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Within the thesis at hand, for the first time a measurement technique was developed and
established to perform the Landau-Zener spectroscopy of atomic tunneling systems (TSs)
in bulk glasses at very low temperatures. Superconducting bridge-type micro-resonators
with the sample as substrate were developed that allow a microwave drive under dynamic
bias conditions. Beyond dielectric equilibrium measurements, extensively conducted in the
past, the novel setup allows to perform measurements in non-equilibrium (Landau-Zener
dynamics), which enables a comprehensive study of TSs in bulk glasses with a single device.
As sample the borosilicate glass N-BK7 was used which was well-characterized in previous
studies and is therefore well-suited for the validation of the setup. Non-equilibrium loss-
measurements revealed an average dipole moment of p = 1.5D for the sample, which yields
a TS density of P0 = 6.46× 1045 J−1m−3. A relaxation from the non-equilibrium loss
back to the steady-state compatible with a one-phonon process was observed. In two-
tone spectroscopy measurements a selective saturation of TSs could be demonstrated and
detected through a modified dielectric function. Therewith, a lower limit for the average TS
dephasing rate of τ2 ≳ 10 µs was determined. In combination with implemented detailed
numerical simulations, the Landau-Zener spectroscopy of bulk glasses provides a new way
of systematic TS characterization in amorphous materials at very low temperatures.

Landau-Zener Spektroskopie von Gläsern

Im Rahmen dieser Arbeit wurde erstmalig eine Messmethodik zur Landau-Zener Spektro-
skopie von atomaren Tunnelsystemen (TS) in Gläsern bei tiefen Temperaturen entwickelt
und eingesetzt. Hierfür wurden supraleitende mikrostrukturierte Brückenresonatoren mit
der Probe als Substrat verwendet, welche neben der Anregung durch elektrische Hochfre-
quenzfelder ein dynamisches elektrisches Vorspannen des Resonators ermöglichen. Neben
der in der Vergangenheit umfassend durchgeführten dielektrischen Messungen im Gleich-
gewicht erlaubt dieser neuartige Aufbau durch die induzierte Landau-Zener Dynamik auch
Nicht-Gleichgewichtsmessungen, was eine umfassende Untersuchung von TS in Gläsern mit
einer einzigen Apparatur ermöglicht. Das in früheren Messungen bereits ausführlich unter-
suchte Borosilikatglas N-BK7 wurde als Probe verwendet und eignet sich damit gut zur
Validierung des neuen Aufbaus. Aus Nicht-Gleichgewichtsmessungen des Verlusts wurde
ein mittleres Dipolmoment der Probe von p = 1,5D bestimmt, woraus sich eine TS Dichte
von P0 = 6,46 · 1045 J−1m−3 bestimmen ließ. Eine mit Ein-Phonon Prozessen vereinbare
Relaxation des Nicht-Gleichgewichtsverlust zurück zu seinem Gleichgewichtswert konnte
zudem beobachtet werden. In Zwei-Ton Spektroskopie Messungen konnten selektiv TS ge-
sättigt werden, was anhand von Änderungen der dielektrischen Funktion nachweisbar war.
Daraus konnte eine untere Grenze für die TS Dephasierungszeit von τ2 ≳ 10 µs ermittelt
werden. Die Kombination der Landau-Zener Spektroskopie mit durchgeführten detaillierten
nummerischen Simulationen stellen einen neuen Weg zur systematischen Untersuchung von
TS in amorphen Festkörper bei sehr tiefen Temperaturen dar.
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1. Introduction

It has been 50 years now since Zeller and Pohl [Zel71] published their work on the
anomalous low temperature properties of amorphous solids where they unambigu-
ously revealed a fundamental disparity between the thermal properties of insulating
glasses and their crystalline counterparts below 1K. Moreover, not only on a quali-
tative level but also quantitatively, very similar results between amorphous solids of
different classes were found. It is not surprising that these findings quickly attracted
attention from experimental and theoretical side, and a new research field in solid-
state physics was formed. A lot of efforts have been made over the last decades to
establish and improve the understanding of amorphous solids at low temperatures.
However, up to now – besides a phenomenological description – the question about
the microscopic origin for the anomalous low temperature behavior of amorphous
solids remains open. A major difficulty for the theoretical description of amorphous
solids lies in their structural disorder.
In contrast to ideal crystals, amorphous solids, such as insulating bulk glasses, which
are used in this thesis and can be fabricated, for example, through rapid cooling of a
melt, do not possess any long-range order. In fact, the chemical bonding provides a
certain short-range order, however, statistical variations of the bonding angles even-
tually lead to a structural disordering [Ell84, Sch91, Vog92]. The periodicity of an
ideal crystal allows the definition of a unit cell, whereby the description of the solid
composed of ∼1023 atoms is condensed to a few parameters. However, this important
concept in solid-state physics is not readily applicable to amorphous solids, and their
description is often restricted to less powerful statistical methods. Because of the
absence of a periodic lattice in amorphous solids, also the treatment of phonons as
elementary excitations of the lattice only makes sense at large phonon-wavelengths,
where the solid can be considered as a continuum, independently from its micro-
scopic structure. At low temperatures, these long-wavelength phonons determine
the thermal properties of crystalline solids, which are successfully described within
the Debye model [Deb12]. Since long-wavelength phonons are also present in amor-
phous solids, it was assumed that the Debye model should be a valid description of
the low temperature properties of amorphous solids as well. Therefore, it was all the
more surprising when the measurements of Zeller and Pohl revealed a considerable
deviating behavior of the specific heat and the thermal conductivity. The heat ca-
pacity showed an almost linear dependence on temperature, instead of the cubic one
proposed by the Debye model, and the thermal conductivity was several orders of
magnitude smaller and showed a weaker temperature dependency compared to the
crystalline counterpart.
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2 1. Introduction

These observations pointed towards the existence of localized low-energy excitations
in amorphous solids which contribute to the heat capacity even at very low tempera-
tures where phononic contributions have already died out. Thermal phonons scatter
at these additional excitations in amorphous solids, leading to a significant reduc-
tion of the thermal conductivity. Independently, Anderson et al. [And72] and Phillips
[Phi72] provided a phenomenological description where they identified the low-energy
excitations as atomic tunneling systems, which occur as broadly distributed two-level
states that determine the low temperature properties of glasses. Besides explaining
the already mentioned thermal properties [Zel71, Las75, Ste76, Poh85], this model is
also quite successful in describing many other properties of amorphous solids at low
temperatures like dielectric [vS77, Fro77, Ens89, Rog97, VR98, Luc14] or acoustic
[Cla94, Rau95, Cla00, Fef08] susceptibility measurements and the ultrasonic absorp-
tion [Hun72, Hun77]. Nowadays, this model is commonly accepted as foundation for
describing amorphous solids at low temperatures and is typically referred to as the
standard tunneling model.
Alongside its general success in describing the low temperature properties of amor-
phous solids, deviations observed from the predicted behavior have raised questions
concerning the standard tunneling model’s integrity and led to several extensions over
time. On the one hand these extensions target to modify the underlying tunneling
system distribution function [Dou80, Ens89], but also interactions between tunneling
systems, which become relevant at low temperatures, were discussed and incorpo-
rated into the model [Bla77, Bur95, Ens97, Nal04]. The importance of nuclear electric
quadrupole moments as constituent of a tunneling systems could be demonstrated in
measurements of dielectric polarization echo decays [Wür02, Baz08, Bar13], which
could also explain the unexpected magnetic field dependency of the echo amplitude
[Lud02] and the dielectric function [Str98, Woh01]. Moreover, dielectric measure-
ments at low frequencies of glasses containing elements with large nuclear quadrupole
moments revealed a novel relaxation channel for tunneling systems via the nuclear
spin bath [Luc14, Luc16], which is the subject of current research and scientific dis-
cussion.
Beyond these topical questions and the unexplained question concerning the mi-
croscopic nature of the two-level states, tunneling systems recently attracted high
scientific interested due to their deteriorative effects on the performance of super-
conducting quantum devices. In these experiments they appear as a major origin
for noise [Nei13, Bur14b, Pal14] and decoherence [Mar05, Ku05, Mü19]. Improv-
ing coherence times for state-of-the-art solid-state qubits addresses the avoidance of
tunneling systems and therefore requires a substantial understanding of them. On
the other hand, the strong coupling of tunneling systems to these devices opens a
whole new experimental way to examine tunneling systems. Spectroscopy of sin-
gle tunneling systems strongly coupled to a qubit was performed under modifying
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the two-level system’s energy with an applied strain or electric field [Gra12, Lis19],
which allowed, for example, to directly observe interactions between tunneling sys-
tems [Lis15, Mei18].
In the thesis at hand, we investigate tunneling systems with another novel spec-
troscopy method by the use of superconducting micro-resonators with a bridge-type
capacitor geometry. These resonators allow to probe tunneling systems with a mi-
crowave electric field, while an electric bias field provides a dynamic control of the
two-level systems’ energies. In an earlier experiment by Khalil et al. [Kha14] studying
amorphous thin films it was observed that sweeping the bias field induces tunneling
systems to perform Landau-Zener transitions. This results in an enhanced dielec-
tric loss due to an effective suppression of the tunneling system saturation through
the non-equilibrium Landau-Zener population control. The goal of this thesis is to
demonstrate and establish this Landau-Zener spectroscopy method for bulk glasses
by direct processing planar superconducting micro-resonators on a substrate which
is the sample itself. Performing the Landau-Zener spectroscopy with bulk glasses
allows us to extensively study microscopic properties of tunneling systems in these
materials, like their dipole moment, relaxation times, or the distribution of two-
level systems, through a single device. Transferring this measurement technique to
a larger range of accessible materials enables to revisit well-characterized materials
with new non-equilibrium techniques in order to establish a more conclusive picture
about tunneling states in amorphous solids. This will hopefully give an important
contribution to resolve the long-standing question concerning the nature of two-level
systems in amorphous materials – “always present but never identified” [Dou80].

This thesis is structured as follows:

Chapter 2 provides the essential theoretical background for understanding the mea-
surements performed in the thesis at hand. It starts with a short introduction about
the structure of glass before the anomalous low temperature properties of glasses
are discussed within the standard tunneling model. Particular emphasis is put on
the interaction of tunneling systems with high-frequency electric fields and the non-
equilibrium dielectric loss induced by Landau-Zener transitions.
In chapter 3 we introduce a simulation framework which was implemented to model
the complex dielectric response of tunneling systems under multi-tone excitations
and dynamic biasing conditions. The random nature of the tunneling system en-
semble is mapped with a Monte Carlo approach. We discuss the time evolution of
single tunneling systems and the response of the tunneling system ensemble on more
elaborated aspects arising from the Landau-Zener dynamics of tunneling systems.
The experimental setup for performing the Landau-Zener spectroscopy at very low
temperatures is discussed in chapter 4. We present the different bridge-type res-
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onators used within this thesis and explain the applied protocols for extracting the
dielectric function out of the recorded resonance spectra.
Chapter 5 starts with the characterization of the bridge-type resonators. In dielectric
equilibrium measurements the novel resonators are compared to previous measure-
ments. From a comparison with the standard tunneling model information about
the distribution of tunneling systems can be drawn. The results of the Landau-
Zener spectroscopy are given in Section 5.3, which is combined in Section 5.4 with a
two-tone measurement scheme by applying additional off-resonant microwave pump
tones to the resonator.
The thesis ends with a summary of the obtained results and an outlook for future
experiments.



2. Theory

This chapter provides the essential theoretical background for understanding the
measurements performed in the thesis at hand. After a short introduction about
the general structure of glass, the discussion is specified on the anomalous low tem-
perature properties of glasses. As an underlying model for the description of the
low temperature behavior of glasses the so-called standard tunneling model is in-
troduced, in particular with regard to its impact on the dielectric low temperature
properties. The chapter ends with the discussion of the non-equilibrium dielectric
loss, induced by tunneling systems undergoing Landau-Zener transitions, in the pres-
ence of a rapidly swept large electric bias field.

2.1 Structure of glass

If a melt is cooled down slowly below its melting point Tm, the atoms will eventu-
ally start to nucleate and crystallize in a periodic structure. At Tm the melt then
undergoes a first order phase transition and solidifies as a crystal, which appears as
an abrupt volume drop in the V-T diagram as shown in Figure 2.1. On the other
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Figure 2.1: Schematic illustration of
the change in volume under cooling of
a melt. A rapid cooling of the melt re-
sults in a solidification into a glass at Tg,
while on the other hand a crystal can be
formed at Tm under slow cooling, which
is thermodynamically the more stable
state, and therefore has a lower volume.
Adapted from [Sch91].

hand a glass can be formed by a rapid cooling of the melt. In this case below Tm
no solidification occurs initially since the mobility of the atoms is sufficiently limited
to prevent an arrangement in a crystal lattice. One speaks of a supercooled melt,
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6 2. Theory

which is typically associated with a strongly increased viscosity of the material with
decreasing temperature [Vog92]. Further cooling increases the viscosity so much that
the thermodynamic equilibrium (crystal) cannot be reached, and the melt solidifies
vitreously. This transition emerges as a continuous kink in the V-T diagram. The
corresponding temperature is called the glass transformation temperature Tg, but it
should be noted that, as this is a continuous transition, one should rather speak of
a transformation range [Sch91]. By means of viscosity, the transformation tempera-
ture Tg can be defined as the temperature range where the viscosity η lies between
1012 Pa s < η < 1013.5 Pa s. The occurrence of a transformation into a glass strongly
depends on the cooling rate. While some materials form a glass under almost all
circumstances, other materials like metals require cooling rates of up to 106Ks−1

[Wan04]. The glass transformation in general is a very complex phenomenon, and
up to now there exists no complete picture that can fully describe the processes
involved during the glass transformation. It shows similarities to a second order
phase transition, but cannot be interpreted as a phase transition in the classical
sense since there is no transition between two equilibrium states during the glass
formation [Sch91].
First attempts to specify the structure of glasses were made by performing X-ray
diffraction measurements. Figure 2.2 shows such a measurement where the diffrac-
tion pattern of quartz glass is compared to its crystalline counterpart. Both ma-
terials have the same chemical composition (SiO2) but originate from a different
manufacturing process as explained above. In contrast to the quartz crystal, where
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Figure 2.2: Comparison of X-ray
diffraction measurements of quartz glass
(amorphous SiO2) (top) and quartz crys-
tal (crystalline SiO2) (bottom). While
the periodic atomic arrangement of the
crystal leads to sharp diffraction peaks,
the lack of a long-range order results in
a broad diffuse peak for the glass. Data
from [War34] and [Laf15].

the observed discrete diffraction pattern arises from the periodic lattice, the quartz
glass features a broad diffuse peak. From this divergent outcome it was concluded
that glasses should be non-crystalline solids, or in other words possess an amorphous
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structure [Sel25]. The term ‘glass’ is typically used for materials originating from
melt quenching, which is the manufacturing process of the used sample in this the-
sis. However, there exist several techniques to prepare a material into its amorphous
state. For example, a common method is to create thin amorphous films by using
sputter deposition. When talking about the structure of an amorphous material, one
needs to differentiate between the used preparation techniques, as there is no reason
to assume the same structure occurring from different preparation processes [Ell84].
Although strictly speaking a glass is a subgroup of the class of amorphous solids,
both terms will be used equivalently here. When speaking of glasses or amorphous
solids in the following, we will imply bulk glasses.
The first satisfactory picture of the glass structure goes back to 1932 by Zachariasen
with his random network theory [Zac32]. As a requirement for a material to form a
stable amorphous structure, he claimed that its internal energy should only slightly
exceed the energy of the crystalline phase. Moreover, the inter-atomic interactions in
the glass and the crystal should be approximately the same. Therefore, Zachariasen
assumed that, as in crystals, the elementary base units of oxide-glasses – which were
only known back then – are formed by oxygen polyhedra. In contrast to crystals the
relative orientation between these polyhedra, which share corners with each other, is
not fixed but varies. Therefore, in glasses only a short-range order appears, but no
long-range order establishes and thus the periodicity is lost [Ell84]. The constraint
of a low internal energy leads to certain selection rules that need to be fulfilled for
a glassforming chemical compound. With these postulated rules, Zachariasen was
able to explain why certain materials tend to be good glassformers, and others are
not. For example SiO2, which is the main constituent of most oxide glasses, is a
good glassformer. It is composed out of SiO4-tetrahedra with oxygen atoms sitting
at the corners, and the silicon atom located in the center. A two-dimensional pro-
jection of crystalline and amorphous SiO2 is shown in Figure 2.3. An exemplary
SiO4-tetrahedron is marked red for both cases, whereby only three oxygen atoms are
shown in this projection because the fourth oxygen atom sits in the drawing plane
above or below the silicon atom. While the crystalline modification is composed out
of identical SiO4-tetrahedra, in the amorphous case the bonding angles slightly vary
from atom to atom. Heavily skewed chemical bonds can be avoided at the same time,
and therefore an internal energy similar to the crystal is maintained. Consequently,
SiO2 is able to arrange in a continuous random network, whereby rings of different
sizes are formed.
By using this picture for the structure of a glass, Warren [War34] was able to explain
and reproduce the observed X-ray diffraction pattern of quartz glass (see Figure 2.2),
which confirmed the random network theory of glasses. A direct observation of the
two-dimensional structure of amorphous SiO2 was achieved by Lichtenstein et al.
[Lic12]. They investigated a thin double layer of deposited SiO2 on Ru(0001) using
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oxygen
silicon

Figure 2.3: Schematic drawing of a two-dimensional projection of crystalline (left) and
amorphous SiO2 (right). Both structures are composed of SiO4-tetrahedra, whereby the
fourth oxygen atom sits below or above the silicon atom and is not shown here. Vary-
ing bonding angles lead to a loss of the long-range order in the amorphous modification.
Adapted from [Zac32].

noncontact atomic force microscopy (nc-AFM) and scanning tunneling microscopy
(STM). By doing this, it was possible to resolve the atomic structure of amorphous
SiO2 (Figure 2.4), which reveals a magnificent agreement with the predicted struc-
ture from the random network theory. The crystalline phase is composed out of
identical rings with six silicon atoms per ring. In the amorphous modification mul-
tiple ring sizes between 4 and 9 exist. Similar observations were made with a thin
layer of SiO2 on top of graphene [Hua12].
So far, the description was restricted to glasses made out of a single oxide. However,

Figure 2.4: Scanning tunneling microscope image of a deposited thin layer of SiO2 on
Ru(0001) (left) and a colorized version with the visualization of the different ring sizes
(right). Both the crystalline and the amorphous modification are present in the cutout.
Images taken from [Fre17].
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the most commonly used glasses are often composed out of several components. As
an example, we discuss the adding of an alkali metal oxide like Na2O to the glass
network. In the previous discussed case of pure SiO2 every oxygen atom is bound
to the two neighboring silicon atoms and meshes the network. Such a link is also
called bridging oxygen. As it can be seen in Figure 2.5, by incorporating Na2O into
the network, such a connection cracks, and single bound oxygen atoms are created
(nonbridging oxygen). The sodium ion chiefly bonds in an ionic way to the oxygen,
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Figure 2.5: Schematic drawing of a two-
dimensional projection of a sodium sili-
cate glass. The addition of sodium ions
in the form of Na2O partially breaks the
SiO2 network and forms nonbridging oxy-
gen atoms.

which is much weaker than the Si-O bonding where also covalent bonding parts exist
[Sch91]. Every sodium ion causes one nonbridging oxygen atom. The higher the
amount of sodium the stronger the glass network is weakened by the formation of
nonbridging oxygen atoms. In general, one differentiates between compounds that
lead to the formation of a network (network formers), and the ones that crack or
modify it (network modifiers). Typical representatives of a network former are SiO2,
B2O3, P2O5, As2S3, GeO2, and of a network modifier Na2O, K2O, CaO. More-
over, so-called intermediate oxides such as Al2O3 may act, depending on the glass
composition, both as network former or modifier. A further development of the net-
work theory by Dietzel as explained in [Vog92] considers the appearing electric field
strengths in the region of the oxygen atoms and allows a classification of the different
glass compounds into network formers, intermediate oxides, and network modifiers.
The presented basic picture already allows to understand the fundamental structure
of many glasses, and furthermore is able to predict properties of glasses to some
extent. The addition of network modifiers weakens the glass network, therefore, the
glass components, especially the modifiers, are getting more agile. Hence, a reduced
melting point temperature or an increased electric conductivity of such a glass is
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conceivable [Vog92]. The formation of glasses in general, for example multicompo-
nent glasses such as borosilicate glass, as used in this thesis, is quite complex and the
understanding often cannot exceed an empirical description. Even binary glasses of
certain compositions for example have a tendency for clustering phenomena [Vog92].
Modeling the microscopic structure by means of computer simulations (molecular
dynamics) provides an alternative approach for a better understanding of the micro-
scopic glass structure of more complex compositions [Ino12, Ste18, Bø19].

2.2 Low temperature properties of glass

The previous section showed that on a structural level glasses and crystals differ
heavily. In which way these differences have an impact on the low temperature
properties of glasses, will be discussed in the following, exemplarily on the specific
heat capacity, the thermal conductivity, and the ultrasonic absorption.

Specific heat capacity

According to the Debye model [Deb12], the specific heat capacity of dielectric crystals
is determined by long-wavelength phonons (collective excitation of the lattice) with
linear dispersion relation ω = vq, where we introduced the phonon frequency ω, the
speed of sound in the crystal v, and the wavenumber q. The density of states for
these phonons and the volume V of the solid is given by

D(ω)dω =
V

2π2

ω2

v3
dω . (2.1)

From that, the internal energy U , and therefore the specific heat capacity CV, can
be calculated

CV =

(︃
∂U

∂T

)︃
V

=
∂

∂T

ωD∫︂
0

ℏωD(ω)f(ω, T )dω , (2.2)

by using the Bose-Einstein distribution f(ω, T ) and defining the cutoff frequency ωD

through the total number of atoms N as

N =

ωD∫︂
0

D(ω)dω . (2.3)

For low temperatures Equation (2.2) can be solved analytically, and for the low
temperature specific heat one finds the well-known T 3-dependency

CV =
12π4

5
NkB

(︃
T

θ

)︃3

, (2.4)
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introducing the Debye temperature θ = ℏωD/kB. Long-wavelength phonons, which
solely contribute to the heat capacity at low temperatures, are unaffected by the mi-
croscopic structural properties of the material. Therefore, they also exist in glasses
and determine their low temperature properties as well [Phi87]. Consequently, the
above considerations for the specific heat capacity should be applicable for amor-
phous solids, and one would expect a drop of the specific heat ∝ T 3 with decreasing
temperature as well. Surprisingly, specific heat capacity measurements of glasses re-
vealed a quite different behavior. For quartz glass Zeller and Pohl observed a rather
linear temperature dependence of the specific heat at low temperatures [Zel71]. Fig-
ure 2.6 shows a measurement of the specific heat capacity of a quartz glass and of a
quartz crystal. Below ∼0.5K both curves strongly differentiate. Since the heat ca-
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Figure 2.6: Specific heat capacity of
quartz glass and quartz crystal at low
temperatures. Below ∼0.5K the specific
heat capacity of the glass is proportional
to T 1.3, deviating from the Debye model,
while the crystal shows the expected T 3-
dependency. Data from [Zel71, Las75].

pacity is a measure of the number of accessible degrees of freedom, it can be concluded
that in glasses there must exist additional low energy excitations which prevent the
heat capacity from dropping stronger in temperature. These additional degrees of
freedom in glasses at low temperatures were later identified as atomic tunneling sys-
tems, originating from the intrinsic disorder of glasses, and will be discussed in the
context of the standard tunneling model in detail (Section 2.3).

Thermal conductivity

Just as in dielectric crystals at low temperatures, long-wavelength phonons are re-
sponsible for the transport of heat in dielectric glasses. In both cases the thermal
conductivity κ can be treated within the framework of the kinetic theory of gases
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considering transport processes of a phonon gas

κ =
1

3
Cvl , (2.5)

whereas C is the specific heat capacity, v the speed of sound, and l the mean free path
of the phonons. At low temperatures, the phonon-phonon scattering is negligible. In
the case of a crystalline solid the mean free path is limited by the sample’s diameter
itself l ≈ const . (Casimir regime). The T 3-dependence of the phononic heat capacity
gives a cubic temperature dependency of the thermal conductivity of crystals at low
temperatures. Measurements of glasses, however, showed a fundamentally different
behavior [Zel71], see Figure 2.7. On the one hand, across the whole temperature
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Figure 2.7: Thermal conductivity of
quartz glass and quartz crystal at low
temperatures. The glass shows a much
smaller thermal conductivity and has a
different temperature dependency at very
low temperatures compared to the crys-
tal. Data from [Zel71].

range the absolute values of κ are several orders of magnitude smaller compared
to the crystal, and on the other hand, one observes a behavior κ ∝ T 2 at low
temperatures. Since for crystals and glasses the thermal conductivity is based on the
phonon transport, the phonon mean free path in the glass must be heavily reduced.
Again, tunneling systems are responsible for the deviations, which act as additional
scattering centers for the phonons through a resonant interaction with them, and
therefore drastically modify the thermal conductivity. Deviations above 1K should
be unrelated to tunneling systems, and are discussed in [Ram98, Ens05].

Ultrasonic absorption

A further evidence for the existence of low-energy excitations with which phonons
resonantly interact are given by measurements of the ultrasonic absorption in glasses.
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In such measurements it was observed that, in contrast to crystals, a distinct absorp-
tion was present at low temperatures [Hun77]. Additionally, a strong dependency
of the ultrasonic absorption from the field intensity was found by Hunklinger et al.
[Hun72].
In anticipation of the following chapter, we reveal that these measurements can be
understood by treating the already mentioned tunneling systems as two-level sys-
tems with an energy splitting E. Phonons from the ultrasonic field get resonantly
absorbed by a two-level system of the same energy if the two-level system is in its
ground state. The population difference ∆n of such a two-level system with energy
E in thermal equilibrium is ∆n = tanh ( E

2kBT
). For high temperatures both energy

levels are equally populated, and therefore emission and absorption of phonons can-
cel out each other. For T → 0K the excited state gets less populated, and phonons
can be effectively absorbed. If the intensity of the ultrasonic field J exceeds a critical
value Jc, the population difference of the ensemble again drops since a growing num-
ber of two-level systems is found in their excited state, and the absorption of phonons
is hence reduced. A measurement of the ultrasonic absorption as a function of the
ultrasonic intensity of a borosilicate glass (BK7) is shown in Figure 2.8. It shows
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Figure 2.8: Inverse mean free path of
the phonons of the ultrasonic field l−1 as
a function of the ultrasonic field inten-
sity J . For higher field intensities the in-
verse mean free path decrease, since the
absorption of phonons is reduced through
a saturation of the tunneling systems by
the ultrasonic field. Data from [Hun74].

the explained behavior, as the inverse mean free path l−1 of the phonons decreases
with increasing ultrasonic intensity. One speaks of a saturation of the ultrasonic
absorption by the ultrasonic field. According to [Hun76], the data is described with
a curve of the form

l−1 ∝ tanh

(︃
E

2kBT

)︃
1√︂

1 + J
Jc

, (2.6)
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which strongly supports the idea of the existence of two-level systems in glasses at
low temperatures. We will return to the discussion of saturated tunneling systems
in the context of the interaction of tunneling systems with strong electric microwave
fields in Section 2.4.5.

2.3 The standard tunneling model

The previous shown measurements give strong evidence about the existence of low
energy two-level states in glasses which determine their low temperature proper-
ties. Furthermore, these deviations at low temperatures were found in a variety of
different glasses [Ste73, Poh85, Phi87]. There is not only a qualitative agreement
between different glasses, but in many cases one finds very similar results even on a
quantitative level, which is why one often speaks of the universality of glasses when
regarding their low temperature properties. Independently from each other, in 1972,
Anderson et al. [And72] and Phillips [Phi72] suggested a phenomenological model
that allowed, without making detailed microscopic assumptions, to explain the low
temperature properties of glasses. Their model is based on a broad distribution of
atomic tunneling systems forming two-level states, which will be discussed in the
following within the framework of the so-called standard tunneling model.

2.3.1 Atomic tunneling systems

The intrinsic disorder of glasses, as discussed in Section 2.1, allows atoms or groups
of atoms to occupy several energetically similar equilibrium positions. This is the
starting point of the model proposed by Anderson et al. and Phillips, also called the
standard tunneling model. An illustrative representation is shown in Figure 2.9 (left),
where several possible equilibrium positions of atoms in a two-dimensional sodium
silicate glass are marked. At very low temperatures (T ≲ 1K) transitions between
these positions solely take place through quantum tunneling processes, meaning that
even at the lowest temperatures no localization of these atoms occurs. A straight-
forward approximation of this situation is an asymmetric double well potential as
shown in Figure 2.9 (right). The tunneling object might be a single atom or a group
of atoms with mass m. The two equilibrium states differ by the energy ∆ and are
separated by the potential barrier height V . As illustrated in Figure 2.9, transi-
tions may occur as translations, rotations, or as a combination of both motions,
which is why the distance d should be understood as a distance in the configuration
space. In order to find the eigenstates of the system one needs to solve the stationary
Schrödinger equation

Ĥψ(x) = Eψ(x) , (2.7)
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Figure 2.9: Left: Schematic illustration of tunneling systems in a two-dimensional sodium
silicate glass. The disorder allows different energetically similar configurations. Possible
equilibrium positions of atoms or groups of atoms are marked in orange and red. Right:
Drawing of an asymmetric double well potential, with asymmetry energy ∆ (energy differ-
ence between right and left well), the well distance d, and the potential barrier height V .
The ground state of the tunneling object with mass m in an isolated single harmonic well
is ψa/b with the ground state energy ℏΩ

2 .

with the Hamiltonian

Ĥ = − ℏ2

2m

d2

dx2
+ V (x) . (2.8)

The double well potential V (x) in Figure 2.9 is modeled by a potential of fourth
order [Heu98]

V (x) = B

[︃
w2

(︂x
a

)︂2
− w3

(︂x
a

)︂3
+ w4

(︂x
a

)︂4]︃
, (2.9)

originating from the more general soft-potential model, which targets to unify the
glass properties below 1K and the behavior at several kelvin [Kar83, Par93]. The
parameters B and a define the scale of energy or length, respectively, while wi can
be regarded as adjustable parameters defining the behavior of the resulting modes.
For w4w2/w

2
3 < 9/32 the potential forms a double well potential as sketched in Fig-

ure 2.9. Otherwise, single anharmonic wells occur that give rise to localized low
frequency vibrations (soft modes), which will come into play above 1K. Since we
are only interested in the low temperature properties of glasses, we will not discuss
the soft-potential model furthermore and refer to the discussion in [Esq98].
At very low temperatures only the low-lying energy levels of the potential are ac-
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cessible. Therefore, the cubic and quartic terms are neglected, resulting in two
single harmonic potentials described by a single parameter k = Bw2/a

2. Solving the
Schrödinger equation for each harmonic potential separately gives the ground states
for each isolated well

ψa/b =

(︃
mΩ

πℏ

)︃ 1
4

exp

(︄
−1

2

mΩ

ℏ

(︃
x± d

2

)︃2
)︄

, (2.10)

and the ground state energy

E0 = ℏ
√︃

k

2m
:=

ℏΩ
2

. (2.11)

The binding energies for glasses or crystals of the same composition should be very
similar, and therefore, the strength k of the potential as well. Consequently, the
ground state energy of the glass should be of the same order if only one atom is
involved in the tunneling process, or slightly lower in the case of tunneling of a
group, than for the crystal. For a typical oxide glass one expects ℏΩ/kB ≲ 100K

[Phi72, Hun86], which is significantly higher than the maximum energy splittings
E/kB ∼ 1K responsible for the low temperature thermal properties. Therefore,
neglecting higher energy states of the two single wells in the following calculation is
well justified. The overlap between both wave functions ψa and ψb, as indicated in
Figure 2.9, results in a coupling between the two states due to quantum tunneling.
As a result, the two wave functions in Equation (2.10) cannot be the eigenstates of
the system anymore. In order to solve the Hamiltonian, we use a superposition of
the two single well ground states as an ansatz:

Ψtot = aψa + bψb (2.12)

Inserting Equation (2.12) into (2.7) gives for the eigenvalue E

E =
⟨Ψtot| ĤTS |Ψtot⟩

⟨Ψtot|Ψtot⟩
=
a2Eaa + b2Ebb + 2abEab

a2 + b2 + 2abS
, (2.13)

with the abbreviations Eaa = ⟨ψa| ĤTS |ψa⟩, Ebb = ⟨ψb| ĤTS |ψb⟩, Eab = ⟨ψa| ĤTS |ψb⟩,
and the overlap integral S = ⟨ψa|ψb⟩. The exact solution of the Schrödinger equation
must result in the lowest energy value. Therefore, we can approximate the solution
by minimizing the total energy, which gives the two conditions ∂E

∂a
= 0 and ∂E

∂b
= 0

that can be written as

(Eaa − E)(Ebb − E)− (Eab − ES)2 = 0 . (2.14)

Setting the energy zero point between the two minima of the single wells gives Eaa =
ℏΩ+∆

2
and Ebb = ℏΩ−∆

2
. Furthermore, one can neglect the overlap S, and one finally

finds the two energy eigenvalues

E± =
1

2

(︃
ℏΩ±

√︂
∆2 + 4E2

ab

)︃
. (2.15)
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We hereby see that such a tunneling system, modeled by a double well potential,
splits up into two eigenstates, and therefore represents a two-level system with energy
splitting

E = E+ − E− =
√︂
∆2 + 4E2

ab =
√︂
∆2 +∆2

0 . (2.16)

The introduced tunneling splitting ∆0 = −2Eab describes the coupling energy be-
tween the two wells and depends on the specific form of the potential barrier. In
the case of the standard tunneling model, one typically uses the expression obtained
from the WKB approximation1

∆0 = ℏΩe−λ , (2.17)

with the tunneling parameter λ being a measure of the ratio between the potential
barrier height V and the single well’s ground state energy E0 [Nar70]. The exact
numerical factor differs in literature, but is of no further relevance for the overall
description. Here, the tunneling parameter given in [And72, Hun00] is used

λ ≈ d

2ℏ
√
2mV . (2.18)

For a clearer notation we use the matrix representation of the Hamiltonian. Within
the basis of the single wells |ψa⟩ = ( 0

1 ) and |ψb⟩ = ( 1
0 ) the Hamiltonian of the

tunneling system ĤTS can be written as

ĤTS =
1

2

(︃
∆ −∆0

−∆0 −∆

)︃
. (2.19)

The matrix elements correspond to the abbreviations introduced in Equation (2.13),
and the constant term ℏΩ/2 was ignored. Switching into the eigenbasis, the Hamil-
tonian diagonalizes with the eigenvalues (Equation (2.15)) on the diagonal

ĤTS =
1

2

(︃
E 0

0 −E

)︃
. (2.20)

A transformation between the two bases can be performed through a rotation by an
angle ϕ with the rotation matrices

R̂ϕ =

(︃
cosϕ − sinϕ

sinϕ cosϕ

)︃
and R̂

−1

ϕ =

(︃
cosϕ sinϕ

− sinϕ cosϕ

)︃
. (2.21)

The requirement ĤTS = R̂ϕĤTSR̂
−1

ϕ sets the rotation angle ϕ as tan 2ϕ = ∆0/∆.
A backwards rotation of the eigenstates written in the eigenbasis |Ψg⟩ = ( 0

1 ) and

1named after Wentzel, Kramers, and Brillouin [Wen26, Kra26, Bri26]
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Figure 2.10: Representation of the two
eigenstates of a tunneling system. The
symmetric wave function Ψg corresponds
to the ground state, and the asymmet-
ric one Ψe to the excited state, which are
separated by the energy splitting E. The
energy splitting is massively enlarged in
relation to the size of the double well po-
tential.

|Ψe⟩ = ( 1
0 ) with R̂

−1

ϕ into the basis ψa,b, gives the two eigenstates expressed through
the wave function of the single well (Equation (2.10))

Ψg = cos(ϕ)ψa + sin(ϕ)ψb (2.22)
Ψe = − sin(ϕ)ψa + cos(ϕ)ψb . (2.23)

Figure 2.10 shows the two eigenstates, which are separated by the energy splitting E.
The symmetric superposition of the single well wave functions represents the ground
state and the asymmetric one the excited state. An asymmetric potential gives a
higher probability for a tunneling system in its ground state to be found in the lower
well.

2.3.2 Distribution function

So far, the discussion has been restricted to a single tunneling system, which is fully
defined by an asymmetry energy ∆ and a tunneling parameter λ. However, the
disorder leads to a broad distribution of different tunneling systems with varying
parameters of the double well potential. This needs to be considered in order to
explain the low temperature properties of a glass. A central assumption of the
standard tunneling model is that the parameters ∆ and λ are independent from each
other and are both uniformly distributed. With this assumption the distribution
function simply reads

P (∆,λ)d∆dλ = P0d∆dλ , (2.24)
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Figure 2.11: Distribution function
P (E,∆0) of the standard tunneling
model as function of ∆0/E. A cutoff at
∆0,min is needed in order to avoid a non-
integrable divergence for ∆0 → 0.

with a material dependent constant parameter P0. A variable transformation allows
to express the distribution function in terms of the tunneling splitting ∆0

P (∆,∆0)d∆d∆0 = P (∆,λ)

⃓⃓⃓⃓
∂λ

∂∆0

⃓⃓⃓⃓
d∆d∆0 =

P0

∆0

d∆d∆0 (2.25)

and of the energy splitting E

P (E,∆0)dEd∆0 = P (∆,∆0)

⃓⃓⃓⃓
∂∆

∂E

⃓⃓⃓⃓
dEd∆0 = P0

E

∆0

1√︁
E2 −∆2

0

dEd∆0 , (2.26)

which is useful for subsequent calculations and for the calculation of the density of
states. The distribution P (E,∆0) shown in Figure 2.11 has two poles: ∆0 = 0 and
∆0 = E. While the latter one is integrable, one needs to confine the distribution for
∆0 → 0 in order to avoid a non-physical infinite number of tunneling systems. In
its simplest form, the confinement is realized with a hard cutoff value ∆0,min below
which the distribution is set to zero. Systems with extremely small ∆0 would have
a vanishing probability for tunneling and are basically isolated in a single well, and
therefore observable only on very long timescales. Long time heat-release measure-
ments found cutoff values of ∆0,min/E < 10−6 [Nit98].

2.3.3 Outcomes from the standard tunneling model

The standard tunneling model in the form it was discussed above is able to predict
the observed linear specific heat capacity of glasses at low temperatures. The fact
that tunneling systems appear as two-level systems simplifies the calculation of the
internal energy U . Since the thermal population of a two-level system with energy
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E is given by f(E, T ) = (exp (E/kBT ) + 1)−1, its internal energy reads as UTLS =

Ef(E, T ). In order to obtain the internal energy of the ensemble of tunneling system,
one needs to perform an integration over the distribution function. By integrating
Equation (2.26) over ∆0, we obtain the density of states

D(E)dE =

E∫︂
∆0,min

P (E,∆0)dEd∆0 = P0 ln

(︃
2E

∆0,min

)︃
dE ≈ D0dE . (2.27)

One finds a weak logarithmic dependency on E, which can be approximated as a
constant due to ∆0,min ≪ E. That gives for the internal energy

U =

∞∫︂
0

D0E

exp
(︂

E
kBT

+ 1
)︂dE =

π2D0k
2
BT

2

12
, (2.28)

and as a result for the specific heat capacity

CV =

(︃
∂U

∂T

)︃
V

=
1

6
π2D0k

2
BT . (2.29)

This is in fairly good agreement with the data shown in Figure 2.6. The slight
deviation of the measurement from a linear specific heat can be attributed to a
non-constant density of states, but more likely to the finite time of observation in
experiments. As we will see in Section 2.4.3, the relaxation times of tunneling sys-
tems τ1 = τ1,min (E/∆0)

2 are widely distributed as well, spanning relaxation times
over several orders of magnitude. Therefore, not every tunneling system can couple
to the experiment within the given perturbation time, and the measurement data
does not contain the total specific heat capacity of the ensemble [Hun86]. This time
dependency of the specific heat can explain the observed slight deviation from a lin-
ear temperature dependency predicted by the standard tunneling model [Nit98].
The thermal conductivity with its T 2-dependency at low temperatures can be ex-
plained by the standard tunneling model as well. Interactions between phonons
and tunneling systems lead to a reduction of the mean free path of the phonons in
glasses. Again, the two-level nature is of importance here since phonons with energy
ℏωph = E will get resonantly absorbed by a two-level system of energy E if the
two-level system is in its ground state. Thus, the inverse mean free path l−1 must
scale with the population difference ∆n = tanh ( E

2kBT
) of a two-level system. The

inverse mean free path of phonons which scatter at tunneling systems is found to be
[Phi87]

l−1 = ΓP0ωph tanh

(︃
E

2kBT

)︃
, (2.30)

with the factor Γ giving the coupling between phonons and tunneling systems. Since
tunneling systems are broadly distributed, there exist scattering centers for basi-
cally all phonon energies. It is sufficient to consider only phonons with ℏωph ≈ kBT
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(dominant phonons). The population difference ∆n is therefore constant, and we
find l−1 ∝ T . Together with the cubic specific heat capacity of phonons and Equa-
tion (2.5), we thereby find

κ =
1

3
Cvl ∝ T 3T 0T−1 = T 2 , (2.31)

in agreement with the experimental findings.

