
DISSERTATION

submitted to the

Combined Faculty of Natural Sciences and Mathematics

of the

Ruprecht–Karls University
Heidelberg

for the degree of

Doctor of Natural Sciences

put forward by

M.Sc. Günther Schindler

born in
Eggenfelden, Bayern

Heidelberg, 2021

Compressing and Mapping
Deep Neural Networks

on Edge Computing Systems

Advisor: Professor Dr. Holger Fröning

Date of oral exam:

Abstract

Deep neural networks (DNNs) are a key technology nowadays and the main
driving factor for many recent advances in Artificial Intelligence (AI) applications,
including computer vision, natural language processing and speech recognition.
DNNs exhibit the ability to excellently fit training data while also generalizing
well to unseen data, which is especially effective when big amounts of data and
ample hardware resource are available. These hardware requirements in terms of
computations and memory are the limiting factor for their deployment in edge
computing systems, such as handheld or head-word devices.

Enabling DNNs to be deployed on edge devices is one of the key challenges
towards the next generation of AI applications, including augmented reality or
enhanced interactions between humans and computers. Three major research
directions have to be jointly considered for effective deployment: efficient model
design, high-performance hardware as well as cooperating software frameworks.
This work studies these research directions from an holistic point of view and
carefully considers the impact of one directions to the others, in order to develop
techniques that improve the overall deployment.

First, efficient model design through compression in form of quantization is
studied, to reduce the required data representation from single-precision floating
point to low-bit formats. Several quantization techniques are evaluated and a
library is introduced that enables arbitrary bit combination on Central Processing
Units (CPUs). The potential and implications of mapping quantized DNNs is
extensively studied on mobile CPUs as well as Graphics Processing Units (GPUs)
and Field Programmable Gate Arrays (FPGAs).

The next part considers the limitations of quantized DNNs and proposes a
compression/algorithmic co-design, targeting fast deployment on mobile CPUs
while achieving high prediction quality. The proposed compression algorithm is
based on an adaptive quantization function that additionally induces sparsity into
the DNN. A deployment algorithm is introduced for accelerating computations
by exploiting the aggressively-low and sparse data formats, created by the
compression technique.

The final parts address the disadvantages of extreme forms of quantization
and sparsity on GPUs and propose a framework for structure pruning, to enable
compressed deployment on a large variety of massively-parallel accelerators.

Together with considering design principles of DNNs, a methodology is introduced
for targeting efficient deployment for virtually any modern hardware/software
stack for DNNs. Several design principles for DNNs are discovered using this
methodology, enabling the design of more efficient models without explicit
compression.

Zusammenfassung

Tiefe Neuronale Netzwerke (DNNs) sind heutzutage eine Schlüsseltechnologie
und der Haupttreiber für viele der jüngsten Fortschritte bei Anwendungen der
künstlichen Intelligenz (KI), einschließlich Computer Vision, Verarbeitung natür-
licher Sprache und Spracherkennung. DNNs zeigen die Fähigkeit, Trainingsdaten
hervorragend anzupassen und gleichzeitig gut auf ungesehenen Daten zu verallge-
meinern. Dies ist besonders effektiv, wenn große Datenmengen und ausreichende
Hardwareressourcen verfügbar sind. Die Hardwareanforderungen im Bezug auf
Berechnungen und Speicher sind der limitierende Faktor für ihren Einsatz in
mobilen Systemen wie Handheld- oder Head-Word-Geräten.

Der Einsatz von DNNs in mobilen Geräten ist eine der wichtigsten Heraus-
forderungen für die nächste Generation von KI-Anwendungen, einschließlich
erweiterter Realität oder verbesserter Interaktionen zwischen Mensch und Com-
puter. Für einen effektiven Einsatz müssen drei wichtige Forschungsrichtungen
gemeinsam berücksichtigt werden: effizientes Modelldesign, Hochleistungshard-
ware sowie kooperierende Software-Frameworks. Diese Arbeit untersucht diese
Forschungsrichtungen unter einem ganzheitlichen Gesichtspunkt und berück-
sichtigt sorgfältig die Auswirkungen einer Richtung auf die anderen, um Techniken
zu entwickeln, die den Gesamteinsatz verbessern.

