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Materialspezifische Simulationen der Vielteilchendynamik von Elektronen
Die für diese Arbeit relevanten theoretischen Methoden werden hergeleitet, beginnend mit
einer Dichtefunktionaltheorierechnung und endend bei einer vollen Vielteilchenbeschrei­
bung.
Sie werden genutzt, um die Dynamik des oftmals untersuchten NickelIIoxidkristalls unter
dem Einfluss eines treibenden Lasers zu simulieren. Es wird diskutiert, unter welchen Be­
dingungen verschiedene Anregungen möglich sind, wie sie sich zeitlich aufgelöst verhalten,
und wie dieses Verhalten durch Auger­Meitner Zerfall beeinflusst wird.
Ähnliche Methoden werden auf das komplett andere System des Schwefelhexafluorids
angewandt. Es wird gezeigt, dass ein Laser die effektive Austauschwechselwirkungs­
energie erhöhen kann, welche unterschiedliche Vielteilchenzustände miteinander koppelt.
Die experimentelle Messung wird durch mehrere theoretische Methoden reproduziert. Die
vorgestellte Technik ist ein Beitrag zu dem Feld der durch Laser kontrollierten chemischen
Reaktionen.
Das letzte untersuchte System ist holmiumdotiertes Gold. Das Elektroneneinfangspektrum
von Holmium wird berechnet, und der Effekt von Auger­Meitner­Zerfall und der Goldum­
gebung als Selbstenergie hinzugefügt. Dieser ab­initio­Ansatz führt zu einem neuen Maß
an Übereinstimmung mit der experimentellen Messung und ebnet einer schlussendlichen
Bestimmung der Elektronenneutrinomasse aus den Ergebnissen den Weg.

Material­specific Simulations of many­body Electron Dynamics
Beginning with a Density Functional Theory calculation and ending with a full many­body
description, the theoretical methods relevant for this thesis are derived.
They are used to simulate the dynamics of the thoroughly studied NickelIIoxide crystal under
the influence of a driving laser. The conditions in which various excitations are possible are
being discussed, as well as how they behave in the time domain and how Auger­Meitner
decay influences this behaviour.
Similar methods are applied to the completely different system of Sulphur­hexafluoride. It
is shown that a tuning laser can increase the effective exchange interaction, which couples
various many­body states. The experimental measurement is reproduced using several the­
oretical methods. The presented technique is a contribution to the field of laser controlled
chemical reactions.
The last system under consideration is Holmium­dopedGold. The electron capture spectrum
of Holmium is calculated, and the effect of Auger­Meitner decay and the Gold environment
incorporated as a self­energy. This ab initio approach leads to a novel degree of agreement
with the experimental measurement, paving the way to eventually extracting the mass of the
electron neutrino from the results.
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“Throw physic to the dogs; I’ll none of it.”
­Macbeth, Act 5, Scene 3



Introduction

Motivation
The purpose of theoretical physics is to find a mathematical model that can aptly
describe the behaviour of nature in certain circumstances. This model should ideally
be based solely on fundamental parameters, because it is then possible to test and
adjust the initial assumptions to not only reproduce experimental results, but also
generate new insights.

One of the most common techniques used in experiments for extracting infor­
mation about the dynamics of quantum mechanical systems is the measurement of
spectra. They record how an ensemble of particles reacts to being excited, be it from
an external or internal source like a laser or a radioactive decay. An intricate inter­
play with theory allows to not only observe the system but to eventually understand
it.

This gain in knowledge usually leads to a plethora of applications. Specifically
the field of photochemistry, in which chemical reactions are initiated by light­matter
interactions, shall be mentioned here. The great degree of precision with which
lasers can be controlled recently granted access to chemical reactions far from equi­
librium which would not be possible otherwise.49 This technique is for example
used in the diverse fields of synthesis, solar energy conversion, information tech­
nology and medicinal therapy.22

With ever improving experimental resolution arises the need for a precise quan­
titative theoretical description. In rare instances this can be achieved by a set of
analytically solvable equations, but most theoretical models require a numerical
simulation to adequately reproduce experimental results.

Characterising a fermionic quantum many­body system by writing down its
Hamiltonian on a fundamental level is easily done in most cases. However, car­
rying out any corresponding calculations quickly brings every computer to its lim­
its. The Hilbert space of a system reduced to N available one­particle orbitals and
k interacting fermions is spanned by the Slater­determinants representing all pos­

1



sible configurations, and thus has a dimension given by the binomial coefficient(N
k
)

= N!/k!(N−k)!. Storing, for example, all coefficients of but one state of a
system comprised of the C­2s and C­2p orbitals of a C60 Fullerene would require(60·8

60·4
)
≈ 10143 bytes, a number which is 63 orders of magnitude larger than the esti­

mated number of atoms in the observable universe. This disproportionality between
the size of interacting quantum systems and their corresponding Hilbert spaces is
known as the exponential wall.41

It is thus apparent that the fundamental laws of physics and the knowledge of
the system alone are insufficient to predict the behaviour of even a reasonably small
molecule, let alone a macroscopic object like a crystal. In his article3 “More is
Different”, Philip Anderson aptly states that “[t]he ability to reduce everything to
simple fundamental laws does not imply the ability to start from those laws and
reconstruct the universe”. Hence, the aim of the theoretical aspect of any field of
exact science is to find approximations and models that lead to sufficiently accurate
results while being numerically or even analytically feasible.

Anderson wedges many­body physics between particle physics and chemistry,
as being based on the former, and being the basis for the latter. The aim of this thesis,
despite it belonging to only one of the fields, is to lay the foundations to contribute
to all three.

Outline
One importantmilestone on the road of finding amathematical description formany­
body physics is the development of Density Functional Theory (abbr. ‘DFT’). While
in principle it makes the exact statement that the ground state of a system is uniquely
described by its one­particle densitymatrix, most of its implementations operate on a
mean field level. Because of this simplification, and despite its shortcomings, DFT
is able to correctly predict several properties of numerous chemical compounds.
The theoretical groundwork for DFT is briefly outlined in section 1, and a code that
numerically implements it is introduced.

For systems which are insufficiently described by DFT it is still a reasonably
good starting point for a many­body calculation. This comes with a plethora of new
computational challenges, which are tackled by QUANTY. This quantummany­body
tool is the basis for almost all results encountered throughout this thesis. Therefore,
section 2 is dedicated to describing its basic structure and one of its most important
features, the Lánczos algorithm.

The step from one­particle DFT to full many­body calculation is not straight­
forward. Keeping all one­particle orbitals would inflate the Hilbert space to un­
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managable size, and the explicit inclusion of Coulomb interaction has to come with
a correction for its implicit inclusion in DFT. Several techniques used in this thesis
to overcome these challenges are presented in section 3.

Once the Hamiltonian of the system is known, QUANTY can be used to calcu­
late physical quantities like eigensystems, spectra, self­energies or time evolutions.
The steps necessary to find these are derived in section 4, making heavy use of the
Lánczos algorithm.

With the theoretical groundwork laid out, this thesis proceeds to apply it to three
very different physical systems. The first is NickelIIoxide, a very thoroughly studied
transition metal complex presented in section 5. The time evolution in the density
formalism is calculated to study the response of the system to varying laser sources,
with and without the inclusion of an idealised Auger­Meitner decay mechanism.

The second system is the molecule Sulphur­hexafluoride, discussed in section 6.
A simplified fit model as well as an ab initio simulation are used to reproduce the ex­
perimentally measured effects an external laser field has on the effective exchange
energy between various configurations, as manifested in the X­ray absorption spec­
trum. Understanding and controlling this interaction is a step towards laser­driven
chemistry on a sub­nucleonic timescale.

The system examined in section 7 is Holmium­doped Gold. A detailed repro­
duction of the experimentally measured energy spectrum of the electron capture de­
cay of 163Holmium is achieved by introducing the effects of Auger­Meitner decay
as well as that of the Gold environment as a self­energy. This accurate description
can eventually lead the way to deriving the numerical value of the electron neutrino
mass.

A summary of all results as well as an outlook for future studies is given in
section 8.
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Part I

Methodologies





1 Density Functional Theory

In Density Functional Theory (abbr. ‘DFT’) the one­particle density matrix of an
electronic many­body system replaces the wave function as the entity used to de­
rive measurable quantities. Although it is conceptionally an exact theory, DFT is
usually implemented as a mean field theory, yet it works excitingly well for many
applications, especially for open atomic shells with an angular momentum quantum
number of l ≤ 1. Where DFT does not work well, it still provides a good basis to
improve upon, as explained in section 3. This section sketches out the most impor­
tant contributions to the theory of DFT and briefly describes FPLO, a code used to
implement it.

1.1 Theory
In 1964 Hohenberg and Kohn proved that for a system of electrons under an exter­
nal potential v the electronic ground state one­particle density matrix n is a unique
functional of v and vice versa, if the ground state is non­degenerate.34

They subsequently formally defined a universal functional F[n], in which for
any external potential v the total energy

Ev[n]
def
=
∫

v(⃗r)n(⃗r)d⃗r + F[n] (1.1)

def
=
∫

v(⃗r)n(⃗r)d⃗r +
1
2

∫∫ n(⃗r)n(⃗r′)
|⃗r − r⃗′| d⃗rd⃗r′ + G[n]

gives the correct ground state energy if n is the correct ground state density.
In the following year Kohn and Sham developed an approximation of this for­

mally exact equation by writing42

G[n] def
= Ts[n] + Exc[n] , (1.2)
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with the kinetic energy functional Ts[n] and the exchange and correlation energy
functional

Exc[n]
def
=
∫

n(⃗r)ϵxc(n(⃗r))d⃗r . (1.3)

By using that Ev[n] is minimal for the correct ground state density one finds, using
the variational principle, that∫

δn(⃗r)
(

φ(⃗r) +
δTs[n]
δn(⃗r)

+ µxc(n(⃗r))
)

d⃗r = 0 , (1.4)

where

φ(⃗r) def
= v(⃗r) +

∫ n(⃗r′)
|⃗r − r⃗′| d⃗r′ (1.5)

is the potential experienced by an electron at position r⃗, and

µxc(n)
def
=

d(nϵxc(n))
dn

(1.6)

is the effective exchange­ and Coulomb­induced chemical potential.
By comparing equation (1.4) and

∫
δn(⃗r)d⃗r = 0 to a fictitious non­interacting

system the authors found that this is equivalent to the Schrödinger equation(
−1

2
∇2 + φ(⃗r) + µxc(n(⃗r))

)
︸ ︷︷ ︸

def
=HDFT

ψi (⃗r) = ϵiψi (⃗r) , (1.7)

meaning that solving this equation gives the same result for n as solving
equation (1.4), with

n(⃗r) def
=

N

∑
i=1

|ψi (⃗r)|2 . (1.8)

In a numerical implementation this set of the so called ‘Kohn­Sham­equations’ can
be solved self­consistently using the following algorithm:

1. Assume a starting density n.

2. Use n, equation (1.5) and equation (1.6) to calculate φ and µxc.
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3. Use the results obtained above to solve the one­particle Schrödinger equa­
tion (1.7) for a set of ψi.

4. Use equation (1.8) to find a new density n.

5. If a convergence criterion is not met, go back to step 2 using the new n. Oth­
erwise terminate.

None of these steps inherently scale exponentially.
The only quantity in this procedure whose exact analytical form is not known is

ϵxc(n(⃗r)) and subsequently the exchange­correlation functional Exc[n]. The edu­
cated guess for an approximation made here decides how well the final ground state
density represents the many­body result. All calculations in this thesis are based on
the Perdew­Wang local density approximation functional.65

1.2 FPLO
A large number of codes that solve the Kohn­Sham equations self­consistently exist
today, each with their own set of up­ and downsides. Because Density Functional
Theory only makes a statement about the ground state of a system the codes are
optimised for the occupied orbitals. Consequently, the properties of the unoccupied
orbitals greatly depend on the choice of code, and of the basis set therein.

The simulations detailed in section 6 and section 7 are based on a calculation
with the DFT code FPLO40 (which stands for ‘Full­Potential Local­Orbital’). It
is developed primarily for calculating properties of crystals, but also provides func­
tionalities to do calculations for molecules (which it implements by setting the lattice
constant to a very large value).

It comes with a set of basis functions for most elements, which are represented
by a real spherical harmonic times a radial function on a grid, trapped on a finite
lattice with softened boundary conditions.

Among the features implemented in FPLO are modules for doing a force­
relaxation as well as a downfolding, the latter of which is further explained in
section 3.1.

The output of a converged FPLO calculation includes the radial functions of the
basis orbitals and the Kohn­ShamHamiltonianHDFT from equation (1.7) expressed
in a suitable basis. Both can be read in and processed by QUANTY.
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2 QUANTY

The quantum many­body tool QUANTY31,32 is an extension of the script language
Lua.* It is developed by Maurits W. Haverkort et. al. and written in the C/C++
programming language. Its aim is to combine the versatility of Lua with the speed
of C/C++ to provide the user with the means to do precise material­specific quantum
calculations, which are further elaborated on in section 4, in reasonably short time.

It features numerous built­in functionalities for handling wave functions and
operators, which are briefly described here. Common tasks like the calculations of
eigensystems or spectra are implemented, while the program is versatile enough that
less common quantities like time evolutions or self­energies can be constructed by
the user (compare section 4).

To overcome the exponential wall of quantum physics QUANTY contains an
implementation of modified Restricted Active Space Configuration Interaction
(abbr. ‘RASCI’), which restricts any calculations to a portion of the Hilbert space
that is large enough to contain the most important contributions to the quantity of
interest, but small enough to be handled by the computer at the user’s disposal.

2.1 A Basis of Slater­determinants
The state of a single particle labelled j can be described in terms of one­particle
orbitals. These are square­integrable complex­valued functions

χ : R3 → C , χ ∈ L2 ⇔
∫

R3

∣∣χ(x⃗j)
∣∣2 dx⃗j < ∞ ,

which span an infinite­dimensional vector space Hj. For a numerical treatment the
dimension of this space has to be truncated, so in practice Hj is restricted to a finite
number of N orbitals. Linear operators corresponding to one­particle observables
can on this space be represented by N × N matrices.

*The code can be downloaded and a documentation found on www.quanty.org.
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To describe the state of an interacting fermionic system a more elaborate for­
malism is needed. Any operator describing the interaction between fermions will
depend on the state of several particles, so that the Hilbert space of the complete
system is needed. It is mathematically given by the tensor product space

H =
F⊗

j=1

Hj , (2.1)

where F is the number of particles in the system. One element of H, which at first
glance describes the fermions being distributed over one­particle orbitals χj with
indices j1, ..., jF, is for example given by

ψ : R3F → C , ψ(x⃗1, ..., x⃗F) = χj1(x⃗1) · · · χjF(x⃗F) . (2.2)

However, the space Hϕ of physical states is smaller than H, because it contains
only those elements that fulfil Fermi statistics, and thus Pauli’s exclusion princi­
ple.61 In fact, ψ in equation (2.2) is not in Hϕ, because the wave function has to be
antisymmetric under the exchange of the positions of two of the (indistinguishable)
fermions.

Hϕ is spanned by the set of Slater­determinants.71 They are defined as

Sj1,...,jF(x⃗1, ..., x⃗F)
def
=

1√
F!

∣∣∣∣∣∣∣∣∣∣∣

χj1(x⃗1) χj1(x⃗2)
. . . χj1(x⃗F)

χj2(x⃗1) χj2(x⃗2)
. . . χj2(x⃗F)

. . . . . . . . . . . .

χjF(x⃗1) χjF(x⃗2)
. . . χjF(x⃗F)

∣∣∣∣∣∣∣∣∣∣∣
, (2.3)

where | · | denotes the determinant and guarantees antisymmetry under the exchange
of two particle positions, and, accordingly, that the object vanishes if two particles
occupy the same orbital.

In Dirac notation the Slater­determinants can be written as

|j1, ..., jF〉
def
=

1√
F!

∑
p
sgn(p)

F⊗
k=1

∣∣∣χp(k)

〉
, (2.4)

where p goes through all possible bijective functions p : {1, ..., F} → {j1, ..., jF}
and sgn(p) assigns the appropriate sign.

Depending on the circumstances this is also exemplary encountered as

|j1, ..., jF〉
def
= |001011 · · · 〉 , (2.5)
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where all one­particle orbitals are labelled with either 1 if they are occupied, or 0 if
they are not. This has the advantage that the total number of orbitals in the system
is contained in the expressions.

QUANTY uses a system based on this last notation to numerically represent ar­
bitrary many­body wave functions by storing all non­vanishing coefficients and a
descriptor identifying the corresponding Slater­determinant basis functions.

2.2 Operators in second Quantisation
Expressing wave functions in terms of Slater­determinants has the advantage that
their anti­symmetrisation is automatically included, but explicitly calculating ma­
trix elements of operators with a spatial dependence becomes tediously cumber­
some. To greatly simplify these calculations, creation and annihilation operators
are introduced.

The creation operator a†k is interpreted to add a particle in orbital χk to the system,
such that20

a†k |j1, ..., jF〉 ∝
{
|j1, ..., jF, k〉 , k /∈ {j1, ..., jF}

0 , k ∈ {j1, ..., jF}
. (2.6)

Analogously, ak removes a particle from χk,

ak |j1, ..., jF〉 ∝
{

0 , k /∈ {j1, ..., jF}
|j1, ..., jl−1, jl+1, ..., jF〉 , k = jl

. (2.7)

Because a and a† do not conserve the number of particles in a state, they do not act
on the Hilbert space HF with F fermionic particles as defined in equation (2.1), but
rather on the Fock space given by the direct sum20

F
def
=
⊕

F
HF

ϕ , a : HF
ϕ → HF−1

ϕ , a† : HF
ϕ → HF+1

ϕ .

As any Slater­determinant can be written as

|j1, ..., jF〉 = ∏
k∈{jl}

a†k |0〉 (2.8)

with |0〉 the Slater­determinant with no electrons, the operators inherit the antisym­
metry relations characteristic of fermions,

a†j a†k = −a†ka†j , aj ak = −akaj . (2.9)
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Together with20

aj a†k + a†kaj = δj,k (2.10)

all algebraic properties of the operators and their effects on all basis states are known,
which is sufficient for their implementation in QUANTY.

Any one­particle operator corresponding to a measurable quantity needs to be
of the form

O(⃗r1, p⃗1, r⃗2, p⃗2, ...) = ∑
j
O(⃗rj, p⃗j) = ∑

j
Oj , (2.11)

whereOj depends only on position r⃗j and momentum p⃗j of the jth particle. The sum
takes their indistinguishability into account.

Its representation in second quantisation, which is here denoted by omitting the
position and momentum dependence, is defined as20

O = ∑
k,l

〈k|O|l〉 a†kal = ∑
k,l

a†kal

∫
R3

χk (⃗r)O(⃗r, p⃗)χl (⃗r) d⃗r , (2.12)

because it then acts on the one­particle Hilbert space in exactly the same way,

〈m|O|n〉 =∑
k,l

〈
m
∣∣∣a†kal

∣∣∣n〉 ∫
R3

χk (⃗r)O(⃗r, p⃗)χl (⃗r) d⃗r (2.13)

=∑
k,l

δm,kδl,n

∫
R3

χk (⃗r)O(⃗r, p⃗)χl (⃗r) d⃗r

=
∫

R3
χm (⃗r)O(⃗r, p⃗)χn (⃗r) d⃗r .

