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Zusammenfassung

In dieser Dissertation werden statistische Eigenschaften des Fréchet-Mittelwertes und
seiner Verallgemeinerungen in abstrakten Rahmen untersucht. Dadurch werden vieler-
lei verschiedene Anwendungen abgedeckt, welche insbesondere in der Untersuchung von
Nicht-Standard-Daten von Interesse sind. Der Fokus der Arbeit liegt auf der Konvergenz
und Konvergenzgeschwindigkeit des empirischen Fréchet-Mittelwertes unabhängiger Be-
obachtungen. Die abstrakten Ergebnisse werden beispielhaft in spezifischen Räumen an-
gewendet.

Der Erwartungswert einer reellwertigen, quadratintegrierbaren Zufallsvariable kann
dadurch charakterisiert werden, dass er den erwarteten quadratischen Abstand zu die-
ser Zufallsvariable eindeutig minimiert. Diese Eigenschaft kann benutzt werden, um den
Begriff Mittelwert zu verallgemeinern. Ein Fréchet-Mittelwert einer Zufallsvariable mit
Werten in einem metrischen Raum ist jeder Minimierer des erwarteten quadratischen
Abstandes zu dieser Zufallsvariable. Durch diese Definition werden zwei Dinge erreicht:
Erstens werden viele gebräuchliche Arten von Mittelwerten – etwa der Erwartungswert,
der Median oder das geometrische Mittel – in einem Begriff umfasst. Zweitens wird ein
Mittelwertsbegriff für nicht-euklidische Räume – wie etwa die Kugel, der Raum phyloge-
netischer Bäume oder die Wasserstein-Räume – definiert, wodurch diese der Anwendung
von Wahrscheinlichkeitstheorie und Statistik zugänglich gemacht werden.

Wir zeigen starke Gesetze der großen Zahlen für Mengen von Fréchet-Mittelwerten
mit zwei verschiedenen Begriffen der Konvergenz von Mengen. Dabei setzen wir nur ein
endliches erstes Moment voraus. Als nächstes wenden wir uns der Geschwindigkeit dieser
Konvergenz zu. Zuerst zeigen wir anhand des projizierten Mittelwertes – einer Instanz
des Fréchet-Mittelwertes – dass hierbei sehr unterschiedliche Konvergenzraten zustande
kommen können, abhängig von der Geometrie des zugrundeliegenden Raumes und einiger
Eigenschaften der Verteilung der Daten. Danach beweisen wir Konvergenzraten in einem
allgemeinen Rahmen. Eine der Bedingungen, die wir dafür aufstellen, ist die Quadrupel-
ungleichung – eine Verallgemeinerung der Cauchy-Schwarz-Ungleichung. Diese und eini-
ge weitere der von uns aufgestellten abstrakten Bedingungen sind in Hadamard-Räumen
– geodätische metrische Räume mit nicht-positiver Krümmung – erfüllt, sodass sie sich
besonders zur Untersuchung im Kontext des Fréchet-Mittelwertes eignen. Wir zeigen ei-
ne Quadrupelungleichung für Potenzen von Hadamard-Metriken – ein rein geometrisches
Resultat mit verblüffend komplexem Beweis. Zuletzt untersuchen wir Regressionsmodel-
le mit Zielwerten aus metrischen Räumen und einem bedingten Fréchet-Mittelwert als
Regressionsfunktion. Wir vergleichen zwei Ansätze, wie bekannte Schätzer auf nicht-
euklidische Szenarien angepasst werden können. Dabei zeigen wir Konvergenzraten für
vier verschiedene Schätzer; zwei davon sind neue Methoden. Die Verfahren werden auf
der Kugel angewendet und verglichen. Zu diesem Zweck wurde eigens ein R-Paket ent-
wickelt.
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Abstract

In this thesis, we study statistical properties of the Fréchet mean and its generaliza-
tions in abstract settings. These settings include large classes of scenarios, which may be
of great interest in practice when dealing with nonstandard data. Our main focus is on
the convergence of sample Fréchet means of independent observations to their population
counterpart. The results are exemplarily applied to some specific spaces.

The expectation of a real-valued, square-integrable random variable is characterized
by being the unique constant value that minimizes the expected squared difference to the
random variable. One can use this property to generalize the notion of mean. A Fréchet
mean of a metric space-valued random variable is any minimizer of the expected squared
distance to that random variable. This definition achieves two important things: Firstly,
it encompasses many commonly used types of mean – like the expectation, the median,
or the geometric mean – allowing to state powerful, general, and far-reaching theorems
about properties of means. Secondly, it defines a mean for non-Euclidean spaces – like
the sphere, the space of phylogenetic trees, or Wasserstein spaces – opening up these
spaces for profound applications of probability theory and statistics.

We show strong laws of large numbers of Fréchet mean sets with two different notions
of convergence of sets assuming only a first moment condition. After having established
consistency of the sample Fréchet mean, we investigate the rate of this convergence.
We demonstrate, using projected means, an instance of the Fréchet mean, that Fréchet
means may exhibit very different rates depending on the geometry of the metric space
and properties of the distribution of the data. Then we prove rates of convergence in
a general setting under some conditions. One of these is the quadruple inequality – a
generalization of the Cauchy-Schwarz inequality. This and some other conditions are
fulfilled in Hadamard spaces – geodesic metric spaces of nonpositive curvature – which
makes them particularly interesting to study in the context of Fréchet means. We show
a quadruple inequality for certain powers of Hadamard metrics – a purely geometric
result with an intriguingly complex proof. Lastly, we examine regression models where
responses live in a metric space and the regression function is a conditional Fréchet
mean. We compare two approaches to transform known estimators to this non-Euclidean
setting. In doing so, we establish rates of convergence for four different estimation
procedures, two of which are new methods. To illustrate these regression estimators, an
R-package was developed that allows their application and comparison on the sphere.
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strong laws of large numbers with two different notions of convergence of sets. The
results require minimal assumptions. In particular, a finite first moment suffices for the
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1.1 The Fréchet Mean
To understand a collection of observations, the first statistic one may want to calculate is
the mean, as it summarizes the data in one value. But what does mean mean? Depending
on the kind of data and the goal of the statistician the most suitable notion of the concept
mean may vary. For real-valued data, obvious candidates are the arithmetic mean and
the median, but in some cases the geometric or harmonic mean might be preferable. If
the data lives in a set without vector spaces structure, like a manifold or an abstract
metric space, a different concept of mean is required.
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In this thesis, we explore one type of general mean that can be defined with only little
structure but encompasses the common notions of mean – the Fréchet mean. Based on
Gauß’ idea of least squares (Methode der kleinsten Quadrate [Gau09]), Fréchet defined
the mean value of a collection of objects in a metric space as the minimizer of the summed
squared distances to the objects [Fré48].

The Fréchet mean achieves two major things: It provides a common construction for
many well-known notions of mean, so that theorems proven for the Fréchet mean imply
properties of many interesting objects and statistics. Secondly, it provides a notion of
mean in spaces with less or different structure than the Euclidean spaces, e.g., abstract
metric spaces or Riemannian manifolds, and thus widens the possibilities of applying
probability theory and statistics in these spaces.

1.1.1 Definitions
Before we formally define the Fréchet mean, we first inspect a characterizing property
of the Euclidean mean or expectation.

Notation 1.1. Let s ∈ N. Denote the Euclidean norm in Rs as ‖ · ‖. Denote the
Euclidean metric in Rs as dRs , i.e., dRs(q, p) := ‖q − p‖ for q, p ∈ Rs.

Notation 1.2. For a set Q and a function f : Q→ R ∪ {∞,−∞}, denote

arg min
q∈Q

f(q) :=
{
q ∈ Q : f(q) ≤ inf

p∈Q
f(p)

}
.

If this set contains only on element m, we may write m = arg minq∈Q f(q) instead
of {m} = arg minq∈Q f(q).

For a random variable Y with values in Rs and E[‖Y ‖2] <∞, it holds

E[Y ] = arg min
q∈Rs

E[dRs(Y, q)2] .

Moreover, by adding a constant term, we can also write

E[Y ] = arg min
q∈Rs

E[dRs(Y, q)2 − dRs(Y, 0)2] .

In the latter equation, we only require Y to be once integrable, E[‖Y ‖] < ∞, as |‖y −
q‖2−‖y‖2| ≤ 2‖y‖‖q‖+ ‖q‖2 for y, q ∈ Rs. A direct generalization of this characterizing
property of the Euclidean mean to arbitrary metric spaces is the Fréchet mean.

Notation 1.3. For a metric space (Q, d), we may write y,q := d(y, q) for y, q ∈ Q.

2



Remark 1.4. Measurability concerns are not the focus of this thesis. It is always
silently assumed that functions are measurable if necessary, so that all objects are
well-defined. For random variables, say X, with values in a set, say S, we assume
that there is a silently underlying probability space (Ω,ΣΩ,P) and a measurable
space (S,ΣS) such that X : Ω→ S is measurable. If S is a metric space, a natural
choice of σ-algebra is the Borel σ-algebra.

Definition 1.5. Let (Q, d) be a metric space. Let o ∈ Q. Let µ be a probability
measure on Q with

∫
y,odµ(y) <∞. The Fréchet mean set of µ is defined as the

set M(µ) := M(Q, d;µ) := arg minq∈Q
∫
y,q2 − y,o2 dµ(y). An element of M(µ) is

referred to as Fréchet mean.

Remark 1.6. Definition 1.5 does not depend on o. The reason for subtracting y,o2

is the same as in the Euclidean case, i.e., we need to make less moment assumptions
to obtain a meaningful value: The triangle inequality implies∣∣∣y,q2 − y,o2

∣∣∣ = |y,q − y,o| (y,q + y,o) ≤ o,q (o,q + 2y,o)

for all y, q, o ∈ Q. Thus, if
∫
y,odµ(y) < ∞, then

∫
|y,q2 − y,o2|dµ(y) < ∞ for all

q ∈ Q. Furthermore, note that
∫
y,odµ(y) < ∞ if and only if

∫
y,q dµ(y) < ∞ for

all q ∈ Q.

Notation 1.7. We abbreviate Fréchet mean as FM and Fréchet mean set as FMS.

From the definition of FM for probability measures, we can derive further objects and
terminology: Let (Q, d) be a metric space and o ∈ Q.

• Let y1, . . . , yn ∈ Q and w1, . . . , wn ∈ [0, 1] with ∑n
i=1wi = 1. Set µn = ∑n

i=1wiδyi ,
where δy denotes the Dirac-delta at point y. Then

M(µn) = arg min
q∈Q

n∑
i=1

wi(yi,q2 − yi,o2) (1.1)

is the weighted FMS of (yi)i=1,...,n with weights (wi)i=1,...,n.

Notation 1.8. Let S, S̃ be sets. Let µ be a probability measure on S. Let f : S → S̃.
Denote the pushforward as f∗µ, i.e., f∗µ is a measure on S̃ with f∗µ(B) = µ(f−1(B))
for subsets B ⊆ S̃. Recall that measurability of S, S̃, f, B is silently assumed, see
Remark 1.4.
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• For a random variable Y with values in Q and distribution Y∗P, its FMS is

M[Y ] := M(Y∗P) = arg min
q∈Q

E[Y,q2 − Y,o2] .

• Let Y1, . . . , Yn be random observations in Q. Let µn = 1
n

∑n
i=1 δYi be the empirical

distribution. The sample FMS is

M(µn) = arg min
q∈Q

1
n

n∑
i=1

(Yi,q
2 − Yi,o

2) .

Accordingly, we may call M[Y1] the population FMS (given that the observations
have identical distribution).

• Let (X,Y ) be a pair of random variables, where Y has values in Q. For a function
h : Q → R, denote the conditional expectation of h(Y ) given X as E[h(Y ) | X].
Then the conditional FMS of Y given X is

M[Y | X] := arg min
q∈Q

E[Y,q2 − Y,o2 | X] .

Remark 1.9. Random arg min-sets, like the conditional FMS or the sample FMS,
or random elements of these sets may not always be measurable. One might want
to use measurable majorants and outer integrals to be able to derive upper bounds
of certain nonmeasurable objects. For a detailed discussion of a technique to deal
with such settings, see [VW96].

1.1.2 Sets of Means
Whenever the FMS is a singleton, i.e., it has exactly one element, we may refer to that
element as the FM. In Euclidean spaces, the FM of a random variable is its expectation,
as seen in section 1.1.1.

The FMS may be empty: Let Y be a Rs-valued random variable with E[‖Y ‖] < ∞
and P(Y = E[Y ]) = 0. Set Q := Rs \ {E[Y ]}. We can view Y as a Q-valued random
variable. Then its FMS in Q with the Euclidean metric is empty, M[Q, dRs ;Y ] = ∅, as
E[dRs(Y, q)2 − dRs(Y, 0)2] = ‖q‖2 − 2〈q,E[Y ]〉 is always greater than E[dRs(Y,E[Y ])2 −
dRs(Y, 0)2] = −‖E[Y ]‖2 for q 6= E[Y ].

Any set can be the FMS in some space: Let S be a nonempty set. Let Q := S ∪{•, ?},
where • 6= ? and •, ? 6∈ S. Define the metric d : Q×Q → [0,∞) as

d(y, q) :=


0 , if y = q ,

1 , if y 6= q and |{y, q} ∩ {•, ?}| < 2 ,
2 , if |{y, q} ∩ {•, ?}| = 2 .

Let µ := 1
2δ• + 1

2δ?. Then M(Q, d;µ) = S, as
∫
y,q2 dµ(y) = 1 for q ∈ S and∫

y,q2 dµ(y) = 2 for q ∈ {•, ?}. We will later see examples of nonsingleton FMSs that
are less technical.
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1.1.3 Moments
Let (Q, d) be a metric space, µ be a probability measure on Q, and α ∈ (0,∞). We say
that µ has a finite α-moment if

∫
y,qα dµ(y) < ∞ for one (and thus, by the triangle

inequality, for all) q ∈ Q.

Notation 1.10. For a set S, we denote by P(S) the set of all probability measures
on S (measurable structure silently implied). For a metric space (Q, d) and α > 0,
denote Pα(Q, d) the set of all probability measures µ with

∫
d(y, q)α dµ(y) <∞ for

all q ∈ Q. We may shorten Pα(Rs) := Pα(Rs, dRs).

We call infq∈Q
∫
y,q2 dµ(y) the Fréchet variance. If m ∈ M(µ), then the Fréchet

variance equals
∫
y,m2 dµ(y). On the euclidean real line (R, | · |), it is identical to the

common notion of variance. [DM19a] present a central limit theorem for the Fréchet
variance and use it to obtain an analysis of variance procedure for metric spaces. Building
upon these results, a method for change point detection is proposed in [DM19b].

1.1.4 Terminology
The Fréchet mean is also called barycenter, Karcher mean (although Karcher objects to
this name, see [Kar14]), or center of mass. One may argue that Fréchet might have had
similar concerns as Karcher and conclude that barycenter is a better name. In this thesis,
the term Fréchet mean is used, as this seems to be the term that is best recognized in
the literature and statistics community.

1.1.5 Constructions
Given one or more metric spaces, we can construct new metric spaces. We briefly
explore some of these constructions and try to describe the behavior of the FM in the
new spaces.

Lemma 1.11 (Isometries). Let (Q, d), (Q̃, d̃) be metric spaces such that there is
a bijective isometry f : Q → Q̃. Let µ ∈ P1(Q, d). Then f∗µ ∈ P1(Q̃, d̃) and
M(Q̃, d̃; f∗µ) = f(M(Q, d;µ)).

Proof. We leave out the d(y, o)2-term. The proof is the same when keeping that term.
Let q ∈ Q. Then, as f is an isometry,∫

d̃(z, f(q))2 df∗µ(z) =
∫
d̃(f(y), f(q))2 dµ(y) =

∫
d(y, q)2 dµ(y) .
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Thus, as f is bijective,

arg min
q̃∈Q̃

∫
d̃(z, q̃)2 df∗µ(z) = arg min

q∈Q

∫
d(y, q)2 dµ(y) .

With the same reasoning, we can describe FMs in sets, where a metric is induced by
mapping elements to a given metric space.

Lemma 1.12 (Images). Let (Q, d) be a metric space and S be a set. Let f : S → Q.
Let df : S × S → [0,∞), (q, p) 7→ d(f(q), f(p)). Then (S, df ) is a metric space. Let
µ ∈ P1(S, df ). Then f−1(M(Q, d; f∗µ)) ⊆M(S, df ;µ) with equality if f is bijective.

We can create new metric spaces, by transforming the distances by a subadditive func-
tion. This is an important construction, e.g., for defining medians, but it is not easy to
describe the resulting FMs.

Lemma 1.13 (Transformations). Let (Q, d) be a metric space. Let g : [0,∞) →
[0,∞) be nondecreasing with g(0) = 0 and subadditive, i.e., g(a + b) ≤ g(a) + g(b)
for all a, b ∈ [0,∞). Let dg : Q×Q → [0,∞), (q, p) 7→ g(d(q, p)). Then (Q, dg) is a
pseudometric space. If g(x) = 0 implies x = 0, then (Q, dg) is a metric space.

To prove the lemma, one can easily check all requirements of a (pseudo-)metric space.
For this construction it may come in handy to know that a function g : [0,∞)→ [0,∞)
that is concave is also subadditive.

The expectation of a random vector is the vector of the expectations of its components.
A generalization of this statement is true for FMs, as the following lemma shows.

Lemma 1.14 (Products). Let J ∈ N. Let (Q1, d1), . . . , (QJ , dJ) be metric spaces.
Let w1, . . . , wJ ∈ (0,∞). Let Q :=×J

j=1Qj and d : Q × Q → [0,∞), d(q, p) :=
(∑J

j=1wjdj(qj , pj)2) 1
2 . Then (Q, d) is a metric space. Furthermore, let µ ∈ P1(Q, d)

with marginal distributions µ1, . . . , µJ . Then µj ∈ P1(Qj , dj), j = 1, . . . , J and
M(Q, d;µ) =×J

j=1 M(Qj , dj ;µj).

Proof. For o, q ∈ Q,

∫
d(y, q)2 − d(y, o)2 dµ(y) =

∫ J∑
j=1

wj
(
dj(yj , qj)2 − dj(yj , oj)2

)
dµ(y)

=
J∑
j=1

wj

∫ (
dj(yj , qj)2 − dj(yj , oj)2

)
dµj(yj) .
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Thus,

inf
q∈Q

∫
d(y, q)2 − d(y, o)2 dµ(y) =

J∑
j=1

wj inf
q∈Qj

∫
dj(y, q)2 − dj(y, oj)2 dµj(y) ,

arg min
q∈Q

∫
d(y, q)2 − d(y, o)2 dµ(y) =

J×
j=1

arg min
q∈Qj

∫
dj(y, q)2 − dj(y, oj)2 dµj(y) .

Note that in the setting of Lemma 1.14 one can combine the individual metrics dj
differently to a metric on Q. If ‖ · ‖• is a norm on RJ , then ‖(dj)j=1,...,J‖• is a metric
on Q. But then the FM in Q may not be described as easily. We later introduce
power Fréchet means, where we minimize dα, instead of d2. Then a similar results as
Lemma 1.14 can be shown when replacing the Euclidean (`2-) norm by the `α-norm.

1.2 Examples
We present some examples of FMs including common notions of mean as well as nonstan-
dard spaces where the FM can be applied. An overview over the FM and its applications
(and its extensions, see section 1.3) is given by the Map of Means, Figure 1.1.

1.2.1 Standard Spaces
We call convex subsets of separable Hilbert spaces equipped with the metric induced by
the inner product standard spaces (also it could be argued that not all of the exam-
ples below are commonly considered to be standard in an intuitive sense). We can take
expectations in these spaces (Lebesgue or Bochner integral) and these expectations co-
incide with the (unique) FM. The standard spaces include, among others, the Euclidean
spaces Rs, the sequence space `2(R), and the 2-Wasserstein space of R: For µ, ν ∈ P2(R),
define W2(µ, ν) := (inf

∫
(x− y)2 dγ(x, y)) 1

2 , where the infimum is taken over all proba-
bility measures γ on R2 with marginals µ and ν. The metric W2 can be expressed as a
Hilbert metric on quantile functions, W2(µ, ν)2 =

∫ 1
0 (F−µ (x)−F−ν (x))2 dx [Vil03], where

F−µ , F
−
ν are the quantile functions of µ and ν. Moreover, (P2(R),W2) is a metric space

that is isometrically isomorphic to a closed and convex subset of the separable Hilbert
space L2(R) of square integrable functions, see [Big+17].

1.2.2 Kolmogorov Means
Let I ⊆ R be convex. Let f : I → f(I) be a strictly monotone and continuous function
with inverse f−1 : f(I)→ I. Define the metric df on I as

df (y, q) := |f(y)− f(q)| .

Let µ ∈ P1(I, df ). The Kolmogorov mean (also quasi-arithmetic mean or generalized
f -mean) is defined as

mf (µ) := f−1
(∫

f(y) dµ(y)
)
.
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It is the unique Fréchet mean M(I, df ;µ) = {mf (µ)}, see Lemma 1.12. Instances of
the Kolmogorov mean are the Hölder means mα(µ) (also generalized means or power
means), where f(x) = xα with α 6= 0 and I = R for α ∈ Z and I = (0,∞) otherwise.
Notable instances of the Hölder means are the harmonic mean (α = −1), the arith-
metic mean (or Euclidean mean, α = 1), the root mean square (also quadratic mean,
α = 2), and the cubic mean (α = 3).

Notation 1.15. For a measure µ, denote the support of µ as supp(µ).

The definition of Hölder mean can be extended to α ∈ {−∞, 0,∞} by taking the respec-
tive limit:

m−∞(µ) := lim
α→−∞

mα(µ) = min supp(µ) ,

m0(µ) := lim
α→0

mα(µ) = exp
(∫

log(y) dµ(y)
)
,

m∞(µ) := lim
α→∞

mα(µ) = max supp(µ) ,

where the necessary integrability conditions are assumed. The Hölder mean with α = 0
is also called geometric mean.

The arithmetic, geometric, and harmonic mean collectively are known as the Pytha-
gorean means. For y1, . . . , yn ∈ (0,∞) and the empirical measure µn = 1

n

∑n
i=1 δyi ,

the geometric mean is m0(µn) = (∏n
i=1 yi)

1
n . It is the side length of a n-dimensional

hypercube with the same volume as the n-dimensional box with side lengths y1, . . . , yn.
The harmonic mean can be illustrated as follows: If an athlete runs n rounds on a running
track, each with velocity y1, . . . , yn, respectively, then another athlete, who always runs
at constant speed, runs the same distance in the same time if their velocity is equal to
the harmonic mean m−1(µn) = n(∑n

i=1
1
yi

).
The Hölder means are ordered in the sense that mα(µ) ≤ mα̃(µ) for α ≤ α̃, as the

following lemma shows with x 7→ x
α̃
α convex.

Lemma 1.16. Let I ⊆ R be convex. Let f, f̃ : I → R be strictly monotone and
continuous functions. Let µ be a probability measure on I with

∫
|f̃(y)| dµ(y) <∞.

Assume that f̃ ◦ f−1 is convex. Then mf ≤ mf̃ .

Proof. Use Jensen’s inequality to obtain

f−1
(∫

f(y) dµ(y)
)

= f̃−1 ◦ f̃ ◦ f−1
(∫

f(y) dµ(y)
)
≤ f̃−1

(∫
f̃(y) dµ(y)

)
.

All Kolmogorov means have properties that one naturally associates with the term mean.
Kolmogorov even defined the mean by four axioms of desirable properties:
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Definition 1.17 (Kolmogorov’s axioms of means, [Kol30]). A collection of functions
(Mn)n∈N, Mn : Rn → R is called regular mean if following four conditions are
fulfilled:

1. All Mn are continuous and nondecreasing in each variable.

2. All Mn are invariant under permutation of their arguments.

3. Mn(y, . . . , y) = y for y ∈ R and n ∈ N.

4. Let k, n ∈ N with k < n, y ∈ Rn and m = Mk(y1, . . . , yk). Then Mn(y) =
Mn(m, . . . ,m, yk+1, . . . , yn).

Kolmogorov showed that any regular mean is of the form Mn(y) = f−1
(

1
n

∑n
i=1 f(yi)

)
,

where f is continuous and strictly monotone. For further elementary properties of these
means, see [HLP52, chapter 3] and [AD89, chapter 17]. [Car16] shows a central limit
theorem for Kolmogorov means.

1.2.3 Median and Huber Loss
A median of a probability distribution µ on R is any point m with

∫m
−∞ y dµ(y) =∫∞

m y dµ(y). It is well-known that the set of all medians is the FMS of (R, d 1
2 ), where

d
1
2 (y, q) :=

√
|y − q|.

Notation 1.18. Let S,Q be sets with S ⊆ Q. Then 1S : Q → {0, 1} denotes the
indicator function of S., i.e., 1S(x) = 1 if and only of x ∈ S.

A mixture of median and expectation can be attained by the Huber loss: Let δ > 0.
Let hδ : [0,∞) → [0,∞), x 7→ 1√

2x1[0,δ](x) +
√
δ(|x| − 1

2δ)1(δ,∞)(x). Then h2 is called
Huber loss, [Hub64]. Furthermore, (R, dh) is a metric space, see Lemma 1.13, as h is
concave. The FMs in this space are commonly used in robust statistics.

Now, let (Q, ‖·‖) be a Banach space with induced metric d‖·‖(q, p) = ‖q − p‖. A
generalization of the median to Banach spaces is the geometric median (or spatial
median), see [Kem87]. It is the FM in (Q, d

1
2
‖·‖), i.e.,

M(Q, d
1
2
‖·‖, µ) = arg min

q∈Q

∫
‖y − q‖ − ‖y‖dµ(y) .

The geometric median is unique if there is no one-dimensional subspace where µ has
mass one [MD87].

1.2.4 Extrinsic and Projected Mean
If a Riemannian manifold Q is embedded in an ambient Euclidean space, Q ⊆ Rs, we
can take the FM with respect to the extrinsic distance, i.e., the Euclidean distance dRs .
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More generally, let Q ⊆ Rs. Then (Q, dRs) is a metric space. The FM in this space is
called extrinsic mean. We may allow the distribution µ to have mass in the ambient
space Rs, not only on Q. Then the respective FMs are called projected means: Let
µ ∈ P1(Rs, dRs). Let m =

∫
y dµ(y). Then

arg min
q∈Q

∫
y,q2 − y,o2 dµ(y) = arg min

q∈Q
‖m− q‖ ,

i.e., the projected means really are the projections of the Euclidean mean m to Q. If Q
is convex and supp(µ) ⊆ Q, then m ∈ Q and M(Q, dRs , µ) = {m}. The projected mean
can only be unique if m does not lie on the so-called medial axis of Q. The medial axis
MQ is the set of all points in Rs that do not have a unique projection:

MQ :=
{
z ∈ Rs

∣∣∣∣ ∃p1, p2 ∈ Q, p1 6= p2 : ‖p1 − z‖ = ‖p2 − z‖ = inf
p∈Q
‖p− z‖

}
.

For geometric properties of the medial axis, see [BD17]. In chapter 3, we discuss the
projected mean in more detail. In particular, we investigate the influence of the distance
of m to MQ on the rate of convergence of sample projected means to their population
counterpart.

1.2.5 Geodesic Spaces
[Kar77] developed theory on the FM for Riemannian manifolds (Q, g), where Q is a
smooth manifold and g is a Riemannian metric. The tuple (Q, dg) with intrinsic distance
dg (length of shortest path between two points) is a metric space. In this context the
FM is often called (Riemannian) center of mass or intrinsic mean. In contrast to the
extrinsic mean, it is not necessary to refer to an ambient Euclidean space.

There have been many contributions to the theory and applications of FMs on Rie-
mannian manifolds since Karcher’s original article. We only mention few and refer the
reader to [HE20] for an overview. [BP03; BP05] show consistency results and a central
limit theorem for FMs of random observations on Riemannian manifolds. [EH19] extend
this central limit theorem to a more general setting, in which – due to the geometry of
the space – rates of convergence slower than n

1
2 can be observed.

A generalization of Riemannian manifolds with a bound on the sectional curvature
are geodesic spaces with curvature bounds. These include many interesting nonsmooth
spaces and seem to be a more natural realm for the study of Fréchet means in general as
their structure is based on a metric like the definition of the FM. We quickly introduce
some necessary terms of metric geometry. See [BBI01] for a more detailed introduction.

Let (Q, d) be a metric space. For a continuous map γ : [a, b]→ Q define its length as

L(γ) := sup
{

n∑
i=1

d(γ(xi−1), γ(xi))
∣∣∣∣ a = x0 < x1 < · · · < xn = b, n ∈ N

}
.

Define the inner metric (also intrinsic metric) of (Q, d) as di(q, p) := inf L(γ), where
the infimum is taken over all continuous maps γ : [a, b]→ Q with γ(a) = q and γ(b) = p.
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A length space is a metric space (Q, d) with d = di. Now, let (Q, d) be a length
space. A continuous map γ : [a, b] → Q is called shortest path if L(γ) ≤ L(γ̃) for all
continuous maps γ̃ : [ã, b̃] → Q with γ(a) = γ̃(ã) and γ(b) = γ̃(b̃). A continuous map
γ : [a, b] → Q is locally minimizing if for every t ∈ (a, b) there is ε > 0 such that the
restriction γ|[t−ε,t+ε] is a shortest path. A continuous map γ : [a, b] → Q has constant
speed if there is v ≥ 0 such that L(γ|[a′,b′]) = v(b′ − a′) for all a′, b′ ∈ [a, b] with a′ < b′.
A geodesic is a locally minimizing continuous map with constant speed. The tuple
(Q, d) is a geodesic space if there is a geodesic for every pair of points.

Curvature bounds in geodesic spaces can be defined via comparison of triangles with
model spaces of constant curvature. The model spaces Mκ are the unique complete
simply connected real 2-dimensional Riemannian manifolds of constant sectional curva-
ture κ, i.e.

• the Euclidean plane R2 with Euclidean metric dR2 , for κ = 0,

• the sphere S2(κ− 1
2 ) with radius κ− 1

2 with intrinsic metric, for κ > 0,

• the hyperbolic plane H2 with the standard metric multiplied by (−κ)− 1
2 , for κ < 0.

See [BBI01, chapter 4 and 5] for a precise definition of the model spaces.

Notation 1.19. For a metric space (Q, d) and B ⊆ Q denote the diameter of b as
diam(B) := supq,p∈B d(q, p).

Let Dκ := diam(Mκ), i.e., Dκ = π/
√
κ for κ > 0, otherwise Dκ = ∞. A geodesic space

(Q, d) has curvature bounded below (respectively above) by κ if for any three points
y, q, p ∈ Q with d(q, p) + d(y, q) + d(y, p) < 2Dκ it holds

d(y, γt) ≥ dκ(ȳ, γ̄t) ( respectively d(y, γt) ≤ dκ(ȳ, γ̄t) )

for t ∈ [0, 1], where γ : [0, 1]→ Q is a geodesic with γ0 = q, γ1 = p, (ȳ, q̄, p̄) is a triple of
points in Mκ that is isometric to (y, q, p), and γ̄ : [0, 1]→Mκ is the geodesic connecting
γ̄0 = q̄ with γ̄1 = p̄. Informally, triangles in negatively curved spaces are thinner than
the Euclidean triangle and thicker in positively curved spaces.

Geodesic spaces with upper curvature bound κ are called CAT(κ)-spaces. Com-
plete geodesic spaces with curvature bound are collectively called Alexandrov spaces.
Complete CAT(0)-spaces are also called Hadamard spaces or global NPC-spaces
(nonpositive curvature). Instances of these spaces are Riemannian manifolds with the
respective upper or lower bound κ on the sectional curvature. Standard spaces are flat
Hadamard spaces, i.e., spaces with constant curvature 0. The hyperbolic spaces Hs

are CAT(−1), the Euclidean spaces Rs are CAT(0), and the unit hyperspheres Ss are
CAT(1). All three are Alexandrov spaces.

Hadamard spaces have some desirable properties, e.g., unique FMs, that make them
particularly interesting. We show rates of convergence of sample FMs in Hadamard
spaces in 4.4.4 and 4.5, and throughout chapter 5, we present different results for regres-
sion estimators with responses in Hadamard spaces. Following property characterizes
Hadamard spaces.
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Lemma 1.20 ([Stu03]). A nonempty complete metric space (Q, d) is Hadamard
if and only if for all q, p ∈ Q, there is m ∈ Q such that d(y,m)2 ≤ 1

2d(y, q)2 +
1
2d(y, p)2 − 1

4d(q, p)2 for all y ∈ Q.

In Hadamard spaces, all geodesics are minimizing. [Stu03] shows how in these spaces
some classical results of probability theory in Euclidean spaces (e.g., strong law of large
numbers, Jensen’s inequality) can be transferred to the Fréchet mean setting. An algo-
rithm for calculating Fréchet means in Hadamard spaces is described in [Bač14a].

One important application of statistics in Hadamard spaces is the space phylogenetic
trees. A phylogenetic tree represents the genetic relatedness of biological species, includ-
ing bacteria and viruses. The geometry of the space of phylogenetic trees Tm with m
leaves is studied in [BHV01]. In particular, it is shown that Tm is a Hadamard space.
There has been a lot of recent interest in statistics on Tm. E.g., [BLO18] show a cen-
tral limit theorem for the Fréchet mean in Tm and [Nye11] apply principal component
analysis in that space.

Hadamard spaces are complete CAT(0)-spaces. In CAT(κ)-spaces with κ ∈ R, there
are simple conditions for the FM to be unique.

Theorem 1.21 ([Stu03; Yok17]). Let (Q, d) be a complete CAT(κ)-space. Let
µ ∈ P1(Q, d).

1. Assume κ ≤ 0. Then the FM of µ is unique.

2. Assume κ > 0. Assume
√
κ diam(supp(µ)) < π. Then the FM of µ is unique.

In both cases the FM lies in the convex hull of supp(µ).

Similar results hold for power FMs, which are introduced in section 1.3.2.

1.2.6 Wasserstein Spaces
Let (Q, d) be a metric space and α ≥ 1. Let µ, ν ∈ Pα(Q, d). The α-Wasserstein distance
[Vil09, Definition 6.1] is

Wα(µ, ν) :=
(

inf
γ∈Γ(µ,ν)

∫
d(x, y)α dγ(x, y)

) 1
α

.

where Γ(µ, ν) is the set of all probability measures on Q × Q with marginals µ and
ν. (Pα(Q, d),Wα) is a metric space. If (Q, d) is complete and separable, then so is
(Pα(Q, d),Wα) [Vil09, Theorem 6.18]. If Q is compact, then so is Pα(Q, d), [Vil09,
Remark 6.18]. If Q is a locally compact geodesic space, then Pα(Q, d) is a geodesic
space, [LV09, Lemma 2.4 and Proposition 2.6]. The Wasserstein distance metrizises weak
convergence: convergence in the Wasserstein space is weak convergence of probability
measures plus convergence of the α-moment [Vil09, Theorem 6.9].
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In Wasserstein spaces, FMs are usually called (Wasserstein) barycenters. [AC11] dis-
cuss existence, uniqueness, and characterizations of the 2-Wasserstein barycenters in Rs.
[LL15] show existence and consistency of α-Wasserstein barycenters in geodesic spaces.
[KP17] discuss 2-Wasserstein barycenters on Riemannian manifolds. [ZP19] explore the
link between Fréchet means in the Wasserstein space and Procrustes analysis. The
Wasserstein covariance is introduced in [PM19b] to analyze the dependence between
multiple random densities. A regression framework, where predictors and responses are
distributions in developed in [CLM20].

1.2.7 Further applications

The FM has been applied to find a mean of graphs, e.g., [GSK12; GGR18]. In [WM07],
it is used in tree spaces to analyze blood vessel data. The FM is used in Kendall’s shape
spaces and Procrustes analysis [Gow75; Ken84; DM16]. Covariance matrices can be
averaged using FMs of different metric spaces that induce certain desirable properties,
e.g., [DKZ09; PDM19]. For more applications and an overview over further methods for
nonstandard spaces, see [MA14] and [HE20].

1.3 Extensions

Aside from application of Fréchet means on different spaces, there are also many modifi-
cations and generalizations of the concept that encompass even more interesting objects
in one description.

1.3.1 Restriction of the Descriptor Set

Let (Q, d) be a metric space. Let o ∈ Q. Let µ be a probability distribution on Q.
Instead of minimizing over the whole set Q one might search for a minimizer only in
a subset of Q, see also section 1.2.4. The subset might represent known theoretical or
computational constraints. One specific instance of interest is the support-restricted
FMS,

arg min
q∈supp(µ)

∫
y,q2 − y,o2 dµ(y) .

It can be useful for computation of an approximate FM. [Sve81; EJ20] show that elements
of M(supp(µn), d, µn) converge to elements of M(supp(µ), d, µ) for µ ∈ P2(Q, d) and the
empirical measure µn = 1

n

∑n
i=1 δYi of independent and identically distributed random

variables Yi with distribution µ.

1.3.2 Power Fréchet Means

Let (Q, d) be a metric space. Let o ∈ Q. Let µ be a probability distribution on Q. Let
α > 0. Let µ ∈ P(Q). For α > 1, assume µ ∈ Pα−1(Q, d). The power Fréchet mean
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set or α-Fréchet mean set of µ is

Mα(µ) := Mα(Q, d;µ) := arg min
q∈Q

∫
y,qα − y,oα dµ(y) .

In chapter 2, we show strong laws of large numbers for α-FMSs. Note that the power
Fréchet means are not directly connected to the power means of section 1.2.2.

For α = 2 the α-FMS is the usual FMS, M2(µ) = M(µ). For α ∈ (0, 2], dα2 is a metric.
Thus, M(Q, dα2 ;µ) = Mα(Q, d;µ). For α > 2, dα may not be a metric. Hence, the power
FMs are more general than the FM.

For α = 1 in a Banach space Q, we again obtain the (geometric) median, see section
1.2.3. In general metric spaces, the elements of M1(µ) are called Fréchet median, e.g.,
[ABY13]. As mentioned before, the Fréchet median for a metric space is the Fréchet
mean of another metric space. In [FVJ09] the Fréchet median on Riemannian manifolds
is discussed. [Yok17, Corollary 41] presents conditions for uniqueness of Fréchet medians
in CAT(κ)-spaces. A Nadaraya-Watson-type nonparametric regression procedure on tree
spaces is presented in [Wan+12], where the target function is described by a conditional
Fréchet median.

In (R, dR), the limit cases α → 0 and α → ∞ are the familiar mode and mid-rage
of a distribution. They generalize to metric spaces, by defining

mode(µ) :=
{
m ∈ Q : lim sup

r→0

µ(Br(q))
µ(Br(m)) ≤ 1 for all q ∈ Q

}
,

circumcenter(µ) := arg min
q∈Q

sup
y∈supp(µ)

d(y, q) .

The limit cases of the power-FM can be interpreted as mode (α→ 0) and circumcenter
(α → ∞), see [Mac67]. The precise relationship between the family (Mα(µ))α∈(0,∞),
mode(µ), and circumcenter(µ) may be complex, in particular if the sets are not singletons.

Slightly more general than power FMs are H-FMs: Let H : [0,∞) → [0,∞) be a
convex and nondecreasing function. The set of minimizers

MH(µ) := MH(Q, d;µ) := arg min
q∈Q

∫
H(y,q)−H(y,o) dµ(y)

is called H-Fréchet mean set or convex Fréchet mean set. For H(x) = xα with
α ≥ 1, we obtain the power FMs. [Yok17, Theorem 40] shows conditions for uniqueness
of H-FMs in CAT(κ)-spaces.

The assumption that H is convex is not restrictive: For a concave, nondecreasing
function G with G−1({0}) = {0}, we may interpret G ◦ d as a metric. Thus, this case is
covered by the original definition of FMS.

1.3.3 Generally Weighted Fréchet Mean

In section 1.1.1, we introduced the weighted FM of points in a metric space, which is
nothing but the usual FM of a certain probability measure. Only positive weights can
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be treated like that. In some settings, it might be of use to allow negative weights, e.g.,
linear regression can be viewed as a weighted mean with not necessarily positive weights
as we will see shortly. A negatively weighted FM can be justified as a generalization of
a Euclidean setting:

Lemma 1.22. Let (W,Y ) be an pair of random variables with values in R × Rs
such that E[‖WY ‖] <∞. Define a := E[W ]. Assume a > 0. Then it holds

arg min
q∈Rs

E
[
W
(
dRs(Y, q)2 − dRs(Y, 0)2

)]
= 1
a
E[WY ] .

Proof. Set m := E[WY ]. For every q ∈ Rs, it holds

E
[
W
(
dRs(Y, q)2 − dRs(Y, 0)2

)]
= −2q>m+ a‖q‖2 .

Hence,

E
[
WdRs(Y, q)2 −WdRs

(
Y,

1
a
m

)2
]

= 1
a
‖m‖2 − 2q>m+ a‖q‖2 =

∥∥∥∥ 1√
a
m−

√
aq

∥∥∥∥2
≥ 0,

which shows that 1
am minimizes q 7→ E[W

(
dRs(Y, q)2 − dRs(Y, 0)2)].

The lemma shows that E[W ] = 1 is required to make the weighing meaningful for
minimizers and leads to following definition: Let (Q, d) be a metric space. Let o ∈ Q.
Let W be a real valued random variable with E[W ] = 1. Let Y be a Q-valued random
variable such that E[|W |Y,o] <∞. Then the generally weighed FMS of (W,Y ) is

arg min
q∈Q

E
[
W
(
Y,q

2 − Y,o2)]
.

An analogous definition for probability measures is possible.

Remark 1.23. We can view a weighted mean E[WY ] =
∫
W (ω)Y (ω) dP(ω) as the

usual mean with respect to the transformed measure ν = W · P. If E[W ] = 1 and
W (ω) ≥ 0 P-almost everywhere, W is just the density of the probability measure ν
with respect to P. In the upcoming section we usually have to deal with the case
E[W ] = 1, but P(W < 0) > 0. Then ν is a signed measure.

We can apply the generally weighted FM to least squares regression estimators, where
target values live in a metric space. But, first consider a general regression setting
with real-valued targets, which encompasses different common regression scenarios. Let
(X,Y ) be a pair of random variables with values in (X × R). Let Ψ: X → Rr be a
feature function, K : X → R a localizing function. We are interested in the value

m(t) := Ψ(t)>θ0
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with the least squares parameters

θ0 ∈ arg min
θ∈Rr

E
[(
Y − θ>Ψ(X)

)2
K(X)

]
= arg min

θ∈Rr

(
−2θ>a+ θ>Bθ

)
where a = E[Ψ(X)K(X)Y ] and B = E[Ψ(X)Ψ(X)>K(X)]. The matrix B is symmetric.
Assume that B is also positive definite. Then θ0 = B−1a and

m(t) = Ψ(t)>B−1a = E
[
Ψ(t)>B−1Ψ(X)K(X)Y

]
= E[w(t,X)Y ]

for w(t, x) = Ψ(t)>B−1Ψ(x)K(x). This general setting includes many well-known regres-
sion estimators.

Example 1.24.

(i) Expectation:
Let r = 1, K ≡ Ψ ≡ 1, X = {?}. Then m(t) = m = E[Y ].

(ii) linear regression:
Let r ∈ N, K ≡ 1, Ψ = id, X = Rr. Then m(t) = t>θ0, where

θ0 ∈ arg min
θ∈Rr

E
[(
Y − θ>X

)2
]
.

(iii) Projection estimator:
Let ψk : X → R for k ∈ N, K ≡ 1, Ψ(x) = Ψr(x) = (ψk(x))k=1,...,r. Then
m(t) = mr(t) is the expectation of the projection estimator with projection
to the space spanned by ψ1, . . . , ψr. An example is trigonometric projection,
where X = [0, 1] and (ψk)k∈N is the trigonometric basis of L2([0, 1]). See, e.g.,
[Tsy08, section 1.7].

(iv) Local polynomial estimator:
Let X = R, κ : R→ R be a kernel, h > 0, and

K(x) = Kt,h(x) = 1
h
κ

(
x− t
h

)
.

Let N ∈ N0 specify the polynomial degree, set r = N + 1. Denote

ψ(x) =
(
xk

k!

)
k=0,...,N

, Ψ(x) = Ψt,h(x) = ψ

(
x− t
h

)
.

Then m(t) = mh(t) is the expectation of the local polynomial estimator of
degree N with bandwidth h. See, e.g., [Tsy08, section 1.6].

The regression function m(t) = E[w(t,X)Y ] has the form of a weighted mean, where the
weight may take negative values. We can easily generalize this setting to cases where Y
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lives in a metric space (Q, d) by using the generally weighted FM:

M(t) := arg min
q∈Q

E
[
w(t,X)

(
d(Y, q)2 − d(Y, o)2

)]
,

where o ∈ Q is an arbitrary element. To justify this transfer, we need E[w(t,X)] = 1,
see Lemma 1.22, which is easy to obtain as the next lemma shows.

Lemma 1.25. With the above definitions, if there is a vector R ∈ Rr with Ψ(x)>R =
1 for all x ∈ X , then E[w(t,X)] = 1.

Proof. As Ψ(x)>R = 1, we can write the weight function as

w(t, x) = Ψ(t)>B−1Ψ(x)K(x) = Ψ(t)>B−1Ψ(x)Ψ(x)>RK(x) .

Taking the expectation then yields the desired result,

E[w(t,X)] = Ψ(t)>B−1BR = Ψ(t)>R = 1 .

The condition of the lemma is fulfilled if the first entry of Ψ is constant 1, which is
common. E.g., for linear regression, this only requires the inclusion of an intercept in
the model.

The regression function may be estimated via a plug-in estimator, replacing the ex-
pectation by a sum over observations. This scenario is called Fréchet regression and
is investigated in [PM19a] and chapter 5 of this thesis.

1.3.4 Generalized Fréchet Mean
Let c : Y × Q → R be a function. Let Y be a random variable with values in Y. Let
M := arg minq∈Q E[c(Y, q)] assuming the expectations exist. In this context, c is called
cost function, Y is called data space, Q is called descriptor space, q 7→ E[c(Y, q)] is called
objective function (or Fréchet function), and M is called generalized Fréchet mean set
or c-Fréchet mean set.

This is setting encompasses the previous generalizations of FM. Set c(y, q) = y,qα−y,oα
to obtain power Fréchet means. Set c((y, w), q) = w(y,q2 − q,o2) to obtain weighted
Fréchet means. Set c((x, y), β) = (y − β>x)2 for linear regression.

This general scenario contains the setting of general M-estimation. It includes many
important statistical frameworks like maximum likelihood estimation, where Q = Θ
parameterizes a family of densities (fϑ)ϑ∈Θ on Y = Rs and c(x, ϑ) = − log fϑ(x), or
linear regression, where Q = Rs+1, Y = ({1}×Rs)×R, c((x, y), β) = (y− β>x)2. It also
includes nonstandard settings, e.g., [Huc11], where geodesics in Q are fitted to points in
Y.

We use this general setting throughout this thesis to present theorems on consistency
(chapter 2) and rate of convergence of c-FMs (chapter 4) as well as regression for metric
spaces-valued functions (chapter 5). These results encompass large classes of instances
as is visualized in the Map of Means, Figure 1.1.
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1.3.5 Further Examples

There is a vast number of objects that can be defined as c-FMs. We only show a few
more and again refer the reader to [HE20] for more applications.

1.3.5.1 Bregman Divergence

The Bregman divergence is an example of a large class of cost functions with identical
FMs. Let Q ⊆ Rs be a closed convex set. Let ψ : Q → R be a continuously differentiable
and strictly convex function. The Bregman divergence Dψ : Q×Q → [0,∞) associated
with ψ for points y, q ∈ Q is defined as Dψ(y, q) := ψ(y)− ψ(q)− 〈∇ψ(q) , y − q〉. It is
the difference between the value of ψ at point y and the value of the first-order Taylor
expansion of ψ around point q evaluated at point y. It is well-known, that the c-FM
with c = Dψ is the expectation, see [BGW05, Theorem 1]. If we set ψ(q) = ‖q‖2, the
cost function becomes the squared Euclidean metric. The Bregman Divergence yields an
example of the quadruple inequality, see section 4.3.2.2, which is a condition introduced
in this thesis to obtain rates of convergence for FMs.

1.3.5.2 k-Means

The k-means algorithm is a clustering method [Ste56], usually applied in Euclidean
spaces. It can be formulated for general metric spaces as a c-FM: Let (Q, d) be a metric
space. Let µ ∈ P2(Q, d). Let k ∈ N be the number of means. Define

c : Q×Qk → R , (y, q) 7→ min
j=1,...,k

d(y, qj)2 .

A c-FM of µ is a tuple of k points that are centers of clusters with minimal within-cluster
Fréchet variance with respect to µ. The common k-means algorithm is an instance of the
general setting with (Q, d) = (Rs, dRs) and µ = 1

n

∑n
i=1 δyi for observations y1, . . . , yn ∈

Rs, i.e., one tries to find an element of arg minq∈(Rs)k
∑n
i=1 minj=1,...,k ‖yi − qj‖2. The

classical algorithm [Llo82] is an iterative approach, which always converges after a finite
number of steps but the limit may be a local minimizer of the objective function.

1.3.5.3 Quantiles

Let τ ∈ (0, 1). For y, q ∈ R, define ρτ (y) = y(τ −1(−∞,0)(y)) and set c(y, q) = ρτ (y− q).
Then the c-FM of µ ∈ P1(R) is the τth quantile,

inf{m ∈ R : Fµ(m) ≥ τ} ∈ arg min
q∈R

∫
ρτ (y − q) dµ(y) ,

where Fµ is the distribution function of µ. This property of quantiles is used in quantile
regression, see, e.g., [Koe05]. As the median, quantiles may not be unique.
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1.3.6 Elicitability – Is Everything a Fréchet Mean?
After the overwhelming amount of objects that can be written as a (generalized) FM,
one may ask whether the notion is trivial and everything is in fact a form of FM. The
property of being a generalized FM for some cost function may be called elicitability – a
term that is usually studied in the financial mathematics literature, e.g., [LPS08; Gne11;
FZ16; FHR21].

Definition 1.26. A functional S : P(Y)→ 2Q is called elicitable if there is a cost
function c such that S(µ) = arg minq∈Q

∫
c(y, q) dµ(y).

We have seen that expectation, median, maximum likelihood statistics, and more are all
elicitable. It may seem, that the definition of c-FM is so general that every property of
a distribution is elicitable. Unfortunately, there are counterexamples. It can be shown
that the variance of a real-valued random variable is not elicitable, [Gne11]. The mode,
too, is not elicitable, [Hei14].

Interestingly, the vector of expectation and variance is elicitable: Let Y be a real-
valued random variable with E[Y 4] <∞. Then

(E[Y ],V[Y ]) = arg min
q∈R,s∈[0,∞)

E
[
(Y − q)2 +

(
(Y − q)2 − s

)2
]
.

By subtracting (Y − q)4 on the right hand side, we can reduce the moment requirement
to E[Y 2].

In a way, every property of a distribution can be part of a tuple that is a c-FM of
that distribution. To show that, we elicit the distribution itself. Let F([a, b]) be the set
of distribution functions of distributions with support in [a, b]. Let Θ be a set and let
θ : F([a, b])→ Θ be any property of a distribution in F([a, b]). Assume for a distribution
F∗ ∈ F([a, b]), we want to find ϑ∗ := θ(F∗). Let F([a, b], θ) := {(F, θ(F )) ∈ F([a, b])×Θ}.
Then

(F∗, ϑ∗) = arg min
(F,ϑ)∈F([a,b],θ)

∫ ∫ b

a

(
1(−∞,x](y)− F (x)

)2
dx dF∗(y) ,

i.e., (F∗, ϑ∗) is the c-FM of the distribution induced by F∗, where c : Y × Q → R with
Y := [a, b] and Q := F([a, b], θ) is defined by

c(y, (F, ϑ)) :=
∫ b

a

(
1(−∞,x](y)− F (x)

)2
dx .

Although this construction makes every property part of an elicitable vector, it seems
very unlikely that one can show nontrivial statements because of it.

1.4 Contributions of this Thesis
The major concern of this thesis is the theory of convergence of the sample Fréchet mean
to its population counterpart in general settings. Here, we summarize our main results.
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A more detailed description of the results and their relation to existing literature can be
found at the beginnings of each upcoming chapter.

• Strong Laws of Large Numbers – Chapter 2
— Available as preprint [Sch20b].
After a general result on the convergence of sets of minimizers, Theorem 2.6, we
show strong laws of large numbers for c-FMS (Theorem 2.9 and Theorem 2.10),
H-FMS (Corollary 2.12 and Corollary 2.13), and α-FMS (Corollary 2.14 and Corol-
lary 2.15). All results are given in outer limit and in one-sided Hausdorff distance,
which are the types of convergence usually considered in this context.
Over the years there have been several statements of strong laws of large numbers
for FMS, see [Zie77; Sve81; KW01; BP03; Huc11]. The novelty of our results is the
weakness of their assumptions. In particular, we only require an (α − 1)-moment
for the α-FMS with α > 1 to converge. Moreover, the α-FMS with α ∈ (0, 1]
converges without a requirement on the moment.

• Rates of Convergence and the Projected Mean – Chapter 3
— Available as preprint [Sch19a].
We consider the projected mean for nonconvex subsets Q of the Euclidean plane
R2. For a wide range of rate sequences (an)n∈N ⊆ (0,∞), an → 0, we construct Q
such that a sample projected mean mn converges to a population projected mean
m with rate an; to be more precise, a−1

n (mn − m) n→∞−−−→ ν in distribution for
some nondegenerate distribution ν. Corollary 3.9 presents sets Q for polynomial,
logarithmic, and exponential rates of convergence. This result is a consequence of
Theorem 3.5, which generally describes a central limit theorem with distortion due
to projection.
Conditions for parametric rates of convergence of the projected mean have been
known for some time, e.g., [HL98]. How breaking these assumptions yields different
rates is the major contribution in this chapter.

• Rates of Convergence via the Quadruple Inequality – Chapter 4
— Published in [Sch19b].
In this chapter, we find conditions to obtain a rate of convergence for the general-
ized FM. To that end, we use empirical process theory and the generic chaining. We
require an entropy condition on Q, which is typical when using these tools. More-
over, to be applicable in descriptor spaces Q with infinite diameter, a moment
condition and a quadruple inequality, which is a generalization of the Cauchy–
Schwarz inequality, are assumed. We prove nonasymptotic bounds in probability,
Theorem 4.1 and two ways of obtaining rates in expectation: In Theorem 4.5 we
assume a stronger version quadruple inequality (and a weak entropy condition) to
obtain finite sample bounds. Theorem 4.7 yields asymptotic rates of convergence,
requiring only a weak quadruple inequality but a stronger entropy condition. It
is known that in Hadamard spaces an instance of the quadruple inequality holds.
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This enables us to show rates of convergence in expectation for the FM in these
spaces, see Corollary 4.9. Furthermore, we show that we also obtain a quadruple
inequality – called power inequality – for certain powers of Hadamard metrics:

d(y, q)α − d(y, p)α − d(z, q)α + d(z, p)α ≤ 4α2−αd(y, z)α−1d(q, p) ,

for α ∈ [1, 2] and y, z, q, p in a Hadamard space, see Theorem 4.10, which leads to
finite sample bounds and rates of convergence for the respective power FMs, see
Corollary 4.11.
[PM19a] and [ALP20] show rates of convergence for FMs in metric spaces with fi-
nite diameter. In Alexandrov spaces, [Gou+19] present conditions for a parametric
rates of convergence. The contents of this chapter are set apart from these results
by being far more general – we use c-FMs instead of 2-FMs – and being applica-
ble to descriptor spaces with infinite diameter via introduction of the quadruple
inequality. Moreover, we contribute to the study of Hadamard spaces via rates
of convergence of the FM and the power inequality with the resulting rates of
convergence of power FMs.