Zunächst wird ein effizientes Modelldesign durch Komprimierung in Form von
Quantisierung untersucht, um die erforderliche Datendarstellung von Gleitkom-
mazahlen mit einfacher Genauigkeit auf Niedrigbitformate zu reduzieren. Es
werden verschiedene Quantisierungstechniken evaluiert und eine Bibliothek einge-
führt, die beliebige Bitkombinationen auf Hauptprozessor (CPUs) ermöglicht.
Das Potenzial und die Auswirkungen der Abbildung quantisierter DNNs wer-
den auf mobilen CPUs sowie Grafikprozessoren (GPUs) und rekonfigurierbare
Prozessoren (FPGAs) eingehend untersucht.

Das nächste Kapitel befasst sich mit den Einschränkungen quantisierter DNNs
und schlägt ein Co-Design für Komprimierung und Algorithmus vor, das auf
einen Einsatz mit geringer Latenz auf mobilen CPUs abzielt und gleichzeitig eine
hohe Vorhersagequalität erzielt. Der vorgeschlagene Komprimierungsalgorithmus
basiert auf adaptiven Quantisierungsfunktion, die zusätzlich Sparsity in das DNN
induziert. Ein Algorithmus wird eingeführt, um Berechnungen zu beschleuni-
gen, indem die durch die Komprimierungstechnik erstellten Datenformate mit

aggressiv niedrigen Datentypen und dünn besetzten Matrizen ausgenutzt werden.
Die letzten Kapitel befassen sich mit den Nachteilen extremer Formen der

Quantisierung und dünn besetzten Matrizen auf GPUs und schlagen einen Rah-
men für die Reduktion von Strukturen vor, um eine komprimierte Bereitstellung
auf einer Vielzahl von massiv parallelen Beschleunigern zu ermöglichen. Unter
der Berücksichtigung der Entwurfsprinzipien von DNNs wird eine Methodik
eingeführt, mit der eine effiziente Bereitstellung für praktisch jede moderne
Hardware- / Software-Infrastruktur für DNNs angestrebt werden kann. Mit
dieser Methode werden verschiedene Entwurfsprinzipien für DNNs entdeckt, die
den Entwurf effizienterer Modelle ohne explizite Komprimierung ermöglichen.

Table of contents

1 Introduction 1

2 Background 7
2.1 Deep Neural Networks . 7
2.2 Datasets . 13
2.3 Hardware for Deep Learning . 14
2.4 Software for Deep Learning . 18

3 Resource-Efficient Neural Networks 21
3.1 Quantized Neural Networks . 23
3.2 Pruning Networks . 26
3.3 Architecture Design . 29

4 Quantized Inference 35
4.1 Low-Precision Signed-Integer GEMM 35
4.2 QNNs on CPUs . 46
4.3 QNNs on FPGA . 50
4.4 QNNs on GPU . 52
4.5 Resource Efficient Deep Eigenvector Beamforming 53
4.6 Summary . 54

5 Reduce-and-Scale 57
5.1 Quantization . 58
5.2 Inference . 60
5.3 Compression . 64
5.4 Evaluation . 66
5.5 N-Ary Quantization . 71
5.6 Summary . 82

6 Parameterized Structured Pruning 85
6.1 Parameterization . 86
6.2 Regularization . 87
6.3 Pruning . 89
6.4 Hardware-Friendly Structures 90
6.5 Experiments . 93
6.6 Summary . 99

7 Architecture Search 101
7.1 Design Space Exploration . 102
7.2 Evaluating the Efficiency of Building Blocks through Camuy . . . 107
7.3 Sigmoidal Residuals . 108
7.4 Structure definitions . 112
7.5 Elastic-net regularization . 116
7.6 Evaluation . 117
7.7 Summary . 127

8 Comparing Compression Techniques on Hardware 129

9 Discussion 133
9.1 Potential and Limitations of Compression 133
9.2 Transferability of Insights . 135
9.3 Broader Impact and Future Directions 138