An analogous expression exists for two­particle operators,

O = ∑
k < l

m < n

a†ma†nal ak

∫
R6

χk (⃗r)χl (⃗r
′)O(⃗r, p⃗, r⃗′, p⃗′)χm (⃗r′)χn (⃗r) d⃗rd⃗r′ . (2.14)

For one­particle orbitals that resemble atomic orbitals in that they are comprised of
a radial part multiplied with a spherical harmonic function, QUANTY has the second
quantisation form of many operators included in its implementation.
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2.3 Lánczos Algorithm and Krylov Basis
One of the most important features of QUANTY is its implementation of the Lánczos
algorithm.46 Because it is the basis of almost all calculations done for this work it is
described here in some detail. The algorithm has a normal incarnation and a block­
version. The latter is described in this section, since the former can be considered
the special case of 1 × 1 matrices.

For a Hilbert space H and any Hermitian operator O : H → H the Lánczos
algorithm as it is implemented by QUANTY is defined as follows:

1. Pick an orthonormal set of starting vectors Ψ0 ⊂ H with entries ψ0,j. Fur­
thermore pick a maximum number of iteration steps N.

2. Define the auxiliary set Ψx
1 with #Ψx

1 = #Ψ0 and with elements

ψx
1,j

def
= Oψ0,j − ∑

k
ψ0,k

〈
ψ0,k

∣∣O∣∣ψ0,j
〉

. (2.15)

3. Orthogonalise the set with the Löwdin procedure:48

Define the overlap matrix (L1)j,k
def
=
〈

ψx
1,j

∣∣∣ψx
1,k

〉
and diagonalise it so that

L1 = T1D1T†
1 , with the block matrix and row vector

D1
def
=

(
Λ1 0

0 0

)
and T1

def
=
(
T1,Λ T1,0

)
. (2.16)

Here Λ1 denotes a diagonal matrix containing all non­vanishing eigenvalues
of L1.
Define the orthonormal set Ψ1 with elements*

ψ1,j
def
= ∑

k
ψx

1,k
(
T′

1
)

k,j , where T′
1
def
= T1,ΛΛ− 1

2
1 T†

1,Λ . (2.17)

4. Define the next auxiliary set Ψx
i+1 with #Ψx

i+1 = #Ψi and with elements

ψx
i+1,j

def
=Oψi,j − ∑

k
ψi,k

〈
ψi,k
∣∣O∣∣ψi,j

〉
(2.18)

− ∑
k

ψi−1,k
〈
ψi−1,k

∣∣O∣∣ψi,j
〉

.

*Note that it is possible that #Ψ1 < #Ψ0. If #Ψ1 = 0 the algorithm has found an invariant
subset, but this is very unlikely to happen.
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5. Find Ψi+1 by orthonormalising Ψx
i+1 as in step 3 with 1 7→ i + 1.

6. Repeat steps 3­5 for all i < N.

In the non­block­version of the Lánczos algorithm steps 3 and 5 become a simple
normalisation.

Once the procedure has terminated, a basis Ψ def
=
⋃N

i=0 Ψi spanning a subspace
of the full Hilbert space is found. Because every iteration applies the operator O to
the vectors that were already found (compare step 4), the space spanned by Ψ is the
order­N Krylov subspace of O, and the set is therefore called ‘Krylov basis’.44

The orthonormality of Ψ justifying the word ‘basis’ can be seen as follows: First
consider two states ψi,j and ψi,k from the same block Ψi that has no vanishing eigen­
values in the overlap matrix Li, meaning that Ti = Ti,Λ. This set can always be
constructed by removing vectors until Ψi is linearly independent. The i index is
temporarily suppressed for simplicity. The overlap between two entries of Ψ is then
given by*〈

ψj
∣∣ψk
〉
=∑

l,m
T′

l,j 〈ψx
l |ψ

x
m〉︸ ︷︷ ︸

=Ll,m

T′
m,k = (TΛΛ− 1

2 T†
ΛL TΛ︸ ︷︷ ︸
=Λ

Λ− 1
2 T†

Λ)j,k (2.19)

=
(

TΛT†
Λ

)
j,k

= δj,k .

This is merely a proof that the Löwdin procedure orthonormalises a linearly inde­
pendent set.

For any two vectors ψ0,j ∈ Ψ0 and ψx
1,l ∈ Ψx

1 the equation〈
ψ0,j
∣∣ψx

1,l
〉
=
〈
ψ0,j
∣∣O∣∣ψ0,l

〉
− ∑

k

〈
ψ0,j
∣∣ψ0,k

〉︸ ︷︷ ︸
=δj,k

〈ψ0,k|O|ψ0,l〉 = 0 (2.20)

holds, as Ψ0 was assumed to be orthonormal. Since this is also true for any super­
position of ψx

1,l,〈
ψ0,j
∣∣ψ1,l

〉
= 0 ∀ψ1,l ∈ Ψ1 . (2.21)

Analogously it follows that if all vectors in all subsets up to a certain Ψi are or­
thonormal to one another, then they are also orthonormal to all vectors in Ψi+1. The
orthonormality of Ψ follows per induction.

*Note that Li in step 3 is Hermitian, therefore its eigenvalues Λi are real, and hence T′
i is Her­

mitian as well.
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Using the definition of step 4 the matrix formO of the operatorO can be studied.
Consider i ≥ k, then〈

ψi,j
∣∣O∣∣ψk,l

〉
=
〈
ψi,j
∣∣ψx

k+1,l
〉
+ ∑

m

〈
ψi,j
∣∣ψk,m

〉
〈ψk,m|O|ψk,l〉 (2.22)

+ ∑
m

〈
ψi,j
∣∣ψk−1,m

〉
〈ψk−1,m|O|ψk,l〉 .

Using the orthonormality of the states it follows that〈
ψi,j
∣∣O∣∣ψk,l

〉
=∑

m

〈
ψi,j
∣∣ψk+1,m

〉︸ ︷︷ ︸
=δi,k+1δj,m

(
T′

k+1
)

m,l (2.23)

+ ∑
m

〈
ψi,j
∣∣ψk,m

〉︸ ︷︷ ︸
=δi,kδj,m

〈ψk,m|O|ψk,l〉

+ ∑
m

〈
ψi,j
∣∣ψk−1,m

〉︸ ︷︷ ︸
=δi,k−1δj,m

〈ψk−1,m|O|ψk,l〉 ,

which gives*〈
ψi,j
∣∣O∣∣ψk,l

〉
=δi,k

〈
ψk,j
∣∣O∣∣ψk,l

〉︸ ︷︷ ︸
def
=(Ak)j,l

(2.24)

+ δi,k−1
〈
ψk−1,j

∣∣O∣∣ψk,l
〉︸ ︷︷ ︸

def
=(Bk)j,l

+δi,k+1
(
T′

k+1
)

j,l︸ ︷︷ ︸
def
=(Bk+1)j,l

.

It follows that O has the block­tri­diagonal form

O =



A0 B1 0 0
. . .

B1 A1 B2 0
. . .

0 B2 A3 B3
. . .

0 0 B3 A4
. . .

. . . . . . . . . . . . . . .


. (2.25)

Physically, this implies that Ψn are the states that are coupled to Ψ0 by the operator
O at nth order. If O = H represents the Hamiltonian of the system, the states are

*The Hermiticity of the operator O implies the Hermiticity of its matrix form O. It follows that〈
ψk−1,j

∣∣∣O∣∣∣ψk,l

〉
= (Bk)j,l =

(
T′

k
)

j,l .
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sorted by their importance for the dynamics of Ψ0. It is hence straightforward to
find a less computationally expensive approximation by truncating the basis set at
some appropriate length N.

Some of the numerous applications of the Lánczos algorithm are discussed in
section 4.
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3 Processing DFT Results

The entity describing the dynamics of a quantum mechanical system is the Hamil­
tonian. The DFT code FPLO described in section 1.2 provides the Hamiltonian
HDFT of equation (1.7) as its output, which describes the system on a mean field
level. This section explains how to get from this one­particle operator to the many­
body Hamiltonian that describes the system well enough whilst keeping the Hilbert
space from becoming too large.

3.1 Active Space Atomic­like Orbitals
Since DFT is, in its implementation, a one­particle mean field theory, it does not run
into the exponential wall. DFT codes thus often use very large one­particle basis sets
with up to thousands of orbitals. Because the aim of this section is to transition from
that to a many­body picture, using the full basis as a starting point is not an option.

For that reason one picks an energy window [Elower, Eupper] on which the calcu­
lation and all relevant physical processes take place, and cuts out all other orbitals,
keeping their occupation either filled or empty. This splits the basis of DFT eigenor­
bitals into three parts, called

‘passive unoccupied shells’ , E > Eupper
‘active space’ , E ∈ [Elower, Eupper]

‘passive core shells’ , E < Elower

.

Focusing only on the active space does, depending on the energy window, greatly
reduce the size of the basis, without having a noticeable impact on the results.

In the cases considered in this thesis there is often an open (i.e. neither filled
nor empty) d or f shell present, which can not be properly treated on a mean field
level and which often turns out to be of great importance for the results of the cal­
culation. This shell is henceforth called the ‘main shell’. To retain some degree of
intuition regarding it, it is desirable to find a basis for the active space of the crystal
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or molecule system in which the first n orbitals are as close as possible to the n
orbitals making up the main shell in the free atom.

It is furthermore desirable to have the basis orbitals be very localised, as this
leads to more negligible elements in the Hamiltonian. Atomic­like orbitals fulfill
this demand by construction, but they are potentially coupled to the passive shells.
The procedure of choice therefore guarantees no coupling between active and pas­
sive shells, and results in basis orbitals for the active space that are as atomic­like
as possible.21

The results of this reduction greatly depend on the choice of atomic orbitals of
interest, and of the energy window. They have to be picked such that diagonalising
the effective Hamiltonian on the active space leads to bands (or energy levels in case
of a molecule) that each coincide with one of the bands of the full system.

The reduction to the active space is implemented in FPLO, where it is called
‘downfolding’, which is explained here.

By self­consistently solving the Kohn­Sham equations, FPLO finds the Bloch
functions

∣∣∣Bk⃗
l

〉
as the eigenfunctions to the Kohn­Sham Hamiltonian, where k⃗ is a

vector in reciprocal space. To find localised orbitals it combines them to Wannier
functions, which are defined as79∣∣∣W R⃗

j

〉
def
= ∑

k⃗,l

∣∣∣Bk⃗
l

〉
U k⃗

l,je
−i⃗k·R⃗ , (3.1)

with R⃗ a vector in real space around which the wave function is centered.
However, this definition has some freedom in form of the unitary transformation

U k⃗
j,l, the choice of which determines the form and localisation of

∣∣∣W R⃗
j

〉
.

The procedure used in FPLO is outlined in ref. [21]. First, a set
∣∣∣AR⃗

m

〉
of atomic­

like functions (which are a subset of the basis used by FPLO) centered around po­
sitions R⃗ and with quantum numbers m are defined. With the help of these a set of
auxiliary functions

∣∣∣Xk⃗
m

〉
is found via*∣∣∣Xk⃗

m

〉
def
= ∑

l

∣∣∣Bk⃗
l

〉
hR⃗

m

(
Ek⃗

l

) 〈
Bk⃗

l

∣∣∣AR⃗
m

〉
, (3.2)

where Ek⃗
l is the energy of the Bloch function and hR⃗

m a window function, i.e. a
function with a compact carrier, on which it mostly takes the value 1 and falls off
exponentially or as a step function towards the border of the active space.

*In ref. [21] the sum symbol is erroneously missing.
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The orbitals
∣∣∣Xk⃗

m

〉
are, in general, not orthogonal, which is remedied by the

Löwdin48 procedure*∣∣∣Yk⃗
j

〉
def
= ∑

m

∣∣∣Xk⃗
m

〉((
Lk⃗
)− 1

2
)

m,j
, (3.3)

with Lk⃗
m,j

def
=
〈

Xk⃗
m

∣∣∣Xk⃗
j

〉
. If any eigenvalue of Lk⃗ vanishes the process terminates

with an error at this step.
FPLO chooses

U k⃗
l,j = ∑

m
hR⃗

m

(
Ek⃗

l

) 〈
Bk⃗

l

∣∣∣AR⃗
m

〉((
Lk⃗
)− 1

2
)

m,j
(3.4)

in equation (3.1), meaning that∣∣∣W R⃗
j

〉
=∑

k⃗,l
∑
m

∣∣∣Bk⃗
l

〉
hR⃗

m

(
Ek⃗

l

) 〈
Bk⃗

l

∣∣∣AR⃗
m

〉((
Lk⃗
)− 1

2
)

m,j
e−i⃗k·R⃗ (3.5)

=∑
k⃗

∑
m

∣∣∣Xk⃗
m

〉((
Lk⃗
)− 1

2
)

m,j
e−i⃗k·R⃗ = ∑

k⃗

∣∣∣Yk⃗
j

〉
e−i⃗k·R⃗ .

This choice guarantees the orthonormality of the Wannier functions, because〈
W R⃗

j

∣∣∣W R⃗′
l

〉
=∑

k⃗,⃗k′
ei⃗k·R⃗e−i⃗k′·R⃗′

〈
Yk⃗

j

∣∣∣Yk⃗′
l

〉
︸ ︷︷ ︸

δ⃗k,⃗k′δj,l

(3.6)

=∑
k⃗

ei⃗k·(R⃗−R⃗′)δj,l = δR⃗,R⃗′δj,l .

After the procedure is completed, FPLO prints out the matrix elements of the Kohn­
Sham HamiltonianHDFT (compare equation (1.7)) in this basis.

3.2 Rotation to a convenient Space
Once the steps of section 3.1 are completed a matrix form HDFT of the one­particle
DFT HamiltonianHDFT is found, with one part of the matrix describing the ‘main’

*Compare section 2.3 for a short proof that this orthonormalises the vectors.
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shell on a mean field level. As the aim is to go beyond DFT, Coulomb interaction
is added to that shell later on (compare section 3.3). This elevates the Hamiltonian
to a many­body operator, leading to more realistic results, but also scaling the com­
putation cost exponentially with the number of fermionic states, which corresponds
to the size of the one­particle basis. To be able to do calculations despite this expo­
nential wall, clever rotations combined with truncations are utilised to minimise the
size of the Hilbert space. Which one of the following techniques is used depends on
the system of interest.

Crystal Field Theory
The eigenorbitals of a single atom are well approximated by a radial part times a
spherical harmonic function Ylz

l (θ, ϕ). They are eigenfunctions to the Hamiltonian,
the angular momentum operator, as well as to the operator of the z­component of
angular momentum. To first order the energy depends only on l.

Any chemical environment necessarily breaks the isotropic symmetry of a single
atom. This also breaks the degeneracy of the orbitals with the same quantum number
l, as the overlap for some orbitals with the electrons from the neighbouring atoms
is larger than for others. The atomic orbitals expressed in spherical harmonics are
then no longer eigenfunctions of the Hamiltonian, but rather have to be linearly
recombined such that they can be written as a radial part times a (real valued) tesseral
harmonic function Zm

l (θ, ϕ).
In Crystal Field Theory (abbr. ‘CFT’) only the shells of the main atom are in­

cluded in the calculation, and the breaking of the degeneracies is the only effect that
the chemical environment has on the system.5,74 Which of the shells experiences a
splitting can be found from symmetry considerations. Alternatively, the splitting is
automatically included in the effective Hamiltonian of a DFT calculation (compare
section 3.1).

Most compounds encountered in nature have octahedral symmetry, where the
main atom has six equidistant neighbours with right angles to one another, which
form the tips of an octahedron (compare for example figure 6.1). The 5 orbitals of
a shell with d character (ignoring spin) in octahedral symmetry split into a threefold
degenerate lower energy level labelled t2g, and a twofold degenerate higher energy
level called eg. Their energy difference is historically called 10Dq.63

This local CFT approximation is often able to reproduce many properties of the
system, such that in some cases (compare section 6) no further refinements of the
theoretical description of the Hamiltonian are necessary.

22



Ligand Field Theory
When hopping to or from the neighbouring sites of the main atom is relevant, Ligand
Field Theory (abbr. ‘LFT’) becomes the tool of choice. Here the filled shells of the
neighbouring atoms that have the most overlap with the main shell are included in
the basis, so that the DFT Hamiltonian includes the hopping parameters between
them.

Depending on the symmetry of the system not all of the (in principle arbitrarily
many) ligand states have an overlap with the main shell, and not all of these over­
laps are large. To reduce the system to the most important ones a block Lánczos
algorithm as described in section 2.3 is applied to HDFT, with the orbitals of the
main shell as the starting set Ψ0. The result is a basis in which the matrix form of
the Hamiltonian is block­tri­diagonal, meaning that only the orbitals described by
the set Ψ1 interact with the main shell directly.

In Ligand Field Theory the basis is reduced toΨ0
⋃

Ψ1, meaning that the number
of fermionic states is at most twice as large as the size of the main shell. For core
level spectroscopy an additional core shell of the main atom is also added to the
system.

3.3 Adding Interaction
Most parts of the systems considered in this work are sufficiently well described by
mean field theory. The main shell, however, is usually not. Here the full Coulomb
interaction

QM =
1
2 ∑

i,j,k,l
QM

i,j,k,la
†
i a†j al ak (3.7)

is added to the Hamiltonian. If the aim of the calculation is to calculate the X­ray
absorption spectrum, the Coulomb interaction between the main shell and a core
shell is usually added aswell, as it is crucial for correctly reproducing experimentally
observed multiplet structures and branching ratios.

Atomic one­particle orbitals are given by a radial part times a spherical har­
monic. For atomic­like orbitals this still holds approximatively. In order to find the
coefficients QM

i,j,k,l on a many­body basis built from these orbitals equation (2.14)
is used and the Coulomb interaction is expanded in spherical harmonics. This way
the spherical integrals contained in

QM
i,j,k,l =

〈
i, j
∣∣∣QM

∣∣∣k, l
〉

(3.8)
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turn into a sum of analytical Slater integrals, and the radial integrals become the
Coulomb integrals72

R(k)
ijkl = e2

∫∫ ∞

0

min(r1, r2)
k

max(r1, r2)k+1 Ri(r1)Rj(r2)Rk(r1)Rl(r2)r2
1r2

2dr1dr2 . (3.9)

These can be solved numerically using the radial functions Ri obtained from the
output of a DFT calculation.

Since the main shell Coulomb interaction is already included in the Density
Functional Theory calculation on a mean field level the mean field version QM

MF
of the operator needs to be subtracted in order to avoid doubly counting it. It is
calculated following the Hartree­Fock scheme52

a†i a†j akal →− a†i ak〈a†j al 〉+ a†i al 〈a†j ak〉+ a†j ak〈a†i al 〉 (3.10)

− a†j al 〈a†i ak〉 − 〈a†i al 〉〈a†j ak〉+ 〈a†i ak〉〈a†j al 〉 .

