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Nicht-hermitesche St�orungstheorie zur Beschreibung des elektronischen Zer-

falls angeregter und ionisierter Molek�ule und die Identi�kation der elektron-

ischen Zerfallsprozesse des Augerzerfalls core-ionisierter Xenonuoride: Res-

onanzen stellen ein fundamentales physikalisches Konzept dar. Trotz ihrer Bedeutung

ist die Berechnung von Resonanzenernergieen keine Standardaufgabe. Der elektronis-

che Zerfall eines angeregten Molek�uls wird mit dem Ziel untersucht die beteiligten Zer-

fallsprozesse aufzukl�aren. Hierzu werden die Zerfallsbreiten mittels Wigner-Weisskopf

Theorie und nicht-hermitescher, nicht-entarteter Rayleigh-Schr�odinger St�orungstheorie,

mit komplexem absorbierenden Potential, berechnet. Um die Genauigkeit der vorigen

beiden Zug�ange zu verbessern wird eine allgemeine nicht-hermitesche Multireferenz

Rayleigh-Schr�odinger St�orungstheorie abgeleitet und an einem Modellproblem getestet.

Der Auger Zerfall eines Xe 4d Loches wird mit Elektronenpropagatormethoden in den

Xenonuoriden (XeFn; n = 2; 4; 6) studiert. Die auftretenden Zerfallsprozesse k�onnen

durch den Vergleich des Einfachionisierungsspektrums mit dem Doppelionisierungsspek-

trum identi�ziert werden. Interatomare Zerfallsprozesse tragen entscheidend zur elek-

tronischen Zerfallsbreite bei, wie anhand einer Beziehung zwischen Endzustandspopu-

lation und Zerfallsbreite gezeigt wird. Dies steht im Widerspruch zu der herrschenden

Meinung, dass eine reduzierte Valenzelektronendichte, wie sie am Xenon durch die An-

wesenheit der Fluorliganden vorliegt, zwangsl�au�g zu einer niedrigeren elektronischen

Zerfallsrate f�uhrt.

Non-Hermitian Perturbation Theory for the Electronic Decay of Excited and

Ionized Molecules and Identi�cation of the Electronic Decay Processes in the

Auger Decay of Core-Ionized Xenon Fluorides: Resonances are a fundamental

concept in physics, yet their calculation is by far not a matter of routine. The electronic

decay of an excited molecule is investigated in terms of decay processes and the decay

width is calculated in two ways with Wigner-Weisskopf theory and non-degenerate

non-Hermitian Rayleigh-Schr�odinger perturbation theory employing complex absorbing

potentials. A general non-Hermitian multireference perturbation theory is devised, and

tested on a model problem, to improve on the accuracy of the two former approaches.

The molecular Auger decay of an initial Xe 4d core hole is studied in the xenon uorides

(XeFn; n = 2; 4; 6) with electron propagator methods, and the electronic decay pro-

cesses are identi�ed by comparing the ionization spectra of the singly ionized molecule

with its double ionization spectra. Electronic decay processes of interatomic character

are found to have considerable impact on the electronic decay width in the xenon u-

orides, due to a relation between the �nal state population and the decay width that

is derived. The electron density in the valence shell of the xenon atom is low due to

the uorine atoms. The increase in decay width is, therefore, in contrast to the leading

opinion that a low electron density on the atom that carries the initial core-hole, leads

to a low decay width.
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1. Introduction

Resonances are a fundamental concept in physics which uni�es the treatment of decaying

states in the microscopic regime, namely resonances are studied in atomic, molecular,

nuclear and particle physics. They are decaying states in contrast to bound states and arise

frequently in scattering problems [1{4]. Resonances are described as discrete quantum

states embedded in and interacting with a continuum of states. They possess a de�nite

lifetime � . Narrow resonances, which are also termed quasi-stationary, are resonances

with a long lifetime � . The decay of a resonance has deep physical consequences because

it is an irreversible transition which introduces time asymmetry [5].

Resonances cannot be described in terms of bound state quantum mechanics because

their wave functions are not part of the L2 -Hilbert space as they do not ful�ll the necessary

boundary condition, they are not square-integrable. Nevertheless, they show properties

similar to those of bound states, i.e. their wave function is highly localized in space and

resembles the one of a bound state, except for its far asymptotic part. It is possible to

assign a complex energy to resonances

Eres = ER � i �=2 (1.1)

which is frequently called Siegert energy in the context of complex-energy poles of the

S-matrix [1, 6]. ER is the energetic position of the resonance state and � = ~

�
its decay

width.

Electronic resonances are resonances which decay by electron emission. They oc-

cur frequently in the scattering or photoionization experiments of atomic and molecular

physics where a pronounced enhancement of the scattering cross-section is observed at

the resonance energy. The non-Hermitian character of resonance states manifests in the

context of electronic resonances in terms of the decay electron. This outgoing electron

introduces remarkable diÆculties as its wave function is not square-integrable.

The actual calculation of resonance energies is, despite of their importance, not a

matter of routine. Generations of physicists have devised a variety of methods well-

adapted to their speci�c problems [1]. Early attempts by Wigner and Weisskopf to

calculate resonance energies are based on time-dependent perturbation theory [2,7]. With

the help of this Wigner-Weisskopf theory the decay width of singly ionized molecules [8,9],

section 6.3, and the decay width of excited molecules, section 3.1, can be calculated easily.

The decay matrix elements of Wigner-Weisskopf theory can be pictured schematically [8,

9], section 3.1, in terms of many-body transitions, which provides a deeper understanding

of the underlying physics.

In quantum chemistry the practical evaluation of the resulting expressions poses serious

diÆculties caused by the decay electron. Its continuum wave function must be represented

in the �nite L2 basis sets ubiquitous in the quantum chemistry of bound state problems

1



1. Introduction

(section 2.1) with the help of Stieltjes Chebyshev moment theory ( [10, 11] and references

therein).

Since then several other techniques have been devised to overcome the continuum

problem in quantum chemistry, like Feshbach's projection operator formalism [1, 12, 13]

or complex scaling [1,14]. A recently devised method exploits the fact that the treatment

of bound state problems in quantum chemistry is highly evolved (sections 2.1, 2.2 and

chapter 5). There are professional ab initio software packages, like [15, 16], to calculate

many properties of molecules with high accuracy. These programs exploit the localization

of the electronic ground state wave functions by introducing �nite basis sets in L
2 -Hilbert

space.

The success of the former techniques raises the desire to harness these tools to cal-

culate the Siegert energy (1.1) of resonances. At this point, the complex absorbing po-

tential (CAP) [17] approach comes into play. An arti�cial potential is added to the

Hamiltonian of the system to transform the calculation of a resonance state into a bound-

state-like problem by absorbing the decay electron. Then a description of the resonance

state in terms of localized L
2 -basis sets becomes feasible (section 2.3).

CAPs transform the time-dependent decay problem into a time-independent problem.

Hence the analogue to the approach of Wigner and Weisskopf is a non-Hermitian

non-degenerate Rayleigh-Schr�odinger perturbation theory which is derived in section 3.2

and generalized to a multireference theory in section 3.3. In chapter 4, a model problem is

used to test the non-Hermitian multireference Rayleigh-Schr�odinger perturbation theory.

The Auger e�ect [18, 19] is caused by a special type of electronic resonance and has

received a lot of attention since its discovery. Since then theorists have tried to calculate

the Auger decay rate because the Auger e�ect can be used in many experimental situ-

ations. As soon as Auger transitions involving valence orbitals in molecules came into

the focus of interest the question of the importance of interatomic transitions arose and

is still not completely elucidated. Matthew and Komninos were the �rst to examine

interatomic Auger transition rates [20]. They falsely concluded that these transitions have

a small impact on the Auger rate, except in low energy Auger processes, due to too strong

approximations [21]. In fact the e�ect of the chemical bond can be dramatic [22{24].

Auger decay is similar to the electronic decay of singly ionized clusters of (weakly)

bound atoms or molecules. Clusters [25] have been receiving a lot of attention because

they can be seen as a bridge between the individual monomer and solids formed by many

monomers. The decay of singly ionized clusters of weakly bound atoms or molecules has

been studied extensively. New electronic decay processes were discovered that involve

neighboring atoms [8, 9, 26{29] (section 6.1).

In the weakly bound clusters studied, the electronic decay was energetically enabled

by the neighboring atoms, due to a lowering of the double ionization threshold compared

to the isolated monomer, caused by spatial separation of the two �nal state holes on two

di�erent monomers [8,9,26{29]. The ionization potentials were determined using ab initio

electron propagator methods [30{33] (section 5.3) and hole-population analysis [34{36]

(section 5.4) providing an exact identi�cation of the decay mechanism. Furthermore, the

lifetimes of these types of electronic resonances were calculated with the CAP-method.

The electronic decay process turns out to be ultra fast, typical lifetimes are in the range 10{

100 fs [37{39].

2



It has been tried to examine these theoretical predictions experimentally [40] with the

help of photoelectron spectroscopy [18]. This is a common method, which is grounded on

the photoelectric e�ect [18], to study the electronic structure of atoms, molecules, clusters

and solids. The electronic decay processes in weakly bound clusters are hard to detect

with photoelectron spectroscopy, because the decay electrons are ejected with low kinetic

energy of around a few electronvolt [8,9]. The lower end of photoelectron spectra is usually

ignored because the identi�cation of the electrons originating from electronic decay is very

diÆcult.

Photoelectron spectroscopy was also used to examine the Xe 4d lines in the xenon

uorides (XeFn; n = 2; 4; 6) [41]. The data suggest that the line width increases with

an increasing number of uorine atoms (chapter 7). This observation raises the question

whether the increase in line width may be caused by an increased electronic decay rate,

or whether it is caused by, eg., vibrational broadening. If the increase in line width was

caused by an increased electronic decay rate then the types of electronic decay processes,

which are responsible, should be elucidated (chapter 7).

Atomic units are used throughout this diploma thesis, i.e. ~, the electron charge mag-

nitude and the electron mass are set to one. The unit of length is the Bohr and the

unit of energy is the Hartree. The conversion factors to SI units are 1Bohr = 52:917 pm

and 1Hartree = 27:211 eV [42].
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Part I.

Electronic Decay of Excited Molecular

Systems
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2. Electronic Structure Theory and Complex

Absorbing Potentials

Nature distinguishes two sorts of elementary particles, bosons and fermions. It turns out

that systems consisting of bosons are described by totally symmetric wave functions and

systems consisting of fermions are represented by totally antisymmetric wave functions

with respect to the interchange of particles.

In quantum chemistry one considers predominantly fermions due to the fermionic

nature of electrons, the constituents of the atomic shells. Quantum mechanics is the

theory to describe the microscopic world and electronic structure theory is the application

of it to the electrons in atoms and molecules, i.e. (approximate) solutions to the many-

body Schr�odinger (or Dirac) equation are calculated to obtain the ground state electronic

structure, excited, ionized and electron attachment states. The solution facilitates to

calculate many properties of the atom, molecule or cluster [42].

In many cases, the coupled movement of the electrons and the nuclei in a molecular

system can be neglected due to the fact that the movement of the electrons is much faster

than the movement of the heavier nuclei. This leads to a separation of the total Hamilto-

nian and is called Born-Oppenheimer approximation [42]. It will be assumed through-

out. With the help of these adiabatic solutions to the problem non-Born-Oppenheimer

e�ects, nevertheless, can be studied.

2.1. The Hartree-Fock Approximation

The electronic structure of a molecular system is approximately given by the solutions of

the Schr�odinger equation, employing the non-relativistic electronic Hamiltonian

Ĥ =

NX
i=1

ĥi +

NX
i=1

NX
j=i+1

1

rij
(2.1)

with

ĥi = �
1

2
�i �

MX
A=1

ZA

riA
:

N denotes the number of electrons, M is the number of nuclei, ZA stands for the charge

of nucleus A, rij is the distance between electron i and electron j and riA is the distance

between electron i and nucleus A. ĥi is called one-electron Hamiltonian. It is a one-

electron operator because it involves only the coordinates of the electron i. Consequently,

r�1ij is called two-electron operator.

7



2. Electronic Structure Theory and Complex Absorbing Potentials

The task of this section is to �nd an approximate solution �(~r1; : : : ; ~rN) to the ground

state wave function of the N -electron system described by (2.1). ~ri: denotes the position

of the i-th electron. Ritz variational principle [2, 42] helps to simplify this problem. It

states that for an approximate ground state wave function

h�(~r1; : : : ; ~rN) j Ĥ j�(~r1; : : : ; ~rN)i

h�(~r1; : : : ; ~rN) j�(~r1; : : : ; ~rN) i
� E0 (2.2)

holds in Hilbert space, E0 being the exact ground state energy. Therefore, this powerful

principle provides a recipe to �nd an arbitrarily precise approximation to the ground state

wave function of a molecular system: take trial functions and �nd the one with minimal

energy, but the variational principle does not give any hint which trial functions to choose.

A product ansatz of N spin orbitals �i; i = 1; : : : ; N , i.e. one-electron wave functions

with spin, for the ground state wave function, is a simple trial function assuming non-

interacting particles but, as was stated in the introduction, electronic wave functions must

be totally antisymmetric. This property can be incorporated into the product ansatz by

forming a determinant of the spin orbitals, the Slater determinant

j�(~r1; : : : ; ~rN)i = j�1 � � ��N i : (2.3)

In (2.3) all permutations �i(~rj) are formed [42].

The Hartree-Fock approximation [42{44] the applies the variational principle (2.2) to

the ansatz (2.3). The problem turns out to be equivalent to the solution of an eigenvalue

equation for the i-th electron

f̂(i) j�i(~ri)i = "i j�i(~ri)i i = 1; : : : ; N : (2.4)

with the Fock operator f̂(i) = ĥ(i) + v̂(HF)(i). The Hartree-Fock potential is given by

v̂(HF)(i) =

NX
k=1

Z
d3rj �

�

k(~rj) r
�1
ij (1̂� P̂ij)�k(~rj) : (2.5)

This is the average potential experienced by electron i due to the presence of the other

electrons j. P̂ij exchanges electrons i and j in the two spin orbitals written to its right. By

comparing the Fock operator with (2.1) one sees that the two-electron operator r�1ij ; i 6= j

is replaced by a mean �eld in the Hartree-Fock method which is a considerable approxi-

mation to (2.1).

As v̂(HF)(i) depends on the coordinates of all electrons one cannot solve (2.4) directly.

Instead one has to determine the wave function iteratively by taking a trial one and then

calculating the Hartree-Fock potential. Afterwards, a new trial wave function can be

determined. Repeating this procedure results in a self consistent solution to arbitrary

precision.

The Hilbert space, used so far, is the direct product space of spin and spatial Hilbert

space. The spin can be integrated out and only the spatial part remains to be solved.

There are two ways to derive spin-free equations to calculate the Hartree-Fock ground

8



2.1. The Hartree-Fock Approximation

state of a closed-shell (=) N even) molecular system. The general spin orbital reads in

Pauli's two-component spinor notation

�i(~r) =

�
��j (~r)�(!)

�
�
j (~r) �(!)

; (2.6)

where �(!), �(!) denote spin up and spin down, respectively, and ��j (~r), �
�
j (~r) represent

the corresponding spatial orbitals, i.e. the spatial one-electron wave function. One needs

N=2 spatial orbitals to construct N spin orbitals. If �j(~r) := ��j (~r) = �
�
j (~r) holds for all j

then the resulting spin-free Hartree-Fock equation reads [42]

f(~r)�j(~r) = "j �j(~r) j = 1; : : : ; N=2 : (2.7)

This is called the restricted Hartree-Fock case [42, 43]. The unrestricted Hartree-Fock

case [42, 44] assumes two di�erent components in (2.6). Then two equations of the

type (2.7) result, one for each component of the spinor.

To carry out Hartree-Fock calculations one expands the spatial orbitals in a basis of

the spatial Hilbert space j'�(~r))i ; � = 1; : : : ;1. As computer resources are �nite the

basis has to be truncated. This is an approximation and every e�ort has been made to

develop suitable �nite basis sets, especially those consisting of Gaussian basis functions,

which are chosen owing to their simplicity and the quality of the results that can be

obtained using them [42,45,46]. In molecular physics the expansion of the spatial orbitals

in terms of linear combinations of a �nite number of basis functions is frequently termed

linear combination of atomic orbitals (LCAO) due to the relation of the basis sets to

the electronic structure of the individual atoms in a molecular system. With K basis

functions, the expansion of the spatial orbitals reads, in the restricted Hartree-Fock case,

�j(~r) =

KX
�=1

C�j '�(~r); j = 1 : : : ; K : (2.8)

This expression can be used to transform (2.4) into the, so-called, Roothaan equations

which can be written compactly as a matrix equation

FC = SC" (2.9)

F is the matrix representation of the Fock operator and S denotes the basis set overlap

matrix S�� = h'� j'� i . In the unrestricted case, two equations of the type (2.8), (2.9),

one for each spinor component, are needed. The solution of (2.9) is interpreted as follows:

" = diag("1; : : : ; "K) is the matrix of orbital energies. C are the expansion coeÆcients

in (2.8). Via (2.6), (2.8) 2K spin molecular orbitals result, where the N orbitals, lowest

in energy, are occupied. The other are denoted unoccupied (virtual) orbitals.

Note that the mean �eld approximation in (2.4) modi�es the problem appreciably. It

does not account for the correlated movement of the electrons due to their mutual repul-

sion, therefore, it is a one-particle approximation (independent particle model). Several

post Hartree-Fock methods have been developed and are studied to overcome this insuÆ-

ciency. They take the result of a Hartree-Fock calculation and approximate the correlation

9



2. Electronic Structure Theory and Complex Absorbing Potentials

of the electrons. The energy di�erence between the ground state energies obtained us-

ing the independent particle model and a method that describes correlated electrons is

termed correlation energy. One of the most prominent methods is presented in the ensuing

section 2.2.

2.2. Con�guration Interaction

Con�guration interaction (CI) is a wide-spread method to tackle the many-body problem

in quantum chemistry [42,47]. Its principle is very simple. The ground state of a Hartree-

Fock calculation is used to generate con�guration state functions (CSF) by forming all

distinct occupations of the 2K molecular orbitals with N -electrons. These CSFs are used

as a new basis set for succeeding computations, for example to calculate the correlation

energy.

As the number of CSFs is
�
2K
N

�
one usually truncates the expansion and uses only the

ground state together with the singly (and doubly) excited CSFs to shorten computa-

tions. These two CI schemes are termed singly excited CI (SCI) and singly and doubly

excited CI (SDCI). The expansion still grows exponentially but in a less pronounced way

because the number of n-tuply excited CSFs is
�
N
n

� �
2K�N

n

�
[42].

The resulting CI-matrices are sparse and have following general form

H(CI) :=

0
BBBBBBB@

H00 0 H0D 0 0 � � �
0 HSS HSD HST 0 � � �
HD0 HDS HDD HDT HDQ � � �
0 HTS HTD HTT HTQ � � �
0 0 HQD HQT HQQ � � �
...

...
...

...
...

. . .

1
CCCCCCCA

: (2.10)

The CI-matrix is real-symmetric and is composed of block matrices which are abbre-

viated to HXY where X and Y denote excitation classes: none (0), singly (S), dou-

bly (D), triply (T), quadruply (Q). For example the Hartree-Fock ground state energy is

the 1� 1 matrix H00 := (h�0 j Ĥ j�0 i). There is no H0S block due to Brillouin's theo-

rem [42] which states that singly excited determinants do not couple to the Hartree-Fock

ground state.

The CI problem is solved by diagonalizing (2.10) which gives the energies of the ground

state and many excited states. This works in principle but the matrix (2.10) can be huge.

Frequently, it is suÆcient to calculate the eigenvalues of selected states only. Then the

(real) analogue of the (approximate) diagonalization techniques of subsection 2.3.2 can

be harnessed.

2.3. Complex Absorbing Potentials

The quantum chemistry of bound state problems is highly evolved. There are professional

ab initio software packages to calculate many properties of atoms, molecules and clusters

10



2.3. Complex Absorbing Potentials

Excited molecular system

Electron

Complex Absorbing Potential

Figure 2.1.: A molecular system enclosed with a box complex absorbing potential (CAP). The

emitted electron is absorbed by the CAP.

with high accuracy. These programs exploit the localization of the electronic ground state

wave functions by introducing �nite basis sets in L
2 -Hilbert space.

The success of these techniques raises the desire to harness them to calculate the

Siegert energy (1.1) of resonances. This is where complex absorbing potentials [17] come

into play. The arti�cial potential transforms the problem of computing a resonance state

into a bound-state-like problem.