10 Conclusion 141

References 147

Chapter 1

Introduction

Machine Learning (ML) is an emerging key technology and the main contributing
factor for many recent performance boost in Artificial Intelligence (AI) tasks,
including computer vision, natural language processing and speech recognition.
Especially Deep Neural Networks (DNNs) are the currently predominant ML
models, which exhibit the ability to excellently fit training data while also
generalizing well to unseen data. While being the driving factor behind many
recent success stories of AI, DNNs are notoriously data and resource hungry, a
property which makes development and deployment difficult. Recent research
showed that training can be scaled up to thousands of accelerators operating
in parallel, resulting in a development phase not exceeding a couple of minutes,
even for large-scale image classification. However, the deployment has usually
much harder constraints than the development, as energy, space and monetary
resources are scarce in mobile devices.

There exits an increasing variety of potential deep learning application where
on-device inference is required and cloud access is not a viable solution. This
is mainly due to latency reasons of interactive applications, but security or
privacy considerations are also important factors in this context. For instance,
Augmented Reality (AR) systems heavily rely on image classification, object
detection and segmentation techniques, where DNNs usually demonstrate state-
of-the-art performance. Such AR systems need to be deployed on a range of
handheld and head-worn devices, which contain heterogeneous (i.e. CPU and
GPU) and resource-constrained embedded systems. Another field of applications
are signal enhancement or detection to implement noise cancellation or voice
activation systems. These systems can potentially be implemented in in-ear

1

Introduction

headphones using tiny processors, where latency and energy constraints are the
crucial factor whether an application is viable. Automatic speech recognition
systems are also highly desirable to run locally on the device in order to enhance
interactions between humans and computers.

Three major research directions are necessary in order to effectively enable
such applications: i) Efficient models aim to maximize prediction quality while
minimizing hardware and software requirements. Research of this directions
focuses on ML techniques for better structural efficiency where, for instance,
architecture design principles are optimized or training enhancements are de-
veloped. Model compression through quantization (reducing the representation
of operands) or pruning (inducing sparsity) are further ML optimizations for
inference improvements. ii) Efficient hardware aims to maximize the yield
of semiconductor technology for ML models. The focus here is on advanced
processor technologies targeting either general-purpose or specialized use, with
respect to application and energy demands. General-purpose technologies for
instance, such as CPUs target high frequency and low off-chip accesses through
large caches or GPUs trade frequency with massive-amount of parallelism for
increased throughput. Domain-specific processors focus on a special use case
or FPGAs feature configurable logic blocks which can be tailored to certain
requirements. iii) Efficient software aims to maximize utilization and pro-
ductivity when deploying ML models on hardware. One research directions
targets high-level optimization with a focus on graph optimization or distribution
algorithms for ML models. Another research direction develops compiler and
code generation tools for a wide range of processors, while others focus on highly
optimized solutions for a specific processor. These research directions need to be
tightly coupled for efficient interactions and, hence, have to be developed with
attention to each other.

This work studies these three research directions from an holistic point
of view: it evaluates how redundancies of over-parameterized DNNs can be
removed through compression and their respective potential and limitations
when mapped onto hardware. The compression techniques exhibit here are
quantization, pruning and architecture search, which are specifically designed
and tailored to the targeted software/hardware platform. Mobile processors are
used for developing the inference concepts and evaluation, including state-of-the-
art CPUs, GPUs and FPGAs as well as their respective software stack. Based

2

on the techniques developed within this work in combination with extensive
evaluation, it is examined which compression maps well to a certain processor
and, ultimately, which compression/hardware codesigns are the most promising
candidates.

Contributions

This work makes the following contributions:

• Understanding quantized inference: a detailed analysis of various data
representations for DNNs is performed, ranging from half-precision floating
point to extreme binarization forms. Model accuracy and inference per-
formance is evaluated for several tasks, quantization techniques as well as
hardware platforms, in order to elaborate on the effectiveness of quantized
inference. This contribution comprises three publications [1]–[3].