Because any electron in Density Functional Theory interacts not only with the elec­
tron density of all other electrons, but also with its own, an additional self interaction
term QM

MF,SI needs to be added. It is approximated by

QM
MF,SI =

NM−1

∑
i

Q〈a†i ai 〉a†i ai , (3.11)

where NM is the number of fermionic one­particle states in the main shell and Q is
defined as the average Coulomb interaction strength given by

Q def
=

2
NM(NM − 1)

NM−1

∑
j,k=0

(
QM

jkkj − QM
jkjk

)
. (3.12)

3.4 The U − ∆ Formalism
After applying the transformations of section 3.2 and section 3.3 the Hamiltonian
has the form of an interacting Tight­Binding Operator. The one­particle onsite en­
ergy difference between main and ligand shell is often not correctly reproduced by
the procedure. To correct this, several parameters usually called U and ∆ are used
and varied to fit the result to the experiment.81

A system described by Ligand Field Theory will, in its ground state, have a
core shell C filled with c electrons, and a main shell M filled with m electrons

24



that is coupled to a Ligand shell L with a filling of l. The configuration to energy
assignments

E def
=


0 , CcMmLl

∆CM , Cc−1Mm+1Ll

∆LM , CcMm+1Ll−1
(3.13)

are made.
Assuming that Coulomb interaction acts only on the main shell and between the

main and core shell, these assignments lead to a set of equations featuring the (spher­
ically averaged) Coulomb interaction strengths UMM and UCM and the corrected
onsite energies ϵ:

0 =cϵC + mϵM + lϵL (3.14)

+ m(m − 1)
UMM

2
+ mcUCM

∆CM =(c − 1)ϵC + (m + 1)ϵM + lϵL (3.15)

+ (m + 1)m
UMM

2
+ (m + 1)(c − 1)UCM

∆LM =cϵC + (m + 1)ϵM + (l − 1)ϵL (3.16)

+ (m + 1)m
UMM

2
+ (m + 1)cUCM

The three equations are solved by

ϵC =
m2 (UMM − 2UCM)− 2l (UCM − ∆LM + ∆CM)

2 (c + m + l)
(3.17)

+
m (UMM − 2 (UCM + lUCM + ∆CM))

2 (c + m + l)
,

ϵM =
−m2UMM + mUMM (1 − 2l − 2c)− 2c2UCM

2 (c + m + l)
(3.18)

+
2l∆LM + 2c (UCM − lUCM + ∆CM)

2 (c + m + l)
,

ϵL =
m2UMM + m (UMM + 2cUCM − 2∆LM)

2 (c + m + l)
(3.19)

+
2c (UCM − ∆LM + ∆CM)

2 (c + m + l)
.
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The average onsite energies of the different shells are set to the corresponding values
of ϵ. The parameters U and ∆ are fitted for best agreement with the experiment.

If the system is described by Crystal Field Theory the onsite energies follow by
setting l = 0,

ϵC =
m+m2

2 (UMM − 2UCM)− m∆CM
c + m

, (3.20)

ϵM =
m−m2

2 UMM +
(
c − c2)UCM + c (∆CM − mUMM)

c + m
. (3.21)
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4 Calculating physical Quantities

The result obtained after all appropriate steps described in section 3 are taken is a
Hamiltonian operator that is as small as possible and as large as necessary to ade­
quately describe the system of interest in a given spatial and energetic region. In
short, a suitable and useful representation of the system is found.

The primary aim of many theoretical studies is to start from this description and
calculate measurable quantities such as expectation values of Hermitian operators
that can, in the best case, directly be compared to experimental results.

This section presents the most common quantities calculated for this work and
briefly sketches how to obtain them using QUANTY.

4.1 Eigensystems
Due to the exponential wall it is in most cases virtually impossible to find the full
eigensystem of a many­body Hamiltonian. However, for all practical purposes it
is sufficient to approximately know the lowest N eigenvalues and the correspond­
ing eigenstates. To find these QUANTY starts a block Lánczos algorithm (compare
section 2.3) with N random states as a starting set Ψ0. As most Hamiltonians un­
der consideration conserve the particle number, the states in Ψ0 need to contain
the correct amount of electrons. After M − 1 iteration steps the algorithm yields
a block­tri­diagonal matrix with a dimension that is at most (N · M) × (N · M).
QUANTY diagonalises this matrix, giving an approximation for the eigenvectors |ei〉.

The programme then picks the N states with lowest energy and uses them as the
starting set for a new Lánczos algorithm. It repeats to do so until the variance〈

ei

∣∣∣H2
∣∣∣ei

〉
− 〈ei|H|ei〉2 , (4.1)

which vanishes for a true eigenstate, is sufficiently small for all states |ei〉 with
i ≤ N.
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4.2 Spectra
The Hamiltonian describes the dynamics of the isolated system. A spectrum on the
other hand describes how it can react to a disturbance, i.e. an effect that is not yet
included in the effective description, such as an applied laser field or a spontaneous
radioactive decay.

Let the unperturbed system be represented by the wave function |ψ〉 and the
perturbation by an operator T . The probability to find the perturbed system in the
eigenstate

∣∣Ej
〉
of the Hamiltonian H is approximately given by the square of its

overlap with T |ψ〉. Because any closed system obeys energy conservation, this
transition is only possible if the energy ω introduced to the system by the perturba­
tion is equal to the difference between Ej and E0

def
= 〈ψ|H|ψ〉. The spectrum, which

is defined as the probability density for the sum of all excitations, is thus given by

S(ω) = ∑
j

δ
(
ω − Ej + E0

) ∣∣〈Ej
∣∣T ∣∣ψ〉∣∣2 . (4.2)

This is an incarnation of Fermi’s Golden rule.16
The computationally more accessible response function defined as

G(ω)
def
=

〈
ψ

∣∣∣∣T † 1
ω −H+ E0 + i0+

T
∣∣∣∣ψ〉 , (4.3)

where 0+ denotes a positive infinitesimal number, contains the spectrum in its imag­
inary part. To see this, insert the completeness relation 1 = ∑j

∣∣Ej
〉 〈

Ej
∣∣ to find

G(ω) =

〈
ψ

∣∣∣∣∣T † ∑j
∣∣Ej
〉 〈

Ej
∣∣

ω − Ej + E0 + i0+
T
∣∣∣∣∣ψ
〉

(4.4)

=∑
j

1
ω − Ej + E0 + i0+

∣∣〈Ej
∣∣T ∣∣ψ〉∣∣2 .

Using Plemelj’s formula66

Im
1

x + i0+
= −πδ(x) (4.5)

directly shows that

−Im
G(ω)

π
= S(ω) . (4.6)
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To actually compute a spectrum from equation (4.3), QUANTY applies a Lánczos al­
gorithm (compare section 2.3) to the starting vector T |ψ〉 with the operator H,
and thus finds an approximate eigensystem

{∣∣∣Eappr
j

〉}
. This alone is insufficient,

because in reality the Hamiltonian has uncountably many eigenstates in a finite en­
ergy interval, leading to a continuous spectrum rather than a discrete collection of δ­
peaks. To approximate this, a finite number of eigenstates and ­values is computed,
and the infinitesimal quantity 0+ in equation (4.3) replaced by a larger number Γ,
transforming the δ­peaks to broadened Lorentzian curves. The value* of Γ is usually
obtained from experimental measurements.

4.3 Self­energies
In section 4.2 the broadening of the spectrum was introduced as a fit parameter. A
from the theorist’s point of view more satisfactory, but also computationally more
demanding approach is the self­energy formalism (compare ref. [10]).

Broadening occurring in reality is lost because the model Hamiltonian purpose­
fully cannot reach all multi­particle states, but only a reasonably small subspace
spanned for example by the eigensystem

{∣∣Ej
〉}

. This set can formally be extended
to the orthonormal basis

{∣∣Bj
〉} def

=
{∣∣Ej

〉}
∪̇
{∣∣Cj

〉}
, (4.7)

where
{∣∣Cj

〉}
are those states that can be accessed from

{∣∣Ej
〉}

via a so far ne­
glected correction U to the Hamiltonian.†

Inserting the (approximate) completeness relation for the reachable eigensystem
into equation (4.3) twice, and replacingH with the expanded HamiltonianHx gives

G(ω) = ∑
j,k

〈
ψ

∣∣∣∣T † ∣∣Ej
〉 〈

Ej
∣∣ 1

ω −Hx + E0 + i0+
|Ek〉 〈Ek| T

∣∣∣∣ψ〉 . (4.8)

*or values, Γ = Γ(ω) can be energy dependent
†Depending on the form of U it can be necessary to replace

∣∣Ej
〉
with

∣∣Ej
〉
⊗ |ψC,0〉, where the

second wave function denotes the initial state of a previously unreachable part of the Hilbert space.
This replacement is implied in the notation.
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The operator O in the denominator expressed in the expanded basis is

O =ω + E0 + i0+ − ∑
j

∣∣Ej
〉

Ej
〈

Ej
∣∣− ∑

j,k

∣∣Cj
〉

Hx, j,k 〈Ck| (4.9)

+ ∑
j,k

∣∣Cj
〉

Uj,k 〈Ek|+ ∑
j,k

∣∣Ej
〉

U†
j,k 〈Ck| ,

or, in block matrix form,

O =

(
(ω + E0 + i0+) 1− diag

(
Ej
)

U†

U (ω + E0 + i0+) 1− Hx

)
. (4.10)

The upper left element of the inverse of this matrix is given by82(
O−1

)
1,1

=
1

(ω + E0 + i0+) 1− diag
(
Ej
)
− Σ(ω)

, (4.11)

where the self­energy Σ is introduced as10

Σj,k(ω)
def
=

(
U† 1

(ω + E0 + i0+) 1− Hx
U
)

j,k
(4.12)

=∑
l,m

〈
Ej

∣∣∣U †
∣∣∣Cl

〉〈
Cl

∣∣∣∣ 1
ω + E0 + i0+ −Hx

∣∣∣∣Cm

〉
〈Cm|U |Ek〉 .

Because

〈Em|U |Ek〉 = 0 ∀m, k (4.13)

by construction, the sums over all projectors |Cl/m〉 〈Cl/m| on the newly introduced
states in equation (4.12) can be replaced by the sums over the projectors |Bl/m〉 〈Bl/m|
on all basis states. According to the completeness relation these objects are unit
operators, such that the self­energy becomes

Σj,k(ω) =

〈
Ej

∣∣∣∣U † 1
ω + E0 + i0+ −Hx

U
∣∣∣∣Ek

〉
. (4.14)

As the corrections made to the Hamiltonian can again not reach all possible states,
0+ is replaced with a non­infinitesimal number Γ, so that

Σj,k(ω) =

〈
Ej

∣∣∣∣U † 1
ω + E0 + iΓ −Hx

U
∣∣∣∣Ek

〉
. (4.15)
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At first glance, one fit parameter is merely replaced by another, but it turns out that
while Γ influences the shape of Σ to a significant degree, it has only a small to
negligible effect on the response function G, from which the spectrum is obtained.

Because section 4.15 has the exact same form as equation (4.3), it can be calcu­
lated using similar methods.

Since it is assumed that
〈
Cj
∣∣Ek
〉
= 0 for all j and k, the upper left element is

the only part of O−1 that remains when plugging it back into equation (4.8), which
now takes the form*

G(ω) = ∑
j,k

〈
ψ
∣∣∣T †

∣∣∣Ej

〉 1
ω − Ejδj,k + E0 − Σj,k(ω)

〈Ek|T |ψ〉 . (4.16)

The imaginary part of Σj,k thus broadens the spectrum obtained from G, while the
real part shifts its peaks. The self­energy furthermore has the potential to create in­
terference between states |Ej/k〉 that would be orthogonal eigenstates of the Hamil­
tonian without the correction, giving rise to Fano’s effect.23

If several corrections U (1), U (2) to the Hamiltonian are implemented that lead
to separated Hilbert spaces, then the cross terms arising in equation (4.15) vanish,
so that

Σ(ω) = Σ(1)(ω) + Σ(2)(ω) . (4.17)

This makes it possible to treat corrections from unrelated phenomena independently
from one another, as long as the same energy Gauge is used for all.

4.4 Time Evolutions
There are several ways to describe the time evolution of a physical system, two of
which are used in this thesis. The first method involves a time dependent wave
function, whose evolution is governed by the Schrödinger equation. This method
has the advantage that the wave function at any time is known and can be used
with QUANTY’s functionality to calculate the system’s spectrum. The secondmethod
is based on the many­particle density matrix, which evolves according to the von
Neumann equation,78 or, in its extended form, the GKSL equation.29,47 The latter
allows to incorporate the effect of a decay mechanism.

*Since Σ has a non­infinitesimal, non­vanishing imaginary part, i0+ can be neglected.
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Time Evolutions of the Wave Function
The Schrödinger equation70 for a Hamiltonian H and a wave function ψ is given
by*

H(t)ψ(t) = i∂tψ(t) = lim
dt→0

i
ψ(t + dt)− ψ(t)

dt
. (4.18)

For a time­independent Hamiltonian this differential equation is solved by
ψ(t) = e−iHtψ(0) (4.19)

for every time t. In the more general case H = H(t) where the commutator
[H(t1),H(t2)] between the Hamiltonian at different times does not always vanish,
the solution to equation (4.18) becomes the much more complicated expression17–19

ψ(t) = TDe−i
∫ t

0 H(t′) dt′ψ(0) . (4.20)
Because it features the numerically rather inaccessible Dyson time ordering operator
TD, using equation (4.20) in calculations is not feasible. Instead, another formalism
is needed.

After treating dt in equation (4.18) as a non­vanishing entity for the moment,
equation (4.18) becomes

ψ(t + dt) = [1− iH(t)dt]ψ(t) . (4.21)
Iteratively applying this n times, this equation yields

ψ(t + ndt) =

(
n

∏
j=1

{1− iH[t + (j − 1)dt]dt}
)

ψ(t) . (4.22)

Now suppose that ndt is significantly smaller than the timescale on which H(t)
changes, so thatH(t) ≈ const. in this time period. The equation then simplifies to

ψ(t + ndt) ≈ (1− iH(t)dt)
n ψ(t) . (4.23)

Define ∆t = ndt, so that dt =
∆t
n and

ψ(t + ∆t) ≈
(
1− iH(t)∆t

n

)n

ψ(t) . (4.24)

Keeping ∆t constant and sending n → ∞ gives

ψ(t + ∆t) ≈ e−iH(t)∆t ψ(t) . (4.25)
By applying this iteratively the wave function at any time t can be calculated.

*h̄ = 1
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Time Evolutions of the Density
The von Neumann equation
The many­particle density matrix* ρ is defined as the sum of the projectors on states
ψj with probabilities pj,78

ρ
def
= ∑

j
pj
∣∣ψj
〉 〈

ψj
∣∣ . (4.26)

Using the Schrödinger equation (4.18) and its Hermitian conjugate one can find the
time evolution to be given by the von Neumann equation78

i
∂

∂t
ρ =i ∑

j
pj
([

∂t
∣∣ψj
〉] 〈

ψj
∣∣+ ∣∣ψj

〉 [
∂t
〈
ψj
∣∣]) (4.27)

=∑
j

pj
[
H,
∣∣ψj
〉 〈

ψj
∣∣] = [H, ρ] .

This also holds for time­dependent Hamiltonians.

The GKSL equation
If, however, the decay into the continuum is to be taken into account, then the von
Neumann equation must be extended to become the GKSL equation, which was
discovered by Vittorio Gorini, Andrzej Kossakowski and George Sudarshan,29 and
independently by Göran Lindblad.47 Its derivation here roughly follows the review
works refs. [7, 51, 64], with the difference that this work assumes a time­dependent
Hamiltonian.

Suppose that a system can be divided into a part B of bound states governed by
the Hamiltonian HB(t), which is the main system of physical interest, and a con­
tinuum C evolving according to HC , to which electrons can be excited via some
decay mechanism HBC that has a comparably small amplitude. This is the same
setup as in section 4.3, where a self­energy was introduced to yield a correction of
the spectrum. For the time evolution of a system under the influence of an environ­
ment a different formalism is required, which gives a correction to the von Neumann
equation (4.27).

To develop this formalism a density operator ρB is needed that for every operator
O acting only on the subspace B fulfils

〈O〉B = Tr (O · ρB)
!
= Tr (O⊗ 1C · ρ) = 〈O ⊗ 1C〉 , (4.28)

*Not to be confused with the one­particle density matrix n.
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as this requirement guarantees that physical quantities on B remain unaffected by
changing the description from ρ to ρB.

Let {bj} be a basis of B and {cl} a basis of C. Indirectly defining the partial
trace of an operator ρ : B ⊗ C → B ⊗ C via〈

bj
∣∣TrC (ρ)∣∣bk

〉 def
= ∑

l

〈
bj ⊗ cl

∣∣ρ∣∣bk ⊗ cl
〉

(4.29)

and setting

ρB
def
= TrC (ρ) (4.30)

satisfies equation (4.28), because

Tr (O⊗ 1C · ρ) = ∑
j,l

〈
bj ⊗ cl

∣∣O⊗ 1C · ρ
∣∣bj ⊗ cl

〉
(4.31)

= ∑
j,l,m,n

〈
bj ⊗ cl

∣∣O⊗ 1C
∣∣bm ⊗ cn

〉 〈
bm ⊗ cn

∣∣ρ∣∣bj ⊗ cl
〉

= ∑
j,l,m,n

〈
bj
∣∣O∣∣bm

〉
δl,n
〈
bm ⊗ cn

∣∣ρ∣∣bj ⊗ cl
〉

= ∑
j,m

〈
bj
∣∣O∣∣bm

〉
∑

l

〈
bm ⊗ cl

∣∣ρ∣∣bj ⊗ cl
〉

= ∑
j

〈
bj
∣∣O · ρB

∣∣bj
〉
= Tr (O · ρB) .

To find the equation of motion for ρB it is helpful to express everything in the in­
teraction picture with HBC defined as the interaction. Any operator is transformed
according to

O I def
= U†

t0,tOUt0,t , (4.32)

where Ut0,t is the unitary time evolution of H−HBC . Since HB and therefore H
explicitly depend on time, the evolution is formally given by17–19

Ut0,t = TDe−i
∫ t

t0
[H(t′)−HBC ]dt′ , (4.33)

with theDyson time ordering operator TD. Per construction it fulfils the Schrödinger
equation for the time evolution,

i
∂

∂t
Ut0,t = [H(t)−HBC ]Ut0,t . (4.34)
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Note that sinceH−HBC = HB ⊗ 1C + 1B ⊗HC factorises, so does

Ut0,t =TDe−i
∫ t

t0
(HB⊗1C+1B⊗HC )dt′ (4.35)

=TDe−i
∫ t

t0
(HB⊗1C )dt′ ⊗ TDe−i

∫ t
t0
(1B⊗HC )dt′

def
=UB,t0,t ⊗ UC,t0,t ,

with each part fulfilling

i
∂

∂t
UB/C,t0,t = HB/C(t)UB/C,t0,t . (4.36)

In the interaction picture the von Neumann equation (4.27) becomes (suppressing
time arguments for the moment)

i
∂

∂t
ρI =

(
∂tU†

)
ρU + U† (∂tρ)U + U†ρ (∂tU) (4.37)

=− U† (H−HBC) ρU + U† [H, ρ]U + U†ρ (H−HBC)U

=U† ([H, ρ]− [H−HBC , ρ])U = U† [HBC , ρ]U

=U†HBCUU†ρU − U†ρUU†HBCU =
[
HI

BC , ρI
]

.

This equation is formally solved by

ρI(t) = ρI(t0)− i
∫ t

t0

[
HI

BC(t
′), ρI(t′)

]
dt′ . (4.38)

Plugging this solution back into equation (4.37) gives

∂

∂t
ρI(t) =− i

[
HI

BC(t), ρI(t0)
]

(4.39)

−
[
HI

BC(t),
∫ t

t0

[
HI

BC(t
′), ρI(t′)

]
dt′
]

.

Applying the partial trace to both sides of the equation leads to

∂

∂t
ρI
B(t) =− iTrC

([
HI

BC(t), ρI(t0)
])

(4.40)

− TrC
([

HI
BC(t),

∫ t

t0

[
HI

BC(t
′), ρI(t′)

]
dt′
])

.

To carry out the partial traces some approximations have to be made. Based on the
assumption of a small coupling between B and C one can reason that
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1. the density factorises, ρI ≈ ρI
B ⊗ ρI

C .

2. the continuum part of the density in the Schrödinger picture always remains
in its ground state, ρC(t) ≈ ρC(t0).

