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Abstract

Many industrial applications include model parameters for which precise values are

hardly available. To better characterize these parameters, deterministic values are

replaced by stochastic variables. These can be regarded as parameter uncertainties and

potentially have a significant influence on the simulation results. The quantification

of such uncertainties plays a crucial role, e.g., for unknown component tolerances or

measurement errors. One of the challenges is to gain knowledge about the parameter

distribution from experimental data. In this context, Bayesian inference offers an

approach to combine numerical simulations with experimental data to obtain a better

knowledge of the uncertainties. Many standard methods require a large amount of

evaluations to achieve high numerical accuracy. This is a significant drawback, especially

when the cost of a single forward simulation is very high. Meta models, such as

Polynomial Chaos (PC) extensions, can significantly reduce the number of required

evaluations. To validate the described methods and algorithms, in reality, a test bench

was developed in the present work, with which a motor characteristic of an electric

machine with uncertain physical parameters can be measured. With this test bench,

it is possible to define physical reference parameters and to record a corresponding

set of measurements. The focus is on the validation of the methods based on real

measurements from an industrial application. The numerical results show that the

PC approach can significantly reduce the required computing time compared to the

original simulation model and thus make the method applicable in practice.





Zusammenfassung

Viele industrielle Anwendungen beinhalten Modellparameter, für die selten präzise Wer-

te vorliegen. Um eine bessere Charakterisierung dieser Parameter zu erhalten, werden

die deterministischen Werte durch stochastische Variablen ersetzt. Diese können als

Parameterunsicherheiten betrachtet werden und haben potenziell einen signifikanten

Einfluss auf die Simulationsergebnisse. Die Quantifizierung solcher Unsicherheiten spielt

eine entscheidende Rolle, z.B. bei unbekannten Bauteiltoleranzen oder Messfehlern.

Eine Herausforderung besteht unter anderem darin, aus experimentellen Daten Er-

kenntnisse über die Parameterverteilung zu gewinnen. In diesem Zusammenhang bietet

die Bayes’sche Inferenz einen Ansatz die numerische Simulationen mit experimentellen

Daten zu kombinieren, um eine bessere Kenntnis der Unsicherheiten zu erhalten. Die

Standard-Methoden benötigen häufig viele Auswertungen, um eine hohe numerische

Genauigkeit zu erreichen. Dies ist ein großer Nachteil, insbesondere wenn die Kos-

ten für eine einzelne Simulation sehr hoch sind. Metamodelle, wie z.B. Polynomial

Chaos (PC) Erweiterungen, können die Anzahl der benötigten Auswertungen dabei

deutlich reduzieren. Um die beschriebenrn Methoden und Algorithmen in der Realität

zu validieren, wurde in der vorliegenden Arbeit eine Prüfstand entwickelt, mit dem

eine Motorcharakteristik einer elektrischen Maschine mit unsicheren physikalischen

Parametern gemessen werden kann. Mit diesem Prüfstand ist es möglich, physikalische

Referenzparameter zu definieren und einen entsprechenden Satz von Messungen dazu

aufzunehmen. Der Fokus liegt auf der Validierung der Methode basierend auf realen

Messungen aus einer industriellen Anwendung. Die numerischen Ergebnisse zeigen,

dass der PC-Ansatz die erforderliche Rechenzeit im Vergleich zu dem ursprünglichen

Simulationsmodell deutlich reduzieren kann und das Verfahren dadurch in der Praxis

anwendbar macht.





Erratum

Erratum to the thesis ”Uncertainty Quantification for Complex Engineering Systems”

by Philipp Glaser.

• page 12: ”several temperatures [Ti]1,...,4(t)” should read ”the four temperatures

Tbrush(t), Tmagnet(t), Twinding(t), and Tworm(t)” and Equation 2.1 should read:

y(t) = [ω(t), I(t), Tbrush(t), Tmagnet(t), Twinding(t), Tworm(t)]T =M(t,p,u(t)),

u(t) = [U(t), τload(t)]T.

• page 13: ”Tcoil” should read ”Twinding”.

• page 16: ”Tcoil” should read ”Twinding” and the following paragraph is added after

”Finally, circles represent the calculated temperatures.”: ”The thermal simulation

model calculates twelve temperatures in total, with Figure 2.3 showing the seven

selected temperatures relevant to the study. These temperatures are TbearingA,

TbearingB, Tbrush, Tcommutator, Tmagnet, Twinding, and Tworm. One considers the

ambient temperature Tamb as a parameter. In the further course, one will focus

on the temperatures Tbrush, Tmagnet, Twinding, and Tworm, because one can also

measure them with the test bench. As the calculation of the entire thermal part

falls under intellectual property, one will only address one exemplary temperature

in the following.”.

• page 18: the temperatures ”Tbrush”, ”Tmagnet”, ”Twinding”, and ”Tworm” should read

”Tbrush,meas”, ”Tmagnet,meas”, ”Twinding,meas”, and ”Tworm,meas”.

• page 22: ”Figure 2.4” should read ”Figure 2.7a”.

• page 29: the temperatures ”Tbrush”, ”Tmagnet”, ”Twinding”, and ”screw Tscrew” should

read ”Tbrush,meas”, ”Tmagnet,meas”, ”Twinding,meas”, and ”worm Tworm,meas”.

• page 30: ”T◦,meas” should read ”Tbrush,meas”, ”Tmagnet,meas”, ”Twinding,meas”, and

”Tworm,meas”.

• page 31: ”Tworm,valid” should read ”Twinding,valid”.
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(a) PDF (prior with dash-dotted and

posterior with dotted line) for the

standard deviation of the voltage U .

MLE is displayed with solid line.

Figure 1.1: The numerical result of the MCMC estimation for the one-dimensional

scenario with one time point. The computation was performed on the

surrogate model with the HMC algorithm.

• page 114: Four new figures (see Figure 1.2) are added and show the described

results of the resistance.

• page 118: The scale of the Figure 4.20c was updated (see Figure 1.1).

• page 123: The scale of the Figure 4.23 was updated (see Figure 1.3).

Heidelberg, den 18.01.2021
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rior with dotted line) for the mean value

of the resistance R. MLE is displayed

with solid line.
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Figure 1.2: Numerical result of the MCMC estimation for parameter R with one time

point. The computation was performed on the original model.
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Figure 1.3: The numerical result of the MCMC estimation for the one-dimensional

scenario with one time point. The computation was performed on the

surrogate model with No-U-Turn Sampler (NUTS) and enlarged prior

assumptions.
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1
Introduction

This work deals with the quantification of uncertainties, and it focuses on enhancing

the quality of simulation models. More precisely, one is interested in the propagation of

input uncertainties and their impact on the overall system prediction. The windscreen

wiper system is the test application in which the used methods show their applicability.

Real product measurements support the investigation. The central challenges to be

addressed based on the application case are the quantification of input distributions,

the efficient propagation of uncertainties through a simulation model, and the handling

of measurement series.

Within the development process of a new windshield wiper system, simulation models

play an increasing role in all stages. From the design process, layout decisions can

be made very efficiently using models. Optimizations of the product functionalities

within the application domain can be performed fast without real prototypes. Release

decisions based on simulation models with less real testing can significantly reduce

costs. In this context, the predictability of the used simulations concerning reliability is

crucial, and therefore, the consideration of realistic distributions is an essential element.

Simulation models are currently in use to support the overall product development.

In natural science and engineering, detailed models already omit real prototypes. From

an economic point of view, the trend of increasing the use of simulations is necessary
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to master the growing system complexity and to stay competitive. The consideration

of uncertainties for the prediction of system behavior is a crucial component to deliver

a reliability statement. Uncertainty Quantification (UQ) supports the efficient propa-

gation of input uncertainties, and it provides stochastic information for the computed

solutions. As a result, engineers obtain a better insight into their products, and they

can make statements on the robustness of their systems. Besides, UQ, in combination

with a measurement series, improves the quality of input distributions. In the process of

gathering information about inputs, engineers have to rely on domain expert judgments.

In some cases, the estimates are not satisfying, and there these methods are highly

required by them.

The current chapter provides a better insight into the challenges of engineering

systems based on multi-domain components. The main emphasis is on the investigation

of UQ methods, and the section introduces its concept in combination with a unique test

bench hardware, which ensures the applicability to practical problem classes. Finally,

the outline provides details on the contribution and structure of this work.

1.1 Challenges in complex engineering systems

Today the demand for a profound and precise understanding of physical, economic, and

other systems is growing. Increasing computing and storage capacities of new hardware

foster this trend and enable the development of sophisticated and realistic simulation

models. These approximations are often composed of domain-specific parts, and those

elements combine themselves to the overall model by interactions, such as dependencies

or relationships. If the specific parts expand the system properties by nonlinearities,

feedback loops, or memories, one can consider the system as complex. In other words, the

property ’complex’ cannot be reduced to the presence of particular system characteristics

but indicates that the model inputs map to the outputs elaborately. Nowadays, there is

a broad field of applications, and categories according to different system characteristics

help to classify them. These classifications lead to individual properties that can favor

the use of appropriate methods. For example, engineering systems considered later

have a strong physical background, and if one examines the windscreen wiper system,

then this system has several modeled components that are electrically, mechanically,

and thermally motivated.

As a manufacturer of windscreen wiper systems, one remains competitive by opti-

mizing all areas of the value chain, and concerning simulations, the development area

is addressed here above all. More precisely, simulation models offer the possibility to
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provide a statement about a system without, for example, having a real prototype.

From an economic point fo view, omitting a physical prototype in the development

stage can, in many cases, reduce either the time, the costs, or usually even both. If

simulations are not only used to accompany the development, but decisions are also

made based on it instead of a test bench, the requirements on the model increase at

the same time. The main challenge is to achieve reliable simulation results so that one

can make competent decisions. The model has to be able to estimate the real behavior

sufficiently well so that the numerical result obtains the same statement. It is necessary

to model selective areas in more detail to achieve the stated quality, and this poses

a significant challenge. The major issue is not so much to detail the models but to

integrate variations as they occur in reality. Specifically, the distributions of relevant

sources, like environmental influences, component variations, or production tolerances,

are part of the investigation. Thus the transformation from a purely deterministic to a

stochastic consideration has to be done. One research task is to increase the efficiency

of this computation in such a way that evaluations are feasible from an economic point

of view.

The effectively handling of uncertainties in simulation is only one challenge. Achieving

realistic distributions for the inputs and parameters of the model is just as demanding.

At this point, one can distinguish between two different cases. In the first case, the

distributions can be measured directly and with modest effort. During the production

of the windscreen wiper drive, geometric variations occur during manufacturing, and

these tolerances can be measured straight for each wiper drive. An adequately high

number of data points yield proper distributions for the inputs or parameters. In the

second case, those necessary measurements are not available for physical or economic

reasons. At the same time, it is of high interest to know what the distributions have to

look like. This stochastic information is necessary to have a good representation of the

reality at the output. This situation is one of the significant challenges for complex

engineering systems, and the present work addresses this issue.

The quality of the model approximation additionally depends on model parameters,

which are not varying, and the optimization of those values is similarly challenging.

The determination of the optimal model parameters is summarized in the literature by

the term parameter identification. In other words, the task implies the identification

of a parameter set that matches the simulation results with observations based on a

predefined metric as closely as possible. So far, the procedure is well known, and there

exists a lot of information in the literature. However, the application areas of the models

increase due to the stochastic consideration mentioned before, and this influences the
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parameter identification results. Another challenge associated with this procedure is the

selection of the measurement data for the metric. If there is no dedicated measurement

series for the identification, an optimal set of signals is needed, and an extension of

the known procedure is required to select the relevant data within the entire data

set. In summary, the stochastic extension addresses new requirements on parameter

identification in this setting.

As a final consideration, the measurement data poses a separate challenge concerning

the determination of parameter distributions. In most of the studies in the literature,

the validation of the methods under investigation uses only synthetic measurement

data. To show the general applicability and function, this is entirely sufficient. When

applying to a physical product, it is necessary to access the existing measurement series.

The windscreen wiper system provides a large amount of data from the development

and manufacturing stages, and these are capable of approximating the parameter

distributions. The difficulty resides in the fact that no references are available for the

validation of the parameter distributions themselves. Besides, the available measurement

setup is incapable of obtaining these values. Therefore, the validation needs appropriate

measurement data in this case.

1.2 Uncertainty Quantification

Uncertainty Quantification (UQ) is a multidisciplinary topic and lots of disciplines,

such as mathematics, statistics, computer science, and engineering, contribute to the

solution. Besides, UQ has a wide range of application cases. Considering the methods,

one can say in a strongly simplified way, that UQ offers an end-to-end investigation of

inputs and parameters with the outputs concerning their distributions. Additionally,

those methods can also be used to identify and study dependencies and correlations

within the system.

The literature distinguishes between two principal sources of uncertainty: Aleatoric

and epistemic uncertainties. The first category includes all irreducible uncertainties,

and they are responsible for the fact that the same experiment carries out slightly

different results. In the case of the windshield wiper motor, the load torque is a aleatoric

uncertainty because the wiper windshield contact varies due to unevenness and other

external influences such as airflows. Epistemic uncertainty is also known as systematic

uncertainty, and it describes variations that one can reduce by additional knowledge,

but this usually does not happen in practice. A typical case is that the simulation model

does not contain specific physical effects in detail for reasons of efficiency, and therefore
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Figure 1.1: Overview scheme of UQ.

variations occur. The measurement system causes another discrepancy. Regarding the

windshield wiper drive, a simple measuring device records the current and voltage, and

scattering occurs due to the low sampling rate.

There are two major classes of problems in uncertainty quantification. One of them

is the forward uncertainty propagation, where the distributions on the inputs and

parameters propagate through the simulation model and provide a statistical statement

about the outputs. The other class is the inverse uncertainty quantification, where

the related methods use measurement data to calibrate the input and parameter

distributions. Figure 1.1 shows a visualization of the interaction.

A common approach for the forward uncertainty propagation is the Monte Carlo

method. It is based on random realizations of the input or parameter data and requires

no modifications to the simulation model and to the solver. The board acceptance

of this methodology owes its simplicity in the application. For complex models with

a long simulation time, this approach is usually not useful and needs replacement

with more efficient methods. Part of this work is investigating new approaches to

increase the efficiency. A constraint in this context results from the requirement that no

changes to the model equations and the solution method are possible. This assumption

considerably restricts the choice of available methods, and at the same time, it increases

the applicability to complex models from an industrial point of view. In so-called

black-box models, only the inputs, parameters, and outputs are accessible. The solution

methods are already integrated and can just be manipulated externally to a limited

extent.
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Given some experimental measurement data of system outputs and results from

a corresponding simulation model, inverse uncertainty quantification assesses the

variance between the experiment and the numerical results and gives an estimate

on the input and parameter distributions of the model. This approximation of the

stochastic moments of the inputs and parameters from the measurements offers entirely

new possibilities for the industry. The focus of this work lies in the application and

validation of the method based on a real product with an independent test bench.

1.3 Objective and outline

The present work is interdisciplinary and deals with the fields of engineering science

and mathematics. The main focus is on the implementation of an inverse uncertainty

quantification method for a real application example from the industry. More precisely,

the estimation of the stochastic moments on the input and parameter side is the

main task and crucial for product development. In the literature, there are already

many theoretical investigations and possible extensions, which are practice-oriented.

From a scientific point of view, the challenge is the applicability of the mentioned

studies for a real application and thus building a bridge between science and industry.

The construction of a windshield wiper test bench enables the investigation and

validation of the inverse uncertainty quantification. This research includes studies on

obtaining probability function, efficiency considerations, and requirements for models

and measurements. One major obstacle is the creation of realistic measurement data

and the validation of the inverse uncertainty quantification results. In the field of

engineering science, this challenge is addressed in this thesis and shown using the test

bench. The primary emphasis in mathematics is on solving the inverse problem in an

efficient way. Based on current methods from the literature, proposed improvements

enable the fulfillment of prerequisites in reality. Besides, by coupling methods from

different areas, a more efficient calculation, and generic applicability are achieved.

This work offers three thematic areas, which easily link to the schematic overview

of UQ. In addition to the simulation model, the test bench is an additional central

element.

Chapter 2 introduces the underlying application that partially serves as a benchmark

in this study. The main element is an electric drive of a windshield wiper system, and

Section 2.1 motivates the challenges arising from this application scenario. Subsequently,

one examines the individual components of the simulation model in more detail and

discusses their modeling (see Section 2.2). In addition to the simulation, a real test
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bench helps to record measurement series. Besides a general overview, Section 2.3

contains additional information on the generation and post-processing of measurements.

In the further sections, one describes the parameter identification and validation of

the previously presented simulation model.

Chapter 3 focuses on forward propagation. First, one gives an overview of the available

methods and explains an accepted approach in detail. The focus is on a method from

the literature that promises an increase in efficiency compared to classical methods

for many problem classes (see Section 3.1). One introduces the so-called Polynomial

Chaos Expansion (PCE) procedure first through a simple application example in

Section 3.2 and basic efficiency studies show the performance. One can already derive

the requirements for the complex model and limitations of the methodology from the

simplified model. Afterward, one applies the algorithms on the test bench model, and

Section 3.3 explains the numerical results. Finally, Section 3.4 validates the numerical

results of the simulations with the measurement data from the test bench.

Based on the measurement series and the simulation model, Chapter 4 investigates

the backward propagation in more detail. The approximation of the stochastic moments

of the inputs and parameters from the measurements offers completely new possibilities

for the industry. The current state of the art helps to get an overview, and Section 4.1

gives an introduction to Bayesian inference. More precisely, one outlines the underlying

idea and discusses the Likelihood function in more detail. It describes the relationship

of the input and parameter distributions to the measurements, and its modeling is

explained further in Section 4.2. In the following, the modeling of the uncertain inputs

and parameters is considered (see Section 4.3), and one proposes method enhancements

to increase the efficiency of the investigations without the need to change the complexity

of the method applicability (see Section 4.4). Concluding, the numerical results are

presented in Section 4.5. These summaries also include a comparison of efficiency in

relation to the different methods.

Conclusions and perspectives are covered in Chapter 5.
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2
Model and test bench hardware

This chapter introduces the windscreen wiper system mentioned earlier, and the

included electric drive is the benchmark problem supporting this study. The overview

contains an initial description of how the electric drive works and it involves a detailed

consideration of the particular components and their functional relationships. In this

context, one considers the application cases and the associated requirements for the

product.

A simulation model exists for the system under consideration, and this chapter

describes its structure in more detail. The subsequent application of the simulation

model requires data, and the associated measurements arisse in the test bench hard-

ware. This chapter describes the design of the test bench, its functionality concerning

measurement data, and the connection to the model.

The electric drive is the central part of the test bench, and the design of the entire

setup allows reproducing realistic load scenarios. Furthermore, additional measuring

instruments ensure detailed observation quality of the physical system and the envi-

ronment parameters, such as temperatures. Based on the observations, one tests the

simulation model with reality and ensures model confidence.
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2.1 Windshield wiper drive

brush

shaft

connector

worm gear

winding

(rotor)

permanent magent

bearing

(stator)

commutator

Figure 2.1: Layout of a windshield wiper drive with its main parts.

The windscreen wiper system resides in the engine compartment and consists of a

drive unit, rods, and windscreen wipers. Instead of the entire windscreen wiper system,

one considers only the drive unit in this thesis. The Figure 2.1 provides a systematic

view, and it shows the central parts such as rotor, stator, brushes, commutator, and

windings. The drive is a direct-current (DC) motor with brushes which commutates

internally. In this type of construction investigated, the rotor is the moving part. It

rotates the shaft and thus delivers the mechanical power. The rotor carries conductors

through which the applied current flows and which interact with the magnetic field of

the fixed stator. In this case, permanent magnets are the cause of the magnetic field.

The interaction then generates the forces causing the shaft to rotate. To achieve a

constant motor torque, one uses a split ring device called a commutator, and it causes

the current to be reversed or zero at any point where the coil passes the level vertical

to the magnetic field. The brushes ensure the electrical contacts to the rotating ring,
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and the mechanical construction consists of spring-loaded carbon contacts. A worm

gear transmits the motor torque to a gear wheel, which connects to the wiper linkage.

When it rains, the windscreen wiper system helps to wipe the water from the

windscreen and thus actively contributes to driving safety. Reliability is therefore

essential, and high demands for tolerance limits and life cycle statements are needed.

From a large number of real application scenarios, one derives requirements and

appropriate tests. The considered scenarios represent a particular load case of the

motor, and one examines them individually. Looking at the input space of the system,

each of those load cases can be assigned an area, and these areas have little or no overlap

with each other. This classification initially has a weak connection with uncertain

variables and is instead an analysis by a test manager. He is responsible for checking

the requirements, defining the scenarios, and the necessary tests. Depending on the

initial situation, the effect of the corresponding uncertainties changes. The following

scenarios present a significant part of the challenges in combination with the involved

and varying parameters.

A typical operating range of the windscreen wiper is wiping on a wet surface in

combination with a low driving speed of the car. The torque at the drive is modest

and quite constant over time. If one changes the setting insignificantly and increases

the driving speed, the torque at the drive grows considerably. The air streaming past

exerts extraordinary forces on the wiper system, and due to various influences, the

airflow can vary exceedingly in this scenario, which also impacts the applied motor

torque. If the water does not entirely cover the windscreen, one can observe a similar

behavior even at low speeds. In this case, the wiper blades do not glide steadily, and

friction forces occur between them and the windscreen. Again, one can expect that

the torque varies considerably depending on the moistening. Regardless of the load

scenarios, it is advisable to consider the load torque as an uncertain input.

In addition to the applied load torque, the operating voltage is also a significant

factor influencing the desired operation of the wiper drive, and the presented scenarios

assume that the operating voltage is as constant as possible. The present vehicle models

contain a broad spectrum of energy consumers that lead to small variations in the

supply voltage of the electric drive. Furthermore, some car manufacturers increase

the on-board voltage if the outside temperature sinks below a specific value so that

all devices continue to function faultlessly even at quite cold temperatures. Finally,

the supply voltage is another uncertain input, but for simplicity, one excludes the

last-mentioned scenario in the consideration.
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The two uncertain parameters presented here are strongly linked to the scenarios

and, detached from them, the investigation also includes uncertainties from production.

An example is a winding resistance, which depends on the length of the wire used in

the motor. The deviation occurs in the manufacturing process, and one assumes that

the winding resistance varies in the mentioned scenarios.

In summary, the uncertain parameters to be considered are the load torque, the

voltage, and the winding resistance. For further considerations, one picks a scenario that

allows the product to work in a critical range. A confident statement is, of course, very

significant in that case. The situation in which the water does not cover the windshield

completely offers precisely this critical consideration, and an essential requirement is

that the wiping performance remains constant despite all the different effects. From a

test manager’s perspective, the condition arises that the drive must deliver a constant

speed regardless of any uncertainties. The corresponding test case represents that one

passes it as long as the motor speed does not drop below a predefined limit value. This

statement must be valid for every combination of the uncertain parameters mentioned

above.