• Regression in Non-Euclidean Spaces – Chapter 5
— Available as preprint [Sch20a].
We compare two approaches – geodesic and Fréchet – to regression with responses
in metric spaces, where the regression function is modeled as a conditional FM
and covariates are assumed to be deterministic, equidistant points in the unit in-
terval. Both approaches are applied to three estimators – linear, local linear, and
trigonometric projection. We show finite sample bounds for linear geodesic regres-
sion (Theorem 5.2), both localized estimators (Theorem 5.12 and Theorem 5.17),
and the trigonometric projection Fréchet estimator (Theorem 5.23). The obtained
rates reflect the typical parametric and nonparametric rates of convergence. Lin-
ear Fréchet regression is shown to be inconsistent (Theorem 5.8) in non-Euclidean
spaces. For specific spaces, namely the hyperspheres and hyperbolic spaces, we
introduce a parametric alternative, which we call cosine regression. Furthermore,
it is argued that a geodesic trigonometric projection estimator is suboptimal in
non-Euclidean spaces.
These general results are applied to the sphere to underline their relevance. More-
over, we compare all estimators in a simulation study. To that end, they have been
implemented using the statistical programming language R [R D08]. The code is
freely available at https://github.com/ChristofSch/spheregr.
The geodesic approach builds on [Fle13], which introduces linear geodesic regres-
sion; the Fréchet approach is based on [PM19a], which introduces linear and local
linear Fréchet regression. Local geodesic regression and trigonometric Fréchet re-
gression are new methods, making the results on the rate of convergence for these
two also a new contribution. For linear geodesic regression and local linear Fréchet
regression, rates have been establish in the literature. But our statements here
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require weaker assumptions and hold in greater generality. Furthermore, we intro-
duce cosine regression, a new method for regression on the sphere.
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2 Strong Laws of Large Numbers

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Convergence of Minimizer Sets of Deterministic Functions . 26
2.3 Strong Laws for c-Fréchet Mean Sets . . . . . . . . . . . . . . 29
2.4 Strong Laws for H-Fréchet Mean Sets . . . . . . . . . . . . . 32
2.5 Strong Laws for α-Fréchet Mean Sets . . . . . . . . . . . . . 33
2.A Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Introduction
We begin the study of Fréchet means by establishing strong laws of large numbers. In
contrast to upcoming chapters, we do not assume that the FMS is a singleton. As dis-
cussed in section 1.1.2, the FMS a can be an arbitrary set. For conditions of uniqueness,
see, e.g., section Theorem 1.21. Prominent examples of nonunique FMs are the median
(section 1.2.3) and FMs on hyperspheres like the circle, see [HH15] and section 3.4.4.

We will show strong laws of large numbers for c-FMSs. Recall the setting of section
1.3.4: Let (Q, d) be a metric space, the descriptor space. Let Y the data space. Let
c : Y × Q → R be the cost function. Let Y be a random variable with values in Y. Let
M := arg minq∈Q E[c(Y, q)] be the c-FMS assuming the expectations exist. This general
scenario contains many interesting notions of means and other statistics, including M-
estimators and regression settings, see section 1.3.4

We will apply our results on c-FMSs to H- and α-FMSs, see section 1.3.2: Fix an
arbitrary element o ∈ Q. We will set c(y, q) = H(y,q)−H(y,o), where H(x) =

∫ x
0 h(t)dt

for a nondecreasing function h, or c(y, q) = y,qα − y,oα with α > 0. In both cases the
set of minimizers does not depend on o. The H-Fréchet means serve as a generalization
of α-Fréchet means for α > 1 as well as an intermediate result for proving strong laws
of large numbers for α-Fréchet mean sets with α ∈ (0, 1].

We have described the population FMS M ; next we define its empirical version
Mn. For a function f : Q → R and ε ≥ 0, define ε- arg minq∈Q f(q) := {q ∈ Q |
f(q) ≤ ε + infp∈Q f(p)}. Let Y1, . . . , Yn be independent random variables with the
same distribution as Y . Choose (εn)n∈N ⊆ [0,∞) with εn

n→∞−−−→ 0. Let Mn :=
εn- arg minq∈Q 1

n

∑n
i=1 c(Yi, q). Our goal is to show almost sure convergence of elements

in Mn to elements in M . To this end, there are different possibilities of how this con-
vergence of sets can be described.
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Definition 2.1. Let (Q, d) be a metric space.

(i) Let (Bn)n∈N with Bn ⊆ Q for all n ∈ N. Then the outer limit of (Bn)n∈N is

lim supn→∞Bn :=
⋂
n∈N

⋃
k≥n

Bk ,

where B denotes the closure of the set B.

(ii) The one-side Hausdorff distance between B,B′ ⊆ Q is

d⊆(B,B′) := sup
x∈B

inf
x′∈B′

d(x, x′) .

(iii) The Hausdorff distance between B,B′ ⊆ Q is

dH(B,B′) := max(d⊆(B,B′), d⊆(B′, B)) .

Remark 2.2.

(a) The outer limit is the set of all points of accumulation of all sequences (xn)n∈N
with xn ∈ Bn.

(b) It holds d⊆(B,B′) = 0 if and only if B ⊆ B′, but dH(B,B′) = 0 if and only if
B = B

′. The function dH is a metric on the set of closed and bounded subsets
of Q.

(c) Elements from a sequence of sets might have sub-sequences that have no point
of accumulation and are bounded away from the outer limit of the sequence
of sets. That cannot happen with the one-sided Hausdorff limit. Here, every
sub-sequence is eventually arbitrarily close to the limiting set. As an example,
the outer limit of the sequence of sets {0, n}, n ∈ N on the Euclidean real line
is {0}, but d⊆({0, n}, {0}) n→∞−−−→∞.

We will give conditions so that lim supn→∞Mn ⊆M almost surely or d⊆(M,Mn) n→∞−−−→a.s.
0, where the index a.s. indicates almost sure convergence. It is not easily possible to
show dH(M,Mn) n→∞−−−→a.s. 0 if M is not a singleton. These results may be called strong
laws of large numbers of the Fréchet mean set or (strong) consistency of the empirical
Fréchet mean set.

[Zie77] shows a strong law for the outer limit of Fréchet mean sets with a second
moment condition. [Sve81] shows a strong law in outer limit for power Fréchet mean
sets in compact spaces. [BP03] shows convergence of Fréchet mean sets in one-sided
Hausdorff distance with a second moment condition. In contrast, we show strong laws
of large numbers for power Fréchet mean sets in outer limit and in one-sided Hausdorff
distance with less moment assumptions: For α > 1, we require E[Y,oα−1] < ∞, and
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for α ∈ (0, 1] no moment assumption is made, see Corollary 2.14 and Corollary 2.15.
Thus, α-Fréchet means may be of interest in robust statistics. [Huc11] shows almost
sure convergence in one-side Hausdorff distance as well as in outer limit for generalized
Fréchet means. Our results for c-Fréchet means in one-side Hausdorff distance require
different assumptions, which make them applicable in a larger class of settings, see
Theorem 2.9 and Remark 2.8. Results by [AW95; KW01; CHS03] imply strong laws and
ergodic theorems in outer limit for generalized Fréchet means. We recite parts of these
results to state Theorem 2.10. Furthermore, we show strong laws of large numbers for
H-Fréchet means sets in outer limit, Corollary 2.13, and one-sided Hausdorff distance,
Corollary 2.12.

Before we consider the probabilistic setting, we present theory on convergence of
minimizing sets for deterministic functions in section 2.2, where we partially follow
[RW98]. Thereafter, we derive strong laws of large numbers for c-Fréchet mean sets
in section 2.3, for H-Fréchet mean sets in section 2.4, and for α-Fréchet mean sets in
section 2.5.

2.2 Convergence of Minimizer Sets of Deterministic Functions
Let (Q, d) be a metric space. We use two notions of convergence of functions, which will
lead to different convergence results of their minimizers.

Definition 2.3. Let f, fn : Q → R, n ∈ N.

(i) The sequence (fn)n∈N epi-converges to f at x ∈ Q if and only if

∀(xn)n∈N ⊆ Q, xn → x : lim inf
n→∞

fn(xn) ≥ f(x) and

∃(yn)n∈N ⊆ Q, yn → x : lim sup
n→∞

fn(yn) ≤ f(x) .

The sequence (fn)n∈N epi-converges to f if and only if it epi-converges at all
x ∈ Q. We then write fn n→∞−−−→epi f .

(ii) The sequence (fn)n∈N converges to f uniformly on bounded sets if and only if
for every B ⊆ Q with diam(B) <∞,

lim
n→∞

sup
x∈B
|fn(x)− f(x)| = 0 .

We then write fn n→∞−−−→ubs f .

We introduce some short notation. Let f : Q → R and ε ≥ 0. Denote inf f :=
infx∈Q f(x), arg min f := {x ∈ Q | f(x) = inf f}, ε- arg min f := {x ∈ Q | f(x) ≤
ε + inf f}. Let δ > 0, x0 ∈ Q, and A ⊆ Q. Denote Bδ(x0) := {x ∈ Q | d(x, x0) < δ}
and Bδ(A) := ⋃

x∈A Bδ(x). Furthermore, f is called lower semi-continuous if and only if
lim infx→x0 f(x) ≥ f(x0) for all x0 ∈ Q.
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Definition 2.4. A function f has approachable minimizers if and only if for all
ε > 0 there is a δ > 0 such that δ- arg min f ⊆ Bε(arg min f).

The definition directly implies that d⊆(δ- arg min f, arg min f) δ→0−−−→ 0 is equivalent to f
having approachable minimizers. Furthermore, if f has approachable minimizers, then
arg min f 6= ∅, as for every δ > 0 the set δ- arg min f is nonempty, but Bε(∅) = ∅.

To state convergence results for minimizing sets of deterministic functions, we need
one final definition.

Definition 2.5. A sequence (Bn)n∈N of sets Bn ⊆ Q is called eventually bounded if
and only if

lim sup
n→∞

diam
( ∞⋃
k=n

Bk

)
<∞ .

The main theorem of this section states conditions for convergence of sets of minimizers
in outer limit and in one-sided Hausdorff distance.

Theorem 2.6. Let f, fn : Q → R. Let (εn)n∈N ⊆ [0,∞) with εn
n→∞−−−→ 0.

(i) Assume fn n→∞−−−→epi f . Then

lim supn→∞ εn- arg min fn ⊆ arg min f

and
lim sup
n→∞

inf fn ≤ inf f .

(ii) Assume f has approachable minimizers, fn n→∞−−−→ubs f , and (εn- arg min fn)n∈N
is eventually bounded. Then

d⊆(εn- arg min fn, arg min f) n→∞−−−→ 0

and
inf fn n→∞−−−→ inf f .

Large parts of this theorem can be found e.g., in [RW98, chapter 7]. To make this thesis
more self-contained, we give a proof here.

Proof.

(i) Let x ∈ lim supn→∞ εn- arg min fn. Then there is a sequence xn ∈ εn- arg min fn
with a subsequence converging to x, i.e., xni

i→∞−−−→ x, where ni i→∞−−−→∞. Let y ∈ Q
be arbitrary. As fn n→∞−−−→epi f , there is a sequence (yn)n∈N ⊆ Q with yn

n→∞−−−→ y
and lim supn→∞ fn(yn) ≤ f(y). It holds fni(xni) ≤ εni + inf fni ≤ εni + fni(yni).
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Thus, by the definition of epi-convergence and εn
n→∞−−−→ 0, we obtain

f(x) ≤ lim inf
i→∞

fni(xni) ≤ lim inf
i→∞

(εni + fni(yni)) ≤ lim sup
i→∞

fni(yni) ≤ f(y) .

Thus, x ∈ arg min f . Next, we turn to the inequality of the infima. For ε > 0 choose
an arbitrary x ∈ ε- arg min f . There is a sequence (yn)n∈N ⊆ Q with yn

n→∞−−−→ x
and fn(yn) n→∞−−−→ f(x). Thus,

lim sup
n→∞

inf fn ≤ lim sup
n→∞

fn(yn) ≤ inf f + ε .

(ii) Let ε > 0. As f has approachable minimizers, there is δ > 0 such that

(3δ)- arg min f ⊆ Bε(arg min f) .

Furthermore, arg min f 6= ∅. Let y ∈ arg min f . As fn(y) n→∞−−−→ f(y), there is
n1 ∈ N such that inf fn ≤ inf f + δ for all n ≥ n1. As εn n→∞−−−→ 0, there is n2 ∈ N
such that εn ≤ δ for all n ≥ n2. As (εn- arg min fn)n∈N is eventually bounded, there
is n3 ∈ N such that diam(B) <∞ for B = ⋃

n≥n3 εn- arg min fn. As fn n→∞−−−→ubs f
there is n4 such that supx∈B |fn(x)− f(x)| ≤ δ. Let n ≥ max(n1, n2, n3, n4) and
x ∈ εn- arg min fn. Then

f(x) ≤ fn(x) + δ ≤ inf fn + 2δ ≤ inf f + 3δ .

Thus, x ∈ (3δ)- arg min f . By the choice of ε and δ, we obtain εn- arg min fn ⊆
Bε(arg min f) or equivalently d⊆(εn- arg min fn, arg min f) ≤ ε.
Finally, we show the convergence of the infima. We already know inf fn ≤ inf f + ε
for all ε > 0 and n large enough. If inf fn n→∞−−−→ inf f does not hold, there is a
sequence xn ∈ εn- arg min fn and ε > 0 such that fn(xn) < inf f − ε for all n large
enough. As before, because of eventual boundedness and uniform convergence on
bounded sets, we have supk∈N |fn(xk)− f(xk)|

n→∞−−−→ 0. Therefore, for all ε > 0 we
have f(xn) ≤ fn(xn) + ε for n large enough, which contradicts fn(xn) < inf f − ε.

The conditions for subset convergence in outer limit are minimal. In the following,
we construct examples to show that none of the conditions for one-sided Hausdorff
convergence can be dropped.

Example 2.7.

(i) Let f, fn : N0 → R, fn := 1 − 1{0,n}, f := 1 − 1{0}, d(i, j) := 1 for i 6= j. It
holds that f is continuous and has approachable minimizers, and the sequence
of nonempty sets arg min fn = {0, n} is eventually bounded, as diam(A) ≤ 1
for every A ⊆ N0. Furthermore, fn converges to f uniformly on compact sets,
which are exactly the finite subsets of N0, but not uniformly on bounded sets
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like N0 itself. There is a subsequence of minimizers xn = n ∈ arg min fn that
is always bounded away from 0, the minimizer of f . This shows that uniform
convergence on compact sets (instead of bounded sets) is not enough.

(ii) As above, let f, fn : N0 → R, fn := 1 − 1{0,n}, f := 1 − 1{0}, but define
d(i, j) := |i−j|. It holds that f is continuous and has approachable minimizers,
and fn

n→∞−−−→ubs f , but the sequence of nonempty sets arg min fn = {0, n} is
not eventually bounded. Again, there is a subsequence of minimizers xn =
n ∈ arg min fn that is always bounded away from 0, the minimizer of f . This
shows that eventual boundedness of minimizer sets cannot be dropped.

(iii) Let f, fn : N0 → R, f(0) := 0, f(i) := 1
i , fn(i) := f(i)1{i<n}, and set d(i, j) :=

1 for i 6= j. It holds that f is continuous, but f does not have approachable
minimizers. The sequence of nonempty sets arg min fn = {0, n, n+ 1, . . .} is
eventually bounded and fn

n→∞−−−→ubs f . There is a subsequence of minimizers
xn = n ∈ arg min fn that is always bounded away from 0, the minimizer of f .
This shows that approachability of minimizers of f cannot be dropped.

In the setting of the second part of the theorem, for an arbitrary sequence εn n→∞−−−→ 0,
dH(εn- arg min fn, arg min f) does not necessarily vanish unless arg min f is a singleton.
For a result of full set convergence, see [RW98, Theorem 7.31 (c)].

2.3 Strong Laws for c-Fréchet Mean Sets
Let (Q, d) be a metric space, the descriptor space. Let Y be a set, the data space.
Let c : Y × Q → R be a function, the cost function. Let Y be a random variable with
values in Y. Denote the c-Fréchet mean set of Y as M := arg minq∈Q E[c(Y, q)]. Let
Y1, . . . , Yn be independent random variables with the same distribution as Y . Choose
(εn)n∈N ⊆ [0,∞) with εn

n→∞−−−→ 0. Set Mn := εn- arg minq∈Q 1
n

∑n
i=1 c(Yi, q).

Assumptions.

• Heine–Borel: Every closed bounded set in Q is compact.

• Continuity: The function q 7→ c(Y, q) is almost surely continuous.

• UpperBound: E[supq∈B |c(Y, q)|] <∞ for all bounded sets B ⊆ Q.

• LowerBound: There are o ∈ Q, ψ+, ψ− : [0,∞) → [0,∞), a+, a− ∈ (0,∞),
and a+

n , a
−
n ∈ [0,∞) depending on (Yi)i=1,...,n such that

a+ψ+(q,o)− a−ψ−(q,o) ≤ E[c(Y, q)] ,

a+
nψ

+(q,o)− a−nψ
−(q,o) ≤ 1

n

n∑
i=1

c(Yi, q)
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for all q ∈ Q. Furthermore, a+
n

n→∞−−−→a.s. a
+ and a−n

n→∞−−−→a.s. a
−. Lastly,

ψ+(δ)/ψ−(δ) δ→∞−−−→∞.

Remark 2.8.

• On Heine–Borel: A space enjoying this property is also called boundedly
compact or proper metric space. The Euclidean spaces Rs, finite dimen-
sional Riemannian manifolds, as well as C∞(Ω) for open subsets Ω ⊆ Rs
fulfill Heine–Borel [Edw95, section 8.4.7]. See [WJ87] for a construction of
further spaces where Heine–Borel is true.

• On LowerBound: We illustrate this condition in the linear regression set-
ting with Q := Rs+1, Y := ({1} × Rs) × R, c((x, y), β) := (y − β>x)2 −
y2 = −2β>xy + β>xx>β. Let (X,Y ) be random variables with values in
Y. Let (X1, Y1), . . . , (Xn, Yn) be independent with the same distribution as
(X,Y ). We can set o := 0 ∈ Rs+1, a+ := λmin(E[XX>]), where λmin de-
notes the smallest eigenvalue, a− := 2‖E[XY ]‖, a+

n := λmin( 1
n

∑n
i=1XiXi

>),
a−n := 2‖ 1

n

∑n
i=1XiYi‖, ψ+(δ) := δ2 and ψ−(δ) := δ. If λmin(E[XX>]) > 0, the

largest eigenvalue λmax(E[XX>]) < ∞, and E[‖XY ‖] < ∞, all conditions are
fulfilled.
For a further application of LowerBound, see the proof of Corollary 2.12 in
the next section.

Theorem 2.9. Assume Heine–Borel, Continuity, UpperBound, and Lower-
Bound. Then

d⊆(Mn,M) n→∞−−−→a.s. 0 .

Proof. Define F (q) := E[c(Y, q)], Fn(q) := 1
n

∑n
i=1 c(Yi, q). The proof consists of following

steps:

1. Show that Fn n→∞−−−→ubs F almost surely.

2. Reduction to a bounded set.

3. Show that F has approachable minimizers.

4. Show that Mn is eventually bounded.

5. Apply Theorem 2.6.

Step 1. To show uniform convergence on bounded sets, we will use the uniform law of
large numbers, Theorem 2.16 (appendix). Let B ⊆ Q be a bounded set. By Heine–
Borel, B is compact. By Continuity, q 7→ c(Y, q) is almost surely continuous. By
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UpperBound, E[supq∈B |c(Y, q)|] < ∞. Thus, Theorem 2.16 (appendix) implies that
q 7→ F (q) is continuous and

sup
q∈B
|Fn(q)− F (q)| n→∞−−−→a.s. 0 .

Fix an arbitrary element o ∈ Q. For all bounded sets B, there is δ ∈ N such that
B ⊆ Bδ(o). By the previous considerations, uniform convergence holds almost surely for
all (Bδ(o))δ∈N. Thus, Fn n→∞−−−→ubs F almost surely.
Step 2. Next, we want to show that there is a bounded set B ⊆ Q such that F (q) ≥
F (m) + 1 and Fn(q) ≥ Fn(m) + 1 for all q ∈ Q \ B and m ∈ M . If Q is bounded, we
can take B = Q. Assume Q is not bounded.

Let m ∈M . By UpperBound, F (m) <∞. Let o ∈ Q from LowerBound. Due to
LowerBound, F (q) ≥ a+ψ+(δ)−a−ψ−(δ) ≥ F (m)+2 for all q ∈ Q\Bδ(o) and δ large
enough. This holds for all m ∈M as F (m) does not change with m. We set B = Bδ(o).
For Fn, it holds Fn(m) n→∞−−−→a.s. F (m) and infq∈Q\B Fn(q) ≥ a+

nψ
+(δ) − a−nψ

−(δ) with
a+
n

n→∞−−−→a.s. a
+ and a−n

n→∞−−−→a.s. a
−. Thus, there is a random variable N0 such that

almost surely Fn(q) ≥ Fn(m) + 1 for all n ≥ N0, q ∈ Q \B, and m ∈M .
Step 3. Clearly, M ⊆ B is bounded. Furthermore, for all ε > 0 small enough the set
Dε := B \ Bε(M) is not empty (if it is, increase δ), does not contain any element of M
and, by Heine–Borel, is compact. Thus, the continuous function q 7→ F (q) attains
its infimum on Dε where infq∈Dε F (q) > infq∈Q F (q). Take ζ := min(1, 1

2(infq∈Dε F (q)−
infq∈Q F (q))). Then ζ- arg minq∈Q F (q) ⊆ Bε(M), i.e., F has approachable minimizers.
Step 4. For εn < 1 and n ≥ N0, it holds Mn ⊆ B. Thus, (Mn)n∈N is eventually bounded
almost surely.
Step 5. Finally, Theorem 2.6 implies d⊆(Mn,M) n→∞−−−→a.s. 0.

Assumptions.

• Polish: (Q, d) is separable and complete.

• LowerSemiContinuity: q 7→ c(y, q) is lower semi-continuous.

• Integrable: E[|c(Y, q)|] <∞ for all q ∈ Q.

• IntegrableInf: E[infq∈Q c(Y, q)] > −∞.

Theorem 2.10. Assume Polish, LowerSemiContinuity, Integrable, and In-
tegrableInf. Then, almost surely,

lim supn→∞Mn ⊆M .
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Proof. Define F (q) := E[c(Y, q)], Fn(q) := 1
n

∑n
i=1 c(Yi, q). By Integrable, F (q) < ∞.

[KW01, Theorem 1.1] states that Fn n→∞−−−→epi F almost surely if Polish, LowerSemi-
Continuity, and IntegrableInf are true. Theorem 2.6 then implies lim supn→∞Mn ⊆
M almost surely.

2.4 Strong Laws for H-Fréchet Mean Sets
Let (Q, d) be a metric space. Let Y be a random variable with values in Q. Let
h : [0,∞) → [0,∞) be a nondecreasing function. Define H : [0,∞) → [0,∞), x 7→∫ x

0 h(t)dt. Fix an arbitrary element o ∈ Q. Denote the H-Fréchet mean set of Y
as M := arg minq∈Q E[H(Y,q) − H(Y,o)]. Let Y1, . . . , Yn be independent random vari-
ables with the same distribution as Y . Choose (εn)n∈N ⊆ [0,∞) with εn

n→∞−−−→ 0. Set
Mn := εn- arg minq∈Q 1

n

∑n
i=1(H(Yi,q)−H(Yi,o)).

Assumptions.

• InfiniteIncrease: h(x) x→∞−−−→∞.

• Additivity: There is b ∈ [1,∞) such that h(2x) ≤ bh(x) for all x ≥ 0.

• h-Moment: E[h(Y,o)] <∞.

Remark 2.11.

• On Additivity: This implies h(x + y) ≤ b(h(x) + h(y)) for all x, y ≥ 0, see
Lemma 2.17 (appendix). If h is concave, Additivity holds with b = 2 and
we even have h(x + y) ≤ h(x) + h(y). This condition is not very restrictive,
but it excludes functions that grow exponentially.

Corollary 2.12. Assume Heine–Borel, Additivity, InfiniteIncrease, and h-
Moment. Then

d⊆(Mn,M) n→∞−−−→a.s. 0 .

Proof. We have to check the conditions of Theorem 2.9. Heine–Borel is an assumption
of the corollary. Continuity is fulfilled as (q, p) 7→ d(q, p) and x 7→ H(x) are continuous.

For UpperBound, let y, q, o ∈ Q and apply Lemma 2.17 (i) (appendix),

|H(y,q)−H(y,o)| ≤ |y,q − y,o|h(max(y,q, y,o))
≤ q,o h(q,o+ y,o)
≤ b q,o (h(q,o) + h(y,o)) ,

where the last inequality follows from Lemma 2.17 (ii) (appendix). Thus, h-Moment
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implies UpperBound.
To show LowerBound, we note that H is nondecreasing and apply Lemma 2.17 (iii)

(appendix),

H(y,q)−H(y,o) ≥ H(|y,o− q,o|)−H(y,o)
≥ b−1H(q,o)− 2 q,o h(y,o) .

Thus, we can set ψ+(δ) := b−1H(δ), ψ−(δ) := 2δ, a+ := a+
n := 1, a− := E[h(Y,o)],

and a−n := 1
n

∑n
i=1 h(Yi,o) with a−n

n→∞−−−→a.s. a
− because of h-Moment. As H(δ) =∫ δ

0 h(x)dx ≥ 1
2δh(1

2δ), ψ+(δ)/ψ−(δ) ≥ 1
4b
−1h(1

2δ)
δ→∞−−−→∞ by InfiniteIncrease.

Corollary 2.13. Assume Polish, Additivity, and h-Moment. Then, almost
surely,

lim supn→∞Mn ⊆M .

Proof. As in Corollary 2.12, H ◦d is continuous. In particular, LowerSemiContinuity
holds. Following the proof of Corollary 2.12 shows

|H(y,q)−H(y,o)| ≤ b q,o (h(q,o) + h(y,o))
H(y,q)−H(y,o) ≥ b−1H(q,o)− 2 q,o h(y,o)

due to Additivity with H(δ)/δ δ→∞−−−→∞. With that, h-Moment implies Integrable-
Inf and Integrable. Thus, Theorem 2.10 can be applied using Polish.

2.5 Strong Laws for α-Fréchet Mean Sets
Let (Q, d) be a metric space. Let Y be a random variable with values in Y. Let
α > 0. Fix an arbitrary element o ∈ Q. Denote the α-Fréchet mean set of Y as
M := arg minq∈Q E[Y,qα − Y,oα]. Let Y1, . . . , Yn be independent random variables with
the same distribution as Y . Choose (εn)n∈N ⊆ [0,∞) with εn

n→∞−−−→ 0. Set Mn :=
εn- arg minq∈Q 1

n

∑n
i=1(Yi,q

α − Yi,o
α).

Corollary 2.14. Let α > 1. Assume E[Y,oα−1] <∞.

(i) Assume Heine–Borel. Then d⊆(Mn,M) n→∞−−−→a.s. 0.

(ii) Assume Polish. Then lim supn→∞Mn ⊆M almost surely.

Proof. Set h(x) := α−1xα−1. This function is nondecreasing, fulfills Additivity with
b = 2α−1 and InfiniteIncrease. Due to E[Y,oα−1] < ∞, h-Moment is fulfilled.
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Furthermore, H(x) = xα. Thus, Corollary 2.12 and Corollary 2.13 imply the claims.

Corollary 2.15. Let α ∈ (0, 1].

(i) Assume Heine–Borel. Then d⊆(Mn,M) n→∞−−−→a.s. 0.

(ii) Assume Polish. Then lim supn→∞Mn ⊆M almost surely.

Proof. First, consider the case α = 1. Apply Lemma 2.18 (appendix) on Y,o to obtain
a function h : [0,∞) → [0,∞) which is strictly increasing, continuous, concave, fulfills
InfiniteIncrease, and E[h(Y,o)] <∞. Concavity implies Additivity with b = 1. As
its derivative is strictly increasing, H(x) =

∫ x
0 h(t)dt is convex and strictly increasing.

Thus, H has an inverse H−1 and H−1 is concave. This implies that dH(q, p) = H−1(q,p)
is a metric.

As H−1 is concave, there are u0, u1 ∈ [0,∞) such that H−1(x) ≤ u0 + u1x for all
x ≥ 0. As h is concave, there are v0, v1 ∈ [0,∞) such that h(u0 + u1x) ≤ v0 + v1h(x)
for all x ≥ 0. Thus, E[h(dH(Y, o))] = E[h(H−1(Y,o))] ≤ v0 + v1E[h(Y,o)] < ∞. Hence,
h-Moment is true for the metric dH .

Moreover, Heine–Borel and Polish of (Q, d) are preserved in (Q, dH), as H−1

is strictly increasing, concave, and continuous, with H−1(0) = 0 and H−1(δ) δ→∞−−−→
∞, and thus, the properties boundedness, compactness, separability, and completeness
coincide for d and dH . Applying Corollary 2.12 and Corollary 2.13 on the minimizers of
E[H(dH(Y, q))−H(dH(Y, o))] = E[Y,q − Y,o] now yields the claims for α = 1.

For α ∈ (0, 1) just note, that d̃(q, p) = d(q, p)α is a metric, which preserves Heine–
Borel and Polish, and apply the result for α = 1 on d̃.
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Appendix of Chapter 2

2.A Auxiliary Results
There are many versions of uniform laws of large numbers in the literature. We state
and prove one version that is tailored to our needs.

Theorem 2.16. Let (Y,ΣY) be a measurable space and Y be a random variable
with values in Y. Let Y1, . . . , Yn be independent and have the same distribution as
Y . Let (Q, d) be a metric space and B ⊆ Q compact. Let f : Y × B → R be such
that q 7→ f(Y, q) is almost surely continuous. Assume there is a random variable
Z such that |f(Y, q)| ≤ Z for all q ∈ B with E[Z] < ∞. Then q 7→ E[f(Y, q)] is
continuous and

sup
q∈B

∣∣∣∣∣ 1n
n∑
i=1

f(Yi, q)− E[f(Y, q)]
∣∣∣∣∣ n→∞−−−→a.s. 0 .

Proof. Let ε > 0. As B is compact, there is a finite set {q1, . . . , qk} ⊆ Q such that
B ⊆

⋃k
`=1 Bε(q`). We split the supremum,

sup
q∈B

∣∣∣∣∣ 1n
n∑
i=1

f(Yi, q)− E[f(Y, q)]
∣∣∣∣∣

≤ sup
`∈{1,...,k}

sup
q∈Bε(q`)

∣∣∣∣∣ 1n
n∑
i=1

(f(Yi, q)− f(Yi, q`))− E[f(Y, q)− f(Y, q`)]
∣∣∣∣∣

+ sup
`∈{1,...,k}

∣∣∣∣∣ 1n
n∑
i=1

f(Yi, q`)− E[f(Y, q`)]
∣∣∣∣∣ .

For the second summand, by the strong law of large numbers with E[Z] <∞,

sup
`∈{1,...,k}

∣∣∣∣∣ 1n
n∑
i=1

f(Yi, q`)− E[f(Y, q`)]
∣∣∣∣∣ n→∞−−−→a.s. 0 .

35



For the first summand,

sup
`∈{1,...,k}

sup
q∈Bε(q`)

∣∣∣∣∣ 1n
n∑
i=1

(f(Yi, q)− f(Yi, q`))− E[f(Y, q)− f(Y, q`)]
∣∣∣∣∣

≤ 1
n

n∑
i=1

sup
q,p∈B, q,p≤ε

|f(Yi, q)− f(Yi, p)|+ E
[

sup
q,p∈B, q,p≤ε

|f(Y, q)− f(Y, p)|
]
.

By the strong law of large numbers with E[Z] <∞,

1
n

n∑
i=1

sup
q,p∈B, q,p≤ε

|f(Yi, q)− f(Yi, p)| n→∞−−−→a.s. E
[

sup
q,p∈B, q,p≤ε

|f(Y, q)− f(Y, p)|
]
.

Thus,

P
(

lim sup
n→∞

sup
q∈B

∣∣∣∣∣ 1n
n∑
i=1

f(Yi, q)− E[f(Y, q)]
∣∣∣∣∣ ≤ aε

)
= 1 , (2.1)

where aε = 2E
[
supq,p∈B, q,p≤ε |f(Y, q)− f(Y, p)|

]
. As q 7→ f(Y, q) is almost surely contin-

uous and B is compact, q 7→ f(Y, q) is almost surely uniformly continuous, i.e., for all
δ > 0 there is ε > 0 such that |f(Y, q)− f(Y, p)| ≤ δ for all q,p ≤ ε. As E[Z] < ∞, we
can use dominated convergence to obtain

lim
ε↘0

E
[

sup
q,p∈B, q,p≤ε

|f(Y, p)− f(Y, p)|
]

= E
[

lim
ε↘0

sup
q,p∈B, q,p≤ε

|f(Y, p)− f(Y, p)|
]

= 0 .

Thus, aε
ε↘0−−→ 0. Together with (2.1), this implies

sup
q∈B

∣∣∣∣∣ 1n
n∑
i=1

f(Yi, q)− E[f(Y, q)]
∣∣∣∣∣ n→∞−−−→a.s. 0 .

We have also shown that q 7→ E[f(Y, q)] is continuous, as |E[f(Y, q)]− E[f(Y, p)]| ≤
aq,p.

Lemma 2.17. Let h : [0,∞) → [0,∞) be a nondecreasing function. Define its
integral function as H : [0,∞)→ [0,∞), x 7→

∫ x
0 h(t)dt. Let x, y ≥ 0. Then

(i) |H(x)−H(y)| ≤ |x− y|h(max(x, y)).

Assume, there is b ∈ [1,∞) such that h(2u) ≤ bh(u) for all u ≥ 0. Then

(ii) 1
2h(x) + 1

2h(y) ≤ h(x+ y) ≤ b (h(x) + h(y)),

(iii) H(|x− y|)−H(x) ≥ b−1H(y)− 2yh(x).
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Proof. (i) This is a direct consequence of the mean value theorem.

(ii) As h is nondecreasing, max(h(x), h(y)) ≤ h(x + y) ≤ max(h(2x), h(2y)). By the
definition of b and with 1

2(u+v) ≤ max(u, v) ≤ u+v for u, v ≥ 0 the claim follows.

(iii) First, consider the case x ≥ y. Define f(x, y) = H(x−y)−H(x)−b−1H(y)+2yh(x).
We want to show f(x, y) ≥ 0. The derivative of f with respect to y is

∂yf(x, y) = −h(x− y)− b−1h(y) + 2h(x) .

By applying the first inequality of (ii) to h(x) = h((x−y)+y), we obtain ∂yf(x, y) ≥
0 as b−1 ≤ 1. Hence, f(x, y) ≥ f(x, 0) = 0, as H(y) = 0.
Now, consider the case x ≤ y. Set g(x, y) = H(y− x)−H(x)− b−1H(y) + 2yh(x),
which yields

∂yg(x, y) = h(y − x)− b−1h(y) + 2h(x) .

By applying the second inequality of (ii) to h(y) = h((y − x) + x), we obtain
∂yg(x, y) ≥ 0 as b−1 ≤ 1. Thus, g(x, y) ≥ g(x, x) = −(1 + b−1)H(x) + 2xh(x) as
H(0) = 0. By the definition of H, as h is nondecreasing, H(x) ≤ xh(x). Hence,
g(x, y) ≥ 0 as 1 + b−1 ≤ 2.
Together, we have shown H(|x− y|)−H(x)−b−1H(y)+2yh(x) ≥ 0 for all x, y ≥ 0.

Lemma 2.18. Let X be a random variable with values in [0,∞). Then there is
a strictly increasing, continuous, and concave function h : [0,∞) → [0,∞) with
h(δ) δ→∞−−−→∞ such that E[h(X)] <∞.

Proof. If there is K > 0 such that P(X < K) = 1 take h(x) = x. Now, assume
that X is not almost surely bounded. We first construct a nondecreasing function
h̃ : [0,∞) → [0,∞) such that h̃(x) x→∞−−−→ ∞ with E[h̃(X)] < ∞. Then we construct a
function h from h̃ with all desired properties.

Let F be the distribution function of X, F (x) = P(X ≤ x). Let z1 := 0 and zn+1 :=
inf{x ≥ zn + 1 | 1− F (x) ≤ 1

n}. As F (x) x→∞−−−→ 1, zn <∞. Furthermore, zn+1 − zn ≥ 1.
Moreover, as X is not almost surely bounded, 1− F (x) > 0 for all x ≥ 0. Set

g(x) :=
∞∑
n=1

(zn+1 − zn)−1n−21[zn,zn+1)(x) ,

h̃(x) :=
∫ x

0

g(t)
1− F (t)dt .
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Then

lim
x→∞

h̃(x) =
∫ ∞

0

g(t)
1− F (t)dt ≥

∞∑
n=1

n−1 =∞ .

Moreover, h̃(x) is strictly increasing, as g(t) ≥ 0 and 1 − F (t) ≥ 0. The function h̃ is
continuously differentiable everywhere except at point zn, n ∈ N. Thus,

E[h̃(X)] =
∫ ∞

0
P
(
h̃(X) > t

)
dt

=
∫ ∞

0
P
(
X > h̃−1(t)

)
dt

=
∫ ∞

0
h̃′(t)P(X > t)dt

=
∫ ∞

0
g(t)dt

=
∞∑
n=1

n−2 <∞ .

Let a0 := 1, x0 := 0, xn+1 := inf{x ≥ xn+a−1
n | h̃(x) ≥ n+1} and an+1 := (xn+1−xn)−1.

Let h : [0,∞) → [0,∞) be the linear interpolation of (xn, n)n∈N0 . As h̃(x) x→∞−−−→ ∞,
all xn are finite. Hence, h(x) x→∞−−−→ ∞. Because of an > 0, h is strictly increasing.
Furthermore, an+1 ≤ an as xn+1 ≥ xn+a−1

n . As h is continuous and an is the derivative
of h in the interval (xn, xn+1), h is concave. Lastly, h(x) ≤ h̃(x) + 1. Thus, E[h(X)] <
∞.
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3.1 Introduction
We continue our journey through the realm of Fréchet means with one of its simplest
nonstandard instances: the projected mean. After showing in chapter 2 that the sample
FM does converge, we now want to know how fast it converges. To be more precise, we
ask: What is the rate of convergence of a sample projected mean of independent and
identically distributed data to the respective population projected mean? We will learn
that although the projected mean often has a similar behavior as the Euclidean mean,
in some instances it might act very differently. In fact, for any given target rate, we
can construct cases where the sample projected mean converges with that rate to its
population counterpart. This demonstrates the subtleties involved in finding rates of

39



convergence for FMs and empathizes the importance of the upcoming chapters, where
rats for FMs are established in a general setting.

We recapitulate the definitions of projected and extrinsic mean from 1.2.4, here
only for the Euclidean plane: Let Z be a random variable with values in R2 and
finite second moment. Let Q ⊆ R2 be a subset of the Euclidean plane. Assume
m := arg minp∈Q ‖E[Z] − p‖ exists and is unique. We call m the (population) pro-
jected mean of Z in Q. It is the FM of (R2, dR2). Let Z1, . . . , Zn be independent
and identically distributed copies of Z. We estimate m by a sample projected mean
mn ∈ arg minp∈Q ‖Z̄n − p‖, Z̄n := 1

n

∑n
i=1 Zi. If Z takes values only in Q, then m and

mn are called (population) extrinsic mean and sample extrinsic mean, respectively, see,
e.g., [BP03]. In [HL98], the extrinsic mean is called mean location.

For a given rate sequence (an)n∈N ⊆ (0,∞), an → 0 our goal is to find a set Q
such that for a large class of distributions of Z a central limit theorem of the form
a−1
n (mn −m) n→∞−−−→ ν holds for some nondegenerate distribution ν. Then mn converges

to m in probability at rate an.
Asymptotics of extrinsic sample means in cases with parametric rate of convergence,

i.e., an = n−
1
2 , are well-studied in [HL98; Pat98; BP03; BP05] among others. This line

of work is mostly concerned with finite dimensional manifolds, but results for infinite
dimensional Hilbert manifolds are available [EPR13]. Slower rates for intrinsic sample
means, i.e., minimizers of p 7→ ∑n

i=1 dQ(Zi, p)2 with the intrinsic metric dQ, have been
observed on the circle [HH15] and more general manifolds [EH19]. In some cases intrinsic
and extrinsic means coincide [BP03, Theorem 3.3]. But this is not true in general.

The occurrence of a rate of convergence slower than the parametric one is called
smeariness. If, in contrast, the sample mean is equal to its population counterpart with
high probability, the behavior is called stickiness, which is observed for intrinsic means
in certain negatively curved spaces [Hot+13; Huc+15].

3.1.1 Medial Axis and Reach
To be unique, m must not be located on the medial axis MQ of the set Q, which is the
set of all points that have more than one closest point in Q. Recall from section 1.2.4,

MQ =
{
z ∈ R2

∣∣∣∣ ∃p1, p2 ∈ Q, p1 6= p2 : ‖p1 − z‖ = ‖p2 − z‖ = inf
p∈Q
‖p− z‖

}
.

The medial axis has been analyzed from a purely geometric perspective [BD17]. By the
definition of medial axis MQ as it it is used here, it need not be a closed set, as the
example Q =

{
y = x2} ⊆ R2, MQ = (1/2,∞) × {0} shows. Note that this contrasts

some mentions of the term in the literature, e.g., in the context of [BP03, Theorem 3.2].
See [HHM10, Theorem A.5] for a sufficient condition for a closed medial axis.

The reach [Fed59] τQ := infm∈MQ,p∈Q ‖m−p‖ of a set Q ⊆ R2 is the largest nonnega-
tive real value such that any point in R2 with distance toQ less than τQ has a unique clos-
est point inQ. IfQ is a C2-manifold, the projection map z 7→ ΠQ(z) = arg minp∈Q ‖z−p‖
is continuously differentiable on R2\MQ with ‖∇ΠQ(z)‖ > 0 [Aba78]. If additionally the
reach τQ is greater than the distance of E[Z] to Q, the projected sample mean attains a
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parametric rate of convergence [HL98; BP05]: The delta-method yields
√
n (mn −m) =

√
n
(
ΠQ(Z̄n)−ΠQ(E[Z])

)
d−→ N (0, Σ̃) where Σ̃ = ∇ΠQ(E[Z])′ · COV(Z) · ∇ΠQ(E[Z]).

As convergence is a local phenomenon, we can replace the condition on the reach by the
requirement that E[Z] is bounded away from the medial axis MQ.

We construct sets Q with faster and slower rates of convergence than 1/
√
n. In our

examples, the sets Q for slow rates are C2-smooth, but E[Z] is too close to the medial
axis, i.e., E[Z] ∈ MQ \MQ. Sets Q with fast rates have reach τQ > infp∈Q ‖E[Z] − p‖
but are only C1- but not C2-manifolds.

3.1.2 Our Construction

For a continuous function f with f(0) = 0, we construct Q = Qf such that the projection
of a point (x, y)′ ∈ R2 to Q is roughly (1, f(y))′ for |x|, |y| small enough. Assuming
E[Z] = 0 ∈ R2, the arithmetic mean Z̄n = (X̄n, Ȳn)′ concentrates at 0 with rate 1/

√
n.

Thus, mn = ΠQ(Z̄n) ≈ (1, f(Ȳn))′ concentrates at (1, 0)′ with a rate depending on
f . For a wide range of rates (an)n∈N ⊆ (0,∞), an → 0, we can find a function f
with corresponding set Q such that a−1

n (mn − m) n→∞−−−→ ν in distribution for some
nondegenerate distribution ν. As an example, f(y) = |y|γ , γ > 0 yields an = n−

γ
2 , see

Corollary 3.9. Examples of constructed sets for qualitatively different rates can be found
in Figure 3.1.

3.1.3 Outline

In section 3.2, we present our main theoretical results. We state the requirements on the
function f and describe how the set Q is constructed from f . Proposition 3.3 states a
result on deterministic projection to Q, while Theorem 3.5 describes how the projected
sample mean converges to the projected population mean. The goal of section 3.3 is
to illustrate the general statement of Theorem 3.5. We derive Corollary 3.9, which
presents explicit functions f and sets Q for certain target rates an. In particular, we give
examples where projected means attain polynomial, logarithmic, or exponential rates of
convergence. Moreover, the results are visualized. All proofs are given in section 3.A.
Lastly, to place these results in a larger context, we discuss some further circumstances
where parametric means diverge from the parametric rate of convergence, in section 3.4.

3.2 Results

The possible choices of the function f , which determines the set Q = Qf and, thus, the
rate of convergence, are not restricted very much.

(A0): Let b > 0. Let f ∈ C0([0, b]) be strictly increasing with f(0) = 0.

Under the assumption (A0), we construct the set Q as follows. Set B := f(b). We
denote the inverse function of f : [0, b]→ [0, B] by g : [0, B]→ [0, b], i.e., g(x) := f−1(x).
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For t ∈ [0, B], define r(t) := rf (t) := 1 +
∫ t

0 g(x)dx. Finally, define

q(t) := qf (t) := r(|t|)
(

cos(t)
sin(t)

)
for t ∈ [−B,B] ,

Q := Qf := {q(t) : t ∈ [−B,B]} .
(3.1)

Our main results are based on the observation that the projection of a point (x, y)′ to
Q for x, y small enough is essentially (1, f(y))′.

We denote the projection of z ∈ R2 to Q as ΠQ(z), i.e., ΠQ(z) := arg minp∈Q ‖z − p‖.
If the argmin is not unique, we assume that one element of the argmin–set is chosen by
a fixed arbitrary mechanism, e.g., smallest lexicographic order. The argmin–set cannot
be empty as Q is compact by construction.

Lemma 3.1. Assume (A0) with Q from (3.1). For y ∈ R, we consider y → 0. Let
x = O(y), and ty ∈ [−B,B] such that ΠQ((x, y)′) = q(ty). Then

g(ty) = y + o(y) .

Remark 3.2 (Simpler construction). As can be seen from the proof of Lemma 3.1,
a simpler construction in the case of f(t) = o(t), where t→ 0, is replacing q(t) by

q̃(t) :=
(

1 + tg(t)
t

)
.

This yields the same results, but does not include g(t) = o(t).

The projection of a point close to the origin is represented by ty. Lemma 3.1 describes
ty in an indirect way, i.e., after applying the function g. To have a direct statement, we
need to make additional assumptions.

(A1): Assume

lim
y↘0

f(y + cy(y + f(y)))
f(y) = 1

for all c ∈ R.

(A1)’: Assume

lim
y↘0

f(y + cyf(y)(y + f(y)))
f(y) = 1

for all c ∈ R.
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Proposition 3.3. Assume (A0) and (A1) with Q from (3.1). For y ∈ R, consider
y → 0. Let x = O(y) and ty ∈ [−B,B] such that ΠQ((x, y)′) = q(ty). Then

ty = f(y) + o(f(y)) and ΠQ
((

x
y

))
=
(

1
f(y)

)
+ o(f(y)) .

Furthermore, if x = 0, we can replace the assumption (A1) by (A1)’.

This shows that a point close to the origin essentially is projected to (1, f(y))′. Let us
shortly discuss the conditions for this result.

Remark 3.4 (On the assumptions (A1) and (A1)’).

(a) We have
lim
y↘0

f(y + o(y))
f(y) = 1 (3.2)

for any function of the form f(y) = ayγ , with a, γ > 0. Furthermore, (3.2)
implies (A1), and (A1) implies (A1)’.

(b) It is unclear to the author, whether there is a function that fulfills (A0) but
not (A1’).

(c) The function f(y) = exp(−1/y) fulfills (A0) and (A1)’, but does not fulfill
(A1). If we set x = y, we obtain

ty = f

(
y

1− y

)
+ o

(
f

(
y

1− y

))
= exp(1)f(y) + o(f(y)) 6= f(y) + o(f(y)) .

If we set f̃(y) = exp(− exp(1/y)), we even have f̃(y) = o(t̃y).
Note that x 7→ exp(−1/x)1(0,∞)(x) is a classical example of a function that
is infinitly often differentiable but not analytic: for every k ∈ N0 the k-th
derivative at 0 is 0, f (k)(0) = 0.

(d) If f ∈ Ck, i.e., f is k-times continuously differentiable, k ∈ N, and there is an
` ∈ {1, . . . , k} such that f (`)(0) 6= 0, we set `0 = min{` ∈ {1, . . . , k} : f (`)(0) 6=
0}. Then, by Taylor’s theorem, f(z) = f (`0)(0)

`0! z`0 + o(z`0). Thus, (3.2), (A1),
and (A1)’ hold.

As taking the projected mean is projecting the Euclidean mean in R2 to Q, Lemma 3.1
induces a central limit theorem for projected means. This is the main result of this
chapter. It is illustrated in the next section.
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Theorem 3.5. Assume (A0) with Q from (3.1). Let Z = (X,Y )′ be a random
variable in R2 with finite second moment, E[Z] = 0 ∈ R2, and V[Y ] = σ2 > 0. Let
Z1, . . . , Zn be independent copies of Z. Then the projected population mean m ∈ Q
exists, is unique, and

m = ΠQ(E[Z]) = arg min
p∈Q

E[‖Z − p‖2] = q(0) =
(

1
0

)
.

Let (mn,1,mn,2)′ := mn := ΠQ
(
Z̄n
)
, Z̄n := 1

n

∑n
i=1 Zi. Then mn is a projected

sample mean. Let tn ∈ [−B,B] such that mn = q(tn). Then, for s ≥ 0,

lim
n→∞

P
(
tn ≤ f

(
s√
n

))
= lim

n→∞
P
(
−tn ≤ f

(
s√
n

))
=

lim
n→∞

P
(
mn,2 ≤ f

(
s√
n

))
= lim

n→∞
P
(
−mn,2 ≤ f

(
s√
n

))
= Φ

(
s

σ

)
,

where Φ denotes the distribution function of a standard normal random variable.
Moreover,

P
(
|mn,1 − 1| ≥ f

(
s√
n

))
n→∞−−−→ 0 .

Before applying the theorem to better understand its implications, we quickly remark
on some theoretical properties.

Remark 3.6 (Arc length). The curve q(t) in (3.1) is not necessarily parameterized
by arc length. But q ∈ C1((−B,B)) and ‖q̇(t)‖ = 1 + o(1) for |t| → 0 as

‖q̇(t)‖2 = (g(t) cos(t)− r(t) sin(t))2 + (g(t) sin(t) + r(t) cos(t))2

= 1 + (g(t)− t)2 + O(tg(t) + t2) .

Thus, the results on tn in Theorem 3.5 also hold if tn is replaced by an arc length
parametrization.

Remark 3.7 (Why Theorem 3.5 does not require (A1)). In contrast to Proposi-
tion 3.3, we do not require (A1) or (A1’) in Theorem 3.5. In particular, in the
setting of Remark 3.4 (c), f(y) = exp(−1/y), we have

P
(
tn ≤ f

(
s√
n

))
n→∞−−−→ Φ

(
s

σ

)
,

for s ≥ 0 even though tn 6= f(Ȳn) + o(f(Ȳn)). The reason is that the difference
between tn and f(Ȳn) is negligible in the scale that is used in Theorem 3.5. The
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right scale for a central limit theorem of tn is the one of Ȳn (multiplied by
√
n), i.e.,

g(tn). The factor e in tn ≈ ef(Ȳn), see Remark 3.4 (c), is nonnegligible on the scale
of tn, but on the scale of Ȳn it becomes

g(ef(Ȳn))
Ȳn

=
log
(
e−1 · exp

(
Ȳ −1
n

))−1

Ȳn
= 1/(1− Ȳn) n→∞−−−→ 1

almost surely, i.e., negligible.

Remark 3.8 (Nonuniqueness). Nonunique closest points of Z̄n are not a problem
in Theorem 3.5 as P(Z̄n ∈MQ)→ 0 by V[Y ] = σ2 > 0. See also Remark 3.15.

3.3 Illustration
To illustrate Theorem 3.5, we apply it to explicit functions f , which yield polynomial,
logarithmic, and exponential rates of convergence for mn → m, respectively.

Corollary 3.9. Use the setting of Theorem 3.5.

(i) Let f(y) = yγ with γ > 0. Then r(t) = 1 + γ
1+γ t

1+γ
γ and

n
γ
2 tn → T

in distribution, where P(T ≤ s) = Φ
(

sgn(s)|s|
1
γ

σ

)
for all s ∈ R.

(ii) Let f(y) = (− log(y))−γ with γ > 0. Then r(t) = 1 +
∫ t

0 exp
(
−x−

1
γ

)
dx and

(1
2 log(n)

)γ
tn → T

in distribution, where P(T = 1) = P(T = −1) = 1
2 .

(iii) Let f(y) = exp(−y−γ) with γ > 0. Then r(t) = 1 +
∫ t

0 log
(
x−1)− 1

γ dx. For
c > 0, define Un,c := exp((

√
n/c)γ) tn and pc := Φ( cσ ). Then, for all u ∈ (0,∞),

P(Un,c ≥ u) n→∞−−−→ 1− pc, P(Un,c ≤ −u) n→∞−−−→ 1− pc, and P(|Un,c| ≤ u) n→∞−−−→
2pc − 1.

The results also hold when tn is replaced by mn,2.

The results of Corollary 3.9 are also true in arc length, see Remark 3.6.
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Remark 3.10 (On Corollary 3.9).

(i) For any polynomial scale nγ , part (i) of Corollary 3.9 gives an example of a
central limit theorem with that scale.

(ii) In part (ii) we obtain a central limit theorem with logarithmic scale and a
Bernoulli-type limiting distribution that does not depend on σ. This seems
quite remarkable and can be explained as follows:
Scaling our observations Zi by σ−1, is roughly like scaling n by σ2 as the
variance is V[σ−1Ȳn] = n−1 ≈ V[Ȳ[nσ2]], where [nσ2] denotes the closest integer
to nσ2. The scaling factor log(n)γ is asymptotically equivalent to log(nσ2)γ .
Thus, constant factors like σ cannot influence the asymptotic distribution on
the scale log(n)γ .
Densities of tn in the case of normally distributed observations are plotted in
Figure 3.2.

(iii) The statement of part (iii) of Corollary 3.9 can be summarized informally by

exp
(
(
√
n/c)γ

)
tn → Tc ,

where P(Tc = ∞) = P(Tc = −∞) = 1 − pc and P(Tc = 0) = 2pc − 1. The
limiting distribution has mass only at 0 and ±∞. If the scale is changed such
that the limit does not have a point mass at 0, all mass escapes to ±∞. If the
scale is such that no mass escapes to ±∞, then in the limit all mass is at 0.
Densities of tn in the case of normally distributed observations are plotted in
Figure 3.3 on a log-log-scale. Only the positive axis of the symmetric densities
is displayed. The plot shows that the densities have nonnegligible mass at all
small orders of magnitude. Thus, choosing one specific order of magnitude by
a specific scale makes all mass on larger orders of magnitude escape to infinity
and all mass at smaller orders of magnitude go to 0.