3. the continuum is empty, ρC ≈ |0〉 〈0| def
= ρ0. Therefore

ρI
C(t) ≈ U†

t0,t |0〉 〈0|Ut0,t
def
= ρI

0(t) . (4.41)

These approximations together lead to a new form of the time derivative of the den­
sity,

∂

∂t
ρI
B(t) =− iTrC

([
HI

BC(t), ρI
B(t0)⊗ ρI

0(t0)
])

(4.42)

−
∫ t

t0

TrC
([

HI
BC(t),

[
HI

BC(t
′), ρI

B(t
′)⊗ ρI

0(t
′)
]])

dt′ .

To find a closed expression for ρI
B some further assumptions concerning the explicit

form of the Hamiltonian have to be made, namely that

1. the coupling term can be written as

HI
BC(t) =U†

t0,t ∑
j⃗,k

α⃗j,k

(
σ⃗

j
⊗ a†k + σ†

j⃗
⊗ ak

)
Ut0,t (4.43)

=∑
j⃗,k

α⃗j,k

(
σI

j⃗
(t)⊗ a†I

k (t) + σ†I
j⃗
(t)⊗ aI

k(t)
)

,

with j⃗ a multi­index labeling bound states, σ⃗j acting on B, a†k creating an
electron in the continuum C and α⃗j,k a possibly vanishing factor.

2. the continuum part HC has no constant term and is particle number conserv­
ing*, meaning that

TrC
(
O I

B(t1)⊗O I
C(t1) · ρI

B(t2)⊗ ρI
0(t2)

)
(4.44)

=
〈

0
∣∣∣U†

C,t1,t2
OCUC,t1,t2

∣∣∣0〉
=

{
0 for OC = a†k, ak, a†kak′

δk,k′ for OC = aka†k′
.

*Any constant terms can always be absorbed into HB , and, since the Hamiltonian only appears
inside commutators and complex exponents, they cancel anyhow.
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3. the continuum excitations are short lived, so that〈
aI

k(t1)a†I
k (t2)

〉
=
〈

0
∣∣∣U†

C,t0,t1
akUC,t2,t1 a†kUC,t0,t2

∣∣∣0〉 (4.45)

≈δ(t2 − t1) .

It follows that the first term in equation (4.42) vanishes, as do many combinations
in the second term. What remains is

∂

∂t
ρI
B(t) =−

∫ t

t0
∑
j⃗,⃗j′

∑
k

α⃗j,kα⃗j′,kσ†I
j⃗
(t)σI

j⃗′
(t′)ρI

B(t
′)δ(t − t′)dt′ (4.46)

+
∫ t

t0
∑
j⃗,⃗j′

∑
k

α⃗j,kα⃗j′,kσ†I
j⃗
(t)ρI

B(t
′)σI

j⃗′
(t′)δ(t − t′)dt′

+
∫ t

t0
∑
j⃗,⃗j′

∑
k

α⃗j,kα⃗j′,kσ†I
j⃗′
(t′)ρI

B(t
′)σI

j⃗
(t)δ(t − t′)dt′

−
∫ t

t0
∑
j⃗,⃗j′

∑
k

α⃗j,kα⃗j′,kρI
B(t

′)σ†I
j⃗′
(t′)σI

j⃗
(t)δ(t − t′)dt′ .

Another helpful assumption is that only those terms significantly contribute which
affect the same indices, such that all terms with j⃗ 6= j⃗′ can be ignored. The decay
strength γj for a given decay channel is then defined via

∑
k

α2
j⃗,k

def
= 2γ⃗jϕ⃗j , (4.47)

where the function ϕ evaluated at j⃗ gives 1 if j⃗ describes a physically meaningful
combination of indices, and 0 if it does not.* Now all sums and integrals can be
evaluated, giving†

∂

∂t
ρI
B(t) =∑

j⃗

γ⃗jϕ⃗j

(
2σ†I

j⃗
(t)ρI

B(t)σ
I
j⃗
(t)−

{
σ†I

j⃗
(t)σI

j⃗
(t), ρI

B(t)
})

(4.48)

=U†
B,t0,t ∑

j⃗

γ⃗jϕ⃗j

(
2σ†

j⃗
ρB(t)σ⃗j

−
{

σ†
j⃗
σ⃗

j
, ρB(t)

})
UB,t0,t .

*The values of j⃗ that ϕ deems physically meaningful depend on the decay mechanism.
†Because of symmetry considerations

∫ t
t0

δ(t − t′)dt′ = 1
2 , which cancels the prefactor of γ.
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Figure 4.1: The Feynman diagram and a schematic representation of Auger­Meitner decay. The in­
dices denote the part of the full system that the orbitals belong to.

To transform this back to the Schrödinger picture consider (suppressing time argu­
ments for the moment)

∂tρ
I
B =

(
∂tU

†
B

)
ρBUB + U†

B (∂tρB)UB + U†
BρB (∂tUB) (4.49)

=iU†
BHBρBUB + U†

B (∂tρB)UB − iU†
BρBHB∂tUB

=U†
B (∂tρB + i [HB, ρB])UB ,

meaning that

∂

∂t
ρB(t) =− i [HB(t), ρB(t)] (4.50)

+ ∑
j⃗

γ⃗jϕ⃗j

(
2σ†

j⃗
ρB(t)σ⃗j

−
{

σ†
j⃗
σ⃗

j
, ρB(t)

})
.

This is the GKSL equation equation for the many­particle density matrix of a system
B, dissipatively coupled to an empty continuum via a diagonal decay mechanism.

Auger­Meitner decay
The dissipation mechanism implemented in this work is Auger­Meitner decay,
which was independently discovered by Lise Meitner54 and Pierre Auger.4 It
describes an electron in the state k decaying to fill a core hole j and donating its
energy to an electron in state l which is then excited into the continuum state m.
The Feynman diagram corresponding to this process is shown in figure 4.1, the
operator is given by αj,k,l,ma†ma†j akal , where a†m acts on the continuum part C of the
Hilbert space and the rest of the operator acts on the bound part B. In the language
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of the GKSL equation (4.50) this means that

σj,k,l = a†j akal . (4.51)

The values of ϕj,k,l are defined by the fact that Auger­Meitner decay conserves total
spin and total angular momentum, meaning that if for example two spin up electrons
are annihilated then the new core electron must also have up spin.

Implementation
The numerical implementation of the time evolution happens by choosing a suitable
basis and expressing all operators in it, so that QUANTY only has to handle matrices.
To find this basis, the Lánczos algorithm is applied to the ground state |ψ0〉, resulting
in NKry Krylov states {|ψi〉}.

This basis covers the most important states reached by exciting the ground state.
To also cover de­excitation, the states*

T |ψi〉 for i ∈ [1, NKry − 1] (4.52)

are added to the basis set, with the perturbation operator T from equation (4.3).
If dissipation via Auger­Meitner decay is included in the calculation, the decayed

states have to be reached as well. A further addition to the basis is therefore made
by†

σj,k,l |ψi〉 for i ∈ [1, NKry − 1] , (j, k, l) : ϕj,k,l = 1 , (4.53)

with the Lindblad operators σj,k,l as defined in equation (4.51) and ϕj,k,l giving 1 if,
and only if, the combination j, k, l describes a physically possible decay mechanism.

The function ϕ is further exploited in that only those combinations are allowed
which result in a continuum electron with a z­projected angular momentum quantum
number of lz = 0. This is done purely to reduce the size of the Hilbert space, as the
calculations become too cumbersome to handle otherwise.

Once the basis set is complete it is orthonormalised using the Gram­Schmidt
procedure,30,69 which has the advantage that the ground state |ψ0〉 is left unchanged.
All operators of interest are then expressed in this basis.

At the beginning of the calculation the system is prepared in the ground state. If
the time evolution is calculated using the wave function, the starting vector therefore

*Note that i begins at 1 instead of 0, because a state proportional to T |ψ0〉 is already contained
in the Krylov basis.

†The index again begins at 1, because the ground state cannot decay.
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has a 1 as its first entry and 0 everywhere else. Its time evolution is found by iter­
atively applying equation (4.25), which in this formalism becomes a multiplication
of a matrix with a vector.

The resulting object can be transformed back to a many­body wave func­
tion |ψ(t)〉, which can be used to calculate time­dependent spectra (compare
section 4.2). If several laser fields Tj(t) disturb the system, it is possible to explic­
itly and non­perturbatively include the effects of all but Tj0 , the one making the
excitation of interest, by adding them to the Hamiltonian,

H → H(t) = H0 + ∑
j 6=j0

Tj(t) . (4.54)

If on the other hand the many­particle density matrix is used as the quantity char­
acterising the state of the system, the initial condition is a matrix with a 1 as its 1, 1
element and 0 everywhere else. Its evolution in time is then found by solving either
equation (4.27) or, if decay is included, equation (4.50). Because these are differ­
ential equations for which no closed and simple form analogous to equation (4.25)
is known they are solved for each time step using a RK4 Runge­Kutta method.45,67
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Part II

Applications





5 NickelIIoxide

5.1 Motivation
Light offers one of the most versatile ways to interact with matter on an atomic level.
Understanding the effects of this interaction and being able to calculate quantitative
predictions is crucial not only for physical, chemical and biological experiments,
but also for numerous technological applications.

The devices in development include photovoltaic cells and molecular machines.
Both share that the incoming light induces a charge­transfer excitation, which then
dissipates and transforms its energy either in an electric current or molecular mo­
tion.53 Another remotely related application is that of qubits. Here a laser­induced
spin­flip excitation is a promising candidate for storing information.38

Because of their correlated behaviour and large spin­orbit coupling, transition
metals exhibit complicated but also fast and rich dynamics. This makes them well
suited as the active centres of proposed photon based technical applications.37

Of all crystalline transition metal compounds NickelIIoxide (abbr. ‘NiIIO’) is
among the most thoroughly studied. It was one of the earliest examples where band
theory predicted a substance to be conducting, while experiment proved it to be
insulating.14,58 Much research emphasizing the important role Coulomb interaction
plays in transition metal compounds followed, which is why NiIIO is still often used
as the system to test theories on.33

Both for charge­transfer and spin­flip excitations the dynamics play out on sev­
eral different time­scales:77

1. The initial excitation can happen on the order of a few hundred as.

2. The excited state usually relaxes to a lower excited state within a hundred f s.

3. The system thermally equilibrates in the following few ps in the case of a
small molecule. It takes significantly longer for larger systems.
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Parameter Used Values
E [V/aB] 380, 760, 1520, 3040
ω [eV] 846.275
FWHM= 2

√
2 ln 2σ [as] 100, 333, 1000, 3330

Table 5.1: The parameters used for the external Hamiltonian.

The last step can be tackled theoretically using for example linear response time­
dependent Density Functional Theory.73 Several experiments have utilised ultrafast
spectroscopy to monitor the second step.12,38, 57 A theoretical study of the dynamics
of NiIIO following a spin­flip excitation can be found in ref. [35]. There, the authors
investigate the second step of the relaxation process by preparing the system in an
excited state and letting it evolve according to the Schrödinger equation.

This section focuses on the first step. TheNiIIO system ismodelled using several
levels of theory. It is prepared in the ground state and the light is simulated as a time
dependent perturbation of the Hamiltonian in form of an electric field. The effects
of the model and the form of the light field on orbital, charge­transfer and spin­flip
excitations are investigated. Furthermore, another set of calculations is presented
in which the effect of Auger­Meitner decay on the dynamics is incorporated via the
GKSL equation.

5.2 Two Level System

Theory
The full Hamiltonian H is the sum of a time­independent part H0 describing the
NickelIIoxide system on a varying level of theory and an external, time­dependent
partHext(t) describing the laser pulse.

The first level of theory is to approximate the NiIIO crystal as a 2 level sys­
tem. Here the states of the Ni­2p and Ni­3d shells are individually degenerate and
separated by an energy difference ∆ω. The Hamiltonian reads

H0= = ϵpNp + ϵdNd , (5.1)

with onsite energies ϵ, number operators N , and ϵd − ϵp = ∆ω. Applying a res­
onant sinusodial electric field E(t) = E0sin(∆ωt) to the system would make the
occupation oscillate between the two shells with the Rabi frequency ωRabi ∝ E0.
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Instead, the external part of the Hamiltonian is given by a transition operator
multiplied by an oscillation enveloped by a Gaussian function. It reads

Hext(t) = E0 cos (ωt) exp
(
− t2

2σ2

) (
pxdx + pydy + pzdz

)
, (5.2)

with the electric laser field strength E0, the laser frequency ω, a standard deviation
of the pulse length σ (and thus a full width at half maximum (abbr. ‘FWHM’) of
2
√

2 ln 2σ), the three components of the normalised polarisation vector p⃗, and the
three dipole operators dx, dy and dz. Some of the parameters are varied throughout
the calculations (compare table 5.1).

The time evolution of the system is calculated using the von Neumann equa­
tion (4.27). The numerical implementation of the time evolution is described in
section 4.4.

To find results that can easily be compared to one another the width σ of the laser
pulse is coupled to the electric field strength E such that their product is constant
during a set of runs. This means that a lower coupling strength is applied over a
longer period of time, leading to roughly the same number of oscillations in the
partial occupation (see below). The symbol E is defined as

E
def
= FWHM · E0 , (5.3)

and calculations are carried out for E = 100 as · 380 V/aB = 38 f Vs/aB, 76 f Vs/aB,
152 f Vs/aB and 304 f Vs/aB.

Results
In order to present the results of the numerous calculations in an understandable
fashion, the information is consistently encoded in the following ways: Black lines
belong to calculations in which the full width at half maximum of the external
electric field is 100 as, red lines to an FWHM of 333 as, orange lines to 1 f s and
turquoise coloured lines to 3.33 f s. In composite figures with four panels the po­
larisation of the light is kept constant in the x­direction, the upper left panel shows
the results for which E = 38 f Vs/aB, the upper right for E = 76 f Vs/aB, the lower
left for E = 152 f Vs/aB and the lower right for E = 304 f Vs/aB. Alternatively,
E is kept constant at 76 f Vs/aB within a figure, in which case the upper left panel
shows the result for light polarised in the (1, 0, 0)­direction, the upper right for the
(0, 0, 1)­direction, the lower left for the (1, 1, 0)­direction and the lower right for
the (1, 1, 2)­direction.
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Figure 5.1: Partial occupations for the 2 state system, for polarisation in the x­direction and laser
pulse FWHMs of 100 as (black lines), 333 as (red lines), 1 f s (orange lines) and 3.33 f s
(turquoise lines). The values of E are 38 f Vs/aB (upper left), 76 f Vs/aB (upper right),
152 f Vs/aB (lower left) and 304 f Vs/aB (lower right).

The time dependent partial occupations defined as

∑
j∈J

〈
a†j aj

〉
t

(5.4)

for the indices J describing the shells Ni­2p and Ni­3d in the approximation of the 2
level system are shown in figure 5.1. In this simple model only an orbital excitation
from the Ni­2p to the Ni­3d shell and back is possible.

Although the laser pulse is not a pure sinusodial excitation but a sine multi­
plied with a Gaussian, the system behaves ‘Rabi­like’ for not too large electric
field strengths (upper panels), meaning that the observed behavior is the same when
FWHM of the laser pulse is changed but E is kept constant. Only the time scale
changes linearly with FWHM, as would be expected for a Rabi system. Because the
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Parameter [eV] 2 Levels CFT LFT
ϵp 0 ­683.467 ­683.467
ϵd 846.175 134.190 134.190
ϵL ­ ­ 240.333
ζp ­ 11.51 11.51
ζd ­ 0.081 0.081
H ­ 0.12 0.12
10Dqd ­ 1.1 0.56
10DqL ­ ­ 1.44
Vt2g ­ ­ 1.21
Veg ­ ­ 2.06
γ ­ ­ 0, 1

Table 5.2: The parameters used for the different levels of theory, in units of eV.

time scale in figure 5.1 is given in units of FWHM, the lines lie almost perfectly on
top of each other in the upper images.

The number of observed occupation peaks also doubles when doubling E, as is
expected.

At very high field strengths of about 1500 V/aB and higher the scaling invariance
breaks down, even for this simplified 2 level system (compare the black lines in
the lower panels and the red line in the lower right panel of figure 5.1). In these
cases the difference in amplitude between two neighbouring peaks in the laser is too
large to locally approximate the signal as a sinusodial wave. In case of the black
lines the frequency of the external electric field can directly be observed as a small
modulation of the line.

5.3 Crystal Field Theory

Theory
In Crystal Field Theory (abbr. ‘CFT’) the internal Hamiltonian is given by

H0CFT = H0= + ζpCls,p + ζdCls,d +Q+ HS112 + 10DqdCCF ,d , (5.5)

with H0= given by equation (5.1), spin­orbit coupling parameters ζ and operators
Cls, Coulomb interactionQ on the 3d and between the 3d and 2p shells, an exchange
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Figure 5.2: Partial occupations for Crystal Field Theory, for polarisation in the x­direction and laser
pulse FWHMs of 100 as (black lines), 333 as (red lines), 1 f s (orange lines) and 3.33 f s
(turquoise lines). The values of E are 38 f Vs/aB (upper left), 76 f Vs/aB (upper right),
152 f Vs/aB (lower left) and 304 f Vs/aB (lower right).

field strength H coupled to the spin­operator S oriented in the 112­direction, and
the crystal field splitting parameter 10Dq coupled to a splitting CCF of the Ni­3d
states due to the effects of the chemical environment. The parameters ofH0= differ
from those used in the pure 2 level theory. They are given in table 5.2.

Results
In figure 5.2 the partial occupations for the Crystal Field Theory calculation are
depicted. Since Coulomb interaction and other effects split the states into several
multiplets, the behaviour is significantly different from the 2 level system. Yet,
certain similarities can be observed.

For the shortest FWHM of 100 as (black lines) the behaviour of the 2 level sys­
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tem is almost reproduced (compare figure 5.1), especially for lower field strengths
(upper panels in figure 5.2). A doubling in field strength roughly doubles the num­
ber of cycles of orbital excitation and de­excitation, although some deviation can be
observed, as the final occupation of the orbitals differs from the 2 level case.

Also with increasing initial field strength the time evolution becomes more
asymmetric around the pulse maximum (which sits at t = 0), due to the fact that in
contrast to the 2 level system there is no unique excitation energy any more, but a
plethora of individual ones.

With increasing FWHM and thus decreasing maximum field strength the sys­
tem’s response seems to become slower, as the oscillations’ peaks shift slightly to
the right and the amplitudes decrease. Thus, the final occupation of the Ni­3d shell
in case of E = 38 f Vs/aB is almost 8 for the pulse with an FWHM of 100 as and
close to 9 for the 3.33 f s pulse (compare black and turquoise lines in the upper left
panel of figure 5.2), an effect that can not be observed in the 2 level system.

5.4 Ligand Field Theory

Theory
In Ligand Field Theory (abbr. ‘LFT’) the close chemical environment is added to
the system, and can be excited to and from. The Hamiltonian is now given by

H0LFT = H0CFT + ϵLNL + 10DqLCCF ,L + Vt2gTt2g + VegTeg , (5.6)

with H0CFT given by equation (5.5) and hopping parameters V and operators T .
The parameters ofH0CFT are again different from pure CFT (compare table 5.2).

Results
The Ligand Field Theory partial occupations, including that of the ligand, can be
seen in figure 5.3. Due to the presence of the ligand shell the behaviour is even more
distorted compared to the 2 level system. After the laser pulse excites the system it is,
in general, not in an occupation eigenstate any more, leading to oscillations between
the Ni­3d and the ligand shell. To make these charge transfer excitations visible the
plots in figure 5.3 and in the following figures range from ­1 to 2 FWHMs.