2.2 Simulation model

The simulation model of the electric drive divides into three schematic parts, which

Figure 2.2 illustrates. In the following work, one treats the model as a black-box, and

therefore one only uses the relationships of the inputs u(t), the parameters p and the

outputs y(t). Internal states x(t) that are not accessible outside the system, represent

the dependencies of the electrical, mechanical, and thermal parts. The model presented

is provided by the Electric Drives division of Robert Bosch GmbH.

The inputs of the simulation model are the voltage U(t) and the load torque τload(t).

The outputs are the motor speed ω(t), the current I(t), and several temperatures

[Ti]i=1,...,4(t) which are explained in detail in Subsection 2.2.3. The global model M
can be defined as:

y(t) = [ω(t), I(t), [Ti]i=1,...,4(t)]T =M(t,p,u(t)), u(t) = [U(t), τload(t)]T. (2.1)

The model parameters p which have to be obtained by identification, are highlighted

separately in the following by use of the subindex ◦p. The following three subsections use

the nomenclature introduced here and provide detailed information on the modeling.
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thermal part

u(t)
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Figure 2.2: Schematic view of the electric drive model with its parts and interconnec-

tions.

2.2.1 Electrical model equations

The electrical part of the simulation model is based on an ordinary differential equation

[68] and depends on the input voltage U(t). The time derivative of the current I(t)

expresses as follows:

d

dt
I(t) =

1

Lp

[
−RI(t)− ce(t)ω(t) +

(
U(t)− Udrop

)]
, (2.2)

where the inductance Lp is a model parameter. The length of the wire and the

temperature of the coil Tcoil influence the winding resistance R. Since this depends on

the temperature-dependent material constant for a conductor, it grows with increasing

temperature. Therefore, one assumes that the resistance adjusts linearly during the

temperature change:

R = Rp

[
1 + α(Tcoil − Tamb)

]
.

The linear temperature coefficient of the resistor is represented by α, one uses the

ambient temperature Tamb as a reference, and Rp represents the model parameter of

the winding resistance at the reference temperature Tamb.

The product of the so-called back electromotive force constant ce and the motor

speed ω(t) results in a voltage that opposes the change in current which induced it.
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The temperature of the magnet Tmagnet influences this. Instead of a linear approach,

one chooses a polynomial approximation:

ce(t) =

6∑
i=0

 6∑
j=0

b(i,j)T
j
magnet

 Ii(t),

where the coefficients bi,j are specified by an internal layout tool and the model

parameter cep replaces the first element b(0,0). In this approximation, one assigns the

sum of the index i to the current I and the sum of the index j to the temperature

Tmagnet.

The voltage drop Udrop depends on the wire used and in the given simulation model,

one assumes a polynomial approximation with corresponding coefficients ai:

Udrop = sgn
(
I(t)

) 6∑
i=0

ai|I(t)i|.

The coefficients are calculated from an internal database, physical values such as wire

length, measurements, and expert knowledge. The model parameters for this subsection

can be summarized as:

pelec = [Rp, Lp, cep ]T. (2.3)

2.2.2 Mechanical model equations

The mechanical part of the electric drive consists of the motor part and a worm gear.

The ordinary differential equation depends on the input load torque τload(t) and one

can write the time derivative of the motor speed ω(t) as follows [68]:

d

dt
ω(t) =

1

Jp

[(
cmI(t)− τloss − τfric

)
η − τload(t)ig

]
. (2.4)

The model parameter Jp expresses the total inertia of the motor armature, and the

gear ratio ig is a constant value proportional to the worm gear ratio. In this case,

the torque constant cm is equal to the back electromotive force constant ce, so there

is a functional expression that describes how the motor converts current to torque

and angular velocity. In the following, one uses the same model parameter cmp . The

armature losses based on the hysteresis loss τhysteresis and the eddy current loss τecurrent

sum up to:

τloss =
(
τhysteresis

(
I(t), Tmagnet

)
+ τecurrent

(
I(t), Tmagnet

))
εiron,p,
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which can be adjusted by the model parameter εiron,p. Similar to the torque constant,

this function also depends on the temperature of the magnet Tmagnet.

The mechanical friction losses can be explained below:

τfric = τfric,air

(
ω(t)

)
+ τfric,motor,

where the air friction loss τfric,air depends on the motor speed and the losses of the

motor τfric,motor can be further detailed:

τfric,motor = τfric,bearingA(TbearingA, µA,p, η)+

τfric,bearingB(TbearingB, µB,p, η)+

τfric,commutator(Tcommutator).

(2.5)

In the following formulas, the letter ”A” relates to the bearing between the worm and

the commutator, and the letter ”B” relates to the bearing on the pole housing. Both

friction losses for the bearings depend on their temperature TbearingA, TbearingB, and the

gear meshing efficiency η. The model parameters µA,p and µA,p influence each loss. The

motor brushes cause the loss of the commutator, and it depends on the temperature of

the commutator Tcommutator. The relation is modeled using a lookup table based on

measurement data.

Looking at the Equation (2.4), the gear meshing efficiency η is a central value for

the worm gear and is calculated as [61]:

η =
tan(γ)

tan
(
γ + arctan

(
µworm(Tworm)εworm,p

cos(α0)

)) ,
where γ is the lead angle of the worm and α0 expresses the pressure angle. The friction

coefficient µworm depends on the worm temperature Tworm, and one also models it using

a lookup table based on measured data. The parameter εworm,p adjusts the correlation.

The model parameters for this subsection can be combined to:

pmech = [Jp, cmp , εiron,p, εworm,p, µA,p, µB,p]T, (2.6)

where the torque constant cmp is equal to the introduced parameter cep in Equation (2.3)

and both are merged with the parameter cm,p.

2.2.3 Thermal model equations

Several differential-algebraic equations represent the thermal model of the electric drive.

In this subsection, one focuses on a general overview of the subparts, which show the

calculation of the different temperatures. One exemplary shows the interconnection
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Figure 2.3: Systematic overview of the heat model with its subparts and the resulting

temperatures.

with the subsections 2.2.1 and 2.2.2 based on the commutator. Figure 2.3 shows a

schematic representation of the entire thermal system. Each square represents a subpart

of the model, and the arrows show the interaction between them. If one assumes that the

corresponding submodels are physically connected, then the conductivity corresponds

to such a connection. More precisely, the gear housing and the gear wheel have an

interconnection by the gear housing shaft. Convection is another possibility of energy

exchange, and the connection between the brush holder and frame is one example.

Finally, circles represent the calculated temperatures.

The calculation of the commutator temperature Tcommutator requires the evolved

power Pcommutator related to the friction caused by the brushes. With τcommutator from

Equation (2.5) the power can be calculated as follows:

Pcommutator = ω(t)τfric,commutator+

I2(t)RCo

(
1 + ρCo(Tcommutator − Tamb)

)
,

where the resistance of the commutator is defined as RCo and the specific temperature

coefficient ρCo is used.
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The model parameters from this subsection are not listed in detail as a vector

because they are only briefly needed for parameter identification. If required, the

thermal parameters are given below as pther, and these can be, for example, temperature

coefficients for the materials used or heat transfer coefficients.

2.3 Test bench hardware

To obtain measurement data quickly, one often applies noise to existing simulation

results and then uses them. To get more realistic data, one builds up a test bench

hardware. The main advantage of this configuration is the circumstance that one can

predefine input and parameter uncertainties. Based on these distributions and the

given test bench hardware, one can automatically perform measurement runs. These

data enable the validation of the used methods.

The resulting measurement data and the test bench, in general, are very similar to

the data and structures of the so-called endurance testers in the business unit. On

these test benches, one checks electric drives under laboratory conditions for wear

and other requirements. Moreover, there are test benches that one can use to carry

out end-of-line measurements. To do so, one instantly clamps the drives from series

production to the test hardware and examines their correct operation. For both types

of tests, one has to place the drive manually. The test bench presented in this section is

capable of varying various physical parameters without having to replace the electrical

drive. Also, more sensors were used to accurately measure the system properties.

The following subsection introduces the test bench hardware and explains the individ-

ual requirements. Furthermore, one discusses the method for generating measurement

data and its challenges. Based on the previous Section 2.2, one proposes a parameter

identification and a validation for a measurement set.

2.3.1 General overview

As already mentioned, the unique feature of the hardware is the ability to define

uncertain sources that affect the characteristics of the electric drive. One can perform

this procedure automatically without replacing the drive with another, and obtain

many measurements based on predefined parameter distributions. It is not necessary

to recalibrate the measurement system for each run. Figure 2.4 shows a simplified

illustration of the test bench hardware.

The core element is the electric drive marked with the Number 1©. The frame mounts

the motor with the worm gear, and the power source supplies the drive with electricity.

17



1

2

3

4

6

5 5

Figure 2.4: Illustration of the test bench hardware [32].

It can handle high current peaks and has a programmable interface. More precisely,

a control signal triggers the voltage U settings. Besides, one can adjust the internal

resistance R of the power supply, and this emulates a varying winding resistance. In

this case, one assumes that a series connection between the internal resistance and the

winding exists, so there is not much difference in the applied variance.

Temperature sensors are attached to the drive to check the thermal part of the

simulation model. The temperatures of the carbon brush at the negative pole Tbrush,

the magnet Tmagnet, and the worm Tworm are measured using a type K thermocouple

installed with an insulating adhesive. An additional infrared sensor is attached to the

pole pot so that one can measure the winding temperature Twinding contactless.

One uses a metal bellows coupling (see Number 5©) to connect the electric drive shaft

with the other components, and this construction prevents additional transmission

of vertical and tangential forces. The motor speed ω and the torque τ are measured

with the sensor illustrated with Number 2©. This device can process the torque signal

without contact. An integrated speed encoder provides two signals with a resolution of

360 pulses per revolution.

Another metal bellow coupling connects the shaft of the sensor with the magnetic

powder brake (see Number 3©). With this layout, different load scenarios can be

displayed without changing the test bench. The load torque τload can be adjusted
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via a control signal, and the specification of the magnetic powder brake specifies the

minimum torque.

An interface box connects all control and measurement signals, and it pre-processes

the data. A dSpace box [19] establishes the connection to the computer and enables the

interaction with the software. The battery (see Number 4©) in the figure is a symbol

for the used power supply.

2.3.2 Obtaining measurement data

In the further course of the work, all displayed measurement signals and used values

are normalized. One divides all affected data and variables by a predefined maximum

value. The involved results can be identified by the unit-less representation.

In the following, a measurement run is recorded to get an impression of the data.

One assumes that the electric drive is switched on at time tstart = 0s. The signals of

the current I(t) and the motor speed ω(t) are recorded until the time frame ∆t = 5s is

reached. After the time tend = tstart + ∆t the measurement is stopped, and the electric

drive is switched off, which means that the voltage is set to zero. The input parameters

are assumed to be constant, and the following values are used for the voltage U = 0.9,

the load torque τload = 0.055, and the resistance R = 0.0. Figure 2.5 shows the obtained

data. The signal values are normalized as described above.

Looking at the current signal over time I(t) (see Figure 2.5a), one can see the startup

behavior, which is represented by a large peak at the beginning. Then the current

keeps a constant level, and there one can see that the signal has a huge influence of

measurement noise. The motor speed over time ω(t) (see Figure 2.5b) shows a short

deceleration before the motor starts rotating with increasing speed. The occurrence

of this phenomenon is caused by the fact that the measurement unit of the motor

speed has a short time delay since the speed is calculated with a value of the last time

step. The signal approaches the so-called stationary state in a short time. This means

that the motor speed remains at a certain constant level ωsteady. Between t > 0.1s

and t < 1.5s there are small oscillations around this stationary state to observe. An

obvious explanation can be given by tracking the real load torque τload signal (see

Figure 2.5c). It can be seen that the magnetic powder brake used is not capable of

delivering the given constant torque trajectory. In practice, the adjusted value is not

reached during t < 1.0s. When the electric drive starts moving, the discs inside the

brake rotate evenly. The powder between the discs and the coils of the brake is oriented

to the applied magnetic force. This starting process of the powder distribution leads

to a delay, especially at low speed.
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(b) Normalized motor speed signal over time.

0.0 1.0 2.0 3.0 4.0 5.0
0.0

0.1

0.2

time t [s]

τ l
o
a
d

[-
]

(c) Normalized load torque signal over time.

Figure 2.5: Test bench hardware measurements of an electric drive during the switch-on

process.
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Figure 2.6: Schematic view on the measurement chain.

In the following, one evaluates the current signal in detail, since the measurement

noise is far greater than one might initially assume. Therefore, one analyses the effect,

and suggests methods for reduction. Based on this, an overall investigation of the

test bench hardware is carried out, and a motor characteristic of the electric drive is

recorded. With the help of this characteristic, a large part of the dynamic range of

the motor can be investigated, and this is used in practice to evaluate the quality of

electric motors.

Measurement noise of current signal

Figure 2.6 shows the schematic dependencies of the individual components in such a

way that a better overview of the measurement chain for the current signal is achieved.

The electric drive is directly connected to the power supply, which has a built-in

measuring unit for the current. For a detailed analysis, an additional measuring device

is attached to the connection between the power source and the electric drive. For this

task, a current clamp is used, which makes it possible to measure the current in a wire

without interrupting the connection. In this configuration, the measurement of the

signal is recorded by an oscilloscope. The sampling rate of the digital instrument used

is 1GS/s, and therefore a time step of 1ns can be resolved. In addition, the internal

measuring device of the power supply is connected to the interface box and transmitted

to the PC via the dSpace box [19].

The background noise of the measuring instrument is obtained by using the current

clamp. In this study, the power supply is turned on, and the electric drive is connected

to it. The voltage U is set to zero, and one records a measurement for the background
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(a) Signal with all measuring instruments switched off with the exception of power supply.
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(b) Signal with all measurement devices switched on.

Figure 2.7: Measurement signal of the current I(t) recorded with a current clamp. In

this test scenario, the supply voltage of the electric drive is set to zero.

noise, which one accepts as a reference. Figure 2.4 shows a snapshot of the total signal,

and one can observe that the effect is quite small. For comparison purposes, a noise

measure Īnoise is defined as the distance between the minimum and maximum value of

the signal I(t). If this measure is applied to the basis value, it is given:

Īnoise,basis = 0.002.

After the reference data for the measurement instruments have been obtained, a

second measurement is recorded. The difference is that all devices of the test bench

hardware are switched on, and they are in the operating mode. The recorded signal
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is shown in Figure 2.7b, and periodic peaks of different amplitude can be monitored.

The predefined noise measure can be quantified as:

Īnoise = 0.056,

and compared to the reference Īnoise,basis, it is more than 25 times bigger. The four

large peaks cause the largest contribution to the recorded noise. A detailed analysis

shows that the measurement chain is not technically decoupled, and the dSpace device

is therefore responsible for the large noise contribution. This can easily be seen in

Figure 2.8a, where only the dSpace device is turned on. Thus, this equipment is essential

for the transmission of the signals to the computer, and the hardware decoupling is

not appropriate for cost reasons. A software-based filter is suggested to eliminate the

given peaks. For deep insight, a fast Fourier transformation [10, 52] is used to obtain a

frequency diagram (see Figure 2.8b).

Based on this visualization, two large peaks around 3 · 107Hz can be observed and

mapped to the disturbance of the dSpace hardware. In this work, a Butterworth low

pass filter [12, 70, 69] is proposed for noise reduction. The infinite impulse response

(IIR) filter used can be described as follows:

y[n] =
1

a0

 Pf∑
i=0

bix[n− i]−
Qf∑
j=1

ajy[n− j]

 ,

where x[n] is the input and y[n] is the output. The feedback filter coefficients are

described as aj with order Qf and the feedforward filter coefficients as bi with order Pf .

For the design of the coefficients aj, bi a Butterworth filter of second order with the

sampling rate fs = 1 · 109Hz and the cut-off frequency fcut = 2 · 107Hz is used and the

coefficients result:

a = [1.0000,−1.8227, 0.8372],

b = [0.0036, 0.0072, 0.0036].

The filter realization can be applied to the measurement signal of the current. As

mentioned at the beginning of this subsection, an oscilloscope was used to record the

detailed measurement data. In general, the signals are acquired by the power supply’s

internal current measuring device. Data acquisition is performed with a sampling

time of ts = 0.0001s, which corresponds to a sampling rate of fs = 1 · 103Hz. Using

the Nyquist-Shannon sampling theorem [38] shows that perfect reconstruction of a

band-limited signal is guaranteed when the frequency is less than or equal to fs/2. This

means that the resolution of the measurement unit is not detailed enough to capture
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(a) Measurement signal of the current I(t) over time.
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(b) Fast Fourier transformation based on the given measurement signal.

Figure 2.8: This test scenario covers the case where only the dSpace device is powered

and all others are turned off.
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the noise phenomenon described. Otherwise, the influential frequency band can be

determined. An exemplary calculation could be to assume a measured motor speed

ωmax at the gearing, and thus the motor speed ωmotor equals igωmax. The armature of

the motor has L coils, and there is the same number of commutations per revolution.

The commutation frequency fcomm can be calculated by:

fcomm =
ωmotor

60
L,

that can be used to find an upper limit for the influential frequency band. In this

setting, a cutoff frequency of fcut = 6 · 102Hz is suggested and Figure 2.9 shows the

result. Compared to the previous signal path, the noise is significantly reduced, and

in the following, the presented filter is applied to the current measurements as a

post-processing step.

Identification of the motor characteristics

The motor characteristics contain the essential information of a DC permanent magnet

motor. This part focuses on the torque-speed and the torque-current curve recorded

under a constant operating voltage. The electric drive, mounted on the test bench

hardware, was previously tested on another test bench, which one uses for end-of-

line measurements. Figure 2.10 shows the results, and one achieves the properties

by incrementally increasing the load torque τload, and acquiring the quasi-stationary

values of armature current I, and motor speed ω.

The so-called mechanical characteristic (see Figure 2.10a) shows the dependence

between the load torque τload and the motor speed ω. In short, there is a compromise

between how fast the electric drive can accelerate and how much torque it can deliver.

The extreme points are, therefore, of particular interest: The motor speed ωnl without

a load on the shaft, and the stall torque τstall where the motor reaches the maximum

load while the shaft is no longer rotating.

Figure 2.10b represents the electrical characteristic and the maximum value of

the motor current Imax. If the magnetic saturation of the field poles is reached, the

dependence of the current on the torque is linear.

Based on the characteristics shown, the same test is recorded with the test bench

hardware and the results are shown in Figure 2.11.

Both characteristics are comparable to the measurement with the standard test

bench hardware from the production line. In this measurement, the motor was not

operated up to the stall torque. This is partly because the installed brake has a lower

nominal load than the motor under investigation. Besides, the magnetic powder brake
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(a) Normalized current signal over time.
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(b) Normalized motor speed signal over time.
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(c) Normalized load torque signal over time.

Figure 2.9: Test bench hardware measurements of a electric drive during the switch-on

process with applied filter approach.
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(a) Mechanical motor characteristic.
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(b) Electrical motor characteristic.

Figure 2.10: Obtained motor characteristics based on test bench hardware from pro-

duction line.
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(a) Mechanical motor characteristic.
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(b) Electrical motor characteristic.

Figure 2.11: Obtained motor characteristic with U = 0.84 by test bench hardware.
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(a) Mechanical motor characteristic.
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(b) Electrical motor characteristic.

Figure 2.12: Obtained motor characteristic with U = 0.375 by test bench hardware.

does not block reliably in small speed ranges. This can be indicated if the motor

is operated with reduced power. Looking at Figure 2.12, one can observe that the

characteristic shows oscillations in the middle range of the applied load torque.

With several load torque values, the electric drive also stimulates the natural frequency

of the test bench hardware, as shown in the torque-speed curve. Fortunately, the natural

frequency is above the typical load scenarios for the electric drive used. Nevertheless,

one has to check the recorded measurements for resonance. Sometimes a resonance may

occur, and this happens when the brake powder is compacted, and a corrupt torque

load is applied for a short time.

2.3.3 Recording a measurement series

Collecting more than one measurement run requires the comparability of different

experiments. Based on the motivation, the test bench hardware is built to reproduce

data series from end-of-line measurements. Therefore, the recording of the data must

meet certain conditions, and the measurements should be stored correspondingly. In

the following, the previous application case of acceleration behavior is used to obtain

the measurement series. One sets the time frame to ∆t = 5s, such that the data covers

the start process and a large part of the stationary behavior.

However, it is relatively easy to see and argue that sequential operations of the

motor generates thermal power and heats the electric drive. Concerning reproducibility,

one should perform each measurement run under consistent boundary conditions. The
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Figure 2.13: Temperature profile for the heating and cooling phase of the electric drive.

The signals are recorded with the test bench hardware.

heating of the motor affects the quality of the data set, and one addresses this issue by

analyzing the thermal development in detail.

An initial overview is obtained by operating the drive for one hour with the parameter

setting, which is given in the following. This means that the voltage U = 0.9, the load

torque τload = 0.055, and the resistance R = 0.0 are constant and the temperature

profiles of the brush Tbrush, the magnet Tmagnet, the winding Twinding, and the screw

Tscrew are measured (see Figure 2.13). At this point, it should be mentioned that the

resistance parameter of the test bench is additive to the winding resistance of the

motor. Looking at the figure, one can see at the beginning of the heating phase and

additionally the cooling phase over one hour. It can be assumed that the maximum

temperature values have not yet been reached, but that a convergence-like behavior can

be observed. From this measurement series, a limited range based on each stationary

level is given for each temperature:

Tbrush,valid ∈ [Tbrush,stat ± 0.009],

Tmagnet,valid ∈ [Tmagnet,stat ± 0.005],

Twinding,valid ∈ [Twinding,stat ± 0.005],

Tworm,valid ∈ [Tworm,stat ± 0.014].

(2.7)

The measurements in the specified range can be recorded by continuously monitoring

the temperature levels. One has to perform a warm-up sequence beforehand. The given

dynamics of the cooling phase should be used to determine a suitable waiting time

between the recording of the runs.
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The following introduces an algorithm that allows a series of measurements with

parameter variations of the supply voltage U , the load moment τload, and the resistance

R to be automatically recorded. One assumes that one or more of these parameters

are uncertain and vary based on a continuous probability distribution. In this setting,

Gaussian distributions are selected to describe the predefined variations:

Ureal = N (µU, σU),

τload,real = N (µτ , στ ),

Rreal = N (µR, σR).

Sample pairs for the test bench hardware can then be drawn from the assumed real

distributions as follows:

(U stb, τ
s
load,tb, R

s
tb) ∈ (Ureal, τload,real, Rreal), s = 1, . . . , S,

These points can be used to start the measurement algorithm. Before triggering

a recording, all four temperatures T◦,meas(t) must be within the valid set given by

Equation (2.7). If one or more temperature values are below the valid range, each

uncertain parameter is set to its mean value (Utb, τload,tb, Rtb) ∈ (µU, µtau, µR) and

the electric drive is turned on. During this warm-up period, the temperatures are

continuously monitored. When all conditions are met, the motor is stopped for a short

time, and a recording of the signals is initiated.

