investigations, these techniques have shown great theoretical potential.
However, they have not successfully been applied to real images acquired in clinically relevant
freehand imaging settings.

In this thesis, the feasibility of developing and applying data-driven methods to �ll this gap is
investigated. Data-driven methods refer to machine learning algorithms that learn an optimal in-
ference model for a particular application based on training data that are relevant to the problem.
For optical imaging applications generally, no ground truth information on the underlying tissue
properties is available, and in this thesis, it is attempted to train the data-driven algorithms on
computer-simulated data with the hope to gain the ability to infer tissue properties also in real
scenarios.

The capability of data-driven methods to estimate the light �uence or the optical absorption
coe�cients was examined in two rigorous in silico studies. Each of these was conducted on
several di�erent data sets of di�erent di�culty levels. To this end, an algorithm was developed
that can encode the entire three-dimensional signal context in a voxel-speci�c low-dimensional
feature vector. Furthermore, state-of-the-art deep learning algorithms were used to estimate the
optical absorption distribution directly on two-dimensional photoacoustic images. The results of
these experiments show the general feasibility of data-driven approaches in the photoacoustic
imaging context and also reveal the current limitations of these methods.

Another data-driven approach was developed that was trained on simulated data and enabled
the estimation of functional tissue properties in both in vitro and in vivo settings. Here, the
capability of the method to predict plausible results for blood oxygenation in various con-
texts was demonstrated. The method continuously outperformed linear unmixing techniques
in terms of the estimated dynamic range and agreement of the estimates with the expected values.

Finally, four di�erent techniques for uncertainty estimation were examined towards their ap-
plicability to photoacoustic imaging. The conducted experiments revealed that the integration
of uncertainty estimates during the calculation of results on a bigger region of interest could
potentially be of great bene�t.

For sure, more work is required to achieve a successful and robust application of data-driven
quanti�cation of photoacoustic signals. This work, however, revealed the potential of data-
driven methods in this context and outlined several possible ways of applying them to the
associated inverse problems. It can be assumed that the combination of model-based and data-
driven approaches will form the foundation for a successful clinical translation of quantitative
photoacoustic imaging into clinical practice.



6 | Zusammenfassung

Diese Dissertation zeigt, dass datengetriebenen Methoden das Potential haben, viele der Her-
ausforderungen der quantitativen Photoakustik angehen zu können. Um dies zu untersuchen,
werden rigorose in silico Evaluationen zur Applikation von maschinellen Lernverfahren auf die
inversen Probleme vorgestellt, die mit der quantitativen Photoakustik verbunden sind. Außerdem
wird ein datengetriebenes Modell benutzt, um die Blutsauersto�sättigung aus multispektralen
Photoakustikmessungen schätzen zu können. Es werden zusätzlich Methoden zur Unsicherheitss-
chätzung der entwickelten Algorithmen analysiert.

Die photoakustische Bildgebung ist eine aufstrebende Bildgebungsmodalität im Gesundheitswe-
sen. Im Gegensatz zu herkömmlichen optischen Bildgebungsverfahren, können optische
Gewebeeigenschaften bis zu mehrere Zentimeter tief im Gewebe sichtbar gemacht werden. Die
Photoakustik basiert auf dem photoakustischen E�ekt, der die ortsaufgelöste Abbildung von op-
tisch absorbierenden Molekülen ermöglicht. Wenn gepulstes Laserlicht in das Gewebe gesendet
und absorbiert wird, treten am Ort des Absorptionsereignisses Schallwellen auf. Diese können
mit herkömmlichen Ultraschallgeräten gemessen und in ein räumliches Bild der absorbierten
Energie rekonstruiert werden. Bei Verwendung mehrerer Messungen der absorbierten Energie
bei verschiedenen Wellenlängen des Lichtes, kann Wissen über funktionale Gewebeparameter
wie der Sauersto�versorgung des Blutes abgeleitet werden.

Eine der entscheidenden Herausforderungen bei der photoakustischen Bildgebung bleibt jedoch
ungelöst: die zuverlässigen Quanti�zierung der zugrundeliegenden optischen Gewebeeigen-
schaften. Insbesondere die Abschätzung des optischen Absorptionskoe�zienten des Gewebes
ist für die Ableitung von funktionalen Gewebeparametern essentiell. Die absorbierte Energie
ist allerdings nicht nur proportional zu den optischen Absorptionskoe�zienten, sondern auch
proportional zu der Fluenz. Die Fluenz beschreibt die Lichtverteilung im Gewebe, die vorwiegend
durch die optischen Absorptions- und Streuungseigenschaften bestimmt wird. Aufgrund dessen
gibt es eine nichtlineare Wechselwirkung von optischer Absorption und Fluenz in Bezug auf die
absorbierte Energie. Folglich ist die Quanti�zierung des Signals ein schlecht gestelltes inverses

155



156 CHAPTER 6. ZUSAMMENFASSUNG

Problem, für das es noch keine allgemeine und leicht zu berechnende Lösung gibt.

Im Forschungsfeld wurden iterative modellbasierte Ansätze vorgeschlagen und eingehend
untersucht. In zahlreichen Analysen haben diese Techniken ein großes theoretisches Potenzial
gezeigt. Sie wurden jedoch nicht erfolgreich auf reale Bilder angewendet, die mit Hilfe von
herkömmlichen Ultraschallgeräten aufgenommen wurden.