The occupation of the Ni­2p shell is not affected very much by the addition of
the Ligand, instead the behaviour is very similar to that in Crystal Field Theory.
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Figure 5.3: Partial occupations for Ligand Field Theory, for polarisation in the x­direction and laser
pulse FWHMs of 100 as (black lines), 333 as (red lines), 1 f s (orange lines) and 3.33 f s
(turquoise lines). The values of E are 38 f Vs/aB (upper left), 76 f Vs/aB (upper right),
152 f Vs/aB (lower left) and 304 f Vs/aB (lower right).

Exceptions are large FWHMs of more than 1 f s and values of E ≥ 152 f Vs/aB

(compare orange and turquoise lines in the lower panels of figure 5.3).
The Ni­3d shell is affected in several ways: Due to hybridisation with the lig­

and shell its initial occupation is increased and during the de­excitation process some
occupation of the ligand is excited to the Ni­3d shell. As this charge transfer exci­
tation only begins with the first excitation peak the effect is not very pronounced
for E ≥ 38 f Vs/aB. For larger values of E most excitation seems to happen for an
FWHM of 1 f s, but this might not be a trend. It is noteworthy that it takes compa­
rably high field strengths of about 91 V/aB to excite the system into the ligand shell
using the pulse with FWHM of 3.33 f s, a behaviour that is explained below.

Because of the exchange field H pointing in the (1, 1, 2)­direction the full
NickelIIoxide system has much lower symmetry than would be expected from the
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Figure 5.4: Partial Occupations for Ligand Field Theory, for polarisations in the (1, 0, 0)­directon
(upper left), (0, 0, 1)­direction (upper right), (1, 1, 0)­direction (lower left) and (1, 1, 2)­
direction (lower right). The laser pulse FWHMs are 100 as (black lines), 333 as (red
lines), 1 f s (orange lines) and 3.33 f s (turquoise lines). All plots were created with E =
76 f Vs/aB.

crystal structure alone. Therefore calculations for many laser polarisations can be
of interest. Here the (1, 0, 0)­ or x­direction, the (0, 0, 1)­, the (1, 1, 0)­ and the
(1, 1, 2)­direction are picked. The product of electric field maximum and FWHM
is kept constant at E = 76 f Vs/aB. The partial occupations for the corresponding
Ligand Field Theory calculations are displayed in figure 5.4.

It is evident that the behaviour of the partial occupations for the x­ and z­
directions is very similar, as both laser polarisations point along a symmetry axis
of the crystal. Only for the pulse with an FWHM of 3.33 f s a slight difference can
be observed.

The charge transfer excitation is much more pronounced for polarisations in
the (1, 1, 0)­ and (1, 1, 2)­directions, except for the calculation with an FWHM of
3.33 f s. During the first occupation peak some electrons are even excited from the
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Figure 5.5: Spectra for light in the (1, 0, 0)­direction (black solid line), the (0, 0, 1)­direction (black
dashed line), the (1, 1, 0)­direction (grey solid line) and the (1, 1, 2)­direction (grey
dashed line). Also depicted are the Fourier­transforms of the laser pulses with FWHMs
100 as (black line), 333 as (red line), 1 f s (orange line) and 3.33 f s (turquoise line).

Ni­3d shell to the ligand instead of the other way round, and for the calculation with
an FWHM of 1 f s and light polarised in the (1, 1, 0)­direction the Ni­3d occupation
exceeds the ligand occupation (compare the orange line in the lower left panel of
figure 5.4).

Some of the dynamical behaviour of NickelIIoxide can be predicted from
its response function of equation (4.3), the negative imaginary part of which is
the spectrum (compare section 4.2). Specifically the X­ray absorption spectrum
(abbr. ‘XAS’) contains information about the system’s reaction to the simulated
laser pulse. It is depicted in figure 5.5 for various polarisations.

All spectra are dominated by the large L3 edge, centred at 846.275 eV. At around
848 eV some Ni multiplet features are visible. The first peaks produced by ligand
excitations sit at roughly 852 eV. The large L2 edge can be seen at approximately
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864 eV, followed by two smaller ligand peaks at around 868 eV.
Also shown are the Fourier transforms of the laser pulses of different FWHMs

(scaled such that their maxima are at the same value). A sinusodial pulse would
have a delta peak as its Fourier transform and would thus only excite at one given
frequency. Any possible excitation that is not at that frequency will not contribute
to the dynamics of the system because the effect of the external field is damped
quickly by detuning. Due to the Gaussian envelope the laser pulses are composed
of infinitely many frequencies, with prefactors falling off with the distance from the
main frequency.

The Fourier transforms can therefore be used to predict which transitions a given
laser pulse is likely to excite. In frequency space, the pulse with an FWHM of
3.33 f s has approximately no overlap with other peaks than the L3 edge main peak.
It is thus expected to make no ligand excitations, as indeed noted before (compare
the turquoise lines in figure 5.3). The peaks with FWHMs of 1 f s and 333 as are
both expected to not excite to the L2 edge, and the latter should make more ligand
excitations than the former. No restrictions can be made on the broad 100 as pulse.

However, the static spectrum together with the Fourier transformed laser pulses
do not tell the full story. Once the laser starts exciting the system it is not in the
ground state any more, and the Hamiltonian has changed. It subsequently has, in
general, a different spectrum, possibly leading to other excitation amplitudes. Note,
for example, that even though the overlap of the Fourier transform of the 1 f s pulse
with the ligand peaks is small, it excites to them if the laser field strength is suffi­
ciently high, as is evident from the orange lines in figure 5.3. The aforemade con­
siderations also suggest that ligand excitations are the same for most pulses and a
bit stronger for the (0, 0, 1)­direction, but figure 5.4 shows that they are strongest in
case of the (1, 1, 0)­polarisation, at least for the laser pulse FWHM of 1 f s (orange
lines). The explicit calculation of the time­evolution therefore clearly goes beyond
the linear­response theory of spectra.

5.5 Ligand Field Theory with Auger­Meitner
decay

Theory
The results presented so far are calculated for an idealised system from which elec­
trons can not escape. In reality, however, the excited system can relax via Auger­
Meitner decay, which intrinsically couples it to a continuum (see 4.1 for a graphical
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Figure 5.6: Partial occupations for Ligand Field Theory, for polarisation in the x­direction and laser
pulse FWHMs of 100 as (black lines), 333 as (red lines), 1 f s (orange lines) and 3.33 f s
(turquoise lines). All plots were created with E = 38 f Vs/aB.

depiction of the mechanism). The effects of this dissipation need to be taken into
account in order to make reliable predictions.

To simulate this, the von Neumann equation (4.27) governing the time evolution
is replaced by the GKSL equation (4.50). In this section, the decay strength γ is
treated as a parameter and set to either 0 or 1 eV. It is assumed to be the same for
all physically allowed decay channels.

Results
The partial occupations of the Ni­2p, Ni­3d and ligand shell for values of E of
38 f Vs/aB, 76 f Vs/aB, 152 f Vs/aB and 304 f Vs/aB are presented in figures 5.6, 5.7, 5.8
and 5.9, respectively. The results for the calculations including a decay strength of
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Figure 5.7: Partial occupations for Ligand Field Theory, for polarisation in the x­direction and laser
pulse FWHMs of 100 as (black lines), 333 as (red lines), 1 f s (orange lines) and 3.33 f s
(turquoise lines). All plots were created with E = 76 f Vs/aB.

γ = 1 eV are depicted with dashed lines, and those for calculations without decay
are shown with solid lines for reference.

Because the decay strength, which implies a characteristic time scale, is kept
constant throughout the calculations while the laser pulse length is not, it is ex­
pected that the role dissipation plays increases with the width of the pulse. This
behaviour can best be observed in the Ni­2p occupation for E = 38 f Vs/aB (com­
pare figure 5.6). While the population at time t = 0 is roughly the same for all pulse
lengths for the non­decaying case, it gets closer to its initial value with increasing
FWHMs if decay is considered. At an FWHM of 3.33 f s there is no oscillation visi­
ble any more. This shows that the orbital excitation is damped with increasing laser
field strength.

The occupations of the other shells complete the picture. For FWHMs of 100 as
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Figure 5.8: Partial occupations for Ligand Field Theory, for polarisation in the x­direction and laser
pulse FWHMs of 100 as (black lines), 333 as (red lines), 1 f s (orange lines) and 3.33 f s
(turquoise lines). All plots were created with E = 152 f Vs/aB.

and 333 as the occupation of the Ni­3d shell increases, albeit significantly less than
in the non­decaying case. The decay then lets it fall off lower than the initial occu­
pation. In case of the longer pulses the population begins to decrease once the laser
starts exciting electrons.

This lower population of the Ni­3d orbitals increases the excitation rate from
the ligand shell. For all FWHMs the ligand occupation begins to decrease earlier in
case of decay than without, and ends at a lower value. This means that the charge
transfer excitation is amplified by the inclusion of decay in the calculation, but there
seems to be no dependence on the width of the laser pulse.

The decay also seems to suppress the after­pulse Ni­3d­ligand oscillations. This
does not mean, however, that the system is closer to an eigenstate of the occupation
operators, because the decay of an excited state, which is a probabilistic process
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Figure 5.9: Partial occupations for Ligand Field Theory, for polarisation in the x­direction and laser
pulse FWHMs of 100 as (black lines), 333 as (red lines), 1 f s (orange lines) and 3.33 f s
(turquoise lines). All plots were created with E = 304 f Vs/aB.

happening at a random time, changes the system’s density to that of a mixed state.
This means that it can no longer be described by a single wave function, but by an
ensemble of states.

Similar observations can be made when increasing the product of FWHM and
laser field strength to E = 76 f Vs/aB (compare figure 5.7). For FWHMs of 100 as
and 333 as the Ni­2p occupation features two minima, although the second mini­
mum is significantly closer to the initial value than the first. For an FWHM of 1 f s
the second minimum is not visible, and the curve of 3.33 f s is almost completely
flat.

Again only the lower two values of FWHM manage to produce an increase in
the Ni­3d occupation, both show a smaller revival coinciding with the second Ni­2p
minimum. For the larger values of FWHM the occupation falls off in a very similar
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Figure 5.10: Spin in z­direction in units of h̄ = 1 for Ligand Field Theory, for polarisation in the
x­direction and laser pulse FWHMs of 100 as (black lines), 333 as (red lines), 1 f s
(orange lines) and 3.33 f s (turquoise lines). The values of E are 38 f Vs/aB (upper left),
76 f Vs/aB (upper right), 152 f Vs/aB (lower left) and 304 f Vs/aB (lower right).

manner.
Doubling the laser field strength so that E = 152 f Vs/aB changes some of this

behaviour (compare figure 5.8). There is a small second and even smaller third
oscillation maximum visible in the Ni­3d occupation at an FWHM of 1 f s, and a
single tiny minimum in the Ni­2p occupation for the 3.33 f s pulse.

The Ni­3d occupation quickly falls off to one less electron than the initial value
in case of the pulse with an FWHM of 3.33 f s, and saturates there. This is most
likely a computational artefact, because only states with up to one decayed electron
were considered in the basis set in order to speed up calculations. In reality the final
occupation would most likely be significantly lower than the calculated value.

The E = 304 f Vs/aB calculations do not add much new information (compare
figure 5.9). In case of the pulse with an FWHM of 1 f s there is a small excitation
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Figure 5.11: Spin in z­direction in units of h̄ = 1 for Ligand Field Theory, for polarisations in the
(1, 0, 0)­directon (upper left), (0, 0, 1)­direction (upper right), (1, 1, 0)­direction (lower
left) and (1, 1, 2)­direction (lower right). The laser pulse FWHMs are 100 as (black
lines), 333 as (red lines), 1 f s (orange lines) and 3.33 f s (turquoise lines). All plots
were created with E = 76 f Vs/aB.

into the Ni­3d shell at the beginning of the pulse, but it quickly falls to values lower
than the initial value. Orbital excitations can therefore be forced by stronger laser
fields, even for long pulses. For all practical applications, however, it is safe to say
that orbital excitations do not happen for pulse FWHMs larger than about 500 as.

The expectation value of the z­component of the system’s spin is displayed in
figure 5.10 for different values of E. The system starts off in a polarised state, with
〈Sz〉 ≈ −0.7, the absolute value of which is then decreased once the laser starts
exciting the system*. At some point the trend reverses, and the absolute value of
〈Sz〉 begins to oscillate, usually about a value of roughly −0.5. The absolute value
never reaches 0. The time when this oscillation begins happens earlier (in terms

*Note that h̄ = 1 in the unit system used here, meaning that 〈Sz〉 has units of 1.
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of FWHM) the longer the laser pulse is, suggesting that this is related to a system­
internal time­scale.

After the excitation by the laser the system is, in general, not in an Eigenstate
anymore, which can lead to spin precessions. This can be observed especially well
for the pulse with an FWHM of 3.33 f s and E = 304 f Vs/aB (compare the turquoise
line in the upper left panel of figure 5.10). This precession happens significantly
slower than the changes induced directly by the laser.

It seems that decay in NickelIIoxide favours electrons that have no counterpart
with spin in the other direction, as almost all calculations with decay give a lower
absolute value for 〈Sz〉 than without. This is plausible, because Auger­Meitner de­
cay does not change the spin of the electrons, meaning that the population making
up the majority has more decay channels than the minority.

Furthermore, decay smooths the seemingly chaotic behaviour induced by strong
laser fields.

Since spin is a direction­dependent quantity its behaviour under different laser
polarisations is of interest. It is shown in figure 5.11.

As expected, the laser light in z­direction manages to have the most impact on
the value of 〈Sz〉, especially for an FWHMof 1 f s. Even here the spin is not flipped,
though.

The very short pulse with the polarisation in (1, 1, 0)­direction is the only ob­
served pulse that manages to increase the absolute value of 〈Sz〉 when it starts ex­
citing the system, albeit only by a very small amount.

Therefore, within the scope of these simulations, no spin­flip excitation can be
observed.

5.6 Discussion
The ultrafast dynamics of NickelIIoxide were observed for different levels of theory.
In the 2 level description the system mostly behaved as expected from Rabi­theory,
although its electric field wave was enveloped by a Gaussian. This behaviour broke
down for very high electric field strengths of about 1500 V/aB and higher. The Crys­
tal Field Theory description offered a more complicated but similar behaviour for
short pulse lengths and low field strengths. This trend was continued in the de­
scription by Ligand Field Theory, but for larger pulse lengths and field strengths the
behaviour became much richer.

In this description, orbital excitation and de­excitation happened for all field
strengths and pulse lengths. Charge transfer excitation from the ligand orbitals to
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Ni­3d was observed to be strongest for pulse lengths between 333 as and 1 f s and
did almost not happen for a pulse length of 3.33 f s, a behaviour which could be
explained by the results of the X­ray absorption spectrum. No total spin­flip ex­
citation could be observed for any combination of pulse length, field strength and
polarisation.

The inclusion of decay in the calculation significantly changed the time­
evolution. Orbital excitations were strongly suppressed and were practically
impossible for pulse lengths over 500 as, although they could be forced by very
strong fields. The lower Ni­3d occupation amplified the charge transfer excitation.
The spin­flip excitations were also affected, in that the absolute value of 〈Sz〉 was
decreased with time.

The inclusion of the decay mechanism certainly leaves room for improvement.
Here, only one parameter γ was used for all decay channels, while in reality the
strength differs from channel to channel. Calculating the values of γ in an ab initio
fashion, as it is done in section 7, is therefore desirable. The approximation of only
allowing decayed electrons with lz = 0 can be treated with more computational
power, as the inclusion of larger values does not exponentially scale the complexity
of the calculation.

It might also be instructive to include different relaxation mechanisms like flu­
orescence decay, during which a single electron is de­excited and a photon emitted.

To quantify the interaction between light and matter more accurately, the electric
dipole moments can be calculated from the full basis orbitals, whose spatial depen­
dence can be extracted from a Density Functional Theory calculation, as is done in
section 6.

What the calculations are lacking most is experimental measurements to test the
predictions they make. Only those can conclusively reveal whether the assumptions
and simplifications made to arrive at the results are justified, and help to tweak them.

This aspiration is not restricted to one specific material, because the method pre­
sented here and tested for the exemplary case of NickelIIoxide can easily be applied
to any system for which an approximate Hamiltonian of comparable complexity is
known.

Comparing the theory to experiments will advance the understanding of inter­
actions between light and matter, and the presented technique may well become
common for simulating photochemical reactions.
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6 Sulphur­hexafluoride

Most of the content of this chapter will also have been published in ref. [68].

6.1 Motivation
The realms of chemistry, biology and solid state physics are almost entirely governed
by the electronic interactions between charged particles. Most phenomena in atoms
can be described by electrons subjected to the potential of a nucleus, where on a one­
particle level they occupy various atomic orbitals. In chemically inert molecules
a description of non­interacting nuclei in the Born­Oppenheimer approximation6
is usually sufficient, in which the individual orbitals combine to form molecular
orbitals (abbr. ‘MO’).59,62

Despite the many merits of mean field theory, some phenomena elude descrip­
tion without the explicit inclusion of many­body interactions. Specifically the ex­
change part of the Coulomb interaction allows for mixing between otherwise com­
pletely decoupled configurations, thus influencing for example the shape of spec­
tra.60

It is shown here that this interaction can be probed and its effective value tuned
by lasers, as the electric light field mixes configurations with different exchange
parameters. This tuning happens on a timescale below that of nuclear dynamics.
Controlling the effective value of the fundamental exchange parameter is a novel
step towards laser directed chemistry in the Born­Oppenheimer regime.

The effect is demonstrated in this section for the molecule Sulphur­hexafluoride
(abbr. ‘SF6’). It is the candidate of choice because its chemical inertness makes it
experimentally accessible, and because its small number of atoms and lack of open
shells result in low computational time and clear dynamics. Furthermore, its static
X­ray absorption spectrum has been extensively studied both experimentally36 and
theoretically.15,39 This makes it ideal for this proof­of­concept study.
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In the experiment, the X­ray absorption spectrum (abbr. ‘XAS’) of SF6 at a pho­
ton energy of around 170 eV was measured under the influence of a strong infrared
(abbr. ‘IR’) tuning laser beamwith a photon energy of 0.808 eV (compare ref. [68]).
The result is two peaks arranged in a doublet, whose area ratio and energy splitting
depend on the effective exchange energy, which is modified by the tuning laser.

Both of the two directly measurable quantities are theoretically reproduced by a
few­configuration model fit. A smaller version of this model allows to use those pa­
rameters to calculate the numerical value of the effective exchange energy. The sec­
tion is concluded by a parameter­free ab inito simulation in good qualitative agree­
ment with the measurement, which allows to obtain information about the broaden­
ing of the XAS pulse.

6.2 Few­Configuration Fit

Theory
In the few­configuration fit method, a suitable basis comprised of themost important
many­body wave functions is constructed to find a few­parameter matrix represen­
tation of the operators at play.

The first basis vector is the initial state of the system, assumed to be the ground
state |ψ0〉. For simplicity its energy is set to 0.

The next set of states are those that are reached by acting on |ψ0〉 with an op­
erator TXAS corresponding to a dipole transition of interest. The case considered
here is that of an excitation from a core shell c with p character to a valence shell
v with s character, but the method is applicable to numerous other cases as well.
The degeneracy of the core shell is lifted by spin­orbit coupling, resulting in two
basis states

∣∣∣c−1
+ v1

〉
and

∣∣∣c−1
− v1

〉
corresponding to a core hole with total angular

momentum quantum number j = 3/2 and j = 1/2, respectively.
In the absence of a tuning laser this basis suffices to describe the shape of a

double peak. It is insightful to set up the model for this simplified case.
With the given basis set it is a straightforward task to find the form of the matrix

representations of the operators of interest. The perturbatively treated excitation
TXAS can couple the ground state to the first excited states, and no others. Because
there are (in this case) twice as many c+ orbitals as there are c−, the coupling is
given by a normalised multiplicity prefactor times the dipole moment d times the
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peak field strength ϵXAS. Thus, the matrix representation is found to be

TXAS =


0

√
2
3 dϵXAS

√
1
3 dϵXAS√

2
3 dϵXAS 0 0√
1
3 dϵXAS 0 0

 . (6.1)

The diagonal entries of the Hamiltonian matrix are given by the energy expectation
values of the basis states. The ground state energy is gauged to 0, the excited block
begins at some energy E and is split by an energy difference of ∆.