Remark 3.11 (Extrinsic mean). For the sets Q constructed in Corollary 3.9, there
might not be a distribution with support in Q that has expectation 0. In partic-
ular, they might not directly yield examples of extrinsic means with the described
asymptotic behavior. This is but a technical inconvenience. We can extend Q with
an arbitrary set of points which have a distance to the origin that is bounded away
from 1, and the result does not change. By doing so, we can also construct 2-
dimensional manifolds with boundary which induce the same convergence results as
the 1-dimensional structures in Corollary 3.9.
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Figure 3.4: The images show the set Q (black) for different curves q, which are chosen
as described in Corollary 3.9. For reference, a circle (gray) with radius 1
around the origin is drawn. The expectation of Z and its projection to Q
are marked in red and green, respectively.



Remark 3.12 (Application of Proposition 3.3). For the functions f in (i) and (ii),
(A1) holds, see section 3.A.5. Thus, Proposition 3.3 implies

mn = ΠQ(Z̄n) ≈
(

1
sgn(Ȳn)f(|Ȳn|)

)
,

meaning
∣∣∣mn,2 − sgn(Ȳn)f(|Ȳn|)

∣∣∣ /f(|Ȳn|)→ 0 and |mn,1 − 1| /f(|Ȳn|)→ 0 in proba-
bility. In (iii) only (A1’) is true. Thus, the equation above is true for (iii) if X = 0
almost surely.

Remark 3.13 (Delta method). In light of the delta method, note that, in the cases
above, f ′(0) is 0 or∞, except when f is equal to the identity in (i). This is the only
case of Corollary 3.9 that yields the usual parametric rate and the conditions of the
δ-method are fulfilled.

Figure 3.4 illustrates the sets Q constructed according to the functions f from Corol-
lary 3.9. The results on the convergence rate described in Theorem 3.5 and Corollary 3.9
depend only on the form of the curve close to the point (1, 0)′. Even so the curve [(ii)
log, γ = 4] looks like it is growing faster away from the circle than [(i) poly, γ = 0.25],
the opposite is true when observing a neighborhood of (1, 0)′ that is small enough.

There is a smooth transition of the set Q between slow and fast rates, see Figure 3.1.
A circle with radius 1 centered at the origin can be seen as one extreme case, in the sense
that an arbitrarily small change of a point at the origin can change its projection by a
large amount. If Q almost looks like this circle, but increases its radius r(t) slow enough,
i.e, r(t) . 1 + t2, we still have large changes in the projection, but not arbitrarily large.
For a larger circle with center (−δ, 0)′ and radius 1+ δ or a straight vertical line through
(1, 0)′ the changes of point and projection are proportional, i.e, r(t) ≈ 1+ t2. Changes in
the point effect the projection only little if q(t) grows to the right quickly when moving
away from (1, 0)′, i.e, r(t) & 1 + t2. For Q = {(1+|y|, y)′ : y ∈ R} certain changes do not
change the projection at all. In particular, P(mn = m)→ 1 (stickiness).

Remark 3.14 (Larger circles). A circle with center at (−δ, 0)′, δ > 0, and radius
1 + δ, see Figure 3.5, can be described by our construction with

r(t) =
√

cos(t)2δ2 + 2δ + 1− cos(t)δ ,

t ∈ [−π, π]. Thus,

g(t) = ṙ(t) = δ sin(t)− cos(t) sin(t)δ2√
cos(t)2δ2 + 2δ + 1

= δ

δ + 1 t+ O(t2) .

Hence, the projection ΠQ(Z̄n) scales the y-direction only by a constant factor with-
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Figure 3.5: The black curve shows the set Q as described in Remark 3.14 with δ =

0.3. For reference, a circle (gray) with radius 1 around the origin is drawn.
The expectation of Z and its projection to Q are marked in red and green,
respectively.

out affecting the rate of convergence. In particular we have a parametric rate of
convergence. This can also be inferred by noting that Q is C2-smooth and has a
reach larger than 1 as described in the introduction.

Remark 3.15 (Reach and Medial Axis). A set Q of our construction has reach at
most 1 if g(t) = o(t) for t↘ 0. This can be seen from Remark 3.14: If every circle
with center at (−δ, 0)′ and radius 1 + δ for δ ∈ (0, δ0), δ0 > 0 intersects Q at more
than one point the reach can be at most 1. Moreover, such a circle is constructed
with gcircle,δ(t) of order t, i.e., g(t) = o(gcircle,δ(t)) and r(t) = o(rcircle,δ(t)). Thus,
{(−δ, 0)′ : δ ∈ (0, δ0)} ⊆ MQ and 0 ∈ ∂MQ.

3.4 Digression: Nonstandard Rates of Convergence

In parametric statistics, one often observes the parametric rate of convergence, i.e.,
d(θ̂n, θ) is of order n− 1

2 for an estimator θ̂n of θ in a metric space (Q, d), where usually
Q ⊆ Rs is convex and d is the Euclidean distance. In one way or another, the appearance
of that rate is often connected to the central limit theorem (CLT): Let Z be a real-valued
random variable with variance σ2 ∈ (0,∞) and (Zi)i∈N be independent and identically
distributed copies of Z. Then n

1
2 (Z̄n − E[Z]) n→∞−−−→d N (0, σ2), where Z̄n := 1

n

∑n
i=1 Zi.

Similarly the rate appears in the L2 distance, E[(Z̄n − E[Z])2] 1
2 = σn−

1
2 .

Knowing this, natural questions to ask could be: What other rates of convergence
can occur, in which setting, and why? To get some satisfying answers, we need to make
further restrictions: We assume that, as above (Zi)i∈N be independent and identically
distributed copies of a random variable Z with distribution Z∗P and live in R or R2,
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Figure 3.6: Heavy-tailed densities.

and θ̂n(Z1, . . . , Zn) is an estimator of θ(Z∗P). Furthermore, θ should be a Fréchet mean
with respect to some metric (or a generalization of it).

We exclude nonparametric settings, where it is well-known that the nonparametric rate
of convergence n

− β
2β+s for a smoothness parameter β > 0 and a dimension parameter

s ∈ N occurs when estimating β-smooth functions Rs → R. Roughly, these slower rates
are a consequence of estimating an object inside an infinite dimensional space from finite
dimensional observations.

3.4.1 Levy α-stable distributions

The CLT for Levy α-stable distributions Pα∞ gives us a first answer, how we can create
slower rates of convergence: by violating the second moment condition of the classical
CLT.

Proposition 3.16 ([Kle14, chapter 16.2]). Let Z have a density f : R→ [0,∞) that
is symmetric, f(z) = f(−z), with tail behavior f(z) ∼ |z|−α−1 for α ∈ (0, 2]. Then
n
α−1
α Z̄n

d−→ Pα∞.

For α = 2 this is the classical CLT. We obtain slow rates nα−1
α < n

1
2 for α ∈ (0, 2).

The rates for α < 1 are even too slow for convergence in the sense of a law of large
numbers. The second moment condition is violated as E[|Z|β] = ∞ for β > α, due to
the heavy tails of f , see Figure 3.6, and the strong dependence of the Euclidean mean
on extreme observations. Note that nontrivial results for faster rates are not possible
with this construction.
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3.4.2 Max-stable distributions

Related to Levy α-stable distributions are max-stable distributions, which occur in ex-
treme value theory. Extreme value theory studies the statistic θn := max(Z1, . . . , Zn).
For the maximum, different rates of convergence can be observed:

Proposition 3.17 ([HF06, chapter 1]). Let α > 0.

(i) Let Z ∼ Pareto(α), i.e., P(Z ≤ t) = 1− t−α for t ≥ 1. Then n−
1
α θn

d−→ Z∞ ∼
Frechet(α), i.e., P(Z∞ ≤ t) = exp(−t−α) for t > 0.

(ii) Let Z + 1 ∼ Beta(1, α), i.e., P(Z ≤ t) = 1 − (−t)α for t ∈ [−1, 0]. Then
n

1
α θn

d−→ Z∞ ∼Weibull(α), i.e., P(Z∞ ≤ t) = exp(−(−t)α) for t ≤ 0.

Obviously, the empirical maximum is determined by values close to the right endpoint
zmax := sup supp(Z∗P) ∈ R ∪ {∞} of the support of the distribution of Z. Thus, we
observe slow rates for densities f of Z with f(z)→ 0 as z → zmax (i) and fast rates for
f(z)→∞ as z → zmax (ii).

The maximum is the limit case of Hölder means with power α → ∞, but it may not
be a Fréchet mean, which are the objects we want to study. Fortunately, we can use the
same idea and reasoning as above to obtain different rates for the median, as is shown
in the next section.

3.4.3 Median

Let θn := median(Z1, . . . , Zn), θ := median(Z∗P). The empirical median θn is not influ-
enced by extreme values, but depends strongly on the mass of Z∗P close to θ. This is
opposite to the arithmetic mean. Assume the density f of Z is symmetric f(z) = f(−z).
Thus 0 is a median of Z. On one hand, if f(z) = 0 for all z ∈ [−a, a], a > 0, then
clearly the interval [−a, a] is in the set of medians. On the other hand, if Z is equal to 0
with positive probability, e.g., Z∗P = pδ0 + (1− p)g·dz with p ∈ (0, 1] and a probability
density g, the median is sticky, i.e., after finitely many samples it holds θn = θ with
high probability. Furthermore, if the density f of Z is continuous and 0 < f(0) < ∞,
it is well-known that n 1

2 θn
d−→ N (0, (2f(0))−2), see, e.g., [DN03, Theorem 10.3]. Now

we interpolate between those cases such that we violate this bounded density condi-
tion but still have a unique but not sticky median. Set Z ∼ Beta(1, α)sym, α > 0,
where Beta(1, α)sym is the distribution with the density of a Beta(1, α)-distribution mir-
rored at 0 (and scaled by 1

2), see Figure 3.8. Then n
1

2α |θn| does not go to zero, but
n

1
2α |θn| = OP(1), i.e., the median converges at rate n− 1

2α . We do not prove this claim.
Instead, we show a simulation that strongly affirms the claim, see Figure 3.9.
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3 Rates of Convergence and the Projected Mean
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Figure 3.7: The densities of Pareto-, Fréchet-, Beta-, and Weibull-distribution for differ-
ent parameters.
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Figure 3.8: The densities of Beta(1, α)sym are mirrored densities of Beta(1, α). Their
support is [−1, 1].
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Figure 3.9: The results of a simulation study on a log-log-scale. The rate of convergence
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3.4.4 Intrinsic Mean

So far, we have changed the behavior of probability densities on R to change the rate
of convergence of certain statistics. Now, we will change the geometry of the underlying
space to obtain a similar effect. We start out with the Fréchet mean with respect to the
inner metric on the circle, also called intrinsic mean.

We shortly present here some results of [HH15]. Let Z have values on the unit circle,
parameterized as (−π, π]. Let d : (−π, π]2 → [0,∞) be the arc-length metric on the
circle. The population intrinsic mean is θ := arg minq∈(−π,π] E[d(Z, q)2] with its sample
counterpart θn := arg minq∈(−π,π]

1
n

∑n
i=1 d(Zi, q)2.

To get a feeling of how the intrinsic mean behaves, we first take a look at some illus-
trative examples. In the left image of Figure 3.10, the location of the mean is intuitively
meaningful. It also may be no surprise that the FMS of the uniform distribution on the
circle (right image) is the whole circle. Slightly less simple, but still quite understand-
able is the setting with mass only at two andipodal points, where the FMS consists of
two points, see Figure 3.11. Maybe surprisingly, we can actually construct distributions
where whole segments of the circle make up the FMS, see Figure 3.12. Now, similar
to the construction for the median, we interpolate between the settings with clearly
unique means and with nonunique means, see Figure 3.13, and obtain scenarios with
n

1
2(α+1) |θn − θ| = OP(1) for α > 0 (α ∈ N is shown in the next proposition, α 6∈ N is a

conjecture).
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3 Rates of Convergence and the Projected Mean

Figure 3.10: The intrinsic mean (red) can easily be located if the density (green) has
a clear spike. For a uniform distribution of Z, every value q ∈ (−π, π]
minimizes E[d(Z, q)2].

●

●

●

●

●

●

Figure 3.11: The distribution PZ = (1− p)δπ + pδ0, p ∈ (0, 1) has two intrinsic means.

● ● ●

Figure 3.12: For the distribution PZ = (1−p)δπ+pUnif([−1
2p,

1
2p]), all θ with d(θ, π) ≤ 1

2p
are intrinsic means.
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●

α = 0.5

●

α = 1

●

α = 2

Figure 3.13: The distributions PZ = (1−p)δπ+f(z)dz, f(z) = (2π)−1(1−|z|α)1[−1,1](z),
α > 0, p = 1

π
α
α+1 have one single intrinsic mean θ = π.

Proposition 3.18 ([HH15]). Assume θ = π is the unique intrinsic mean of Z and
that the density f of Z is continuous on S1.

• If f(0) < (2π)−1, then n
1
2 θn

d−→ N (0, σ̃2).

• If f(0) = (2π)−1, and f is k-times continuously differentiable with f (`)(0) = 0
for ` < k and 0 6= |f (k)(0)| <∞, then n

1
2(k+1) |θn − θ| = OP(1).

The proposition shows that the behavior of the density f of Z in neighborhood of 0, the
antipodal point of the unique intrinsic mean π, is critical. These slower rates are also
observed on more general manifolds, see [EH19].

3.4.5 Projected Mean and Conclusion
Finally, let us quickly summarize the results of section 3.2 and 3.3, and put them into
the context of the previous rates of convergence.

With the projected mean, we interpolate between standard settings (Figure 3.14) and
extreme cases (Figure 3.15) of nonunique and sticky means to obtain slow rates and
fast rates of convergence, see Figure 3.16. This is exactly the same idea that drives all
examples above to some extend.
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3 Rates of Convergence and the Projected Mean

● ●

Figure 3.14: If Q ⊆ R2 (red) is C2 and points in neighborhood of origin have unique
projection, then n

1
2 (θn − θ) → N (0, Σ̃). The green dot is the Euclidean

population mean. The distribution of the Euclidean sample mean is indi-
cated by blue ellipses. The green cross is the projected population mean
and the distribution of its sample version is indicated by the density on the
right.

● ●●

Figure 3.15: The extreme cases. On a circle (left), the projection of its center is not
unique. For a > 0, Q = {(1 + a|y|, y) : y ∈ R} (right) the projected mean is
sticky.
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3.4 Digression: Nonstandard Rates of Convergence

●

α = 0.5

●

α = 2

Figure 3.16: For α > 0, r(t) = 1 + |t| 1+α
α , Q = {r(t) exp(it) : t ∈ [−π, π]} we get nα2 (θn−

θ) d−→ (0, Y α
∞ ) where Y α

∞ is nondegenerated.
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Appendix of Chapter 3

3.A Proofs

3.A.1 Lemma 3.1

Due to symmetry, we can restrict our analysis to y ≥ 0 and t ≥ 0 without loss of
generality. To find the projection point, we have to minimize the squared distance
` ∈ C1([−B,B]),

`(t) :=
∥∥∥∥∥q(t)−

(
x
y

)∥∥∥∥∥
2

.

For its derivative, we have

1
2

˙̀(t) = r(t)ṙ(t)− x (cos(t)ṙ(t)− sin(t)r(t))− y (sin(t)ṙ(t) + cos(t)r(t)) .

For t→ 0,

r(t) = 1 + O(tg(t)) ,
ṙ(t) = g(t) ,

sin(t) = t+ O(t3) ,
cos(t) = 1 + O(t2) .

Thus,

cos(t)ṙ(t)− sin(t)r(t) = O(g(t) + t) ,

sin(t)ṙ(t) + cos(t)r(t) = 1 + O
(
tg(t) + t2

)
,

r(t)ṙ(t) = g(t) + O
(
tg(t)2

)
.

Denote by ty a global minimizer of `(t). As r(t) is strictly increasing for t ≥ 0, we have
ty → 0 as x, y → 0.

Let y ↘ 0. From ˙̀(ty) = 0 with x = O(y), we obtain

0 = g(ty) + O(tyg(ty)2)− y(1 + O(g(ty) + ty)) ,

and in the setting of x = 0, we have

0 = g(ty) + O(tyg(ty)2)− y(1 + O(tyg(ty) + t2y)) .
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For a, b, u ∈ R with |b| ≤ 1
2 , it holds∣∣∣∣u+ a

1 + b
− u

∣∣∣∣ ≤ 2 |a|+ 2 |ub| .

Applied to the equations above with u = g(ty), a = O(tyg(ty)2), and b = O(g(ty)+ty) =
o(1), this yields

y = g(ty) + O(g(ty)2 + tyg(ty))
for x = O(y), and for x = 0 with b = O(tyg(ty) + t2y),

y = g(ty) + O(tyg(ty)2 + t2yg(ty)) .

In particular, we always have

y = g(ty) + o(g(ty)) ,

which implies
g(ty) = y + o(y) .

3.A.2 Proposition 3.3
Because of symmetry we can restrict our analysis to y ≥ 0 and t ≥ 0 without loss of
generality. In the proof of Lemma 3.1, we have shown

y = g(ty) + O(g(ty)2 + tyg(ty))

for x = O(y), and for x = 0,

y = g(ty) + O(tyg(ty)2 + t2yg(ty)) .

Then, with s := g(ty) and ty = f(s), we have

ty − f(y)
f(y) = f(s)

f(s+ O(s2 + sf(s))) − 1 = o(1)

by (A1) in the case of x = O(y), and by (A1)’ in the case of x = 0,

ty − f(y)
f(y) = f(s)

f(s+ O(s2f(s) + sf(s)2)) − 1 = o(1) .

Hence, in both cases we get

ty = f(y) + o(f(y)) .

Furthermore, for t↘ 0,

q(t) =
(

1
t

)
+ o(t)

and, thus,

ΠQ
((

x
y

))
= q(ty) =

(
1

f(y)

)
+ o(f(y)) .
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3.A.3 Theorem 3.5
Note that arg minp∈Q E[‖Z − p‖2] = arg minp∈Q ‖E[Z] − p‖, as E[‖Z − p‖2] = ‖E[Z] −
p‖2 − ‖E[Z]‖2 + E[‖Z‖2]. As E[Z] = 0, r(0) = 1, and r(t) > 1 for t > 0, the projected
mean m of Z is unique and equal to q(0).

Let (X̄n, Ȳn)′ := Z̄n = 1
n

∑n
i=1 Zi. Fix s ≥ 0. Our goal is to show

P
(
tn ≤ f

(
s√
n

))
→ Φ

(
s

σ

)
. (3.3)

For L, δ > 0 define the following events,

An,L :=
{
|X̄n| ≤ L|Ȳn|

}
,

Bn,s :=
{
tn ≤ f

(
s√
n

)}
,

Cn,s :=
{√

nȲn + ∆n ≤ s
}
,

Dn,s,δ :=
{√

nȲn ≤ s(1 + δ)
}
,

where ∆n :=
√
n
(
g(tn)− Ȳn

)
. Fix ε > 0. We show (3.3) by proving

∣∣P(Bn,s)− Φ
(
s
σ

)∣∣ <
5ε for n large enough. We achieve this by splitting the left hand side into five parts by
means of the triangle inequality and bound each summand by ε:

(i) By the central limit theorem for (X̄n, Ȳn)′, with V[Y ] = σ2 > 0, there is L > 0 and
n1 ∈ N such that P(Ac

n,L) < ε for all n > n1. Thus, |P(Bn,s)− P(Bn,s ∩An,L)| < ε.

(ii) Choose δ > 0 such that
∣∣∣Φ( s

σ(1+δ)

)
− Φ

(
s
σ

)∣∣∣+ ∣∣∣Φ( s
σ(1−δ)

)
− Φ

(
s
σ

)∣∣∣ < ε.

(iii) By Lemma 3.1, on the event An,L for Ȳn small enough, g(tn) = Ȳn + o(Ȳn). Thus,
there is n2 ∈ N such that P({|∆n| >

√
nδ|Ȳn|}∩An,L) ≤ ε for all n > n2. Therefore,

P(Dn,s,−δ ∩An,L)− ε < P(Cn,s ∩An,L) < P(Dn,s,δ ∩An,L) + ε.

(iv) As in (i), |P(Dn,s,±δ)− P(Dn,s,±δ ∩An,L)| < ε for all n > n1.

(v) By the central limit theorem, there is n3 ∈ N such that
∣∣∣P(Dn,s,±δ)− Φ

(
s

σ(1±δ)

)∣∣∣ <
ε for all n > n3.

As Bn,s = Cn,s, trivially P(Bn,s ∩ An,L) = P(Cn,s ∩ An,L). All points above together
yield

∣∣P(Bn,s)− Φ
(
s
σ

)∣∣ < 5ε for all n > max(n1, n2, n3). Hence, we have shown (3.3). As(
mn,1
mn,2

)
= mn = q(tn) =

(
1
tn

)
+ o(tn) ,

equation (3.3) implies

P
(
mn,2 ≤ f

(
s√
n

))
→ Φ

(
s

σ

)
,

P
(
|mn,1 − 1| ≥ f

(
s√
n

))
→ 0 .

The results for −tn and −mn,2 are due to symmetry.
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3.A.4 Corollary 3.9
We only show the statements for tn as the results for yn, −tn, −yn follow similarly.
Denote F (s) := Φ

(
s
σ

)
and let s ≥ 0.

(i) It is easy to see that (A0) holds for f(y) = yγ . Thus, by Theorem 3.5,

P
(
n
γ
2 tn ≤ s

)
= P

tn ≤ f
 s

1
γ

√
n

 n→∞−−−→ F
(
s

1
γ

)
.

Furthermore, r(t) = 1 +
∫ t
0 x

1
γ dx = 1 + γ

1+γ t
1+γ
γ .

(ii) It is easy to check (A0) for f(y) = (− log(y))−γ .

The inverse function of f is g(x) = exp
(
−x−

1
γ

)
, which yields the expression for

r(t).
For x ∈ R, s ≥ 0, n ∈ N, set

Gn(x) = P
((1

2 log(n)
)γ

tn ≤ x
)

and bs,n =

 log(
√
n)

log
(√

n
s

)
γ .

Let ε > 0. Let s > 1 large enough such that F (s) > 1 − ε. As bn,s n→∞−−−→ 1 from
above and Gn is right-continuous, there is n0 such that |G(bn,s)−G(1)| < ε for all
n ≥ n0. Furthermore, by Theorem 3.5, there is n1 ∈ N such that

Gn(bs,n) = P
(
tn ≤ f

(
s√
n

))
≥ F (s)− ε

for all n ≥ n1. Thus,

Gn(1) ≥ Gn(bs,n)− ε ≥ F (s)− 2ε ≥ 1− 3ε

for all n ≥ max(n0, n1). We can argue similarly for limt↗1Gn(t) and obtain the
final result

Gn(t) n→∞−−−→
{
F (0) = 1

2 for 0 < t < 1 ,
lims→∞ F (s) = 1 for t ≥ 1 .

Together with the symmetry of the distribution, this shows the convergence of
(1

2 logn)γtn in distribution to a uniform distribution on {−1, 1}.

(iii) It is easy to check (A0) for f(y) = exp(−y−γ). The inverse function of f is
g(x) = (− log(x))−

1
γ , which yields the expression for r(t).

Let c, u > 0. For s ∈ (1,∞) and n large enough, it holds u exp(−(
√
n/c)γ) ≤

exp(−(
√
n/(cs))γ) = f(csn− 1

2 ). Thus, with Un,c := exp((
√
n/c)γ) tn,

P(Un,c ≤ u) ≤ P
(
tn ≤ f

(
cs√
n

))
n→∞−−−→ F (cs)
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by Theorem 3.5. Similarly, for s ∈ (0, 1),

P(Un,c ≤ u) ≥ P
(
tn ≤ f

(
cs√
n

))
n→∞−−−→ F (cs) .

Thus,
P(Un,c ≤ u) n→∞−−−→ F (c) =: pc ,

which implies P(Un,c ≥ u) n→∞−−−→ 1− pc. As tn is symmetric, P(Un,c ≤ −u) n→∞−−−→
1− pc, which leaves P(|Un,c| < u) n→∞−−−→ 2pc − 1.

3.A.5 Remark 3.12
(i) It is easy to see that (A1) hold for f(y) = yγ .

(ii) To verify (A1) for f(y) = (− log(y))−γ , note

lim
y→0

log(y)
log(y + h(y)) = lim

y→0

y + yh′(y)
y + h(y) = 1

by L’Hôpital’s rule for a continuously differentiable function h with h(y) = o(y)
and h′(y) = o(y). Here we use h(y) = cy

(
y + log( 1

y )−γ
)
.

(iii) To verify (A1)’ for f(y) = exp(−y−γ), note

exp(−(y + h(y))−a)
exp(−y−a) = exp

(
y−a − (y + h(y))−a

) y→0−−−→ 1

for a > 0 and h(y) = o(y2), as

y−a − (y + h(y))−a → 0 .

Here, we use h(y) = c
(
y2 exp(−y−γ) + y exp(−2y−γ)

)
.
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4 Rates of Convergence via the Quadruple
Inequality
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4.1 Introduction
After having established consistency in a general setting in chapter 2 and rates of con-
vergence in a specific setting in chapter 3, we now want to investigate how rates of
convergence for FMs can be established in a general setting.

Recall the setting of the generalized FM from section 1.3.4: Let Q,Y be sets, Y a
Y-valued random variable, and c : Y × Q → R a cost function. Every element m of
the set arg minq∈Q E[c(Y, q)] is a generalized FM or c-FM. Given independent copies
Y1, . . . , Yn of Y , natural estimators of the generalized FM are elements mn of the set
arg minq∈Q 1

n

∑n
i=1 c(Yi, q). Our goal is to find suitable conditions for establishing finite

sample bounds and convergence rates for such plug-in estimators.
We are particularly interested in finite sample bounds in expectation, i.e., bounds on

E[l(m,mn)], where l is a loss function, e.g., l = d2 if (Q, d) is a metric space, as these
are stronger statements than bounds in probability and seem very natural for Euclidean
means:

E

( 1
n

n∑
i=1

Yi − E[Y ]
)2
 = 1

n
E
[
(Y − E[Y ])2

]
for Y, Y1, . . . , Yn independent and identically distributed real-valued random variables
with E[Y 2] < ∞. Results on convergence rates in expectation seem to be rare in the
literature on the FM. Common are convergence rates in probability or exponential con-
centration. The latter also implies rates in expectation, but under rather strong assump-
tions. One publication that establishes rates in expectation more directly, for general
cost functions in Euclidean spaces is [BFW19].

The FM estimator is a M-estimator. Thus, we can build upon many classical and deep
results from the M-estimation literature, see, e.g., [VW96; Gee00; Tal14].

4.1.1 Our Contribution
Our contribution consists of three parts:

(a) We introduce a condition, which we call quadruple inequality, that is used to es-
tablish finite sample bounds and convergence rates in probability and expectation
for spaces with infinite diameter, see Theorem 4.1, Theorem 4.5, and Theorem 4.7.
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(b) We formulate our results in the setting of the generalized FM with a cost-function
c that is not restricted to being the square of a metric.

(c) We prove a quadruple inequality for powers of metrics of Hadamard spaces, Theo-
rem 4.10. We apply it to obtain finite sample bounds and rates of convergence for
estimators of power FMs.

[PM19a] and [ALP20] show rates of convergence and finite sample bounds for met-
ric spaces which have a finite diameter (or at least the support of the distribution of
observations must be bounded). The proofs in both papers rely on empirical process the-
ory. In particular, they make use of symmetrization and the generic chaining to bound
the supremum of an empirical process. But where [ALP20] use that bound to be able
to apply Talagrand’s inequality [Bou02], [PM19a] employ a peeling device (also called
slicing; see, e.g., [Gee00]) to obtain rates. As a consequence, [ALP20] achieve stronger
results (nonasymptotic exponential concentration instead of OP-statements), but they
rely more heavily on the boundedness of the metric. As our goal is to obtain results
for spaces with infinite diameter, our proof technique is closer to [PM19a], i.e., we also
apply a peeling device.

A law of large numbers (see chapter 2), such that the estimator of the Fréchet mean
converges in probability to the true value, implies that the estimator eventually is in a
subset with finite diameter. Thus, for asymptotic rates in probability as in [PM19a],
it is not very restrictive to assume a finite diameter. Our motivation to directly deal
with infinite diameter comes from our interest in nonasymptotic results and in bounds
in expectation.

Similar to [PM19a] and [ALP20], we use the generic chaining. Therefore we have
entropy bounds as conditions of our theorems. These entropy bounds can be stated by
requiring a bound on the covering numbers

N(Q, d, r) := min

k ∈ N

∣∣∣∣∣∣ ∃q1, . . . , qk ∈ Q : Q ⊆
k⋃
j=1

Br(qj)

 ,
where (Q, d) is a metric space, Q ⊆ Q, and r > 0. To be more precise, in a metric space
(Q, d), we require logN(Bδ(m), d, r) ≤

(
Cδ
r

)D
for some constants C,D > 0 and all

0 < r < δ, which is the same assumption as in [ALP20]. We note, that this requirement
could be weakened by using the optimal bound on Rademacher (or Bernoulli) processes
[BL14] at the cost of a more complicated and less comprehensible condition.

In the classical Fréchet mean case, where (Q, d) is a metric space and the cost function
is c = d2, the empirical process that has to be bounded consists of functions of the form
y 7→ d(y, q)2 for q ∈ Q. To apply some classical empirical process results, one requires a
Lipschitz condition on these functions. In [PM19a] and [ALP20] this Lipschitz condition
is fulfilled by

d(y, q)2 − d(y, p)2 ≤ 2 diam(Q)d(q, p) (4.1)
for all y, q, p ∈ Q. Thus, a finite diameter is required. We show, that one can instead
require that

d(y, q)2 − d(y, p)2 − d(z, q)2 + d(z, p)2 ≤ 2d(y, z)d(q, p) (4.2)
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holds for all y, z, q, p ∈ Q and then bound the supremum of the empirical process even if
diam(Q) =∞. Equation (4.2) is a special instance of what we call quadruple inequality.

Roughly speaking, the transition from Lipschitz to quadruple condition removes cer-
tain squared terms and the right hand side by adding and subtracting further squared
terms on the left hand side. This is related to the idea of defining the Fréchet mean
as minimizer of q 7→ E[d(Y, q)2 − d(Y, o)2] for an arbitrary fixed point o ∈ Q instead of
q 7→ E[d(Y, q)2]. Then, for existence of the Fréchet mean, only a first moment condition
on Y is required instead of a second moment condition, see [Stu03, Acknowledgement to
Lutz Mattner].

The inequality (4.2) does not hold in every metric space. But it characterizes Hada-
mard spaces among geodesic metric spaces, see [BN08]. In Hadamard spaces, (4.2) is
known as Reshetnyak’s quadruple inequality [Stu03] or quadrilateral inequality [BN08]
and can be interpreted as generalization of the Cauchy–Schwarz inequality to metric
spaces [BN08]. Note that our results are not restricted to geodesic metric spaces.

In (subsets of) Hadamard spaces (Q, d), we can not only utilize the quadruple inequal-
ity with the squared metric d2 (4.2). But we show that for dα with α ∈ [1, 2], we also
obtain a version of the quadruple inequality, namely

d(y, q)α − d(y, p)α − d(z, q)α + d(z, p)α ≤ 4α2−αd(y, z)α−1d(q, p) , (4.3)

for all y, z, q, p ∈ Q, see Theorem 4.10. We show that the constant 4α2−α is optimal.
Similar to equation (4.1), one can easily show – using the mean value theorem – that

d(y, q)α − d(y, p)α ≤ α diam(Q)α−1d(q, p)

for α > 0, q, p, y ∈ Q, where (Q, d) is an arbitrary metric space. The proof of equation
(4.3) is much more complicated, see appendix 4.G.

We state our convergence rate results in a general way, where observations live in a
space Y and a cost function c : Y×Q → R is minimized over Q. The quadruple inequality
then reads

c(y, q)− c(y, p)− c(z, q) + c(z, p) ≤ a(y, z)b(q, p)

for all y, z ∈ Y and q, p ∈ Q and an arbitrary function a : Y ×Y → [0,∞) and a pseudo-
metric b : Q × Q → [0,∞). This general formulation includes, among others, arbi-
trary bounded metric spaces, Hadamard spaces (including Euclidean and non-Euclidean
spaces) with a power metric dα, α ∈ [1, 2], and regression settings with Q 6= Y, where
observations (x, y) ∈ Y are described by regression functions (x 7→ q(x)) ∈ Q.

Furthermore, some trivial statements in appendix 4.B show that the quadruple in-
equality is stable under many operations such as taking subsets, limits, or product
spaces.

We prove – via a peeling device – nonasymptotic finite sample bounds in probability,
Theorem 4.1. We do not achieve exponential concentration as [ALP20], but our results
can be applied in cases where the cost function is not bounded by a finite constant, i.e.,
in metric spaces with infinite diameter. Furthermore, we show two ways of obtaining
bounds in expectation: One – nonasymptotic – under the assumption of a stronger
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version quadruple inequality, Theorem 4.5; the other – asymptotic – with a stricter
entropy condition but a weak quadruple inequality, Theorem 4.7.

Aside from the application in Hadamard spaces (including the use of the power in-
equality, Theorem 4.10), we illustrate our results in different toy examples: Euclidean
spaces and infinite dimensional Hilbert spaces. In (convex subsets of) Hilbert spaces
the Fréchet mean is equal to the expectation. Thus, these examples are interesting as
a benchmark, because we can compare results from our general Fréchet mean approach
to exact results. In two additional examples, we apply our results to nonconvex subsets
of Hilbert spaces and to Hadamard spaces.

4.1.2 Outline

We start by presenting the finite sample bounds of Theorem 4.1 (bounds in probability)
and Theorem 4.5 (bounds in expectation) in the abstract setting in section 4.2. The
different versions of the quadruple inequality are discussed in section 4.3. This part
concludes with the statement of Theorem 4.7 (alternative route to rates in expectation).
In section 4.4, we apply the abstract results in different settings: Euclidean spaces,
infinite dimensional Hilbert spaces, nonconvex sets, and Hadamard spaces. Finite sample
bounds and rates of convergence for power Hadamard metrics and the power inequality,
Theorem 4.10, are presented in section 4.5.

4.2 Abstract Results
In this section, we prove finite sample bounds for the Fréchet mean in a very general
setting, see section 4.2.1. For bounds in probability Theorem 4.1 is stated in section
4.2.2 and for bounds in expectation Theorem 4.5 is stated in section 4.2.3. The proofs
can be found in appendix 4.A. Some remarks on further extensions are given in section
4.2.4.

4.2.1 Setting

Here we define an Abstract Setting in which we will state our most general results. This
setting of the generalized Fréchet mean is similar to what is used in [Huc11; EH19] and
section 1.3.4.

Let Q be a set, which is called descriptor space. Let (Y,ΣY) be a measurable space,
which is called data space. Let Y be a Y-valued random variable. Let c : Y ×Q → R be
a function such that y → c(y, q) is measurable for every q ∈ Q. We call c cost function.
Define F : Q → R , q 7→ E[c(Y, q)], assuming that E[|c(Y, q)|] < ∞ for all q ∈ Q. The
function F is called objective function. Let n ∈ N. Let Y1, . . . , Yn be independent copies
of Y . Define Fn : Q → R , q 7→ 1

n

∑n
i=1 c(Yi, q). We call Fn empirical objective function.

Let l : Q × Q → [0,∞) be a function such that l(m, q) measures the loss of choosing q
given that the true value is m.

We want to bound l(m,mn) for m ∈ arg minq∈Q F (q) and mn ∈ arg minq∈Q Fn(q).
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4.2.2 Finite Sample Bounds in Probability
For our result on finite sample bounds in probability, we make some assumptions, which
are listed in the following. We denote the ”closed” ball with center o ∈ Q of radius
r > 0 in the set Q with respect to an arbitrary distance function d : Q×Q → [0,∞) as
Br(o, d) := {q ∈ Q : d(o, q) ≤ r}.

Assumptions.

Existence:
It holds E[|c(Y, q)|] < ∞ for all q ∈ Q. There are mn ∈ arg minq∈Q Fn(q)
measurable and m ∈ arg minq∈Q F (q).

Growth:
There are constants γ > 0 and cg > 0 such that F (q)− F (m) ≥ cgl(m, q)γ for
all q ∈ Q.

Weak Quadruple:
There are a function a : Y × Y → [0,∞) measurable and a pseudo-metric
b : Q×Q → [0,∞), such that, for all p, q ∈ Q, y, z ∈ Y, it holds

cyq − czq − cyp+ czp ≤ a(y, z) b(q, p) ,

where we use the notation cyq := c(y, q). We call a the data distance and b
the descriptor metric.

Moment:
Let ζ ≥ 1. Set

M(ζ) :=

E
[
a(Y ′, Y )ζ

]
, if ζ ≥ 2 ,

E
[
a(Y ′, Y )2] ζ2 , if ζ ≤ 2 ,

where Y ′ is an independent copy of Y . It holds M(ζ) <∞.

Entropy:
There are α, β > 0 with α

β < γ such that

√
logN(Bδ(m, l), b, r) ≤ ce

δα

rβ

for a constant ce > 0 and all δ, r > 0.

Here

N(A, b, r) = min

k ∈ N

∣∣∣∣∣∣ ∃q1, . . . , qk ∈ Q : A ⊆
k⋃
j=1

Br(qj , b)

 ,
is the covering number of A ⊆ Q with respect to b-balls Br(·, b) of radius r. Entropy
is essentially the same condition as in [ALP20], but written down for the setting of the
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generalized Fréchet mean instead of the classical Fréchet mean in metric spaces.
We shortly discuss other assumptions before stating the theorem for finite sample

bounds in probability. The measurability assumptions can be weakened by using the
outer expectation, see [VW96]. In [BDG07], the Growth condition is called margin
condition; in chapter 5 it is referred to as Variance or variance inequality. It is called
low noise assumption in [ALP20]. If Growth holds for every distribution of Y and we
are in the traditional setting of the (not generalized) Fréchet mean, it implies that the
metric space Q has nonpositive curvature: Assume that (Q, d) is a complete geodesic
space [Stu03, Definition 1.1], i.e., every pair of points y1, y2 has a mid-point m, i.e.,
y1,m = y2,m = 1

2y1,y2, where we use the notation q,p := d(q, p). Set Y = Q, c = d2,
and l = d. If P(Y = y1) = P(Y = y2) = 1

2 with y1, y2 ∈ Q, the Fréchet mean m ∈ Q
of Y is the mid-point between y1 and y2. If we assume that the growth condition holds
for every distribution of Y , in particular, for every uniform 2-point distribution, with
cg = 1 and γ = 2, then

1
2y1,q

2 + 1
2y2,q

2 − 1
2y1,m

2 − 1
2y2,m

2 ≥ m,q2 .

As m is the mid-point between y1 and y2, we obtain

m,q2 ≤ 1
2y1,q

2 + 1
2y2,q

2 − 1
4y1,y2

2 ,

which implies nonpositive curvature of the space (Q, d), see [Stu03, Definition 2.1]. Such
spaces are called Hadamard spaces. Aside from the Growth condition they also fulfill
the quadruple inequality, which we discuss in section 4.3.2.3. The Weak Quadruple-
condition will be discussed in detail in section 4.3. Among other things, we will show
that it holds in a nice way in all Hadamard spaces, which include the Euclidean spaces.

The following theorem states finite sample bounds for the estimator mn to the true
value m measured with respect to the loss function l.

Theorem 4.1 (Finite samples bounds in probability). In the Abstract Setting of
section 4.2.1, assume that following conditions hold: Existence, Growth, Weak
Quadruple, Moment, Entropy. Define

ηβ,n :=


n−

1
2 for β < 1 ,

n−
1
2 log(n+ 1) for β = 1 ,

n
− 1

2β for β > 1 .

Then, for all t > 0, it holds

P
(
η
− 1
γ−α

β

β,n l(m,mn) ≥ t
)
≤ cM(ζ) t−ζ(γ−

α
β

)

where c > 0 depends on α, β, γ, ce, cg, ζ.
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The proof can be found in appendix 4.A.
Without loss of generality, one can choose γ = 1 by using the loss l′ = lγ . This is

consistent with the result: If Growth and Entropy are fulfilled with l, α, β, γ, then
they are also fulfilled with l′ = lγ , α′ = α

γ , β
′ = β, γ′ = 1, which gives the same result.

We keep this redundancy in the parameters of the theorem for convenience.
A common way of stating rates of convergence in probability is the OP-notation, as

in the following corollary. Note that the OP-result is asymptotic and, thus, weaker than
the nonasymptotic Theorem 4.1.

Corollary 4.2. In the Abstract Setting of section 4.2.1, assume that following con-
ditions hold: Existence, Weak Quadruple, Growth, Moment with ζ = 1,
Entropy. Then

l(m,mn) = OP

(
η

1
γ−α

β

β,n

)
with ηβ,n as in Theorem 4.1.

It is possible to weaken the assumptions in Corollary 4.2. In particular, we can restrict
the Growth and Entropy conditions to hold only in a neighborhood of m if we already
know that l(mn,m) ∈ oP(1).

In Theorem 4.1, the probability of large losses decays polynomially. If the exponent
ζ(γ − α

β ) is strictly greater than 1, we can integrate the tail probabilities to obtain a
bound on the expectation of the loss.

Corollary 4.3. Let κ ≥ 1. In the Abstract Setting of section 4.2.1, assume that
following conditions hold: Existence, Weak Quadruple, Growth, Moment
with ζ > κ(γ − α

β )−1, Entropy. Set ξ := ζ(γ − α
β )κ−1. Then

η
− κ
γ−α

β

β,n E[l(m,mn)κ] ≤ c′ ξ

ξ − 1M(ζ)
1
ξ .

The proof can be found in appendix 4.A.
Corollary 4.3 may require unnecessarily high moments as ξ needs to be strictly larger

than 1. In the next section, we present a more direct approach to finite sample bounds
in expectation, that requires weaker moment conditions, at least in some settings.

4.2.3 Finite Sample Bounds in Expectation
For obtaining finite sample bounds in expectation directly, we need slightly modified,
stronger assumptions.

Assumptions.

Strong Quadruple:
Define Q̇ := Q\B0(m, l) = {q ∈ Q : l(m, q) > 0}. There are functions bm : Q̇×
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Q̇ → [0,∞) (possibly depending on m) and a : Y × Y → [0,∞) with a mea-
surable and ξ ∈ (0, γ), such that, for all p, q ∈ Q̇, y, z ∈ Y, it holds

cyq − cym− czq + czm

l(m, q)ξ −
cyp− cym− czp+ czm

l(m, p)ξ ≤ a(y, z) bm(q, p) ,

Assume that bm is a pseudo-metric on Q̇. We call a the data distance and bm
the strong quadruple metric at m.

Strong Moment:
For ζ > 0, set

M(ζ) :=

E
[
a(Y ′, Y )ζ

]
, if ζ ≥ 2 ,

E
[
a(Y ′, Y )2] ζ2 , if ζ ≤ 2 ,

where Y ′ is an independent copy of Y . Let κ ≥ γ−ξ and assume M
(

κ
γ−ξ

)
<∞.

Strong Entropy:
It holds D := diam(Q̇, bm) <∞ and there is β > 0 such that

√
logN(Q̇, bm, r) ≤ ce

(
D

r

)β
for all r ∈ (0, D).

For later use in the application to Hilbert spaces, section 4.4.2, and for Theorem 4.5, we
state the entropy part of Theorem 4.5 in a more general way than in Theorem 4.1. To
this end, we need to introduce different measures of entropy.

Definition 4.4 (Measures of Entropy).

(i) Given a set Q an admissible sequence is an increasing sequence (Ak)k∈N0 of
partitions of Q such that A0 = Q and card(Ak) ≤ 22k for k ≥ 1.
By an increasing sequence of partitions we mean that every set of Ak+1 is
contained in a set of Ak. We denote by Ak(q) the unique element of Ak which
contains q ∈ Q.

(ii) Let (Q, b) be a pseudo-metric space. Define

γ2(Q, b) := inf sup
q∈Q

∞∑
k=0

2
k
2 diam(Ak(q), b) ,

where the infimum is taken over all admissible sequences in Q and

diam(A, b) := sup
q,p∈A

b(q, p)
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for A ⊆ Q.

(iii) Let (Q, b) be a pseudo-metric space and n ∈ N. Define

entrn(Q, b) := inf
ε>0

(
ε
√
n+

∫ ∞
ε

√
logN(Q, b, r)dr

)
.

Items (i) and (ii) are basic definitions from [Tal14]. Item (iii) is just a convenient
notation.

Theorem 4.5 (Finite sample bounds in expectation). In the Abstract Setting of sec-
tion 4.2.1, assume that following conditions hold: Existence, Growth, Strong
Quadruple, Strong Moment. Then, it holds

E[l(m,mn)κ] ≤ cn
− κ

2(γ−ξ)M

(
κ

γ − ξ

)
min(entrn(Q, bm), γ2(Q, bm))

κ
γ−ξ ,

where c > 0 depends only on κ, γ, ξ, cg.
If additionally Strong Entropy holds, then

E[l(m,mn)κ] ≤ CM

(
κ

γ − ξ

)
D

κ
γ−ξ η

κ
γ−ξ
β,n ,

where

ηβ,n :=


n−

1
2 for β < 1 ,

n−
1
2 log(n+ 1) for β = 1 ,

n
− 1

2β for β > 1 ,

and C > 0 depends only on κ, β, γ, ξ, cg.

The proof can be found in appendix 4.A.
As in Theorem 4.1 the statement contains some redundancy. E.g., by using the loss

l̃ = lξ we set ξ = 1 without loss of generality. Then the growth exponent and the
resulting rate of convergence will scale accordingly.

4.2.4 Further Extensions
In general M := arg minq∈Q E[c(Y, q)] is some subset of Q. One can also extend the
main theorems of this paper to deal with a the whole set of Fréchet means and Fréchet
mean estimators. To do that, the Growth condition has to be stated as growth of the
minimal distance to M . Furthermore, some of the statements and assumptions made in
the theorems and proofs have to be modified so that the hold uniformly over all m ∈M .
Additionally, one has to think about the right notion of convergence for sets. We found
that those results hard to read without significantly increasing insight into the problem,
which is why we chose to stick with unique Fréchet means and only remark that an
extension to Fréchet mean sets is possible.
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One can also consider ε- arg min-sets, i.e., the sets of elements which minimize a func-
tion up to an ε > 0. If one chooses mn ∈ εn- arg minq∈Q Fn(q) with εn → 0 fast enough,
the convergence rate is of the same as for the absolute minimizer.

4.3 Quadruple Inequalities
Recall the definition of the weak and strong quadruple inequalities. Let (Q, b) be a
pseudo-metric space (descriptor space with descriptor metric), (Y,ΣY) a measurable
space (data space), c : Y × Q → R such that y 7→ c(y, q) is measurable for every q ∈
Q (cost function), a : Y × Y → [0,∞) measurable (data distance), m ∈ Q (reference
point, usually the Fréchet mean), l : Q × Q → [0,∞) (loss), ξ > 0 (rate parameter),
Q̇ = {q ∈ Q : l(m, q) > 0} bm : Q̇ × Q̇ → [0,∞) a pseudo-metric on Q̇ (strong quadruple
metric at m). We write cyq := c(y, q).

(a) The tuple (Q,Y, c, a, b) fulfills the (weak) quadruple inequality if and only if for all
p, q ∈ Q, y, z ∈ Y it holds

cyq − czq − cyp+ czp ≤ a(y, z)b(q, p) .

(b) The tuple (Q,Y, c, lξ, a, bm) fulfills the strong quadruple inequality at m ∈ Q if and
only if for all p, q ∈ Q̇, y, z ∈ Y it holds

cyq − cym− czq + czm

l(m, q)ξ −
cyp− cym− czp+ czm

l(m, p)ξ ≤ a(y, z)bm(q, p) .

There are a couple of trivial stability results for quadruple inequalities, see appendix
4.B.

In section 4.3.1 we compare the quadruple inequality with a more common Lipschitz
property. The simplest advantageous applications of the quadruple inequality are in
inner product spaces and quasi-inner product spaces, as is discussed in section 4.3.2.
We conclude with Theorem 4.7 in section 4.3.3, which yields rates of convergence in
expectation under the assumption of only a weak quadruple inequality instead of a
strong one as in Theorem 4.5.

4.3.1 Bounded Spaces and Smooth Cost Function

Let (Q, d) be a metric space and use the notation q,p = d(q, p). For obtaining convergence
rates in probability for the Fréchet mean estimator, [PM19a] use

y,q2 − y,p2 = (y,q − y,p) (y,q + y,p) ≤ 2q,p diam(Q)

for all q, p, y ∈ Q. In the proof of Theorem 4.1, we have replaced this bound by the weak
quadruple inequality, i.e.,

cyq − cyp− czq + czp ≤ a(y, z)b(q, p) .
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This generalizes the results by [PM19a] as for bounded metric spaces (Q, d) and cost
function c = d2, the weak quadruple inequality holds with a(y, z) = 4 diam(Q) and b = d:

y,q2 − y,p2 − z,q2 + z,p2 ≤
∣∣∣y,q2 − y,p2

∣∣∣+ ∣∣∣z,q2 − z,p2
∣∣∣ ≤ 4q,p diam(Q) .

More generally, if we can show Lipschitz continuity in the second argument of the cost
function, i.e., cyq − cyp ≤ a(y)b(q, p), then the quadruple inequality holds with data
distance a(y) + a(z) and descriptor metric b. But this might lead to an unnecessarily
large bound. We will see in section 4.3.2.3 that at least for certain metric spaces, we
can find a bound via the quadruple inequality that does not involve the diameter of the
space and, thus, allows for meaningful results in unbounded spaces.

4.3.2 Relation to Inner Product and Cauchy–Schwarz Inequality

4.3.2.1 Inner Product Space

Let (Q, d) be a metric space such that d comes from an inner product 〈· , ·〉 on Q, i.e.,
Q is a subset of am inner product space and d(y, q)2 = 〈y − q , y − q〉. Use Y = Q and
the squared metric as cost function, c = d2. Then

cyq − czq − cyp+ czp = −2 〈y − z , q − p〉
≤ 2‖q − p‖‖y − z‖ .

Here the Cauchy–Schwarz inequality gives rise to an instance of the weak quadruple
inequality. The very general framework that we impose also allows for a more flexible
bound: If Q ⊆ H is the subset of an infinite dimensional, separable Hilbert space H, we
can use a weighted Cauchy–Schwarz inequality: Let s = (sk)k∈N ⊆ (0,∞). Then

cyq − czq − cyp+ czp ≤ 2‖y − z‖s−1‖q − p‖s ,

where ‖x‖2s = ∑∞
k=1 s

2
kx

2
k with generalized Fourier coefficients (xk)k∈N with respect to a

fixed orthonormal basis of H.
For the strong quadruple inequality, we set ξ = 1, l(q, p) = ‖q − p‖ and obtain

cyq − cym− czq + czm

l(m, q) −
cyp− cym− czp+ czm

l(m, p)

= −2
〈
y − z, q −m

‖q −m‖
− p−m
‖p−m‖

〉
≤ 2‖y − z‖

∥∥∥∥ q −m
‖q −m‖

− p−m
‖p−m‖

∥∥∥∥ .
Thus, the strong quadruple inequality hold with a(y, z) = 2‖y − z‖ and bm(q, p) =∥∥∥ q−m
‖q−m‖ −

p−m
‖p−m‖

∥∥∥. The pseudo-metric bm first projects the points q and p onto the
surface of unit ball around m and then measures their Euclidean distance.
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The analogous result for the weighted Cauchy–Schwarz inequality is
cyq − cym− czq + czm

l(m, q) −
cyp− cym− czp+ czm

l(m, p)

≤ 2‖y − z‖s−1

∥∥∥∥ q −m
‖q −m‖

− p−m
‖p−m‖

∥∥∥∥
s

.

4.3.2.2 Bregman Divergence

Let Q ⊆ Rr be a closed convex set. Let ψ : Q → R be a continuously differentiable
and strictly convex function. The Bregman divergence Dψ : Q×Q → [0,∞) associated
with ψ for points y, q ∈ Q is defined as Dψ(y, q) = ψ(y) − ψ(q) − 〈∇ψ(q) , y − q〉. It is
the difference between the value of ψ at point y and the value of the first-order Taylor
expansion of ψ around point q evaluated at point y. It is well-known, that the minimizer
m of q 7→ E[Dψ(Y, q)] for a random variable Y with E[Dψ(Y, q)] < ∞ for all q ∈ Q is
the expectation m = E[Y ], see [BGW05, Theorem 1]. The Bregman divergence c = Dψ

fulfills the weak quadruple inequality:

Dψ(y, q)−Dψ(z, q)−Dψ(y, p) +Dψ(z, p) = 〈∇ψ(q)−∇ψ(p) , y − z〉
≤ ‖∇ψ(q)−∇ψ(p)‖‖y − z‖ .

Similarly, we obtain a version of the strong quadruple inequality with ξ = 1, l(q, p) =
‖q − p‖,

cyq − cym− czq + czm

l(m, q) −
cyp− cym− czp+ czm

l(m, p)

=
〈
y − z, ∇ψ(q)−∇ψ(m)

‖q −m‖
− ∇ψ(p)−∇ψ(m)

‖p−m‖

〉
≤ ‖y − z‖

∥∥∥∥∇ψ(q)−∇ψ(m)
‖q −m‖

− ∇ψ(p)−∇ψ(m)
‖p−m‖

∥∥∥∥ .
4.3.2.3 Hadamard Spaces and Quasi-Inner Product

Let (Q, d) be a metric space. Use the notation q,p := d(q, p). We use the squared metric
as the cost function c(y, q) = d(y, q)2 = y,q2. One particularly nice version of the weak
quadruple inequality with this cost function is

y,q2 − y,p2 − z,q2 + z,p2 ≤ 2 y,z q,p .

Let us call this inequality the nice quadruple inequality. As seen before, this holds for
subsets of inner product spaces. It also plays an important role for geodesic metric
spaces. In this section, we paraphrase some results of [BN08]. In particular, we state
that the nice quadruple inequality characterizes CAT(0)-spaces.

Let (Q, d) be a metric space. A curve is a continuous mapping γ : [a, b] → Q, where
[a, b] is a closed interval. The length of the curve γ : [a, b]→ Q is

L(γ) := sup
{

I∑
i=1

d(γ(ti−1), γ(ti))
∣∣∣∣∣ a = t0 < t1 < · · · < tI = b, I ∈ N

}
.
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A curve γ : [a, b] → Q is called a geodesic if L(γ) = d(γ(a), γ(b)). A metric space is
called geodesic, if any two points q, p ∈ Q can be joined by a geodesic γ : [a, b] → Q
with γ(a) = q, γ(b) = p. A midpoint of two points q, p ∈ Q is a point m ∈ Q such that
q,m = p,m = 1

2q,p. A complete metric space is a geodesic space if and only if all pairs of
points have a midpoint, see [Stu03, Proposition 1.2]. Now, let (Q, d) be a geodesic metric
space. For any triple of points a, b, c ∈ Q one can construct a comparison triangle in the
Euclidean plane with corners a′, b′, c′ ∈ R2, such that a,b = ‖b′ − a′‖, a,c = ‖c′ − a′‖,
and b,c = ‖c′ − b′‖. A geodesic metric space (Q, d) is called CAT(0) if and only if for
every triple of points a, b, c ∈ Q with comparison triangle (a′, b′, c′) following condition
holds: For every point d on a geodesic connecting a and b, it holds d,c ≤ ‖c′−d′‖, where
d′ ∈ R2 is the point on the edge of the comparison triangle between a′ and b′ such that
‖d′−a′‖ = a,d. A complete CAT(0)-space is called Hadamard space or global NPC space
(nonpositive curvature).

