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Development of novel methods in quantitative magnetic resonance imaging:
Quantitative magnetic resonance imaging (MRI) is a non-invasive and versatile tool for the assessment
of anatomical structures. In recent years, MRI has evolved rapidly and is of high clinical interest because
of its potential to distinguish diseased from healthy tissue. A variety of methods have been proposed for
quantitative cardiac MRI, but insufficient precision and practicality limit its clinical use. One objective of
this work was to analyze the effects of blood flow in relation to T1 relaxation times of blood for conven-
tional inversion recovery (IR) and saturation recovery (SR) methods. Simulations, phantom, and in vivo
experiments were performed to validate the effects of flow. The in-flow of non-prepared spins resulted in
decreased T1 times, and thus SR methods were found to be more resistant to flow effects. Based on this,
a sequence was developed for simultaneous quantification of T1, T2, and T2

˚. Phantom measurements
were performed with high accuracy in agreement with simulations and good visual image quality was
observed in the myocardium compared to reference methods and in patients. In the second part of the
work, a novel renal magnetic resonance fingerprinting (MRF) approach was developed for the simulta-
neous quantification of T1 and T2

˚ within four slices. Simulations showed good agreement with phantom
measurements and a convergence of the reconstructed relaxation times. In vivo measurements bene-
fited from a 10-fold speedup compared to conventional methods and good reproducibility for repeated
measurements. Additionally, this technique has been used in brain scans at two centers to study white
matter lesions in patients with multiple sclerosis. Complex and computationally costly data processing
was replaced by a neural network combining noise reduction, T1 and T2

˚ reconstruction, distortion cor-
rection, and white matter, gray matter and lesion segmentation. Robust and accurate parameter maps
provide reconstructions with a 100-fold speed up, and therefore ideal for clinical applications.

Entwicklung neuartiger Methoden in der quantitativen Magnetresonanztomographie:
Die quantitative Magnetresonanztomographie (MRT) ist ein nicht-invasives und vielseitiges Werkzeug
für die Beurteilung anatomischer Strukturen. In den letzten Jahren hat sich die MRT rasant weiteren-
twickelt und ist aufgrund ihres Potenzials, krankes von gesundem Gewebe zu unterscheiden, von ho-
hem klinischen Interesse. Speziell für die quantitative kardiale MRT wurde eine Vielzahl von Methoden
vorgeschlagen, aber unzureichende Präzision und Praktikabilität begrenzen den klinischen Einsatz. Ein
Ziel dieser Arbeit war es, die Auswirkungen des Blutflusses in Bezug auf die T1-Relaxationszeiten des
Blutes für konventionelle Inversions- (IR) und Saturierungs- (SR) Methoden zu analysieren. Es wur-
den Simulationen, Phantom- und in vivo-Experimente durchgeführt, um die Auswirkungen des Flusses
zu validieren. Der Einlauf von nicht preparierten Spins führte zu verringerten T1-Zeiten, und somit er-
wiesen sich die SR-Methoden als resistenter gegenüber Flusseffekten. Darauf basierend wurde eine
Sequenz zur simultanen Quantifizierung von T1, T2 und T2

˚ entwickelt. Phantommessungen wurden mit
hoher Genauigkeit in Übereinstimmung mit Simulationen durchgeführt und es wurde eine gute visuelle
Bildqualität im Myokard im Vergleich zu Referenzmethoden und in Patienten beobachtet. Im zweiten Teil
der Arbeit wurde ein neuartiger renaler Magnetresonanz-Fingerprinting (MRF)-Ansatz zur simultanen
Bestimmung von T1 und T2

˚ innerhalb von vier Schichten entwickelt. Simulationen zeigten eine gute
Übereinstimmung mit Phantommessungen und Konvergenz der rekonstruierten Relaxationszeiten. In
vivo Messungen profitieren von einer 10-fachen Beschleunigung im Vergleich zu konventionellen Metho-
den und guter Reproduzierbarkeit bei wiederholten Messungen. Zusätzlich wurde diese Technik in Kopf
Messungen benutzt und an zwei Zentren zur Untersuchung von Läsionen der weißen Substanz bei Pa-
tienten mit Multipler Sklerose eingesetzt. Die komplexe und rechenintensive Datenverarbeitung wurde
durch ein neuronales Netzwerk ersetzt, und dabei die Rauschunterdrückung, die Rekonstruktion von T1

und T2
˚, die Verzerrungskorrektur und die Segmentierung der weißen Substanz, grauen Substanz und

Läsionen kombiniert. Robuste und genaue Parameterkarten liefert die Rekonstruktion mit 100-facher
Beschleunigung, und somit ideal für klinische Anwendungen.
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Measure what can
be measured, and
make measureable
what cannot be
measured.

- Galileo Galilei 1
Introduction

Magnetic resonance imaging (MRI) is a constantly evolving tool for the non-invasive
study of the anatomical structures and functions of the human body. MRI offers the
ability to provide information for the diagnosis of disease, visualization of abnormali-
ties, and detection of early stages in pathologies. With its excellent soft tissue contrast,
MRI has become a powerful tool with a broader and more distinctive range of tech-
niques compared to computed tomography and ultrasound. Besides, MRI is harmless
to the human body because it uses low-energy electromagnetic waves for non-ionizing
radiation. MRI is particularly important for functional imaging, such as visualization of
neurologically activated brain areas, detection of tissue changes through quantification
of relaxation times, and functionality through cine imaging and flow measurements.

Especially, quantitative MRI has emerged in recent decades as a promising tool for
clearly distinguishing between healthy and diseased tissue. Diseases such as heart
failure, chronic kidney disease, and multiple sclerosis can be detected at early stages,
allowing early drug treatment and increasing life expectancy. Quantification of tissue
relaxation times opened a new field of MR physics with its enormous potential to track
changes in anatomy and the ability to compare between different images, patients, and
manufacturers, making it a stable and robust modality. The leading cause of death in
this century is ischemic heart disease, with more than eight million deaths per year
[1]. Therefore, quantitative cardiac MRI is essential to detect edema, fibrosis, iron
overdose, and oxygenation, without the need for contrast agents that could be de-
posited in the body. The three tissue relaxation times T1, T2, and T2

˚ are excellent
biomarkers for assessing multiple pathologies due to their sensitivity to microstructural
and metabolic changes. However, long measurement times and long breath-hold com-
mands reduce patient comfort and complicate practicality in clinical practice. Despite
the well-organized healthcare system in Germany, these long measurement times lead
to higher costs, resulting in waiting times of several months for an MRI examination.
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Chapter 1. Introduction

This work aimed to develop and improve different imaging techniques for the simulta-
neous quantification of tissue relaxation times in clinically feasible measurement times.
In one part of the work, quantification of tissue relaxation times in the myocardium was
performed under free-breathing conditions. This novel method was validated in healthy
volunteers and myocardial patients. Additionally, the effects of blood flow were ana-
lyzed to understand the underlying processes of flow that influence the measurement
of the in vivo relaxation times. In a second part, an MR fingerprinting (MRF) sequence
was developed and optimized for simultaneous quantification of T1 and T2

˚ relaxation
times in the kidneys across four slices. The same method was additionally applied to
patients with multiple sclerosis (MS) in the brain. The entire post-processing pipeline
such as denoising, distortion correction and masking was accelerated and combined
through a single neural network to improve clinical applicability.

The following section explains the basics and underlying principles of MRI with a histo-
logical introduction with all the necessary concepts for the developed techniques.

1.1 MRI History

The foundation for MRI was laid with the discovery of the proton spin in 1922 by the
Stern-Gerlach experiment [2]. This quantum mechanical property formed the basis for
further experiments and theoretical considerations and was first measured by Isidor
Rabi in 1938 [3]. There, a transition between discrete energy states was induced by an
oscillating magnetic field in a static magnetic field. In 1948, Felix Bloch [4] and Edward
Purcell [5] were the first to independently demonstrate nuclear magnetic resonance
(NMR) in condensed matter, for which they were awarded the Nobel Prize in 1952. In
these NMR experiments, the longitudinal relaxation time T1 and the transverse relax-
ation time T2 are essential parameters, which are well described by the Bloch equations.
These relaxation times form the basis of all MR sequences with their unique contrast
for different tissues. But it was not until the year 1973, Peter Mansfield [6] and Paul
Lauterbur [7] introduced spatial encoding of the NMR signal, making MR imaging pos-
sible. Their work was awarded in 2003 with the Nobel Prize which laid the foundations
of magnetic resonance imaging. As a non-invasive technique with no exposure to ion-
izing radiation and based on the strong dispersion from the T1 and T2 relaxation times
for different tissues, it has become one of the most important imaging modalities in clin-
ical use. Its rapidly developing field and increasing interest led to years of research to
accelerate imaging and improve image quality.
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1.2. Imaging

1.2 Imaging
MRI sequences, which are a repetitive series of radio frequency (RF) pulses and gradi-
ents, offer a wide flexibility to obtain different contrasts and functionalities. They can be
divided into two main classes: Spin-echo (SE) sequence [8], where an echo is formed
using RF pulses, and gradient-echo (GRE) sequence [9], where an echo is formed using
gradients. GRE sequences have become an important technique for modern MR ex-
aminations since the 1990s. GRE sequences are much shorter than SE sequences be-
cause only a single RF pulse needs to be applied in conjunction with a gradient reversal
without any refocusing pulse. Additionally, small flip angles reduce measurement time
and yield the highest contrast, as shown theoretically by Ernst in 1966 [10]. Therefore,
the Signal-to-Noise (SNR) ratio is lower compared with SE sequences and it is suscep-
tible to inhomogeneities of the magnetic field and off-resonance effects [11]. Neverthe-
less, GRE allows acquisition of the entire k-space within a few hundred milliseconds,
which is short enough to image the myocardium in diastole [12]. The revolutionary step
of GRE sequences was proposed by Mansfield and Maudsley in 1976 [13]. Rapidly
successive RF pulses are used to acquire the entire k-space, preventing the longitu-
dinal or the transverse magnetization from fully recovering. Hence, the magnetization
settles into a steady-state after multiple excitations. However, the residual transverse
magnetization after each excitation must be disrupted with spoiler gradients, which was
proposed by Haase and Frahm in 1986 [14]. Especially for T2

˚ quantification, GRE
sequences are essential. The gradient reversal can be repeated several times to gen-
erate multiple echoes from a single RF pulse (illustrated in Figure 1A). In this process,
the signal intensity decreases exponentially with time constant T2

˚ [15]. Small flip an-
gles are generally used in spoiled GRE and therefore, the signal is very low, especially
for echoes with long TEs. Another strategy to deal with the transverse magnetization
is the use of gradient refocusing, which was already laid in 1958 by Carr [16]. This
sequence is called balanced steady-state free precession (bSSFP) which effectively
refocuses every gradient moment after one repetition time (TR) (shown in Figure 1B).
This allows the use of higher flip angles because multiple echoes overlap after each
TR, which leads to an increased SNR. In the myocardium, for example, bSSFP pro-
vides high contrast between the myocardial wall and the blood pool because of its T1

over T2 dependence [17]. However, bSSFP is susceptible to B0 inhomogeneities and
off-resonance effects, such that signal modulations and intravoxel dephasing results in
band-like artifacts [18]. The fastest technique for acquiring the k-space is echo-planar
imaging (EPI) (illustrated in Figure 1C). It was a break-through for functional imaging
and was proposed by Stehling in 1991 [19].
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Chapter 1. Introduction

An entire k-space can be scanned with only one RF pulse in a fraction of a second.
The k-space is commonly sampled in a linear manner such that small phase encod-
ing gradients are applied after one set of frequency encoding gradients to move to the
next k-space line. In the middle of the k-space, the sum of the small positive acquired

A Multi Gradient-Echo (mGRE)

B balanced Steady-State Free Precession (bSSFP)

C Echo-Planar Imaging (EPI)
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Figure 1:Schematic of three different readouts is shown with the corresponding radio-frequency
pulse (RF), the slice selection gradients (Slice), the phase encoding gradients (Phase), and the
frequency encoding gradient (Freq) and the corresponding trajectory in the k-space on the right
side. A depict the multi gradient-echo readout, B the balanced steady-state free precession
readout, and C the echo-planar imaging readout.
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1.3. Quantitative MRI

gradient compensates for the initially applied negative gradient, thus ensuring maxi-
mum re-phasing of the spins in the middle of the k-space [20]. EPI is susceptible to
magnetic field inhomogeneities due to the long echo train succeeding the RF pulse
caused by time dependent dephasing. Its main use is in neural applications due to
the advantage of fast image acquisition [21]. GRE sequences are an essential tool for
rapid k-space acquisitions and therefore single-shot imaging, especially when acceler-
ation techniques are used to undersample the k-space. This enables the possibility to
acquire multiple weighted images in clinically acceptable measurement time, which is
needed for quantification.

1.3 Quantitative MRI

The crucial invention of measuring tissue properties as T1 and T2 opened the widely
developing field of quantitative MRI in the 1980s. In 1971, Raymond Damadian first
demonstrated that these relaxation times differed in healthy and diseased tissue [22].
This established the use of MRI to study disease. As early as 1970, Look and Locker
[23] established a sequence for quantifying T1 relaxation time in vivo and formed the
basis for myocardial T1 mapping, which has been the gold standard method in cardiac
imaging in recent decades. In the 1990s, Hawkes et al. [24] demonstrated the applica-
tion of MRI in the heart and showed a clear separation between the myocardial walls
and the cavities of the individual chambers. Quantitative MRI is based on a series of
contrast weighted image acquired with different echo times (TE), repetition times (TR),
and inversion times (TI). The relaxation times can then be determined for each voxel by
an exponential fit over their dependence as provided in the Bloch equations [4] (Equa-
tion 1).

dMxptq
dt “ γpMptq ˆ Bptqqx ´

Mxptq
T2

dMyptq
dt “ γpMptq ˆ Bptqqy ´

Myptq
T2

dMzptq
dt “ γpMptq ˆ Bptqqz ´

Mzptq ´M0

T1

(1)

It was shown by Larsson et al. [25] in 1989 that T1 and T2 times change significantly
during disease development. Quantitative MRI provides imaging biomarkers for charac-
terization of tissue pathologies, follow-up, and treatment planning. However, all quan-
tification methods in MRI suffered from the long measurement time due to the need to
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Chapter 1. Introduction

repeat scans with different scan parameters and were therefore difficult to use in clinical
practice. Especially for body parts moving due to respiratory or cardiac motion.

1.4 Quantitative Cardiac Magnetic Resonance
Heart failure is the leading cause of death in the modern world [1, 27] and therefore,
quantitative MRI in the myocardium has gained increasing attention. It strives for early
diagnosis and detection of abnormalities, differentiation of pathologies, and guiding
treatment after drug or surgery [28]. In particular, the assessment of diffuse myocardial
disease has been a breakthrough for T1, T2, and T2

˚ mapping, as it has historically
been difficult to quantify non-invasively [29, 30]. Parametric measurements of cardiac
magnetic resonance hold promise for improved diagnostic decision making and pro-
vide endpoints that reflect disease progression (Table 1). In particular, myocardial T1

mapping is most commonly used for assessing ischemic and non-ischemic cardiomy-
opathies. It has been shown to be sensitive to a wide range of cardiomyopathies with
high precision and reproducibility [31, 32, 33]. The methods are based on either in-
version or saturation recovery (SR) pulses [34, 35]. Multiple images are acquired at
different times after inversion/saturation pulses (Figure 2). This leads to a sampling of
the T1 relaxation curve and thus to the quantification of T1 by an exponential fit. Modified
look-locker inversion recovery (MOLLI) [36] is the gold standard technique for quantify-
ing T1 by acquiring one image per diastolic phase following an inversion recovery pulse.
However, the accuracy of the T1 estimation is affected by repetitively acquired excitation
pulses that interfere with the sampling of the relaxation curve. The z-magnetization is
reduced by each image acquisition, which results in a reduced T1 time. A correction
has been proposed for this method, however, still underestimates T1 due to magne-

Table 1: Indication of pathologies for T1, T2 and T2
˚ mapping according to the clinical recom-

mendations for cardiovascular magnetic resonance mapping [26].

T1 T2 T2
˚

Decrease Anderson-Fabry, iron
overload, fat, hemor-
rhage

iron overload, hemor-
rhage

iron overload, hem-
orrhage, stress-
induced ischemia

Mild increase diffuse fibrosis, scar,
subacute inflamma-
tion

diffuse fibrosis subacute inflamma-
tion

Moderate in-
crease

amyloid, acute in-
flammation, acute
ischemia, necrosis

amyloid, necrosis,
scar

acute inflammation,
acute ischemia,
necrosis
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1.4. Quantitative Cardiac Magnetic Resonance

tization transfer (occurs by transfer of spin states) and T2 effects (faster dephasing)
[37, 38]. Therefore, saturation-based methods have been proposed to overcome the
loss in accuracy. Saturation recovery single-shot acquisition (SASHA) [39] provides ac-
curate T1 times because the initial magnetization is reset by the saturation pulse before
the image readout. However, the saturation pulse results in lower SNR than MOLLI
because the magnetization needs to regrow. Therefore, SR methods suffer from lower
precision due to a smaller dynamic range of the relaxation curve sampling, especially
in patients with high heart rates. Nevertheless, the accuracy of SR methods is inde-
pendent of heart rate and acquisition scheme and less susceptible to effects such as
flow compared to IR-based methods because the magnetization history is reset at each
heartbeat [34, 40].

T2 quantification in the heart has a high clinical value for reliable differentiation be-
tween healthy and diseasedmyocardial tissue [41, 42]. In particular, for the assessment
of edema in patients with amyloidosis, it showed higher performance compared to T1

mapping [43, 44]. Conventionally, T2 mapping is performed by acquiring T2 preparation
pulses with different durations that precede single-shot acquisitions. The first single-
shot image is acquired without any preparation to sample the T2 relaxation curve at
time t “ 0. The following two images are acquired with an additional T2 preparation
prior to the image acquisition, preceded by a three-second rest period to ensure full
recovery of the magnetization before each preparation [45]. T2 is then quantified by an
exponential fit with two or three parameters to additionally cover the background noise
[46]. However, it has been shown that magnetic field strength, sequence acquisition
parameters, and post-processing algorithms limit the robustness of the quantification
[47]. Therefore, it has been shown that a fourth single-shot image following a satura-
tion pulse to mimic very long T2 yields robust quantification and is less susceptible to
technical factors [48, 49].

Myocardial T2
˚-mapping is a promising tool for assessing iron deposits in several iron

storage diseases [50] because the T2
˚ relaxation time is inversely proportional to the

iron concentration [51]. The T2
˚ relaxation must be sampled more densely compared

with the T2 relaxation because of its inherently shorter relaxation time course. T2
˚

is shorter than T2 due to magnetic field inhomogeneities which additionally perturb
the spins. Therefore, T2

˚ is typically measured at field strengths of 1.5 T yielding a
slower exponential decay of T2

˚ [52]. Typically, the sampling is performed using a
multi-gradient echo (multi-GRE) with eight to twelve echoes in the range of 1-18ms.
Conventionally, a two-parameter exponential fit is used to quantify T2

˚, but for short T2
˚

times, such as in iron deposit, the signal from echoes with long echo times reaches the
noise floor. This can be corrected by either a three-parameter fit model or a truncation

7



Chapter 1. Introduction

model, where echoes reaching the noise floor are excluded from the analysis [53]. In
particular, because of its susceptibility to inhomogeneities and the relatively fast decay,
T2

˚ measurements are the most challenging in clinical practice in contrast to T1 and T2.

The conventional methods listed so far for quantifying T1, T2, and T2
˚ each require one

breath-hold per slice, which is time-consuming if the whole heart and multiple relaxation
times are acquired. Nowadays, a variety of methods have been proposed that access
either multiple parameters, multiple slices, or both in a single scan [54, 55, 56, 57,
58, 59, 60]. However, until now no method for cardiac imaging was proposed for the
simultaneous quantification of T1, T2, and T2

˚ under free breathing.

no
rm

al
iz
ed

m
ag

ne
tiz

ai
on

2 000 4 000 6 000

´1
´0.5

0
0.5

1

inversion time [ms]

2 000 4 000 6 000
0

0.5

1

saturation time [ms]

100 200 300 400 500
0

0.5

1

T2 preparation time [ms]

100 200 300 400 500
0

0.5

1

echo time [ms]

0

1 000

2 000

3 000

M
O
LL

IT
1
[m

s]

0

1 000

2 000

3 000

SA
SH

A
T 1

[m
s]

0
20
40
60
80
100

T 2
[m

s]

0

50

100

T 2
*[
m
s]

Figure 2: Normalized magnetization is shown for T1 (MOLLI, SASHA), T2 (T2 prepared bSSFP)
and T2

˚ (multi-GRE) is shown along the recovery time. On the right side, the corresponding
maps for one healthy example are shown in the short axis view.
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1.5. Magnetic Resonance Fingerprinting

1.5 Magnetic Resonance Fingerprinting

In 2013, Ma et al. [61] initiated a completely new approach for quantitative MRI called
magnetic resonance fingerprinting (MRF). This method allows simultaneous quantifica-
tion of multiple tissue parameters such as T1, T2, and T2

˚ in a fraction of the time nor-
mally required to obtain these parameters. Rather than sampling the relaxation curve
at a specific position, MRF relies on the pseudo-random acquisition with varying TE,
TR, and flip angle to generate a unique signal evolution (fingerprint) for different tissue
types (illustrated in Figure 3). Bloch simulations are used to generate a large number
of fingerprints for a preselected combination of parameters, which is written into a dic-
tionary. The captured fingerprints are then correlated with all the simulated fingerprints,
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Figure 3: The MRF pipeline is shown. Various FA, TE, and TR generate different contrast
shown on the left side. With these known parameters, the Bloch equations are used to calculate
a dictionary for a variety of combinations, which results in unique fingerprints for white matter
(WM, blue), gray matter (GM, orange), cerebrospinal fluid (CSF, yellow), and fat (violet). In gray,
the entire calculated dictionary is shown. In the brain, the corresponding fingerprints for 3 areas
corresponding to WM (blue), GM (orange), and CSF (yellow) are depicted. On the bottom the
reconstructed T1, T2

˚ and B1
` maps are depicted.
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Chapter 1. Introduction

and the best correlation yields the parameter values that best match the tissue pa-
rameters. Conventionally, thousands of severely undersampled images are acquired,
resulting in severe artifacts such as aliasing in each image. However, the fingerprint ob-
tained from all data is spatio-temporally incoherent and the reconstruction yields highly
accurate, precise, and repeatable parameters such as T1, T2 [61], T2

˚ [62, 63] as well
as the transmission field B1

` [64], the static magnetic field B0 inhomogeneities [61],
proton density M0 [65] and perfusion [66]. Thus, MRF offers the possibility to obtain
any tissue property that could be measured conventionally. For this purpose, different
signal readouts such as spiral [61, 67], cartesian [62, 64], and radial [68] are used for
fast k-space sampling. Most MRF sequences include T1 quantification and therefore
additional inversion recovery pulses are played before the first excitation pulse. Addi-
tional contrasts could be implemented similarly as in cardiac imaging and preparation
pulses are used for generating additional contrast.
One disadvantage of MRF is the high computational cost of computing the dictionary,
which contains a large number of parameter combinations. The dictionary increases
exponentially for each additional parameter and thus the voxel-wise signal matching
duration also increases exponentially. Therefore, several approaches have been pro-
posed to reduce the computational cost, such as a more effective representation of the
dictionary by singular vector deconvolution [69] or compression of information by com-
pressed sensing [70]. However, Deep Learning has been shown to provide promising
results for large-scale reconstruction within seconds compared to conventional compu-
tations lasting several hours [71, 72, 73, 74]. Moreover, Deep Learning enables more
efficient dictionary representation, as the traditional MRF dictionary only contains cer-
tain fingerprint parameters [75]. Therefore, Deep Learning was implemented in this
work to increase accuracy and reducing reconstruction time.
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2
Publications

This dissertation is structured in a cumulative form according to the regulations for the
award of the doctoral degree of the Faculty of Physics and Astronomy of the Ruperto-
Carola University Heidelberg. All publications were processed in the context of this
dissertation and were not considered for any other dissertation. However, in this thesis,
the publications are not listed in chronological order of their publication date. The publi-
cations are numbered with roman numbers. Sections, figure and table captions as well
as the citations with the bibliography are numbered in each publication starting from 1
and apply only to the respective publication.
I am the first author of all publications in this dissertation, and publication I, II, III, and
IV have been published in internationally recognized peer-reviewed journals. Publica-
tion V was submitted to MRM on the 21st of January 2021 and was not peer-reviewed
yet. All other publications and conference abstracts are listed in the publications index
at the end of this thesis.