2.3.1. The Formalism

The idea is to enclose the molecular system with an appropriate potential, which enforces

an absorbing boundary condition, as shown in �gure 2.1. It absorbs the decay electron

and consequently renders the former continuum wave function square-integrable [17, 37].

The Hamiltonian Ĥ of a molecular system reads with absorbing boundary condition

Ĥ(�) = Ĥ � i � Ŵ : (2.11)

The arti�cial potential is called complex absorbing potential (CAP). � is a real positive

parameter referred to as CAP-strength parameter and Ŵ is called CAP-operator.

A suitable Ŵ should be a local positive semide�nite one-particle operator. The exact

prerequisites are derived in [17]. A fairly general exible CAP is presented in [39]. See

also equation (4.2) for a typical Ŵ .

If a system is augmented by a CAP then one has to used a complex symmetric bilinear

form instead of the Hermitian scalar product [17, 37]

('j ) :=

Z
'(~r) (~r) d3r : (2.12)
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2. Electronic Structure Theory and Complex Absorbing Potentials

As the basis functions, in quantum chemistry, are usually real this has little e�ect in

practice.

Now, the problem of calculating the energy of a resonance is equivalent to solving a

complex eigenvalue equation, the CAP-Schr�odinger equation [17]

Ĥ(�) j	(�)) = E(�) j	(�)) : (2.13)

The solution of (2.13) can be obtained by introducing a square-integrable basis set to

transform (2.13) into a matrix eigenvalue problem which can be diagonalized subsequently.

As this is a complex symmetric eigenvalue problem it is not necessarily diagonalizable [10,

11].

If the basis set that is used to form the matrix representation of (2.13) is complete

then the Siegert energy (1.1) of the resonance is simply Eres = lim
�!0

E(�). For a �nite basis

set, this is no longer the case and the condition����� dEd�
���� = minimum : (2.14)

must be used instead [17, 37].

There are various advantages of complex absorbing potentials over other methods for

calculating resonance energies like complex scaling [1, 14]. The method is simple, reliable

and can be used for most systems examined in quantum chemistry. Furthermore CAPs

are well suited to be integrated into existing quantum chemical software which opens the

possibility to resort to the vast pool of excellent programs leaving a minimum amount of

work to be done.

These features of the CAP-method are demonstrated by a couple of problems that

were studied. In [48] the resonances of a long-range model potential are studied with the

complex scaling and CAP-method. The representation of the CAP-operator in a Gaussian

basis set, for a CAP calculation where the molecular system is described by CI (CAP/CI),

is derived in [39] and a resonance of the neon dimer Ne2 is investigated. Basis set e�ects

due to energy selection in CAP/CI calculations are examined in [38]. Some resonances of

the (HF)+2 dimer are studied in [37].

2.3.2. Calculation of Resonance Energies in Practice

The preceding subsection introduced a method to treat the continuum problem of decaying

states. In quantum chemistry one has to face the many-body problem as well due to

the interaction of the electrons in a molecular system. Con�guration interaction was

introduced in section 2.2 as a general means to tackle this issue.

The solution of the problem has to be optimized with respect to �, due to the condi-

tion (2.14), which can be achieved by diagonalizing a matrix representation of (2.13) in a

range of values for �. Plotting the resulting spectra in one graph leads to an �-trajectory

for each bound, resonance or pseudocontinuum1 state of (2.11). Since the inuence of the

1In a �nite basis set it is of course not possible to represent the continuum of free-particle states. Instead,

one obtains a discretized pseudocontinuum.
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2.3. Complex Absorbing Potentials

CAP vanishes for the �rst spectrum, due to � = 0 in (2.11), all �-trajectories start on

the real axis. With an increasing value for �, the eigenvalues of resonance or pseudo-

continuum states move into the lower complex plane. For a resonance state the solution

which satis�es (2.14) best is chosen, the so-called stabilization point of the �-trajectory.

Obviously the calculation of many complex spectra of (2.13), with the help of a CI-matrix

representation, is very expensive even for small molecular systems. As all iterations are

independent they can be computed in parallel. This can reduce the amount of wall time,

i.e. the time that elapses in the real world, to calculate a resonance energy, considerably.

A complex version [49] of the Davidson algorithm [50] can be used to calculate the

lowest eigenvalues E(�) of a matrix representation of (2.13) for several � values. The

convergence of this method is sped up if the eigenvectors of one �-step are being used as

start vectors in the succeeding �-step [49]. Unfortunately this removes the full parallelism2

of the algorithm. Another approach, for selective computation of eigenvalues even amidst

the spectrum, is the complex Lanczos algorithm [10, 11, 51]. Both approaches were used

in several calculations before [39]. A major drawback of the complex versions of both

algorithms is the ill-conditioned problem itself [51] which is not true for the real case.

An energy selection technique [52, 53] can be employed, to reduce the size of the CI-

matrix of Ĥ(0). This reduced basis set is used in subsequent calculations [38] to form a

matrix representation of Ĥ(�).

A related ansatz employs parallel �lter diagonalization (PFT) [10, 11, 39, 54]. The

eigenpairs, in selected spectral ranges3 of H(0), can be calculated with the help of PFT

in parallel. The resulting eigenvectors of a spectral range, which contains (a) resonance(s)

of interest, are used to form a matrix representation of Ĥ(�). Then complex diagonaliza-

tion algorithms can be applied to the small matrices for many values for � with moderate

computational e�ort. This method is called subspace projection method because the eigen-

vectors in the selected range form a subspace of Ĥ(0). This approach also is parallel and

consequently CPU and wall time are reduced.

The procedure of the last paragraph bases on the fact that the dominant contributions

to the description of the resonance state are made by the eigenvectors of Ĥ(0) which are

close in energy to it [10, 11, 39, 54]. A drawback of the method is the use of the basis of

the real Hamiltonian for � > 0 because the basis is not adapted to the modi�cations to

the problem, introduced by the CAP. In addition the number of selected eigenvectors may

be quite large to provide a suitable description of the system because some information

is discarded by choosing only a subset of states. The projection step involves vector

operations with the whole matrix which are costly.

The methods introduced in the preceding paragraphs are not satisfactory due to their

high demand of computing power. In chapter 3 new approaches are introduced to speed

up the computation of resonance energies.

2However, one can split the full set of values for � into a couple of ranges of values for � and compute

these in parallel to reduce the amount of wall time needed.
3An overview of the spectrum of H(0) can be obtained, beforehand, by, eg., a few block Lanczos

iterations, to make a suitable decision.
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2. Electronic Structure Theory and Complex Absorbing Potentials

2.3.3. Suggestions for Improvements

The CAP-method, discussed in this section, reveals insuÆciencies, apart from the per-

formance: the way of computing resonances is not very convenient. One has to examine

the complex eigenvalue spectra, obtained for a range of values for �, by hand to identify

stabilization points of complex eigenvalues and run another computer program to analyze

the �-trajectory of the interesting resonances, employing (2.14), see section 4.1.1. The

results of the trajectory analysis have to be evaluated by hand, again, to �nd the optimal

Siegert energy (1.1).

It would be desirable to have an algorithm to automatically perform the above men-

tioned steps. The algorithm should return the optimal Siegert energies (1.1) of all stabi-

lization points observed in a plot of the complex eigenvalue spectra of a range of values

for �. Such a method would render the calculation of resonance energies a routine prob-

lem nearly as simple as the calculation of a closed-shell ground state Hartree-Fock energy.

Furthermore, one can think of an enhanced algorithm that is capable of optimizing � in

a cheaper way, i.e. an algorithm that needs a smaller set of values for �.
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3. Application of Perturbation Theory to

Electronically Decaying States

Approximation methods are a very important tool in quantum mechanics as only very

few systems can be solved exactly. Perturbation theory is one of the most prominent [2].

On introductory level, perturbation theory comes in three avors. The time-independent

degenerate and non-degenerate Rayleigh-Schr�odinger perturbation theory and the time-

dependent Dirac perturbation theory.

In quantum chemistry, perturbation theory also is one of the dominant methods to ob-

tain a variety of atomic and molecular properties. For example the Hartree-Fock ground

state energy can be improved by applying simple time-independent non-degenerate pertur-

bation theory to it. This is called M�ller-Plesset perturbation theory [42,55,56] if the par-

tition (5.5) is used. The second order scheme of this method is abbreviated to MP2. Using

the partition (3.2) yields Epstein-Nesbet perturbation theory [55,57,58]. The treatment of

electronic resonances with complex absorbing potentials, as presented in section 2.3, has

so far not been subject to a perturbative solution.

This chapter discusses several approaches to treat resonances using perturbation the-

ory. The �rst section introduces a time-dependent approach. The second and third

section establish a non-Hermitian time-independent perturbation theory for resonances

employing complex absorbing potentials.

3.1. Wigner-Weisskopf Theory

Wigner-Weisskopf theory [2, 7] is the application of time-dependent perturbation theory

to the decay of an electronic resonance to calculate its Siegert energy (1.1). The theory

was applied in [8,9] to inner valence ionized clusters to study their electronic decay. The

following treatment of excited states above the (auto)ionization threshold, i.e. electronic

resonances, modi�es the ideas developed in these publications by considering excited

molecular systems.

Frequently, the single reference representation of the initial state used in this section

is insuÆcient, especially in the inner valence, due to the breakdown of the single particle

model and relaxation e�ects [59]. This insuÆciency is overcome in section 3.3 using a

multireference approach.

3.1.1. Formulation for Excited States

The orthonormal basis

B := fj�0 i ; j�
a
i i ; j�

ab
ij i ; : : : j 1 � i; j; : : : � N < a; b; : : : � Kg (3.1)
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3. Application of Perturbation Theory to Electronically Decaying States

(1) Di�erence of the excitation energies of the �nal and the initial state in terms of

one-particle energies.

(2) Attraction between hole i and excited electron a in the initial state.

(3) Attraction among the holes and excited electrons in the �nal state.

(4) Repulsion among the holes and repulsion among the excited electrons in the �nal

state.

Table 3.1.: Classi�cation of the contributions to the energy di�erence between a singly excited initial

state and a �nal state. Initial and �nal states are approximated in terms of excited Hartree-Fock

determinants.

of the n-hole/n-particle excited determinants of the Hartree-Fock ground state is well

suited to represent the problem. N denotes the number of occupied spin orbitals in the

Hartree-Fock ground state, i.e. the number of electrons, and K the total number of spin

orbitals in the speci�c discrete basis set. The basis becomes complete for K !1.

The Hamiltonian Ĥ of the system is partitioned, according to Epstein and Nes-

bet [55, 57, 58], in an exact part and a perturbation

Ĥ = Ĥ0 + Ĥ1

Ĥ0 =
P

j�Ji2B

j�J i h�J j Ĥ j�J i h�J j

Ĥ1 =
P

j�Ji;j�Ki2B

j�Ji6=j�Ki

j�J i h�J j Ĥ j�K i h�K j :
(3.2)

j�I i := j�a
i i is the initial state and j�F i denotes a �nal state. In the framework of

Wigner-Weisskopf theory, a resonance is characterized by a complex energy (1.1) [2,8,10,

11]

ER = h�I j Ĥ0 j�I i+�I � i�I=2 :

�I denotes the decay width and �I denoting the energy shift. The decay width is

�I = 2�
X
F 6=I

j h�F j Ĥ j�I i j
2 Æ(h�F j Ĥ j�F i � h�I j Ĥ j�I i) (3.3)

in the �rst non-vanishing (second) order and the energy shift is

�I = h�I j Ĥ1 j�I i+ Pr
X
F 6=I

j h�F j Ĥ j�I i j
2

h�I j Ĥ j�I i � h�F j Ĥ j�F i
: (3.4)

Note that the �rst order correction (the �rst term in (3.4)) vanishes due to the par-

tition (3.2). The perturbation causes the electronic decay of the excited initial state.

Equation (3.4) is what one expects from non-degenerate Rayleigh-Schr�odinger perturba-

tion theory. As one is interested in the electronic decay width of the initial state, the

�nal states in (3.3), (3.4) are characterized by a continuum and some bound state indices.

Hence the sum over �nal states
P
F 6=I

contains, besides some sums over discrete orbital

indices,
P
~k

which can be rewritten as
R
dE %(E). %(E) denotes the density of �nal states

that is the number of states in the interval ]E ;E + dE [ [2].
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3.1. Wigner-Weisskopf Theory

3.1.2. Matrix Elements

Equation (3.3) contains three types of matrix elements

1. h�F j Ĥ j�I i transition matrix element

2. EI := h�I j Ĥ j�I i initial state energy matrix element

3. EF := h�F j Ĥ j�F i �nal state energy matrix element

The Slater-Condon rules1 are used to evaluate above matrix elements. The rules limit

the classes of excited determinants which couple to j�a
i i in the transition matrix element.

These classes are the singly j�b
j i, doubly j�

bc
jl i and triply j�bcd

jlm i excited determinants.

The Hartree-Fock ground state does not couple to j�a
i i due to Brillouin's theorem [42].

The contribution of quadruply and higher excited determinants vanishes.

In the course of the following derivation two-electron integrals of spin orbitals of the

type

Vpq[rs] := Vpqrs � Vpqsr (3.5)

Vpqrs :=

Z Z
�yp(~r1)�r(~r1)

1

j~r1 � ~r2j
�yq(~r2)�s(~r2) d

3r1 d
3r2 :

occur which consist of a direct Vpqrs and an exchange term Vpqsr [42]. If these matrix

elements (3.5) occur in transition amplitudes then p; q denote �nal states, r; s denote initial

states. The matrix elements can be interpreted to stand for the two transitions r ! p

and s ! q. This interpretation is only valid if p; q; r; s are interpreted as states in the

one-particle picture.

Singly Excited Final State Determinants

Let �E := EF � EI and b � ~k. The �nal state index becomes ~k because one is only

interested in the electronic decay width. Then the relevant matrix elements read

h�F j Ĥ j�I i = h�
~k
j j Ĥ j�a

i i = V~ki[ja] (3.6)

�E = "~k + "i � "j � "a| {z }
(1)

+ Vai[ai]| {z }
(2)

� V~kj[~kj]| {z }
(3)

:

The contributions to �E can be classi�ed, here and in the following, with the help of

table 3.1. The transition matrix element is pictured schematically in �gure 3.1. One

obtains the partial decay width of this process by inserting (3.6) into (3.3)

�singly = 2�
X
~k

NX
j=1

jV~ki[ja]j
2 Æ(�E) : (3.7)

1Section 2.3 (pages 64{89) in [42], especially the expressions in Tables 2.3, 2.4 are frequently used.

Furthermore, the results of exercise 3.1 on page 115 and equations (3.75), (3.76) are also employed.
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Unoccupied Unoccupied

Inner Valence

Unoccupied

Inner Valence Inner Valence

Exchange ContributionDirect Contribution

Unoccupied

Valence

Initial State

Unoccupied

Valence Valence

Unoccupied

Figure 3.1.: Schematic representation of the decay of the singly excited initial state j�a
i i into the

singly excited �nal state j�
~k
j i. The process is pictured in terms of Hartree-Fock orbitals.

Doubly Excited Final State Determinants

The doubly excited determinants j�bc
jl i contribute if i 2 fj; lg or a 2 fb; cg. One �nal

state index becomes ~k because one is only interested in electronic decay. There are three

cases to distinguish:

Case 1: Four combinations i 2 fj; lg and a 2 fb; cg. The other �nal state becomes ~k.

Case 2: Four combinations i 2 fj; lg and ~k 2 fb; cg.

Case 3: Two combinations a 2 fb; cg. The other �nal state becomes ~k.

Each case corresponds to a distinct group of matrix elements. Within a group the matrix

elements are identical, apart from their sign, because the matrix element h�a
i j Ĥ j�bc

jl i
changes its sign under interchange of j $ l or b$ c. Hence each group is represented by

a single schematic representation similar to �gure 3.1 (for the singly excited �nal states).

h�bc
jl j Ĥ j�bc

jl i, h�
a
i j Ĥ j�a

i i are invariant under this interchange. As one can transform

any choice of i 2 fj; lg or a;~k 2 fb; cg in a group to another, the combinations are non-

physical and the multiplicities must not be accounted for in the partial decay widths which

correspond to the groups. Hence one can choose arbitrarily which indices are taken.

Case 1 The matrix elements read, setting l � i; b � ~k; c � a

h�F j Ĥ j�I i = h�
~ka
ji j Ĥ j�a

i i = V~ka[ja] � V~ki[ji]
�E = "~k � "j| {z }

(1)

� Vi~k[i~k] � Vja[ja] � Vj~k[j~k]| {z }
(3)

+ Vij[ij] + Va~k[a~k]| {z }
(4)

:
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Figure 3.2.: Schematic representation of the decay of the singly excited initial state j�a
i i into the

doubly excited �nal state j�
~kb
ji i. The process is pictured in terms of Hartree-Fock orbitals.

The transition matrix element is not intuitively clear. It arises from the coupling of

the determinants. This shows that the excited determinants are not physical states. In

addition the decay process cannot be visualized in a single picture { instead it is the

di�erence between \two pictures". The partial decay width (3.3) of this process is

�doubly;1 = 2�
X
~k

NX
j=1
j 6=i

jV~ka[ja] � V~ki[ji]j
2 Æ(�E) : (3.8)

Case 2 The matrix elements read, setting l � i; c � ~k; b 6= a

h�F j Ĥ j�I i = h�
~kb
ji j Ĥ j�a

i i = V~kb[ja]
�E = "b + "~k � "a � "j| {z }

(1)

+ Via[ia]| {z }
(2)

� Vi~k[i~k] � Vib[ib] � Vj~k[j~k] � Vjb[jb]| {z }
(3)

+ Vij[ij] + Vb~k[b~k]| {z }
(4)

The transition matrix element is pictured in �gure 3.2. The partial decay width (3.3) of

this process is

�doubly;2 = 2�
X
~k

KX
b=N+1
b6=a

NX
j=1
j 6=i

jVb~k[aj]j
2 Æ(�E): (3.9)
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Inner ValenceInner Valence Inner Valence
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Valence

Initial State
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Valence Valence Valence

Figure 3.3.: Schematic representation of the decay of the singly excited initial state j�a
i i into the

doubly excited �nal state j�
~ka
jl i. The process is pictured in terms of Hartree-Fock orbitals.

Case 3 The matrix elements read, setting b � ~k; c � a; j; l 6= i

h�F j Ĥ j�I i = h�
~ka
jl j Ĥ j�a

i i = �Vi~k[lj]
�E = "~k + "i � "j � "l| {z }

(1)

+ Via[ia]| {z }
(2)

� Vl~k[l~k] � Vj~k[j~k] � Vja[ja] � Vla[la]| {z }
(3)

+ Vjl[jl] + Va~k[a~k]| {z }
(4)

The transition matrix elements is pictured in �gure 3.3. The partial decay width (3.3) of

this process is

�doubly;3 = 2�
X
~k

NX
j;l=1
j;l6=i
j<l

jVi~k[lj]j
2 Æ(�E): (3.10)

Triply Excited Final State Determinants

The triply excited determinants �cbd
jlm contribute if i 2 fj; l;mg and a 2 fb; c; dg. There

are three possibilities to choose i 2 fj; l;mg. Furthermore there are
�
3

2

�
2! = 6 possibilities

to set fa;~kg � fb; c; dg giving 18 combinations in total whose matrix elements may di�er

only by sign. These combinations are again non-physical (see the discussion in the previous

subsubsection). ~k is required to be included in the �nal states because one is interested

in electronic decay processes. The matrix elements read, setting m � i; c � ~k; d � a

h�F j Ĥ j�I i = h�
~kba
jli j Ĥ j�a

i i = V~kb[jl]
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3.1. Wigner-Weisskopf Theory

Valence Valence Valence

Valence ValenceValence

UnoccupiedUnoccupied Unoccupied

Unoccupied UnoccupiedUnoccupied

Inner Valence Inner Valence Inner Valence

Initial State Direct Contribution Exchange Contribution

Figure 3.4.: Schematic representation of the decay of the singly excited initial state j�a
i i into the

triply excited �nal state j�
~kba
jli i. The process is pictured in terms of Hartree-Fock orbitals.

�E = "~k + "b � "j � "l| {z }
(1)

� Vi~k[i~k] � Vj~k[j~k] � Vl~k[l~k] � Vib[ib] � Vjb[jb] � Vlb[lb] � Vja[ja] � Vla[la]| {z }
(3)

+ Vij[ij] + Vil[il] + Vjl[jl] + Va~k[a~k] + Vb~k[b~k] + Vab[ab]| {z }
(4)

The transition matrix elements is pictured in �gure 3.4. The partial decay width (3.3) of

this process is

�triply = 2�
X
~k

KX
b=N+1
b6=a

NX
j;l=1
j;l6=i
j<l

jVb~k[jl]j
2 Æ(�E): (3.11)

From a physical point of view the process does not look reasonable because neither the

initial hole nor the initial particle state is involved. This fact reminds us of the non-

physical nature of the determinants.