A metric space (Q, d) is said to fulfill the NPC-inequality if and only if for all y1, y2 ∈ Q
there exists a point m ∈ Q such that for all q ∈ Q it holds m,q2 ≤ 1

2y1,q
2 + 1

2y2,q
2 −

1
4y1,y2

2. Then m is the midpoint of y1 and y2.
A characterization of CAT(0)-spaces can be found in [Stu03, Section 2]: A metric

space is CAT(0) if and only if it fulfills the NPC-inequality.
Another characterization of CAT(0)-spaces by the nice quadruple inequality is given

in [BN08, Corollary 3]: A geodesic space is CAT(0) if and only if it fulfills the nice
quadruple inequality.

In [BN08], the authors define the quadrilateral cosine for q, p, y, z ∈ Q as

cosq( ~yz, ~qp) := y,q2 − y,p2 − z,q2 + z,p2

−2 y,z q,p .

Obviously, the statement cosq( ~yz, ~qp) ≤ 1 for all q, p, y, z ∈ Q is equivalent to the
nice quadruple inequality. To further motivate this notation and compare it with inner
product spaces, they introduce a quasilinearization of the metric space and a quasi-inner
product: Define 〈 ~yz , ~qp〉d = cosq( ~yz, ~qp) ‖ ~yz‖d‖ ~qp‖d, where ‖ ~yz‖d := y,z. Thus, the nice
quadruple inequality can be viewed as the Cauchy–Schwarz inequality of the quasi-inner
product.

4.3.3 Weak Implies Strong
The weak quadruple inequality is well justified as a condition: Aside from allowing
to establish rates in probability (Theorem 4.1), it can be interpreted as a form of
Cauchy–Schwarz inequality (section 4.3.2.3), it is fulfilled in a large class of metric
spaces (bounded metric spaces, Hadamard spaces, appendix 4.B), and the power in-
equality (Theorem 4.10) implies even more applications with a nice interpretation in
statistics (section 4.5.2).

The case for the strong quadruple inequality, which we use in Theorem 4.5 to establish
rates in expectation, seems much weaker. Although it can be established in Hilbert
spaces, see section 4.3.2.1, it is not directly clear whether we can have a suitable version
for Hadamard spaces or a power inequality.
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The next section examines the strong quadruple inequality in Hadamard spaces and
concludes with a negative result. Thereafter, we discuss an approach to infer convergence
rates in expectation when only assuming the weak quadruple inequality by showing that
a weak quadruple inequality imply certain strong quadruple inequalities. This approach
is executed to obtain Theorem 4.7 for convergence rates in expectation, where the result
holds only asymptotically, in contrast to Theorem 4.5.

4.3.3.1 Projection Metric

In Euclidean spaces, we can take bm(q, p) =
∥∥∥ q−m
‖q−m‖ −

p−m
‖p−m‖

∥∥∥ as the strong quadruple
metric. This pseudo-metric can be written down only depending on the metric (not the
norm or vector space operations) as

dproj
m (q, p) :=

√
q,p2 − (q,m− p,m)2

q,mp,m
, dproj

m (q, p) = bm(q, p) .

The metric dproj
m (q, p) can be defined in any metric space. Unfortunately, it does not

yield a strong quadruple inequality in non-Euclidean Hadamard spaces in the same way
as in Euclidean spaces. See appendix 4.D for details.

4.3.3.2 Power Metric

To establish rates of convergence in expectation for the c-Fréchet mean, given that a
weak quadruple inequality holds, we first show that some version of the strong quadruple
inequality is implied by the weak one, Lemma 4.6. Unfortunately, we obtain a strong
quadruple distance bm such that the measure of entropy entr(Q, bm) might be infinite.
To solve this problem, we define an increasing sequence of sets Qn such that Qn ⊆ Qn+1
and ⋃

n∈NQn = Q with distances bm,n such that the strong quadruple inequality is
fulfilled on Qn with strong quadruple distance bm,n, and entr(Qn, bm,n) is finite and can
be suitably controlled in n. This allows us to prove an asymptotic result for the rate of
convergence in expectation, Theorem 4.7.

Lemma 4.6. Assume (Q,Y, a, b, c) fulfills the weak quadruple inequality. Let ξ ∈
[0, 1]. Then

cyq − cym− czq + czm

b(q,m)ξ −
cyp− cym− czp+ czm

b(p,m)ξ ≤ 2ξ a(y, z) b(q, p)1−ξ (4.4)

for all y, z, q, p,m ∈ Q with b(q,m), b(p,m) > 0.

See appendix 4.C for a proof. We would like to have ξ large, i.e., close to 1, to obtain the
same rate of convergence in expectation as in probability. We achieve that by defining
sequences ξn ↗ 1 and Qn ↗ Q, and control the entropy of Qn with respect to b1−ξn .

To state the result, we have to modify the Entropy and the Existence condition.
Recall the definition of the objective function F (q) = E[cY q] and the empirical objective
function Fn(q) = 1

n

∑n
i=1

c
Yiq.
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Assumptions.

Existence’:
It holds E[|c(Y, q)|] < ∞ for all q ∈ Q. Let o ∈ Q. Define Rn := n and
Qn := BRn(o, b). There are mQn

n ∈ arg minq∈Qn Fn(q) measurable and m ∈
arg minq∈Q F (q).

Small Entropy:
There are β, ce > 0 such that for δ > 0 large enough

√
logN(Bδ(o, b), b, r) ≤ ce log

(
δ

r

)β
for all r > 0.

Note that the Small Entropy condition is much stronger than Entropy, which we
assumed in Theorem 4.1. In Euclidean subspaces Q ⊆ Rb, it holds

N(r,Bδ(0, d), d) ≤
(3δ
r

)b
for all R > r > 0 [Pol90, section 4]. Thus, Small Entropy is fulfilled in Euclidean
spaces.

Theorem 4.7 (Convergence rate in expectation). In the Abstract Setting of sec-
tion 4.2.1 with loss l = b, where b is a pseudo-metric, and rate parameter ξ = 1,
assume that following conditions hold: Existence’, Growth with γ > 1, Weak
Quadruple, Strong Moment with κ > γ − 1, Small Entropy. Then

E
[
b(m,mQn

n )κ
]

= O
((
n−

1
2 log(n)β

) κ
γ−1
)
.

See appendix 4.A for the proof.

4.4 Application of the Abstract Results
We apply the abstract results of the previous theorems in this section. We first consider
two toy examples – Euclidean spaces, section 4.4.1 and infinite dimensional Hilbert
spaces, section 4.4.2 – to better understand the result and compare them to optimal
bounds. Then we discuss two more involved settings: The Fréchet mean for nonconvex
subsets of Euclidean spaces, section 4.4.3, and for Hadamard spaces, section 4.4.4.

4.4.1 Euclidean Spaces
Let Q ⊆ Rb be convex with the Euclidean metric d(p, q) = ‖p − q‖. Choose Y = Q,
c = d2, l = d, ξ = 1. Let Y be a Q-valued random variable with E[‖Y ‖2] < ∞. Then
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the Fréchet mean equals the expectation m = E[Y ] ∈ Q. We can easily calculate

E
[
‖Y − q‖2 − ‖Y −m‖2

]
= ‖q −m‖2 .

Thus, the Growth condition is fulfilled with γ = 2. The space has the strong quadruple
inequality at every point with data distance a(y, z) = 2‖y − z‖ and strong quadruple
distance bm(p, q) =

∥∥∥ q−m
‖q−m‖ −

p−m
‖p−m‖

∥∥∥, see section 4.3.2.1. Thus, Theorem 4.5 implies

E

∥∥∥∥∥E[Y ]− 1
n

n∑
i=1

Yi

∥∥∥∥∥
2
 = E

[
l(m,mn)2

]
≤ Cn−1 entrn(Q, bm)2E

[
a(Y ′, Y )2

]
≤ C ′b 1

n
E
[
‖Y − E[Y ]‖2

]
,

where we used N(r,BR(0, d), d) ≤
(

3R
r

)b
for all R > r > 0 [Pol90, section 4] to fulfill

Strong Entropy. The constants C,C ′ > 0 are universal. Compare this with the result
that one obtains by direct calculations, i.e.,

E

∥∥∥∥∥E[Y ]− 1
n

n∑
i=1

Yi

∥∥∥∥∥
2
 = 1

n
E
[
‖Y − E[Y ]‖2

]
.

We pay an extra dimension factor b when using the Fréchet mean approach instead of
direct calculations. This comes from the use of the Cauchy–Schwarz inequality, which
powers the strong quadruple inequality in Euclidean spaces.

4.4.2 Hilbert Spaces

Let H be an infinite dimensional Hilbert space and Q ⊆ H convex. Let d(p, q)2 =
‖p − q‖2 = 〈p− q , p− q〉. Choose Y = Q, c = d2, l = d, ξ = 1. Let Y be a Q-
valued random variable with E[‖Y ‖2] < ∞. As in the Euclidean case, the Fréchet
mean m equals the expectation E[Y ], the Growth condition holds with γ = 2, and
the strong quadruple inequality is fulfilled with a(y, z) = 2‖y − z‖ and pseudometric
bm(p, q) =

∥∥∥ q−m
‖q−m‖ −

p−m
‖p−m‖

∥∥∥.
Unfortunately, Strong Entropy is not fulfilled on H if dim(H) =∞. By introducing

a weight sequence, we can make bm smaller by making a larger: Assume that the Hilbert
space H is separable and thus admits a countable basis. Let s = (sk)k∈N ⊆ (0,∞). In
section 4.3.2.1, we derived that the strong quadruple condition holds with a(y, z) = 2‖y−
z‖s−1 and bsm(p, q) =

∥∥∥ q−m
‖q−m‖ −

p−m
‖p−m‖

∥∥∥
s
. Then entrn(H, bsm) ≤ γ2(H, bsm) ≤ γ2(Es, d),

where

Es =
{
h ∈ H :

∞∑
k=1

h2
k

s2
k

≤ 1
}
.

81



There is a universal constant c > 0 such that γ2(Es, d)2 ≤ c
∑∞
k=1 s

2
k, see [Tal14, Propo-

sition 2.5.1]. As a condition on the variance term, we need

E
[
‖Y − E[Y ]‖2s−1

]
= ‖σ‖2s−1 =

∞∑
k=1

σ2
ks
−2
k <∞ ,

where σ2
k := V[Yk] and σ = (σk)k∈N. Similar to the Euclidean case, Theorem 4.5 implies

E

∥∥∥∥∥E[Y ]− 1
n

n∑
i=1

Yi

∥∥∥∥∥
2
 = E

[
l(m,mn)2

]
≤ C 1

n
‖s‖2`2‖σ‖

2
s−1 ,

where ‖s‖2`2 = ∑∞
k=1 s

2
k.

Direct calculations yield a better result:

E

∥∥∥∥∥E[Y ]− 1
n

n∑
i=1

Yi

∥∥∥∥∥
2
 = 1

n
‖σ‖2`2 .

As in the Euclidean case, we pay a factor related to the dimension for using the more
generally applicable Fréchet mean approach instead of using the inner product for direct
calculations.

4.4.3 Nonconvex Subsets

Assume we are in the setting of section 4.4.2 and the mentioned conditions for con-
vergence are fulfilled. But now we want to take Q ⊆ H not necessarily convex and
Y = H. Assume that Existence of the Fréchet mean m ∈ Q is fulfilled. The expec-
tation µ := E[Y ] ∈ H might not be an element of Q. Then the Fréchet mean m is the
closest projection of µ to Q, in the sense that

arg min
q∈Q

E[‖Y − q‖2] = arg min
q∈Q

‖µ− q‖ .

To get the same rate as in section 4.4.2, we mainly need to be concerned with the
Growth condition, as the quadruple condition holds in all subsets. For q ∈ H, simple
calculations show

E
[
‖Y − q‖2 − ‖Y −m‖2

]
= ‖µ− q‖2 − ‖µ−m‖2 .

We want to find a lower bound of this term in the form of cg‖q − m‖γ for constants
γ, cg > 0. For a > 1, it holds

a ‖µ− q‖2 − a ‖µ−m‖2 − ‖q −m‖2

= (a− 1)
∥∥∥∥q − (µ+ µ−m

a− 1

)∥∥∥∥2
− a2

a− 1 ‖m− µ‖
2 .
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µ = p0
mp1p2

r0

r1

r2

Q

Figure 4.1: If Q∩Br0(p0) 6= ∅, the point m cannot be the Fréchet mean of a distribution
with expectation µ. To fulfill the Growth condition, we need Q∩Br1(p1) = ∅
for a ball with larger radius r1 > r0 and adjusted center p1. Increasing
the radius further, r2 > r1, only improves the constant cg of the Growth
condition, but not the exponent γ.

Thus, ‖µ− q‖2 − ‖µ−m‖2 ≥ 1
a ‖q −m‖

2 if and only if∥∥∥∥q − (µ+ µ−m
a− 1

)∥∥∥∥ ≥ a

a− 1 ‖µ−m‖ .

Equivalently, the Growth condition holds with γ = 2 and cg ∈ (0, 1) if and only if∥∥∥∥∥q −
(
µ+ cg

1− cg
(µ−m)

)∥∥∥∥∥ ≥ 1
1− cg

‖µ−m‖

for all q ∈ Q, i.e., if and only if Q ∩ Br(p) = ∅, where r = 1
1−cg
‖µ−m‖ and p =

µ + 1−cg
cg

(µ−m). Note that ‖p −m‖ = r. This is illustrated in Figure 4.1. We have
answered the question of how Q may look like, given the location of µ and m. Possibly
more interesting is the question of, given Q, where may µ be located so that m can
be estimated with the same rate as for convex sets. We will answer this question only
informally via a description similar to a medial axis transform [CCM97]:

For simplicity assume Q = R2\A, where A is a nonempty, open, and simply connected
set with border ∂A that is parameterized by the continuous function γ : [0, 1] → ∂A.
Roll a ball along the border on the inside of A. Make the ball as large as possible
at any point so that it is fully contained in A and touches the border at point γ(t).
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Figure 4.2: Let A ⊆ R2 be the set enclosed by the heart (solid black lines). Let Y = R2

and Q = R2 \ A. We consider a distribution on R2 with mean µ ∈ Y and
Fréchet mean m ∈ Q with respect to the Euclidean metric and the descriptor
space Q. The green, blue, and red lines show pε(t) for ε = 0.6, 0.3, 0.

Denote the center of the ball as c : [0, 1] → A and the radius as r : [0, 1] → [0,∞).
Take ε ∈ (0, 1) and trace the point pε : [0, 1] → A on the radius connecting the center
of the ball c(t) and the border γ(t) such that it divides the radius into two pieces of
length pε(t),c(t) = εr(t) and pε(t),γ(t) = (1 − ε)r(t). If µ lies on the outside of the set
prescribed by p : [0, 1] → A, it can be estimated with the same rate as for convex sets.
This is illustrated in Figure 4.2. The set of all centers C := {c(t) | t ∈ [0, 1]}, also called
the medial axis ot cut locus, is critical: The closer µ is to C, the larger the guaranteed
error bound for the estimator. In particular, we cannot guarantee consistency of the
estimator if µ ∈ C. A very similar phenomenon is described in [BP03, section 3]. The
authors consider a Riemannian manifold Q that is embedded in an Euclidean space Y.
The extrinsic mean of a distribution on Q is the projection of the mean µ in Y to Q.
The points C are called focal points. It is shown [BP03, Theorem 3.3] that in many cases
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the intrinsic mean, i.e, the Fréchet mean in Q with respect to the Riemannian metric
on Q, is equal to the extrinsic mean, i.e, the Fréchet mean in Q with respect to the
Euclidean metric on Y.

The conditions described above are connected to the term reach of a set [Fed59]. The
reach of Q ⊆ Rb is the largest ε > 0 (possibly ∞) such that infq∈Q d(x, q) < ε implies
that x ∈ Rb has a unique projection to Q, i.e., a unique point xQ with d(x, xQ) =
infq∈Q d(x, q). If the distance of the mean µ to Q is less than the reach of Q, then the
Growth condition holds with γ = 2. Thus, the rate of convergence is upper bounded
by cn− 1

2 for some c > 0. Note that convex sets have infinite reach and exhibit this upper
bound for any distribution with finite second moment.

By considering the growth condition ‖µ− q‖2 − ‖µ−m‖2 ≥ cg ‖q −m‖γ , one can
also find examples of subspaces where the growth exponent for specific distributions is
different from 2.

4.4.4 Hadamard Spaces

Let (Q, d) be a Hadamard space. A definition of Hadamard spaces is given in section
4.3.2.3. Use the notation y,q = d(y, q). For our purposes the most notable property
of Hadamard spaces is that they fulfill the nice quadruple property, i.e., y,q2 − y,p2 −
z,q2 + z,p2 ≤ 2 y,z q,p. In the following subsections, we will see how this translates to
convergence rates for the Fréchet mean estimator and use the power inequality to obtain
results for a generalized Fréchet mean with cost function d2a for a ∈ [1

2 , 1].
For an introduction to Hadamard spaces see [Bač14a]. A survey of recent developments

can be found in [Bac18]. In [BN08] the authors characterize Hadamard spaces by the
nice quadruple inequality and discuss a quasilinearzation of these spaces by observing
that the left hand side of the nice quadruple inequality behaves like an inner product
to some extend. [Stu03] shows how some important theorems of probability theory in
Euclidean spaces, like the law of large numbers and Jensen’s inequality, translate to
non-Euclidean Hadamard spaces. In [Stu02] martingale theory on Hadamard spaces is
discussed.

Turning to more applied topics, [Bač14b] shows algorithms for calculating the Fréchet
mean in Hadamard spaces with cost function d2a for a = 1

2 and a = 1. An important
application of Hadamard spaces in Bioinformatics are phylogenetic trees [BHV01]. See
also [Bac18, section 6.3] for a quick overview. Another application of Hadamard spaces
is taking means in the manifold of positive definite matrices, e.g., in diffusion tensor
imaging. But note that, as the underlying space is a differentiable manifold, one an use
gradient-based approaches, see [PFA06].

Further examples of Hadamard spaces include Hilbert spaces, the Poincaré disc, com-
plete metric trees, complete simply-connected Riemannian manifolds of nonpositive sec-
tional curvature. See also [Stu03, section 3]. Let (Q, d) be a Hadamard space. We use
Q as data space as well as descriptor space, i.e., Q = Y. The cost function is c = d2,
the loss l = d. As described in section 4.3.2.3 the weak quadruple inequality holds with
a = 2d and b = d, i.e., (Q, d) fulfills the nice quadruple inequality. Let Y be a random
variable with values in Q. Let Y1, . . . , Yn be iid copies of Y .
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If E[d(Y, q)2] <∞ for one q ∈ Q, then it is also finite for every q ∈ Q and the Fréchet
mean m ∈ arg minq∈Q E[d(Y, q)2] exists and is unique, see [Stu03, Proposition 4.3]. The
same holds true for the estimator mn ∈ arg minq∈Q

∑n
i=1 d(Yi, q)2. Thus, Existence is

fulfilled.
Here, we chose a second moment condition, because we will need it for estimation

anyway. But note that choosing the cost function as c(y, q) = d(y, q)2 − d(y, o)2 for a
fixed, arbitrary point o ∈ Q allows us to require only a finite first moment for Existence
and the resulting Fréchet mean coincides with the d2-Fréchet mean if the second moment
is finite. This is described in more detail and utilized in [Stu03].

Furthermore, the Growth-condition holds in Hadamard spaces with γ = 2 and cg =
1, see [Stu03, Proposition 4.4]. Thus, we obtain following corollary of Theorem 4.1.

Corollary 4.8 (Convergence rate in probability). Assume Moment with ζ = 2 and
a = 2d and Entropy with b = d and α = β. Define

ηβ,n :=


n−

1
2 for β < 1 ,

n−
1
2 log(n+ 1) for β = 1 ,

n
− 1

2β for β > 1 .

Then, for all s > 0, it holds

P
(
η−1
β,nd(m,mn) ≥ s

)
≤ cE[d(Y, Y ′)2] s−2 ,

with a constant c > 0 depending only on β and ce. In particular,

d(m,mn) = OP(ηβ,n) .

As described in section 4.3.2.3, it may be difficult to find a version of the strong quadruple
inequality such that the same rate can be derived for convergence in expectation. Thus,
instead of trying to apply Theorem 4.5, we utilize (i) Corollary 4.3 and (ii) Theorem 4.7,
respectively.

Corollary 4.9.

(i) Let ε > 0. Assume E
[
d(Y, Y ′)2+ε] < ∞. Assume Entropy with b = d and

α = β < 1. Then it holds

E
[
d(m,mn)2

]
≤ cE

[
d(Y, Y ′)2+ε

] 2
2+ε 1

εn

for a constant c > 0 depending only on β.

(ii) Assume E
[
d(Y, Y ′)2] <∞. Let o ∈ Q. Assume Small Entropy with b = d.
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Let m̃n ∈ arg minq∈Bn(o)
∑n
i=1 d(Yi, q)2. Then it holds

E
[
d(m, m̃n)2

]
= O

( 1
n

log(n)2β
)
.

4.5 Power Fréchet Means in Hadamard Spaces
In this section, we demonstrate the great utility of the theory developed in the previous
sections by providing finite sample bounds and rates of convergence for power Fréchet
means with power α ∈ [1, 2] in Hadamard spaces. To the best knowledge of the author,
this result, which first appeared in [Sch19b], was not know before, not even in the
Euclidean spaces. It relies on an asymmetric weak quadruple inequality for power metrics
that is shown to hold in Hadamard spaces. This power inequality seems to be a deep
result; its the theorem with the longest proof in this thesis.

Recall from section 2.5, that for a strong law of large numbers to hold for α-Fréchet
means with α ≥ 1, we require E[Y,oα−1] < ∞. We will show that for a parametric rate
of the convergence we require E[Y,o2(α−1)] <∞ for α ∈ [1, 2] in Hadamard spaces.

First, we provide a suitable quadruple inequality in section 4.5.1. Then in section
4.5.2, we use it with the theory of rates for generalized Fréchet means to derive the
result.

4.5.1 Power Inequality

If the metric space (Q, d) fulfills the nice quadruple inequality, i.e, y,q2 − y,p2 − z,q2 +
z,p2 ≤ 2 y,z q,p, where y,q = d(y, q), then (Q, da), a ∈ [1

2 , 1], also fulfills a weak quadruple
inequality with a suitably adapted bound. According to [DD16], the metric da is called
power transform metric or snowflake transform metric.

Theorem 4.10 (Power Inequality). Let (Q, d) be a metric space. Use the short
notation q,p := d(q, p). Let q, p, y, z ∈ Q, a ∈ [1

2 , 1]. Assume

yq2 − yp2 − zq2 + zp2 ≤ 2 y,z q,p . (4.5)

Then
y,q2a − y,p2a − z,q2a + z,p2a ≤ 8a2−2a y,z2a−1 q,p . (4.6)

In particular, if the metric space (Q, d) fulfills the nice quadruple inequality and
a ∈ [1

2 , 1], then the weak quadruple inequality for c = d2a is fulfilled with a = 8a2−2ad2a−1

and b = d.
Following the intermediate step Lemma 4.27 (appendix 4.G) in the proof of Theo-

rem 4.10, one can easily show a similar result if the constant on the right hand side
of equation (4.5) is larger than 2. Only the constant 8a2−2a on the right hand side of
equation (4.6) changes.
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The theorem applies to subsets of Hadamard spaces. But note that it is not required
that Q is geodesic, but can consist of only the points q, p, y, z. As a statement purely
about metric spaces, it might be of interest outside the realm of statistics.

In Corollary 4.11 (section 4.3.2.3) it is used to show rates of convergence for the
Fréchet mean estimator of the power transform metric da. There the asymmetry of the
exponents of the factors on the right hand side of (4.6) is essential for proving the result
under weak assumption.

Unfortunately, the only proof of this statement that the author was able to derive
(see appendix 4.G) is very long and does not give much insight into the problem as it
mostly consists of distinguishing many cases and then using simple calculus. The author
is convinced that a more appealing proof is possible.

The concave function [1
2 , 1] → (0,∞), a 7→ 8a2−2a is maximal at a0 = (2 ln(2))−1 ≈

0.721 with 8a02−2a0 = 4
e ln(2) ≤ 2.123. Thus, the constant factor in the bound is very

close to 2, but 2 is not sufficient.
In appendix 4.E, we show that 8a2−2a is the optimal constant, and that we cannot

extend Theorem 4.10 to a > 1 or a < 1
2 . Of course, for a ∈ (0, 1

2 ], we have y,q2a−y,p2a−
z,q2a + z,p2a ≤ 2 q,p2a as d2a is a metric, which obeys the triangle inequality.

It is not known to the author whether the nice quadruple inequality in (Q, d) does or
does not imply the nice quadruple inequality in (Q, da) for a ∈ (1

2 , 1), i.e.,

y,q2a − y,p2a − z,q2a + z,p2a ≤ 2 y,za q,pa .

4.5.2 Rates of Convergence
Let (Q, d) is a Hadamard space and a ∈ [1

2 , 1). Then (Q, da) is not Hadamard, but fulfills
a weak quadruple inequality: Fix an arbitrary point o ∈ Q. We use the cost function
c(y, q) = d2a(y, q) − d2a(y, o) and the loss l = d. Then the weak quadruple inequality
holds with a(y, z) = 8a2−2ad(y, z)2a−1 and b = d.

We need to choose the cost function d2a(y, q) − d2a(y, o) instead of d2a(y, q) to ob-
tain a result with minimal moment requirement. To fulfill Moment we need that
E[d(Y, Y ′)2(2a−1)] is finite and for Existence, we need E[|c(Y, q)|] < ∞. We fulfill
both by assuming that E[d(Y, o)2(2a−1)] < ∞. Then the both conditions are satisfied:
On one hand, it holds E[d(Y, Y ′)2(2a−1)] ≤ 2E[d(Y, o)2(2a−1)]. On the other hand, using
the tight power bound of Lemma 4.31 (appendix section 4.G),

y,q2a − y,o2a ≤ 2a q,o
(
y,q + y,o

2

)2a−1

and thus
|c(Y, q)| ≤ 2a q,o

(
q,o

2 + Y,o

)2a−1
,

which implies E[|c(Y, q)|] <∞. But E[d(Y, q)2a] might be infinite as 2a > 2(2a− 1).
Theorem 4.1 with ζ = 2 implies following corollary.
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Corollary 4.11 (Bounds in probability for power mean). Assume:

(i) Existence: Let a ∈ [1
2 , 1]. Let o ∈ Q be an arbitrary fixed point. As-

sume there are mn ∈ arg minq∈Q 1
n

∑n
i=1

(
Yi,q

2a − Yi,o
2a) measurable and

m ∈ arg minq∈Q E[Y,q2a − Y,o2a].

(ii) Growth: There are constants cg > 0, γ ∈ (1,∞) such that E[Y,q2a] −
E[Y,m2a] ≥ cgd(m, q)γ for all q ∈ Q.

(iii) Moment: E[Y,q2(2a−1)] <∞ for one (and thus for all) q ∈ Q.

(iv) Entropy: There is β > 0 such that

√
logN(Bδ(m, d), d, r) ≤ ce

(
δ

r

)β
for all δ, r > 0.

Then, for all s > 0, it holds

P
(
η
− 1
γ−1

β,n m,mn ≥ s
)
≤ cE[Y,o2(2a−1)] s−2(γ−1) ,

where c > 0 depends only on β, γ, ce. In particular,

d(m,mn) = OP

(
η
− 1
γ−1

β,n

)
.

For β < 1 (true in many spaces, e.g., in Euclidean spaces) and γ = 2, we obtain the
parametric rate of convergence, d(m,mn) = OP

(
n−

1
2
)
.

Note that the moment condition becomes weaker as a gets smaller and vanishes for
a = 1

2 , where, in the Euclidean case, the Fréchet mean is the median.
Existence of mn and m is a purely technical condition, as one will usually only be

able to minimize the objective functions up to an ε > 0 and the set of ε-minimizers is
always nonempty.

The Growth condition is more interesting. It seems possible to choose γ = 2 for all
a ∈ [1

2 , 1] in many circumstances – at least under some conditions on the distribution of
Y . But precise statements of this sort are unknown to the author. If γ really can be
chosen independently of a, then the rate is the same for all a ∈ [1

2 , 1]. In the Euclidean
case, this is manifested in the fact that we can estimate median (a = 1

2) and mean
(a = 1) and all statistics “in between” (a ∈ (1

2 , 1)) with the same rate (under some
conditions), but with less restrictive moment assumptions for smaller powers a.

Similarly to the corollary above, we can apply Corollary 4.3 or Theorem 4.7 to obtain
rates in expectation.
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Appendix of Chapter 4

4.A Proofs of Theorem 1, 2, and 4
4.A.1 Proof of Theorem 4.1 and Corollary 4.3
Define

∆n(δ) := sup
q∈Q : l(m,q)≤δ

F (q)− F (m)− Fn(q) + Fn(m) .

Results similar to following Lemma are well known in the M-estimation literature. The
proof relies on the peeling device, see [Gee00].

Lemma 4.12 (Weak argmin transform). Assume Growth. Let ζ ≥ 1. Assume
that there are constants ξ ∈ (0, γ), hn ≥ 0 such that E[∆n(δ)ζ ] ≤

(
hnδ

ξ
)ζ

for all
δ > 0. Then

P(l(m,mn) ≥ s) ≤ c
(
hns

−(γ−ξ)
)ζ

,

where c > 0 depends only on cg, γ, ξ, ζ.

Proof. Let 0 < a < b. If l(m,mn) ∈ [a, b], we have

cga
γ ≤ cgl(m,mn)γ ≤ F (mn)− F (m) ≤ F (mn)− F (m)− Fn(mn) + Fn(m) ≤ ∆n(b) .

Let s > 0. For k ∈ N0, set ak := s2k. It holds

P(l(m,mn) ≥ s)

≤
∞∑
k=0

P(l(m,mn) ∈ [ak, ak+1])

≤
∞∑
k=0

P
(
cga

γ
k ≤ ∆n(ak+1)

)
.
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We use Markov’s inequality and the bound on E[∆n(δ)ζ ] to obtain

P
(
cga

γ
k ≤ ∆n(ak+1)

)
≤

E
[
∆n(ak+1)ζ

]
(
cga

γ
k

)ζ
≤
(
hna

ξ
k+1

cga
γ
k

)ζ
=
(
2c−1

g hns
−(γ−ξ)2−k(γ−ξ)

)ζ
.

As γ − ξ > 0, we get

P(l(m,mn) ≥ s) ≤
(
2c−1

g hns
−(γ−ξ)

)ζ ∞∑
k=0

2−kζ(γ−ξ)

=
(
2c−1

g hns
−(γ−ξ)

)ζ 1
1− 2−ζ(γ−ξ)

.

Lemma 4.13. Let ζ ≥ 1. Assume Moment, Weak Quadruple, and Entropy.
Then

E[∆n(δ)ζ ] ≤ cM(ζ)
(
δ
α
β ηβ,n

)ζ
where Y ′ is an independent copy of Y , c > 0 is a constant depending only on β, ce, ζ,
and

ηβ,n :=


n−

1
2 for β < 1 ,

n−
1
2 log(n+ 1) for β = 1 ,

n
− 1

2β for β > 1 .

Proof. Recall the notation cyq := c(y, q), F (q) = E[cY q], Fn(q) = 1
n

∑n
i=1

c
Yiq. Define

Zi(q) := 1
n

(
E
[
c
Y q − c

Y m
]
− c

Yiq + c
Yim

)
.

Thus, ∆n(δ) = supq∈Bδ(m,l)
∑n
i=1 Zi(q). The Moment condition together with the

Weak Quadruple condition imply that Zi are integrable. Let (Z ′1, . . . , Z ′n) be an inde-
pendent copy of (Z1, . . . , Zn), where (Y ′1 , . . . , Y ′n) is an independent copy of (Y1, . . . , Yn).
By Weak Quadruple it holds

n2 (Zi(q)− Zi(p)− Z ′i(q) + Z ′i(p)
)2

=
(
c
Yiq −

c
Yip−

c
Y ′i q + c

Y ′i p
)2

≤ b(q, p)2a(Yi, Y ′i )2 .
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Furthermore,

E

( 1
n

n∑
i=1

a(Yi, Y ′i )2
) ζ

2
 ≤M(ζ) .

Thus, Theorem 4.24 (appendix 4.F) implies

E[∆n(δ)ζ ] ≤ c1M(ζ)
( 1√

n
entrn(Bδ(m, l), b)

)ζ
,

where entrn is defined in Definition 4.4.
To bound entrn(Bδ(m, l), b) by applying Lemma 4.25 (appendix 4.F), we need to find

an upper bound on diam(Bδ(m, l), b). Set r0 := (2ceδ
α)

1
β . It fulfills ce

δα

rβ0
<
√

log(2).
Thus, Entropy implies N(Bδ(m, l), b, r0) < 2. As the covering number is an integer,
N(Bδ(m, l), b, r0) = 1, which implies, diam(Bδ(m, l), b) ≤ 2r0 =: Dδ. Rewriting the
Entropy-condition in terms of Dδ yields

√
logN(Bδ(m, l), b, r) ≤ cβ

(
Dδ

r

)β
for a constant cβ > 0 depending only on β and ce.

Together with Lemma 4.25 (appendix 4.F) we get

E[∆n(δ)ζ ] ≤ cM(ζ)
(
δ
α
β ηβ,n

)ζ
for a constant c > 0 depending only on β, ce, ζ.

Proof of Theorem 4.1. Combine Lemma 4.12 and Lemma 4.13.

Proof of Corollary 4.3. Theorem 4.1 yields

η
− κ
γ−α

β

β,n E[l(m,mn)κ] =
∫ ∞

0
P
(
η
− 1
γ−α

β

β,n l(m,mn) ≥ t
1
κ

)
dt

≤
∫ ∞

0
min

(
1, cM(ζ) t−ξ

)
dt .

In general for a > 1, b > 0, we have∫
min(1, bt−a)dt = a

a− 1b
1
a .

The proof is concluded by applying this statement and noting that ξ > 1.

4.A.2 Proof of Theorem 4.5
To state the next Lemma, which will be used to prove Theorem 4.5, we introduce an
intermediate condition, which we call Closeness.
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Assumptions.

Closeness:
There is ξ ∈ (0, γ) and a random variable Hn ≥ 0, such that

F (q)− F (m)− Fn(q) + Fn(m) ≤ Hnl(m, q)ξ (4.7)

for all q ∈ Q almost surely.

Lemma 4.14. Assume Closeness and Growth, and let κ > 0. Then,

E[l(m,mn)κ] ≤ cE
[
H

κ
γ−ξ
n

]
,

where c > 0 depends only on cg, γ, ξ, κ.

Proof. We use Growth and the fact that mn minimizes Fn to obtain

cgl(m,mn)γ ≤ F (mn)− F (m)
≤ F (mn)− F (m)− Fn(mn) + Fn(m)
≤ Hnl(m,mn)ξ ,

where we applied the Closeness condition in the last step. Thus,

cgl(m,mn)γ−ξ ≤ Hn ,

which implies the claimed inequality.

Define
X(q) := Fn(q)− Fn(m)− F (q) + F (m)

l(m, q)ξ .

Lemma 4.15. Let ζ ≥ 1. Assume Strong Moment and Strong Quadruple.
Then

E
[
sup
q∈Q
|X(q)|ζ

]
≤ cn−

ζ
2M(ζ) min(entrn(Q, bm), γ2(Q, bm))ζ ,

where c > 0 is a constant depending only on ζ. Additionally, assume Strong
Entropy. Then

E
[
sup
q∈Q
|X(q)|ζ

]
≤ CM(ζ)Dζηζn,β ,
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where C > 0 is a constant depending only on ζ, β, ce, and

ηβ,n :=


n−

1
2 for β < 1 ,

n−
1
2 log(n+ 1) for β = 1 ,

n
− 1

2β for β > 1 .

Proof. Define

Zi(q) := 1
n

c
Yiq −

c
Yim− E

[
c
Y q − c

Y m
]

l(m, q)ξ .

Thus, X(q) = ∑n
i=1 Zi(q). The Strong Moment condition together with the Strong

Quadruple condition imply that Zi integrable. Let (Z ′1, . . . , Z ′n) be an independent
copy of (Z1, . . . , Zn), where (Y ′1 , . . . , Y ′n) is an independent copy of (Y1, . . . , Yn). By
Strong Quadruple it holds

n2 (Zi(q)− Zi(p)− Z ′i(q) + Z ′i(p)
)2

=
( c
Yiq −

c
Yim−

c
Y ′i q + c

Y ′im

l(m, q)ξ −
c
Yip−

c
Yim−

c
Y ′i p+ c

Y ′im

l(m, p)ξ

)2

≤ bm(q, p)2a(Yi, Y ′i )2 .

Furthermore,

E

( 1
n

n∑
i=1

a(Yi, Y ′i )2
) ζ

2
 ≤M(ζ)

with M(ζ) < ∞ due to the assumption Strong Moment. Thus, Theorem 4.24 (ap-
pendix 4.F) implies

E
[
sup
q∈Q
|X(q)|ζ

]
≤ cn−

ζ
2M(ζ) min(entrn(Q, bm), γ2(Q, bm))ζ .

Strong Entropy together with Lemma 4.25 (appendix 4.F) yield

E
[
sup
q∈Q
|X(q)|ζ

]
≤ CM(ζ) (Dηn,β)ζ

for a constant C > 0 depending only on β, ζ, ce.

Proof of Theorem 4.5. Using Hn := supq∈Q |X(q)| in Lemma 4.14 fulfills the Closeness
condition by definition of X. Next, apply Lemma 4.15 with ζ := κ

γ−ξ to conclude the
proof.
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4.A.3 Proof of Theorem 4.7

Lemma 4.16. The condition Small Entropy implies

entrn(BR(o, b), b1−ξ) ≤ cR1−ξ(1− ξ)−β

for ξ ∈ (0, 1), where c > 0 depends only on β, ce.

Proof. Obviously, it holds

entrn(Q, b1−ξ) ≤
∫ ∞

0

√
logN(Q, b1−ξ, r)dr

for any set Q ⊆ Q. Furthermore,

N(Q, b1−ξ, r) = N(Q, b, r
1

1−ξ ) ,

which yields ∫ ∞
0

√
logN(Q, b1−ξ, r)dr = (1− ξ)

∫ ∞
0

s−ξ
√

logN(Q, b, s)ds

Thus, for Q := BR(o, b), we obtain, using the Small Entropy condition,

entrn(Q, b1−ξ) ≤ ce(1− ξ)
∫ R

0
r−ξ log

(
R

r

)β
dr .

To calculate the integral, we substitute s := r
R and get

∫ R

0
r−ξ log

(
R

r

)β
dr = R1−ξ

∫ 1

0
s−ξ log

(1
s

)β
ds .

For general a ∈ (0, 1), b > 0 it holds∫ 1

0
x−a log

(1
x

)b
dx = (1− a)−b−1Γ(b+ 1) ,

where Γ(·) is the Gamma function. Thus,∫ 1

0
s−ξ log

(1
s

)β
ds ≤ cβ(1− ξ)−β−1

for a constant cβ > 0 depending only on β. Putting everything together, we obtain

entrn(Q, b1−ξ) ≤ cR1−ξ(1− ξ)−β .
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Lemma 4.17. Set ξn := 1− log(n)−1. Then
(
n−

1
2 (1− ξn)−β

) 1
γ−ξn ≤ cγn−

1
2(γ−1) log(n)

β
γ−1

where cγ > 0 is a constant depending only on γ.

Proof. We have(
n−

1
2 (1− ξn)−β

) 1
γ−ξn =

(
n
− 1

2(γ−ξn)

)
log(n)

β
γ−ξn

=

n− 1
2
(
z+ 1

log(n)

) log(n)
β

z+ 1
log(n) ,

where z = γ − 1. We use

log(n)
β

z+ 1
log(n) ≤ log(n)

β
z ,

n
− 1

2(z+ 1
log(n) ) = n

− log(n)
2z log(n)+2 = exp

(
− log(n)2

2z log(n) + 2 + log(n)
2z

)
n−

1
2z ,

and

− log(n)2

2z log(n) + 2 + log(n)
2z = log(n)

2z(z log(n) + 1)

≤ 1
2z2 ,

to obtain (
n−

1
2 (1− ξn)−β

) 1
γ−ξn ≤ exp

( 1
2z2

)
n−

1
2z log(n)

β
z .

Proof of Theorem 4.7. For n ∈ N, n ≥ 3, set ξn := 1 − log(n)−1, Qn := BRn(o, b),
and Rn := n. For n large enough, the Existence’ condition implies the existence of
mQn
n ∈ arg minq∈Qn Fn(q) and mQn ∈ arg minq∈Qn F (q).
Theorem 4.5 implies

E
[
b(mQn ,mQn

n )κ
]
≤ Cn−

κ
2(γ−ξn) entrn(Qn, b1−ξn)

κ
γ−ξn M

(
κ

γ − ξn

)
,

for n large enough. Note, that C > 0 can be chosen independently of n (even for ξn
depending on n).

In Strong Moment we require κ ≥ γ−1, because then x 7→ x
κ
γ−1 is convex, which is

needed for the symmetrization argument in the proof of Theorem 4.5. But, if κ = γ− 1,
then κ

γ−ξn < 1, and Theorem 4.5 cannot be applied directly. For this technical reason,
we assumed κ > γ − 1, so that κ ≥ γ − ξn for n large enough.
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By Small Entropy and Lemma 4.16 there is cβ > 0 such that for n ∈ N large
enough, it holds

entrn(BRn(o, b), b1−ξn) ≤ cβR1−ξn
n (1− ξn)−β .

Using R1−ξn
n = n

1
log(n) = exp(1) together with Lemma 4.17, we obtain

E
[
b(mQn ,mQn

n )κ
]
≤ C ′

(
n−

1
2 log(n)β

)− κ
γ−1 M

(
κ

γ − ξn

)
.

As limn→∞M
(

κ
γ−ξn

)
= M

(
κ
γ−1

)
, we have

E
[
b(mQn ,mQn

n )κ
]
≤ C ′′n−

κ
2(γ−ξn)

(
R1−ξn
n (1− ξn)−β

) κ
γ−ξn M

(
κ

γ − 1

)
.

Finally, there is a n0 ∈ N such that for all n ≥ n0 it holds m ∈ Qn, which implies
m = mQn . Thus,

E
[
b(m,mQn

n )κ
]

= O
((
n−

1
2 log(n)β

)− κ
γ−1
)
.

4.B Stability of Quadruple Inequalities

We present some trivial stability results for quadruple inequalities. The notation we use
here is introduced in the beginning of section 4.3.

Subsets:
If (Q,Y, c, a, b) fulfills the weak quadruple inequality, then so does
(Q′,Y ′, c, a, b) with Q′ ⊆ Q, Y ′ ⊆ Y.

Images:
Assume (Q,Y, c, a, b) fulfills the weak quadruple inequality and f : Y ′ → Y, g : Q′ →
Q. Then (Q′,Y ′, c′, a′, b′) fulfills the weak quadruple inequality with c′(y, q) =
c(f(y), g(q)), a′(y, z) = a(f(y), f(z)), b′(q, p) = b(g(q), g(p)).

Limits:
Let (Q,Y, ci, ai, bi) fulfill the weak quadruple inequality for i ∈ N and assume for
all q, p ∈ Q and y, z ∈ Y the point-wise limits

a(y, z) := lim
i→∞

ai(y, z)

b(q, p) := lim
i→∞

bi(q, p)

c(y, q) := lim
i→∞

ci(y, q)

exist. Then (Q,Y, c, a, b) also fulfills the weak quadruple inequality.

Similar results hold for the strong quadruple inequality. For the following results it may
not be so easy to obtain an analog for the strong quadruple inequality.
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Product Spaces:
If (Qi,Yi, ci, ai, bi) fulfill the weak quadruple inequality for all i ∈ N, then so does
(Q,Y, c, a, b) where Q =×i∈NQi, Y =×i∈N Yi, c = ∑∞

i=1 ci, a = ‖(ai)i∈N‖`2 ,
b = ‖(bi)i∈N‖`2 .

Proof. It holds

cyq − czq − cyp+ czp =
∞∑
i=1

(ciyi,qi − cizi,qi − ciyi,pi + cizi,pi)

≤
∞∑
i=1

ai(yi, zi)bi(qi, pi)

≤ a(y, z)b(q, p) ,

using the Cauchy–Schwarz inequality.

Measure Spaces:
Let (Ω,A, µ) be a measure space. Assume (Q,Y, c(ω), a(ω), b(ω)) fulfills the weak
quadruple inequality for every ω ∈ Ω. Let s, t > 0 with 1

s + 1
t = 1. Let L(Ω,Q)

be the set of measurable functions from Ω to Q, define L(Ω,Y) analogously. For
q, p ∈ L(Ω,Q), y, z ∈ L(Ω,Y), let

C(y, q) :=
∫
c(ω, y(ω), q(ω)) dµ(ω) ,

A(y, z) :=
(∫

a(ω; y(ω), z(ω))t dµ(ω)
) 1
t

,

B(q, p) :=
(∫

b(ω; q(ω), p(ω))s dµ(ω)
) 1
s

,

where we implicitly assume that the necessary measurablity and integrability con-
ditions are fulfilled. Then

(L(Ω,Q), L(Ω,Y),C,A,B)

also fulfills the quadruple inequality.

Proof. It holds

C(y, q)− C(z, q)− C(y, p) + C(z, p)

=
∫

c(ω; y(ω), q(ω))− c(ω; y(ω), p(ω))

− c(ω; z(ω), q(ω)) + c(ω; z(ω), p(ω))dµ(ω)

≤
∫

a(ω; y(ω), z(ω))b(ω; q(ω), p(ω))dµ(ω)

≤ A(y, z)B(q, p) ,
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by Hölder’s inequality.

Minima:
Let (Q,Y, c, a, b) fulfill the weak quadruple inequality. Let Ỹ ⊆ 2Y . Define the cost
function C : Ỹ ×Q → R by C(y, q) = infy∈y c(y, q) and A(y, z) = supy∈y,z∈z a(y, z)
assuming the infinma and suprema are finite. Then (Q, Ỹ,C,A, b) fulfills the weak
quadruple inequality.

Proof. Let y, z ∈ Ỹ and q, p ∈ Q. Assume there are yq, yp ∈ y, zq, zp ∈ z such that
C(y, q) = cyqq, C(y, p) = cypp, C(z, q) = czqq, and C(z, p) = czpp. Then

C(y, q)− C(y, p)− C(z, q) + C(z, p) = cyqq − cypp− czqq + czpp

≤ cypq − cypp− czqq + czqp

≤ a(yp, zq)b(q, p)
≤ A(y, z)b(q, p) .

If the infima are not attained, one can follow the same proof with minimizing
sequences.

In many interesting problems the setting is opposite to what was described before,
i.e., C : Y × Q̃ → R, (y,q) 7→ infq∈q c(y, q), where Q̃ ⊆ 2Q: the elements of the
descriptor space are subsets and the elements of data space are points. Examples
are k-means, where Q̃ consists of k-tuples of points in Q, or fitting hyperplanes.
A quadruple inequality with supq∈q,p∈p b(q, p) as the descriptor distance can be
established. Unfortunately, this is usually not useful, as the entropy condition
cannot be fulfilled with distances of this type. The framework described in this
chapter can still be applied using inequalities as for bounded spaces, see section
4.3.1. But we cannot directly use the advantage of quadruple inequalities over
Lipschitz-continuity.

4.C Proof of Lemma 4.6
We first state and prove two simple lemmas for some simple arithmetic expressions and
then use those for the proof of Lemma 4.6.

Lemma 4.18. Let A,B ∈ R, a, b, c, r ≥ 0, s, t > 0. Assume t ≥ s ⇔ b ≥ a.
Assume |A| ≤ ra, |B| ≤ rb, |A−B| ≤ rc . Then∣∣∣∣As − B

t

∣∣∣∣ ≤ rmin(s, t)c+ |s− t|min(a, b)
st

.

Proof. For t ≥ s, using the bound on A and on A − B implies A
s −

B
t ≤ r (t−s)a+sc

st .
Similarly, for s ≥ t, we get A

s −
B
t ≤ r tc+(s−t)b

st by using the bound on B and A − B.
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Together, we obtain

A

s
− B

t
≤ rmin(s, t)c+ |s− t|min(a, b)

st
.

We finish the proof by pointing out the symmetry between (A, a, s) and (B, b, t).

Lemma 4.19. Let a, b, c > 0, β ∈ [0, 1]. Assume a ≤ b, b ≤ a+ c, c ≤ a+ b. Then

caβ +
(
bβ − aβ

)
a

aβbβ
≤ 2βc1−β .

Proof. The statement is trivial for β ∈ {0, 1}. So let β ∈ (0, 1).
Case I, c ≤ a: Define f(x) = 1 − x − (1 + x)β(1 − x1−β). Then f(0) = f(1) = 0 and
f ′′(x) = −(1 − β)βx−β−1(x + 1)β−2(1 − xβ+1) ≤ 0 for x ∈ (0, 1). Thus, f(x) ≥ 0 for
x ∈ [0, 1]. In particular f

(
c
a

)
≥ 0, which implies a − c ≥ (a + c)β(a1−β − c1−β) ≥

bβ(a1−β − c1−β). Thus,
caβ +

(
bβ − aβ

)
a

aβbβ
≤ c1−β .

Case II, c ≥ a: As 1 − β ≤ 1 and c − a ≥ 0, we have (c − a)1−β + a1−β ≤ 2βc1−β.
Multiplying by (c− a)β and using c− a ≤ b, we get c− a ≤ bβ

(
2βc1−β − a1−β

)
. Thus,

caβ +
(
bβ − aβ

)
a

aβbβ
≤ 2βc1−β .

Proof of Lemma 4.6. Applying Lemma 4.18 to the left hand side of equation (4.4), yields
cyq − cym− czq + czm

b(q,m)ξ −
cyp− cym− czp+ czm

b(p,m)ξ ≤ a(y, z) b̃m,ξ(q, p)

where

b̃m,ξ(q, p) =
min(bqm, bpm)ξ bqp+

∣∣∣bqmξ − bpmξ
∣∣∣min(bqm, bpm)

bqmξ bpmξ

with the short notation bqp := b(q, p), for all y, z, q, p,m ∈ Q. Applying Lemma 4.19
yields b̃m,ξ(q, p) ≤ 2ξb(q, p)1−ξ.

4.D Projection Metric Counter Example

We take a tripod (Q, d) as a simple example of a non-Euclidean Hadamard space, see
[Stu03, Example 3.2], and show that it does not fulfill the strong quadruple inequality
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y z q p m

pod number 1 1 2 1 3
distance from center ε 0 r ε r

p = y z

q

m

ε

pod 1 r

pod 3

r

pod 2

Figure 4.3: Tripod counter-example for the strong quadruple inequality

with the projection metric

dproj
m (q, p) :=

√
q,p2 − (q,m− p,m)2

q,mp,m
.

Let r > ε > 0 and define y, z, q, p, o on a tripod as in Figure 4.3. We take c = d2, ξ = 1,
l = d, a = Kd, and bm = dproj

m . Then

cyq − cym− czq + czm

l(q,m) −
cyp− cym− czp+ czm

l(p,m) = 2ε ,

a(y, z)bm(q, p) = Kε

√
2 ε

r + ε
.

If the strong quadruple inequality holds, then

K ≥
√

2r + ε

ε

ε↘0−−−→∞ .

Thus, dproj
m is not a suitable candidate for the strong quadruple distance in general

Hadamard spaces.

4.E Optimality of Power Inequality

We show that 8α2−2α is the optimal constant, and that we cannot extend Theorem 4.10
to α > 1 or α < 1

2 . Let ε ∈ (0, 1) and (Q, d) be a metric space with q, p, y, z ∈ Q such
that for each case below the distances have the values written down in Table 4.1. One
can easily show that in all three cases the necessary triangle inequalities and the nice
quadruple inequality hold.
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Case y,q y,p z,q z,p y,z q,p

(a) 1− ε 1− 3ε 1− 2ε 1 2− 3ε 2ε
(b) 1 ε 1− ε 2ε 2ε 1
(c) 2ε ε 1 1 1 ε

Table 4.1: Distances of four points y, z, q, p ∈ Q for showing lower bounds of the constant
in Theorem 4.10.

(a) For α ∈ [1
2 , 1] it holds

lim
ε↘0

y,q2α − y,p2α − z,q2α + z,p2α

y,z2α−1 q,p

= lim
ε↘0

(1− ε)2α − (1− 3ε)2α − (1− 2ε)2α + 1
(2ε)(2− 3ε)2α−1

= lim
ε↘0

2α−(1− ε)2α−1 + 3(1− 2ε)2α−1 + 2(1− 3ε)2α−1

2(2− 3ε)2α−1 + 2ε(2α− 1)(2− 3ε)2α−2

= 8α2−2α .

Thus, the constant 8α2−2α in Theorem 4.10 is optimal.

(b) For α > 1 it holds

lim
ε↘0

y,q2α − y,p2α − z,q2α + z,p2α

y,z2α−1 q,p

= lim
ε↘0

−2ε2α−1 + 2(1− ε)2α−1 + 2(2ε)2α−1

22α−1ε2α−2

=∞ .

Thus, there is no power inequality in the form of Theorem 4.10 for α > 1.

(c) For α ∈ (0, 1
2) it holds

lim
ε↘0

y,q2α − y,p2α − z,q2α + z,p2α

y,z2α−1 q,p
= lim

ε↘0

(2ε)2α − ε2α − 1 + 1
2ε

= lim
ε↘0

1
2(22α − 1)ε2α−1

=∞ .

Thus, there is no power inequality in the form of Theorem 4.10 for α < 1
2 .

4.F Chaining
Recall the measures of entropy γ2 and entrn defined in Definition 4.4. We add another
useful entry to this list.
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Definition 4.20 (Bernoulli Bound). For T ⊆ Rn define

b(T ) := inf
{

sup
t∈T1

‖t‖1 + γ2(T2) : T1, T2 ⊆ Rn, T ⊆ T1 + T2

}
,

where γ2(T2) = γ2(T2, d2) for the Euclidean metric d2 on Rn, ‖t‖1 = ∑n
i=1 |ti|, and

T1 + T2 = {t1 + t2 : t1 ∈ T1, t2 ∈ T2}.

We write down the Bernoulli bound for powers of the Bernoulli process. [BL14] show
that the bound can be reversed (up to an universal constant). Thus, this step can be
regarded as optimal.

Theorem 4.21 (Bernoulli bound). Let σ1, . . . , σn be independent random signs,
i.e., P(σi = ±1) = 1

2 . For t ∈ Rn set X̃t := ∑n
i=1 σiti. Let T ⊆ Rn. Let κ ≥ 1. Then

E
[
sup
t∈T

∣∣∣X̃t

∣∣∣κ] ≤ cκb(T )κ ,

where cκ depends only on κ.

Proof. Let T1, T2 ⊆ Rn such that T ⊆ T1 + T2. As (a + b)κ ≤ 2κ−1 (aκ + bκ) for all
a, b ≥ 0, we can split the supremum into two parts,

E
[
sup
t∈T

∣∣∣X̃t

∣∣∣κ] ≤ 2κ−1
(
E
[

sup
t∈T1

∣∣∣X̃t

∣∣∣κ]+ E
[

sup
t∈T2

∣∣∣X̃t

∣∣∣κ]) .