Although some assumptions of the standard tunneling model seem to be arbitrary
and simplified, it is remarkable that the standard tunneling model is, beyond explain-
ing thermal properties, quite successful in describing the low temperature properties
of glasses in general. The phenomenological assumptions are justified subsequently
by the experimental findings [Phi81, Hun86]. However, neither can the model give
an answer about the microscopic origin of these tunneling states, nor does it explain
why there seems to be such a broad and uniform distribution for the parameters
∆ and λ. For ∆ it is argued that in glasses typical coupling strength variations
lead to a normal distributed ∆ centered at ∆ = 0 eV with a width of ∼10−2 eV

[Phi72]. Contributing tunneling systems should have a maximum asymmetry energy
of |∆max| = 10−4 eV ≃ 1K/kB. Hence, the distribution in ∆ is considered to be flat
for the relevant tunneling systems. Finding such an argument for λ is harder since it
depends on several parameters. The exponential dependence of ∆0 on λ gives values
for ∆0 over several orders of magnitude for only a limited range of λ, which is why
the distribution of λ might be treated as constant.
A convincing microscopic picture is missing, however. Computer simulations of sim-
ple glasses were performed that give some principal ideas about the origin of tunneling
systems [Heu98, Kho20]. It seems that tunneling systems correspond to collective
rearrangements of groups of atoms, which is supported by neutron scattering exper-
iments on quartz glass, where indications for coupled rotations of SiO4-tetrahedra
were found [Buc88]. Moreover, in two pulse polarization echo experiments on par-
tially deuterated glycerol, tunneling processes related to rotational movements were
observed as well [Bar13]. In electron transmission microscopy of two-dimensional
amorphous SiO2 the direct observation of structural rearrangements induced by the
electron beam was accomplished [Hua12]. Whether these rearrangements have some-
thing in common with the tunneling motion at low temperatures is questionable, but
it shows that rearrangements as sketched in Figure 2.9 do occur in glasses in principle.

2.4 Dielectric properties of glass at low temperatures

From an experimental point of view novel measurements and techniques are re-
quired to give a more specific answer to the microscopic nature of tunneling systems.
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Previous measurements, especially acoustic and dielectric measurements, were of-
ten performed statically, meaning that the response of the tunneling systems to
the driving field is measured, while the tunneling system ensemble itself is passive,
which gives certain limitations for observations. Electric fields modify the tunnel-
ing system ensemble by changing the asymmetry energy and the population number
of the two-level state. A dynamic shift of the tunneling systems’ energy splitting
allows to study the systems also in non-equilibrium and opens the field for novel
experiments investigating tunneling system properties. The goal of this thesis is to
demonstrate such a non-equilibrium measurement method on tunneling systems in a
bulk glass (N-BK7) by use of a combination of different electric fields (Landau-Zener
spectroscopy). Therefore, in the following section the interaction between tunneling
systems and electric fields will be thoroughly discussed to understand the impact of
tunneling systems on the low temperature dielectric properties of glasses.

2.4.1 Dielectric function

A dielectric solid that is placed in a constant electric field F gets polarized, which
means that relocations of charges inside the solid generate dipoles with dipole mo-
ment p, or already existing (permanent) dipoles reorientate. The resulting polar-
ization P = 1

V

∑︁
pi is proportional to the applied electric field and given by the

relation
P = ε0χF , (2.32)

with the electric constant ε0 and the electric susceptibility χ. The isotropic character
of amorphous solids allows us to use χ as a scalar quantity. The electric susceptibility
describes the ability of a material to form a polarization in the presence of an electric
field and is material specific. Using the electric displacement field D

D = ε0F + P = ε0(1 + χ)F , (2.33)

the dielectric function ε can be defined as ε = ε0(1 + χ). For alternating electric
fields, a polarization is formed as well, but it follows the electric field delayed. This
phase delay is taken into account by making the dielectric function complex-valued

ε(ω) = ε′(ω) + iε′′(ω) . (2.34)

The real part ε′ contains the energy storing processes (in phase) and the imaginary
part ε′′ the dissipating processes (out of phase). The dielectric loss is given as the
ratio of imaginary and real part

tan δ =
ε′′

ε′
(2.35)
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and is called the dissipation factor, with the loss angle δ. The dielectric function
is frequency dependent. There do exist several mechanisms that contribute to the
dielectric function in solids. Their contribution may disappear with increasing fre-
quency if the applied field is alternating too fast for the underlying processes. In
the frequency region of visible and UV light only electronic polarization processes,
where the electron shell is shifted with respect to the nucleus due to the electric
field, are fast enough to contribute to the dielectric function. For frequencies in the
infrared range existing positive and negative ions are shifted against each other and
contribute as ionic polarization. At even lower frequencies, in the microwave range,
preexisting dipoles reorientate with respect to the applied electric field (orientation
polarization). In the thesis at hand, measurements take place at excitation frequen-
cies between 250MHz − 1GHz. Therefore, ionic and electronic contributions are
constant, and only the orientation polarization needs to be taken into account.

2.4.2 Interaction of two-level systems with electric fields

If charges are involved in the tunneling process, the system might possess a dipole
moment p. Therefore, such a tunneling system couples to electric fields, which leads
to modifications of the tunneling splitting ∆0 and the asymmetry energy ∆. For
small fields one can use the first order perturbation theory and add the perturbation
to the unperturbed Hamiltonian. In the basis of the single well’s eigenstates ψa/b we
can write

Ĥ = ĤTS + Ĥpert =
1

2

(︃
∆ −∆0

−∆0 −∆

)︃
+

1

2

(︃
δ∆ −δ∆0

−δ∆0 −δ∆

)︃
. (2.36)

It is assumed that the modification of the barrier height V and the distance d is
small compared to the changes in ∆, and we can neglect the perturbation δ∆0

in Equation (2.36). Experiments like [Phi81, Lis15, Sar16] strongly support this
assumption. The applied electric field changes the asymmetry energy linearly

δ∆ = 2pF = 2pF cos θ , (2.37)

whereby the angle θ defines the relative orientation of the dipole moment with respect
to the electric field. We furthermore assumed that all dipole moments have the same
absolute value. Equation (2.36) can be transformed into the basis Ψg/e through a
rotation with the matrices (2.21), and we find for the perturbed Hamiltonian with a
periodic excitation Fac(t) = Fac cos(ωt)

Ĥ =
1

2

(︃
E 0

0 −E

)︃
+

1

E

(︃
∆ ∆0

∆0 −∆

)︃
pFac cos(ωt) cos θ . (2.38)
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On the one hand the electric field modifies the energy splitting through the additional
diagonal elements

δE = 2
∆

E
pFac(t) cos θ , (2.39)

and on the other hand the electric field causes off-diagonal elements that couple the
states |Ψg⟩ and |Ψe⟩, and therefore leads to induced transitions between both states.

The Hamiltonian from Equation (2.38) is formally equivalent to the one of a spin-
1/2 particle in a magnetic field. We can make use of this analogy for solving the
dynamics of a tunneling system perturbed by an alternating electric field. This was
first done by [Hun76] for ultrasonic fields, but can be applied to electric fields as
well. Here, we follow the derivation described in [Car94, Bur98]. The Hamiltonian
for a spin-1/2 particle in a magnetic field B is

Ĥspin = −γB · Ŝ , (2.40)

with the spin’s gyromagnetic ratio γ and the spin-1/2 operator

Ŝ = (ŝx, ŝy, ŝz) , (2.41)

introducing the Pauli spin operators

ŝx =
ℏ
2

(︃
0 1

1 0

)︃
ŝy =

ℏ
2

(︃
0 −i

i 0

)︃
ŝz =

ℏ
2

(︃
1 0

0 −1

)︃
. (2.42)

The analogy to the tunneling system Hamiltonian is established by choosing the
magnetic field

B(t) = B0 +B1(t) =

⎛⎝ B1,x cos(ωt)

0

B0,z +B1,z cos(ωt)

⎞⎠ , (2.43)

which results in

Ĥspin = −γℏ
2

[︃
B0,z

(︃
1 0

0 −1

)︃
+B1,x(t)

(︃
0 1

1 0

)︃
+B1,z(t)

(︃
1 0

0 −1

)︃]︃
, (2.44)

with B1,i(t) = B1,i cos(ωt) (i = [x, z]), and we can identify

−γℏB0,z = E

−γℏB1,x(t) = 2
∆0

E
pFac(t) cos θ

−γℏB1,z(t) = 2
∆

E
pFac(t) cos θ . (2.45)



2.4. Dielectric properties of glass at low temperatures 25

Instead of solving the tunneling system Hamiltonian to receive the system’s dynamic
response, we make use of the known solutions of the spin-1/2 system, which is treated
in terms of the Bloch equations formulated in [Blo46]. Ignoring relaxation processes
initially, the equation of motion for the expectation value of the spin ⟨Ŝ⟩ is written
as

d

dt
⟨Ŝ⟩ = γ⟨Ŝ⟩ ×B . (2.46)

Adding now the relaxation times τ1 and τ2, we end up with the Bloch equations

d

dt
⟨Ŝx⟩ = γ

[︂
⟨Ŝy⟩Bz(t)− ⟨Ŝz⟩By(t)

]︂
− 1

τ2
⟨Ŝx⟩

d

dt
⟨Ŝy⟩ = γ

[︂
⟨Ŝz⟩Bx(t)− ⟨Ŝx⟩Bz(t)

]︂
− 1

τ2
⟨Ŝy⟩

d

dt
⟨Ŝz⟩ = γ

[︂
⟨Ŝx⟩By(t)− ⟨Ŝy⟩Bx(t)

]︂
− 1

τ1

(︂
⟨Ŝz⟩ − ⟨Ŝz⟩eq

)︂
. (2.47)

Here, ⟨Ŝz⟩eq = 1
2
tanh

(︂
−γℏBz(t)

2kBT

)︂
gives the thermal equilibrium value of ⟨Ŝz⟩. Using

the magnetic field from Equation (2.43) and treating B1(t) as a small perturbation
in B(t) = B0 + B1(t) the Bloch equations can be linearized as an approximation
around the unperturbed solution ⟨Ŝ0(t)⟩. We expect a solution of the form ⟨Ŝ(t)⟩ =
⟨Ŝ0(t)⟩+ ⟨Ŝ1(t)⟩. We can write the linearized Bloch equations as

d

dt
⟨Ŝ0,z⟩ = − 1

τ1

(︂
⟨Ŝ0,z⟩ − ⟨Ŝz(B0,z)⟩eq

)︂
d

dt
⟨Ŝ1,x⟩ = γ⟨Ŝ1,y⟩B0,z −

1

τ2
⟨Ŝ1,x⟩

d

dt
⟨Ŝ1,y⟩ = γ⟨Ŝ0,z⟩B1,x(t)− γ⟨Ŝ1,x⟩B0,z(t)−

1

τ2
⟨Ŝ1,y⟩

d

dt
⟨Ŝ1,z⟩ = − 1

τ1

(︄
⟨Ŝ1,z⟩ −B1,z

d⟨Ŝz⟩eq
dB1,z

⃓⃓⃓⃓
B1,z=0

)︄
, (2.48)

with the taylor approximation of ⟨Ŝz⟩eq at B1,z = 0 being

B1,z
d⟨Ŝz⟩eq
dB1,z

⃓⃓⃓⃓
B1,z=0

= −B1,z(t)
γℏ

4kBT
sech2

(︃
−γℏB0,z

2kBT

)︃
. (2.49)

In order to decouple ⟨Ŝ1,x⟩ and ⟨Ŝ1,y⟩ in Equations (2.48), we introduce the raising
and lowering operators ⟨Ŝ1,±⟩ = ⟨Ŝ1,x⟩ ± i⟨Ŝ1,y⟩. With that, ⟨Ŝ1,x⟩ and ⟨Ŝ1,y⟩ in the
set of equations is replaced by the two equations

d

dt
⟨Ŝ1,±⟩ = ±iγ

(︂
⟨Ŝ1,±⟩B0,z + ⟨Ŝ0,z⟩B1,x(t)

)︂
− 1

τ2
⟨Ŝ1,±⟩ . (2.50)
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The set of equations can be solved with the solutions given in [Car94]. Here, we
are only interested in the equilibrium state for t→ ∞, and we ignore all terms that
contain the factor exp(−t/τ1).

⟨Ŝ0,z⟩ = ⟨Ŝz(B0,z)⟩eq

⟨Ŝ1,z⟩ = −B1,z
γℏ

4kBT
sech2

(︃
−γℏB0,z

2kBT

)︃
cos(ωt) + ωτ1 sin(ωt)

1 + ω2τ 21

⟨Ŝ1,±⟩ = γB1,x⟨Ŝ0,z⟩

(︂
−γB0,z ∓ i

τ2

)︂
cos(ωt)∓ iω sin(ωt)(︂

−γB0,z ∓ i
τ2

)︂2
− ω2

(2.51)

These solutions can be transformed back to the case of a tunneling system with
Equations (2.45).

⟨Ŝ
TS

0,z⟩ =
1

2
tanh

(︃
E

2kBT

)︃
⟨Ŝ

TS

1,z⟩ =
(︃
∆

E

)︃
pFac cos θ

2kBT
sech2

(︃
E

2kBT

)︃
cos(ωt) + ωτ1 sin(ωt)

1 + ω2τ 21

⟨Ŝ
TS

1,±⟩ = −
(︃
∆0

E

)︃
pFac cos θ

ℏ
tanh

(︃
E

2kBT

)︃ (︂E
ℏ ∓ i

τ2

)︂
cos(ωt)∓ iω sin(ωt)(︂

E
ℏ ∓ i

τ2

)︂2
− ω2

(2.52)

Next, we want to connect these solutions with the electric susceptibility χ. We can
make use of the dipole operator, which can be deduced from Equation (2.38) as

π̂ =

(︃
∆

E
σ̂z +

∆0

E
σ̂x

)︃
p cos θ , (2.53)

with σ̂i =
2
ℏ ŝi being the Pauli matrices. The expectation value of the dipole operator

⟨π̂⟩ can be expressed through the tunneling system spin expectation values ⟨Ŝ
TS
⟩ as

⟨π̂⟩ = p cos θ

[︃
2∆

E
⟨Ŝ

TS

1,z⟩ −
∆0

E

(︂
⟨Ŝ

TS

1,+⟩+ ⟨Ŝ
TS

1,−⟩
)︂]︃

. (2.54)

With the relation ε0χ = d⟨π̂⟩/dFac we get the contribution of a single tunneling
system to the electric susceptibility χ = χ′ + iχ′′. The terms with a response in
phase cos(ωt) are attributed to the real part χ′, the ones out of phase sin(ωt) to the
imaginary part χ′′. We can differentiate between relaxation and resonant processes,
originating from the components ⟨Ŝ

TS

1,z⟩ and ⟨Ŝ
TS

1,x⟩, respectively.

relaxation part:

ε0χz(ω) =
p2 cos2 θ

kBT

(︃
∆

E

)︃2

sech2

(︃
E

2kBT

)︃
a(ω) (2.55)

with: a(ω) =
1 + iωτ1
1 + ω2τ 21

(2.56)
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resonant part:

ε0χx(ω) =
p2 cos2 θ

ℏ

(︃
∆0

E

)︃2

tanh

(︃
E

2kBT

)︃
b(ω) (2.57)

with: b(ω) =
E
ℏ − i

τ2
+ ω(︂

E
ℏ − i

τ2

)︂2
− ω2

+
E
ℏ + i

τ2
− ω(︂

E
ℏ + i

τ2

)︂2
− ω2

(2.58)

As it is shown in Figure 2.12 the frequency dependence of a(ω) in Equation (2.55)
shows a typical relaxation behavior and b(ω) in Equation (2.57) a resonant one.
Writing Equation (2.55) and (2.57) as the relative change of the dielectric function’s
real and imaginary part and defining ℏω0 := E, we finally obtain:

relaxation part:(︃
δε′rel
ε′

)︃
TS

=
p2 cos2 θ

ε0εrkBT

(︃
∆

E

)︃2

sech2

(︃
E

2kBT

)︃
a′(ω) (2.59)(︃

δε′′rel
ε′

)︃
TS

=
p2 cos2 θ

ε0εrkBT

(︃
∆

E

)︃2

sech2

(︃
E

2kBT

)︃
a′′(ω) (2.60)

with: a′(ω) =
1

1 + (ωτ1)2
; a′′(ω) =

ωτ1
1 + (ωτ1)2

(2.61)

resonant part:(︃
δε′res
ε′

)︃
TS

=
p2 cos2 θ

ε0εrℏ

(︃
∆0

E

)︃2

tanh

(︃
E

2kBT

)︃
b′(ω) (2.62)(︃

δε′′res
ε′

)︃
TS

=
p2 cos2 θ

ε0εrℏ

(︃
∆0

E

)︃2

tanh

(︃
E

2kBT

)︃
b′′(ω) (2.63)

with: b′(ω) = − (ω − ω0)τ
2
2

(ω − ω0)2τ 22 + 1
+

(ω + ω0)τ
2
2

(ω + ω0)2τ 22 + 1

b′′(ω) =
τ2

(ω − ω0)2τ 22 + 1
− τ2

(ω + ω0)2τ 22 + 1
(2.64)

Note that this is the contribution of a single tunneling system to the dielectric func-
tion. In Figure 2.12 the frequency dependencies of the relaxation (Equation (2.61))
and the resonant part (Equation (2.64)) are plotted.
The frequency dependence of the relaxation part corresponds to the behavior of a
Debye relaxation [Deb13], where dipole moments permanently have to reorientate
due to the alternating electric field within a specific relaxation time τ1, given by
the underlying relaxation processes. As Equation (2.39) shows, the electric field
modulates the energy splitting E of a tunneling system by coupling to its dipole
moment, see Figure 2.13 (left). Therefore, the tunneling system has to permanently
adapt its population number to the instantaneous equilibrium state. This is done
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Figure 2.12: Left: Real and imaginary part (a′(ω), a′′(ω)) of the frequency dependence of
the relaxation part as a function of ωτ1, which shows a Debye relaxation behavior. Right:
Real and imaginary part (b′(ω), b′′(ω)) of the frequency dependence of the resonant part
as a function of ω/ω0, scaled with 1/τ2. A relaxation time of τ2 = 30/ω0 was used, with
ℏω0 = E corresponding to the energy splitting E of the tunneling system.

via interactions with the environment – in the case of tunneling systems in dielectric
solids through absorption or emission of thermal phonons, as it will be discussed in
the next chapter. The functions a′(ω) and a′′(ω) are plotted as a function of ωτ1
in Figure 2.12 (left). For low frequencies ωτ1 ≪ 1, the relaxation is fast enough to
allow the system to follow the electric field in phase. The real part is then maximal,
and the imaginary part vanishes. For higher frequencies, the relaxation becomes too
slow, and the response lags in phase behind the field. Hence, the real part drops,
and the imaginary part has its maximum for ωτ1 = 1. At very high frequencies
ωτ1 ≫ 1 the system cannot follow the excitation anymore and real and imaginary
part disappear.
On the other hand, as mentioned before, the electric field Fac(t) causes off-diagonal
elements in the Hamiltonian of Equation (2.38), which leads to direct transitions
between ground and excited state, see Figure 2.13 (right). This means that a photon
from the electric field with energy ℏω gets resonantly absorbed by a tunneling system
with energy E = ℏω0 if both energies match ℏω = E. Hence, the photon excites
the tunneling system from its ground state into the upper state. The frequency
dependence of this excitation has the form of a typical resonant behavior, which
is shown for the frequency dependent parts b′(ω) and b′(ω) of Equation (2.62) and
(2.63) in Figure 2.12 (right). At ω = ω0 the absorption of photons is maximal, and
the imaginary part has its maximum, meaning that energy dissipation is the highest
too. The real part changes its sign there. For higher and lower frequencies, the
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Figure 2.13: Schematic drawing of the effect of an alternating electric field Fac(t) on the
two-level state of the tunneling system. The electric field Fac modulates the energy splitting
E of the tunneling system, inducing a relaxation behavior (left). Moreover, the electric field
couples both eigenstates of the tunneling system, leading to a resonant interaction between
photons of the electric field and the tunneling system with resonant absorption or stimulated
emission of photons with energy ℏω = E (right). Adapted from [Ens05].

absorption is suppressed, and the imaginary part disappears. The real part remains
greater than zero at low frequencies, while it vanishes at high frequencies. This is the
behavior expected from a classical oscillator coupled to a periodic excitation. For
low frequencies, the oscillator would slightly follow the excitation in phase, while for
high frequencies the response is opposite in phase with vanishing displacement.

2.4.3 Relaxation times of tunneling systems

In order to complete the discussion about the dielectric properties of glasses at low
temperatures caused by tunneling systems, we have to specify their relaxation times
τ1 and τ2, which have already been introduced. For tunneling systems in dielectric
solids, the interaction with thermal phonons is the dominant channel for relaxation
processes.

One-phonon process

If the energy of a phonon matches the energy splitting of a tunneling system, tran-
sitions between the two energy levels of the tunneling system may occur through
absorbing or emitting a thermal phonon, similar to the resonant interaction between
a photon and the tunneling system discussed before. At temperatures below 1K the
number of phonons is low, and we can restrict the discussion to a process where only
a single phonon is involved in the transition (one-phonon process). The relaxation
rate τ−1

1P was calculated in [Jä72]. It is the sum of the transition rates Wg→e and
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We→g between ground and excited state induced by the phonon. Following [Phi87]
we can write the relaxation rate as

τ−1
1P = Wg→e +We→g = Wg→e

(︃
1 + exp

(︃
E

kBT

)︃)︃
. (2.65)

The probability for a transition from the ground to the excited state Wg→e is calcu-
lated with Fermi’s golden rule

Wg→e =
∑︂
α

2π

ℏ
|⟨Ψe|Hpert |Ψg⟩|2D(E)f(E, T ) , (2.66)

with the phonon density of states from the Debye model D(E) (Equation (2.1))
and the Bose-Einstein distribution f(E, T ). The summation is done over all phonon
modes α (one longitudinal, two transversal). Using an acoustic wave as perturbation
instead of an electric field in Hpert, we can write the term ⟨Ψe|Hpert |Ψg⟩ according
to [Phi87] as

⟨Ψe|Hpert |Ψg⟩ =
∆0

E
γα

(︃
ℏω

2ρV v2α

)︃1/2

, (2.67)

with the sound velocity vα of the phonon mode and the mass density ρ. The coupling
strength between phonon and tunneling system is given by γα, which is typically of
the order ∼1 eV [Hun86]. Putting everything together, we can write for the one-
phonon relaxation rate

τ−1
1P = K1

(︃
∆0

E

)︃2

E3 coth

(︃
E

2kBT

)︃
=

(︃
∆0

E

)︃2

τ−1
1,min , (2.68)

introducing the factor

K1 =
1

2πρℏ4

(︃
γ2l
v5l

+ 2
γ2t
v5t

)︃
, (2.69)

which contains all material specific parameters and defines the strength of the re-
laxation. As it was already mentioned in the discussion of the low temperature heat
capacity, the relaxation time depends on the tunneling system parameters and is
therefore widely distributed. Tunneling systems with a tunneling splitting of ∆0,min

relax the slowest, and symmetric ones (∆ = 0, E = ∆0) have the shortest relaxation
time τ1,min.

Two-phonon process

For higher temperatures, the number of phonons increases, and higher order processes
may become important. Here, we want to discuss the two-phonon process, where
two phonons with energies ℏω1/2 induce transitions of the tunneling system state,
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and the energy condition reads ℏω1 = ℏω2 ± E. The energies of the phonons do
not match the energy splitting, and a third level is involved in the transition, whose
origin can be virtual or real. The relaxation rate for this process was calculated in
[Dou80]

τ−1
2P = K2

(︃
∆0

E

)︃2

T 7f1

(︃
E

2kBT

)︃
coth

(︃
E

2kBT

)︃
. (2.70)

Again, a material dependent parameter K2 is introduced which gives the strength of
this relaxation process. For comparisons between experimental data and theory, K1

and K2 are typically used as free parameters. Expressions for K2 and the function
f1 are given in [Dou80]2. The two-phonon process usually becomes important at
temperatures above a few kelvin. Therefore, in measurements well below 1K only
the one-phonon relaxation process needs to be considered.

For the total energy relaxation rate τ−1
1 one sums over the rates of each process,

which gives
τ−1
1 = τ−1

1P + τ−1
2P + . . . . (2.71)

Relaxation through interactions between tunneling systems

The processes discussed above are both relaxations of the Ŝ
TS

z tunneling system spin
component, which is why they are called longitudinal relaxations. Relaxations in
Ŝ
TS

x lead to dephasing and are called transversal or dephasing relaxations. For the
transversal relaxation rate τ−1

2 one can write in general [Sli96]

τ−1
2 = 2τ−1

1 + τ−1
ϕ , (2.72)

where τ−1
ϕ describes pure dephasing processes. Dephasing processes in glasses are

caused by interactions between tunneling systems, which will be briefly discussed in
the following. We consider a tunneling system in resonance with the driving field.
An energy transfer through direct interaction between tunneling systems of similar
energy by exchanging a resonant phonon is ineffective because the spatial separation
between two resonant tunneling systems is large compared to the 1/R3-dependency of
the interaction strength. However, the tunneling system in resonance with the elec-
tric field is surrounded by other tunneling systems with different energy splittings.
If the tunneling systems’ energy splitting is E ≲ kBT , those systems will undergo
random thermal transitions within a timescale of τ1T = (K1k

3
BT

3)−1, given by the
phononic relaxation time τ1P. A transition of a tunneling system changes its local
strain field, and thereby couples to neighboring tunneling systems. An interaction

2f1(x) =
x
70 (x

2 + π2)(x4 − π2u2 + 10
3 π

4) with x = E/2kBT
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can be elastically, as it was just motivated, or electrically due to dipole-dipole in-
teractions. In either case, the coupling to fluctuating adjacent systems leads to a
stochastic change of the energy splitting of the resonant tunneling system. There-
fore, its time evolution is disturbed, and the system loses its coherence with other
resonant systems, which gives rise to dephasing. This process is called spectral dif-
fusion. Its effect on the dephasing time τϕ was calculated in [Bla77]. The interaction
between two tunneling systems mainly effects the Ŝ

TS

z component. Thus, the change
of the energy splitting for a resonant tunneling system i, interacting with neighboring
tunneling systems j, can be written as [Bur15]

δEi =
∆i

Ei

∑︂
j

∆j

Ej

UijŜ
TS

z,j . (2.73)

The average interaction is ⟨Uij⟩ = ±U0/R
3
ij, with the interaction constant U0 =

U0,elastic + U0,electric ≃ γ2/ρv2 + p2/ε′. Over the course of time the energy splitting
Ei differs from its original value E = ℏω0. The probability of finding the tunneling
system i at the time t to have an energy splitting ℏω is approximated with a diffusion
kernel of the form [Bla77]

D(ω − ω0, t) =
1

π

∆ω(t)

(ω − ω0)2 + [∆ω(t)]2
. (2.74)

It has the shape of a Lorentzian distribution with an increasing width over time. In
the short time limit t < τ1,min < τ1T, which was calculated for the phase decoherence
in polarization echo measurements, the width is given by ∆w(t) = ∆

E
τ−2
ϕ , and the

dephasing rate due to spectral diffusion can be written as [Bur18]

τ−1
ϕ =

√︄
π6

24

P0U0kBT

ℏτ1T
. (2.75)

The interaction should be weak, and the dephasing rate related to spectral diffusion
is often negligible. To what extent spectral diffusion impacts resonant processes at
low temperatures is unclear. In Section 2.4.5 we will revisit the concept of spectral
diffusion in order to discuss its explicit influence on saturation effects of resonant
tunneling systems.
Besides spectral diffusion the interaction between tunneling systems may lead to
an additional longitudinal relaxation process, as suggested in [Bur95, Bur04]. It
is claimed that due to the interaction, resonant pairs of tunneling systems with
similar energy can be formed which perform so-called flip flop transitions, where
paired systems alternatingly switch between ground and excited state. These pairs
represent a new two-level state, but with a much lower energy splitting than the
individual systems had. It can be shown that the distribution function of these
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resonant pairs is clearly enhanced at low energies compared to the one of the non-
interacting standard tunneling model distribution. As a consequence, interactions
between such resonant pairs are more likely and finally lead to a delocalization of
the tunneling system excitation. A relaxation rate of

τ−1
1,int ∝

(︃
∆0

E

)︃2

(P0U0)
3T (2.76)

is suggested, which should become dominant at very low temperatures when the
relaxation through phonons becomes less and less important. For the sake of com-
pleteness, it should also be mentioned that interactions between tunneling systems
will lead to a modified distribution function of the tunneling systems, as it is stated
in [Bur95]. The coupling between tunneling systems leads to collective excitations,
and thereby to a reduced number of low-energy tunneling systems. One expects a
hole in the distribution function at low energies. The modified distribution function
reads as

P (E,∆0)dEd∆0 = PSTM

(︃
1− 2π

3
P0U0 log

(︃
W

E + kBT

)︃
log

(︃
W

∆0,min

)︃)︃
dEd∆0 ,

(2.77)
whereW/kB gives the crossover temperature from excitations in the form of tunneling
states towards thermal excitations or soft localized modes. Typical values for the
crossover are found to be between 1K and 10K [Ram98].
The dimensionless factor P0U0 scales the importance of the mutual interactions.
Besides the interaction constant U0, the factor P0 occurs, as it gives the density of
tunneling systems, and therefore their average distance. Typical values found for
P0U0 are of the order ∼10−3 [Bur95, Nat98, Nal04].

2.4.4 Temperature dependency

The expressions (2.59), (2.60), (2.62), (2.63) give the contributions of a single tunnel-
ing system to the dielectric function. In order to obtain the contribution of the entire
ensemble to the dielectric function as a function of temperature, we have to integrate
these expressions over the distribution function (2.26) and insert the expressions for
the relaxation times.

δε′

ε′
=

Emax∫︂
∆0,min

dE

E∫︂
∆0,min

d∆0

[︃(︃
δε′rel
ε′

)︃
TS

+

(︃
δε′res
ε′

)︃
TS

]︃
P (E,∆0) (2.78)

δε′′

ε′
=

Emax∫︂
∆0,min

dE

E∫︂
∆0,min

d∆0

[︃(︃
δε′′rel
ε′

)︃
TS

+

(︃
δε′′res
ε′

)︃
TS

]︃
P (E,∆0) (2.79)
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The integration includes an average over all possible dipole orientations, which are
uniformly distributed over the shell of a sphere. In Equations (2.78) and (2.79) the
dipole moment appears as p2. The average ⟨p2(θ)⟩ is calculated as

⟨p2(θ)⟩ =
∫︁ 2π

0
dϕ
∫︁ π

0
sin θ(p cos θ)2dθ∫︁ 2π

0
dϕ
∫︁ π

0
sin θdθ

=
1

3
p2 , (2.80)

meaning that p2 cos2 θ is replaced by p2/3 in the equations. Besides some limiting
cases, which we will discuss later, the double integrals (2.78) and (2.79) need to be
solved numerically. Figure 2.14 shows the result of an exemplary numerical inte-
gration of the integrals with an excitation frequency of 250MHz, where only the
one-phonon process is used as relaxation process. The transversal relaxation time
was held constant at τ2 = 10−6 s, although it should be temperature-dependent in
general. However, no distinct effect on the temperature dependency is observed for
relaxation times down to 10−8 s. At even lower values a reduction of both the res-
onant real and imaginary part are observed at very low temperatures. For most
glasses, an effect of the transversal relaxation time on the dielectric function should
be negligible at these frequencies, see also [Luc16].
In Figure 2.14 the contributions of the relaxation (blue) and resonant part (green)
are shown separately. At the lowest temperatures, no relaxation part exists since the
phonons die out towards low temperatures, and the relaxation times of tunneling
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Figure 2.14: Temperature dependency of the relative change of the real (left) and imag-
inary part (right) of the dielectric function. The sum of relaxation (blue) and resonant
processes (green) gives the total contribution of tunneling systems to the dielectric func-
tion. Only one-phonon processes were used for the numerical integration. Parameters
used: ω/2π = 250MHz; A = P0p

2/(ε0εr) = 1; K1 = 2× 1077 J−3s−1; τ2 = 1× 10−6 s;
Emax/kB = 100K; ∆0,min/kB = 1× 10−7K.



2.4. Dielectric properties of glass at low temperatures 35

systems become long. For the given frequency, the relaxation is then too slow to
give a contribution to the dielectric function at low temperatures anymore. Only
a contribution due to resonant processes exists there. For the imaginary part the
dominant contribution comes from resonant tunneling systems with E = ℏω, see Fig-
ure 2.12. The lower the temperature gets, the stronger their contribution becomes
since their upper state is thermally less populated. At very low temperatures all
resonant tunneling systems can fully contribute, and one observes a plateau there.
The behavior of the real part is a bit more complex since also off-resonant tunnel-
ing systems (E/ℏ ≫ ω) contribute, see Figure 2.12. Even at high temperatures
the resonant part does not vanish. There, contributions to the real part originate
from off-resonant tunneling systems with large energy splittings since these systems
are thermally not fully saturated, and therefore perform resonant processes through
interactions with the electric field’s photons. Towards lower temperatures tunnel-
ing systems with smaller energy splittings are able to contribute as well, leading
to an increase of the resonant real part. The branching off occurs at temperatures
kBT ≈ ℏω, when resonant tunneling systems are thermally accessible too. At reso-
nance the tunneling system’s contribution has its change of sign, and some tunneling
systems contribute negatively. For even lower temperatures additional contributions
can only occur from off-resonant tunneling systems with E/ℏ ≪ ω. However, these
tunneling systems do not give any contributions, and one observes a plateau in the
real part.
At higher temperatures when the relaxation times become small compared to fre-
quency, relaxation processes start to set in. In the real part the increase due to
relaxation processes exceeds the decrease of the resonant part, leading to a charac-
teristic minimum of the curve at Tmin. For the imaginary part at high temperatures
the resonant processes completely vanish, giving a purely relaxation-determined be-
havior. At high temperatures one observes a plateau in the imaginary part.

Since relaxation and resonant part both depend on the excitation frequency, we
expect a strong frequency dependence of the dielectric function as well. A calcula-
tion with different frequencies spanning 1Hz to 1GHz is shown in Figure 2.15. The
calculations include the two-phonon process, which gives a steeper increase of the
real part at temperatures T ≳ 4K. In addition, at temperatures where the two-
phonon relaxation becomes important, the rise into the high temperature plateau of
the imaginary part becomes faster. The position of the minimum in the real part
shifts towards lower temperatures for smaller frequencies. The shift of the minimum
is given by the underlying relaxation process. In the case of one-phonon process
dominated relaxation this gives the relation Tmin ∝ (K1ω)

1/3. For higher frequencies,
when the position of the minimum lies in the region where two-phonon processes
dominate the relaxation, one finds the dependency Tmin ∝ (K2ω)

1/7. Towards lower
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Figure 2.15: Temperature dependency of the relative change of the real (left) and imag-
inary part (right) of the dielectric function for different excitation frequencies. The same
set of parameters as in Figure 2.14 was used besides the adding of a two-phonon relaxation
process with K2 = 3500 s−1K−7.

frequencies the onset of relaxation processes starts at lower temperatures since slower
relaxation times are sufficient to allow tunneling systems to follow the electric field.
In the imaginary part resonant processes contribute less for lower frequencies since
the resonant tunneling systems have smaller energy splittings and contribute only at
lower temperatures. In the real part contributions occur from off-resonant tunneling
systems with large energy splittings, giving rise to resonant contributions over the
entire temperature and frequency range.

Let us now take a look at analytic solutions of the integrals (2.78) and (2.79) for
some limiting cases of the real part. One can give expressions for the slopes of the
resonant and relaxation part [Bur98]. We introduce the parameter A = P0p

2/(ε0εr),
which occurs as a prefactor in both integrals. In the limit ℏω ≪ kBT one finds a
logarithmic temperature dependency of the resonant part

δε′res
ε′

= −2

3
A ln

(︃
T

T0

)︃
, (2.81)

with T0 being a reference temperature. A similar expression is found for the relax-
ation part for ωτ1,min ≪ 1 in the case of the one-phonon process

δε′rel
ε′

= A ln

(︃
T

T0

)︃
. (2.82)

Plotting the real part with a logarithmic temperature scale, Equation (2.81) and
(2.82) each give straight lines with opposite direction, forming the minimum in the



2.4. Dielectric properties of glass at low temperatures 37

real part. While at low temperatures only resonant processes are visible, at higher
temperatures resonant and relaxation parts occur simultaneously, which gives a slope
ratio δε′res/ε′ : (δε′res/ε′ + δε′rel/ε

′) of −2 : 1 in agreement with Figure 2.14 and 2.15.
If the relaxation part is dominated by the two-phonon process one finds

δε′rel
ε′

=
7

3
A ln

(︃
T

T0

)︃
, (2.83)

resulting in a slope ratio of −2 : 5. For the imaginary part one can write down
expressions for the plateau values for T → 0K and T → ∞(︃

δε′′

ε′

)︃
T→0

=
π

3
A (2.84)(︃

δε′′

ε′

)︃
T→∞

=
π

6
A . (2.85)

In this work, we are dealing with frequencies between 250MHz and 1GHz, primarily
at very low temperatures. Hence, the temperature dependency of the resonant part
is of major importance, which is why it is useful to derive analytic expressions for it
(see Appendix A.1)

δε′res
ε′

= −2

3
A

[︃
Re

{︃
ψ

(︃
1

2
− i

ℏω
2πkBT

)︃}︃
− ln

(︃
Emax

2πkBT

)︃]︃
(2.86)

δε′′res
ε′

=
π

3
A tanh

(︃
ℏω

2kBT

)︃
, (2.87)

using the real part of the complex digamma function Re{ψ(z)}.