3.1.3. The Decay Width

Collecting all partial decay widths (3.7), (3.8), (3.9), (3.10), (3.11) from the preceding

subsection results in the total electronic decay width accurate up to second order in

perturbation theory

�I = �singly + �doubly;1 + �doubly;2 + �doubly;3 + �triply:
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3. Application of Perturbation Theory to Electronically Decaying States

The accuracy of this formula also depends on the quality of the description of the initial

and �nal states which may be less accurate than second order. All equations in this

section are given in terms of spin orbitals. A spin-free version can be derived easily by

integrating out the spin in the �nal equations (3.7), (3.8), (3.9), (3.10), (3.11) [42]

Till now the continuum index ~k has been treated like an ordinary bound state index.

This way of proceeding is questionable because continuum wave functions are Æ-function

normalized. Hence they are not square integrable. Therefore, they are not a member of

the N -electron Hilbert space spanned by (3.1). A standard technique to overcome this

problem is Stieltjes Chebyshev moment theory. For details see section 2.4 in [10, 11] and

references therein.

3.2. Single Reference Perturbation Theory

In the preceding section 3.1 time-dependent perturbation theory is applied to describe

the decay of a singly excited state, using a single reference to represent the initial state.

This section will tackle the same question with a di�erent approach.

In section 2.3 complex absorbing potentials are introduced to transform the time-

dependent decay problem into a time-independent problem. Hence augmenting a molec-

ular system by a CAP, renders the decay problem describable by a simple non-Hermitian

non-degenerate Rayleigh-Schr�odinger approach.

If a single reference is used to describe the initial state [2]. (Near) degeneracies of

the chosen reference with other states are very unpleasant because the non-degenerate

Rayleigh-Schr�odinger approach is not de�ned, then. This problem may not occur if a

CAP is present because the degeneracy may be removed. Nevertheless one should seek

a more robust multireference approach in the case of degeneracies. This is done in the

ensuing section 3.3.

The reason for presenting a single reference approach, in spite of its inherent insuÆ-

ciencies, is the fact that it represents the formal equivalent to the time-dependent theory

derived before. Hence this section demonstrates how CAPs transform the electronic decay

problem.

3.2.1. Formulation

The particle-hole basis set (3.1) is used here, too, with the Hermitian kets j � i replaced
by their non-Hermitian pendant j � ) which changes only the notation because the basis

set (3.1) is assumed to be real. There are two common ways of partitioning the Hamilto-

nian. The Epstein-Nesbet partition [55, 57, 58] (3.2) is augmented by adding the diagonal

and the o�-diagonal part of Ŵ

Ŵ0 =
X

j�
J
)2B

j�J ) (�J j Ŵ j�J ) (�J j (3.12)

Ŵ1 =
X

j�
J
);j�

K
)2B

J 6=K

j�J ) (�J j Ŵ j�K ) (�K j
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3.2. Single Reference Perturbation Theory

to Ĥ0 and Ĥ1 respectively

Ĥ(�) = Ĥ0(�) + Ĥ1(�)

Ĥ0(�) = Ĥ0 � i�Ŵ0

Ĥ1(�) = Ĥ1 � i�Ŵ1 :

(3.13)

Furthermore there is the M�ller-Plesset partition [42,55,56] of the real Hamiltonian (5.5)

that is also frequently used. As the CAP is considered a perturbation to the real system

one may write

Ĥ(MP)(�) = Ĥ
(MP)
0 (�) + Ĥ

(MP)
1 (�)

Ĥ
(MP)
0 (�) = Ĥ

(MP)
0

Ĥ
(MP)
1 (�) = Ĥ

(MP)
1 � i�Ŵ :

This way of adding a CAP to the system may give better results compared to the parti-

tion (3.1), (3.12) because the matrix representation of Ŵ in the basis (3.1) is not supposed

to be diagonal dominant, i.e. its diagonal cannot be thought of to be a zeroth order con-

tribution. The perturbation Ĥ1(�) of both partitions of the CAP-Hamiltonian depends

on �. Therefore one can expect perturbation theory to converge only for small �. The

M�ller-Plesset partition is not considered any further.

The CAP-Hamiltonian in Epstein-Nesbet partition (3.13) is used for a simple time-

independent Rayleigh-Schr�odinger perturbation theory [2,3] using one reference j�I ) which

is termed the \initial state". This term originates from the time-dependent picture. In

this context j�I ) denotes a state whose Siegert energy (1.1) is calculated. For convenience

and to emphasize the analogy to the time-dependent case, the terminology of section 3.1

is used throughout.

The CAP-Schr�odinger equation for the unperturbed part of (3.13) is

Ĥ0(�) j�J ) = E
(0)

J (�) j�J ) ;

for an arbitrary j�J ) 2 B. Now the well-known derivation of the Rayleigh-Schr�odinger

perturbation series [2, 3] can be transferred to the non-Hermitian case. Up to second

order, the energy of the initial state is given by

E
(0)

I (�) = (�I j Ĥ0(�) j�I ) (3.14a)

E
(1)

I (�) = (�I j Ĥ1(�) j�I ) (3.14b)

E
(2)

I (�) =
X

j�F)2B
F 6=I

(�I j Ĥ1(�) j�F )
2

E
(0)

I (�)� E
(0)

F (�)
: (3.14c)

In (3.14c) E
(0)

F (�) denotes the analogue to (3.14a) E
(0)

F (�) = (�F j Ĥ0(�) j�F ) for an

arbitrary state j�F ) 2 B; F 6= I. The �rst order correction (3.14b) vanishes due to the

partition (3.2), (3.12).

Equation (3.14c) may not be de�ned if j�I ) and j�F ) are degenerate because the

imaginary parts in the denominator, originating from the CAP, may also cancel. This
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3. Application of Perturbation Theory to Electronically Decaying States

is not a problem for the calculation of the decay width in section 3.1. Inspecting (3.4)

shows that the degeneracy problem in the single reference perturbation theory, derived

here, occurs due to the fact that the full Siegert energy (1.1) is calculated.

To study the real and imaginary parts of the energy correction (3.14c), an abbreviated

notation is introduced

HIF := (�I j Ĥ j�F )

�H := (�I j Ĥ j�I )� (�F j Ĥ j�F )

WIF := (�I j Ŵ j�F )

�W := (�I j Ŵ j�I )� (�F j Ŵ j�F ) :

The matrix elements in (3.14c) can now be split into contributions of Ĥ and contributions

of Ŵ because

(�J j Ĥ(�) j�K ) = (�J j Ĥ j�K )� i� (�J j Ŵ j�K ) (3.15)

holds for arbitrary J;K. This yields for the summand in (3.14c)

P2(F ) :=
(HIF � i�WIF)

2

�H � i��W
=

(HIF � i�WIF)
2 (�H + i��W )

(�H)2 + (��W )2

ReP2(F ) =
H2

IF�H � �2�HW 2
IF + 2 �2�W WIFHIF

(�H)2 + (��W )2
(3.16a)

ImP2(F ) =
� H2

IF�W � 2 �HIFWIF�H � �3�W W 2
IF

(�H)2 + (��W )2
: (3.16b)

In a complete basis, � ! 0 yields the exact Siegert energy (1.1) [17]. In this case, the real

part (3.16a) reduces to

lim
�!0

ReP2(F ) =
H2

IF

�H
;

which is the simple Rayleigh-Schr�odinger result for a non-degenerate state. Dirac's Æ-

function possesses following representation

Æ(x) = lim
"!0

Æ"(x) = lim
"!0

1

�

"

x2 + "2
;

which can be used to transform (3.16b) to

ImP2(F ) = �� H2
IF Æ"(�H) +

2 �HIFWIF�H

�W
Æ"(�H) + � �2W 2

IF Æ"(�H)

with " := ���W . Using � ! 0 =) " ! 0, the last two terms vanish. They are an

arti�cial contribution introduced by the CAP. For �nite �, a suitable projection opera-

tor (3.19) can be used, as shown below, then WIF and the last two terms vanish. Hence

the imaginary part assumes the form

ImP2(F ) = �� H2
IF Æ"(�H) (3.17)

which is identical to (3.3) due to (1.1) in the limit � ! 0.
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3.2. Single Reference Perturbation Theory

3.2.2. Matrix Elements

The initial state is chosen to be j�I ) := j�a
i ) following the arguments in section 3.1.

The initial and �nal state energy matrix elements and the transition matrix elements of

subsection 3.1.2 occur in the equations (3.14) because (3.15) holds and the Hermitian

scalar product does not di�er from the complex symmetric bilinear (2.12) form, in the

case of real determinants. Hence the formulae of subsection 3.1.2 for the matrix elements

can be applied here as well. Solely the matrix elements of Ŵ have to be calculated.

Ŵ denotes a one-particle operator, according to section 2.3.1. Hence all matrix ele-

ments between determinants, which di�er by more than one spin orbital, vanish due to the

Slater-Condon rules (footnote 1 on page 17). The coupling of j�a
i ), j�

k
j ), j�

ka
ji ), j�

bk
ji ),

j�ka
jl ), j�

~kba
jli ) to itself is needed for the initial and �nal state energy matrix elements. Note

that the continuum index ~k is replaced by a discrete index k due to the CAP. Furthermore

the coupling of j�a
i ) to determinants, di�ering only by one spin orbital, is needed for the

transition matrix elements. These are j�0 ), j�
a
j ), j�

b
i ), j�

ka
ji ).

Coupling to Itself

The initial state energy matrix element is

(�a
i j Ŵ j�a

i ) =

NX
l=1
l6=i

(�l j Ŵ j�l ) + (�a j Ŵ j�a ) : (3.18)

The electrons in the initial state spin orbitals are inuenced by the CAP by (�l j Ŵ (l) j�l ).
This is not desired because a non-physical perturbation of the initial state is introduced

in this way. Therefore, a projection operator

P̂ =

KX
l=N+1
l6=a

j�l ) (�l j (3.19)

is introduced to project Ŵ on unoccupied initial state orbitals (without the initial hole).

Replacing Ŵ by ŴP = P̂Ŵ P̂ yields for equation (3.18) (�a
i j ŴP j�

a
i ) = 0. The �nal

state energy matrix elements are on the analogy of equation (3.18)

(�k
j j ŴP j�

k
j ) = (�k j Ŵ j�k )

(�ka
ji j ŴP j�

ka
ji ) = (�k j Ŵ j�k )

(�kb
ji j ŴP j�

kb
ji ) = (�b j Ŵ j�b ) + (�k j Ŵ j�k ) (3.20)

(�ka
jl j ŴP j�

ka
jl ) = (�k j Ŵ j�k )

(�kba
jli j ŴP j�

kba
jli ) = (�b j Ŵ j�b ) + (�k j Ŵ j�k ) :

The matrix elements (3.20) cause a non-physical perturbation of the excited electrons and

the absorption of the \outgoing" electron. The e�ect of the CAP on the excited electrons

can be reduced by choosing an appropriate Ŵ .
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3. Application of Perturbation Theory to Electronically Decaying States

Coupling to Other Determinants

The transition matrix elements of the CAP-operator are

(�a
i j Ŵ j�0 ) = (�a j Ŵ j�i )

(�a
i j Ŵ j�a

j ) = � (�j j Ŵ j�i )

(�a
i j Ŵ j�b

i ) = (�a j Ŵ j�b )

(�a
i j Ŵ j�ka

ji ) = (�j j Ŵ j�k )

The minus sign is caused by the maximum coincidence enforced by exchanging the i-th

and the j-th spin orbital in one of the determinants [42]. The transition Ŵ ! ŴP (3.19)

makes all transition matrix elements of the CAP-operator vanish. Hence the CAP does

not cause arti�cial transitions and (3.17) holds for � > 0. The inuence of the CAP is

restricted to (3.20).

3.3. Multireference Perturbation Theory

The degenerate time-independent perturbation theory is, in fact, a special multireference

approach as the subspace of degenerate states, belonging to a certain energy eigenvalue,

is taken. Then the subspace is diagonalized to decouple the states and to yield corrections

to the energy in �rst and to the wave function in zeroth order. After this non-degenerate

perturbation theory can be applied to each linear combination of the initial states, if the

degeneracy is resolved in the new basis, to obtain higher order corrections [2, 3].

A general multireference approach can be devised analogously. An arbitrary set of

initial states can be taken. Then one can proceed as described in the previous paragraph.

This is, essentially, what is done in this section.

3.3.1. The E�ective Eigenvalue Problem

Partition of the Hamiltonian

The CAP-Schr�odinger equation (2.13)

Ĥ(�)j	j(�)) = Ej(�)j	j(�)) (3.21)

shall be solved for several complex eigenvalues, the resonance states of interest, using

perturbation theory. An orthonormal (con�guration interaction) basis set j�j); j =

1; : : : ; K (see section 2.2) is used to form a complex symmetric matrix representation

of (3.21). The Hamiltonian reads in this basis

Ĥ(�) �
KX

i;j=1

j�i) (�ijĤ(�)j�j) (�jj:

The approximation becomes exact for K !1.
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3.3. Multireference Perturbation Theory

Out of the basis, a set of n con�gurations is selected as references j�j); j = 1; : : : ; n

which approximate2 n physical states j	j(�)); j = 1; : : : ; n. For ease of notation, the

references are denoted with the �rst n numbers. For the case of a singly excited resonance

state, discussed in the preceding sections 3.1, 3.2, the most important con�gurations are

the singly excited particle-hole con�gurations, which are close to the resonance energy,

because they have usually a big overlap with the eigenvector of the resonance. In fact

most con�gurations which are close to the resonance energy are important. See [52, 53]

and references therein, for techniques to select the essential con�gurations.

Next a reference space or model space and its complement space is formed with the

help of projection operators [10, 11, 39]

P̂ =

nX
j=1

j�j)(�jj Q̂ = 1̂� P̂ =

KX
j=n+1

j�j)(�jj (3.22)

obeying

P̂2 = P̂; Q̂2 = Q̂; P̂T = P̂; Q̂T = Q̂; P̂+Q̂ = 1̂; P̂ Q̂ = 0 : (3.23)

Applying (3.22) to (3.21) yields

P̂Ĥ(�)P̂ j	j(�)) + P̂Ĥ(�)Q̂ j	j(�)) = Ej(�) P̂j	j(�)) (3.24a)

Q̂Ĥ(�)P̂ j	j(�)) + Q̂Ĥ(�)Q̂ j	j(�)) = Ej(�) Q̂j	j(�)) : (3.24b)

Adding (3.24a) to (3.24b) gives

Ĥ(�) = P̂Ĥ(�)P̂+ P̂Ĥ(�)Q̂+ Q̂Ĥ(�)P̂+ Q̂Ĥ(�)Q̂ : (3.25)

The matrix representation of (3.25) reads

H(�) =

0
BB@ PH(�)P PH(�)Q

QH(�)P QH(�)Q

1
CCA (3.26)

in the basis set j�j); j = 1; : : : ; K. One notices that the matrix representation of

eg. P̂Ĥ(�)P̂ is a K � K matrix PH(�)P with a non-zero upper n � n matrix. For

notational brevity, the K � K matrix PH(�)P is identi�ed with the smaller non-zero

n� n matrix. The same applies to the other blocks of (3.26).

The E�ective Hamiltonian

Equation (3.24b) is solved for Q̂j	j(�)), with the help of (3.23) which yields

Q̂j	j(�)) = [Ej(�) 1̂� Q̂Ĥ(�)Q̂]�1 Q̂Ĥ(�)P̂j	j(�)) : (3.27)

2The approximation of the physical states needs only to be good for the desired resonance states, thus

the number of references is usually larger than the actual number of states of interest.
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3. Application of Perturbation Theory to Electronically Decaying States

The operator Ĝ(�) := [Ej(�) 1̂�Q̂Ĥ(�)Q̂]�1 has poles at the eigenvalues of Q̂Ĥ(�)Q̂. It is

the Green's function [42] of the complement space. To avoid singularities, the complement

space must not contain states which are degenerate with a reference state.

Near degeneracies are also a problem because Ĝ(�) is nearly singular in this case the

perturbation series does not converge and instabilities in numerical calculations arise. The

problem is overcome by enlarging the reference space to include the problematic states.

Such nearly degenerate states are called intruder states [60] if they couple only weakly3

to the reference states.

Inserting equation (3.27) into (3.24a), multiplying with (	i(�)jP̂, results in

Ej(�) (	i(�)jP̂j	j(�)) = (	i(�)jĤe�(�)j	j(�)) (3.28a)

Ĥe�(�) = P̂Ĥ(�)P̂+ P̂Ĥ(�)Q̂ [Ej(�) 1̂� Q̂Ĥ(�)Q̂]�1 Q̂Ĥ(�)P̂ (3.28b)

for the exact eigenvalues Ej(�) of the states j	j(�)); j = 1; : : : ; n. The wave func-

tions P̂j	j(�)) are assumed to be neither orthogonal nor normalized. Equation (3.28) is

no simpli�cation but a convenient reformulation of the original problem (3.21).

The Wave Function

The perturbation expansion of the wave function can be obtained using

j	j(�)) = P̂j	j(�)) + Q̂j	j(�)) :

Inserting equation (3.27) yields

j	j(�)) = P̂j	j(�)) + [Ej(�) 1̂� Q̂Ĥ(�)Q̂]�1 Q̂Ĥ(�)P̂ j	j(�)) : (3.29)

This is an expansion of the j-th state j	j(�)) in terms of its projection onto the reference

space P̂j	j(�)) and corrections to the projected state in the complement space that derive

from P̂j	j(�)).

3.3.2. The Expansion in a Series

Diagonalization of the Hamiltonian in the Reference space

The matrix representation of the Hamiltonian in the reference space PH(�)P in (3.26)

can be diagonalized to decouple the reference con�gurations, to improve the single ref-

erence approximation and to remove degeneracies. The diagonalization of PH(�)P is

similar to the projection method discussed in subsection 2.3.2. The intent of this section is

to go beyond the simple projection method and to account for the neglected con�gurations

with the help of perturbation theory.

3If a state couples strongly to a reference state it is essential for the description of the perturbed state

and is put in the reference space.

28



3.3. Multireference Perturbation Theory

The diagonalization of PH(�)P means a change to the new, orthonormal, basis4

j'j(�)) :=

8<
:

nP
k=1

Qkj j�k) ; j 2 f1; : : : ; ng

j�j) ; j 2 fn + 1; : : : ; Kg
: (3.30)

The new basis coincides with the old outside the reference space. Changing the basis in

equation (3.28a) gives

Ej(�)

nX
k;l;p=1

(	i(�)j'k(�)) ('k(�)j�p) (�pj'l(�)) ('l(�)j	j(�)) (3.31)

=

nX
k;l;p;q=1

(	i(�)j'k(�)) ('k(�)j�p) (�pjĤe�(�)j�q) (�qj'l(�)) ('l(�)j	j(�)) :

This equation describes a general change of basis. To diagonalizePH(�)P in (3.26) one

has to choose a suitable Qpq := (�pj'q(�)); p; q = 1; : : : ; n, in other words, one has to

solve the complex symmetric eigenvalue problem

QTPH(�)PQ = diag(E
(0)
1 (�); : : : ; E(0)

n (�)) =: E(0)(�) :

This eigenvalue problem is not a priori soluble, in contrast to the real symmetric prob-

lem [10, 11]. If it is soluble then this can be achieved by a complex orthogonal transfor-

mation Q, obeying QQT = QTQ = 1.

The e�ective eigenvalue problem (3.31) reads in matrix notation, with (3.28b)

Ej(�) ~	i
T(�)~	j(�) = ~	i

T(�)He�(�) ~	j(�)

He�(�) = E(0)(�) +QTPH(�)QG(�)QH(�)PQ
(3.32)

setting (~	j(�))k := ('k(�)j	j(�)) and (He�)kl := ('k(�)jĤe�(�)j'l(�)) for k; l = 1; : : : ; n.

The change of basis becomes more obvious if its e�ect on the full Hamiltonian ma-

trix (3.26) is analyzed. The transformation reads

�H(�) := �QTH(�) �Q; �Q :=

�
Q 0

0 1

�
(3.33)

which yields

�H(�) =

0
BB@ E(0)(�) QTPH(�)Q

QH(�)PQ QH(�)Q

1
CCA : (3.34)

4The normalization of the basis functions of the diagonalized matrix representation of the Hamiltonian

in the reference space is intermediate normalization (see equation (3.53)) which is applied frequently

in perturbation theory [42, 55].
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3. Application of Perturbation Theory to Electronically Decaying States

The Expansion in a Series

To be able to apply perturbation theory the Hamiltonian matrix (3.34) is decomposed in a

diagonal and an o�-diagonal part. This is the so-called Epstein-Nesbet partition [55,57,58]

�H(�) =HD(�) + �HN(�)

setting

HD(�) := diag( �H(�)); HN(�) :=

0
BBBBBBBBBBBBB@

0 0 � � � 0 � � � � � �

0
. . .