The mechanism mixing states with different core holes is the exchange part of
the Coulomb interaction.60 Here it is labelled with Ex, completing the matrix form
of the Hamiltonian,*

H =

0 0 0
0 E Ex
0 Ex E + ∆

 . (6.2)

According to the theory of radiation,16 excitation peaks correspond to eigenenergies
of the Hamiltonian, and their integral measure to the absolute square of the transi­
tion operator matrix element (compare section 4.2). To theoretically calculate these
quantities it is therefore, in this model, sufficient to rotate both H and TXAS to the
eigensystem of H.

As the Hamiltonian does not couple the ground state to any other, this transfor­
mation matrix R is found by diagonalising the lower right 2 × 2 submatrix, which
can be done analytically. The resulting diagonal entries are given by

(
RHRt)

2,2 =
1
2

(
2E + ∆ −

√
4E2

x + ∆2
)

(6.3)

(
RHRt)

3,3 =
1
2

(
2E + ∆ +

√
4E2

x + ∆2
)

, (6.4)

showing that the peak energy splitting is

s =
√

4E2
x + ∆2 . (6.5)

*This form assumes that all matrix elements are real valued. The adjustment for complex values
is straightforward and not shown here for the sake of brevity.
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The transition probabilities are(
RTRt)2

1,2 =
−4

√
2Ex + ∆ + 3

√
4E2

x + ∆2

6
√

4E2
x + ∆2

(6.6)

(
RTRt)2

1,3 =
4
√

2Ex − ∆ + 3
√

4E2
x + ∆2

6
√

4E2
x + ∆2

, (6.7)

leading to a peak area ratio of

r =
−4

√
2Ex + ∆ + 3

√
4E2

x + ∆2

4
√

2Ex − ∆ + 3
√

4E2
x + ∆2

. (6.8)

Using equation (6.5) the result can be rewritten as

r =
−4

√
2Ex + 3s +

√
s2 − 4E2

x

4
√

2Ex + 3s −
√

s2 − 4E2
x

. (6.9)

The expected value r = 2 is obtained in the limit Ex → 0. For other ratios and
splittings the model value of Ex, henceforth called effective exchange Ee f f

x , can be
found using this equation.

Including the tuning laser in the model is achieved by complementing the basis
set by acting on the excited states with an operator TIR representing the laser field.
In the present case it excites the valence electron in v to a (not necessarily specified)
polarising orbital p, adding the new states

∣∣∣c−1
+ p1

〉
and

∣∣∣c−1
− p1

〉
. Because the laser

field is treated in the dipole approximation and v is in this case assumed to have s
character, the polarising orbital must have p character due to selection rules.

The new states are not coupled by TXAS, so its matrix representation TXAS re­
mains the same except for the addition of two rows and columns with entries 0.

The tuning excitation TIR is treated as part of the HamiltonianH. It only couples
between the two excited blocks, with a strength of d′ϵIR, and cannot mix states with
different core holes.

The two states with an occupied polarising orbital begin at energy E′, are split by
∆′, and are also coupled by exchange interaction, but with a different matrix element
E′

x.
This leads to the new Hamiltonian matrix form

H =


0 0 0 0 0
0 E Ex d′ϵIR 0
0 Ex E + ∆ 0 d′ϵIR
0 d′ϵIR 0 E′ E′

x
0 0 d′ϵIR E′

x E′ + ∆′

 . (6.10)
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Figure 6.1: The molecular structure of Sulphur­hexafluoride.

Because finding the eigensystem of the lower 4 × 4 submatrix involves solving a
polynomial of fourth order, analytically rotating both matrices to find s and r proves
unwieldy. However, it is easily done for numerical values, many of which can be
obtained from ab initio considerations once the system is specified.

The molecule Sulphur­hexafluoride (abbr. ‘SF6’) is comprised of a central sul­
phur atom and six fluorine atoms arranged in octahedral geometry with a bond
length* of 2.99aB = 1.58Å (compare figure 6.1).

The electronic structure of SF6, as it is depicted in figure 6.2, is found by con­
verging a DFT simulation. Also shown in the figure is the electron density

nj (⃗r) = ψj (⃗r)ψj (⃗r) (6.11)

of the molecular orbitals.
Equipped with the knowledge of the spatial dependence ψ(⃗r) of the wave func­

tions the dipole matrix element

d′ =
∫

R3
ψv (⃗r)zψp (⃗r) d⃗r (6.12)

can be calculated, where the polarising orbital ψp is approximated as the first unoc­
cupied orbital with S­p character.† Analogously, d can be found by exchanging ψp
for ψc.

*as found by an FPLO force relaxation
†The error made due to this approximation can be completely absorbed into a rescaling of ϵIR.
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Figure 6.2: The energy level scheme of Sulphur­hexafluoride and its atomic constituents. The over­
lap of the core, valence and polarising molecular orbitals with the atomic orbitals is in­
dicated by the opacity of the dotted lines, and their electron densities are plotted. More
polarising orbitals at higher energies (not to scale) are suggested. The spin­orbit splitting
of the core orbital is not displayed here.

The energy E of the first excited state can be approximated as the difference
of the one­particle energies of the valence and core orbital. As it turns out, E is
irrelevant for determining the peak energy splitting and area ratio, but it is mentioned
here for the sake of completeness.
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In the considered system Ex can be rewritten as

Ex =
2
√

2
9

G1 , (6.13)

with the Coulomb integral G1, which can be approximately calculated using atomic
radial functions and equation (3.9). However, as the occupied orbitals are not
atomic, it is necessary to scale this result by a factor g, which is usually between
0.8 and 0.9.

The Hilbert space of a p core shell with one hole and an s orbital with one ex­
cited electron is spanned by a total number of 6 × 2 = 12 Slater­determinants. By
calculating all matrix elements of the operators representing spin­orbit coupling and
the exchange interaction on this basis an analytical expression for ∆ in terms of ζ
and Ex can be found. It is given by

∆ =
3
2

ζ − Ex√
2

. (6.14)

Since ζ comes from an atomic calculation, a small scaling factor z is also allowed
for here.

The parameters E′, E′
x and ∆′ are found by fitting the theoretical results for peak

energy splitting and area ratio to an experimental data point.

Results
The X­ray absorption spectrum as experimentally measured in ref. [68] is displayed
in figure 6.3 for a low tuning laser field strength of 0.12 V/aB, and the highest avail­
able field strength of 2.16 V/aB.

In the absence of any coupling via exchange energy, the first peak at lower en­
ergy would correspond to an excitation from an S­2p orbital with total angular mo­
mentum of j = 3/2, and its area would be twice as large as that of the second peak.
As is visible from the plots, the first peak is instead suppressed compared to the
second, and the suppression increases with tuning laser field strength.

At first glance the second peak is suppressed as well, but its loss in peak intensity
is made up for by a broadening, such that the sum of the total integrals of the two
peaks remains unchanged within error bars.68

A small shifting of the peak position towards lower energies can also be ob­
served, an effect which is not included in the theoretical description.

Using a Voigt fit, the areas and positions of the peaks, and hence their ratio and
splitting, can be obtained from the spectra, thus quantising the observations.
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Figure 6.3: X­ray absorption spectrum of SF6 at low (0.12 V/aB, black line) and high (2.16 V/aB, red
line) tuning laser field strength.

The parameters for the few­configuration fit are listed in table 6.1. All values
needed to reproduce the peak area and splitting of the X­ray absorption spectrum in
absence of the tuning laser field can be obtained from ab initio considerations. The
values of G1 and ζ are both scaled with a respective factor of g and z in order for
the results to agree with the first data point.

The numerical value of g = 0.85 is very common and can be explained, because
assuming atomic orbitals in the calculation of Coulomb integrals has a tendency to
overestimate their overlap. The factor of z = 1.05 is also well within reason and
only necessary for perfect agreement with experiment.

The remaining parameters E′, E′
x and ∆′ are chosen such that the model repro­

duces the peak area ratio and energy splitting obtained from the Voigt fit of the
experimental spectrum at highest tuning laser field field strength.

The energy difference between the first and second block of excited states is
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Parameter Value
d 0.05 eab
E 160.77 eV
g · G1 0.85 · 1.23 eV
Ex 0.33 eV
z · ζ 1.05 · 0.75 eV
∆ 0.94 eV
d′ 1.22 eab
E′ 163.10 eV
E′

x 0.80 eV
∆′ 0.15 eV

Table 6.1: The parameters for and from the few­configuration fit. The values of d, E, G1, ζ and d′

are calculated in an ab initio fashion, while g and z (and subsequently Ex and ∆), E′, E′
x

and ∆′ are fitted to the experiment.

given by E′ − E = 2.33 eV, which is about half as large as expected from the DFT
calculation. However, since DFT can never include all reachable states in its basis
and is optimised for finding the ground state of a system, it can only be considered
an approximation and potentially overestimates the energy splitting.

Compared to Ex, E′
x is larger by a factor of about 2.5. An increase in exchange

energy is expected, as the tuning laser in dipole approximation excites an electron
from a core orbital with odd symmetry to the even valence orbital, and from there to
the odd polarising orbital.* Because both the polarising and the core orbital have the
same symmetry (and, if the valence orbital has s character, even the same angular
momentum quantum number l) their overlap is potentially larger.

The comparably small value of ∆′ = 0.15 eV stems from the fact that
equation (6.14), which would instead suggest a value of 0.59 eV, does not hold for
the parameters of the polarising orbital, which due to selection rules necessarily has
another character than the valence orbital.

With all parameters of the few­configuration fit model fixed, its results can
be plotted together with the experimental ones. The peak area ratio is shown in
figure 6.4, and the energy splitting in figure 6.5.

The trend of a suppressed first peak observed in the spectra of figure 6.3 is con­
firmed by the full evaluation of all 19 experimental data points. This means that the
effective exchange energy increases, as the tuning laser mixes the valence with the

*Alternatively, it may excite from even to odd to even orbital if another system is considered.
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Figure 6.4: The ratio between the two peak areas as obtained from a Voigt fit to the experimental
data (black dots) and from the few­configuration fit model (red line).

polarising orbital.* The few­configuration fit reproduces the behaviour remarkably
well, considering that it is only fitted for the spectrum at the highest tuning laser
field strength and at its absence.

At a first glance at the experimental points alone, a linear dependence of the area
ratio on the tuning laser field strength is suggested. However, because a negative
electric field strength is mathematically the same as the introduction of a phase of
π in the oscillating field, it is expected to have the same effect as its positive coun­
terpart. This means that the function describing the peak area ratio must be even in
tuning laser field strength. The few­configuration fit model clarifies the behaviour,
showing a quadratic dependence for low tuning laser field strengths and an approx­
imately linear dependence only for larger values.

*For a plot of the effective exchange energy as extracted from the experimental data see
figure 6.7.
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Figure 6.5: The splitting between the two peak energies as obtained from a Voigt fit to the experi­
mental data (black dots) and from the few­configuration fit model (red line).

The energy splitting between the two peaks remains largely unchanged through­
out the tuning laser field strength range (compare figure 6.5). Although the few­
configuration fit has a small minimum at about 0.6 V/aB, no such behaviour can
conclusively be observed experimentally, as it vanishes behind the error bars.

The fit model also suggests an increasing peak splitting at higher tuning field
strengths, but whether or not this is realised in experiment remains an open question.

Figure 6.6 visualises the physical origins of the increase in effective exchange
energy. In absence of the tuning laser the core hole can only be excited to the valence
orbital, the electron density of which is plotted in the upper left. The phase of the
(real valued) orbital is encoded in the colour of the isosurface. Increasing the field
strength E0 adds admixture with the polarising orbital and breaks the symmetry, as
shown further to the right.
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E0 0.0 V/aB 0.7 V/aB 1.4 V/aB 2.1 V/aB

|β|2 0 0.02 0.08 0.14

Ee f f
x 0.33 eV 0.38 eV 0.44 eV 0.48 eV

Figure 6.6: Electron densities (top) of the valence orbital, mixed with the polarising orbital with
overlap β due to the tuning laser strength E0, densities of the product of this orbital with
a pz core orbital (middle), and operator density plot of the effective exchange energy
Ee f f

x between states with different total angular momentum j.

The mixing coefficients can be calculated by finding the four many­body states

|Ψ+〉 =α
∣∣∣c−1

+ v1
〉
+ β

∣∣∣c−1
+ p1

〉
, (6.15)

|Ψ−〉 =α′
∣∣∣c−1

− v1
〉
+ β′

∣∣∣c−1
− p1

〉
, (6.16)∣∣Ψ̃+

〉
=γ

∣∣∣c−1
+ v1

〉
+ δ

∣∣∣c−1
+ p1

〉
and (6.17)∣∣Ψ̃−

〉
=γ′

∣∣∣c−1
− v1

〉
+ δ′

∣∣∣c−1
− p1

〉
, (6.18)

that together with the ground state would diagonalise thematrix in equation (6.10) in
absence of any exchange interaction. They each have a well­defined total angular
momentum, but mix the valence with the polarising orbital. In absence of the IR
laser field the coefficients β, β′, γ and γ′ all vanish.

The coefficients α and β of the state with lowest energy are used to find the
effective mixed valence orbital

ψm (⃗r)
def
= αψv (⃗r) + βψp (⃗r) . (6.19)
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The exchange interaction features terms of the form∫
R3

∫
R3

ψ1(⃗r1)ψ2(⃗r2)
1

|⃗r1 − r⃗2|
ψ1(⃗r2)ψ2(⃗r1) d⃗r1d⃗r2 . (6.20)

To visualise its increase, the density of the product ψm (⃗r)ψc (⃗r) of mixed and core
orbital is plotted in the middle line of figure 6.6. The pz orbital is chosen here as
an example of ψc. The isosurface at the very small value of 3 · 10−6 is shown,
for significantly larger values all four plots would resemble the more localised core
orbital. As expected, the product is antisymmetric in absence of the tuning laser.
This means that the integral (6.20) takes the form∫

R3

∫
R3

a(⃗r1)
1

|⃗r1 − r⃗2|
a(⃗r2) d⃗r1d⃗r2 , (6.21)

with the antisymmetric function a(⃗r) def
= ψv (⃗r)ψc (⃗r). For large values of |⃗r2| the

contribution of the integrand is small, because the core orbital and hence a(⃗r2) is
localised. For small values of |⃗r2| the function 1

|⃗r1−⃗r2|
≈ 1

|⃗r1|
is approximately sym­

metric and is multiplied by the antisymmetric a(⃗r1). This results in the integral over
r⃗1 approximating 0. If the approximation is not valid, 1

|⃗r1−⃗r2|
is still strictly positive,

such that the terms a(±⃗r1)
|±⃗r1−⃗r2|

in the integral have opposite sign and partially cancel
each other. The admixture of the polarising orbital breaks the antisymmetry and
thus leads to larger exchange integrals.

6.3 Ab initio many­body Simulation

Theory
To reproduce the experimental behaviour with as few fit parameters as possible, a
full many­body simulation of the SF6 system is done in QUANTY. It is based on an
FPLO calculation, from which a one­particle basis set is obtained via a downfolding
(compare section 3.1), including those molecular orbitals whose overlap is strongest
with the atomic basis orbitals S­2p, S­3s, S­3p and S­4s.

Knowing the spatial dependence of the basis orbitals, the Coulomb parameters
in equation (3.8) are calculated, which together with the orbital energies and spin
orbit parameter ζ complete the HamiltonianH.

Both the XAS and the (infrared) tuning laser are simulated as polarised dipole
operators TXAS/IR with the same polarisation p⃗. In case of XAS, the operator is
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enabled to make a 2p − 3s and 2p − 4s excitation*, as well as the reverse. The
tuning laser is built up analogously, with the 2p orbital replacedwith 3p. The electric
dipole moments corresponding to the transitions are, as before, found by carrying
out the spatial integrals involved in 〈ψ1|ri|ψ2〉 numerically.

To accurately reproduce the experimental setup, the operator of the tuning laser
is further modified by a time­dependent prefactor

Eφ(t) = E0 cos (ωt + φ) exp
(
− t2

2σ2

)
, (6.22)

with the electric laser field strength amplitude E0, the laser frequency ω =
0.80771 eV/h̄, and a standard deviation of the pulse length σ = 9.01 f s (and thus
a full width at half maximum (abbr. ‘FWHM’) of 2

√
2 ln 2σ = 21.21 f s, which

corresponds to an FWHM of 15 f s for the intensity).
In the performed experiment the XAS laser pulse has the same polarisation as

the tuning laser and usually occurs 2/3 IR electric field periods after the maximum
of the IR laser intensity.13 It can hence be found as

tXAS = tm(φ) +
2
3

2π

ω
, (6.23)

where tm(φ) maximises E2
φ(t).

Accordingly, the simulation calculates†

S(ωXAS, t) = −Im
〈

ψ0

∣∣∣∣T †
XAS

1
ωXAS −H− TIR(t) + iΓ

TXAS

∣∣∣∣ψ0

〉
, (6.24)

the X­ray absorption spectrum at energies ωXAS under the influence of the tuning
laser, around the time tXAS (compare section 4.2).

The intensity of the XAS pulse is assumed to follow a Gaussian curve with a
broadening of σXAS = 38 as in the time domain, as is justified below. To account
for this, the spectrum is averaged over 11 points in a small region [tXAS ± 126 as],
weighted with

G(t) = exp

(
− t2

2σ2
XAS

)
. (6.25)

*again denoting the molecular orbitals, not the atomic ones
†Since TIR only acts between unoccupied orbitals the system remains in its ground state through­

out the simulation.
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MOs Dipole [eab] G0 [eV] G1 [eV] G2 [eV]
S­2p, S­3s 0.05 ­ 0.96 ­
S­2p, S­3p ­ 1.08 ­ 1.07
S­2p, S­4s 0.01 ­ 0.11 ­
S­3s, S­3p 1.22 ­ 5.65 ­
S­3p, S­4s 0.68 ­ 0.32 ­

Table 6.2: The electric dipole moments and exchange Coulomb integrals between several molecular
orbitals, as calculated from the spatial distribution of the wave functions. The nomen­
clature reflects the largest overlap the MO has with the atomic basis orbital of the same
name.

The result is further averaged over various choices

φ = (1, 2, ..., 30)
π

30
(6.26)

of the tuning laser phase.
To account for the random orientation of the molecule in experiment, an average

over the laser field polarisations

p⃗1 =

1
0
0

 , p⃗2 =
1√
2

1
1
0

 , p⃗3 =
1√
3

1
1
1

 (6.27)

with respective geometry­multiplicity based weights of 6, 12 and 8 is done, bringing
the total number of spectra calculated for one value of the tuning laser field strength
to 990.

Results
The results of the calculation of the electric dipole moments and exchange Coulomb
integrals between the molecular orbitals making up the basis are given in table 6.2.
The direct Coulomb integrals are implemented on a mean field level.

The averaged spectra resulting from the simulation are fitted with the same Voigt
fit method as the experimental data for every tuning laser field strength. This guar­
antees the best comparability of the extracted peak ratios and energy splittings with
the measured data.