Thematic overview
In this work, two different topics have been addressed. The first topic deals with quan-
titative cardiac magnetic resonance imaging, and the second topic deals with quantifi-
cation using magnetic resonance fingerprinting for neural and renal applications.

The publication I compromises some results from the previous master’s thesis. How-
ever, the simulations and measurements were completed as part of this dissertation. In
this publication, the effects of flow on conventional myocardial saturation and inversion-
based T1 mapping sequences were evaluated because blood flow is known to reduce T1

relaxation time in blood during measurement. The inaccuracy of these blood T1 times
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was analyzed using a controllable flow phantom. Furthermore, in vivo measurements in
the descending aorta (for the assumption of linear flow) were performed for validation.
As Bloch simulations showed, the main effect of flow was observed due to the in-flow
of non-prepared spins. Therefore inversion recovery-based methods such as MOLLI
are more susceptible to flow. The exchange of blood at each heartbeat compromises
the effect of faster growth of the relaxation curve due to spins flowing in and out of the
acquired slice, and therefore shows little effect on T1-time. Thus, for the first time, we
were able to prove the theoretical assumption with well-controlled experiments and es-
timate the resulting deviations in the extracellular volume (ECV).

With this knowledge, a saturation recovery-based method was developed in the pub-
lication II to simultaneously quantify all three relaxation times T1, T2, and T2

˚ during
free breathing. Quantification of all three parametric maps is costly, and the parametric
maps must be subjected to non-rigid registration, making clinical applicability difficult.
Using our method, we combined saturation recovery and T2 preparation pulses with
an multi-GRE readout to obtain intrinsically registered T1, T2, and T2

˚ parametric maps
under free-breathing conditions. We evaluated the proposed sequence in phantom
measurements and confirmed it with Bloch simulations. In addition, the sequence was
tested in ten healthy volunteers with good agreement to the reference method, with the
advantage of short acquisition time. The relative short echo times for the T2

˚ quantifi-
cation was compromised by the use of a five parameter truncation fit model. Voxel-wise
standard deviation maps were additionally calculated from this fit model. The proposed
sequence is now used clinically and two representative patients have been analyzed in
this publication.

In the publication III, a different approach was used for quantification compared to
the method developed in publication II. A magnetic resonance fingerprinting sequence
was developed for simultaneous quantification of T1 and T2

˚ in the kidney, covering
four slices in a single breath-hold. The aim of this publication was to use MRF re-
nal applications, outperforming conventional methods in terms of measurement time.
The proposed sequence was analyzed in phantom and in vivo measurements in eight
healthy volunteers. In addition, reconstruction was performed inline on the scanner to
obtain parametric maps during scanning. Furthermore, the use of denoising was eval-
uated with respect to the image quality of the parametric maps.
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In a clinical study at the University Hospital Mannheim and a collaboration with the
University Hospital in Barcelona, 50 patients with multiple sclerosis were measured in
the whole brain using the MRF sequence from publication III. Several post-processing
steps were combined in the reconstruction with a single neural network and compro-
mised in the publication IV. Compared with the relatively short reconstruction for four
slices in the kidneys, the reconstruction in the brain covering 60 slices takes hours. In
addition, as shown in the publication III, denoising improves the quality of paramet-
ric maps but further increases the reconstruction time. Distortion correction has to be
performed on the MRF data to align with conventional clinical sequences. Masking of
WM and GM are important steps for the analysis of WM lesions in patients with MS.
The goal was to combine all these different post-processing steps into a single convo-
lutional neural network (CNN) that requires only a fraction of the time and yielding high
accuracy and precision compared to conventional methods.

Further work incorporated the lesion segmentation progress additionally into the re-
construction using deep learning. The aim was to show that the manual segmentation
process, which is very time-consuming and suffers from inter and intra-observer varia-
tions, can be replaced by an automatic deep learning reconstruction with the advantage
of generating lesion probability maps instead of simple binary masks. This is of clinical
interest because the neural network could learn to separate different underlying tissues
such as myelin. This is compromised in publication V which has been submitted as a
technical note to the Journal of Magnetic Resonance in Medicine.

13





Hermann et al.

Towards measuring the effect of flow in
blood T1 assessed in a flowphantomand
in vivo
Ingo Hermann, Tanja Uhrig, Jorge Chacón-Caldera,
Mehmet Akçakaya, Lothar Schad and Sebastian
Weingärtner

Phys. Med. Biol. 2020, 65 095001

Abstract
Measurement of the blood T1 time using conventional myocardial T1 mapping methods
has gained clinical significance in the context of extracellular volume (ECV) mapping
and synthetic hematocrit (Hct). However, its accuracy is potentially compromised by
in-flow of non-inverted/non-saturated spins and in-flow of spins which are not partially
saturated from previous imaging pulses.
Bloch simulations were used to analyze various flow effects separately. T1 measure-
ments of gadolinium doped water were performed using a flow phantom with adjustable
flow velocities at 3T. Additionally, in vivo blood T1 measurements were performed in 6
healthy subjects (26 ˘ 5 years, 2 female). To study the T1 time as a function of the
instantaneous flow velocity, T1 times were evaluated in an axial imaging slice of the de-
scending aorta. Velocity encoded cine measurements were performed to quantify the
flow velocity throughout the cardiac cycle.
Simulation results show more than 30% loss in accuracy for 10% non-prepared in-
flowing spins. However, in- and out-flow to the imaging plane only demonstrated minor
impact on the T1 time. Phantom T1 times were decreased by up to 200 ms in the flow
phantom, due to in-flow of non-prepared spins. High flow velocities cause in-flow of
spins that lack partial saturation from the imaging pulses but only lead to negligible T1

time deviation (less than 30ms). In vivo measurements confirm a substantial variation
of the T1 time depending on the flow velocity. The highest aortic T1 times are observed
at the time point of minimal flow with increased flow velocity leading to reduction of the
measured T1 time by up to 130˘ 49 ms at peak velocity.
In this work we attempt to dissect the effects of flow on T1 times, by using simulations,
well-controlled, simplified phantom setup and the linear flow pattern in the descending
aorta in vivo.
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1 Introduction

Quantitative myocardial tissue characterization has increasingly gained attention in car-
diac magnetic resonance imaging (MRI) over the past several years for its ability to
non-invasively study the myocardial tissue state [1, 2, 3, 4]. Myocardial T1 mapping is
sensitive to changes in the macro-molecular environment and has demonstrated clini-
cal value in various ischemic and non-ischemic cardiomyopathies [5, 6, 7]. Additionally,
extracellular volume (ECV) mapping is widely used as a marker for fibrotic remodeling
of the myocardium in various pathologies [3, 8, 9, 10, 11]. ECV maps are calculated
based on native and post-contrast T1 times in the myocardium and the blood-pool, and
are normalized with the hematocrit (Hct). When hematocrit was not measured, or to
achieve a more stream-lined process that does not require blood sampling and testing,
it has been proposed to calculate a Hct estimate using blood T1 times in a technique
called synthetic Hct [12]. Therefore, ECV and synthetic Hct values are highly dependent
on the quality of blood T1 measurements.

Several cardiac T1 mapping sequences have been proposed and can be clinically used
for native T1 and ECV mapping [4, 13, 14, 15, 16]. Modified Look-Locker inversion
recovery (MOLLI) [4] is the most widely used method for myocardial T1 mapping and
yields precise T1 maps but lacks accuracy compared to other T1 mapping methods [17].
In MOLLI multiple images with different T1-weightings are acquired following a non-
selective inversion pulse. This repeated image acquisition perturbs the magnetization
which is corrected for in the reconstruction (Deichmann correction) [18, 19]. Saturation
recovery single-shot acquisition (SASHA) [13] was proposed as an alternative for T1

mapping with increased accuracy. In SASHA images are acquired every heartbeat
following a non-selective saturation pulse with varying saturation time. Due to a reduced
dynamic range and suboptimal sampling of the recovery curve for long T1 times, SASHA
T1 maps suffer from reduced precision compared with MOLLI [20].

Accuracy and precision of myocardial T1 mapping are integral to its clinical value and
have been thoroughly investigated in several recent studies [8, 9, 17, 20, 21, 22]. It was
shown that the dominant variability in blood T1 comes from the biological constituents
such as hematocrit, iron, and HDL cholesterol [23]. However, blood T1 times often
fall out of the range for which myocardial T1 mapping techniques are validated and
multiple confounding mechanisms have been proposed [24, 25]. In particular it has
been suggested that various flow effects compromise T1 measurement of the blood-
pool [21]. Given the implicit clinical use of blood T1 times, thorough investigation of the
effect of flow is warranted. However, complex flow patterns in the ventricle as well as a
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multitude of parameters determining the relevant flow hamper the holistic evaluation of
this confounder in vivo.

In this study, we aim to analyze the impact of certain aspects of flow on T1 measure-
ments with two commonly used myocardial T1 mapping techniques in well controlled
experimental settings in order to further our understanding of flow as a confounding
factor. Bloch simulations are performed to shed light on the relative contribution of
different flow effects. These effects are then validated in a controlled flow phantom
comprising a peristaltic pump with linear flow. Finally, the combined flow dependency
of T1 measurements is studied in vivo by imaging the descending aorta as a proxy,
where flow patterns are largely linear and consistently varying across the cardiac cycle.

2 Methods
2.1 Flow effects on blood T1 measurements

Blood T1 measurements can be subject to threemain flow effects [13, 21, 22] depending
on the myocardial T1 mapping technique (Fig. 1).

[1] Non-prepared spins: In T1 mapping multiple images are acquired with variable
delay following a preparation pulse. During this delay spins that were not subject
to the preparation (e.g. far outside the isocenter) can flow into the heart. This
increases the signal intensity and therefore decreases the measured T1 relaxation
time.

[2] Beat-to-beat exchange: For sequences such as MOLLI the same magnetization
preparation is read out over multiple heartbeats. Spins flowing into the imaging
plane from beat-to-beat are not subject to partial saturation by repeated imaging
readouts, but are influenced by one slice selective readout only.

[3] In- and out-flowing spins: Fast flowing spins that flow into the imaging plane
during the readout lead to faster signal regrowth due to partial saturation by one
train of imaging pulses.

The Deichmann correction has been introduced to compensate for signal attenuation
by continuous FLASH imaging pulses during inversion recovery of static tissue [19] and
is used in MOLLI to reduce the impact of the imaging readout on the T1 time. However,
in the presence of flow, the correction factor will also be subject to various flow-effects,
including reduced effect of the repeated imaging readout and imperfect inversion due
to in-flow of non-prepared spins.
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In this study, we try to disentangle the relative contributions of the in-flow of non-prepared
spins, beat-to-beat exchange and the flow effect during the imaging readout. We study
the effect on the T1 time, as well as the uncorrected T1

˚ for MOLLI and T1 times calcu-
lated with 2- [26] and 3-parameter models in SASHA.

2.2 Sequence parameters
T1 maps were generated using a 5(3s)3 MOLLI [27] scheme with and without De-
ichmann correction (MOLLI T1/MOLLI T1

˚) for balanced steady-state free precession
(bSSFP) readout and for gradient-echo (GRE) readout (MOLLIGRE T1/MOLLIGRE
T1

˚). MOLLI maps are reconstructed by a 3-parameter fit with and without the Deich-
mann correction. SASHA is reconstructed with 3 and 2 parameter fits (SASHA/SASHA
2P) [13, 26]. Reference T1 times in the phantom were measured with an inversion
recovery (IR) in the absence of flow. T1 maps were reconstructed with a voxel-wise
Levenberg-Marquardt non-linear least-square curve fit implemented in-line on the scan-
ner [28, 29, 30]. All measurements were performed in a 3T MRI scanner (Magnetom
Skyra; Siemens Heathineers, Erlangen, Germany) with a 28-channel receiver coil array
and shared the following common imaging parameters: FOV = 240ˆ 240 mm2, matrix
size (base resolution) = 192 x 192 (1.3 ˆ 1.3 mm), slice thickness = 8mm, bandwidth
= 1085Hz/px, GRAPPA-factor 2 and partial Fourier 6/8. SSFP imaging was performed
with TR/TE = 3.6ms/1.8ms and high flip angle of 60˝̋̋, as recommended in flow and
SASHA [21], and GRE imaging with TR/TE/α = 2.9ms/1.7ms/8˝̋̋.

Flow velocity measurements were performed with velocity-encoded retrogated cine us-
ing TR/TE/α= 53.28ms/4.37ms/20˝̋̋, FOV = 166 ˆ 240 mm2, matrix size = 166 ˆ 240
, slice thickness = 8mm and interpolated phases = 30 and velocity encoding gradient
strength Vmax = 20 cm/s in phantom and Vmax = 500 cm/s in vivo.

2.3 Simulations
We used flow-sensitive Bloch-simulations to determine the relative contribution of the
various flow effects for MOLLI and SASHA imaging sequences with bSSFP and GRE
readout. All pulse sequences were simulated with the above listed sequence parame-
ters.

For the no flow case, time periods of free relaxation/precession were simulated as
¨
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with E1 “ exp pt{T1q, E2 “ exp pt{T2q and the time step t. Center of k-space was chosen
to calculate the magnitude with

b

M2
x `M2

y . Imaging and preparation pulses were sim-
ulated with corresponding rotation matrices. This magnitude is used for fitting MOLLI
and SASHA relaxation curves. Along with the undisturbed relaxation curve without sat-
uration by the readout pulses (no excitation pulses simulated), used as a reference
relaxation curve, three different scenarios were simulated: 1) Stationary spins which
are repeatedly saturated by the imaging pulses at every heartbeat. 2) Non-prepared
spins flowing from the scan periphery into the imaging plane. 3) In-flow of unsatu-
rated spins into the imaging plane during the readout at different flow velocities. For
flow simulations, the magnetization vector was split in 1000 magnetization packages
pMx, My , Mzq

T “ 1{n ¨
řn

i pMxi , Myi , Mzi q
T . In-flow of unsaturated spins is simulated by

exchanging magnetization packages with fully relaxed magnetization vectors p1, 0, 0qT .
All simulated spins are influenced by only one slice selective imaging readout, as fresh
spins are flowing into the imaging plane from beat to beat. Therefore, between heart-
beats the magnetization vectors are set to the magnetization of the undisturbed spins.
The cardiac cycle was simulated with R-R intervals = 1000ms and blood relaxation
times were simulated as T1 “ 2000 ms [31, 32, 33, 34] and T2 “ 200 ms [34, 35]. For
a given velocity the proportion of unsaturated spins flowing into the imaging plane per
time step was calculated as follows:

percentage of in-flowing spins per time step “
flow velocity ¨ time step

slice thickness ¨ readout duration .

This percentage is used to calculate the amount of magnetization vectors per time step,
which are exchanged by the corresponding magnetization vector (all vectors in the mag-
netization package are the same) from the reference relaxation curve at that time step.

2.4 Phantom experiments

A 30 cm long peristaltic pump (Watson-Marlow-Bredel, 300 Series Laboratory Tube
Pumps) was used to circulate gadolinium-doped water from a reservoir outside the
scanner bore through a pipe into a dialysis filter (filter with increased diameter, con-
sisting of small fibers). From there the water circulated back outside the bore to the
reservoir (Fig. 2). A dialysis filter with a diameter of 6 cm was used. The dialysis fil-
ter and a reference probe (3 cm in diameter) with non-flowing solution were placed in
a posterior imaging slice (Fig. 2). Additionally, imaging was performed in an anterior
slice comprising only the dialysis filter. Imaging was performed at five different flow
velocities in both flow directions. T1 measurements were performed using IR, MOLLI
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Figure 1: Illustration of the three different flow effects corrupting the measurement of blood
T1 times with myocardial T1 mapping methods. The top panel a) shows the effect of a T1
recovery curve over multiple heartbeats, e.g. as seen in MOLLI. In the bottom panel b) sample
magnetization packages (arrows) are depicted during magnetization recovery in various flow
scenarios. The signal intensity is encoded by the background shading. The first row shows
the recovery in the absence of flow. Rows two to four illustrate the following three flow effects.
In-flow of non-prepared spins: An increasing amount of non-prepared spins enter the imaging
volume and contribute to faster signal recovery. Beat-to-Beat exchange: Flow between the
imaging periods in successive heartbeats eliminates the signal attenuation that is seen with
repeated imaging pulses in static tissue. Flow during the imaging readout: Spins that are not
affected by previous imaging pulses flow into the imaging volume between two imaging pulses
are played and thus mitigate the signal attenuation during an individual readout.
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T1/T1
˚, MOLLIGRE T1/T1

˚, SASHA and SASHA 2P. Additionally, MOLLI and SASHA
were performed with a reduced slice thickness of 4mm to evaluate the flow effect of
in-plane saturation. Reference flow velocities were determined by velocity encoded
(VENC) cine measurements in the dialysis filter.

water
reservoir

+ v direction

reference

dialysis
filter

MRI
table

Magnet

anterior
slice

posterior
slicepipe

peristaltic
pump

Figure 2: Setup of the flow phantom. A peristaltic pump (Watson-Marlow-Bredel, 300 Series
Laboratory Tube Pumps) outside the magnetic safety region was used to pump a mixture of wa-
ter and gadolinium from a reservoir through a pipe into a 30 cm lomg dialysis filter (at isocenter)
back to the reservoir. The dialysis filter and a reference probe was put into the imaging slice.

2.5 In vivo experiments
In vivo measurements were performed in six healthy subjects (26˘5 years, 2 female) in
a single axial slice positioned approximately five centimeter below the aortic arch, after
they gave written informed consent. T1 and T1

˚ times were calculated and manually
drawn region of interests were used to determine mean values and standard deviations
in the descending aorta. MOLLI T1 and T1

˚ maps and MOLLIGRE T1 and T1
˚ maps

were acquired at various time points in systole and diastole within the cardiac cycle
ranging from 250-800ms after the R-wave. No SASHA measurements were performed
in the aorta as no imaging could be performed during systole. For reference, VENC
cine measurements were performed to calculate the blood flow velocity in the aorta
throughout the cardiac cycle. Reference measurements of the left ventricular blood
pool in a mid-ventricular short axis view (SHAX) were performed with all sequences.
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3 Results
3.1 Simulations

Figure 3 demonstrates the effects of the previously described flow-induced phenomena
studied in isolation with noise-free Bloch simulations for MOLLI and SASHA.
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Figure 3: Simulations of three different flow effects compared to no-flow reference for MOLLI a)
and SASHA b) sequences: (blue) the baseline relaxation curve after a non-selective preparation
recovery pulse; (orange) stationary matter influenced by the imaging pulses; (yellow) flowing
matter for a constant velocity of 1 cm/s; and (violet) relaxation curve in the presence of 2% non-
prepared in-flowing spins per heartbeat. Dashed lines represent the corresponding 3-parameter
model fit. Gray shading depicts the time of imaging readout and crosses indicate the central
position of the imaging readout.
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Figure 4: T1 time for in-flowing and out-flowing spins during a single readout for SASHA (blue)
and MOLLI T1

˚, T1 (orange). Simulations were performed under the assumption that irrespec-
tive of the flow velocity, spins are fully exchanged from beat-to-beat.

1) In-flow of non-prepared spins

The simulation results in Figure 3 show that in-flow of 2% non-prepared spins per heart-
beat (purple lines in Fig. 3) leads to faster recovery and shortened apparent relaxation
times. This effect is studied in greater detail for various degrees of in-flow in Figure 5.
Both MOLLI and SASHA show underestimation, which is increasingly pronounced with
higher in-flow. Simulations indicate that for in-flow of 10% non-prepared spins, T1 time
accuracy is compromised by more than 30% and 15% for MOLLI and SASHA, respec-
tively.

2) Beat-to-beat exchange

Repeated application of imaging pulses leads to signal attenuation across heartbeats
in stationary tissue (orange lines in Fig. 3). However, our results show that even slow
flow velocities cause an exchange of the spins between heartbeats ("beat-to-beat ex-
change"), such that the imaging signal is just affected by a single set of imaging pulses
for any given heartbeat (yellow lines in Fig. 3). Accordingly, the reduced signal attenu-
ation from previous heartbeats leads to reduced underestimation of T1 times compared
with MOLLI values as commonly obtained in stationary tissue. Without Deichmann cor-
rection this leads to a major difference (4T1

˚
ą 200 ms), but was largely mitigated when

using Deichmann correction (4T1
˚
ă 60 ms).

3) In-flow and out-flow during a readout

Flow during the imaging readout leads to further alteration of themagnetization signal as
it leads to faster recovery during one imaging readout (i.e. between two imaging pulses,
yellow lines in Fig. 3). This effect is studied in detail in Figure 4 at various flow-velocities.
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Increased T1 times are observed for SASHA 2P and increased T1
˚ times for MOLLI at

slow flow up to 5 cm/s. However, the magnitude of this effect is small compared to the
previously listed contributions („ 1 %). Furthermore, the effect is strongly mitigated by
using MOLLI with Deichmann correction or SASHA with a 3-parameter fit model. Of
note, the consistent offset in T1 observed with MOLLI is due to incomplete inversion
efficiency caused by in-flowing spins. This is not due to its intrinsic well documented
errors because we assume that all spins exchange from beat-to-beat and therefore no
spins are affected by multiple readouts.
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Figure 5: T1 time as a function of the amount of in-flowing non-prepared spins in percentage
per heartbeat for SASHA (blue) and MOLLI T1

˚, T1 (orange). Of note, the time for in-flow of
non-prepared spins is substantially shorter for SASHA due to repeated magnetization saturation
in every heartbeat.

3.2 Phantom experiments
Figure 6 shows the T1 times measured in the flow phantom for various flow velocities.
Negative flow direction for T1 measurements in the posterior slice and positive flow
for the anterior slice, lead to in-flow of spins from the reservoir outside the scanner
bore, into the imaging plane. For these regimes (blue shaded area, Fig. 6a,b) T1 times
decrease by up to 125ms with a decrease of 25ms per 1 cm/s for SASHA/SASHA 2P
and up to 250ms with a decrease of 50ms per 1 cm/s for MOLLI/MOLLIGRE with and
without Deichmann correction. The highest deviation is observed at the largest velocity
amplitude (v „ 5 cm{s).