The first term is bounded using the 1-norm, E
[
supt∈T1

∣∣∣X̃t

∣∣∣κ] ≤ supt∈T1 ‖t‖
κ
1 . For the

second we use Talagrand’s generic chaining bound for the supremum of the subgaussian
process E

[
supt∈T2

∣∣∣X̃t

∣∣∣κ] ≤ c′κγ2(T2)κ, see [Tal14]. We obtain

E
[
sup
t∈T

∣∣∣X̃t

∣∣∣κ] ≤ cκ
(

sup
t∈T1

‖t‖κ1 + γ2(T2)κ
)
≤ cκ

(
sup
t∈T1

‖t‖1 + γ2(T2)
)κ

.

Lemma 4.22 (Lipschitz connection). Let (Q, b) be a pseudo-metric space. As-
sume there are function fi : Q → R such that |fi(q)− fi(p)| ≤ aib(q, p). Let
T := {(fi(q))i=1,...,n : q ∈ Q}. Set a = (a1, . . . , an). Then

b(T ) ≤ C‖a‖2 min(entrn(Q, b), γ2(Q, b)) ,

where C > 0 is an universal constant.
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Proof. For ε > 0, choose Q2 to be an ε-covering of Q with respect to b, i.e., for all q ∈ Q
there is a pq ∈ Q2 such that b(q, pq) ≤ ε. For q ∈ Q denote tq := (fi(q))i=1,...,n ∈ Rn.
Define T2 := {tp : p ∈ Q2} and T1 :=

{
tq − tpq : q ∈ Q

}
. Then T ⊆ T1 + T2. The

Lipschitz-condition implies ‖tq − tp‖2 ≤ ‖a‖2b(q, p) for all q, p ∈ Q. Thus,

sup
t∈T1

‖t‖1 ≤ sup
q∈Q

√
n‖tq − tpq‖2 ≤ ε

√
n‖a‖2 .

By the properties of γ2, see [Tal14], we obtain

γ2(T2) ≤ c‖a‖2γ2(Q2, b) ≤ c′‖a‖2
∫ ∞
ε

√
logN(Q, b, r)dr

for universal constants c, c′ > 0. Applying the two inequalities to the definition of b(T )
concludes the proof.

Lemma 4.23 (Symmetrization). LetQ be set. Let Z1, . . . , Zn be centered, indepen-
dent, and integrable stochastic processes indexed by Q. Let Φ: R→ R be a convex,
nondecreasing function. Let (Z ′1, . . . , Z ′n) be an independent copy of (Z1, . . . , Zn).
Let ε1, . . . , εn be iid with P(ε1 = ±1) = 1

2 . Then

E
[
sup
q∈Q

Φ
(

n∑
i=1

Zi(q)
)]
≤ E

[
sup
q∈Q

Φ
(

n∑
i=1

εi
(
Zi(q)− Z ′i(q)

))]
,

assuming measurability of the involved terms.

The symmetrization lemma is well-known. The statement here is an intermediate step
of from the proof of [VW96, 2.3.6 Lemma].

Theorem 4.24 (Empirical process bound). Let (Q, b) be a separable pseudo-metric
space. Let Z1, . . . , Zn be centered, independent, and integrable stochastic processes
indexed by Q with a q0 ∈ Q such that Zi(q0) = 0 for i = 1, . . . , n. Let (Z ′1, . . . , Z ′n)
be an independent copy of (Z1, . . . , Zn). Assume the following Lipschitz-property:
There is a random vector A with values in Rn such that∣∣Zi(q)− Zi(p)− Z ′i(q) + Z ′i(p)

∣∣ ≤ Aib(q, p)
for i = 1, . . . , n and all q, p ∈ Q. Let κ ≥ 1. Then

E
[
sup
q∈Q

∣∣∣∣∣
n∑
i=1

Zi(q)
∣∣∣∣∣
κ]
≤ C E[‖A‖κ2 ] min(entrn(Q, b), γ2(Q, b))κ ,

where C > 0 is an universal constant.
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Proof. Use Lemma 4.23. Then apply Theorem 4.21 and Lemma 4.22 conditionally on
Z1, . . . , Zn.

Lemma 4.25. Let (Q, b) be a pseudo-metric space. LetD > 0 such that diam(Q, b) ≤
D <∞. Let β > 0. Assume

√
log(N(Q, b, r)) ≤ ce

(
D

r

)β
for all 0 < r < D.

(i) If β < 1 then entrn(Q, b) ≤ ceD
1−β .

(ii) If β = 1 then entrn(Q, b) ≤ c′eD log(n+ 1), where c′ > 0 depends only on ce.

(iii) If β > 1 then entrn(Q, b) ≤ c
1
β
e

β
β−1n

− 1
2β+ 1

2 .

In particular
n−

1
2 entrn(Q, b) ≤ cD ηβ,n ,

where c depends only on ce and β and

ηβ,n :=


n−

1
2 for β < 1 ,

n−
1
2 log(n+ 1) for β = 1 ,

n
− 1

2β for β > 1 .

The proof consists of calculating the entropy integral with the given bound on the
covering numbers and, for β ≥ 1, choosing the minimizing starting point of the integral
ε > 0.

4.G Proof of the Power Inequality, Theorem 4.10
Let (Q, d) be a metric space. Use the short notation q,p := d(q, p). Let q, p, y, z ∈ Q,
α ∈ [1

2 , 1]. Assume
yq2 − yp2 − zq2 + zp2 ≤ 2 y,z q,p .

The goal of this section is to prove

y,q2α − y,p2α − z,q2α + z,p2α ≤ 8α2−2α y,z2α−1 q,p .

4.G.1 Arithmetic Form
Theorem 4.10 will be proven in the form of Lemma 4.26.
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Lemma 4.26. Let a, b, c ≥ 0, r, s ∈ [−1, 1], and α ∈ [1
2 , 1]. Then

a2α − c2α −
(
a2 − 2rab+ b2

)α
+
(
c2 − 2scb+ b2

)α
≤ 8α2−2αbmax(ra− sc, |a− c|)2α−1 .

The advantage of using Lemma 4.26 to prove Theorem 4.10 is, that we do not need
to consider a system of additional conditions for describing that the real values in the
inequality are distances, which have to fulfill the triangle inequality. The disadvantage
is, that we loose the possibility for a geometric interpretation of the proof.

Lemma 4.27. Lemma 4.26 implies Theorem 4.10.

Proof. Three points from an arbitrary metric space can be embedded in the Euclidean
plane so that the distances are preserved. Thus, the cosine formula of Euclidean geometry
can be applied to the three points y, p, q ∈ Q: It holds

y,q2 = y,p2 + q,p2 − 2s y,p q,p ,

where s := cos(]ypq) with the angle ]ypq in the Euclidean plane. Similarly

z,q2 = z,p2 + q,p2 − 2r z,p q,p ,

where r := cos(]zpq). Thus,

y,q2α − y,p2α − z,q2α + z,p2α

=
(
y,p2 + q,p2 − 2s y,p q,p

)α
−
(
z,p2 + q,p2 − 2r z,p q,p

)α
− y,p2α + z,p2α

=
(
c2 + b2 − 2scb

)α
−
(
a2 + b2 − 2rab

)α
− c2α + a2α ,

where a := z,p, c := y,p, b := q,p. Hence, Lemma 4.26 yields

y,q2α − y,p2α − z,q2α + z,p2α ≤ 8α2−2αbmax(ra− sc, |a− c|)2α−1 . (4.8)

The assumption of Theorem 4.10 states yq2 − yp2 − zq2 + zp2 ≤ 2 y,z q,p. This implies

2b (ra− sc) =
(
c2 + b2 − 2scb

)
−
(
a2 + b2 − 2rab

)
− c2 + a2 ≤ 2b y,z .

Therefore, ra − sc ≤ y,z (or b = 0, but then q = p and Theorem 4.10 becomes trivial).
Furthermore, the triangle inequality implies |a− c| = |z,p− y,p| ≤ y,z. Thus, we obtain

max(ra− sc, |a− c|) ≤ y,z . (4.9)
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Finally, (4.8) and (4.9) together yield

y,q2α − y,p2α − z,q2α + z,p2α ≤ 8α2−2α q,p y,z2α−1 .

The remaining part of this section is dedicated to proving Lemma 4.26.
The proof of Lemma 4.26 can be described as brute force. We will distinguish many

different cases, i.e., certain bounds on a, b, c, r, s, e.g., a ≤ c and a > c. In each case,
we try to simplify the inequality step by step until we can solve it easily. Mostly, the
simplification consists of taking some derivative and showing that the derivative is always
negative (or always positive). Then we only need to show the inequality at one extremal
point. This process may have to be iterated. It is often not clear immediately which
derivative to take in order to simplify the inequality. Even after finishing the proof there
seems to be no deeper reason for distinguishing the cases that are considered. Thus,
unfortunately, the proof does not create a deeper understanding of the result.

4.G.2 First Proof Steps and Outline of the Remaining Proof
We want to show Lemma 4.26 to prove Theorem 4.10. We refer to the left hand side of
the inequality, a2α − c2α −

(
a2 − 2rab+ b2

)α +
(
c2 − 2scb+ b2

)α, as LHS. By RHS we,
of course, mean the right hand side, 8α2−2αbmax(ra− sc, |a− c|)2α−1.

For max(ra− sc, |a− c|) = 0 we have a = c and r ≤ s. Thus, LHS ≤ 0. If max(ra−
sc, |a − c|) > 0, LHS and RHS are continuous in all parameters. Thus, it is enough to
show the inequality on a dense set. In particular, we can and will ignore certain special
cases in the following which might introduce technical problems, e.g., ”00”.

We have to distinguish the cases |a−c| = max(ra−sc, |a−c|) and ra−sc = max(ra−
sc, |a − c|). We further distinguish a ≥ c and c ≥ a. Some trivial implications for each
case are recorded in following lemma.

Lemma 4.28 (ra− sc vs |a− c|). Let a, b, c ≥ 0, r, s ∈ [−1, 1], and α ∈ [1
2 , 1]. Then

ra− sc ≥ a− c ⇔ s ≤ (r − 1)a
c

+ 1 ⇔ r ≥ (s− 1) c
a

+ 1 ,

ra− sc ≥ c− a ⇔ s ≤ (r + 1)a
c
− 1 ⇔ r ≥ (s+ 1) c

a
− 1 .

In the upcoming two subsections we consider less trivial consequences for the two cases
|a− c| ≤ ra− sc and |a− c| ≥ ra− sc.

4.G.2.1 The Case |a− c| ≤ ra− sc

Consider the case ra−sc ≥ |a−c|. The next lemma shows convexity in r of the function
”LHS minus RHS”. This means, we only have to check values of r on the border of its
domain.
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Lemma 4.29 (Convexity in r). Let a, b, c ≥ 0, s, r ∈ [−1, 1], α ∈ [1
2 , 1]. Assume

ra− sc ≥ 0. Define

F (r, s) := a2α − c2α −
(
a2 − 2rab+ b2

)α
+
(
c2 − 2scb+ b2

)α
− 8α2−2αb(ra− sc)2α−1 .

Then
∂2
rF (r, s) ≥ 0 .

We will want to show F (r, s) ≤ 0 for certain restrictions on r and s. Lemma 4.29 implies
that F is convex in r. Thus, only extreme values of r need to be checked. We will make
use of this fact in Remark 4.30 below. Note, neither ∂2

sF (r, s) ≥ 0 nor ∂2
sF (r, s) ≤ 0 for

all a, b, c, s, r.

Proof. Define

`(r, s) := a2α − c2α −
(
a2 − 2rab+ b2

)α
+
(
c2 − 2scb+ b2

)α
.

It holds

∂r`(r, s) = 2abα
(
a2 − 2rab+ b2

)α−1
.

Define h(r, s) := 8α2−2αb (ra− sc)2α−1. It holds

∂rh(r, s) = 8α(2α− 1)2−2αba (ra− sc)2α−2 .

It holds F (r, s) = `(r, s)− h(r, s). It holds

f(r) := ∂r`(r, s)− ∂rh(r, s)
2abα =

(
a2 − 2rab+ b2

)α−1
− (2α− 1)

(
ra− sc

2

)2α−2

and

∂rf(r) = −2ab(α− 1)
(
a2 − 2rab+ b2

)α−2
− 1

2a(2α− 1)(2α− 2)
(
ra− sc

2

)2α−3
.

It holds 2ab
(
a2 − 2rab+ b2

)α−2 ≥ 0 and (α− 1) ≤ 0. Thus,

−2ab(α− 1)
(
a2 − 2rab+ b2

)α−2
≥ 0 .

It holds 1
2a(2α − 1)

(
ra−sc

2
)2α−3 ≥ 0 and (2α − 2) ≤ 0. Thus, −1

2a(2α − 1)(2α −
2)
(
ra−sc

2
)2α−3 ≥ 0. Hence, ∂rf(r) ≥ 0. Hence, ∂2

rF (r, s) ≥ 0.
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4.G.2.2 The Case |a− c| ≥ ra− sc

In the case |a−c| ≥ ra−sc, the RHS does not depend on s or r. Thus, we maximize the
LHS with respect to r and s and only need to show the inequality for this maximized
term. Define

`(r, s) := a2α − c2α −
(
a2 − 2rab+ b2

)α
+
(
c2 − 2scb+ b2

)α
.

It holds
max

s≥s0,r≤r0
`(r, s) = `(r0, s0) .

Distinguish the two cases a ≥ c and a ≤ c.
Case 1: a ≥ c. For fixed r ∈ [−1, 1], set s = smin(r) = (r − 1)ac + 1, cf Lemma 4.28.
Define

f(r) := `(r, smin(r))

= a2α − c2α −
(
a2 − 2rab+ b2

)α
+
(
c2 − 2rab+ 2ab− 2cb+ b2

)α
.

Then
f ′(r)
2abα =

(
a2 − 2rab+ b2

)α−1
−
(
c2 − 2rab+ 2ab− 2cb+ b2

)α−1
.

Case 1.1: a2 ≤ c2 + 2ab− 2cb. Then

a2 − 2rab+ b2 ≤ c2 − 2rab+ 2ab− 2cb+ b2 ,(
a2 − 2rab+ b2

)α−1
≥
(
c2 − 2rab+ 2ab− 2cb+ b2

)α−1
.

Thus, f ′(r) ≥ 0. In this case, we need to show

a2α − c2α − |a− b|2α + |c− b|2α = f(1) ≤ 8α2−2αb(a− c)2α−1 .

Case 1.2: a2 ≥ c2 + 2ab− 2cb. Then

a2 − 2rab+ b2 ≥ c2 − 2rab+ 2ab− 2cb+ b2 ,(
a2 − 2rab+ b2

)α−1
≤
(
c2 − 2rab+ 2ab− 2cb+ b2

)α−1
.

Thus, f ′(r) ≤ 0. The relevant values are r = rmin = 1 − 2 ca , with s = smin(r) = −1. In
this case, we need to show

a2α − c2α −
(
(a− b)2 + 4cb

)α
+ (c+ b)2α = f(rmin) ≤ 8α2−2αb(a− c)2α−1 .

Case 2: a ≤ c. For fixed r ∈ [−1, 1], set s = smin(r) = (r + 1)ac − 1. Define

f(r) := `(r, smin(r))

= a2α − c2α −
(
a2 − 2rab+ b2

)α
+
(
c2 − 2rab− 2ab+ 2cb+ b2

)α
.
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Then
f ′(r)
2abα =

(
a2 − 2rab+ b2

)α−1
−
(
c2 − 2rab− 2ab+ 2cb+ b2

)α−1
.

Case 2.1: a2 ≤ c2 − 2ab+ 2cb. Then

a2 − 2rab+ b2 ≤ c2 − 2rab− 2ab+ 2cb+ b2 ,(
a2 − 2rab+ b2

)α−1
≥
(
c2 − 2rab− 2ab+ 2cb+ b2

)α−1
.

Thus, f ′(r) ≥ 0. The critical value is r = rmax = 1, with s = smin(r) = 2ac − 1. In this
case, we need to show

a2α − c2α − |a− b|2α +
(
(c+ b)2 − 4ab

)α
= f(1) ≤ 8α2−2αb(c− a)2α−1 .

Case 2.2: a2 ≥ c2 − 2ab+ 2cb. This cannot happen for a ≤ c.

4.G.2.3 Outline

The previous considerations reduce Lemma 4.26 to certain special cases. Here we sum-
marize what is left to show and outline how this is achieved in the upcoming sections.

Remark 4.30 (What we need to show). Define

F (r, s) := a2α − c2α −
(
a2 − 2rab+ b2

)α
+
(
c2 − 2scb+ b2

)α
− 8α2−2αb(ra− sc)2α−1 .

First consider a ≥ c. By Lemma 4.29, if |a−c| ≤ ra−sc, we need to show F (r, s) ≤ 0
for extreme values of r ∈ [−1, 1]. For maximal r, we want to show

(i) F (1, s) ≤ 0 for all s ∈ [−1, 1] and a ≥ c.

This also covers case 1.1 of section 4.G.2.2 when s = 1. The value r is minimal if
r = (s− 1) ca + 1. Then ra− sc = a− c. As reasoned in case 1.2 of section 4.G.2.2,
which is also covered by this, we then need to show

(ii) F (1− 2 ca ,−1) ≤ 0 for a ≥ c.

In the case a ≤ c, |a− c| ≤ ra− sc, the maximal value of r is 1. Then, s ≤ 2ac − 1
by Lemma 4.29. Thus, we need

(iii) F (1, s) ≤ 0 for all s ∈ [−1, 2ac − 1] and a ≤ c.

This includes case 2.1 of section 4.G.2.2). The minimal value of r in this case is
(s + 1) ca − 1 (Lemma 4.29). Then ra − sc = c − a and we can argue as in case 2
of section 4.G.2.2, which leaves us with case 2.1, which is already covered. As cases
1.1, 1.2, and 2.1 of section 4.G.2.2 are covered, we also have |a−c| ≥ ra−sc covered.
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Thus, the only relevant instances of F are

F

(
1− 2 c

a
,−1

)
= a2α − c2α −

(
(a− b)2 + 4bc

)α
+ (b+ c)2α − 8α2−2αb(a− c)2α−1 ,

F (1, s) = a2α − c2α − (a− b)2α +
(
c2 − 2scb+ b2

)α
− 8α2−2αb(a− sc)2α−1 .

Item (ii) is discussed in section 4.G.7. Items (i) and (iii) are shown in the following
way:

(a) b ≥ 2sc: Lemma 4.34 (Merging Lemma) + Lemma 4.31 (Tight Power Bound)

(b) b ≤ 2sc and sc ≤ a− b: Lemma 4.35 (Merging Lemma) + Lemma 4.31 (Tight
Power Bound)

(c) b ≤ 2sc and sc ≥ a− b and a ≥ c: Lemma 4.39

(d) b ≤ 2sc and sc ≥ a− b and a ≤ c, sc ≤ 2a− c and b ≤ 2a− 2sc: Lemma 4.40

(e) b ≤ 2sc and sc ≥ a − b and a ≤ c, sc ≤ 2a − c and b ≥ 2a − 2sc and a ≤ b :
Lemma 4.43

(f) b ≤ 2sc and sc ≥ a − b and a ≤ c, sc ≤ 2a − c and b ≥ 2a − 2sc and a ≥ b :
Lemma 4.45

All six cases together cover s ∈ [−1, 1] with a ≥ c and s ∈ [−1, 2ac − 1] with a ≤ c.

The proofs consist of distinguishing many different cases and applying simple analysis
methods in each case. Nonetheless, finding the poofs is often quite hard, as the in-
equalities are usually very tight and the right steps necessary for the proof are hard to
guess.

As intermediate steps we can, in some cases, use two lemmas: the Tight Power Bound,
see section 4.G.3, and the Merging Lemma, see 4.G.4. The remaining cases that cannot
be solved via Tight Power Bound and Merging Lemma will be discussed in sections 4.G.6
and 4.G.7.

4.G.3 Tight Power Bound
Following lemma presents a very useful inequality in three different forms. It gives a
hint to why the power . . .2α−1 comes up in the RHS of Lemma 4.26.

Lemma 4.31 (Tight Power Bound). Let x, y ≥ 0.

(i) If a ∈ [1, 2], x ≥ y, then

2axa−1y ≤ (x+ y)a − (x− y)a ≤ 2axa−1y .
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(ii) If a ∈ [1, 2], then

(x+ y)a − |x− y|a ≤ 2amin(xya−1, xa−1y) .

(iii) If a ∈ [1, 2], x ≥ y, then

(x+ y)a−1(x− y) ≤ xa − ya ≤ a(x− y)
(
x+ y

2

)a−1
.

This result is slightly stronger than the application of the mean value theorem to the
function x 7→ xa, which yields xa− ya ≤ a(x− y)za−1 for all x ≥ y ≥ 0 and a > 0, where
z ∈ [y, x].

Proof. Assume x ≥ y. Set z = y
x ∈ [0, 1]. Define

f(z) = (1 + z)a − (1− z)a
z

.

If we can show f(z) ≤ 2a, then

(1 + z)a − (1− z)a ≤ 2az
⇒ (x+ zx)a − (x− zx)a ≤ 2axaz
⇒ (x+ y)a − (x− y)a ≤ 2axa−1y .

It holds
f ′(z) = g(z)

z2 ,

where
g(z) = az

(
(1 + z)a−1 + (1− z)a−1

)
− ((1 + z)a − (1− z)a) .

It holds
g′(z) = az(a− 1)

(
(1 + z)a−2 − (1− z)a−2

)
≤ 0 .

Thus, g(z) ≤ g(0) = 0. Thus, f ′(z) ≤ 0. Thus, for all z0 ∈ [0, 1],

f(z0) ≤ lim
z↘0

f(z) L′H= lim
z↘0

a(1 + z)a−1 + a(1− z)a−1

1 = 2a ,

where L′H indicates the use of L’Hospital’s rule. Furthermore, f(z0) ≥ f(1) = 2a,
which implies the lower bound. This finishes the proof for (i). The other parts follow
immediately.

4.G.4 Merging Lemma

In many cases (i.e., with additional assumption on a, b, c, r or s), we prove the inequal-
ity of Lemma 4.26 by applying first a merging lemma to the LHS to reduce the four
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summands to two summands of a specific form. Then we apply the Tight Power Bound.
The Merging Lemma is discussed in this section.

4.G.4.1 Simple Merging Lemma

Lemma 4.32 (Simple Merging Lemma). Let α ∈ [1
2 , 1], b ≥ 0, a, c ∈ R. Then

|a|2α − |c|2α − |a− b|2α + |c− b|2α ≤ 21−2α
(

(a− c+ b)2α − |a− c− b|2α
)
1a−c>0 .

Proof. For α̃ ≥ 1, the function R→ R, x 7→ |x|α̃−|x−1|α̃ is increasing. It holds 2α ≥ 1.
Thus, if a ≤ c, then

|a|2α − |a− b|2α ≤ |c|2α − |c− b|2α .

This shows the inequality for the case a ≤ c.
Set q := a− b and define

g(b) := |q + b|2α − |c|2α − |q|2α + |c− b|2α − 2
((

q − c
2 + b

)2α
−
(
q − c

2

)2α
)
.

It holds g(0) = 0 and

g′(b)
2α = sgn(q + b)|q + b|2α−1 − sgn(c− b)|c− b|2α−1 − 2

(
q − c

2 + b

)2α−1
.

Case 1: sgn(q + b) = +1, sgn(c− b) = +1:

g′(b)
2α = (q + b)2α−1 − (c− b)2α−1 − 2

(
q − c

2 + b

)2α−1
,

(q + b)2α−1 − (c− b)2α−1 ≤ (q + b− (c− b))2α−1 ≤ 2
(
q − c

2 + b

)2α−1
.

Case 2: sgn(q + b) = −1, sgn(c− b) = −1:

g′(b)
2α = (b− c)2α−1 − (−q − b)2α−1 − 2

(
q − c

2 + b

)2α−1
,

(b− c)2α−1 − (−q − b)2α−1 ≤ (b− c− (−q − b))2α−1 ≤ 2
(
q − c

2 + b

)2α−1
.

Case 3: sgn(q + b) = +1, sgn(c− b) = −1:

g′(b)
2α = (q + b)2α−1 + (b− c)2α−1 − 2

(
q − c

2 + b

)2α−1
,
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(q + b)2α−1 + (b− c)2α−1 ≤ 2
(
q − c

2 + b

)2α−1
.

Case 4: sgn(q + b) = −1, sgn(c− b) = +1:

g′(b)
2α = −(−q − b)2α−1 − (c− b)2α−1 − 2

(
q − c

2 + b

)2α−1
,

−(−q − b)2α−1 − (c− b)2α−1 ≤ 0 .

Together: In every case, we have g′(b) ≤ 0 and g(0) = 0. Thus,

g(b) ≤ 0 .

4.G.4.2 ra− sc–Merging Lemma

Lemma 4.33. Let α ∈ [0, 1].

(i) Let b, c ≥ 0, s ∈ [−1, 1]. Assume 2sc ≤ b. Then

−c2α + (c2 − 2scb+ b2)α ≤ −|sc|2α + |sc− b|2α .

(ii) Let a, b ≥ 0, r ∈ [−1, 1]. Assume 2ra ≥ b. Then

a2α − (a2 − 2rab+ b2)α ≤ |ra|2α − |ra− b|2α .

Proof. The function t 7→ (t + 1)α − tα, t ≥ 0 is nonincreasing for all α ∈ [0, 1]. It holds
0 ≤ s2c2 ≤ c2 and

x := −2scb+ b2 ≥ 0 .

Thus, (
c2 + x

)α
−
(
c2
)α
≤
(
(sc)2 + x

)α
−
(
(sc)2

)α
.

Thus,
(c2 − 2scb+ b2)α − c2α ≤ | − sc+ b|2α − |sc|2α .

For the second part, set x := 2rab − b2, y := a2 − x ≥ 0, ỹ := |ra|2 − x ≥ 0. The
condition 2ra ≥ b implies x ≥ 0. Thus, as before,

a2α − (a2 − 2rab+ b2)α = (y + x)α − yα

≤ (ỹ + x)α − ỹα

= |ra|2α − |ra− b|2α .
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Lemma 4.34 (ra−sc–Merging Lemma). Let α ∈ [1
2 , 1]. Let a, b, c ≥ 0, r, s ∈ [−1, 1].

(i) Assume 2ra ≥ b, s ∈ {−1, 1}. Then

a2α − c2α − (a2 − 2rab+ b2)α + (c2 − 2scb+ b2)α

≤ 21−2α
(

(ra− sc+ b)2α − |ra− sc− b|2α
)
1ra−sc>0 .

(ii) Assume b ≥ 2sc, r ∈ {−1, 1}. Then

a2α − c2α − (a2 − 2rab+ b2)α + (c2 − 2scb+ b2)α

≤ 21−2α
(

(ra− sc+ b)2α − |ra− sc− b|2α
)
1ra−sc>0 .

(iii) Assume 2ra ≥ b ≥ 2sc. Then

a2α − c2α − (a2 − 2rab+ b2)α + (c2 − 2scb+ b2)α

≤ 21−2α
(
(ra− sc+ b)2α − |ra− sc− b|2α

)
1ra−sc>0 .

Proof. The lemma above and the simple merging lemma imply

a2α − c2α − (a2 − 2rab+ b2)α + (c2 − 2scb+ b2)α

≤ (ra)2α − (sc)2α − (ra− b)2α + (sc− b)2α

≤ 21−2α
(
(ra− sc+ b)2α − |ra− sc− b|2α

)
1ra−sc>0 .

4.G.4.3 a− sc–Merging Lemma

Lemma 4.34 covers the case 1
2b ≥ sc. The following lemma covers 1

2b ≤ sc under the
additional restriction sc ≤ a− b.

Lemma 4.35 (a− sc–Merging Lemma). Let α ∈ [1
2 , 1]. Let a, b, c ≥ 0, s ∈ [−1, 1].

Assume 1
2b ≤ sc ≤ a− b. Then

a2α − c2α − (a− b)2α + (c2 − 2scb+ b2)α ≤ 21−2α
(

(a− sc+ b)2α − (a− sc− b)2α
)
.

115



Proof. Set δ := a− b. Define

f(δ) = (δ + b)2α − c2α − δ2α + (c2 − 2scb+ b2)α−

2
((

δ − sc
2 + b

)2α
−
(
δ − sc

2

)2α)
.

Then
f ′(δ)
2α = (δ + b)2α−1 − δ2α−1 −

(
δ − sc

2 + b

)2α−1
+
(
δ − sc

2

)2α−1
.

It holds

δ + b ≥ δ ,
δ − sc

2 ≤ δ − sc
2 + b ,

(δ + b) + δ − sc
2 = δ +

(
δ − sc

2 + b

)
.

Thus,

(δ + b)2α−1 +
(
δ − sc

2

)2α−1
≤ δ2α−1 +

(
δ − sc

2 + b

)2α−1
.

Thus, f ′(δ) ≤ 0.
The next lemma shows f(sc) ≤ 0. Thus, f(δ) ≤ 0 for all δ ≥ sc.

Lemma 4.36. Let x, a, b, c ≥ 0. Assume b ≤ 2x, x+ b ≥ c, x ≤ c. Then

(x+ b)2α + (c2 − 2xb+ b2)α ≤ c2α + x2α + 2b2α .

Proof. Define

g(x) := (x+ b)2α + (c2 − 2xb+ b2)α − c2α − x2α − 2b2α ,

h(x) := g′(x)
2α = (x+ b)2α−1 − x2α−1 − b(c2 − 2xb+ b2)α−1 .

It holds

h′(x) = (2α− 1)(x+ b)2α−2 − (2α− 1)x2α−2 + 2(α− 1)b2(c2 − 2xb+ b2)α−2 .

As 2α− 2 ≤ 0 and 2α− 1 ≥ 0, (2α− 1)(x+ b)2α−2 − (2α− 1)x2α−2 ≤ 0. As α− 1 ≤ 0,
2(α− 1)b2(c2 − 2xb+ b2)α−2 ≤ 0. Thus, h′(x) ≤ 0.
It holds x ≥ xmin := max( b2 , c − b). For checking h(xmin) ≤ 0 and g(xmin) ≤ 0, we
distinguish xmin = c− b and xmin = b

2 .
Case 1, c− b ≤ b

2 :
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If c− b ≤ b
2 , then c ≤ 3

2b ≤ (1 +
√

3)b, c2 − 2cb− 2b2 ≤ 0, and

h(c− b) = c2α−1 − (c− b)2α−1 − b(c2 − 2(c− b)b+ b2)α−1

= c2α−1 − (c− b)2α−1 − b(c2 − 2cb− b2)α−1

≤ b2α−1 − b(c2 − 2cb− b2)α−1

≤ b
((
b2
)α−1

−
(
c2 − 2cb− b2

)α−1
)

And, thus, h(c− b) ≤ 0 as c2 − 2cb− 2b2 ≤ 0. Furthermore,

g(c− b) = −(c− b)2α + (c2 − 2cb− b2)α − 2b2α

= −(c− b)2α + (c2 − 2cb− 2b2 + b2)α − 2b2α

≤ −(c− b)2α + b2α − 2b2α

= −(c− b)2α − b2α

≤ 0 .

Thus, g(x) ≤ 0 for all valid x.
Case 2, c− b ≥ b

2 :
If c− b ≥ b

2 , then c ≥ b and

h

(
b

2

)
=
(3

2b
)2α−1

−
(1

2b
)2α−1

− b(c2)α−1

≤
((3

2

)2α−1
−
(1

2

)2α−1
)
b2α−1 − b(c2)α−1

≤ b2α−1 − b(c2)α−1

≤ b2α−1 − b(b2)α−1

≤ 0 ,

g

(
b

2

)
=
(3

2b
)2α
− c2α −

(1
2b
)2α

+ c2α − 2b2α

≤
((9

4

)α
−
(1

2

)α
− 2

)
b2α

≤ 0 .

Thus, g(x) ≤ 0 for all valid x.
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4.G.5 Application of Tight Power Bound and Merging Lemma
Whenever a Merging Lemma holds, we apply it as a first step and then use the Tight
Power Bound, Lemma 4.31, to obtain

a2α − c2α − (a2 − 2rab+ b2)α + (c2 − 2scb+ b2)α

≤ 21−2α
(
(ra− sc+ b)2α − |ra− sc− b|2α

)
≤ 4α21−2α(ra− sc)2α−1b .

In particular, we have finished the proof of Lemma 4.26 in following cases:

• ra ≥ sc and s, r ∈ {−1, 1}: Lemma 4.32,

• 2ra ≥ b and s ∈ {−1, 1}; or b ≥ 2sc and r ∈ {−1, 1}; or 2ra ≥ b ≥ 2sc:
Lemma 4.34,

• 1
2b ≤ sc ≤ a− b and r = 1: Lemma 4.35.

4.G.6 The Case ra− sc ≥ |a− c|

4.G.6.1 The Case a ≥ c

First we prove two simple lemmas, before we solve this case.

Lemma 4.37. Let a ≥ b ≥ 0, d ≥ c ≥ 0, and α ∈ [0, 1]. Then

aα − bα − cα + dα ≤ 21−α(a− b− c+ d)α .

Proof. As a ≥ b, d ≥ c, α ≤ 1,

aα − bα + dα − cα ≤ (a− b)α + (d− c)α .

Furthermore, by concavity of x 7→ xα,

(a− b)α + (d− c)α ≤ 21−α(a− b+ d− c)α .

Lemma 4.38. Let a ≥ b ≥ c ≥ d ≥ 0, a+ d ≥ b+ c, and α ∈ [0, 1]. Then

aα − bα − cα + dα ≤ (a− b− c+ d)α .

Proof. Define f(x, y) = xα + yα− (x+ y)α for x, y ≥ 0. Then ∂xf(x, y) = α(xα−1− (x+
y)α−1) ≥ 0 and similarly ∂yf(x, y) ≥ 0. Set δ := a− b and ε := c− d. The assumptions
ensure δ ≥ ε ≥ 0. Then,

f(b, δ) ≥ f(b, ε) ≥ f(d, ε) .
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Thus,

0 ≥ f(d, ε)− f(b, δ)
= dα + εα − (d+ ε)α − bα − δα + (b+ δ)α

= dα + εα − cα − bα − δα + aα .

With this we get

dα − cα − bα + aα ≤ δα − εα

≤ (δ − ε)α

= (a− b− c+ d)α .

For a ≥ c, the remaining case is solved by following lemma.

Lemma 4.39. Let α ∈ [0, 1]. Let a, b, c ≥ 0, s ∈ [−1, 1]. Assume 1
2b ≤ sc, sc ≥ a−b,

and a ≥ c. Then

a2α − c2α − (a− b)2α + (c2 − 2scb+ b2)α ≤ 2bα(a− sc)α ≤ 2b(a− sc)2α−1 .

Proof. Because a ≥ c and 1
2b ≤ sc, we have a − b ≥ a − 2sc ≥ a − 2c ≥ −c. Hence,

a2 ≥ max(c2, (a − b)2). Thus, applying either Lemma 4.37 (if c2 − 2scb + b2 is larger
then either c2 or (a− b)2) or Lemma 4.38 yields

a2α − c2α − (a− b)2α + (c2 − 2scb+ b2)α

≤ 21−α
(
a2 − c2 − (a− b)2 + (c2 − 2scb+ b2)

)α
= 2bα(a− sc)α .

The condition 0 ≤ a− sc ≤ b implies

2bα(a− sc)α ≤ 2b(a− sc)2α−1 .

4.G.6.2 The Case a ≤ c

For the case c ≥ a, we only need ra− sc ≥ c − a (for r = 1), i.e., sc ≤ 2a − c. Assume
c ≥ a, sc ≥ a− b, 1

2b ≤ sc, and sc ≤ 2a− c. Then

c2 ≥ c2 − 2scb+ b2 ≥ (a− b)2

c2 ≥ a2 ≥ (a− b)2

We distinguish 1
2b ≤ a− sc and 1

2b ≥ a− sc.
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Lemma 4.40 (1
2b ≤ a − sc). Let α ∈ [0, 1]. Let a, b, c ≥ 0, s ∈ [−1, 1]. Assume

1
2b ≤ sc, sc ≥ a− b, c ≥ a, sc ≤ 2a− c, and 1

2b ≤ a− sc. Then

a2α − c2α − (a− b)2α + (c2 − 2scb+ b2)α ≤ 2bα(a− sc)α .

Proof. The conditions imply

max
(1

2b, a− b
)
≤ sc ≤ min

(
a− 1

2b, 2a− c
)
.

In particular, 1
2b ≤ a−

1
2b, and a− b ≤ 2a− c. Thus, a+ b ≥ c ≥ a ≥ b.

Fix a, b, c ≥ 0. Assume c ≥ a. Let x ∈ [0, a). Then a− x > 0 and c2 − 2xb + b2 > 0.
Define

f(x) := a2α − c2α − (a− b)2α + (c2 − 2xb+ b2)α − 2bα(a− x)α .

It holds
f ′(x)
2αb = −(c2 − 2xb+ b2)α−1 + bα−1(a− x)α−1 .

Furthermore,

a− c ≤ 0 ≤ (c− b)2

⇒ 2ab− 2cb ≤ 0 ≤ c2 + b2 − 2cb
⇒ xb ≤ 2ab− cb ≤ c2 + b2 − cb ≤ c2 + b2 − ab
⇒ ab− xb ≤ c2 − 2xb+ b2

⇒ bα−1(a− x)α−1 ≥ (c2 − 2xb+ b2)α−1

⇒ f ′(x) ≥ 0 .

We define

g(c) := f(a− 1
2b) = a2α − c2α − (a− b)2α + (c2 − 2ab+ 2b2)α − 21−αb2α .

Thus,
g′(c)
2αc = −c2α−2 +

(
c2 − 2ab+ 2b2

)α−1
≥ 0 .

Define

h(a, b) := g(a+ b)
= a2α − (a+ b)2α − (a− b)2α + (a2 + 3b2)α − 21−αb2α

= a2α − (a+ b)2α − (a− b)2α + (a2 + 3b2)α − 2
(
b2

2

)α
.

The next lemma shows h(a, b) ≤ 0 for a ≥ b. Thus, g(c) ≤ 0. Thus, f(x) ≤ 0.
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Lemma 4.41. Let α ∈ [0, 1], a, b ≥ 0. Assume a ≥ b. Then

a2α + (a2 + 3b2)α ≤ (a+ b)2α + (a− b)2α + 2
(
b2

2

)α
.

Proof. Set x = b
a ∈ [0, 1]. Define

f(α, x) = 1 +
(
1 + 3x2

)α
− (1 + x)2α − (1− x)2α − 2

(
x2

2

)α
.

It holds

∂αf(α, x)
α

=
(
1 + 3x2

)α
log
(
1 + 3x2

)
− (1 + x)2α log

(
(1 + x)2

)
− (1− x)2α log

(
(1− x)2

)
− 2

(
x2

2

)α
log
(
x2

2

)
=: g(x, α) ,

∂αg(α, x)
α

=
(
1 + 3x2

)α
log
(
1 + 3x2

)2
− (1 + x)2α log

(
(1 + x)2

)2

− (1− x)2α log
(
(1− x)2

)2
− 2

(
x2

2

)α
log
(
x2

2

)2

≤
(
1 + 3x2

)α
log
(
1 + 3x2

)2
− (1 + x)2α log

(
(1 + x)2

)2

=: h(x, α) .

For x ∈ [0, 1], it holds 1 + 3x2 ≤ (1 + x)2. Thus,(
1 + 3x2

(1 + x)2

)α
≤ 1 ≤

(
log
(
(1 + x)2)

log(1 + 3x2)

)2

.

Thus, (
1 + 3x2

)α
log
(
1 + 3x2

)2
≤ (1 + x)2α log

(
(1 + x)2

)2

Thus, h(x, α) ≤ 0 and ∂αg(α, x) ≤ 0. Thus, g(α, x) ≥ g(1, x) and

g(1, x) =
(
1 + 3x2

)
log
(
1 + 3x2

)
− (1 + x)2 log

(
(1 + x)2

)
− (1− x)2 log

(
(1− x)2

)
− 2

(
x2

2

)
log
(
x2

2

)
=: `(x) .
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The next lemma shows `(x) ≥ 0. Thus, g(α, x) ≥ g(1, x) ≥ 0. Thus ∂αf(α, x) ≥ 0.
Thus, f(α, x) ≤ f(1, x) and

f(1, x) = 1 +
(
1 + 3x2

)
− (1 + x)2 − (1− x)2 − 2

(
x2

2

)
= 0 .

Thus, f(α, x) ≤ 0.

Lemma 4.42. Let x ∈ [0, 1]. Define

f(x) :=
(
1 + 3x2

)
log
(
1 + 3x2

)
− (1 + x)2 log

(
(1 + x)2

)
− (1− x)2 log

(
(1− x)2

)
− x2 log

(
x2

2

)
.

Then
f(x) ≥ 0 .

Proof. Let us first calculate some derivatives:

f(x) = x2 log
(

2
(
1 + 3x2)3

x2 (1− x2)2

)
− 4x log

(1 + x

1− x

)
+ log

(
1 + 3x2

(1− x2)2

)
,

f ′(x) = 2x log
(

2
(
1 + 3x2)3

x2 (1− x2)2

)
− 4 log

(1 + x

1− x

)
,

f ′′(x) = 2 log
(

2
(
1 + 3x2)3

x2 (1− x2)2

)
− 12

1 + 3x2 ,

f ′′′(x) = 4
(
9x4 + 24x2 − 1

)
x(1− x)(1 + x) (3x2 + 1)2 ,

f (4)(x) = 4
(
81x8 + 324x6 − 186x4 + 36x2 + 1

)
x2 (1− x2)2 (3x2 + 1)3 .

We consider the cases x ∈ [0, 1
10 ] and x ∈ [ 1

10 , 1] separately, and start with the latter.
For x0 ∈ (0, 1), define

gx0(x) := f(x0) + f ′(x0) (x− x0) + 1
2f
′′(x0) (x− x0)2 + 1

6f
′′′(x0) (x− x0)3 .

Then the Taylor-Expansion for x ∈ (0, 1) is

f(x) = gx0(x) + 1
24f

(4)(ξ(x, x0)) (x− x0)4 ,

with suitable ξ(x, x0). One can show that 81x4 + 324x3 − 186x2 + 36x1 + 1 > 0 for all
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x ≥ 0. In particular, f (4)(x) ≥ 0 for x ∈ [0, 1]. Thus,

f(x) ≥ gx0(x) .

We use x0 = 1
3 :

f

(1
3

)
= 10

3 log(3)− 47
9 log(2) ,

f ′
(1

3

)
= 2 log(3)− 10

3 log(2) ,

f ′′
(1

3

)
= −9 + 2 log(2) + 6 log(3) ,

f ′′′
(1

3

)
= 27

2 .

One can show that g 1
3
(x) ≥ 0 for x ≥ 1

10 . Thus, f(x) ≥ 0 for x ∈ [ 1
10 , 1].

The case x ∈ [0, 1
10 ] is left. One can show

4 log
(1 + x

1− x

)
≤ 10x ≤ 2x log

(
2
(
1 + 3x2)3

x2 (1− x2)2

)

for x ∈ [0, 1
10 ]. This implies f ′(x) ≥ 0. Together with f(0) = 0, this yields f(x) ≥ 0 for

x ∈ [0, 1
10 ].

Lemma 4.43 (1
2b ≥ a − sc and a ≤ b). Let α ∈ [1

2 , 1]. Let a, b, c ≥ 0, s ∈ [−1, 1].
Assume

0 ≤ c− a ≤ a− sc ≤ b

2 ≤ sc ≤ 2a− c ≤ a ≤ c

and a ≤ b. Then

a2α − c2α − |a− b|2α + (c2 − 2scb+ b2)α ≤ 2b(a− sc)2α−1 .

Proof. Define

f(a, b, y, w) := a2α − (y + a)2α − (b− a)2α + ((y + a)2 − 2wb+ b2)α − 2b(a− w)2α−1 .

It holds

∂yf(a, b, y, w) = −2α(y + a)2α−1 + α (2(y + a))
(
(y + a)2 − 2wb+ b2

)α−1
.

Because of b
2 ≤ w, we have

(y + a)2 ≥ (y + a)2 − 2wb+ b2 .
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Thus ∂yf(a, b, y, w) ≥ 0. Thus, for y ∈ [0, a−w], it holds f(a, b, y, w) ≤ f(a, b, a−w,w).
It holds

f(a, b, a− w,w)
= a2α − (2a− w)2α − (b− a)2α + ((2a− w)2 − 2wb+ b2)α − 2b(a− w)2α−1

=: g(a, b, w) ,

∂bg(a, b, w)
= −2α(b− a)2α−1 + 2α(b− w)((2a− w)2 − 2wb+ b2)α−1 − 2(a− w)2α−1

≤ 2αh(a, b, w) ,

h(a, b, w) = −(b− a)2α−1 + (b− w)((2a− w)2 − 2wb+ b2)α−1 − (a− w)2α−1 .

The conditions 0 ≤ a− w ≤ b
2 ≤ w and a ≤ b imply w ≤ a ≤ b. It holds,

∂2
ah(a, b, w) = −(2α− 1)(2α− 2)(b− a)2α−3

+ 4(α− 1)(α− 2)(2a− w)2(b− w)((2a− w)2 − 2wb+ b2)α−3

− (2α− 1)(2α− 2)(a− w)2α−3

≥ 0 ,

h(w, b, w) = −(b− w)2α−1 + (b− w)((2w − w)2 − 2wb+ b2)α−1 − (w − w)2α−1

= −(b− w)2α−1 + (b− w)2α−1 = 0 ,

h(b, b, w) = −(b− b)2α−1 + (b− b)((2b− w)2 − 2wb+ b2)α−1 − (b− b)2α−1 ≤ 0 .

Thus, h(a, b, w) ≤ 0 for all a ∈ [w, b]. Thus, ∂bg(a, b, w) ≤ 0. The conditions for g are
0 ≤ a−w ≤ b

2 ≤ w ≤ a ≤ b. As a ≤ b and b
2 ≤ w, we have a ≤ 2w and thus a ≥ 2a−2w.

g(a, a, w) = a2α − (2a− w)2α − (a− a)2α + ((2a− w)2 − 2wa+ a2)α−
2a(a− w)2α−1

= a2α − (2a− w)2α + (5a2 − 6aw + w2)α − 2a(a− w)2α−1 .

Set w = a− y, y ∈ [0, a]. It holds

`(a, y) := a2α + (5a2 − 6a(a− y) + (a− y)2)α − (a+ y)2α − 2ay2α−1

= a2α + (4ay + y2)α − (a+ y)2α − 2ay2α−1 .

It holds g(a, a, w) = `(a, y). Under the condition 0 ≤ y ≤ a, it holds `(a, y) ≤ 0, cf next
lemma.
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Lemma 4.44. Let α ∈ [1
2 , 1], a, y ≥ 0. Assume y ≤ a. Then

a2α + (4ay + y2)α ≤ (a+ y)2α + 2ay2α−1 .

Proof. For y ≤ a define

g(a, y) := 2a2α−1 + 4αyαaα−1 − 2(a+ y)2α−1 − 2y2α−1 .

It holds

∂ag(a, y) = 2(2α− 1)a2α−2 + 4α(α− 1)yαaα−2 − 2(2α− 1)(a+ y)2α−2 ,

∂y∂ag(a, y) = 4α(α− 1)αyα−1aα−2 − 2(2α− 1)(2α− 2)(a+ y)2α−3 .

Set z := y
a ∈ [0, 1]. Then

∂y∂ag(a, y)
a2α−3 = (α− 1)

(
4ααzα−1 − 4(2α− 1)(1 + z)2α−3

)
.

One can show
4αα

4(2α− 1) ≥ 1 ≥ (1 + z)2α−3

zα−1 ,

4ααzα−1 ≥ 4(2α− 1) (1 + z)2α−3 .

Thus, ∂y∂ag(a, y) ≤ 0. Thus, ∂ag(a, y) ≤ ∂ag(a, 0)

∂ag(a, 0) = 2(2α− 1)a2α−2 − 2(2α− 1)(a)2α−2 = 0

Thus, ∂ag(a, y) ≤ 0. Thus, g(a, y) ≤ g(y, y), and

g(y, y) =
(
2 + 4α − 22α − 2

)
y2α−1 = 0 .

Thus, g(a, y) ≤ 0. It holds

a2α + (4ay + y2)α − (a+ y)2α − 2ay2α−1

≤ a2α + (4a)αyα + y2α − (a+ y)2α − 2ay2α−1

=: f(a, y) ,

∂af(a, y) = 2αa2α−1 + 4ααyαaα−1 − 2α(a+ y)2α−1 − 2y2α−1 ≤ αg(a, y) ≤ 0 .

Thus,
f(a, y) ≤ f(y, y) = (1 + 5α − 4α − 2) y2α ≤ 0 .
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Lemma 4.45 (1
2b ≥ a − sc and a ≥ b). Let α ∈ [1

2 , 1]. Let a, b, c ≥ 0, s ∈ [−1, 1].
Assume

0 ≤ c− a ≤ a− sc ≤ b

2 ≤ sc ≤ 2a− c ≤ a ≤ c

and a ≥ b. Then

a2α − c2α − (a− b)2α + (c2 − 2scb+ b2)α ≤ 2b(a− sc)2α−1 .

Proof. Define

f(a, b, c, w) := a2α − c2α − (a− b)2α + (c2 − 2wb+ b2)α − 2b(a− w)2α−1 .

It holds
∂cf(a, b, c, w) = 2α

(
−c2α−1 + c(c2 − 2wb+ b2)α−1

)
.

Because of 2w ≥ b, it holds ∂cf(a, b, c, w) ≤ 0.

f(a, b, a, w) = −(a− b)2α + (a2 − 2wb+ b2)α − 2b(a− w)2α−1 .

Set x := a− w. The conditions for x are 0 ≤ x ≤ b
2 ≤ w and b ≤ x+ w. Define

g(x, b, w) := −(x+ w − b)2α + ((x+ w)2 − 2wb+ b2)α − 2bx2α−1 .

It holds

∂wg(x, b, w) = −2α(x+ w − b)2α−1 + 2α(x+ w − b)((x+ w)2 − 2wb+ b2)α−1 .

It holds
(x+ w − b)2 −

(
(x+ w)2 − 2wb+ b2

)
= −2bx ≤ 0 .

Thus,
−2α(x+ w − b)2α−2 + 2α

(
(x+ w)2 − 2wb+ b2

)α−1
≤ 0 .

As a ≥ b and thus x+ w − b ≥ 0, ∂wg(x, b, w) ≤ 0. It holds w ≥ b− x ≥ b
2 and

g(x, b, b− x) = (2xb)α − 2bx2α−1 ≤ 0

because x ≤ b.

4.G.7 The Case |a− c| ≥ ra− sc

Here, we show item (ii) of Remark 4.30, which is case 1.2 of section 4.G.2.2. In case 1.2
we assume a ≥ c and a2 ≥ c2 + 2ab− 2cb. The latter is equivalent to a+ c ≥ 2b.
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Lemma 4.46 (Case 1.2). Let α ∈ [1
2 , 1]. Let a, b, c ≥ 0. Assume a ≥ c and

a+ c ≥ 2b. Then

a2α − c2α −
(
(a− b)2 + 4cb

)α
+ (c+ b)2α ≤ 8α2−2αb(a− c)2α−1 .

This lemma follows from the upcoming Lemma 4.47 (a ≥ c, a + c ≥ 2b, and a ≥ b + c)
and Lemma 4.48 (a ≥ c, a+ c ≥ 2b, and a ≤ b+ c).

Lemma 4.47 (Case 1.2, Merging). Let α ∈ [1
2 , 1]. Let a, b, c ≥ 0. Assume a ≥ b+c.

Then

a2α − c2α −
(
(a− b)2 + 4cb

)α
+ (c+ b)2α ≤ 21−2α

(
(a− c+ b)2α − (a− c− b)2α

)

Proof. Set δ := a− b ≥ c ≥ 0 and define

f(b) := (δ + b)2α − c2α −
(
δ2 + 4cb

)α
+ (c+ b)2α − 21−2α

(
(δ − c+ 2b)2α − (δ − c)2α

)
.

Then

f ′(b)
2α = (δ + b)2α−1 − 2c

(
δ2 + 4cb

)α−1
+ (c+ b)2α−1 − 22−2α(δ − c+ 2b)2α−1 ,

f ′(b)
2α ≤ (δ + 2b+ c)2α−1 − (δ + 2b− c)2α−1 − 2c

(
δ2 + 4cb

)α−1
=: g(c) ,

g′(c) = (2α− 1)(δ + 2b+ c)2α−2 + (2α− 1)(δ + 2b− c)2α−2−

2
(
δ2 + 4cb

)α−1
− 8cb(α− 1)

(
δ2 + 4cb

)α−2
,

g′′(c) = (2α− 1)(2α− 2)(δ + 2b+ c)2α−3 − (2α− 1)(2α− 2)(δ + 2b− c)2α−3 −A ,

where

A := 2(4b)(α− 1)
(
δ2 + 4cb

)α−2
8b(α− 1)

(
δ2 + 4cb

)α−2
+

8cb(4b)(α− 1)(α− 2)
(
δ2 + 4cb

)α−3

=16b(α− 1)
(
δ2 + 4cb

)α−3 (
δ2 + 4cb+ 2cb(α− 2)

)
.

Thus, g′′(c) ≥ 0. It holds 0 ≤ c ≤ δ and

g(0) = (δ + 2b)2α−1 − (δ + 2b)2α−1 − 0 = 0 ,
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g(δ) = (2δ + 2b)2α−1 − (2b)2α−1 − 2δ
(
δ2 + 4δb

)α−1
=: h(δ) ,

h′(δ) = 2(2α− 1)(2δ + 2b)2α−2 − 2
(
δ2 + 4δb

)α−1
− 2δ(α− 1)(2δ + 4b)

(
δ2 + 4δb

)α−2
.

For α ∈ [1
2 , 1], we have(

δ2 + 4δb
)α−1

+ δ(α− 1)(2δ + 4b)
(
δ2 + 4δb

)α−2

=
(
δ2 + 4δb

)α−2 (
δ2 + 4δb+ δ(α− 1)(2δ + 4b)

)
≥
(
δ2 + 4δb

)α−2 (
δ2 + 4δb+−δ(1δ + 2b)

)
≥ 0 .

Thus,
h′(δ) ≤ 0 .

It holds
h(0) = (2b)2α−1 − (2b)2α−1 − 0 = 0 .

Thus, h(δ) ≤ 0, thus, g(b = δ) ≤ 0, thus g(b) ≤ 0, thus f ′(b) ≤ 0

f(0) = (δ)2α − c2α − (δ)2α + (c)2α − 21−2α
(
(δ − c)2α − (δ − c)2α

)
= 0 .

Thus, f(b) ≤ 0.
We can write the three conditions a ≥ c, a + c ≥ 2b, and a ≤ b + c as b ≥ a − c ≥
2 max(0, b− c).

Lemma 4.48 (Case 1.2, a ≤ b + c). Let α ∈ [1
2 , 1]. Let a, b, c ≥ 0. Assume

b ≥ a− c ≥ 2 max(0, b− c). Then

a2α − c2α −
(
(a− b)2 + 4cb

)α
+ (c+ b)2α ≤ 2b2α−1(a− c) ≤ 2b(a− c)2α−1 .

Proof. As b ≥ a− c and 2α− 1 ∈ [0, 1], it holds b2α−1(a− c) ≤ b(a− c)2α−1. Define

f(a) := a2α − c2α −
(
(a− b)2 + 4cb

)α
+ (c+ b)2α − 2b2α−1(a− c) .