One source of error is that in the simulation only a single molecular orbital rep­
resents the polarising orbital, instead of the plethora of levels available to nature.
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Figure 6.7: The effective exchange energy as obtained from the peak area ratio and energy splitting
of the experimental data (black dots) and from the ab initio many­body simulation for
a temporal broadening of the XAS laser pulse of σXAS = 34 as (orange line), σXAS =
38 as (red line) and σXAS = 42 as (turquoise line). Also shown are the results from the
simulation scaled by a factor of 1.27 (dotted lines). Note that the scale of the tuning laser
field strength for the simulated data is multiplied with a factor of 4.33 compared to the
experiment.

As such, the polarisability of the valence orbital is underestimated. The calculation
further relies on an FPLO calculation. As DFT codes, by nature, are optimised for
the ground state of a system, the energy spacing between the initially unoccupied
valence and polarising orbital is overestimated. Both these effects mean that a larger
tuning laser field strength is necessary to observe the same effect as in experiment.

Another effect that FPLO does not take into account is that the core hole created
during the excitation process attracts the valence electron, thus decreasing the spatial
distribution of the valence and polarising orbital. This leads to an increased over­
lap with the confined core orbital and consequently larger values for the Coulomb
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Figure 6.8: The ratio between the two peak areas as obtained from a Voigt fit to the experimental
data (black dots) and from the ab initio many­body simulation (red line). Note that the
scale of the tuning laser field strength for the simulated data is multiplied with a factor
of 4.33 compared to the experiment.

parameters. The exchange energy is therefore underestimated in the simulation.
It is consequently necessary to make some adjustments. The effective exchange

energy Ee f f
x can be calculated from the extracted data using equation (6.9). It is

displayed in 6.7, for both experiment and simulation. Their values are assumed to
differ from one another by a constant scaling factor of 0.79, which is chosen such
that experiment and simulation agree on the first data point. To remedy the other
systematic error, the tuning laser field for the simulation is scaled by a factor of
about 4.33, to make the curves agree on the last data point.

However, the shape of the simulated curve and thus its agreement with the other
experimental data points depends on the assumed width σXAS in equation (6.25) to a
surprising amount. It is therefore possible to extract the temporal width of the XAS
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Figure 6.9: The splitting between the two peak positions as obtained from a Voigt fit to the exper­
imental data (black dots) and from the ab initio many­body simulation (red line). Note
that the scale of the tuning laser field strength for the simulated data is multiplied with a
factor of 4.33 compared to the experiment.

laser pulse, which was previously unknown, from the comparison of simulated and
experimental data in figure 6.7. It is found to be approximately

σXAS ≈ 38 ± 4 as , (6.28)

which corresponds to an FWHM of 90 ± 10 as. The error margin is estimated from
the error bars of the experimental data in the figure.

The tuning laser manages to change Ee f f
x from about 0.32 eV to approximately

0.48 eV, which is an increase by 50%. For even higher field strengths the energy is
suggested to saturate. Because the Voigt fitting procedure is inadequate to describe
the high field strength data of the simulation, this behaviour is neither confirmed
nor contradicted by the calculation.
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The area ratio of the peaks is shown in 6.8, and the energy splitting between them
in figure 6.9 for both the experimental and simulated data. Because the underesti­
mation of the effective exchange energy changes the behaviour of both quantities in
a non­trivial manner, they cannot reproduce the experimental data points, even after
the discussed scaling of the tuning laser field strength axis.

The simulation of the peak splitting shows a different behaviour than the few­
configuration fit, as can be seen by comparing figure 6.5 and figure 6.9. The neces­
sary scaling of the exchange interaction would influence the curve of the latter, but
the experimental resolution does not allow to decide which of the two will then be
closer to reality.

6.4 Discussion
The X­ray absorption spectrum, and specifically the peak area ratio and energy split­
ting of one doublet, were measured under the influence of a tuning laser. The ratio
was observed to decrease with increasing field strength.

A few­configuration model resulting in a 3 × 3 matrix was able to explain this
behaviour by an increase in the effective exchange energy, and yielded the means to
quantify it. It was shown to grow by about 50%.

Extending the few­configuration model supplied a 5 × 5 matrix which could be
fitted to two data points to accurately reproduce all others. It resolved the mystery
of an apparent linear field dependency.

This model may be improved by making the analytical considerations for the
core and polarising orbital leading to relations between ∆′ and E′

x analogous to
equation (6.14). In order to do that the 12 Slater­determinants spanning the space of
one hole in the p shell and one electron in the s shell would need to be complemented
by the 6 · 6 = 36 configurations of one hole in S­2p and one electron in S­3p. This
would eliminate one of the five remaining fit parameters from the theory.

An ab initio many­body calculation without any fit parameters reproduced the
data qualitatively. It could be shown to come into quantitative agreement after a
scaling of the two axes. Furthermore it was possible to extract the approximate
temporal width of the XAS laser pulse from the comparison between simulated and
measured data.

The discrepancies necessitating the scaling are well understood to be caused
by the limitations of Density Functional Theory. There are means to push these
further. Including more atomic basis orbitals in the DFT calculation would enable
it to more accurately reproduce the energy difference between unoccupied orbitals.
This would lessen the need to scale the tuning laser field strength axis. Some scaling
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would still be necessary, though, because the theory would resume to underestimate
the polarisability of the molecule.

Executing an additional DFT calculation with a fixed artificial core hole would
result in spatially more confined unoccupied orbitals. Using these would more accu­
rately reproduce the Coulomb integrals and thus exchange energy, possibly erasing
the necessity of one scaling parameter.

An improved theory should furthermore be able to reproduce the total energy
shift of the peaks, which was observed in figure 6.3.

Sulphur­hexafluoride was chosen as the scrutinised system because its compa­
rably simple dynamics allow for a clear proof­of­concept that lasers can be used
to tune the effective exchange interaction between various configurations. The ab
initio simulation can easily be adjusted to describe other systems. It can thus serve
to pick a more complex one with richer dynamics to be observed in experiment.
Adjusting the few­configuration model to fit new results is even less complicated.

This interplay of prediction and measurement can lead the way to further devel­
oping lasers to tools for even more applications, for example as chemical agents on
the sub­nucleonic timescale.
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7 Holmium­doped Gold

7.1 Motivation
In his 1930 letter* to the “Radioactive Ladies and Gentlemen”, Wolfgang Pauli pro­
posed a new particle,80 which we today know as the ‘neutrino’. Its existence solved
the issue of otherwise non­conserved energy during the β­decay that had arisen at
that time.11 Pauli wrote that the new particle should be neutral in charge and of mass
comparable to that of the electron.

Pauli’s statement about the mass of the neutrino is not necessary to explain de­
cay via the β­channel, and for a time it was believed that the particle was indeed
massless. This hypothesis has since been disproven by the discovery of several
neutrino flavours and oscillations between them, which can only be explained if
they are massive particles.1,2, 26 Whilst the mechanism allows to measure the dif­
ferences between the squares of the mass eigenvalues, it makes no statement about
the absolute mass.25

Today, more than 90 years after the proposal of its existence, only upper limits
have been found for the mass of the electron neutrino.56 One proposed attempt to as­
sign a numerical value to this quantity is to study the energy spectrum of radioactive
decays.24

A channel of particular interest is the electron capture event, during which a
proton and an electron of a mother atom merge to become a neutron and a neutrino,
leaving the daughter atom in an excited state.

The total energy released during the decay is given by the mass difference be­
tween the mother and daughter atom, the so called ‘Q­value’. Because the neutrino
is the only particle leaving the system, themaximum energy of the excited state is the
Q­value minus the elusive rest mass of the neutrino. For this reason the high­energy
tail of the spectrum is sensitive to its value.

*A translation of the full letter can be found on www.symmetrymagazine.org.
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The ECHo experiment is based around this idea.28 The studied atom here is
163Holmium, which decays to 163Dysprosium by capturing an electron. It then re­
laxes to its ground state, giving off energy to a chemical environment comprised of
Gold atoms. The spectrum of the relaxation is measured via calorimeters.

In order to extract the inordinately tiny neutrino mass from this spectrum its
theoretical description has to be enormously precise. Recently it has been shown
that most features of the spectrum can be reproduced by a simulation of atomic
Holmium if the effect of several Auger­Meitner decay channels is added via a self­
energy.10 However, in the experiment the Holmium atom is embedded in a Gold
environment, where its valence shells hybridise with the neighbouring atoms. This
is expected to have a non­negligible impact on the electron capture spectrum.

The aim of this section is to improve on the results from ref. [10] by repli­
cating the simulation for Holmium­doped Gold (abbr. ‘Au:Ho’) instead of atomic
Holmium, and by also including the effect of the environment as a self­energy.

7.2 Atomic Ho vs. Au:Ho

Theory
Atomic Holmium has an electronic configuration of [Xe]4 f 116s2, whereas the two
valence shells hybridise with the Gold environment in case of Au:Ho. To emulate
this, a relativistic DFT calculation is conducted using FPLO, in which Holmium re­
places one of the Gold atoms in a 2 × 2 × 2 fcc supercell* (compare figure 7.1).
This replacement induces a small distortion of the atomic positions, which is incor­
porated without additional parameters using the force relaxation module of FPLO.

The large and small part of the radial functions of the atomic basis of Holmium
are contained in the output of FPLO. They are used to calculate the Coulomb inter­
action Q and the (atomic) Dirac Hamiltonian DHo/Dy for the potentials created by
both the Holmium and Dysprosium core.

The system is then formally split into a main part M containing all non­
hybridising orbitals of Holmium (including 4 f ), and an environment E , comprised
of the hybridising Holmium and Gold orbitals (Ho/Au­6s, 6p and 5d). The Coulomb
operator describing the interaction on the Holmium atom acts on and between those
two parts and therefore separates into three operators

Q = QM +QE +QME . (7.1)
*A calculation for a 3 × 3 × 3 supercell was also attempted, but proved to be beyond the limits

of the available hardware.
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Figure 7.1: The crystal structure of Holmium­doped Gold, with a doping factor of 1/32 ≈ 3%. The
distortion of the atomic positions due to the presence of Holmium is too minuscule to be
visible to the naked eye.

In order to have the environment drop out of the calculation as a first approximation,
the one­particle densitymatrix nDFT,Ho of the Holmium atom in aGold environment
is also extracted from the DFT result.* It is used to calculate the mean effect as given

*Except for the occupation of the Ho­4 f shell, which due to technical reasons is fixed at 10
electrons.
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by equation (3.10) that the environment E has onM via Q,

QME → QME → QME |M . (7.2)

Note that although all terms of QME only act between M and E , its mean field
version obeys no such restriction. Here QME |M denotes the part of QME only
acting on M. All other parts are ignored for the nonce.

The Hamiltonian for the main part of the mother atom 163Ho and the daughter
atom 163Dy in a Gold environment is given by

HHo/Dy = DHo/Dy|M +QM +QME |M . (7.3)

Their respective approximate eigensystems are found (compare section 4.1), yield­
ing the ground states

∣∣ψ0,Ho/Dy

〉
as their first element.

During the decay process a proton of the atomic core captures an electron and
emits a neutrino. Because the only direct effect this event has on the hull is the loss
of an electron, it is represented by the operator8

TEC,j
def
= pjaj , (7.4)

an annihilation operator multiplied with the square root of the decay probability
corresponding to the orbital j. It transforms the electronic Holmium ground state
|ψ0,Ho〉 to an excited Dysprosium state TEC,j |ψ0,Ho〉. On this level of theory, the
energy spectrum of the electron capture process without the effect of the neutrino is,
as explained in section 4.2, proportional to the negative imaginary part of the sum
of response functions9

G(ω) = ∑
j,k

〈
ψ0,Ho

∣∣∣∣T †
EC,j

1
ω −HDy + E0 + iΓ

TEC,k

∣∣∣∣ψ0,Ho

〉
, (7.5)

with

E0 =
〈
ψ0,Dy

∣∣HDy
∣∣ψ0,Dy

〉
. (7.6)

Because of conserved total angular momentum and, after the capture process, also
parity, this calculation can be split up into electron capture from an s1/2 and p1/2

orbital, and into spin up and down. This significantly reduces the required amount
of computational power.

The neutrino featured in the decay process carries away energy and thus influ­
ences the probabilities for excited daughter states to occur. This effect needs to be
included by multiplying the spectrum with the phase space factor8

fm(ω) =

{
(Q − ω)

√
(Q − ω)2 − m2c4 , (Q − ω)2 ≥ m2c4

0 , (Q − ω)2 < m2c4 (7.7)
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for a neutrino ofmassm, where Q denotes the Q­value and hence total energy gained
by the decay process.

In this thesis all electron capture spectra are plotted with the phase space factor

f0(ω) = (Q − ω)2 (7.8)

for massless neutrinos, and they are scaled such that their integral coincides with
that of the experimental measurement. Because

f0(ω) 6= 0 ∀ω < Q , (7.9)

adjusting the spectrum to that of a massive neutrino can be achieved by multiplying
with8

∑3
a=1 |Uae|2 fma(ω)

f0(ω)
, (7.10)

where the numerator is the phase space factor for three neutrino mass eigenvalues
ma which features the Pontecorvo­Maki­Nakagawa­Sakata matrix U.50 The matrix
elements Uae transform the state of the electron neutrino from a flavour basis to the
basis of mass eigenstates.

Results
The electron capture spectrum of atomic Holmium and Holmium in Gold with an
artificial Lorentzian broadening is shown in figure 7.2, and a detailed view of the two
largest structures in figure 7.3. The spectrum of atomic Holmium was calculated by
Martin Braß (compare ref. [8]), and the experimental spectrum was analysed and
published in ref. [75].

TheQ­value is given byQ = 2838 eV76 and the approximate eigenstate spanned
by 100 Krylov states per spin and angular momentum of the captured electron. The
broadening of Γ = 4 eV (compare equation (7.5)) is chosen purely to fit the exper­
imental measurement.

It can be seen that all major peaks in the experimentally accessible energy range
as well as their satellite structures are reproduced. They are labelled with the shells
of the captured electron in the states responsible for them.

However, a closer inspection reveals that the theoretical peak energies do not
quite agree with the experimental ones. This effect cannot be explained by a total
offset, as the peaks at higher energies tend to deviate further than the lower ones.
This effect is stronger for atomic Holmium than for Holmium in Gold. The major
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Figure 7.2: The electron capture spectrum of Holmium in Gold as measured experimentally (black),
andwith an artificial Lorentzian broadening of Γ = 4 eV for atomic Holmium (turquoise)
and Holmium in Gold (red).

peaks are all closer to their true experimental energy in case of the latter. The atomic
and embedded peak positions differ by almost 9 eV in case of the peak labelled 3s.
This shows that already on this level of theory the implicit inclusion of the Gold
environment significantly improves the result. The 3s capture peak is of special
significance, because it dominates the form of the spectral endpoint, which is the
part most strongly influenced by the mass of the electron neutrino.

The height of the peaks is overestimated in some cases, and underestimated in
others, suggesting that the true peak broadening is not constant. This can also be
seen by comparing the widths of the experimentally measured peaks labelled 3s and
4s. The two calculations roughly agree on the heights of the major peaks, but the
minor ones exhibit some differences.

The largest discrepancy between theory and experiment is of course found in
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Figure 7.3: Details of the electron capture spectrum of Holmium in Gold as measured experimentally
(black), and with an artificial Lorentzian broadening of Γ = 4 eV for atomic Holmium
(turquoise) and Holmium in Gold (red).

the region between 500 eV and 1700 eV. As all peaks here have almost negligible
spectral weight, it is dominated by the shape of the large capture peak labelled 4s,
which is experimentally shown to have an asymmetric high­energy broadening tail.

The method of spectral calculation with an energy independent broadening is
inherently incapable of reproducing this asymmetry. Furthermore, the endpoint of
the spectrum strongly depends on the comparably arbitrary choice of Γ.

Sufficiently precise experimental agreement of an ab initio calculation can there­
fore not be achieved without including some of the so far neglected decay mecha­
nisms. These lead to a peak­specific and energy­dependent broadening, which is
found by calculating the self­energy of the spectral peaks.
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7.3 Self­energy due to Auger­Meitner decay

Theory
One important relaxation channel not yet included in the simulation is that of Auger­
Meitner decay. There, the core hole created by the electron capture event is occupied
by a particle from a higher shell, which donates enough energy to another electron
that it is no longer bound to the atom (compare figure 4.1).

Explicitly incorporating the continuum orbitals in the calculation is far from
computationally feasible, but their effect can instead be included as a self­energy,
as explained in section 4.3. The response function given by equation (7.5) then be­
comes10

G(ω) = ∑
j,k,l

〈
ψ
∣∣∣T †

EC,j

∣∣∣Ek

〉 1
ω − Ekδk,l + E0 − ΣAM

k,l (ω)

〈
El
∣∣TEC,j

∣∣ψ〉 , (7.11)

with the self­energy due to Auger­Meitner decay*

ΣAM
k,l (ω) =

〈
Ek

∣∣∣∣U †
AM

1
ω + E0 + iΓ −HDy −HC

UAM

∣∣∣∣El

〉
. (7.12)

Here, {|Ek〉} is an approximate eigensystem found by diagonalising the Hamilto­
nian on a subspace spanned by a Krylov basis of appropriate size. The operatorHC
is the Hamiltonian of the continuum of unbound electrons, approximated using a
one­particle basis comprised of a finite number of eigen­differentials, which sample
the continuum orbitals (compare section 5.2 in ref. [8]). The operator

UAM = ∑
j,k,l,m

αm,j,l,ka†ma†j akal + h.c. (7.13)

is a part of the Coulomb interaction between the bound states and the unbound eigen­
differentials. It describes Auger­Meitner decay, in which a continuum electron with
index m is created.

Because {UAM |Ek〉} is in general not an eigensystem of the combined Hamil­
tonianHDy +HC , the self­energy can be non­diagonal. This mixes different eigen­
states of HDy in equation (7.11), which is known as Fano’s effect.23

*Formally, the eigenstates |El〉 of the bound system need to be replaced by the tensor product
|El〉 ⊗ |ψC,0〉 with the groundstate of the continuum. However, because the latter is assumed to be
empty, this was refrained from to ease notation.
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The full HamiltonianHDy +HC conserves the relativistic quantum number

κ = 2(l − j)︸ ︷︷ ︸
=sgn(l−j)

(
j +

1
2

)
(7.14)

of a created Auger­Meitner electron, which contains information about the total an­
gular momentum j of the electron and its orientation relative to spin. By splitting
up the Auger­Meitner decay operator U into

UAM = ∑
κ

Uκ , (7.15)

where Uκ contains only the terms interacting with a continuum electron with a spe­
cific κ, the self­energy can therefore be simplified to

ΣAM
k,l (ω) = ∑

κ,κ′

〈
Ek

∣∣∣∣U †
κ′

1
ω + E0 + iΓ −HDy −HC

Uκ

∣∣∣∣El

〉
(7.16)

=∑
κ

〈
Ek

∣∣∣∣U †
κ

1
ω + E0 + iΓ −HDy −HC

Uκ

∣∣∣∣El

〉
.

To a very good approximation, the unbound electrons do not interact with each other
and do not return to the atom. It follows that the continuum Hamiltonian just mea­
sures the orbital energies ϵc

m, which are given by the entries of the Dirac Hamiltonian
in the basis of the unbound eigen­differentials with index m,

HC = ∑
m∈C

ϵc
ma†mam . (7.17)

Therefore a further separation of UAM,

Uκ = ∑
m
Uκ,m , (7.18)

where Uκ,m creates a continuum electron with a specific* index m, leads to a further
simplification of the self­energy,

ΣAM
k,l (ω) = ∑

κ,m,n

〈
Ek

∣∣∣∣U †
κ,m

1
ω + E0 + iΓ −HDy −HC

Uκ,n

∣∣∣∣El

〉
(7.19)

= ∑
κ,m

〈
Ek

∣∣∣∣U †
κ,m

1
ω + E0 + iΓ −HDy − ϵc

m
Uκ,m

∣∣∣∣El

〉
.