2.4.5 Saturation by a large driving field

As it was mentioned in Section 2.2 for the case of an ultrasonic field as excitation, the
strength of the driving field affects resonant absorption processes. The same holds
true for an electric excitation Fac(t) = Fac cos(ωt), where photons can be resonantly
absorbed by tunneling systems as discussed in the previous sections. For a high
field intensity, the rate of photons interacting resonantly with tunneling systems
is high. If this rate exceeds the energy relaxation rate τ−1

1 , a tunneling system
might still be in its excited state before the next photon interacts resonantly with
it. This would then lead to a stimulated emission process, where a transition of the
tunneling system back into the ground state takes place by emitting an additional
coherent photon. Stimulated emission counteracts the resonant absorption. In the
case of a high electric field intensity the population difference of the two-level state
becomes zero, and therefore resonant absorption and stimulated emission effectively
cancel out each other, see also Figure 2.13 (right). Similar to the case of high
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temperatures, a high electric field then leads to a vanishing resonant imaginary part
since no effective absorption of photons, and with that no dissipation takes place.
The glass becomes transparent for photons at large electric fields, and one speaks
of a saturation of the tunneling systems by the driving field. For high electric fields
the Bloch equations cannot be simplified through a linearization anymore since non-
linearities are essentially for the saturation. A solution of this problem with an
ultrasonic excitation is given in [Hun76]. We will make use of these results and
transform them into the case of an excitation with an electric field. As ansatz for
solving the Bloch equations (2.47) in the steady-state

⟨Ŝ(t)⟩ = ⟨Ŝ0⟩+
∞∑︂

m=−∞

⟨Ŝm⟩ exp(−iωmt) with ωm = mω (2.88)

is chosen. It can be shown that ⟨Ŝ1,+⟩, ⟨Ŝ−1,+⟩, ⟨Ŝ1,−⟩, ⟨Ŝ−1,−⟩, and ⟨Ŝ0,z⟩ are the
relevant elements for ωτ2 ≪ 1. One obtains the same results as before in Equa-
tion (2.52), but with a modified ⟨Ŝ0,z⟩

⟨Ŝ0,z⟩′ = ⟨Ŝ0,z⟩ −
(︁
∆0

E
pFac cos θ

ℏ

)︁2
τ1τ2

1 +
(︁
∆0

E
pFac cos θ

ℏ

)︁2
τ1τ2 + (ω0 − ω)2τ 22

⟨Ŝ0,z⟩

=
1 + (ω0 − ω)2τ 22

1 + (ω0 − ω)2τ 22 + Ω2
Rτ1τ2

⟨Ŝ0,z⟩ , (2.89)

where we introduced the tunneling system Rabi frequency

ΩR =
∆0

E

pFac

ℏ
cos θ =

∆0

E
ΩR0 cos θ . (2.90)

For Ω2
Rτ1τ2 ≪ 1, meaning small excitation or fast relaxations – a relaxation through

dephasing counteracts the saturation as well – Equation (2.89) gives the same solu-
tion we obtained before from the linearized Bloch equations in the limit of a weak
field. In general, the correction factor in ⟨Ŝ0,z⟩′ = α(ΩR)⟨Ŝ0,z⟩ needs to be incorpo-
rated into the solutions (2.51) and (2.52), respectively. The resonant part can now
be rewritten as:

δεres
ε′

=
A cos2 θ

ℏ

Emax∫︂
0

dE

E∫︂
∆0,min

d∆0P (E,∆0)

(︃
∆0

E

)︃2

tanh

(︃
E

2kBT

)︃
α(ΩR)b(E,ω)

(2.91)
Only resonant tunneling systems (ω0 ≈ ω) are affected by the saturation. Since the
resonant imaginary part is mainly sensitive to these tunneling systems, it is expected
to show a strong dependence on the field strength. The resonant real part, however,
is largely determined by off-resonant tunneling systems, which are unaffected by the
saturation. Therefore, for the real part the small field strength approximation (2.86)



2.4. Dielectric properties of glass at low temperatures 39

is applicable. An integration of Equation (2.91) (see Appendix A.2 for details) gives
the modified resonant loss, which accounts for the non-zero electric field strength

tan δres =
πP0p

2 cos2 θ

ε0εr
tanh

(︃
ℏω

2kBT

)︃
1√︃

1 +
(︂

Fac

Fc

)︂2 , (2.92)

where we wrote the imaginary part as the loss tangent. Here, a critical field strength
Fc is introduced, which defines the field strength where saturation starts to set in,
meaning Ω2

Rτ1τ2 = 1. Thus, the critical field strength reads as

Fc =
ℏ

p cos θ

1
√
τ1,minτ2

. (2.93)

Equation (2.92) needs to be averaged over all dipole orientations. We use a Monte
Carlo approach. As it is shown in Section 3.3.1, cos θ is uniformly distributed between
−1 and 1. Generating a large number of different values for cos θ, according to its
distribution, and summing over all outcomes of Equation (2.92), gives an adequate
determination of the mean. The result of this calculation is shown in Figure 2.16,
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Figure 2.16: Resonant loss as a func-
tion of the applied electric field strength.
The approximation function (2.94) is
compared with the results of an aver-
aged solution of Equation (2.92) over the
dipole angle θ. A dipole moment of
p = 1Debye ≈ 3.335× 10−30Cm and
for the glass N-BK7 typical relaxation
times of τ1,min = 200 µs and τ2 = 7 µs
[Fic13, Bur13] were used.

where the result is compared to an approximation solution which uses effective values
for the dipole moment of the form

tan δres =
π

3
A tanh

(︃
ℏω

2kBT

)︃
1√︃

1 +
(︂

Fac

Fc

)︂2 with Fc =
3ℏ
2p

1
√
τ1,minτ2

. (2.94)

The approximation function shows only minor differences around the crossover into
the plateau region for small field strengths and can be used instead of the averaged



40 2. Theory

10
3

10
1

10
1

10
3

10
5

Field Strength  [Vm
1
]

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

ta
n

/t
an

= 1
, = 200
= 7

= 0°

numerical integration
approximated solution

10
3

10
1

10
1

10
3

10
5

Field Strength  [Vm
1
]

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

ta
n

/t
an

= 1
, = 200
= 70

= 0°

numerical integration
approximated solution

Figure 2.17: Comparison between the approximated analytic solution (2.92) and a nu-
merical calculation of the integral (2.91) for two different values of τ2. The dipole angle
was fixed to θ = 0 ◦ for the calculations.

dipole angle calculation. For small electric fields, the loss is independent from F and
given by Equation (2.87) as tan δ0 = π

3
A tanh( ℏω

2kBT
). If the field strength exceeds

the critical field strength, tunneling systems are getting saturated by the field and
cannot fully contribute to the loss anymore, which means that the loss decreases.
For high fields one expects the resonant loss to drop with tan δ ∝ F−1

ac .
In order to solve the integral (2.91) analytically, several approximations were needed.
Figure 2.17 shows a comparison between the approximated solution (2.92) and a full
numerical integration of Equation (2.91) for two different values of τ2. A value
of τ2 = 7 µs should roughly agree with the value in experiment (left). The value
τ2 = 70 ns represents an overestimation and gives an idea about a rather extreme
case. The same parameters as in Figure 2.16 are used, besides a fixed dipole ori-
entation, which should not affect the overall statement. In both cases deviations
occur at very high field strengths, where the numerical solution deviates from the
F−1-dependency. In the experiment maximum values for the field strength are of
the order ∼103Vm−1, which means that the presented analytic solution should be
appropriate for an accurate description of the experiment.

In Section 2.4.3 we saw that interactions between tunneling systems lead to a fluctu-
ating energy splitting of resonant tunneling systems called spectral diffusion, which
is a source for dephasing. Here, we want to discuss the effect of spectral diffusion
on the saturation of tunneling systems. A natural way to incorporate spectral diffu-
sion would be to add its relaxation rate τ−1

ϕ from Equation (2.72) to the transversal
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relaxation rate τ2 and use this for calculating the critical field strength in Equa-
tion (2.94). The effect of spectral diffusion, however, is more subtle, as proposed by
[Bur18]. In that work the explicit effect of spectral diffusion on the resonant loss
was calculated. As the energy splitting of tunneling systems is not constant in time,
different tunneling systems will fulfill the resonant condition over the course of time
and interact resonantly with the applied field. Figuratively speaking, on average res-
onant tunneling systems are exposed to the photons of the electric field for a shorter
period of time, which leads to a reduction of saturation, and the loss becomes larger
compared to the case of a static tunneling system energy. If the intensity of the
driving field gets higher, shorter periods of time in resonance will be sufficient for an
excitation and tunneling systems get saturated anyhow. One then expects the spec-
tral diffusion to be insignificant. This effect is similar to the behavior of tunneling
systems undergoing Landau-Zener transitions, induced by a dynamic shift of a bias
field, which we will discuss in Section 2.4.6.
In [Bur18] it was stated that Equation (2.94) is not valid in the case of a distinct spec-
tral diffusion τϕ < τ1,min and should be replaced by an interpolation function, which
can be used instead of a full numerical solution of the problem. The interpolation
function is given by

tan δsd =
tan δ0

1 +
Ω2

R0τ
2
ϕ

3πΩR0τ
2
ϕ

4
√
2τ20

+ln (1+3l∗)

, (2.95)

with l∗ being defined as

l∗ =
ln (d1 + c1ΩR0τϕ)

ln
(︂
d2 +

c2τ20
ΩR0τ

2
ϕ

)︂ , (2.96)

where τ20 = 2τ1,min denotes the minimum phase decoherence time, and τϕ represents
the phase relaxation time due to spectral diffusion. The constants c1, c2, d1, d2 are
given as 0.5, 3, 0.55, 1.2, respectively. In Figure 2.18 a comparison between Equa-
tion (2.94) and (2.95) is shown. The purple dashed curve shows the loss according
to Equation (2.94) without regarding a relaxation through spectral diffusion at all.
The adding of the spectral diffusion rate τ−1

ϕ to τ−1
2 is presented by the dashed blue

curve. The solid green line shows the results of the explicit treatment of spectral
diffusion by Equation (2.95). The spectral diffusion relaxation time τϕ = 20 µs was
chosen to be much smaller than τ1,min = 200 µs to ensure its significance.
Figure 2.18 shows that by simply adding the spectral diffusion relaxation time to τ2
the whole curve shifts towards higher field strengths (dashed blue) since Fc becomes
larger. As already explained, the explicit treatment of spectral diffusion (solid green)
allows the loss to sustain its plateau value tan δ0 at higher field strengths. For very
high field strengths the effect of spectral diffusion becomes irrelevant, and the loss
converges back to the curve that disregards any spectral diffusion effects (dashed
purple).
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Figure 2.18: Normalized dielectric loss
as a function of the field strength for typ-
ical tunneling system parameters. The
dashed curves show the results of Equa-
tion (2.94) without regarding any spec-
tral diffusion (purple), and by adding the
spectral diffusion rate to the total trans-
verse relaxation rate τ2 (blue). The solid
green line shows the evaluation of Equa-
tion (2.95) with the same set of param-
eters, which regards the explicit effect of
spectral diffusion.

2.4.6 Non-equilibrium loss through Landau-Zener transitions

In earlier dielectric non-equilibrium measurements, where parallel to the electric driv-
ing field a large electric DC bias step was applied, a jump of the dielectric function’s
real part with a subsequent logarithmic relaxation over several hours was observed
[Sal94, Nal04]. This behavior was explained through the long-range interaction be-
tween tunneling systems leading to a gap in the distribution function (see Equa-
tion (2.77)) that originates from the formation of tunneling system pairs. A large
DC bias field modifies the energy splittings and leads to the breaking of such pairs.
The formation of new pair states, and with that of a new gap, is associated with the
observed logarithmic relaxation. For more details see [Bur95, Bur98, Nal04].
Here, we want to focus on a different non-equilibrium phenomenon, which can be
explained without any tunneling system interactions. In this section we discuss
the non-equilibrium high frequency resonant loss (ℏω > kBT ) of tunneling systems
performing Landau-Zener transitions, induced by a rapid dynamic change of an addi-
tional electric bias field. In measurements of deposited amorphous thin films, it was
observed that during a sweep of the bias field the resonant loss was clearly enhanced
compared to the loss with no present bias sweep (steady-state) [Kha14, Mat19]. In
the following we want to derive a relation between the resonant loss and the ap-
plied bias rate, where we follow [Bur13, Kha13]. The underlying tunneling system
dynamic is the foundation for the Landau-Zener spectroscopy of tunneling systems
performed in this thesis.
In Section 2.3.1 we found that the energy splitting of a tunneling system is given by
E =

√︁
∆2 +∆2

0. According to Equation (2.37), an electric field modifies the asym-
metry energy ∆. Therefore, we can write down the energy splitting in the presence
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of an applied bias field Fb(t) that changes in time as

E ′(t) =
√︂
(∆+ δ∆(t))2 +∆2

0 , (2.97)

with δ∆(t) = 2pFb(t) cos θ. We want to observe the resonant loss, hence, it is
sufficient to consider only tunneling systems in resonance with the high frequency
driving field (E ≈ ℏω). This means only slightly detuned systems with δ∆ → 0 are
relevant, and we can approximate Equation (2.97)

E ′(t) ≈
√︂
∆2 +∆2

0 +
∆√︁

∆2 +∆2
0

δ∆(t) = ℏω +

√︄
1−

(︃
∆0

ℏω

)︃2

· δ∆(t) . (2.98)

Next, we write the change of the energy splitting in time as

dE ′(t)

dt
= ℏν =

√︄
1−

(︃
∆0

ℏω

)︃2

· 2pḞ b cos θ = ℏν0

√︄
1−

(︃
∆0

ℏω

)︃2

cos θ , (2.99)

and define

ν0 :=
2pḞ b

ℏ
. (2.100)

With that we can write the time dependence of the energy splitting

E ′(t) = ℏω + ℏν(t− t0) , (2.101)

while t0 sets the time when the tunneling system is in exact resonance with the
driving field. Since the energy splitting is time-dependent now, we must treat the
tunneling system’s response as time-dependent too. We use the time-dependent
Schrödinger equation iℏ ∂

∂t
|Ψ⟩ = Ĥ |Ψ⟩ with the state |Ψ⟩ = cg(t) |Ψg⟩ + ce(t) |Ψe⟩

and Equation (2.38) as Hamiltonian. We neglect any relaxation events during the
resonance crossing and assume the change of the energy splitting due to the driving
field being small E ′/2 ≫ ∆

E
pFac. Thereby, we receive the two equations

iℏċe =
E ′

2
ce + ℏΩR cos(ωt)cg

iℏċg =− E ′

2
cg + ℏΩR cos(ωt)ce , (2.102)

which are transformed into the rotating frame (ae, ag) = (ce exp(iωt/2), cg exp(−iωt/2))

iℏȧe =− iν

2
(t− t0)ae −

iΩR

2
ag

iℏȧg =
iν

2
(t− t0)ag −

iΩR

2
ae , (2.103)

where ΩR denotes the Rabi frequency (2.90). The set of equations (2.103) can
be identified as the equations of the Landau-Zener problem for a two-level system
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Figure 2.19: Illustration of the Landau-Zener problem for a two-level system. The energy
splitting is getting detuned in time by the bias field. The driving field resonantly couples
both states at E = ℏω, which leads to an avoided level crossing. In the limit of a fast
bias sweep no transition between ground and excited state takes place, which is called a
Landau-Zener transition.

[Lan32, Zen32, Stü32]. A sketch of the situation is shown in Figure 2.19. The energy
states of the two-level system are modified by the bias field, and their energy dif-
ference changes with ℏνt in time (left). If the energy difference matches the photon
energy of the driving field ℏω, a resonant transition may occur (center). One can
subtract the photon energy from the upper level, or in other words regard the total
energy of tunneling system and photon field. One then ends up with an avoided
level crossing (right). Now we want to consider the situation where the tunneling
system is in the ground state |g⟩ |n⟩ at t = 0. If the change of the energy splitting
is performed slowly ν0 ≪ Ω2

R0 (adiabatic), the system will undergo a transition into
the upper state under absorption of one photon from the electric field and ending
in the state |e⟩ |n− 1⟩. On the other hand, a rapid passage ν0 ≫ Ω2

R0 results in no
excitation since the coupling between the two levels is too weak. The system then
stays in the ground state |g⟩ |n⟩, which is called a Landau-Zener transition. Accord-
ing to the solution of the Landau-Zener problem, the probability for an adiabatic
transition from the ground into the excited state Pg→e is found to be

Pg→e = 1− exp

(︃
−πΩ

2
R

2ν

)︃
= 1− exp(−γ) with γ =

πΩ2
R

2ν
. (2.104)

For a system initially in the ground state that crosses the resonance at t = t0, we
can write the probability amplitudes |ag|2 and |ae|2 at a time t≫ t0 as

|ae|2 = 1− exp (−γ)
|ag|2 = exp (−γ) . (2.105)

Calculating the resulting loss, requires considering the dissipated energy through
this process. By absorbing one photon, a photon gets eliminated from the electric
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field, and therefore leads to dissipation. An eventual following spontaneous photon
emission will not compensate the loss of a photon because it would be incoherent
and at a different energy. We integrate over the entire dielectric volume and write
the total dissipated energy as

dE =

∫︂
dV

∫︂
dNℏω|ae|2 . (2.106)

The integral over dN includes all tunneling systems that fulfill the resonance condi-
tion during the time interval dt. As it has been done before, we integrate over the
distribution function P (E,∆0). Tunneling systems are homogeneously distributed
over the volume, and we can write

dE = ℏωP0V

1∫︂
0

d cos θ

ℏω∫︂
0

d∆0

ℏω+ℏνdt∫︂
ℏω−ℏνdt

dE
(1− e−γ)E

∆0

√︁
E2 −∆2

0

. (2.107)

Note that cos θ is only evaluated between 0 and 1 since only half of the dipoles are
orientated in the right direction, such that tunneling systems reach the resonance
during a bias sweep. The integral over E can be evaluated (see Appendix A.3)
because the change in energy ℏνdt can be assumed to be small. We then find by
defining x = ∆0

ℏω

dE
dt

= 2ℏ2ωP0V

1∫︂
0

d cos θ

1∫︂
0

πΩ2
R

2γ
(1− e−γ)

dx

x
√
1− x2

= 2ℏ2ωP0V

1∫︂
0

d cos θ

1∫︂
0

ν(1− e−γ)
dx

x
√
1− x2

= πωF 2
acP0p

2V

1∫︂
0

d cos θ cos2 θ

1∫︂
0

1− e−γ

γ

xdx√
1− x2

. (2.108)

Defining the dielectric loss tan δ as the ratio of the dissipated power per cycle and
the stored energy, we can write

tan δ =
Pdis

ωWtot

=
dE/dt
ωWtot

. (2.109)

In the case of an LC-resonator with the maximum field strength in its capacitor
being Fac, the stored energy is Wtot = ε0εrF

2
acV and we find

tan δ =
πP0p

2

ε0εr

1∫︂
0

d cos θ cos2 θ

1∫︂
0

1− e−γ

γ

xdx√
1− x2

. (2.110)
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For a very fast bias sweep ν0 ≫ Ω2
R0, we can approximate e−γ ≈ 1− γ and find the

loss to be
tan δ =

πP0p
2

3ε0εr
, (2.111)

which corresponds to the steady-state low-power loss tan δ0 at very low tempera-
tures. For all other bias rates Equation (2.110) needs to be solved numerically. We
furthermore define the dimensionless bias rate

ξ =
2ν0
πΩ2

R0

=
2ν0ℏ2

πp2F 2
ac

(2.112)

and end up with the expression

tan δ =
πP0p

2

ε0εr
ξ

1∫︂
0

d cos θ cos θ

1∫︂
0

(︃
1− exp

(︃
−cos θ

ξ

x2√
1− x2

)︃)︃
dx

x
. (2.113)

Figure 2.20 shows a numerical integration of Equation (2.113), where the non-equilib-
rium loss is plotted as a function of the dimensionless bias rate ξ. The loss increases
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Figure 2.20: Non-equilibrium loss due
to tunneling systems performing Landau-
Zener transitions induced through a
rapid bias sweep. The loss is normalized
with the low-power limit tan δ0 and plot-
ted as a function of the dimensionless bias
rate ξ.

towards higher bias rates and converges into a plateau at very high rates, which
agrees with the low-power limit tan δ0. At first glance this might be unintuitive
because the probability for absorbing a photon decreases for rapid bias sweeps, and
thus the loss should become smaller. However, as the bias rate increases, the number
of tunneling systems crossing the resonance within a time interval dt becomes higher
and more photons potentially get absorbed. Both processes counteract with each
other, leading to a plateau at very high bias rates. For the calculation we assumed
that no relaxation processes take place during the resonance crossing. Hence, the
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results should only be valid for high bias rates. The assumption of negligible re-
laxation cannot hold true for small bias rates since relaxations during the resonant
passage are more likely to occur then. For ξ ≪ 1

ΩR0
√
τ1,minτ2

Equation (2.113) must
be replaced with the steady-state limit from Equation (2.94). Another approach for
calculating the loss over the entire range of bias rates will be discussed in the follow-
ing chapter, where we numerically solve the full Bloch equations for each tunneling
system separately and sum over the tunneling systems in a Monte Carlo approach.
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3. Simulation of the tunneling system dynamics

In this thesis we investigate the non-equilibrium dynamics of tunneling systems per-
forming Landau-Zener transitions, which can be used to extract microscopic proper-
ties of the involved tunneling systems, like their relaxation times or dipole moment
(Landau-Zener spectroscopy). Dynamically shifting the tunneling system energies
is furthermore used in pump tone probe tone experiments to invert the tunneling
system population through a combination of a tunneling system energy sweep and
off-resonant microwave pump tones [Ros16]. This may lead to stimulated emission
of photons at the probe tone frequency. The tunneling system ensemble then acts as
an amplifying, instead of a dissipative medium for photons in the microwave regime,
which will be investigated experimentally in Section 5.4.3. This requires detailed
knowledge about the Landau-Zener dynamics of tunneling systems.
The introduced theoretical treatment of the tunneling system’s dielectric response
within the Landau-Zener dynamics allows a basic understanding of the underlying
effects, however, its applicability to more elaborated problems is limited within the
treated formalism. For that reason, simulations of the tunneling system dynamics
were conducted, which are presented in this chapter. By numerically solving the
Bloch equations, the interaction between a single tunneling system and arbitrary
electric fields is modeled on the elementary level. The dynamics of the tunneling
system ensemble is obtained through Monte Carlo averaging the single system re-
sponse. This represents a direct imitation of the tunneling system’s dynamics. The
benefits of using a simulation in this context is twofold. On the one hand, it provides
a fundamental understanding of the complex tunneling system dynamics caused by
the overlay of several electric fields interacting with the tunneling systems on dif-
ferent time scales. On the other hand its flexible application to numerous problems
allows to predict different experimental findings originating from the Landau-Zener
spectroscopy, or detect and overcome experimental limitations in advance. Thus,
it provides a very useful tool for a detailed examination of the interplay between
tunneling systems and electric fields in order to gain deeper insights into tunneling
systems in combination with experiments.
This chapter starts with the introduction of the used numerical methods for cal-
culating the dielectric response of tunneling systems interacting with electric fields.
Calculations for a single tunneling system are presented in Section 3.2, which allow
to validate the proper functionality of the implemented code. The description of the
whole tunneling system ensemble through a Monte Carlo simulation is presented in
Section 3.3. Whenever it is possible, these results are compared to the predictions
of Chapter 2.

49
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3.1 Solving the tunneling system dynamics numerically

For the following calculations, we describe the state of the tunneling system ensemble
in terms of the density matrix formalism. This has the advantage of being capable
of dealing also with mixed states which occur from the superposition of pure states.
Pure states can be described by a single state vector |ψ⟩ and represent points on the
surface of the Bloch sphere. Mixed states are statistical ensembles of pure states.
Because of decoherence, such a state is located inside the Bloch sphere. The state of
the tunneling system ensemble should in general be representable as a mixed state,
and the density matrix provides an appropriate statistical description for it. The
density matrix is an operator of the form

ρ̂ =
∑︂
i

pi |Ψi⟩ ⟨Ψi| . (3.1)

It gives the probability pi of finding a mixed state in the pure state Ψi. In the case
of tunneling systems a possible pure state can be written in terms of the tunneling
system’s eigenstates |Ψ⟩i = a |Ψe⟩ + b |Ψg⟩, with |a|2 + |b|2 = 1. We can write down
the density matrix of a two-level state as

ρ̂ =

(︃
ρee ρeg
ρge ρgg

)︃
, (3.2)

where the diagonal elements ρee and ρgg give the probability of finding the state
in the excited |Ψe⟩ or ground state |Ψg⟩, respectively. The expectation value of an
observable Â is given by ⟨Â⟩ = tr(ρ̂Â), where tr() denotes the trace of a matrix.
We can therefore identify the sum of the off-diagonal elements ρeg and ρge as the
expectation value of the Pauli matrix σ̂x as ⟨σ̂x⟩ = ρeg + ρge. Furthermore, we can
write ⟨σ̂y⟩ = i(ρeg − ρge) and ⟨σ̂z⟩ = ρee − ρgg. The von Neumann equation gives the
time evolution of the density matrix

iℏ
∂ρ̂

∂t
= [Ĥ, ρ̂] = Ĥρ̂− ρ̂Ĥ . (3.3)

The Hamiltonian Ĥ describes the perturbation of a tunneling system by an electric
field, see Equation (2.38). We then end up with a set of four coupled differential
equations

ρ̇ee =
∆0

iℏE
pFac(ρge − ρeg)−

ρee
τ1

+
1

2τ1

(︃
1− tanh

E

2kBT

)︃
ρ̇eg =

∆0

iℏE
pFac(ρgg − ρee) +

1

iℏ

(︃
E +

2∆

E
pFac

)︃
ρeg−

ρeg
τ2

ρ̇ge =
∆0

iℏE
pFac(ρee − ρgg)−

1

iℏ

(︃
E +

2∆

E
pFac

)︃
ρge−

ρge
τ2

ρ̇gg =
∆0

iℏE
pFac(ρeg − ρge)+

ρee
τ1

− 1

2τ1

(︃
1− tanh

E

2kBT

)︃
, (3.4)
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where the relaxation times τ1,2 were added subsequently as it was done for the Bloch
equations (2.47). An additional electric bias field Fb(t) modifies the energy splitting
∆, and one can use ∆(t) = ∆(t = 0) + 2pFb(t) cos θ in Equation (3.4).
This set of equations needs to be solved in order to receive the density matrix for
the system as a function of time. The density matrix contains all the information
about the system, and we can extract observables like the polarization from it. A
way to solve the set of equations numerically is to rewrite (3.4) as a matrix equation
(see [Kha13]) ⎛⎜⎜⎜⎝

ρ̇ee
ρ̇eg
ρ̇ge
ρ̇gg

⎞⎟⎟⎟⎠ = M

⎛⎜⎜⎜⎝
ρee
ρeg
ρge
ρgg

⎞⎟⎟⎟⎠ , (3.5)

where the matrix M is determined by (3.4). For the sake of clarity, we set T → 0K.
The constant temperature term can in principle be added without loss of generality.
Due to the structure of Equation (3.5) we choose an ansatz

ρ(t) = etMc(t) , (3.6)

using the matrix exponential, and a set of time-dependent parameters c(t). We take
the initial state ρ(t0) as the starting point of the numerical solution. From this point
we can approximate the state after a small jump in time ∆t by assuming M being
constant during this time step. Writing c(t0) =

[︁
et0M(t0)

]︁−1
ρ(t0), we can give an

expression for ρ(t0 +∆t) as

ρ(t0 +∆t0) = e(t0+∆t)M(t0)c(t0) = e(t0+∆t)M(t0)
[︁
et0M(t0)

]︁−1
ρ(t0) . (3.7)

Starting with an initial state, this pattern allows to calculate the density matrix for
each time step iteratively. The matrix exponential needs to be calculated for every
time step. This was computed numerically by a script written in Phyton1.
In another attempt, the set of equations (3.4) was directly solved with the standard
SciPy ODE routine2, which gave the same results, but within shorter computation
times. Therefore, all the results which will be presented in the following, were gen-
erated with the standard ODE solver routine. We are now able to calculate the time
evolution of the density matrix for arbitrary electric fields.

Next, we need to extract observable macroscopic properties from the density ma-
trix, which is in our case the polarization of the tunneling systems. A tunneling

1Python Software Foundation, 9450 SW Gemini Dr. ECM# 90772 Beaverton, OR 97008 USA,
http://www.python.org

2scipy.integrate.ode, https://docs.scipy.org/doc/scipy/reference/generated/scipy.
integrate.ode.html, Accessed: 16.11.2020

http://www.python.org
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
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object with charge q, fully located in one well, represents a dipole moment, and can
be expressed as [Phi87]

p = q ⟨ψb|x |ψb⟩ = −q ⟨ψa|x |ψa⟩ , (3.8)

where we used the wave functions of the single wells ψa and ψb. In the picture of the
Bloch sphere, localizations in single wells are the intersections of the Bloch sphere
with the x-axis. Thus, we can write down the density matrices for these states

ρ̂aa =
1

2
[(|Ψe⟩ − |Ψg⟩)(⟨Ψe| − ⟨Ψg|)] =

1

2

(︃
1 −1

−1 1

)︃
(3.9)

ρ̂bb =
1

2
[(|Ψe⟩+ |Ψg⟩)(⟨Ψe|+ ⟨Ψg|)] =

1

2

(︃
1 1

1 1

)︃
. (3.10)

The polarization operator P̂ can then be written as

P̂ =
1

V
(−pρ̂aa + pρ̂bb) =

p

V
σ̂x , (3.11)

using the Pauli matrix σ̂x. The expectation value ⟨P̂ ⟩ gives the polarization of the
ensemble, and we find P (t) is given by the sum of the off-diagonal elements of the
density matrix (3.2)

P (t) = ⟨P̂ ⟩ = p

V
tr(ρ̂(t) · σ̂x) =

p

V
(ρeg(t) + ρge(t)) . (3.12)

According to Equation (2.32), one expects from a sinusoidal driving field Fac(t) =

Fac cos(ωact) with frequency ωac the polarization

P̃ (t) = Facε0χ
′(t) cos(ωact) + Facε0χ

′′(t) sin(ωact) , (3.13)
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Figure 3.1: Filter characteristic of the
used low pass filter to remove the 2ωac-
components from the signal. It is im-
plemented as a digital Butterworth fil-
ter of order 15 with a cutoff frequency
at ωcut = 1.3ωac. At ω = ωcut the atten-
uation by the filter is −3 dB.
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where the polarization is split into a component in phase with the driving field (real
part) and a component out of phase (imaginary part). We can extract χ′(t) and
χ′′(t) by multiplying P̃ with cos(ωact) or sin(ωact), respectively, and we get

P̃ (t) cos(ωact) =
1

2
Facε0 [χ

′(t) + χ′(t) cos(2ωact) + χ′′(t) sin(2ωact)] (3.14)

P̃ (t) sin(ωact) =
1

2
Facε0 [χ

′′(t) + χ′(t) sin(2ωact)− χ′′(t) cos(2ωact)] . (3.15)

The high frequency components sin(2ωact) and cos(2ωact) are much faster than χ′(t)

and χ′′(t) and can be removed with a low pass filter. The used filter is shown in
Figure 3.1, where a sharp cutoff at ωcut = 1.3ωac is chosen. This demodulation
procedure can be applied to the calculated polarization P , and we end up with

χ′(t) =
2

ε0Fac

L{P (t) cos(ωact)} (3.16)

χ′′(t) =
2

ε0Fac

L{P (t) sin(ωact)} , (3.17)

where L{x} denotes the low pass filtering of a signal x. Most of the time we are only
interested in the dielectric loss since it gives a good measure for the population of the
resonant tunneling systems, and we write down the dielectric loss as tan δ(t) = 1+χ′(t)

χ′′(t)
.

3.2 Single tunneling system calculations

In order to validate the integrity of the implemented code, we performed several
calculations of single tunneling systems with and without applied driving or biasing
electric fields. As a first test, all electric fields were set to zero (Fac = Fb = 0Vm−1)
as well as the temperature. According to Equations (3.4), the dynamics of the
system is then clearly simplified and independent from the tunneling splitting ∆0.
We chose a system with an energy splitting E/h = 1GHz and relaxation times of
τ1 = 40 µs and τ2 = 2τ1, meaning that no additional dephasing was assumed. The
initial state of the system was chosen such that it starts in the upper level, i.e.
ρee = 1; ρgg = ρeg = ρge = 0. In the absence of any electric fields, one expects an
exponential decay into the ground state. A calculation of the time evolution for this
setting shows exactly this behavior, see Figure 3.2. The excited state ρee follows a
decay ρee(t) = exp(−t/40 µs) (dashed line), while the sum ρee + ρgg always equals 1,
as the probability of the ground state exponentially converges towards 1.
Next, we used finite temperatures by applying the same settings as before, but vary-
ing the temperature between T = 0.01K and T = 1K. The system is initially set
to be in its ground state. As Figure 3.3 (left) shows, at finite temperatures ρee re-
laxes within τ1 towards an equilibrium state larger than zero. This equilibrium value



54 3. Simulation of the tunneling system dynamics

0 50 100 150 200 250 300
Time  [µs]

0.0

0.2

0.4

0.6

0.8

1.0
 , 

exp(  / )
Figure 3.2: Time evolution of the diag-
onal entries of the system’s density ma-
trix in the absence of electric fields and
for T → 0K. The initial state of the
system was chosen such that it starts in
the excited state (E/h = 1GHz) with re-
laxation times of τ1 = 40 µs and τ2 =

2τ1. It then decays exponentially into the
ground state with ρee(t) = exp(−t/40 µs)
(dashed line), while respecting ρee+ρgg =

1.

increases with increasing temperatures as the excited state gets thermally more ac-
cessible. It agrees with the expected population number of a two-level system with an
energy splitting of E/h = 1GHz, which is shown in Figure 3.3 (right). Here, the equi-
librium values at several temperatures are compared with ne = 1

2
(1 − tanh( E

2kBT
)).

The equilibrium values of the simulation were extracted from the calculated time
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Figure 3.3: Left: Numerical calculation of the time evolution ρee for temperatures between
T = 0.01K and T = 1K. Right: Equilibrium value ρee(t = 300 µs) for several temperatures
in comparison with the expected temperature dependence of the thermal population of a
two-level system. For the tunneling system the same set of parameters as in Figure 3.2 was
used.
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evolutions at t = 300 µs, where equilibrium has settled in. The good agreement with
the expectations shows that both the relaxation mechanism and the temperature are
correctly implemented in the differential equations (3.4), and the ODE solver works
as expected.

As a next step, we want to look at the effect of an alternating driving field Fac(t) =

Fac cos(ωact). For that, we isolated the effects of the electric driving field, by choos-
ing an arbitrarily long relaxation time and set the temperature to zero. We then
calculated the time evolution of ρee for different field strengths Fac. We chose
ωac/2π = 10MHz as frequency for the driving field. The tunneling system is set
to be in resonance with the electric field, which demands ℏωac =

√︁
∆2 +∆2

0. This
condition is fulfilled by tunneling systems that are found on a half circle with radius
ℏωac in the ∆0-∆-plane and (0,0) as its center, see Figure 3.4 (e). No negative values
for ∆0 are valid. For the calculation we chose a system with ∆0 = ∆ = ℏωac√

2
. The

result for this setup with different field strengths is shown in Figure 3.4 (a)-(d). The
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Figure 3.4: Numerical calculation of the time evolution of ρee for different driving field
strengths (1Vm−1, 5Vm−1, 10Vm−1, 50Vm−1) (a)-(d) in the case of an oscillating driv-
ing field. The relaxation times τ1, τ2 were chosen to be arbitrarily long, and the temper-
ature was set to zero in order to isolate the effects of the alternating electric field. The
tunneling system (∆0 = ∆ = ℏωac√

2
) is in resonance with the frequency of the driving field

ωac/2π = 10MHz (e).
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Fac ΩR/2π (predicted) ΩR/2π (simulated)

1Vm−1 3.5590 kHz 3.5595 kHz

5Vm−1 17.795 kHz 17.798 kHz

10Vm−1 35.590 kHz 35.595 kHz

50Vm−1 177.95 kHz 177.95 kHz

Table 3.1: Comparison between the predicted Rabi frequencies according to Equa-
tion (2.90) and the values from the simulations in Figure 3.4.

simulation reveals an oscillation in ρee between 0 and 1, where the system periodi-
cally switches between ground and excited state, which is called a Rabi oscillation.
The frequency of this oscillation depends on the applied field strength and is given
for a tunneling system by Equation (2.90) as its Rabi frequency ΩR. We used a
dipole moment of p = 1Debye ≈ 3.335× 10−30Cm and set the angle between dipole
moment and electric field to θ = 0°. With that, we can compare the simulated val-
ues for the Rabi frequencies with the expected values from Equation (2.90). The
value in the simulation was obtained by fitting a sinusoidal function to the data.
Table 3.1 shows an overview of the results. For all field strengths, one finds an
excellent agreement within a few 0.1‰. It should be noted that, in order to find
these agreements and map the Rabi oscillation properly, one has to choose the time
step ∆t between two points in the simulation as ∆t ≲ 2π

20ΩR
. Moreover, appropriate

values for the internal relative tolerance of the ODE solver should hold the condition
rtol ≲ 1

number of time steps . Otherwise, the inaccuracies add up and lead to deviations
for long simulation times. For more details see Appendix A.4.
We can furthermore detune the tunneling system from the electric driving field
(ωac/2π = 10MHz; Fac = 10Vm−1), which was done in Figure 3.5. The factor
∆0

E
= 1√

2
was held constant in order to maintain the same Rabi frequency ΩR for all

systems. The detuning in energy ℏδ = ℏωac −E leads to a modified Rabi oscillation
Ω′

R =
√︁

Ω2
R + δ2 with a reduced maximum value AR =

(︁
ΩR

Ω′

)︁2 [Mil10]. Hence, the

predicted simulated

δ Ω′
R [kHz] AR Ω′

R [kHz] AR

0.1% 36.958 0.927 36.981 0.928
0.5% 61.367 0.336 61.399 0.337
1.0% 106.14 0.112 106.17 0.113
2.0% 203.14 0.0307 203.17 0.0310

Table 3.2: Comparison between the predicted Rabi frequencies for a detuned tunneling
system and the values from the simulations in Figure 3.5.
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Figure 3.5: Numerical calculation of the time evolution of ρee for different detunings from
the driving field (0.1%, 0.5%, 1.0%, 2.0%) (a)-(d). The relaxation times τ1, τ2 were chosen
to be arbitrarily long, and the temperature was set to zero. Without any energy detuning,
the tunneling system parameters are ∆0 = ∆ = ℏωac√

2
. The detuning in energy holds the

factor ∆0
E = 1√

2
constant (e).

detuning leads to a faster oscillation, while the excited state cannot fully be reached.
Again, we can compare the expected values for the oscillation with the behavior ob-
tained from the simulation. The comparison is shown in Table 3.2, where simulated
frequency and amplitude are again obtained from a fit of a sinusoidal function. Also
for a detuned tunneling system the simulation precisely matches the expectations.
The good agreement for these basic calculations shows that the numerical treatment
of the driving field in the code works as expected.

Next, we combine the excitation with an electric field with relaxation processes
in order to observe saturation effects of the tunneling system. As we have seen in
Section 2.4.5, tunneling systems driven by an alternating electric field will get satu-
rated. This means that in equilibrium, excitation and relaxation balance each other,
and there remains a probability < 0.5 of finding the tunneling system in its excited
state. We can simulate this effect by repeating the calculations from Figure 3.4, but
using now shorter relaxation times of τ1 = 20 µs and τ2 = 2τ1. The results are shown
in Figure 3.6. In equilibrium, for small driving fields, the probability of finding the
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Figure 3.6: Repeating the calculations from Figure 3.4, but applying short relaxation
times of τ1 = 20 µs and τ2 = 2τ1. The temperature was set to zero.

tunneling system in the excited state ρee is close to zero. For higher field strengths,
the tunneling system initially performs Rabi oscillations, which are damped by the
relaxation. After some multiples of τ1, the system has equilibrated and ρee converges
towards its equilibrium value ρeqee . A comparison can be drawn with Equation (2.89),
which predicts the probability for a resonant tunneling system being in the excited
state at very low temperatures as

ρeqee =
Ω2

Rτ1τ2
2(1 + Ω2

Rτ1τ2)
, (3.18)

Fac ρeqee (predicted) ρeqee (simulated)

1Vm−1 0.1429 0.1432
5Vm−1 0.4545 0.4549
10Vm−1 0.4878 0.4880
50Vm−1 0.4995 0.4995

Table 3.3: Comparison between the predicted equilibrium value ρeqee according to Equa-
tion (3.18) and the steady-state results from the simulation in Figure 3.6.
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where we used ⟨Ŝ0,z⟩′ = 1
2
− ρeqee . Table 3.3 compares the results of this equation

with the values found in Figure 3.6 after the system reached its equilibrium state.
Once again, the numerical results show a very good agreement with the predictions.
The maximum value for ρeqee is 0.5 since a two-level system in equilibrium cannot get
population inverted by the driving field. An equilibrium value of 0.5 means a full
saturation of the tunneling system, and as a consequence no generation of any loss.
From the density operator we can calculate the electric polarization, and from that we
determine the dielectric loss tan δ by demodulating the dielectric function’s real and
imaginary part, as explained in Section 3.1. This was done for the time evolutions
of Figure 3.6 for Fac = 1Vm−1 and Fac = 10Vm−1 and is shown in Figure 3.7. The
polarization oscillates with the frequency of the driving field. To make this oscillation
visible on the time scale of the plot, the cycle duration was artificially increased, by
plotting only every 39th data point (one oscillation in P consists of 10 data points).
A normalization volume of V = 1m3 was used for the polarization, which explains
the small absolute values for P and tan δ as we observe the response of a single
tunneling system within the entire volume. The steady-state loss for the smaller
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Figure 3.7: Calculated time evolution of the dielectric loss of a tunneling system from the
simulations in Figure 3.6, for Fac = 1Vm−1 (left) and Fac = 10Vm−1 (right).



60 3. Simulation of the tunneling system dynamics

driving field is much bigger than the one of the larger field. For Fac = 10Vm−1 the
system can only absorb photons at the beginning when it performs Rabi oscillations.
During this initial oscillation, the loss also becomes negative at certain times, where
the system tends to emit photons. In equilibrium the loss is close to zero. The driv-
ing field almost fully saturates the tunneling system, which then cannot effectively
absorb any photons since the probabilities for resonant absorption and stimulated
emission are almost the same. For Fac = 1Vm−1 the relaxation rate exceeds the
rate for excitations ΩR, allowing the system to absorb photons also in equilibrium.