It holds

f ′(a) = 2αa2α−1 − 2α(a− b)
(
(a− b)2 + 4cb

)α−1
− 2b2α−1

a≥b,c and 2α−2≤0 ≤ 2αa2α−1 − 2α(a− b) (a+ b)2α−2 − 2b2α−1

= 2
(
αa2α−1 − αa− b

a+ b
(a+ b)2α−1 − b2α−1

)
.
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Set x =
(
a−b
a+b

) 1
2α−1 ≤ 1, y = α

1
2α−1 ≤ 1. Then

αa2α−1 − αa− b
a+ b

(a+ b)2α−1 − b2α−1 ≤ (ya)2α−1 − (xya+ xyb)2α−1 − b2α−1

≤ (ya− xya− xyb)2α−1 − b2α−1

≤ (ya− xya− xyb− b)2α−1

= ((y − xy)a− (xy + 1)b)2α−1

≤ (a− b)2α−1

≤ 0 .

Thus, f ′(a) ≤ 0. Thus, only need to show f(b) ≤ 0. Assume b ≥ c. Then

f(b) = b2α − c2α − (4cb)α + (c+ b)2α − 2b2α−1(b− c)
= −c2α − (4cb)α + (c+ b)2α − b2α + 2b2α−1c

≤ (c+ b)2α − b2α − c2α − (4α − 2) (cb)α

= (c+ b)2α − (bα − cα)2 − 4α (cb)α .

Thus, the next lemma implies f(b) ≤ 0.

Lemma 4.49. Let α ∈ [1
2 , 1], x, y ≥ 0. Then

(x+ y)2α − (xα − yα)2 ≤ (4xy)α .

We need two further lemmas before we prove this inequality.

Lemma 4.50. For s ∈ [0, 1
2 ] it holds

1− s
s
≤ log(s)

log(1− s) .

Proof. Define
f(s) := s log(s)− (1− s) log(1− s) .

It hold
f ′′(s) = 1

s
− 1

1− s .

Thus, f ′′(s) ≥ 0 for s ≤ 1
2 . It holds f(0) = f(1

2) = 0. Thus, f(s) ≤ 0. Thus,

s log(s) ≤ (1− s) log(1− s) .
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Because of log(1− s) ≤ 0, thus implies

1− s
s
≤ log(s)

log(1− s) .

Lemma 4.51. Let a, b ≥ 0, x ∈ [1, 2]. Define

f(x) := ax − bx

(a+ b)x .

Assume a ≥ b. Then f ′′(x) ≤ 0. In particular,

inf
x∈[1,2]

f(x) = f(1) = f(2) = a2 − b2

(a+ b)2 = a− b
a+ b

.

Proof. It holds

f ′′(x) = (a+ b)−x
(
ax log

(
a

a+ b

)2
− bx log

(
b

a+ b

)2)
.

Set s = b
a+b . Then 1− s = a

a+b . Then Lemma 4.50 implies

a

b
≤

log
(

b
a+b

)
log
(

a
a+b

) .
Thus,

(
a

b

)x
≤
(
a

b

)2
≤

 log
(

b
a+b

)
log
(

a
a+b

)
2

.

Thus,

ax log
(

a

a+ b

)2
≤ bx log

(
b

a+ b

)2
.

Thus, f ′′(x) ≤ 0.

Proof of Lemma 4.49. For z ≥ 1 define

f(z) :=
(
z + 2 + z−1

)α
− zα − z−α .

We will show that f(z) ≤ 4α − 2. This implies

(z + 1)2α − z2α − 1
zα

≤ 4α − 2 .
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Thus,
(z + 1)2α ≤ (4α − 2) zα + z2α + 1 .

By setting z = x
y for x ≥ y, we obtain

(x+ y)2α − (xα − yα)2 ≤ (4xy)α .

The condition x ≥ y can be dropped because of symmetry. It remains to show that
f(z) ≤ 4α − 2 is indeed true. It holds f(1) = 4α − 2. To finish the proof, we will show
f ′(z) ≤ 0. Define

g(z) := (z2 − 1)(z + 2)2α − (z + 1)2(z2α − 1) .

Then
f ′(z)z

α+2 (z + 2 + z−1)
α

= g(z) .

We show g(z) ≤ 0, and therefore f ′(z) ≤ 0, by applying Lemma 4.51 with a = z, b = 1,
and x = 2α:

zx − 1x
(z + 1)x ≥

z2 − 12

(z + 1)2 ,

which implies (
z2α − 1

)
(z + 1)2 ≥

(
z2 − 1

)
(z + 1)2α .

According to Remark 4.30, we have now finally finished to proof of Lemma 4.26 and
therefore of Theorem 4.10.
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5.1 Introduction
We have established rates convergence for FMs in general settings in chapter 4. Now
assume the FM depends on a covariate x and we want to know how the FM changes
with x. Essentially, the object of interest is a conditional FM, which is a function from
the space of covariates to the metric space in which the FM lives. Here, we consider the
simple case of x being an element of the unit interval and observing data at fixed points.
In this setting we develop different regression techniques and – similarly to chapter 4 –
try to find rates of convergence in general settings.

To be more precise, our goal is to estimate an unknown function [0, 1] → Q, t 7→ mt,
where (Q, d) is a metric space. To this end, we have access to independent data
(xi, yi)i=1,...,n. We assume that the covariates are fixed, e.g., xi = i

n , and yi is a
random variable with values in Q such that its Fréchet mean is equal to mxi , i.e.,
mxi = arg minq∈Q E[d(yi, q)2].

Nonparametric regression with metric target values is developed, e.g., in [Hei09;
Dav+10; PM19a]. [LM19] present a regression technique with regularization by to-
tal variation. [SHS10] discuss nonparametric regression techniques between Riemannian
manifolds. [LMP20] develop an additive regression model with responses in spaces of
of symmetric positive-definite matrices with a generalization to Riemannian manifolds.
Based on the notion of geodesics, [Fle13] introduces an analog of linear regression in sym-
metric Riemannian manifolds. These results are generalized and extended in [Cor+17].

5.1.1 Settings

We will present our results in three levels of abstraction: the hypersphere Sk, certain
classes of metric spaces Q like Hadamard spaces and metric spaces of finite diameter, and
an even more general setting which is governed by what kinds of meaningful statements
can be proven for abstract mathematical objects.

Hypersphere. Let k ∈ N. Let Sk := {x ∈ Rk+1 : |x| = 1} be the hypersphere with
radius 1 as a subset of Rk+1. We equip Sk with its intrinsic metric d(q, p) := arccos(q>p).
Let TSk := ⋃

q∈Sk({q}×TqSk) be the tangent bundle, where TqSk := {v ∈ Rk+1 | q>v = 0}
is the tangent space at q ∈ Sk. The exponential map is Exp : TSk → Sk, (q, v) 7→
cos(|v|)q+sin(|v|) v

|v| , where |·| denotes the Euclidean norm. Geodesics can be represented
by a tuple (p, v) ∈ TSk as x 7→ Exp(p, xv).

For t ∈ [0, 1], let Yt be a Sk-valued random variable. Let the regression function
m : [0, 1] → Sk be a minimizer mt ∈ arg minq∈Sk E[d(Yt, q)2]. Let xi = i

n and let
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(yi)i=1,...,n be independent random variables with values in Sk such that yi has the
same distribution as Yxi .

Metric. Let (Q, d) be a metric space. For t ∈ [0, 1], let Yt be a Q-valued random
variable with finite second moment, i.e., E[d(Yt, q)2] < ∞ for all t ∈ [0, 1] and q ∈ Q.
Let the regression function m : [0, 1] → Q be a minimizer mt ∈ arg minq∈Q E[d(Yt, q)2].
Let xi = i

n and let (yi)i=1,...,n be independent random variables with values in Q such
that yi has the same distribution as Yxi .

General. Let X be the space of covariates, Y a set called data space, Q a set called
descriptor space. Let c : Y × Q → R be a cost function, l : Q × Q → R be a loss
function. For t ∈ X , let Yt be a Y-valued random variable with finite expected cost, i.e.,
E[|c(Yt, q)|] < ∞ for all t ∈ X and q ∈ Q. Let the regression function m : X → Q be a
minimizer mt ∈ arg minq∈Q E[c(Yt, q)]. Let xi ∈ X be deterministic and let (yi)i=1,...,n be
independent random variables with values in Y such that yi has the same distribution
as Yxi .

5.1.2 Two Approaches

To construct an estimator for m in these settings, one may try to adapt a known Eu-
clidean estimator to the new scenario. Two prominent approaches to this task are Fréchet
regression [PM19a] and geodesic regression [Fle13].

The Fréchet approach. The regression function mt is the Fréchet mean of Yt, i.e.,
the minimizer of E[d(Yt, q)2] over q ∈ Q. In Fréchet regression, we estimate the function
t 7→ E[d(Yt, q)2] for every fixed q ∈ Q by an Euclidean estimator t 7→ F̂t(q) using the
data (xi, zq,i)i=1,...,n ⊆ [0, 1] × R with zq,i = d(yi, q)2. In this step we may use one of
the standard parametric or nonparametric regression estimators for certain classes of
functions [0, 1] → R. Then F̂t(q) is minimized over q ∈ Q for a fixed t to obtain the
estimator m̂t.

The Geodesic approach. Assume our metric space Q is equipped with an expo-
nential map Exp : Θ → Q, where Θ ⊆ TQ ⊆ Q × Rk is a subset of the tangent bundle
of Q. A geodesic starting in point p ∈ Q and continuing in the direction v ∈ TpQ of
the tangent space of Q at p can be described as a function R→ Q, x 7→ Exp(p, xv) with
(p, v) ∈ Θ. In geodesic regression with covariates xi ∈ R, we minimize the empirical
squared error

n∑
i=1

d(yi,Exp(p, xiv))2

over (p, v) ∈ Θ to find the best fitting geodesic. All forms of geodesic regression built
on this criterion or a modification of it. For example, we can extend it to multivariate
regression

n∑
i=1

d

yi,Exp

p, k∑
j=1

xi,jvj

2

,
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where xi ∈ Rk and v1, . . . , vk ∈ TpQ or more general feature regression

n∑
i=1

d

yi,Exp

p, k∑
j=1

ψj(xi)vj

2

,

where xi ∈ X for an arbitrary space of covariates X and features ψj : X → R. Further-
more, we may introduce weights wi,t, e.g., wi,t = K((xi − t)/h) for a kernel K and a
bandwidth h > 0 to localize the procedure, and obtain (for one-dimensional covariates)

m̂t ∈ arg min
(p,v)∈Θ

n∑
i=1

wid(yi,Exp(p, xiv))2 .

In this paper, we do not require the existence of an exponential map in the sense of
Riemannian geometry. Instead, we introduce a link function g : Θ×X → Q for a set of
covariates X and a set Θ, which we can think of as parameterizing geodesics. We then
minimize ∑n

i=1 d(yi, g(θ, xi))2. For X ⊆ R, this generalizes the setting used above via
Θ ⊆ TQ and g((p, v), x) = Exp(p, xv).

5.1.3 Contributions
We compare the two approaches of geodesic (Geo) and Frechet (Fre) regression on three
regression estimators, namely linear regression (Lin), local linear regression (Loc), and
the trigonometric orthogonal series projection estimator (Tri). This makes six estima-
tion procedures, which we refer to as LinGeo, LinFre, LocGeo, LocFre, TriGeo, and
TriFre. For the resulting estimators, which we denote as m̂t, our goal is to show ex-
plicit finite sample bounds of the form E[d(mt, m̂t)2] ≤ Cn−α (in the metric setting),
where C > 0 is a constant. We are not interested in optimal universal constants, e.g.,
whether C = 2 or C = 2000, but the dependence on further parameters, like a moment
bound, is to be explicit.

• LinGeo (section 5.2): For standard geodesic regression in symmetric Riemannian
manifolds, [Fle13] shows existence and uniqueness of the estimator as well as equiv-
alence of the least squares estimator and the maximum likelihood estimator with
Gaussian errors. [Cor+17] prove asymptotic normality results in this setting. We
show E[ 1

n

∑n
i=1 d(mxi , m̂xi)2] ≤ Cn−1 for n ∈ N and a constant C > 0 in Hadamard

spaces Corollary 5.4 and general metric spaces of finite diameter Corollary 5.5.
These results are derived from an even more general statement, Theorem 5.2.

• LinFre (section 5.3): Among other Fréchet regression methods, linear (or global)
Fréchet regression is developed in [PM19a]. We want to apply this estimator in
a model where the regression function is a geodesic in a non-Euclidean space.
For this setup, we show a negative result. The estimator of the objective func-
tion t 7→ E[d(Yt, q)2] is only consistent in standard spaces, Theorem 5.8. Our
simulations show inconsistency of LinFre on the sphere in our model. As an al-
ternative, we suggest a modified estimator, LinCos, which maximizes the cosine of
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the distance instead of minimizing the squared distance. The simulations suggest
consistency of LinCos. We also give some theoretical justification. But we do not
investigate rates of convergence, as LinCos is a method specific to the sphere S2

(with possible extensions to the hypersphere Sk and hyperbolic spaces) and not
a regression technique for more general nonstandard spaces, which is the topic of
this chapter.

• LocGeo (section 5.4): We apply the approach of geodesic regression to the well-
known local linear estimator and arrive at a new estimator, LocGeo. We show
E[d(mt, m̂t)2] ≤ Cn

− 2β
2β+1 for all t ∈ [0, 1], n ∈ N, a smoothness parameter β ∈

(1, 2], and a constant C > 0, Theorem 5.12, Corollary 5.14, Corollary 5.15. For this
result, we assume a smoothness condition, which generalizes the Hölder condition
that is common for local linear estimators. It demands that the true function
t 7→ mt can be locally approximated at t by a geodesic up to an error of order
|x− t|β for x close to t.

• LocFre (section 5.5): [PM19a] introduce local constant (Nadaray–Watson) and
local linear Fréchet regression for general metric spaces. For the local linear esti-
mator, they show d(m̂t,mt) ∈ OP(n− 2

5 ) and a more general version of this result,
see Corollary 1 in their article. This result is refined in [CM20] to a bound that
is uniform in t. We show, for a general local polynomial Fréchet estimator of
order ` ∈ N0, that E[d(mt, m̂t)2] ≤ Cn

− 2β
2β+1 for a constant C > 0 and a smooth-

ness parameter β > `, Theorem 5.17, Corollary 5.19, Corollary 5.20. Our results
are slightly more general with conditions slightly less demanding. Furthermore,
bounds in expectation for finite n are stronger than in OP. Similar to [PM19a],
we demand a smoothness condition not directly on t 7→ mt, but on the change of
the probability density of Yt in t.

• TriGeo (section 5.6): The application of the geodesic approach to the trigonometric
projection estimator yields a new estimator, TriGeo. We are not able to derive
results on rates of convergence. We argue, that this estimator may be sub-optimal
as the properties that make it appealing in Euclidean spaces are lost in nonstandard
spaces. Nonetheless, we include the estimator in our simulation study.

• TriFre (section 5.7): We apply the approach of Fréchet regression to the trigono-
metric projection estimator and arrive at a new estimator, TriFre. We show
E[
∫ 1

0 d(mt, m̂t)2dt] ≤ Cn
− 2β

2β+1 for a smoothness parameter β ≥ 1 and a constant
C > 0, Theorem 5.23, Corollary 5.24, Corollary 5.25. As for LocFre the smooth-
ness condition is a requirement on the change of the density of Yt in t.

We briefly summarize these results for the two approaches.

• Results on the Fréchet approach. For the nonparametric estimators, we can
make assumptions that ensure smoothness of the objective function. Thus, it can
be approximated well by a finite cut-off of the expansion in the trigonometric se-
ries (TriFre) or locally by a linear function (LocFre). Together with a so-called
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variance inequality, this yields the nonparametric rate of convergence of the min-
imizers, i.e., the nonparametric Fréchet regression estimators. As the objective
function may not be linear in a geodesic model on non-Euclidean spaces, apply-
ing the Fréchet approach to linear regression (LinFre) may yield an inconsistent
estimator in these cases.

• Results on the geodesic approach. The geodesic approach applied to linear
regression (LinGeo) is a least squares estimator for geodesics. In a model where
the regression function is a geodesic with a corresponding least squares property
with respect to the noise, the resulting estimator is well-suited. Localizing the
procedure (LocGeo) allows to estimate functions that can locally be approximated
well by geodesics. On one hand, the rationale for these two procedures is almost
straight forward. On the other hand, one can hardly justify the trigonometric
basis of L2[0, 1] as meaningful features (TriGeo), because the basis functions loose
the orthogonality property after their output is mapped to a non-Euclidean target
space.

The comparison of theses estimation procedures underlines the importance to have a
versatile tool belt when tackling new challenges: There is not one approach alone that
solves the problem of nonstandard regression in every scenario. For a simple geodesic
model, only the geodesic approach leads to a consistent estimator. For trigonometric
regression the results are basically reversed: We can prove rates of convergence only for
the Fréchet approach. For local linear estimation both approaches seem equally well
suited. This comparison of geodesic and Fréchet approach on three different Euclidean
estimators leads to three different outcomes. Thus, focusing on one setting alone would
not reveal the complexities in the general comparison of the two approaches.

Our goal is to make all theorems as general as reasonably possible. This manifests
in quite abstract statements. To get a gist of the meaning of the abstract objects,
we start most sections by a corollary of a general theorem on the sphere: Corollary 5.1,
Corollary 5.11, Corollary 5.16, and Corollary 5.22. These corollaries illustrate our results
and show that they are indeed applicable to explicit interesting nonstandard spaces.
Furthermore, abstract assumptions of the general theorems are justified by showing that
they are fulfilled on the sphere.

The sphere is also the metric space used in our simulation study, section 5.8. To
fulfill a variance inequality, which is an assumption for all our results, we introduce a
new family of distributions on the sphere, the contracted uniform distributions. All
estimators are implemented using the statistical programming language R [R D08]. The
resulting package is freely available at https://github.com/ChristofSch/spheregr.
Our experiments confirm and illustrate the theoretical findings.

The proofs (appendix 5.A) partially built upon techniques developed in [Sch19b].
Therein a so-called weak quadruple inequality is assumed to prove rates of convergence
for the (generalized) Fréchet mean without requiring that the descriptor space Q is
bounded. We fulfill this condition by definition of our moment conditions. Generally,
the major tools to prove results in this setting are empirical process theory with chaining,
e.g. [VW96] or [Tal14] and appendix 5.B, and a technique called slicing or peeling, e.g.,
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[Gee00]. The proofs for local regression techniques follow the Euclidean version in [Tsy08,
section 1.6] as far as possible, for trigonometric regression we make use of [Tsy08, section
1.7].

5.1.4 Notation and Conventions

We use a lower case c for universal constants c > 0. If the value depends on a variable,
we indicate this by an index, e.g., cκ is a constant that depends only on κ. We do
not introduce or define every such constant. They are silently understood to take an
appropriate value. Furthermore, the value may vary between two occurrences of such a
constant. Alternatively we may use c′, c′′, ... for the same purpose.

A capital C indicates a constant that has further meaning, which is usually described
by a three letter index, e.g., we may require a moment condition E[d(Yt,mt)2] ≤ CMom
for all t to be fulfilled. For simplicity, we assume these constants to be ≥ 1, so that
C2

Abc + CAbcCXyz ≤ cC2
AbcCXyz.

Assumptions are named in small caps, e.g., Moment. Different assumptions in dif-
ferent sections may have the same name. Hence, assumptions always refer to the as-
sumptions defined in the same section. Nonetheless, the names are consistent across the
sections insofar as assumptions with the same name are – if not identical – expressions
of the same underlying requirement.

There is a silently underlying probability space (Ω,ΣΩ,P). If a random variable, say
Y , has values in a set, say Y, that set is silently understood to be a measurable space
(Y,ΣY) and the random variable is a measurable map Y : (Ω,ΣΩ)→ (Y,ΣY).

In each section the estimator of the regression function at t is denoted as m̂t. It
depends on n and potentially on further parameters like a bandwidth h, which will not
be indicated in the notation but should be clear in the context.

Let (Q, d) be a metric space. To shorten the notation, we sometimes write q,p instead
of d(q, p) for q, p ∈ Q. Define the ball B(o, d, δ) := {q ∈ Q : d(q, o) < δ} and the diameter
diam(Q, d) := supq,p∈Q d(q, p).

For a vector v ∈ Rk, we denote its Euclidean norm by |v|. For a matrix A ∈ Rk×`, we
denote its operator norm by ‖A‖op := supv∈R`,|v|=1 |Av|.

5.2 Linear Geodesic Regression
We apply the geodesic approach to linear regression, which yields the standard geodesic
regression, LinGeo, introduced in [Fle13].

5.2.1 Hypersphere

Before we present the general and abstract results, we illustrate them in the hypersphere
setting, see section 5.1.1. Let Λ ∈ [1,∞). Let Θ := {(p, v) ∈ TSk | |v| ≤ Λ}. The
regression function m : [−1, 1] → Sk is assumed to be a geodesic mt = Exp(p∗, tv∗),
(p∗, v∗) ∈ Θ. We observe (xi, yi)i=1,...,n on a regular grid (xi)i=1,...,n of [−1, 1] (instead
of [0, 1]).
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We estimate the starting point p∗ and velocity vector v∗ by the least squares method
in Sk, i.e.,

(p̂, v̂) = arg min
(p,v)∈Θ

1
n

n∑
i=1

d(yi,Exp(p, xiv))2 .

The estimated curve then is t 7→ m̂t = Exp(p̂, tv̂).
Using our general theory in the next section, we obtain following corollary.

Corollary 5.1 (LinGeo Hypersphere). Assume there is CVlo ≥ 1 with C−1
Vlod(mt, q)2 ≤

E[d(Yt, q)2 − d(Yt,mt)2] for all t ∈ [−1, 1] and q ∈ Sk. Then

E
[

1
n

n∑
i=1

d(mxi , m̂xi)2
]
≤ C 1

n
,

where C := ckCVloΛ−2.

5.2.2 General
We now present a result in the general setting of section 5.1.1. Let Θ be a space
of parameters. Let g : X × Θ → Q be the link function. Our model assumption is
g(t, θ∗) = mt for the true parameter θ∗ ∈ Θ. The canonical M-estimator of θ∗ is

θ̂ ∈ arg min
θ∈Θ

1
n

n∑
i=1

c(yi, g(xi, θ)) .

The resulting plug-in estimator for the regression function mt is m̂t = g(t, θ̂).
We introduce some further notation. For θ, θ̃, θ0 ∈ Θ, x1, . . . , xn, t ∈ X , y, ỹ ∈ Y,

define

ct(y, θ) := c(y, g(t, θ))
♦t(y, ỹ, θ, θ̃) := ct(y, θ)− ct(ỹ, θ)− ct(y, θ̃) + ct(ỹ, θ̃)

x := (x1, . . . , xn)

Bx(θ0, l, δ) :=
{
θ ∈ Θ: 1

n

n∑
i=1

l(g(xi, θ), g(xi, θ0)) ≤ δ
}

at(y, ỹ) := sup
θ1,θ2∈Θ,θ1 6=θ2

♦t(y, ỹ, θ1, θ2)
b(θ1, θ2) .

Assumptions.

• Variance: There is CVlo ∈ [1,∞) such that C−1
Vlol(mt, q) ≤ E[c(Yt, q) −

c(Yt,mt)] for all t ∈ X and q ∈ Q.
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• Entropy: There are Tn ≥ 0, CEnt ∈ [1,∞), and ξ ∈ (0, 1) such that
γ2(Bx(θ0, l, δ), b) ≤ Bδξ for all δ ≥ Tn and θ0 ∈ Θ, where γ2 is a measure
of entropy defined in Definition 5.55 (appendix 5.B).

• Moment: There are κ ≥ 2 and CMom ∈ [1,∞) such that E[at(Yt,mt)κ]
1
κ ≤

CMom for all t ∈ X .

Theorem 5.2 (LinGeo General). Assume Variance, Entropy, Moment. As-
sume κ(1− ξ) > 1. Then

E
[

1
n

n∑
i=1

l(mxi , m̂xi)
]
≤ Cn−

1
2(1−ξ) + CVloTn ,

where C := cκ,ξCVlo (CEntCMom)
1

1−ξ .

In many settings like in Euclidean linear regression with c(y, q) = |y − q|2, l(m, q) =
|m− q|2, we have ξ = 1

2 and retrieve the parametric rate of convergence.

Remark 5.3.

• Variance:
This condition is also called variance inequality (or Growth in chapter 4) and
is well-known in the context of Fréchet means in Alexandrov spaces, [Stu03;
Oht12; Gou+19]. Variance is a condition on the noise distribution and the
geometry of involved spaces. It can be viewed as a quantitative version of the
condition of unique Fréchet means mx of Yx. The variance inequality not only
ensures uniqueness of mx, it also requires the objective function E[d(Y, q)2]
(in the metric space setting) or E[c(Y, q)] (in the general setting) to grow
quadratically in the distance of a test point q to the minimizer mx (metric) or
linearly in l (general). Intuitively, this is fulfilled when the noise distribution
is not too similar to a distribution that has nonunique Fréchet means.
In the metric setting, Variance is true in Hadamard spaces [Stu03, Propo-
sition 4.4], which are geodesic metric spaces with nonpositive curvature and
include the Euclidean spaces. For a variance inequality in spaces of nonnega-
tive curvature, see [ALP20, Theorem 3.3].

• Entropy:
Entropy restricts the size of the sets Bx(θ∗, l, δ). It can be viewed as a
quantitative version of the requirement that these sets are totally bounded.
We use Talagrand’s γ2 [Tal14] (Definition 5.55 in section 5.B) to formulate the
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entropy condition. Let (Q, d) be a metric space and B ⊆ Q. It holds

γ2(B, b) ≤
∫ ∞

0

√
log(N(B, b, r))dr ,

where the integral is called entropy integral and

N(B, b, r) = min

k ∈ N
∣∣∣∣ ∃q1, . . . , qk ∈ Q : B ⊆

k⋃
j=1

B(qj , b, r)


is the covering number. Thus, we can use bounds on the entropy integral to
fulfill Entropy, which is more common in the statistics literature. In some
circumstances γ2 is strictly lower than the entropy integral [Tal14, Exercise
4.3.11]. One can further weaken the entropy condition as done in [ALP20] and
chapter 4 at the cost of worse rates of convergence, but it is not clear whether
these results are optimal.

• Moment:
We partially follow the approach of chapter 4 to prove the theorem. Therein
a so-called weak quadruple inequality is assumed to prove rates of convergence
for the (generalized) Fréchet mean. We fulfill this condition by the definition
of ax, i.e., it holds ♦x(y, z, θ, θ̃) ≤ b(θ, θ̃)ax(y, z). This inequality can be
understood as a generalization of Cauchy-Schwarz inequality: If Θ = Y = Rk
and cx(y, θ) = |y − θ|2, then

♦x(y, z, θ, θ̃) = 2〈y − z, θ̃ − θ〉 ≤ ax(y, z)b(θ, θ̃)

if b(θ, θ̃) = |θ̃ − θ| and ax(y, z) = 2 |y − z|. Moment then is nothing but the
condition that the κ-th moment of the noise distribution is finite.

5.2.3 Corollaries

Next, we apply Theorem 5.2 to the metric setting of section 5.1.1. We will replace
Entropy by two conditions that compare the distances of the metric space to the
Euclidean distance.

Assumptions.

• MetricUp: There is CMup ∈ [1,∞) such that d(g(x, θ), g(x, θ̃)) ≤ CMup|θ− θ̃|
for all x ∈ X , θ, θ̃ ∈ Θ.

• MetricLo: There are CRes, CMlo ∈ [1,∞) such that, for all θ, θ̃ ∈ Θ,

1
n

n∑
i=1

d(g(xi, θ), g(xi, θ̃))2 ≥ C−1
Mlo|θ − θ̃|

2 − CResn
−1 .
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If we assume that Q is a Hadamard space, Variance holds and we can set ax = d in
Moment.

Corollary 5.4 (LinGeo Hadamard). Let (Q, d) be a Hadamard space. Assume
MetricUp, MetricLo, and Moment with ax = d. Then

E
[

1
n

n∑
i=1

d(mxi , m̂xi)2
]
≤ Cn−1 ,

where C := cκdΘCMloC
2
MupC

2
MomCRes.

In bounded metric spaces, i.e., metric spaces (Q, d) with diam(Q) < ∞, Moment is
trivial, but Variance needs to be assumed.

Corollary 5.5 (LinGeo Bounded). Let (Q, d) be a bounded metric space. Assume
MetricUp, MetricLo, and Variance. Then

E
[

1
n

n∑
i=1

d(mxi , m̂xi)
2
]
≤ Cn−1

where C := cdΘCVloCMloC
2
MupCRes diam(Q)2

5.3 Linear Fréchet Regression

First, we directly apply the Fréchet approach to linear regression, which leads to an
estimator, LinFre, introduced in [PM19a], that may be inconsistent in some intuitively
sensible models on nonstandard spaces. Then, with a more relaxed interpretation of the
Fréchet approach applied on the sphere, we introduce cosine regression, LinCos.

5.3.1 Model and Consistency

We use the metric model of section 5.1.1 with covariates in [−1, 1] (instead of [0, 1]).
The approach of Fréchet regression, as proposed in [PM19a], is to estimate Ft(q) :=
E[d(Yt, q)2] and then minimize that estimator over q to obtain an estimation m̂t. When
applying this idea to the concept of linear regression, we estimate the function t 7→ Ft(q)
for each q ∈ Q using a linear regression estimator on the real-valued quantities d(yi, q)2.

As a first step to validate this approach, we apply it to the case Q = RdY with the
Euclidean metric. To make this work, we estimate not Ft(q) but Ft(q, o) := Ft(q)−Ft(o)
for all q ∈ Q and a fixed element o ∈ Q. This is necessary to have a linear objective in
the case of a linear model as following calculations show: Assume Yt = β0+tβ1+ε, where
β0, β1 ∈ RdY , and ε is a centered random variable in RdY with finite second moment.
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Denote β = (β0, β1) ∈ RdY×2 and t· = (1, t) ∈ R2. Then, for o, q ∈ RdY ,

Ft(q) = E[|Yt − q|2] = |βt·|2 + E[|ε|2] + |q|2 − 2(βt·)>q ,
Ft(q, o) = |q|2 − |o|2 − 2(βt·)>(q − o) .

For fixed q, o ∈ Q the function t 7→ Ft(q, o) is linear in t, whereas t 7→ Ft(q) is quadratic.
Note that arg minq Ft(q) = arg minq Ft(q, o).

With these considerations in mind, we define the linear Fréchet regression estimator
m̂t in the metric setting as follows:

Xn :=
(

1 . . . 1
x1 . . . xn

)
∈ R2×n , F̂t(q, o) :=

n∑
i=1

w(t, xi)
(
d(yi, q)2 − d(yi, o)2

)
,

Bn := XnXn
>, m̂t ∈ arg min

q∈Q
F̂t(q, o) ,

w(t, x) := t·>B−1
n x· ,

where o ∈ Q is an arbitrary fixed element. The empirical objective F̂t(q, o) is the linear
regression estimator of Ft(q, o): Define θ̂(q, o) := arg minθ∈RdY×2

1
n

∑n
i=1 (zi − θ0 − θ1xi)2

with zi := d(yi, q)2 − d(yi, o)2. Then F̂t(q, o) = θ̂(q, o)>t·. [PM19a] showed (in a slightly
different model) that, under some conditions, m̂t converges to m̄t for n→∞, where

B :=
∫ 1

−1
x·x·>dx =

(
2 0
0 2

3

)
, F̄t(q, o) :=

∫ 1

−1
E
[
w(t, x)

(
d(Yx, q)2 − d(Yx, o)2

)]
dx ,

w(t, x) := t·>B−1x· = 1
2 + 3

2xt , m̄t := arg min
q∈Q

F̄t(q, o) .

The objective t 7→ F̄t(q, o) is the linear approximation of t 7→ Ft(q, o) in the least squares
sense. In particular, if t 7→ Ft(q, o) is linear for every q ∈ Q, then F̄ = F and m̄t = mt.

These considerations yield two ways of extending the idea of a linear model to arbitrary
metric spaces.

Definition 5.6.

(i) The distributions of Yx for x ∈ [−1, 1] follow the strict linear Fréchet regression
model, if F̄ = F .

(ii) The distributions of Yx for x ∈ [−1, 1] follow the relaxed linear Fréchet regres-
sion model, if m̄ = m.

As the idea of Fréchet regression is to estimate F̄ , this function being the true objective
would give rise to a meaningful model, in which the linear Fréchet regression estimator
is consistent due to the aforementioned results in [PM19a]. But in the end, we are only
interested in the minimizers. Thus, it is sufficient (and necessary) to have m̄ = m for a
model, so that the linear Fréchet regression estimator is consistent.
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To further affirm that these model assumptions are reasonable, the following proposi-
tion shows that they generalize the Euclidean linear model assumptions. As calculated
above Ft(q, o) is linear in t for Euclidean spaces. As F̄ is the linear approximation of F ,
we have F = F̄ .

Proposition 5.7. Any Euclidean linear model, Yx = β0 + β1x+ ε, x ∈ R, β0, β1 ∈
RdY , E[ε] = 0 ∈ RdY , follows the strict linear Fréchet regression model for the space
(Q, d) = (RdY , | · |).

It is not clear how to write a generalization of a model equation like Yx = β0 + β1x+ ε
in arbitrary metric spaces (except on Riemannian manifolds with an exponential map
at hand, where Yx = Exp(mx, ε),mx = Exp(β0, xβ1) seems to be meaningful). But
there are some elements of the model that should reasonably be included: If the metric
space is a geodesic space, we should demand that a meaningful regression estimator is
consistent at least in the no-noise settings Yt = γt for global geodesics γ : [−1, 1] →
Q, t 7→ γt, as this is the simplest distribution with a nonconstant regression function.
Furthermore, geodesics in Euclidean spaces are linear functions, which can be estimated
by linear Fréchet regression, as linear Fréchet regression is equivalent to linear regression
in Euclidean spaces.

Unfortunately, Hilbert spaces are essentially the only spaces where this no-noise setting
fulfills the strict linear Fréchet regression model, as the following theorem shows.

To state the theorem, we first need to further extend our knowledge of metric geometry
from section 1.2.5. A minimizing geodesic between two points q, p ∈ Q is a geodesic
γ : [a, b]→ Q with L(γ) = d(γ(a), γ(b)) and γ(a) = q, γ(b) = p. A geodesic γ : [a, b]→ Q
is extendible (through both ends) if there is ε > 0 and a geodesic γ̃ : [a− ε, b+ ε]→ Q
such that γ̃|[a,b] = γ. A geodesic space (Q, d) is geodesically complete, if it is complete
and all geodesics are extendible.

Theorem 5.8 (LinFre inconsistency). Let (Q, d) be a nonempty geodesic space.
It is also a Hilbert space if and only if it is geodesically complete, and for each
minimizing geodesic (γt)t∈[−1,1], the strict linear Fréchet regression model holds for
the no-noise setting Yt = γt.

Theorem 5.8 shows that it does not make sense to assume the strict linear Fréchet regres-
sion model in non-Euclidean spaces. It is not clear to the author, whether a statement
similar to Theorem 5.8 holds for the relaxed model. But simulations in appendix 5.8
indicate inconsistency of linear Fréchet regression on the sphere.

5.3.2 Parametric Cosine Regression

One important aspect of linear regression is that the regression function has a simple
parametric form. The idea behind Fréchet regression is to apply regression not directly
to the regression function t 7→ mt, but to the objective function t 7→ Ft(q). Thus, for a
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generalization of parametric regression in the sense of Fréchet regression, we would want
to target function t 7→ Ft(q) to have a simple parametric form.

On the sphere S2, instead of minimizing the squared distance, we will maximize the
cosine of the distance (or minimize the hyperbolic cosine in the hyperbolic plane H2),
which will yield a simple parametric form of the objective function. It holds

cos(x) = 1− 1
2x

2 + O(x4) , cosh(x) = 1 + 1
2x

2 + O(x4) .

Thus, minimizing E[Y,q2] is closely related to maximizing E[cos(Y,q)] or minimizing
E[cosh(Y,q)]. Furthermore, using the cosine on S2 (or hyperbolic cosine in H2) seems
appealing as laws of cosines hold in S2 and H2 analogously to the Euclidean space: In a
triangle with side lengths a, b, c and angle α opposing side c, it holds, in the respective
space with intrinsic metric,

c2 = a2 + b2 − 2ab cos(α) Euclidean ,
cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(α) sphereical ,

cosh(c) = cosh(a) cosh(b)− sinh(a) sinh(b) cos(α) hyperbolic .

We will only discuss Q = S2 with intrinsic metric d. Similar considerations are valid for
the hyperbolic space. In our new model, we replace the Fréchet mean, arg minq E[Y,q2],
of a random variable Y in S2 by the cosine mean, arg maxq E[cos(Y,q)]. For distributions
with enough symmetry, the cosine mean can be characterized easily.

Proposition 5.9. Let Y be a random variable with values in S2 = {(ϑ, ϕ) ∈
[−π

2 ,
π
2 ] × [0, 2π)} such that its distribution is symmetric with respect to rotation

around one axis, without loss of generality the axis connecting (−π
2 , 0) and (π2 , 0).

The distribution of Y is given by P(Y ∈ B) = 1
2π
∫ ∫ 2π

0 1B(ϑ, ϕ)dϕdν(ϑ) for all mea-
surableB ⊆ S2, where ν is a probability measure on [−π

2 ,
π
2 ]. LetA :=

∫
sin(ϑ)dν(ϑ).

Let M := arg maxq∈S2 E[cos(Y,q)] the set of cosine means. Then it holds,

• A < 0 if and only if M =
{
(−π

2 , 0)
}
,

• A = 0 if and only if M = S2,

• A > 0 if and only if M =
{
(π2 , 0)

}
.

As expected from a mean-value, the cosine mean of a symmetric distribution is its
center. If the regression function is equal to a geodesic, the objective function has a
simple parametric form.

Proposition 5.10. Let γ : R → S2, s 7→ γs be a unit-speed geodesic. Assume that
mt := arg maxq∈S2 E[cos(Yt,q)] is unique for all t ∈ [0, 1]. Assume mt = γt0+λt with
t0 ∈ [0, 2π) and λ ∈ [0,∞). For q ∈ S2, let sq ∈ [0, 2π) be such that mins q,γs = q,γsq .
Then

E[cos(Yt,q)] = Aq cos(Bq + λt) = aq cos(λt) + bq sin(λt) ,
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where

Aq := E[cos(Yt,mt)] cos(γsq ,q) , aq := Aq cos(Bq) ,
Bq := t0 − sq , bq := −Aq sin(Bq) .

Proposition 5.10 shows that following model is appropriate for estimating geodesics on
the sphere. For t ∈ [0, 1], let Yt be a S2-valued random variable. Let the regression func-
tion m : [0, 1] → S2 be a maximizer mt ∈ arg maxq∈S2 E[cos(Yt,q)]. Let Λ ∈ (0,∞) and
assume that t 7→ mt is a geodesic with speed bounded by Λ. Assume that E[cos(Yt,mt)]
does not depend on t. Let xi := i

n and let (yi)i=1,...,n be independent random variables
with values in S2 such that yi has the same distribution as Yxi .

Set zq,i := cos(yi,q) and define the least squares estimators

(âq,λ, b̂q,λ) ∈ arg min
a,b∈[−1,1]

1
n

n∑
i=1

(zq,i − a cos(λxi)− b sin(λxi))2 ,

λ̂ ∈ arg min
λ∈[0,Λ]

∫
S2

1
n

n∑
i=1

(
zq,i − âq,λ cos(λxi)− b̂q,λ sin(λxi)

)2
dµ(q) ,

where µ is the Hausdorff measure on S2 (for an implementation it is enough to use a three
points measure µ = 1

3 (δq1 + δq2 + δq3) with q1, q2, q3 ∈ S2 not on the same geodesic).
Now set âq = âq,λ̂, b̂q = b̂q,λ̂ and F̂t(q) = âq cos(λ̂t) + b̂q sin(λ̂t). The LinCos-estimator
for mt is m̂t ∈ arg maxq∈Q F̂t(q).

We do not investigate LinCos deeply, as it mainly serves to illustrate the comparison
of LinFre to LinGeo. Moreover, it does not fit into the scheme of this chapter, as we
want to compare general regression methods which are not limited to one specific metric
space and LinCos is only applicable in S2 (with possible extensions to hyper-spheres
and hyperbolic spaces). But note that, for fixed q, the estimation of aq, bq, and λ is
well-studied in the literature on sinusoidal regression, see e.g., [NK13].

5.4 Local Geodesic Regression
We apply the geodesic approach to the classical local linear estimator and arrive at a
new procedure, local geodesic regression or LocGeo.

5.4.1 Hypersphere
In the hypersphere setting of section 5.1.1, let Θ ⊆ TSk be the subset of the tangent
bundle with |v| < π for all (q, v) ∈ Θ. This set parameterizes a set of geodesics x 7→
Exp(q, xv).

We investigate an estimator that locally fits geodesics. Let h ≥ 2
n . Let K : R→ R be

a function, the kernel, such that C−1
Ker1[− 1

2 ,
1
2 ](x) ≤ K(x) ≤ CKer1[−1,1](x) for a constant

CKer ≥ 1 (Kernel condition). For t ∈ [0, 1], define wh(t, x) := 1
hK(x−th ) and wi :=

wh(t, xi)(
∑n
j=1wh(t, xj))−1. Let (m̂t, v̂t) ∈ arg min(p,v)∈Θ

∑n
i=1wid(yi,Exp(p, xi−th v))2.
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To be able to estimatem, it must fulfill a Hölder-type Smoothness condition: Assume
there are β > 0 and CSmo ∈ [1,∞) such that d(mx,Exp(mt, (x− t)ṁt)) ≤ CSmo |x− t|β
for all x ∈ [t− h, t+ h] ∩ [0, 1], t ∈ [0, 1], where ṁt ∈ TmtSk is the derivative of mt.

Furthermore, we again assume a Variance condition: There is CVlo ≥ 1 such that
C−1

Vlod(mt, q)2 ≤ E[d(Yt, q)2 − d(Yt,mt)2] for all t ∈ [−1, 1] and q ∈ Sk.

Corollary 5.11 (LocGeo Hypersphere). Assume Variance, Kernel and Smooth-
ness. Choose h := n

− 1
2β+1 . Then

E[d(mt, m̂t)2] ≤ Cn−
2β

2β+1

for all t ∈ [0, 1], n ≥ 2, where C := ckC3
KerC

2
VloC

2
Smo.

5.4.2 General
We prove the main theorem of this section in the metric setting of section 5.1.1 instead
of the general setting.

We investigate an estimator that locally fits (generalized) geodesics of the form x 7→
g(x, θ), where θ ∈ Θ parameterizes geodesics: Let h ≥ 2

n . Let K : R→ R be a function,
the kernel. For t ∈ [0, 1], define wh(t, x) := 1

hK(x−th ), wi := wh(t, xi)(
∑n
j=1wh(t, xj))−1.

Note that wi depends on n, t, h,K, which is not indicated in the notation. Let Θ be a
set. Let g : R×Θ → Q be a function, the link function. Define gi(θ) := g(xi−th , θ). Let
θ̂t,h ∈ arg minθ∈Θ

∑n
i=1wi d(yi, gi(θ))2 and m̂t := g(0, θ̂t,h).

We show that this estimator attains the classical nonparametric rate of convergence.
To formulate the assumptions for this theorem, we first need to define two (semi-)metrics
on Q: For θ, θ̃ ∈ Θ, define b(θ, θ̃) := supx∈[−1,1] d(g(x, θ), g(x, θ̃)). For y, z ∈ Q, define
a(y, z) := supq,p∈Q,q 6=p(y, q2 − y, p2 − z, q2 + z, p2)/q, p, where we use the short notation
q,p := d(q, p).

Assumptions.

• Lipschitz: There is CLip ∈ [1,∞) such that the function [−1, 1] → R, x 7→
d(g(x, θ), g(x, θ̃))2 is Lipschitz continuous with constant CLip for all θ, θ̃ ∈ Θ.

• Kernel: There are CKmi, CKma ∈ [1,∞) such that

C−1
Kmi1[− 1

2 ,
1
2 ](x) ≤ K(x) ≤ CKma1[−1,1](x)

for all x ∈ R.

• Smoothness: Let β > 0. There is CSmo ∈ [1,∞) such that t 7→ mt belongs to
the generalized Hölder class with parameters β and CSmo, i.e., there is θt,h ∈ Θ
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such that d(mx, g(x−th , θt,h)) ≤ CSmo |x− t|β for all x ∈ [t − h, t + h] ∩ [0, 1],
t ∈ [0, 1].

• Variance: There is CVlo ∈ [1,∞) such that C−1
Vlod(q,mt)2 ≤ E[d(Yt, q)2 −

d(Yt,mt)2] for all q ∈ Q and t ∈ [0, 1].

• R–Variance: There is CVup ∈ [1,∞) such that E[d(Yt, q)2 − d(Yt,mt)2] ≤
CVupd(q,mt)2 for all q ∈ Q and t ∈ [0, 1].

• Moment: Let κ > 2. There is CMom ∈ [1,∞) such that E[a(Yt,mt)κ] 1
κ ≤

CMom for all t ∈ [0, 1].

• Entropy: For θ0 ∈ Θ and δ > 0, let

Bδ(θ0) =
{
θ ∈ Θ:

∫ 1
2

− 1
2

d(g(x, θ), g(x, θ0))2 dx ≤ δ
}
.

There is CEnt ∈ [1,∞) such that γ2(Bδ(θ0), b) ≤ CEntδ
1
2 for all δ > 0 and all

θ0 ∈ Θ.

Theorem 5.12 (LocGeo General). Assume Variance, Smoothness, R–Variance,
Moment, Kernel, Entropy, and Lipschitz. Then, for all n ∈ N, h ≥ 2

n , and
t ∈ [0, 1], it holds

E
[∫ 1

2

− 1
2

d
(
g(x, θ̂t,h), g(x, θt,h)

)2
dx
]
≤ C1(nh)−1 + C2h

2β ,

where

C1 := cκC
2
EntC

3
KmiC

3
KmaCLipC

2
MomC

2
Vlo ,

C2 := c′κC
2
KmaC

2
KmiC

2
LipC

2
SmoCVloCVup .

We essentially obtain the classical bound of a squared bias term h2β and a variance term
(nh)−1, which yield the usual nonparametric rate of convergence for an appropriate
choice of h.

Remark 5.13.

• Lipschitz:
In Euclidean spaces Lipschitz bounds the slope of linear functions for the
local fit. This is not a restrictive requirement as for increasing number of data
points, the fit is done on an increasingly stretched version of the function,
which has a lower and lower absolute slope. Thus, for every finite slope, we
eventually meet this requirement.
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• Kernel:
This is a typical condition on kernels for local kernel regression, see also [Tsy08,
Lemma 1.5]. It is fulfilled e.g., by the rectangular kernel 1[− 1

2 ,
1
2 ](x) or the

Epanechnikov kernel 3
4(1−x2)1[−1,1](x). Kernel likely could be weakened to

allow for a greater variety of kernels.

• Smoothness:
Smoothness can be understood as a Hölder-smoothness condition. It bound
the residual of the first order approximation of m at t, i.e., the approximation
of x 7→ mx by a generalized geodesic x 7→ g((x− t)/h, θ) for x close to t.

• R-Variance:
Together with Variance, reverse variance inequality R-Variance requires
E[d(Yt, q)2 − d(Yt,mt)2] to behave like d(q,mt)2 up to constants. [Gou+19,
Theorem 8] introduce a variance equality, from which both inequalities may
be deduced. R-Variance always holds in proper Alexandrov spaces of non-
negative curvature with CVup = 1 [Oht12, Theorem 5.2], where a metric space
is called proper if every closed ball is compact.

For a discussion of Variance, Moment, Entropy see Remark 5.3 in section 5.2.

5.4.3 Corollaries
Next, we apply Theorem 5.12 to the metric setting of section 5.1.1. We, first need to
make further assumptions to be able to relate the bound on the integral of the parameters
θt,h and θ̂t,h to the distance of the true and estimated regression function mt and m̂t.

Assumptions.

• Connection: There is CCon ∈ [1,∞) such that

d
(
g(0, θ), g(0, θ̃)

)2
≤ CCon

∫ 1
2

− 1
2

d
(
g(x, θ), g(x, θ̃)

)2
dx

for all θ, θ̃ ∈ Θ.

• Convexity: The function x 7→ d
(
g(x, θ), g(x, θ̃)

)2
is convex for all θ, θ̃ ∈ Θ.

The theorem bounds E[
∫ 1

2
− 1

2
d(g(x, θ̂t,h), g(x, θt,h))2]. Note that g(0, θt,h) = mt due to

Smoothness. To obtain a bound on E[d(m̂t,mt)2], we may require Connection.
Connection with CCon = 1 is implied by Convexity due to Jensen’s inequality. Con-
vexity is true in Hadamard spaces (including the Euclidean spaces).

[Oht12, Theorem 5.2] implies that in proper Alexandrov spaces of nonnegative cur-
vature, R–Variance holds with CVup = 1. Of course, Moment is trivial in bounded
spaces.
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Corollary 5.14 (LocGeo Bounded). Let (Q, d) be a bounded proper Alexandrov
space of nonnegative curvature. Assume Variance, Smoothness, Kernel, En-
tropy, Lipschitz, Connection. Choose h := n

− 1
2β+1 . Then

E[d(mt, m̂t)2] ≤ Cn−
2β

2β+1

for all t ∈ [0, 1], n ≥ 2
2β

2β+1 , with C := cκCConC
2
EntC

3
KmiC

3
KmaC

2
LipC

2
VloC

2
Smo diam(Q, d)2.

In Hadamard spaces Variance and Convexity always hold, see [Stu03, Proposition
4.4, Corollary 2.5].

Corollary 5.15 (LocGeo Hadamard). Let (Q, d) be a Hadamard space and g such
that x 7→ g(x, θ) is a geodesic. Assume Smoothness, R–Variance, Moment,
Kernel, Entropy, Lipschitz. Choose h := n

− 1
2β+1 . Then

E[d(mt, m̂t)2] ≤ Cn−
2β

2β+1

for all t ∈ [0, 1], n ≥ 2
2β

2β+1 , where C := cκC
2
EntC

3
KmiC

3
KmaC

2
LipC

2
MomC

2
SmoCVup.

5.5 Local Fréchet Regression
We use the principles of Fréchet regression on local polynomial regression. In particular,
this yields local linear Fréchet regression, LocFre, introduced in [PM19a].

5.5.1 Hypersphere
We use the hypersphere setting of section 5.1.1. Let K : R→ R be a function, the kernel,
such that C−1

Ker1[− 1
2 ,

1
2 ](x) ≤ K(x) ≤ CKer1[−1,1](x) for a constant CKer ≥ 1 (Kernel

condition). For h > 0 define Kh(x) := 1
hK(x/h), ah,k(t) := ∑n

j=1(xj− t)kKh(xj− t) and

wh,i(t) := ah,2(t)− (xi − t)ah,1(t)
ah,0(t)ah,2(t)− ah,1(t)2Kh(xi − t) ,

whenever the denominator is not 0; in the other case, set wi := 0. The local linear
Fréchet regression estimator is m̂t ∈ arg minq∈Sk

∑n
i=1wh,i(t) yi,q2, where q,p := d(q, p).

We need a smoothness assumption to be able to estimate m: For a > 0, define bac
as the largest integer strictly smaller than a. The Hölder class Σ(β, L) for β, L > 0 is
defined as the set of bβc-times continuously differentiable functions f : [0, 1] → R with∣∣∣f (bβc)(t)− f (bβc)(x)

∣∣∣ ≤ L |x− t|β for all x, t ∈ [0, 1]. Let µ be a the measure of the
uniform distribution on Sk. Assume that for all t ∈ [0, 1], the random variable Yt has
a density y 7→ ρ(y|t) with respect to µ. Let β ∈ (1, 2]. Assume, there is CSmD ≥
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1, such that for µ-almost all y ∈ Sk, t 7→ ρ(y|t) ∈ Σ(β,CSmD)) (SmoothDensity).
Furthermore, we assume Variance: There is CVlo ∈ [1,∞) such that C−1

Vlo q,mt
2 ≤

E[Yt,q
2 − Yt,mt

2] for all q ∈ Sk and t ∈ [0, 1].

Corollary 5.16 (LocFre Hypersphere). Assume Variance, SmoothDensity, and
Kernel. Let n ≥ n0 for a universal constant n0 and set h := n

− 1
2β+1 . Then

E[mt,m̂t
2] ≤ Cn−

2β
2β+1

for all t ∈ [0, 1], where C := ck (CVloCKerCSmD)2.

We obtain the usual nonparametric rate of convergence.

5.5.2 General
The general theorem of this section uses the general setting of 5.1.1, but with a specific
loss function: Let d be a metric on Q. Let α > 1. We use dα as loss function. Define
♦(y, z, q, p) := c(y, q)−c(y, p)−c(z, q)+c(z, p) and a(y, z) := supq,p∈Q,q 6=p ♦(y, z, q, p)q,p−1.
Let K : R→ R be a function. For ` ∈ N0, h = hn > 0, and x, t ∈ [0, 1] define

Ψ(x) :=
(
xk

k!

)
k=0,...,`

,

Bn,t := 1
nh

n∑
i=1

Ψ
(
xi − t
h

)
Ψ
(
xi − t
h

)
>K

(
xi − t
h

)
,

wi := Ψ(0)>B−1
n,tΨ

(
xi − t
h

)
K

(
xi − t
h

)
,

whenever Bn,t is invertible. Note that wi depends on n, t, h,K. A local polynomial
Fréchet estimator of order ` is any element

m̂t ∈ arg min
q∈Q

n∑
i=1

wic(yi, q) .

Assumptions.

• Moment: There are κ ≥ 2 and CMom ∈ [1,∞) such that E[a(Yt,mt)κ]
1
κ ≤

CMom for all x ∈ [0, 1].

• Smoothness: Let β > 0. For all q, p ∈ Q there is L(q, p) > 0 such that
t 7→ E[c(Yt, q)− c(Yt, p)] ∈ Σ(β, q,p L(q, p)). There is CSmo ∈ [1,∞) such that
E[L(mt, m̂t)κ] 1

κ ≤ CSmo for all t ∈ [0, 1].

• Kernel: There is CKma ∈ [1,∞) such that K(x) ≤ CKma1[−1,1](x) for all
x ∈ R. There are n0 ∈ N, λ0 ∈ (0,∞) such that λmin(Bn,t) > λ0 for all
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x ∈ [−1, 1], n ≥ n0 and the given choice of h = hn, where λmin(Bn,t) is the
smallest eigenvalue of Bn,t. The constants n0 and λ0 give rise to a constant
CKer ∈ [1,∞), see Lemma 5.40.

• Variance: There is CVlo ∈ [1,∞) such that C−1
Vlo q,mt

α ≤ E[c(Yt, q)−c(Yt,mt)]
for all q ∈ Q and t ∈ [0, 1].

• Entropy: There is CEnt ∈ [1,∞) such that γ2(B, d) ≤ CEnt diam(B) for all
B ⊆ Q.

Theorem 5.17 (LocFre General). Assume Smoothness, Kernel, Variance,
Entropy, Moment and κ > α

α−1 . Let ` := bβc. Then, for t ∈ [0, 1] and n ≥ n0,
the local polynomial Fréchet estimator m̂t of order ` fulfills,

E
[
mt,m̂t

α
]
≤
(
C1h

β + C2(nh)−
1
2
) α
α−1 ,

where C1 := cκ,αCVloCKerCSmo and C2 := cκ,αCVloCMomCEntCKer.