A measurement s starts at the time ts0 and records the time response of the test

bench signals. After ∆t, the recording is finished. The electric drive and the magnetic

powder brake are then switched off. The resulting data is stored as measurement run

s. It contains signal data of the voltage U smeas(t), the current Ismeas(t), the motor speed

ωsmeas(t), the torque load τ sload,meas(t), and the four temperatures T s◦,meas(t). All sensor

values use the same sampling rate, and therefore a global time vector ts is appended.

This procedure is repeated S times, and between these measurements, the test bench

rests for a few seconds. Depending on the temperature level, another warm-up phase,

or, more likely, a cool-down phase may be required before starting the next s + 1

measurement run to meet the thermal requirements.

Based on this approach, one generates a measurement series with S = 100 runs,

and one obtains a good overview of the resulting data by considering the mean

and standard deviation of the output signals. This statistical information about an

exemplary measurement ymeas(t) can be obtained for each time step t as follows:

µ(ymeas)(t) = 1
S

∑S
s=1 y

s
meas(t),

σ(ymeas)(t) =
√

1
S

∑S
s=1 (ysmeas(t)− µ (ymeas) (t))2, t ∈ [ts0, t

s
0 + ∆t].
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This calculation is illustrated in Figure 2.14 and the statistical values of the winding

temperature Twinding,meas, the current Imeas and the motor speed ωmeas are given. By

looking at Figure 2.14a, the stationary level can be observed to be constant over

time, and the standard deviation of the signal is within the valid temperature range

Tworm,valid. More precisely, the extreme values over time must be within the specified

range. This requirement is fulfilled, but not shown in the figure. For the given parameter

uncertainties, one can expect that the output signals also show deviations in direct

comparison to each other which can be observed in the figures 2.14b and 2.14c. It

should also be noted that the signals are filtered with the Butterworth filter described

in the last subsection. The signal variations are primarily caused by the parameter

variations, and the measurement noise has only a small contribution.

2.3.4 Parameter identification

The simulation model described in Section 2.2 is the mathematical description of

several variants of the electric drive. One has to adjust the model to the test bench

motor, and this is called parameter identification. Much detailed information on this

topic is available, e.g., [38, 45]. The following subsection is not intended to give a

comprehensive survey of this topic, but rather an overview of the model parameters

and the data used for identification and validation. Also, the test bench hardware

slightly influences the characteristics of the electric drive, so one has to make small

adjustments to the simulation model.

To obtain the optimal model parameters, one assumes that a discrete process f

exists that can perfectly reproduce the behavior of the electric motor. The most naive

mathematical representation for one output r of this relationship is:

yr(tk) = f(k,θ,u(tk)),

where the optimal parameters of the model read as:

θT = (θ1, θ2, . . . , θN ) =
(
pelecT

,pmechT
,ptherT

)
.

Measurements enable a comparison with reality, and this can be expressed as

ymeas(tk). The measurement of the optimal process leads to error influences and

this corresponds to the optimal assumed process yr(tk) with additive errors η(tk) at

the outputs. One can easily adapt the model of the motor derived in the Section 2.2 to

the discrete process representation as follows:

y(tk) = M(tk, θ̄,u(tk)), (2.8)
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Figure 2.14: Statistical information on the measurement series for selected signals over

time.
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where the unknown parameters are denoted as θ̄ = (θ̄1, θ̄2, . . . , θ̄N )T.

The basic task of parameter estimation is to find the parameter set θ̄ that comes

close to the optimal parameter set θ, with K observations based on the measurements

ymeas(tk). A common approach is to introduce the observation errors between the

model and the simulation:

eI(tk) = yI(tk)− yI,meas(tk),

eω(tk) = yω(tk)− yω,meas(tk),
(2.9)

and define a cost function based on the sum of the square errors:

E =

K−1∑
k=0

(eI(tk))
2 +

K−1∑
k=0

(eω(tk))
2 . (2.10)

In general, it is necessary to weight the observation errors due to different scales, but

in this case, one already receives normalized output signals. The advantage of using

such a quadratic cost function is the simplicity associated with the computational

effort. Assuming that the additional disturbances are Gaussian noise, the cost function

E gives the best estimates of the error variances [38]. A disadvantage could be that

large outliers have a strong influence on the total function value, and it is recommended

to visualize the error behavior over time.

In Subsection 2.3.3 the scenario of switching on the electric drive is measured, and

one can theoretically model this behavior by a naive jumping of the input signals from

the idle to the desired state. This is shown in Figure 2.15 for the voltage U(t) and the

load torque τload(t). The dashed line represents the jumping behavior for both signals,

and the solid line shows the measured values. However, this simple approach does not

sufficiently model the starting behavior.

Considering Figure 2.15a, one sees that the power supply cannot provide the required

constant voltage immediately, and it has inertia at the beginning. This mismatch

leads to a considerable error between the measurement and the simulation output, and

therefore one proposes an appropriate model. In this case, the timing behavior of the

voltage corresponds to a PT1 response of a first-order delay element. If the input signal

of this element is a step response, the output behavior has a specific initial slope and

approaches asymptotically the final value [46]. One can model the voltage Umodel(t)

with the following ordinary differential equation:

TUU̇model(t) + Umodel(t) = KUUtbH(t),

Umodel(t0) = 0, t ∈ [t0, t0 + ∆t],
(2.11)
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the inputs and the dashed line shows the output of the model-based

approximation. The dashed line indicates the unsatisfactory behavior of

the jump approach previously used.
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where the time constant is defined as TU, the gain factor KU is set to 1, and H(t) is

the Heaviside Step function:

H(t) =

0 t ≤ t0,

1 t > t0.

The constant voltage is denoted as Utb, and the time response is shown in Figure 2.15a.

One observes the similar performance of the startup behavior for the load torque

in Figure 2.15b. An unusual characteristic is that the minimum load torque τload,min

of the magnetic powder brake is higher than zero due to constructive reasons. The

ordinary differential equation can be considered as:

Tτ τ̇load,model(t) + τload,model(t) = Kττload,tbH(t),

τload,model(t0) = τload,min, t ∈ [t0, t0 + ∆t],
(2.12)

where the time constant Tτ and the gain factor Kτ are as defined above. The difference

is the initial state set to the minimum load moment constant. The model τload,model

can approximate the starting behavior well, as shown in Figure 2.15b.

The input models in the equations (2.11) and (2.12) can then be used to obtain a

realistic and common signal characteristic that is matched to the test bench hardware.

The model of the motor in Equation (2.8) can, therefore, be extended as follows:

[yI(tk), yω(tk)]
T = M(tk, θ̄, [Umodel(tk), τload,model(tk)]

T).

The model parameters θ̄ are identified with a MATLAB [65] package called ”lsqnonlin”,

which can be categorized as a subspace trust region method. It is based on an internally-

reflecting Newton method, and details can be found in [15] and [16]. The cost function

is defined as described in Equation (2.10) and a measurement run is used for the

observed data ymeas.

2.3.5 Model confidence

The procedure described above provides a parameterized simulation model that can

predict the quantities of interest realistically for the input space of the used measurement.

The assumed uncertainty on the input space leads to a broad operating range, and

thus, a functional test is beneficial for the entire measurement series. In this case, the

model is treated as a black-box, and no functional relationships within the model are

investigated. With this method, it is not possible to consider all conceivable input-

output connections. Nevertheless, the model confidence can be increased by using all
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available measurement runs. It should be noted that the number of correct tests makes

no statement about the validity of the model.

The function test is performed using the complete measurement series from the

last Subsection 2.3.3, and the input-output connection is evaluated with a stochastic

measure. A good overview can be achieved with the error measures in Equation (2.9).

For each measurement s a corresponding parameter and input set (U stb, τ
s
load,tb, R

s
tb) is

known to perform a simulation. The mean and standard deviation of the eI error can

be calculated as follows:

µ(eI)(t) = 1
S

∑S
s=1 yI(t, U

s
tb, τ

s
load,tb, R

s
tb)− yI,meas(t),

σ(eI)(t) =

√
1
S

∑S
s=1

(
yI(t, U stb, τ

s
load,tb, R

s
tb)− yI,meas(t)− µ (eI) (t)

)2
,

with t ∈ [ts0, t
s
0 + ∆t]. This can also be applied in a similar way to the eω error. The

results are visualized in Figure 2.16.

Looking at the mean value of the error for the current eI, one sees that the model

provides an excellent approximation of the electric motor over the entire simulation

time. Only at the beginning, one can observe a slightly bigger error. This mismatch is

at least partly due to a reduced sampling of the measurement data. The error band

is very close to the mean value, and one can, therefore, assume that the model can

also provide a perfect approximation for the extended test space. This hypothesis is

supported by the extreme values shown. There are no significant outliers that could

indicate implausible modeling of the quantity of interest I.

In contrast to the current, the motor speed error curve eω(t) initially shows a bias

that drops to zero after about two seconds, and this is because the load moment builds

up slowly over time. Figure 2.15b shows that it remains stationary after two seconds,

and this means that one can only represent the variance of the load moments in the

measurement series to a limited extent by the model. Concerning the current, a small

standard deviation of the error can also be detected, which leads to a good approximation

with the simulation model, especially in the steady-state range. The strong deviations

of the extreme values are conspicuous, and this can be explained by looking at the

individual measurements. Here, the motor speed may oscillate harmoniously due to

certain parameter combinations. As already described, this phenomenon is caused by the

magnetic powder brake. In the further course of this work, one excludes measurements

with oscillating behavior from the overall series.
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3
Forward propagation of uncertainties

The previous Chapter 2 describes the test bench and the corresponding simulation

model in detail. This chapter builds on the presented model and focuses on propagating

the uncertain parameters through the simulation. Analogous to test bench hardware,

one assumes distributions for those parameters. In practice, one uses methods that

encapsulate the actual simulation environment and call it several times in a loop.

This thesis compares those methods with new approaches that primarily contribute to

efficiency improvements. A fast and accurate calculation of the uncertainties at the

model output is later the basis for the backward propagation. Beforehand, one uses

the test bench hardware to validate the obtained simulation result.

It is common to use Monte Carlo methods [13, 23, 49] to generate samples from

a given probability distribution, and therefore, one can evaluate the model without

modifying the solver or the problem description. The huge advantage is to use the

deterministic simulation environment to get a statement about the stochastic output

behavior of the model based on the parameter distribution. The simulation is thus

carried out several times at different parameter points, and the stochastic evaluation of

the individual simulation results is related to the law of large numbers: The simulation

results from a high number of random parameter samples should be close to the

arithmetic average [4, 39]. Adding additional evaluations then increases the quality of
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the stochastic moments, but this also increases the total execution time. Especially

when using computing-intensive models, the calculation times limit the maximum

number of evaluations.

The simulation tasks can be executed in parallel to solve this problem since the

individual model evaluations in the Monte Carlo approach are independent. Extensions

like quasi-Monte Carlo [13] or Latin Hypercube sampling [36, 34] achieve further

improvements. Those methods perform better or worse, depending on the problem

[53, 57]. Nevertheless, dealing with simulation models that have a high computation time

is challenging, and one possible option is to simplify the original models. As mentioned

earlier, one requirement from an industry perspective is to allow the use of black-box

models, which makes standard techniques for model order reduction challenging to

apply. Instead, the focus is on so-called surrogate models, which approximate the

behavior of the simulation model as closely as possible, and at the same time, their

evaluation is, in general, numerically faster. In this context, one assumes uncertain

parameters and computes the surrogate model for those conditions. An approach is to

use the response surface methodology [9], and the basic idea is to start with a series of

design experiments to achieve an optimal result. Another familiar concept is the use of

Gaussian processes [1, 54] to fit a surrogate model.

If one considers a model with the general connection between input u(t) and output

y(t), one can represent it by the following deterministic assignment:

y(t) =M(t,p,u(t)), t ∈ [0, T ], (3.1)

where p = [p1, . . . , pN ] ∈ RN defines the vector of the N model parameters and the

upper time limit is T . Instead of the two model outputs in the benchmark application,

one assumes a vector y ∈ RQ with the output size Q. In the following, one supposes

that the model parameters are uncertain, and symbolizes it by the capital letter X. In

this context, Xi should be random variables with a probability of:

Pr(Xi ≤ xi).

It is presumed that the cumulative distribution function FXi(xi) = Pr(Xi ≤ xi) is a

non-negative Lebesgue integrable function of xi and is defined on a real interval of (a, b)

where the following conditions are met: −∞ ≤ a < b ≤ ∞, FXi(a) = 0 and FXi(b) = 1.

The probability density function (PDF) fXi(xi) on (a, b) can then be specified by:

fXi(xi) =


dFXi

(xi)

dxi
∀xi ∈ (a, b),

0 ∀xi /∈ (a, b).
(3.2)
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This work uses a Polynomial Chaos Expansion (PCE) [74] to approximate the

original simulation model. This method increases the calculation efficiency of the

stochastic moments regarding the relevant output values. The approach works well

when it comes to probabilistic uncertainties in the model parameters, and the method

then represents the evaluation of the uncertainty in the dynamic system. One applies

different techniques for the adjustment of the surrogate model coefficients, and one

closes with a brief comparison concerning the benchmark problem.

In the following Section 3.1 the basic idea of PCE is introduced, and methods for

the calculation of the corresponding coefficients are presented. A sparse grid approach

leads to a further improvement in the computational costs. The addressed procedure

is demonstrated with a simple application example, and a suitable measure for the

comparison of the obtained results with a reference is presented in Section 3.2. Based

on the knowledge gained, the methods are applied to the benchmark problem (see

Section 3.3), and suitable output quantities, which are referred to in the remainder

as the quantity of interests (QoIs), are presented. Finally, Section 3.4 compares the

simulation-based results with the measurements performed by the test bench hardware

of the electric drive.

3.1 Polynomial Chaos expansion

Wiener [72] introduced the first idea of PCE decomposition in the 1930s, and he used

Hermite polynomials for random variables to represent Gaussian processes. Based

on his definition, one can consider the PC as a functional approximation of a given

random variable by the basic functions of a finite number of other random variables.

More precisely, a general second-order random process X(θ) can be represented in the

form of orthogonal polynomials with a discrete description:

X(θ) = A0H0

+
∞∑
i1

Ai1H1(ξi1(θ))

+
∞∑
i1

i1∑
i2

Ai1i2H2(ξi1(θ), ξi2(θ))

+
∞∑
i1

i1∑
i2

i2∑
i3

Ai1i2i3H2(ξi1(θ), ξi2(θ), ξi3(θ))

+ . . . ,

(3.3)

where Hn are Hermite polynomials based on Gaussian variables ξ = (ξi1(θ), ξi2(θ), . . . )

with zero mean and unit variance. This representation has a spectral convergence
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property if the given random variable X(θ) is smooth and is finite-dimensional. The

number of terms is determined by the size of X and the truncated polynomial degree.

It is associated with the requirements of the random variable, such as the property

that the square integrability is guaranteed for the associated probability space. An

extension for non-Gaussian measurements was published by Cameron et al. [14] and

the development in the engineering field was promoted by Ghanem et al. [30]. Xiu et

al. [74] adapted the method to make it applicable to non-Gaussian random processes

and called it generalized Polynomial Chaos (gPC).

In this section, the focus of the discussion is on gPC, and the mathematical framework

of the described methods is mainly quoted from [74, 43, 62]. Starting from the definition

in the one-dimensional case, the extension to the multidimensional case is presented,

and suitable procedures for the determination of the gPC coefficients are shown.

3.1.1 Definition in the one-dimensional case

One assume a real-valued random variable X(θ) with a probability space (Θ, 2Θ,P),

where Θ is the sample space, 2Θ is the σ-algebra and P is some probability measure.

More detailed information on the assumptions of the probability space can be found in

[59]. The random variable can be treated as a function of θ, which can be considered

a sample of Θ, and based on Equation (3.3) the one-dimensional case with the more

general Wiener-Askey PCE [74] can be written as follows:

X(θ) =
∞∑
i

ciφi(ξ(θ)), (3.4)

where ci are the spectral coefficients, and {φi}∞i=0 denote the Wiener-Askey polynomials

in terms of the so-called hyperparameter ξ(θ) defined on the support Θ. The dependence

of the hyperparameter ξ on θ should be dropped to simplify the notation.

The spectral stochastic representation can be seen as a Fourier-like decomposition

[43], and the orthogonality relation of the basis functions can be expressed as:

〈φj(ξ), φk(ξ)〉 = E [φj(ξ)φk(ξ)] = E
[
φ2
k(ξ)

]
δjk, j, k ∈ N0, (3.5)

with the inner product in the Hilbert space of the variables 〈·, ·〉, and the Kronecker

delta δjk defined as:

δjk =

1 j = k,

0 j 6= k.
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Table 3.1: Correspondence between the type of gPC basis and probability distribution

for the continuous and discrete case [74].

PDF of random variable gPC basis polynomials Support

Beta Jacobi [a, b]

Gamma Laguerre [0,∞]

Gaussian Hermite (−∞,∞)

Uniform Legendre [a, b]

Poisson Charlier [0, 1, 2, . . . ]

Binomial Krawtchouk [0, 1, 2, . . . , n]

Negative Binomial Meixner [0, 1, 2, . . . ]

Hypergeometric Hahn [0, 1, 2, . . . , n]

One assumes that the cumulative distribution function FX(ξ) of the random variable

X is absolutely continuous with respect to the Lebesque measure. By use of the

definition in Equation (3.2), the corresponding PDF exists, such that the relation

dFX(ξ) = fX(ξ)dξ holds on the support Θ. The inner product of Equation (3.5) can

be modified in the following way:

〈φj(ξ), φk(ξ)〉 =

∫
Θ
φj(ξ)φk(ξ)fX(ξ)dξ, j, k ∈ N0. (3.6)

Depending on the standardization of the polynomials φj(ξ), a different weighting

function than the PDF can be used, and therefore this part will be referred to as

w(ξ) in the following. One can also use this procedure in the discrete case analogously.

Table 3.1 contains the correspondence between the random variable distribution,

and the type of generalized PC basis polynomials, including the support Θ for the

hyperparameter ξ.

3.1.2 Extension to the multi-dimensional case

Regarding the model in Equation (3.1), one has to consider multiple random parameters,

and therefore, it is assumed that the hyperparameter ξ can be extended to a random

vector ξ = {ξ1, . . . , ξN} with independent components. According to the model, one

names the considered stochastic process Y , like the output vector. In this case, a scalar

is used without loss of generality. The vector case can be obtained by applying the

approach component-wise using the same polynomial base for each component.
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Let i = {i1, . . . , iN} ∈ NN0 denotes a multi-index with |i| = i1 + · · · + iN . Based

on Equation (3.4), and the assumption that the parameters were supposed to be

independent, the stochastic process Y (ξ) can be defined as follows:

Y (ξ) =

∞∑
|i|=0

yiψi(ξ), (3.7)

where yi are the unknown deterministic PC coefficients and ψi are the multivariate

polynomials. The series in Equation (3.7) is often associated with the term PCE in

literature [74, 8].

The use of a random vector for the hyperparameters ξ results in a joint PDF, due to

the independence of the random variables, which can be written in the following way:

fX(ξ) =
N∏
j=1

fXj(ξj), (3.8)

where fXj(ξj) is the marginal PDF of the random variable Xj . One can assume a set of

orthogonal polynomials Φ
(j)
k for k ∈ N with respect to fXj in terms of Equation (3.5):

〈Φ(j)
k (ξj),Φ

(j)
l (ξj)〉 = E[Φ

(j)
k (ξj)Φ

(j)
l (ξj)] = δkl,

where δkl again is the Kronecker delta. The polynomials are subsequently itemized

such that N sets of univariate polynomials with various degrees are obtained, and the

N-variate gPC basis functions can be developed as:

ψi(ξ) =
N∏
j=1

Φ
(j)
ij

(ξj), i = {i1, . . . , iN}.

The orthogonality relation from Equation (3.5) then takes the form:

〈ψj(ξ), ψk(ξ)〉 = E[ψj(ξ)ψk(ξ)] = E[ψ2
j(ξ)]δjk

=
∫

ΘN ψj(ξ)ψk(ξ)w(ξ)dξ,
(3.9)

for j 6= k, and the discrete case can be written as:

〈ψj(ξ), ψk(ξ)〉 =
∑
ξ

ψj(ξ)ψk(ξ)w(ξ).

As mentioned in the previous one-dimensional part, the weighting function w(ξ)

corresponds to the selected PC base. See [74] for more information. In addition, there

is a one-to-one correspondence between the multi-index i and a one-dimensional index

j. Based on Equation (3.7), the mapping results:

Y (ξ) =
∞∑
j=0

yjψj(ξ), for j 6= k. (3.10)
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Given the infinite summation in Equation (3.10), an approximation Y P (ξ) must be

proposed to address the problem concerning numerical computation. One approach

leads to the truncation of the sum at the finite term P :

Y (ξ) ≈ Y P (ξ) =
P∑
j=0

yjψj(ξ). (3.11)

The total number of expansion terms (P + 1) is influenced by the dimension N of the

random vector ξ, and the total order p of the multivariate polynomials ψj(ξ). This

can be defined by the following relation:

(P + 1) =
(N + p)!

N !p!
. (3.12)

Due to the orthogonality of the basis polynomials, the mean value µYP and the

variance σ2
YP can be derived from the given representation:

µYP = E
[
Y P (ξ)

]
= E

[∑P
j=0 yjψj(ξ)

]
=
∑P

j=0 yjE [ψj(ξ)]

=
∑P

j=0 yj〈ψj(ξ), ψ0(ξ)〉 = y0,

and

σ2
YP = Var

[
Y P (ξ)

]
= E

[(
Y P (ξ)− µYP

)2]
= E

[(∑P
j=0 yjψj(ξ)− y0

)2
]

= E
[(∑P

j=1 yjψ(ξ)
)2
]

=
∑P

j=1

∑P
k=1 yjykE [ψj(ξ)ψk(ξ)]

=
∑P

j=1

∑P
k=1 yjyk〈ψj(ξ)ψk(ξ)〉 =

∑P
j=1 y

2
jE
[
ψ2
j (ξ)

]
,

To fit the model structure in Equation (2.1), the random variable approach must be

extended. As already mentioned, this can be done by component-wise applying the

approach to the truncated random vector Y P . This results in the following notation:

Y P (ξ) =

P∑
j=0

yjψj(ξ), (3.13)

where yj = [y1j , . . . , yNj ]
T ∈ RN are the coefficients of the j-th PC basis.