As a final test, we applied in parallel to the driving field an additional electric bias
field, which shifts the tunneling system in its asymmetry energy ∆. We chose a sys-
tem that is initially detuned from the driving field ∆+h·0.35MHz = ∆0 =

ℏωac√
2

. The
bias field is applied in form of a ramp, starting at 100 µs and reaching its maximum
value of Fb = 150Vm−1 after the ramp time tb. Dipole moment and the direction
of the bias field are assumed to be aligned. Using as before a dipole moment of
p = 1Debye gives a maximum shift in ∆/h of about 1.5MHz, meaning that the tun-
neling system crosses the resonance which enables Landau-Zener transitions. The
simulation of this setup with long relaxation times for different ramp times (10 µs,
50 µs, 100µs, and 200µs) is shown in Figure 3.8. At the beginning the system is
set into the ground state and performs a suppressed Rabi oscillation because of the
detuning. As it was discussed in Section 2.4.6, for a fast resonance crossing, the
probability for a transition from the ground into the excited state is reduced, which
agrees with numerical calculation. The probability for a transition is given by Equa-
tion (2.104) and compared with the value of ρee in Figure 3.8 (a)-(d) after crossing
the resonance, see Table 3.4. The values obtained from the simulation were averaged
over the last 10 µs to cancel out the remaining oscillations. One finds a somewhat
good agreement with the expectations, but larger deviations than in the previous
simulations occur. A possible explanation for this mismatch might be the fact that
the tunneling system is initially energetically too close to the excitation frequency,
and not, as demanded by the Landau-Zener problem, clearly detuned from it. There-

tb ρee(∞) (predicted) ρee(∞) (simulated)

10 µs 0.111 0.075
50 µs 0.443 0.469
100µs 0.690 0.666
200µs 0.904 0.883

Table 3.4: Comparison between the predicted probability for a transition into the excited
state for a resonance crossing according to Equation (2.104), and the value ρeqee from the
simulations in Figure 3.8 after the tunneling system has passed the resonance.
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Figure 3.8: Numerical calculation of the time evolution of ρee in the presence of a swept
electric bias field for different ramp times (10 µs, 50 µs, 100 µs, and 200µs) (a)-(d). The
relaxation times τ1, τ2 were chosen to be arbitrarily long, and the temperature was set to
zero. The tunneling system is initially detuned by 0.35MHz in ∆/h = from the driving
field at 10MHz with a field strength of 10Vm−1 and is shifted by the bias field across the
resonance (e).

fore, the applicability of Equation (2.104) for this setting might be limited. Indeed,
simulations with a larger initial detuning give better agreements with solutions of
the Landau-Zener problem, see Appendix A.5. In this case the simulation should be
the more accurate description of the given situation.
When we switch to short relaxation times, the Landau-Zener theory completely fails,
as it does not consider any relaxation processes during the resonance crossing. The
simulation naturally regards relaxation times, and the calculations can be performed
also under fast relaxation times without any interference. Results of such calcula-
tions are shown in Figure 3.9 for two ramp times 50 µs (left) and 200µs (center). All
settings are identical to Figure 3.8, besides the shorter relaxation times τ1 = 20 µs,
τ2 = 2τ1. The fast relaxation forces the tunneling system to return to the ground
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Figure 3.9: Repeating the calculations from Figure 3.8 for two ramp times 50 µs (left)
and 200 µs (center), but employing short relaxation times of τ1 = 20 µs and τ2 = 2τ1.

state within τ1 and does not allow a population inversion over a longer period of
time. The loss was slightly smoothed in order to reduce the appearance of fast off-
resonant Rabi oscillations (light blue). It shows in both cases a distinct absorption
while crossing the resonance, with a subsequent fast oscillation around zero, which
averages out when smoothing the data, or by regarding an ensemble of tunneling
systems, which we will discuss in the following section.

It can be concluded that the simulation presented above provides excellent agree-
ment with the basic predictions of a single two-level system’s dielectric response. In
addition to that, it should also provide a reliable description of its response for more
complex scenarios, where the predictions by theory are limited.

3.3 Monte Carlo simulation of the tunneling system ensemble

The discussed simulations of a single tunneling system can easily be extended to
an ensemble of tunneling systems. First of all, different tunneling systems are ran-
domly generated, whereby their parameters follow the respective distribution. For
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each system, the time evolution of its density operator ρ̂ is then calculated. The
polarization of the ensemble is the sum of each system’s polarization. Knowing the
total polarization, we calculate the ensemble loss from it just in the same way as we
did for a single system. Following the law of large numbers, the larger the number of
generated tunneling systems is, the better the result corresponds to the true value.
Such a Monte Carlo approach should be an appropriate way to map the random
nature of the tunneling system ensemble.

3.3.1 Generation of the tunneling system ensemble

A tunneling system driven by electric fields is fully characterized by its asymmetry
energy ∆, its tunneling splitting ∆0, and its dipole moment p. Equation (2.25)
defines the probability density function (PDF) f(∆,∆0), which gives the probability
for finding a tunneling system with certain ∆ and ∆0

f(∆,∆0)d∆d∆0 =
P0

∆0

d∆d∆0 . (3.19)

The asymmetry energy ∆ is uniformly distributed and can be generated with a
standard pseudo-random number generator. The distribution in ∆0 follows

f∆0(x)dx =
1

x
dx . (3.20)

In order to generate values of ∆0 which follow this distribution, we make use of the
inverse transform sampling. Therefore, we need to find the inverse of the cumulative
distribution function (CDF) F−1

∆0
:

F∆0(x) =

x∫︂
∆0,min

f∆0(x
′)dx′ = ln(x)− ln(∆0,min) (3.21)

F−1
∆0

(x) = ex+ln(∆0,min) (3.22)

Random numbers for ∆0 can now be sampled by generating a random variable u
that is uniformly distributed between zero and the scaling parameter a, which then
yields ∆0 = F−1

∆0
(u) = eu+ln(∆0,min). With that, we can generate random values for ∆

and ∆0 according to their probability distribution Equation (3.19), while at the same
time it is possible to restrict their values to certain ranges. Figure 3.10 shows three
exemplary distributions, each composed out of 5000 systems, and tailored for differ-
ent purposes. In the first case Figure 3.10 (a), ∆/h was generated in the interval
[−20MHz, 20MHz] and ∆0/h between [1MHz, 20MHz]. Calculating the resonant
loss with this distribution is rather inefficient because many tunneling systems are
generated off-resonantly, whose contributions to the loss are insignificant. The loss
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Figure 3.10: Three different ensembles composed out of 5000 tunneling systems which
are distributed according to Equation (3.19). Each point represents a tunneling system
with the parameters ∆ and ∆0. Systems that lie on the black circle are in resonance with
the driving field at 10MHz. Restricting the parameters to certain energy ranges, allows to
tailor the distribution for specific purposes.

would only be dominated by a few systems that fulfill the resonance condition. A
better choice is the distribution shown in Figure 3.10 (b), where tunneling system en-
ergies are only allowed within a small energy band around the driving field frequency.
This gives a higher density of tunneling systems in the relevant energy window. If
also a large electric bias field is involved, a distribution as that presented in (c) is
favorable since tunneling systems exist that will get pushed into resonance during
a bias sweep. The number of generable systems is limited, hence, the divergence
at ∆0 → 0 makes it hard to use small values for the cutoff ∆0,min since the density
of tunneling systems with ∆0 ≈ ℏωac, which are the most relevant for the resonant
loss, becomes very small then. The histograms (3.11) show the distribution of ∆
and ∆0 of the ensemble in Figure 3.10 (a) but with a number of 50,000 tunneling
systems. As demanded, ∆ is uniformly distributed, and the distribution in ∆0 shows
a 1/x-dependency.
So far, we have only used a single value for the dipole moment of p = 1Debye.
However, the dipole angle θ of each system, with regard to the applied electric field,
is randomly distributed. One can assume that in disordered solids every dipole ori-
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Figure 3.11: Histogram of ∆ and ∆0 for a tunneling system ensemble alike the one in
Figure 3.10 (a) with 50,000 systems in total.

entation has the same probability, and hence, use a dipole moment orientation that
is uniformly distributed over the surface of a sphere. The probability of finding a
dipole within the surface element dA = sin θdθdϕ can then be written as

f(θ, ϕ)dθdϕ =
1

4π
sin θdθdϕ , (3.23)

and thus
f(θ)dθ =

1

2
sin θdθ . (3.24)

We can write the CDF for this distribution as

F (θ) =
1

2
(1− cos θ) . (3.25)

Using again the inverse transform sampling we generate values for θ through

θ =cos−1(1− 2u) u ∈ [0, 1] (3.26)
or

θ =cos−1(u) u ∈ [−1, 1] , (3.27)

where u denotes uniformly distributed random numbers in the given interval. Equa-
tion (3.27) neglects negative angles of θ, which we include by using the sign function
sgn(x)

θ = sgn(u1) cos
−1(u2) u1, u2 ∈ [−1, 1] . (3.28)

Figure 3.12 (left) shows the distribution of 400,000 generated dipole angle orienta-
tions. The angles ±π/2 have the highest probability since the surface element on
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Figure 3.12: Distribution of the dipole angle θ (left), and its projection onto the electric
field direction cos θ (right) for 400,000 generated angles, according to Equation (3.28).

the sphere for these orientations is the largest. The dipole angle occurs as cos θ in all
formulae, hence, the distribution of cos θ is of major interest, which reveals a uniform
distribution in the interval [−1, 1], see Figure 3.12 (right).
In most of the cases that will be presented in the following, we are only interested
in the general behavior of the tunneling system ensemble, which is why, in order
to simplify the calculations, we neglect the fact that θ follows a probability distri-
bution and choose a fixed value of cos θ = 1 instead. The same is done for the
tunneling system relaxation times τ1 and τ2, where we choose constant values for
most of the simulations but can in principle also apply the one-phonon relaxation,
see Equation (2.68). Whenever the simulation is supposed to map the experiment
more closely distributions for these parameters can be directly implemented.

3.3.2 Streamlining the simulation

Computing the time evolution of thousands of single tunneling systems is a rather
time consuming process. The computations are performed on an Intel® Core™ i7-
8700K CPU. We do not consider any interactions between the tunneling systems and
consider them to be independent from each other. Hence, the time evolutions can
be regarded separately, and a full parallelization is possible. Calculating the time
evolution of several tunneling systems in parallel on different CPU threads massively
shortens the computation times.
In order to have the time scale of relaxation processes comparable to those in ex-
periment, we need to simulate the time evolution over a period of several hundred
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microseconds. An excitation frequency of 1GHz requires a large number of simula-
tion time steps to resolve the resulting high frequency oscillation of the polarization.
The number of time steps then needs to be of the order ∼106. A way to reduce
this number is by using a lower excitation frequency of 10MHz, which has already
been used in the previous sections. If the temperature can be assumed to be small,
the absolute number of the energy splitting E should be irrelevant for the tunneling
system’s dynamics. The Rabi frequency ΩR, the change of the energy splitting in
the presence of a swept bias field ν, and the therefore the Landau-Zener parameter
γ, all depend solely on the ratio ∆0

E
, which is unaffected by the absolute value of

E. For this reason, we can rescale the whole system. An excitation with 10MHz

should give equivalent results to faster excitations. Using an even lower excitation
frequency eventually leads to a significant modulation of the energy splitting E by
strong electric driving fields, which then leads to deviations. Choosing an excitation
of 10MHz allows field strengths of up to 100Vm−1, whereby the results were found
to be identical to the ones using faster resonant excitations.
The absolute value of E becomes important when the effect of non-negligible tem-
perature comes into play. This involves terms where the thermal population factor
tanh (E/2kBT ) occurs. We can artificially boost this factor to the required value by
replacing all of these emerging terms with tanh (boost·E

2kBT
). In the case of an excitation

with 10MHz, we boost all tunneling systems with the factor boost = 100, which
then gives the same thermal population number of 1GHz-systems, and thus, should
lead to equivalent results.
Another optimization can be made for strong off-resonant tunneling systems. As
long as we consider only the resonant loss, tunneling systems with a large detun-
ing are irrelevant. Therefore, we can avoid this very time-consuming calculation by
setting the driving field strength for these systems to zero, which has a negligible
impact on the evolution anyway. It is found that computing the full Hamiltonian
only for tunneling systems within 0.7ℏωac < E < 1.3ℏωac significantly shortens the
computation time without a loss of any accuracy. This will be of importance for sim-
ulations including electric bias fields, where tunneling systems cross a wide energy
range, but are in resonance with the driving field only for a short period of time. If
short transversal relaxation times τ2 ≲ 10 µs are used in the simulation, the above
limit needs to be chosen wider because the spectral width of tunneling system contri-
butions is broader then, and off-resonant tunneling systems will contribute stronger
to the resonant loss.
By applying these refinements to the simulation, the computation of the resonant
loss with 15,000 tunneling systems over a time span of 600µs takes about 2-4 hours,
depending on the specific simulation scenario. This gives an acceptable time scale
for performing such tunneling system simulations.
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3.3.3 Driving field strength dependency

A verification of the simulation can be done by calculating the resonant loss of a tun-
neling system ensemble as a function of the driving field strength. This is compared
to the loss from Equation (2.92), originating from the saturation of tunneling systems
by large electric driving fields. We start with an ensemble of 5000 systems, as shown
in Figure 3.13, which is driven by an electric field at frequency ωac/2π = 10MHz and
Fac = 3Vm−1. The relaxation times are taken to be constant τ1 = 20 µs, τ2 = 2τ1,
and the dipole moment is set to p = 1Debye with cos θ = 1. At the beginning,

Figure 3.13: Monte Carlo simulation of the dielectric loss for an ensemble of 5000 tun-
neling systems at three different time steps: (a) t=5 µs, (b) t=25 µs and (c) t=170 µs.
Tunneling systems are generated within the relevant energy range with constant parame-
ters τ1 = 20 µs, τ2 = 2τ1, p = 1Debye, and the temperature set to zero. The ensemble is
driven by an electric field of Fac = 3Vm−1 and ωac/2π = 10MHz.

all systems are in the ground state. Therefore, the electric field initially excites all
resonant tunneling systems into their upper state, which we have already discussed
for the case of a single system in Section 3.2. The initial absorption of photons by
resonant tunneling systems is associated with the occurrence of a large dielectric loss.
This is in agreement with Figure 3.13 (a), where the color of each point indicates
each system’s loss. Systems that fulfill the resonance condition (black line) are the
ones that generate the highest losses. As the simulation continues, saturation leads
to a smaller loss since tunneling systems are already in the excited state and cannot
fully absorb photons (b). In equilibrium the rate of excitation and relaxation balance
out each other. We then find a reduced loss (c), as tunneling systems are saturated
by the excitation. An evaluation of the whole sequence is presented in Figure 3.14.
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Figure 3.14: Evaluation of the sequence
in Figure 3.13. The loss of the ensemble
is plotted as a function of time, and the
time steps (a), (b), and (c) from above
are marked.

It shows the ensemble loss as a function of time, where the three time steps from
Figure 3.13 (a), (b), and (c) are marked. One can observe the above-mentioned
behavior; an initial increase of the loss with a subsequent relaxation towards the
equilibrium loss, which is reduced due to saturation of tunneling systems.
We can repeat this sequence with different field strengths of the driving field. This is
done in Figure 3.15 (left) for field strengths between 0.01Vm−1 and 100Vm−1, with
relaxation times of τ1 = 40 µs, τ2 = 2τ1. An ensemble with 10,000 tunneling systems
and ∆0,min/h = 4MHz was used. All other parameters were chosen as in Figure 3.14.
Analogously to the discussion of a single tunneling system, we observe a reduction of
the loss in equilibrium with increasing field strengths due to saturation. We obtain
the equilibrium loss by averaging over the last 50 µs (grey area) and plot these values
as a function of the applied field strength, which was done in Figure 3.15 (right).
We find a plateau for small field strengths which goes over into a F−1-dependency
above a critical value of the field strength. These data points are compared with
Equation (2.92), in which the simulation parameters are plugged in, and we find a
critical field strength of Fc = 0.559Vm−1 (dashed gray curve). This gives a fairly
good agreement. However, Equation (2.92) implies a distributed phononic relaxation
rate τ−1

1P which is integrated over a wide energy range. This is not fully compatible
with the simulation settings, where we used constant relaxation times and a limited
energy range for generated tunneling systems. In order to obtain results that more
comparable to those of the simulation, we have to integrate Equation (2.91) with
the simulation parameters over the applied energy range of distributed tunneling
systems. The result of the numerical integration is shown by the solid blue line
in Figure 3.15 (right). The usage of appropriate integration limits gives a better
agreement with the results of the simulation. However, the simulation data is still
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Figure 3.15: Left: Time evolution of the loss for different field strengths. An ensemble of
10,000 tunneling systems and ∆0,min/h = 4MHz, with constant relaxation times τ1 = 40 µs,
τ2 = 2τ1 was used. All other parameters were chosen as in Figure 3.14. The equilibrium
loss for each field strength is obtained from an average over the last 50 µs (grey area).
Right: Equilibrium loss as a function of the applied field strength. The simulation results
are compared with Equation (2.92) (dashed grey curve) and with a loss obtained from an
integration adapted to the distribution’s energy limits of the simulation (solid blue curve).

slightly shifted towards higher field strengths, indicating an imprecise critical field
strength, possibly occurring from the limited number of generated tunneling systems.
Nevertheless, the overall behavior follows the expectations.

3.3.4 Temperature dependency

Another test of the simulation can be made by simulating the temperature depen-
dency of the dielectric function’s resonant part in equilibrium. For the calculation
of the resonant loss, it is sufficient only to regard tunneling systems with energy
splittings E ≈ ℏωac. However, this is not appropriate for the resonant real part since
also off-resonant tunneling systems give contributions to the dielectric response, see
Figure 2.12. Hence, we need to generate tunneling systems over a wider energy range.
We chose the energy limits ∆0,min/h = 1.7MHz, Emax/h = 50MHz and used a one-
phonon relaxation process (2.68) with K1 = 5.2× 1078 J−3s−1. The same as before,
we calculate the dielectric response to an electric field with field strength 0.1Vm−1

and frequency 10MHz. As discussed in Section 3.3.2 we can emulate the behavior
of a 1GHz excitation by using the thermal population factor tanh(h·1GHz

2kBT
) in the

simulation. Moreover, we need to apply the driving field to all tunneling systems
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since now we are not only interested in the resonant loss.
Figure 3.16 shows the results of such a simulation with 30,000 generated tunneling
systems. The data is compared to the analytic results of the resonant part from
Equations (2.86) and (2.87), where we used A = 142× 10−20 and ωac/2π = 1GHz in
both cases. For the loss we find a good agreement over the whole temperature range,
while in the real part the simulation data is described by theory only up to 200mK.
This is to be expected since in the simulation no tunneling systems above Emax exist,
which are the ones giving contributions to the real part at higher temperatures. The
simulation data then cannot follow the theory anymore. Only at lower temperatures,
where tunneling systems with lower energy become thermally accessible, tunneling
systems exist which produce the expected behavior. In the resonant loss, the lim-
ited energy range of generated tunneling systems is not a problem because only the
resonant ones give significant contributions to the loss, which are included in the
generated ensemble. At higher temperatures, these systems become thermally more
and more populated, and their contribution vanishes. Choosing an even higher cut-
off for Emax should give better results in the real part for higher temperatures, but
requires a larger number of sampled tunneling systems to maintain an appropriate
tunneling system density. As we are rather interested in the resonant loss at low
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Figure 3.16: Simulation of the real (left) and imaginary part (right) of the dielectric
function in equilibrium as a function of temperature. In total 30,000 tunneling systems were
generated within a wide energy range of∆0,min/h = 1.7MHz, Emax/h = 50MHz, applying a
one-phonon relaxation process (2.68) with K1 = 5.2× 1078 J−3s−1. An excitation with field
strength 0.1Vm−1 and frequency 10MHz was used. The thermal population was boosted
by the factor 100 to emulate the response of tunneling systems to an 1GHz excitation. The
simulation results are compared to Equations (2.86) and (2.87).
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temperatures, we will not intensify this topic. We can summarize that the simula-
tion successfully reproduces the expected behavior for these steady-state examples
(field and temperature dependency), which underlines the proper operation of the
presented Monte Carlo simulation. Already with quite a low number of generated
systems, we obtain precise results.

3.3.5 Non-equilibrium loss

We continue with non-equilibrium phenomena and restrict the discussion to the
resonant loss, which allows us to confine the distribution of tunneling systems to
the resonant ones. We repeated the simulation of Figure 3.13 with an excitation
of Fac = 10Vm−1, ωac/2π = 10MHz, and constant relaxation times τ1 = 20 µs,
τ2 = 2τ1. In addition, we applied an electric bias field which is ramped from 0Vm−1

to 1 kVm−1 within 100µs. Since we use a constant value for the dipole moment of
p = 1Debye and a fixed orientation cos θ = 1, all tunneling systems will be shifted
equally in∆. The maximum shift in∆ is calculated as δ∆max/h = 2pFb/h ≈ 10MHz.
Hence, tunneling systems must be generated within this energy range as they cross

Figure 3.17: Monte Carlo simulation of the dielectric loss for an ensemble of 5000 tun-
neling systems at four different time steps in the presence of an additional ramped electric
bias field: (a) t=5 µs, (b) t=50 µs, (c) t=100 µs, and (d) t=280 µs. Tunneling systems are
generated within the relevant energy range with constant parameters τ1 = 20 µs, τ2 = 2τ1,
p = 1Debye, and the temperature was set to zero. The ensemble is driven by an electric
field of Fac = 10Vm−1 and ωac/2π = 10MHz. The bias field is ramped from 0Vm−1 to
1 kVm−1 within 100 µs, starting at t = 25 µs.
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Figure 3.18: Evaluation of the sequence
in Figure 3.17. The loss of the ensemble
is plotted as a function of time, in the
presence of ramped bias field. The time
steps (a), (b), (c), and (d) from before
are marked.

the resonance during the bias sweep. Figure 3.17 shows the loss of each tunneling
system for such a simulation at four steps in time. At the first time step (a), prior
to the bias sweep, the ensemble has already equilibrated into its steady-state. The
resonant tunneling systems are heavily saturated by the driving field and cannot gen-
erate a high loss. When the bias ramp is applied (b) and (c), the asymmetry energy
gets strongly modified. Saturated systems are constantly pushed out of resonance,
and new sets of tunneling systems become resonant with the driving field. These
systems were off-resonantly driven before, and hence, are initially in their ground
state. As we have discussed before within the scope of Landau-Zener transitions, by
crossing the resonance, they are able to absorb photons from the driving field, which
leads to an increased loss, see Sections 2.4.6 and 3.2. This matches the findings
shown in Figure 3.17, where the loss of resonant tunneling systems is significantly
enhanced during the bias sweep. In (d) the ensemble is shown after the bias sweep
when equilibrium is reached again. A different set of tunneling systems is now in
resonance with the driving field, but generates the same loss as prior to the bias
ramp because the distribution of tunneling systems is flat in ∆.
Figure 3.18 shows the evaluation of the whole sequence, where each time step from
Figure 3.17 is marked. Prior to the shown time window, the time evolution of the
ensemble was simulated for 300µs, giving the systems enough time to equilibrate
into their steady-state. This is why hardly any time dependence of the loss is found
before the bias ramp starts. The result for tan δ agrees with the previous expla-
nations. During the bias ramp the ensemble is in non-equilibrium, and the loss is
significantly enhanced compared to its equilibrium value before and after the ramp.
The noise of the loss during the ramp maps the fluctuations of the sampled tunneling
system ensemble, which can be reduced by choosing a larger number of generated



74 3. Simulation of the tunneling system dynamics

10
4

10
2

10
0

10
2

Bias Rate  [MV/m/s]

0

100

200

300

400

500

600

700

800
10

20
ta

n
= 3.0 V/m
= 5.0 V/m
= 10.0 V/m
= 30.0 V/m

10
5

10
3

10
1

10
1

10
3

10
5

Dimensionless Bias Rate 

0.0

0.2

0.4

0.6

0.8

1.0

ta
n

/t
an

Landau-Zener theory
= 3.0 V/m
= 5.0 V/m
= 10.0 V/m
= 30.0 V/m

Figure 3.19: Non-equilibrium loss as a function of the applied bias rate Ḟ b (left) and as a
function of the dimensionless bias rate ξ (right). The simulation of Figures 3.17 and 3.18 was
repeated, with 15,000 generated tunneling systems, and relaxation times of τ1 = 40 µs, τ2 =
2τ1, with four different driving field strengths Fac = [3Vm−1; 5Vm−1; 10Vm−1; 30Vm−1].
The simulation data is compared to the results of the Landau-Zener theory (solid black line).

tunneling systems in the simulation. The same value of the equilibrium loss before
and after the bias ramp reflects the flatness of the tunneling system distribution in ∆.

We can vary the ramp times and extract the non-equilibrium loss through a rapid
bias sweep by averaging over the values of the loss during the ramp. Thereby, we
obtain the non-equilibrium loss as a function of the bias rate, which is shown in
Figure 3.19. We used the same confinements of the distribution as in Figure 3.17,
but with 15,000 generated tunneling systems. The relaxation times were extended
to τ1 = 40 µs, τ2 = 2τ1, and four different driving field strengths Fac were used. We
varied the ramp times over several orders of magnitude to obtain bias rates between
10−4MVm−1 s−1 and 103MVm−1 s−1. All other parameters were chosen as in Fig-
ure 3.17. In the plot on the left-hand side, absolute values for the bias rate and
loss were plotted. The overall behavior matches the expectations. For small bias
rates we observe the equilibrium loss, which decreases with increasing driving field
strengths due to saturation. At these rates, the bias sweep is too slow to induce any
Landau-Zener transitions, and one observes the steady-state results. With increasing
bias rates, the loss increases as well due to the Landau-Zener dynamics of tunneling
systems and reaches for all curves the same plateau value at very high rates. The
larger the driving field, the faster the bias field needs to be swept to observe an
enhanced loss due to Landau-Zener transitions.
A more quantitative comparison with the Landau-Zener theory can be drawn by plot-
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ting the normalized loss as a function of the dimensionless bias rate ξ (right). In this
case, the simulated loss becomes independent from the applied driving field strength
for higher bias rates, where all curves collapse onto a single one. The results from
the simulation can be compared to the non-equilibrium loss of tunneling systems
predicted by the Landau-Zener theory. We make use of Equation (2.113), but adjust
the integration limits to the actual simulation settings. We do not have to perform
the integration over the dipole angle θ since it is fixed in the simulation. Moreover,
the integration in x = ∆0

ℏωac
is performed between 0.4 and 1, according to the lim-

its of ∆0. With that, one obtains the black curve in the right plot, which agrees
well with the simulation data for high rates ξ. Especially for small driving fields
and slow bias rates the Landau-Zener theory fails, as it disregards any relaxations
during the resonance crossing. If the relaxation time of tunneling systems becomes
comparable to the time of a resonance passage, one expects deviations from the pure
Landau-Zener solutions. This becomes in particular relevant for weak driving fields,
where small rates are sufficient to induce Landau-Zener transitions. The simulation
includes relaxation processes, and therefore provides an adequate description of the
non-equilibrium loss over the whole scale of bias rates.
It is interesting to see that if we rescale the loss, by subtracting from each curve its
value at small bias rates tan δmin and normalize the loss by the factor tan δ0−tan δmin,
we find an agreement with the Landau-Zener theory for all bias rates. This is shown
in Figure 3.20, where all curves then entirely collapse onto the theory curve.

10
5

10
3

10
1

10
1

10
3

10
5

Dimensionless Bias Rate 

0.0

0.2

0.4

0.6

0.8

1.0

(ta
n

ta
n

)/
(ta

n
ta

n
)

Landau-Zener theory
= 3.0 V/m
= 5.0 V/m
= 10.0 V/m
= 30.0 V/m

Figure 3.20: Rescaling the non-
equilibrium loss by the minimum value as
a function of the dimensionless bias rate.
All curves then entirely collapse onto a
single one.
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3.3.6 Noise bias

Besides biasing tunneling systems with ramped fields, we will also be dealing with
noise as bias signal in the experimental results chapter. In the following, we will
therefore calculate the dielectric loss of the tunneling system ensemble in the pres-
ence of a fluctuating bias field. We continued the calculations of Figure 3.15 by
applying uniformly distributed random values between ±100Vm−1 as bias field af-
ter equilibrium was reached. A new value for the bias field is generated every 1 µs,
and the points in between are linearly interpolated. This gives an upper limit for
the bias rate of Ḟ b,up = 200MVm−1 s−1. The noise bias field acts as a continuously
changing bias rate, and Landau-Zener transitions permanently take place, which on
average reduces the population of the upper level. Thus, the loss is enhanced during
the noise bias, corresponding to the results of Figure 3.21 (left).
As before, we applied different driving field strengths and calculated the noise-
enhanced loss as a function of the driving field strength, see the blue crosses in
Figure 3.21 (right). The result is compared to the field strength dependency of Fig-
ure 3.15 (purple filled circles). It can be seen that the noise bias helps to prevent
the tunneling systems from getting saturated by the driving field, as one can observe
the low-power loss even at moderate field strengths. A second data set with reduced
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Figure 3.21: Repeating the simulations from Figure 3.15, but applying random noise as
bias signal after equilibrium is reached. Left: Time evolution of the loss in the presence of a
noise bias with a driving field strength of Fac = 3.2Vm−1. All other parameters were chosen
as in Figure 3.15. The non-equilibrium loss is obtained by averaging over the loss during
the noise bias. Right: Loss as a function of the driving field strength with and without
applied noise bias. The results with noise bias are compared to a theory of a nonlinear loss
in the presence of a distinct spectral diffusion as described by Equation (2.95).
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noise level was calculated. There, the bias field fluctuates between ±10Vm−1, and
new values were generated every 10 µs (green squares). The effect of the noise bias is
then reduced, as the plateau at low field strengths cannot be sustained at such high
field strengths. For very high field strengths the loss converges back towards the loss
without any bias fields. In this regime, the bias rate is too small compared to the
rate of excitation, and the probability for Landau-Zener transitions is low, leading
to the steady-state results.
The simulation curves are compared to the results of the nonlinear loss in the presence
of a distinct spectral diffusion as described by Equation (2.95). Spectral diffusion
has a similar effect on tunneling systems as the noise bias has. Both give rise to
fluctuations of the tunneling systems’ energy splitting, leading to different sets of
systems in resonance with the driving field over time. It is therefore reasonable to
compare these two cases with each other, despite their different origin and underlying
statistics. As Figure 3.21 (right) shows, it is indeed possible to describe the simu-
lated noise bias curve to some extent with the nonlinear loss theory due to spectral
diffusion. Defined by the simulation, we used the relaxation time τ20 = 2τ1 = 80 µs
and fitted the parameter τsd such that we find a good agreement between theory
and simulation. Besides very high field strengths, the nonlinear loss describes the
simulation results even quantitatively well. The spectral diffusion relaxation time
τsd is misused here as a parameter that determines the noise level. Or vice versa, the
noise bias can be interpreted as artificial spectral diffusion.

3.3.7 Pump tone probe tone experiments

In equilibrium, the population difference n|g⟩−n|e⟩ of a tunneling systems cannot be
smaller than zero. However, in non-equilibrium the Landau-Zener theory allows a
population inversion of the tunneling systems under certain circumstances, which we
have already seen in Figures 3.8 and 3.9. Due to interactions with the environment,
a population inverted tunneling system will always relax back towards its ground
state after some time. The population inversion can be revealed by applying an
additional high frequency electric field (pump tone), which is slightly detuned from
the original driving field (probe tone), see Figure 3.22 (d). The same way as before,
a ramped bias field shifts the tunneling system in its asymmetry energy. An initial
strongly off-resonant system will first reach resonance with the pump tone. Through
an appropriate choice of the pumping field strength and bias rate a Landau-Zener
transition may be avoided, and one achieves an adiabatic passage. After passing the
pump tone adiabatically the tunneling system should be in the excited state with a
high probability, and hence is inverted. The ramped bias field shifts the tunneling
system’s energy further, such that it becomes resonant with the probe tone after
some period of time. If the time between crossing the pump tone and reaching the
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probe tone is short compared to the relaxation time the tunneling system should
still be in the excited state. The probe tone now sees an excited system, instead of
a system in the ground state that we discussed in the previous cases above. This
results in a stimulated emission process, where a coherent photon with the probe
tone frequency is emitted. If one regards the loss at this frequency, one will observe
a negative value of the loss, since the driving field is amplified by the emitted photon.
There exists an energy transfer from the pump to the probe tone mediated by the
tunneling system. In [Bur14a, Ros16], it was stated that such a sequence indeed
leads to population inverted tunneling systems, which was observed by means of
an appearing negative resonant loss. From an experimental point of view, we will
address this topic in Section 5.4.3.
In the following, we want to look at its realization within the introduced simulation
framework. For the sake of convenience, we start by considering a single tunneling
system. The system is initially detuned towards higher energies from the probe tone
at ωprobe = 2π · 10MHz and field strength Fprobe = 20Vm−1. An additional high
frequency electric field is applied at ωpump = 2π ·12MHz with Fpump = 100Vm−1. In
total we then have the driving field Fac(t) = Fprobe cos(ωprobet) + Fpump cos(ωpumpt),
which is used in the simulation as excitation. The bias field is ramped within a ramp
time tb from 0Vm−1 to a negative value −1 kVm−1 since the asymmetry energy ∆
needs to be shifted towards smaller energies in order to cross both tones. Relaxation
times of τ1 = 80 µs and τ2 = 2τ1 were used. All other parameters were chosen as in
Figure 3.9.
Figure 3.22 (a)-(c) shows the time evolution of ρee and tan δ for this scenario with
three different ramp times. The points in time when the tunneling system is in reso-
nance with the pump or probe tone are marked by the gray areas. At the fastest bias
ramp (a), the used pump tone field strength is too weak to achieve a full excitation.
For these parameters the probability for a Landau-Zener transition is enhanced, and
the pumping is then not as efficient as for a fully adiabatic transition at slower ramps.
At the slowest bias rate (c), the level of excitation is reduced because relaxations
during the resonance passage become more relevant, which reduces ρee. The pump
tone excitation leads to a polarization oscillating at the pump tone frequency, but we
observe the response at the frequency of the probe tone. Hence, no significant con-
tribution to the loss is observed for this first resonance crossing. Note that we band
pass filtered the polarization here at the probe tone frequency. Otherwise, mixing
between pump and probe tone frequency leads to interference and results in para-
sitic oscillations. Filtering is also done in experiment, where typically a resonator is
used for probing the sample. The resonator then acts as band pass filter and filters
off-resonant carrier frequencies from the sample’s polarization. In the simulation
the band pass filter cannot be made arbitrarily narrow since this would heavily slow
down the response time, which is why there remains a small response apart from the
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Figure 3.22: Numerical calculations of the time evolution of ρee and tan δ for different
bias ramp times (a)-(c). Besides the probe tone at 10MHz with field strength 20Vm−1, an
additional pump tone is applied at 12MHz and 100Vm−1. Relaxation times of τ1 = 80 µs
and τ2 = 2τ1 were used, and the temperature was set to zero. The tunneling system is
initially detuned and is shifted by the bias field across the two tones (d). The points in
time when the tunneling system crosses pump or probe tone are marked by the gray areas.

probe tone frequency. Here, we used a Butterworth filter of order 3 with the cutoffs
fc,l = 9.7MHz and fc,h = 10.3MHz.
After crossing the pump tone, at some point the tunneling system reaches the probe
tone. In the case of a fast bias sweep, the time for this transit is small, and hardly
any relaxation into the ground state takes place. On the other hand, slow ramping
leads to a considerable reduction of ρee during the transit due to relaxation. For an
even slower bias ramp than in (c), one can easily imagine that the erstwhile pop-
ulation inversion has completely vanished before the tunneling system reaches the
probe tone energy, and no stimulated emission process is then possible. A very fast
bias ramp can be counterproductive as well. The intensity of the probe tone is typ-
ically smaller than the one of the pump tone. The probability for a Landau-Zener
transition at the probe tone is therefore higher. Indeed, in (a) one does not observe a
change in ρee during the second resonance crossing, indicating that a Landau-Zener
transition takes place. As no photon is emitted, one cannot observe a negative loss
in this case. Only in between these limits, at medium bias rates, the probe tone
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can effectively induce a stimulated emission process, and the loss measured at this
frequency becomes distinctly negative when the tunneling system crosses the probe
tone (b).
We can transfer these insights to the tunneling system ensemble. In Figure 3.23 we
repeated the simulation of the bias rate dependency with Fprobe = 10Vm−1 from
Figure 3.19, but included two pump tones detuned by δ = ±1MHz from the probe
tone at 10MHz. The pump tone field strengths were varied between 1Vm−1 and
100Vm−1. On the left side, the time evolution for a medium fast bias ramp is shown
with pump tone intensities of Fpump = 100Vm−1. Analogously to Figure 3.18, the
ensemble is initially in equilibrium. When the bias ramp starts at 25 µs, the loss
heavily increases at first. This is caused by the systems that initially have energies
that sit between pump tone and probe tones. These systems will get into resonance
with the probe tone first and have not crossed any pump tones yet. Thus, these sys-
tems cause an initial rise in the loss due to the discussed Landau-Zener transitions.
As the ramp continues, more tunneling systems reach the probe tone that have al-
ready crossed the pump tones and might be inverted. The loss drops and eventually
becomes negative. For the second half of the bias sweep, the loss is solely generated
by pumped tunneling systems and stabilizes at a constant negative value. Inverted
tunneling systems continuously cross the probe tone, and stimulated emission takes
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Figure 3.23: Repeating the simulation of the bias rate dependency from Figure 3.19 with
a probe tone at 10MHz and field strength 10Vm−1. Two additional pump tones, detuned
by ±1MHz from the probe tone, were used. Left: Time evolution of the loss for a medium
bias rate and a strong pump tone. Right: The loss during the second half of the bias ramp
is averaged and plotted as a function of the corresponding bias rate for different pump tone
intensities. The solid arrows mark the bias rates where a negative loss through tunneling
systems performing stimulated emission is expected.
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place until the bias ramp stops. We averaged the loss over the second half of the
bias sweep and plotted this value as a function of the corresponding bias rate for
different pump tone field strengths in Figure 3.23 (right).
We can directly see that the effect of stimulated emission becomes more prominent
for higher pump tone intensities. For a weak pump tone Fpump = 1Vm−1, the loss
is identical to the non-equilibrium loss without any pump tones. By increasing the
pump tone field strength, the loss starts to decrease and becomes negative for strong
pumping. This reduction only takes place within certain bias rate limits which we
can identify by the conditions we have previously discussed for a single tunneling
system. Towards upper bias rates, the probability for population inversion through
pumping is limited due to Landau-Zener transitions. Only for an adiabatic resonance
crossing at the pump tone frequency, tunneling systems are inverted, which gives the
condition ν0 ≲ Ω2

R0,pump obtained from Equation (2.104). This can be written as an

upper limit for the bias rate, i.e. Ḟ b ≲
pF 2

pump

2ℏ . In order to still have inverted tun-
neling systems at the probe tone frequency, the time interval between pumping and
probing must be smaller than the relaxation time. Thus, we can write ν0τ1 ≳ δ, with
the detuning δ between pump and probe tone frequency being δ = |ωpump − ωprobe|.
We can write this as a lower limit for the stimulated emission Ḟ b ≳ ℏδ

2pτ1
. For the

simulation parameters used here, the black vertical line in Figure 3.23 (right) tags
this lower limit for the bias rate. Only for the two highest pump tone intensities,
this limit lies below the upper limit, which gives rise to a dip in the loss. The region
between the two limits is marked by the arrows, which roughly agrees with the oc-
currence of a negative loss. The dotted arrows indicate that the upper limit for the
bias rate lies below the lower one, and hence, no stimulated emission is possible, in
agreement with the discussion in [Bur14a].

Solving the dynamics of each tunneling system numerically at its elementary level
gives great variability and allows to adopt the simulation directly to various scenar-
ios, where an analytic description of the tunneling system dynamics might be limited
or not possible.
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4. Experimental Methods

In this chapter detailed information about the experimental methods used within
this thesis is given. The chapter starts with a brief introduction about performing
measurements at a few millikelvin. We then specify in Section 4.3 on the utilized
radio frequency setup for measuring the dielectric response of the glass sample be-
tween 250MHz and 1GHz at low input powers. Section 4.4 presents the developed
superconducting bridge-type resonators that are used for the investigation of tunnel-
ing systems performing Landau-Zener transitions in bulk glasses. The measurement
principle and the elaborated protocols for the Landau-Zener spectroscopy are ex-
plained in Section 4.5. The chapter ends with more specific resonator details that
are of importance for the analysis of the experimental results.