*The choice of m fixes the choice of κ, but keeping this now redundant notation is in this case
more instructive than dropping it.
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Because the form of allUκ,m |El〉 for fixed κ only differs by anm dependent prefactor
pm, it is for large parts of the calculation possible to formally restrictUκ to only those
terms interacting with an arbitrary continuum orbital m′. Sending

Uκ,m 7→ Uκ,m′
def
= U ′

κ (7.20)

significantly reduces the required computational power, because ϵc
m and pm are now

the only objects depending on m, where the former merely introduces an offset to
ω and the latter a scaling of the contribution.

The self­energy does not only introduce a broadening of the peaks via its imag­
inary part, but also an individual shifting and even deformation because of its real
part. The implicit inclusion of the new decay channels furthermore creates a total
offset to E0, because the energy of the Dysprosium ground state is corrected. It is
found to be given by Re

(
ΣAM

00 (0)
)
, the real part of the self­energy for the ground

state, evaluated at ω = 0.10

To numerically access the continuum, a value of Γ = 6 eV is chosen, and the
energies ϵc

m are discretised and sampled by 3000 points with a spacing of 2 eV.
After the artificial broadening is replaced with the self­energy and the ground

state energy is corrected, the spectrum is calculated and is, as in section 7.2, mul­
tiplied by the neutrino phase­space factor of equation (7.7) and normalised to the
experimental integral.

Results
Figure 7.4 displays the electron capture spectrum of atomic Holmium and Holmium
in Gold, broadened with a self­energy due to Auger­Meitner decay. It incorporates
the sum of all channels with values of κ ∈ {−1, 1,−2, 2,−3, 3,−4, 4} for the
continuum electron. The self­energy for larger values of |κ| was also calculated,
but did not visibly change the spectrum. The spectrum of atomic Holmium was
calculated by Martin Braß (compare ref. [8]). Both spectra are further broadened
with a Gaussian of FWHM = 8 eV due to experimental uncertainty. The spectrum
with an artificial Lorentzian broadening discussed in section 7.2 is also shown for
reference. A detailed view of the spectra can be seen in figure 7.5.

The broadening due to the Auger­Meitner decay self­energy contributes several
improvements. Most importantly, it muchmore accurately describes the asymmetric
line broadening, and hence the form of the valley between 500 eV and 1700 eV, and
of the endpoint.
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Figure 7.4: The electron capture spectrum of Holmium in Gold as measured experimentally (black),
and with an artificial Lorentzian broadening of Γ = 4 eV (grey). Also shown is the spec­
trum with broadening due to Auger­Meitner decay and additionally a Gaussian broaden­
ing with FWHM = 8 eV for atomic Holmium (turquoise) and Holmium in Gold (red).

The peak positions are also corrected by the real part of the self­energy. As
in the case of artificial broadening, the major peaks are reproduced better by the
calculation for Holmium in Gold than for atomic Holmium.

Apart from the positions the broadening is also closer to the experiment in case of
the spectrum implicitly including the Gold environment. The effect is most visible
in the valleys around 250 eV, 1500 eV, 1900 eV, and at the important endpoint. This
stems from the fact that the altered configuration of the valence shells of Holmium
compared to the atomic case opens up new Auger­Meitner decay channels and thus
influences the self­energy, as was conjectured in ref. [10].

One interesting feature measured in experiment is a small bump at 700 eV. It
is shown in figure 7.6, together with the theoretically calculated spectra with the
Auger­Meitner decay self­energy for continuum electrons with a value of |κ| up to
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Figure 7.5: Details of the electron capture spectrum of Holmium in Gold as measured experimentally
(black), and with an artificial Lorentzian broadening of Γ = 4 eV (grey). Also shown is
the spectrum with broadening due to Auger­Meitner decay and additionally a Gaussian
broadening with FWHM = 8 eV for atomic Holmium (turquoise) and Holmium in Gold
(red).

and including the values 1, 2, 3 and 4. The spectra are in this case not broadened
with a Gaussian. The bump is briefly reproduced for |κ| ≤ 2 (orange line, left
panel), but is then flattened out when including κ = ±3 (turquoise line). A much
larger bump that is not found in experiment is analogously produced and flattened
at 2150 eV (compare right panel), suggesting that the feature at 700 eV might be
mere coincidence. However, the bump at larger energies can also be observed in
case of the atomic calculation, while this is not the case for the one at lower energy
(not depicted).
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Figure 7.6: Details of the electron capture spectrum ofHolmium inGold asmeasured experimentally
(black), and with broadening due to Auger­Meitner decay, including continuum electrons
up to various values of κ.

7.4 Self­energy due to the Gold environment

Theory

In section 7.2 the system was split into a main part M and an environment E ,
the latter of which was subsequently neglected except for its effect via a mean
field Coulomb interaction. Re­introducing E to the system gives a correction to
equation (7.5) in form of a self­energy ΣE , completely analogous to the Auger­
Meitner decay correction in equation (7.11). Under the assumption that the two
effects are not coupled, the total of these corrections is mathematically represented
by ΣAM + ΣE (compare section 4.3).
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The self­energy resulting from the effect of the environment is given by*

ΣE
k,l(ω) =

〈
Ek ⊗ ψE ,0

∣∣∣∣U †
ME

1
ω + E0 + iΓ −Hx

UME

∣∣∣∣El ⊗ ψE ,0

〉
(7.21)

with

Hx
def
= HDy +HE +HME , (7.22)

where HE is the part of the Hamiltonian only acting on E , HME acting between
M and E , |ψE ,0〉 is the ground state of the unperturbed environment, and UME
comprises any interaction with previously unreachable states and is characterised
below.

To cope with the enormous number of possible configurations two important
approximations have to be made. The first is to treat bothHE and UME on a mean
field level, transforming them intoHE ,k and UME ,k, respectively. This introduces a
dependence of the operators on the one­particle density matrix induced by the states
|Ek〉. The second approximation is to assume that the effect that HME and any
operator UME ,k has onM is negligible,

HME = 0 , UME ,k = UE ,k ⊗ 1M . (7.23)

As all |Ek〉 are orthonormal to one another it follows that the self­energy is diagonal,

ΣE
k,l(ω) = δk,lΣ

E
k,k(ω)

def
= δk,lΣ

E
k (ω) , (7.24)

with

ΣE
k (ω) =

〈
ψE ,0

∣∣∣∣∣U †
E ,k

1
ω + E0 + iΓ − Ek −HE ,k

U E ,k

∣∣∣∣∣ψE ,0

〉
. (7.25)

Hence the choice of density matrix used to calculate the mean field version of the
operators becomes unique for every entry of ΣE

k . It can be calculated via(
n|Ek〉

)
m,n

=
〈

Ek ⊗ ψE ,0

∣∣∣a†man

∣∣∣Ek ⊗ ψE ,0

〉
. (7.26)

*Because the ground state |ψE ,0〉 of the unperturbed environment is non­trivial it is explicitly
included in the notation via |Ek ⊗ ψE ,0〉

def
= |Ek〉 ⊗ |ψE ,0〉 here.
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The environmental Hamiltonian can in this approximation be written down as

HE ,k =HDFT +DDy −DHo (7.27)

+QME |E
(

n|Ek〉

)
−QME |E

(
n|ψ0,Ho〉

)
,

where HDFT is an effective Hamiltonian as read in from FPLO (compare
section 3.1), which describes the unperturbed 6s, 6p and 5d shell of a central
Holmium atom and all Gold atoms contained in an effective molecule in form of a
sphere with a radius of 15.1 aB. The operator QME |E (n) is the mean field version
of the Coulomb interaction acting between M and E , restricted to E (compare
equation (7.1)). It is found according to equation (3.10).

The extra terms added to HDFT correct both the Dirac Hamiltonian, which
changes due to the decreased charge of the atomic core, and the effective mean
field Coulomb interaction, which is altered by the loss of an electron. The result is
a proper description of Dysprosium in a Gold environment.

The operator UE is given by the coupling between the subspace spanned by
{|Ek ⊗ ψE ,0〉} and the subspace reached by acting on it with HE . Because of the
approximations this coupling operator can be written as

U E ,k = HE ,k − Ck , (7.28)

where Ck comprises all parts ofHE ,k that project the unperturbed ground state |ψE ,0〉
on a multiple of itself. AsHDFT, the Hamiltonian of the unperturbed environment,
is a one­particle operator, it is straightforward to find the rotation that diagonalises
it. In this basis |ψE ,0〉 is given by a single Slater­determinant, and Ck is consequently
given by the diagonal entries ofHE ,k.

As in the case of Auger­Meitner decay, ReΣE
00(0), the real part of the self­energy

of the Dysprosium ground state evaluated at ω = 0, further corrects the ground state
energy E0.

For the numerical calculation a value of Γ = 6 eV is picked, and the Lánczos
algorithm (compare section 2.3) applied to HDFT, with the three Holmium shells
as the first block and 30 additional blocks describing the environment. Because of
the size of the Hilbert space a further restriction to the subspace with a maximum of
one electron in the orbitals above the Fermi energy is necessary.

After the Auger­Meitner decay self­energy and the ground state energy are cor­
rected by the influence of the environment, the spectrum is extracted from the re­
sponse function and is, as in section 7.2, multiplied by the neutrino phase­space
factor of equation (7.7) and normalised to the experimental integral.
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Figure 7.7: Details of the diagonal entries of the self­energy of Holmium in Gold due to Auger­
Meitner decay (black) and the Gold environment (orange), for a peak at 402 eV (left)
and 2023 eV (right).

Results

An excerpt of the self­energy ΣAM due to Auger­Meitner decay as well as the envi­
ronmental self­energy ΣE = ΣAu for the case of Holmium­doped Gold are shown
in an exemplary plot in figure 7.7. Displayed is the negative imaginary part, which
is responsible for the peak broadening. It is shown here for the approximate eigen­
states of the uncorrected DysprosiumHamiltonian corresponding to energies 402 eV
and 2023 eV. The states are responsible for the emergence of the major peaks cor­
responding to an electron capture process from the 3s and 4s orbital, respectively.

For both (and all other) states the self­energy caused by the Gold environment is
approximately a single, slightly lopsided peak with a height of about 0.1 eV, seated
at the position of the corresponding eigenenergy. The self­energy due to Auger­
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Figure 7.8: Details of the electron capture spectrum of Holmium in Gold as measured experimentally
(black), with broadening due to Auger­Meitner decay (grey), and with additional broad­
ening due to the Gold environment (red). The theoretical spectra are further broadened
by a Gaussian with FWHM = 8 eV.

Meitner decay on the other hand takes on values on the orders of 1 eV to 10 eV. In
contrast to the Gold self­energy it does not or only slowly fall off with increasing
energy.

This means that ΣAu, in its current theoretical implementation, is almost irrel­
evant for the shape of the spectrum. This is confirmed by figure 7.8, where only
a small difference between the spectra around 450 eV is visible to the naked eye.
It therefore stands to reason that the approximations made to decrease the compu­
tational time are too crude. Especially neglecting any direct interaction between
the main part and the environment disregards numerous relaxation channels, all of
which contribute to the self­energy.

If these were included, the imaginary part of ΣAu is expected to be of the same
order of magnitude as ΣAM at the position of the peak, or even dominate there. It
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Figure 7.9: The endpoint of the electron capture spectrumwithout the neutrino phase space factor, for
atomic Holmium (turquoise) and Au:Ho (red). The spectra are broadened with Auger­
Meitner decay self­energy and, in the latter case, the environmental self­energy. The
intensity is plotted logarithmically and the curves are scaled to agree at the Q­value.

is not expected to have a significant effect on the form of the tails of the peaks at
higher energies.

The endpoint of the spectrum, which contains information about the rest mass
of the electron neutrino, is depicted in figure 7.9 for both the calculation of atomic
Holmium as well as for Au:Ho. It is shown there without the phase space factor of
the neutrino (compare equation (7.7)). The logarithmic plot clearly shows that both
spectra follow an exponential decay law, but with different damping constants.

This confirms the conjecture made in ref. [10], which states that the inclusion
of the gold environment does not change the qualitative behaviour of the spectrum
at the end point. It is hence comparably easy to extract the rest mass of the electron
neutrino from experimental data with sufficient accuracy, which manifests as a de­
viation from the exponential falloff found after dividing by the phase space factor
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for massless particles.

7.5 Discussion
The electron capture spectrum of Holmium in Gold was calculated with an artificial
Lorentzian broadening, with a self­energy due to Auger­Meitner decay, and an addi­
tional self­energy caused by the environment. The first two spectra were compared
to a calculation of atomic Holmium.

The comparison showed that already without any self­energy the inclusion of the
Gold environment in the calculation on a mean field level improved the agreement
with the experiment, as the peak energies were more accurately reproduced.

This improvement carried over to the calculationwith ab initio broadening due to
the Auger­Meitner decay self­energy. As had been conjectured in ref. [10], not only
the peak energies were corrected by the effect of the environment, but also their line
shape. Especially the form of the peak labelled 3s, which dominates the endpoint
and hence strongly influences the determination of the neutrino mass, experienced
a crucial gain in agreement with the experiment compared to the atomic calculation.

The inclusion of the environment furthermore gave rise to a bump around
700 eV, which can also be seen in the experiment. However, this feature only
appeared in calculations that did not include all relevant Auger­Meitner decay
channels and was not visible in the final spectrum. Its physical meaning hence
remains an open question.

Finally, the broadening due to excitations in the Gold environment was included
in the calculation via an additional self­energy. It turned out to be miniscule, which
can be attributed to the approximation of not directly interacting main part and en­
vironment. The small effect the self­energy had was shown to only affect the shape
of the peaks themselves, but not their tails.

It was demonstrated that the endpoint of the spectrum continued to fall off ex­
ponentially when dividing out the phase space factor of the neutrino of the spectrum
broadened by both Auger­Meitner decay and the Gold environment. However, it
was shown to fall off slightly steeper than in the atomic case.

The most obvious improvement to be made is to allow some direct interaction
between the main part and the environment. It is expected to increase the imagi­
nary part of the self­energy by at least one order of magnitude, such that it possibly
dominates the spectrum close to the peak.

One effect not yet included in the calculation is the broadening caused by spon­
taneous fluorescence decay, during which an electron is de­excited and a photon
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emitted. However, it has recently been shown55 that this broadening, while impor­
tant for many atoms, is insignificant in case of 163Holmium.

Another path of possible improvement is to relax some of the simplifying as­
sumptions made for the inclusion of the self­energy due to the Gold environment.
Allowing two instead of one excited electron beyond the Fermi energymight change
the shape of the imaginary part, and hence the broadening. However, for systems
with less Krylov states tests show that relaxing these restrictions has only little effect
on the self­energy.

If some mathematical trick or sheer calculation power allows to make this ad­
justment, it may be advantageous to treat the operators governing the environment
on a level beyond mean field.

The Hamiltonian was obtained from an FPLO calculation in which Holmium
replaced one of the 32 Gold atoms in a 3 × 3 × 3 supercell of its face­centred cubic
lattice. While the doping factor of about 3% roughly corresponds to that in the
experiment, it is not at all certain that the foreign atom adopts this particular position
in the supercell. Holmiummight for example instead push the atoms around it aside,
effectively replacing four Gold atoms instead of one. Recalculating the spectrum for
this alternative configuration could well grant new insights.

The ECHo experiment will be modified in the future, leading to higher resolu­
tion. To keep up with the achieved precision, the theoretical description needs to
be adapted to the new setups. At some point, the experimental spectrum will likely
have been measured using Holmium­doped Silver. With the techniques developed
in this section it is straightforward to perform an ab inito calculation of the effect of
this and any other new environment that Holmium is subjected to, in order to one
day find the mass of the electron neutrino.
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Part III

Conclusions





8 Summary of Results and Outlook

Starting from mean field Density Functional Theory calculations the theoretical
methods were improved to become the full many­body simulations required for this
thesis. By pushing the limits of available calculation power it was possible to give an
accurate description of the physical properties of various compounds. For all three
systems under scrutiny the theory was refined step by step, thus revealing which
level of theory is necessary to explain which feature.

In the case of NickelIIoxide a prediction for the ultrafast dynamics of the crystal
under the influence of a driving laser was made. Varying the parameters of this laser
showed under which conditions the system behaves approximately Rabi­like, and
when charge­transfer excitations are most likely to occur. Spin­flips were observed
to be suppressed.

By using the GKSL equation, the theoretical description was enabled to include
the effect of an idealised Auger­Meitner decay mechanism in the time evolution.
It predicted that orbital excitations decrease, while charge­transfer excitations are
amplified.

The second system whose interaction with a laser beam was described was
Sulphur­hexafluoride. The area ratio and energy splitting of the two components
of a peak doublet in the X­ray absorption spectrum was related to the effective
exchange interaction energy, which could be tuned by increasing the laser intensity.

A few­configuration model was used to quantify the exchange energy and show
that it was increased by 50% in the experiment. It was further able to accurately
reproduce the ratio and splitting after fitting its parameters to only two data points.
A many­body simulation showed that an ab initio treatment of the effect is possible,
and even revealed information about the duration of the X­ray pulse.

Holmium­doped Gold formed the last studied system, for which the electron
capture spectrum was calculated. The effect of Auger­Meitner decay was here in­
cluded as a self­energy correction to the spectrum, to find the form of the energy
peaks in an ab initio fashion.

The effect of the Gold environment was also included as a self­energy, resulting
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in a very small additional broadening. The strongest effect was that already the
implicit inclusion of the environment on a mean field level induced a significant
improvement on the line shape found by the Auger­Meitner decay self­energy alone.

Several suggestions for improving the theories of the three systems were made.
They will benefit most from connecting them with one another: The methods ap­
plied to SF6 could be used to accurately predict the electric dipole moments of NiIIO,
and those of Au:Ho can enable an ab initio calculation of the Auger­Meitner decay
operator. The inclusion of this mechanism in the SF6 calculations either in theGKSL
equation or as a self­energy can help to better explain the broadening of the X­ray
absorption spectrum. Finally, a time­domain simulation of the relaxation process
in Au:Ho after an electron capture event can lead to the discovery and understand­
ing of yet not included phenomena, and subsequently to a better description of the
spectrum.

Equipped with this solid and versatile construct of theoretical many­body
physics it may eventually be possible to control reactions on a sub­nucleonic
timescale using lasers in chemistry, and to find the mass of the electron neutrino in
particle physics.
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“In nature’s infinite book of secrecy
A little I can read.”
­Antony and Cleopatra, Act 1, Scene 2
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List of Abbreviations

• AM decay — Auger­Meitner decay

• Au:Ho — Holmium­doped Gold

• CFT — Crystal Field Theory

• DFT — Density Functional Theory

• ELF — Extended Ligand Field Theory

• FPLO — Full­Potential Local­Orbital

• FWHM— full width at half maximum

• GKSL equation — Gorini­Kossakowski­Sudarshan­Lindblad equation

• IR — infrared

• LFT — Ligand Field Theory

• MF — mean field

• MO— molecular orbitals

• NiIIO— NickelIIoxide

• NORI — Natural­Orbital Representation of the Impurity Model

• RASCI — Restricted Active Space Configuration Interaction

• SF6 — Sulphur­hexafluoride

• XAS — X­ray absorption spectrum
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