A further adaptation of the PCE is the extension to a truncated random process

over time, Y P (t, ξ), and this can be achieved by splitting the random process into a

deterministic and a stochastic part. The PCE of the random process can be considered

to be a generalization as applied before, and therefore, Equation (3.13) can be modified:

Y P (t, ξ) =

P∑
j=0

yj(t)ψj(ξ), (3.14)

where the deterministic part yj(t) is the coefficients of the j-th PC base over time, and

can be referred to as stochastic modes of the model.
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3.1.3 Determination of the PC coefficients

This subsection introduces approaches for calculating the PC coefficients to be deter-

mined so that the PCE can approximate the results of the model. This work focuses

on methods that one can use for black-box models. One often classifies them as non-

intrusive, but the distinction between intrusive and non-intrusive is not clearly defined

[31].

The methods presented are only an extract from the available approaches in the

literature. Based on the above requirements from the model, the focus is on non-

intrusive spectral projection, which is partly extracted from Eldred et al. [21].

Non-intrusive spectral projection

The Galerkin projection [17, 43] introduces the truncated spectral expansions into

the model equations, and the PC coefficients are determined so that the residual

is orthogonal to the polynomial basis. The non-intrusive spectral projection (NISP)

projects the orthogonal basis function directly against the PCE of the model outputs.

Based on PCE in Equation (3.14) the NISP method projects the model output

Y P (t, ξ) against the set of basis functions ψk(ξ) using the inner product:

〈Y P (t, ξ), ψk(ξ)〉 =

〈
P∑
j=0

yj(t)ψj(ξ), ψk(ξ)

〉
.

The orthogonal property in Equation (3.9) provides the following relation:

E
[
Y P (t, ξ)ψk(ξ)

]
=
∑P

j=0 E
[
yj(t)ψj(ξ)ψk(ξ)

]
=
∑P

j=0 yj(t)E [ψj(ξ)ψk(ξ)]

=
∑P

j=0 yj(t)E
[
ψ2
j (ξ)

]
δjk.

The coefficients of the PCE can then be obtained due to orthogonality as:

yj(t) =
E
[
Y P (t, ξ)ψj(ξ)

]
E
[
ψ2
j (ξ)

] , for j = 0, . . . , P,

where E
[
ψ2
j (ξ)

]
can be considered as a normalizing factor which can be analytically

determined with respect to the selected base polynomials. Getting a good approximation

for the numerator is the most challenging part, and is associated with the solution of

the following integral over the parameter space ΘN :

E
[
Y P (t, ξ)ψk(ξ)

]
=

∫
ΘN

Y P (t, ξ)ψk(ξ)w(ξ)dξ, (3.15)
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where in this case Y P (t, ξ) can be considered as the evaluation of the stochastic process

Y (t, ξ) at a certain point in the parameter space ξ.

Given the complex function Y (t, ξ), it is difficult to analytically evaluate the integral

in Equation (3.15) especially when the parameter space ΘN is large. For this reason,

one usually approximates the multi-dimensional integral by use of numerical methods

that one can find in many disciplines, and one can reference several approaches in

the literature. When focusing on a large parameter space, the number of function

evaluations within a discrete method depends strongly on the dimension N of the

parameter space. Using a one-dimensional integral, the number of required evaluations

increases by the N-th power. In this subsection, one introduces common methods

related to the UQ framework. This investigation includes the standard approaches:

Monte Carlo integration, deterministic quadrature, and the sparse grid cubatures for

NISP to handle larger parameter dimensions N .

Monte Carlo integration

Monte Carlo is a technique for numerical integration with random numbers. In

particular, the method is based on randomly selected points of the parameters at

which the integration is evaluated [55]. Let ξs = [ξs1, . . . , ξ
s
N ] ∈ ΘN be a sample for s of

the parameter space generated from the joint PDF fX(ξ) based on the Equation (3.8).

Then the integral in Equation (3.15) with the given complex stochastic process can be

approximated as follows:

E [Y (t, ξ)ψk(ξ)] =
∫

ΘN Y (t, ξ)ψk(ξ)w(ξ)dξ

≈ 1
SMC

∑SMC
s=1 Y (t, ξs)ψk(ξ

s)w(ξs),
(3.16)

where SMC is the number of Monte Carlo samples. If E [Y (t, ξ)ψk(ξ)] exists, then the

weak law of large numbers implies that for any arbitrarily small ε:

lim
SMC→∞

Pr

(∣∣∣∣∣ 1

SMC

SMC∑
s=1

Y (t, ξs)ψk(ξ
s)w(ξs)− E [Y (t, ξ)ψk(ξ)]

∣∣∣∣∣ ≥ ε
)

= 0.

In other words, if the number of sample points SMC used is large enough, then there

is a small probability that the approximation deviates much from the investigated

integral. The strong law of large numbers is similar in this case. As long as SMC is

large enough, the approximation resulting from a Monte Carlo integration, is close to

E [Y (t, ξ)ψk(ξ)] as desired. One can denote the approximation error as (SMC)−
1
2 [23],

and it is independent of the N dimension of the parameter space. This characteristic of

Monte Carlo integration is a significant advantage over the methods below in terms of

large parameter space. However, the convergence rate O
(

(SMC)−
1
2

)
is comparatively
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moderate. The application of this method can be found in studies of Debusschere [18].

Deterministic quadrature

This method uses numerical quadrature [21, 18] to evaluate the multi-dimensional

integral in Equation (3.16). The simplest way to approximate these multi-dimensional

integrals is to use a tensor product of one-dimensional quadrature rules, e.g., Gauss-

Hermit, Gauss-Legendre, Gauss-Laguerre, and Gauss-Jacobi [22].

One can now assume a sequence of one-dimensional quadrature operators:

Ui(f)(ξ) =

Si
Q∑

j=1

f(ξji )w
j
i , (3.17)

where for each i ∈ {1, . . . , N} a sequence {ξ1
i , . . . , ξ

Si
Q

i } for the quadrature on Θi exists.

The number of quadrature points SiQ is fixed and one assume that f is continuous on Θi.

One of the most significant rules is the Gaussian quadrature. Applied to Equation (3.17)

all polynomials with degree less or equal to 2SiQ − 1 are integrated exactly for each

i = 1, . . . , N . Concentrating on the integral in Equation (3.15) the highest order of

Y P (t, ξ) and ψk(ξ) are P each, and therefore the integral involves polynomials with at

least order 2P in each dimension. To achieve good accuracy with Gaussian quadrature,

a minimum order of P + 1 is recommended.

For the multivariate case, the full tensor product quadrature formula can be written

using the multi-index i as:

QNi (f)(ξ) = (Ui1 ⊗ · · · ⊗ UiN ) (f)(ξ)

=
∑S

i1
Q

j1=1 · · ·
∑S

iN
Q

jN=1 f(ξj1i1 , . . . , ξ
jN
iN

)
(
wj1i1 ⊗ · · · ⊗ w

jN
iN

)
,

(3.18)

where, based on this general description, one can assume that the order of all random

parameters is SQ for the sake of simplicity. Table 3.2 shows the correspondence

between probability distributions and quadrature formulas, including weights. Then, it

is easy to see that the evaluation of the above equation requires (SQ)N evaluations.

This representation means that the number of grid points for models with a small

parameter space is very low, and the procedure is very efficient. For higher dimensions

of N , the grid points grow exponentially fast, and other approaches such as sparse

grids are better suited.

Sparse grid cubatures

In order to treat high-dimensional parameter spaces with the NISP method, sparse
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Table 3.2: Correspondence between the probability distribution and the quadrature

rule.

PDF of random variable Quadrature Weight Support

Beta Gauss-Jacobi (1− ξ)α(1 + ξ)β [−1, 1]

Gamma Gauss-Laguerre e−ξ [0,∞]

Gaussian Gauss-Hermite e−ξ
2

(−∞,∞)

Uniform Gauss-Lengendre 1 [−1, 1]

grids are proposed in this context [73]. These were introduced by Smolyak [60] and

are used for the first time in the context of multivariate integration [28, 51]. The

following summary is mainly based on [50] and should give a short overview. The

Smolyak algorithm is a linear combination of product formulas and is based on a

one-dimensional interpolation formula as given in Equation (3.17), and then the

difference quadrature formula can be defined by as:

∆k(f)(ξ) = (Uk − Uk−1) (f)(ξ),

with U0(f)(ξ) = 0, and the multi-dimensional case can be obtained by Smolyak’s

construction:

QNi (f)(ξ) =
N∑
j=1

∑
|k|≤ij+N−1

(∆k1 ⊗ · · · ⊗∆kN ) f(ξ),

where k ∈ NN , and the tensor product of multiple quadrature formulas are defined as

the sum of all possible combinations, as demonstrated in Equation (3.18). Smolyak’s

formula then can be written as:

QNi (f)(ξ) =
∑N

j=1

∑
ij≤|k|≤ij+N−1 hijk (Uk1 ⊗ · · · ⊗ UkN ) (f)(ξ),

with hijk = (−1)ij+N−|k|−1

(
N − 1

|k| − ij

)
.

Besides the algorithm with Smolyak’s construction and the combination technique,

one has to reduce the function evaluations and to improve the given grids of the one-

dimensional quadrature formulas Ui(f)(ξ). One assumes the one-dimensional difference

grid:

Ωi = Γ1
i \Γ1

i−1
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(a) Full grid with 961 nodes.
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(b) Sparse grid with 221 nodes.

Figure 3.1: Comparison of two-dimensional grids based on the same one-dimensional

grid points.

with a underlying grid ΓNi = {ξji : 1 ≤ j ≤ SiG} ∈ ΘN and ΓN0 = ∅. For the non-nested

case one can set Ωi = Γ1
i . The multivariate formula of Smolyak then forms a so-called

sparse grid:

ΓNi =
⋃

|k|≤i+N−1

(Ωk1 ⊗ · · · ⊗ ΩkN ),

where the grid is given by the union over the pairwise disjoint nodal sets Ωi.

Figure 3.1 shows a comparison between the full grid and the presented sparse grid

approach. In this case, a two-dimensional parameter space is assumed, and the number

of grid points for the full grid is almost five times greater than for the sparse version.

It can also be observed that the grid based on the Smolyak algorithm is a subset of

the full grid. This provides an opportunity for higher dimensional random parameter

spaces in combination with the PC expansion, and the application of sparse grids can

be found in [3, 73, 21, 42, 59].

3.2 Investigation with a simplified simulation model

This section explains how to use the introduced gPC method using a simplified simula-

tion model. In addition to a basic understanding of the model equation dependencies,

the simulation time is also considerably short, and therefore, many evaluations can be
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Table 3.3: Parameter distributions for the simple simulation model.

Parameter Tolerance range rt Mean value µ Standard deviation σ

Lp ±10% 1.1e−2 3.7e−4

R ±5% 4.0e−1 6.7e−3

ce ±5% 2.0e−2 3.3e−4

Jp ±10% 1.0e−6 3.3e−8

cm ±5% 1.0e−2 1.7e−4

d ±20% 2.0e−2 1.3e−3

performed for reference purposes without high computing costs. Based on the model

of the electric drive the equations (2.2) and (2.4) can be simplified as follows:

d
dtI(t) = 1

Lp

[
−RI(t)− ceω(t) + U(t)

]
,

d
dtω(t) = 1

Jp

[
cmI(t)− dω(t)− τload(t)

]
.

The outputs of the simulation model are the two states, more precisely, the current

I(t) and the motor speed ω(t) over time.

Before applying the UQ method to the simulation model, it is necessary to clarify

which output variables are significant, and one should make a reasonable statement

about the influence of uncertain parameters. A popular scenario is the operation of the

electric motor with constant voltage and load torque. In this context, the stationary

values of the two output variables Istat and ωstat, the so-called QoIs, are of great

importance for further investigations. Another scenario refers to the mechanical motor

characteristic in Figure 2.11a. There the QoI is called stall torque τstall. If the motor

speed is zero, the applied load torque value is taken and defined as stall torque. This

value is a commonly used indicator of wiper drive performance.

For the simplified simulation model, it must be taken into account that the parameters

are different due to manufacturing tolerances. All introduced parameters are modeled

with normal distributions, and it is assumed that they are independent of each other.

The standard deviation can be approximated over the tolerance range in Table 3.3 and

the sigma level σl = 3:

σ =
rtµ

σl
. (3.19)

Based on the six uncertain model parameters, the limits of the PCE with the full-grid

approach can be easily recognized by the required simulations in connection with the

grid level (see Table 3.4). For example, the definition of the polynomial order P = 3
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Table 3.4: Number of required simulations to fit the coefficients of the PCE.

Polynomial order P 1 2 3 4 5 6

Full grid 64 729 4,096 15,625 46,656 117,649

Sparse grid 13 97 533 2,381 9,113 30,869

leads to a reduction of the required simulations by a factor of eight related to the

sparse grid approach.

To obtain a first reference, one performs a Monte Carlo-based sample with 10,000

points and visualizes the mean values and standard derivatives of the QoIs over time

(see figures 3.2a and 3.3a). As already mentioned, one uses stationary values for further

investigations. The figures show that the selected stationary time tsta = 1.5 is in a

suitable range. One assumes this value because the mean value and the standard

deviation converge after 1.0 second and remain constant over time.

In the following, the distribution of QoIs based on parameter uncertainties in the

stationary domain is of major interest. One evaluates the available simulation results

at a certain point in time tsta with the help of a histogram and generate PDFs from

them, which represent the figures 3.2b and 3.3b. Those results are the basis for the

analysis of the PCE approaches, and besides the visual comparison, the introduction

of a probability measure is necessary.

A common method for comparing two samples of one-dimensional probability distri-

butions is the Kolmogorov-Smirnov test [41]. The construction for this approach are

two empirical distribution functions FMC,n(Xi) and FPCE,m(Xi) for n or m indepen-

dent and identically distributed observations Xi. The cumulative distribution function

FMC,n(Xi) is a step function that increases by 1/n at each of the n data points, and

it0 is defined as:

FMC,n(x) =
1

n

n∑
i=1

I[−∞,x](Xi),

where I[−∞,x](Xi) is the indicator function. The Kolmogorov-Smirnov statistic for the

two empirical distribution functions is given as:

Dn,m = sup
x
|FMC,n(x)− FPCE,n(x)| , (3.20)

where sup is the supremum of the distances in the set. If FMC,n(Xi) and FPCE,m(Xi)

have the same underlying distribution function, then Dn,m almost surely converges

to zero with the assumption that n,m becomes infinite. Also, one can calculate the
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(b) PDF obtained from histogram for QoI
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Figure 3.2: Statistical overview for output I with assumed parameter uncertainties and

Monte Carlo sampling with 10,000 sample points.
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(b) PDF obtained from histogram for QoI

ω at static time point tsta.

Figure 3.3: Statistical overview for output ω with assumed parameter uncertainties

and Monte Carlo sampling with 10,000 sample points.
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Table 3.5: Kolmogorov-Smirnov test for QoI I(tsta).

FMC,n(I), FMC,n(I), FPCE|fg,n(I),

FPCE|fg,n(I) FPCE|sg,n(I) FPCE|sg,n(I)

Dn,n 0.0074 0.0074 0.0044

p-value 0.7067 0.6988 0.2778

Table 3.6: Kolmogorov-Smirnov test for QoI ω(tsta).

FMC,n(ω), FMC,n(ω), FPCE|fg,n(ω),

FPCE|fg,n(ω) FPCE|sg,n(ω) FPCE|sg,n(ω)

Dn,n 0.0080 0.0078 0.0048

p-value 0.5977 0.6394 0.1920

p-value using the test statistics Dn,m, and the corresponding sample sizes [47]. The

lower the p-value, the greater the statistical proof that the null hypothesis must be

rejected, and one can assume that the distributions are not close to each other.

The cumulative density functions of the two QoIs I(tsta) and ω(tsta) are derived from

the PDFs of the Monte Carlo sample (see figures 3.4a and 3.4b). In addition, a PCE

with a Gauss-Hermite quadrature rule (abbreviated with fg) and a Smolyak Sparse

Grid (sg) approach is used to approximate the simulation model. The corresponding

CDFs are obtained by evaluating the surrogate PCE models with 10,000 samples and

the results are presented in the figures 3.4c, 3.4d, 3.4e and 3.4f. As a first impression,

one can assume that the PCE surrogate model is able to approximate the original

model by considering only the CDFs in the figures. For reliable statements, the results

are compared with the application of the Kolmogorov-Smirnov test.

In this case, one assumes that the results of the Monte Carlo sample are the reference,

and one wants to compare them with the PCE using different sampling approaches.

To achieve better comparability, one resamples the surrogate with a full grid and a

sparse grid based on the identical parameter values from the Monte Carlo study. The

results are presented in the tables 3.5 and 3.6, where both approaches are compared

with the Monte Carlo sample and with each other.

For the simplified simulation model, the difference between the PCE with Gauss-

Hermite square rule and the PCE with Smolyak sparse grid is very little for both QoIs,

and one can immediately determine this result by the p-value. If the p-value is close to
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(a) CDF FMC,n(I) for QoI I(tsta).

48.0 51.0 54.0
0.0

0.5

1.0

ω [rpm]

F
M

C
,n

(ω
i)

a
t
t s

ta

(b) CDF FMC,n(ω) for QoI ω(tsta).
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(c) CDF FPCE|fg,n(I) for QoI I(tsta).

48.0 51.0 54.0
0.0

0.5

1.0

ω [rpm]

F
P

C
E
|fg
,n

(ω
i)

at
t s

ta

(d) CDF FPCE|fg,n(ω) for QoI ω(tsta).
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(e) CDF FPCE|sg,n(I) for QoI I(tsta).
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(f) CDF FPCE|sg,n(ω) for QoI ω(tsta).

Figure 3.4: Cumulative distribution functions (CDF) for both QoIs with kernel density

estimation (solid line) and empirical distribution functions (grey bars).
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Figure 3.5: Statistical overview for outputs I and ω with assumed parameter uncer-

tainties based on increasing load torque and Monte Carlo sampling with

10,000 sample points.

zero, one assumes that the two groups were drawn from separate distributions, and

those may distinguish in the median, the variability, or the shape of the distribution. A

reduction of the evaluations to the original model concerning a sparse grid is therefore

reasonable. In comparison to the Monte Carlo reference sample, both PCE surrogate

models perform well in a given acceptance range, which means that the supremum of

the distance set is quite small.

As already mentioned, the stall torque τstall is another important QoI and will be

used in the later investigation to examine further the quality of a PCE surrogate model

based on the selected sample and polynomial order P .

Based on the previous investigation, one performs a Monte Carlo sample of 10,000

runs, and Figure 3.5 shows the mean and standard deviation values of the model

outputs. The results are obtained by continuously increasing the load torque over time

to zero speed. If the motor blocks, the simulation model stops, and the required QoI

of the stall torque τload corresponds to the applied load torque at the moment the

motor is blocked. The PDF and the CDF are shown at Figure 3.6, and they serve as a

reference for the investigations on the PCE surrogate models.

For the construction of the PCE coefficients, one uses the same samples for the full

and sparse grid approach as in the first investigation. In contrast to the stationary
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Figure 3.6: Statistical overview for QoI stall torque τstall based on Monte Carlo sampling

with 10,000 sample points.

setting, the dynamic QoI increases the requirement on the surrogate models, which

can be seen quantitatively in Figure 3.7. The full grid approach can approximate the

distribution of the stall torque for the Monte Carlo sampling reference. However, the

sparse grid approach does not converge as fast as expected concerning the number of grid

points required. The proposed distribution deviation is, especially for a small grid level,

many times higher than the reference value. It clearly shows that the results achieved

must be checked. One can perform this investigation by using different grid levels to

get a feeling for the convergence state of the applied method. One can confirm the

observations by use of the previous Kolmogorov-Smirnov statistics in Equation (3.20).

Based on Table 3.7, one can state that the D-value does not decrease significantly, and

the p-value is almost high enough to accept the approximation concerning the Monte

Carlo reference. If one examines the results in Table 3.8, one can see that the D-value

decreases continuously over the mesh plane used. Furthermore, the p-value is close to

zero, so that the surrogate model is not able to approximate the distribution of the

QoI sufficiently.

Instead of comparing the surrogate model with the reference solution, one can look

at the PCE coefficients to obtain an indication of the convergence of the solution. If

the coefficients for the high-order PCE are relatively large, this means that the grid

level used is not sufficient for the approximation, and it should be increased by at least

one. In this case, the sparse grid approach is not able to ensure a suitable fit for the
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(f) CDF FPCE|fg,3(τstall).

Figure 3.7: Cumulative distribution functions (CDF) for fg and sg approaches with

increasing order and the estimation (solid line) and empirical distribution

functions (grey bars) are shown.
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Table 3.7: Kolmogorov-Smirnov test for QoI τstall with full grid PCE.

FMC(τstall), FMC(τstall), FMC(τstall),

FPCE|fg,1(τstall) FPCE|fg,2(τstall) FPCE|fg,3(τstall)

D 0.0146 0.0099 0.0108

p-value 0.2369 0.7112 0.6042

Table 3.8: Kolmogorov-Smirnov test for QoI τstall sparse grid PCE.

FMC(τstall), FMC(τstall), FMC(τstall), FMC(τstall),

FPCE|sg,1(τstall) FPCE|sg,2(τstall) FPCE|sg,3(τstall) FPCE|sg,4(τstall)

D 0.5473 0.3915 0.2039 0.0925

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001

PCE model. In this case, the sparse grid approach is not able to ensure an appropriate

approximation to the PCE model. In the further course of this work, it is mandatory

to review the surrogate model, and a helpful approach is to consider the magnitudes

of the coefficients, especially, in high orders.

3.3 Numerical results for the benchmark problem

Based on the previous section, one can now apply the obtained knowledge to the

benchmark problem concerning eight uncertain parameters. One uses the complex

simulation model in Section 2.2, and assume that the thermal parameters pther are

constant. Table 3.9 lists the uncertainties associated with the simulation model, and one

defines the tolerance ranges beforehand. The examined values are chosen as Gaussian

distribution, and each mean value and tolerance range is estimated with the help of

expert knowledge. The standard deviation for all parameter distribution is calculated

using Equation (3.19). All values are normalized, and in this case, each parameter

distribution is divided by its mean value.

Both QoIs of the simple simulation model are also highly relevant for the model

under investigation. As a reference, a Monte Carlo sampling with 50, 000 simulation

runs is carried out for the distribution of the motor speed in the stationary case, and

for the distribution of the stall torque. In the industrial context, it is common to use

Latin Hypercube Sampling (LHS) [53, 34] instead of a standard Monte Carlo sampling.
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Table 3.9: Uncertain parameters for the benchmark simulation model.

Parameter Description Tolerance range rt

Rp Resistance ±10%

cmp Constant ±5%

Lp Inductance ±5%

Jp Total inertia of motor armature ±10%

εiron,p Adaption parameter for armature losses ±5%

εworm,p Adaption parameter for worm friction coefficient ±20%

µA,p Friction parameter for bearing A ±20%

µB,p Friction parameter for bearing B ±20%

The primary goal is to reduce the number of simulation runs required for a comparative

QoI quality.

The number of simulation runs used is as low as possible concerning the computing

costs of the evaluation. In general, it is difficult to determine the best amount of runs

a priori, and it is even difficult to quantify the quality without a reference solution.