4.1 Measurements at very low temperatures

The main part of this thesis deals with tunneling systems that are thermally in their
ground state and interact resonantly with the applied electric driving field. Tun-
neling systems in resonance with an excitation at 1GHz have a thermal population
difference of ∆n = tanh(h · 1GHz/2kBT ) = 0.24 at T = 100mK and ∆n = 0.98

at T = 10mK. Therefore, temperatures down to a few millikelvin are needed to
realize the required experimental conditions. We use a commercial 3He/4He dilution
refrigerator Oxford Kelvinox 4001 with which we were able to perform measurements
at stabilized temperatures between 10mK and 8K.
Here, we restrict to the basic operating principle of a 3He/4He dilution refrigerator
and refer to specialized literature for further reading [Ens05, Pob07, Fro92]. The
operation principle is based on a continuous phase transition of the helium isotope
3He from a 3He-rich into a 3He-poor phase whereby heat is taken from the environ-
ment. When a mixture of the two helium isotopes 3He and 4He is cooled down below
≈ 800mK the liquid mixture separates into two phases: an almost pure 3He phase
and a mixed phase where 3He is diluted in 4He. At normal pressure and T → 0K

about 6.5% of the 3He is diluted in 4He. Because of its higher mass, 4He possesses a
smaller zero-point energy compared to 3He. With that, 3He is more strongly bound
to 4He and dilutes into it. Since 3He obeys the Fermi-Dirac statistics, the more 3He
is bound to the 4He the higher its energy becomes, which limits the solubility of 3He
in 4He. Above a certain concentration the formation of a second phase of almost
pure 3He is energetically more favorable. At these temperatures 4He is superfluid

1Oxford Instruments, Tubney Woods, Abingdon, UK OX13 5QX
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and acts as a quasivacuum for the diluted 3He. A transition of 3He from the 3He-rich
into the poor phase corresponds to an evaporation process, and energy is taken from
the environment. The cooling power for this process is found to be Q̇ = 84ṅ3T

2

[Pob07], where ṅ3 describes the number of 3He performing a transition between the
two phases per unit time.
Figure 4.1 shows a schematic drawing of a typical 3He/4He dilution unit which al-
lows to run the phase transition continuously. In the so-called mixing chamber, the
coldest part of the cryostat, due to the phase separation the lighter 3He-rich phase
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Figure 4.1: Schematic drawing of a 3He/4He dilution refrigerator. The shown dilution unit
is placed inside a vacuum pot, which is located inside a bath of liquid 4He. The experiments
are placed on the experimental platform at the bottom of the cryostat. Adapted from
[Pob07].
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swims on top of the diluted 3He-poor phase. The 3He-poor phase is connected to the
still which is heated to approximately 700mK. Due to the 3He’s lower boiling tem-
perature, mainly 3He evaporates and is pumped out by a following pumping system.
Hence, the 3He concentration in the still is considerably reduced, and a gradient in
concentration between still and mixing chamber forms. This results in an osmotic
pressure, which causes a flow of 3He from the mixing chamber into the still and
drives the phase transition of 3He in the mixing chamber. Collecting and feeding the
pumped 3He from the still back into the mixing chamber closes the circulation, and
one achieves a continuously operating cooling process.
As illustrated in Figure 4.1 the dilution unit is placed inside an evacuated niobium-
shielded metal vessel (vacuum pot) immersed in a bath of liquid 4He. Before the 3He
is fed back into the cryostat, the gas runs through cold traps, where it gets cleaned.
The gas is then precooled by the surrounding 4He bath to 4.2K before it enters the
vacuum pot, where a second 4He bath (1K-pot) at 1.5K condenses the incoming 3He
gas. The 1K-pot is filled through a capillary from the 4He bath. Pumping the liquid
4He lowers its temperature to about 1.5K. After passing flow impedances, the still,
and heat exchangers the 3He enters the mixing chamber at approximately 10mK.
Thermally well attached to the mixing chamber, the experimental platform out of
copper2 allows to mount the experiments on it. Moreover, with an attached heater
it is possible to regulate the cryostat’s temperature above its base temperature. A
stable operation of the cryostat with the entire 3He/4He-mixture is possible up to
850mK. For measurements above this temperature, the cryostat is operated with
a fraction of the mixture. We use a carbon resistor thermometer across the entire
temperature range, which was calibrated with a noise thermometer. The calibration
of the noise thermometer itself was done via a fixed point thermometer that is based
on the critical temperature of several superconductors [Rei17]. The temperature-
dependent resistance of the carbon resistor is readout through an AC resistance
bridge3, which allows a precise determination of the resistance while using small ex-
citation voltages in order to avoid parasitic heating through the readout. In addition,
the resistance bridge provides a control loop. The PID feedback-control gives a sta-
bilization of the temperature of typically less than 0.5% at the lowest temperatures.
For driving and reading out the resonator’s response coaxial cables connect the res-
onator with the readout electronics at room temperature. In order to reduce the
heat load coming from the cables, several heat sinks attached to different temper-
ature stages of the cryostat are used. The type of heat sink used here is shown in
Figure 4.2. The coaxial cables are connected to the SMA connectors, whose inner
conductors are bonded to a niobium stripline on a sapphire substrate. The dimension

2Tempered oxygen-free copper, in order to avoid impurities, especially hydrogen, and achieve a
high thermal conductivity and low heat load.

3LR-700, Linear Research Inc., 5231 Cushman Place, Suite 21, San Diego, CA 92110-3910, USA



86 4. Experimental Methods

SMA
Connector

Gold Plated 
Cooper Box

Thermal
Bridge

Sapphire 
Substrate

Niobium
Stripline

Cover

Figure 4.2: Picture of a heat sink for
coaxial cables.

of the stripline is chosen to match the 50Ω impedance of the cable. Because of the
good thermal conductivity of sapphire, the inner conductor of the coaxial cable is
thermally connected to the gold plated copper box. Through a thermal bridge the
heat sink is attached to the cryostat and absorbs the heat coming from the cables.

4.2 Sample

The sample that is used in this thesis is the borosilicate glass N-BK7 from Schott
AG4. It has a glass transformation temperature of Tg = 557 °C, the density ρ =

2.51 g cm−3, and a thermal expansion coefficient of α = 7.1× 10−6K−1 [Sch14]. The
relative permittivity is found to be εr = 5.8 [Fre16] and the sound velocities are
vl = 6000m s−1, vt = 3800m s−1 [Hun76]. The main application of this glass is in
high quality optical devices for visible light. However, it is also extensively used
for investigations of atomic tunneling systems in glasses, e.g. in acoustic measure-
ments [Hun74, Arn75, Nat98] or polarization echoes [Lud03, Bur13]. But also dielec-
tric measurements over a wide frequency range are available [vS75, Ant79, Bec90,
Woh01, Fre16]. Because of its good availability, a straightforward processing, and
the comparability with previous measurements, the sample is well-suited for a char-
acterization of new devices in general, and therefore for the development of a setup
demonstrating the Landau-Zener spectroscopy of bulk glasses.
Table 4.1 shows the chemical composition of N-BK7. The main constituent is SiO2,
which should build the network backbone. Besides the second network former B2O3,
the other main constituents are the two network modifiers Na2O and K2O. The
formation of such a multicomponent glass is very complex, and we can only give
a rough idea about its microscopic structure as it was sketched in Section 2.1. In

4Schott AG, Hattenbergstraße 10, 55122 Mainz, Germany
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SiO2 B2O3 Al2O3 Na2O K2O BaO

74.8% 9.6% 0.03% 10.1% 4.7% 0.74%

Table 4.1: Chemical composition of the glass N-BK7 in molar percentage [Lud03].

contrast to SiO2, in pure borate glasses the addition of network modifiers does not
weaken the network initially, but leads to strengthening, which is observed up to a
content of around 16% of modifiers. A further increase then weakens the network.
This phenomenon is known as the boron anomaly [Vog92]. X-ray diffraction analysis
revealed that the addition of Na2O leads to a modified coordination of boron and
oxygen atoms from a triangular into a tetrahedral network [Bis38], which strength-
ens the network through the higher coordination number. The occurrence of the
boron anomaly in borosilicate glasses is known to have a determine influence on
their properties like their small thermal expansion [Vog92].

4.3 Radio frequency measurement setup

While measurements of the dielectric function with excitation frequencies up to a
few kilohertz are typically performed by directly measuring a capacitor with a capac-
itance bridge [Rog97, Luc14], for measurements of the dielectric response at higher
frequencies LC-resonators are used. As it will be discussed in Section 4.4 the reso-
nance curve of such a resonator allows to extract the dielectric function of the sample,
which is used as dielectric material in the capacitor. The utilized resonators possess
resonance frequencies between 250MHz and 1GHz, see Section 4.4.2. At these fre-
quencies and very low temperatures resonant tunneling systems are thermally mainly
in their ground state kBT ∼ ℏω, and we can observe their resonant absorption of
photons, provided that the intensity of the driving field is not too high and causes
saturated tunneling systems. In order to fulfill these conditions, we need a sensitive
setup with the ability to measure resonance curves at high frequencies and low tem-
peratures at very low driving powers. Figure 4.3 shows the schematic of the used
radio frequency (rf) measurement setup. The rf-branch is marked in blue, while the
optional branch for biasing the resonator with strong electric fields is red-tagged.
A vector network analyzer5 (VNA) connected to a PC generates the rf-signal and
detects the transmitted signal’s amplitude and phase coming from the device under
test. By comparing the generated test signal (port 1) with the response (port 2),
the VNA provides the complex-valued scattering parameters S11 or S21. The VNA
spans a frequency range from 300 kHz to 1.3GHz and supplies rf-powers between

5HP 8752C, Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304-1185 USA
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Figure 4.3: Schematic drawing of the
electronic setup used in this thesis. The
path marked in blue represents the ra-
dio frequency readout branch and the
one in red the optional biasing branch.
All components within the blue box are
placed inside the cryostat, while all other
parts are located at room temperature.
The green lines represent connections to
a computer, which allows an automated
data acquisition.

5 dBm and −20 dBm. Several attenuators outside and inside the cryostat guarantee
measurements at very low input powers and reduce standing waves alongside the ca-
bles from possible impedance mismatches. The two attenuators inside the cryostat
are located close to the mixing chamber, and therefore reduce the incoming room
temperature thermal noise. There are two step attenuators which allow to adjust the
demanded excitation power over a wide range. The second step attenuator6 allows a
signal damping from 0 dB to 60 dB in steps of 10 dB. We typically set this attenuator
to a fixed value at the beginning of a measurement series and use the first step atten-
uator7 to vary the input power. This programmable attenuator is controlled through
a microcontroller8, which is connected to a computer. The programmable attenuator
switches up to six single attenuator elements (1 dB, 2 dB, 4 dB, 8 dB, 16 dB, 32 dB)
on in addition and is therefore able to regulate the attenuation between 0 dB and
63 dB with 1 dB increment. The attenuator was characterized at all possible atten-
uations. In Figure 4.4 (left) the data for each attenuation element and as well the
pass-through is shown. At low frequencies, the attenuator matches its specifications.
For higher frequencies, however, the attenuation is markedly increased, which needs
to be considered when calculating the power at the resonator input. As mentioned
before, we use several heatsinks within the signal path to provide thermalization
of the coaxial cables. Inside the cryostat we mainly use semi-rigid coaxial cables.
Only for the part from the last heatsink to the resonator flexible miniature coax-

6Step Attenuator AE116-60-01-0N, Weinschel, 5305 Spectrum Drive Frederick , MD 21703 USA
7Model 50P-1207 Serial 287346, JFW Industries INC, 84 Iron St, Johnstown, PA 15906, USA
8Arduino Pro Mini 328 - 5V/16MHz
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Figure 4.4: Left: Measured attenuation of the programmable attenuator for each individ-
ual attenuation element. Right: Attenuation originating from the cable route. Contribu-
tions from the attenuators were subtracted.

ial cables were utilized, which have a slightly increased attenuation per meter. We
measured the transmission feeding through the resonator without rf-amplifier and
subtracted the contributions from the attenuators in order to extract the damping
of the cables. The measurements were performed with the 250MHz-resonator by
measuring the transmission through its 50Ω matched feedline (see Section 4.4.2),
while the resonator was cooled down to 12mK. The result is shown in Figure 4.4
(right). As expected, the attenuation increases with increasing frequency. Presum-
ably, impedance mismatches result in the wobblings, which need to be regarded as
non-constant background when we evaluate the resonance curves. We can assume a
symmetric cable route for in- and output, and with that, we obtain a cable attenu-
ation for the input line of 5 dB at 250MHz and 9 dB at 1GHz.
The output signal from the resonator is typically very small and needs to be amplified
before entering the VNA input. For this purpose, we use low-noise room temperature
rf-amplifiers. In front of the amplifier a DC block9 prevents DC and low frequen-
cies currents entering the cryostat or the amplifier, respectively. Depending on the
resonance frequency of the resonator, we chose different amplifiers. For frequencies
below 500MHz an amplifier with 55 dB gain10, and for higher frequencies one with
42 dB gain11 was used. The measured amplification of both amplifiers as function of

9Crystek CBLK-300-3, Crystek Corporation, 12730 Commonwealth Drive Fort Myers, Florida
33913, USA

10MITEQ AU-4A-0150, L3Harris Narda-MITEQ, 435 Moreland Rd Hauppauge, NY 11788 USA
11AFS3-00100200-15-ULN, L3Harris Narda-MITEQ, 435 Moreland Rd Hauppauge, NY 11788

USA
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Figure 4.5: Measured gain of the used amplifiers within the specified frequency range.
Data from [Fre16].

frequency within the specified frequency range is shown in Figure 4.5. The gain fac-
tor is almost constant across the whole frequency range for both amplifiers. Possible
non-constant contributions will occur as background in the resonance curves.
The bias signal is generated with a signal generator12 and amplified with a high-speed
power operational amplifier13. The amplifier has a high slew rate and is implemented
to have a gain of 30V/V. A step from 0 − 180V is performed within 7 µs, which
allows to achieve the high bias rates required for the Landau-Zener dynamics.
All programmable components of the setup are connected via GPIB to a PC. A
developed LabVIEW14 program adjusts the parameters of the rf-setup and the tem-
perature of the cryostat. It furthermore reads out the VNA data and enables a fully
automated data acquisition.

4.4 Microfabricated superconducting bridge resonators

As it was already mentioned, in the thesis at hand LC-resonators are used to detect
the dielectric response of the sample at frequencies between 250MHz and 1GHz. Be-
sides the high-frequency driving field, the Landau-Zener dynamics requires a strong
perturbing bias field which causes a distinct modification of the tunneling systems’
asymmetry energy. In order to apply an additional electric bias field that does not
couple into the rf-readout the capacitors of the resonator are arranged in a Wheat-
stone bridge-type manner. The schematic of such a bridge resonator is shown in
Figure 4.6 (left). Four identical capacitors with capacitance C are arranged in a
bridge scheme, whereby the sample is used as dielectric material inside of each ca-
pacitor. The total capacitance of this arrangement then reads C as well. Together

12DS340, Stanford Research Systems, 1290-D Reamwood Ave. Sunnyvale, CA 94089, USA
13PA15FL, Apex Microtechnology, 5980 N Shannon Rd, Tucson, AZ 85741, USA
14LabVIEW 8.5, National Instruments Corporation, 11500 Mopac Expwy, Austin, TX 78759-

3504, USA
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Figure 4.6: Left: Schematic of the LC bridge resonator circuit. Across one diagonal of the
bridge the rf-signal is applied and independently from it, over the other diagonal, the bias
signal. The resonator is inductively coupled to the readout. The sample is used as dielectric
material inside of each capacitor. Right: Circuit diagram of an equivalent parallel RLC-
circuit, which is inductively coupled through the coupling parameter M and capacitively
coupled through the coupling capacitance Cc to the feedline with impedance Z0 = 50Ω.

with the inductance L parallel to the capacitance this forms an LC-circuit. The
circuit is inductively coupled to the readout electronics, and with that, the driving
voltage is applied over the horizontal diagonal in Figure 4.6 (left). Across the vertical
diagonal the bias signal applied. The voltage drop at a single capacitor corresponds
to half of the voltage across the diagonal. Therefore, for the case of plate capacitors
with uniform gap d, each sample sees the electric field Ftot =

1
2
(Uac/d+ Ub/d). The

symmetry of the bridge setup prevents a coupling of the bias voltage into the readout
branch and vice versa. Hence, this allows to apply an electric driving field and an
electric bias field independently from each other to the sample.
An LC-circuit with capacitance C and inductance L shows a resonant behavior at
the resonance frequency

f0 =
1

2π
√
LC

. (4.1)

The resonance is damped due to dissipation processes, which is modeled through a
resistance parallel to the capacitance. From a high-frequency viewpoint, this setup is
equivalent to a parallel RLC-circuit that is inductively M or capacitively coupled Cc

to a feedline with a matched impedance of Z0 = 50Ω. The equivalent circuit diagram
is shown in Figure 4.6 (right). The dissipated power is given as Pdis = U2

acR/2, which
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is mapped by the dimensionless factor

Qi =
2πf0Wtot

Pdis

(4.2)

called the internal quality factor of the resonator, where Wtot gives the total energy
of the resonator. The behavior of an ideal resonator in a hanger mode, as sketched
in Figure 4.6 (right), is described by a Lorentzian line shape and can be written as
[Kha14]

Sideal
21 (f) =

Uout

Uin

= 1− Q/Qc

1 + 2iQf−f0
f0

, (4.3)

with the coupling quality factor Qc, which describes the coupling strength of the
resonator to the feedline. The total quality factor Q of the resonator is the inverse
sum of the internal quality factor Qi of the resonator and Qc

1

Q
=

1

Qi

+
1

Qc

. (4.4)

The internal quality factor Qi itself is the inverse sum of different contributions. In
our case the main contribution comes from the tunneling systems, and we can write
Q−1

i ≈ Q−1
i,TLS. Under certain circumstances additional contributions like radiation

losses, a finite electric conductivity, or pair-breaking processes in superconductors
might contribute as well to Qi. By comparing Equation (4.2) with Equation (2.109),
we can identify Q−1

i,TLS as the dielectric loss tan δ of tunneling systems.
The resonance frequency is directly related to the capacitance, and therefore to the
dielectric function’s real part ε′. The relative change of the capacitance then reads
as

∆C

C
=
C − C∗

C∗ =

(︃
f ∗
0

f0

)︃2

− 1 , (4.5)

where C∗ and f ∗
0 are some arbitrary reference points, for example, defined by the

minimum of the temperature dependency. The inductance is assumed to be constant,
and the thermal expansion of the sample should be negligible at low temperatures
compared to the relative change of ε′, which is of the order 10−3 for N-BK7. Thus, we
can relate shifts of the resonance frequency f0 at low temperatures to changes in ε′.
However, we have to consider that the capacitance C of the capacitor is composed out
of the capacitance of the sample Cx and a parasitic stray capacitance Cp, originating
from the electric field that probes the volume outside the sample. We then have

C = Cx + Cp . (4.6)

Because of its proportionality Cx ∝ ε′, we are interested in changes of Cx. The stray
capacitance should be constant, and we obtain

∆Cx

Cx

=
∆C

C − Cp

=
∆C

C

1

1− Cp

C

. (4.7)
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Together with Equation (4.5) we can write down the relative change of the dielectric
function’s real part

δε′

ε′
=

∆Cx

Cx

=

[︄(︃
f ∗
0

f0

)︃2

− 1

]︄
· 1

F
, (4.8)

where we introduced the filling factor F = 1 − Cp

C
, which compares the amount of

electric energy stored in the sample with the total electric energy of the resonator.
The filling factor depends on the geometry of the resonator, in particular on the one
of capacitor. We will discuss the filling factor of the resonators when we talk about
the electric field inside the capacitors in Section 4.6.
Moreover, the stray capacitance modifies the internal quality factor Qi of the res-
onator, which we derive from Equation (4.2). We have

Wtot =
1

2
CU2 Pdis =

U2
eff

R
=
U2

2R
, (4.9)

where U is the maximum, and Ueff is the effective voltage across the capacitance,
which gives us

Qi = R

√︃
C

L
. (4.10)

With that, we can write down the ratio

Qi

Qi,x

=

√︃
C

Cx

, (4.11)

which leads to

tan δ =
1

Qi,x

=
1

Qi

(︃
1 +

Cp

Cx

)︃1/2

=
1

Qi

√
F

. (4.12)

4.4.1 Determination of the intrinsic resonator parameters

With Equations 4.4, 4.8 and 4.12 we can determine the dielectric function from
the intrinsic parameters of the resonator. In this section we will discuss how these
parameters are obtained from the resonance data S21 measured by the VNA.
Equation (4.3) gives the frequency response of an ideal resonator, which is shown
in Figure 4.7. In (a) the resonance curve is plotted in the complex plane Re(S21)-
Im(S21), where it forms a circle. For f → ±∞ the curve converges towards the
point S∞

21 = (1, 0). Following the circle clockwise means increasing the frequency.
Opposite to the point S∞

21 on the circle lies the resonance frequency f0 (red point).
The amplitude |S21| =

√︁
Re(S21)2 + Im(S21)2 and the phase φ = arctan ( Im(S21)

Re(S21)
) are

shown in (b) and (c). The resonance frequency f0 sits at the minimum of |S21|, while
the phase changes its sign there. The quality factor is a measure of the width of
both curves, and the minimum of |S21| is given by min(|S21|) = 1− Q

Qc
. In principle,



94 4. Experimental Methods

0.0 0.2 0.4 0.6 0.8 1.0
Re( )

0.4

0.2

0.0

0.2

0.4

Im
(

)

|
|

frequency

(a)

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

 |
|

(b)

0.998 0.999 1.000 1.001 1.002
Frequency  [GHz]

0.5

0.0

0.5

Ph
as

e 
 [r

ad
]

(c)

Figure 4.7: Representation of the complex valued scattering parameter S21 of an ideal
resonator from Equation (4.3) with f0 = 1GHz, Q = 8000, and Qc = 10, 000. In the
complex plane (a) the resonance curve forms a circle, (b) shows the amplitude |S21|, and
(c) the phase φ. The resonance frequency is marked with the red dot.

fitting Equation (4.3) to the resonance data allows a determination of the intrinsic
resonator parameters f0, Qi, and Qc. However, in almost all cases the behavior of
a real resonator will deviate from the ideal case, for example due to imbalanced
impedances which lead to asymmetries.
The behavior of a non-ideal resonator can be expressed by expanding Equation (4.3)
with additional terms [Pro15]:

S21(f) = aeiαe−2πifτ

[︄
1− Q/Qce

iϕ

1 + 2iQf−f0
f0

]︄
(4.13)

Attenuation and amplification of the signal lead to the scaling factor a. Additional
phase shifts give the factor eiα, and the cable delay τ gives the frequency-dependent
factor e−2πifτ . An impedance mismatch is modeled by a complex coupling quality
factor giving rise to the factor eiϕ [Kha12]. An example for such a non-ideal resonator
is sketched in Figure 4.8. In the complex plane, the non-ideal behavior leads to a
distortion of the circle into a rotated spiral. Thus, amplitude and phase are skewed
as well, and the position of the resonance frequency is not related to a characteristic
point anymore. This makes the determination of the resonator parameters non-
trivial because the parameters occurring from the resonator environment are typically



4.4. Microfabricated superconducting bridge resonators 95

0.0 0.5 1.0 1.5 2.0
Re( )

0.0

0.5

1.0

1.5

Im
(

)

(a)

0.5

1.0

1.5

2.0

Am
pl

itu
de

 |
|

(b)

0.998 0.999 1.000 1.001 1.002
Frequency  [GHz]

0.0

0.5

1.0

1.5

Ph
as

e 
 [r

ad
]

(c)

Figure 4.8: Representation of the complex valued scattering parameter S21 of a non-ideal
resonator from Equation (4.13) with f0 = 1GHz, Q = 8000, and Qc = 10, 000, a = 2,
α = 0.5. τ = 50ns, and ϕ = −0.5. In the complex plane (a) the resonance curve is
deformed and rotated compared to the ideal resonator, (b) shows the amplitude |S21|, and
(c) the phase φ. The resonance frequency is marked with the red dot.

unknown and difficult to quantify precisely. Instead, we eliminate the deviations from
an ideal behavior by applying an algorithm described in [Pro15]. The basic idea is to
remove the additional terms of the non-ideal resonator by transforming the resonance
curve in the complex plane back into its ideal (canonical) form, which is exemplarily
shown in Figure 4.9 for different steps.

(a) The cable delay is removed by fitting the data to a circle, whereby τ is the
fitting parameter. A multiplication with e−2πifτ eliminates the cable delay,
and one obtains a circle that is rotated with respect to the origin and to the
point S∞

21 .

(b) The resonance frequency f0 and its opposite point on the circle S∞
21 are de-

termined by shifting the center of the circle to (0,0) (not shown here) and
performing a fit of the resulting φ-f data. This allows to extract the phase
α by rotating the point S∞

21 to the position where its imaginary component
vanishes.
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(c) The prefactor a is removed by multiplying the curve with a−1, which shifts the
point S∞

21 to its canonical position (0,1).

(d) In a final step, the phase ϕ is removed by rotating the circle around S∞
21 , which

brings the resonance into its ideal form.

A fit of the corrected curve then gives the intrinsic resonator parameters f0, Qi,
and Qc. It turns out that this method works well as long as the signal-noise level
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Figure 4.9: Illustration of the
transformation of a non-ideal
resonator into its ideal form.
The transformation steps (a)-
(d) are briefly explained in the
text and follow the algorithm
described in [Pro15]. The res-
onance frequency is marked by
the red point.

is adequate, and the resonance is not affected by a non-constant background. We
typically use this method to calibrate our setup by measuring a resonance curve
with a good signal-noise ratio, which allows to obtain the coupling quality factor Qc

of the resonator. We do not observe substantial shifts of Qc when we change the
temperature or the driving field strength, and therefore use this value in all following
measurements of the cooldown.
In many cases it is more convenient to regard solely the amplitude |S21| and fit
an empirical skewed Lorentzian (see Equation (4.14)) which is able to describe also
asymmetric line shapes and is more robust at low driving fields, where the signal-
noise ratio becomes low. The fit gives us the parameters f0 and Q. Together with
Qc, obtained from the previous discussed circle fit, Equation (4.4) gives the intrinsic
quality factor Qi. The used skewed Lorentzian has the form [Gao08]

|S21(f)|2 = A1 + A2(f − f0) +
A3 + A4(f − f0)

1 + 4Q2
(︂

f−f0
f0

)︂2 , (4.14)
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Figure 4.10: Exemplary fit of a res-
onance curve (blue) with the skewed
Lorentzian from Equation (4.14) (red
line).

where the parameters A1 and A2 determine the background of the resonance, A3 the
resonance amplitude, and A4 the skewness of the resonance. Figure 4.10 shows an
exemplary fit of a fairly asymmetric resonance curve which was fitted with Equa-
tion (4.14). The skewed Lorentzian is able to describe the data well and gives the
same results as the circle fit procedure [Gao08], which is in agreement with our ob-
servations.
Both discussed methods for the determination of the intrinsic resonator parameters
assume a constant internal quality factor across the measured frequency range. How-
ever, it is not guaranteed that this is fulfilled by the loss originating from tunneling
systems. As we have discussed in Section 2.4.5, the tunneling systems are saturated
by strong electric fields, and their loss depends on the applied electric field strength.
Close to the resonance frequency the electric field inside the capacitor is enhanced
due to the resonant characteristic of the resonator. At this frequency, tunneling
systems might be stronger saturated compared to frequencies detuned from the res-
onance, and Qi may become frequency-dependent. This is especially problematic for
resonance curves that are measured at high input powers, where the saturation of
tunneling systems becomes stronger. At smaller excitations, the resonant tunneling
system loss becomes independent from the field strength, and Qi should be constant
across the whole resonance curve. For minimizing the effect of a non-constant Qi at
strong driving powers, we chose a third approach for determine the quality factor
from the resonance curve. In the case of an ideal resonator in a hanger mode, we
find for the minimum of the resonance curve min (S21)

min (S21) = S∞
21

(︃
1− Q

Qc

)︃
(4.15)
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and thus
Q =

(︃
1− min (S21)

S∞
21

)︃
Qc . (4.16)

Both min (S21) and S∞
21 are real numbers and are extracted from the amplitude

|S21|. Again, Qc can be used from the circle fit routine. With this approach we
detect the quality factor only at a single excitation frequency, and therefore do not
average over different values of quality factor, as it is the case for fitting the whole
resonance curve with a Lorentzian. Detecting the resonance baseline S∞

21 might be an
erroneous issue for resonance curves as shown in Figure 4.10, especially if the recorded
frequency window is small. We detect the baseline S∞

21(P0) from a measurement over
a broad frequency range around f0 and at a high driving power. The baseline of
other resonances, measured at a different input power P , is then calculated from this
value by S∞

21(P ) = S∞
21(P0)

√
10(P−P0)/10, where the powers are measured in dBm.

Since we know the used attenuation of the attenuators (see Figure 4.4), we also
know the input power P relative to P0, which gives a reliable determination of the
baseline. Fine tuning of S∞

21(P0) can be realized by demanding an agreement of
the hereby detected Q with the other fitting methods at low input powers, where
saturation of tunneling systems should not play a role. For an exemplary set of data,
a comparison of this method Q1 with the determination through a Lorentz fit Q2

is shown in Figure 4.11. The relative deviation δQ−1 = 1 − Q−1
2 /Q−1

1 is plotted for
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Figure 4.11: Relative deviation of the
determined quality factor with two evalu-
ation methods for different input powers.
Method 1, Q1: Determine Q through the
resonance minimum, see Equation (4.16).
Method 2, Q2: Determine Q through a
Lorentzian fit, see Equation (4.14). In
both cases the same set of data was used.

different input powers Pac. As expected, at low input powers both methods give the
same results, whereby the measurement is noisier due to the smaller excitation. For
higher driving powers, when the saturation of tunneling systems becomes relevant,
the results start to differentiate significantly. The overall deviations are not too large,
but we will prefer the determination of Q through the resonance minimum whenever
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the strength of the driving field matters, and we are not measuring in the low-power
limit anyway.

4.4.2 Design

The 250MHz- and the 1GHz-resonator share a similar design. As sample we use a
window out of N-BK7 of the size 41mm× 30mm× 1mm, which is used as substrate
for the microstructure. When cutting the glass into the required size, special care is
needed to maintain a smooth surface for the following microfabrication. The sample
with the microstructure on top is shown in Figure 4.12. The microstructure is com-
posed out of sputter deposited niobium with a thickness of 400 nm. Niobium becomes
superconducting at temperatures below Tc ≈ 9.2K [Mat63], which eliminates Ohmic
losses and allows high internal quality factors for these resonators. As capacitance

Interdigital Capacitor
Meander Line Inductor

Feedline

Bias Voltage 
Connections

Figure 4.12: Illustration of the glass sample (light blue) with the microstructure (black) on
top, representing the 250MHz-resonator. The planar design enables us to use the substrate
as sample.

we use four identical interdigital capacitors (IDC) and as inductance a meander line
inductor. This allows us to implement a planar design, where the electric field of the
IDCs penetrates the substrate and therefore probes the tunneling systems inside the
sample. Probing the substrate with IDCs enables us to use bulk glasses as samples
and does not restrict the sample selection to thin amorphous films when dealing with
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microstructures. The feedline is connected to the rf-branch, and the bias signal is
applied through the bias voltage connection pads (Ub, GND).
In Figure 4.13 the design of the 250MHz- (left) and the 1GHz-resonator (right) are
shown in more detail. In both cases, appearing edges in the design, especially at the

300µm
L

1500 µm

IDC 1 IDC 2

IDC 3 IDC 4

IDC 4

1500 µm

50 µm

slit 1 slit 2

slit 4slit 3

L

250 MHz Resonator 1 GHz Resonator

Figure 4.13: Design of the 250MHz-resonator (left) and the 1GHz-resonator (right).

capacitor electrodes, are rounded to avoid strongly enhanced field strengths, which
would produce spots with very high couplings to tunneling systems, and therefore
possible non-linearities. The capacitors are connected in such a way that they form
the bridge geometry from Figure 4.6 (left). In the case of the 250MHz-setup the fin-
ger length of the IDC is 4600µm, the finger width and spacing are 50 µm, and there
are 13 finger pairs per IDC. The meander has a conductor width of 50 µm, a spacing
of 100µm, and has 40 legs in total. The feedline is realized through a microstrip
transmission line of width 1.55mm. Using a dielectric thickness of 1mm and ground
on the bottom of the sample, gives an impedance of about 50Ω for the microstrip.
In the 1GHz-design the IDCs are reduced to single slits with length 2000µm and
5 µm width. The inductance is a simple short between the electrodes.
Both resonators were designed and simulated with the software Sonnet® [Son18],
which allows to adjust the resonator design to match the requirements. In the sim-
ulation the dielectric material was set to have a relative permittivity of εr = 5.8,
a loss of tan δ = 4× 10−4, and a thickness of 1mm, which matches the properties
of the sample. The metal structure was modeled as being lossless. The bias volt-
age connections were grounded in the simulation. In Sonnet® the S-parameter of
port 1 (input feedline) and port 2 (output feedline) is simulated in the frequency
domain. Hence, we receive resonance curves which can be evaluated as explained in
Section 4.4.1 and shown in Figure 4.14. We can compare the simulation data with
resonance spectra of the resonators that were measured at the base temperature of
the cryostat, which is presented in Table 4.2. Since we know the loss of the dielectric
material in the simulation, we can write Qi ≈ 2500. The coupling quality factor in
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Figure 4.14: Simulated response of the 250MHz-resonator (left) and the 1GHz-resonator
design with the software Sonnet®.

the simulation Qc,sim is then calculated by using Equations (4.15) and (4.4) as

Qc =
min(S21)

1−min(S21)
Qi . (4.17)

The resonance frequency f0 is accurately predicted through the simulation. It should
be noted that the position of the resonance in the experiment typically shifts by a few
MHz between different cooldowns. The simulated coupling quality factors fairly agree
with the measurements and can provide a rough idea about the expected coupling
of the resonator to the feedline during the design procedure. However, details of the
experimental realization, like the chip environment by the experimental holder or
connections onto the chip, are missing in the simulation and may lead to deviations
in Qc.

f0,sim [MHz] f0,exp [MHz] Qc,sim Qc,exp

250MHz-resonator 242.72 245.3 20300 12000
1GHz-resonator 999.53 1006.8 5400 1700

Table 4.2: Comparison between simulated (sim) and measured (exp) resonator properties.

4.4.3 Fabrication and sample holder

All microfabrication processes for the chips used in this this were done in-house in
a cleanroom. For processing the structure on top of the glass sample a standardized
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lift-off process was used. Therefore, a photoresist is deposited on the substrate,
wherein the negative image of the structure is created through photolithography.
On top of the remaining photoresist and the uncovered substrate a layer of 400 nm
thick niobium is deposited through a sputtering process with argon as sputtering
gas. After that, a solvent removes the photoresist along with the niobium thereon,
and the required niobium structure remains on top of the substrate. After the
fabrication, the chip is cleaned multiple times within baths of acetone or isopropanol,
and ultrasonication in between, which removes possible residuals from the fabrication
process.
The cleaned chip is placed into the sample holder box shown in Figure 4.15. A thin
film of vacuum grease between the copper box and the backside of the glass holds
the chip in place and provides a good thermal contact. The box is made of tempered

Figure 4.15: Rendering of the sample
holder with the mounted chip placed in-
side of the box. The niobium coating of
the inside is not shown here. The cover
closes the box and connects the bias volt-
age through the attached pins.

oxygen-free copper and is coated from the inside with a sputter deposited niobium
film (not shown) to reduce radiation losses of the resonator. SMA connectors on the
front side allow to connect the coaxial cables for the rf-readout. Thin copper wires
are soldered to the inner conductor of the SMA connectors that run into the box.
With conductive silver paint15 the copper wire-ends are glued to the dedicated pads
of the feedline. The bias voltage is applied through gold-plated spring-loaded pins16,
which are soldered to the SMA connector at the cover, or directly to the cover and
therefore to ground. The cover closes the box and presses the head of the pins on the
bias voltage connection pads of the chip and realizes the electric contacting of the
bias voltage. Moreover, the resulting vertical force on the chip supports the bonding
of the chip to the sample holder. Several holes in the foot of the holder allow to
attach the holder mechanically to the experimental platform of the cryostat.

15ACHESON Silver DAG 1415, Plano GmbH, Ernst-Befort-Strasse 12, D-35578 Wetzlar, Ger-
many

160914 Spring-Loaded Pin, Mill-Max Mfg. Corp., 190 Pine Hollow Rd, Oyster Bay, NY 11771,
USA
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4.4.4 Revised 1GHz-resonator

In Section 5.3.5 we will see that the presented resonators tend to heat up when we
apply strong microwave tones through the transmission line. Therefore, we did a
revision of the 1GHz-resonator design in order to reduce the heat load in two-tone
experiments. The main adjustment is to replace the normal conducting connections
to the chip with aluminum wire bonds, which become superconducting below 1.2K

[Mat63]. Moreover, the distance between the electrodes of the capacitors were fur-
ther reduced to 2 µm to reach higher bias field strengths and therefore higher bias
rates, which also shrinks the size of the resonator. The substrate is a 50mm wafer
out of N-BK7 with 0.2mm thickness. The wafer contains in total 12 resonators with
different designs, each having the size 10mm× 10mm. The design of the resonator
used in this thesis is shown in Figure 4.16. Again, we use a planar resonator design
out of 400 nm sputter deposited niobium with a meander structure as inductance

rf-in rf-out

U
b

IDC1

IDC3 IDC4

IDC2

1 mm

500µm

10µm

2

Figure 4.16: Design of the revised 1GHz-resonator (top). Zoom into the resonator embed-
ded in the ground plane (bottom left). Zoom into the fingers of IDC2 with finger distance
2 µm (bottom right).
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and a bridge geometry of four IDCs as capacitance. The resonator is embedded in
a niobium ground plane, which is grounded through several Al-bonds to the sample
holder box. Three pads in the corners allow to contact the resonator chip with bond
wires. The two pads at the top are dedicated for the rf-readout and are connected
through a 50Ω-coplanar waveguide as transmission feedline with each other. The
bonding pad at the lower right is used for the bias voltage connection. For the
ground reference of the bias voltage, Al-bonds connect the niobium area between
IDC1 and IDC2 to the niobium ground plane. The meander is built-up by 70 legs
with a conductor width and spacing of 20 µm. The IDCs consist of 27 finger pairs
with finger lengths of 400µm. The finger width is 6µm and the distance 2 µm.
As before, the design was simulated with Sonnet® and compared to the experimental
results, see Table 4.3. The measured resonance frequency of the resonator appears to

f0,sim [MHz] f0,exp [MHz] Qc,sim Qc,exp

1003.65 902.7 8000 37000

Table 4.3: Comparison between simulated (sim) and measured (exp) resonator properties.

be 100MHz smaller than in the simulation. The simulation is known to predict the
resonance frequency of these kinds of resonators precisely [Fre16], and we suppose
the finger distance of the fabricated IDCs is smaller than the design value. Inspection
of the IDC structure with a microscope indicated a slightly reduced finger distance.
As it was observed in the simulations before, the coupling quality factor differs from
the experimental value.
A new sample holder that is suited to fit the resonator chip [Haa20b] was used,
which is shown in Figure 4.17. The chip is glued with the low temperature varnish
GE 703117 to the center of the sample holder. This provides a good thermal con-
tact of the sample and gives a solid mechanical support when bonding to the chip.
SMA connectors are attached to the backside of the holder. The end of their inner
conductors is filled with tin, and their tip is milled to form a plane surface. This
allows direct wire-bonding from the surface of the tip to the bonding pads of the
chip and allows a normal-conductor-free contacting of the chip, which should help
to avoid Ohmic heating nearby the sample. Only the inner conductor of the SMA
connector remains normal conducting. As before, the inside of the holder is coated
with a niobium film.

17Lake Shore Cryotronics, 575 McCorkle Blvd, Westerville OH 43082-8699
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Figure 4.17: Rendering of the sample
holder for the revised resonator with the
mounted chip. The niobium coating of
the inside is not shown here. The cover
closes the box.