• Reduce-and-Scale (RaS): a novel inference concept with a focus on low-
latency and low-storage models on general-purpose CPUs. The concept
leverages extreme forms of quantization and sparsity in combination with an
efficient inference algorithm and without the need for specialized hardware.
A novel n-ary quantization routine enables extreme data compression
without accuracy degradation, even for complex tasks. This contribution
includes two publications [4], [5].

• Parameterized Structure Pruning (PSP) and architecture search: a highly
flexible framework for creating structured sparsity in DNNs without sacri-
ficing prediction performance. The framework mainly targets DNN com-
pression for massively-parallel accelerators and also enables architecture
search which is compatible with the compiler and library stacks for utmost
inference efficiency. Various evaluations on different tasks gained insights
of design principles that can be used without explicit compression. This
contribution includes two publications [6], [7].

• Understanding compression and hardware for DNNs: there is an extensive
and ongoing discussion in the ML as well as computer architecture com-
munity on the most efficient compression and deep learning techniques as
well as hardware accelerators. The overarching contribution of this work

3

Introduction

is the understanding of compression on hardware from a perspective that
covers both, ML and computer architecture research. While all chapters
and publications within this work are required to generate the necessary
insights, an overall analysis exhibiting potential and limitations is given in
Chapter 8.

Organization of this Work

Chapter 2 provides the background on DNNs and the respective datasets used
throughout this work. This chapter also gives a brief introduction into various
hardware platforms as well as software frameworks for deep learning.

Chapter 3 gives an overview of current research directions in the field of
resource-efficient DNNs, which build the foundation of this work. Compression
techniques such as quantization and pruning as well as other forms of deep
learning techniques are discussed that exhibit potential for memory and compute
efficiency.

Quantization is extensively evaluated in Chapter 4 from various different views:
first, a software library for variable bit inference is proposed for CPUs. Second,
several quantization functions are reproduced to study the impact of efficient
data representations. Then this library and other frameworks are leveraged in
order to show the potential and limitations of quantized inference on CPUs,
GPUs and FPGAs.

Chapter 5 uses the insights gained from Chapter 4 and proposes a novel
inference technique denoted as Reduce-and-Scale (RaS). This technique leverages
sparse and quantization models in combination with a novel computing algorithm
to accelerate inference on general-purpose processors.

After analyzing the limitations of RaS on massively-parallel accelerators,
Chapter 6 reviews structured sparsity patterns and proposes Parameterized
Structured Pruning (PSP). This novel pruning technique enables variable struc-
ture definitions within DNNs and allows for hardware-defined computations.

Chapter 7 uses PSP and introduces a generic framework for architecture
search. The proposed framework is able to find efficient sub-models in a larger
architecture while being compatible with the software stack of state-of-the-art
accelerators. Last, the framework is applied to identify general design principles,

4

which can be used to build efficient training and inference models without the
pruning step.

An overall comparison of the various techniques is presented in Chapter 8,
in order to evaluate the most promising compression technique and hardware
platform. This chapter selects the best performing compression technique for a
certain processor and compares the absolute inference performance for mobile
CPUs, GPUs and FPGAs.

The insights with respect to potential and limitations as well as transferability
of the results are discussed in Chapter 9 before Chapter 10 concludes this work.

5

Chapter 2

Background

This chapter provides the required background on deep learning techniques as
well as hardware and software for implementing and realizing it. Each section
briefly introduces the most significant concepts of the respective technology that
is required to be able to follow this work. An in-depth introduction is out of
scope of this work, because each topic represents its own field of research and
the reader may use the provided references as further reading.

2.1 Deep Neural Networks

2.1.1 Feed-Forward Neural Networks

DNNs are constructed by layers of stacked processing units of linear transforma-
tions and non-linear activation functions. For each layer L, a unit computes an
activation function of the form

xl = ϕ(Wl⊕xl−1 +bl), (2.1)

where Wl is a weight tensor, bl is a bias vector, xl−1 is an input tensor, ⊕
denotes a linear operation and ϕ is a non-linear activation function.