. . .
... �

. . .
. . .

...
...

. . .
. . . 0

...
. . .

. . . �
0 � � � 0 0 � � � � � �
� � � � � � 0 � � � � �

�
. . .

. . .
... �

. . .
. . .

...
...

. . .
. . . �

...
. . .

. . . �
� � � � � � � � � � � 0

1
CCCCCCCCCCCCCA
: (3.35)

Examining the matrix (3.34) in the light of (3.35), one sees that the e�ective eigenvalue

problem (3.32) acquires the form

Ej(�) ~	i
T(�)~	j(�) = ~	i

T(�)He�(�) ~	j(�) (3.36a)

He�(�) = E(0)(�) + �2QTPH(�)QG(�)QH(�)PQ (3.36b)

in the basis set (3.30).

SettingHQQ

D
(�) := (QH(�)Q)diagonal andH

QQ

N
(�) := (QH(�)Q)o��diagonal to de�ne

G(�) = [Ej(�)1�H
QQ

D
(�)� �HQQ

N
(�)]�1; (3.37)

G(�) is a (K � n)� (K � n) matrix. Inserting E
(0)

j (�)� E
(0)

j (�) = 0 in equation (3.37)

results in

G(�) = [�(�)�1 (1+ �(�) ((Ej(�)� E
(0)
j (�))1� �HQQ

N
(�)))]�1; (3.38)

upon setting �(�) := [E
(0)
j (�)1�HQQ

D
(�)]�1. Provided that k�(�) ((Ej(�)�E

(0)
j (�))1�

�HQQ

N
(�))k < 1 holds one can expand (3.38) in a geometric series (Lemma 2.3.3 in [61]

which also holds for complex matrices)

G(�) =
h 1X
k=0

(�1)k (�(�) ((Ej(�)� E
(0)
j (�))1� �HQQ

N
(�)))k

i
�(�) : (3.39)

One sees that the convergence of the perturbation series of the resonance energy that

results from (3.36) follows from the convergence of the series of the Green's function (3.39).
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3.3. Multireference Perturbation Theory

3.3.3. Approximation of the Eigenvalues

Truncation of the Series

With

Ej(�) = E
(0)

j (�) + �E
(1)

j (�) + �2E
(2)

j (�) + �3E
(3)

j (�) + �4E
(4)

j (�) +O(�5) (3.40)

the expansion of (3.39)

G(�) = G(0)(�) + �G(1)(�) + �2G(2)(�) +O(�3) (3.41)

can be done yielding

G(0)(�) = �(�)

G(1)(�) = �E
(1)
j (�)�(�)2 + �(�)HQQ

N
(�)�(�)

G(2)(�) = �E
(2)

j (�)�(�)2 + E
(1)

j (�)2�(�)3 (3.42)

� E
(1)
j (�)�(�)2HQQ

N
(�)�(�)

� E
(1)

j (�)�(�)HQQ

N
(�)�(�)2

+ �(�)HQQ

N
(�)�(�)HQQ

N
(�)�(�)

after expanding the geometric series (3.39) up to k = 2 and sorting for orders in �.

With the help of (3.36b), the perturbation series for G(�) leads to a perturbation

series of the e�ective Hamiltonian

He�(�) =H
(0)

e� (�) + �H
(1)

e� (�) + �2H
(2)

e� (�) + �3H
(3)

e� (�) + �4H
(4)

e� (�) +O(�5) : (3.43)

Inspecting (3.36b), one sets H
(0)

e� (�) := E
(0)(�). If PH(�)P was not diagonalized then

H
(1)

e� (�) would become the o�-diagonal part of PH(�)P due to the partition (3.35),

therefore, H
(1)

e� (�) := 0.

The e�ective eigenvalue problem (3.36) can be solved by expanding the exact wave

function ~	j(�) in a series

~	j(�) = ~	
(0)
j (�) + � ~	

(1)
j (�) + �2 ~	

(2)
j (�) + �3 ~	

(3)
j (�) + �4 ~	

(4)
j (�) +O(�5) : (3.44)

Inspecting (3.36a), one sets (~	
(0)

j (�))k := ('k(�)j'j(�)) = Ækj for k = 1; : : : ; n.

A series expansion for the energy is obtained by inserting (3.40), (3.43), (3.44) into

He�(�) ~	j(�) = Ej(�) ~	j(�) :

which derives from (3.36a). This yields

H
(0)

e� (�)
~	
(0)
j (�) + �H

(0)

e� (�)
~	
(1)
j (�)

+ �2 [H
(0)

e� (�)
~	
(2)

j (�) +H
(1)

e� (�)
~	
(1)

j (�) +H
(2)

e� (�)
~	
(0)

j (�)]

+ �3 [H
(0)

e� (�)
~	
(3)
j (�) +H

(1)

e� (�)
~	
(2)
j (�) +H

(2)

e� (�)
~	
(1)
j (�) +H

(3)

e� (�)
~	
(0)
j (�)]
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+ �4 [H
(0)

e� (�)
~	
(4)
j (�) +H

(1)

e� (�)
~	
(3)
j (�) +H

(2)

e� (�)
~	
(2)
j (�)

+H
(3)

e� (�)
~	
(1)

j (�) +H
(4)

e� (�)
~	
(0)

j (�)] (3.45)

= E
(0)
j (�) ~	

(0)
j (�) + � [E

(1)
j (�) ~	

(0)
j (�) + E

(0)
j (�) ~	

(1)
j (�)]

+ �2 [E
(0)
j (�) ~	

(2)
j (�) + E

(1)
j (�) ~	

(1)
j (�) + E

(2)
j (�) ~	

(0)
j (�)]

+ �3 [E
(0)

j (�) ~	
(3)

j (�) + E
(1)

j (�) ~	
(2)

j (�) + E
(2)

j (�) ~	
(1)

j (�) + E
(3)

j (�) ~	
(0)

j (�)]

+ �4 [E
(0)
j (�) ~	

(4)
j (�) + E

(1)
j (�) ~	

(3)
j (�) + E

(2)
j (�) ~	

(2)
j (�)

+ E
(3)

j (�) ~	
(1)

j (�) + E
(4)

j (�) ~	
(0)

j (�)] :

Multiplying from left with ~	
(0)
j

T(�) yields

E
(k)
j (�) = ~	

(0)
j

T(�)H
(k)
e� (�)

~	
(0)
j (�) for k = 0; 2; 3 (3.46)

due to
~	
(0)
j

T(�)~	
(1)
j (�) = ~	

(0)
j

T(�)~	
(2)
j (�) = : : : = 0 :

E
(1)
j (�) and ~	

(1)
j (�) vanish. The fourth order correction to the energy can be obtained by

multiplying (3.45) from left with ~	
(0)

j
T(�)

E
(4)

j (�) = ~	
(0)

j
T(�)H

(2)

e� (�)
~	
(2)

j (�) + ~	
(0)

j
T(�)H

(4)

e� (�)
~	
(0)

j (�) : (3.47)

The second order correction to the wave function ~	
(2)
j (�) is needed in (3.47). It is deter-

mined with the help of

~	
(2)
j (�) =

nX
k=1
k 6=j

~	
(0)

k
T(�)~	

(2)
j (�) ~	

(0)

k (�) (3.48)

because the reference space is, trivially, complete.

The expansion coeÆcients ~	
(0)

k
T(�)~	

(2)
j (�) are obtained from (3.49) by multiplying the

second order equation from left with ~	
(0)

k
T(�)

~	
(0)

k
T(�)H

(0)

e� (�)
~	
(2)
j (�) + ~	

(0)

k
T(�)H

(2)

e� (�)
~	
(0)
j (�)

= E
(0)

j (�) ~	
(0)

k
T(�)~	

(2)

j (�) + E
(2)

j (�) ~	
(0)

k
T(�)~	

(0)

j (�)
: (3.49)

The last term in (3.49) vanishes due to k 6= j. The second order correction to the wave

function reads with the help of (3.48), (3.49), (3.46)

~	
(2)
j (�) =

nX
k=1
k 6=j

~	
(0)

k
T(�)H

(2)

e� (�)
~	
(0)
j (�)

E
(0)
j (�)� E

(0)

k (�)
~	
(0)

k (�) (3.50)

The energy corrections, up to fourth order, can be written in terms of the matrix el-

ements (3.34) by inserting the de�nitions of the projection operators (3.23). The �nal
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equation reads

Ej(�) = E
(0)

j (�) + �2
KX

k=n+1

�H2
jk

E
(0)

j (�)� �Hkk

+ �3
KX

k;l=n+1
k 6=l

�Hjk
�Hkl

�Hlj

(E
(0)
j (�)� �Hkk) (E

(0)
j (�)� �Hll)

(3.51)

+ �4
� nX
k=1
k 6=j

KX
l=n+1

�H2
kl
�H2
lj

(E
(0)
j (�)� E

(0)

k (�)) (E
(0)
j (�)� �Hll)2

+

KX
k;l;m=n+1
k;m6=l

�Hjk
�Hkl

�Hlm
�Hmj

(E
(0)
j (�)� �Hkk) (E

(0)
j (�)� �Hll) (E

(0)
j (�)� �Hmm)

� E
(2)

j (�)

KX
k=n+1

�Hjk
�Hkj

(E
(0)

j (�)� �Hkk)2

�
+O(�5) :

For notational brevity, the � dependence is not explicitly stated for the matrix elements

of the Hamiltonian (3.34).

Let us have a closer look at (3.51). The zeroth order energy E
(0)

j (�) is the energy

obtained by diagonalizing the matrix representation of the Hamiltonian in the reference

space. The �rst order correction vanishes due to �2 in equation (3.36) which originates

from the partition (3.35). The second and higher order corrections represent the e�ect

of the con�gurations in the complement space. In fourth order, corrections within the

reference space are also needed.

Chen et al. have independently derived a formally similar theory in [55] (equa-

tion (25)) using a direct Taylor series expansion of the secular equation for the energy

of bound states of a molecular system. They explicitly state the perturbation expan-

sion for the real energy up to third order. Chen et al. further observe that this kind of

multireference approach reduces to single reference Epstein-Nesbet perturbation theory

if only one reference is used. The non-Hermitian multireference perturbation theory of

this section also reduces to the non-Hermitian single reference theory as can be seen by

comparing (3.53) with (3.14), noticing that the �rst order correction (3.14b) vanishes.

The Wave Function

A perturbation expansion of the wave function ~	j(�) can be obtained from (3.29). This

equation reads

~	j(�) =P ~	j(�) + �G(�)QH(�)PQ ~	j(�) (3.52)
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using the partition (3.35). Inserting (3.41), (3.42) and (3.50) into (3.52) yields

~	j(�) = ~	
(0)

j (�) + �

KX
k=n+1

�Hkj

E
(0)

j (�)� �Hkk

~	
(0)

k (�)

+ �2
� nX

k=1
k 6=j

KX
l=n+1

�Hkl
�Hlj

(E
(0)
j (�)� E

(0)

k (�)) (E
(0)
j (�)� �Hll)

~	
(0)

k (�)

+

KX
k;l=n+1
k 6=l

�Hkl
�Hlj

(E
(0)

j (�)� �Hkk) (E
(0)

j (�)� �Hll)
~	
(0)

k (�)

�

+O(�3) :

(3.53)

Again the � dependence is not explicitly stated for the matrix elements of the Hamiltonian.

The corrections to the wave function (3.53) are not explicitly given in [55].

There are two sorts of corrections to ~	
(0)
j (�). Firstly, there are corrections to the wave

function in the reference space. These corrections account for the fact that P~	
(0)

j (�) is

not equal to P~	j(�). Secondly, there are corrections to ~	
(0)
j (�) which occur solely in

the complement space and consequently do not change the projection onto the reference

space. Nevertheless, these corrections are essential for the energy corrections of the second

and higher order, see (3.36b).
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4. Application of Non-Hermitian Multireference

Perturbation Theory

4.1. The Model Problem

4.1.1. The Setting

A model problem is introduced in this section which serves to illustrate the multireference

perturbation theory, derived in section 3.3. See section 3.1 of [10, 11] for more details

concerning the model. The s-wave scattering of electrons at the spherically symmetric

one-particle potential (�gure 4.1)

V̂ (r) =

(�V0 ; 0 � r < a

V0 ; a � r < 2a

0 ; r � 2a

is studied.

1 2 3 4 5
r [Bohr]

-10

-5

0

5

10

V
(r

) 
[H

ar
tr

ee
]

Figure 4.1.: The radial part of a spherically symmetric one-particle potential for testing the non-

Hermitian multireference perturbation theory of section 3.3.

The solution of the scattering problem is essentially given by the radial part of the
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Figure 4.2.: (Color) Complex spectra of the CAP-Hamiltonian (4.3) for a range of values for �.

The red arrow points at the �-trajectory of the �rst resonance state. The matrix representation of

the CAP-Hamiltonian is diagonalized fully for � = 0; : : : ; 72:6850 (70 iterations: �i+1 = 1:2 �i +

0:00005; �1 = 0).

wave function which can be obtained using the one-dimensional Hamiltonian [10, 11]

Ĥ(r) = �
1

2

�
@2

@r2
+
2

r

@

@r

�
+ V̂ (r); (4.1)

because the case of s-wave scattering implies Y00(#; ') = 1 [10, 11]. There exists a quasi-

analytic solution, giving�6:353803650Hartree for the only bound state and 4:001414397�
0:003616371 i Hartree for the �rst resonance, assuming V0 = 10Hartree; a = 1Bohr.

The energy of the �rst resonance is calculated using the CAP-method of section 2.3,

employing the CAP-operator

Ŵ (r) :=

�
(r � c)2 ; r � c

0 ; 0 � r < c
: (4.2)

The parameter c determines a sphere around the origin (r = 0) where the CAP does not

absorb the wave function. If c is too large, with respect to a chosen �nite basis set, the

basis is not suited to represent the wave function.

Conversely, if c is too small the damping of the wave function is too large and the

result is not satisfactory. c = 2a = 2Bohr is a good choice [10,11] to calculate the Siegert

energy (1.1) of the �rst resonance of the model problem. The CAP-Hamiltonian of the

model problem is given by (2.11), (4.1), (4.2)

Ĥ(�) = Ĥ � i � Ŵ : (4.3)
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Figure 4.3.: (Color) The �-trajectory of the �rst resonance of the model problem. The red cross

represents the exact Siegert energy of the �rst resonance. Magni�cation of �gure 4.2 by 2000.

The matrix representation of this equations is constructed using a basis of particle-in-a-

box functions (k = 1; : : : ; N)

�k(r) =

(q
2
L
sin
�
k�r
L

�
; 0 � r < L

0 ; r � L
: (4.4)

The spatial extension L = 10Bohr is assumed throughout. L is suÆciently large because

the CAP starts to absorb at c = 2Bohr.

4.1.2. Full Diagonalization of the Matrix Representation of the

CAP-Hamiltonian

The calculations of this section were performed using a FORTRAN 95 [62] program,

written by Robin Santra. I reworked the code to include the perturbation theory of

section 3.3. The implementation is similar to that described in section 4.2. The main

di�erence is that all operations are carried out in main storage because the involved

matrices are kept small.

In this subsection the program is used to study the full spectra of the matrix rep-

resentation of the CAP-Hamiltonian. The program constructs the complex symmetric

matrix representation of (4.3) with the help of the basis (4.4). Afterwards, it diagonalizes

the matrix representation with the LAPACK routine zgeev [63] to obtain its complex

eigenvalue spectrum, see section 2.3.2.

Several complex spectra are calculated in a range of values for �, starting with � = 0.

Each bound, resonance or pseudocontinuum state of (4.3) is represented by an �-trajectory.
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Figure 4.4.: (Color) The energy of the �rst resonance of the model problem for an increasing

number of references. The resonance energy is obtained by applying non-Hermitian multireference

perturbation theory, up to second order. The horizontal lines are the exact values for the real and

the imaginary part of the energy of the �rst resonance.

Figure 4.2 shows an overview of many complex spectra of Ĥ(�) for varying CAP-strength �.

At about �6Hartree one can �nd the trajectory of the bound state clearly separated from
all other trajectories.

At about 4Hartree there is a \circle" between two quasi-continuum states, marked

by the red arrow. This is not a single circle but the �-trajectory of the �rst resonance

state of the model problem. The \circle" is shown, magni�ed by 2000, in �gure 4.3.

The stabilization point of the resonance is clearly visible. It is the point where the

e�ect of the �nite basis set and the e�ect due to the perturbation of the CAP-operator

balance. According to [17] this is the Siegert energy (1.1) of the resonance. There are more

resonance states visible in the spectrum 4.2. Their signature is a more or less extended

blob of accumulated circles.

4.1.3. Advantages of Perturbation Theory

Comparing di�erent methods fairly is not very easy and usually one does wrong to all

due to the fact that one has to select a set of observables to compare the methods. As

each algorithm produces its own set of observables, in most cases distinct from the sets

produced by the others, the selection of a common subset neglects certain features unique

to each algorithm. The common subset is usually optimized to the strengths of the \new"

method.

The candidates to compare here are the multireference perturbation theory (MRPT)

of section 3.3 versus the diagonalization of the CAP-Hamiltonian in the reference space

only with respect to the accuracy of the energy eigenvalue of the �rst resonance state of
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Figure 4.5.: Timing of non-Hermitian multireference perturbation theory for an increasing reference

space. Each point corresponds to the time needed for 70 iterations with varying �. The time for the

construction of the basis (see text) is not included.

the model problem.

The full diagonalization of the matrix representation is not considered to be a candi-

date for a comparison because it calculates the whole spectrum of Ĥ(�), in the matrix

representation employed1, usually containing the energies of many resonances. Pertur-

bation theory and the diagonalization of the CAP-Hamiltonian in the reference space

calculate only the energies of selected resonances.

Timing was done using a �xed basis set of 5000 functions, increasing the size of the

reference space employed. The amount of time needed to apply the multireference pertur-

bation theory to this problem is shown in �gure 4.5 for an increasing number of references.

The amount of time needed to carry out a full diagonalization is � 20 d.

This comparison of MRPT with full diagonalization is unfair because the latter yields

the whole spectrum of the CAP-Hamiltonian matrix in the chosen basis but here one is

only interested in the Siegert energy (1.1) of the �rst resonance. So the time needed for a

selective calculation of this eigenvalue by the methods introduced in section 2.3.2 would

be more appropriate to compare with MRPT. To implement these kinds of algorithms

would have caused considerable work which is surely not sensible for such a simple model

problem. Since the selective determination of eigenvalues involves matrix times vector

products, they are slower than MRPT for large basis sets because the second order scheme

of MRPT used here, only requires to evaluate the coupling blocks of the matrix.

Some remarks have to be made on the construction of the basis set used in the MRPT

1This is not necessarily a large section of the spectrum of Ĥ(�).
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computations of this subsection. A matrix representation of the real Hamiltonian for a

potential well depth of V0 = 20Hartree, see �gure 4.1, is formed using the basis (4.4).

To construct an adapted basis to the problem the matrix representation is diagonalized.

Then the matrices of the real and imaginary parts for V0 = 10Hartree are formed and

projected onto the formerly calculated new basis set. This procedure mimics the diagonal

dominance of CI-matrices. The sparsity of CI-matrices (2.10) cannot be achieved by this

construction. The old and the new basis exhibit another drawback. The distortion of

states with high energy by the model potential is small and the matrix of the real part is

nearly diagonal in both basis sets for these states because particle-in-a-box functions (4.4)

are then a very good approximation. This is not the case for CI-matrices.

The particle-in-a-box functions (4.4) are not good references because their overall

shape di�ers a lot from the shape of the wave function of a resonance (�gure 3.4 in [10,11]).

Hence the overlap between a reference, of an energy close to the real part of the energy

of a resonance, and the resonance itself is small and the description is insuÆcient. The

diagonal dominance2 of the matrix representation of the problem in the new basis assures

the quality of the references. As this construction is very costly the amount of time used

to calculate this basis set is subtracted from the total time needed to carry out the MRPT

computations.

Figure 4.4 shows the convergence of the real and the imaginary part separately, for the

�rst resonance with an increasing reference space. The horizontal lines denote the exact

values of subsection 4.1.1. The real part converges slightly faster than the imaginary part

due to the better adaption of the basis to the former. This should also be observed in

the case of CI-matrices. The time needed to apply MRPT for 70 values for � is shown in

�gure 4.5 for an increasing reference space.