For absolute flow-velocities larger than 1´ 1.5 cm{s all spins from the imaging readout
can be assumed to have left the imaging plane during one heartbeat ("beat-to-beat

24



Hermann et al.

−4 −2 0 2 41
00

0
1

50
0

2
00

0

inflow of
non-prepared

spins

inflow of
prepared

spins

in-plane
saturation

velocity [cm/s]

T 1
[m

s]
Dialysis posterior

−4 −2 0 2 4

inflow of
non-prepared

spins

inflow of
prepared

spins

in-plane
saturation

velocity [cm/s]

Dialysis anterior

SASHA SASHA 2P
MOLLI T1 MOLLI T ∗

1 MOLLIGRE T1 MOLLIGRE T ∗
1

Figure 6: T1 times measured in the dialysis filter in the anterior and posterior slice for various
pump speeds. MOLLI T1 and T1

˚ (orange crosses/ dots), MOLLIGRE T1 and T1
˚ (yellow cross-

es/dots), SASHA with 3 and 2 parameter fit (blue crosses/dots) and reference measurements
(black) are plotted against the flow velocity. The shaded area from blue to gray illustrates the
in-flow of non-prepared spins and from gray to white the in-flow of prepared spins

exchange"). However, for slow absolute flow velocities (-1.5 cm/s to 1.5 cm/s) a varying
degree of beat-to-beat exchange can affect the T1 times. In this regime (gray shaded
area, Fig. 6a,b) MOLLIs without Deichmann correction show a symmetrical peak for
around v “ 0 cm{s, leading to T1

˚ deviation of more than 200ms. This contribution
is largely eliminated when using a Deichmann correction. SASHA shows only minor
variation in this flow regime, which is expected as "beat-to-beat exchange" does not
affect the SASHA signal due to the repeated saturation.

For large flow-velocities in the opposite flow direction, mostly prepared spins are flowing
into the imaging plane. In this regime (white shaded area, Fig 6a,b) varying amount
of in-flow/out-flow during the readout is expected to be the dominant effect inducing
flow susceptibility. MOLLI without Deichmann correction shows sensitivity to this flow
effect, with increasing T1

˚ times for increasing flow magnitude. However, the effect
is largely mitigated using Deichmann correction. No sensitivity to flow for SASHA or
SASHA 2P can be discerned from the noise level in this regime. These findings are
corroborated by the results of measurements with different slice thickness (Fig. 7), which
also leads to difference in in-flow/out-flow during the readout. All T1 methods yield
excellent agreement for measurements at 4mm and 8mm slice thickness (absolute
deviation less than 20ms), except MOLLI without Deichmann correction. Substantial
variation up to 80ms is observed in the presence of flow, but excellent agreement is

25



Publication I

shown for the minimal flow case (deviation less than 26ms).

In the reference probe T1 maps of SASHA/SASHA 2P achieved good agreement with
IR yielding deviations less than 6% whereas MOLLI T1/MOLLI T1

˚ underestimated the
T1 time of approximately 15%. MOLLIGRE underestimated the T1 time by almost 20%
and MOLLIGRE T1

˚ by 28%. All measurements resulted in standard deviations of less
than 50ms for SASHA, SASHA 2P, MOLLI, MOLLIGRE and less than 100ms for MOLLI
T1

˚ and MOLLIGRE T1
˚.
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Figure 7: MOLLI (orange), SASHA (blue), MOLLI without Deichmann correction (yellow) and
SASHA 2P (bright blue) T1 times over the flow velocity in the dialysis filter and the reference
probe for 4mm (dots) and 8mm (crosses) slice thickness.

3.3 In vivo experiments
MOLLI T1 maps were generated for an axial cross-section of the aorta at various time
points throughout the cardiac cycle. Across all subjects, peak velocities up to 120 cm/s
were measured with an average peak velocity of 77 ˘ 24 cm{s. Figure 8 depicts the
flow velocity and blood T1 times as a function of time within the cardiac cycle of one
healthy subject. A summary of T1 times in the absence of flow and during peak velocity
are given in Table 1. T1 times increased with decreasing velocity with differences up to
186 ms. Across all subjects MOLLI and MOLLIGREmeasured during the diastole (slow
flow) resulted in T1 times comparable to the left ventricle in the SHAX measurement.
Mean differences of T1 times between peak flow and time point of minimal flow, and
their corresponding standard deviations were 163˘ 57 ms for MOLLI, 115˘ 41 ms for
MOLLIGRE, 424˘192 ms for MOLLI T1

˚ and 362˘181 ms for MOLLIGRE T1
˚. T1 maps

with Deichmann correction were more precise with standard deviations in the aorta of
107-252ms over the cardiac cycle. Without Deichmann correction standard deviations
vary from 203ms for MOLLI up to 726ms for MOLLIGRE respectively.
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4 Discussion

In this study we performed flow-dependent T1 measurements using MOLLI and SASHA
to evaluate different contributions of flow effects with simulations, phantom and in vivo
measurements. Three flow effects were studied to play a role in blood T1 measure-
ments:

‚ In-flow of non-prepared spins from outside the scanner bore increase the signal
magnetization and induce a faster T1 relaxation.

‚ Sufficiently fast spins flowing outside the imaging plane from heartbeat to heart-
beat eliminate the in-plane saturation effect and can result in decreased underes-
timation of MOLLI T1 times compared with stationary tissue. However, the effect
is small when Deichmann correction is used.

‚ Spins which flow inside and outside the imaging plane during one readout increase
the signal intensity. This leads to higher T1

˚ for MOLLI but was mitigated when
using Deichmann correction and did not affect SASHA.

Simulations and phantom measurements indicate that in-flow of non-prepared spins is
the dominant flow effect. Our results show that this can lead to substantial deviations
in the T1 time, especially for large fractions of in-flowing non-prepared spins. The effect
on SASHA T1 times was substantially smaller compared with MOLLI because a non-
selective saturation pulse erases the magnetization every heartbeat. For MOLLI T1

times in-flow of non-prepared spins exacerbates T1 underestimation.

The amount of non-prepared spins in blood T1 measurements depends on a number
of system and subject specific patterns. Besides the properties of the individual’s cir-
culation, the pulse type, the B1

` and B0 inhomogeneity off the isocenter determine the
reach of the preparation pulse. For the commonly used tan/tanh pulse as proposed by
Kellman et al. [36] inversion efficiency of less than 0.5 is observed for around 1/3 of
the peak B1 amplitude. Our used body coil with 55 cm length has a 50% B1 amplitude
decrease 15 cm away from the iso-center. Therefore, spins outside the bore are negligi-
bly influenced by the non-selective preparation pulses. Blood takes about 20 seconds
for one circulation throughout the entire vascular system. Hence, throughout the inver-
sion span of a typical MOLLI sequence, which reaches up to 5 seconds, non-negligible
amounts of un-prepared spins can be expected to flow into the imaging plane.

The impact of the other two flow effects was relatively small compared to in-flow of
non-prepared spins. Furthermore, the impact of the beat-to-beat exchange and the
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flow during the imaging readout were effectively mitigated using the Deichmann correc-
tion for MOLLI or using SASHA. We performed MOLLI experiments with and without
Deichmann correction to fully understand the cause of flow susceptibility. Our simula-
tions also showed that for increasing T1 all flow effects increase. However, simulations
and phantom measurements demonstrated higher resilience to flow effects in MOLLI
with Deichmann correction, despite the known discrepancy between the assumptions
underlying the correction and the MOLLI sequence [25].

Table 1: Tabular of all in vivo blood T1 values. Aortic blood T1 times for MOLLI and MOL-
LIGRE with and without Deichmann correction for six healthy subjects. T1 times for the time
points in the cardiac cycle with no and maximum flow velocities are provided.

subject, Sequence Deichmann speed min. flow T1 peak flow T1 diff. T1

gender correction [cm/s] [ms] [ms] [ms]

1, f
MOLLI on

76

1917˘107 1759˘66 158
off 2126˘384 1806˘231 319

MOLLIGRE on 1838˘375 1664˘170 174
off 2456˘825 2041˘649 415

2, m
MOLLI on

64

1809˘ 252 1751˘ 121 58
off 1898˘ 726 1965˘ 386 67

MOLLIGRE on 1757˘ 186 1737˘ 133 20
off 2056˘ 843 1853˘ 656 203

3, m
MOLLI on

63

1868˘ 123 1681˘ 209 186
off 1839˘ 366 1159˘ 785 680

MOLLIGRE on 1757˘ 186 1737˘ 133 20
off 2056˘ 843 1853˘ 656 203

4, f
MOLLI on

54

1973˘ 222 1817˘ 424 156
off 1921˘ 562 1430˘ 951 490

MOLLIGRE on 1930˘ 99 1844˘ 204 86
off 2150˘ 330 1846˘ 675 304

5, m
MOLLI on

87

1662˘ 162 1580˘ 410 82
off 1607˘ 207 1039˘ 725 568

MOLLIGRE on 1639˘ 123 1552˘ 185 87
off 1731˘ 457 1382˘ 627 349

6, m
MOLLI on

120

1792˘ 174 1650˘ 301 142
off 1638˘ 203 1297˘ 631 342

MOLLIGRE on 1734˘ 213 1650˘ 294 84
off 1663˘ 452 1445˘ 671 218
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The effect of flow on the blood T1 time plays a role in the calculation of ECV. How-
ever, our results indicate that the flow effects are more pronounced for longerT1 times.
The ECV calculation is more susceptible to changes in the post-contrast T1 times, and
thus shows stronger resilience to flow induced variations. Given the simulated effects
from Figure 4, errors about 5% can be expected for ECV. However, the synthetic Hct is
inversely proportional to the native blood T1 times. Thus, decreasing blood T1 times in-
creases the Hct. With flow induced T1 deviations of up to 20% synthetic Hct may vary by
up to 17%. Hence, when using synthetic Hct for ECV calculation this error propagates
to the ECV value linearly.

In vivo measurements confirm the flow effect of decreasing T1 times by increasing flow
velocity in the descending aorta. Due to the relatively high standard deviation in vivo,
in-flow and out-flow of spins during a readout as observed in phantom can be assumed
to be negligible. Flow susceptibility due to varying degrees of "beat-to-beat exchange"
can also be assumed to be negligible due to the high ejection fraction in the aorta.
Accordingly, our in vivo results in the aorta suggest a strong impact of in-flow of non-
prepared spins on the T1 time, indicating potential in vivo contribution of the dominant
effect observed in phantom and simulations.

MOLLI T1 mapping is well known to be susceptible to variations in prescribed or ac-
tual flip-angles [37, 38]. In-flow of spins during the readout, also impacts the amount
of signal attenuation in tissue, although with different underlying principles. Therefore,
we studied the contribution of flow to MOLLI T1 times. Simulations suggested that the
Deichmann correction is highly effective in mitigating the effects of variable signal sat-
uration in the presence of flow. To further confirm this result, phantom experiments
were conducted in a slow flow regime. In these experiments, in-flow during the read-
out is expected to affect T1 times independent of the flow direction thus constituting a
symmetrical peak. While this effect was observed the relative contribution compared
with in-flow of non-prepared spins was almost negligible after Deichmann correction.
This was further confirmed in scans with decreased slice thickness, which leads to in-
creased in-flow/out-flow during the readout for a given flow velocity. As shown in our
simulations, theoretically there is no need for correcting with Deichmann for sufficient
fast flow. Nevertheless, our phantom measurements resulted in decreased T1 times
with higher standard deviations compared with using the Deichmann correction.

SASHA T1 mapping showed substantially lower susceptibility to flow effects. However,
residual changes in T1 times were induced, primarily due to the in-flow of non-prepared
spins. In simulations and phantom experiments, constant flow velocities were simulated
throughout the heartbeat. However, in vivo in-flow of non-prepared spins is largely
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restricted to the systolic phase, potentially leading to even smaller flow susceptibility in
the T1 measurement. However, no SASHA imaging could be performed to study the
flow effect in the aorta directly, as SASHA is incompatible with a variable readout timing
with respect to the cardiac cycle.

Overall, our results demonstrate that under controlled conditions the T1 times of moving
fluids can be strongly dependent on flow velocities. These results are obtained in sim-
plified and well controlled conditions. However, a multitude of factors likely determines
the effect size on left ventriclualr blood T1 as commonly performed. While this limits
the feasibility, our results confirm the literature postulation that in-flow of non saturated
spins is a potential confounder in blood T1 measurement. The total in-flow and the flow
velocity depends on a number of physiological parameters. The total stroke volume de-
termines how much potentially non-prepared spins can flow in from the periphery. The
patient size can affect the amount of blood in the periphery that is potentially not com-
pletely prepared. Ejection fraction can also be a confounding factor for blood T1 mea-
surements as this can variably affect the amount of beat-to-beat exchange. Hence, our
results suggest that the use of blood T1 as an independent parameter warrants care-
ful consideration. Thorough control for flow determining physiology might potentially
help to reduce variability [39, 40, 41]. Due to the important role of blood T1 in ECV
mapping and due to its recent use in synthetic Hct numerous clinical studies evaluated
cardiomyopathies based on blood T1 based quantities [3, 9, 10, 11, 22, 27, 42]. As
the effects observed in quantitative myocardial tissue characterization are often small
it is paramount to understand potential confounders. Our results indicate that mea-
surements in patients with largely varying flow-determining physiology could lead to
increased variability in blood T1 based biomarkers. This can potentially hamper the
identification of pathological changes.

This study has several limitations. A number of simplifications had to be made in order
to systematically analyze the impact of flow on myocardial T1 mapping. These simplifi-
cation limit the direct feasibility of the results to the measurements of blood T1 times in
the left ventricle. Firstly, the phantom setup was a simplified approach to measure the
effects of different flow patterns in isolation. The reservoir was put outside the bore to
create an environment where non-prepared spins flow into the imaging plane. However,
the fraction of spins that is poorly polarized is likely smaller in vivo than as in this setting.
Imaging of the descending aorta was performed as an in vivo model with controllable
instantaneous flow velocities. However, different and more variable flow patterns are
characteristic for the left ventricle potentially giving rise to different flow response of the
T1 time. A difference in local flow-patterns can potentially have minor impact on the
effects of in-/out-flow during the readout. In our simulations we assumed 100% inver-
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sion efficiency with a rectangular slice profile without taking the distribution of flip angles
into account. However, in-plane saturation only demonstrated minor effects on blood
T1 times. For this reason we suspect that a distribution of flip angles as a result of the
slice profile will only play a minor role. However, given our results indicate overall neg-
ligible contribution of this flow effect a detailed analysis of turbulent flow in dedicated
phantoms or the ventricles might not be required.

5 Conclusion
T1 times in moving fluids such as blood obtained with commonly used T1 mapping
techniques can be susceptible to flow-effects. In our simplifiedmodel analysis, we found
the most significant flow effect due to in-flow of non-prepared spins. Other flow-induced
effects showed minor impact and were well compensated for using either a Deichmann
correction for MOLLI or SASHA. Overall, SASHA proved to be less prone to flow effects
as the magnetization is saturated in every heartbeat compared with MOLLI, where a
single inversion pulse spans up to five heartbeats. These results are suggestive that
in-flow of non saturated spins could potentially be detrimental to blood T1 measurements
with potential implications for analysis of ECV and synthetic Hct, but thorough clinical
investigation of the impact is warranted.
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Abstract
Purpose: To implement a free-breathing sequence for simultaneous quantification of
T1, T2, and T2

˚ for comprehensive tissue characterization of the myocardium in a single
scan using a multi gradient-echo readout with saturation and T2 preparation pulses.

Methods: In the proposed Saturation And T2 prepared Relaxometry with Navigator-
gating (SATURN) technique a series of multi gradient-echo images with different mag-
netization preparations was acquired during free-breathing. A total of 35 images were
acquired in 26.5˘14.9 seconds using multiple saturation times and T2 preparation du-
rations and with imaging at 5 echo times. Bloch simulations and phantom experiments
were used to validate a 5 parameter fit model for accurate relaxometry. Free-breathing
simultaneous T1, T2, and T2

˚ measurements were performed in 10 healthy volunteers
and 2 patients using SATURN at 3T and quantitatively compared to conventional single
parameter methods such as SASHA for T1, T2-prepared bSSFP and multi GRE for T2

˚.

Results: Simulations confirmed accurate fitting with the five parameter model. Phan-
tommeasurements showed good agreement with the reference methods in the relevant
range for in vivo measurements. Compared to single parameter methods comparable
accuracy was achieved. SATURN produced in vivo parameter maps that were visu-
ally comparable to single parameter methods. No significant difference between T1,
T2 or T2

˚ times acquired with SATURN and single parameter methods was shown
in quantitative measurements (SATURN T1 “ 1573 ˘ 86 ms, T2 “ 33.2 ˘ 3.6 ms,
T2

˚
“ 25.3 ˘ 6.1 ms; conventional methods:T1 “ 1544 ˘ 107 ms, T2 “ 33.2 ˘ 3.6 ms,

T2
˚
“ 23.8˘ 5.5 ms; p ą 0.2).

Conclusion: SATURN enables simultaneous quantification of T1, T2, and T2
˚ in the

myocardium for comprehensive tissue characterization with co-registered maps, in a
single scan with good agreement to single parameter methods.
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1 Introduction

Quantitative mapping in the myocardium has received major clinical interest, as mark-
ers related to myocardial relaxation time yield promising sensitivity to a broad spectrum
of cardiomyopathies. T1, T2, and T2

˚ mapping are routinely used in advanced CMR
centers and received increasing interest in community recommendations and consen-
sus statements for the assessment of ischemia, fibrosis, edema, and amyloidosis or
iron deposition [1, 2, 3, 4].

A wide variety of mapping sequenceswas proposed in the last decades for non-invasively
studying the myocardial tissue state [5, 6, 7, 8, 9]. Myocardial T1 mapping is most com-
monly performed based on a series of inversion or saturation recovery images and has
shown promise for the assessment of ischemic and non-ischemic cardiomyopathies
[1, 4, 10, 11]. While inversion recovery based methods have shown improved precision
and map quality, saturation recovery methods yield more accurate T1 maps insensitive
to the heart rate, the magnetization evolution, and other confounders [12, 13, 14].

In addition to T1 mapping, myocardial T2 mapping is increasingly used for the reliable
assessment of myocardial edema [15]. State of the art cardiac T2 mapping is performed
by acquiring at least three T2-prepared balanced steady-state free precession (bSSFP)
images to provide robust and reproducible T2 maps [15, 16, 17, 18].

Myocardial T2
˚ quantification has demonstrated high clinical value for the assessment

of myocardial iron accumulation [19, 20, 21]. According to relevant guidelines, T2
˚ mea-

surements in the myocardium is most commonly performed by acquiring eight echoes
with a multi gradient-echo readout and performing an exponential fit [19].

The methods described above each require one breath-hold per slice. Therefore, free-
breathing methods and simultaneous quantification of T1 and T2 were proposed to im-
prove patient comfort and shorten measurement time [22, 23, 24, 25, 26, 27, 28, 29,
30, 31]. Simultaneous T1 and T2 mapping was obtained in a single breath-hold by
combining saturation/inversion pulses and T2 preparation modules to improve the de-
tection of abnormalities by inherently co-registered parametric maps [22, 32, 33]. This
method was expanded to a navigator gated free-breathing approach allowing the cov-
erage of T1 and T2 in the entire myocardium in a single scan avoiding deviations due
to incorrect breath-holds [28, 34]. Magnetic Resonance Fingerprinting was proposed
for joint estimation of T1 and T2 based on undersampled non-cartesian readouts with
varying preparations [25]. Most recently, cardiac multitasking was introduced, as a
novel method for multi-parameter mapping, where contrast and physiological variations
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are modeled by a low dimensional representation, enabling a continuous acquisition of
multi-parametric 3D maps [24].

However, the lack of a combined method for assessment of all three clinically relevant
tissue characteristics (T1, T2, and T2

˚) requires multiple sequences in clinical prac-
tice, expanding the scan protocol and prolonging examination duration. Furthermore,
many recently developed methods rely on implicit or explicit model-based regulariza-
tion [35, 36]. This often induces quantification inaccuracies and renders the methods’
quantification susceptible to changes in the reconstruction pipeline.

In this study we sought to provide a method for free-breathing assessment of all clini-
cally relevant relaxation times - T1, T2, and T2

˚. A navigator gated sequence with multi
gradient-echo readout and saturation and T2 preparation pulses is developed. The ac-
curacy of the proposed technique is evaluated in phantom measurements and in vivo
image quality is assessed in healthy subjects and a small cohort of patients.

2 Methods
2.1 Sequence design
Figure 1 depicts the sequence diagram of the proposed Saturation And T2 prepared
Relaxometry with Navigator-gating (SATURN) sequence. The sequence is based on a
single-shot multi gradient-echo readout generating five echoes for each end-diastolic
imaging window. We used a prospective navigator on the diaphragm of the liver with
a gating window of 4-5 mm depending on the subject’s breathing pattern. Navigator
gating is performed with the following accept-reject scheme: The first contrast without
preparation was repeated if the navigator was rejected. Saturation prepared images
were also immediately re-attempted in the next heart beat. No navigator was played
during the rest periods before the T2 preparation. For T2-prepared images, T2 prepara-
tion was only performed if the navigator was accepted. In this way, if the navigator was
rejected the T2-prepared image could be re-attempted immediately, without the need of
additional rest-periods. However, in this way, navigator rejections lead to an increase
in effective rest periods.

We used saturation and T2 preparation pulses before the readouts to generate T1 and
T2 contrasts. Therefore, we combined the SASHA 3-parameter fit model with the T2-
prepared bSSFP 3-parameter fit model. Since we only use short echo times (TE) for the
gradient-echo readout and the noise floor for the T2

˚ decay is not corrected, we used a
truncation model for T2

˚ as previously suggested [39]. The five parameter truncation fit
model is given as
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Here, the fitting parameter B is used to account for the T1 offset. Thus, T2
˚ is recon-

structed with a truncation model. The first contrast is performed without any preparation

Legend:

Trigger

Navigator
non-sel saturation
T2-preparation

five single-shot

gradient echos

RF

ECG

T max
S T min

S

S(TS, T p
2 , TE , A, B) =




A
(

1 − exp
(
−TS

T1

))

︸ ︷︷ ︸
T1 Fit

· exp

(
−T p

2
T2

)

︸ ︷︷ ︸
T2 Fit

+B




· exp
(
−TE

T ∗
2

)

︸ ︷︷ ︸
T∗

2 Fit

TS [ms]:

T p
2 [ms]:

∞

0

∞

25

4 s
pause

∞

50

4 s
pause

T min
S

0

T max
S

0

T min
S

0

T max
S

0

Figure 1: Sequence diagram for the proposed T1, T2, and T2
˚ mapping technique. Navigator

pulses (light blue) are played before the readouts and the preparation pulses. Five different multi
gradient-echoes per imaging block are generated. The first contrast is performed without any
preparation pulses to image the fully relaxed magnetization signal. Second and third contrasts
are prepared with 25 and 50ms T2 preparation pulses comprising composite hard pulses [37],
respectively. A non-selective saturation recovery (WET) pulse is performed immediately (Tmin

S )
before the readout of contrasts number four and six. The same preparation pulse is played in
the systole for contrasts five and seven, facilitating longer T1 relaxation [38].
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representing full magnetization recovery (infinite saturation time, TS) and T2 preparation
time of T p

2 “ 0. The second block consists of two different T2-weighted contrasts using
preparation durations of 25ms and 50ms, respectively, as previously recommended
[22]. Four seconds of rest-period were inserted before each image without saturation
preparation to allow for full magnetization recovery. Due to the rest-periods, full mag-
netization recovery was assumed prior to the T2 preparation. The third block acquires
images with saturation preparation to sample the T1 recovery curve. The fourth and
sixth image is performed with a saturation pulse before the readout to mimic the effect
of a very long T2 preparation [37] and short saturation times and, thus, TS and T p

2 was
set to Tmin

S and 0. Image five and seven are acquired with saturation preparation with a
maximum TS for maximum precision [38].