The most common non-linearities are the Rectified Linear Unit (ReLU)
function ϕ(x) = max(x,0), the sigmoid function ϕ(x) = 1/(1 + e−x), and the
hyperbolic tangent function ϕ(x) = (ex−e−x)/(ex +e−x). Sigmoid and hyperbolic
tangent function usually train much slower for deep architectures, due to the
vanishing gradient problem and, hence, are not frequently used in DNNs. The

7

Background

most prevalent non-linear operation is the ReLU function, as it features fast
training speed by avoiding vanishing gradients. One drawback of the ReLU
function are dead neurons that occur when certain neurons are never activated
and can potentially require larger models. Variations of the ReLU functions that
reduce dead neurons are Leaky ReLU, Parametric ReLU, (Scaled) Exponential
Linear Unit, Gaussian Error Linear Unit and Swish. The main applications
studied in this work are classification tasks, where the output layer is commonly
activated by the softmax function as ϕ(x)i = exi/

∑K
j=1 exj , where K denotes the

number of classes.
The two most common types of linear transformations⊕ in feed-forward DNNs

are fully-connected and convolution operations. The input to a fully-connected
operator is a vector x ∈Rn , where individual dimensions are denoted as neurons.
Transformation of a fully-connected operation is implemented as a matrix-vector
multiplication Wx where W ∈ Rm×n is a trainable weight tensor. Convolution
operators are usually applied for data that exhibits spatial or temporal dimensions
such as images or spectrograms. For instance, two-dimensional colour images
can be represented as three-dimensional tensors xl ∈ RC×W ×H , where C refers
to the number of channels (i.e. red, green and blue) and W and H refer to width
and height of the image, respectively. In this case, the convolution operator
implements a four-dimensional weight tensor W∈RKw×Kh×C×D, which produces
an image xl+1 ∈ RD×W ×H with d channels by computing

xl+1
d,w,h =

Kw∑
kw=1

Kh∑
kh=1

C∑
c=1

Wkw,kh,c,d ·xc,iw(w,kw),ih(h,kh), (2.2)

with iw and ih being indexing functions

iw(w,kw) = w−
⌊

Kw

2

⌋
−1+kw and ih(h,kh) = h−

⌊
Kh

2

⌋
−1+kh.

(2.3)

The four-dimensional weight tensor W can be seen as a set of D filter kernels,
each of spatial filter size Kw×Kh. Each spatial location of a particular output
channel d in an intermediate image xl

d is computed from a Kw×Kh region of
the input image xl−1 and the same filter is shifted over the spatial dimensions of
the feature map. This reusing of the filter leads to a detection of features within
the input images xl−1 that is invariant with respect to its spatial location. In

8

2.1 Deep Neural Networks

the context of CNNs, individual channels of intermediate images xl
d with l > 0

are also referred to as feature maps.
For data exhibiting spatial or temporal dimensions, it is also desired to have

a feature detection mechanism that is invariant with respect to scale. Therefore,
CNNs typically employ a pooling operation that merges spatially neighbouring
values within a feature map to reduce the feature map’s size. Common choices
are max-pooling and average-pooling which combine the results of neighbouring
values by computing their maximum or average, respectively. Note that to some
extend a scale invariant feature detector is also obtained by stacking multiple
convolution layers, since the number of features influencing a particular spatial
location increases with each layer. For instance, using two convolution layers,
each having 3× 3 filter kernels, results in each output spatial location being
influenced by a 5×5 region from the input feature maps. This 5×5 region is
also called the receptive field.