A di�erent way of looking at the convergence of MRPT is to keep the reference space

size constant for an increasing size of the basis set but in practice one is more interested

in increasing the reference space. In multireference con�guration interaction (MRCI)

programs the basis increases with the size of the reference space, too. This is not accounted

for here.

To show the advantage of using perturbation theory, in contrast to takeing only the

energy of the �rst resonance in the diagonalized reference space, is shown in �gure 4.6

for a number of di�erent reference space sizes. Obviously the results are less satisfactory

compared to �gure 4.4. Using 40 references, MRPT yields �0:003610 i for the imagi-

nary part of the energy of the �rst resonance. In the reference space, the imaginary

part is �0:003474 i. Compared to the exact value �0:003616371 i, MRPT yields more

accurate results for a given reference space size than the simple diagonalization of the

CAP-Hamiltonian in the reference space.

4.2. Con�guration Interaction

The theory of section 3.3 can be used to study resonances in atoms, molecules or clusters

using the con�guration interaction method of section 2.2. The following paragraphs de-

2The matrix representation in the new basis is in fact not diagonally dominant due to a few diagonal

elements which are small, in the presented calculations here.

40



4.2. Con�guration Interaction
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Figure 4.6.: (Color) The energy of the �rst resonance of the model problem in the reference space

with an increasing number of references. The resonance energy is obtained by diagonalizing the

reference space for varying �. The values di�er from those in �gure 4.4 by the perturbative corrections.

The horizontal lines are the exact values for the real and the imaginary part of the energy of the �rst

resonance.

scribe a computer program which implements MRPT for SDCI-matrices. In future, it is

planed to use the program to study some electronic resonances in molecules.

The ab initio program package Molcas [15] is used to carry out the ground state

Hartree-Fock calculation described in section 2.1. The matrix representation of the CAP-

operator Ŵ in the SDCI basis is generated by a module which bases on theDiesel MRCI

package [64{66]. It is saved on mass storage. This matrix is not as large as the (SD)CI-

matrix (2.10) because Ŵ is a one-particle operator. Hence only few matrix elements are

non-zero.

Another module for Diesel MRCI was written by me to carry out the perturbation

theory. The program reads in the matrix representation of Ŵ and uses Diesel's matrix

generator to calculate the diagonal, the reference space matrix PHP and the coupling

block PHQ of the (real) SDCI-matrix. The coupling block is saved on mass storage.

After this initialization phase the program commences.

For a set of values for �, MRPT is applied. For each �, the diagonal of H(�) is com-

puted. AfterwardsPHP is obtained and combined withPWP to givePH(�)P which

is diagonalized using the LAPACK routine zgeev [63]. Now PHQ is read in column-

wise and combined on the y with a column of PWQ to give a column of PH(�)Q.

The column is then transformed according to (3.30) using the eigenvector matrix of the

reference space. Now, the second order correction to the energy (3.51) can be calculated.
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Part II.

Electronic Decay of Ionized Molecular

Systems
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5. Calculation of Ionization Spectra with

Many-body Green's Functions

This chapter serves as an introduction to Green's function methods to calculate the ion-

ization potentials of atoms, molecules or clusters. Only vertical ionization potentials are

calculated here, i.e. the geometry of the molecular system is the same in the initial and

the �nal state of the ionization process [42]. Although ionization potentials are brought

into focus, many other properties of molecular systems can be calculated with Green's

functions [31, 67, 68].

The aim is to introduce the algebraic diagrammatic construction scheme (ADC) which

transforms the calculation of the many-body Green's function into a Hermitian eigen-

value problem. The problem is simpli�ed by perturbation theory. The results of the

ADC method are frequently impressive because the ADC equations contain, besides the

diagrams up to the order in perturbation theory chosen, in�nite sums of diagrams that

derive from those.

In this chapter the formalism of second quantization is used to describe the creation and

annihilation of (quasi)particles. ĉp denotes an annihilator, ĉp j�p i = j0i, and ĉyp denotes a
creator, ĉyp j0i = j�p i of electrons in spin orbitals. j0i represents the vacuum state [42,68].

The fermion �eld is quantized by the anticommutation relations

fĉp; ĉqg = 0; fĉyp; ĉ
y

qg = 0; fĉp; ĉ
y

qg = Æpq :

5.1. Many-body Green's Functions

The one-particle Green's function (particle propagator) reads [30,48,67{69] in the Heisen-

berg picture

Gpq(t; t
0) = (�i) h	N

0 j T̂ [ĉp(t) ĉ
y

q(t
0)] j	N

0 i ; (5.1)

with Wick's time-ordering operator T̂ . j	N
0 i is the exact (closed-shell) ground state of

the considered N -particle system. The two-particle Green's function is de�ned analo-

gously [32, 48, 67, 68]

Grs;r0s0(t1; t2; t
0

1t
0

2) = (�i)2 h	N
0 j T̂ [ĉr(t1) ĉs(t2) ĉ

y

s0(t
0

2) ĉ
y

r0(t
0

1)] j	
N
0 i : (5.2)

The particle-particle propagator follows from (5.2) by equating time arguments

�(t; t0) = lim
t1;t2!t

t
0
1
;t
0
2
!t

0

iG(t1; t2; t
0

1; t
0

2) :

45



5. Calculation of Ionization Spectra with Many-body Green's Functions

The Fourier transformation of the particle and the particle-particle propagator yields

their spectral representations. This representation in energy space reveals valuable infor-

mation about the energetics within a molecule. The spectral representation of the particle

propagator (5.1) is

Gpq(!) =
X
n

h	N
0 j ĉp j	

N+1
n i h	N+1

n j ĉyq j	
N
0 i

! + EN
0 � EN+1

n + i�

+
X
m

h	N
0 j ĉ

y

q j	
N�1
m i h	N�1

m j ĉp j	
N
0 i

! + EN�1
m � EN

0 � i�
(5.3)

and the spectral representation of the particle-particle propagator is

�rs;r0s0(!) =
X
n

h	N
0 j ĉrĉs j	

N+2
n i h	N+2

n j ĉys0 ĉ
y

r0 j	
N
0 i

! + EN
0 � EN+2

n + i�

�
X
m

h	N
0 j ĉ

y

sĉ
y

r j	
N�2
m i h	N�2

m j ĉr0 ĉs0 j	
N
0 i

! + EN�2
0 � EN

m � i�
(5.4)

= �I
rs;r0s0(!)� �II

rs;r0s0(!) :

The propagators (5.3), (5.4) are both sums of two parts. The physical meaning of the parts

is revealed by the negative of the pole positions IN�1
n = EN�1

n �EN
0 , A

N�1
m = EN+1

m �EN
0

of (5.3) and IN�2
n = EN�2

n � EN
0 , A

N�2
m = EN+2

m � EN
0 of (5.4). Obviously the ionization

potentials are given by IN�1
n , IN�2

n and the electron aÆnities by AN�1
n , AN�2

n .

The so-called pole strengths x
(m)
p = h	N�1

m j ĉp j	
N
0 i and y

(n)
p = h	N+1

n j ĉyp j	
N
0 i for the

particle propagator are related to the spectral intensities of ionization and electron aÆnity.

Likewise the pole strengths x
(m)
rs = h	N�2

m j ĉrĉs j	
N
0 i and y

(n)
rs = h	N+2

0 j ĉysĉ
y

r j	
N
n i for the

particle-particle propagator are related to the spectral intensities of double ionization and

double electron aÆnity.

5.2. Diagrammatic Perturbation Expansion of the

Propagators

The Green's function method is a formulation of the many-body problem but no simpli-

�cation [67, 68]. Therefore, perturbation theory is applied to reduce the problem. The

M�ller-Plesset partition [42, 55, 56] of the many-body Hamiltonian is used

Ĥ = Ĥ0 + Ĥ1

Ĥ0 =
KP
i=1

"i ĉ
y

i ĉi

Ĥ1 = �
KP

i;j=1

V
(HF)
ij ĉyi ĉj +

1
2

KP
i;j;k;l=1

Vijkl ĉ
y

i ĉ
y

j ĉl ĉk :

(5.5)

The terms in (5.5) result from a Hartree-Fock calculation, described in section 2.1; In

detail "i denote orbital energies, Vijkl are the two-electron integrals of (3.5). The Hartree-

Fock potential (2.5) reads in terms of spin orbitals V
(HF)
ij =

NP
k=1

Vik[jk].
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5.3. Algebraic Diagrammatic Construction

This partition is particularly well suited for an expansion of the propagators in a

perturbation series which possesses a diagrammatic representation in the famous Feynman

diagrams [67, 68]. The rules for drawing and evaluating these kinds of diagrams provide

a simple way to calculate the n-th order contribution to the perturbation series.

An algebraic derivation of the n-th order contribution with the help of Wick's the-

orem [67, 68] is cumbersome and lengthy. In addition the Feynman diagrams provide a

pictorial representation of the underlying physics that helps to understand more deeply

the e�ect of the interaction.

To evaluate a n-th order Feynman diagram one has to consider n! time orderings. Each

of these orderings can be pictured by a Goldstone diagram [67,68]. Collecting the contri-

butions of all Goldstone diagrams up to a certain order yields the desired perturbation

series up to that order.

The process described in the preceding paragraphs is well known and has been applied

frequently in many-body quantum mechanics and quantum �eld theory [67, 68].

5.3. Algebraic Diagrammatic Construction

5.3.1. General Formulation

Algebraic diagrammatic construction (ADC) fuses the ease of diagrammatic evaluation of

many-body perturbation theory with the perturbation expansion of a Hermitian eigen-

value problem, via the so-called general algebraic form (ADC form). As is shown in the

following subsections explicitly, both parts of the spectral representations of a propaga-

tor can be cast into this form. The ADC theory, presented in this subsection, is taken

from [30, 32, 70].

The ADC form of one part of a propagator reads �(!)

�(!) = f y (!1�K �C)�1f : (5.6)

In this equation f stands for the matrix of modi�ed (e�ective) transition amplitudes.

K is a diagonal Hermitian matrix. The Hermitian matrix C is referred to as e�ective

interaction matrix.

Solving equation (5.6) leads to a Hermitian eigenvalue problem because the matrix

inversion therein can be carried out by solving

(K +C)Y = Y 
; Y yY = 1 : (5.7)


 is the diagonal matrix of eigenvalues, which are the poles of the propagator, and

Y denotes the eigenvector matrix.

The perturbation expansion of the Hermitian eigenvalue problem is obtained from

equation (5.6) as follows

�(!) = f y [1� (!1�K)�1C]�1 (!1�K)�1 f

= f y
1X
n=0

[(!1�K)�1C]n (!1�K)�1f : (5.8)
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5. Calculation of Ionization Spectra with Many-body Green's Functions

The idea behind this form is the fact that the ubiquitous geometric series that also played

the prominent role in the multireference perturbation theory presented in section 3.3,

reproduces the general structure of the algebraic terms of the individual diagrams. The

issue of convergence of the series is addressed in section 3.3.

Inserting expansions for f and C

f = f (0) + f (1) + f (2) + : : :

C = C(1) +C(2) + : : :
(5.9)

in equation (5.8) yields

�(!) = f (0)y (!1�K)�1 f (0)

+ f (0)y (!1�K)�1C(1) (!1�K)�1 f (0) (5.10)

+ f (1)y (!1�K)�1 f (0)

+ f (0)y (!1�K)�1 f (1) + : : :

a perturbation series for �(!). Note that the expansion for the e�ective interaction

matrix (5.9) starts in �rst order because the unperturbed part is put in K.

Comparing the algebraic expressions for the diagrams with the expansion (5.9) one can

assign terms to f (n), K and C(n). Having found these expressions up to order n one can

insert these n-th order approximations into equation (5.6) to obtain the ADC(n) equa-

tion. Carrying out the matrix inversion (5.7) yields an approximation for �(!) which

contains in�nite summations of all the diagrams which derive from the �rst n orders of

the expansion (5.11).

5.3.2. ADC for the Particle Propagator

There is the Dyson equation [30, 31, 48] for the particle propagator (5.3)

G(!) = G0(!) +G0(!)�(!)G(!); (5.11)

where G0(!) is the free Green's function and �(!) denotes the self-energy. The self-

energy can be decomposed in a static self-energy part (! independent) and a dynamic

self-energy part (! dependent)

�(!) = �(1) +M(!) :

Unfortunately, these parts cannot be calculated independently of each other. The dynamic

self-energy part M(!) is represented in terms of the 2ph propagator which possesses a

spectral representation

Mpq(!) =
X

n2fN+1g

m
(n)
p m

(n)�
q

! � !n + i�
+

X
n2fN�1g

m
(n)
p m

(n)�
q

! � !n � i�

= M I
pq(!) +M II

pq(!) :
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5.3. Algebraic Diagrammatic Construction

Inspecting M I(!), one notices that it can be cast into the general algebraic form (5.6)

reading here

M I
pq(!) = (~U I

p)
y (!1�KI �C I)�1 ~U I

q : (5.12)

A similar equation holds for the second partM II(!) of the dynamic self-energy. Noticing

that the series expansion of ~U I;II
q starts in �rst order one can proceed according to sec-

tion 5.3.1. Having obtained M I;II(!) one can solve the Dyson equation (5.11) provided

that the static self-energy part �(1) is approximated suÆciently accurate by applying

the inversion method to the matrices KI;II +CI;II in (5.12) [31].

The individual steps of solving the general algebraic form (5.6) and Dyson equa-

tion (5.11) can be combined. Then the following diagonalization problem

BX =XE; XyX = 1

B =

0
BBB@
"+�(1) (U I)y (U II)y

U I KI +C I 0

U II 0 KII +C II

1
CCCA (5.13)

has to be solved. The explicit construction of the ADC scheme up to fourth order is done

in [30]. The ADC form sums in�nitely many diagrams before its results are put in the

Dyson equation to sum more diagrams.

The block of electron aÆnities KII +CII is much larger than the block of ionization

potentialsKI+C I. If one is only interested in the ionization potentials, one can approx-

imate the block of electron aÆnities by replacing it with the result of a few block Lanczos

iterations [48, 71]. The matrix (5.13) can also be reduced for the calculation of core-level

ionization potentials, if the core-valence separation approximation is applied [72].

A major drawback of the calculation of ionization potentials, as sketched in this sub-

section, is the fact that the Dyson equation couples ionization potentials and electron

aÆnities. So a lot of computational e�ort can be saved, if it is not used. Then the

electron aÆnities are left out completely [73] and the resulting method is similar to that

described in the ensuing subsection 5.3.3. A Dyson equation exists only for the particle

propagator [74] so the derivation presented here is not applicable to the particle-particle

propagator.

5.3.3. ADC for the Particle-Particle Propagator

The treatment of the double ionization and the double attachment part in (5.4) is alike

and the following derivation concentrates on the double ionization part �II(!) which can

be represented by

�II(!) =Xy(!1�
)�1X : (5.14)

Xm;rs = x
(m)
rs is the matrix of spectral intensities, 
m is the diagonal matrix of the negative

of the double ionization energies.

The central point to note is that (5.14) is equivalent to the general algebraic form (5.6)

with the help of (5.7) andX = Y yf . Y is a unitary transformation to transform between
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5. Calculation of Ionization Spectra with Many-body Green's Functions

both representations. Hence the ADC procedure of subsection 5.3.1 can be applied,

since the diagrammatic equations of the perturbation expansion of the particle-particle

propagator �t well in the structure of (5.11). Therefore, (5.14) can be calculated in the

ADC formalism. The explicit construction of the ADC scheme up to third order is done

in [32, 33].

5.3.4. Other ADC Schemes and the Properties of ADC

Excitation spectra of molecules can be calculated with the polarization propagator [67,

68, 70, 75, 76] which, too, results from the two-particle Green's function (5.2). The pole

positions of its spectral representation are the excitation energies of a molecular system.

An ADC scheme, similar to those presented in the preceding subsections 5.3.2, 5.3.3 for

ionization spectra, can be derived [70, 75, 76].

Another possibility is the calculation of triple ionization potentials by using the three-

particle propagator [77].

The ADC scheme for singly ionized molecules has been combined with the CAP-

method of section 2.3 to treat electronic resonances [10, 11, 78].

Algebraic propagator methods possess very nice properties. In [79{81] the method

is interpreted in terms of intermediate state representations (ISR). The ISR approach

replaces the creation and annihilation operators on the Hartree-Fock ground state with

pendants on a correlated (physical) ground state. This reformulation of ADC can be

used to compare it to various other wide-spread ab initio methods under the objective of

separability and compactness.

If an ab initiomethod is separable it is size-consistent. The separability of the algebraic

propagator approach is shown in [82]. The compactness property addresses the size of

the basis needed to describe each order in perturbation theory. It could be shown that

ADC is compact [79, 80].

Aside from the theoretical advantages of the formulation of ADC with the help of

intermediate state representations, it is applied to examine, eg., core-level ionization of

molecular systems [83].

5.4. Population Analysis for Ionization Spectra

Population analysis is a tool to reveal the distribution of (a) �nal state hole(s) in a

molecular system after ionization. This can provide further insight into the physics of the

decay as can be seen in chapter 6.

The population analysis for singly ionized molecules is developed in detail in [34, 48].

For doubly ionized molecules this is done in [35, 36]. Both schemes derive from the

Mulliken style population analysis [42, 84] for Hartree-Fock orbitals and su�er from the

same de�ciencies, the basis set dependence of the results.
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5.4. Population Analysis for Ionization Spectra

5.4.1. Singly Ionized Molecules

The density �(~r) of an electron vacancy (hole-density) in ~r can be measured with the

help of the number operator %̂(~r) =  ̂y(~r) ̂(~r)

�(~r) = �h	N�1
n j %̂(~r) j	N�1

n i+ h	N
0 j %̂(~r) j	

N
0 i : (5.15)

in the sudden approximation [85]. This hole-density describes the fraction of an electron

charge that is missing in the given state j	N�1
n i at ~r compared with the correlated ground

state j	N
0 i. The number operator %̂(~r) can be expanded in terms of one-particle functions

using

 ̂(~r) =

KX
p=1

�p(~r) ĉp

for the �eld operator [68]. This yields

�(~r) =

KX
p;q=1

��p(~r)�q(~r) [�h	
N�1
n j ĉyp ĉq j	

N�1
n i+ h	N

0 j ĉ
y

p ĉq j	
N
0 i| {z }

�pq

]: (5.16)

The matrix �pq is termed hole-density matrix. The actual shape of the one-particle

orbitals �p(~r) is not included just their e�ective occupation.

The correlated ground state j	N
0 i, in the ISR formulation of ADC of subsection 5.3.4,

is now approximated by the uncorrelated Hartree-Fock ground state j�N
0 i. With the

expansion of the ionized state in terms of ionized determinants derived from the Hartree-

Fock ground state of the neutral system

j	N�1
n i =

NX
i=1

xi ĉi j�0 i| {z }
1h con�g

+

KX
r=N+1

NX
i;j=1
i>j

xrij ĉ
y

r ĉi ĉj j�0 i| {z }
2h1p con�g

+ : : : (5.17)

one can evaluate the hole-density matrix � in terms of Hartree-Fock orbitals. The ex-

pansion coeÆcients xi and xrij are elements of an ADC(3) eigenvector describing the n-th

cationic state. Since ADC(3) contains only 1h and 2h1p con�gurations higher excited

con�gurations are dropped.

Inserting (5.17) into (5.16) one can work out the hole-density matrix �pq for spin

orbitals. After integrating out the spin, the spatial orbitals can be expanded in terms

of their localized atomic basis functions '� which are regrouped according, eg., to their

atomic origins A;B; : : :, in a Mulliken-like manner [84]

� =
X
A;B

KX
p;q=1

�pq

X
�2A
�2B

C�

�p C�q '
�

� '� :

In this equation C�p are the Hartree-Fock expansion coeÆcients of the spatial molecular

orbitals in terms of atomic basis function. For a single hole
R
� d3r =

P
A;B

QAB = 1 holds.
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5. Calculation of Ionization Spectra with Many-body Green's Functions

This de�nes the hole-population matrix Q

QAB =

KX
p;q=1

�pq

X
�2A
�2B

C�

�p S�� C�q : (5.18)

where S�� denotes the overlap matrix between atomic basis functions. (5.18) provides

a quantitative partition of the spatial distribution of a single electron vacancy. The o�-

diagonal elements of Q quantify the degree of overlap between the individual sets of basis

functions.

Frequently the ADC matrices (5.13) of the ADC(3) scheme are big and cannot be

diagonalized fully. Then the expansion (5.17) has to be reduced to the �rst term (1h pop-

ulation analysis) because not all eigenvectors are available.