Therefore, one defines two experimental designs as 50 and 500, and uses them as the

standard evaluation of the QoIs. The numbers are obtained based on the simulation

time for a run and the assumption that the simulation tasks are executed sequentially.

The LHS results with the different design of the experiments are compared to the

MC reference in Figure 3.8. Looking at the stationary motor speed, one can see that

the LHS approximation with 50 samples can also approximate the reference well. Only

in the tail area, the approximation is not as good as desired. Primarily, if one uses the

results for evaluations in boundary regions, the accuracy is not sufficient. The results

with 500 simulation runs show a more exact estimation of these ranges.

The discrepancies between the reference and the LHS results are used to quantify the

quality of the stochastic approximation. An implementation is based on the histograms

of the PDFs, and the square error is calculated for each bar with the given equation:

εiFMC,FLHS
= (F iMC − F iLHS)2 (3.21)

where i = 1, . . . , B is the index of the bins of the histogram. The error measure is

calculated for both QoIs and visualized in Figure 3.9.

In addition to considering histograms, the Kolmogorov-Smirnov test is used, as

mentioned in the previous section. One assumes that the results of the Monte Carlo

sample are also the reference. The results are presented in Table 3.10. Based on the
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Figure 3.8: Comparison of LHS (dotted line: 50 samples, dashed line: 500 samples)

with MC reference (solid line) for both QoIs.
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(a) Error measure ε for QoI ω(tsta).
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(b) Error measure ε for QoI τstall.

Figure 3.9: Error measure ε of LHS (dotted line: 50 samples, dashed line: 500 samples)

with respect to MC reference for both QoIs.
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Table 3.10: Kolmogorov-Smirnov test for both QoIs with LHS.

FMC

(
ω(tsta)

)
, FMC

(
ω(tsta)

)
, FMC(τstall), FMC(τstall),

FLHS|50

(
ω(tsta)

)
FLHS|500

(
ω(tsta)

)
FLHS|50(τstall) FLHS|500(τstall)

D 0.0648 0.0177 0.0610 0.0293

p-value 0.9847 0.9978 0.9924 0.7890
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(b) PDF for QoI τstall.

Figure 3.10: Comparison of PCE surrogate (dotted line: 1st order surrogate model,

dashed line: 2nd order surrogate model) with MC reference (solid line)

for both QoIs.

test statistics D and p, both QoIs are well approximated. The difference between the

LHS results of 50 and 500 samples is remarkable only for the stall torque.

In the previous section, one approximates the PDFs with a PCE surrogate model

using a suitable sparse grid approach. The first exploration is performed with orders

one and two, resulting in 17 and 161 simulations on the original model. The PCE

coefficients are calculated analogously to the simple model, and then a Monte Carlo

sampling is performed on the surrogate model with 100, 000 samples to obtain the

PDF (see Figure 3.10) for both QoIs.

The QoI of the stationary motor speed ω(tsta) is considered quantitatively very close

to the histogram of the reference. Using the previous qualitative measure with the

quadratic error in Equation (3.21), one can not find a significant difference between the

applied sparse grids. Compared to the result obtained with LHS and 500 simulation runs,
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Figure 3.11: Error measure ε of PCE surrogate (dotted line: 1st order surrogate model,

dashed line: 2nd order surrogate model) with respect to MC reference

(solid line) for both QoIs.

Table 3.11: Kolmogorov-Smirnov test for both QoIs with PCE surrogate.

FMC

(
ω(tsta)

)
, FMC

(
ω(tsta)

)
, FMC(τstall), FMC(τstall),

FLHS|50

(
ω(tsta)

)
FLHS|500

(
ω(tsta)

)
FLHS|50(τstall) FLHS|500(τstall)

D 0.0040 0.0043 0.5429 0.3918

p-value 0.6511 0.5747 < 0.0001 < 0.0001

the PCE surrogate provides a better approximation to the reference (see Figure 3.11a).

This statement is consistent with the Kolmogorov-Smirnov test in Table 3.11. For this

QoI, one can assume that the PCE surrogate model provides a better approximation

of the distribution than the LHS and, besides, with fewer evaluations of the original

simulation model.

It is obvious that the PCE surrogate model for the QoI of the stall torque τstall

is not converged with order one and two (see Figure 3.10b). One can also support

this observation by the error measurement and the Kolmogorov-Smirnov test. In this

case, it is easy to judge the quality of the surrogate model by comparing it with the

reference. In general, this is not possible, and as already mentioned, the coefficients of

the PCE surrogate model can be an indicator of convergence.
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Figure 3.12: PCE coefficients of surrogate model for both QoIs.

These coefficients for both QoIs are shown in Figure 3.12, and for the stationary

motor speed ω(tsta), the coefficients decrease rapidly with increasing index j. This

behavior might indicate that the surrogate model is converged. If one considers the

coefficients of the stall torque, one should note that with a high index j, the coefficients

τj,stall grow again. In this case, one should assume that the chosen order is not sufficient

to solve the problem. It is strongly recommended to increase the order of the PCE.

In this case, if one changes the order from level two to three, it means an increase

of the evaluations on the original model from 161 to 1, 105 simulations. Despite the

very high number of simulations on the original model, the surrogate model is still not

able to approximate the distribution adequately. A possible extension that will not be

further investigated here is the use of anisotropic grids. Thereby, one can only increase

the grid levels of the relevant parameters and thus saves further simulations.

3.4 Validation with the test bench hardware

So far, one validates the introduced approaches with a reference generated by Monte

Carlo samples with a large number of runs on the simulation model. Based on the

Subsection 2.3.3, one uses a measurement series from the test bench instead. In this

setting, one assumes that the parameters voltage Ureal, winding resistance Rreal, and load

torque τload,real are normally distributed with predefined variations. In the following,

one limits the number of measurements to S = 100, and in addition to the steady-state

of the motor speed ω(tsta), one also considers the dynamic range of the current I(tdyn).
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Table 3.12: Uncertain parameters for the test bench hardware.

Parameter Mean value µ Standard deviation σ

Ureal 0.84 0.044

Rreal 0.44 0.08

τreal 0.042 0.0033

The stall torque is not further considered concerning the test bench. This adjustment

is mainly because one investigates the long-term behavior of the drive with the test

bench.

The statistical information of the test bench parameters is given in Table 3.12, and

it is used to obtain the test series. Since only 100 measurements are available, it is

necessary to check whether the measurement series can approximate the theoretically

assumed distributions well.

For the selection of the parameter values, one draws 100 random pairs, and Figure 3.13

shows their distributions. In comparison to the theoretically assumed distribution, one

sees that the number of experiments is sufficient to approximate the distribution related

to the first and second statistical moments. The error of the mean values eµ(U) = 1.0%,

eµ(τ) = 0.5%, and eµ(R) = 0.8% are very small. From this point of view, the number of

random points is sufficient. If one now considers the error of the standard deviations

which are eσ(U) = 9.1%, eσ(τ) = 11.3%, and eσ(R) = 14.7%, one can observe a larger

variation. Therefore, one can pretend that the variation is acceptable in the following

use case.

Figure 3.14 shows the LHS and PCE surrogate model results of the motor speed ω(tsta)

for the steady-state compared to the test bench measurements and the corresponding

error measurements. The PDF visualization shows that both methods can approximate

the real variation from the measurement in an acceptable way. If one switches from

the first analysis of the PDFs to the error measurements, one quickly realizes that

there is a slight discrepancy in the measured distributions. On the one hand, this can

be caused by the model error. On the other hand, the distribution information of the

test bench is based on only 100 measurements, and one can assume that the statistical

moments have not yet completely converged. This observation is also reflected in

the Kolmogorov-Smirnov test, and the values in Table 3.13 show only a very small

dependency of the distributions on each other. In the comparison of the two methods

on the test bench results, there is no significant difference in quality. Regarding the
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Figure 3.13: Distribution of the test bench parameters (dotted line: measurement data,

dashed line: theoretical specification).

66



Table 3.13: Kolmogorov-Smirnov test for the motor speed ω(tsta) with LHS and PCE

surrogate model.

Fmeas

(
ω(tsta)

)
, Fmeas

(
ω(tsta)

)
, Fmeas

(
ω(tsta)

)
, Fmeas

(
ω(tsta)

)
,

FLHS|50

(
ω(tsta)

)
FLHS|500

(
ω(tsta)

)
FPCE|1

(
ω(tsta)

)
FPCE|2

(
ω(tsta)

)
D 0.1600 0.1420 0.1445 0.1426

p-value 0.3608 0.0694 0.0308 0.0344

Table 3.14: Kolmogorov-Smirnov test for the current I(tdyn) with LHS and PCE sur-

rogate model.

FMC

(
I(tdyn)

)
, FMC

(
I(tdyn)

)
, FMC

(
I(tdyn)

)
, FMC

(
I(tdyn)

)
,

FLHS|50

(
I(tdyn))

)
FLHS|500

(
I(tdyn)

)
FPCE|1

(
I(tdyn)

)
FPCE|2

(
I(tdyn)

)
D 0.1100 0.0960 0.0945 0.0957

p-value 0.8147 0.4262 0.3339 0.3201

simulation evaluations used on the original model, the PCE surrogate model achieves

this quality with only seven simulations.

If one considers the current in the dynamic time domain, similar observations can be

made (see Figure 3.15), and both methods can approximate the distribution assumption

by the test bench. A discrepancy also shows up here, especially in the lower value

range. Another hypothesis to explain the difference shown is again the small number

of measurements that led to the reference. Also, one expects a more notable impact

of noise for the current in contrast to the motor speed. Looking at the Kolmogorov-

Smirnov test in Table 3.14, the probability that the compared distributions are identical

is in the same order of magnitude.

Finally, one can state that the simulation model can approximate the test bench

characteristics and the corresponding windshield wiper drive well. One can already

see at this point that the number of measurements can only provide a statistical

statement to a limited extent, and therefore deviations between the measured and

numerical distributions can be expected. Concerning the input distribution of the

winding resistance, there is a notable difference from the theoretical specification

compared to the measured data, which could be an indication that this distribution is

difficult to classify.
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(b) PDF based on PCE surrogate model

(dotted line: P = 1, dashed line: P = 2)

for QoI ω(tsta).

0.60 0.75 0.90
0.0

2.5

5.0

ω(tsta) [-]

ε F
M

C
,F

L
H
S

(c) Error measure ε based on LHS (dotted

line: 50 samples, dashed line: 500 sam-

ples) for QoI ω(tsta).
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(d) Error measure ε based on PCE surro-

gate model (dotted line: P = 1, dashed

line: P = 2) for QoI ω(tsta).

Figure 3.14: Comparison of LHS and PCE surrogate model results and test bench

hardware measurements (solid line).
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(a) PDF based on LHS (dotted line: 50 sam-
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(b) PDF based on PCE surrogate model

(dotted line: P = 1, dashed line: P = 2)

for QoI I(tdyn).
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(c) Error measure ε based on LHS (dotted

line: 50 samples, dashed line: 500 sam-

ples) for QoI I(tdyn).
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(d) Error measure ε based on PCE surro-

gate model (dotted line: P = 1, dashed

line: P = 2) for QoI I(tdyn).

Figure 3.15: Comparison of LHS and PCE surrogate model results and test bench

hardware measurements (solid line).
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4
Backward propagation of uncertainties

The output distributions in Chapter 3 are calculated based on assumed input and

parameter distributions, and the simulation results can provide a suitable approximation

to the reference measurements. In practice, however, it is often difficult to estimate

the distribution of parameters and inputs due to the lack of data and knowledge.

In some cases, one can use quality specifications, but frequently, experts make the

estimates. For engineering applications, they usually assume either a uniform or a

Gaussian distribution. Moreover, a subset of the distributions is hard to estimate

because required measurements are either quite expensive or not possible at all. In this

case, backward propagation can help to obtain an approximation of such parameter

distributions.

In general, the backward propagation includes a variety of methods, and very roughly,

one can make a distinction based on the parameter properties. If the parameters have

a physical significance, then one speaks of parameter estimation. On the other hand,

one denotes it as parameter calibration when they have no or little physical reference.

Regardless of the classification, the overall aim is identical: one wants to find the

optimal parameters which bring the results of the simulation model and the available

measurement data in line. In a mathematical sense, one can describe this class as

inverse problems, and they are often ill-posed [67]. In other words, this means that
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there may not be a unique solution. One can set up an optimization to find a solution

estimate for the inverse problems based on a deterministic or statistical method. One

can achieve the deterministic solution by introducing a measure between the simulation

results and the measurement data. This procedure is well known, and one focuses

mainly on the discrepancy between the model prediction and the observed data. This

error then needs to be minimized by the use of an optimization algorithm. One can

find an overview of suitable methods in [58, 37, 45, 40].

In contrast, one can achieve a statistical approximation by reformulation to an

inference problem. It implies that one tries to regularize the ill-posedness of the inverse

problem. One usually expresses this regularization as prior distributions, and the goal is

to bring the information from the observation into the estimated parameter distributions.

A possible approach is, among many others, the Bayesian inference [27, 63, 2, 25].

It offers the possibility to improve the knowledge of parameter distributions based

on a numerical simulation model and observed measurement data. Based on a prior

parameter guess, a posterior distribution can be estimated. This method requires, in

general, excessive computational effort. One way to overcome this obstacle is to use a

surrogate model to reduce the computational cost.

In this context, the recorded measurement data must be pre-processed to highlight

the essential parts that one can use them for further investigation. The main advantage

of the test bench setup is the ability to pre-define parameter distributions, and this

reference data can be used to validate the obtained posterior distributions from

the Bayesian inference approach. The focus is on building a suitable Likelihood

function based on the knowledge of a global sensitivity analysis. Also, one investigates

measurements over time and multiple outputs.

The remainder of this chapter is as follows. Section 4.1 focuses on general methods

of Bayesian inference and especially, on possible extensions regarding PCE. In addition

to the determination of the posterior distributions of the uncertain parameters, one

uses a surrogate PC model to accelerate the evaluation. The resulting coefficients are

reused to calculate Sobol’s indices, which enable a global sensitivity analysis. Its results

are used to model the Likelihood function in Section 4.2. To describe this problem, one

still needs to model the physical parameters appropriately, and Section 4.3 outlines

this procedure. Section 4.4 discusses the combination of the standard approach for

Bayesian interference and the PC surrogate model in more detail. It shows possibilities

for increasing efficiency. One can find the numerical results of the benchmark problem

in Section 4.5. For this purpose, there are three parts to the investigation. Within the

first two investigations, the focus is on a standard approach for Bayesian interference
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in combination with the PC surrogate model, and one investigates the influence of the

parameters and measurement data. In the third part, the focus is on the efficiency-

enhancing measures.

4.1 Bayesian inference

In this work, one uses the methods of Bayesian statistics for parameter calibration,

which means that one reformulates the given inverse problem in a similar way as in [71].

The basic idea of the Bayesian paradigm is to model uncertainties in a probabilistic

way using observational data. Based on the deterministic mapping in Equation (3.1),

and the assumption that the model parameters p are uncertain, one changes the

notation to θ. As already described, the PDFs fθi(xi) are assumed for i = 1, . . . , N

with independent scalar components xi (finite noise assumption). As a result, one

represents the model outputs by a random vector:

Y (t) =M(t,θ, u(t)), t ∈ [0, T ].

Initially known information about the model parameters θ can be described with a

so-called prior distribution density fθ(x).

Another necessary consideration is that one has to take into account further error

influences in the modeling. A classical approach is to include additive noise in the

model, which is suitable for a wide range of practical applications:

Y obs(t) =M(t,θ, u(t)) + ε(t), (4.1)

where the components of ε(t) are independently and identically distributed random

variables over time with the density pε. The PDF of ε is assumed to be normally

distributed, for example, with mean µ = 0 and variance σ = Σ. In this simple case, ε

contains both the model error and the measurement error that can arise from sensor

noise or non-modeled physical effects.

One aim of the inverse problem is to find the posterior distribution. In contrast to

deterministic parameter identification, the stochastic method provides a statement about

the variability of the solution. Of course, one can reduce the distribution statement to

a deterministic point that is optimal. This transformation can be achieved by using the

expected value and additionally obtaining a quality measure of its standard deviation.

Specifically, this means updating p(θ) through obtained observations Y obs to infer

knowledge about the corresponding PDF of θ with the given joint PDF:

p(θ,Y obs) = p(θ|Y obs)p(Y obs) = p(Y obs|θ)p(θ),
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where the connection between the model parameters θ and the gathered observations

Y obs is expressed by the Likelihood function p(Y obs|θ). The conditional probability

p(θ|Y obs) is called the posterior PDF of θ and displays the information about θ after

obtaining an observation Y obs. Considering the inverse problem, this can be expressed

with the Bayesian statistics as follows:

p(θ|Y obs) =
p(Y obs|θ)p(θ)

p(Y obs)
. (4.2)

One describes the denominator by the marginal probability p(Y obs) of the observations

and can express it as:

p(Y obs) =

∫
p(θ,Y obs)dθ =

∫
p(Y obs|θ)p(θ)dθ. (4.3)

Based on equations (4.2) and (4.3) the posterior density for the model parameters

can be written as:

p(θ|Y obs) =
p(Y obs|θ)p(θ)∫
p(Y obs|θ)p(θ)dθ

.

For convenience purpose only the Likelihood function can be defined as L(θ) :=

p(Y obs|θ), which may be viewed as a function of the model parameters θ.

The calculation of the posterior distribution summarizes in the following steps.

Based on the parameters that are part of the calibration problem, a suitable prior

distribution is selected. For this purpose, one uses all relevant information such as the

type of distribution, or minimum and maximum values. Besides, one has to develop a

suitable Likelihood function which represents the dependence between the model and

the observed data. The final step is to calculate the posterior distribution. A popular

approach is the Markov Chain Monte Carlo (MCMC) method [48, 33, 49] which uses

correlated Monte Carlo samples to update the unknown distributions, and it is also

the chosen approach for the benchmark problem.

4.1.1 Prior distributions selection

The prior parameter distributions p(θ) are an excellent possibility to include first

knowledge in the calculation [26], and there may be a considerable degree of subjectivity

involved. The most challenging aspect is to set the range of prior distributions so that

the observation area covers the model behavior. There are three major categories of

priors in applied research.

The most meaningful results concerning the variations, in reality, can often be

obtained when prior knowledge of the available parameter distributions is available.
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The first category often referred to as informative priors, and they contain numerical

information that is essential for estimating the model. One can derive these priors

from expert knowledge, preliminary data analysis, or literature. If the information

contents of the a priori knowledge are less accurate, it is called a weak-informative

prior and is part of the second category. In other words, these priors are strong enough

to pull the data away from insufficient areas. If no preliminary information is available,

one tries to design the prior distributions in such a way that they have only a small

influence on the result. This category forms the third category, and one can achieve it

with uniform parameter distributions known as non-informative priors. Concerning the

physical parameters, uniform distributions are popular. Expert knowledge or natural

constraints then define their boundaries.

4.1.2 Likelihood function

The Likelihood function is central to the process of estimating the unknown parameter

distributions. It describes the probability of a random variable that contains another

random variable. In a concrete case, this can be a probability of a parameter value in

combination with given measurement data. It is possible, by introducing a probability

structure into the parameter space that a parameter value has a high probability value

for a given specified observation data and still has a small probability, or inversely.

The Likelihood function L(θ) depends on the assumptions made by the error classes

and their distributions. One can achieve the specification by modeling the error

influences beforehand. Looking at Equation (4.1), one assume ε is an additive error.

The components are independent and identically distributed, and εi ∼ N (0, σ2) are

expected with a fixed standard deviation. The Likelihood L(θ) function for an uncertain

parameter θ and a fixed time t∗ describes itself as follows:

L(θ, t∗) = p(Y obs|θ) =
∏
s

fε (Y s
meas(t

∗)−M (t∗, θ, u(t∗)) |µε, σε) ,

where Y s
meas(t

∗) corresponds to the measurements series with an overall number of

S records, S > 0, S ∈ N, and µε, σε express the assumed error statistics. The additive

noise is supposed to be a Gaussian distribution. One can rewrite the Likelihood function

in the following way:

L(θ, t∗) =

(
1√

2πσ2
ε

)S/2

exp

(
−
∑S

s=1 (Y s
meas(t

∗)−M (t∗, θ, u(t∗)))2

2σ2
ε

)
. (4.4)

In most cases, the uncertain parameter is multi-dimensional. Therefore, in the

following several parameters are considered. In addition, the Likelihood function in
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Equation (4.4) is to be extended from a single point in time t∗ to a time range

t ∈ [t0, tK−1]:

L(θ, t) =

(
1√

2πσ2
ε

)(S+T)/2

exp

(
−
∑S

s=1

∑K−1
k=0 (Y s

meas(tk)−M (tk,θ, u(tk)))2

2σ2
ε

)
,

or more conveniently:

L(θ, t) =
∏

k

(∏
s

fε (Y s
meas(tk)−M (tk,θ, u(tk)) |µε, σε)

)
, (4.5)

with k ∈ [0, K − 1] and s ∈ [1, S]. If the measurement data contains a large number of

time samples or runs, the complexity of the given Likelihood function increases rapidly.

A reduction strategy which one presents in the following section, keeps the calculation

costs at a low level.

4.1.3 Integration of the PCE surrogate model

From an industrial point of view, high-level industrial models generally have a long

simulation duration due to their complexity. The parameter estimation algorithms that

one applies in the further course, usually require a high number of model evaluations.

To make them applicable from an economic point of view, this section will discuss the

integration of a surrogate model within the overall concept.

To reduce the calculation time, one needs an alternative model that posses the main

feature of the original model but with much less computational overhead, for example,

a surrogate model. Hence, one can replace the evaluations on the original model by

a PCE surrogate model. To fit such a model, or in other words, to generate the PC

expansion coefficients, a probability space must be defined for the model parameters.

Based on the distribution classes for the prior p(θ), the hyperparameters of the PC

surrogate model in Equation (3.14) can be obtained:

Y P(t, ξ(θ)) =

P∑
j=0

yj(t)ψj(ξ(θ)).

The following section addresses the mapping of the physical parameters θ to the hyper-

parameters ξ of the surrogate model. So far, the Likelihood function in Equation (4.5)
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is only considered for a single model output. The approximations of the outputs of the

surrogate model are used component by component with the following notation:

Y P
i (t, ξ(θ)) =

P∑
j=0

yij(t)ψj(ξ(θ)), i = 1, . . . N.

The Likelihood function L(θ, t) in Equation (4.5) can be postulated for each model

output i and the evaluation on the original model can be approximated by the surrogate

model above:

L̃i(θ, t) =
∏

k

∏
s

fε

(
Y s

i,meas(tk)−
P∑

j=0

yij(tk)ψj(ξ(θ))
∣∣∣ µε, σε)

 , (4.6)

for i = 1, . . . N . The overall Likelihood function L̃(θ, t) can be obtained by multiplying

each Likelihood function L̃i(θ, t) in the above Equation (4.6):

L̃(θ, t) =
∏

i

L̃i(θ, t). (4.7)

4.1.4 Markov Chain Monte Carlo methods

This subsection is intended to outline the idea of Markov Chain Monte Carlo (MCMC)

methods, and one suggests the following references [66, 7, 44] for further reading. MCMC

methods include a set of algorithms for sampling from a probability distribution. One

constructs a Markov chain with the same stationary distributions as the desired one.