For α = 2, we obtain the classical error bound for local polynomial estimators with a
bias term hβ and a variance term (nh)− 1

2 . The theorem does not necessarily give bounds
for different powers α of the distance between estimator and true value, but possibly
only for one specific α, which is determined by Variance.

Smoothness and Kernel are classical conditions for local polynomial estimators
[Tsy08, Proposition 1.13]. Variance, Entropy, Moment are conditions needed to
ensure the rate of convergence for a generalized Fréchet mean, see [Sch19b, Theorem 1].
For a discussion see Remark 5.3 in section 5.2.

Remark 5.18.

• Smoothness:
In this theorem, we have to insert a loose bound E[L(mt, m̂t)κ] 1

κ ≤ CSmo <∞
independent of n and h to obtain a bound on E

[
mt,m̂t

α
]

that vanishes for
n→∞ and h = hn chosen appropriately. In the corollaries below, we see that
this is not too difficult to fulfill.
In Euclidean spaces with c = d2, where d is the Euclidean metric, we have
E[c(Yt, q) − c(Yt, p)] = −2〈m(t), q − p〉 + ‖q‖2 − ‖p‖2 and Smoothness is
equivalent to m ∈ Σ(L, β) with L(q, p) = 2L.

• Kernel:
Kernel is fulfilled for C−1

Kmi1[− 1
2 ,

1
2 ](x) ≤ K(x) ≤ CKma1[−1,1](x), appropri-

ately chosen hn, and n large enough, see [Tsy08, Lemma 1.5].
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5.5.3 Corollaries
Next, we apply Theorem 5.17 to the metric setting of section 5.1.1. Smoothness can
be replaced by SmoothDensity, see Lemma 5.41 in the appendix, and BiasMoment.
To fulfill BiasMoment we can assume BomBound.

Assumptions.

• SmoothDensity: Let µ be a probability measure on Q with
∫
y,o2µ(dy) <∞

for an arbitrary o ∈ Q. Let β > 0 with ` = bβc. For µ-almost all y ∈ Q,
there is L(y) ≥ 0 such that t 7→ ρ(y|t) ∈ Σ(β, L(y)). Furthermore there is a
constant CSmD > 0,

∫
L(y)2dµ(y) ≤ C2

SmD.

• BiasMoment: Define H(q, p) =
(∫

(y,q + y,p)2 µ(dy)
) 1

2 . There is CBom ∈

[1,∞) such that E[H(m̂t,mt)κ] 1
κ ≤ CBom for all t ∈ [0, 1].

• BomBound: There are CInt, CLen ∈ [1,∞) such that
∫
y,mt

2µ(dy) ≤ C2
Int and

a(mt,ms) ≤ CLen for all s, t ∈ [0, 1].

Moment is trivial in bounded spaces.

Corollary 5.19 (LocFre Bounded). Let (Q, d) be a bounded metric space. Let
β > 0 with ` := bβc. Let m̂t be the local polynomial estimator of order `. Assume
Variance, Entropy, SmoothDensity, Kernel. Set h := n

− 1
2β+1 . Then

E[mt,m̂t
2] ≤ Cn−

2β
2β+1

for all t ∈ [0, 1], where C := c (diam(Q, d)CVloCKerCSmDCEnt)2.

Variance is always true in Hadamard spaces.

Corollary 5.20 (LocFre Hadamard). Let (Q, d) be a Hadamard space. Let β > 0
with ` := bβc. Let m̂t be the local polynomial estimator of order `. Let κ > 2.
Assume Moment, Entropy, SmoothDensity, BomBound, Kernel. Set h :=
n
− 1

2β+1 . Then
E[mt,m̂t

2] ≤ Cn−
2β

2β+1

for all t ∈ [0, 1], where C := cκ
(
C2

KerCLenCMomCIntCSmDCEnt
)2.

Remark 5.21.

• BomBound:
We require the length of [0, 1]→ Q, t 7→ mt to be finite, measured with respect
the measure µ and with respect to the pseudo metric a. This is a mild condition
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and should be fulfilled for smooth functions m. See Proposition 5.43 (appendix
5.A.4.3) for a result on Lipschitz continuity of the regression function.

• BiasMoment:
This is a technical condition that we also use as an intermediate step to prove
corollaries in metric spaces for LocFre. It is fulfilled in bounded metric spaces
and can also be replaced by BomBound.

• SmoothDensity:
If the noise distribution has a µ-density and this density is smooth enough,
SmoothDensity can be interpreted as a smoothness condition on t 7→ mt:
In a Euclidean space Q = Rk with a location model ρ(y|t) = ρ((y −m(t))2),
we have ∂tρ(y|t) = −2(y − t)ṁ(t)ρ′(y|t). Informally, the density should be as
least as smooth as the regression function, to view this condition as a typical
smoothness assumption on the regression function. It is likely an artifact of
the proof that we require the error density to be smooth.

5.6 Trigonometric Geodesic Regression
We apply the principles of geodesic regression to transfer the Euclidean trigonometric
series estimator to a new method, TriGeo, for nonstandard spaces.

Let (ψ`)`∈N be the trigonometric basis of L2[0, 1], i.e., for x ∈ [0, 1], k ∈ N,

ψ1(x) := 1 , ψ2k(x) :=
√

2 cos(2πkx) , ψ2k+1(x) :=
√

2 sin(2πkx) .

The trigonometric basis is orthonormal, i.e.,∫ 1

0
ψk(x)ψ`(x)dx = δl`

for all `, k ∈ N, where δk` is the Kronecker delta.
In the metric space setting of section 5.1.1 with the assumption of the existence of an

exponential map Exp(p, ·), the resulting method is TriGeo:

(p̂, v̂1, . . . , v̂N ) ∈ arg min
p∈Q,v`∈TpQ

d

(
Exp

(
p,

N∑
`=1

ψ`(xi)v`
)
, yi

)2

,

m̂(t) := Exp
(
p̂,

N∑
`=1

ψ`(t)v̂`
)
.

For trigonometric series estimators, one usually bounds the mean integrated squared
error (MISE), as this makes it possible to utilize the orthogonality property of (ψ`)`∈N
in L2[0, 1]. To be able to use the same properties in the metric space setting, one could
take the integrated mean squared Euclidean error in the tangent space ToQ, where, e.g.,
o = m(0). Then the problem reduces to the standard Euclidean trigonometric estimator
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which is discussed, e.g., in [Tsy08, chapter 1.7]. If we assume that an inverse Log(o, ·) of
Exp(o, ·) exists, a smoothness condition should be applied to t 7→ Log(o,m(t)).

The condition of centered / zero-mean noise of the Euclidean model for trigonomet-
ric estimation translates to E[Logo(Yt)] = Logo(mt). Unfortunately, this seems to be
far from the condition of centered noise in our metric setting, as it introduces dis-
tortions which highly depend on o = m(0). Compare this to our usual assumption,
mt = arg minq∈Q E[d(Yt, q)2], which implies (under mild assumptions) E[Logmt(Yt)] =
Logmt(mt) = 0, cf [Kar77, Theorem 1.2].

We were not able to show a theorem similar to Theorem 5.23 or Theorem 5.12 using our
usual settings. Of course, this does not mean that the estimator above will necessarily
perform badly.

The estimator was implemented for simulations (section 5.8). This revealed another
drawback: High-dimensional nonconvex optimization is required so that TriGeo is –
by far – the slowest of all tested methods. The MISE values seem to be worse than
for the other estimators on average. It is not clear, whether this is due to theoretical
disadvantages or a worse outcome of the general purpose optimizer used for finding
(p̂, v̂1, . . . , v̂N ).

5.7 Trigonometric Fréchet Regression
Using the Fréchet approach, we create a new trigonometric estimator, TriFre.

Confer section 5.6 for the definition of the trigonometric basis of L2[0, 1]. In every
setting, we will require a smoothness condition. The appropriate smoothness class con-
nected to the trigonometric basis (ψk)k∈N is the periodic Sobolev class W per(β, L), see
[Tsy08, Definition 1.11]. A function f(x) = ∑∞

k=1 θkψk(x) belongs to W per(β, L) if and
only if the sequence θ = (θk)k∈N, θk =

∫ 1
0 f(x)ψk(x)dx, of the Fourier coefficients of f

belongs to the ellipsoid Θ(β, L), which is defined as

Θ(β, L) :=
{
θ ∈ `2 :

∞∑
k=1

θ2
kw
−2
k ≤ L

2
}
,

where w2k+1 := w2k := (2k)−β, see [Tsy08, Proposition 1.14].

5.7.1 Hypersphere
We use the hypersphere setting of section 5.1.1. For N ∈ N, define the vector ΨN :=
(ψk)k=1,...,N : [0, 1] → RN . For t ∈ [0, 1], q ∈ Sk set F̂t(q) := ΨN (t)>1

n

∑n
i=1 ΨN (xi)yi,q2.

The trigonometric Fréchet estimator on the hypersphere is m̂t ∈ arg minq∈Sk F̂t(q).
To be able to estimate m, we require a smoothness condition: Let µ be a the measure of

the uniform distribution on Sk. Assume that for all t ∈ [0, 1], the random variable Yt has a
density y 7→ ρ(y|t) with respect to µ. Let β ≥ 1. Assume, there is CSmD ≥ 1, such that for
µ-almost all y ∈ Sk, t 7→ ρ(y|t) ∈ W per(β,CSmD) (SmoothDensity). Furthermore, we
again assume Variance: There is CVlo ∈ [1,∞) such that C−1

Vlod(q,mt)2 ≤ E[d(Yt, q)2 −
d(Yt,mt)2] for all q ∈ Sk and t ∈ [0, 1].

155



Corollary 5.22 (TriFre Hypersphere). Assume Variance and SmoothDensity.
Set N := n

1
2β+1 . Then

E
[∫ 1

0
mt,m̂t

2dt
]
≤ Cn−

2β
2β+1

for all n ∈ N, where C := cβC
2
VloC

2
SmD.

5.7.2 General
We will only show a theorem in the metric setting of 5.1.1. For N ∈ N with ΨN =
(ψk)k=1,...,N , define F̂t(q) := ΨN (t)>1

n

∑n
i=1 ΨN (xi)yi,q2. Let m̂t ∈ arg minq∈Q F̂t(q).

Essentially, we estimate t 7→ Ft(q) for every fixed q ∈ Q by a trigonometric series
estimator described in [Tsy08, section 1.7]. Instead of the unknown function Ft(q), we
then minimize F̂t(q) with respect to q. Out goal is to bound the mean integrated squared
error E[

∫ 1
0 mt,m̂t

2dt].
For y, z ∈ Q define

a(y, z) := sup
q,p∈Q,q 6=p

y,q2 − y,p2 − z,q2 + z,p2

q,p
.

Assumptions.

• SmoothDensity: Let µ be a probability measure on Q with
∫
y,o2µ(dy) <∞

for an arbitrary o ∈ Q. For all t ∈ [0, 1], the random variable Yt has a density
y 7→ ρ(y|t) with respect to µ. Let β ≥ 1. For µ-almost all y ∈ Y, there
is L(y) ≥ 0 such that t 7→ ρ(y|t) ∈ W per(β, L(y)). Furthermore, there is
CSmD ∈ [1,∞) such that

∫
L(y)2dµ(y) ≤ C2

SmD.

• Variance: There is CVlo ∈ [1,∞) such that C−1
Vlo q,mt

2 ≤ E[Yt,q
2 − Yt,mt

2]
for all q ∈ Q and t ∈ [0, 1].

• Moment: Let κ > 2. There is CMom ∈ [1,∞) such that E[a(Yt,mt)κ] 1
κ ≤

CMom for all t ∈ [0, 1].

• BiasMoment: Define H(q, p) =
(∫

(y,q + y,p)2 µ(dy)
) 1

2 . There is CBom ∈

[1,∞) such that E[H(m̂t,mt)κ] 1
κ ≤ CBom for all t ∈ [0, 1].

• Entropy: There is CEnt ∈ [1,∞) such that γ2(B, d) ≤ CEnt diam(B) for all
B ⊆ Q.
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Theorem 5.23 (TriFre General). Assume Variance, Moment, BiasMoment,
Entropy, SmoothDensity. Then

E
[∫ 1

0
mt,m̂t

2dt
]
≤ C1

(
N−2β +Nn1−2β

)
+ C2

N

n
,

where C1 := cκ,βC
2
VloC

2
SmDC

2
Bom and C2 := cκ,βC

2
VloC

2
MomC

2
Ent.

We obtain a bound with the same rates as in the Euclidean setting, which lead to the
classical nonparametric rate of convergence, see corollaries below.

All condition have previously been discussed, see Remark 5.3 and Remark 5.21.

5.7.3 Corollaries

In bounded spaces Moment and BiasMoment are trivial.

Corollary 5.24 (TriFre Bounded). Let (Q, d) be a metric space with diamQ <∞.
Assume Variance, Entropy, SmoothDensity. Set N := n

1
2β+1 . Then

E
[∫ 1

0
mt,m̂t

2dt
]
≤ Cn−

2β
2β+1 ,

where C := cβC
2
VloC

2
SmDC

2
Ent diam(Q)2.

In Hadamard spaces, a(y, z) ≤ 2d(y, z) because of the quadruple inequality [Stu03,
Theorem 4.9]. Furthermore, Variance is fulfilled as noted before. Lastly, we replace
BiasMoment by BomBound, which introduces an additional log(n)-factor.

Assumptions.

• BomBound: There are CInt, CLen ∈ [1,∞) such that
∫
y,mt

2µ(dy) ≤ C2
Int and

a(mt,ms) ≤ CLen for all s, t ∈ [0, 1].

Corollary 5.25 (TriFre Hadamard). Let (Q, d) be a Hadamard metric space. As-
sume Moment, BomBound, Entropy, SmoothDensity. Set N = n

1
2β+1 . Then

E
[∫ 1

0
mt,m̂t

2dt
]
≤ Cn−

2β
2β+1 log(n)2 ,

where C := cκ,βC
2
SmDC

2
MomC

2
EntC

2
LenC

2
Int.

157



5.8 Simulation
There is a total of 7 methods discussed in this chapter: LinGeo, LinFre, LinCos, LocGeo,
LocFre, TriGeo, TriFre. To illustrate and compare these methods on the sphere, the
R-package spheregr was developed. All code used for this paper, including all scripts
which create the plots and run and evaluate the experiments shown in this section, are
freely available at https://github.com/ChristofSch/spheregr.

Each method requires numerical optimization. We use R’s general purpose optimizers
stats::optim(method = "L-BFGS-B") and stats::optimize(), both without explicit
implementation of derivatives, but with several starting points. The implementations
could potentially be improved by using the algorithm presented in [EHW19]. For alter-
native implementation of geodesic regression, see [SO20].

The parametric methods are much faster than the nonparametric ones and Fréchet
methods are faster than geodesic methods, as the optimization problem for geodesics is
of higher dimension. We use leave-one-out cross-validation to estimate the hyperparam-
eters (h for LocGeo and LocFre, N for TriFre). For TriGeo it did not seem feasible to
do many repetitions of the experiments with cross-validation in each run. Instead we
set N = 3 for this method, which seems to be a good choice in many runs. For LocGeo
and LocFre, we use the Epanechnikov-kernel.

5.8.1 Model and Contracted Uniform Distribution

Let S2 = {x ∈ R3 : |x| = 1} be the sphere with radius 1 and intrinsic metric d(q, p) =
arccos(q>p). For t ∈ [0, 1], let Yt be a S2-valued random variable. Let the regression
function m : [0, 1]→ S2 be a minimizer mt ∈ arg minq∈S2 E[Yt,q

2]. Let xi := i−1
n−1 and let

(yi)i=1,...,n be independent random variables with values in S2 such that yi has the same
distribution as Yxi .

As distribution of Yt, we choose the contracted uniform distribution CntrUnif(mt, a)
with a ∈ (0, 1), which we define next. The contracted uniform distribution is obtained
from the uniform distribution on the sphere by moving all points towards a center point
along the connecting geodesic by a given fraction of the total distance.

Definition 5.26. Let a ∈ [0, 1]. Let (Θ,Φ) be random angles with values in [0, π]×
[0, 2π) that form a uniform distribution on the sphere, i.e., they are independent,
Θ has Lebesgue density 1

2 sin(x)1[0,π](x), and Φ is uniformly distributed on [0, 2π).
Let

Za :=

sin(aΘ) cos(Φ)
sin(aΘ) sin(Φ)

cos(aΘ)

 .

Let m ∈ S2. Let Rm ∈ O(3) ⊆ R3×3 be any orthogonal matrix that fulfills
m = Rme3, where e3

> := (0 0 1). Then the contracted uniform distribution
CntrUnif(m, a) at m with contraction parameter a is defined as the distribution of
RmZa.
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The matrixRm in the definition above is not unique, but the symmetry of the distribution
of Za ensures that the contracted uniform distribution is well-defined.

Two important properties are implied by the following proposition: For a ∈ [0, 1),
m ∈ S2 is the unique Fréchet mean of CntrUnif(m, a). Furthermore, Variance is fulfilled
with CVlo = (1− a)−1.

Proposition 5.27 ([Oht12, section 5]). Let (Q, d) be a proper Alexandrov space
of nonnegative curvature. Let Y1 be a random variable with values Q such that
E[d(Y, q)2] <∞ for all q ∈ Q. Let m ∈ arg minq∈Q E[Y1,q

2] be any Fréchet mean of
Y1. For a ∈ [0, 1), let Ya := γm→Y (a), where, for y ∈ Q, γm→y is a geodesic with
γm→y(0) = m, γm→y(1) = y. Then

(1− a)q,m2 ≤ E[Ya,q
2 − Ya,m

2]

for all a ∈ [0, 1].

Lastly, we calculate the variance of the contracted uniform distribution. Let m ∈ S2, a ∈
[0, 1], and Y ∼ CntrUnif(m, a). Let Za and Θ as in Definition 5.26. Then E[d(Y,m)2] =
E[d(Za, e3)2] because of symmetry. The distance does only depend on Θ and is equal to
aΘ. Thus, E[d(Y,m)2] = E[(aΘ)2] = 1

2a
2 ∫ π

0 x
2 sin(x)dx = 1

2(π2 − 4)a2.

5.8.2 Parametric Regression
We draw a random geodesic m with fixed speed. Then we create independent samples
yi ∼ CntrUnif(mxi , a) to obtain our data (xi, yi)i=1,...,n. Then we calculate the three
different parametric regression estimators LinGeo, LinFre, and LinCos.

We will describe points q ∈ S2 = {x ∈ R3 | |x| = 1} via two angles (ϑq, ϕq) ∈
[0, π] × [0, 2π) such that q = (sin(ϑq) cos(ϕq), sin(ϑq) sin(ϕq), cos(ϑq)). We first show
some illustrating plots Figure 5.1 and Figure 5.2. We want to depict functions of the form
[0, 1] → [0, π] × [0, 2π), t 7→ (ϑmt , ϕmt). The graph of such a function is 3-dimensional
and hard to understand on 2D-paper. Creating two plots, one for [0, 1]→ [0, π], t 7→ ϑmt
and another for [0, 1] → [0, 2π), t 7→ ϕmt , is also difficult to interpret, as one has to al-
ways take both graphs into account at the same time. Instead we show the image of the
functions {(ϑmt , ϕmt) : t ∈ [0, 1]} ⊆ [0, π] × [0, 2π) and encode the dependence on t via
color.

The rectangle of the two angles (ϑ, ϕ) ∈ [0, π]×[0, 2π) parameterizing the sphere is the
Mercator projection. This projection (as any projection of the sphere to the Euclidean
plane) distorts the surface of the sphere. This is made visible by the thin gray lines in the
plots, which are geodesics and replace the usual grid lines. The plots show the image of
t 7→ mt (line with black border) and the different estimators t 7→ m̂t (lines with colored
border). The covariate t is represented by the rainbow color inside each line. To visually
compare the deviations of m̂t from mt, one has to compare the positions on the lines
with the same inner color. But note that distances are distorted: Distances close to the
equator (ϑ = 1

2π) are larger than they appear and smaller at the poles (ϑ ∈ {0, π}). The
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Figure 5.1: For a true geodesic of length 3, we sample n ∈ {10, 90} observations with
contracted uniform noise of standard deviation sd ∈ {1

3 , 1}. Then we apply
LinGeo, LinFre, and LinCos. (Part 1.)



5.8 Simulation
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Figure 5.1: (Part 2.)
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Figure 5.2: For a true geodesic of length 6, we sample n ∈ {10, 90} observations with
contracted uniform noise of standard deviation sd ∈ {1

3 , 1}. Then we apply
LinGeo, LinFre, and LinCos. (Part 1.)



5.8 Simulation
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Figure 5.2: (Part 2.)
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Setting MISE
n sd speed linfre lingeo lincos

10 0.1 1.00000 0.00185 0.00232 0.00186
100 0.1 1.00000 0.00020 0.00020 0.00020
10 1.0 1.00000 0.26237 0.46893 0.48505

100 1.0 1.00000 0.03029 0.03111 0.03765
10 0.1 3.14159 0.00267 0.00223 0.00211

100 0.1 3.14159 0.00047 0.00019 0.00021
10 1.0 3.14159 0.42652 0.51267 0.48289

100 1.0 3.14159 0.06469 0.03267 0.04360
10 0.1 8.00000 2.21166 0.00231 0.00220

100 0.1 8.00000 2.05709 0.00021 0.00023
10 1.0 8.00000 2.91093 0.48702 0.47977

100 1.0 8.00000 2.35239 0.03090 0.04342

1 2 5 10 20

error relative to minimal error

Table 5.1: Approximated MISE values for parametric regression methods. The colors
give a visual indication of the MISE value of the given methods divided by
the best MISE value in the row.

observations yi are also color-coded to identify which xi they belong to. Furthermore,
thin colored lines are drawn between yi and m(xi).

A geodesic of length 3 (Figure 5.1) is estimated similarly well by all estimators. This
is true in different settings. Compare this with the estimation of a length 6 geodesic
in Figure 5.2. Only LinCos and LinGeo perform well but not LinFre. This strongly
suggests that LinFre is not consistent if non-Euclidean properties of the descriptor
space play a significant role. Note that the errors in the settings (n = 10, sd = 1

3) and
(n = 90, sd = 1) are similar and sd2/n is the same in both settings.

Next we repeat this experiment 1000 times for 12 different settings. The setting spec-
ifies the number of samples drawn n, the noise standard deviation sd =

√
1
2(π2 − 4) a,

and the speed of the true geodesic. For each run we calculate the integrated squared
error, ISE,

∫ 1
0 d(m̂t,mt)2dt. Then we take the mean of those 1000 ISE values to approx-

imate the mean integrated squared error, MISE. Table 5.1 shows the results. We can
see that for geodesics with small speed, all three methods perform well. For high speed
geodesics LinFre does not give meaningful results. LinGeo is by far the slowest method
in our implementation, as it has the most complex optimization problem to solve.
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5.8.3 Nonparametric Regression
Next, we investigate the nonparametric methods LocGeo, LocFre, TriGeo, TriFre. We
test two different regression functions t 7→ mt. The first one, named simple has angles
t 7→ (1

4π,
1
2 + 2πt), see Figure 5.3. This seems to be a straight line in the Mercator

projection but is a curved function on the sphere and cannot be estimated well by
the parametric methods of the previous subsection. This simple curve is periodic. The
second curve is described by t 7→ (1

8π+ 3
4πt,

1
2 +3πt). Again this curve is not geodesic. It

spirals around the sphere, see Figure 5.4, and is not periodic. To estimate nonperiodic
functions with TriGeo and TriFre, which require periodicity, we copy the data and
append it in reverse order to estimate the periodic function

t 7→
{
m2t if t < 1

2 ,

m2−2t if t ≥ 1
2 .

This may lead to boundary effects.
On a broad scale, all estimators seem to perform similarly, except for a worse outcome

for TriGeo on the spiral. In the setting (n = 10, sd = 1) the estimators are not able to
come close to the true curve. Compare this to the same setting in the parametric cases,
where performance of estimators is still good enough to potentially be useful.

As with the parametric methods, we approximate the MISE values in different settings.
The simulations are repeated 500 times. Only the two curves simple and spiral described
above are used. The results are presented in Table 5.2. The more reliable analysis of the
approximated MISE-values confirms that all estimators behave similar, except TriGeo,
which has some bad outcomes. This may have several reasons. We were not able to
show an error bound for this method and argued that it may be sub-optimal, i.e., it
may be inherently worse than the other methods. We do not use cross-validation for
TriGeo, as we do for the other methods, but fix N = 3. Thus, the comparison might be
unfair, because the hyper-parameters are not tuned equally. Lastly, in TriGeo, we have
to numerically solve an 8-dimensional nonconvex optimization problem (2 dimensions for
each of p̂, v̂1, v̂2, v̂3). There are 4 dimensions for LocGeo and 2 for the Fréchet methods.
Our program might return values farther away from the optimum in those methods with
higher dimensional optimization problems.
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Figure 5.3: For the simple curve, we sample n ∈ {10, 90} observations with contracted
uniform noise of standard deviation sd ∈ {1

3 , 1}. Then we apply LocGeo,
LocFre, TriGeo, TriFre. (Part 1.)



5.8 Simulation
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Figure 5.3: (Part 2.)
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Figure 5.4: For the spiral, we sample n ∈ {10, 90} observations with contracted uniform
noise of standard deviation sd ∈ {1

3 , 1}. Then we apply LocGeo, LocFre,
TriGeo, TriFre. (Part 1.)



5.8 Simulation
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Figure 5.4: (Part 2.)
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5 Regression in Non-Euclidean Spaces

Setting MISE
n σ curve LocFre TriFre LocGeo TriGeo

20 0.25 simple 0.02070 0.02410 0.02595 0.01397
20 0.25 spiral 0.02899 0.05902 0.03268 0.38623
80 0.25 simple 0.00731 0.00662 0.00851 0.00361
80 0.25 spiral 0.00900 0.01534 0.01008 0.37191
20 1.00 simple 0.34890 0.39052 0.36356 0.86604
20 1.00 spiral 0.56768 0.52354 0.54786 0.91824
80 1.00 simple 0.12056 0.09350 0.11026 0.09228
80 1.00 spiral 0.15185 0.14662 0.14677 0.47189

1 2 5 10 20

error relative to minimal error

Table 5.2: Approximated MISE values for nonparametric regression methods. The colors
give a visual indication of the MISE value of the given methods divided by
the best MISE value in the row.
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Appendix of Chapter 5

5.A Proofs

5.A.1 Section 5.2: LinGeo

5.A.1.1 Theorem

We prove Theorem 5.2. We first apply Variance to relate the difference between the
objective functions to the loss between their minimizers. Then chaining is used to bound
the objective functions and a peeling device leads to tail bounds on the loss. Lastly, we
integrate the tails.

Define the objective functions

Fx(θ) := 1
n

n∑
i=1

E[c(Yxi , g(xi, θ))] , Fx(θ1, θ2) := Fx(θ1)− Fx(θ2) ,

F̂x(θ) := 1
n

n∑
i=1

c(yi, g(xi, θ)) , F̂x(θ1, θ2) := F̂x(θ1)− F̂x(θ2) .

Variance and the minimizing property of θ̂ yield

C−1
Vlo

1
n

n∑
i=1

l(mxi , m̂xi) ≤ Fx(θ̂, θ∗) ≤ Fx(θ̂, θ∗)− F̂x(θ̂, θ∗) .

Define
∆x(δ) := sup

θ∈Bx(θ∗,l,δ)

(
Fx(θ̂, θ∗)− F̂x(θ̂, θ∗)

)
and

Zi(θ) := 1
n

(E[cxi(Yxi , θ)− cxi(Yxi , θ∗)]− cxi(yi, θ) + cxi(yi, θ∗)) .

Then Z1, . . . , Zn are independent and centered processes with Zi(θ∗) = 0. They are also
integrable due to Moment. By the definition of ax, it holds

n
(
Zi(θ1)− Zi(θ2)− Z ′i(θ1) + Z ′i(θ2)

)
≤ b(θ1, θ2)axi(yi, y′i) .

Thus, the chaining result of Theorem 5.56 (appendix 5.B) yields

E[∆x(δ)κ] ≤ cκ

E
( 1

n

n∑
i=1

axi(yi, y′i)2
)κ

2
 1
κ

γ2(Bx(θ∗, l, δ), b)n−
1
2


κ

.
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By Entropy γ2(Bx(θ∗, l, δ), b) ≤ CEntδ
ξ for δ > Tn. As κ ≥ 2, by Moment,

E

( 1
n

n∑
i=1

axi(yi, y′i)2
)κ

2
 1
κ

≤
(

1
n

n∑
i=1

E
[
axi(yi, y′i)κ

]) 1
κ

≤ CMom .

Thus, for δ > Tn,
E[∆x(δ)κ] ≤ cκ

(
n−

1
2CEntCMomδ

ξ
)κ

.

For Tn < a < b <∞, using Markov’s inequality, we obtain

P
(
C−1

Vlo
1
n

n∑
i=1

l(mxi , m̂xi) ∈ [a, b]
)
≤ P(a ≤ ∆x(b))

≤ a−κE[∆x(b)κ]

≤ cκ

(
n−

1
2CEntCMomb

ξ

a

)κ
.

We use this bound in the peeling device, to obtain a tail bound for t ≥ Tn:

P
(
C−1

Vlo
1
n

n∑
i=1

l(mxi , m̂xi) > t

)
≤
∞∑
k=0

P
(
C−1

Vlo
1
n

n∑
i=1

l(mxi , m̂xi) ∈ [2kt, 2k+1t]
)

≤ 2κcκ
∞∑
k=0

(
n−

1
2CEntCMomt

ξ2kξ
t2k

)κ

= 2κcκ
(
n−

1
2CEntCMom

)κ
tκ(ξ−1)

∞∑
k=0

(
2κ(ξ−1)

)k
= cκ,ξ

(
n−

1
2CEntCMom

)κ
tκ(ξ−1)

with cκ,ξ := 2κcκ
1−2κ(ξ−1) . To obtain the desired bound on the expectation, we integrate the

tail probability

E
[
C−1

Vlo
1
n

n∑
i=1

l(mxi , m̂xi)
]
≤ Tn +

∫ ∞
Tn

P
(
C−1

Vlo
1
n

n∑
i=1

l(mxi , m̂xi) > t

)
dt

≤ Tn +
∫ ∞

0
min

(
1, cκ,ξ

(
n−

1
2CEntCMom

)κ
tκ(ξ−1)

)
dt .

It holds ∫ ∞
0

min(1, bt−a)dt = a

a− 1b
1
a

for all a > 1, b > 0. Now set a = κ(1− ξ) and b = cκ,ξ
(
n−

1
2CEntCMom

)κ
. We obtain

C−1
VloE

[
1
n

n∑
i=1

l(mxi , m̂xi)
]
≤ Tn + κ(1− ξ)

κ(1− ξ)− 1
(
cκ,ξ

(
n−

1
2CEntCMom

)κ) 1
κ(1−ξ)

= Tn + c′κ,ξ

(
n−

1
2CEntCMom

) 1
1−ξ

with c′κ,ξ = κ(1−ξ)
κ(1−ξ)−1c

1
κ(1−ξ)
κ,ξ .
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5.A.1.2 Corollaries

Proof of Corollary 5.4. In Hadamard spaces, the variance inequality, i.e., d(q,m)2 ≤
E[d(Y, q)2 − d(Y,m)2] for all q ∈ Q and m = arg minq∈Q E[d(Y, q)2], holds for all dis-
tributions of Y with E[d(Y, q)2] < ∞, [Stu03, Theorem 4.9]. This shows Variance.
Furthermore, the quadruple inequality

d(y, q)2 − d(ỹ, q)2 − d(y, q̃)2 + d(ỹ, q̃)2 ≤ 2d(y, ỹ)d(q, q̃)

holds for all q, q̃, y, ỹ ∈ Q, [Stu03, Theorem 4.9]. Thus, with MetricUp we get

♦x(y, ỹ, θ, θ̃) ≤ 2d(y, ỹ)d(g(x, θ), g(x, θ̃)) ≤ 2CMupd(y, ỹ)
∣∣∣θ − θ̃∣∣∣ .

Hence, we set ax(y, ỹ) := 2d(y, ỹ)CMup and b := | · − · | when applying Theorem 5.2.
Next, to check Entropy, use MetricLo

1
n

n∑
i=1

l(g(xi, θ), g(xi, θ∗)) = 1
n

n∑
i=1

d(g(xi, θ), g(xi, θ∗))2 ≥ C−1
Mlo

∣∣∣θ − θ̃∣∣∣2 − Tn ,
where Tn := CResn

−1. Thus, for δ > Tn,

Bx(θ∗, l, δ) ⊆
{
θ ∈ Θ: C−1

Mlo |θ − θ
∗|2 ≤ 2δ

}
=
{
θ ∈ Θ: |θ − θ∗| ≤ (2CMloδ)

1
2
}
.

From this, together with the bound on γ2 for Euclidean spaces Lemma 5.57 (appendix
5.B), we obtain

γ2(Bx(θ∗, l, δ), b) ≤ γ2
({
θ ∈ Θ: |θ − θ∗| ≤ (2CMloδ)

1
2
}
, b
)

≤ c (dΘCMloδ)
1
2

= CEntδ
1
2

with CEnt := c (dΘCMlo)
1
2 .

Proof of Corollary 5.5. We want to apply Theorem 5.2. Hence, we have to check its
assumptions. Variance is a condition of the corollary. In order show Moment, we
note

d(y, g(x, θ))2 − d(y, g(x, θ̃))2 ≤ 2 diam(Q)d(g(x, θ), g(x, θ̃)) ≤ 2 diam(Q)CMup
∣∣∣θ − θ̃∣∣∣

using the triangle inequality and MetricUp. Thus,

♦x(y, ỹ, θ, θ̃) ≤ 4 diam(Q)CMup
∣∣∣θ − θ̃∣∣∣ .

We can set ax(y, ỹ) := 4 diam(Q)CMup and b := | · − · | when applying Theorem 5.2. The
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moment condition is trivial, as ax is a finite constant. As before

γ2(Bx(θ∗, l, δ), b) ≤ CEntδ
1
2

with CEnt := c (dΘCMlo)
1
2 .

Next, we want to apply Corollary 5.5 to show Corollary 5.1. To do this, we need to show
MetricUp and MetricLo translated to the spherical setting:

• MetricUp:
There is CMup ∈ [1,∞) such that d(Exp(q, xv),Exp(p, xu)) ≤ CMup (|p− q|+ |u− v|)
for all x ∈ [−1, 1], (q, u), (p, v) ∈ TSk.

• MetricLo:
There are Tn ≥ 0 and CMlo ∈ [1,∞) such that 1

n

∑n
i=1 d(Exp(q, xiv),Exp(p, xiu))2 ≥

C−1
Mlo

(
|p− q|2 + |u− v|2

)
− CResn

−1.

The following lemma shows MetricUp with CMup := 4π. This constant may not be
sharp.

Lemma 5.28. Let (p, u), (q, v) ∈ TSk. Then

d(Exp(q, v),Exp(p, u)) ≤ π

2 |q − p|+ 2π |v − u| .

Proof. We can bound the intrinsic metric on the sphere by the extrinsic one,

d(Exp(q, v),Exp(p, u)) ≤ π

2 |Exp(q, v)− Exp(p, u)|

≤ π

2

(
|cos(|v|)q − cos(|u|)p|+

∣∣∣∣sin(|v|)
|v|

v − sin(|u|)
|u|

u

∣∣∣∣) .

For the cos-terms, it holds

|cos(|v|)q − cos(|u|)p| ≤ |cos(|v|)| |q − p|+ |p| |cos(|v|)− cos(|u|)|
≤ |q − p|+ ||v| − |u|| .

For the sin-terms, let J(x) be the Jacobi matrix of the function Rk → Rk, x 7→ sin(|x|)
|x| x.

Then ∣∣∣∣sin(|v|)
|v|

v − sin(|u|)
|u|

u

∣∣∣∣ ≤ sup
x∈Rk

‖J(x)‖op |u− v| .

As

J(x) =
(

cos(|x|)− sin(|x|)
|x|

)
|x|−2 xx>+ sin(|x|)

|x|
Ik ,
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it holds

‖J(x)‖op ≤
(
|cos(|x|)|+

∣∣∣∣sin(|x|)
|x|

∣∣∣∣) ‖ |x|−2 xx>‖op +
∣∣∣∣sin(|x|)
|x|

∣∣∣∣ ‖Ik‖op ≤ 3 .

Thus, d(Exp(q, v),Exp(p, u)) ≤ π
2 (|q − p|+ ||v| − |u||+ 3 |u− v|).

For MetricLo we prove following lemma.

Lemma 5.29. Let (p, u), (q, v) ∈ TSk with |u| , |v| ≤ π
2 . Then∫ 1

−1
dSk(Exp(p, xu),Exp(q, xv))2dx ≥ 2

π
|p− q|2 + 8

π2 |v − u|
2 .

Proof. First we lower bound the intrinsic distance dSk by the Euclidean one and use the
explicit representation of the Exp-function,

dSk(Exp(p, xu),Exp(q, xv))2 ≥
∣∣∣∣cos(x |u|)p+ sin(x |u|) u

|u|
− cos(x |v|)q − sin(x |v|) v

|v|

∣∣∣∣2 .
When integrating after calculating the squared norm, all summands with a cos() sin()-
factor disappear, because of symmetry. Thus, we obtain∫ 1

−1
dSk(Exp(p, xu),Exp(q, xv))2dx

≥
∫ 1

−1
cos(x |u|)2p>p− 2 cos(x |u|) cos(x |v|)p>q + cos(x |v|)2q>q dx

+
∫ 1

−1
sin(x |u|)2 u

>u

|u|2
− 2 sin(x |u|) sin(x |v|) u>v

|u| |u|
+ sin(x |v|)2 v

>v

|v|2
dx .

As |p| = |q| = 1, cos(x)2 + sin(x)2 = 1, 2 cos(α) cos(β) = cos(α − β) + cos(α + β), and
2 sin(α) sin(β) = cos(α− β)− cos(α+ β), the right hand side reduces to∫ 1

−1
2− (cos(xa) + cos(xb)) p>q − (cos(xa)− cos(xb)) z dx ,

where we set a := |u| − |v|, b := |u|+ |v|, and z := u>v
|u||v| . Integrating yields

4− 2
(sin(a)

a
+ sin(b)

b

)
q>p− 2

(sin(a)
a

+ sin(b)
b

)
z .
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As
(

sin(a)
a + sin(b)

b

)
≥ 2

π for |v| , |u| ≤ π
2 and as 1

2 |q − p|
2 = (1− q>p), we have shown

∫ 1

−1
dSk(Exp(p, xu),Exp(q, xv))2dx

≥ 2
π
|p− q|2 +

(
4− 2

(sin(a)
a

+ sin(b)
b

)
− 2

(sin(a)
a

+ sin(b)
b

)
z

)
.

To complete the proof, we will show f(a, b, z) ≥ 0 for all a ∈ [−π
2 ,

π
2 ], b ∈ [0, π], and

z ∈ [−1, 1], where

f(a, b, z) := 4− 2
(sin(a)

a
+ sin(b)

b

)
− 2

(sin(a)
a

+ sin(b)
b

)
z − c

(
a2 + b2 + (a2 − b2)z

)
with c = 4

π2 . This suffices as a2 + b2 + (a2 − b2)z = 2 |v − u|2. As f is linear in z, it is
minimized either at z = 1 or at z = −1. It holds

f(a, b, 1) = 4− 4sin(a)
a
− ca2 , f(a, b,−1) = 4− 4sin(b)

b
− cb2 .

Consider the function

g(x) :=
1− sin(x)

x

x2 with derivative g′(x) = cos(x)− 2
x3 .

It is symmetric at 0 and decreasing for positive x. Thus, it attains its minimum on
[−π

2 , π] at x = π. For c := 4
π2 = 4g(π), we hereby have shown f(x, y, z) ≥ 0 and thus

have proven the lemma.

Proof of Corollary 5.1. We want to apply Corollary 5.5 and have to check its condi-
tions. Variance is the assumption stated in Corollary 5.1. MetricUp is implied by
Lemma 5.28. To show MetricLo, let

Tn :=
∣∣∣∣∣12
∫ 1

−1
d(Exp(q, xv),Exp(p, xu))2dx− 1

n

n∑
i=1

d(Exp(q, xiv),Exp(p, xiu))2
∣∣∣∣∣ .

With the use of the Lemma 5.29 above on (q, v), (p, u) ∈ TSk, |v| , |u| ≤ Λ, we obtain

1
n

n∑
i=1

d(Exp(q, xiv),Exp(p, xiu))2 ≥ 1
2Λ

∫ 1

−1
d(Exp(q, xv/Λ),Exp(p, xu/Λ))2dx− Tn

≥ CMlo
(
|q − p|2 + |v − u|2

)
− Tn ,
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where CMlo := 1
Λπ . Finally, for an L-Lipschitz continuous function f : [−1, 1]→ R,∣∣∣∣∣

∫ 1

−1
f(x)dx− 2

n

n∑
i=1

f(xi)
∣∣∣∣∣ ≤ 2L

n
.

In the worst case x 7→ Exp(p, xv/Λ) and x 7→ Exp(q, xu/Λ) move in opposite directions
and the distance changes with a rate of (|u|+ |v|) /Λ. Thus, we obtain

Tn ≤
2 (|u|+ |v|)2

nΛ2 ≤ 8π2

n
= CResn

−1 ,

where CRes := 8π2.

5.A.2 Section 5.3: LinFre
Proof of Theorem 5.8. We show that for each pair y, z ∈ Q there is a point m ∈ Q such
that for all q ∈ Q it holds

d(m, q)2 = 1
2d(y, q)2 + 1

2d(z, q)2 − 1
4d(y, z)2 .

Then [Stu03, Definition 2.1 and Proposition 3.5 (iii)] implies that Q is a Hilbert space.
Let γt be a minimizing geodesic between y = γ−1 and z = γ1. Let m := γ0. Let q ∈ Q

be arbitrary. The strict linear Fréchet regression model implies that there are θ0, θ1 ∈ R
such that

θ0 + θ1t = E[d(Yt, q)2 − d(Yt,m)2] = d(γt, q)2 − d(γt,m)2 . (5.1)

Adding this equality with t = +1 and t = −1, we obtain

2θ0 = d(γ1, q)2 − d(γ1,m)2 + d(γ−1, q)2 − d(γ−1,m)2 = d(y, q)2 + d(z, q)2 − 1
2d(y, z)2

as d(y,m) = d(z,m) = 1
2d(y, z). Evaluating (5.1) at t = 0 yields θ0 = d(m, q)2. Together,

we arrive at the result

2d(m, q)2 = d(y, q)2 + d(z, q)2 − 1
2d(y, z)2 .

Proof of Proposition 5.9. Let (α, β) ∈ S2. For ϕ ∈ [0, 2π), let ∠(ϕ, β) ∈ [0, π] be the
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distance of the two angles on the circle. We calculate the objective function,

E[cos(d(Y, (α, β)))] = 1
2π

∫ ∫ 2π

0
sin(ϑ) sin(α) + sin(ϑ) sin(α) cos(∠(ϕ, β))dϕdν(ϑ)

=
∫ (

sin(ϑ) sin(α) + 1
π

sin(ϑ) sin(α)
∫ π

0
cos(ϕ)dϕ

)
dν(ϑ)

=
∫

sin(ϑ) sin(α)dν(ϑ)

= A sin(α) .

Thus, if A > 0, E[cos(d(Y, (α, β)))] is uniquely maximized at α = π/2, analogously for
A < 0. If A = 0, E[cos(d(Y, (α, β)))] = 0 for all (α, β) ∈ S2.

Proof of Proposition 5.10. By the law of cosines

E[cos(Yt,q)] = cos(mt,q)E[cos(Yt,mt)] + sin(mt,q)E[sin(Yt,mt) cos(∠(Yt,mt, q))] .

By Lemma 5.30 below, E[sin(Yt,mt) cos(∠(Yt,mt, q))] = 0. By the Pythagorean theorem
with ∠(mt, γsq , q) = π

2 ,

cos(mt,q) = cos(mt,γsq) cos(γsq ,q) .

By definition, cos(mt,γsq) = cos(γt0+λt,γsq) = cos(Bq + λt). It holds

cos(Bq + λt) = cos(Bq) cos(λt)− sin(Bq) sin(λt)

and, thus,
E[cos(Yt,q)] = Aq cos(Bq + λt) = aq cos(λt) + bq sin(λt) .

Lemma 5.30. Let (Q, d) be a Alexandrov space of nonpositive or nonnegative cur-
vature [BBI01, section 4]. Let be a geodesic metric space. Let f : [0,∞) → R be
a continuously differentiable function with derivative f ′. Let Y be a random vari-
able with values in Q such that E[|f(d(Y, q))|] < ∞ and E[|f ′(d(Y, q))|] < ∞ for
all q ∈ Q. Let m ∈ arg maxq∈Q E[f(d(Y, q))]. Then E[f ′(Y,m) cos(∠(Y,m, q))] = 0,
where ∠(Y,m, q) is the angle between Y , m, and q at m.

Proof. Let (γt)t∈[0,T ] be the minimizing unit-speed geodesic between γ0 = m and γT = q.
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[BBI01, Theorem 4.5.6] yields ∂td(Y, γt)|t=0 = − cos(α) where α := ∠(Y,m, q). Thus,

0 = ∂tE[f(d(Y, γt))]|t=0

= E[∂tf(d(Y, γt))]|t=0

= E[f ′(d(Y, γt))∂td(Y, γt))]|t=0

= −E[f ′(d(Y,m)) cos(α)] .

5.A.3 Section 5.4: LocGeo

5.A.3.1 Theorem

We prove Theorem 5.12. To this end, we first replace the integral over x by a sum
over xi in Lemma 5.32. Then the comparison of the estimated parameter θ̂t,h with the
best local parameter θt,h is replaced by the comparison of θ̂t,h to the true function m in
Lemma 5.34. This is necessary to apply the variance inequality, which makes it possible
to translate a bound on the objective functions to a bound on their minimizers, which
are elements of the metric space. For the remaining part, we bound a variance term via
chaining (Lemma 5.35) and a bias term using the smoothness assumption (Lemma 5.36).
These are used in Lemma 5.37, where a peeling device is applied to bound the tails of
the error distribution (and via integration also its expectation). This is supplemented
by the auxiliary lemmata Lemma 5.38 and Lemma 5.39 . But first we start out with
another auxiliary result, Lemma 5.31, which shows that a and b are semi-metrics.

A map d : Q×Q → [0,∞] is called semi-metric on Q, if d is symmetric with d(q, q) = 0
for all q ∈ Q and obeys the triangle inequality.

Lemma 5.31. The functions a and b are semi-metrics on Q and Θ, respectively.

Proof. Recall q,p = d(q, p). All properties for a are straight forward. For the triangle
inequality, as

y,q2 − y,p2 − z,q2 + z,p2

q,p
= y,q2 − y,p2 − v,q2 + v,p2

q,p
+ v,q2 − v,p2 − z,q2 + z,p2

q,p
,

we obtain

sup
q 6=p

y,q2 − y,p2 − z,q2 + z,p2

q,p

≤ sup
q 6=p

y,q2 − y,p2 − v,q2 + v,p2

q,p
+ sup

q 6=p

v,q2 − v,p2 − z,q2 + z,p2

q,p
.

For b the argument is almost identical.

Using the properties of the kernel, we bound the integrated squared error by a sum.
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Lemma 5.32. Assume Kernel and Lipschitz. Then∫ 1
2

− 1
2

d
(
g(x, θ), g(x, θ̃)

)2
dx ≤ 6CKmiCKma

(
n∑
i=1

wid
(
gi(θ), gi(θ̃)

)2
+ 2CLip

nh

)

for all θ, θ̃ ∈ Θ, h ≥ 2
n .

Proof. Kernel implies

C−1
Kmi

CKma#It,h
1[− 1

2 ,
1
2 ]

(
xi − t
h

)
≤ wi ,

where It,h := {i ∈ {1, . . . , n} : t− h ≤ xi ≤ t+ h}. We bound the difference between the
Riemann sum and its corresponding integral using Lipschitz∣∣∣∣∣∣ 1

#It,h2

∑
i∈It,h

d

(
g

(
xi − t
h

, θ

)
, g

(
xi − t
h

, θ̃

))2
−
∫ 1

2

− 1
2

d
(
g(x, θ), g(x, θ̃)

)2
dx

∣∣∣∣∣∣ ≤ CLip
#It,h2

.

Thus,

n∑
i=1

wid
(
gi(θ), gi(θ̃)

)2
≥
C−1

Kmi#It,h2
CKma#It,h

1
#It,h2

∑
i∈It,h

d

(
g

(
xi − t
h

, θ

)
, g

(
xi − t
h

, θ̃

))2

≥
C−1

Kmi#It,h2
CKma#It,h

∫ 1
2

− 1
2

d
(
g(x, θ), g(x, θ̃)

)2
dx− CLip

#It,h2

 .

As h ≥ 2
n , we obtain

n∑
i=1

wid
(
gi(θ), gi(θ̃)

)2
≥

C−1
Kmi

6CKma

(∫ 1
2

− 1
2

d
(
g(x, θ), g(x, θ̃)

)2
dx− 2CLip

nh

)
.

The weights wi have following properties, see [Tsy08, Proposition 1.13].

Lemma 5.33. Assume Kernel and h ≥ 2
n . Then

wi ≥ 0 ,
n∑
i=1

wi = 1 , wi ≤
6CKmiCKma

nh
,

wi = 0 if |xi − t| > h ,
n∑
i=1

w2
i ≤

6CKmiCKma
nh

for all t ∈ [0, 1] and h ≥ 2
n .
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Define U(θ) := ∑n
i=1wid(gi(θ),mxi)2. We make use of Smoothness to obtain a bound

on ∑n
i=1wid(gi(θ̂t,h), gi(θt,h))2.

Lemma 5.34. Assume Kernel, Lipschitz, Smoothness. Then,∫ 1
2

− 1
2

d
(
g(x, θ̂t,h), g(x, θt,h)

)2
dx

≤ 6CKmiCKma

(
U(θ̂t,h) + 6CKmiCKmaC

2
Smoh

2β + 2CLip
nh

)
.

Proof. Lemma 5.32 with Lipschitz states∫ 1
2

− 1
2

d
(
g(x, θ̂t,h), g(x, θt,h)

)2
dx ≤ 6CKmiCKma

(
n∑
i=1

wid
(
gi(θ̂t,h), gi(θt,h)

)2
+ 2CLip

nh

)
.

The remaining sum can be bounded using Smoothness and Kernel by
n∑
i=1

wid
(
gi(θ̂t,h), gi(θt,h)

)2
≤

n∑
i=1

wi
(
d(gi(θ̂t,h),mxi)2 + d(mxi , gi(θt,h))2

)
≤

n∑
i=1

wid(gi(θ̂t,h),mxi)2 + CKerC
2
Smoh

2β .

Put together, we obtain∫ 1
2

− 1
2

d
(
g(x, θ̂t,h), g(x, θt,h)

)2
dx

≤ 6CKmiCKma

(
n∑
i=1

wid(gi(θ̂t,h),mxi)2 + 6CKmiCKmaC
2
Smoh

2β + 2CLip
nh

)
.

Next, we bound a variance term using chaining.

Lemma 5.35. Let θ0 ∈ B ⊆ Θ. Assume Moment and Kernel. Then,

E
[
sup
θ∈B

∣∣∣F̄t(θ, θ0)− F̂t(θ, θ0)
∣∣∣κ] ≤ cκ (2 (6CKmiCKma)

1
2 CMomCEntγ2(B, b)(nh)−

1
2
)κ

.

Proof. Define

Zi(θ) := wi
(
d(yi, gi(θ))2 − d(yi, gi(θ0))2 − E

[
d(yi, gi(θ))2 − d(yi, gi(θ0))2

])
.

181



We set yi to be independent of Yxi and obtain

E[|Zi(θ)|] ≤ E
[
wiE

[∣∣∣d(yi, gi(θ))2 − d(yi, gi(θ0))2 − d(Yxi , gi(θ))
2 − d(Yxi , gi(θ0))2

∣∣∣ ∣∣∣ yi]]
≤ wid(gi(θ), gi(θ0))E[a(yi, Yxi)] .

As supx∈X E[a(Yx, Y ′x)] ≤ σκ < ∞, the processes Zi are integrable. The stochastic
processes Z1, . . . , Zn with index set Θ are independent and integrable. Furthermore,
E[Zi(θ)] = 0 for all θ ∈ Θ, and Zi(θ0) = 0. They fulfill the following quadruple property:
Let Z ′i be independent copies of Zi with yi replaced by the independent copy y′i. Then,
for θ, θ′ ∈ Θ, ∣∣Zi(θ)− Zi(θ′)− Z ′i(θ) + Z ′i(θ′)

∣∣ ≤ wia(yi, y′i)d(gi(θ), gi(θ′)) .

As wi = 0 for
∣∣x−t
h

∣∣ > 1, we have wid(gt,h(x, θ), gt,h(x, θ′)) ≤ wib(θ, θ′). Thus, Theo-
rem 5.56 implies

E
[
sup
θ∈B

∣∣∣∣∣
n∑
i=1

Zi(θ)
∣∣∣∣∣
κ]
≤ cκγ2(B, b)κE

( n∑
i=1

w2
i a(yi, y′i)2

)κ
2
 .

Define W := ∑n
i=1w

2
i and vi := w2

i /W . We obtain, using Jensen’s inequality,

E

( n∑
i=1

w2
i a(yi, y′i)2

)κ
2
 = E

(W n∑
i=1

via(yi, y′i)2
)κ

2


≤W
κ
2

n∑
i=1

viE
[
a(yi, y′i)κ

]
.

Lemma 5.31 shows that a and b are semi-metrics. Thus, we have

E
[
a(yi, y′i)κ

]
≤ 2κE[a(yi,mxi)κ] ≤ 2κCκMom

and, by Lemma 5.33, W ≤ 6CKmiCKma
nh , we obtain

E
[
sup
θ∈B

∣∣∣F̄t(θ, θ0)− F̂t(θ, θ0)
∣∣∣κ] ≤ Cκ (2 (6CKmiCKma)

1
2 CMomγ2(B, b)(nh)−

1
2
)κ

.

The bias term can be bounded because of the smoothness assumption again.

Lemma 5.36. Assume Smoothness, R–Variance, and Kernel. Then∣∣∣∣∣
n∑
i=1

wiE[d(Yxi , gi(θt,h))2 − d(Yxi ,mxi)
2]
∣∣∣∣∣ ≤ CVupC

2
Smoh

2β .
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Proof. By R–Variance and Smoothness

E
[
d

(
Yx, g

(
xi − t
h

, θt,h

))2
− d(Yx,mx)2

]
≤ CVupd

(
g

(
xi − t
h

, θt,h

)
,mx

)2

≤ CVupC
2
Smo |x− t|

2β .

for all x, t ∈ R. Hence, Kernel implies∣∣∣∣∣
n∑
i=1

wiE[d(Yxi , gi(θt,h))2 − d(Yxi ,mxi)
2]
∣∣∣∣∣ ≤ CVupC

2
Smo

n∑
i=1

wi |xi − t|2β

≤ CVupC
2
Smoh

2β .

A major step for obtaining a bound on the objects of interest instead of their objective
function consists in using a peeling device (also called slicing). This technique is applied
in the next 3 lemmata. Recall U(θ) = ∑n

i=1wid(gi(θ),mxi)2.