4.5 Landau-Zener spectroscopy

The presented setup allows to measure the sample’s dielectric function with rf-fields
at very low temperatures under a simultaneous modification of the tunneling sys-
tems’ asymmetry energy through an electric bias field. This induces the tunneling
systems to perform Landau-Zener transitions, and we can observe the Landau-Zener
non-equilibrium dynamics of tunneling systems in bulk glasses, see Section 2.4.6. In
this section a measurement protocol is presented which allows to perform a spec-
troscopy of tunneling systems based on this dynamic.
In the simplest case, in parallel to the recording of resonance curves with the VNA,
a continuous bias voltage signal, e.g. a triangle signal, is applied through the bias
line. This constantly varies the asymmetry energies of tunneling systems and their
resulting modified population reveals in the resonance curve. A drawback of this
method is that, due to the continuous ramping, the time between consecutive res-
onance crossings of tunneling systems becomes short, and thus a tunneling system
cannot fully relax back into its ground state in between. Therefore, the assumption
of a tunneling system being in its ground state, prior to the resonance crossing, might
be violated and multiple coherent Landau-Zener transitions of the same tunneling
system occur, which was studied in [Mat19]. Moreover, for this setup at high bias
rates due to the continuous switching of high voltages a heating of the sample was
observed [Kö19].
Therefore, an alternative protocol was implemented, where the bias is ramped only
once. Simultaneously, resonance curves of the resonator are recorded with a high
temporal resolution. Before the following ramp, the tunneling systems are given
enough time to restore their equilibrium state. This is realized by setting the VNA
into its CW time-sweep mode, where the VNA is locked to a single frequency and
measures S21 as a function of the time. If the internal bandwidth filter of the VNA is
set to 3 kHz, the VNA samples 1601 data points within 800.5ms, which gives a sam-
pling interval of ∆t = 0.5ms. During a time-sweep the bias voltage is ramped. After
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Figure 4.18: Left: Synchronized pulse sequence to record a time trace of |S21|, while
applying in parallel a bias ramp. Details are explained in the text. Right: By sweeping frf
over the resonance curve, resonance spectra as a function of time in the presence of a bias
ramp are reconstructed. For a clearer representation the amplitude |S21| was normalized.

the sequence, the driving frequency is changed, and the bias sequence is repeated.
If the onset of the bias ramp is synchronized with the start of the VNA time-sweep,
the resonance curve as a function of the time can be reconstructed by successively
tuning the driving frequency across the resonance curve. The synchronization is re-
alized with a pulse generator18 connected to the sync ports of both the VNA and the
signal generator that generates the bias voltage. The bias ramp with ramp time tb
is created by using the Frequency-Shift Keying (FSK) mode of the signal generator,
whereby the generator shifts phase-preserved between two preset frequencies. Fre-
quency A is selected when the external TTL (transistor–transistor logic) trigger level
is ‘LOW’, and frequency B is selected when the TTL level is ‘HIGH’. For frequency
A we use an arbitrarily small frequency fA = 1 µHz and as frequency B fB = (2tb)

−1.
As waveform we choose a triangle signal with peak-peak amplitude Ub. When we set
the length of the trigger pulse to tb, the signal generator creates a ramp from zero
to Ub within tb. On another channel a TTL pulse triggers the VNA which starts a
single CW time-sweep on a negative TTL-transition.
The whole sequence is shown in Figure 4.18 (left). The TTL pulse on channel A
of the pulse generator starts the VNA time-sweep. After the time tstart, a pulse on
channel B with length tb triggers the signal generator to perform half of the cycle
of a triangle (fb = (2tb)

−1). At the end of the pulse, the signal generator puts
fA = 1 µHz to the output, which is approximately constant, and we find the ramp
shown Figure 4.18. The VNA records a single time trace at the set driving frequency

18Pulse/Delay Generator PDG 204, SMV Systemelektronik GmbH, Belfortstraße 3, D-81667
München, Germany
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Figure 4.19: Time dependence of δε′/ε′

and tan δ extracted from the data of Fig-
ure 4.18 (right) in the presence of a bias
ramp.

frf . After completing one sequence, frf is changed, and a TTL pulse on channel A
triggers a new iteration.
Sweeping frf over the resonance gives the plot shown in Figure 4.18 (right), where the
color indicates |S21|. A horizontal slice represents a recorded time trace |S21(t)|, and
vertical slices give resonance curves at different time steps. Typically, a resonance
spectrum consists of 200 frequencies, which is sufficient to provide a robust deter-
mination of f0 and Q. From Figure 4.18 (right) one can already see that resonance
curves during the bias ramp are broader than ones with constant bias voltage. As
explained before, from each resonance curve δε′/ε′ and tan δ can be extracted, which
is shown in Figure 4.19. This method allows us to resolve even fast bias ramps of a
few milliseconds. The value of the loss during the bias ramp gives the non-equilib-
rium loss of tunneling systems caused by the Landau-Zener dynamics. By varying
the ramp time, one can alter the dynamics and control the population of resonant
tunneling systems, which allows to perform a spectroscopy of the involved systems.
We will present the results of this Landau-Zener spectroscopy in Section 5.3.

4.6 Electric field inside the capacitors

For a quantitative comparison of the measured dielectric properties with the theory’s
predictions, we need to know the electric field inside the capacitors to which tunneling
systems can couple. As a first step, we calculate the voltage across the capacitor of
the LC-resonator resulting from the input power Pin, which is the root mean square
power through the feedline. We will then look at the utilized capacitor geometries
to study their inhomogeneous electric fields.
We can write down the power balance for the rf-signal through the feedline at the
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resonator as
Pin = Ptrans + Prefl + Pdis , (4.18)

with Ptrans being the transmitted power, Prefl the reflected power, and Pdis as the dis-
sipated power. We assume that all dissipation processes originate from the dielectric
material of the capacitor. By the use of Equation (4.2), we write the stored energy
in the resonator as

Wstored =
Pin − Prefl − Ptrans

2πf0
Qi =

1− |S11|2 − |S21|2

2πf0
QiPin . (4.19)

We can use S11 = 1 − S21 and thus |S11|2 = |1 − S21|2, which gives together with
Equation (4.3) for an ideal resonator at f = f0

Wstored =
2Q2Pin

Qcω0

. (4.20)

Writing the stored energy as Wstored = ⟨n⟩ℏω0, where ⟨n⟩ is the average number of
photons in the resonator, we obtain

⟨n⟩ = 2Q2Pin

Qcℏω2
0

. (4.21)

Moreover, the total energy of an LC-circuit is given as WLC = 1
2
CU2, while U gives

the maximum voltage across the capacitance C. Together with Equation (4.20) we
can write down the voltage across the capacitor as

U =

√︄
4Q2Pin

QcCω0

. (4.22)

In our case, with four identical capacitors with capacitance C arranged in a bridge
geometry which forms a total capacitance of again C, the voltage drop across each
capacitor is U/2, and we finally arrive at

U4CLC =

√︄
Q2Pin

QcCω0

. (4.23)

The utilized capacitor geometries cause an inhomogeneous electric field distribution,
which we modeled with a finite element simulation in FEMM [Mee20]. Figure 4.20
shows a vertical slice through the capacitor electrodes. The metal structure (thin
black lines) lies on top of the glass sample (εr = 5.8), and the area above the structure
is modeled as vacuum (εr = 1). The voltage between the two electrodes was set to
1V. The left side shows an IDC geometry with finger width and distance of 50 µm,
and the right side shows a single slit with 5 µm gap width. FEMM then models
the field distribution of the given geometry. In Figure 4.20 the electric displacement
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Figure 4.20: Calculated electric displacement of the IDC (left) and the slit geometry
(right). The image shows a vertical slice through the structure with the glass below and
the vacuum above the metal electrodes (black lines).

field D is shown. The finger and slit lengths in the designs are long compared to
the distance between the electrodes so that we can neglect the boundaries of the
structure. In both cases, directly at the edge of the electrodes, the field is the
largest and penetrates by approximately the electrode distance into the sample. In
Figure 4.21 the glass area was evenly rasterized, and histograms for both electric
field distributions were created. Especially the areas close to the electrodes, where
the highest field strengths occur, are of particular interest, since tunneling systems in
these regions couple the strongest to electric fields and give the largest contribution
to the dielectric function. In both plots the electric field strength was normalized
by the value of a corresponding plate capacitor with the electrode distance of each
capacitor as gap size. The histograms reveal the field distribution of the two capacitor
geometries. In the case of the IDC, one finds an exponential distribution f(F )dF ∝
exp(−F ′/β)dF , with β = 0.25 and F ′ being the normalized field strength. For the
slit geometry we also find an exponential dependency with a slightly modified value
for β = 0.19.
In the theory predictions homogeneous electric fields are assumed. Knowing the field
distribution of the capacitor geometries allows us to incorporate the inhomogeneous
field distribution whenever the field strength plays a role. This is in particular of
interest for measurements of the resonant dielectric loss as a function of the driving
field strength or the bias rate, what we want to calculate in the following. The total
energy stored per volume in the capacitor is

Wtot =
1

2
ε0ε

′F 2 , (4.24)

while the dissipated power is

Pdis =
ω0

2
ε0ε

′′F 2 . (4.25)
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Figure 4.21: Histograms of the simulated field distributions of the IDC (left) and the
slit geometry (right) inside the sample. The area of the glass was evenly rasterized in
both cases. The field strengths are normalized with the electric field of an equivalent plate
capacitor with the electrode distance as gap size.

Equation (4.2) allows to calculate the corresponding loss as the ratio of both of
these equations. For a homogeneous field, this leads to the known result Q−1

i = ε′′

ε′
.

However, if the field is inhomogeneous, and the imaginary part ε′′(F (V )) is field-
dependent and therefore becomes a function of the volume, one has to write

Q−1
i =

∫︁
Vdiel

ε′′(F )
ε′

F 2dV∫︁
Vtot

F 2dV
. (4.26)

Instead of integrating the field strength over the volume, we make use of the obtained
field distributions and create random numbers u according to the distribution. The
distributed field strengths are then calculated as Finhom = u ·Fhom, where Fhom is the
field strength of a plate capacitor with the electrode distance of the IDC or slit as
gap size d. We can sum over all generated field strengths Finhom, which is equivalent
to an integration over the volume, and identify ε′′/ε′ = tan δ to find

tan δinhom(Fhom) =

∑︁
u

u2 tan δ(uFhom)∑︁
u

u2
. (4.27)

This allows us to transform Equation (2.94) or the outcomes from Equation (2.113)
into the corresponding results of an inhomogeneous electric field strength distribu-
tion. When using the dimensionless bias rate ξ from Equation (2.112) one finds
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ξ ∝ u−1, and thus we can directly write

tan δinhom(ξhom) =

∑︁
u

u2 tan δ(ξhom/u)∑︁
u

u2
. (4.28)

In Figure 4.22 the effect of the inhomogeneous field distribution on the loss is shown.
The left side shows the loss as a function of the applied driving field voltage at the
capacitor and the right side its dependence on the dimensionless bias rate. In both
cases the field distribution of an IDC with 50 µm finger distance was used. We com-
pare both curves with the results of an ideal plate capacitor with homogeneous field
distribution. When a gap size of twice of the IDC finger distance deff = 100 µm is
used, we find the best agreement with the inhomogeneous case. This shows that
in the case of an IDC as capacitor in a good approximation the field inside the ca-
pacitor can be described by a homogeneous field with an effective field strength of
Feff = U

deff
= U

2d
. Instead of performing the full calculation with the inhomogeneous

field distribution, this approximation may simplify the comparison with the theory.
For the slit as capacitor geometry, we assume the same result, although the found
field distribution slightly differs from the IDC case. We attribute this difference to
the missing appearance of high field strengths for the slit geometry in the FEMM
simulation. Close to the electrodes the field should be the same for the slit and
the IDC. Only for larger distances to the slit one expects a difference in the field
distribution. However, the field strengths there should be small and have a minor
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Figure 4.22: Effect of the inhomogeneous field distribution on the driving field depen-
dence and the bias rate dependence of the loss. Instead of using the inhomogeneous field
distribution the field of the capacitor geometries can be approximated with the field of a
plate capacitor with twice of the electrode distance as gap size.
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effect since the coupling to tunneling systems is heavily reduced.

FEMM also allows to determine the filling factor F of the capacitors. It can calculate
the stored energy in the dielectric material and the vacuum, respectively. The ratio
of the stored energy in the sample Wx and the total energy gives the filling factor

Wx

Wtot

=
Cx

C
= 1− Cp

C
= F . (4.29)

We find a value of F = 0.853 for both capacitors. Alternatively, we can calculate
the filling factor as follows. Due to the symmetry of the planar capacitor geometry,
we can write the total capacitance of the capacitor as

C = Cx + Cp = εrCp + Cp . (4.30)

The parasitic capacitance is given by the electric field through the vacuum layer above
the substrate. The electric field inside the sample is identical, but the capacitance is
enhanced by the factor εr due to the additional polarization of the dielectric material.
We calculate the filling factor as

F = 1− Cp

C
=

εr
εr + 1

= 0.853 , (4.31)

with εr = 5.8 for N-BK7, which agrees with the value found in FEMM.

4.7 High frequency properties of superconductors

The appearance of superconductivity in metals can be understood within the BCS-
theory [Bar57] where an attractive interaction between electrons, mediated by the
lattice of the solid, leads to the formation of so-called Cooper pairs [Coo56]. A Cooper
pair consists of two electrons with opposite momentum, which form a composite
boson. If the temperature decreases below a critical value Tc, an energy gap in the
single-particle density of states is formed at the Fermi energy, which causes eventually
the superconductivity. While for a superconductor the DC resistance vanishes below
Tc, a superconductor has a finite surface impedance Zs for high frequency currents
with frequency ω. The surface impedance is composed out of a surface resistance Rs

and a surface inductance Ls

Zs = Rs + iωLs . (4.32)

Both are ascribed to the complex-valued conductivity of a superconductor σ(ω, T ) =
σ1(ω, T ) − iσ2(ω, T ), which is described within the Mattis-Bardeen theory [Mat58].
Here, we want to restrict the discussion only to a qualitative understanding of the
occurring surface impedance in superconductors. Magnetic fields and alternating
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electric fields can penetrate the superconductor only within a thin layer at the surface
(London penetration depth). If Cooper pairs get accelerated by such an AC field at
the surface, they cannot follow the field instantaneously due to their finite inertia.
This motion out-of-phase with the excitation can be explained by introducing a
kinetic inductance. The motion of Cooper pairs is free of dissipation, and hence no
contribution to the ohmic resistance occurs from the Cooper pairs. However, in a
superconductor for T > 0K quasi-particles arise as intrinsic thermal excitations of
Cooper pairs. Their scattering mechanism is analogous to the one of electrons, which
is why superconductors have a finite ohmic resistance for AC currents. The number
of quasi-particles drops exponentially with decreasing temperatures. Therefore, for
temperatures well below Tc the surface resistance Rs for superconducting resonators
is negligible [McR20]. This is especially true in our case, where the tunneling systems
in the substrate give a distinct contribution to the resonator loss at almost all relevant
temperatures. Hence, we do not expect major contributions of the superconductor
to Qi. We confine ourselves to the surface inductance in the following. For a thin
film of metal one finds [Bar09]

Ls = µ0λ coth

(︃
t

λ

)︃
, (4.33)

where the penetration depth λ is adjusted to the thickness of the film t, and µ0

describes the vacuum permeability. The penetration depth λ of a superconductor
strongly depends on temperature. Within the London model it reads as [Hun07]

λL(T ) =
λ0√︃

1−
(︂

T
Tc

)︂4 , (4.34)

whereby λ0 is material-dependent. According to [Buc13], for niobium one finds λ0 =
32 − 44 nm. For higher temperatures, the number of Cooper pairs decreases. With
that, they have to move with higher velocity because the current is carried by less
pairs, which strongly increases the kinetic inductance for T → Tc. A temperature-
dependent inductance leads to an additional shift of the resonance frequency f0
that is unrelated to the change due to tunneling systems. When observing the
temperature dependency of the dielectric function’s real part at temperatures close
to the critical temperature of the superconductor, this additional shift needs to be
subtracted out from the results. With Sonnet® [Son18] it is possible to include a
surface inductance to the simulation of the resonator circuit. This allows to simulate
the shift f ′

0 =
1

2π
√

(L0+L1(T ))C
in temperature due to an additional inductance L1 by

applying Equations (4.33) and (4.34) to the simulation. We can determine the ratio√︄
L0 + L1(T )

L0

=
f0

f ′
0(T )

(4.35)
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Figure 4.23: Temperature dependence
of the used surface inductance Ls for
the kinetic inductance correction. For
T < 6.4K the penetration depth was cal-
culated with Equation (4.34) and λ0 =

160 nm, t = 400 nm, and Tc = 9.2K. For
higher temperatures an empirical surface
inductance was used (green line) [Fre16].

from the simulation at different temperatures, where f ′
0 denotes the simulated reso-

nance frequency with, and f0 without additional surface inductance. Knowing this
ratio as a function of temperature allows us to correct the measured resonance fre-
quencies f0,m in experiment by

f0,cor =

√︄
L0 + L1(T )

L0

f0,m , (4.36)

which eliminates the shift of the resonance frequency due to the temperature-de-
pendent kinetic inductance of the superconductor. In [Fre16] the temperature de-
pendence of the resonance frequency for similar planar LC-resonators out of sputter
deposited niobium with N-BK7 as substrate were compared to normal conducting
reference resonators with similar resonance frequencies and N-BK7 as sample as well.
A good agreement with the normal conducting resonators up to 9K was found by
applying the correction from above and choosing the surface inductance shown in
Figure 4.23. Up to temperatures of T = 6.4K the London penetration depth from
Equation (4.34) was used with λ0 = 160 nm, t = 400 nm, and Tc = 9.2K. For
higher temperatures an empirical dependency with slightly smaller Ls was needed,
which is shown by green line. Below 2K the additional shift of f0 due to the ki-
netic inductance was found to be unimportant. We will make use of this correction
when measuring the temperature dependency of the dielectric function above 1K in
Section 5.2.1.



5. Experimental Results

This chapter presents the experimental results obtained in this thesis. After a brief
look at the thermalization of the resonators, Section 5.2 focuses on dielectric measure-
ments in equilibrium, such as the dependency from the temperature and the driving
field strength. In Section 5.3 the non-equilibrium measurements within the scope
of Landau-Zener spectroscopy are presented. We end this chapter with two-tone
measurements, where additional pump tones are used for driving tunneling systems
off-resonantly.

5.1 Thermalization measurements

An important aspect when performing experiments at very low temperatures is the
question about the thermalization. It must be ensured that the sample has adapted
to the temperature of the cryostat prior to a measurement. This is especially of
importance at the lowest temperatures, where the heat flux is small. Amorphous
materials are known to be an origin of time-dependent internal heat leaks at cryo-
genic temperatures, as they release heat over long time scales due to the broadly
distributed relaxation times of tunneling systems [Pob07]. Combined with their low
thermal conductivity and high heat capacity, in some experiments the thermaliza-
tion times exceeded several tens of hours [Luc16, Str18]. Although the used sample
N-BK7 is known to be good-natured in this regard, it is essential to examine the
sample’s thermalization behavior in combination with the developed sample holder
box.
We did that by exploiting the sample’s temperature-dependent dielectric function as
thermometer. Measuring the real part or loss as a function of time while lowering the
temperature stepwise, allows to trace the sample’s temperature. This was done in
Figure 5.1 for the 250MHz- and 1GHz-resonator at temperatures below 50mK. The
temperature of the cryostat was lowered every 3 h to 4 h, while the temperature was
held constant in between. In the case of the 250MHz-resonator (left) δε′/ε′ and tan δ

follow all temperature steps closely. There is no indication for a delayed response
or a time-dependent convergence of the dielectric function towards the new equilib-
rium after a temperature step. Within the time resolution of this measurement, the
sample’s temperature adopts almost instantaneously to the cryostat temperature. As
expected, the thermalization is unproblematic for N-BK7 at these temperatures, and
the thermal coupling of the sample to the heat bath seems to be sufficient. Previous
measurements of resonators with a similar thermal setup showed a fast thermaliza-
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Figure 5.1: Thermalization measurements of the 250MHz-resonator (left) and 1GHz-
resonator (right) for temperatures below 50mK. For both setups δε′/ε′ and tan δ were
measured, while the temperature of the cryostat was lowered stepwise.

tion of the sample as well [Fre16].
The thermalization time for the 1GHz-resonator (right) is harder to read off. At the
given driving frequency both δε′/ε′ and tan δ become constant at very low temper-
atures, compare Figure 2.15. Moreover, tan δ is large at low temperatures, meaning
a rather broad resonance curve, which reduces the resolution of the resonance fre-
quency f0. Therefore, the steps in temperature are not clearly mapped in δε′/ε′

and tan δ, and both curves become more diffuse at low temperatures. However, we
do observe steps in tan δ to some extent and no complete flattening of both curves
occurs which would indicate a thermally decoupled sample. In addition, the setup
is equivalent to the 250MHz-resonator so that we can assume a fast thermalization
of the sample and resonator in both cases.

5.2 Dielectric equilibrium measurements

We proceed the discussion of the experimental results with dielectric measurements
performed in equilibrium where no bias signal is applied to the resonator. Comparing
the measured temperature dependency of the dielectric function with the predictions
from the standard tunneling model allows to draw information about the tunneling
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system distribution function of N-BK7. Another important equilibrium measurement
for this thesis is the dependence of tan δ on the driving field strength, which we will
discuss in Section 5.2.2.

5.2.1 Temperature dependency

We start the discussion of the temperature dependency by comparing the results
of the 1GHz-resonator with the results of a reentrant cavity resonating at 880MHz

[Fre16]. This cavity resonator is made out of gold plated copper, whereby N-BK7 was
placed at the position where the electric field of the λ/4-mode is concentrated. Since
no superconducting materials are used, the intrinsic quality factor of this resonator
is quite low (Qi < 250). However, no parasitic contributions from superconductors
are existing, which is why this cavity is well-suited as reference resonator for the
novel superconducting bridge-type resonators. A comparison of δε′/ε′ and tan δ be-
tween both resonators is shown in Figure 5.2. Both curves were measured at the
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Figure 5.2: Comparison of the temperature dependency of the 1GHz-bridge-resonator
setup with a reference reentrant cavity resonating at 880MHz with N-BK7 as dielectric
material.

lowest possible excitation strengths to avoid saturation of tunneling systems while
maintaining a reasonable signal-noise ratio at the same time. The determination of
f0 and Q was done through a resonance curve fit, see Equation (4.14). For the reen-
trant cavity a filling factor of F = 0.943 was used. The real part δε′/ε′ of the bridge
resonator was corrected by the superconducting surface inductance as explained in
Section 4.7. For δε′/ε′ one finds an excellent agreement between both curves for
almost the entire measured temperature range. Only for temperatures close to the
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critical temperature of niobium small deviations are visible, which should be related
to an overestimation of the applied correction of Ls. For temperatures that are most
relevant in this thesis – well below 1K – this should not be an issue.
Because of the reentrant cavity’s much higher intrinsic loss, the absolute values in
tan δ of both curves differ. Therefore, in Figure 5.2 (right) the cavity’s loss was
shifted by a constant (3.86× 10−3) to match the loss of the bridge resonator at 1K.
For the bridge resonator the data were only corrected by the filling factor and the
coupling quality factor. At low temperatures, the loss tan δ of the reentrant cavity
is reduced by a factor ∼1.5 compared to the bridge resonator. As we will see in the
next section, in the measurement of the bridge resonator it was possible to reach the
low-power limit where no saturation of tunneling systems occurs, and one measures
the full tunneling system dissipation. In the case of the reentrant cavity the applied
driving field was too high, and due to saturation resonant tunneling systems can-
not fully contribute to the loss. Hence, the loss measured with the superconducting
bridge resonator is the more adequate measurement of the sample’s loss.
For temperatures above 1K both curves agree quite well, although at these temper-
atures the loss due to thermally broken Cooper pairs in the superconductor becomes
larger. From the nonetheless existing agreement we can conclude that for the bridge
resonator the dielectric dissipation of the sample dominates the loss, and the loss
caused by the superconductor is negligible, even at 8K.

The 250MHz-bridge-resonator can be compared with an LC-resonator which shares
a similar design principle, but has only a single IDC as capacitance. This reference
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Figure 5.3: Comparison of the temperature dependency between the 250MHz-bridge-
resonator setup and a planar superconducting LC-resonator resonating at 240MHz with
N-BK7 as dielectric material as reference [Fre16].
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resonator is also composed out of a planar niobium structure with N-BK7 as sub-
strate and is discussed in [Fre16]. In Figure 5.3 the temperature dependence of δε′/ε′

and tan δ is compared between both resonators. The temperature-dependent surface
inductance of niobium was corrected in δε′/ε′ for both curves. The real part of the
bridge resonator agrees well with the reference measurement. In tan δ both curves
diverge towards low temperatures. Again, the applied driving field was too high in
the reference measurement, which lowers the loss through saturation of tunneling
systems. For the bridge resonator we were able to measure at low excitations fields
to observe the entire resonant loss of tunneling systems.

Next, we can compare the data of the two bridge resonators with the predictions
of the standard tunneling model. From Figure 5.2 and 5.3 we can already see that
the predicted logarithmic dependency of the resonant real part does not completely
coincide with the measurement as the resonant slope is slightly curved when plotted
with a logarithmic temperature scale. This indicates that the pure standard tun-
neling model distribution is not fully capable of describing the data, and the model
needs to be modified. Previous measurements of N-BK7 over a wide temperature
and frequency range used different modifications of the distribution function in or-
der to attain a more compliant description [Luc16, Fre16], which we can transfer
to our discussion. Here, we use the modified distribution from Equation (2.77),
which accounts for interactions between tunneling systems and leads to a reduced
density of tunneling states at small energies. Instead of using the standard tunnel-
ing model distribution, we insert Equation (2.77) into Equations (2.78) and (2.79)
when performing the numerical integration. Moreover, we use one-phonon and two-
phonon processes for the longitudinal relaxation rate τ−1

1 . Dielectric polarization
measurements of N-BK7 showed transversal relaxation times τ2 of several microsec-
onds, which does not impact the temperature dependency of δε′/ε′ or tan δ at all,
and we are allowed to use a constant value for τ2.
Table 5.1 lists the relevant parameters used for the integration, which were applied
to all curves. With these parameters we are able to describe δε′/ε′ and tan δ for
both frequencies quite well, see Figure 5.4. In δε′/ε′ the curves were shifted along
the y-axis in order to align in the resonant part. For the 250MHz-measurement the
data of the reference resonator from Figure 5.3 was used at high temperatures. As

A = P0p
2/(ε0εr) K1 [J

−3s−1] K2 [s
−1K−7] τ2 [s] P0U0 W [K]

3.15× 10−3 7.14× 1075 5 1× 10−6 2.3× 10−3 5

Table 5.1: Set of parameters used for the calculation of the theory curves in Figure 5.4.
The limits for the numerical integration are Emax/kB = 100K; ∆0,min/kB = 1× 10−7K.
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Figure 5.4: Comparison of the temperature dependency of δε′/ε′ and tan δ of N-BK7 with
the theory predictions using the parameter set from Table 5.1 with the frequencies 250MHz

and 1GHz. A modified distribution function, taking interactions between tunneling systems
into account, was used for the theory curves.

expected, the minimum of δε′/ε′ shifts towards higher temperatures with increasing
frequency. At these temperatures, the two-phonon process determines the relaxation
behavior, which leads to a steeper rise of the slope above the minimum. At high
temperatures the loss is underestimated by the theory. As the comparison with the
normal conducting resonator in Figure 5.2 showed, the resonator loss at high temper-
atures is unaffected by losses from the superconductor and should originate from the
sample. At these temperatures, the description of the glass properties solely through
a two-level system ensemble starts to fail because the thermal energy becomes large
and may lead to thermally activated processes. Higher energy states of the under-
lying potential become thermally accessible too, which gives rise to localized soft
modes that might start to contribute in addition to the tunneling systems. Since
we are interested in the tunneling system dynamics, we will not discuss the high
temperature properties further on and restrict the analysis to low temperatures.
As already mentioned, the resonant part of δε′/ε′ does not follow a linear slope. The
modified distribution due to tunneling system interactions is able to describe the
slight bend of the curves for both frequencies. Moreover, the modified distribution
results in a reduced resonant loss compared to the pure standard tunneling model
predictions, and the ratio of the plateaus in the high and low temperature limit (see
Equations 2.84 and 2.85) becomes obsolete.
In general, the resonant part is accurately described by the theory. In contrast to
previous measurements the sensitivity of the setup at ultra-low driving powers is
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sufficient to resolve the resonant loss at very low temperatures entirely. This allows
a more profound comparison with the theory predictions. The value for the dimen-
sionless interaction parameter P0U0 = 2.3 · 10−3 for N-BK7 lies within the range
obtained in other measurements P0U0 ≈ 10−3 − 3 · 10−3 [Nat98, Lut18].
It should be mentioned that when applying this set of parameters to dielectric mea-
surements performed in the Hz and kHz frequency regime the agreement is con-
siderably worse. However, in the frequency range discussed within this thesis the
introduced modification is quite successful in describing the data accurately.

5.2.2 Driving field strength dependency

Another important equilibrium measurement is the measurement of tan δ as a func-
tion of the driving field strength. This allows the quantification of tunneling system
saturation effects, and one can detect the limit where the resonant loss becomes
unaffected by the driving field strength. Moreover, the equilibrium loss for different
driving fields will later be used to compare the non-equilibrium loss of the Landau-
Zener spectroscopy in the high and low bias rate limits.
In order to obtain the field strengths in the capacitor we use Equation (4.23) and
apply the effective field strength that was found for the capacitor geometries in Sec-
tion 4.6, and write

Fac =

√︄
Q2Pin

4QcCd2ω0

, (5.1)

where Pin is the root mean square power through the transmission line, and d is the
distance between the electrodes: d = 5 µm (1GHz-resonator); d = 50 µm (250MHz-
resonator). The capacitance C of a single resonator’s capacitor was simulated with
Sonnet® and found to be C = 8.97 pF (1GHz-resonator); C = 3.59 pF (250MHz-
resonator). The input power Pin was altered by regulating the attenuation of the
programmable attenuator. In order to retain a reasonable signal-noise ratio at the
lowest driving powers, a stronger averaging, which increases the measurement time
significantly, was needed there. The loss tan δ was evaluated at the resonance mini-
mum to minimize the effect of a varying saturation strength over the resonance curve,
see Section 4.4.1 and Equation (4.16).
In Figure 5.5 tan δ is plotted as a function of the driving field strength Fac for both
resonators and is compared with the theory predictions from Equation (2.94) (solid
lines). Both curves show a plateau at small field strengths which is lower for the
250MHz-measurement due to a higher thermal population of the upper two-level
state. Towards higher field strengths the driving field saturates tunneling systems
and the loss drops ∝ F−1

ac for both curves as expected from the standard tunnel-
ing model. In order to obtain this dependency, besides the coupling quality fac-
tor Qc, a constant residual loss of the resonator was subtracted from the data:
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Figure 5.5: Driving field dependency of
tan δ for excitation frequencies of 1GHz

(blue filled circles) and 250MHz (red
crosses) at 14mK compared with the pre-
dictions of theory. The dotted lines show
calculations which include the inhomoge-
neous field distribution of the capacitor
geometries. A residual loss of 4× 10−5

and 1.35× 10−5 for 1GHz and 250MHz

was subtracted, respectively.

tan δres(1GHz) = 4× 10−5; tan δres(250MHz) = 1.35× 10−5. In addition to tun-
neling systems, there exist several mechanisms that limit the quality factor of super-
conducting resonators as reviewed in [McR20]. At low temperatures T ≪ Tc, as it is
the case in this measurement, the loss through thermal quasi-particles is irrelevant.
However, quasi-particles may be created through stray infrared light [Bar11] or ion-
izing particles [Vep20]. These would give a power-independent loss contribution, just
the same as vortex and radiative losses [Son09, Sag11]. A mechanism that is depen-
dent on the applied field intensity may rise from microwave induced pair-breaking.
Although the microwave photons cannot directly break a Cooper pair (ℏω < 2∆),
the photon flux from a strong driving field can pump a quasi-particle with energy E
to higher energy states E + nℏω. As a consequence, relaxations back to much lower
energy states can lead to pair-breaking phonons which cause an enhanced density of
quasi-particles and thus an enhanced loss [Gol12, dV14]. The expected loss from the
mentioned mechanisms are typically of the order 10−5 to 10−6 [McR20], similar to
the values found here. The specific origin for the residual loss observed here cannot
be resolved at the moment.
The theory curves describe the data fairly well. As critical field strengths Fc =

33.5V/m (1GHz) and Fc = 1.7V/m (250MHz) were used. The temperature depen-
dency measurements of the resonant loss from Section 5.2.1 were all performed at field
strengths smaller than Fc. The dotted lines in Figure 5.5 show calculations where the
effect of the inhomogeneous field distribution was explicitly regarded, which slightly
improves the description of the data at the crossover into the plateau. At very high
field strengths both curves flatten and do not follow the ∝ F−1

ac dependency anymore.
At these field strengths we observe a heating of the sample, which we will discuss in
the following.
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Figure 5.6: Driving field dependency of
δε′/ε′ for excitation frequencies of 1GHz

(blue filled circles) and 250MHz (red
crosses) at 14mK.

In Figure 5.6 the real part δε′/ε′ for both excitation frequencies is plotted as a
function of the driving field strength. Towards lower field strengths the signal-noise
ratio becomes worse, which is why the data starts to scatter more. For the 1GHz-
measurement this effect is enhanced because the higher loss of the sample broadens
the resonance curve. In contrast to the loss, the real part should be unaffected by
the saturation of resonant tunneling systems as its contributions mainly originate
from off-resonant tunneling systems. Hence, δε′/ε′ should not show a dependence
on Fac. However, for Fac ≳ 50Vm−1 a considerable drift is noticeable for both
curves. We can relate this to an increased sample temperature, which explains the
non-monotonic behavior of the 1GHz-measurement. By comparing the data from
Figure 5.6 with the temperature dependency of δε′/ε′ in Figure 5.4, we can extract
the sample’s temperature at the given excitation field strength, which was done for
a few points in Figure 5.7 (left). At the highest field strengths, the temperature
increase is more than 20mK. The temperature of the cryostat is not affected at
these field strengths. However, a reduced heating power of the PID temperature
control loop was noticeable. The dependency of the sample temperature on the field
strength above 10Vm−1 is fitted by a cubic term

Ts(Fac) = a log(b · Fac)
3 + 14mK . (5.2)

We can use the determined sample temperature to incorporate the effect of a higher
temperature into the field strength dependency of tan δ. As we can see from Equa-
tion (2.94) the temperature affects tan δ in two ways: Firstly, it changes the thermal
population factor tanh( ℏω

2kBT
). On the other hand, it also impacts Fc because the

relaxation times τ1 and τ2 are temperature-dependent.
In [Fic13] the decay of dielectric polarization echoes was measured at different tem-
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peratures in N-BK7 at 890MHz to extract τ1,min and τ2,min at these temperatures.
This data is plotted in Figure 5.7 (right) for temperatures between 7.5mK and
70mK. In a phenomenological approach we extract the temperature dependence of
Fc by fitting power laws to the data. For an excitation at 250MHz we do not have
the corresponding data, and hence, assume the same temperature dependency for
the relaxation times. Combining Figure 5.7 (left) and (right) we find the dependency
Fc(Ts(Fac)) which we apply to Equation (2.94) and choose for Fc(Ts = 14mK) the
values used in Figure 5.5. In Figure 5.8 the corrections due to the heated sample
were considered in the dotted curves (inhomogeneous field). Although higher tem-
peratures mean an increased thermal population, and therefore a lower loss in first
place, the increase of Fc in temperature overcompensates this effect and eventually
gives a higher loss. The temperature-corrected curve describes the 1GHz-data also
at strong driving fields well. For the 250MHz-curve the temperature correction is
much less pronounced and cannot explain the stronger bending of the data at high
fields. Since the contribution from tunneling systems is heavily reduced there, the
residual loss of the resonator plays a more dominant role. The stronger bending of
the data compared to the theory at very high driving fields indicates a non-constant
residual loss, possibly originating from microwave induced pair-breaking processes.

There remains the question about the origin of sample-heating at strong driving
fields. In the following we want to regard this topic with a simple thermal model of
the setup. We can calculate the dissipated power due to the resonator’s loss with
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Equation (4.2). The stored energy in the resonator is given by Equation (4.20).
Together with Equation (4.4) we can write down the heat load Q̇ at f = f0

Q̇ = Pdis = 2
Q

Q2
c

(Qc −Q)Pin , (5.3)

which becomes maximal for Q = Qc/2. The dissipated power for the 1GHz-
measurement as a function of the input power at the transmission line is shown
in Figure 5.9 (left), where the data points from Figure 5.7 (left) were marked in red.
Next, we can calculate the heat transfer from the sample to the cryostat. The heat
mainly dissipates at the surface of the sample within the capacitors and is trans-
ported to the bottom of the sample, which is thermally connected with the copper
of the sample holder box at T0 = 14mK. A rough estimation for the temperature
difference ∆T between capacitor and bottom of the sample can be made as

∆T =
l

A

1

κ
Q̇ , (5.4)

with the sample thickness l = 1mm and the area A of the heat flux cross section.
Since the area of the capacitor is small compared to the substrate size, we estimate
a heat flow perpendicular through an area of 1% of the sample’s surface (41mm ×
30mm). Typical values for the thermal conductivity κ of glasses at 100mK are of
the order κ ≈ 10−6Wcm−1K−1 [Pob07]. From the κ ∝ T−2 dependency of glasses at
low temperatures we use κ0(T0 = 14mK) = 10−8Wcm−1K−1 and find an equation
for the sample temperature Ts

Ts − T0 =
l

A

Q̇

κ0

(︃
T0
Ts

)︃2

. (5.5)
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Figure 5.9: Left: Calculation of the dissipated power as a function of the input power
through the transmission line at 1GHz. The data points from Figure 5.7 (left) are marked
in red. Right: Temperature increase of the sample as a function of the heat input compared
to the calculated temperature increase due to the thermal conductivity of the sample and
the thermal boundary resistance between the glass and copper.

This equation is solved for different input powers Q̇ and is compared to the detected
temperatures of the sample in the experiment with the corresponding dissipated
power calculated before. This is shown in Figure 5.9 (right). With these rough
assumptions the temperature increase of the sample is reproducible.
Moreover, we can calculate the temperature gradient due to the thermal boundary
resistance between the sample and the copper underneath. This thermal resistance
is caused by the acoustic mismatch between two materials and is also known as the
Kapitza resistance [Pob07]. Phonons, which are responsible for the heat transport
in our case, might get reflected at the boundary and reduce the heat flux. Only
regarding this effect now, the temperature difference is written as

∆T =
RK

AT 3
Q̇ , (5.6)

where RK is the Kapitza resistance, which is found to be about 8× 10−4m2K4/W

for a boundary between copper and glass [Swa89, Pob07]. The effective area for the
heat flux between both materials is not well-defined in our case. As before, we simply
assume an area of 1% of the sample’s surface. We can solve the equation

Ts − T0 =
RK

AT 3
0

(︃
T0
Ts

)︃3

Q̇ (5.7)

for different Q̇, which is shown in Figure 5.9 (right) as well.
The presented calculations should be understood as a very rough estimation of the
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expected sample’s temperature. Many properties that are needed for the calculation
are vague and require a detailed modeling for a more precise analysis of the thermal
setup. However, we may conclude that the dissipated heat due to the resonator’s
loss is able to cause the observed temperature increase, and that the thermal heat
flux away from the capacitor might be limited by the thermal conductivity of the
glass itself.

5.3 Dielectric non-equilibrium measurements – Landau-Zener
Spectroscopy

After we have discussed dielectric equilibrium measurements, we continue with mea-
surements where an additional bias field is applied simultaneously to the rf-driving
field. We start with a characterization of the bias branch before non-equilibrium loss
measurements with ramped bias fields are presented.

5.3.1 Characterization of the bias signal

As a first test we characterized the crosstalk between the rf-readout branch and the
biasing branch. The symmetry of the resonator should reduce the coupling between
both branches significantly, which is essential for a parallel application of the bias
signal and the rf-readout. In Figure 5.10 we measured the transmission |S21| between
bias line (input) and rf-feedline (output) of the 250MHz-setup at 19mK. Additional
dampings or amplifications due to attenuators or rf-amplifiers in the signal path
were subtracted. Besides the resonance frequency at 250MHz the crosstalk is indeed

0 100 200 300 400 500
Frequency  [MHz]

60

50

40

30

20

10

0

Tr
an

sm
is

si
on

 
21

 [d
B]

T = 19

Figure 5.10: Measured transmission
|S21| between bias (input) and rf-feedline
(output) of the 250MHz-setup at 19mK.
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heavily reduced by more than three orders of magnitude. Especially at frequencies
smaller than 1MHz, where the bias ramp timescale lies in the experiment, the device
provides a very effective decoupling.