After a large number of steps, one uses the state of the chain as a sample for the desired

distribution. The quality of the distribution increases with the number of steps.

In general, Markov chains are a fundamental class of stochastic models for sequences

of non-independent random variables. One can describe such a model of a time-discrete

Markov chain with finite states by its state-space, initial distribution, and transition

matrix. The state-space of a Markov chain is a finite set of all possible states of the

model and can be written as E = 1, 2, . . . , l, where l ∈ N is an arbitrary finite number.

The initial probability that the system is in the state i ∈ E can now be expressed as

γi. The following assumption applies:

γi ∈ [0, 1],

l∑
i=1

γi = 1, (4.8)

and the initial distribution of the Markov chain can be summarized with the vector

γ = {γ1, . . . , γl}T. Then the transition of the system from a state i to j during one
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time step can be represented by the probability pij ∈ [0, 1] with i, j ∈ E. The one-step

transition matrix P is formed by the probabilities pij:

P = pij, pij > 0,

l∑
i=1

pij = 1,

for i, j = [1, . . . , l].

A Markov chain can be now represented as follows [5]: Let X0,X1, · · · : ω → E be

a sequence of random variables which are defined on (ω,F ,P) and mapping into the

set E = {1, . . . , l}. Then X0,X1, . . . is called a Markov chain with initial distribution

α and the transition matrix P , if:

P (X0 = i0,X1 = i1, . . . ,Xn = in) = γi0pi0i1 · · · pin−1in ,

for arbitrary n = 0, 1, . . . and i0, i1, . . . , in ∈ E.

With the support of Markov chains, one can now generate algorithms for the approx-

imation of the desired posterior distribution [6, 24]. This procedure takes advantage

of the fact that it is often much more comfortable to simulate Markov chains with

stationary distribution than the distribution itself.

It is assumed that a Markov chain X0,X1, . . . can be built with the following

properties: It has the state space E and an irreducible and aperiodic transition matrix

P , so that pij = 1
|E|| if i, j ∈ E are neighbors and otherwise pij = 0. Then one can build

a path x0, x1, . . . of the Markov chain as follows [49]:

1. Choose an acceptable initial configuration x0 ∈ E.

2. Generate proposal xn′ from underlying distribution.

3. Accept x0′ as a sample with the probability α(x0′|xn).

4. If the sample is accepted, set xn+1 = xn′, else set xn+1 = xn.

This accept-rejection scheme controls the sequence in a way that one samples

the target distribution after a certain point in the chain, and this approach is called

Metropolis-Hasting MCMC. Metropolis [48] and Hastings [33] developed the Metropolis-

Hastings algorithm, and it is one of the most efficient rules [64]. The reason for employing

MCMC in Bayesian applications is the challenge to compute the marginal probability

p(Y obs) of the observations, and therefore, an essential feature of the algorithm is the

ability to obtain a sample without knowing this normalization factor.
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4.2 Modeling of the Likelihood function

As already mentioned, the Likelihood function in Equation (4.7) considers not only

several measurements and outputs but also signals over time. Now the question arises

whether it is necessary to use all measurement data to build the Likelihood function.

If one assumes that not every point in time implies an increase in the information

content, only a representative subset of the points in time should be selected and used.

In this case, one can apply a sensitivity analysis (SA) for identifying the time ranges

that contain most information for the parameter estimation. One should note that

the time ranges for each parameter under consideration can be different depending

on the selected output. For example, the winding resistor has a stronger sensitivity

during switch-on than during stationary movement. One can further assume that the

sensitivity of the winding resistance to the current is higher than to the motor speed.

Among the numerous techniques on sensitivity analysis, one can divide those into two

classes: local and global. Here, the focus is on the global SA, and in particular, one

uses the Sobol’ indices to gather information about the given simulation model. As a

post-processing step of the PCE coefficient calculation, an analytical calculation of the

Sobol’ indices is possible with the PCE surrogate model. This characteristic is a great

advantage compared to the other approaches, and therefore, one applies this method

in the present context.

4.2.1 Sobol’ indices

For a global SA, one needs distributions of the parameters. These values are the actual

goal of the entire investigation, and therefore, they are not yet available for this first

step. On starts from the lower and upper estimates for the parameter limits, and selects

uniform distributions to fulfill this requirement. If one assume all parameters θ in

Equation (2.1), those can be represented by hyperparameters ξ̄. These are independent

random variables defined on the n-dimensional unit cube:

Kn = {ξ̄ : 0 ≤ ξ̄i ≤ 1, i = 1, . . . , n}. (4.9)

The model responses are random variables, whose total variances D(i) reads:

D(i)(t) = V ar[yi(t, ξ)] =

∫
Kn

y2
i (t, ξ)dξ − yi,0(t), i = 1, . . . , Q, (4.10)
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where the time-depend constant yi,0(t) is the mean value of the model output i. It is

possible to decompose the total variance in the above equation [62], and one can write

the partial variances as follows:

D
(i)
j1,...,js

(t) =

∫
Ks

y2
i,j1,...,js(t, ξj1 , . . . , ξjs)dξj1 , . . . , ξjs , (4.11)

1 ≤ j1 < · · · < js ≤ n, s = 1, . . . , n.

The summation of all partial variances is equal to the value of the total variance for

each model output yi. Based on the total variances D(i) in Equation (4.10) and the

partial variances D
(i)
j1,...,js

in Equation (4.12) the Sobol’ indices can computed as:

S
(i)
j1,...,js

(t) =
D

(i)
j1,...,js

(t)

D(i)(t)
, i = 1, . . . , Q,

and one can consider each index S
(i)
j1,...,js

as a sensitivity measure indicating the ratio

of the total deviation for uncertainties in the set of parameters {j1, . . . , js}. The Sobol’

indices S
(i)
j1,...,js

are a well-known estimate for the sensitivity of the model output to its

model parameters. In practice, one usually calculates the first-order and total sensitivity

indices. An efficient calculation algorithm is called the FAST method [56], and the

sensitivity indices obtained correspond to the first-order indices.

Based on [62], one proposes the PC expansion for the computation of Sobol’ indices.

The required statistics, according to Equation (3.11), can be stated as:

Ȳ (i)(t) = E [M(t,θ)] = ỹi,0(t),

D
(i)
PC(t) = V ar

 P∑
j=0

ỹi,j(t)ψ
(i)
j (ξ)

 =

P∑
j=1

ỹ2
i,j(t)E

[(
ψ

(i)
j (ξ)

)2
]
.

It is possible to calculate the sensitivity indices based on the above statistics by deriving

a Sobol’ decomposition [62]. One can define the PC-based Sobol’ indices as:

S
(i)
PC,j1,...,js

(t) =
∑

j∈Jj1,...,js

ỹ2
i,j(t)E

[
ψ2

i,j

]
D

(i)
PC(t)

, i = 1, . . . , Q, (4.12)

with the following set Jj1,...,js of j tuples such that only the indices (j1, . . . , js) are

nonzero:

Jj1,...,js =

{
j :

æk > 0 ∃k = 1, . . . , n, k ∈ (j1, . . . , js)

æl = 0 ∃k = 1, . . . , n, k /∈ (j1, . . . , js)

}
.

Using Equation (4.12), the Sobol’ indices can be computed effortless. This can be done

by reusing the PCE coefficients {ỹi(t)}Qi=0 from Section 3.1.
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4.2.2 Numerical results of the global sensitivity analysis

In the global SA presented here, one considers both model outputs (I and ω), and

examines the voltage U , the winding resistance R, and the load torque τload as uncertain

parameters. The Sobol’ indices are calculated according to the Equation (4.12). There-

fore, one has to define lower and upper limits for the three parameters. One approach

would be to choose extensive parameter ranges and probably reach the physical limits

of the model. This procedure is only useful if one does not know much about the

distribution of the parameters. In practice, it is also possible to rely partly on some

expert statements to better estimate the parameter limits.

In the following, one examines the two scenarios. Figure 4.1 shows the results for

the large parameter space, and Figure 4.2 bases on the narrowed parameter space. If

one compares the two results, the Sobol’ indices do not differ significantly over time.

Despite one can make a reasonable qualitative statement about their time-related

influence on the QoI in both cases. One can see that the additional information of the

experts shows a stronger influence of the resistance R. The reduced parameter space is

examined in more detail below.

Looking at SωPC, it is evident that the uncertainty in the voltage U has a considerable

influence on the output speed ω. In comparison, the resistance R has less influence

at the startup, and τload does not affect ω at all. The time-domain can be divided

based on the signal characteristics of the Sobol’ indices, and thus, the observation

can be separated into a dynamic tdyn = [0, tsteady) and a static tsta = [tsteady, T ]

time-domain. The distinction is chosen at the transition point of the output variables

to the steady-state, which one calls tsteady. In this case, one achieves this separation at

tsteady = 0.1 for the sensitivities. In summary, one can state that U is mainly sensitive

in the steady-state range, and R in the dynamic range for the motor speed ω. At this

point, one should note that the sensitivity of a parameter correlates directly with its

Sobol’ indices.

Considering the Sobol’ indices SI
PC of the output I, an analogous behavior with

respect to the time ranges is observed in Figure 4.1b and Figure 4.2b. In the dynamic

range mainly U and R are very sensitive while τload is almost exclusively sensitive in

the static range.

Based on these results, one can assume that the areas with high sensitivity provide a

high level of information for the estimation of parameter distributions. This knowledge

is discussed in the following subsection and is also integrated into the Likelihood

function.
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(a) Sobol’ indices SωPC for QoI ω.
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(b) Sobol’ indices SI
PC for QoI I.

Figure 4.1: Sobol’ indices of the parameter voltage U (solid line), winding resistance

R (dash-dotted line) and load torque τload (dotted line) for both QoIs. The

underlying PCE surrogate model uses a large parameter space.
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(a) Sobol’ indices SωPC for QoI ω.
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(b) Sobol’ indices SI
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Figure 4.2: Sobol’ indices of the parameter voltage U (solid line), winding resistance

R (dash-dotted line) and load torque τload (dotted line) for both QoIs. The

underlying PCE surrogate model uses a smaller parameter space, which

can be obtained by considering expert knowledge.
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4.2.3 Likelihood function for a one-dimensional scenario

In the one-dimensional scenario, one only considers the voltage U as uncertain. The

other parameters represent a constant value close to the assumed mean value. Starting

from the last subsection, one can look at the global sensitivities for both outputs

(current I and motor speed ω). As already noticed, the voltage mainly influences the

motor speed, and one expects the most informative content of the measurement series

in the stationary time domain. As only one output is considered, one can relay on

Equation (4.6), and in the first case, only one point in time in the stationary range is

selected for the measurement data:

L̃ω(U, t∗sta) =
∏

s

fε

(
ωs

meas(t
∗
sta)−

P∑
j=0

ωj(t
∗
sta)ψj(ξ

s(U))
∣∣∣ µε, σε), (4.13)

where t∗sta ∈ tsta is one time point in the stationary time domain.

Furthermore, the analysis can be extended to several points in time, so that a higher

amount of information can be used to optimize the posterior distribution. The central

question here is whether additional measurement data in the stationary area offer

added value in the Likelihood construction or this information is redundant. On the one

hand, one assumes that more information would lead to an increase in the quality of

the Likelihood function. On the other hand, redundant information can only slow down

the algorithm as a whole without improving quality or even worsen the approximation.

The corresponding Likelihood function for the investigation results from this:

L̃ω(U) =
∏

k

∏
s

fε

(
ωs

meas(tk)−
P∑

j=0

ωj(tk)ψj(ξ
s(U))

∣∣∣ µε, σε)
 , (4.14)

where k ∈ [0, 1, . . . , K − 1] is the index of the discrete time points, tk ∈ [tsteady, T ] and

K = 10.

4.2.4 Likelihood function for a multi-dimensional scenario

In addition to the voltage U , the resistance R and the load torque τload can also be

described as uncertain distributions. As already mentioned in the previous subsection,

the parameters R and τload are mainly sensitive at the QoI I (see Figure 4.2).

The load torque τload is similar to the voltage U concerning the SA for the QoI I,

and based on Equation (4.14) the Likelihood function can be set up in the following

two variants:

L̃I(τload, t
∗
sta) =

∏
s

fε

(
Is

meas(t
∗
sta)−

P∑
j=0

Ij(t
∗
sta)ψj(ξ

s(τload))
∣∣∣ µε, σε),
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where t∗sta ∈ tsta is also one single sample in the stationary time domain and:

L̃I(τload) =
∏

k

∏
s

fε

(
Is

meas(tk)−
P∑

j=0

ωj(tk)ψj(ξ
s(τload))

∣∣∣ µε, σε)
 , (4.15)

where tk ∈ [tsteady, T ] and the number of discrete time points is limited to K = 10.

The winding resistance R is particularly sensitive in the dynamic range, and therefore,

it differs slightly from the other two variables. One determines the highest information

content for the Likelihood function before the steady-state (based on the SA):

L̃I(R) =
∏

k

∏
s

fε

(
Is

meas(tk)−
P∑

j=0

ωj(tk)ψj(ξ
s(R))

∣∣∣ µε, σε)
 , (4.16)

where tk ∈ [0, tsteady].

One can derive several scenarios for a global Likelihood function L̃(θ) from the

Likelihood functions for the individual parameters. In the following, one considers the

three most important cases for the investigation.

Firstly, one states the Likelihood function with only two parameters:

L̃(θ, t∗sta) = L̃ω(U, t∗sta)L̃I(τload, t
∗
sta), θ = [U, τload]T. (4.17)

Another scenario also consists of both parameters, but with an extended time-frame:

L̃(θ) = L̃ω(U)L̃I(τload), θ = [U, τload]T,

L̃(θ) = L̃ω(U)L̃I(τload)L̃I(R), θ = [U, τload, R]T. (4.18)

4.3 Modeling of physical parameters

The model used is intended to approximate the physical parameter distributions. In

most cases, it is worthwhile to include the existing knowledge about the distribution

information in the modeling of the parameters. This kind of method is then called

hierarchical models [29]. More precisely, one uses a distribution assumption for the

uncertain parameter instead of a non-parametric Bayesian model. One assumes a

Gaussian distribution for the physical model by using the example of the voltage U ,

and the parametric model composes as follows:

Ũ(µU, σU, ξU) = µU + ξUσU, (4.19)
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Figure 4.3: Interconnection between the parameters of the hierarchical model [32].

with the two hyperpriors µU and σU. The additional parameter ξU equals a Gaussian

distribution with expected value zero and standard deviation one. Figure 4.3 shows

the interconnection of all introduced parameters.

From a physical point of view, one can assume all investigated model parameters

to be Gaussian distributed, and therefore, one can handle those analogously to the

voltage U . One supposes that all distributions of the physical parameters θ belong to

the class of Gaussian distributed values. Besides, one can rewrite the parametric input

as follows:

θ = [U, τload, R]T, with U(µU, σU, ζU) = µU + σUζU,

τload(µτ , στ , ζτ ) = µτ + στζτ ,

R(µR, σR, ζR) = µR + σRζR,

where the hyperpriors for the mean values µU, µτ , µR and the standard deviations σU,

στ , σR are specified. Also, one introduces new auxiliary variables ζU, ζτ , ζR, and they

are all Gaussian distributed with expected value zero and standard deviation one.

The transformation ξs(·) within the PCE mentioned in the Likelihood functions in

equations (4.14), (4.15) and (4.16) can be mapped as:

ξµ,U(µU) =
µU − E[P (µU)]√
V ar(P (µU))

, ξσ,U(σU) =
σU − E[P (σU)]√
V ar(P (σU))

,

ξµ,τ (µτ ) =
µτ − E[P (µτ )]√
V ar(P (µτ ))

, ξσ,τ (στ ) =
στ − E[P (στ )]√
V ar(P (στ ))

,

ξµ,R(µR) =
µR − E[P (µR)]√
V ar(P (µR))

, ξσ,R(σR) =
σR − E[P (σR)]√
V ar(P (σR))

,

ξζ,U(ζU) = ζU, ξζ,τ (ζτ ) = ζτ , ξζ,R(ζR) = ζR.
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The PCE basis function can be defined in an abstract way:

ψj

(
ξ
(
θ(s)
))

= ψj

(
ξµ,U, ξσ,U, ξ

(s)
ζ,U, ξµ,τ , ξσ,τ , ξ

(s)
ζ,τ , ξµ,R, ξσ,R, ξ

(s)
ζ,R

)
,

where j = 0, . . . , P and s = 1, . . . , S.

4.4 Efficiency improvement strategies

The Metropolis-Hastings algorithm, one can find in Section 4.1, relies on a random-

walk and may take a long time to converge, depending on the model. Due to the

presented extension by the surrogate model, one can reduce the evaluation within the

model considerably. In this section, one focuses on efficiency improvements within the

algorithm instead of the model evaluation. The strategies for increasing efficiency will

focus on hybrid Monte Carlo methods and enhance the interaction with the surrogate

model.

4.4.1 Advanced Markov Chain Monte Carlo methods

The advanced methods of the MCMC expressed in the title refer mainly to the

introduction of auxiliary variables so that the next candidates are not selected randomly.

In contrast, some other methods completely bypass the Likelihood function and are

named as Approximate Bayesian Computation. Though, in the further course of this

chapter, the focus is on the first-mentioned extensions.

One adaptation of the MCMC that is still widely used is the so-called Hamiltonian

Monte Carlo (HMC) method [20, 11]. There, one uses Hamiltonian dynamics to obtain

a sample from the distribution. It is necessary to express the density function by a

potential energy function and introduce so-called momentum variables to transform the

original variables in the new setting. This adaptation allows the simulation of a Markov

chain, which in each iteration relies on the Hamiltonian dynamics and calculates a

proposal for the Metropolis update.

One can link the distribution from which one wants to take a sample to a potential

energy function. The concept of a canonical distribution from statistical mechanics

is the basis of the given relation, and it is mainly adopted from [11]. The canonical

ensemble over the states x of a physical system of an energy function E(x) yields the

following probability density function:

P (x) =
1

Z
exp
−E(x)

T
,
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where T is the temperature of the system and Z is a normalizing constant. If one

replaces the energy function with Hamilton’s H(p, q), where q is the space coordinate,

and p is the momentum, then the equation can be rewritten as:

P (q, p) =
1

Z
exp
−H(q, p)

T
. (4.20)

The Hamiltonian can represent the total energy of the system, which is the sum of

kinetic K(p) and potential energy U(q). The joint density then results:

P (q, p) =
1

Z
exp
−K(p)

T
exp
−U(q)

T
, (4.21)

where K is an energy function of p alone, while U is an energy function of q alone.

One will use q to represent the model parameters of interest and utilize p as related to

Hamiltonian dynamics. Using the following potential energy function:

U(q) = − log (p(q)L(q|Y meas)) , (4.22)

one can express the posterior distribution as a canonical distribution. This statement is

given for the case T = 1 with the use of the prior information p(q) and the Likelihood

function L(q|Y obs). When choosing the kinetic energy function with the related

momentum variable p one is more independent and with regard to HMC it is usual

to assume a quadratic kinetic energy [11]. This results in a zero-mean multivariate

Gaussian distribution for p and in the ordinary case the individual components i of p

are assumed to be independent with variance mi:

K(p) =
∑
i

p2
i

2mi
. (4.23)

If one considers the HMC method, it is possible to separate each iteration within the

algorithm into two phases. In the first phase, one only changes the momentum, and in

the second, both position and momentum are adjustable. The canonical distribution

P (q, p) remains invariant in the phases [11]. As a first step, one assumes independent

momentum variables, and for their distribution, one supposes a mean value of zero and

variance of mi. Afterward, in the second step, a Metropolis update is performed. A

suggestion for the new step takes place using the Hamiltonian dynamic. Based on the

current state (q, p), one calculates the Hamiltonian dynamics for L steps with a chosen

step size ε. One common method for obtaining the results is the Leapfrog integration,

and both introduced parameters of this integration algorithm are essential for achieving

a good performance of the overall computation. Giving the obtained trajectory, one

selects the last values of the momentum variable and negates them. The new state
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(q∗, p∗) is used as a proposal xn′ within the MCMC algorithm in Subsection 4.1.4 and

it will be accepted with the probability:

α = min [1, exp (−U(q∗) + U(q)−K(p∗) +K(p))] . (4.24)

Due to the property of the Leapfrog integrator to preserve the volume and the time

reversibility of the Metropolis proposal, (q∗, p∗) is a legitimate proposal. Assuming that

one can calculate the Hamiltonian dynamic accurately, the acceptance probability α is

one. This characteristic is since the energy within the Hamiltonian system is preserved.

The error resulting from the discretization has a significant influence on the acceptance

then and depends strongly on the introduced step size parameter ε.

If one examines the performance of the HMC method more closely [35], one can see

that not only the step size ε but also the number of steps L have a significant influence.

If one chooses ε too large, the high simulation error leads to many rejections of the

proposals, whereas a small step size increases the calculation time considerably. One

can make similar observations for L. If the step length is too large, HMC generates

trajectories that repeat their steps. If the step size is too small, samples are gener-

ated, which show a strong correlation and these samples are close to another. This

behavior corresponds then strongly to a random walk and does not reflect the desired

performance.

The key is to adjust the above two parameters of the algorithm to achieve the best

possible performance. The challenge is that the parameters are highly sensitive to the

problem to be solved, and there exists no optimal initial setting or initial parameter

values. To set the step size ε and the number of steps L, one, needs experience

and usually additional runs. To enhance the applicability of the methodology in the

industrial context, it is necessary to automate the choice of the algorithmic parameters

of the HMC. Hoffman and Gelman suggest one possible solution, and they call it the

”No-U-Turn Sampler” (NUTS) method [35].

One can find all detailed information in [35], and in the following, one will only

briefly outline the basic idea of the NUTS method. In the first step, one attempts to

select the number of leapfrog steps L. Using the method, one generates a proposal with

the initial position based on the parameters from the previous iteration. Then, the

algorithm generates an independent moment vector from a standard normal distribution,

and it develops the Hamiltonian simulation forward and backward in time to ensure

reversibility. This procedure results in a balanced binary tree whose nodes correspond

to the position and momentum states. Each iteration within the algorithm increases

this tree depth by one, thus doubling the number of leapfrog steps. The iteration

ends when the sub-trajectory starts doubling itself from the left to the right nodes of
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any balanced subtree within the entire binary tree. In the second step, Hoffman and

Gelman [35] propose to use a stochastic optimization with vanishing adaptation to

adjust the step size ε for the NUTS and HMC methods. With these extensions, one

achieves a real good automatic adjustment of the HMC algorithm parameters, and

as a result, the applicability enhances considerably. In terms of calculation costs, the

central part of the computation is the calculation of the gradients within the leapfrog

method. In the following, one proposes a combination with the previously introduced

surrogate model to increase efficiency.