The full acquisition comprises seven different contrast preparations followed by imaging
at five echo times, yielding a total of 35 images. Saturation pulses were performed
using a composite "Water suppression Enhanced through T1-effects" (WET) pulse to
reduce the sensitivity to B1 [40]. The T2 preparation module consist of a 90˝̋̋ rectangular
flip-down pulse, a 270˝̋̋ rectangular flip-up pulse and composite 180˝̋̋ MLEV refocusing
pulses in between [41, 42]. Centric k-space reordering was used for increased signal-
to-noise ratio and shorter minimum saturation times.

2.2 Sequence parameters
All measurements were performed on a 3T MRI scanner (Magnetom Skyra, Siemens
Healthineers, Erlangen, Germany) with a 28-channel receiver coil array. Sequence
parameters are listed in Table 1. SATURN was performed using GRAPPA with acceler-
ation factor R=3. Additionally, GRAPPA with acceleration R=4 was explored for the use
in subjects with higher heart rates. SPIRiT [43] with locally-low rank (LLR) reconstruc-
tion was used for improved noise-resilience at acceleration R=4, as previously proposed
[44, 45, 46].

2.3 Simulations
Bloch-simulations were used to calculate the magnetization of the proposed SATURN
sequence and validate the accuracy of the quantification. All pulse sequences were
simulated with the above listed sequence parameters. The magnetization was simu-
lated with time-steps of 0.1ms. Imaging and preparation pulses were simulated with
corresponding rotation matrices with 100% efficiency. The center of the k-space was
chosen to extract the signal magnitude. T1 (1200-1700ms), T2 (20-70ms) and T2

˚ (5-
60ms) were varied and the magnitude was fitted with the proposed five parameter fit
model given in Equation 1. Four confounding factors were included in the simulations:
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Rest periods before the T2 preparation pulses was varied between 1 and 10 seconds.
For all other simulations, 10 seconds were used to eliminate insufficient recovery as
the primary source of inaccuracy. Image noise was added to the simulations. Rician
noise was generated with an SNR between 0 and 30 and a Monte Carlo size of 1000.
Different heart rates were simulated between 50 and 140 bpm. Finally, imperfect T2

preparation was simulated by reducing the flip angle of the flip-down and flip-up pulses.

Table 1: Sequence parameters for SATURN and the reference methods (SASHA, T2-prepared
bSSFP, multi GRE).

Parameters SATURN SASHA T2 bSSFP multi GRE
FOV 384x288 mm2

In-plane res. 2x2 mm2

Slice thickness 8mm
Partial Fourier 6/8
Readout multi GRE bSSFP bSSFP multi GRE
Flip angle 20˝̋̋ 45˝̋̋ 45˝̋̋ 20˝̋̋

acq. k-Space lines 36 66 66 11
Bandwidth 1530Hz/px 1130Hz/px 1130Hz/px 965Hz/px
GRAPPA R = 3 or 4 R = 2
Respiration free-breathing breath-hold (exhaled)
Number of echoes 5 1 1 8
TE 1.0-8.5ms 1.3ms 1.3ms 1.6-16.3ms
TR 10.3ms 2.7ms 2.7ms 18.1ms
nom. acquisition time 18.5 s 10 s 10 s 8 s

Common parameters are depicted with blue shading. Nominal acquisition time is cal-
culated for a heart rate of 60 bpm and a gating efficiency of 50%.

2.4 Phantom experiments

Phantom measurements were performed to evaluate the accuracy and precision of the
proposed SATURN sequence. Reference measurements for T1 were performed using
an inversion-recovery spin echo sequence with TI = 100, 200, 500, 1000, 2000, 5000,
8000ms, TE/TR = 12/10000ms, and imaging geometry as specified above. T2 refer-
ence scans were performed with a spin echo sequence with TE = 17, 30, 50, 100, 150,
250ms and otherwise identical imaging parameters to the inversion recovery spin-echo
(IR-SE). GRE was performed for T2

˚ quantification with 12 contrasts ranging from TE
= 2-60ms, TR = 10000ms and one k-space line per readout with the same imaging
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parameters listed above. All measurements were additionally compared with single-
parameter methods for myocardial mapping (listed in Table 1): SASHA T1 [47] with a
minimum and maximum saturation time of 103ms and 600ms, T2-prepared bSSFP
using four different T2 weightings (0ms, 25ms, 50ms and 8ms) and a 3 parameter
fit model [22, 48], and multi-GRE T2

˚ with 8 echoes ranging from 1.6ms-16.3ms [19]
using the 2 parameter truncation model [39]. The cardiac cycle was simulated and set
to a heart rate (HR) of 60 beats per minute.

2.5 In vivo experiments

In vivomeasurements were performed in 10 healthy volunteers (23-29 years old, 26.1˘1.5
y, heart rate: 67.2˘7.7 bpm, 3 female), one patient (69 years old, female, heart rate:
72 bpm) with hypertrophic cardiomyopathy (HCM) and one patient (66 years old, male,
heart rate: 79 bpm) with suspected hypertensive heart disease (HHD) after written
consent was obtained. All images were acquired in the mid-ventricular short-axis view
using the parameters described in the previous section.

SATURN was performed with a maximum TS adjusted to the subject’s heart rate. Mo-
tion between images from different heart-beats was reduced by retrospective image
registration. Rigid registration was performed with mutual information in the region of
interest as the similarity metric. Voxel-wise fitting was performed using the five param-
eter model.

Regions of interest were manually drawn in the entire myocardium, with careful dis-
tancing to the epi- and endocardial borders. Bullseye plots were generated for the
six mid-ventricular segments of the American Heart Association (AHA) segment model
[49].

Standard deviationmaps (SDmaps) were generated by calculating all partial derivatives
of the fit function as previously proposed [50]. The covariance matrix is calculated by
the inverse of the Hessian matrix. The square root of the sum of the diagonal entries of
the covariance matrix is used as an approximation for the voxel-wise standard deviation
of the individual parameters.

2.6 Statistics

The within-segment mean and the within-segment standard deviation of the T1, T2, and
T2

˚ times were averaged across all subjects. Additionally, the within-segment mean of
the SD T1, T2, and T2

˚ times was calculated respectively. Inter-subject variability was
calculated as the standard deviation of the within-segment mean across all subjects.
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Pair-wise comparison was performed using Student’s t-tests using the Bonferroni cor-
rection for multiple comparisons along T1, T2, and T2

˚. p-values less than 0.05 were
considered significant. Significance between segments of the myocardium was tested
using the ANOVA test. Relative deviations were compared by dividing the absolute
difference between reference and SATURN with the reference.

3 Results
3.1 Simulations
Figure 2A shows the simulated longitudinal magnetization evolution of the proposed
SATURN sequence with varying T1, T2, and T2

˚. Figure 2B plots the fitted relaxation
times against the reference relaxation times to depict themeasurement accuracy. Accu-
rate multi-parameter quantification for T1, T2, and T2

˚ across the relevant in vivo range
(T1 “ 800´2200 ms, T2 “ 30´70 ms, T2

˚
“ 10´60 ms) was achieved in simulations.

One source of deviation for T2 was incomplete recovery during the rest-periods leading
to very slight deviations in T2 (0.02% for 50ms, <5% deviation for 100ms) as shown in
Supporting Information Figure S1. T2

˚ quantification was found to be more susceptible
to higher noise levels than T1 and T2. T1, T2, and T2

˚ accuracy were independent of the
heart rate. T2 accuracy was additionally compromised by an imperfect T2 preparation
efficiency resulting in a strong underestimation, especially for longer T2 times.

3.2 Phantom
Phantom measurements (Figure 3A) showed good agreement with reference methods.
Deviations of less than 7.7% for relaxation times across the relevant in vivo range were
observed. In Figure 3B the relative difference of the measured relaxation times to the
reference is shown as well as exemplary maps are shown for SATURN and the ref-
erence are shown below (Figure 3C). SATURN T1 times compared with the inversion
recovery spin-echo, yielding accuracy comparable to SASHA. T2 times were accurate
in the relevant range (5.2% deviation) and decreased when exceeding 100ms with rela-
tive deviations of up to 20%. For T2

˚ of less than 100ms T2
˚ accuracy (7.7% deviation)

was slightly higher compared with the conventional single parameter method, where a
decrease of up to 11ms was measured compared with the reference GRE. SATURN
overestimates long T2

˚ times compared with the GRE and multi-GRE [51]. All repre-
sentative relaxation times per tube are displayed in Supporting Information Table S1.

3.3 In vivo
Average acquisition time for SATURN in the ten healthy subjects was 26.5˘14.9 seconds,
which corresponds to an average gating efficiency of 54˘ 30%. The minimal Tmin

S was
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7ms for every subject and the maximal Tmax
S was 601 ˘ 65ms. Example magnitude

data acquired with SATURN in one healthy subject is shown in Figure 4A. Signal inten-
sities from the septum are plotted across 35 measurements along with the fitted signal
model (Figure 4B). Visual image quality is high for T1 and T2. Artifacts are observed
in T2

˚ maps (Figure 5A). Standard deviation maps depict the homogeneous mapping
precision throughout the myocardium (Figure 5B).

Example quantitative parametermaps acquired with SATURN comparedwith the single-
parameter reference methods are shown in Figure 5 for one healthy subjects (two more
subjects are shown in Supporting Information Figure S2). Visual image quality is com-
parable with the single parameter scans for T1 and T2. However, some blurring is ob-
served in the SATURN maps. T1 and T2 maps depict a homogeneous myocardium
clear of artifacts. T2

˚ maps acquired with SATURN appear visually smoother than the
reference.

Figure 6 shows the in vivomean T1, T2, and T2
˚ times for SATURN over the conventional

methods for all healthy subjects. Below the Bland-Altman plot is depicted. A bias of
+29.16ms was measured for T1 and a bias of +1.54ms was measured for T2

˚. T2
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times yielded no bias compared with T1 and T2
˚ but limits of agreement of ˘9.4 ms.

All representative relaxation times per subject are displayed in Supporting Information
Table S2.

Supporting Information Figure S3 shows the difference between SATURN acquired with
GRAPPA with acceleration factor R=3, R=4, and R=4 using SPIRiT + LLR regulariza-
tion. T2 map quality shows only minor differences between R=3 or R=4 with deviations
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of less than 2%. However, T1 map quality is improved with 36.2% lower within-segment
standard deviations for R=3 compared with R=4. Precision is regained by using reg-
ularization (SPIRiT + LLR) and image quality is visually improved (only 5.4% lower
within-segment standard deviations). SATURN T1 maps appear smoother and more
homogeneous when using R=3 with smaller variations within the myocardium. Addi-
tional artifacts appear in T2

˚ maps using R=4, which are largely alleviated using regu-
larization.

Figure 7 represents the AHA 6 segment bullseye plots showing the mean quantita-
tive measures across all healthy for the T1, T2, and T2

˚ and the corresponding within-
segment standard deviation. The relaxation times in the healthy myocardium mea-
sured with SATURN averaged over all six AHA segments were T1 “ 1573 ˘ 86 ms,
T2 “ 33.2 ˘ 3.6 ms, comparable to the conventional methods (T1 “ 1544 ˘ 107 ms;
p=0.22, T2 “ 33.2 ˘ 3.6 ms; p=0.98). T2

˚ obtained with SATURN was 25.3 ˘ 6.1 ms,
corresponding to a 5.9% increase compared to the conventional method (23.8˘5.3 ms;
p=0.33) with both methods suffering from artifacts. No significant differences were
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found between the in vivo times measured with SATURN and the conventional methods
for neither T1, T2 or T2

˚.

No significant differences among segments were measured for SATURN T1 (p=0.36)
but significant differences for T2 (p=0.037) and T2

˚ (p=0.038), with the lowest T2 / T2
˚

times being observed in the mid-inferior segment. The same trend is observed for the
conventional methods. For SASHA T1 no significant difference among the segments
(p=0.83) was observed, but significant differences for the single parameter T2 (p=0.033)
and T2

˚ (p<0.01), depicting a similar drop in the mid-inferior segment. Inter-subject
variability of 57.9ms (3.7% compared with the mean value) was observed in T1, which
is higher than for SASHA (42.3ms (2.7%)). Inter-subject variability of 3.3ms (9.9%)
for T2 obtained with SATURN were in the range of the T2-prepared bSSFP with 3.2ms
(9.6%), and 3.6ms (14.2%) for T2

˚ compared with the multi GRE 3.2ms (13.4%) were
observed.

SD-maps are calculated for all healthy subjects for SATURN and the conventional meth-
ods and resulted in mean values of σpT1q “ 68 ms, σpT2q “ 1.1 ms and σpT2

˚
q “ 3.3 ms
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Figure 5: A) In vivo T1, T2, and T2
˚ maps acquired with the proposed SATURN sequence (left)

and single parameter reference methods (right) for one healthy subject. Visually homogeneous
mapping is achieved throughout the myocardium for T1 and T2, minor artifacts appear in T2

˚

maps. Image quality appears visually comparable to the reference methods. B) Below the
standard deviation (SD) maps are shown for the three relaxation times and the same subject
for SATURN and the reference methods.
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and for the conventional methods σpT1q “ 39.3 ms, σpT2q “ 1.9 ms and σpT2
˚
q “

1.5 ms. Example standard deviation maps are shown in Figure 5B and Supporting Infor-
mation Figure S2. Figure 8 shows themean and the standard deviation of the calculated
SD maps in each of the 6 segments. For T1, SATURN achieved 23.3% lower within-
segment standard deviations and improved precision compared with SASHA T1 map.
T2 shows comparable precision between SATURN and the single parameter method
(5.1% deviations). Increased within-segment standard deviations of 8.3% are observed
for SATURN T2

˚ compared with the reference multi GRE.

Figure 9 shows SATURN T1, T2, and T2
˚ maps for a patient with HCM, and one pa-

tient with suspected HHD and the corresponding bullseye plots. Increased T1, T2, and
T2

˚ times (1607/47.0/35.5ms versus 1487/38.5/26.5ms) are observed in the septal re-
gions compared with the lateral myocardium in the patient with HCM. SATURN shows
increased T1 times and patchy structures in the patient with HHD. T2

˚ times are sub-
stantially elevated.
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4 Discussion
In this study, we proposed the SATURN sequence for free-breathing simultaneous
quantification of T1, T2, and T2

˚ in the myocardium based on a gradient-echo read-
out in combination with saturation pulses and T2 preparation pulses. We demonstrated
good agreement with Bloch simulations and phantom experiments yielding generally
accurate T1 times. However some biases for T2 and T2

˚ are observed. In vivo measure-
ments provided robust image quality comparable to reference methods for all segments
in the mid-ventricular short-axis view.

T1 measurements resulted in good accuracy compared to spin-echo sequences and
SASHA in the phantom and in vivo. Mean T1 times in the six segments are comparable
to previously reported values for saturation based T1 mapping at 3T [12, 51]. T1 maps
yielded similar image quality and smaller within-segment standard deviations compared
with SASHA. Similar inter-subject variability was found between SATURN and the ref-
erence method.

Our simulations indicate that accuracy in T2 mapping is compromised for long T1/T2
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Figure 7: Bullseye plot of T1, T2, and T2
˚ relaxation times acquired with SATURN and the
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the within-segment standard deviation average across all healthy subjects. Small differences
between SATURN and the reference was observed for T1 and T2. T2

˚ obtained with SATURN
was 5.9% increased compared with the reference.
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combinations due to insufficient recovery during the rest-period. However, as this ef-
fect is only marked at values outside the relevant in vivo range, a choice of 4 seconds
rest periods seemed justified. In vivo T2 measurements resulted in lower T2 times than
reported in literature [22, 52, 53], but only minor differences were observed between
SATURN and the reference T2-prepared bSSFP. The lower T2 times obtained in this
study as compared to previous literature [22, 52, 53] are related to the use of a three-
parameter fit model, which was previously shown to yield lower T2 times (Supporting
Information Figure S4). Other than that, we observed a drop of T2 in mid-inferior seg-
ments in some healthy subjects due to B1

` inhomogeneities, which could be corrected
by better shimming routines. We used rest periods before the T2 preparations instead
of saturation pulses directly after the ECG trigger because the SNR of the T2-prepared
images for the gradient-echo readout was too low for accurate T2 quantification as nu-
merical simulations showed [54]. T2 maps in vivo and in phantom appeared visually
smoother and more blurred as compared with the conventional single parameter maps
due to the centric k-space reordering in SATURN. With centric k-space reordering, the
magnetization transfer function acts as a slight low pass filter [55]. We decided in fa-
vor of centric k-space reordering due to the improved quantification result and image
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quality, especially for T1.

Bloch simulations without noise result in accurate T2
˚ quantification. However, phantom

measurements resulted in deviations of up to 20%, likely due to susceptibility artifacts
and increased noise, as this was the dominant factor in the Bloch simulations. Espe-
cially for the tubes with very high T2

˚ times the quantification in the phantom failed,
which might be due to the very short maximum TE of the five echoes from SATURN.
However, for T2

˚ in the in vivo relevant range SATURN was still observed to be more
accurate than the reference GRE method. T2

˚ times in vivo are in the range of reported
literature [56, 57, 58] and slightly increased compared with the reference GRE (5.9%).
The overestimation is likely linked to a shorter maximum TE. However, increased T2

˚

times are measured without truncation due to sufficient SNR [39, 59]. A drop in T2
˚ was

observed in the mid-inferior segment due to B1
` inhomogeneities as also observed for

T2.

Higher accelerations might be necessary for patients with high heart rates to reduce
the time per single-shot acquisition. The variability in T1 maps is increased when using
higher acceleration factors (GRAPPA R=4). However, this can be alleviated by using
regularization (SPIRiT + LLR) at the cost of inducing complexity in the post-processing.
T2 maps reconstructed using acceleration factors of R=3 and R=4 resulted in visually
similar T2 maps with only slight deviations of 2.1% in the T2 times and 1.9% in the
within-segment standard deviations. Similar to T1, for the T2

˚ the use of R=4 increases
the within-segment standard deviation by 52.4%, which might be due to the low SNR
for images with long TEs.

In the patient with HCM we observed an increased T1, T2, and T2
˚ time as reported in

literature [60, 61, 62]. Image quality was visually good. For the patient with suspected
HHD, increased T1 and T2

˚ was observed in the septal region and patchy structures in
the T1 map as typically observed in HHD [63]. No reference methods were acquired in
patients, which will be evaluated in future work.

Simultaneous measurements of T1, T2, and T2
˚ is more time-efficient since all parame-

ters are acquired in one scan (average acquisition time was 26.5˘14.9 s). Additionally,
they share the same volume and are, therefore, inherently co-registered. This eases
the fusion of imaging information as corresponding regions are easy to identify. Fur-
thermore, the assessment of multiple quantitative measures increases the specificity
for diagnosis [1, 2, 52].

Free-breathing imaging was achieved by using a prospective navigator on the liver di-
aphragm. This may minimize the susceptibility to incomplete breath-holds as often
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observed in patients suffering from dyspnea. Residual motion is compensated by the
use of image registration. We used rigid-registration as previously reported to yield sat-
isfactory results in healthy subjects (Supporting Information Figure S5) [64]. In patients
with variable breathing patterns and/or arrhythmia, the motion correction for respiratory
as well as the cardiac cycle might be improved by using non-rigid registrations, which
is subject of future work. In addition, simultaneous multi slice acquisition [65] can be
used to cover multiple slices per acquisition, which enables whole heart imaging in a
relatively short time.
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Figure 9: SATURN T1, T2, and T2
˚ maps for a patient with hypertrophic cardiomyopathy (HCM)

and one patient with suspected hypertense heart disease (HHD). The corresponding bullseye
plots are shown respectively. In the patient with HCM a increased T1, T2, and T2

˚ was observed
in the septal region. For the patient with HHD, increased T1 and T2

˚ was observed in the septal
region as well as patchy structures in the T1 map.
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Intramyocardial fat is often present in cardiac patients and is known to shorten the T1
and T2 times [66]. While variable impact of the fat fraction on bSSFP based cardiac
relaxometry has been reported [67], the effects on GRE based mapping, as proposed
in this study, are expected to be affected by fewer confounders. Furthermore, in the
presence of substantial intramyocardial fat, the T2

˚ decay deviates from a monoexpo-
nential decay. Dixon-encoding mapping might be used to separate the fat and water
signal and overcome the deviations in the quantitative measures[68, 69]. Integration of
these techniques in our proposed sequence and dedicated evaluation for fatty storage
disease warrant further investigation.

A physics-based five parameter model was used for the quantification. Recent trends
emerged using machine learning for improving the reconstruction and fitting with non-
explicit modeling and might be applied due to the limited spatial resolution, partial vol-
ume effects, and noise [70, 71, 72, 73].

This study has several limitations. Saturation recovery based methods for T1 quantifica-
tion suffer from a decreased dynamic range of the T1 recovery curve, which is known to
decrease the precision [38]. However, compared with inversion recovery methods such
as MOLLI, the accuracy is not impacted [74] (Supporting Information Figure S1). The
dynamical range could be increased by shifting the readout to the succeeding heart-
beat, as previously reported [75]. However, in this case, navigator gating may affect
the sampling of the saturation recovery. Nonetheless, this modification may lead to
valuable improvements in terms of map quality for tachycardiac patients and warrants
further investigation. Single-shot imaging suffers from long readout blocks, especially
for a multi gradient-echo readout with 5 echoes. Higher heart rates will result in more
cardiac motion during the acquisition. Therefore, the maximal TR of the echoes has to
be short enough to acquire the whole k-space in one diastolic phase. However, short
TR reduces the accuracy of the T2

˚ quantification of long T2
˚ times as observed un-

der certain circumstances or lower field-strength. Higher acceleration factors enable
the sampling of longer echo times in the same acquisition window, albeit at the cost
of reduced SNR. We showed that this limitation might be partially compensated for by
the use of regularization when using acceleration factors higher than R=3. A maximum
TE of 8.6 ms is short compared with conventional methods that often use a maximum
TE around 16-18ms [20]. We decided to use a truncation fitting model to increase the
quantification accuracy, especially for the low SNR contrasts 4 and 6 [39]. Neverthe-
less, the use of short echo times might lead to an overestimation of T2

˚. However, an
increase of 1.5ms in T2

˚ in vivo compared with the conventional multi GRE was ob-
tained with SATURN. This deviation is explained by the shorter maximum TE relative
to the reference method. Increasing the length of the GRE readout train may be con-
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sidered in a trade-off against higher acceleration rates if improved accuracy for long
T2

˚ is desired. Faster acquisition schemes such as radial single-shot images might
offer a better compromise between longer TE and short enough acquisition windows,
which will be evaluated in further research. Conventionally, T2

˚ maps are acquired with
lower spatial resolution compared with T1 and T2. Since we are measuring all three pa-
rameters from the same scan with the same spatial resolution we acquire with slightly
higher resolution for T2

˚ as commonly acquired [20]. Furthermore, it is generally rec-
ommended to perform T2

˚ mapping at 1.5T. Hence, the quality of the T2
˚ quantification

might show superior results at 1.5T. Blood signal suppression is also often used in T2
˚

mapping to alleviate partial volume effects. However, in this study, we refrained from
additional blood signal suppression but may benefit from decreased partial voluming
due to an increased imaging resolution.