5.4.2. Doubly Ionized Molecules

One would suspect that two-hole population analysis follows the same line of derivation

presented in the preceding subsection 5.4.1 by replacing the singly ionized wave func-

tion j	N�1
n i by a doubly ionized one j	N�2

n i in equation (5.15). This can in fact be done,
but the two-hole population analysis, used together with the two-particle ADC(2) pro-

gram, is done in another way: the contribution of the 2h con�gurations to the total 2h pole

strength is taken.

The analogue of the expansion of the singly ionized wave function (5.17) in the Hartree-

Fock approximation reads for a doubly ionized molecule

j	N�2
n i =

X
ij

( ~Xn)ij ĉiĉj j�0 i| {z }
2h con�g

+ : : : ; (5.19)

where ~Xn is the 2h part of the ADC eigenvector of the n-th dicationic state. The two-

hole population analysis examines only the 2h components because in most cases the

two-particle ADC(2) matrices cannot be diagonalized fully. Therefore not all eigenvectors

for the 3h1p part are available.

The two-hole con�gurations can be either singlet or triplet states which do not couple.

A spin adapted 2h con�guration in molecular orbital basis j ij(s;t) i can be expanded in

2h con�gurations built in the atomic orbital basis jpq(s;t) i

jij(s;t) i =
X
pq

U
(s;t)
pq;ij jpq

(s;t) i : (5.20)

The superscripts s and t denote singlet or triplet spin multiplicity, respectively, and ij

and pq are hole indices.

The expansion coeÆcients U
(s;t)
pq;ij can be worked out in terms of the Hartree-Fock

eigenvector matrix C. The overlap matrix over the 2h functions in atomic orbital ba-

sis O
(s;t)
pq;rs = hpq(s;t) j rs(s;t)

�
is expressed in terms of the basis set overlap matrix S. The

orthonormality for the molecular orbitals thus reads U yOU = 1.
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5.4. Population Analysis for Ionization Spectra

For a speci�c state j	N�2
n i the spin multiplicity is �xed. The equations are invariant

with respect to spin. Therefore the spin indices can be dropped. With the equations (5.19)

and (5.20) one can express the n-th dicationic state in terms of the 2h functions in atomic

orbital basis

j	N�2
n i =

X
ij

( ~Xn)ij jij i + : : : =
X
pq

X
ij

Upq;ij ( ~Xn)ij jpq i+ : : : : (5.21)

This gives new expansion coeÆcients ~Yn := U ~Xn. Using this new vector to transform the

total 2h weight (ADC pole strength) gives

~Xy

n
~Xn = ~Y y

nO
~Yn =

X
pq

Qpq;n (5.22)

with the 2h population matrix

Qpq;n = Ypq;n
X
rs

Opq;rsYrs;n :

Now sets of atomic basis functions A, B can be formed to get population numbers

QAB;n =
X
p2A
q2B

Qpq;n :
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6. Electronic Decay Processes and Widths in

Singly Ionized Clusters

Clusters are (weakly) bound systems of several atoms or molecules [25] which have been

receiving a lot of attention because clusters can be seen as a bridge between an individual

monomer and solids formed by many monomers. This chapter investigates decay processes

and decay phenomena of atoms or molecules following the ionization out of the core or

inner valence shells.

All decays presented here are electronic decays, i.e. an electron is emitted after the

initial �rst ionization. For sure, there is always the possibility of a decay by photon

emission or dissociation, but lifetime calculations show that the electronic decay is very

fast and consequently dominates [10, 11] in the calculation of lifetimes.

6.1. Decay Processes

This section summarizes the possible decay channels after one single inner valence or core

ionization. The processes leading to these decay channels can be generalized to higher

ionized monomers or clusters [28].

6.1.1. Intra-atomic Decay

Intra-atomic decay is the most prominent electronic decay process of core ionized molecules

because it is equivalent to the well known Auger decay [19] in single atoms. In atoms this

mechanism is well understood [18]: the initial core hole is �lled by a valence electron

and the excess energy is transferred to a second valence electron which is emitted subse-

quently (�gure 6.1).

In molecules or clusters intra-atomic decay is not the only decay process. Other

processes can occur which involve neighbor atoms or neighbor molecules. If intra-atomic

decay is energetically forbidden, the latter processes are dominant and are described in

the following subsections.

6.1.2. Interatomic and Intermolecular Coulombic Decay

In clusters of atoms or molecules there are other electronic decay processes. If one removes

an inner valence electron from an isolated monomer, in general, it cannot decay by electron

emission because it is below the double ionization threshold. The situation changes if the

monomer is part of a cluster: then an electron of a neighboring monomer may be emitted

due to double ionization channels which are not present in the single monomer.
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Figure 6.1.: Principle of Auger decay in terms of Hartree-Fock orbitals. The initial core hole is �lled

by a valence electron. The excess energy is released by emitting a second valence electron. A: atom,

ov: outer valence orbital, iv: inner valence orbital, c: core orbital.

These new channels arise because the repulsion between two holes localized on two

di�erent monomers, the so-called two-site states1, is reduced in comparison to the repul-

sion between two holes localized on one monomer, the so-called one-site states2 due to

the larger spatial separation of the two �nal state holes for two-site states. This increased

spatial separation leads to a reduction in energy for two-site states which lowers the double

ionization threshold and the decay by electron emission is allowed. Electronic decay turns

out to be very fast and dominates the decay of these kinds of resonances in comparison

to other relaxation pathways.

This decay process is termed interatomic or intermolecular Coulombic decay (ICD)3 for

clusters of atoms or clusters of molecules, respectively. It was identi�ed in several weakly

bound clusters: hydrogen uoride (HF)n cluster [26,28,29], neon (Ne)n cluster [8,27] and

the neon-argon dimer NeAr [9]. A schematic representation of ICD is shown in �gure 6.2.

The initial inner valence vacancy is �lled by a valence electron of the same monomer. The

excess energy is transferred to a second valence electron of a neighboring monomer which

is emitted subsequently.

6.1.3. Electron Transfer Mediated Decay

First of all a special decay process is explained using the NeAr dimer. The ionization

spectra of the two involved atoms (neon and argon) are very di�erent. Neon has high

lying single ionization potentials (IP) and double ionization potentials (DIP). In fact the

inner valence Ne 2s IP is larger than the Ne�1Ar�1 and the NeAr�2 DIP in the NeAr

1(German) Zweistellige Zust�ande.
2(German) Einstellige Zust�ande.
3(German) Interatomarer/intermolekularer Coulombzerfall.
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Figure 6.2.: Principle of interatomic or intermolecular Coulombic decay in terms of Hartree-Fock

orbitals. The initial inner valence vacancy is �lled by a valence electron of the same monomer.

The excess energy is released by emitting a second valence electron of a neighboring monomer. A,

A0: atoms, ov: outer valence orbital, iv: inner valence orbital, c: core orbital. This �gure is taken

from [29] (�gure 1).

dimer [9] 4. Therefore, an initial Ne 2s vacancy can lead to ICD.

The Ne 2s vacancy can decay in another way, too. A valence electron from argon may

drop into the Ne 2s hole and the excess energy is transferred to another valence electron

of argon which is emitted subsequently, leaving the dimer in a NeAr�2 state. This process

is called electron transfer mediated decay (ETMD)5. A schematic representation of the

ETMD process is shown in �gure 6.3.

In [9] it is shown that the contribution of ETMD to the total electronic decay width

of Ne�1Ar is appreciably smaller compared to the contribution of ICD in NeAr. In the

ETMD described, only two atoms are involved and, therefore, it is called two-monomer

ETMD. In [9] a \three-monomer ETMD" is suggested for an initial Ne�1Ar2 state without

further investigation. A schematic representation of this process is given in �gure 6.4. A

valence electron of the �rst argon atom drops into the initial Ne 2s hole. The excess

energy is transferred to a valence electron of the second argon atom which is emitted

subsequently, leaving the trimer in a NeAr�1Ar�1 state.

6.1.4. Terminology

The terminology introduced above is not the only one used in the literature: the inter-

atomic processes ICD, two- and three-monomer ETMD are termed interatomic Auger

decayAuger decay in [20]. In detail, interatomic Coulombic decay is called inter-intra

decay, two- and three-monomer ETMD are called inter-inter decay. The expressions for

4The superscript numbers �1, �2 denote the number of electrons missing on the atom written to its left

(compared to the isolated atom). This idealized picture assumes a strong localization of the electron

vacancies on an atoms.
5(German) Elektronentransferzerfall.
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Figure 6.3.: Principle of two-monomer electron transfer mediated decay in terms of Hartree-Fock

orbitals. A valence electron of A0 drops into the hole on A and the excess energy is transferred

to another valence electron of A0 which is emitted subsequently. A, A0: atoms, ov: outer valence

orbital, iv: inner valence orbital, c: core orbital. The ionization potentials of A are higher than in A0.

the interatomic decay rates derived in [20] are questioned in [21]. To call these decay

processes \interatomic Auger" is misleading because Auger decay in molecules means the

whole process of emitting an electron out of the molecule after an initial ionization and

not only the intra-atomic process (subsections 6.1.1, 6.2.1).

6.2. Phenomena

The former section concentrated on the physics of the electronic decay processes in singly

ionized atomic or molecular clusters. This section will summarize the phenomena ob-

served in the Auger decay of core-ionized molecules. Furthermore a new terminology is

suggested for the phenomenon that there are inner valence ionized monomers which decay

electronically if they are part of a cluster.

6.2.1. Self Imaging and Foreign Imaging

Auger decay in atoms produces double vacancies in the atomic valence shells. Likewise

Auger decay in molecules produces double vacancies in the valence molecular orbitals.

The Auger spectrum of 2p ionized silicon atoms exhibits a three-region structure. Each

region is characterized by the dicationic �nal states p�2, p�1s�1 and s�2 in the atomic

valence shell [22] 6.

Core holes in singly ionized molecules or solids are strongly localized. Therefore one

may assume that the Auger decay rate matrix elements are dominated by intra-atomic

terms. For this reason, it was assumed that the molecular orbitals, involved in molecular

Auger decay, may be approximated by the atomic orbitals of the atom, carrying the initial

6The notation is explained in footnote 4 on page 57.
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Figure 6.4.: Principle of three-monomer electron transfer mediated decay in terms of Hartree-Fock

orbitals. A valence electron of A1 drops into the hole on A and the excess energy is transferred to a

valence electron of A2. A, A1, A2: atoms, ov: outer valence orbital, iv: inner valence orbital, c: core

orbital. The ionization potentials of A are higher than the ionization potentials in A1, A2.

vacancy. In this picture, the chemical bond is seen as small modulation. This is called the

self-imaging picture7 of molecular Auger decay [22] and the Auger spectrum of a molecule

exhibits the structure of atomic Auger decay, described above. This picture of Auger

decay in molecules is only valid if the molecular orbitals are very similar to the atomic

orbitals of the initially ionized atom.

If this condition is not ful�lled the situation changes dramatically [22, 23]. A good

example for this situation is silicon tetrauoride. The bonds in SiF4 are highly polarized

towards the uorine atoms, leaving the silicon atom nearly deprived of valence electrons.

The Auger spectrum of Si 2p ionized SiF4 exhibits eight, instead of three, distinct regions

because of the eight possibilities to produce two holes in the valence molecular orbitals:

1. F1 p
�1 F2 p

�1, 2. F p�2 (triplet), 3. F p�2 (singlet), 4. F1 p
�1 F2 s

�1, 5. F p�1s�1 (triplet),

6. F p�1s�1 (singlet), 7. F1 s
�1 F2 s

�1, 8. F s�2 in increasing energetical order. This phe-

nomenon is termed the foreign-imaging picture8 of molecular Auger decay [22, 23].

The fact that the initial core hole is a Si 2p hole and the fact that the vast majority of

�nal dicationic states are situated on one or two neighboring uorine atoms suggests that

ETMD is the dominant decay process because ETMD is the only process that produces

�nal states on neighboring atoms exclusively. One may further speculate that the reason

for the intra-atomic and ICD decay rates to drop below the two- and three-atomic ETMD

rates is the ionic bonding in SiF4 because the central silicon atom is nearly deprived of

outer valence electrons. This extreme reduction in valence electron density on silicon

may cause the dominance of ETMD. To prove this one has to calculate the partial decay

widths of the various decay processes in SiF4 which has not been done yet.

7(German) Selbstabbildung.
8(German) Fremdabbildung.
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6.2.2. Neighbor Induced Electronic Decay

Apart from the decay processes ICD and ETMD, a new phenomenon is described in

subsections 6.1.2 and 6.1.3: electronic decay of a singly ionized monomer is enabled by

the presence of neighboring monomers which also participate in the decay. There is no

possibility, for the isolated ionized monomer, to decay by the intra-atomic decay of subsec-

tion 6.1.1. It is highly desirable to keep the decay process and the phenomenon, causing

the decay, well separated. Therefore, I would like to call the phenomenon neighbor induced

electronic decay (NIED)9 with the addition in weakly bound clusters where appropriate.

6.3. Decay Widths

The calculation of electronic decay widths for core holes is diÆcult because the standard

techniques for inner valence holes, see section 2.3 and chapter 3, are not applicable due

to the bad representation of the decay electron in the Gaussian basis sets which are used

in the numerical calculation. Nevertheless one can analyze the decay channels using some

sort of Wigner-Weisskopf theory (section 3.1).

6.3.1. Decay Channels

The core hole is abbreviated to \ch". If the decay produces two �nal state holes one must

sum over all energetically accessible dicationic �nal states which are denoted with the

single index n. The total decay width reads

�ch =
X
n

�n = �One�site + �Two�site :

There are two sorts of overall decay widths. The electronic decays which produce two holes

localized on one atom, the one-site states, and those which produce two holes localized on

two atoms, the so-called two-site states. The one-site �nal states arise from intra-atomic

and two-monomer ETMD decays, as shown in �gures 6.1, 6.3

�One�site = �Intra�atomic + �ETMD;2 :

ICD and three-monomer ETMD decays produce two-site �nal states, as shown in �g-

ures 6.2, 6.4

�Two�site = �ICD + �ETMD;3 :

6.3.2. Wigner-Weisskopf Theory for Singly Ionized Molecules

The Wigner-Weisskopf theory of section 3.1 can also be applied to singly ionized molecules

to calculate their electronic decay widths [8, 9]. Let the initial state be a singly ionized

resonance state j	I i = j	i i. The �nal state is the n-th doubly ionized state together

with the free electron resulting from the decay j	F i = j	
~k
n i. To calculate the decay

width of this process, the matrix elements in (3.3) are needed.

9(German) Nachbarinduzierter elektronischer Zerfall.
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In [8,9] the initial state is approximated by singly ionized Hartree-Fock determinant �i.

Then the Slater-Condon rules10 determine the possible �nal states. They are j�
~k
jl i and

j�
~kb
jli i. Then the initial state, �nal state and transition matrix elements of subsection 3.1.2

can be calculated easily.

Instead of going through all the calculations of the matrix elements again for an ionized

molecule one can use a procedure to transform the equations for an excited molecule (3.7),

(3.8), (3.9), (3.10), (3.11) into those of an ionized molecule. The initial state in section 3.1

is j�a
i i. One must neglect all interactions with the electron in �a, i.e.�a is treated like

an unoccupied orbital. Consequently all terms in (3.7), (3.8), (3.9), (3.10), (3.11) which

contain �a vanish. This leads to equations describing the electronic decay of an ionized

molecule.

A non-vanishing contribution to the decay width of a singly ionized molecule results

from equation (3.10)

�doubly;3 = 2�
X
~k

NX
j;l=1
j;l6=i
j<l

jVi~k[lj]j
2 Æ("i � "j � "l + "~k + Vjl[jl]� Vj~k[j~k] � Vl~k[l~k]) :

This equation has already been derived in [8, 9] by direct evaluation of the matrix ele-

ments (equation (17)). A second contribution is given by (3.11)

�triply = 2�
X
~k

KX
b=N+1

NX
j;l=1
j;l6=i
j<l

jVb~k[jl]j
2 Æ("b + "~k � "j � "l

� Vi~k[i~k] � Vj~k[j~k] � Vl~k[l~k] � Vib[ib] � Vjb[jb] � Vlb[lb]

+ Vij[ij] + Vjl[jl] + Vil[il] + Vb~k[b~k]) :

This contribution to the decay width was neglected in [8,9] due to energetic considerations.

6.3.3. ADC Wigner-Weisskopf Theory

A better approximation to the physical �nal state j	
~k
n i shall be derived that also draws

a connection to the ADC formalism. Dicationic states of a molecule j	n i can be calcu-

lated by the two-particle ADC(2) of subsection 5.3.3. These states can be approximately

expanded in terms of dicationic Hartree-Fock determinants (5.21)

j	n i =
X
ij

( ~Xn)ij j�ij i : (6.1)

The �nal state j	
~k
n i is approximated by replacing the dicationic determinants in (6.1) by

excited cationic determinants �
~k
ij. The sudden approximation [85] is used here. Then the

10See footnote 1 on page 17.
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�nal state and transition matrix element in (3.3) read

h	
~k
n j Ĥ j	

~k
n i =

P
ij;pq

( ~Xy

n)ij(
~Xn)pq h�

~k
ij j Ĥ j�

~k
pq i

h	
~k
n j Ĥ j�l i =

P
ij

( ~Xy

n)ij h�
~k
ij j Ĥ j�l i ;

(6.2)

with the index ij denoting a 2h con�gurations. The matrix elements h�
~k
ij j Ĥ j�l i =

�V~kl[ij] in (6.2), formed with the help of ionized Hartree-Fock determinants, are termed

CI transition matrix elements throughout. In addition the initial state could be expanded

in terms of an one-particle ADC eigenvector (5.17). To keep things simple this is not done

here. The decay rate reads, with the help of (6.2)

j h	
~k
n j Ĥ j�l i j

2 =
X
ij;pq

( ~Xn)ij ( ~X
y

n)pq h�
~k
ij j Ĥ j�l i

� h�
~k
pq j Ĥ j�l i :

Neglecting the cross terms in this equation and replacing the CI transition matrix ele-

ments h�
~k
ij j Ĥ j�l i by a mean one gives with (5.22)

jh�
~k
ij j Ĥ j�l ij

2 ~Xy

n
~Xn = jh�

~k
ij j Ĥ j�l ij

2
X
pq

Qpq;n : (6.3)

The approximation of the CI transition matrix element may be a satisfactory assump-

tion for the partial widths of the four distinct decay processes of section 6.1 because in

this case h�
~k
ij j Ĥ j�l i may vary not too much. For the full electronic decay width this

approximation is likely not acceptable.

The CI transition matrix element can be simpli�ed further with the help of R�udenberg's

integral approximations [86, 87]. The approximations yield a sum of one-center two-

electron integrals with the basis set overlap matrix as expansion coeÆcients for a CI tran-

sition matrix element. Hence this approximation transforms the interatomic decay matrix

elements to a sum of intra-atomic decay matrix elements.
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7. Ionization Spectra of Xenon and its Fluorides

This chapter is devoted to the xenon uorides: XeF2, XeF4 and XeF6. Their electronic

decay channels, after single ionization of the Xe 4d orbitals, are studied. The experimental

results in table 7.1 from photoelectron spectroscopy of the Xe 4d lines inspired this work.

Figure 7.1 shows a plot of the line width for xenon and its uorides. An increase of

the mean line width for xenon with an increasing number of uorine atoms is observed.

Several experimental line widths are measured for each compound which correspond to

the line width of di�erent Xe 4d lines.

� � � �

����

����

����

����

����

�

�

	

�
�
�


�
��
��
�
�
�

���������������
�����������
�����
�

Figure 7.1.: (Color) Experimental widths of the Xe 4d lines in Xe, XeF2, XeF4 and XeF6. The data

are taken from table 7.1. The �gure suggests an increase of the line width with an increasing number

of uorine atoms. According to private communication with T. Darrah THOMAS.