2.1.2 Training

Training neural networks aims to adjust the randomly initialized weight tensors
W in a way that they solve a given task, for instance predicting correct classes
for unseen inputs x. This can be done by minimizing a loss function L using
gradient based optimization. For supervised learning with a labelled training
data set D = {(x1, t1), . . . ,(xN , tN)} containing N input-target pairs, a typical
loss function has the form

L(W;D) =
N∑

n=1
l(y(W,x0

n), tn)+λr(W), (2.4)

where l(yn, tn) is the data term that penalizes the DNN parameters W if the
output yn does not match the target value tn. r(W) is a regularizer that prevents
the DNN from overfitting, which is commonly the ℓ1 or ℓ2 term, and λ > 0 is a
hyper parameter for adjusting the regularization strength. For classification, the
loss function is usually implemented using the cross entropy while for regression
squared error loss is used. Backpropagation computes the gradient for a fixed
input–target pair, where the training process minimizes the loss function by

9

Background

iteratively computing

W←W−η∇WL(W;D), (2.5)

where η is a tunable learning rate parameter and t is the current iteration. Simply
computing the update as in (2.5) is not possible for most cases, because the
size of the dataset N is usually large and the gradient ∇WL requires too much
memory, since the sum over all N samples is computed. This can be resolved
by approximately computing only a subset (or mini-batch) of NB randomly
selected samples from the dataset, which is denoted as Stochastic Gradient
Descent (SGD) [8]. SGD is the simplest optimizer commonly used for training
DNNs but has a large variety of similar variants. This work uses mainly the
popular Momentum optimizer, which filters out fluctuations between iterations
and ultimately accelerates training.

2.1.3 Normalization

Scaling neural networks in depth rather than width is usually more effective
in order to increase prediction performance for a given compute and memory
complexity. This scaling, however, also increases the difficulty of gradient-based
optimization, because vanishing or exploding gradients are influencing training
negatively. Vanishing and exploding gradients can occur when each layer shrinks
its input by a factor α < 0 and α > 1 so that the outputs of the lth layer will
be exponentially scaled by αl. Therefore, most modern DNN architectures
employ normalization layers after the linear transformation. The most prevalent
normalization technique for convolution layers is batch normalization [9] which
computes

µxl
d
← 1

NB

NB∑
n=1

xl
d, σ2

xl
d
← 1

NB−1

NB∑
n=1

(xl
d−µxl

d
)2, xl

d←
xl

d−µxl
d

σxl
d

·γd +βd,

(2.6)

where βd and γd are new trainable parameters for the D feature maps. Batch
normalization aims to rescale the activation statistics in each feature map to zero
mean and unit variance to eliminate the effect of exponential up- or downscaling.
The additional trainable scale parameters γd and shift parameters βd are intro-

10

2.1 Deep Neural Networks

duced to recover the ability of the DNN to approximate any desired function.
While batch normalization is nowadays essential for fast convergence, it also adds
statistical noise to the activations which usually achieves better generalization
performance.

2.1.4 Neural Architectures

Most architectures for classification tasks follow a rather simple technique of
stacking layers and building blocks. However, during the evolution of architectures
several additional components and extensions have been proposed that resulted
in better performance. This section gives an overview of the most popular DNN
architecture which are also heavily used in this work.

AlexNet

The AlexNet architecture [10] was the first work to show that DNNs are capable of
improving over conventional hand crafted computer vision techniques by achieving
around 16.4% Top-5 error on the ILSVRC12 challenge – an improvement of
approximately 10% absolute error compared to the second best competitor in
the challenge who relied on well established computer vision techniques. The
architecture consists of eight layers — five convolution followed by three fully
connected layers. This most influential work essentially started the advent of
DNNs, which can be seen from the fact that DNNs have spread over virtually
any scientific field dealing with data and achieving improved performances over
well established methods in the respective fields. AlexNet was designed such that
training could be performed efficiently on two GPUs rather than following some
clear design principle. This involves the choice of heterogeneous window sizes
Kw×Kh and seemingly arbitrary numbers of channels per layer C. Furthermore,
convolutions are performed in two parallel paths to facilitate the training on two
GPUs.

VGGNet

The VGGNet architecture [11] won the second place at the ILSVRC14 challenge
with about 7.3% Top-5 error. Compared to AlexNet, its structure is more uniform
and with up to 19 layers much deeper. Its design is guided by two main principles.
(i) VGGNet uses mostly 3×3 convolutions and increases its receptive field by

11

Background

stacking several of them. (ii) After downscaling the spatial dimension with 2×2
max-pooling, the number of channels should be doubled to avoid information loss.
From a hardware perspective, VGGNet is often preferred over other architectures
because of its uniform architecture.