In dieser Arbeit wird untersucht, ob es generell machbar ist, datengetriebene Methoden zu
entwickeln und anzuwenden, um diese Lücke zu schließen. Datengetriebene Methoden beziehen
sich hierbei auf maschinelle Lernalgorithmen, die ein optimales Inferenzmodell für eine bes-
timmte Anwendung auf Grundlage der für das Problem relevanten Trainingsdaten erlernen.
Für die optische Bildgebung sind im Allgemeinen keine “Ground Truth”-Informationen zu den
zugrundeliegenden Gewebeeigenschaften verfügbar. Deshalb wird in dieser Arbeit versucht, die
datengetriebenen Algorithmen auf computer-simulierten Daten zu trainieren, in der Ho�nung,
auch in realen Szenarien auf die Gewebeeigenschaften schließen zu können.

Die Fähigkeit datengetriebener Methoden, die Fluenz und die optischen Absorptionskoe�zienten
zu berechnen, wurde in zwei in silico-Studien untersucht. Jede dieser Analysen wurde mit
mehreren Datensätzen mit unterschiedlichen Schwierigkeitsgraden durchgeführt. Zu diesem
Zweck wurde ein Algorithmus entwickelt, der den gesamten dreidimensionalen Signalkontext in
einem voxelspezi�schen und niedrigdimensionalen Featurevektor codieren kann. Darüber hinaus
wurden moderne Deep Learning-Algorithmen verwendet, um die optische Absorptionsverteilung
direkt auf zweidimensionalen photoakustischen Bildern zu berechnen. Die Ergebnisse dieser
Experimente zeigen die generelle Machbarkeit datengetriebener Ansätze im Kontext der pho-
toakustischen Bildgebung und o�enbaren aber auch die aktuellen Einschränkungen dieser
Methoden.

Ein weiterer datengetriebener Ansatz wurde entwickelt, der auf simulierten Daten trainiert wurde
und die Abschätzung der funktionalen Gewebeeigenschaften sowohl in in vitro als auch in in
vivo ermöglicht. Hier wurde die Fähigkeit der Methode demonstriert, plausible Ergebnisse für
die Blutsauersto�sättigung in verschiedenen Kontexten vorherzusagen. Das Verfahren übertraf
kontinuierlich die linearen Entmischungstechniken hinsichtlich des schätzbaren Wertebereichs
und der Übereinstimmung der Berechnungen mit den erwarteten Werten.

Schließlich wurden vier verschiedene Techniken zur Schätzung der Unsicherheit auf ihre An-
wendbarkeit für die photoakustische Bildgebung untersucht. Die durchgeführten Experimente
haben gezeigt, dass die Integration von Unsicherheitsschätzungen während der Berechnung von
Ergebnissen über eine größeren Messbereich möglicherweise von großem Nutzen sein kann.

Sicherlich sind weitere Arbeiten erforderlich, um eine erfolgreiche und robuste Anwendung der
datengesteuerten Quanti�zierung von photoakustischen Signalen zu erreichen. Diese Arbeit
zeigte jedoch das Potenzial datengetriebener Methoden in diesem Zusammenhang auf. Sie
skizzierte verschiedene Möglichkeiten, sie auf die inversen Probleme anzuwenden, die mit der
Signalquanti�zierung verbunden sind. Es ist davon auszugehen, dass die Kombination von
modellbasierten und datengetriebenen Ansätzen die Grundlage für eine erfolgreiche klinische
Umsetzung der quantitativen photoakustischen Bildgebung in die klinische Praxis bilden wird.
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The purpose of this chapter is to give an overview of my contributions and to di�erentiate these
from whole team e�orts. Every section already discloses the team members that have been
working on the presented results.

7.1 Own share in data acquisition and data analysis

Throughout my Ph.D. work, I was part of a multi-disciplinary team of scientists in the department
of Computer Assisted Medical Interventions (CAMI) headed by Prof. Dr. Lena Maier-Hein. She
was also the primary supervisor for my thesis, and she supervised all experiments. Throughout
the entire time of my thesis, I was closely collaborating with Lena’s photoacoustics team that
was comprised of Thomas Kirchner and Melanie Schellenberg and various bachelor and master
students (Angelika Laha, Dominik Waibel, Niklas Holzwarth, and Kris Dreher). I was also collabo-
rating with scientists and Ph.D. students from the multispectral imaging team, especially Tim
Adler, Leonardo Ayala, and Anant Vemuri.

Most of the results of this thesis were reproduced from the original work in the published papers
on new data sets and sometimes with slight changes or improvements regarding themethodology.

Own share in data acquisition

I simulated all in silico data sets. The design parameters (for example, the acoustic and optical
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Still, the porcine brain measurements were lead by Thomas Kirchner, and they were typically
acquired by our collaborating surgeons and medical students from the university clinic (E.
Santos, M. Herrera, and A. Hernández-Aguilera). The forearm study was designed by the entire
photoacoustics team and also served the purpose of testing the newly arrived MSOT acuity echo
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system. It was conducted with N=15 healthy human volunteers on a single day, and the leading
operators of the imaging system were Thomas Kirchner and Niklas Holzwarth. The phantom data
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