4.4.2 Derivations using the surrogate model

For the implementation, one has to approximate the Hamilton equations by discretiza-

tion of the time using the step size ε. As mentioned before, one uses the leapfrog

method for this purpose, and the equations for updating position and velocity are [11]:

pi

(
t+

ε

2

)
= pi(t)−

ε

2

∂U (q(t))

∂qi
, (4.25)

qi(t+ ε) = qi(t) + ε
pi(t+ ε

2)

mi
, (4.26)

pi(t+ ε) = pi(t)−
ε

2

∂U (q(t+ ε))

∂qi
. (4.27)

Looking at the NUTS algorithm as a whole, one can assume that the calculation of

gradients, in particular, addresses a significant part of the overall calculation. Start-

ing from the previous equations (4.25), (4.26), and (4.27), one has to calculate the

gradient of the potential energy function with respect to the position variables. With

Equation (4.22), one can express the gradient as:

∂U (q)

∂qi
=

∂

∂qi
− log (p(q)L(q|Y meas)) .

One can now exemplarily take the Likelihood function for one parameter θ and S

measurements from Equation (4.4) and calculate the gradient for the Log-Likelihood

as follows:

− ∂

∂θ
log (L(θ|Y meas)) =− ∂

∂θ
log

( 1√
2πσ2

ε

)S/2

exp

(
−
∑S

s=1 (Y s
meas −M(θ))2

2σ2
ε

))

=
1

σ2
ε

S∑
s=1

(Y s
meas −M(θ))

∂M(θ)

∂θ
.

(4.28)
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Similarly, the gradient of the Log-Likelihood function for the variance σε results as:

− ∂

∂σε
log (L(θ|Y meas)) =− ∂

∂σε
log

( 1√
2πσ2

ε

)S/2

exp

(
−
∑S

s=1 (Y s
meas −M(θ))2

2σ2
ε

))

=
1

σ3
ε

S∑
s=1

(Y s
meas −M(θ))2 − S

2σ2
ε

.

(4.29)

Both equations (4.28) and (4.29) involve model evaluations at parameter values, whereas

the gradient for the parameter also requires the partial derivatives of the model function.

One can easily calculate this gradient using a finite difference method. However, this

requires many more evaluations on the model, and this procedure means a loss of

efficiency. To make the method operate effectively, one proposes to use the Chaos

polynomials from the surrogate model to calculate the derivatives.

Taking Equation (3.13) into account, one can approximate the derivative of the

model with the replaced surrogate as follows:

∂M(θ)

∂θ
≈ ∂Y P (ξ(θ))

∂θ
=

∂

∂θ

P∑
j=0

yjψj(ξ(θ)) (4.30)

where ξ represents the PCE hyperparameters and those are related to the model

parameter θ given the transformation in Section 4.3. The derivative of the surrogate

model thus results in:

∂

∂θ

P∑
j=0

yjψj(ξ(θ)) =
P∑
j=0

yj
∂

∂ξ
ψj(ξ(θ))

∂

∂θ
ξ(θ). (4.31)

Depending on the chosen probability distribution for the parameter θ one gets cor-

responding gPC basis polynomials (see Table 3.1), which then can be differentiated.

Furthermore, one has to consider the inner derivative that results from introducing the

hyperparameters. If one assumes a Gaussian distribution as an example, one receives

the following statements for the derivatives:

∂

∂ξ
ψj(ξ(θ)) =

∂

∂ξ
Hj(ξ(θ)) = jHj−1(ξ(θ)),

∂

∂θ
ξ(θ) =

1

σθ
, with ξ(θ) =

θ + µθ
σθ

,

(4.32)

where Hn are Hermite polynomials with order n. One transforms the parameter θ into

the hyperparameter ξ and thus one gets the splitting into the mean value µθ and the

standard deviation σθ.
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4.5 Numerical results

In this section, one can find the application cases with one uncertain parameter and

the realization for several parameter variations. The focus is mainly on the different

properties of the Likelihood function, the surrogate model for the approximation of

the original model, and the optimal amount of information from the measurements.

The underlying measurement data are determined as described in Chapter 2. Depend-

ing on the scenario, one varies the corresponding parameters and records measurement

signals of the duration δt = 10. The number of measurements is S = 100, and all of

them passed the mentioned temperature test.

One can divide the procedure into five steps. First, one starts with the analysis of

the measurements and extracts the statistical data. Also, the theoretical distributions

are compared with the assumed ones. In the second step, one defines the distribution

assumptions for the parameters and determines them according to the hierarchical

approach. A posteriori distribution of the parameters on the original model can then be

calculated. These values will later serve as a reference distribution. In the fourth step,

the simulation model is exchanged with a suitable surrogate model, and the posterior

distributions are approximated on this basis. In the last step, the obtained results are

compared and linked to the predefined and measured distributions.

4.5.1 One-dimensional scenario

As already introduced in Subsection 4.2.3, the uncertain voltage U is considered in

the one-dimensional scenario. This parameter is approximated based on the measured

data of the motor speed ω. One employs Equation (4.13) with a stationary time t∗.

In the first step, one analyzes the available measurement data which can be used

to extract the distribution of the parameter U. Those variations do not have to

correspond exactly to the specification of the Gaussian distribution since one only

considers S = 100 random points. In this case, one defines the statistical moments

with mean value µ(Ureal) = 0.84 and standard deviation σ(Ureal) = 0.044. Figure 4.4

shows the distribution used for the test bench. The mean value is µ(Utb) = 0.85 and

the standard deviation is σ(Utb) = 0.043 which results in the following error deviations:

eµ(U) = 0.58% and eσ(U) = 0.79%. These values are very good for the present study and

are used below as a reference to evaluate the quality of the numerical approximations.

During the next step, it is necessary to consider the measured data of the motor

speed ω. One obtains the stationary data by measuring the motor speed at the time

t∗ = 5s for each measurement in the overall series. This procedure results in the
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Figure 4.4: Distribution for parameter U based on test bench sampling of a theoretically

assumed distribution. Using the histogram data (solid line) a PDF is

approximated (dotted line) and the mean value (dash-dot line) is visualized.

histogram which Figure 4.5a shows. The distribution of the output ω results mainly

from the variation of the parameter U . One also expects that the measurements are

influenced by noise. The influence of the measurement noise ε can be approximated by

determining the variation of each measurement in the stationary range:

σs
ε = σ

(
ωs(t0), ωs(t1), . . . , ωs(tT)

)
, (4.33)

where s ∈ [1, . . . , S] are the measurements and t0, t1, . . . , tT are time points in the

stationary range. The histogram of the standard deviation of the measurement is shown

in Figure 4.5b. Based on the maximum Likelihood estimate (MLE), the measurement

noise is approximated with σε = 0.0116.

There are some additional assumptions needed for the two hyperpriors µU and σU of

the hierarchical model in Equation (4.19). One assumes that less information about the

distribution is available, and experts can give an estimate of the lower and upper limits.

Therefore, one selects a non-informative priority in the form of a uniform distribution

for both parameters:

P (µU) = U(0.63, 0.94), (4.34)

P (σU) = U(0.025, 0.125). (4.35)

The Likelihood function introduced in Equation (4.4) contains the mean µε and the

standard deviation σε of the additive error ε. One assumes that there is no bias, and
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Figure 4.5: Analysis of the available measurement data of the test bench for the one-

dimensional scenario.

the mean value µε can, therefore, be expected to be zero. The prior of the standard

deviation σε is modeled as a half-normal distribution as follows:

P (σε) =

√
2

σ∗
√
π

exp

(
− σ2

ε

2σ∗2

)
. (4.36)

The recent investigation consists of two calculations. In the first case, one performs

an MCMC computation on the original model. In the second case, one replaces

the simulation model by a suitable surrogate model. The quality of the posterior

distributions is then of interest for the evaluation of the approaches. One can directly

compare the obtained results with the assumed distributions of the test bench by

using some appropriate quality metrics. It is also interesting to consider the number of

calculations on the original model and to examine the average computing time of both

approaches.

Figure 4.6 shows the numerical results of the posteriors with an MCMC approach

using the original simulation model. In this case, a Markov chain with 1, 000 samples is

generated, and the resulting traces are visualized in the figures 4.6b and 4.6d. In this

analysis, one omits the so-called burn-in, which means that one considers all samples,

even those at the beginning. As a result, the obtained trace allows the observation of a

possible convergence of the chain. However, if one extracts the distribution information

from the chain, it is recommended to dispose the samples at the beginning. According to
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figures 4.6b and 4.6d, it can be seen that the chains converge very quickly to a constant

value. Compared to the theoretically assumed statistical values used to generate the

measurement data, these results provide a good approximation.

The PDFs can be calculated based on the chains and are displayed in the figures 4.6a

and 4.6c. One can determine the hyperpriors with the highest probability via the

MLE, and then, they serve to reconstruct the underlying hierarchical distribution. The

variance of the distribution function, on the other hand, indicates to what extent this

estimate is reliable. The smaller the variation, the more likely the Markov chain is

converged. In this case, however, the variation is very inadequate, and one can assume

that the chain is already converged.

The following approximations can be derived from the numerical results:

µMLE(U) = 0.840,

σMLE(U) = 0.0450.

In a direct comparison with the measured stochastic information of the parameter U ,

the results obtained are qualitatively very satisfactory.

A further measure of the consideration is the efficiency of the method in addition to

the quality. To obtain a reliable statement and to minimize possible disturbances, one

executes the algorithms several times and calculates the mean value. In the following,

the different approaches are presented to determine the efficiency of the methods.

The simulation model has an evaluation time of about two seconds. This value

can also vary depending on the selected parameter distributions. In comparison, the

computation efforts for the introduced methods, such as the evaluations within the

MCMC algorithm, are much smaller than the execution of the simulation model.

Besides, the simulation model must be evaluated very frequently in the implemented

workflow. Therefore, one assumes that a consideration of the simulation time and the

number of required evaluations represent a reasonable estimate for the efficiency. One

should also note that all investigations are performed on the same computer to avoid

the influence of different hardware. The algorithms are executed several times, and

only the average time is used for the presented analysis.

The hierarchical model (see Equation (4.19)) requires the simulation model to be

re-evaluated within each proposal of every single measurement. One performs N = 100

variations for each proposal. The average simulation time is:

∆tsim = 2.11 [s],

resulting in an evaluation time for one proposal of ∆tprop = 210 seconds.
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Figure 4.6: The numerical result of the MCMC estimation for the one-dimensional

scenario with one time point. The computation was performed on the

original model.
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For performance reasons, it was necessary to parallelize the sequential evaluation at

this point. One achieves this requirement by distributing the individual calculations

over 25 CPUs. This approach reduced the average calculation time for a proposal

to about ∆tprop = 9.08 seconds. Of interest for the complete evaluation is the time

required for the average number of proposals per iteration:

∆titer = 43.52 [s].

Another way to speed up the calculation is to replace the original model with a

PCE surrogate model. One can find the numerical results in Figure 4.7. The traces

(see figures 4.7b and 4.7d) behave in the same way as in the previous study. The

only difference is the higher number of iterations. This behavior occurs because the

approximation of the model most likely causes a significant error that negatively affects

the convergence of the chain. One can see that the chains converge very quickly to

the predefined value range. Compared to the evaluation of the original model, one can

show here that the measurement oscillates much more strongly. This behavior can be

well observed in the figures 4.7a and 4.7c. The deviations are reflected in the PDFs by

a larger variation of the distribution. This study also shows a good convergence, and

one can obtain the following statistical information from the results:

µMLE(U) = 0.838,

σMLE(U) = 0.0452.

Considering the efficiency of the surrogate model approach, an average t = 0.0375

seconds is needed for a proposal to be evaluated. At this point, one can considerably

simplify the calculation with vectors, and omit a statement for single model evaluation.

However, the surrogate model requires more evaluations, and the average time for an

iteration adds up:

∆titer = 1.09 [s].

In addition to the average calculation time for an iteration, it is necessary to consider

the simulation time on the original model for generating the surrogate model. In this

case, three parameters are required for the hierarchical approach (N = 3), and one

uses a PCE with the order P = 3. This selection leads to 105 necessary evaluations on

the original model. Since these simulations can also be parallelized, the total time is

tsurrogate = 12.55 [s] seconds for 25 CPUs.

Finally, one can consider the variance of the Likelihood function of the two inves-

tigations. Note that the prior assumptions based on Equation (4.36) are selected as
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Figure 4.7: Numerical result of the MCMC estimation for the one-dimensional scenario

with one time point. The computation was performed on the surrogate

model.
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Table 4.1: Overview of numerical results for one-dimensional scenario.

Simulation model S K ∆titer µ(U) σ(U)

Original model 100 1 43.52 0.840 0.0450

Surrogate model 100 1 1.09 0.838 0.0452

Surrogate model 10 10 1.49 0.842 0.0429

follows. For the MCMC algorithm based on the original model, σ∗ = 0.2 is selected.

For the approximation with the PCE surrogate model, a larger variance σ∗ = 0.5 is

selected for the prior distribution. The numerical results are summarized in Figure 4.8.

As with the mean and the standard deviation of the parameter U , one can see the

analog behavior of convergence. While convergence with the original model is achieved

quickly (see figures 4.8b and 4.8a), with the surrogate model it takes longer for the

trace values to decrease (see figures 4.8d and 4.8c).

In some situations, the number of available measurements is smaller than the pre-

sented investigations, but there are several time points. In another study, one reduces

the number of measurement runs to S = 10 and increases the number of discrete time

points in the stationary range to K = 10. The numerical results were obtained with

the Likelihood function in Equation (4.14) and are shown in Figure 4.9.

Based on the results, one can observe an improvement of the approximation. It turns

out that the hyperparameter σ(U) converges only after about 3, 000 iterations. This

performance can be plausibly justified by the smaller number of measurements used.

At the same time, the estimation of the additive error is considerably improved by the

addition of further time points (see Figure 4.10).

Table 4.1 summarizes the one-dimensional scenario. One can show that the MCMC

approach is an appropriate candidate for real measurements of the test bench, and

in combination with the original model, one can achieve excellent results. It was also

shown that the use of a PCE approach to build a surrogate model is beneficial to

reduce the required computing time. In this scenario, it was possible to reduce the

evaluation by a factor of 40 in contrast to the original simulation model. The number of

measurements used also depends on the convergence speed of the standard deviation. If

one uses more time points for each measurement, one can observe a faster convergence

of the additive error.
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Figure 4.8: Standard deviation for the additive error assumption for the chosen Likeli-

hood function for the MCMC evaluation on the original and the surrogate

model.
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Figure 4.9: Numerical result of the MCMC estimation for the one-dimensional scenario

with time series. The computation was performed on the surrogate model.
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Figure 4.10: Standard deviation for the additive error assumption for the chosen Like-

lihood function for the MCMC evaluation on the surrogate model with

time series.

4.5.2 Multi-dimensional scenario

In the multi-dimensional scenario, one first considers the two parameters U and τ .

This sequence is since both uncertain parameters have the highest sensitivity in the

stationary range. One examines the resistance R separately.

As in the previous subsection, one examines the available measurements. For the

voltage U , the same values from the one-dimensional case were assumed. One selects a

normal distribution with the mean value µ(τreal) = 0.0556 and the standard deviation

σ(τreal) = 0.0044 for the load torque τ . For the design of experiment on the test

bench hardware, one selects 100 sample points, and Figure 4.11 visualizes the resulting

distributions. The statistical information for the parameter U is µ(Utb) = 0.86, σ(Utb) =

0.036 and the deviations are eµ(U) = 2.90%, eσ(U) = 16.06%. For the parameter τ the

following values are obtained: µ(τtb) = 0.0557, σ(τtb) = 0.0046, eµ(U) = 0.19%, and

eσ(U) = 4.41%. The standard deviation of U shows that the amount of measurements

is not sufficient to describe the predefined distributions well. This situation should be

taken into account when evaluating the results.

In addition to the output ω, I is also considered in this investigation, and the

stationary data at the time t∗ = 6s for both outputs are considered. The resulting
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Figure 4.11: Distribution for uncertain parameters based on test bench samples of

theoretically assumed distributions. Using the histogram data (solid line)

a PDF is approximated (dotted line) and the mean value (dash-dotted

line) is visualized.

histograms are shown in Figure 4.12. It is assumed that both output distributions (see

figures 4.12a and 4.12c) are caused by the uncertain parameters.

Equation (4.33) can be used to calculate the measurement error σε for ω, and the

resulting variation is shown in Figure 4.12b. This procedure can be applied directly to

the output I and Figure 4.12d shows the result. The measurement noise is estimated

with σε,ω = 0.0011 and σε,I = 0.0007.

Based on the equations (4.34) and (4.35) the assumptions on the distributions for

the hyperpriors can be extended. For the parameter U , one uses the same uniform

distributions as in the one-dimensional scenario. For the parameter τ , a non-informative

prior is also selected based on the hierarchical model. The resulting uniform distributions

are:

P (µτ ) = U(0.033, 0.078),

P (στ ) = U(0.0, 0.0133).

The two Likelihood functions for the output ω and I are combined. Both have the

standard deviation of the additive error ε. In the following, these errors based on

Equation (4.17) are noted as σε,ω and σε,I. For the prior assumptions, one also use

half-normal distributions from the one-dimensional scenario (see Equation (4.36)).
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(c) Histogram of the measured output I at

a stationary time area (solid line) and

the corresponding PDF (dotted line).
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(d) Histogram of the output variation I at

a stationary time area (solid line) and

the corresponding PDF (dotted line).

Figure 4.12: Analysis of the available measurement data of the test bench for the

multi-dimensional scenario.
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As in the previous subsection, the investigation consists of two parts: First, one

performs an MCMC calculation on the original model, and one run a second calculation

on the surrogate model. In both cases, one can compare the numerical results with the

measured distributions of the test bench. The figures 4.13 and 4.14 show the numerical

results for the approximated parameters. These numerical results were calculated on

the original model, and the Markov chain is created with 1, 000 samples, but in this

particular case, one defines a burn-in of 200 samples. This is also shown by the fact

that the respective traces in the figures 4.13b, 4.13d, 4.14b and 4.14d have already

reached a stationary value, and the chains are therefore converged. The comparison

with the test bench also shows a good approximation of the distributions.

The Figures 4.13a and 4.13c show the prior and posterior distributions of the

used hyperpriors of the parameter U . Compared to the one-dimensional scenario, one

can observe a slightly greater variance of the two parameters here. Considering the

hyperpriors of the parameter τ , one can recognize a similar behavior, and due to the

small variation of the posterior distributions, a hypothesis of convergence is possible

(see figures 4.14a and 4.14c). The results based on the MLE are given as:

µMLE(U) = 0.844,

σMLE(U) = 0.0441,

µMLE(τ) = 0.056,

σMLE(τ) = 0.0045.

As before, the computation of the solution was accelerated by parallelization with

25 CPUs. Then the average calculation time for an iteration on the original model is:

∆titer = 74.23 [s].

Compared to the one-dimensional scenario, the time required for an iteration has

almost doubled, while the average evaluation time for a proposal has remained roughly

the same. This circumstance is since more proposals are rejected in an iteration due to

the extended parameter space. Besides, one needs more time to evaluate the entire

Likelihood function.

In the following, one replaces the original model by the surrogate model and repeats

the calculations. The figures 4.15 and 4.16 summarize the numerical results. One

observes that the number of iterations has increased again by a factor of 10 compared

to the original model. The traces of the individual hyperpriors can be found in the

figures 4.15b, 4.15d, 4.16b and 4.16d. One should emphasize that the variation of

the parameter σ(U) has increased, and this also corresponds to the observation in a
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Figure 4.13: Numerical result of the MCMC estimation for parameter U with one time

point. The computation was performed on the original model.
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Figure 4.14: Numerical result of the MCMC estimation for parameter τ with one time

point. The computation was performed on the original model.
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one-dimensional scenario. The two parameters µ(τ) and σ(τ) show a much smaller

distribution of the traces. Concerning the assumed parameter values, one can see that

the estimates are already very close to the actual solution at the beginning. Thus,

one can assume that results that are far away from the solution, are rejected, and

the variances are greatly reduced. This is directly visible within the PDFs in the

figures 4.15a, 4.15c, 4.16a, and 4.16c. The approximate values are:

µMLE(U) = 0.867,

σMLE(U) = 0.0399,

µMLE(τ) = 0.056,

σMLE(τ) = 0.0046.

There is a time increase per iteration, just like in the evaluation of the original model.

On average the resulting time is:

∆titer = 1.24 [s].

The time required to calculate the surrogate model tsurrogate does not change and

must be added to the total time once. This results in a total simulation time of

tall,original = 74230 [s] for the original model and tall, surrogate = 12413 [s] for the

surrogate model. The use of PCE leads to a six times faster evaluation.

The analysis includes the traces of the individual additive errors at this point.

Figure 4.17 shows the standard deviations of the additive errors for the original

model. One should note that the distribution σε,ω is greater than the value of the

one-dimensional scenario σε (see Figure 4.17b). The PDF in Figure 4.17a illustrates

this behavior. One should note that this study uses a different measurement series,

and the increase of the parameter space itself describes a new problem class. The trace

of σε,I in Figure 4.17d and the corresponding PDF in Figure 4.17c show a realistic

trend. The posterior distributions are determined by the previous assumptions of the

one-dimensional scenario, and the prior variances are chosen as σ∗ω = 0.2 and σ∗I = 0.3.

For the approximation with the PCE surrogate model, one uses slightly larger

variations of σ∗ω = 0.4 and σ∗I = 0.5 as in the prior study. Figure 4.18 shows the

numerical results. If one compares the PDF of the surrogate model from Figure 4.18c

with the PDF distribution of the original model, similar behavior can be observed. This

statement is also supported by the trace in Figure 4.18d. In contrast, the distribution

of σε,ω shows some differences. Considering Figure 4.18b, the trace decreases over the

number of iterations and this leads to a PDF close to zero (see Figure 4.18a). This

outcome is consistent with the observation from the one-dimensional scenario but does
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Figure 4.15: Numerical result of the MCMC estimation for parameter U with one time

point. The computation was performed on the surrogate model.
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Figure 4.16: Numerical result of the MCMC estimation for parameter τ with one time

point. The computation was performed on the surrogate model.
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Table 4.2: Overview of numerical results for multi-dimensional scenario.

Simulation model ∆titer µ(U) σ(U) µ(τ) σ(τ)

Original model 74.23 0.871 0.0349 0.056 0.0047

Surrogate model 1.24 0.867 0.0399 0.056 0.0046

not agree with the observations from the multi-dimensional scenario in combination

with the original model. One hypothesis could be that the surrogate model does not

reflect special properties. Thus a softer response can be achieved.