5 Conclusion
SATURN enables joint quantification of the most relevant clinical relaxation times, T1,
T2, and T2

˚, with robust image quality in a single free-breathing scan. Good quantifica-
tion accuracy was demonstrated in a phantom. In vivo free-breathing imaging yielded
high visual image quality.
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Magnetic Resonance Fingerprinting for
simultaneous renal T1 and T2

˚ mapping
in a single breath-hold
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Abstract
Purpose: To evaluate the use of magnetic resonance fingerprinting (MRF) for simulta-
neous quantification of T1 and T2

˚ in a single breath-hold in the kidneys.

Methods: The proposed kidney MRF sequence was based on MRF echo-planar imag-
ing (EPI). 35 measurements per slice and overall 4 slices were measured in 15.4 sec-
onds. Group matching was performed for in-line quantification of T1 and T2

˚. Images
were acquired in a phantom and eight healthy volunteers in coronal orientation. To
evaluate our approach region of interests were drawn in the kidneys to calculate mean
values and standard deviations of the T1 and T2

˚ times. Precision was calculated across
multiple repeated MRF scans. Gaussian filtering is applied on baseline images to im-
prove SNR and match stability.

Results: T1 and T2
˚ times acquired with MRF in the phantom showed good agreement

with reference measurements and conventional mapping methods with deviations of
less than 5% for T1 and less than 10% for T2

˚. Baseline images in vivo were free of
artifacts and relaxation times yielded good agreement with conventional methods and
literature (deviation T1 : 7˘ 4 %, T2

˚ : 6˘ 3 %).

Conclusion: In this feasibility study, the proposed renal MRF sequence resulted in
accurate T1 and T2

˚ quantification in a single-breath hold.
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1 Introduction

Magnetic Resonance Fingerprinting (MRF) is a promising method to quantify multiple
tissue properties in a single, time-efficient acquisition. Imaging of the relaxation times
T1, T2, T2

˚ has been achieved simultaneously with different acquisition and readout
schemes. Its application is increasingly gaining clinical relevance [1, 2, 3, 4, 5, 6, 7]. In
MRF unique fingerprints are generated by a pseudo-random pulse design with varying
flip angles, echo (TE) and repetition times (TR) to generate different sets of contrast
weightings. These are matched with pre-computed dictionaries containing all relevant
combinations of physiological tissue parameters.
The original MRF sequence was based on a steady-state free precession (SSFP) read-
out with highly undersampled spiral k-space readout and remains the most commonly
used approach. Recently, an alternative MRF acquisition was proposed based on a
Cartesian echo planar imaging readout [8]. Compared to conventional MRF, MRF-EPI
affords increased robustness against system imperfections at the trade-off against a
reduced number of baseline images. Furthermore, interpretable baseline images in
MRF-EPI allow monitoring for patient specific artifacts or motion during the acquisition
and facilitates clinical robustness. In-line reconstruction on the scanner with a fast group
matching algorithm [9] allows the integration into clinical workflow.
MRF has become a widely available for neuroimaging but application to abdominal
imaging is limited [10]. Especially MRF is rarely used for renal imaging.
Chronic kidney disease affects around 10% of the world population and is induced by
pathological changes such as inflammation, fibrosis and oedema. These process were
shown to increase T1 [11] and, hence, quantitative renal imaging is clinically relevant
for detecting a spectrum of pathologies [12, 13, 14, 15]. Changes in oxygen supply
can be visualized in the blood oxygenation level-dependent (BOLD) effect, which cor-
relates with T2

˚, and has been observed to decrease in CKD and kidney transplants
[16, 17, 18, 19].
The most commonly used method for renal T1 mapping is the modified Look-Locker
inversion recovery (MOLLI) [20, 21, 11] which is based on an inversion recovery pulse
followed by several imaging readouts. However, the repeated imaging acquisitions dis-
turb the longitudinal magnetization recovery and compromise acquisition accuracy [22].
The gold standard technique for T2

˚ quantification is multiple gradient echo (multi GRE)
[23, 24, 25].
Conventional MRI scans suffer from long acquisition times. Ding et al. have previously
demonstrated the clinical value of simultaneous T1 and T2

˚ estimation [26]. Their tech-
nique was based on EPI readout with inversion recovery (IR) preparation for T1 and a
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saturation pulse followed by multiple GRE acquisitions for T2
˚ quantification. Neverthe-

less, the low resolution and the long acquisition time for one slice is outperformed by
MOLLI and multi GRE. Especially, measuring multiple slices in multiple breath-holds in-
creases the measurement time substantially as 10 to 30 seconds pauses are required
between breath-holds. However, MOLLI underestimates the T1 times as well-known
from factors such as magnetization transfer [27] and multi GRE measurements may
overestimate T2

˚ for long echo times at 3T [28].
In this study, we aim to implement aMRF sequence based on an EPI readout to estimate
T1 and T2

˚ times in the entire kidneys in a single breath-hold. Phantom measurements
are performed to validate the accuracy and precision of the T1 and T2

˚ quantification
for 4 slices and to optimize scan-time efficiency. Whole kidney in vivo MRF maps are
acquired and compared to the gold standard methods MOLLI and multi GRE to study
the feasibility.

2 Methods
Sequence parameters

All measurements were performed on a 3T MRI scanner (Magnetom Skyra; Siemens
Heathineers, Erlangen, Germany) with a 28-channel receiver coil array and shared the
following common imaging parameters: FOV = 380ˆ380 mm2, matrix size (base reso-
lution) = 256 x 256 (1.5ˆ1.5 mm2), slice thickness = 5mm. The proposed MRF method
was based on [8] with the following specific parameters: bandwidth = 1148Hz/px,
GRAPPA-factor 3 with 36 calibration lines, partial Fourier 5/8, fat saturation and vary-
ing flip angle α (17-43˝̋̋), TE (16-76.5ms), TR (383-625ms) as shown in Fig. 1. TE and
TR are depicted as the same line (gray) because they are proportional to each other,
only minimal and maximal values are different. Additionally, T1 maps were generated
using a 5(3s)3 MOLLI [29] scheme with the same common parameters and bandwidth
= 1085Hz/px, GRAPPA-factor 2, partial Fourier 6/8 and flip angle 35˝̋̋. T2

˚ maps were
generated using a multi GRE sequence with the same common parameter and band-
width = 390Hz/px, GRAPPA-factor 2, partial Fourier 6/8 and flip angle 18˝̋̋ with 12 dif-
ferent TEs varying from 1.7-40ms.

Dictionary

The dictionaries were generated by Bloch simulations off-line usingMATLAB (TheMath-
Works; Natick, MA). The evolution of the magnetization was simulated with B1

` com-
pensation by a scaling factor for the excitation flip angles [2] and pattern matching is
performed using the magnitude data. A Group matching algorithm was implemented
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Figure 1: Evolution of the measured signal for all 35 measurements. On top the varying α
(17-43˝̋̋), TE (16-76.5ms), TR (383-625ms) and the inversion pulses are depicted. TE and
TR are depicted as the same line because their trend is proportional (TR “ 4 ¨ TE ` const.)
and just minimal and maximal values differ. The evolution curve of the renal cortex (blue) and
the renal medulla (yellow) is shown with its corresponding T1 and T2

˚ times for one exemplary
measurement. All entries of the full dictionary are depicted as gray area. Baseline images on
the bottom show different weightings for several α, TE and TR along the evolution curve.

based on the method by Cauley et al. [30] where the full dictionary is divided into multi-
ple small dictionaries. The mean value of all small dictionaries is written in an additional
look up table (LUT). The measured signal is matched with the LUT containing the mean
values and the best matching groups are chosen to fully correlate with the measured
signal. The best matching groups were precomputed by correlating the LUT containing
the mean values with itself and sorted by the correlation values. For every group the
sorted best matching groups were written in an additional LUT. The full dictionary was
splitted into 4682 smaller dictionaries (groups) containing 15 entries each. 200 of these
groups were used to match the pixelwise signal which were preselected by the LUT
containing the mean of every group. The full dictionaries consisted of 70,236 entries
with T1 ranging from 100-3500ms, T2

˚ from 10-2000ms with increasing step size and
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flip angle efficiency (B1
`) from 0.7-1.2 with a step size of 0.1. All entries with T1 ă T2

˚

were discarded. The calculation of the dictionary took less than 10 minutes. Parameter
maps were reconstructed in-line on the scanner [9]. Inversion pulses were assumed
to be ideal (180˝̋̋) with no T2˚ decay during the pulse. Multi-threading was used to
simultaneously match multiple slices at the same time for efficient post-processing.

Phantom experiments
Phantom measurements were performed to evaluate accuracy and precision of the
MRF sequence compared to references measurements. Inversion-recovery turbo spin
echo was performed for T1 quantification with TI = 100, 200, 500, 1000, 2000, 3000,
5000, 10000ms, TE/TR = 12/10000ms, turbo factor = 16, FOV = 320ˆ 320 mm2, ma-
trix size (base resolution) = 256 x 256 (1.3 ˆ 1.3 mm2), slice thickness = 5mm, band-
width = 1085Hz/px. Multi GRE was performed for T2

˚ quantification with 28 contrasts
within TE = 2-50ms, FOV = 320 ˆ 320 mm2, matrix size (base resolution) = 256 x 256
(1.3 ˆ 1.3 mm), slice thickness = 5mm, bandwidth = 390Hz/px. MRF was performed
with the common sequence parameters. 100 baseline images with different contrast
weighting were acquired to calculate the parameter maps yielded by an increasing
amount of measurements to study the convergence of the parametric maps. Hereby,
the scheme of varying flip angles, TE and TR is repeated after every 35 measurements.
The MRF maps were acquired 10 times for studying precision and reproducibility com-
pared to MOLLI and multi GRE and reference IR and GRE. Precision was calculated
by taking the standard deviation of the difference of every measurement to their mean.
The phantom consisting of tubes was generated using 12 different mixtures of water,
agarose and NiCl2 as recommended by Captur et al. [31]. The whole phantom was
submerged in water to reduce susceptibility artifacts.

In vivo experiments
In vivo measurements were performed in 8 healthy volunteers (6 male, 22-33 years old)
to study the feasibility compared to commonly used methods as MOLLI for T1 and multi
GRE for T2

˚ quantification. All breath-holds were performed in end-expiration. MRF,
MOLLI and multi GRE were performed using the parameters as described in the previ-
ous section. Coronal slices were chosen as imaging planes.
Medulla and cortex were semi-automatically segmented using MATLAB (The Math-
Works; Natick, MA). T1 and T2

˚ mean and standard deviations were calculated for all
slices in the medulla and the cortex and all MRF measurements were registered using a
2D affine transformation using MATLAB (The MathWorks; Natick, MA). Ten MRF scans
were performed to analyze precision of the measurements. Gaussian smoothing was
performed on MRF baseline images to improve the matching process and therefore
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the parameter map quality. The Gaussian filter was implemented in-line on the scan-
ner before the group matching. For this, the magnitude images were convolved with a
Gaussian filter Gpi, jq with kernel size n “ 5 as follows:

Gi,j “
1

2πσ2 ¨ exp
ˆ

´
i2 ` j2
2σ2

˙

(1)

and the convolution in image space

I˚
px, yq “

n
ÿ

i“1

n
ÿ

j“1
I
ˆ

x ´ i ` n´ 1
2 , y ´ j ` n´ 1

2

˙

Gpi, jq (2)

with I˚ the filtered pixel, I the image pixel, σ2 the variance.

3 Results
3.1 Phantom
Figure 2 shows the evolution of the matched T1 and T2

˚ times for the match process
with an increasing amount of measurements for 3 different tubes. More than 20 mea-
surements were needed for convergence of T1 and T2

˚. Thus, 35 measurements were
used as a standard for the MRF acquisition. Deviations in T1 and T2

˚ times of less than
5% and 10% were achieved which are comparable to MOLLI and multi GRE. Standard
deviations for T2

˚ were lower than for multi GRE. Scan time was reduced by a factor of
8 for the 4 slices compared to MOLLI and multi GRE (8 measurements) considering 1
MRF acquisition providing both parameter maps with similar accuracy and precision in
a phantom. Figure 3 depicts the T1 and T2

˚ map for MRF, MOLLI/multi GRE and the
reference IR and GRE of one representative slice.
Figure 4 shows in the top panel (a,c) the measured T1 plotted against the reference T1

for MRF (blue) and MOLLI (yellow) in (a), and the measured T2
˚ for MRF (blue) and

multi GRE (orange) to the reference T2
˚ in (c). Reference IR and GRE are depicted as

a black line and the gray area illustrates 5% deviation to the reference. MRF T1 times
show less than 5% deviation compared to the reference. T2

˚ deviations vary between
4% and 10%. The corresponding Bland-Altman plots are shown in the bottom panel
(b,d). MRF yields higher standard deviations than MOLLI between 25ms for small T1

and up to 75ms for higher T1 times, whereas MOLLI has standard deviations less than
40ms for all T1 times. On the right panel (d), MRF T2

˚ times show smaller deviations
than multi GRE with maximum standard deviations of less than 10ms, whereas multi
GRE shows standard deviations up to 15ms.
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Reproducibility and precision was evaluated by measuring the MRF sequence 10 times.
Interscan variability for T1 was less than 10ms and for T2

˚ less than 1.5ms for all slices.
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Figure 2: Convergence of the matched T1 and T2
˚ parameters for increasing measurements.

3 different tubes are depicted with high (blue), medium (orange) and small (yellow) T1 and T2
˚

values. For more than 20 measurements the matching converges to the reference value. The
colored shaded areas show the standard deviations of the corresponding matched relaxation
times.

3.2 In vivo
Figure 5 shows representative T1 and T2

˚ maps of 4 slices for one volunteer compared
to the reference MOLLI and multi GRE in coronal slice. Standard deviations of the T2

˚

maps were similar compared to multi GRE but MRF showed consistent higher T2
˚ val-

ues. Mean MRF T2
˚ times were 35.2ms ˘ 5.6ms and multi GRE times were 30.3ms

˘ 6.4ms in the medulla and 54.7ms ˘ 7.8ms and 50.4ms ˘ 7.2ms in the cortex.
MRF T1 times showed higher standard deviations and similar mean values compared
to MOLLI. In the medulla mean MRF T1 times were 1921ms ˘ 182ms and for MOLLI
1950ms ˘ 146ms and in the cortex mean MRF T1 times were 1456ms ˘ 126ms and
for MOLLI 1432ms ˘ 81ms.
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Figure 4: Comparison of T1 on the left side (a)) and T2
˚ on the right side (c)) between MRF

(blue) compared to reference (black), MOLLI (yellow) and multi GRE (orange). The gray area
limits 5% deviation to the reference. The bottom panel shows the Bland-Altman plot for T1 (b))
and T2

˚ (d)). The difference from MRF, MOLLI and multi GRE to the reference methods is
shown with the corresponding standard deviations. The gray line limits the area of 2 standard
deviations.
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In vivo precision of T1 acquired with MRF was 31ms in the medulla and 65ms in the
cortex. Precision of T2

˚ in the medulla was 1.4ms and 1.8ms in the cortex .
Ghosting artifact were alleviated using large FOV acquisitions and scan time was 15.4
seconds within one breath-hold. Online reconstruction on the scanner took less than
30 seconds.
Figure 6 shows the influence of Gaussian filtering on the correlation value, T1 and T2

˚

maps. As an example, a subject with noisy baseline images is shown. A fair com-
promise between sharp contours and edges and reduction of noise was obtained for
σ “ 0.7 which is shown in Fig. 7 where the correlation value, T1 and T2

˚ with respect
to the variance of the smoothing filter are depicted. The correlation values in the cortex
were greater than 0.99 for σ “ 0.7 and greater than 0.97 for σ “ 0. On the bottom
panel the corresponding correlation value, T1 and T2

˚ is depicted over the variance for
the cortex (blue) and the medulla (yellow). The standard deviation decreases for in-
creasing variance of the Gaussian filter without changing the mean value of T1 and T2

˚.

4 Discussion

This study demonstrates the feasibility of using an EPI-based MRF method to quantify
the T1 and T2

˚ times in the kidneys covering 4 slices within one breath-hold. In phan-
tom, good accuracy and precision was achieved with standard deviations comparable
to MOLLI and multi GRE as shown in previous publications [8]. MRF yielded accu-
rate results for all T1 times, whereas MOLLI lacks accuracy for long T1 times due to
magnetization transfer [27]. Fast and stable convergence of the parameter maps were
achieved for increasing number of measurements. MRF using 35 measurements was
a good compromise between scan time and parameter map quality. The shapes of the
tubes were distorted by the EPI echo train due to inhomogeneities in B0 and eddy cur-
rents, which induce inaccuracies in gradient amplitudes [32, 33].
In vivo scans yielded reproducible and accurate parametermaps comparable withMOLLI
and multi GRE with slightly overestimated T1 and T2

˚ times and higher standard devi-
ations than MOLLI. T2

˚ map quality was similar to multi GRE. T1 times showed larger
inter-subject variation and medulla T1 MOLLI and MRF values were higher than in the
literature [11, 15].
Quantitative diagnosis, requires a clear separation of diseased and healthy kidneys.
Sensitivity is thus determined by the underlying pathological alteration and the preci-
sion of the measurement technique. Major variations are observed in diseased kidneys
(CKD) by increased T1 times of over 150ms (10%) in the cortex, but just around 50ms
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(5%) in the medulla and increased T2
˚ times of around 3-5ms (10%) in the medulla

and cortex [15]. Therefore, with the precision of the MRF parametric maps of around
30ms for T1 and less than 2ms of T2

˚ we assume that it is possible to identify patho-
logical changes induced by CKD with our proposed method.
We based our sequence of the EPI-MRF as fully sampled basline images which is ben-

77



Publication III

eficial in clinical routines. This and the fast group match reconstruction in-line on the
scanner enables the possibility to change imaging parameters such as the FOV during
the clinical workflow based on patient size and position to overcome ghosting artifacts.
Compared to conventional MRFmethods using unbalanced SSFP sequences, our MRF
method was resilient to banding artifacts and incomplete gradient refocusing [34, 35].
However, rapid acquisitions require a trade-off against noise-resilience. Therefore, we
analysed the impact of Gaussian filtering on the baseline images. This improved the
image quality of the T1 and T2

˚ maps and reduced the standard deviation without chang-
ing the mean value. The correlation value of every pixel was increased meaning that
the matching process is more accurate.
MRF EPI has the draw back of potential motion during the readout, therefore complete
baseline images can be used easily for motion correction in post-processing. Slice-
tracking based on navigators can be used to port the method to free-breathing and is
subject of future research.
The image quality of the MRF parameter maps is highly dependent on the image quality
of the baseline images. Therefore, improving the EPI baseline image quality was shown
to improve the MRF map quality. Reduction of ghosting artifacts [36, 37], Nyquist ar-
tifact [38, 39] and motion correction [40] were recently published, which all have the
potential to improve the image quality of the proposed MRF method. Despite advanced
shimming, field inhomogeneities disturb the k-space echo train and therefore lead to
geometric distortions [41, 42]. Gain in SNR could be achieved by using a 3D EPI read-
out when imaging with high resolution at the cost of increasing minimal TE [43, 44].
Novel MRF reconstruction methods including deep learning can be used for accelerat-
ing the reconstruction and obtain more stable matching progress [45, 46, 47, 48, 49].
Optimizing the pulse sequence by a better choice of the flip angle, TE and TR may
further decrease the noise as published recently [50].
This study has some limitations. Despite the nominally high spatial resolution, the ef-
fective resolution is lower due to the use of Gaussian filtering. The Siemens scanner
treats the missing k-space lines by zero filling. Additionally, without using 5/8 partial
Fourier, the maps are worse due to the longer TE. For this kidney MRF sequence, it
was essential to push the TE as short as possible to overcome blurring. However, 5/8
partial Fourier reduces the lines in k-space and therefore further widens the point spread
function. Susceptibility artifacts due to the air in the lung disturb the parametric MRF
maps compared to the reference methods, which is widely known as EPI distortion.
Therefore, distortion correction may improve the image quality [51, 52].
A small number of volunteers weremeasured with relatively low fat content and all young
in age. Higher fat content and incorrect breath-hold will significantly reduce the SNR.
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Larger cohorts in different age groups and patients with CKD or kidney transplants are
needed to further evaluate the proposed sequence and to implement the kidney MRF
in the clinical routine.

5 Conclusions
In this study we have shown the feasibility of an EPI-MRF sequence for simultaneous
quantification of T1 and T2

˚ in the kidneys during a single breath-hold using 4 slices.
Using single shot imaging and in-line reconstruction on the scanner system enables to
monitor the baseline images while scanning to correct for patient specific artifacts in
clinical work flow.
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Abstract
Purpose: To develop an accelerated post-processing pipeline for reproducible and ef-
ficient assessment of white matter lesions using quantitative Magnetic Resonance Fin-
gerprinting (MRF) and deep learning.

Methods: MRF using echo-planar imaging (EPI) scans with varying repetition and
echo times were acquired for whole brain quantification of T1 and T2

˚ in 50 subjects
with multiple sclerosis (MS) and 10 healthy volunteers along 2 centers. MRF T1 and
T2

˚ parametric maps were distortion corrected and denoised. A CNN was trained to
reconstruct the T1, T2

˚ parametric maps, and the WM and GM probability maps.

Results: Deep learning based post-processing reduced reconstruction and image pro-
cessing times from hours to a few seconds while maintaining high accuracy, reliability,
and precision. Mean absolute error performed the best for T1 (deviations 5.6%) and the
logarithmic hyperbolic cosinus loss the best for T2

˚ (deviations 6.0%).