InceptionNet

The winner of the ILSVRC14 challenge was with 22 layers an even deeper
architecture named InceptionNet or GoogLeNet [12] with 6.7% Top-5 error. The
main feature of this architecture is the inception module, which combines the
outputs of convolutions with the different filter sizes 1×1, 3×3, and 5×5 by
stacking them. To reduce the computational burden, InceptionNet adapts the
use of 1× 1 convolutions proposed in [13] immediately before the larger 3× 3
and 5×5 convolution to reduce the number of channels and, therefore, decrease
the computational burden.

ResNet

Motivated by the observation that adding more layers to conventional architec-
tures does not necessarily reduce the training error, residual networks (ResNets)
introduced by He, Zhang, Ren, et al. [14] follow a rather different principle. The
key idea is that every layer computes a residual that is added to the layer’s input
which is often graphically depicted as skip connections. The authors hypothesize
that identity mappings play an important role and that it is easier to model them
in ResNets by simply setting all the weights to zero instead of simulating an
identity mapping by adapting the weights of several consecutive in an intertwined
way. In any case, the skip connections reduce the vanishing-gradient problem
during training and enable extremely deep architectures of up to 152 layers on
ImageNet or even up to 1000 layers on CIFAR-10. With this technique, ResNet
won the ILSVRC15 challenge with 3.6% Top-5 error.

DenseNet

Inspired by ResNets whose skip connections have shown to reduce the vanishing
gradient problem, densely connected DNNs (DenseNets) introduced by Huang,
Liu, Maaten, et al. [15] drive this idea even further by connecting each layer to all
previous layers. Instead of adding the output of a layer to its input, DenseNets

12

2.2 Datasets

stack the output and input of each layer. Since this stacking necessarily results
in an increasing number of feature maps with each layer, the number of new
feature maps computed by each layer is relatively small and it is proposed to use
compression layers after downscaling the spatial dimension with pooling. In this
way, DenseNets allow for even deeper architectures and they are more parameter
and computation efficient than ResNet, respectively. However, this architecture
is highly non-uniform which complicates the hardware mapping and ultimately
slows down training.

2.1.5 Straight-Through Gradient Estimator

Many recently developed methods for resource-efficiency in DNNs incorporate
a component in the computation graph of the loss function L that is non-
differentiable or has zero gradient almost everywhere, which prevent the use
of conventional gradient-based optimization. The Straight Through Gradient
Estimator (STE) [16] is a simple but effective way to approximate the gradient
of such components by simply replacing their gradient with a non-zero value.
Let f be some non-differentiable operation within the computation graph and
w be its input such that the partial derivative ∂L/∂w is not defined. The STE
then approximates the gradient ∂L/∂w by

∂L
∂w

= ∂L
∂f

∂f

∂w
≈ ∂L

∂f
f̃ ′(w), (2.7)

where f̃ ′(w) is an arbitrary non-zero surrogate derivative. The simplest choice
f̃ ′(w) = 1 which simply passes the gradient on to higher components in the
computational graph. More involved strategies select f̃ ′ to be the derivative of
some differentiable function f̃ that has a similar shape as the non-differentiable
function f , e.g., for f = sign one could select f̃ ′ = tanh′.

2.2 Datasets

In order to evaluate the effectiveness and generalization of certain deep learning
techniques and software/hardware infrastructure, it is necessary to use reasonable
data. First, data needs to represent real-world examples where the respective
technique is of interest. Second, the chosen datasets require to be a community

13

Background

default in order to make different techniques comparable. This section briefly
introduces the various datasets and tasks used to evaluate performance metrics
of compression techniques on hardware in this work.

MNIST dataset is a collection of 28x28 images of handwritten digits with
60 thousand training and 10 thousand testing images. This dataset features 10
classes for each number in the range of [0,9].