Lemma 5.37. Assume Variance, Smoothness, R–Variance, Moment, Ker-
nel, Entropy, and Lipschitz. Then

E[U(θ̂t,h)] ≤ C1
nh

+ C2h
2β ,

where

C1 := cκCLipC
2
VloC

2
MomC

2
EntC

2
KmiC

2
Kma

C2 := c′κCVloCVupC
2
LipC

2
Smo .

Proof. Recall

F̄t(θ) = 1
n

n∑
i=1

wiE
[
d(Yxi , gi(θ))

2
]
.

Assume U(θ̂t,h) ∈ [a, b]. Then by Variance

C−1
Vloa ≤ C

−1
VloU(θ̂t,h)

≤
n∑
i=1

wiE[d(Yxi , gi(θ̂t,h))2 − d(Yxi ,mxi)2]

≤ F̄t(θ̂t,h, θt,h) +
n∑
i=1

wiE[d(Yxi , gi(θt,h))2 − d(Yxi ,mxi)2] .
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By Lemma 5.36
n∑
i=1

wiE[d(Yxi , gi(θt,h))2 − d(Yxi ,mxi)2] ≤ CVupC
2
Smoh

2β .

For b > 0, let

B̃b :=
{
θ ∈ Θ:

n∑
i=1

wid(gi(θ),mxi)2 ≤ b
}
.

By the minimizing property of θ̂t,h,

F̄t(θ̂t,h, θt,h) ≤ F̄t(θ̂t,h, θt,h)− F̂t(θ̂t,h, θt,h)

≤ sup
θ∈B̃b

∣∣∣F̄t(θ, θt,h)− F̂t(θ, θt,h)
∣∣∣ .

Thus,

C−1
Vloa ≤ CVupC

2
Smoh

2β + sup
θ∈B̃b

∣∣∣F̄t(θ, θt,h)− F̂t(θ, θt,h)
∣∣∣ .

Using Markov’s inequality,

P
(
U(θ̂t,h) ∈ [a, b]

)
≤ P

(
CVupC

2
SmoCVloh

2β + CVlo sup
θ∈B̃b

∣∣∣F̄t(θ, θt,h)− F̂t(θ, θt,h)
∣∣∣ ≥ a)

≤ 2κ−1CκVlo
CκVupC

2κ
Smoh

2βκ + E
[
supθ∈B̃b

∣∣∣F̄t(θ, θt,h)− F̂t(θ, θt,h)
∣∣∣κ]

aκ
.

By Lemma 5.35, with θ0 = θt,h, with Lemma 5.39 below and Entropy

E
[

sup
θ∈B̃b

∣∣∣F̄t(θ, θt,h)− F̂t(θ, θt,h)
∣∣∣κ]

≤ cκ
(
2 (6CKmiCKma)

1
2 CMomCEnt (12CKmiCKmab)

1
2 (nh)−

1
2
)κ

,

for b ≥ 5C2
Liph

2β + 2CLip
nh . Thus,

P
(
U(θ̂t,h) ∈ [a, b]

)
≤ 2κ−1

cκ1h
2βκ +

(
c2b

1
2 (nh)− 1

2
)κ

aκ
,

184



where

c1 := CVloCVupC
2
Smo ,

c2 := 18c
1
κ
κ CVloCMomCEntCKmiCKma .

Thus, by Lemma 5.38 below

E[U(θ̂t,h)] ≤ 5C2
Liph

2β + 2CLip
nh

+ c′κ

(
c1h

2β + c2
2
nh

)
.

As all constants are chosen to be in [1,∞), we obtain the desired result.

Lemma 5.38. Let V be a nonnegative random variable. Assume that for 0 ≤ a0 <
a < b <∞, it holds

P(V ∈ [a, b]) ≤ c
uκ +

(
vb

1
2
)κ

aκ
.

where c ≥ 1, u, v > 0, κ > 2. Then

E[V ] ≤ a0 + cκc
2
κ

(
u+ v2

)
.

Proof. For s > a0,

P(V > s) ≤
∞∑
k=0

P
(
V ∈ [s2k, s2k+1]

)

≤
∞∑
k=0

c
uκ + vκs

1
2κ2 1

2κ2 1
2kκ

sκ2kκ

≤ c
(
uκs−κ

∞∑
k=0

2−kκ + 2
1
2κvκs−

1
2κ
∞∑
k=0

2−
1
2kκ

)
≤ c′κc

(
uκs−κ + vκs−

1
2κ
)
.

We integrate the tail to bound the expectation,

E[V ] ≤ a0 +
∫ ∞
a0

P(V > s)ds .

For A,B ≥ 0, it holds∫ ∞
0

min(1, As−κ) ≤ κ

1− κA
1
κ ,

∫ ∞
0

min(1, Bs−
1
2κ) ≤ κ

2− κB
2
κ .
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Applying these inequalities to the tail bound above, we obtain

E[V ] ≤ a0 + cκc
2
κ

(
u+ v2

)
.

Lemma 5.39. For b > 0, let

Bb :=
{
θ ∈ Θ:

∫ 1
2

− 1
2

d(g(x, θ), g(x, θt,h))2 dx ≤ b
}

B̄b :=
{
θ ∈ Θ:

n∑
i=1

wid(gi(θ), gi(θt,h))2 ≤ b
}

B̃b :=
{
θ ∈ Θ:

n∑
i=1

wid(gi(θ),mxi)2 ≤ b
}

Assume Smoothness, Kernel, and Lipschitz. Then, for all b, s > 0,

B̃b ⊆ B̄b+r and B̄s ⊆ Bs′

where

r = 2CLiph
βb

1
2 + C2

Liph
2β s′ = 6CKmiCKma

(
s+ 2CLip

nh

)
.

Proof. For θ ∈ Θ, we obtain using the triangle inequality

d(gi(θ),mxi)2 − d(gi(θ), gi(θt,h))2

≤ d(mxi , gi(θt,h)) (2d(gi(θ),mxi) + d(mxi , gi(θt,h)))
≤ 2CSmo |xi − t|β d(mxi , gi(θ)) + C2

Smo |xi − t|
2β

because of Smoothness. Thus, Kernel implies∣∣∣∣∣
n∑
i=1

wi
(
d(gi(θ),mxi)2 − d(gi(θ), gi(θt,h))2

)∣∣∣∣∣
≤ 2CSmo

n∑
i=1

wi |xi − t|β d(mxi , gi(θ)) + C2
Smo

n∑
i=1

wi |xi − t|2β

≤ 2CSmoh
β

n∑
i=1

wid(mxi , gi(θ)) + C2
Smoh

2β .

Now assume θ ∈ B̃b. Then∑n
i=1wid(gi(θ),mxi)2 ≤ b. We obtain, via Jensen’s inequality,

n∑
i=1

wid(mxi , gi(θt,h)) ≤
(

n∑
i=1

wid(mxi , gi(θt,h))2
) 1

2

≤ b
1
2 .
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Together, we get∣∣∣∣∣
n∑
i=1

wi
(
d(gi(θ),mxi)2 − d(gi(θ), gi(θt,h))2

)∣∣∣∣∣ ≤ 2CSmoh
βb

1
2 + C2

Smoh
2β =: r .

Thus,
n∑
i=1

wid(gi(θ), gi(θt,h))2 ≤
n∑
i=1

wid(gi(θ),mxi)2 + r ≤ b+ r

which shows B̃b ⊆ B̄b+r. The relation B̄s ⊆ Bs′ follows from Lemma 5.32 by∫ 1
2

− 1
2

d
(
g(x, θ), g(x, θ̃)

)2
dx ≤ 6CKmiCKma

(
n∑
i=1

wid
(
gi(θ), gi(θ̃)

)2
+ 2CLip

nh

)
.

Finally, we can put together the results obtained so far to finish the proof of the main
theorem.

Proof of Theorem 5.12. By Lemma 5.34,∫ 1
2

− 1
2

d
(
g(x, θ̂t,h), g(x, θt,h)

)2
dx ≤ 6CKmiCKma

(
U(θ̂t,h) + 6CKmiCKmaC

2
Smoh

2β + 2CLip
nh

)
.

By Lemma 5.37,
E[U(θ̂t,h)] ≤ C ′1

nh
+ C ′2h

2β ,

where

C ′1 := cκCLipC
2
VloC

2
MomC

2
EntC

2
KmiC

2
Kma ,

C ′2 := c′κCVloCVupC
2
LipC

2
Smo .

Thus, we obtain

E
[∫ 1

2

− 1
2

d
(
g(x, θ̂t,h), g(x, θt,h)

)2
]
dx ≤ C1

nh
+ C2h

2β ,

where

C1 := 6CKmiCKma
(
cκCLipC

2
VloC

2
MomC

2
EntC

2
KmiC

2
Kma + 2CLip

)
,

C2 := 6CKmiCKma
(
c′κCVloCVupC

2
LipC

2
Smo + 6CKmiCKmaC

2
Smo

)
.

5.A.3.2 Corollaries

Corollary 5.14 and Corollary 5.15 are direct implications of Theorem 5.12. We want to
prove Corollary 5.11. It is a consequence of Corollary 5.14 with Q = Sk and g(x, (q, v)) =
Exp(q, xv) for (q, v) ∈ Θ ⊆ TSk. To apply this corollary, we need to show Entropy,
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Lipschitz, and Connection for the sphere, as Variance, Smoothness and Kernel
are assumed.

• Connection: As (q, v), (p, u) ∈ Θ, it holds |u|, |v| ≤ π. Lemma 5.29 implies
∫ 1

2

− 1
2

d(Exp(q, xu),Exp(p, xv))2 dx = 1
2

∫ 1

−1
d

(
Exp

(
q,

1
2xu

)
,Exp

(
p,

1
2xv

))2
dx

≥ 1
π
‖p− q‖2

≥ 1
π2dSk(p, q)2 .

Thus, we can choose CCon := π2.

• Lipschitz: Let γ1(x) = Exp(q, xv) and γ2(x) = Exp(p, xu) be two geodesics.
The squared distance d(γ1(x), γ2(x))2 can be bounded by π-times the Euclidean
distance. Furthermore, it changes not more than the distance of straight lines in
Rk+1 moving in opposite directions. Without loss of generality d(γ1(x), γ2(x)) ≤
d(γ1(y), γ2(y)). Then∣∣∣d(γ1(x), γ2(x))2 − d(γ1(y), γ2(y))2

∣∣∣
≤ (d(γ1(x), γ2(x)) + π |x− y| (|u|+ |v|))2 − d(γ1(x), γ2(x))2

≤ |x− y|
(
π2 |x− y| (|u|+ |v|)2 + πd(γ1(x), γ2(x)) (|u|+ |v|)

)
≤ CLip |x− y|

with CLip := 8π4 + 4π, where we used |u|, |v| ≤ π for (q, v), (p, u) ∈ Θ.

• Entropy: Lemma 5.29 implies∫ 1
2

− 1
2

d(Exp(q, xu),Exp(p, xv))2dx ≥ 1
π

(
|p− q|2 + |u− v|2

)
.

Thus, Bb(θ0) ⊆
{
x ∈ R2k+2 : |x| ≤

√
πb
}

. By Lemma 5.28, it holds b((q, v), (p, u)) ≤
2π (|q − p|+ |v − u|), yielding

γ2(Bb, b) ≤ cγ2(B√πb, |·|) ≤ c
′√kb .

Thus, we can choose CEnt := c′
√
kb.

5.A.4 Section 5.5: LocFre

First we state some properties of the weights wi to be used later.
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Lemma 5.40 ([Tsy08, Lemma 1.3]). Assume Kernel. Then there is CKer ∈ [1,∞)
such that

n∑
i=1

wi = 1 , wi = 0 if |xi − t| > h , wi ≤
CKer
nh

,

n∑
i=1
|wi| ≤ CKer ,

n∑
i=1

w2
i ≤

CKer
nh

.

for all t ∈ [0, 1], n ≥ n0.

5.A.4.1 Theorem

We prove Theorem 5.17. We first apply the variance inequality to relate a bound on
the objective functions to a bound on the minimizers. The required uniform bound on
the objective functions can be split into a bias and a variance part, which are bounded
separately thereafter. Then, these results are put together in the application of a peeling
device, which is used to bound the tail probabilities of the error. Integrating the tails
leads to the required bounds in expectation.
Variance Inequality and Split. We define following notation for the objective func-
tions

F̂t(q) :=
n∑
i=1

wic(yi, q) F̂t(q, p) := F̂t(q)− F̂t(p) ,

F̄t(q) :=
n∑
i=1

wiE[c(yi, q)] F̄t(q, p) := F̄t(q)− F̄t(p) ,

Ft(q) := E[c(Yt, q)] Ft(q, p) := Ft(q)− Ft(p) .

Using Variance and the minimizing property of m̂t we obtain

C−1
Vlod(m̂t,mt)α ≤ Ft(m̂t,mt)

≤ Ft(m̂t,mt)− F̂t(m̂t,mt)

=
(
Ft(m̂t,mt)− F̄t(m̂t,mt)

)
+
(
F̄t(m̂t,mt)− F̂t(m̂t,mt)

)
The first parenthesis represents the bias part, the second one the variance part. We will
bound the former using Smoothness, the later by an empirical process argument.
Variance. Define

Zi(q) := wi (c(yi, q)− c(yi,mt))− E[wi (c(yi, q)− c(yi,mt))] .

Then Z1, . . . , Zn are independent and centered processes with Zi(mt) = 0. They are
integrable due to Moment. By the definition of a,∣∣Zi(q)− Zi(p)− Z ′i(q) + Z ′i(p)

∣∣ ≤ |wi| a(yi, y′i)d(q, p) ,
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where Zi(q)′ and y′i are independent copies of Zi(q) and yi, respectively. Theorem 5.56
yields

E
[

sup
q∈B(mt,d,δ)

∣∣∣F̄t(q,mt)− F̂t(q,mt)
∣∣∣κ] = E

[
sup

q∈B(mt,d,δ)

∣∣∣∣∣
n∑
i=1

Zi(q)
∣∣∣∣∣
κ]

≤ cκ

E
( n∑

i=1
w2
i a(yi, y′i)2

)κ
2
 1
κ

γ2(B(mt, d, δ), d)


κ

for a constant cκ depending only on κ. Define W := ∑n
i=1w

2
i and vi := w2

i /W . We
apply Moment,

E

( n∑
i=1

w2
i a(yi, y′i)2

)κ
2
 = E

(W n∑
i=1

via(yi, y′i)2
)κ

2


≤ E
[
W

κ
2

n∑
i=1

via(yi, y′i)κ
]

= W
κ
2

n∑
i=1

viE
[
a(yi, y′i)κ

]
≤W

κ
2CκMom .

By Lemma 5.40, W ≤ CKer(nh)−1. By Entropy, γ2(B(mt, d, δ), d) ≤ CEntδ. Thus,

E
[

sup
q∈B(mt,d,δ)

∣∣∣F̄t(q,mt)− F̂t(q,mt)
∣∣∣κ] ≤ cκ (CMomCEntCKerδ(nh)−

1
2
)κ

.

Bias. As ∑n
i=1wi = 1 (Lemma 5.40), we have

Ft(q,mt)− F̄t(q,mt) =
n∑
i=1

wiE[♦(Yt, yi, q,mt)] .

Set f(t) := E[c(Yt, q) − c(Yt, p)]. Applying Smoothness, a Taylor expansion, and the
property that the weights annihilate polynomials [Tsy08, equation (1.68)], we obtain

n∑
i=1

wiE[♦(Yt, yi, q, p)] =
n∑
i=1

wi

(
Ri +

∑̀
k=1

f ′(t)
k! (xi − t)k

)

=
n∑
i=1

wiRi

≤
n∑
i=1
|wi| |Ri| ,
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for values Ri ∈ R with |Ri| ≤ d(q, p)L(q, p) |t− xi|β. Thus,
n∑
i=1

wiE[♦(Yt, yi, q,mt)] ≤ CKerd(q, p)L(q, p)hβ , (5.2)

see Lemma 5.40. Finally we obtain

E
[∣∣∣Ft(m̂t,mt)− F̄t(m̂t,mt)

∣∣∣κ 1[0,δ](d(m̂t,mt))
] 1
κ

≤ E
[∣∣∣CKerd(m̂t,mt)L(m̂t,mt)hβ

∣∣∣κ 1[0,δ](d(m̂t,mt))
] 1
κ

≤ CKerCSmoδh
β .

Peeling. For δ > 0 define

∆δ(q, p) =
(∣∣∣Ft(q, p)− F̄t(q, p)∣∣∣+ ∣∣∣F̄t(q, p)− F̂t(q, p)∣∣∣)1[0,δ](d(q, p)) .

Recall that the variance inequality implies

C−1
Vlod(m̂t,mt)α ≤

(
Ft(m̂t,mt)− F̄t(m̂t,mt)

)
+
(
F̄t(m̂t,mt)− F̂t(m̂t,mt)

)
.

Let 0 < a < b <∞. The inequality above and Markov’s inequality yield

P(d(m̂t,mt) ∈ [a, b]) ≤ P(aα ≤ CVlo∆b(m̂t,mt)) ≤
CκVloE[∆b(m̂t,mt)κ]

aακ
.

Our previous consideration allow us the bound the expectation by a variance and a bias
term:

E[∆δ(m̂t,mt)κ] ≤ 2κ−1
(
E
[∣∣∣Ft(m̂t,mt)− F̄t(m̂t,mt)

∣∣∣κ 1[0,δ](d(m̂t,mt))
]

+ E
[

sup
q∈B(mt,d,δ)

∣∣∣F̄t(q,mt)− F̂t(q,mt)
∣∣∣κ])

≤ cκ
(
CKerCSmoh

β + CMomCEntCKer(nh)−
1
2
)κ
δκ .

We are now prepared to apply peeling (also called slicing): Let s > 0. Set A :=
CVloCKerCSmoh

β + CVloCMomCEntCKer(nh)− 1
2 . It holds

P(d(m̂t,mt) > s) ≤
∞∑
k=0

P
(
d(m̂t,mt) ∈ [2ks, 2k+1s]

)
≤
∞∑
k=0

cκA
κ(2k+1s)κ

(2ks)ακ

≤ 2κcκAκsκ(1−α)
∞∑
k=0

2kκ(1−α)

≤ 2κ
1− 2κ(1−α) cκA

κsκ(1−α) .
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We integrate this tail bound to bound the expectation. For this we require κ > α/(α−1).
Set B := 2κ

1−2κ(1−α) cκA
κ, then

E[d(m̂t,mt)α] = α

∫ ∞
0

sα−1P(d(m̂t,mt) > s)ds

≤ α
∫ ∞

0
sα−1 min(1, Bsκ(1−α))ds

= 1
α
b

α
κ(α−1) + 1

κ(α− 1)− αb
α−κ(α−1)
κ(α−1)

=
( 1
α

+ 1
κ(α− 1)− α

)
b

α
κ(α−1)

= cκ,αA
α
α−1 .

Thus,

E[d(m̂t,mt)α] ≤ cκ,α
(
CVloCKerCSmoh

β + CVloCMomCEntCKer(nh)−
1
2
) α
α−1 .

5.A.4.2 Corollaries

Lemma 5.41. In Theorem 5.17 Smoothness can be replaced by SmoothDen-
sity and BiasMoment when we replace CSmo by CBomCSmD.

Proof. Using the µ-density y 7→ ρ(y|t) of Yt, we can write E[Yt,q
2 − Yt,p

2] =∫ (
y,q2 − y,p2) ρ(y|t)dµ(y). By SmoothDensity, t 7→ ρ(y|t) ∈ Σ(β, L(y)). Thus,

there are ak(y) such that ρ(y|x) = Ry(x, x0) +∑`
k=0 ak(y)(x − x0)k with |Ry(x, x0)| ≤

L(y) |x− x0|β. Using that the weights annihilate polynomials of order `, we obtain
n∑
i=1

wiE[♦(Yt, yi, q, p)] =
∫ n∑

i=1
wi
(
y,q2 − y,p2

)
(ρ(y|t)− ρ(y|xi)) dµ(y)

=
∫ n∑

i=1
wi
(
y,q2 − y,p2

)
Ry(t, xi)dµ(y)

≤
∫ n∑

i=1
|wi|

∣∣∣y,q2 − y,p2
∣∣∣ |Ry(t, xi)| dµ(y) .

It holds ∣∣∣y,q2 − y,p2
∣∣∣ |Ry(x, x0)| ≤ q,p |x− x0|β (y,q + y,p)L(y) .

Together with ∑n
i=1 |wi| ≤ CKer from Lemma 5.40, we obtain∣∣∣∣∣

n∑
i=1

wiE[♦(Yt, yi, q, p)]
∣∣∣∣∣ ≤ CKer q,p h

β
∫

(y,q + y,p)L(y)dµ(y) .
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This replaces equation (5.2) in the proof of Theorem 5.17 with

L(q, p) =
∫

(y,q + y,p)L(y)dµ(y) .

To make the replacement valid we have to ensure E[L(mt, m̂t)κ] 1
κ ≤ CSmo. By Cauchy–

Schwarz inequality,
∫

(y,q + y,p)L(y)dµ(y) ≤ H(q, p)
(∫

L(y)2dµ(y)
) 1

2
≤ H(q, p)CSmD .

BiasMoment states E[H(m̂t,mt)κ] 1
κ ≤ CBom. Thus, set CSmo := CBomCSmD.

Recall H(q, p) =
(∫

(y,q + y,p)2 µ(dy)
) 1

2 .

Proposition 5.42. Assume BomBound, Variance, Kernel, Moment. To fulfill
E[H(m̂t,mt)κ] 1

κ ≤ CBom in BiasMoment, we can choose

CBom := cκCVloCLenCMomCIntCKer .

Proof of Proposition 5.42. Using the triangle inequality

H(q, p)2 =
∫

(y,q + y,p)2 µ(dy)

≤
∫

(q,p+ 2y,p)2 µ(dy)

≤ 2
∫
q,p2 + 4y,p2µ(dy)

≤ 2q,p2 + 8
∫
y,p2µ(dy)

as µ is a probability measure.

E[H(m̂t,mt)κ]
1
κ ≤ E

[(
2m̂t,mt

2 + 8
∫
y,mt

2µ(dy)
)κ

2
] 1
κ

≤ cκ

(
E
[
m̂t,mt

κ
] 1
κ +

(∫
y,mt

2µ(dy)
) 1

2
)
.

Next, we will bound E[mt,m̂t
κ]. Let W := ∑n

i=1 |wi|. First, by Variance and the
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minimizing property of m̂t,

C−1
Vlomt,m̂t

2 ≤ Ft(m̂t,mt)
≤ Ft(m̂t,mt)− F̂t(m̂t,mt)

=
n∑
i=1

wiE[♦(Yt, yi,mt, m̂t) | y1...n]

≤
n∑
i=1
|wi| m̂t,mt E[a(Yt, yi) | yi] .

Thus,

C−1
Vlomt,m̂t ≤

n∑
i=1
|wi|E[a(Yt, yi) | yi] .

With Jensen’s inequality

C−κVloE[mt,m̂t
κ] ≤ E

[(
n∑
i=1
|wi|E[a(Yt, yi) | yi]

)κ]

= W κE
[(

n∑
i=1

|wi|
W

E[a(Yt, yi) | yi]
)κ]

≤W κ
n∑
i=1

|wi|
W

E[E[a(Yt, yi) | yi]κ]

≤W κ
n∑
i=1

|wi|
W

E[a(Yt, yi)κ]

≤W κ sup
s,t∈[0,1]

E
[
a(Yt, Y ′s )κ

]
.

As a is a semi-metric,

E
[
a(Yt, Y ′s )κ

]
≤ E

[(
a(Yt,mt) + a(mt,ms) + a(ms, Y

′
s )
)κ]

≤ 3κ
(

2 sup
t∈[0,1]

E[a(Yt,mt)κ] + a(mt,ms)κ
)

≤ cκ (CκMom + CκLen) .

Lemma 5.40 shows W ≤ CKer. This completes the proof.

Proof of Corollary 5.19. If diam(Q, d) <∞, then

H(q, p) ≤
(∫

(2 diam(Q, d))2 µ(dy)
) 1

2
= 2 diam(Q, d)

Thus, we can choose CBom := 2 diam(Q, d). Using the triangle inequality we get y,q2 −
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y,p2 − z,q2 + z,p2 ≤ 4q,p diam(Q, d). Thus, a(y, z) ≤ 4 diam(Q, d) and we can choose
CMom := 4 diam(Q, d). To summarize,

C1 = cκ,αCVloCKerCSmo

C2 = cκ,αCVloCMomCEntCKer

CMom = 4 diam(Q, d)
CSmo = CBomCSmD

CBom = 2 diam(Q, d) .

Proof of Corollary 5.20. Variance holds in Hadamard spaces with CVlo := 1. We bound
E[H(m̂t,mt)κ] 1

κ ≤ CBom using

CBom := cκCVloCLenCMomCIntCKer

see Proposition 5.42. To summarize,

C1 = cκ,αCVloCKerCSmo

C2 = cκ,αCVloCMomCEntCKer

CVlo = 1
CSmo = CBomCSmD

CBom = cκCVloCLenCMomCIntCKer

(C1 + C2)2 ≤ c′κ
(
C2

KerCLenCMomCIntCKerCSmD + CMomCEntCKer
)2

≤ c′′κ
(
C2

KerCLenCMomCIntCSmDCEnt
)2

.

Proof of Corollary 5.16. By Lemma 5.57, we can choose CEnt := 2
√
k. The diameter is

diam(Sk, d) = 2π.

5.A.4.3 Smoothness of regression function

Proposition 5.43 (Smoothness of regression function). Let (Q, d) be a Hadamard
space. Assume t → ρ(y|t) ∈ Σ(1, L(y)). Assume there are CInt, CSmD ∈ (0,∞)
with

∫
y,mt

2dµ(y) ≤ C2
Int and

∫
L(y)2dµ(y) ≤ CSmD. Then t 7→ mt is Lipschitz

continuous with constant CIntCSmD. In particular, we can choose CLen = CIntCSmD.
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Proof of Proposition 5.43. Using the variance inequality twice, we have

2ms,mt
2 ≤ (Fs(mt,ms) + Ft(ms,mt))

=
∫ (

y,mt
2 − y,ms

2
)

(p(y|t)− p(y|s)) dµ(y)

≤ ms,mt

∫
(y,mt + y,ms) |p(y|t)− p(y|s)|dµ(y) .

Thus, with the Lipschitz assumption on the density,

ms,mt ≤
1
2

∫
(y,mt + y,ms) |p(y|t)− p(y|s)|dµ(y)

≤ 1
2 |s− t|

∫
(y,mt + y,ms)L(y)dµ(y)

≤ |s− t| sup
t∈[0,1]

(∫
y,mt

2dµ(y)
∫
L(y)2dµ(y)

) 1
2

≤ |s− t|CSmDCInt .

5.A.5 Section 5.7: TriFre

5.A.5.1 Theorem

We prove Theorem 5.23. The difference of the objective functions is split into three parts
in Lemma 5.44. In Lemma 5.45, we use a peeling device and the variance inequality to
relate this difference to the distance between the minimizers m̂t and mt, which is the
quantity to be bounded in the theorem. Of the three parts, two bias related quantities
are bounded in Lemma 5.46 and Lemma 5.47 with an auxiliary result in Lemma 5.48.
The third part, a variance term, is bounded in Lemma 5.49 via chaining. The bounds on
the three parts are summarized in Lemma 5.50. In the end, the integral over t is applied
to calculate the mean integrated squared error. Here, the auxiliary result Lemma 5.51
is applied.

For shorter notation define Ft(q, p) := Ft(q)−Ft(p) and F̂t(q, p) := F̂t(q)− F̂t(p). We
introduce the Fourier coefficients ϑk(q, p) of t 7→ Ft(q, p) with respect to the trigonometric
basis

ϑk(q, p) :=
∫ 1

0
ψk(x)Fx(q, p)dx

such that Ft(q, p) = ∑∞
k=1 ϑk(q, p)ψk(t) due to SmoothDensity. Define

rt(q, p) :=
∞∑

k=N+1
ϑk(q, p)ψk(t) , F rt (q, p) := ΨN (t)>1

n

n∑
i=1

ΨN (xi)rxi(q, p) ,

εt(y, q, p) := Ft(q, p)−
(
y,q2 − y,p2

)
, F εt (q, p) := ΨN (t)>1

n

n∑
i=1

ΨN (xi)εxi(yi, q, p) .
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Lemma 5.44. If N < n, then

Ft(q, p)− F̂t(q, p) = rt(q, p) + F εt (q, p)− F rt (q, p) .

Proof of Lemma 5.44. It holds 1
n

∑n
i=1 ψk(xi)ψ`(xi) = δk` for k, ` ∈ {1, . . . , n− 1}, see

[Tsy08, Lemma 1.7]. Set

FNt (q, p) :=
N∑
k=1

ϑk(q, p)ψk(t) .

Then 1
n

∑n
i=1 ψk(xi)FNxi (q, p) = ϑk(q, p) for k ≤ N < n. Thus,

FNt (q, p) = ΨN (t)>1
n

n∑
i=1

ΨN (xi)FNxi (q, p) .

As Ft(q, p)− rt(q, p) = FNt (q, p), we obtain

Ft(q, p)− F̂t(q, p)− rt(q, p)

= ΨN (t)>1
n

n∑
i=1

ΨN (xi)FNxi (q, p)−ΨN (t) 1
n

n∑
i=1

ΨN (xi)
(
yi,q

2 − yi,p2
)

= ΨN (t)>1
n

n∑
i=1

ΨN (xi)
(
FNxi (q, p)− Fxi(q, p) + Fxi(q, p)−

(
yi,q

2 − yi,p2
))

= ΨN (t)>1
n

n∑
i=1

ΨN (xi) (−rxi(q, p) + εxi(yi, q, p))

= F εt (q, p)− F rt (q, p) .

Next, we apply the peeling device.

Lemma 5.45. For b > 0, define

Ut,b := sup
q∈B(mt,b,d)

F εt (q,mt) + (rt(m̂t,mt)− F rt (m̂t,mt))1[0,b](m̂t,mt)) .

Let κ > 2. Define

h(t) := sup
b>0

(
E[Uκt,b]
bκ

) 1
κ

Assume Variance. Then

E
[
m̂t,mt

2] ≤ 4κ
κ− 2C

2
Vloh(t)2 .
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Proof of Lemma 5.45. For a function h(t) > 0, we have

E
[
m̂t,mt

2

h(t)2

]
=
∫ ∞

0
2sP

(
m̂t,mt > sh(t)

)
ds .

By Variance, the minimizing property of m̂t, and Lemma 5.44, we obtain

C−1
Vlo m̂t,mt

2 ≤ Ft(m̂t,mt)
≤ Ft(m̂t,mt)− F̂t(m̂t,mt)
= rt(m̂t,mt) + F̂ εt (m̂t,mt)− F rt (m̂t,mt) .

If m̂t,mt ∈ [a, b] for 0 < a < b, then

C−1
Vloa

2 ≤ C−1
Vlo m̂t,mt

2

≤ F εt (m̂t,mt) + rt(m̂t,mt)− F rt (m̂t,mt)
≤ sup

q∈B(mt,b,d)
F εt (q,mt) + (rt(m̂t,mt)− F rt (m̂t,mt))1[0,b](m̂t,mt)

= Ut,b .

Thus, by Markov’s inequality

P
(
m̂t,mt ∈ [a, b]

)
≤ P

(
a2 ≤ CVloUt,b

)
≤
CκVloE[Uκt,b]

a2κ .

Let ak(s) = 2ksh(t). As E[Uκt,b] ≤ bκh(t)κ, we have

P
(
m̂t,mt > sh(t)

)
≤ min

(
1,
∞∑
k=0

P
(
m̂t,mt ∈ [ak, ak+1)

))

≤ min
(

1, CκVlo

∞∑
k=0

aκk+1h(t)κ

a2κ
k

)
.

We obtain

aκk+1h(t)κ

a2κ
k

=

(
2k+1sh(t)

)κ
h(t)κ

(2ksh(t))2κ =
(

2 · 2ksh(t)h(t)
22ks2h(t)2

)κ
=
(
2 · 2−ks−1

)κ
and thus

∞∑
k=0

aκk+1h(t)κ

a2κ
k

= 2κs−κ
∞∑
k=0

2−kκ = 2κ
1− 2−κ s

−κ .
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Putting everything together with cκ := 2κ
1−2−κC

κ
Vlo yields

h(t)−2E
[
m̂t,mt

2] = 2
∫ ∞

0
sP
(
m̂t,mt > sh(t)

)
ds

≤ 2
∫ ∞

0
smin

(
1, cκs−κ

)
ds

=
∫ c

1
κ
κ

0
2sds+ 2cκ

∫ ∞
c

1
κ
κ

s1−κds

= c
2
κ
κ + 2cκ

1
κ− 2

(
c

1
κ
κ

)2−κ

= c
2
κ
κ

(
1 + 2

κ− 2

)
≤ 4κ
κ− 2C

2
Vlo .

Using the smoothness assumption, we are able to bound the r-term.

Lemma 5.46 (Bound on r). Assume SmoothDensity. Then

E[|rt(m̂t,mt)|κ 1[0,b](m̂t,mt)] ≤ bκhN (t)κCκBom ,

where

hN (t) :=

∫
 ∞∑
`=N+1

ξ`(y)ψ`(t)

2

µ(dy)


1
2

H(q, p) :=
(∫

(y,q + y,p)2 µ(dy)
) 1

2
.

Proof. It holds

ϑk(q, p) =
∫ 1

0
ψk(x)Fx(q, p)dx

=
∫ 1

0

∫
ψk(x)

(
y,q2 − y,p2

)
ρ(y|x)dµ(y)dx

=
∫ (

y,q2 − y,p2
) ∫ 1

0
ψk(x)ρ(y|x)dxdµ(y)

=
∫ (

y,q2 − y,p2
)
ξ(y)dµ(y) .
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Thus,

rt(q, p) =
∫ (

y,q2 − y,p2
) ∞∑
`=N+1

ξ`(y)ψ`(t)µ(dy)

≤
(∫ (

y,q2 − y,p2
)2
µ(dy)

) 1
2

∫
 ∞∑
`=N+1

ξ`(y)ψ`(t)

2

µ(dy)


1
2

≤ q,pH(q, p)hN (t) .

Finally, we obtain

E[|rt(m̂t,mt)|κ 1[0,b](m̂t,mt)] ≤ bκhN (t)κE[H(m̂t,mt)κ] .

Using the previous result, we can also establish a bound on F r.

Lemma 5.47 (Bound on F r).

E[F rt (m̂t,mt)κ1[0,b](m̂t,mt)] ≤ cκ
(
Nn1−2βCSmD

)κ
bκCκBom

where cκ ∈ [1,∞) depends only on κ.

Proof. We will show that asymptotically F rt (q, p) . rt(q, p). Recall

F rt (q, p) = ΨN (t)>1
n

n∑
i=1

ΨN (xi)rxi(q, p)

rt(q, p) =
∞∑

k=N+1
ϑk(q, p)ψk(t)

and define
rn,t(q, p) =

∞∑
`=n

ϑ`(q, p)ψ`(t)

It holds

F rt (q, p) ≤ ‖ΨN (t)‖ ‖ 1
n

n∑
i=1

ΨN (xi)rxi(q, p)‖

By Lemma 5.48 below, to be shown below,∥∥∥∥∥ 1
n

n∑
i=1

ΨN (xi)rxi(q, p)
∥∥∥∥∥

2

≤ 1
n

n∑
i=1

rxi(q, p)2
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As in the proof of Lemma 5.46, we have

|rn,t(q, p)| ≤ q,phn(t)κH(q, p) ,

where

hn(t)2 =
∫ ( ∞∑

`=n
ξ`(y)ψ`(t)

)2

µ(dy) .

Thus,

F rt (q, p)2 ≤ q,p2H(q, p)2‖ΨN (t)‖2 1
n

n∑
i=1

hn(xi)2

with ‖ΨN (t)‖2 ≤ 2N . As ξ(y) ∈ Θ(β, L(y)), we have ∑∞k=1 ξk(y)2w−2
k ≤ L(y)2 with

w2k+1 = w2k = (2k)−β.
∞∑
k=n

w2
k ≤ cn1−2β .

Thus,

1
n

n∑
i=1

( ∞∑
k=n

ξk(y)ψk(xi)
)2

≤ 1
n

n∑
i=1

∞∑
k=n

w−2
k ξk(y)2

∞∑
k=n

w2
kψk(xi)2

≤ 2
∞∑
k=n

w−2
k ξk(y)2

∞∑
k=n

w2
k

≤ c0L(y)2n1−2β .

We obtain

1
n

n∑
i=1

hn(xi)2 ≤ 1
n

n∑
i=1

∫ ( ∞∑
`=n

ξ`(y)ψ`(xi)
)2

µ(dy)

≤ c0n
1−2β

∫
L(y)2µ(dy)

and can bound

F rt (q, p)2 ≤ 2c0q,p
2H(q, p)2Nn1−2β

∫
L(y)2µ(dy) .

Finally, the inequalities above yield

E[F rt (m̂t,mt)κ1[0,b](m̂t,mt)] ≤
(

2c0Nn
1−2β

∫
L(y)2µ(dy)

)κ
2
bκE[H(m̂t,mt)κ] .

We still have to prove following lemma, which was used in the previous proof.
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Lemma 5.48. Let f : [0, 1]→ R be any function and N < n. Then∥∥∥∥∥ 1
n

n∑
i=1

ΨN (xi)f(xi)
∥∥∥∥∥

2

≤ 1
n

n∑
i=1

f(xi)2 .

Proof of Lemma 5.48. Let a` := 1
n

∑n
i=1 ψ`(xi)f(xi) and s(t) := f(t) − ∑N

`=1 a`ψ`(t).
Then

1
n

n∑
i=1

s(xi)ψk(xi) = 1
n

n∑
i=1

(
f(xi)−

N∑
`=1

a`ψ`(xi)
)
ψk(xi)

= 1
n

n∑
i=1

f(xi)ψk(xi)−
N∑
`=1

a`
1
n

n∑
i=1

ψ`(xi)ψk(xi)

= ak − ak
= 0

and thus

1
n

n∑
i=1

f(xi)2 = 1
n

n∑
i=1

(
s(xi) +

N∑
`=1

a`ψ`(xi)
)2

= 1
n

n∑
i=1

s(xi)2 + s(xi)
N∑
`=1

a`ψ`(xi) +
N∑

`,k=1
a`akψ`(xi)ψk(xi)


= 1
n

n∑
i=1

s(xi)2 +
N∑
`=1

a`
1
n

n∑
i=1

s(xi)ψ`(xi) +
N∑

`,k=1
a`ak

1
n

n∑
i=1

ψ`(xi)ψk(xi)

= 1
n

n∑
i=1

s(xi)2 +
N∑
`

a2
` .

Furthermore, ∥∥∥∥∥ 1
n

n∑
i=1

ΨN (xi)f(xi)
∥∥∥∥∥

2

=
N∑
`=1

(ψ`(xi)f(xi))2

=
N∑
`=1

a2
` .

As 1
n

∑n
i=1 s(xi)2 ≥ 0 we have proved the claim.

Next, we tackle the variance term.
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Lemma 5.49 (Bound on F ε). Assume Moment, Entropy. Then there is an
constant c > 0 depending only on κ such that

E
[
sup
q∈B

F εt (q, p)κ
]
≤ cκCκMomn

−κ2CκEntb
κ
(
ΨN (t)>ΨN (t)

)κ
2 .

Proof of Lemma 5.49. Recall F εt (q, p) = ΨN (t)>1
n

∑n
i=1 ΨN (xi)εxi(yi, q, p). Define αi :=

1
nΨN (t)>ΨN (xi) and εi(q, p) := εxi(yi, q, p). Then

F εt (q, p) =
n∑
i=1

αiεi(q, p) ,

where ε1, . . . , εn are independent and E[εi(q, p)] = 0. We want to apply Theorem 5.56
with Zi such that Zi(q)− Zi(p) = αiεi(q, p) and Ai := αia(yi, y′i). We need to show∣∣Zi(q)− Zi(p)− Z ′i(q) + Z ′i(p)

∣∣ ≤ Ai q,p
to obtain

E
[
sup
q∈B

∣∣∣∣∣
n∑
i=1

Zi(q)
∣∣∣∣∣
κ]
≤ C E[‖A‖κ2 ] γ2(B, d)κ .

Using the quadruple property, we obtain

εi(q, p)− ε′i(q, p) =
(
F (q, p, xi)−

(
yi,q

2 − yi,p2
))
−
(
F (q, p, xi)−

(
yi,q

2 − yi,p2
))

≤ a(yi, y′i) q,p .

Thus, Theorem 5.56 yields

E
[
sup
q∈B

F εt (q, p)κ
]
≤ Cγ2(B, d)κE

( n∑
i=1

α2
i a(yi, y′i)2

)κ
2
 .
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Let ai := α2
i∑n

i=1 α
2
i

. Then

E

( n∑
i=1

α2
i a(yi, y′i)2

)κ
2
 =

(
n∑
i=1

α2
i

)κ
2

E

( n∑
i=1

aia(yi, y′i)2
)κ

2


≤
(

n∑
i=1

α2
i

)κ
2

E
[
n∑
i=1

aia(yi, y′i)κ
]

=
(

n∑
i=1

α2
i

)κ
2 n∑
i=1

aiE
[
a(yi, y′i)κ

]
≤
(

n∑
i=1

α2
i

)κ
2

sup
t

E
[
a(Yt, Y ′t )κ

]
.

As a is a semi metric, we have, using Moment,

E
[
a(Yt, Y ′t )κ

]
≤ 2κCκMom .

Furthermore, it holds
n∑
i=1

α2
i = 1

n2

n∑
i=1

ΨN (t)>ΨN (xi)ΨN (xi)>ΨN (t) = 1
n

ΨN (t)>ΨN (t) .

Together we get

E
[
sup
q∈B

F εt (q, p)κ
]
≤ cκCκMomn

−κ2 γ2(B, d)κ
(
ΨN (t)>ΨN (t)

)κ
2 .

Finally, we put the previous results together to proof our main theorem of this section.

Lemma 5.50. There is a constant c > 0 depending only on κ such that

h(t)κ ≤ cκ
(
hN (t)κCκBom +

(
Nn1−2βCSmD

)κ
CκBom + CκMomn

−κ2CκEnt‖ΨN (t)‖κ
)
.

Proof of Lemma 5.50. Lemma 5.46, Lemma 5.47, and Lemma 5.49.

Lemma 5.51. For the function hN defined in Lemma 5.46, it holds∫ 1

0
hN (t)2dt ≤ cβN−2βC2

SmD .
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Proof of Lemma 5.51. We use Fubini’s theorem and the weights w2k+1 = w2k = (2k)−β
from the definition of the ellipsoid Θ(β, L) and obtain

∫ 1

0
hN (t)2dt =

∫ ∫ 1

0

 ∞∑
`=N+1

ξ`(y)ψ`(t)

2

dtdµ(y)

=
∫ 1

0

∫  ∞∑
`=N+1

ξ`(y)ψ`(t)

2

dµ(y)dt

=
∫ ∞∑

`=N+1
ξ`(y)2dµ(y)

≤
∫
w2
N+1

∞∑
`=N+1

ξ`(y)2w−2
` dµ(y)

≤ cβN−2β
∫
L(y)2dµ(y) .

Proof of Theorem 5.23. We apply Lemma 5.45, Lemma 5.50, and Lemma 5.51 together
with ∫ 1

0
‖ΨN (t)‖2 dt =

∫ 1

0

N∑
`=1

ψ`(t)2dt = N

to finally obtain∫ 1

0
E
[
m̂t,mt

2]dt ≤ 4κ
κ− 2C

2
Vlo

∫ 1

0
h(t)2dt

≤ cκC2
Vlo

(
C2

Bom

∫ 1

0
hN (t)2dt+Nn1−2βC2

SmDC
2
Bom+

C2
Momn

−1C2
Ent

∫ 1

0
‖ΨN (t)‖2dt

)

≤ cκ,βC2
Vlo

(
C2

BomC
2
SmDN

−2β + C2
SmDC

2
BomNn

1−2β+

C2
MomC

2
Ent
N

n

)
.

5.A.5.2 Corollaries

We first need to prove an auxiliary results before we can tackle the corollaries themselves.
Recall H(q, p) =

(∫
(y,q + y,p)2 µ(dy)

) 1
2 .
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Proposition 5.52. Assume BomBound. To fulfill E[H(m̂t,mt)κ] 1
κ ≤ CBom, we

can choose
CBom := cκCLenCMomCInt

(
1 + log(N) + N2

n

)
where cκ > 0 depends only on κ.

This proposition is proven in two steps: Lemma 5.53 and Lemma 5.54. Let wi :=
1
n

∣∣∣ΨN (t)>ΨN (xi)
∣∣∣ and W := ∑n

i=1 |wi|.

Lemma 5.53. Assume Variance. There is a constant cκ ∈ [1,∞) depending only
on κ such that

E[H(m̂t,mt)κ]
1
κ ≤ cκ (CVloW (CLen + CMom) + CInt) .

Proof of Lemma 5.53. Using the triangle inequality

H(q, p)2 =
∫

(y,q + y,p)2 µ(dy)

≤
∫

(q,p+ 2y,p)2 µ(dy)

≤ 2
∫
q,p2 + 4y,p2µ(dy)

≤ 2q,p2 + 8
∫
y,p2µ(dy)

as µ is a probability measure.

E[H(m̂t,mt)κ]
1
κ ≤ E

[(
2m̂t,mt

2 + 8
∫
y,mt

2µ(dy)
)κ

2
] 1
κ

≤ cκ

(
E
[
m̂t,mt

κ
] 1
κ +

(∫
y,mt

2µ(dy)
) 1

2
)
.

Next, we will bound E[mt,m̂t
κ]. First, by Variance and the minimizing property of

m̂t,

C−1
Vlomt,m̂t

2 ≤ Ft(m̂t,mt)
≤ Ft(m̂t,mt)− F̂t(m̂t,mt)

≤
n∑
i=1
|wi| m̂t,mt E[a(Yt, yi) | yi] .
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Thus,

C−1
Vlomt,m̂t ≤

n∑
i=1
|wi|E[a(Yt, yi) | yi] .

With Jensen’s inequality

C−κVloE[mt,m̂t
κ] ≤ E

[(
n∑
i=1
|wi|E[a(Yt, yi) | yi]

)κ]

= W κE
[(

n∑
i=1

|wi|
W

E[a(Yt, yi) | yi]
)κ]

≤W κ
n∑
i=1

|wi|
W

E[E[a(Yt, yi) | yi]κ]

≤W κ
n∑
i=1

|wi|
W

E[a(Yt, yi)κ]

≤W κ sup
s,t∈[0,1]

E
[
a(Yt, Y ′s )κ

]
.

As a is a semi-metric,

E
[
a(Yt, Y ′s )κ

]
≤ E

[(
a(Yt,mt) + a(mt,ms) + a(ms, Y

′
s )
)κ]

≤ 3κ
(

2 sup
t∈[0,1]

E[a(Yt,mt)κ] + a(mt,ms)κ
)

≤ cκ (CκMom + CκLen) .

Lemma 5.54. There is an universal constant c ∈ (0,∞) such that

W ≤ c
(

1 + log(N) + N2

n

)
.

Proof of Lemma 5.54. Let gt(s) :=
∣∣∣∑N

`=1 ψ`(t)ψ`(s)
∣∣∣. Then

W =
n∑
i=1
|wi| =

1
n

n∑
i=1

∣∣∣ΨN (t)>ΨN (xi)
∣∣∣ = 1

n

n∑
i=1

gt(xi) .

By the standard comparison between an integral of a Lipschitz–continuous function an
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the corresponding Riemann sum, we obtain∣∣∣∣∣
∫ 1

0
gt(s)ds−

1
n

n∑
i=1

gt(xi)
∣∣∣∣∣ ≤ sup

s∈[0,1]

|g′t(s)|
n

≤ 4πN
2

n
.

This bound is quite rough and could be improved. But we will choose Nn ≤ n
1
3 and

thus N2
n
n → 0. For x ∈ R denote [x] the fractional part of x, i.e., the number [x] ∈ [0, 1)

that fulfills [x] = x− k for a k ∈ Z. For ` ≥ 2,

ψ`(t)ψ`(s) = 1
2
(
(−1)` cos(2π`[t+ s]) + cos(2π`[t− s])

)
.

The function (s, t) 7→ ∑N
`=1 ψ`(t)ψ`(s) only depends on [s + t] and [s − t]. When inte-

grating s from 0 to 1, [s+ t] and [s− t] run through every value in [0, 1). Thus

sup
t∈[0,1]

∫ 1

0

∣∣∣∣∣1 +
N∑
`=2

ψ`(t)ψ`(s)
∣∣∣∣∣ ds

= sup
t∈[0,1]

∫ 1

0

∣∣∣∣∣1 + 1
2

N∑
`=2

(
(−1)` cos(2π`[t+ s]) + cos(2π`[t− s])

)∣∣∣∣∣ ds
≤ 1 + 1

2 sup
t∈[0,1]

∫ 1

0

∣∣∣∣∣
N∑
`=2

(
(−1)` cos(2π`[t+ s])

)∣∣∣∣∣ ds
+ 1

2 sup
t∈[0,1]

∫ 1

0

∣∣∣∣∣
N∑
`=2

cos(2π`[t− s])
∣∣∣∣∣ ds

= 1 + 1
2

∫ 1

0

∣∣∣∣∣
N∑
`=2

(−1)` cos(2π`s)
∣∣∣∣∣ ds+ 1

2

∫ 1

0

∣∣∣∣∣
N∑
`=2

cos(2π`s)
∣∣∣∣∣ ds .

Lagrange’s trigonometric identities state

2
L∑
`=1

cos(`x) = −1 +
sin
(
(L+ 1

2)x
)

sin
(
x
2
) ,

2
L∑
`=1

(−1)` cos(`x) = −1 +
(−1)L+1 sin

(
(L+ 1

2)x
)

− sin
(
x
2
) .

Thus, we have to bound the integral∫ 1

0

∣∣∣∣sin((2L+ 1)πs)
sin(πs)

∣∣∣∣ ds .
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It holds |sin(πx)| ≥ 1
2πmin(x, 1− x) for x ∈ [0, 1]. Let a = kπ for k ∈ N. Then∫ 1

0

∣∣∣∣ sin(as)
sin(πs)

∣∣∣∣ ds ≤ 2
π

∫ 1

0

|sin(as)|
min(s, 1− s)ds

= 4
π

∫ 1
2

0

|sin(as)|
s

ds

= 4
π

∫ 1
2a

0

|sin(t)|
t

dt .

We bound this integral as follows,∫ 1
2kπ

0

|sin(t)|
t

dt =
∫ π

0

|sin(t)|
t

dt+
∫ 1

2kπ

π

|sin(t)|
t

dt

≤
∫ π

0

sin(t)
t

dt+
∫ 1

2kπ

π

1
t
dt

≤ 2 + log(1
2kπ)− log(π)

= 2 + log(1
2k) .

Thus, we obtain ∫ 1

0

∣∣∣∣sin(2kπs)
sin(πs)

∣∣∣∣ ds ≤ 8
π

+ 4
π

log(1
2k) ,

which yields

sup
t∈[0,1]

∫ 1

0

∣∣∣∣∣1 +
N∑
`=2

ψ`(t)ψ`(s)
∣∣∣∣∣ ds ≤ c0 + c1 log(N) .

Proof of Corollary 5.24. If diam(Q, d) <∞, then

H(q, p) ≤
(∫

(2 diam(Q, d))2 µ(dy)
) 1

2
= 2 diam(Q, d) .

Thus, we can choose CBom := 2 diam(Q, d). Using the triangle inequality we get y,q2 −
y,p2 − z,q2 + z,p2 ≤ 4q,p diam(Q, d). Thus, a(y, z) ≤ 4 diam(Q, d) and we can choose
CMom = 4 diam(Q, d).

Proof of Corollary 5.25. Variance holds in Hadamard spaces with CVlo := 1. We bound
E[H(m̂t,mt)κ] 1

κ ≤ CBom using

CBom := cκCLenCMomCInt

(
1 + log(N) + N2

n

)
,
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see Proposition 5.52.

5.B Chaining

Definition 5.55 (Measures of Entropy [Tal14]).

(i) Given a set Q an admissible sequence is an increasing sequence (Ak)k∈N0 of
partitions of Q such that A0 = Q and card(Ak) ≤ 22k for k ≥ 1.
By an increasing sequence of partitions we mean that every set of Ak+1 is
contained in a set of Ak. We denote by Ak(q) the unique element of Ak which
contains q ∈ Q.

(ii) Let (Q, d) be a pseudo-metric space. Define

γ2(Q, d) := inf sup
q∈Q

∞∑
k=0

2
k
2 diam(Ak(q), d) ,

where the infimum is taken over all admissible sequences in Q and

diam(A, d) := sup
q,p∈A

d(q, p)

for A ⊆ Q.

Theorem 5.56 (Empirical process bound). Let (Q, d) be a separable pseudo-metric
space and B ⊆ Q. Let Z1, . . . , Zn be centered, independent, and integrable stochastic
processes indexed by Q with a q0 ∈ B such that Zi(q0) = 0 for i = 1, . . . , n.
Let (Z ′1, . . . , Z ′n) be an independent copy of (Z1, . . . , Zn). Assume the following
Lipschitz-property: There is a random vector A with values in Rn such that∣∣Zi(q)− Zi(p)− Z ′i(q) + Z ′i(p)

∣∣ ≤ Aid(q, p)

for i = 1, . . . , n and all q, p ∈ B. Let κ ≥ 1. Then

E
[
sup
q∈B

∣∣∣∣∣
n∑
i=1

Zi(q)
∣∣∣∣∣
κ]
≤ cκ E[‖A‖κ2 ] γ2(B, d)κ ,

where cκ ∈ (0,∞) depends only on κ.

Proof. See [Sch19b, Theorem 6].
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Lemma 5.57. In the Euclidean space Rk with the metric induced by the Euclidean
norm |·|, it holds γ2(B(x, r, |·|), |·|) ≤ 2r

√
k for any point x ∈ Rk and radius r > 0.

Proof. See [Pol90, section 4] and comparison to the entropy integral as in Remark 5.3.

211



Bibliography
[Aba78] T. J. Abatzoglou. “The minimum norm projection on C2-manifolds in Rn”.

In: Trans. Amer. Math. Soc. 243 (1978), pp. 115–122.
[ABY13] M. Arnaudon, F. Barbaresco, and L. Yang. “Medians and means in Rieman-

nian geometry: existence, uniqueness and computation”. In: Matrix infor-
mation geometry. Springer, Heidelberg, 2013, pp. 169–197.

[AC11] M. Agueh and G. Carlier. “Barycenters in the Wasserstein Space.” In: SIAM
J. Math. Analysis 43.2 (2011), pp. 904–924.

[AD89] J. Aczél and J. Dhombres. Functional equations in several variables. Vol. 31.
Encyclopedia of Mathematics and its Applications. With applications to
mathematics, information theory and to the natural and social sciences.
Cambridge University Press, Cambridge, 1989, pp. xiv+462.

[ALP20] A. Ahidar-Coutrix, T. Le Gouic, and Q. Paris. “Convergence rates for em-
pirical barycenters in metric spaces: curvature, convexity and extendable
geodesics”. In: Probab. Theory Related Fields 177.1-2 (2020), pp. 323–368.

[AW95] Z. Artstein and R. J.-B. Wets. “Consistency of minimizers and the SLLN
for stochastic programs”. In: J. Convex Anal. 2.1-2 (1995), pp. 1–17.
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