Conclusion: MRF is a fast and robust tool for quantitative T1 and T2
˚ mapping. Its

long reconstruction and several post-processing steps can be facilitated and acceler-
ated using deep learning.
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1 Introduction

White matter (WM) lesions are a common brain imaging finding in multiple sclerosis
(MS) affecting the central nervous system. WM lesions are commonly characterized by
increased T1 and T2

˚ relaxation times [1]. T2-weighted imaging or fluid attenuated inver-
sion recovery (FLAIR) is most commonly used in clinical MRI [2]. However, conventional
magnetic resonance imaging (MRI) only provides limited insights into the pathological
substrate of tissue changes (e.g. axonal loss, inflammation, demyelination). Specifi-
cally, qualitative imaging inherently hampers standardization and reproducibility. There-
fore, quantification of relaxation times such as T1, T2 and T2

˚ is increasingly receiving
interest for providing additional information beyond qualitative imaging [3, 4, 5]. How-
ever, most quantitative methods suffer from long acquisition times as the acquisition
of multiple qualitative images is required. This renders quantitative MRI susceptibility
to intra-scan motion. Furthermore, due to inter-scan motion and image distortion, mul-
tiple successive scans commonly need to be co-registered in order to allow for joint
analysis. Magnetic resonance fingerprinting (MRF) is a promising, time efficient ap-
proach for quantification of multiple tissue parameters in a single acquisition [6]. In MRF
characteristic magnetization evolutions are generated for tissues by varying sequence
parameters including flip angle, echo time (TE), and repetition time (TR) throughout
the acquisition. Thus, MRF has shown the potential to differentiate between healthy
and pathological tissue and may, therefore, be useful for clinical MRI [7]. Rieger et
al. proposed an MRF sequence based on an echo-planar imaging (EPI) readout for
simultaneous quantification of T1 and T2

˚ times covering the whole brain in less than 5
minutes [8, 9]. Lower undersampling factors are applied compared with spiral MRF, re-
ducing the noise per magnitude image but also the total number of magnitude images.
This method was recently shown to provide clinically robust T1 and T2

˚ in neuro and re-
nal applications [8, 9, 10]. However, compared with other EPI scans high acceleration
factors lead to a lower signal-to-noise ratio (SNR) than common for many clinical appli-
cations. Multiple denoising strategies have been proposed to improve the image quality
and accuracy [11, 12, 13]. Recently, Marchenko-Pastur principal component analysis
(MPPCA) was proposed to denoise EPI-diffusion MRI images [14]. This is of particular
interest, as a recent study demonstrated the value of denoising the acquired MRF mag-
nitude images to improve the quality of the quantitative maps [10]. The large number of
magnitude images in an MRF acquisition leads to long reconstruction times, which has
been acknowledged as one of the drawbacks of the MRF methodology [7, 15]. Addi-
tionally, several post-processing steps hinder the practicability in clinical usage. In wake
of recent developments, deep learning has superseded other approaches in many ar-
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eas of data processing. Numerous publications have shown the benefits of using deep
learning for medical imaging [16, 17, 18, 19, 20, 21]. Specifically, deep learning acceler-
ates processing steps and is capable of reconstructing MRI data [22, 23, 24]. Denoising
plays an important role in MRI and several networks were evaluated to improve the vi-
sual image quality using generative adversarial networks and deep neuronal networks
[25, 26, 27, 28, 29]. Furthermore, image synthesis has gained attention, which trans-
forms a set of input images to a new set of image contrasts [30, 31]. These image
transformations can also contain deformable registration and artifact correction which
showed good accuracy using CNN’s [32, 33, 34].

Especially for MRF, several models using fully-connected neuronal network [35, 36],
recurrent and convolutional neuronal network (CNN) [18, 37, 38, 39] were analyzed
showing promising results regarding the speed and accuracy of the reconstruction [40].
A deep learning reconstruction on MRF data using the spatio-temporal relationship
between neighboring signal evolutions was proposed [41, 42], which showed an im-
provement in the reconstruction especially for undersampled complex MRF data. The
U-Net has frequently been used to process medical data for segmentation and regres-
sion tasks [43, 44, 45, 46]. Since most of the MRF acquisition techniques acquire a
large number of highly undersampled images, the reconstruction problem is high di-
mensional. Therefore, a two-step deep learning approach was proposed in [19] to,
firstly, reduce the dimensionality by using feature extraction with a fully connected net-
work [47] and secondly, a U-Net for spatially constrained quantification. The advantage
of this learning-basedmodel is that it contains tissue properties of the neighboring pixels
which is more resilient to noise [48].

In this study we performed MRF-EPI for simultaneous quantification of T1 and T2
˚ in the

whole brain on 50 patients with white matter lesions and 10 healthy volunteers and an-
alyzed the T1 and T2

˚ times in WM and GM. Compared to conventional MRF methods,
our MRF-EPI only slightly undersamples the k-space allowing for conventional parallel
imaging reconstruction and yielding magnitude data that contains all relevant structural
information. We developed a CNN for the MRF-EPI reconstruction of denoised and
distortion corrected T1, T2

˚ maps, and WM, GM probability maps. Furthermore, we
compare different outputs, loss functions, and patches of the CNN for optimizing the
entire reconstruction using deep learning.
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2 Methods

This bi-center study was approved by the local institutional review board at both sites
(2019-711N, BCB2012/7965), andwritten, informed consent was obtained prior to scan-
ning. We performed MRF-EPI in 10 healthy volunteers (75% male, 22-30 (mean: 26)
years, mean) and 18 patients (39% male, 23-73 (mean: 39) years) with MS on a 3T
scanner (Magnetom Skyra, Siemens Healthineers, Erlangen, Germany) at site 1 and
in 32 patients (37% male, 1-63 (mean:41) years) with MS at a 3T scanner (Magne-
tom Prisma, Siemens Healthineers, Erlangen, Germany) at site 2. Figure 1 depicts an
overview of the MRF pipeline. The conventional steps (1-6) acquisition, denoising, dic-
tionary generation, reconstruction, distortion correction, and masking are depicted in
the first part. The approach for standardization and acceleration using deep learning is
shown in the second part, combining steps 2 to 6 to a single CNN.

2.1 Magnetic Resonance Fingerprinting

The acquisition was based on the previously proposed MRF-EPI technique for which
accuracy and precision to gold standard methods were already evaluated [8]. Dictio-
naries were generated per slice using MATLAB (The MathWorks; Natick, MA, USA)
consisting of 131,580 entries with T1 (30-4000 ms) in 5% steps, T2

˚ (5-3000 ms) in 5%
steps and flip angle efficiency B1+ (0.65-1.35) in steps of 0.05.

Sequence parameters for the MRF sequence were in-plane spatial resolution = 1x1
mm2, slice thickness = 2 mm, bandwidth = 998 Hz/px, GRAPPA factor = 3, partial
fourier = 5/8, variable flip angle (34-86˝̋̋), TE (21-81.5 ms), TR (3530 - 6570 ms) and fat
suppression. At site 2, additionally, simultaneous multi-slice (SMS) imaging was used
with an acceleration factor of 3. The acquisition time for site 1 was 4 minutes and 23
seconds and 1 minute and 52 seconds at site 2 covering all 60 slices. Additionally, T1-
FLAIR and T2-weighted images were acquired for lesions segmentation and distortion
correction, respectively, using the same spatial resolution.

2.2 Principal-component-analysis denoising

We used Marchenko-Pastur principle component analysis (MPPCA) [14] to denoise the
magnitude data of the MRF acquisition before reconstruction. Originally, the denois-
ing strategy was proposed to estimate a non-Gaussian distribution on diffusion MRI
data. The noise is estimated in a local neighborhood by the eigenvalues of principal
component analysis using the Marchenko-Pastur distribution [14].
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Conventional processing:

Deep Learning:

Step 1: acquire sequence

Step 2: de-noise magnitude

Step 3: generate dictionary

Step 4: reconstruct maps

Step 5: distortion correction

Step 6: segmentation

Step 2-6: reconstruction
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Figure 1: Schematic of the acquisition and post-processing pipeline. Step 1: Varying flip an-
gles, TE and TR with inversion pulses are played for the MRF-EPI sequence. Step 2: Denoising
the magnitude data by MPPCA denoising. Step 3: Generation of the dictionaries for all T1, T2

˚.
Step 4: Voxel-wise matching to generate the parametric maps via simple dictionary matching.
Step 5: Distortion correction of the MRF maps using a restricted non-linear registration onto T2
weighted image due to susceptibility artifacts of the EPI readout. Step 6: WM and GM segmen-
tation using SPM12 on the MRF T1 maps. Manual lesion segmentation of the T1-FLAIR data.
Step 2-6: Deep Learning as a tool to integrate all post-processing steps in a single operation.

89



Publication IV

Quantitative T1 and T2
˚ maps were compared with and without denoising. Denoising

was performed on a per slice basis using a 2-dimensional kernel. As we are not inter-
ested in the actual image contrast but in the absolute T1 and T2

˚ times, we use standard
deviation to describe the noise in these values.

2.3 Distortion Correction

Distortion correction was performed to correct for susceptibility artifacts, especially
around the nasal cavities [49]. Rigid registration was computed from the T2-weighted
data to the MRF-magnitude data followed by a restricted non-linear registration along
phase-encode direction from the magnitude to the T2-weighted data using ANTs [50].
Distorted maps were then visually compared to the FLAIR and T2-weighted images to
ensure that all modalities are properly registered.

2.4 Data Processing

WM lesions were segmented manually by an expert radiologist on the FLAIR images.
WM and gray matter (GM) were automatically segmented using SPM12 (Statistical
Parametric Mapping version 12) [51] using the T1 Maps acquired with MRF after denois-
ing and distortion correction. The probability maps generated by SPM12 were trans-
formed into binary masks by using a threshold (80%). Masks were visually analyzed
and manually segmented WM lesions were extracted from the WM and GM mask to
improve accuracy.

2.5 Deep Convolutional Neural Network for MRF Reconstruction

Our network was a modified U-Net [43] implemented in Matlab 2020a (The MathWorks;
Natick, MA) using the Deep Learning Toolbox. The network architecture is displayed
in Figure 1. The training was performed on a GPU (Tesla K40m, Nvidia, Santa Clara,
CA) for approximately 1 day per network. As inputs, the 35 differently weighted MRF-
EPI magnitude images were used. The generated output were the T1 and T2

˚ maps
and WM- and GM-probability maps. A brain mask was applied to exclude background
noise. Data of five patients was randomly selected for testing, while the remaining data
was chosen for training (49 data sets) and validation (5 data sets). Data of six healthy
volunteers were acquired without T2-weighted images and therefore, they are excluded
from training. Two patients from site 1 and three patients from site two were chosen for
the testing set. The 2D network was trained on individual slices.
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Table 1: The different parameters for all the networks compared in this work are listed here.

Network parameters
networks input outputs loss function
1 patches single T1 MAE
2 patches single T2

˚ MAE
3 patches T1, T2

˚ MAE
4 patches T1, T2

˚, WM, GM MAE
5 patches T1, T2

˚, WM, GM MSE
6 patches T1, T2

˚, WM, GM LCL
7 patches T1, T2

˚, WM, GM HL
8 full single T1 MAE
9 full single T2

˚ MAE
10 full T1, T2

˚ MAE
11 full T1, T2

˚, WM, GM MAE
12 full T1, T2

˚, WM, GM MSE
13 full T1, T2

˚, WM, GM LCL
14 full T1, T2

˚, WM, GM HL

We trained half the networks with the full input resolution (240x240 voxels) and the
other half using 32 random patches (64x64 voxels) per slice (Table 1). We evaluated
the following four different loss functions (the reference value yi , predicted value yp

i and
the number of values n):

the mean square error (MSE)

MSE “
řn

i“1pyi ´ yp
i q

2

n , (1)

the mean absolute error (MAE)

MAE “
řn

i“1 |yi ´ yp
i |

n , (2)

the Huber loss (HL), which is a combination of MAE and MSE
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HL “

$

&

%

1
2pyi ´ yp

i q
2, for |yi ´ yp

i | ď δ

δ|yi ´ yp
i | ´

1
2δ

2, otherwise
(3)

and the logarithm of the hyperbolic cosine (LCL)

LCL “
řn

i“1 logpcoshpyi ´ yp
i qq

n , (4)

We used Adam for optimization with a learning rate of 0.0001, L2-Regularization of
0.0001, 50 training epochs, and batch size = 64 for all networks, which was empirically
determined to be optimal. Additionally, we trained the networks using patches and the
full input resolution and MAE with three different types of outputs. 1. The network was
trained with a single output once for T1 and another for T2

˚ (single). 2. The network
was trained with both T1 and T2

˚ in a single network (dual) and 3. the network was
trained with four output maps T1, T2

˚, WM- and GM probability maps (four output).
Relative differences between dictionary matched and predicted maps were calculated
and correlation coefficient of mean T1 and T2

˚ times between prediction and reference in
WM, GM, lesions, and the whole brain was calculated. Reconstructions were executed
on the CPU (Intel(R) Core(TM) i5-6500 @ 3.20GHz).

2.6 Statistics
Mean T1 and T2

˚ times with standard deviations were calculated and pair-wise com-
parison was performed using Student’s t-tests and correlation R-values. p-values less
than 0.05 were considered significant. The mean Dice similarity coefficient was used
as a statistical validation metric for the predicted WM and GM probability maps after
binarizing them into logical masks.

Computational time was measured using a standard desktop PC.

3 Results
Image denoising was successfully performed using MPPCA and resulted in up to 50%
decreased variability in the magnitude data and 15% reduced standard deviations of
T1 and T2

˚ (Supporting Information Figure S1). Overall, denoising the MRF magnitude
data took about 10 minutes per subject on a standard CPU.
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Figure 2: Representative T1 and T2
˚ map for one patient of site 1 (top) and one patient of

site 2 (bottom). The segmented WM, GM, and CSF is shown combined with the manually
segmented WM lesions. WM is shown semitransparent in 3D with the segmented lesions of
representative different subjects from both sites. Different colors depict different lesions as they
were automatically separated.

After the denoising and reconstruction of the parametric T1 and T2
˚ maps, EPI distortion

correction was performed as exemplarily shown in Supporting Information Figure S2.
Deviations in the relaxation times of up to 10% were observed in caudal slices next to
the nasal cavities after applying the distortion correction. Distortion corrected mean T1

and T2
˚ times show only minor variations (<2%) in WM, GM and WM lesions compared

with T1 and T2
˚ times without distortion correction. The distortion correction of the MRF

data takes around one hour for one whole brain on a standard CPU.
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Figure 3: A: Mean T2
˚ times over mean T1 times for white matter (blue), gray matter (orange),

and WM lesions (yellow) of all patients and subjects from both sites. Representative 3D T1 and
T2

˚ maps were depicted on the right. B: Representative distributions of the T1 and T2
˚ times

from A, which shows a much wider spread for the WM lesions considering T1 and T2
˚ times

compared with WM and GM. In C the mean T1 (left) and T2
˚ (right) over the slice position for

white matter (blue) and gray matter (orange) are depicted. Color brightness encode different
subjects. In D the WM and GM T1 and T2

˚ times over the age and gender are shown.
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Representative T1 and T2
˚ maps including annotations are shown in Figure 2 for both

sites. Reconstruction of the parametric maps using a pattern matching algorithm took
around 20 minutes per subject. Mean T1 and T2

˚ relaxation times for WM, GM, andWM
lesions are depicted in Figure 3 and provided in the Supporting Information Tables S1-
3. Differences between healthy and diseased subjects from both sites were less than
4% for T1 and less than 2% for T2

˚ in WM and less than 7% for T1 and less than 3% for
T2

˚ in GM. MRF acquired in site 2 had 15% higher standard deviations in T1 and T2
˚

due to increased scan time acceleration. Mean T1 relaxation times in WM lesions are
widespread ranging from 800 ms, comparable to WM, up to 2500 ms. Mean T2

˚ times
in white matter lesions were consistently higher (70%) than WM and GM with mean T2

˚

times up to 200 ms.

Clear separation between WM and GM was found in T1 (Figure 3). We found a slight
trend of increasing T2

˚ (up to 10%) in WM and GM for increasing slice position (R =
0.974, p<0.0001; Figure 3 C). T2

˚ was shorter and had higher standard deviations in
caudal slices in the vicinity to the nasal cavities. No significant increase in T1 and T2

˚

with either age or gender was observed (Figure 3 D). T1 and T2
˚ times in WM lesions

were highly heterogeneous and independent of their localization and size (p>0.2).

3.1 Deep Convolutional Network for MRF Reconstruction

The computation time of the proposed CNN for 60 slices was about five seconds on a
standard CPU workstation.

The performance of the reconstruction during the training process is depicted in Fig-
ure 4. Already after 5 epochs, the reconstructed maps have a visual good agreement
with the dictionary matched maps. Figure 5 shows the 2D histogram of a representative
slice in one subject for the CNN predicted T1 and T2

˚ times over the dictionary matching.
The relative difference showed major noise with few anatomical structures and mean
deviations of less than 6% for T1 and T2

˚. Variations in the CSF are increased as seen
around the ventricle and at the skull. T1 and T2

˚ times, which exceed 3000ms are cut
and, therefore, the ventricle has variations of 0%. The average correlation coefficient R
and the relative difference for T1 and T2

˚ were calculated for different loss function and
outputs (Figure 6). The p-value for all correlations was p<0.001. For the four output
models, the smallest relative difference for T1 was observed when using the MAE with
deviations of 5.8% in the whole brain and for T2

˚ using the LCL with 6.0% deviations in
the whole brain.
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Figure 4: Visualization of the reconstruction during the training for one subject of the test data.
The reconstructed T1, T2

˚, WM- and GM probability maps are depicted for 1, 5, 15, 30, and 50
training epochs, and the dictionary matching reference maps are shown on the right side. On
the bottom, the MAE is depicted over the 50 training epochs.

Correlation coefficients in the whole brain were more than 0.99 except for the MSE
(0.989) for T1 and higher than 0.985 for T2

˚ in the whole brain. The relative difference
in T1 and T2

˚ was observed to be the highest in GM. All the relative differences and cor-
relation coefficient are given in Supporting Information Table S4 for T1 and Supporting
Information Table S5 for T2

˚. The difference of the different loss functions is visually
depicted in Figure 7, where the MSE smooths the predicted maps the most as clearly
seen in the WM and GM-probability maps. The HL has increased T2

˚ in WM and the
MSE decreased T1 in WM. In the WM probability maps, the LCL visually performed the
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best as seen in the prediction around the lesion.
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Figure 5: Prediction of the CNN-network for one slice of a representative subject. The his-
tograms (left panel) depict the predicted T1/T2

˚ (top/bottom) of one slice over the T1/T2
˚ gen-

erated by dictionary matching. The linear fit (red) with corresponding fit parameters and R and
p-values is shown. On the right side, the relative difference of T1 and T2

˚ is shown between the
predicted and dictionary matched parametric maps. Voxel-wise differences range up to 30%
around the ventricles, because of the very high T1 and T2

˚ times for the CSF rendering the
prediction difficult for the network.

The difference of the different loss functions is visually depicted in Figure 7, where
the reconstructed T1, T2

˚ maps and WM-, GM probability maps are compared with the
training input for one slice of a patient. The MSE smooths the predicted maps the most
as clearly seen in the WM and GM-probability maps. The HL has increased T2

˚ in
WM and the MSE decreased T1 in WM. In the WM probability maps, the LCL visually
performed the best as seen in the prediction around the lesion. The training with full
image input showed significant increases in the relative error (25.8% for T1 and 21.6%
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for T2
˚) and correlation coefficients of less than 0.90 for T2

˚ in WM. Prediction in the
WM performed better than in GM with around 4% higher correlation coefficient and
correlation coefficients in WM lesions were observed to be higher than 0.98.
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Figure 6: The Relative difference is shown between the predicted and dictionary matched T1
(left) and T2

˚ (right) for the whole brain (black), WM (blue), GM (orange), and lesions (yellow)
compared to the different loss functions and network outputs. The first four data points (MAE,
MSE, LCL, HL; Table 1, networks 4-7) are the networks trained with patches and four outputs.
The fifth one (Table 1, networks 11) is trained with the full input resolution (full res.) and the
MAE. The last two (dual output and single output; Table 1, networks 3 and 1+2) are trained
using patches and the MAE loss function with one and two output maps respectively. On the
bottom correlation coefficients for the linear fit between predicted and dictionary matched T1
(left) and T2

˚ (right) is shown for the different network outputs using the MAE (mean absolute
error), MSE (mean squared error), LCL (logarithmic cosinus loss) and the HL (Huber loss).
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The mean Dice Coefficient across the test data for WM was 0.9 and for GM 0.91 after
conversion into logical masks with a threshold of 80% for both SPM and DL probability
maps (Table 1, network 4). Dice Coefficients decreased up to 15% when training was
performed on the full input size without patches (mean WM: 0.81, mean GM: 0.79).
When training on T1 and T2

˚ as a dual output, prediction showed a slightly increased
correlation coefficient (around 1%) and decreased relative difference compared with the
four output models. Single T1 and single T2

˚ as outputs reached the highest correlation
coefficients and smallest relative error among all other networks.
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Figure 7: Comparison of the different loss functions to the dictionary matched input of one
representative subject of the test data using the network 4 from Table 1. T1, T2

˚, WM- and GM
probability maps are shown for the MAE (mean absolute error), MSE (mean squared error),
LCL (logarithmic cosinus loss), and the HL (Huber loss). A small patch (40x40) of one slice of
a representative subject is shown. It is seen that the mean squared loss is smoothing the WM
and GM probability maps the most.
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Figure 8 shows themean T1 and T2
˚ times per subject between the DL and conventional

reconstruction. A linear fit shows the correlation which was above 0.99 with p<0.0001
for both T1 and T2

˚. The bright colored markers depict the test data, which are aligned
to the linear fit. We observe a small offset in T1 (55ms) and in T2

˚ (2.2ms) which is
within the standard deviations (100´ 200 ms „ 10 %, 3´ 5 ms „ 10 %).

Figure 9 depicts the dice coefficient between the WM and GM masks generated from
the probability maps using SPM and our DL approach for different thresholds. The black
line depicts the highest dice coefficients with close correlation to a straight line with a
correlation coefficient of 0.9965 for WM and 0.9974 for GM with both p<0.0001. For
a commonly used threshold of 80% for SPM the dice coefficient is shown for different
thresholds of the DL WM and GM maps. For a threshold of 80% of the DL reconstruc-
tion, the mean dice coefficient yields for both, WM and GM values of higher than 0.9.
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Figure 8: Predicted T1 (left) and T2
˚ (right) times over the dictionary matched T1 and T2

˚ times
for the 4 output network using patches for training and the mean absolute loss. Mean values
per subject of WM are shown in blue, of GM are shown in orange and for the lesion are shown
in yellow. The increased brightness of the representative colors depicts the test data and the
reduced brightness depicts the training and validation data. In three different gray shades, the
single T1 and T2

˚ times per slice are shown. A linear fit is used to correlate the predicted and
the dictionary matched quantitative maps with corresponding R- and p-values.
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Figure 9: A) Dice coefficient for different thresholds of the SPM and DL (Deep Learning) WM
(left) and GM (right) probability maps of a representative subject when using the MAE loss
with four outputs and patches-wise training (Table 1, network 4). The black lines depict the
maximum dice coefficient along with the different thresholds. The dice coefficient between both
binary masks is shown in color encoding. B) The dice coefficient is shown for a fixed threshold
of 80% of the SPM WM and GM masks dependent on the threshold of the DL mask, as marked
in the red area A), which both show a maximum dice coefficient at around 80%. Exemplary WM
and GM probability maps are depicted.

4 Discussion
We acquired MRF-EPI for simultaneous quantification of T1 and T2

˚ times in the whole
brain. With a single convolutional neural network, we accelerated and combined several
post-processing steps as reconstruction, denoising, distortion correction, and masking.