Next, we applied constant bias voltages to the resonator and repeated the measure-
ments of the driving field strength dependency. This allows to prove an independent
operation of the rf-readout under the application of a large electric DC bias field.
Moreover, we are able to scan the tunneling system distribution function in ∆ be-
cause the bias field leads to a constant shift of the asymmetry energy, and other
tunneling systems become resonant with the driving field. Since tan δ is mostly sen-
sitive to resonant tunneling systems, measuring its field dependency at a constant
bias field probes a different set of tunneling systems. Possible fluctuations in the
tunneling system density can then be detected by measuring tan δ. The real part
probes tunneling systems over a wide energy spectrum and therefore should not be
substantially altered by shifts in ∆. The data for the following measurements were
performed in close collaboration with the bachelor thesis of [Lut20].
In Figure 5.11 the field strength dependency from Figure 5.5 was repeated for the
1GHz-setup while constant bias voltages were applied to the resonator. As be-
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Figure 5.11: Repeating the measure-
ment from Figure 5.5 while applying con-
stant bias voltages Ub to the resonator.
The constant bias field brings a differ-
ent set of tunneling systems in resonance
with the electric driving field and allows a
scan of the tunneling system distribution
function in ∆. Raw data from [Lut20].

fore, Qi was determined from the minimum of the resonance curve |S21|. The
maximum applied bias voltage of Ub = 165V corresponds to a field strength of
Fb = Ub

4d
= 8.25MVm−1 where one needs to notice that the voltage drop across

a capacitor is Ub/2, and we can use an effective field strength of Feff = U
2d

for the
capacitor geometry. Together with Equation (2.37) we calculate the energy shift in
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∆. By integrating over all possible dipole orientations, we obtain the mean ⟨δ∆⟩

⟨δ∆⟩ = 2pFb⟨cos θ⟩ = 2pFb

∫︁ 2π

0
dϕ
∫︁ π/2

0
sin θ cos θdθ∫︁ 2π

0
dϕ
∫︁ π/2

0
sin θdθ

= pFb , (5.8)

where we integrate only over half of the sphere because the dipoles can be aligned
alongside or opposed to the field direction. We then find a shift of ⟨δ∆⟩/h ≈ 62GHz,
using a dipole moment of p = 1.5D, see Section 5.3.2. Compared to the energy E of
resonant tunneling systems without bias field, the bias voltage gives a massive shift
in ∆.
Although a completely different range of the tunneling system distribution is probed
by the single measurements in Figure 5.11, all curves align quite well with each
other. This observation is in agreement with the standard tunneling model, which
postulates a flat distribution in ∆. At very high driving field strengths the curves
split into two subgroups. Between the recordings of both subgroups (0V, 60V) and
(120V, 165V) the cryostat had been warmed up to room temperature. A small
rearrangement of the chip environment, for example, may have resulted in a slightly
shifted Qc between both cooldowns.
For a more detailed investigation of eventual shifts in the dielectric function under
a DC bias, we fixed the driving field strength to Fac = 4.13Vm−1 and performed
sweeps in Ub, while holding the bias voltage constant during the recording of res-
onance curves. Since temporal changes of the bias field lead to an enhanced non-
equilibrium loss, which we will discuss later on, after a change of Ub we waited several
minutes to give the system enough time to reach equilibrium. We chose a low driving
field strength which gives a maximum contribution from tunneling systems. Possible
fluctuations in the distribution function should be most pronounced there. At this
field strength no saturation of tunneling systems is expected, and thus f0 and Q were
obtained by fitting a Lorentzian to the resonance curves, which slightly improves the
accuracy in δε′/ε′ and tan δ.
In Figure 5.12 δε′/ε′ and tan δ are plotted as a function of the DC bias field strength
at 14mK and 1GHz. We performed two sweeps, one with increasing DC voltage and
the second one in reversed direction. Neither in δε′/ε′ nor in tan δ we can find clear
indications for variations of the dielectric function under a DC bias. Small substruc-
tures do occur, but they are of the order of the measurement’s uncertainties or could
not be reproduced with the other sweep. The fact that the dipole orientations are
random makes a detection of local variations in the distribution difficult to observe.
The shifts δ∆ = 2pFb cos θ due to the bias field are not the same for all elements of
a group of tunneling systems initially having the same asymmetry energy ∆. This
leads to a smearing in δ∆ when applying a bias field, and fluctuations at a certain
energy would smear out as well.
However, a statement about the overall flatness of the distribution can be made.
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Figure 5.12: Measurement of δε′/ε′ and tan δ at 14mK with a driving field strength of
Fac = 4.13Vm−1 at 1GHz as a function of the DC bias field strength. Two sweeps with
increasing (blue) and decreasing (green) DC bias field were performed. The red line shows
a linear fit of both sweeps in tan δ. Data from [Lut20].

Therefore, we fitted the average of both sweeps in tan δ linearly (red line) and found
the value m = (5.7 ± 5.4) · 10−7 1

MV/m
for the slope. According to this, we cannot

detect a significant drift in ∆ when shifting it with a DC bias field. Within the
accessible energy range the assumption of a flat distribution in ∆ seems legitimate.
These measurements show that the bias voltage can be applied to the resonator with-
out causing any interferences with the rf-readout of the dielectric function. Moreover,
a central assumption of the standard tunneling model – a flat distribution in ∆ –
can be confirmed, which proves the crucial requirement of a constant reservoir of
succeeding tunneling systems for the Landau-Zener spectroscopy.

Moreover, we applied time-dependent bias voltages to the resonator in form of a sine
function with amplitude Ub = 6V. In parallel to the periodic bias signal, resonance
curves were recorded with the VNA (amplitude |S21| and phase φ). The VNA sweeps
the driving frequency fac from low to high frequencies while it measures S21(fac). In
Figure 5.13 the VNA was set to record a single resonance spectrum within 6 s. The
bias frequency was alternating with fb = 2.5Hz, 5Hz, and 10Hz. With that, during
a resonance recording the bias voltage runs through a few cycles. In Figure 5.13 the
resonance curves with applied periodic bias signals are compared with a resonance
curve measured with disconnected bias signal (green line). We see that the resonance
curves are noticeably distorted through the bias voltage as they become modulated
by the periodic bias signal. This behavior can be understood by tunneling systems
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Figure 5.13: Measurement of resonance curves (amplitude |S21| (top); phase φ (bottom))
while biasing the resonator with a sinusoidal voltage. During the recording of the resonance
curves the periodic bias leads to a constantly changing bias rate, which modulates Q and
therefore leads to a modulation of the amplitude and phase.

performing Landau-Zener transitions induced by the AC bias field, which we will
discuss in more detail in the next section. As we saw in Section 2.4.6, the resonant
loss is sensitive to temporal changes of the bias field Fb

̇ . Fast changes increase the
loss while for very slow bias rates one observes the steady-state loss. Applying a sine
as bias signal leads to a periodic oscillation of the bias rate, and the resonant loss
switches periodically between a maximum during the zero-crossings and a minimum
during the turning points of the sine. This periodic switching is transferred to the
resonator’s quality factor Q, which then oscillates during the recording of the reso-
nance curve and causes the modulation. Increasing the frequency of the bias signal
leads to a faster modulation but also to higher bias rates during the zero-crossings,
and the loss becomes even larger there. The envelopes of the modulated resonance
curves correspond to the two extreme cases: maximum bias rate (smallest Q) and
steady-state (highest Q). At the higher bias frequencies, the response time of the
VNA is too slow to fully resolve the turning points, and the modulation cannot fully
reach the no bias curve.
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5.3.2 Bias rate dependency of the 1GHz-setup

In the previous measurement we have already seen that the measured resonant loss
of tunneling systems is correlated with the rate of change of an applied bias voltage.
In the following we will investigate this correlation systematically by measuring tan δ

as a function of the bias rate Ḟ b and comparing the results to the predictions of the
non-equilibrium loss through Landau-Zener transitions, which we have discussed in
Section 2.4.6.
Instead of a continuous bias signal, as used above, the bias is changed now via a
single ramp while the resonator’s response is measured simultaneously. The imple-
mented protocol for measuring tan δ with the required time resolution is explained
in Section 4.5.
After the completion of a bias ramp, the system relaxes back into the steady-state.
Before the subsequent bias ramp starts, we have to satisfy a sufficient waiting time
in order to retain consistent initial equilibrium conditions for the tunneling systems.
Figure 5.14 shows an exemplary measurement of tan δ under the maximal applied
bias rate (Ub = 165V ; tb = 5ms). In this measurement we focused on the relaxation
into the steady-state after the end of the bias ramp, which is why we performed the
sequence once with a high resolution in time (dark blue curve) and a second time
emphasizing longer timescales (light blue curve). The non-equilibrium loss during
the bias ramp is not observable on the timescale shown here. A zoom into the bias
ramp reveals a value of tan δmax = 1.3× 10−3. In the top left plot one can see that
the loss does not instantaneously equilibrate back into the steady-state, but needs a
few seconds to do so. For a more detailed analysis of the relaxation, on the right-
hand side the data is plotted with a logarithmic time axis, where the end of the bias
sweep denotes t = 0 s. From this representation it becomes clear that the decay is
composed out of more than a single time constant. We performed a fit with a decay
function of the form

tan δ(t) = A1 exp(−t/τ1) + A2 exp(−t/τ2) + c , (5.9)

shown as the green line, which is the sum of two individual decays (dashed blue lines).
We find that about 98% of the total relaxation can be attributed to the first one,
for which we determine τ1 = 1.4ms. The second relaxation has a much longer time
constant of τ2 = 0.97 s. A fast relaxation after the bias sweep is expected since the
tunneling systems in resonance with the driving field are getting excited and perform
damped Rabi oscillations within their relaxation time τ1 into equilibrium (compare
Figure 3.6 and 3.7). Because of ΩR ∝ ∆0

E
cos θ the involved Rabi frequencies are

widely distributed, and hence should average out each other, and a pure relaxation
behavior may remain. From the temperature dependency measurement, we obtained
for the one-phonon relaxation the constant K1 = 7.14× 1075 J−3 s−1. Considering
only the resonant tunneling systems E = ℏω, we find for the one-phonon relaxation
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Figure 5.14: Time dependence of tan δ during a very fast bias ramp at 14mK and 1GHz

with a linear (left) and a logarithmic time axis (right). After the end of the bias sweep
a relaxation into the steady-state within a few seconds is observed and compared with
Equation (5.9) (solid green line) and Equation (5.12) (dotted red line). Data from [Lut20].

time τ1,min = 0.45ms (Equation (2.68)), which is of the order of the initial fast
relaxation in Figure 5.14. However, tunneling systems with distributed relaxation
times are involved, and τ1,min = 0.45ms should be the lower limit for a relaxation
through a one-phonon process. Moreover, tunneling systems contribute with different
strengths to the loss. From Equation (2.63) we find the relation for a single tunneling
system tan δ ∝

(︁
∆0

E

)︁2, which means that symmetric ones give a stronger contribution
to the loss, compare also Figure 3.17. We can write down the distribution function

P (E,∆) =
P0

E

1

1−
(︁
∆
E

)︁2dEd∆ , (5.10)

which we can rewrite into

P (E, q) =
P0

1− q2
dEdq , (5.11)

where we introduced q = ∆
E

. For the resonant loss we can write E ≈ ℏω. Using
the relation ∆0

ℏω =
√︁

1− q2, we may write, by integrating over the distribution func-
tion, the relaxation into the steady-state after the end of the bias sweep for low
temperatures

tan δ(t) ∝
∫︂ 1

0

(1− q2)e
− t

τ1PP (q)dq ∝
∫︂ 1

0

e
− t(1−q2)

τ1,min dq . (5.12)

Rabi oscillations during the relaxation are neglected. Integrating Equation (5.12)
with τ1,min = 0.45ms gives a reasonable agreement with the data in Figure 5.14 (dot-
ted red line). A thorough theoretical treatment of the tunneling system dynamics
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after the bias sweep and more data points at shorter times are required to give a
more adequate analysis, but it can be said that the observed fast decay after the
end of the bias sweep is consistent with a relaxation of tunneling systems through
phonons.
The slow relaxation will also be regarded briefly. The ring-down time of the resonator
is τrd = Q

2π·f0 ≲ 2000
2π·1GHz

= 0.3 µs, the operational amplifier for the bias signal switches
high voltages in approximately 7 µs, and charging a capacitor with C = 9pF through
a bias line with low DC resistance R ≃ 100Ω takes about τ = RC ≈ 1 ns. All these
numbers are much shorter than the observed time constant. A look at the real part
δε′/ε′ during this bias sequence gives more information. In Figure 5.15 we see that
immediately after the end of the bias sweep δε′/ε′ is increased and relaxes back into
equilibrium within the time scale of the slow relaxation observed in the loss. This
increase is rather small compared to the changes observed in the temperature de-
pendency measurement. An increase of δε′/ε′ of this size at the given temperature
and frequency could arise from a small temperature increase of the sample. As we
discussed in Section 5.2.2 due to the temperature dependency of Fc, a higher tem-
perature would lead to an increased loss. A slight heating of the sample through
the rapid voltage ramp with a subsequent thermalization within a few seconds is a
plausible explanation for the observed slow relaxation.
Another explanation is given by experiments that measure the dielectric response
under a DC bias step [Sal94, Nal04, Lut18] where jumps in δε′/ε′ caused by mutual
tunneling system interactions were observed and briefly discussed in Section 2.4.6.
For N-BK7 the DC steps caused jumps in δε′/ε′ which were of a similar size as ob-
served here. However, in these experiments a subsequent logarithmic relaxation over
several hours was observed. We cannot exclude that this kind of non-equilibrium
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Figure 5.15: Time dependency of
δε′/ε′ for the bias sequence from Fig-
ure 5.14. After the end of the bias sweep,
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the steady-state within a few seconds.
The increase in δε′/ε′ is smaller than
1× 10−5.
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dynamic is also present in this bias sequence, but its contribution to the loss should
be quite small and would be dominated by the Landau-Zener dynamics.
Choosing waiting times of more than 10 s are sufficient to eliminate an effect of the
slow relaxation on the subsequent bias sequence.

Next, we varied the bias ramp times tb and measured the loss as a function of
time during the bias sweep while keeping the maximal bias voltage fixed. The data
for these measurements were recorded in close collaboration with the bachelor the-
sis of [Kö19]. The results of such a measurement are shown in Figure 5.16, where
a medium driving field strength of 122Vm−1 was applied. We directly observe a
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Figure 5.16: Measurement of the loss
as a function of time under a bias
sweep with different ramp times tb at
T = 14mK, fac = 1GHz, and Fac =

122Vm−1. The non-equilibrium loss
during the ramp is clearly correlated with
the applied bias rate. Raw data from
[Kö19].

correlation between applied bias rate and the loss. The fastest bias sweep causes an
increase from tan δ = 0.5× 10−3 to approximately tan δ = 1.5× 10−3, whereas for
the slower bias ramps the increase is much less. As discussed before, after the end
of the bias ramp the loss relaxes back to equilibrium.
Averaging the loss during the bias ramps and calculating the bias rate as Ḟ b = Ub

4dtb

allows to plot the non-equilibrium loss due to the Landau-Zener transitions as a
function of the bias rate Ḟ b, which is shown in Figure 5.17 (left) for different driving
field strengths. We observe a behavior as discussed in Section 2.4.6 and as it was
obtained in the framework of the Monte Carlo simulation in Section 3.3.5. For very
small bias rates the loss is unaffected by the bias field sweep, and we observe the
steady-state results defined by the driving field strength, see Figure 5.8. The higher
the driving field strength the lower the loss emerges due to saturation. When the
bias rate increases, the probability for Landau-Zener transitions is enhanced. At the
same time, more and more tunneling systems cross the driving field excitation en-
ergy, and the loss converges towards a plateau at very high rates which corresponds
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Figure 5.17: Left: Non-equilibrium loss as a function of the bias rate Ḟ b for four different
driving fields at T = 14mK and fac = 1GHz. Right: When the non-equilibrium loss
is plotted as a function of the dimensionless bias rate ξ, the data collapses onto a single
curve for high bias rates. The horizontal lines at low rates represents the steady-state limit
obtained from the field strength dependency measurement. For higher rates, the loss can
be modeled with Equation (2.112) (black line). Raw data from [Kö19].

to the low-power limit in Figure 5.8. For higher driving field strengths, the bias rate
needs to be higher as well in order to find the same probability for a Landau-Zener
transition. This is why for Fac = 122Vm−1 and in particular for Fac = 545Vm−1

the highest accessible bias rate is not sufficient to reach the low-power limit.
In Figure 5.17 (right) the loss is plotted in terms of the dimensionless bias rate
ξ = 4ℏ

πp
Fḃ

F 2
ac

(Equation (2.112)), with Fac from Equation (5.1). Note that as Q de-
creases for higher bias rates, Fac also becomes smaller, which must be considered in
the determination of ξ. The given values for the driving field strengths in Figure 5.17
correspond to the steady-state limit Fb

̇ → 0Vm−1 s−1. When the data is plotted in
terms of the dimensionless bias rate ξ, the curves collapse onto each other for higher
bias rates and can be modeled with Equation (2.113). As a scaling parameter we
use the low-power limit obtained from the field strength dependency measurement
tan δ0(14mK) = 1.68× 10−3 at very low driving field strengths. The effect of an
inhomogeneous field distribution was calculated in Figure 4.22 and gave only minor
differences to the homogeneous case, which is why we used the effective homogeneous
field strength Feff = U

2d
in the calculation of the dimensionless bias rate as well. In

ξ the only unknown parameter is the average dipole moment p, which we vary in
order to obtain an agreement between the data and the theory prediction. Thereby
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we determine the value
p = 1.5D . (5.13)

The extracted value for the average dipole moment strongly depends on the field
strengths inside the capacitors, and therefore, on a correct estimation of the voltage
in the resonator, which requires a thorough calibration of the rf-setup.
We do not have many other predictions for the dipole moment of N-BK7. In [vS75]
the product P0p

2 was obtained from the logarithmic slope of the temperature de-
pendency for N-BK7. By using the density of tunneling systems from heat capacity
measurements of vitreous silica, they stated a value of p = 0.66D. From dielectric
echo experiments on different silica glasses dipole moments of about p = 0.6D were
obtained [Gol79]. When OH molecules appeared as impurities in these glasses, a sec-
ond dipole moment at p = 3.7D was found. Other available values for average dipole
moments of non-silicate glasses are p = 1.8D (As2S3) [Hun86] or p = 1.2D (Mylar)
[Nal04]. Measurements of amorphous thin films indicate higher dipole moments for
the tunneling systems in these materials: p = 7.9D (Si3N3) [Kha14]; p = 2.9D (SiNx)
[Sar16]; p = 2.3 − 7.4D (AlOx) [Bre17]. The obtained value of the average dipole
moment in our measurement lies within the typical range for bulk glasses. Having
obtained a value for the dipole moment, allows to determine the tunneling system
density P0 from the parameter A = P0p

2/(ε0εr) = 3.15× 10−3 of the temperature
dependency (see Table 5.1). Using εr = 5.8 we find P0 = 6.46× 1045 J−1m−3.
In general, we find a good agreement between the data and the predicted Landau-
Zener behavior of tunneling systems. Landau-Zener transitions are controllable
through the applied bias rate, enabling a targeted manipulation of the population
number of resonant tunneling systems, which can be used to perform a spectroscopy
of the tunneling systems of the sample. In the thesis at hand, this novel Landau-
Zener spectroscopy technique is used for the investigation of bulk glasses for the
first time. It allows a determination of intrinsic tunneling system properties like
the relaxation time τ1 or the dipole moment p. In combination with equilibrium
measurements, which can also be performed with the setup, this method allows an
extensive investigation of the present tunneling systems, employing only a single de-
vice. In the further course we will utilize this technique to investigate additional
aspects arising from the Landau-Zener dynamics of tunneling systems.

5.3.3 Bias rate dependency of the 250MHz-setup

Analogously to the 1GHz-measurement, the bias rate dependency of the loss was
measured with the 250MHz-resonator at 14mK with an excitation of Fac = 25Vm−1,
which is shown in Figure 5.18. Just as for the 1GHz-measurement, we find a good
agreement with the steady-state loss at low bias rates. Going to higher bias rates the
non-equilibrium loss starts to increase as expected from the Landau-Zener dynam-
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Figure 5.18: Non-equilibrium loss as a function of the bias rate Fb
̇ (left) and the dimen-

sionless bias rate ξ (right) for a driving field strength of 25Vm−1 at 14mK and 250MHz.
At low bias rates the loss agrees with the steady-state value (red horizontal line), but at
higher bias rates the loss clearly exceeds the predictions from Landau-Zener transitions (red
curve). The loss found at the highest bias rate corresponds to a loss of resonant tunneling
systems being at 7mK for the given excitation frequency.

ics, but then clearly overshoots the low-power loss limit from Figure 5.8. The loss at
the highest applied bias rate corresponds to a resonant low-power loss of tunneling
systems with a temperature of 7mK, which is extrapolated from the low-power limit
at 14mK and applying the relation tan δ ∝ tanh( ℏω

2kBT
). The measured loss seems to

originate from systems that are ‘colder’ than the temperature of the cryostat.
On the right-hand side of Figure 5.18 the loss is plotted as a function of the dimen-
sionless bias rate ξ which was calculated analogously to the 1GHz-measurement. For
the dipole moment we use the value from above: p = 1.5D. With that, the initial
increase of the data aligns well with the theory predictions (solid line), which demon-
strates a consistent evaluation of ξ across the two setups. However, for high bias rates
the measured loss significantly overshoots the theory predictions. Tunneling systems
at 250MHz and 14mK do not fulfill the low temperature condition kBT < ℏω where
the theory of the non-equilibrium loss through Landau-Zener transition is restricted
to. The applied bias field generates a maximal shift in the asymmetry energy of
δ∆max ≈ 12GHz, using the dipole moment from above again. This means that the
non-equilibrium loss towards the end of the bias sweep tends to be caused by tun-
neling systems with an initially much larger energy splitting. If these systems are
additionally rapidly swept in their energy, they cannot achieve their instantaneous
thermal equilibrium before they reach the energy of the driving field.
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Figure 5.19: Calculation of the thermal occupation number as a function of time (dark
blue) for two different ramp times with T = 14mK, τ1 = 20 µs, p = 1.5D and no applied
driving field. A tunneling system with E/h ≈ 2GHz is shifted through a bias field to
E/h = 250MHz. The calculation is compared to the instantaneous equilibrium value (light
blue).

We can illustrate this behavior by calculating the thermal occupation number of
an initially heavily detuned single tunneling system being swept by the bias field
Fb into resonance with the driving field. We use the simulation introduced in Sec-
tion 3.1 and model a system with ∆0/h = 1√

2
· 250MHz and ∆/h = −2GHz. The

bias field is ramped from Fb = 0 − 121 kVm−1, which shifts the tunneling system
to ∆/h = − 1√

2
· 250MHz (p = 1.5D). Hence, at the end of the bias ramp the

tunneling system has an energy splitting of E/h = 250MHz. The driving field is
turned off because we only want to observe the thermal population. Moreover, we
choose T = 14mK and τ1 = 20 µs. We then calculate ρee as a function of time, which
represents the thermal occupation number of the two-level system. This number is
compared to the instantaneous equilibrium value ρinstee = 1

2
(1− tanh(E(t)/(2kBT ))),

with E(t) =
√︁
∆2

0 + (∆(t = 0) + 2pFb(t))2. This is shown in Figure 5.19 with two
different bias ramp times. At the beginning of the sequence the energy splitting E
of the tunneling system is large compared to the temperature. Hence, the system is
in the ground state. When the bias is ramped, ∆ shifts towards positive values and
E decreases. The upper level then becomes thermally populated. For a fast bias
ramp, the relaxation time τ1 is too slow to adopt to the instantaneous equilibrium
value, and ρee turns out to be much smaller than in equilibrium. For the slower ramp
it can follow the equilibrium value closer. This means that in the case of fast bias
ramps, the non-equilibrium loss can potentially overshoot the value of a thermally
equilibrated system. In this case, the thermal population of such systems is smaller
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(‘colder’) than the one of equilibrated systems at resonance, and the glass can absorb
more photons from the driving field, and it is even more lossy than in its steady-state
low-power limit, which gives a qualitative explanation of the data.

5.3.4 Noise as bias signal

Instead of using a single ramp for the bias signal, we also applied a continuous sig-
nal in form of 1Vpp white noise, generated by the signal generator. The noise was
additionally amplified by the power operational amplifier, and therefore low pass
filtered at 150 kHz due to the amplifier’s limited response time. As in Section 5.2.2,
we measured the loss at 1GHz as a function of the driving field strength, but applied
in parallel a noise-bias signal. In this measurement the two attenuators inside the
cryostat were placed from the mixing chamber level towards higher temperatures
closer to the still. This slightly reduced the heating at higher field strengths and also
gave a higher coupling quality factor of the resonator of Qc = 4100. The measure-
ment in the presence of a noise bias can be compared to the previous one without
bias field, see Figure 5.20 (left). In both cases the same plateau value is reached at
low field strengths, but the noise-biased measurement is able to sustain this plateau
value even at much higher fields, whereas tunneling systems in the steady-state are
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Figure 5.20: Left: Driving field dependency of tan δ for an excitation frequency of 1GHz

at 14mK. The data with no bias field (blue filled circles) is compared to the data with
additional noise as bias voltage (green crosses). A comparison with a theory (solid green
line) that explicitly considers relaxations through spectral diffusion can be made, see Equa-
tion (2.95). The noise bias has a similar effect on the loss as the spectral diffusion and agrees
with the predicted behavior from the Monte Carlo simulation (right) from Section 3.3.6.
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already distinctly saturated by the driving field. Going to stronger excitations, the
noise-biased loss decreases and converges towards the no-bias curve, but remains
enhanced.
Qualitatively, this behavior can also be understood within the theory of the non-
equilibrium loss caused by tunneling systems performing Landau-Zener transitions.
This has already been discussed for the Monte Carlo simulations in Section 3.3.6,
which is once more shown in Figure 5.20 (right). Through the noise bias all kinds
of bias rates, which continuously induce Landau-Zener transitions, occur. Thus, this
counteracts the saturation through the driving field and the resonant loss becomes
larger.
As it was done for the simulation, the experimental data is compared with the theory
of a nonlinear microwave loss resulting from the decoherence of tunneling systems
through spectral diffusion. The no-bias curve is compared with the linear loss from
Figure 5.5, where the relation tan δ ∝ F−1

ac leads to a linear decrease in the log-log
plot for strong excitations. In the case of the noise bias, we fit the interpolation func-
tion Equation (2.95) to the data by varying the relaxation times τ20, τϕ, and using
the low-power loss tan δ0 from the previous field strength dependency measurement.
Both curves were calculated by applying the inhomogeneous field distribution ex-
plicitly, see Equation (4.27). The nonlinear loss converges towards the linear loss at
high field strengths when we use τ20 = 2τ1 = 1 µs, which seems surprisingly small for
the sample. This value is in contradiction to a relaxation time only evoked through
interactions with phonons, which would lead to a much larger value of about 400µs
[Bur13, Fic13], compatible with the value previously found in this thesis (compare
Section 5.3.2). By using a dephasing relaxation time of τϕ = 0.25 µs, the nonlinear
loss can describe the noise enhanced loss also quantitatively reasonably well. The
value of τϕ does not have the physical meaning of a relaxation time in this context
and only characterizes the artificially induced energy fluctuations of the tunneling
systems phenomenologically.
The loss shows the same behavior as it is predicted by the simulation from Sec-
tion 3.3.6, which underlines the importance of Landau-Zener transitions in this con-
text. Both, for the simulation data and for the experimental data a quantification
of the impact of noise on the resonant loss can be made by misusing the spectral
diffusion relaxation time τϕ as a free parameter. The measurement without applied
bias is in agreement with the ∝ F−1

ac dependency in the saturation regime, which
demonstrates that residual noise or a relaxation through spectral diffusion play a
minor part in the steady-state.
This measurement shows that in order to observe the F−1

ac -dependency of the loss in
the experiment at higher field strengths, leakage of parasitic noise into the resonator
must be avoided as this can cause a differing steeper decrease of tan δ towards higher
field strengths, by stimulating tunneling systems to perform Landau-Zener transi-
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tions. On the other hand, artificially applied noise as bias signal might help to detect
the low-power loss tan δ0 at higher field strengths. This can avoid tedious measure-
ments at ultra-low input powers, which require excessive averaging and therefore
time-consuming measurements. The low-power loss tan δ0 is an important quan-
tity for characterizing tunneling systems, e.g. their impact on high quality factor
resonators or similar superconducting quantum devices. Quite unusual, instead of
impairing the measurement, here, the additional noise facilitates the execution of the
experiment by enabling to observe tan δ0 even at moderate field strengths.

5.3.5 Pump tone probe tone measurements with the 1GHz-setup

As it has already been discussed in Section 3.3.7, the combination of a dynamic
shift of the tunneling system energy through a bias sweep and off-resonant pumping
through strong microwave fields (pump tone) detuned from the driving field (probe
tone) can cause a population inversion of the involved two-level systems at the probe
tone frequency. These inverted systems then may lead to stimulated emission pro-
cesses, which give rise to a distinct reduction of the resonant loss, instead of resonant
absorption measured by the probe tone. Under certain circumstances even an ampli-
fication of photons at the probe tone frequency can be realized, which is revealed by a
negative loss in the simulation, see Figure 3.23. From an experimental side, by using
a resonator with SiN films as dielectric material, such a coherent stimulated emission
of tunneling systems was stated and labeled as a random defect laser [Ros16]. In
this ‘lasing’ regime the tunneling system ensemble changes its appearance from a
dissipative into an amplifying medium for photons in the microwave regime.
In the following, we want to investigate this two-tone spectroscopy experimentally on
the basis of the established Landau-Zener spectroscopy of bulk glasses. Therefore,
we used the 1GHz-resonator and applied additional microwave pump tones through
the feedline. The pump tones were generated with two rf-signal generators1 and were
combined with two subsequent power combiners2, whereby each gives an additional
attenuation of 3 dB. Via the rf-branch the combined signal (probe + pump tones)
couples into the resonator. Due to the resonant characteristic of the resonator, the
coupling of the off-resonant pump tones into the resonator is reduced.
We start the investigation with a single pump tone detuned by δ/2π ≈ 18MHz from
the probe tone and measured the dielectric response under a bias ramp as a function
of the pump tone power. From the discussion in Section 3.3.7 we know that the
bias rate should not be too small as this increases the time span between pumping

1HP 8648A/C Synthesized RF Signal Generator, Agilent Technologies, 5301 Stevens Creek Blvd,
Santa Clara, CA 95051, USA

2Anaren 41620 Power Splitter/Combiner, Anaren, A TTM Technologies Company Headquarters,
6635 Kirkville Rd., East Syracuse, NY 13057, USA
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Figure 5.21: δε′/ε′ (left) and tan δ (right) as a function of the pump tone power in the
presence of an off-resonant pump tone at fpump = 1025MHz and a bias ramp with Ḟ b =

56MVm−1 s−1. The measurement was performed with the 1GHz-setup at T = 14mK.

and probing, and inverted systems may relax back to the ground state in between.
This gives us an approximation for the lower limit of Ḟ b ≳ ℏδ

2pτ1,min
≈ 6.0MVm−1 s−1

when we use p = 1.5D and τ1,min = 200 µs. On the other hand, the bias rate cannot
be made arbitrarily fast because this increases the probability for tunneling systems
to perform Landau-Zener transitions at the pump tone frequency, which gives no
effective energy transfer from the pump tone to the tunneling system. We set the
bias rate to Ḟ b = 56MVm−1 s−1, which is well above the lower limit. By varying
the pump tone power, we change the upper limit for the bias rate Ḟ b ≲

pF 2
pump

2ℏ below
which population inversion of tunneling systems should be possible. Thus, above
a certain threshold power the condition for the upper limit might be fulfilled, and
hence we should observe a reduction of the loss.
Figure 5.21 shows the results of this measurement with the discussed parameters
applied. The given numbers for the powers refer to the values provided at the trans-
mission line. The probe tone power of Pac = −80 dBm corresponds to a weak field
strength of Fac = 21Vm−1, which was used in Figure 5.17.
The real part δε′/ε′ in Figure 5.21 (left) seems to be unaffected by the pump tone
power. However, the loss reveals a noticeable reduction above Ppump ≈ −60 dBm.
We could not apply much higher pump tone powers as this heated up the cryostat.
Having found an indication for a reduction of the loss in the presence of a bias sweep
and a pump tone, we fixed the pump tone power at Ppump = −46 dBm and measured
the loss as a function of the bias rate.
For this measurement we applied two pump tones at fpump1 = 1000MHz and fpump2 =
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Figure 5.22: Comparison of the bias
rate dependency without applied pump
tones (purple filled circles) to a mea-
surement with two strong pump tones
(red squares). The measurement with-
out applied pump tones was repeated at
a higher temperature T = 35mK (orange
crosses), which reproduces the data of
the pump tone measurement. All curves
were measured with a probe tone power
of Fprobe = −80 dBm.

1015MHz, which is shown in Figure 5.22 (red squares). This measurement is com-
pared to the corresponding data without applied pump tones from Figure 5.17 (purple
filled circles, Fac = 21Vm−1). The loss with applied pump tones clearly deviates
from the one without pumping. However, this deviation occurs also at bias rates
well below the approximated lower limit (Ḟ b = 6.0MVm−1 s−1), where in principle
no reduction of the loss from photon-emitting tunneling systems is expected. This
behavior indicates a different origin for the reduced loss.
We could reproduce this reduction when the temperature of the cryostat was in-
creased to T = 35mK and the bias rate dependency was measured without applying
any pump tones (orange crosses). The steady-state value is reduced compared to the
measurement at lower temperature due to the higher thermal occupation number
tan δ ∝ tanh( E

2kBT
). At this temperature the given probe tone field strength is suffi-

ciently weak and does not cause any tunneling system saturation in the steady-state.
One observes the low-power loss already at the lowest bias rates and no increase to-
wards higher bias rates occurs. Apparently, the deviations through applying strong
pump tones to the resonator arise from a heated sample.
A potential source for the heating might be the contacting of the transmission line
with normal conducting copper wires and its fixation through the conducting silver
paint. When strong pump tones run through this connection, heat might dissipate in
close vicinity to the sample or directly on top of it and cause the rise in temperature.
Other measurements with changed pump and probe tone powers, different pump
tone detunings, or an application of the pump tones through the bias line could not
reveal a clear evidence for a reduction of tan δ besides the occurrence of heating when
strong pump tones were applied. Therefore, we did a revision of the resonator setup
where basically all normal conducting elements close to the sample were replaced
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with superconducting ones, see Section 4.4.4. This should reduce the heat load when
applying strong pump tones and might enable us to observe changes in the tunneling
system population due to the off-resonant pumping in these two-tone spectroscopy
measurements.

5.4 Two-tone spectroscopy

The following measurements were all performed with the resonator introduced in
Section 4.4.4. We start with a short characterization of the resonator followed by
the results of two-tone measurements in combination with sweeps of the bias field.

5.4.1 Characterization of the revised 1GHz-setup

In Figure 5.23 resonance spectra of the resonator at T = 14mK and different driving
powers Pac were recorded. At low driving powers the resonance has a Lorentzian
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Figure 5.23: Comparison of resonance spectra of the revised 1GHz-resonator measured
at T = 14mK and different driving powers Pac. At high driving powers the resonator shows
a nonlinear behavior.

line shape, whereas for higher powers the curves become more asymmetric. At the
highest input powers, one observes a discontinuous jump of the amplitude which in-
dicates a nonlinear Duffing oscillator-like behavior. The resonator’s coupling quality
factor of Qc = 37.000 is much higher than the design value, which leads to large
electric currents running at high driving powers for driving frequencies close to the
resonance frequency. We suppose a breakdown of the superconductivity at high Pac,
causing an abrupt drop of the quality factor and leading to the jump in the res-
onance curve. Such a breakdown may rise from weak links in the superconductor
that become normal conducting under high rf-driving fields. This local heating may
drive the surrounding into the normal state, which results in a thermal runaway
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Figure 5.24: Power dependency of δε′/ε′ and tan δ at different temperatures T =

14mK; 50mK; 200mK measured with the revised resonator at fac = 0.9GHz.

[Gol95, Gur06]. The resonance frequency and the quality factor then cannot be de-
termined unambiguously, and we restrict the further measurements to driving powers
below Pac ≲ −75 dBm where no breakdown is noticeable.
We measured δε′/ε′ and tan δ as a function of the excitation strength. In contrast
to Section 5.2.2, δε′/ε′ and tan δ were plotted as a function of the driving power
Pac supplied at the feedline of the resonator, which is shown in Figure 5.24 for the
temperatures T = 14mK; 50mK; 200mK. The maximum driving powers correspond
to an effective field strength of Fac ≈ 2 kVm−1 in the capacitor, which is similar to
the maximum values found in Figure 5.6. The real part δε′/ε′ does not show a severe
power-dependent behavior. Slight shifts can be observed for all temperatures, which
might be related to the appearing asymmetry towards higher driving powers. Heat-
ing caused by a strong excitation seems not to be a major issue for this resonator.
The loss tan δ shows the expected increase towards lower driving powers for all tem-
peratures. The weak coupling of the resonator to the feedline makes it difficult to
achieve a weak driving that is required to observe the unsaturated tunneling system
loss tan δ0. Hence, the transition into a plateau at low powers cannot be observed
in the data. The dependence of tan δ on the excitation appears weaker than pre-
dicted by the standard tunneling model, as we observe tan δ ∝ 1/Pac rather than
tan δ ∝ 1/

√
Pac. The absence of the plateau at low input powers prevents a more

detailed analysis.

The measurement of the temperature dependency allows to compare the resonator
with the previous results from Figure 5.4. This was done in Figure 5.25 where the
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Figure 5.25: Temperature dependency of δε′/ε′ and tan δ measured with the revised
resonator at fac = 0.9GHz and Pac = −105 dBm. The data is compared to the results
of the 1GHz-resonator from Figure 5.4. For the theory predictions the parameters from
Table 5.1 were used.

results of the revised setup are compared to the results of the 1GHz-resonator. The
real part δε′/ε′ agrees well with the previous measurement. Small deviations at the
lowest temperatures are related to the smaller excitation frequency fac, which are
also visible in the theory curves. The good agreement proves a proper functionality
of the revised setup as it can detect the resonant part of N-BK7 at low temperatures
correctly. For the theory predictions we used the parameters from Table 5.1.
The resonant loss on the other hand deviates significantly from the previous mea-
surement with the other resonator (fac = 1GHz). As we have seen in Figure 5.24,
we are unable to perform the measurement of tan δ at adequate low driving powers
that are necessary to observe the unsaturated resonant loss. Hence, the measured
loss for this resonator (fac = 0.9GHz) is considerably reduced. Moreover, one ob-
serves a non-monotonic behavior at lower temperatures. In Section 5.2.2 we have
already discussed the effect of temperature on the saturated loss. The critical field
strength Fc of the tunneling systems depends on their relaxation times and therefore
increases towards higher temperatures. For a field strength Fac > Fc this would lead
to an increased loss which counteracts a decreasing loss from the thermal population
tan δ ∝ tanh( ℏω

2kBT
). Depending on the driving power, the temperature dependency

of tan δ can exhibit a local maximum and one observes a non-monotonic behavior at
low temperatures. A measurement of Fc as a function of temperature would provide
more clarity and at the same time represents a method for measuring the tempera-
ture dependency of the relaxation times.
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At higher temperatures, the saturation of tunneling systems decreases and tan δ

converges towards the 1GHz-result. In order to reach smaller excitations this res-
onator requires a more sensitive rf-readout. Applying a low temperature amplifier
and circulators at low temperatures should provide a considerable reduction of noise.
Moreover, the coupling strength of the resonator should be increased, which would
increase the signal of the resonance curves. Especially for N-BK7, which possesses a
high dielectric loss, a much stronger coupling is feasible without ending in a coupling-
dominated total quality factor that would reduce the resolution in tan δ.