Table 4.2 summarizes the considerations for the multi-dimensional scenario. By the

one-dimensional scenario, one shows in this study that it is possible to add further

parameters and that the numerical results provide a very reliable approximation of the

assumed distributions. In addition to the extension of the parameter space, one can

show that one can extend the Likelihood function to several measurement outputs of

the system and that estimate an additive error for each assumption. The use of a PCE

surrogate model helps to improve the efficiency of the entire calculation. A significant

advantage of the approach presented is the application of a sensitivity analysis in

combination with the modeling of Likelihood functions. With this step, it is possible

to include the relevant measurement information where the most sensitive parameters

have the highest contribution in the investigation and thus achieve fast convergence of

the procedure.

The resistance R is considered separately, as previously mentioned at the beginning

of this subsection. From the sensitivity analysis in Figure 4.1, one can see that the

parameter only influences the considered outputs in the dynamic range. This observation

is already included in the Likelihood function for the parameter R in Equation (4.16).

One can extend the investigation of the multi-dimensional case with the parameters U

and τ by Equation (4.18). The calculation of the posterior distributions is similar to

the previous analysis.
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Figure 4.17: Standard deviation for the additive error assumption for the chosen Like-

lihood function for the MCMC evaluation on the original model.
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Figure 4.18: Standard deviation for the additive error assumption for the chosen Like-

lihood functions for the MCMC evaluation on the surrogate model.
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The numerical results for the parameters U and τ are very close to the results in

the figures 4.13 and 4.14 and provide a good approximation. However, the hyperpa-

rameters for the resistance R converge to the minimum or maximum value of the prior

distributions. For this parameter, no statement about the underlying distribution is

possible with this setup. This case is well suited to illustrate the limitations of the

method. It may happen that the sensitivity of the parameter is not sufficient, and the

impact of the measurement noise is higher than the predicted sensitivity. Due to this

general condition, it may not be possible to reconstruct the parameter distribution by

selecting other Likelihood functions.

4.5.3 No-U-Turn sampler scenario

This subsection focuses on the efficiency evaluation of the methods used in comparison

with the NUTS algorithm and assesses the numerical results. Starting from the previous

scenario, one reduces the number of measurement points to S = 40, and one further

restricts the information of the prior assumptions for a better comparison of the

efficiency. In this scenario, one limits oneself to the consideration of the uncertain

parameter U . The selection of a stationary time for the evaluation is not affected.

The analysis uses the same measurement data as in the one-dimensional case (see

Subsection 4.5.1). The only difference is the reduction of the data points used, which

leads to slightly different stochastic moments. The mean value is µ(Utb) = 0.87 and

the standard deviation is σ(Utb) = 0.033. Resulting in the following error deviations:

eµ(U) = 3.6% and eσ(U) = 24.1%. One can see that the mean value changes only slightly

due to the reduction. Whereas the standard deviation shows a larger change, and one

must consider this discrepancy in the final evaluation. As before, one uses the motor

speed ω at a stationary time t∗ = 5 secounds for each measurement in the overall

series.

One reduces the information on the hyperpriors in Equation (4.19), and therefore,

one increases the interval of the uniform distributions. The two hyperpriors are:

P (µU) = U(0.5, 1.25),

P (σU) = U(0.013, 0.25).

The prior of the standard deviation σε is modeled as an inverse gamma distribution

instead of a half-normal distribution:

P (σε) =
βα

Γ(α)

(
1

σε

)α+1

exp

(
− β
σε

)
,
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where α = 10 is the shape parameter, β = 2 is the scale parameter, and Γ(·) denotes

the Gamma function.

This investigation consists of four different calculations. The first two cases correspond

to the reference in terms of calculation time, and one obtains them by applying the

HMC algorithm. The difference between the two cases is the model used. In one

instance, one uses the original simulation model, whereas, in the other, one applies

the PCE surrogate model. The last two cases refer to the evaluation with the NUTS

algorithm. Once more, one distinguishes between the simulation on the original model

and the simulation on the surrogate model.

Figure 4.19 shows the numerical results of the posteriors using an HMC approach

with the original simulation model. In contrast to the results with the Metropolis-

Hastings approach in Figure 4.6, one can see the reduction of the iterations. One can

justify this reduction by the fact that the distance between the iteratively generated

points is typically greater in the HMC method. In this case, one uses a burn-in period

of 25 iterations, which one must add to the total sum. A visual examination shows

that the results are very close to the values one wants to identify. More precisely, one

can derive the following approximations from the numerical results:

µMLE(U) = 0.850,

σMLE(U) = 0.0308.

Considering the efficiency, one uses the same hierarchical model as in the one-

dimensional case, but one only performs N = 40 variations for each proposal. Using the

same time for an average simulation, one obtains an evaluation time for one proposal

of ∆tprop = 84.4 seconds. In this calculation, 40 CPU cores parallelize the computation

and the average time for one iteration results in:

∆titer = 1449.05 [s].

Due to the significantly longer calculation time for an iteration, one can already see

a big difference to the previously used method: The price for an iteration with the

HMC method is much higher, but the algorithm is much more efficient and needs fewer

iterations in total. The gradient calculation mainly attributes these additional costs.

For the presented calculation, one uses a simple forward finite difference formula of

the following form:

∂M(q)

∂q
=
M(q + ε)−M(q)

ε
,

where ε is the increment to q for determining the function gradient.
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Figure 4.19: The numerical result of the MCMC estimation for the one-dimensional

scenario with one time point. The computation was performed on the

original model with the HMC algorithm.
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The following step is to replace the original simulation model with the PCE surrogate

model. Figure 4.20 shows the numerical results, and one can see a very fast convergence.

For this calculation, one uses 500 burn-in iterations and another 9, 500 evaluation for

the posterior estimation. The numerical results provide very similar results to those

from the previous investigation:

µMLE(U) = 0.850,

σMLE(U) = 0.0302.

From an efficiency point of view, the evaluation time of the surrogate model remains

the same compared to the one-dimensional scenario. In total, the time required for one

iteration changes:

∆titer = 3.04 [s].

This measure includes the evaluations of the simulation model for the gradient calcu-

lation. At this point, of course, one must also take into account the time needed to

determine the coefficients of the surrogate model. With a parallelization of 40 cores,

one gets an evaluation time of tsurrogate = 7.84 seconds.

Finally, one replaces the HMC algorithm with the NUTS method and discusses

the results obtained in the following paragraphs. Figure 4.21 shows the numerical

results of this method. One performs the calculation on the original model and uses

the same procedure for the gradients as in the HMC investigation. The burn-in period

is 25 iterations, and for the whole calculation of the posterior distribution, one uses

further 100 iterations. A first visual inspection shows a large variation in the mean

and standard deviation of the approximation in the beginning, and one achieves a

stationary behavior after 25 iterations in addition to the burn-in phase. The numerical

results are as follows:

µMLE(U) = 0.857,

σMLE(U) = 0.0318.

If one compares the values obtained with the previous investigations, one cannot

endorse a significant difference in quality. Besides, the algorithm automatically adjusts

the step size and the number of leapfrog steps. To be able to judge the adjustment of

the two parameters, it is again necessary to consider the average time for one iteration.

This evaluation time results in:

∆titer = 2, 448.60 [s].
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Figure 4.20: The numerical result of the MCMC estimation for the one-dimensional

scenario with one time point. The computation was performed on the

surrogate model with the HMC algorithm.
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It becomes apparent that the time for an iteration increased significantly. But the

comparison is not entirely equitable at this point. One can establish this statement

by the fact that at the beginning, convergence to the actual value cannot be seen,

and consequently, much more evaluations on the original model are necessary to

determine the initial values and the gradients. If one looks at the times for the iteration

individually, one can recognize a decrease in the duration with increasing iterations.

Since this method is only an intermediate step, no further investigation is performed.

In the last step of this consideration, one again replaces the original simulation model

by the surrogate model. As before, one uses 500 burn-in iterations for the calculation and

approximates the posterior distribution with additional 9, 500 iterations. Figure 4.22

visualizes the numerical results, and one can already see a convergence to the real

values on a quantitative level. A qualitative view results in the posteriors:

µMLE(U) = 0.850,

σMLE(U) = 0.0304.

Interesting in the recent evaluation is the use of the surrogate model. Contrary to

the previous investigations, the gradients are derived directly from the structure of the

surrogate model (see Subsection 4.4.2), and thus, one may expect a further increase in

efficiency. If one now considers the time required for an iteration, one obtains:

∆titer = 0.135 [s].

The time needed for the calculation of the surrogate model parameters remains un-

changed from the previous one at tsurrogate = 7.84.

Concluding, the NUTS method allows an excellent approximation of the posterior

distributions. With the presented addition of the PCE surrogate model and the

integration of the gradients within the NUTS procedure, one achieves a very good

performance. Nevertheless, the structure of the methods guarantees high applicability

because all introduced parameters in the algorithms used are automatically adapted

to the problem class.

If one compares the results of the NUTS approach using the original model (see

Figure 4.21) with the use of the surrogate model (see Figure 4.22), one can identify

a marginal bias. The discrepancy between the theoretical value and the numerical

result does not have a strong correlation to the approximation order P of the surrogate

model, as one might first assume. The assumption that P correlates weakly with the

bias, gets obvious, when looking at the forward propagation study in Chapter 3. The

results there show that the surrogate model has got proper approximation properties
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Figure 4.21: The numerical result of the MCMC estimation for the one-dimensional

scenario with one time point. The computation was performed on the

original model with No-U-Turn Sampler (NUTS).
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Figure 4.22: The numerical result of the MCMC estimation for the one-dimensional

scenario with one time point. The computation was performed on the

surrogate model with No-U-Turn Sampler (NUTS).
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at the output variable ω (see Figure 3.10). The shown posterior distributions in

this chapter use the surrogate model with approximation order P = 2, and in the

context of this investigation, one gets comparable results by reducing P to one. The

bias arises mainly from the assumptions for the surrogate model. Since no detailed

parameter distributions are available beforehand, one builds the PCE model with the

prior assumptions. Figure 4.23 illustrates this hypothesis and shows the numerical

results with 25% enlarged priors. The two traces for the mean value and the standard

deviation of U indicate a significant bias to the theoretical values compared to the

previous results. In this study, one can assess the sensitivity of the prior assumptions

to the quality of the posterior distributions. If one wants to investigate the influence of

the approximation order, one should consider the dynamic range of the motor speed ω.

To complete the analysis, one considers the estimated errors analogous to the previous

investigations. One can say that in all four variants, the error converges to a similar

value, and this value is in the range of the one-dimensional scenario. When comparing

the original and the surrogate simulation model, one can hardly see any difference in

the standard deviation of σε. Since one refers to the variants with the surrogate model

approach as an approximation of the original model, one can assume a significant error

which the posterior results should then reflected. But if one includes the two posterior

distributions of the voltage U in this consideration, one can see that the inaccuracies

of the surrogate model become apparent in an increased variation of the two posterior

results.
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Figure 4.23: The numerical result of the MCMC estimation for the one-dimensional

scenario with one time point. The computation was performed on the

surrogate model with No-U-Turn Sampler (NUTS) and enlarged prior

assumptions.
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5
Conclusion

This thesis aims to apply the inverse Uncertainty Quantification to a real application

example from the industry. The challenges here lie in determining the input and

parameter distributions of the simulation model based on recorded observations, the

efficient calculation of the methods introduced, the requirements for the model and

the measurement series, and the generalization of the process. In concrete terms, this

means that the present work combines several approaches and introduces extensions

to achieve the inverse Uncertainty Quantification for an application example from the

industry. One finds the steps accomplished for reaching this goal in the individual

chapters. Chapter 2 focuses on the requirements for the simulation model and the

configuration of the test bench for the validation. One can find the extension of the

simulation models by stochastic information in Chapter 3. This analysis includes the

validation of the forward Uncertainty Quantification. Chapter 4 presents the numerical

results for the parameter distributions based on the validated simulation model and

measurements from the test bench.

One introduces the windshield wiper drive being the real application example in

Chapter 2. The investigation shows the necessary steps to get to the relevant parameters,

whose statistical information one determines in the further course. In parallel, one

defines the construction of the test bench, and this hardware makes it possible to
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record measurement data that scatter due to different physical quantities. The unique

feature of the device is that one can automatically generate the measurements from

parameter distributions. The union of the physical measurements and the information

of the assumed distributions for the particular physical quantities makes it possible

that one can use the information for the validation of the algorithms in the context of

the quantification of uncertainties. To enable this characteristic, it was also necessary

to keep the measurement conditions in the same range. Besides, one shows how the

measurement data could be prepared in such a way that UQ can be applied at all.

Three uncertain physical quantities are taken into account in the present work.

Chapter 3 examines methods for the stochastic extension of the simulation model,

and the challenge lies in the fact that one cannot change the solver of the simulation

model based on its generalizability. The classical approaches require a high number of

evaluations on the model, and from an efficiency point of view, an optimization of the

calculation is necessary. Based on the simulation model, one creates a surrogate model

with PCE and investigates various approaches for determining the coefficients. One can

show that the sparse grid offers an excellent possibility to adapt the surrogate model to

the original model with few evaluations. A contribution of this work is the comparison

of the statistical information between the simulation results and the measurements

of the test bench hardware. In summary, one can show that the proposed surrogate

model approach provides a suitable approximation to reality.

One addresses the main challenge of the inverse Uncertainty Quantification in

Chapter 4, and intensively discusses the numerical results there. One uses the Bayesian

inference and related methods to calculate the distributions of the inputs and parameters.

A contribution of this work lies in the combination of sensitivity analysis based on the

Sobol’ indices of the surrogate model with the modeling of the Likelihood function.

Especially with time-dependent QoIs, it is possible to select the relevant information

of the measurements required for the investigation and to speed up the calculation.

By using the measurement data of the test bench, one can show that the MCMC

method used is well suited to approximate the desired distributions. This result includes

recorded measurements from the test bench hardware and the complex simulation

model of an electric drive. One can show that the surrogate model accelerates the

calculation of distributions by a factor of six to twenty. Despite faster calculation, one

can maintain the quality of the evaluation. This statement is valid, although one can

only give approximate estimates for the distributions of the individual hyperpriors. In

summary, the particular steps result in a sequence that one can directly transfer to

different application examples. Another contribution of this thesis is the use of the No
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U-Turn Sampler (NUTS) method in combination with a PC surrogate model. Coupling

the analytical solution of the surrogate model derivatives with the NUTS algorithm

significantly increases the efficiency. This characteristic is particularly reflected in

very fast convergence. Nevertheless, the easy applicability of the method remains very

simple for the end-user. It could also be shown that even with little information, a

good posterior distribution of the parameters can be approximated.

Considering the simulation model and the test bench, one can derive several enhance-

ments. A possible extension is to add further uncertain quantities to the structure to

extend the considered parameter space and to examine the scalability of the algorithms

more closely. The measurement data used is recorded under constant measurement

conditions. This concerns above all the ambient temperature, but also the temper-

atures of the individual elements of the electric drive. Depending on the operating

time, the temperatures can vary greatly and thus also have a significant influence

on the measured variables. A possible extension is the modeling of these uncertain

quantities to reduce the requirements for recording measurements and thus increase

the applicability of the methodology also for measurement data from fleets or products

from a practical operation.

As long as detailed investigations or measurement data are available, it is possible

to evaluate the quality of the surrogate model. To increase the applicability of such

surrogate models in industry, error estimators are needed. A possible extension is an

algorithm which, starting from a given error limit, increases the evaluations on the

original model until the desired approximation quality is achieved.

The backward Uncertainty Quantification described applies to the assumption of a

Gaussian distribution and is suitable for industrial applications. A conceivable extension

is the generalization of this approach so that less prior knowledge must be brought

into the selection of suitable hyperparameters. A further challenge in the presented

procedure is the selection and modeling of a suitable Likelihood function for the

MCMC procedure. At this point, one should mention further methods, such as the

Approximate Bayesian Computation, which bypasses the evaluation of the Likelihood

function. Finally, the extension of the parameter space would also be very interesting

to obtain further information about the scalability of the methods.
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[43] Le Mâıtre, O. P. ; Najm, H. N. ; Ghanem, R. G. ; Knio, O. M.: Multi-

resolution analysis of Wiener-type uncertainty propagation schemes. In: Journal

of Computational Physics 197 (2004), Nr. 2, S. 502–531

[44] Liu, Jun S.: Monte Carlo strategies in scientific computing. New York : Springer,

2008 (Springer series in statistics)

[45] Ljung, Lennart: System identification: Theory for the user / Lennart Ljung. 2nd

ed. Upper Saddle River, N.J. : Prentice Hall, 1999

132



[46] Lunze, Jan: Regelungstechnik. 8., neu bearbeitete Aufl. Berlin : Springer, 2010

(Springer-Lehrbuch)

[47] Massey, Frank J.: The Kolmogorov-Smirnov Test for Goodness of Fit. In: Journal

of the American Statistical Association 46 (1951), Nr. 253, S. 68

[48] Metropolis, Nicholas ; Rosenbluth, Arianna W. ; Rosenbluth, Marshall N. ;

Teller, Augusta H. ; Teller, Edward: Equation of State Calculations by Fast

Computing Machines. In: The Journal of Chemical Physics 21 (1953), Nr. 6, S.

1087–1092

[49] Müller-Gronbach, Thomas ; Novak, Erich ; Ritter, Klaus: Monte Carlo-

Algorithmen. 2012

[50] Nobile, F. ; Tempone, R. ; Webster, C. G.: A Sparse Grid Stochastic Collo-

cation Method for Partial Differential Equations with Random Input Data. In:

SIAM Journal on Numerical Analysis 46 (2008), Nr. 5, S. 2309–2345

[51] Novak, Erich ; Ritter, Klaus: High dimensional integration of smooth functions

over cubes. In: Numerische Mathematik 75 (1996), Nr. 1, S. 79–97

[52] Oppenheim, Alan V. ; Schafer, Ronald W.: Zeitdiskrete Signalverarbeitung. 3.,

durchgesehene Auflage. reprint 2015. Berlin/Boston : De Gruyter Oldenbourg,

1998 (Grundlagen der Schaltungstechnik)

[53] Owen, Art B.: Controlling Correlations in Latin Hypercube Samples. In: Journal

of the American Statistical Association 89 (1994), Nr. 428, S. 1517

[54] Rasmussen, Carl E. ; Williams, Christopher K. I.: Gaussian processes for ma-

chine learning. Cambridge, Mass. and London : MIT, 2006 (Adaptive computation

and machine learning)

[55] Ripley, Brian D.: Stochastic simulation. 2006. Hoboken : Wiley-Interscience,

2006 (Wiley series in probability and statistics)

[56] Saltelli, A. ; Tarantola, S. ; Campolongo, F.: Sensitivity Analysis as an

Ingredient of Modeling. In: Statistical Science 15 (2000), Nr. 4, S. 377–395

[57] Singhee, Amith ; Rutenbar, Rob a.: Why quasi-Monte Carlo is better than

Monte Carlo or Latin hypercube sampling for statistical circuit analysis. In: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 29

(2010), Nr. 11, S. 1763–1776

133



[58] Sinha, N. K. ; Rao, G. P.: Identification of Continuous-Time Systems. Dordrecht

: Springer Netherlands, 1991

[59] Smith, Ralph C.: Uncertainty quantification. Philadelphia, Pa. : SIAM, Soc. for

Industrial and Applied Math, 2014 (theory, implementation, and applications)

[60] Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain

classes of functions. In: Soviet Math. Dokl. 4 (1963), S. 240–243

[61] Steinhilper, Waldemar ; Sauer, Bernd: Konstruktionselemente des Maschinen-

baus 2. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012

[62] Sudret, Bruno: Global sensitivity analysis using polynomial chaos expansions.

In: Reliability Engineering & System Safety 93 (2008), Nr. 7, S. 964–979

[63] Tanner, Martin A. ; Wong, Wing H.: The Calculation of Posterior Distribu-

tions by Data Augmentation: Rejoinder. In: Journal of the American Statistical

Association 82 (1987), Nr. 398, S. 548–550

[64] Tarantola, Albert: Inverse problem theory and methods for model parameter

estimation. Philadelphia, PA : Society for Industrial and Applied Mathematics,

2005

[65] The MathWorks Inc. , Natick, Massachusetts, United States: MATLAB

and Optimization Toolbox. 2012

[66] Tierney, Luke: Markov Chains for Exploring Posterior Distributions. 1994

[67] Tikhonov, A. N. ; Arsenin, V. I.: Solutions of ill-posed problems. Washington,

D.C. : V.H.Winston, 1977 (Scripta series in mathematics)

[68] Toliyat, Hamid A. ; Kliman, G. B.: Handbook of electric motors. 2nd ed., rev.

and exp. New York : Marcel Dekker, 2004

[69] Tuzlukov, V. P.: Signal processing noise. Boca Raton : CRC Press, 2002 (The

electrical engineering and applied signal processing series)

[70] van Valkenburg, M. E.: Analog filter design. New York and London : Holt,

1982 (HRW series in electrical and computer engineering)

[71] Wang, Jingbo ; Zabaras, Nicholas: A Bayesian inference approach to the inverse

heat conduction problem. In: International Journal of Heat and Mass Transfer

47 (2004), Nr. 17-18, S. 3927–3941

134



[72] Wiener, Norbert: The Homogeneous Chaos. In: American Journal of Mathematics

60 (1938), Nr. 4, S. 897–936

[73] Xiu, Dongbin ; Hesthaven, Jan S.: High-Order Collocation Methods for Differ-

ential Equations with Random Inputs. 2005

[74] Xiu, Dongbin ; Karniadakis, George E.: The Wiener–Askey Polynomial Chaos

for Stochastic Differential Equations. 2002

135


	Introduction
	Challenges in complex engineering systems
	Uncertainty Quantification
	Objective and outline

	Model and test bench hardware
	Windshield wiper drive
	Simulation model
	Electrical model equations
	Mechanical model equations
	Thermal model equations

	Test bench hardware
	General overview
	Obtaining measurement data
	Recording a measurement series
	Parameter identification
	Model confidence


	Forward propagation of uncertainties
	Polynomial Chaos expansion
	Definition in the one-dimensional case
	Extension to the multi-dimensional case
	Determination of the PC coefficients

	Investigation with a simplified simulation model
	Numerical results for the benchmark problem
	Validation with the test bench hardware

	Backward propagation of uncertainties
	Bayesian inference
	Prior distributions selection
	Likelihood function
	Integration of the PCE surrogate model
	Markov Chain Monte Carlo methods

	Modeling of the Likelihood function
	Sobol' indices
	Numerical results of the global sensitivity analysis
	Likelihood function for a one-dimensional scenario
	Likelihood function for a multi-dimensional scenario

	Modeling of physical parameters
	Efficiency improvement strategies
	Advanced Markov Chain Monte Carlo methods
	Derivations using the surrogate model

	Numerical results
	One-dimensional scenario
	Multi-dimensional scenario
	No-U-Turn sampler scenario


	Conclusion
	Bibliography
	Leere Seite