A reason for the increase in line width may be the increase of the decay width of the

initial state, with a Xe 4d vacancy, caused by the uorine atoms. Another possibility is
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7. Ionization Spectra of Xenon and its Fluorides

Cmpd. Line IPexp IPADC IPrel �exp

Xe 1 69.525 (10) 72.90 69.83 0.207 (4)

2 67.541 (9) 0.202 (4)

XeF2 1 72.568 (6) 76.52 73.44 0.248 (8)

2 72.248 (6) 76.14 73.06 0.223 (10)

3 70.601 (13) 75.63 72.56 0.264 (26)

4 70.421 (9) 0.256 (27)

5 70.179 (6) 0.214 (19)

XeF4 1 75.098 (6) 79.76 76.68 0.319 (8)

2 74.729 (7) 79.60 75.52 0.255 (8)

3 73.140 (10) 79.01 75.93 0.392 (10)

4 72.816 (10) 78.89 75.82 0.210 (27)

5 72.661 (5) 0.225 (26)

XeF6 1 77.462 (13) 80.86 77.79 0.32 (4)

2 77.321 (11) 80.59 77.51 0.25 (3)

3 75.53 0.33

4 75.38 0.25

5 75.25 0.25

Table 7.1.: Peak positions and widths of the Xe 4d lines in Xe, XeF2, XeF4 and XeF6. Abbreviation

of labels { Cmpd.: compound, IPexp: experimental peak position, IPADC: calculated peak position,

IPrel: calculated peak position with relativistic correction, �exp: experimental peak width. IPexp and

�exp are photoelectron experimental data, reproduced from table 1 in [41]. For XeF6 the data with

an experimental resolution of 0.11 eV are taken. The values in brackets are the standard deviations

of the peak positions and peak widths. IPADC and IPrel are sorted descending in energy for each

compound. The value of IPexp does not necessarily correspond to the values of IPADC, IPrel in the

same row as spin-orbit splitting is neglected to obtain the latter. The IPADC of XeF6 are the two

main peaks in �gure 7.3. All data are given in electronvolt.

vibrational broadening which increases with the size of the molecule as well or a combined

e�ect of an increase of the decay width and vibrational broadening. In the following

vibrational broadening is not considered any further because the e�ect of electronic decay

channels on the total decay with is investigated.

7.1. Ab Initio Calculations

The ground state geometries of F2, XeF2, XeF4 and XeF6 are taken from literature. The

distance of the uorine atoms in the uorine molecule is r(F{F) = 1:42�A from table 45 on

page 446 in [88]. F2 possesses D1h symmetry. Xenon(II)-uoride also is a linear molecule

of D1h symmetry with a Xe{F distance of 1:977�A. Xenon(IV)-uoride is square-planar

(D4h), the Xe{F distance is 1:94�A. See chapter 12, pages 372{386 in [88] for further

chemical and physical properties of the xenon uorides. The atomic distances are given
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for all molecules in the gas phase.

The ground state geometry of xenon(VI)-uoride is a distorted octahedron [41,89], it

can be described in C3v symmetry. Nevertheless, some computations were performed in

Oh symmetry due to computer hardware limitations. The calculations for XeF6 inC3v sym-

metry, use the MP2 values for the bond length r(Xe{F1) = 1:856�A and r(Xe{F4) =

1:972�A which are taken from table 2 of [89] where an all-electron basis with f -functions

is used1. The bond angles � = 80:8Æ and � = 112:8Æ are taken from table 3 using the

data of the same calculation and basis. The computations for XeF6 in Oh symmetry are

performed using the bond length r(Xe{F) = 1:952�A which is taken from table 1 of [89].

The ADC programs, for the calculation of single and double ionization potentials,

introduced in section 5.3 rely on the molecular orbitals of a Hartree-Fock calculation,

which is carried out using Gamess-UK [16]. The employed software uses no symmetry

for Xe. D2h symmetry is used for F2, XeF2 and XeF4. D2h symmetry is also employed

to calculated the double ionization potentials of XeF6 in the ground state geometry of

Oh symmetry. The calculation of the single ionization potentials of XeF6, in the ground

state geometry of C3v symmetry, is performed in Cs symmetry.

The xenon and the uorine atoms are represented by the DZVP (DFT orbital) basis

sets [46,90]. The quality of the basis sets can be estimated from table 7.2 by comparing the

Hartree-Fock orbital energies of xenon, obtained by solving the Hartree-Fock equations

numerically, i.e. without the help of initially given basis sets [91], with those, obtained

using the DZVP (DFT orbital) basis sets. The shift of the orbitals, due to the approxi-

mation introduced by the �nite basis sets, are �"BS := "HF; numeric � "HF; basis. The shift

is � 0:1334 eV for the Xe 4d orbitals and even less for the valence orbitals because basis

sets are usually optimized with respect to the latter ones. This shift is neglected in the

following because other errors are larger.

The ADC method and the hole population analysis of subsections 5.3.2, 5.4.1 are

used to calculate the single ionization potentials. The ADC(3) matrices of XeF6 can

not be diagonalized fully. This means that the hole population analysis includes only

the 1h con�gurations, the 2h1p con�gurations are not available, completely. The double

ionization potentials are treated similarly according to the subsections 5.3.3, 5.4.2. All

calculations in this section neglect relativistic e�ects which play an appreciable role in

the xenon atom. Hence spin-orbit splitting is not considered. In section 7.2, relativistic

e�ects and corrections for the relativistic e�ects are discussed in detail.

The Xe 4d single ionization of the xenon uorides is a core-level ionization, with ion-

ization potentials widely above the double ionization threshold. Therefore, not only

2h1p con�gurations but also 3h2p con�gurations are expected to have a considerable im-

portance for the description of core-level ionization [72,83]. The ADC(3) scheme does not

contain 3h2p con�gurations but the next order scheme, ADC(4), does. Hence one expects

that the ADC(4) scheme gives an appreciable improvement of the core-level ionization

potentials of xenon and its uorides.

The inclusion of 3h2p con�gurations enlarges the con�guration space considerably.

The available single-processor computer hardware is not capable of calculating a large

molecule like XeF6 in an acceptable time. Therefore, the existing ADC(4) programs [72,83]

1The notation of �gure 1a in [89] is used here.
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HF orbital "HF; basis "HF; numeric DF orbital "DF �"DF

4d 3=2 -2.71133
4d -2.78280 -2.77788

4d 5=2 -2.63376
-2.66479

5s -0.946253 -0.944414 5s -1.01014 -1.01014

5p 1=2 -0.492572
5p -0.457894 -0.457290

5p 3=2 -0.439805
-0.457394

Table 7.2.: Hartree-Fock (HF) and Dirac-Fock (DF) orbital energies of xenon. Hartree-Fock orbitals

are given for the DZVP (DFT orbital) basis set and for the numeric solution. The Dirac-Fock orbitals

were obtained numerically. All data are given in Hartree.

contain the core-valence separation approximation for core-level ionization which reduces

the size of the con�guration space and consequently does not calculate the ionization

potentials of the valence regime. For these reasons, the ADC(4) programs are useless

for the calculation of the single ionization potentials needed here. Hence all ionization

spectra were calculated using the ADC(3) scheme.

7.2. Relativistic E�ects

There are three main relativistic e�ects one has to take into account when examining

heavy atoms like xenon. (1) The relativistic radial contraction and energetic stabilization

of the s and p shells, (2) the spin-orbit splitting, (3) the relativistic radial expansion and

the energetic destabilization of the (outer) d and f shells [92]. E�ects (1) and (3) are

termed scalar relativistic e�ects.

As the theory of chapter 5 for the calculation of ionization potentials is strictly non-

relativistic one has to take into account relativistic e�ects by a \rule of thumb". This is

done by performing Hartree-Fock and Dirac-Fock calculations, the relativistic counterpart

to Hartree-Fock [92], for the xenon atom. Due to the spherical symmetry of atoms, the

equations can be solved numerically [91, 93, 94], i.e. without �xed basis sets, to arbitrary

precision. This gives exact sets of relativistic and non-relativistic orbitals in the mean

�eld approximation.

In table 7.2, the orbitals determined in this way are listed together with Hartree-

Fock orbitals obtained by a calculation employing a Gaussian basis set. By comparing

the orbital energies of the two numerical solutions of the Hartree-Fock and Dirac-Fock

equations, one can determine the size of relativistic e�ects and correct for them in non-

relativistic computations of the single ionization potentials of the xenon uorides. One

has to note that the total angular momentum j is the combination of the orbital angular

momentum l and the electron spin: j = l� 1
2
. A Dirac-Fock calculation yields two orbitals,

one for j+ = l + 1
2
and one for j� = l � 1

2
, for one Hartree-Fock orbital with l � 1. The

j� orbital has a lower orbital energy than the j+ orbital.

To compare Dirac-Fock with Hartree-Fock orbital energies, one has to calculate a

weighted mean of the Dirac-Fock orbital energies which correspond to a single Hartree-
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Figure 7.2.: (Color) Single ionization spectra of Xe, F2, XeF2, XeF4 and XeF6 calculated on Hartree-

Fock level (Koopmans' theorem). The assignment of lines to being dominated by the atomic orbitals

of xenon or uorine origin is somewhat arbitrary in the valence region due to the molecular bond.

Fock orbital, with the help of

�"DF =
(2j+ + 1) "DF;+ + (2j� + 1) "DF;�

2j+ + 1 + 2j� + 1
:

The scalar relativistic shift of the non-relativistic orbitals is �" := �"DF � "HF. The

shifts are 3:077 eV for the Xe 4d, �1:789 eV for the Xe 5s and �0:00283 eV for the Xe 5p

orbitals. The sign of the shift is predicted by the rules (1) and (3) in the �rst paragraph of

this section. Due to Koopmans' theorem [42, 95], the ionization potentials shift by ��",
respectively. The shift of the Xe 5p orbitals is negligible and is not considered any further.

The shifts of the orbital energies of the xenon atom are used to correct the scalar

relativistic e�ect on the Xe 4d orbitals. This procedure is justi�ed by the observation that

the Xe 4d orbitals are highly localized.

Spin-orbit splitting is not accounted for in the non-relativistic theory and is not consid-

ered any further. The spin-orbit split amounts to 2:111 eV for Xe 4d orbitals and 1:436 eV

for Xe 5p orbitals (table 7.2). The amount of the split is possibly only a good approxi-
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mation for Xe 4d orbitals because the Xe 5p orbitals su�er from a signi�cant modi�cation

by the molecular bond to uorine atoms. The experimental value for the spin-orbit split

of Xe 4d is 1:984 � 0:014 eV, it can be determined with the help of table 7.1. The the-

oretically and experimentally determined values are in satisfactory agreement. A good

agreement is not expected because the Dirac-Fock equations are a mean �eld approxima-

tion and do not take electron correlation into account.

The double ionization spectra cannot be corrected as easily as the single ionization

spectra because usually two states with di�erent orbital angular momenta are involved.

The situation seems to be less severe because the spectra are only accurate up to the

Xe 4d ionization energy, so only the outer Xe 5p and Xe 5s orbitals may be involved. For

the latter ones, there is no need to account for the scalar relativistic e�ect. Nevertheless,

the amount of spin-orbit coupling cannot be estimated satisfactorily.

7.3. Single Ionization Potentials

7.3.1. One-Particle Model

The Spectra

Firstly, the single ionization spectra of the xenon uorides are discussed in the one-particle

model of the Hartree-Fock approximation with the help of Koopmans' theorem [42, 95].

In this model the correlation between the electrons is neglected resulting in very simple

spectra which can give a hint for the interpretation of the more complex spectra which

include electron correlation.

The single ionization spectra of the xenon uorides without electron correlation are

plotted in �gure 7.2. The assignment of lines to being dominated by the atomic orbitals

of xenon or uorine is somewhat arbitrary in the valence region due to the molecular

bond. In the lower lying molecular orbitals, this assignment is well-de�ned. As spin-orbit

coupling is neglected, arti�cial degeneracies are introduced in the spectra of �gure 7.2.

This helps to understand the e�ect of the ligand �eld, caused by the uorine atoms, on

the Xe 4d lines.

Mulliken Population Analysis

The e�ect of adding uorine atoms to xenon is studied by a Mulliken population anal-

ysis [42, 84] of the Hartree-Fock charge density in table 7.3. The Mulliken population

analysis is used here, despite of its basis set dependence [42], to be consistent with the

ADC population analyses of the subsections 5.4.1, 5.4.2 employed in the following sections.

One sees immediately that charge is moved from the xenon atom to the uorine atoms:

XeF2: 1:1, XeF4: 1:9, XeF6: 2:3 electron charges. Due to the C3v symmetry of the ground

state geometry of XeF6, there are two kinds of uorine atoms with di�erent distances to

the central xenon atom. These geometric di�erences are reected in table 7.3 by the fact

that the uorine atoms which are further away from the xenon atom acquire less charge.

At �rst sight one may assume that this change in charge density involves only the

valence electrons and has little e�ect on the inner molecular orbitals of the xenon uorides.
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Compound Atoms Nuclear Mulliken L�owdin

Charge Population Population

XeF2 Xe 54 52.92 52.95

2 F 9 9.54 9.53

XeF4 Xe 54 52.13 52.12

4 F 9 9.47 9.47

XeF6 Xe 54 51.71 51.51

3 F 9 9.49 9.51

3 F 9 9.27 9.33

Table 7.3.: Mulliken and L�owdin population analysis of XeF2, XeF4 and XeF6.

In the hydrogen atom, the wave functions of the higher lying shells, which are unoccupied

in the ground state, have a considerable amplitude in the spatial regions of the lower lying

shells of the same angular momentum [2, 3]. Although the xenon uorides are by far not

a one-electron system, this also is assumed to be true in the case of the xenon uorides.

Then a reduction of valence electron density on the xenon atom leads to a less eÆcient

screening of its nuclear charge and consequently a lowering in energy of the low in energy

lying molecular orbitals with a dominant contribution of xenon atomic orbitals.

Conversely, the increase of valence electron density on the uorine atoms leads to a

more eÆcient screening of their nuclear charge and consequently rises the energy of the

lower lying molecular orbitals with a dominant contribution of uorine atomic orbitals.

The charge taken from the xenon atom is shared among several uorine atoms. The net

increase of charge density on each uorine atom is � 0:5 electron charges. This value is

much smaller than the loss of charge density on the xenon atom so the e�ect on the inner

molecular orbitals of uorine character is expected to be much smaller and most dramatic

in XeF2 where the uorine atoms acquire the largest fraction.

The e�ects of this model can be seen in �gure 7.2. The positions of the Xe 5s and

Xe 4d lines shift to higher binding energies with an increasing number of uorine atoms.

The energy di�erences between the corresponding lines of XeF2, XeF4 and of XeF4, XeF6

are nearly equally large. The F 2p and F 2s lines also shift slightly to higher binding

energies with an increasing number of uorine atoms. This can be explained by the fact

that the screening of the nuclear charge has the largest e�ect in XeF2 and decreases

in XeF4 and XeF6. This explanation for the shifting of the uorine lines is supported by

a comparison with F2. The mean of the F 2p lines in F2 and the mean of the F 2s lines

in F2 are higher in energy than the mean values of the corresponding lines in XeF2.

Analysis of the Ionization Potentials

The valence ionization potentials reveal a surprising feature: the �rst IP is nearly constant

for all xenon uorides studied. It's value is � 12:5 eV.

In the uorine molecule, the two F 2s lines are split considerably due to the molecular

bond. The split of the two F 2s lines in XeF2 is tiny due to the large separation of the

uorine atoms. If one examines F2, where the internuclear separation of the uorine atoms

is taken to be the separation of the uorine atoms in XeF2, then F2 is not bound. In XeF4
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Figure 7.3.: (Color) Single ionization spectra of Xe, F2, XeF2, XeF4 and XeF6 calculated with the

one-particle ADC(3) program (see text). The assignment of lines to being dominated by the atomic

orbitals of xenon or uorine origin is not done for XeF2, XeF4 and XeF6.

and XeF6, the uorine atoms are closer and interact. This results in a larger split of the

F 2s lines in comparison to the split in XeF2.

The 4d lines are quintuply degenerate in the single ionization spectrum of the xenon

atom in �gure 7.2. In XeF2, degeneracy is lifted by the ligand �eld of the uorine atoms

and three distinct lines become visible. The three lines reect the spatial orientation of

the 4d orbitals. Along the molecular axis, there is a ligand �eld. Perpendicular to the

molecular axis there is no shift. Hence the former single line splits into three lines.

In XeF4, there is only one dimension left that is una�ected by the ligand �eld: the axis

perpendicular to the molecular plane. The spectrum, �gure 7.2, shows that there are four

distinct Xe 4d lines in this case. In XeF6 situation changes because the uorine atoms are

grouped around the xenon in such a way that XeF6 assumes nearly octahedral symmetry.

This implies that the xenon atom is surrounded by charge distribution which is close to

spherical symmetry. Therefore, the split of the two Xe 4d orbitals of XeF6 in Oh sym-

metry is only 0:1568 eV compared to the much larger splits in XeF2 and XeF4. XeF6 in

C3v symmetry leads to three distinct orbital energies with a total split of 0:3682 eV.
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7.3. Single Ionization Potentials

7.3.2. Correlation E�ects

The Spectra

Now the Hartree-Fock description of the molecules is improved by using ADC(3) to obtain

the ionization potentials plotted in �gure 7.3. Figure 7.2 helps to identify the one-particle

origin of the states in �gure 7.3. The Xe 4d lines are clearly separated from the outer

and inner valence lines in all spectra. They are located between 72 eV and 82 eV. The

F 2s lines show up between 35 eV and 45 eV.

Outer Valence

Correlation e�ects do not change the fact that the �rst ionization potentials are approxi-

mately equal in all compounds. In XeF6 there is a considerable breakdown in the range

from 20 eV to 23 eV of valence states.

Inner Valence

Breakdown of the molecular orbital picture of ionization is caused by compact 2h1p con-

�gurations which are close in energy to a one-particle state and contribute considerably

to the description of the state. The coupling of these con�gurations to one-particle states

leads to a broad shape of lines. Breakdown of the molecular orbital picture of ionization

has been observed in the inner valence region of many molecules [59].

Due to the many-body description of a molecule, decay electrons of electronic res-

onances become describable. The �nal state of an electronic decay of a singly ionized

molecule can also be approximated in terms of 2h1p con�gurations, see subsection 6.3.3.

The shape of each decaying state can be identi�ed as a thin bundle of lines which mimic

a discretized Lorentzian curve [28].

Breakdown of the molecular orbital picture of ionization has to be separated clearly

from a few decaying states in a small energy range where each state mimics a discretized

Lorentzian curve because they are of completely di�erent origin. Furthermore, there can

be a mixing of both phenomena for a certain state but it is hard to identify a decay curve

for one-particle states that su�er from breakdown.

The inner valence of the xenon uorides comprises the Xe 5s and F 2s states. The

Xe 5s one-particle state su�ers solely from breakdown because its IP is below the double

ionization threshold (see �gure 7.4). In fact, the breakdown is strong, i.e. many 2h1p con-

�gurations contribute to the Xe 5s one-particle state (see �gure 7.3), because the Xe 5s line

is close to the double ionization threshold. Therefore, many 2h1p con�gurations are close

in energy to this state because excited states are very dense in this energetic region.

The spectra exhibit a considerable increase of breakdown of the molecular orbital

picture for the inner valence with an increasing number of uorine atoms. Obviously,

the number of possible con�gurations rises due to the addition of uorine atoms. As

the geometries of the xenon uorides are very symmetric, these uorine atoms are all

equivalent, except for XeF6, and the number of equivalent 2h1p con�gurations with one

hole on the xenon atom doubles between XeF2 and XeF4. In XeF6 there are even more
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Compound 1. Experimental IP 1. ADC IP

Xe 12.129 12.16

XeF2 12.35 12.76

XeF4 13.1 13.07

XeF6 12.35 12.56

Table 7.4.: Comparison of the calculated lowest (�rst) ionization potentials of Xe, XeF2, XeF4 and

XeF6 with experimental results. The �rst IP of xenon is taken from [88]. The other �rst IPs are

taken from [96]. All data are given in electronvolt.

such con�gurations than there are in XeF4 but they are no longer equivalent due to the

C3v symmetry of XeF6.

Another contribution to the increase of one-particle states involved in the breakdown

can be attributed to the decrease in symmetry: spherical symmetry (Xe), D1h (XeF2),

D4h (XeF4), C3v (XeF6). This decrease in symmetry leads to an increase in con�gurations

that can couple to the respective states.

Core

The one-particle picture is a relatively good description for the Xe 4d lines. 2h1p (and

higher excited) con�gurations, energetically below the autoionization threshold, corre-

sponding to spatially compact wave functions, are much lower in energy. Therefore, the

mixing of 2h1p con�gurations with 1h con�gurations is weak. The splits of the Xe 4d lines

in the xenon uorides are of comparable size to those in �gure 7.2 and the individual lines

can be identi�ed easily in all molecules but XeF6.

As in all xenon uorides the Xe 4d lines are above the double ionization threshold, an

electronic decay of the Xe 4d ionized xenon uorides is possible, see �gure 7.4. The shape

of the discretization of the Lorentzian curve representing a decaying state in the spectra,

depends highly on the number of 2h1p con�gurations in the energy range of the decay

electron. The DZVP (DFT orbital) basis used is small and contains only a few di�use

functions. Hence XeF6 is the only case where the basis is suÆcient to mimic the shape

of Lorentzian curves well. Due to the low symmetry of XeF6, the number of suitable

con�gurations increases, too.