MRF-EPI is a promising technique for quantification of T1 and T2
˚ of the whole brain

in less than 5 minutes. T1 and T2
˚ times showed overall good agreement with litera-

ture [1, 3, 5, 52, 53, 54, 55, 56]. However, as previously noted MR relaxation times
for WM and GM show wide variability among studies due to different sequences, fitting
procedures and natural variability among subjects [52]. Accuracy and precision mea-
surements for the proposed MRF-EPI sequences were performed in previous work and

101



Publication IV

therefore not analyzed in this study [8, 10]. WM lesions exhibit a wide range of T1 and
T2

˚ relaxation times. The relaxation times were independent of their localization and
size in the brain. WM lesions were successfully delineated from WM, GM, and CSF
based only on quantitative MRF T1 and T2

˚ maps. Lesions which are difficult to sepa-
rate from CSF on conventional images show a clear difference in the T1 and T2

˚ maps
acquired with MRF due to long T1 times in CSF of around 3000-4000 ms compared
with T1 times in lesions of around 1000-2000 ms. These high and widespread ranges
of T1 times in lesions might be due to altered interstitial fluid mobility and water content
from edematous brain tissue [57]. Thus, the use of quantitative relaxometry obtained
by MRF might potentially enhance the segmentation around the CSF. A fraction of WM
lesions exhibit only a slight elevation of the T1 times compared with WM and, therefore,
yield similar or even smaller values compared with GM. This hampers the separation of
WM lesions and GM. However, the additional assessment of T2

˚ proved to be benefi-
cial for the assessment of those lesions and showed improved separation against GM.
The increased sensitivity in T2

˚ might be explained by the fact that T2
˚ times in WM

and GM yield similar values and, hence, deviations in T2
˚ in lesions benefit delineation

against both WM and GM. This is a gain compared to conventional methods such as
FLAIR or T2-weighted images. We found no significant increase in T1 and T2

˚ with ei-
ther age or gender, although a number of studies demonstrated that T1 does change
with age [58, 59]. This might be due to the smaller number of subjects since we split
between the healthy and diseased subjects and the narrow age range, especially for the
healthy subjects. Further analysis of this might be performed when more subjects are
measured. Only minor differences between data from site 1 and site 2 were observed
(<7%), with no significant trends (p>0.2). This demonstrates the potential of MRF as a
quantitative method that is suitable for reproducible multi-center studies and a pathway
to standardization. A slight trend of increasing T2

˚ was identified in the cranial direction.
This is unlikely to be a result of the acquisition scheme, as due to the slice interleav-
ing any inaccuracies would be expected to appear interleaved as well. Instead, this
effect might be explained by increasing B0 inhomogeneities in the axial direction. In
site 2 additional scan time acceleration was achieved with SMS factor 3, reducing the
effective scan time by a factor of two to three. However, the use of SMS acceleration
inflicts an additional drop in SNR depending on the G-factor due to the coil geometry.
Accordingly, the quantitative data was found to have increased standard deviations of
up to 15% compared with data from site 1. This might be improved by extending the
acquisition scheme when using SMS or by using regularized SMS reconstructions [60].

Our deep learning-based reconstruction yielded only minor differences between the
T1 and T2

˚ times of WM, GM, and WM lesions compared with conventional dictionary
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matching. These mean deviations of 5.8% for T1 and 6.0% for T2
˚ are small and in

the range of different approaches (2-8%) [19, 37]. Of note is that there is no ground
truth data and, therefore, the dictionary matched data is the reference with a precision
of 5%. Our deep learning approach is in the area of this precision and might be more
precise since the output is continuous for all parameters. However, the deep learning
reconstruction time was around five seconds for all slices as compared to 20 minutes
dictionary matching, 10 minutes denoising, and one hour distortion correction (90 min-
utes in total).

We trained our networks with different loss functions and found that the MAE and LCL
performed better regarding our regression task compared to the commonly used MSE
function [18, 36]. This might be due to the fact, that in the MSE the CSF is weighted
higher as it has longer T1 and T2

˚ times and, therefore, it is more difficult for the network
to learn the relatively small differences in WM and GM. Since the T1 and T2

˚ times in the
CSF are not of great clinical interest we accept the loss in accuracy for the CSF. TheDice
coefficient forWM andGMwas in the range of reported literature (0.82-0.93) [46, 61, 62]
and in the range of SPM (0.76-0.83) [63, 64] and above 0.87 for all loss functions if the
training was performed with patches. This might be explained by the fact that data
augmentation (random patch extraction) prevents overfitting and enriches the dataset.
Overall improved performance was observed for the training using patches independent
of the loss function and the output. We found an overall 25.8% decreased relative error
for T1 and 21.6% for T2

˚ respectively. This might be due to the fact, that training with
the full input resolution takes longer to converge. Compared with conventional highly
undersampled MRF acquisition in our MRF-EPI approach, we do not need to extract
first the features and reduce the dimensionality of the network input as proposed in
other MRF deep learning reconstruction approaches [19, 47, 48]. Since the anatomical
structure is retained, the network has to solve an image to images regression task, which
might have smaller computational requirements. Fang et al. [19] used a U-Net after the
dimensionality was reduced: for their dataset, 2304 time points were used compared
to 35 time points for our MRF-EPI (66 times smaller). We also used the U-Net since it
captures information of the input locally and globally. This is important since we also
include denoising and distortion correction with the same and single network.

Our reconstruction task included denoising and distortion correction within the MRF re-
construction and therefore, training with patches (64x64 voxels) achieved better results
since the observed distortion from the EPI readout is only local at the nasal cavities and
the frontal lobe of the brain. We showed that it is possible to perform denoising, dis-
tortion correction, and MRF reconstruction with one network architecture with relative
difference within the standard deviation of the quantitative parameters.
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We were able to additionally generate the WM and GM probability maps as outputs
with only slightly decreased accuracy of the test data considering T1 and T2

˚ in WM
and GM. We have shown that the dice coefficient for the binarized WM and GM masks
are in good correlation between our CNN and the reference SPM method. However,
the network trained only on the T1 and T2

˚ maps (dual output) as an output performed
better than the four output model. Using single T1 and single T2

˚ maps as an output
performed the best with only minor improvement (<1%) compared to the dual output
model. We compared the relative differences for different tissue types instead of using
the RMSE as commonly used [18, 36], because outliers and variations of quantitative
measures within single tissue types result in an overestimated error for a voxel-by-voxel
comparisons, especially in the CSF.

We showed that the predicted values correlate very well with the reference dictionary
matched values for T1 and T2

˚ (R>0.95, p<0.0001) with only a slight offset, which is
within the standard deviation. The correlation coefficient was the lowest for only WM
since the range of single WM T1 and T2

˚ times is denser compared with GM and espe-
cially compared with lesions as provided in Figure 3.

We achieved standardized results as we trained on data from both sites without sig-
nificant differences between both (p<0.01), even though the magnitude data from both
sites varies due to different accelerations. However, changing the sequence parameters
changes the magnitude evolutions. Therefore, new dictionaries have to be calculated
and different or retrained networks are required. Transfer learning may facilitate the
possibility, to update the network when imaging parameters are changed [24, 65].

Our study has some limitations. As GM suffers from partial volume effects, calculating
the mean T1 and T2

˚ times strongly depends on the segmentation and the used thresh-
old on the probability maps. Lesion segmentation could be an extra output from a CNN
similar to the one such as investigated here. However, to obtain reliable results from
this, more WM lesions data would be required, due to the large variation in lesion tissue
parameters and the small fraction of lesions compared to WM and GM. In our exper-
iments, the training datasets did not provide enough lesion examples for the training
to converge without significantly affecting other outputs. The strength of deep learning
approaches commonly stems from the abundance of training data [66, 67]. Therefore,
the proposed reconstruction will likely benefit from larger data sets. Fractioning the
full input into small patches is a first step to artificially generate more data, but data
augmentation could be applied additionally. In this study, both sites operated on the
platform of a single MRI vendor. A multi-vendor study is required for more universal
comparisons.
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5 Conclusions
MRF demonstrates to be an auspicious approach for quantifying T1 and T2

˚ in subjects
with MS to obtain information in a standardized fashion along two clinical centers. This
technique saves time by simultaneous acquisition of T1 and T2

˚ and might improve the
segmentation pipeline of lesions as their quantitative measures are clearly separated
from normal appearing brain tissue types. We showed that deep learning enables a
drastic speed up in the post-processing pipeline without a loss in accuracy and precision
by combining denoising, distortion correction, reconstruction, and masking.
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Abstract
Purpose: To develop a regression neural network for the reconstruction of lesion prob-
ability maps on Magnetic Resonance Fingerprinting using echo-planar imaging (MRF-
EPI) in addition to T1, T2

˚, NAWM, and GM- probability maps.

Methods: We performed MRF-EPI measurements in 42 patients with multiple scle-
rosis and 6 healthy volunteers along two sites. A U-net was trained to reconstruct the
denoised and distortion corrected T1 and T2

˚ maps, and to additionally generate NAWM-
, GM-, and WM lesion probability maps.

Results: WM lesions were predicted with a dice coefficient of 0.61 ˘ 0.09 and a le-
sion detection rate of 0.85 ˘ 0.25 for a threshold of 33%. The network jointly enabled
accurate T1 and T2

˚ times with relative deviations of 5.2% and 5.1% and average dice
coefficients of 0.92 ˘ 0.04 and 0.91 ˘ 0.03 for NAWM and GM after binarizing with a
threshold of 80%.

Conclusion: DL is a promising tool for the prediction of lesion probability maps in a
fraction of time. These might be of clinical interest for the WM lesion analysis in MS
patients.
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1 Introduction

Assessment and segmentation of white matter (WM) lesions is an important step for the
analysis and tracking of diseases such as multiple sclerosis (MS). WM lesions can be
graded based on MRI images which showed a good correlation with symptom develop-
ment in MS and clinical subtypes of MS [1, 2]. Lesion probability mapping is a method to
differentiate between WM lesion groups as this corresponds to different ischemic com-
ponents and neurodegeneration during disease progression [3, 4, 5, 6]. Additionally,
WM lesions exhibit an increased T1, T2, and T2

˚ relaxation time, and therefore, multiple
quantitative approaches showed advantages in the detection, grading, and classifica-
tion [7, 8, 9]. In particular, Magnetic Resonance Fingerprinting (MRF) has demonstrated
a variety of applications for simultaneously quantifying multiple relaxation times at clin-
ically acceptable scan times. In conventional MRF, thousands of highly undersampled
images are acquired to produce a unique fingerprint, and these fingerprints are com-
pared voxel-wise with a pre-calculated dictionary [10, 11]. Rieger et al. proposed an
MRF method to quantify T1 and T2

˚ with an echo-planar imaging (EPI) readout [12],
which showed promising results in renal and neural applications [13, 14, 15, 16]. The
fact that only conventional undersampling factors lead to only slightly corrupted magni-
tude data reduces the time for reconstruction and increases its robustness. However,
a major drawback of MRF is the tradeoff between reconstruction time and accuracy.

Deep learning (DL) has emerged into the field of MRI and achieved excellent results in
data processing considering accuracy, precision, and speed. Hence, DL is increasingly
outperforming conventional algorithms. Previous studies and reports suggest that con-
volutional neural networks (CNN) can solve high dimensional problems with excellent
accuracy and in a short time for denoising, distortion correction, segmentation, clas-
sification, and reconstruction [17, 18, 19, 20, 21, 22, 23]. A promising architecture is
the U-net, which has great diversity for applications such as segmentation and regres-
sion tasks [24, 25, 26]. Especially in MRF, the reconstruction of the enormous amount
of acquired data can be improved and accelerated by using different network architec-
tures such as CNN’s and fully convolutional networks (FCN) [27, 28, 29, 30, 31, 32].
In previous work, a CNN was used for the denoising, distortion correction, reconstruc-
tion, and generation of NAWM and gray matter (GM) probability maps yielding results
comparable to conventional methods in a fraction of time [16]. The proposed archi-
tecture combined several post-processing tasks, making the application fast and easy.
However, the WM lesions have to be segmented for further analysis, which is always
time-consuming and suffers from high intra and inter-observer variabilities [33]. To over-
come these limitations of manual segmentation, different DL architectures and networks
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have been used, yielding dice coefficients ranging from 0.48 to 0.95 for WM lesion seg-
mentation [33, 34, 35, 36]. Therefore, in a recent publication, it was shown that this
processing step can be improved by regression by also generating distance maps of
the lesions [37]. This could provide more information about lesion geometry, structure,
and changes similar to lesion probability mapping [2, 3].

In this work, we use the U-net as previously reported [16] to predict WM lesion proba-
bility maps by training the CNN with the manual annotated binary lesion masks.

2 Methods
2.1 Data
As previously reported [16], an MRF sequence based on echo-planar imaging was
acquired across 6 healthy subjects and 18 patient with WM lesions at a 3T scanner
(Magnetom Skyra, Siemens Healthineers; site 1) and 24 patient withWM lesions at a 3T
scanner (Magnetom Prisma, Siemens Healthineers; site 2). The sequence parameters
for both scanners were FOV = 240 x 240 mm, in-plane resolution = 1 ˆ 1 mm2, slice
thickness = 2mm, GRAPPA factor = 3, partial fourier = 5/8, varying flip angle α (34-86˝̋̋),
TE (16-76.5 ms), TR (3530 - 6370 ms). At site 2, simultaneous multi-slice imaging was
additionally used with an acceleration factor of 3.

2.2 CNN
A U-net was used for the denoising, distortion correction, and reconstruction of T1, T2

˚

maps, and the NAWM-, GM-, and additionally lesion probability maps. The T1 and
T2

˚ maps for training the network were reconstructed after denoising using Marchenko-
Pastur Principle Component Analysis (MPPCA) [38]. The dictionary entries are in steps
of 5%. Rigid registration was performed using B-spline interpolation from the undis-
torted T1 map to the T2-weighted image using the Advanced Normalization Tools (ANT)
[39]. The NAWM and GM maps were generated based on the distortion corrected T1

maps using SPM (Statistical Parametric Mapping) [40] with a probability between 0 and
100%. Additionally, WM lesions were segmented manually by an expert radiologist,
and to assess the inter-observer variability, lesions from ten patients were segmented
two times (at least one week time gap), and the mean dice coefficient was calculated.
The manually annotated binary lesion masks were used as a fifth training output of the
CNN. The training input was always the 35 magnitude MRF-EPI data. We used two
patients from site 1 and three patients from site 2 as test data and the same amount as
validation data. We trained our network patch-wise using 64 random patches per slice
with a patch size of 64x64 voxels, a mini batch-size of 64, 100 training epochs, and a
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learning rate of 10´4. Slices containing white matter lesions with a minimum volume
of 100ml were augmented by a factor of five to overcome the small overall volume of
the lesions compared to the whole brain. We trained four networks with all five output
maps (T1, T2

˚, NAWM-, GM-probability maps, and WM lesion masks) and additionally
the other networks with only the lesion masks as output. The following loss functions
were used for one and five outputs: mean squared error (MSE), mean absolute error
(MAE), logarithmic cosinus hyperbolic loss (LCL), and dice loss (DICE) as listed in Sup-
porting Information Table S1. The naming MSE-1 and MSE-5 correspond to the loss
function with the number of outputs. For all loss functions, the network was trained with
both the five output maps and also only the lesion as output to validate the loss in ac-
curacy when using multiple outputs. In previous work, it was observed that for multiple
outputs the accuracy decreases of the network [16]. The accuracy compared with the
conventional methods was validated with MSE-5 and MAE-5 since the MAE loss was
previously shown to be the best architecture for the reconstruction of T1, T2

˚, NAWM-,
and GM-probability maps.

2.3 Statistics
The Dice coefficient and the lesion detection rate were used as the similarity metric
for the lesion segmentation. Therefore, the threshold for binarizing the reconstructed
lesion probability maps was analyzed. NAWM and GM masks were binarized with a
commonly used threshold of 80% [41] and mean dice coefficients along all subjects and
slices were calculated. For the two other outputs (T1, T2

˚) the mean relative difference
was calculated.

3 Results
The reconstruction with DL showed good agreement with conventional pattern matching
reconstruction and amean relative deviation of 5.2% for T1 and 5.1% for T2

˚ in the whole
brain using MSE-5. The Dice coefficients for NAWM and GM after binarization with a
threshold of 80% were 0.92 ˘ 0.04 for NAWM and 0.91 ˘ 0.03 for GM using MSE-
5. The reconstruction of all five outputs took around one minute for the whole brain
per subject, which is several orders of magnitude faster compared to the conventional
processing (denoising, MRF reconstruction, distortion correction, masking, and lesion
segmentation) of about three hours.

Figure 1 shows the T1, T2
˚, NAWM-, GM-, and lesion probability maps generated by

the CNN (MSE-5) for different training epochs (1, 5, 15, 30, 70, 100) compared to
the conventionally reconstructed maps and the segmented masks. Visual good image
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quality was obtained for T1, T2
˚, NAWM-, and GM probability maps after already 5

epochs. After around 15 epochs, the network starts to predict the lesion probability
maps and slowly converges towards 100 epochs.

The dice coefficient was strongly dependent on the threshold for binarizing the probabil-
ity maps which was shown in Figure 2. A maximum dice coefficient of 0.75 is observed
for a threshold of 41% for the training data (depicted in blue) and a maximum dice coef-
ficient of 0.62 for a threshold of 23% for the test data (depicted in orange) respectively.
For further analysis, a threshold of 33%was used to binarize the lesion probability maps
into masks. At lower thresholds, the lesion detection rate increases. The dice coefficient
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Figure 1: Visualization of the reconstruction during the training. The reconstructed T1, T2
˚,

NAWM-, GM, and Lesion-probability maps are depicted for 1, 5, 15, 30, 70, and 100 training
epochs (white number) and the dictionary matching reference maps are shown on the right side
for MSE-5.
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and the lesion detection rate were 0.61˘0.09 and 0.85˘0.25 for the test data using the
threshold of 33%. The average dice coefficient with its inter-observer variability across
different annotations was 0.68˘ 0.23.

In Figure 3, the lesion probability is plotted versus the number of training epochs for
different networks. It can be seen that training only with 1 output instead of 5 results
in faster convergence of the dice coefficient, however, the dice coefficient for all three
methods converges to 0.61 after about 60 epochs. The mean lesion detection rate
over the entire test data was higher than 0.82 for all networks. The training with MAE-5
takes longer to start predicting lesions. The networks MAE-1, LCL-5, LCL-1, and DICE-
1 converge to a local minimum while training, resulting in all lesion probabilities equal
to zero. The representative lesion masks for different epochs of the MAE-5 is shown
color-encoded as a 2D representation and as a cross-section of the lesion (Figure 3).
An increased probability was observed at the edges of the lesion and a flat plateau in
the center of the lesion.

For every test patient, one representative slice is shown in Figure 4 with the lesion
probability color-encoded, and the manual annotation highlighted in blue. For patients
number 1, 2, and 5 the depicted lesions of the slice correlate very well with the anno-
tation. For patient number 3, the CNN predicted three lesions with a small probability,
which were then excluded from the mask after thresholding. Only in patient number 4,
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Figure 2: The dice coefficient (left) and the lesion detection rate (right) for all training data (blue)
and test data (orange) are shown over the threshold to binarize the lesion probability maps. The
black lines depict the average across the test data. A maximum dice coefficient is observed at
a threshold of around 50%. The lesion detection rate decreases for an increasing threshold
because the background of the lesion probability map is non-zero.
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the network did not predict the annotated lesion near the GM. The dice coefficient and
lesion detection rate are shown for all subjects in Figure 4. The test data are shown
in larger marks with lighter blue and yellow colors. The CNN predicted no lesions in
healthy subjects.
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Figure 3: The dice coefficient for three different networks is depicted (five outputs with MSE
[MSE-5], five outputs with MAE [MAE-5], and only lesions with MSE [MSE-1]). The dice coeffi-
cient is plotted for all three networks over the training epochs and the smoothed data is shown
in the foreground colors. The corresponding lesion probability maps are shown for 1, 5, 15, 50,
and 100 epochs below.
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Figure 5 shows the percentage increase of a WM lesion compared to the mean NAWM
times for T1, T2

˚, and the lesion probability generated by the CNN. The manually anno-
tated lesion is marked in blue. A good visual correlation between the lesion probability
and the increase in T1 and T2

˚ is observed, as depicted below for the two cross-sections
(green and red). It was also observed that the lesion probability is increased and steeper
for lesions that have increased relaxation times.

5 10 15 20 25 30 35 40 45
0

0.5

1

patient healthy patient
site 2 site 1 site 1

Detection rate
Dice coefficient

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Patient / Healthy

Le
si

on
[%

]

0
20
40
60
80
100

Figure 4: The reconstructed lesions probability maps are overlayed on the magnitude data in
color encoding for all five different patients from the test set. Manual annotation is depicted
in blue. Below the probability map is binarized and depicted in yellow in addition. The dice
coefficient and white matter lesion detection rate is depicted for every patient and healthy subject
for both sites. The average lesions detection rate is 0.88 and the average dice coefficient is 0.67
for all patients. The test data is shown in larger marks and brighter color and yields an average
lesion detection rate of 0.85 and an average dice coefficient of 0.61 using the MSE-5.

4 Discussion
In this study, we have shown that the CNN is capable of predicting lesion probability
maps, which correlate with an increase in T1 and T2

˚ times in NAWM. After binarizing
the probability maps, the dice coefficient was 0.61 ˘ 0.09 for the test data, which is
comparable to the inter-observer variability of the manual drawer (0.68 ˘ 0.23) and is
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comparable to literature (0.47-0.95) [33, 36]. However, the CNN is more robust com-
pared with manual annotations. We have shown that the network only predicts lesion
probability maps for the loss functions MAE and MSE. This could be due to the fact
that outliers, such as the small spherical lesions, are weighted more heavily with MSE
and MAE compared with LCL or the dice loss. This was also observed for MAE-1, de-
spite MAE-5 was able to predict lesions. In each case, training with one or all five output
masks converged to the same dice coefficient regardless of the network, demonstrating
the ability to reconstruct all maps within a single architecture (Figure 3).

Additionally, the network was able to perform the tasks of reconstruction, denoising,
distortion correction, and segmentation within a single architecture with promising ac-
curacy. T1 and T2

˚ maps as well as the NAWM- and GM-probability maps showed good
agreement as also previously reported [16] with a mean relative error of 5.2% for T1 and
T2

˚ and mean dice coefficients of higher than 0.9 for NAWM and GM. It was observed,
that the network first learns to reconstruct the T1, T2

˚, NAWM, and GM probability maps,
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Figure 5:One lesion is depicted in a zoomed-in version with a bilinear interpolation of factor 10.
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˚ compared with the mean NAWM is color encoded in percentage and
the lesion probability generated by the CNN is shown on the right side. The manual annotation
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as evidenced by the good visual image quality after only 5 epochs. This could be ex-
plained by the several orders increase in the number of non-zero voxels in these maps
compared to the low number of lesion voxels per slice.

The lesion probability maps visually correlate well with the increase in T1 and T2
˚ com-

pared to the mean NAWM times. This could indicate that larger or more intense lesions
are also predicted as such by the CNN. Therefore, these lesion probability maps could
be used to automatically rate and differentiate different lesions based on the MRF input
data. This is similar to the results of other lesion probability mapping methods. How-
ever, these methods rely either on manual grading, voxel-wise, or local spatial depen-
dent models, which are time-consuming and susceptible to patient-specific covariances
[1, 2, 3, 5]. In addition, our approach could include the underlying information of the
evolution of the MRF scan. It has been shown that principal component analysis (PCA),
which also uses the input magnitude MRF data, allows separation of the brain into mul-
tiple components such as myelin and WM lesions [42]. The CNN might be able to learn
and distinguish these underlying components, improving lesion segmentation and pre-
diction. This is an information gain compared to manual annotators and compared to
lesion segmentationmethods based solely on the quantitative parametric maps [36, 37].