5.4.2 Two-tone measurements

In Section 5.3.5 we could not observe a noticeable impact from off-resonant pump
tones to the dielectric response at the probe tone frequency besides heating signa-
tures. When we applied pump tones through the transmission line of the revised
resonator – for the moment without a bias sweep – we could observe a characteristic
behavior in δε′/ε′ and tan δ.
An off-resonant pump tone led to a shift of the resonance frequency into the direc-
tion of the pump tone frequency, which means that a pump tone below the resonance
frequency shifts the resonance curve to smaller frequencies, while a pump tone above
the resonance shifts the curve to higher frequencies. The observed shifts were of the
order 10 − 100 kHz. Moreover, when the pump tone was set close to the resonance
frequency, the width of the resonance curve significantly decreased. The stronger the
pump tones had been, the more pronounced these effects appeared.
Figure 5.26 shows a measurement where the detuning of the pump tone frequency
δfpump = fpump − fprobe was changed with respect to the probe tone frequency at
fprobe = 902MHz. While the pump tone was held constant, resonance spectra were
recorded at Pprobe = −91 dBm, which gives δε′/ε′ and tan δ. Then, the pump tone
frequency was changed and new resonance spectra were recorded. These scans were
repeated for different pump tone powers Ppump. We observe the behavior mentioned
above. A pump tone below the probe tone frequency leads to an increase in δε′/ε′

(smaller resonance frequency). This increase is observed until the pump tone is very
close to the probe tone, where δε′/ε′ changes its sign and the characteristic is mir-
rored. In tan δ we observe a distinct drop when the pump tone gets close to the
probe tone. This behavior, especially the antisymmetric one in δε′/ε′, cannot simply
be attributed to heating and must have its source elsewhere.
In the following we will see that this behavior can be attributed to the annihilation
of discrete tunneling system contributions by the pump tone. Similar results were
found in measurements where two identical coplanar wave guide resonators were cou-
pled to each other, which gave two resonance modes (symmetric and antisymmetric)
with overlapping electric fields. When one mode was readout with a small probe
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Figure 5.26: Two-tone measurement of δε′/ε′ (left) and tan δ (right). The dielectric
response is detected with a probe tone Pprobe = −91 dBm; fprobe = 902MHz while the
pump tone detuning δfpump = fpump − fprobe is scanned across the probe tone frequency.
The measurements were performed with different pump tone powers Ppump at 14mK.

tone while the other mode was driven through a strong pump tone, a shift of the
probed resonance towards the pump tone frequency was observed [Kir17]. Recently,
in two-tone spectroscopy measurements similar to the ones performed here, the same
characteristic modification of the probed resonance was observed when off-resonant
pump tones were scanned through the resonance frequency of a lumped-element
resonator [Cap20]. In the following we will give a qualitative explanation for this
behavior before we introduce a simplified model which allows to analyze the data on
a quantitative level.

Figure 5.27 shows a cartoon of the tunneling system contributions originating from
tunneling systems in resonance with the probe (blue) or pump tones (red, green). In
(a) the situation of vanishing pump tones is shown. This situation corresponds to the
dielectric resonant response of tunneling systems in the steady-state being driven at
a single frequency fprobe. We measure the dielectric response at fprobe, which is the
sum of tunneling system contributions over a broad energy range. The contributions
of single tunneling systems to the dielectric function are given by Equations (2.62)
and (2.63) and are shown in Figure 2.12 (right). At very low temperatures also tun-
neling systems with small energy splittings (red) are thermally in the ground state
and can contribute to the dielectric function. The real part ε′ primarily consists of
off-resonant tunneling system contributions (red and green), while resonant tunnel-
ing systems (blue) give the major contribution to the imaginary part ε′′. In the case
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Figure 5.27: Illustration of single tunneling system contributions to the dielectric response
at the probe tone frequency. Strong off-resonant pump tones reduce the contributions from
off-resonant tunneling systems, which leads to the observed characteristic behavior in δε′/ε′

and tan δ.

of a strong probe tone, the saturation of resonant tunneling systems (E ≈ hfprobe)
reduces their contributions to the dielectric function. For the real part, this affects
positive and negative contributions evenly, which balance out each other and results
in a net change of zero. Only the imaginary part will effectively be reduced, which
we have already studied extensively within the saturation of the resonant loss.
The situation changes if we saturate off-resonant tunneling systems with a pump
tone (b) and (c). If the pump tone is large, the contribution from off-resonant tun-
neling systems vanishes. In the case of a pump tone frequency below the probe tone
frequency (b), a tunneling system which is in resonance with the pump tone (red)
cannot fully contribute, and its negative contribution is missing in the total real
part. As a consequence, the real part increases. This tunneling system gives only a
small contribution to the resonant imaginary part, and thus, the loss measured at
fprobe is almost unaffected by a heavily detuned pump tone. Only for small detunings
the missing positive contributions to the loss are noticeable and the loss decreases
eventually.
A strong pump tone above the probe tone frequency leads to an opposed behavior in
the real part as positive contributions from saturated tunneling systems are missing
at the probe tone response (c). Changes of the loss are symmetrical with regard to
the pump tone detuning. With this qualitative picture we can explain the antisym-
metric frequency shift of the resonance frequency for different pump tone detunings,
as well as the reduction of the loss for pumping close to probe tone.
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Next, we will transfer this illustrative picture into the actual dielectric response
of tunneling systems. The total contribution of tunneling systems to δε′/ε′ and
tan δ is given by Equations (2.78) and (2.79), where the single tunneling system
response is integrated over the distribution function. Since we perform the mea-
surements at low temperatures, we only consider the resonant part and neglect the
relaxation processes. The pump tone reduces the contribution from tunneling sys-
tems at E ≈ hfpump, which can be interpreted as a hole in the distribution function.
In acoustic ‘hole burning’ experiments it was observed that a saturation pulse cre-
ates a hole in the tunneling system density that was much broader than the expected
line width from the frequency uncertainty or the tunneling systems’ finite lifetimes
[Arn75, Arn78]. Hole widths of the order of 50MHz were observed for BK7 at 0.5K.
It has been argued that the broadening occurs from tunneling system interactions
which can be treated in terms of spectral diffusion. We will simplify the discussion
here by ignoring specific details of spectral diffusion and simply use a Lorentzian at
fpump with line width w for the hole in the distribution. The width w = 2γ (FWHM)
will be treated as a free parameter. We write the hole as

p(E, fpump) = 1− |Sideal
21 |

1 +
(︂

(E/h−fpump)

γ

)︂2 . (5.14)

Close to the resonance frequency of the resonator the saturation through the pump
tone becomes more efficient, which is why we scale the depth of the hole with the
resonance shape of an ideal LC-resonator

|Sideal
21 | = 1

1 + 4Q2
(︂

δfpump

fprobe

)︂2 , (5.15)

with δfpump = fpump − fprobe. A stronger pump tone leads to a stronger saturation
and therefore results in a deeper hole that should scale with the saturation factor
from Section 2.4.5. This would allow to calculate the absolute strength of this effect.
Here, we simply use a prefactor that contains the scaling of the whole effect and
write

δε′

ε′
∝

Emax∫︂
∆0,min

dE

E∫︂
∆0,min

d∆0

(︃
∆0

E

)︃2

tan

(︃
E

2kBT

)︃
b′(E, τ2)P (E,∆0)p(E, fpump)

(5.16)

tan δ ∝
Emax∫︂

∆0,min

dE

E∫︂
∆0,min

d∆0

(︃
∆0

E

)︃2

tan

(︃
E

2kBT

)︃
b′′(E, τ2)P (E,∆0)p(E, fpump)

(5.17)
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Figure 5.28: Calculation of the shift in δε′/ε′ with a simplified model where contributions
from tunneling systems are missing in the tunneling system density due to a created hole
at fpump by the pump tone. The influence of the dephasing time τ2 (left) and the width of
the hole w (right) on δε′/ε′ were tested. Details are explained in the text.

In this simplified model we have basically two free parameters: the width of the hole
w and the dephasing time τ2.
In the following, we want to take a short look at the results from the introduced
model and see how these two parameters influence the outcomes. In Figure 5.28
(left) Equation (5.16) was numerically integrated as a function of the pump tone
detuning for different dephasing times τ2 and a fixed width w = 20MHz. The model
reproduces the characteristic shift in δε′/ε′ for different detunings. The dephasing
time τ2 scales the real part, which we compensated for by normalizing the curves
with their maximum value. With that, we see that smaller values for τ2 lead to an
asymmetric line shape, while for τ2 ≳ 10 µs the curve becomes antisymmetric.
In Figure 5.28 (right) we kept the dephasing constant (τ2 = 10 µs) and varied the
hole width. All curves were normalized to the maximum of the w = 13MHz curve.
When the hole becomes wider – the hole depth was the same for all curves – the
extrema of δε′/ε′ sit further apart from each other. At the same time the amplitude
decreases. This behavior makes sense when we consider the case of a very broad
hole. Such a hole annihilates tunneling system contributions below and above the
probe tone frequency, and thus, positive and negative contributions are missing al-
most symmetrically and compensate each other. Hence, the net change in δε′/ε′

vanishes.
As the next step, we apply these calculations to the data from Figure 5.26, which
is shown in Figure 5.29. The data do not show any asymmetry with regard to the
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Figure 5.29: Comparison between the data and the calculations from the introduced
model. The model is able to explain the observed characteristic in δε′/ε′ and tan δ quali-
tatively and allows to quantify the dephasing τ2 and hole w to some extent.

extrema in δε′/ε′, and we can apply values τ2 > 10 µs. Thus, the model gives a
lower limit for the average dephasing time that is consistent with the value for N-
BK7 found in polarization echo measurements of τ2,min = 6.5 µs at 15mK [Fic13].
For the description of the data we emphasized the real part, which we are able to
describe fairly well with our model when we use a free scaling parameter and fit
the width w of the hole to each curve. For the strongest pump tone, the shift in
δε′/ε′ is the largest. Moreover, we find the broadest hole there. For smaller pump
tone intensities, the shift decreases and the width of the hole becomes more narrow.
We can interpret a more narrow hole for weaker pumping with a spectral diffusion
mediated hole-broadening. The energy fluctuation rate of tunneling systems caused
by spectral diffusion is the same across all measurements. For a weaker pump tone
Landau-Zener transitions, induced by the energy fluctuations, are more likely, which
reduces saturation and results in a smaller hole.
The effect on tan δ was calculated with the same parameter set. A general descrip-
tion of the data is possible. The observed dip becomes more narrow towards weaker
pumping, however, the agreement from the real part cannot be accomplished. For



154 5. Experimental Results

120 100 80 60 40
 [dBm]

0.3

0.2

0.1

0.0

0.1

0.2

0.3
10

3
/

N-BK7
= 14mK

= 91

= 3.23MHz
= 3.27MHz

120 100 80 60 40
 [dBm]

0.3

0.2

0.1

0.0

0.1

10
4

ta
n

N-BK7
= 14mK

= 91

= 3.23MHz
= 3.27MHz

Figure 5.30: Measurement of the shift in δε′/ε′ and tan δ as a function of the pump tone
power Ppump at fixed pump tone detunings δfpump.

the calculations of the hole, we used a constant quality factor Q, which is obviously
not the case across the whole pump tone scan. Pumping close to the probe tone in-
creases the quality factor of the resonator, which reduces the off-resonant pump tone
efficiency. This then leads to a reduction of the hole, which again reduces the quality
factor, and so on. One needs to implement an iterative procedure to approach this
self-regulation of the resonator, which has already been tested [Haa20a].

We took a closer look at the dependence of δε′/ε′ and tan δ on the pump tone
power. Therefore, we fixed the detuning of the pump tone and varied its power, see
Figure 5.30. We performed two measurements, one with a pump tone below (red)
and another one with a pump tone above the probe tone frequency (blue). The
pump tone was set close to the probe tone in order to observe an effect also in tan δ.
In accordance with the observations above, the shift in δε′/ε′ scales with the pump
tone power. Depending on the sign of the detuning the shift is in positive or nega-
tive direction. The slight asymmetry of the shift might be related to the asymmetric
resonance shape and with that to an asymmetric pumping efficiency. Also, the ac-
cidental difference of the detuning δfpump should generate an asymmetric shift. For
the measurement with δfpump = −3.27MHz we observe a maximum at high pump
powers. Such a reversal point is expected because a strong pumping creates a large
hole across a wide energy range. This saturates tunneling systems on both sides
of the probe tone and the shift in δε′/ε′ will vanish in the limit of a very strong
pumping, which was observed in [Cap20].
The loss drops as expected for higher pump tone powers, and again, a slight asym-
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metric behavior is observed. For Ppump > −60 dBm the loss increases, which does
not match the expectation of the discussed model. When the pump tone hole be-
comes very large at high powers, all relevant tunneling system contributions to the
loss should be saturated and tan δ should reach a constant minimum value. Possibly,
this turning point marks the onset of heating, which definitely occurred at pump
tone powers higher than −40 dBm.
Additional measurements with modified pump and probe tone settings in combi-
nation with a more elaborated modeling of the created hole should give a more
stringent determination of τ2. However, this simplified model already provides a
decent analysis of these two-tone measurements. This allows a whole new access
to perform tunneling system spectroscopy, as the contributions from off-resonant
tunneling systems are projected to the resonant dielectric response. Moreover, the
observed pump tone signature proves the realization of an off-resonant tunneling
system driving through the pump tones since tunneling systems are getting at least
partially saturated through the pumping. In the following, we will combine these
two-tone measurements with energy sweeps of the tunneling systems to possibly
achieve a population inversion.

5.4.3 Two-tone measurements under dynamic biasing

We repeated the non-equilibrium bias rate dependency measurements from Sec-
tion 5.3.2 with the revised resonator, first without applied pump tones. In contrast
to the previous measurements, this resonator did not show a constant value for tan δ
during the sweep of large bias voltages, which is shown in Figure 5.31. The bias volt-
age was ramped from 0 to 90V within tb ≈ 100ms. During the bias sweep, marked
by the gray area, δε′/ε′ and tan δ reveal a strong time dependency. The characteristic
of the real part indicates a temperature increase of about 60mK at the end of the
bias sweep, where the real part follows the temperature dependency from Figure 5.25
(left). When we decreased the bias voltage to 9V, the drift in δε′/ε′ and tan δ dis-
appeared, and we could observe constant values for δε′/ε′ and tan δ during the bias
sweep. The bias ramp drives the dielectric material at the frequency of the inverse
bias ramp time. The dielectric loss of the glass at these frequencies is of the order
10−4 [Luc16], which can be converted into an equivalent resistance of R = 1

ωC tan δ
.

Together with a simulated capacitance of C ≈ 1 pF for the resonator we can esti-
mate a dissipated power Pdis,bias = U2/R of several tens of picowatt. Applying this
power over a short period of time in combination with a poor heat conduction may
result in a temporary temperature increase of a few millikelvin. Reducing the bias
voltage significantly reduces the heat input, which is why we had to go down below
9V for the bias voltage in the following measurements. Unfortunately, this reduces
the maximum accessible bias rates as well.
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Figure 5.31: Measurement of δε′/ε′ (left) and tan δ (right) as a function of time under a
bias sweep. The bias voltage was ramped from 0 to 90V within tb ≈ 100ms. During the
bias ramp (gray area) δε′/ε′ and tan δ show a strong time-dependent drift.

The weak coupling of the resonator to the feedline leads to small signal sizes of the
resonance curves. This makes it difficult to measure tan δ at small driving powers
with a high resolution in time, where the VNA measures S21 with a broad inter-
nal filter to achieve fast time-sweeps. Especially when tan δ increases towards fast
bias rates and leads to an even smaller resonance amplitude, the resonance curve
is heavily superimposed by noise. Therefore, we performed the following measure-
ments with a continuous triangle signal as bias voltage instead of a single bias ramp.
Hence, we cannot detect tan δ as function of time, but by slowing down the data
acquisition of the VNA, we can use a more narrow bandwidth filtering, which gives
a much better signal-noise ratio. Thus, we are able to perform the bias rate de-
pendency measurements at smaller probe tone powers, which allows us to achieve
Landau-Zener transitions already at moderate bias rates.
In Figure 5.32, δε′/ε′ and tan δ were measured as a function of the bias rate Fb

̇ .
As waveform for the bias voltage, we used a triangular signal with 3Vpp and varied
its frequency. The measurements were performed without any pump tones and also
with two pump tones symmetrically detuned by 5MHz from the probe tone. Let us
first look at the measurement without pump tones. In tan δ we observe the expected
increase towards higher bias rates. When the loss becomes larger, the amplitude of
the resonance curve decreases, which results in a larger scattering of the data. At
very high bias rates we observe a similar value for the loss as we did in Figure 5.17.
Unexpectedly, the real part slightly increases towards higher bias rates. The real
part should not be very sensitive to the dynamics of resonant tunneling systems at
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Figure 5.32: Bias rate dependency of δε′/ε′ (left) and tan δ (right) under a continuous
triangular bias signal. The measurements were performed without any pump tones (violet)
and also with two pump tones symmetrically detuned by 5MHz from the probe tone fre-
quency for two pump tone powers (red, orange).

all, and in the first place we do not expect a dependence of δε′/ε′ on the bias rate.
An increase could be explained by a temperature rise through the biasing, but other
origins are conceivable as well. A theoretical treatment of the real part in the frame-
work of Landau-Zener transitions would be beneficial for a further analysis.
Next, additional pump tones were applied. The detuning was set to 5MHz to avoid
a reduction of tan δ in the steady-state through the saturation hole, as it has been
discussed in the previous section. For the pump tone powers we used values as large
as possible to maximize the off-resonant pumping. At the same time, we avoided
very high powers where distinct heating signatures were detected. We observe a
clear reduction of the loss when pump tones are applied. This reduction becomes
stronger when a higher pump tone power is used. However, an amplification regime
with negative values for tan δ, as observed in the Monte Carlo simulation, cannot
be detected here. The real part shows a non-monotonic behavior when pump tones
were applied and agrees with the ‘no pump tone measurement’ only at small and
high bias rates.
For a discussion of the reduced loss under pumping it is worth mentioning that tan δ
converges towards the ‘no pump tone measurement’ when the detuning δfpump is
increased. This is shown in Figure 5.33. The measurement was performed at a mod-
erate bias rate with a fixed value of Fb

̇ = 525MVm−1 s−1. Pump and probe tones
were chosen as in Figure 5.32 (red curve). When the pump tone frequency is heavily
detuned from the probe tone, no reduction of the loss is observed anymore. This
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Figure 5.33: Measurement of tan δ as
a function of the pump tone detuning.
The bias rate was held constant at Fb

̇ =

525MVm−1 s−1, while two pump tones
with Ppump = −60 dBm were symmetri-
cally detuned from the probe tone.

excludes a heat input from outside the resonator because this should occur indepen-
dently from the detuning. Only for small detunings the loss-reduction sets in. As it
has been discussed before within the two-tone measurements (see Section 5.4.2), if
the pump tones are very close to the probe tone, they can effectively saturate slight
off-resonant tunneling systems, which reduces the loss measured at the probe tone
frequency. At higher bias rates tan δ increase due to the Landau-Zener dynamics,
which means a broader resonance curve. This allows a more efficient off-resonant
pumping, and thus, tan δ might get reduced by the pump tone saturation.
Moreover, it cannot be excluded that the driving of tunneling systems by the pump
tones leads to heating through the dielectric dissipation at the pump tone frequency.
If the resonance is broadened at higher bias rates, the pump tone couples more
strongly into the resonator and the driving becomes more intense. In Section 5.2.2
we have seen that the dissipated heat in the sample from microwave tones of similar
power can cause a considerable amount of heating. For larger pump tone detunings
the resonator filters these frequencies, and the pump tone excitation becomes ineffi-
cient.
These effects may already be responsible for the observed reduction of tan δ. It can-
not be resolved here whether the combination of the bias sweep and pumping also
leads to processes where inverted/saturated tunneling systems that get dynamically
shifted to the probe tone reduce the loss as well. In the limit of population-inverted
tunneling systems the simulation in Figure 3.23 showed a negative loss, which is
the domain where amplification through stimulated emission occurs. This limit is
obviously not reached here.
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5.4.4 Comparison with the Monte Carlo simulations

In the last part of this chapter, by the use of the Monte Carlo simulation, we want
to discuss to what extent the observed reduction of the loss in Figure 5.32 can be
attributed to the stimulated emission of tunneling systems and which might be the
limiting factors for a missing amplification regime in the experiment. Therefore, we
repeated the Monte Carlo simulation from Figure 3.23 with simulation parameters
closer to the ones of the experiment. The data for these simulations were obtained
in collaboration with [Mü21] where the presented simulation framework from Chap-
ter 3 was put in a more user-friendly environment and more experiment-oriented
simulation scenarios were conducted.
One main difference to Figure 3.23 is the application of an inhomogeneous field dis-
tribution. Therefore, for each tunneling system a random parameter i is sampled
which follows an exponential distribution. This parameter is then multiplied with the
constant field strength of probe, pump, or bias field, respectively, which represents
the inhomogeneous field distribution of an IDC. In addition, a one-phonon relaxation
process with K1 = 4.2× 1076 J−3 s−1 was applied which gives a minimum relaxation
time of τ1,min = 83 µs for T → 0K. Together with a constant transversal relaxation
time of τ2 = 5 µs these relaxations are more comparable with the experimental sit-
uation. The results are shown in Figure 5.34. In comparison to Figure 3.23 the
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Figure 5.34: Monte Carlo simulation of
the bias rate dependency with a probe
tone Fprobe = 10Vm−1 and pump tones
with different field strengths detuned by
1MHz from the probe tone. A constant
dipole moment of p = 1D and T → 0K

were used. Moreover, a one-phonon re-
laxation with K1 = 4.2× 1076 J−3 s−1,
a constant transversal relaxation time
of τ2 = 5 µs, and an exponential elec-
tric field distribution were applied. Data
from [Mü21].

usage of distributed relaxation times τ1 and an inhomogeneous field leads to a less
pronounced dip in tan δ. The onset of the dip at medium bias rates occurs approxi-
mately at the same position, but it is not as sharp and more washed out compared
to the previous simulation. The behavior here is more similar to the observations
in the experiment. However, the probe tone field strength in the simulation should
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be smaller than the one applied in the experiment, which is why the transition into
the Landau-Zener enhanced loss occurs at smaller bias rates. With slower relaxation
times τ1 in the simulation, the lower limit for a reduced loss through photon-emitting
tunneling systems should appear at smaller bias rates and the dip would be broader.
A slower relaxation time τ1 should match the experimental situation even closer and
would result in a behavior more similar to Figure 5.32.
It is interesting to see that in Figure 5.34 the steady-state loss is smaller when
larger pump tones are applied, which we did not observe in the simulation from
Figure 3.23. We can explain this reduction through missing contributions from
pumped off-resonant tunneling systems, as it has been discussed in Section 5.4.2.
The smaller value for τ2 makes the spectral width of a single resonant tunneling sys-
tem contribution wider, and without any pumping one also observes contributions
from off-resonant systems at the probe tone. These off-resonant systems are driven
and saturated by the pump tones, and hence, their contribution is missing.
In Figure 5.35 (left) we fixed the pump tones (Fpump = 20Vm−1; δfpump = 1MHz)
and varied the probe tone field strength. At a small probe tone driving (Fprobe =

3Vm−1) the loss at small bias rates is higher, and the onset of the Landau-Zener
enhanced loss appears at smaller bias rates. Therefore, the dip due to the photon
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Figure 5.35: Left: Repeating the simulation from Figure 5.34 with fixed pump tones
Fpump = 20Vm−1 and δfpump = 1MHz (crosses) for different probe tone field strengths
Fprobe = 3Vm−1 (purple); 10Vm−1 (green); 30Vm−1 (yellow). The simulations are
compared to the corresponding ones without applied pump tones (filled circles). Data from
[Mü21]. Right: Qualitative comparison between the Monte Carlo simulation from the left-
hand side (Fprobe = 30Vm−1) and the experimental data from Figure 5.32. The loss was
normalized, and the bias rate of the Monte Carlo simulation was multiplied by a factor two
in order to find an agreement.
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emission of pumped tunneling systems becomes more pronounced. The depth of the
hole is almost unaffected by the probe tone strength. The upper limit for the appear-
ance of stimulated emission Ḟ b ≲

pF 2
pump

2ℏ is independent from the probe tone field
strength, which is why the increase of tan δ in the simulation towards higher bias
rates is the same for all curves with applied pump tones. If the probe tone becomes
stronger than the pump tone (Fprobe = 30Vm−1), the dip completely vanishes, and
we observe a behavior similar to results of the measurement from Figure 5.32. A
comparison between the measurement and simulation is shown in Figure 5.35 (right).
In order to compensate the differences of the tunneling system parameters (relax-
ation times, dipole moment) or of the two-tone setting (pump and probe tone field
strengths) between the simulation and experiment qualitatively, the loss was normal-
ized, and the bias rate of the Monte Carlo simulation was multiplied with a factor
of two.
The qualitative agreement between experiment and simulations shows that the ob-
served reduction of the non-equilibrium loss in Figure 5.32 in the presence of pump
tones could also originate from the stimulated emission of pumped tunneling systems.
If this is indeed the case in the experiment, the field strengths of pump and probe
tones should have a similar size because we do not observe the characteristic dip.
As Figure 5.35 (left) shows, going to smaller probe tones should help to distinguish
the reduction through stimulated emission from the effects discussed above since one
would expect to observe the dip in tan δ then. With the current setup we could not
measure tan δ with the necessary resolution at low driving powers. Updates to the
rf-setup, by applying, for example, a low temperature amplifier or circulators to the
read-out branch, are already operating or are planned for the near future.
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6. Summary and Outlook

Within the framework of this thesis, Landau-Zener spectroscopy measurements of
atomic tunneling systems at very low temperatures were conducted. For the first
time, this novel measurement technique was demonstrated and established for tun-
neling systems in bulk glasses. It consists of a measurement setup which was im-
plemented to perform dielectric equilibrium or non-equilibrium measurements in the
microwave regime inside a 3He/4He dilution refrigerator at temperatures between
10mK and 8K.
Beyond dielectric equilibrium measurements, extensively conducted in the past, the
Landau-Zener spectroscopy also allows to perform measurements in non-equilibrium.
Applying only a single device, a comprehensive investigation of various microscopic
tunneling system properties, like their dipole moment, relaxation times, saturation
effects, or the tunneling system distribution can be performed.
By expanding this method to bulk glasses, a larger range of materials becomes acces-
sible, which also allows to revisit previously studied materials with this new technique
to establish a more conclusive picture of tunneling systems in amorphous solids.

The experimental implementation of the Landau-Zener spectroscopy was realized
through the combination of a high-frequency driving field and a dynamic shift of the
tunneling systems’ energy, inducing Landau-Zener transitions, which are measured
through the correlated dielectric loss of the sample. The controllable rate of change
of the tunneling systems’ energy determines the probability of Landau-Zener tran-
sitions, and with that, controls the tunneling system population, which allows to
perform a spectroscopy of the involved tunneling systems.
The high-frequency driving field was implemented by LC-resonators which were de-
signed to resonate at the demanded excitation frequency (250MHz and 1GHz).
Therefore, superconducting microfabricated LC-resonators with interdigital capaci-
tors as capacitance and a meander line inductor as inductance were developed. This
allowed the realization of a planar resonator geometry, and the resonators could di-
rectly be fabricated as a single layer of sputter deposited niobium on the substrate
which is the sample itself. The high-frequency electric field inside the capacitors
penetrates the substrate/glass and probes the tunneling systems sitting in the bulk
sample. By measuring the resonance curve of the resonator, we extracted the dielec-
tric function of the sample. As sample we chose the borosilicate glass N-BK7 since
it was well-characterized in previous studies and is therefore well-suited to validate
the new setup.
Four identical capacitors arranged in a Wheatstone bridge-type scheme form the
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capacitance of the LC-resonator. The symmetry of this geometry allows to drive
the resonator at its resonance frequency while applying in parallel an independent
electric bias voltage across the other diagonal of the capacitance bridge. Thus, the
tunneling systems’ dielectric response is measured at the high-frequency drive under
a simultaneous energy shift of tunneling systems through a bias field sweep, whereby
Landau-Zener transitions are induced. By the use of a developed measurement rou-
tine, the dielectric function, whereas the dielectric loss tan δ was in particular of
interest, was fully automatically measured as a function of the bias rate, where bias
rates up to 2000MVm−1 s−1 could be reached.

Detailed numerical simulations of the tunneling system ensemble interacting with
arbitrary electric fields were conducted in this thesis by solving the single system’s
dynamics numerically and averaging the ensemble-response through a Monte Carlo
approach. Predictions of the standard tunneling model could be reproduced, but
most importantly, the simulations provided solutions to problems where an analytic
description was limited or not possible. The implemented simulation framework
represents a very valuable tool for a fundamental understanding of the complex tun-
neling systems dynamics caused by the interactions with several electric fields at once.

By demonstrating the novel Landau-Zener spectroscopy technique of bulk glasses
exemplarily for the sample N-BK7, a wide variety of different experiments could be
conducted that allowed to study the tunneling systems of the sample under investi-
gation in great detail:
In dielectric measurements, initially performed in equilibrium, a characterization of
the bridge resonators was made. Both, the 250MHz- and the 1GHz-resonator showed
a fast thermalization even at temperatures below 20mK. Measurements of the tem-
perature dependency of δε′/ε′ and tan δ could reproduce previous results of N-BK7
measured at these excitation frequencies. In contrast to previous measurements, the
sensitivity of the new setup at ultra-low driving fields was sufficient to resolve the
unsaturated resonant loss entirely. This allowed a more profound comparison with
different theory models. As it has previously been reported for N-BK7, the mea-
surement showed deviations from the pure standard tunneling model distribution
and could successfully be described with a model where mutual interactions between
tunneling systems result in a reduced tunneling system density at low energies.
When we measured tan δ at different driving field strengths, we could observe the
saturation of tunneling systems at high field strengths, where the loss showed the
expected tan δ ∝ F−1

ac behavior for both devices. At very low field strengths tan δ

became independent from the field strength, and we observed the unsaturated low-
power plateau. Driving the resonators at very high field strengths increased the
sample’s temperature by more than 20mK. This heating presumably originates
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from the dissipated heat due to the sample’s dielectric loss.
Measurements of tan δ at different DC bias fields confirmed an unimpeded rf-readout
under biasing conditions and also confirmed a flat distribution of the tunneling sys-
tem asymmetry energy ∆ within the accessible energy range, as predicted by the
standard tunneling model.
In accordance with the Landau-Zener dynamics of tunneling systems, we observed an
increased loss under fast changes of the applied bias field, i.e. a bias ramp. After the
end of a bias ramp, the loss relaxed back into its equilibrium state. The observed
initial fast relaxation was found to be compatible with a relaxation of tunneling
systems through one-phonon processes. Measuring tan δ at 1GHz and 14mK as a
function of the bias rate showed the predicted non-equilibrium behavior of tunneling
systems undergoing Landau-Zener transitions. For small bias rates, we found the
steady-state value for the loss which is only determined by the applied driving field
strength. Towards higher bias rates the loss increased and converged into the low-
power limit. By replacing the bias rate with the dimensionless bias rate ξ and using
an average dipole moment of p = 1.5D, the measured non-equilibrium loss agreed
well with the predictions of the Landau-Zener dynamics. From the extracted value
for the dipole moment and the temperature dependency measurement, we could de-
termine the tunneling system density for N-BK7 as P0 = 6.46× 1045 J−1m−3.
The non-equilibrium loss measured at 250MHz and 14mK heavily overshot the low-
power limit when very high bias rates were applied. This arises from initially heavily
detuned tunneling systems with much larger energy splittings E than the resonant
ones at 250MHz. These off-resonant tunneling systems are rapidly swept into res-
onance with the driving field through the bias field. Since they cannot thermally
equilibrate fast enough, their excited state is sparsely thermally populated, and these
systems absorb more photons than equilibrated ones.
Applying noise as bias signal resulted in an enhanced loss. The noise-bias acts as a
continuously changing bias rate, and thus leads to an effective reduction of satura-
tion. Noise should be thoroughly regarded in experiments measuring the resonant
tunneling system loss as we could show a strongly deviating field strength depen-
dency when noise was artificially applied through the bias line.
Two-tone spectroscopy measurements were performed with a revised resonator setup
at 0.9GHz, where heating at large driving fields was reduced. An additional strong
off-resonant microwave tone (pump tone), applied through the transmission line, sat-
urates off-resonant tunneling systems. Thus, the contributions from these systems
are missing in the dielectric response measured at the frequency of the driving field
(probe tone), and the single tunneling system contributions are mapped to the reso-
nance curve. As a consequence, a shift of the resonance curve towards the pump tone
frequency and a reduction of the quality factor for pump tones close to the probe
tone were detected. By describing the data with a simplified model, we were able to
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extract a lower limit for the tunneling systems’ average transversal relaxation time
of τ2 ≳ 10 µs.
The combination of a two-tone measurement scheme with sweeps of the bias field
showed a distinct reduction of the non-equilibrium loss. Comparisons with the re-
sults obtained from the Monte Carlo simulation give evidence for stimulated emission
processes of tunneling systems taking place. However, this effect cannot fully be dis-
tinguished from other mechanisms like heating or a pure saturation of off-resonant
tunneling systems through the pumping.

The successful application of the Landau-Zener spectroscopy to bulk glasses allows
a direct transfer of this characterization technique to numerous other amorphous
materials that are suited to serve as substrate for micro-processing the resonators.
Applying a flip-chip geometry with a tunneling system poor material as substrate
and the sample (e.g. a polymer) lying on top of the interdigital capacitors allows an
arbitrary sample choice. In measurements of samples possessing smaller dielectric
losses than N-BK7, the observed heating of the sample under strong driving fields
might be reduced.

The obtained experimental results and the simulations point the way for future
experiments and research.
A further reduction of parasitic heating can be achieved by performing the mea-
surements at higher temperatures, where the thermal coupling of the sample to the
heat bath is stronger, and therefore, small heat inputs are less severe. However, in
order to find resonant tunneling systems at higher temperatures thermally still in
their ground state, the measurements have to be performed at higher driving field
frequencies, which would require to update the current rf-setup.
Measuring the non-equilibrium Landau-Zener loss at even higher bias rates might
reveal deeper insights about the tunneling system nature. There exist theoretical
considerations of a second species of tunneling systems that are scarce but couple
much stronger to strain or electric fields than the ones typically observed in the exper-
iment [Sch18]. Under ultra-high bias rates, these strongly coupled tunneling systems
may become desaturated and their contribution could become apparent. Achieving
much higher bias rates with the current setup is limited by the time resolution of
the VNA and the maximum output voltage of the used power operational amplifier.
Higher bias field strengths could be realized by further decreasing the electrode spac-
ing of the microfabricated capacitors. For this purpose, parallel plate capacitors with
thin amorphous films are more appealing since the thickness of the films is naturally
much smaller than the gap size of the interdigital capacitors. However, the dielectric
strength of the material might be a limiting factor for achieving ultra-high bias rates.
Since tunneling systems are known to couple strongly to strain fields, replacing the
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electric bias field with a strain-bias should be a worthwhile strategy for the future.
This could give indications to what extent current measurements are suffering from
parasitic vibrations. Similar to the observation with an electric noise-bias, present
strain fields should have a distinct impact on measurements of the resonant loss.
For the realization of a stimulated emission regime in the two-tone measurements,
one should investigate different materials as well since the conditions for stimulated
emission might be easier to attain there. Moreover, it should be tested whether
applying the pump tones through the bias line to the resonator is more beneficial
for pumping tunneling systems. In parts already realized, a higher sensitivity of the
rf-setup enables to extend the accessible parameter space to much smaller probe tone
powers, allowing to perform measurements also in the single-photon regime, eventu-
ally.
A further theoretical modeling of the two-tone spectroscopy, the Landau-Zener dy-
namics at finite temperatures, or a description of the non-equilibrium dielectric real
part under Landau-Zener transitions would allow to interpret the experimental data
in a more profound way.

All in all, it could be demonstrated that the performed Landau-Zener spectroscopy
method allows a comprehensive investigation of tunneling systems in bulk glasses
and provides, in combination with the implemented simulation framework, a new
way of systematic characterization of tunneling systems in amorphous materials at
very low temperatures.
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A. Appendix

A.1 Resonant part for small fields

In order to obtain the total contribution of the resonant part, (2.62) + (2.63) is inte-
grated over the distribution function (2.26), where the mean of the dipole orientation
p2/3 was used:
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The integral over x can now be executed separately
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The solution of this integral is given in [Gao08, Phi87]. It can be approximated as
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with ψ(z) as the complex digamma function. The term ℏ/(2πkBTτ2) is small and
can be neglected. A separation into real Re{z} and imaginary part Re{z} gives the
expressions
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A.2 Resonant loss for large fields

According to Equation (2.91), the imaginary part of the resonant process for a large
electric field is
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In the last term of Equation (A.9) the main contribution comes from the factor
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The factor Ω2
Rτ1 = Ω2

R0τ1,min is independent of x = ∆0

E
, and the integration over x

can be worked out (see Equation (A.3)) as:
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This gets rewritten into
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The integrand has the form of a Lorentzian with width
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be approximated as a δ-function at ω. Therefore, we end up with the expression
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A.3 Evaluation of integral (2.107) in E

Since E ≈ ℏω, we can treat γ as being independent from E and evaluate the integral
over the energy splitting E as:
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A.4 Short-time and long-time limit for the simulation

The choice of the time interval ∆t between two points in the simulation has a sig-
nificant influence on changes of the density operator ρ̂ on a short time scale. Rabi
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Figure A.1: Time evolution of a tunneling system (∆0 = ∆ = ℏωac√
2

) in resonance with the
frequency of the driving field ωac/2π = 10MHz and a driving field strength of 100Vm−1.
The relaxation times τ1, τ2 were chosen to be arbitrarily long and the temperature was set
to zero. The time interval ∆t between two simulation points was varied between 10 ns and
500 ns.

oscillations can reasonably be mapped if more than 20 points per oscillation are
available. Figure A.1 shows the Rabi oscillation of a resonant tunneling system for
different time intervals ∆t. For larger time steps the mapping of the Rabi oscilla-
tion becomes inaccurate, and the determined value from the time evolution does not
agree with values found from finer samplings, see Table A.1. For the given Rabi
frequency ∆t = 100 ns still provides accurate results. As a rule of thumb, we find

∆t [ns] 10 100 200 500
ΩR/2π [kHz] 355.74 355.72 356.05 355.69

Table A.1: Comparison between the simulated Rabi frequencies from Figure A.1 for
different time step sizes ∆t.
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that a good choice for the time interval should hold the condition ∆t ≲ 2π
20ΩR

. For
all calculations, ∆t was chosen as 10 ns, which allows to represent changes in ρ̂ of up
to 200 ns. This corresponds to maximum Rabi frequencies of 5MHz, which means
electric driving fields of approximately 1000Vm−1.
Another crucial parameter in the simulation is the tolerance of the ODE solver. If
the tolerance is set too large, computational uncertainties may add up and lead to
deviations on longer time scales. Figure A.2 shows the calculated time evolution of
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Figure A.2: Time evolution of a tunneling system (∆0 = ∆ = ℏωac√
2

) in resonance with the
frequency of the driving field ωac/2π = 10MHz and a driving field strength of 10Vm−1.
The relaxation times τ1, τ2 were chosen to be arbitrarily long and the temperature was set
to zero. The internal relative tolerance of the ODE solver rtol was varied between 5× 10−4

and 5× 10−6.

a pure Rabi oscillation for different relative tolerances of the solver with ∆t = 10 ns.
The time evolution extends over 600 µs, which requires 60,000 simulation points. For
larger tolerances (a) and (b), the Rabi oscillation erroneously drops in amplitude, al-
though the used relaxation times are several orders of magnitude longer. For smaller
tolerances, the amplitude becomes more stable over the whole time span. In order
to obtain precise results even for long simulated time evolutions, one should choose
the relative tolerance rtol ≲ 1

number of time steps . We use a tolerance of rtol = 5× 10−6

for all simulations, which allows for ∆t = 10 ns accurate results for more than 600 µs
in simulation time and does not give a substantial penalty in the computation time
in comparison to larger tolerances.
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A.5 Landau-Zener transitions for a stronger detuned tunnel-
ing systems

The simulations from Figure 3.8 were repeated, but with an initially stronger detuned
tunneling system. Therefore, also the maximum bias field is raised to guarantee a
crossing over the resonance. The detuning in ∆/h is now 2.5MHz, and the bias field
of 1 kVm−1 gives a maximum shift in ∆/h of 10MHz. The time evolution of ρee was
calculated for different bias ramp times (10 µs, 100µs, 300µs, and 1000µs), all other
parameters were chosen as in Figure 3.8. The results are shown in Figure A.3. The
value of ρee after the resonance crossing can be compared with the predictions of
Equation (2.104), which is presented in Table A.2. In the scenario here, the agree-
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Figure A.3: Numerical calculation of the time evolution of ρee in the presence of a swept
electric bias field for different ramp times (10 µs, 100 µs, 300 µs, and 1000 µs) (a)-(d). The
relaxation times τ1, τ2 were chosen to be arbitrarily long, and the temperature was set
to zero. The tunneling system is initially detuned by 2.5MHz in ∆/h from the driving
field at 10MHz with a field strength of 10Vm−1 and is shifted by the bias field across the
resonance (e).
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tb ρee(∞) (predicted) ρee(∞) (simulated)

10 µs 0.017 0.018
100µs 0.161 0.165
300µs 0.410 0.409
1000µs 0.827 0.826

Table A.2: Comparison between the predicted probability for a transition into the excited
state for a resonance crossing according to Equation (2.104) and the value for ρeqee from the
simulations in Figure A.3 after the tunneling system has passed the resonance.

ment between simulation and predictions is much better, compared to the results
of the simulation in Figure 3.8. The solution of the Landau-Zener problem should
be more applicable to the situation presented here, than to the setting of a slightly
detuned tunneling system in Figure 3.8. The simulation, however, should in both
cases represent the actual description of the tunneling system dynamics.
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