Positive Electron AÆnities

The charge transfer from the xenon atom to the uorine atoms in the xenon uorides,

discussed in subsection 7.3.1, leaves a positively charged central xenon atom. Therefore, it

is not surprising that XeF4 and XeF6 possess positive electron aÆnities, i.e. (XeF4)
� and

(XeF6)
� are stable with respect to electron emission. In XeF4 there is a doubly degenerate

state at 0:6593 eV and in XeF6 there are states at 1:2960 eV, 1:3078 eV, 1:8106 eV. The

�gures are not very accurate because the basis set is not very well suited to describe the

di�use states of electron attachment.

In XeF6 the uorine atoms form a cloud of nearly octahedral symmetry of negative

charge around the central positively charged xenon atom. This potential well is similar

72



7.3. Single Ionization Potentials

0.2
0.4
0.6
0.8

Xenon
Fluorine

0.2
0.4
0.6
0.8

0.2
0.4
0.6
0.8

   
   

   
   

   
   

   
 P

ol
e 

S
tr

en
gt

h

0 20 40 60 80 100

Double Ionization Potentials [eV]

0.2
0.4
0.6
0.8

0 20 40 60 80 100

Xe
F

XeF2

XeF

XeF

4

6

2

Figure 7.4.: (Color) Double ionization spectra of Xe, F2, XeF2, XeF4 and XeF6. The two-particle

ADC(2) 2h pole strength is plotted on the ordinate to characterize how well the dicationic �nal states

are described by 2h con�gurations.

to the model problem discussed in subsection 4.1.1.

Removal of Charge

The (groups of) lines of the spectra of �gure 7.3 are shifted to higher ionization potentials

with an increasing number of uorine atoms. This e�ect was described in subsection 7.3.1.

This general trend, seen in the mean �eld approximation of �gure 7.2, can still be identi�ed

if electron correlation is taken into account. In �gure 7.3, the energy shift between the

corresponding states in two compounds decreases with an increasing number of uorine

atoms, i.e. the energetic di�erence between the Xe 4d lines of XeF2 and XeF4 is larger than

the energetic di�erence between the Xe 4d lines of XeF4 and XeF6. Electron correlation

reduces the e�ect caused by charge reduction on the xenon atom.
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Comparison with Experimental Results

The calculated non-relativistic ionization potentials are listed in table 7.1 together with

the values obtained by applying the relativistic corrections of section 7.2. The number of

distinct Xe 4d lines is smaller in the non-relativistic spectra due to a higher degeneracy

caused by neglecting the spin-orbit coupling. The Xe 4d lines of XeF6 cannot be identi�ed

clearly in �gure 7.3 due to fact that the states mimic Lorentzian decay curves. One expects

from subsection 7.3.1 two lines for a ground state geometry of Oh symmetry and three

lines for a ground state geometry of C3v symmetry. The two ionization potentials, in

the energy range of the Xe 4d lines of XeF6 (80{83 eV), with maximum pole strength are

listed in table 7.1.

The corrected ADC(3) IPs, corresponding to the Xe 4d lines, di�er from the experi-

mentally obtained data in table 7.1 by 1:5{2 eV (� 3%) which is a good agreement. The

reason for the deviation is twofold. Firstly, the spin-orbit splitting is neglected which

amounts to 2:111 eV for the 4d lines of the xenon atom, according to section 7.2. Sec-

ondly, the calculations use ADC(3) for the xenon uorides, the 3h2p con�gurations are

neglected. The inclusion of these additional con�gurations would shift the ionization po-

tentials of the Xe 4d lines further to lower energy, due to improved hole relaxation [72],

which would cause a considerable improvement.

The �rst ionization potentials of xenon and its uorides are compared to the exper-

imental results in table 7.4. The agreement of experimental IPs and calculated IPs is

good.

7.4. Double Ionization Potentials

7.4.1. Spectra

The double ionization spectrum of XeF6 is calculated using a ground state geometry of

Oh symmetry, instead of C3v symmetry, to make the calculation possible with the available

computers. To investigate the e�ect of the di�erent symmetries, the single ionization

potentials are compared using Koopmans' theorem. The overall positions of the xenon

lines are in good agreement in both symmetries but the split of the uorine lines is quite

di�erent due to the increased interaction.

The double ionization spectra are shown in �gure 7.4. The ADC 2h pole strength

plotted in this �gure, has the same meaning as the 1h pole strength for single ionization

potentials: it characterizes how well the dicationic states are described by 2h con�gu-

rations (subsection 5.4.2). The di�erence of the value of the 2h pole strength from one

yields the amount of 3h1p con�gurations that contribute to the state. Analogous to the

single ionization spectra, an electronically decaying state mimics a discretized Lorentzian

curve in double ionization spectra [28]. Such curves may be seen above 50 eV in �g-

ure 7.4. Hence the Xe 4d lines in the xenon uorides are likely above the triple ionization

threshold [28].

The analysis of the double ionization potentials is more diÆcult than the analysis of

the single ionization potentials because one has to keep in mind that there are, essentially,

four contributions to a dicationic state. The dominant contribution to a state determines
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Figure 7.5.: (Color) One-site population of the double ionization spectra of XeF2, XeF4 and XeF6.

its character: the one-site states have a large dicationic population number on either

xenon Xe�2 or on a single uorine F�2 and the two-site states are of either Xe�1F�1

or of F1�1F2�1 character2 (subsection 5.4.2). For each dicationic state of the spectra

of the xenon uorides, the equivalent data of the population analysis are summed to

yield four population numbers, one for each main contribution to a dicationic state. For

example, the Xe�1F1�1, Xe�1F2�1 population numbers are added in XeF2 to give a single

Xe�1F�1 contribution for each dicationic state of the spectrum of XeF2. The population

numbers are normalized, i.e. the sum of the contributions of Xe�2, F�2, Xe�1F�1 and

F1�1F2�1 character yields one for each state.

7.4.2. One-site Populations

The spectra of the one-site population numbers are plotted in �gure 7.5. The �rst lines

appear at � 30 eV. The spectra are compared to study the e�ect of the increasing

number of uorine atoms for the xenon uorides. Obviously, the density of states with

a considerable F�2 population increases due to the increasing number of uorine atoms.

The overall distribution of these states does not change much in the di�erent compounds,

certain regions are visible where the states have a high F�2 population. These regions

shift slightly to higher IPs due to the reduced excess charge that the individual uorine

atoms get from the central xenon atom.

2The notation is explained in footnote 4 on page 57.
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Conversely, the importance of Xe�2 contributions to the dicationic states is extremely

reduced due to the reduction of the valence electron density on the xenon atom. In XeF6

the contributions of Xe�2 character have nearly vanished.

7.4.3. Two-site Populations

The spectra of the two-site population numbers are plotted in �gure 7.6. The e�ect

of the increasing number of uorine atoms is seen here as well. The states with a large

F1�1F2�1 population in the spectrum of XeF2 are clearly separated into distinct groups of

lines originating from F1 2p�1 F2 2p�1, F1 2p�1 F2 2s�1 and F1 2s�1 F2 2s�1 populations.

This can be concluded from a simple energy summation. The single ionization potentials in

�gure 7.2 for ionization from molecular orbitals with F 2p character are located at� 20 eV,

those for ionization from molecular orbitals with F 2s character are located at � 40 eV.

In the spectrum of XeF2 in �gure 7.6, the groups are approximately at 40, 60 and 80 eV.

Since XeF2 is a linear molecule, the two uorine atoms are separated by the central xenon

atom. Such states with a large F1�1F2�1 population are termed opposite F1�1F2�1 states.

The situation changes in XeF4 and XeF6. There are adjacent and opposite F1�1F2�1

states and the clear separation between the groups seen in the spectrum of XeF2 is re-

moved. One reason for this e�ect is the interaction between adjacent uorine atoms which

is stronger than the interaction between opposite ones. This leads to a splitting of the

uorine lines which is also observed in the single ionization spectra, see subsection 7.3.1.

Furthermore, the F1{F2 distance in adjacent F1�1 F2�1 states is considerably reduced

in comparison to the F1{F2 distance in opposite states. So the hole-hole repulsion energy

varies among those states which have a large F1�1F2�1 population that arises from the

same types of orbitals. Therefore, such F1�1F2�1 states are distributed to a small region

in the double ionization spectrum. The lines in XeF2 mark the lower ends of such regions

due to the maximum distance between the vacancies therein, in contrast to XeF4 and

XeF6.

States with a large Xe�1F�1 population do not group like those of F1�1F2�1 character.

The density of the former also increases with an increasing number of uorine atoms but

they are distributed more uniformly to the whole spectral range. In XeF2 and XeF6

these states are dominant and In XeF4 they are comparable to the F1�1F2�1 states. The

ionization potential of the Xe�1 F�1 states is not subject to a change of the hole-hole

repulsion energy in contrast to the F1�1F2�1 states because the Xe{F distance does not

change within a molecule (remember that the double ionization spectrum of XeF6 was

calculated using octahedral symmetry).

7.5. Electronic Decay Processes

The electronic decay processes presented in section 6.1 are characterized according to

their �nal state population in subsection 6.3.1. Therefore, the analysis of the �nal state

populations can show which processes of section 6.1 are important for the electronic decay

of Xe 4d holes in the xenon uorides.
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Figure 7.6.: (Color) Two-site population of the double ionization spectra of XeF2, XeF4 and XeF6.

The intra-atomic decay of an initial Xe 4d hole produces �nal states of Xe�2 type.

So intra-atomic decay is suppressed (6.3), if the �nal states have a small Xe�2 popula-

tion. The analysis of the one-site population in �gure 7.5 of subsection 7.4.2 shows that

the Xe�2 population is extremely low in the xenon uorides, in contrast to the two-site

population in �gure 7.6. Therefore, one can conclude that interatomic decay processes

dominate the electronic decay of Xe 4d holes in the xenon uorides.

Two objections can be made: �rstly, the two �nal state holes on the xenon atom may

not be highly localized in the outer valence, in contrast to inner valence and core holes.

Hence the picture of one-site and two-site holes is a crude approximation. Secondly, the

intra-atomic decay matrix elements are much larger than the interatomic ones, due to the

larger overlap of the involved wave functions of the initial and �nal states. Therefore,

the suppression of intra-atomic decay by the Xe�2 population numbers of the accessible

�nal states may not be large enough to make interatomic decay processes comparable

or even dominant (6.3). The inuence of interatomic decay processes certainly increases

with an increasing number of uorine atoms due to the increasing number of accessible

�nal states.

Now the relations among the three interatomic processes of section 6.1, ICD, two- and

three-monomer ETMD, are investigated. Final states with a large F�2 population are

attributed to a two-monomer ETMD process. Final states with a large F1�1F2�1 pop-

ulation are attributed to a three-monomer ETMD process suggested in subsection 6.1.3.

Two �nal state holes on a single uorine atom may not be highly localized due to di�use

valence molecular orbitals. Therefore, a clear separation between two- and three-monomer
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ETMD is diÆcult. As no partial decay widths for the individual processes are calculated,

and three-monomer ETMD has not been studied so far, one cannot answer the question

which process is more important.

ICD produces Xe�1 F�1 �nal states. Figure 7.6 shows that the two-site �nal state

population of ICD is comparable to that of three-monomer ETMD. This is somewhat

surprising because the valence electron density on the xenon atom is considerably reduced,

see subsubsection 7.3.1.

A dominance of interatomic processes implies an increase of the decay width in the

xenon uorides because the number of dicationic �nal states increases with the number

of uorine atoms. This is not the case for the intra-atomic decay process. This analysis

suggest that the experimentally observed increase in line width is caused by an increase

of the decay width. This conclusion is in contrast to conventional wisdom that the Auger

decay rate in molecules is low for a low valence electron density on the atom that carries

the initial vacancy [21].

The increase of the decay width in �gure 7.1 is not very large. This can be attributed

to the fact that the CI transition matrix element of interatomic decay processes in (6.3) is

smaller than that of intra-atomic decay. As the intra-atomic decay is suppressed with an

increasing number of uorine atoms this decrease in decay width must be compensated

by the increase in interatomic decay width.
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8. Conclusion

This diploma thesis is thematically centered around the electronic decay of resonances

in molecules. In this thesis, progress has been made towards an improved theoretical

description of the electronic decay of excited and ionized molecules. Special emphasis

is put on the decay processes, the observed phenomena due to the processes and their

contribution to the decay width of excited and ionized molecules.

Perturbation theory is applied repeatedly to study electronic resonances and a major

part of the present work is devoted to the elucidation of its usefulness for the calculation

of their decay widths.

The application of time-dependent perturbation theory, to the calculation of the de-

cay width of a resonance, is called Wigner-Weisskopf theory [2, 7]. It is used to study

the electronic decay of a singly excited resonance state which is described by a singly

excited Hartree-Fock determinant. It is shown that �nal states consist of singly, doubly

and triply excited determinants which lead to a variety of possible decay processes that,

combined, yield the electronic decay width of the initial state. Schematic representations

of the individual decay channels can be drawn which help to understand their physical

signi�cance (section 3.1).

Complex absorbing potentials (CAP) transform the time-dependent decay problem

into a non-Hermitian time-independent bound-state-like problem that can be treated

with L
2 techniques [17]. In the framework of CAPs, a non-Hermitian generalization of

non-degenerate Rayleigh-Schr�odinger perturbation theory [2] is the analogue to Wigner-

Weisskopf theory. The matrix elements which occur in this theory, consist of those needed

in the Wigner-Weisskopf theory of section 3.1, together with new ones originating from

the CAP. In course of the derivation of this perturbation theory, more and more simi-

larities to the time-dependent picture are revealed and �nally their formal equivalence in

complete basis sets is shown (section 3.2).

Both Wigner-Weisskopf theory and non-Hermitian non-degenerate Rayleigh-Schr�o-

dinger perturbation theory are single reference theories. A single Hartree-Fock deter-

minant does not approximate a singly excited state very well. Furthermore, the single

reference approaches of the former paragraphs su�er from degeneracies. To overcome

this, a exible non-Hermitian multireference perturbation theory is derived (section 3.3)

on the analogy of degenerate Rayleigh-Schr�odinger perturbation theory [2]. The many-

body problem is described using a con�guration interaction matrix including the CAP.

An arbitrary set of con�gurations may be chosen as references. With the help of pro-

jection operators, the matrix is partitioned into a reference space, a complement space

and coupling blocks. The Hamiltonian is diagonalized in the reference space to decouple

the references. The problem is transformed into an e�ective eigenvalue problem which is

solved by perturbation theory. A simple condition for the convergence of the perturbation
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series is stated. The �rst non-vanishing term is of second order in the perturbation. It is

shown that up to second order only the coupling blocks are needed for the calculation of

the energy. Corrections up to fourth order in energy and up to second order in the wave

function are presented. The theory reduces to the non-Hermitian Rayleigh-Schr�odinger

perturbation theory discussed in the previous paragraph (section 3.2) if only one reference

is used.

A new theory should be tested, if possible, on a problem where the results are known

beforehand. This is the case for the model problem of section 4.1.1 which possesses a

(quasi)-analytic solution and was studied before [10, 11] using the CAP-method. The

multireference perturbation theory is studied with respect to the accuracy of its results

for a varying size of the employed reference space. The theory delivers satisfactory results

with low computational e�ort. An integration of the multireference perturbation theory

into a con�guration interaction program is described.

In the following paragraphs, contributions made to the understanding of the electronic

decay of singly ionized molecules, are described. Wigner-Weisskopf theory was formulated

before [8,9] for ionized molecular systems and in this work a new derivation is given here

that rests on the Wigner-Weisskopf theory for excited states. Excited states are more

general than ionized states, so a simple transformation leads to the equations describing

an ionized molecule. The Wigner-Weisskopf theory for ionized molecules is extended

further to include the many-body Green's function description of dicationic states. With

the help of this, a relation between the population of �nal states and the electronic decay

width is derived (section 6.3).

Xenon uorides (XeFn; n = 2; 4; 6) serve as an example to study electronic decay

in molecules (chapter 7). This family of compounds is chosen due to the experimental

observation of an increase in line width with an increasing number of uorine atoms. I

investigate whether this e�ect arises due to an increase in electronic decay width. The

aim is to estimate the e�ect on the decay width of interatomic decay processes, which

are essential in the decay of weakly bound clusters [8, 9, 26{29] (chapter 6), in the xenon

uorides, because their partial decay width increases with an increasing number of uorine

atoms.

Xenon is a fairly heavy atom, so relativistic e�ects have a considerable e�ect on the

ionization potentials of the xenon uorides. As the theory employed here is strictly non-

relativistic, a rule of thumb is devised to correct for the scalar relativistic e�ects, i.e. the

modi�cation of the orbital energies, by performing numeric Hartree-Fock and Dirac-Fock

calculations for the xenon atom. The di�erence of the orbital energies is used to correct

for these e�ects.

A Mulliken population analysis [42,84] is carried out which shows that a considerable

amount of charge is moved from the central xenon atom to the uorine atoms. The e�ect

increases with an increasing number of uorine atoms. This reduction of charge on the

xenon atom leads to a shift of the ionization potentials of xenon in the xenon uorides to

higher energies because the nuclear charge is less e�ectively screened. The e�ect is clearly

visible in the ionization spectra.

The ionization spectra are examined on the Hartree-Fock level (Koopmans' theorem)

�rst because the mean �eld approximation yields clear and easy-to-understand spectra.

With the help of Green's functions, ionization spectra are calculated for correlated elec-
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trons. The spectra show a signi�cant breakdown of the molecular orbital picture of

ionization in the inner valence of the xenon uorides.

The double ionization spectra are plotted in terms of the one-site populations on Xe�2,

F�2 and two-site populations on Xe�1 F�1, F1�1 F2�1 of the dicationic states. Separating

these two classes of contributions gives considerable insights if these states are interpreted

as dicationic �nal states of the decay of a single Xe 4d vacancy. The Xe�2 population num-

bers are minimal. This implies a signi�cant contribution of interatomic decay processes

because the number of dicationic states increases with the number of uorine atoms.

The results of the analysis of the xenon uorides have considerable impact on the

understanding of molecular Auger decay. Up to now, only the phenomenon of foreign

imaging [22{24] and the signi�cance of interatomic matrix elements [20, 21] have been

known but with this work a clear identi�cation of the possible decay processes is given.

It is shown that they lead to an increase of the Xe 4d decay width which explains the

experimentally observed increase of the Xe 4d line width. This conclusion is in contrast

to conventional wisdom that the Auger decay rate in molecules is low for a low valence

electron density on the atom that carries the initial vacancy [21].

Several questions are left open and should be investigated in subsequent work. Wigner-

Weisskopf theory can be improved further. Up to now, the initial and �nal states are

described by excited Hartree-Fock determinants, which is a crude approximation. The

use of states described by the Algebraic diagrammatic construction (ADC) [30{33] scheme

into this theory as commenced in section 6.3 seems to be a promising approach to calcu-

late decay widths of electronic resonances with low computational e�ort and a satisfactory

accuracy. Intermediate state representations [79{81] can help to calculate the needed cou-

pling matrix elements. Then the limited accuracy of the second order Wigner-Weisskopf

theory can be exploited fully.

The non-Hermitian multireference perturbation theory can be used to study some

electronic resonances in molecules to compare its results with existing methods. As it is

a matrix perturbation theory without concrete description of the many-body system in

mind, an integration into other ab initio methods like ADC [30{33] could be possible.

The three-monomer electron transfer mediated decay (ETMD) is suggested to be an

important process to explain the foreign imaging [22{24] phenomenon (subsection 6.2.1)

observed in SiF4 and is addressed in the context of the xenon uorides (chapter 7). There-

fore, it is highly desirable to study this process in a cluster like NeAr2 as proposed in [9].

Particularly the decay width of this process in relation to interatomic Coulombic decay

and two-monomer ETMD is relevant and can have considerable impact on the under-

standing of interatomic decay processes and their e�ects.

The accurate determination of lifetimes of electronic resonances is still a problem with

ab initio calculations. Standard Gaussian basis sets are optimized to represent compact

ground state wave functions of molecules. Hence they are less suited to represent decay

electrons further away from the molecule. The situation can be relieved somewhat by

augmenting the basis set with a few di�use functions, i.e. Gaussians with a small exponent.

This cannot be done excessively because (near) linear dependencies and consequently

numerical instabilities arise. Therefore, new types of basis functions are needed that are

capable of representing decay electrons, not only in the vicinity of a molecule. A practical

requirement is that it should be possible to evaluate the integrals eÆciently which are
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needed on Hartree-Fock calculations. Then the lifetimes of the Xe 4d vacancies in the

xenon uoride could be determined by purely theoretical means.
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