This study has some limitations. Because the lesions were manually segmented, there
is a large amount of variation in the annotation, which was also evident in the rela-
tively high inter-observer variability (0.68). This could be improved by performing more
annotations from multiple annotators to reduce this variability, but this is very time-
consuming. The reduced variability in the lesion masks could also lead to better and
faster training performance of the network, yielding higher dice coefficients. WM lesions
are often difficult to differentiate from NAWM in the T1 and T2

˚ maps without knowledge
of surrounding layer information because NAWM lesions appear similar to lobes of the
GM inside the NAWM. The reconstruction could be improved by using a 3D CNN with
3D patches. However, we have tried to train a 3D architecture, but the 3D CNN was not
able to predict any lesions and the accuracy for the other outputs was compromised.
This could be because 3D architectures require more data and longer training com-
pared with 2D CNNs. Therefore, more data needs to be acquired for comparable 3D
results, which will be the content of further work. This could also be the reason why
some loss functions could not generate lesion probability maps.
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5 Conclusion
In this work we showed, that training with lesion masks can be used to generate lesion
probability maps, which might improve diagnostics. Additionally, the single CNN is a
promising tool for the reconstruction, denoising, distortion correction of T1 and T2

˚ maps
and additionally to generate NAWM, GM probability maps. The reconstruction for a
whole brain took less than one minute, which is more than a 100 fold acceleration
compared with conventional processing.
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3
Discussion

Quantitative magnetic resonance imaging is a promising tool for non-invasive assess-
ment of tissue condition, which has been shown to correlate with a variety of diseases
and provide clinically relevant information [28, 76, 77, 78]. However, conventional quan-
tification methods suffer from several dependencies and susceptibilities. First, relax-
ation times were found to be susceptible to various patient-specific dependencies such
as age, gender, and biological constituent [79], scanner-dependent parameters such
as field strength [80], excitation pulse shape, sequence-dependent settings such as
the use of inversion or saturation recovery [81], k-space reordering such as linear or
centric [82], or sequence parameters such as flip angle, echo time, and repetition time
[83]. Second, the acquisition of multiple relaxation times is time-consuming and this is
especially troublesome to patients who cannot hold still, have respiratory distress, or
claustrophobia. Third, the separately acquired parametric maps need to be registered
and undergo multiple post-processing steps for further analysis.
The aim of this work was to develop and evaluate new simultaneous quantificationmeth-
ods that are resistant to larger variations and in clinically applicable measurement time.

3.1 The effect of flow on cardiac T1 measurements
In general, flowing blood has several effects on the quantification of T1. It has been
shown that the most important and dominant effect is the in-flow of non-prepared spin.
Conventionally, a non-selective preparation pulse is acquired, to excite every spin of
the entire body equally. In practice, a non-selective preparation pulse excites only parts
of the body. This results in in-flowing spins which partially unaffected from the non-
selective pulse. We showed in simulations, phantom experiments, and in vivo experi-
ments for the first time, that this effect might lead to a decrease in T1 of up to 50%. In
this work, a constant factor of the in-flowing unprepared spins was used to simplify the
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complex dependence. However, several other factors such as body shape, size, posi-
tion, bore radius, and bore shape are confounding factors. More complex simulations
covering these effects may be necessary to accurately analyze the additional factors,
which is part of further research. In addition, phantom experiments with pulsatile flow
[84] and anatomy similar to the human heart [85] might be needed to account for addi-
tional perturbing factors. However, knowledge of the reduced T1 relaxation times due
to non-prepared in-flowing spins is important because variations in the estimated T1

relaxation time lead to variations in the estimated ECV. ECV is an important biomarker
of the extracellular (interstitial) volume for several pathologies such as in amyloidis and
myocardial fibrosis [86]. It has been shown that deviations of up to 17% can occur on
the synthetic Hct which propagates towards the ECV value linearly, which might lead to
an incorrect or unspecific diagnosis [87]. The other flow-dependent effects are the in-
flow and out-flow of spins during image acquisition and the exchange of spins during a
heartbeat, which results in only small changes in the T1 time. In particular, the exchange
of spins during a heartbeat compensates for the effect of spins flowing in and out. How-
ever, this is only fulfilled at an ejection fraction of 100%. Patients with heart failure may
have an ejection fraction of only 50% and therefore have a mixture of stationary spins
and flowing spins. On our experiments, blood T1-times were determined in vivo in the
descending aorta, where a complete exchange of spins from heartbeat to heartbeat is
warranted. Deviations in T1 quantification of up to 20% were observed in vivo due to in-
creased flow velocity by measuring at peak velocities (late systole) and in the absence
of flow (late diastole). For further analysis, the effects of flow in the short-axis view
(most commonly used slice orientation for quantitative cardiac MR) in the myocardium
should be investigated, including the effect of ejection fraction and turbulent flow. From
our measurements, we conclude that these effects are small compared with the in-flow
of non-prepared spins and are within the range of quantification variances and therefore
negligible. As a first approach, our simplified analysis helps to better understand the
effects of flow on the T1 relaxation time. The strong effect of flow on the T1 times can
partially be suppressed by the use of saturation recovery sequences. On the one hand,
saturation pulses are conventionally performed in every heartbeat which decreases the
time for non-prepared spins to flow inside the imaging plane. On the other hand, in-
plane saturation is reduced because the magnetization history is reset every heartbeat.
In this work, we measured and analyzed for the first time the effect of flow on the blood
T1 quantification in vivo. We demonstrated that saturation recovery methods for car-
diac T1 mapping are more resistant to flow-dependent effects such as the in-flow of
non-prepared spins and blood flow velocity, especially when using the three-parameter
fit model.
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3.2 Simultaneous quantification of T1, T2, and T2
˚

A saturation-based method for simultaneous quantification of T1, T2, and T2
˚ in the my-

ocardium has been proposed. As mentioned before, ECV mapping is often used for the
assessment of pathologies [87]. However, ECV mapping is based on measurements
with contrast agents, which has been discredited in the last year by convincing evidence
of deposition in the brain [88]. Nowadays, quantitative imaging strives for methods with-
out contrast agents such as quantification of the relaxation times T1, T2, and T2

˚ [89].
It has been shown that these relaxation times are important biomarkers for detection
and discrimination of different pathologies and a variety of diseases [26, 90]. We have
proposed a sequence called SATURN for the assessment of all three relaxation times,
which provides comparable accuracy and precision compared to conventional meth-
ods. The proposed sequence is seven heartbeats long with two four-second pauses
before the T2 preparation pulses to warrant complete recovery before the preparation
pulses. Since the saturation recovery pulses reset the magnetization history, it might
be natural to use them in addition to the T2 preparation pulses, overcoming the need
for a several-second rest period. However, the recovery between the saturation recov-
ery and the T2-preparation pulse is too short to achieve sufficient SNR for accurate
T2 quantification. The use of free-breathing recordings often overcomes the additional
time required, as a typical breathing cycle is within the range of the acquired rest pe-
riod. As a further improvement, the sequence could acquire multiple slices interleaved
to fill these rest periods with acquisitions in other slices. To do this, slice-selective T2

preparations must be acquired to avoid repetitive excitation with the preparation pulses.
However, these slice-selective preparation pulses are sensitive to the profiles of the slice
selection pulses, resulting in a signal loss at the edges [91]. Another way to acquire
multiple slices to further save time is by an acquisition using simultaneous multi-slice
acquisition [92]. The preparation pulses remain non-selective and image acquisition is
performed in three slices simultaneously. Thus, the choice of rest periods is a good
compromise between accuracy and measurement time. Good accuracy was observed
for the quantification of T1. Compared to the gold standard saturation recovery method
SASHA, fewer T1 contrasts are acquired with SATURN, which might reduce the quantifi-
cation precision. Since the sequence is acquired under free-breathing, the acquisition
can be prolonged, and multiple averages can be acquired without bothering the pa-
tient. For each additional saturation preparation, the acquisition time is increased by
only around two heartbeats (for a gating efficiency of 50%). However, the use of multi
gradient-echo readout leads to an overall larger number of acquired contrasts and, thus
improves quantification and compensates for the smaller amount of saturation prepa-
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rations. Compared to inversion recovery methods such as MOLLI, SATURN, like con-
ventional saturation-based methods, suffers from the fact that higher heart rates result
in a shorter dynamic range. This reduces the precision and robustness of the fit [32].
The saturation recovery pulse could be placed in the preceding heartbeat to achieve a
longer T1 regrowth and, therefore, an improved sampling of the T1 relaxation curve [93].
However, this leads to more complicated reconstructions and acquisitions. Another ap-
proach to increase the dynamic range would be to use a combination of saturation and
inversion recovery pulses [81]. This was tested in experiments, hence, due to the more
complex fitting model, no gain in the T1 quantification was achieved. In patients with
high heart rates, the image acquisition may be too long and thus suffer from cardiac
motion. Therefore, higher acceleration factors are needed. It has been shown that for
acceleration factors of R=4, T1 fit quality decreases significantly. Therefore, advanced
reconstruction methods such as low-rank composition and regularization can improve
T1 reconstruction. It should be noted that these methods increase the complexity of
post-processing and may over-regularize small anatomical structures or pathologies.
In addition, regularization could be used to increase the number of echoes per readout
to achieve a more accurate sampling of the T2

˚ decay. Compared to conventional T2
˚

quantification methods that use TEs in the range of up to 18ms [94], we compromise
the relatively small maximum TE of 10ms by using a truncation model [53]. This trun-
cation model assumes that the T2

˚-decay converges to the noise floor and therefore a
two-parameter exponential fit leads to a more accurate T2

˚ quantification. Therefore,
only measurements with sufficient SNR are considered for the five parameter fit. These
effects discussed in the previous section such as reduced SNR and rest periods were
simulated and agree well with both phantom and in vivo measurements. Since SNR is
small for SATURN, the k-space is sampled using centric reordering. This means that
the k-space center is sampled first, which exhibits increased signal but also increased
change in signal over time. These higher slopes for the exponential decay at early time
points, lead to blurring of the parametric maps due to the wider point spread function
[82]. An improved sampling pattern could be investigated in further work with radial,
spiral, or even more complex k-space sampling such as in compressed sensing. In
particular, the analysis of the point spread function for different k-space reordering can
be of interest. An optimum between signal intensity and image quality can be found
in simulations and subsequently validated in measurements. This could shorten the
overall acquisition time, increase SNR, and reduce the blurring effect.

Among other methods for simultaneous quantification of the relaxation times [54, 55,
57, 59, 65, 95, 96], SATURN is the first for the quantification of all three relaxation time.
Many methods only focussed on T1 and T2 mapping [55, 65, 97]. However, T2

˚ mapping
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is increasingly gaining interest because of its strength to visualize changes in magnetic
susceptibilities. On the one side, iron with high susceptibilities can be assessed as a
predictive factor for heart injury [98]. On the other side, susceptibility differs in oxy-
genated and de-oxygenated blood, hence, it is useful for the detection of myocardial
ischemia [99, 100]. SATURN enables a fast, robust, and resilient quantification of T1,
T2, and T2

˚ in clinically acceptable time. Additionally, it was shown in patients, that SAT-
URN can depict pathological changes of the myocardium such as increased T1 and T2

times in a patient with hypertrophic cardiomyopathy. The possibility to image the whole
heart without further bothering the patient with long breath-hold commands and the fact
of intrinsically co-registered parametric maps marks SATURN as an excellent method,
especially when multi-modality is necessary to ensure unambiguous diagnoses.

3.3 Simultaneous quantification using Magnetic Reso-
nance Fingerprinting
Magnetic resonance fingerprinting has been one of the most significant innovations in
MRI within this decade. The potential to quantify multiple relaxation times and physi-
ological parameters simultaneously and the short acquisition time have led MRF to a
plethora of applications [57, 63, 101, 102]. Compared to neurological and cardiac ap-
plications, abdominal and especially renal imaging have been lacking. MRF sequences
proposed for the brain were too slow to quantify multiple slices within a single breath-
hold, and cardiac MRF sequences were insufficient because of the additional ECG
triggering. In this work, a renal MRF-EPI sequence was developed that allows simul-
taneous quantification of T1 and T2

˚ covering four slices within a single breath-hold.
Compared with conventional methods, this results in a 10-fold speedup and an im-
provement in image resolution [103]. This MRF approach differs from the originally
proposed method [61, 62]. Interpretable magnitude images are acquired, which pre-
serve all anatomical information. This increases the measurement time per acquisition
and thus decreases the maximum images acquired. However, the single magnitude
images do not suffer from superior artifacts. Compared to thousands of images re-
quired, the MRF-EPI needs only 35 acquired images for robust quantification of T1 and
T2

˚. This was validated by a convergence analysis for an increased amount of acquired
images showing that already 20 acquired images are sufficient. Because the amount
of data is enormously reduced compared with conventional methods [73], this allows
implementing the reconstruction directly at the scanner. Therefore, a fast group match-
ing algorithm was implemented [104]. The possibility to correct for ghosting artifacts
immediately after acquisition by enlarging the imaging volume allows an advantageous
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and easy application in the clinic. An important dependency with MRF-EPI is that image
quality is directly dependent on the quality of the underlying magnitude data. Therefore,
it has been shown that improving the magnitude data by increasing SNR using denois-
ing strategies improves the quality of the reconstructed parametric maps [63]. However,
MRF-EPI requires a trade-off between fast acquisitions and sufficient SNR. In this ap-
proach, the k-space is corrupted by using Partial Fourier 5/8 and Grappa with acceler-
ation factor 3. Reducing these acceleration factors results in increased minimum echo
time, which significantly degrades the reconstructed parametric maps. Several factors
could achieve a gain in SNR such as 3D imaging [105], improved k-space sampling
such as in EPTI [106], the use of compressed sensing [107], or stronger and faster gra-
dient systems. Therefore, this renal MRF technique is promising for future applications
because the image quality benefits from factors that have evolved drastically in the last
decade. It was observed that the standard deviation of the proposed MRF sequence
was small compared with the variations which are commonly seen in diseased kidneys
such as chronic kidney disease or kidney transplants [108, 109, 110]. MRF-EPI yielded
robust results in the kidneys. Hence, it could also be applied in other abdominal re-
gions such as the liver or prostate, as some clinical studies are already beginning to
show. The liver might be more challenging due to susceptibility artifacts occurring near
the lungs. Moreover, the information of MRF acquisition can be increased by adding
additional parametric maps such as T2 [111], T1ρ [112], RAFF [113], oxygenation [114],
or diffusion [115]. Here, the corresponding preparations have to be implemented be-
fore the image readout generating these additional contrasts and has to be added in
the dictionary simulations. However, the measurement time is extended, and the com-
plexity of the dictionary increases exponentially. This shows that MRF-EPI has a great
potential for further improvement and optimization and could become established into
clinical routines.

Originally, the MRF-EPI sequence has been developed for neural applications. The
advantage of EPI readout in the brain is that artifacts due to motion and susceptibility
are rare. Patients with multiple sclerosis were studied in a clinical trial at the University
Hospital of Mannheim and the University Hospital of Barcelona. MRF-EPI was acquired
in 60 slices in less than five minutes and achieved excellent image quality of the T1 and
T2

˚ maps. These relaxation times are promising biomarkers for inflammatory processes
and might improve the WM lesion segmentation. Increased T1 and T2

˚ times were ob-
served in these lesions, with T2

˚ leading to clear separation to both WM and GM.
However, the major drawback of MRF is the long processing due to denoising, recon-
struction, distortion correction, and masking.
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3.4 Deep Learning accelerated reconstruction

In publication IV, it has been shown that neural networks in the form of a u-net are
excellent at solving multidimensional tasks and overcoming the conventionally existing
trade-off between acquisition time and reconstruction accuracy. The u-net was able to
perform the following tasks such as denoising, reconstruction, distortion correction, and
WM/GM masking in less than one minute, resulting in a speedup factor of more than
100 compared to conventional processing. Because the network has been trained on
data from two sites with different magnetization evolutions, the network demonstrated
robustness in dealing with different sequence parameters. When MRF-EPI is applied
with different sequence parameters, new dictionaries must be computed. Thus, the
neural network needs to be retrained, which could be performed using transfer learning
[116]. This enables the possibility to retrain parts of the network without significantly
changing the already learned processing. The proposed deep learning reconstruction
solves a voxel-to-voxel image regression task, including denoising and geometric op-
erations to correct for distortions. This allows training with a relatively small amount of
data, as conventionally required [71, 73]. To simplify the training process, each layer
was divided into small patches, which was shown to improve local geometric transfor-
mation such as in distortion correction. It has been shown that the network improved
greatly (up to 25%) when training the network with patches compared to the full input
resolution. Besides, the choice of loss functions is important to achieve the best results.
Compared to MSE, which is the most commonly used in other MRF reconstruction ap-
proaches [71, 72, 117], the publication IV showed improved results for MAE and LCL.
This could be due to the relatively large error in CSF when using the MSE. However,
quantification of the CSF is less clinically relevant. Further work could include new
designs of loss functions to optimize for this loss in accuracy such as a relative loss.
In addition to the reconstruction of T1 and T2

˚ maps, the DL reconstruction generated
WM and GM probability maps. As mentioned before, these are of great interest be-
cause relaxation times vary dependent on patient-specific parameters [79]. Therefore,
a quantitative statement must be related to patient-specific mean relaxation times inWM
and GM. This results in improved comparability between patients, between sequences,
and between MRI scanners as the entire processing is performed from the same net-
work. Additional masks such as the CSF or other specific areas of the brain could easily
be included in the training process. It has been shown that training with multiple out-
put maps only slightly affects the precision and accuracy and can be compensated by
an increased amount of epochs. The proposed DL approach demonstrated the wide
variety of methods that could be combined within a single network architecture.
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3.5 Deep Learning lesion probability mapping
Additionally, the network was improved by incorporating the lesion masks into the train-
ing process. Thus, we have shown that a regression neural network can predict WM
lesions and additionally generate probability maps that can provide deeper insights into
the underlying biological processes within the lesions. The predicted lesion probability
correlated very well with the increase in T1 and T2

˚ relaxation times. Similar to principal
component analysis [118], the neural networkmight separate the biological components
such as myelin. Lesion probability mapping is a method to differentiate between WM
lesion groups as this corresponds to different ischemic components and neurodegener-
ation during disease progression [119, 120, 121, 122]. This could be advantageous over
conventional lesion segmentations which are commonly based on the FLAIR images or
the parametric maps but not on the underlying contrast weightings. The reconstructed
WM lesion masks depend strongly on the threshold for binarization of the lesion proba-
bility maps. A maximum dice coefficient has been found for 41% of the training data but
only 25% of the test data. This difference could indicate that the network has not yet
converged and therefore requires longer training with additional augmentation. More
data is always an advantage for training neural networks. This is especially significant
when reconstruction is performed in 3 dimensions. 3D reconstructions benefit from vol-
umetric information, which makes it easier to distinguish WM lesions and GM lobes,
which are indistinguishable when looking at a single slice. WM lesions typically ap-
pear as 3D spheres, hence, the slice-by-slice analysis used in this thesis suffers from
the lack of information from adjacent slices. Hence experiments with 3D networks re-
sulted in a strongly degraded reconstruction. Additionally, only the networks with MAE
and MSE could reconstruct the lesion probability maps, which also indicates the lack
of data. The lesion probability maps might improve diagnostic decision-making, which
has to be evaluated in more detail, especially considering the clinical impact. Therefore,
different WM lesions could manually be rated and compared with the determined proba-
bility. With this, we showed that masking and segmentation processes can be included
in a single regression neural network which opens up a wide field for novel methods and
applications. It has been shown that the neural network is capable of solving complex
and extensive reconstruction problems. WM lesion segmentation yielded high precision
and dice coefficients similar to manual annotations with the potential of outperforming
conventional segmentation and classification processes.
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The aim of this work was to develop novel quantification methods, particularly for the
heart, the kidneys, and the brain, to allow rapid non-invasive imaging of the most rele-
vant relaxation times in vivo. Two fundamentally different approaches were developed.
For cardiac imaging, quantification was performed with preparation pulses, whereas
for brain and kidney measurements, MRF based on variable flip angles, TE, and TR
was implemented. Both approaches were evaluated in simulations, phantom measure-
ment, healthy subjects, and patients. In addition, the entire MRF post-processing was
replaced using a single neural network for easy clinical use.

In the first step, the influence of blood flow on the conventional T1 mapping sequences
was analyzed. Only the in-flow of non-prepared spins leads to a significant shorten-
ing of the blood T1 time. The other two factors induced by blood flow were within the
tolerance of the quantification variance and partially compensated each other. For the
first time, the effect of blood flow was assessed in phantom measurements and in vivo
measurements and was confirmed by the simulations. Saturation recovery sequences
were found to be resistant to flow effects, especially when a three-parameter fit model
was used.

Based on these results and the trend toward non-invasive imaging without contrast
agents, a novel method for simultaneous quantification of all three relevant relaxation
times T1, T2, and T2

˚ was proposed. Good visual image quality and accurate esti-
mation of relaxation times were obtained in both phantom and in vivo measurements.
This technique is of importance regarding several aspects. All parametric maps are
intrinsically registered, which minimizes post-processing steps. The parametric maps
are reconstructed inline on the scanner, which allows straightforward clinical use. The
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sequence is acquired during free-breathing, which is essential for patients who have
difficulty in holding their breath. Additionally, this facilitates the assessment of the en-
tire myocardium in a clinically acceptable measurement time. SATURN demonstrated
good sensitivity in pathologies such as hyperthrophic cardiomyopathy and hypertensive
heart disease, and is therefore a promising approach for further clinical applications.

In the second part of this thesis, simultaneous quantification of the renal T1 and T2
˚

times using an MRF-EPI was achieved. Good quantification accuracy and precision
were observed in the kidneys with a 10-fold speedup compared to conventional quan-
tification methods. In addition, it was shown that denoising of the magnitude images
before reconstruction resulted in improved image quality. The high accuracy and pre-
cision promised sensitivity to renal disease. This sequence is of great clinical interest
and can be easily transferred to other abdominal regions.

In a two-site clinical study, T1 and T2
˚ times were analyzed in WM lesions in patients

with MS. Increased T1 and T2
˚ times were observed in WM lesions compared with

WM, and lesions were distinguishable from GM and CSF. Improved lesion detection
and segmentation can be performed with these parametric maps. The need for a long
processing time of several hours due to denoising, reconstruction, distortion correction,
masking, and lesion segmentation was solved by the use of a single neural network. A
good correlation compared with conventional processing was observed in a fraction of
time. In addition, the neural network was capable of segmenting lesions and assigning
probabilities to these WM lesions. These determined probabilities are in good corre-
lation with the increased T1 and T2

˚ times observed in WM lesions. This is of great
clinical interest, as the network learns from underlying structures captured in the MRF
evolution, with the potential to outperform manual annotations.

In this work, novel non-invasive quantitative methods have been developed, analyzed,
and clinically evaluated that showed great utility, especially considering measurement
and processing time. The quantitative parametric maps generated by these new meth-
ods provide combined information about the underlying biological tissue for improved
diagnosis and prediction of pathologies in a variety of diseases.
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