Street View House Numbers (SVHN) dataset [17] is similar to MNIST but
features significantly harder real-world images of digits house numbers taken
from Google Street View. The dataset contains 600 thousand labelled images of
32x32 resolution featuring 10 classes, one for each digit.

CIFAR datasets [18] contain low-resolution (32x32) real-world images that
allow quick evaluation of image-recognition systems. CIFAR-10 features 10
classes, such as airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and
trucks, with 6000 training and 1000 testing images per class. CIFAR-100 is very
similar but feature 100 classes that are grouped into 20 superclasses with 500
training and 100 testing images per class.

Large Scale Visual Recognition Challenge 2012 (ILSVRC2012 or ImageNet)
dataset [19] consists of 10 million large hand-labeled images using 10 thousand
categories. Each image has a list of at most 5 object categories in the descending
order of confidence, where the tasks is to identify multiple objects (i.e. Top1
and Top5 accuracy) in an image. The ImageNet dataset is considerably harder
than previous mentioned tasks and is one of the most challenging tasks in the
context of resource efficiency, since accurate models require extreme compute
and memory resources.

2.3 Hardware for Deep Learning

Improvements in hardware for deep learning are the key driver for the recent
success story of AI applications through DNNs. Both, training and inference
have extreme high demands on their targeted platform and certain hardware
requirements can be the deciding factor whether an application is possible. This
section briefly introduces the most important hardware for deep learning and
discusses their potential as well as limitations. While this discussion is generic
and independent to training or inference, it should be noted that all processor
concepts are available in different scales, ranging form mobile to server variants.

14

2.3 Hardware for Deep Learning

2.3.1 CPUs

CPUs are originally designed to optimize single-thread performance, in order
to execute an individual computation within the shortest possible latency. Un-
fortunately, single-thread performance is stagnating since the end of Dennard
scaling [20], and now performance scaling usually requires parallelization. While
multithreading is a rather obvious solution for parallelization that is applicable
to many tasks, vectorization is a technique that promises great potential for
certain applications. Vectorization leverages the Single-Instruction Multiple-Data
(SIMD) paradigm and exploits the low cost of data-level parallelism in current
CMOS processes. CPUs show excellent properties of exploiting sparse neural
networks due to their short vector units and the low amount of multithreading
together with high frequency. Furthermore, they usually support 8-bit integer
formats and feature certain instructions for extreme low representation and are
consequently well suited for quantization operations.

2.3.2 GPUs

GPUs are initially designed to accelerate image and video processing only and are
nowadays the most popular general-purpose accelerators for a many tasks, such
as scientific and AI computations. The architecture consist of many streaming
multiprocessors which are highly parallel and each implements many light-weight
cores. Thus, GPUs are massively-parallel processors with large memory that
provides extremely high bandwidth and throughput, but significantly lower
frequency in comparison to CPUs. The extreme high amount of parallelism and
the resulting demand on structured computations, however, virtually prevents the
deployment of sparse computations. Modern GPU designs and their respective
software stack implement support for reduced-precision computations, such as
8-bit integer and half-precision floating point formats, which are very well suited
for deep learning. More extreme forms of quantization are not yet support and
do not result into more efficient inference or training.

2.3.3 FPGAs

Field Programmable Gate Arrays (FPGAs) are a family of processors that
implement a large array of configurable logic blocks which can be programmed

15

Background

using hardware-description languages (e.g. VHDL, Verilog, HLS). This concept
is the main difference to ASICs in terms of technology, since hardware can
be designed for specific application or functional requirements. While this
reconfigurability enables various opportunities that go beyond the capabilities
of CPUs and GPUs, it comes at the cost of much lower frequency and reduced
on-chip memory. FPGAs are in principle very well suited for neural networks,
since compute units can be specifically tailored to fit the diverse computations
while also enabling massive amounts of parallelism. Reconfigurable hardware is
especially interesting for compressed neural networks due to their flexibility to
implement any data formats as well as sparse logic.

2.3.4 Domain-Specific Accelerator

Recent interest in deep learning has motivated to push advancements in the
development of custom accelerators, such as Google’s TPUs and Graphcore’s IPU.
The key feature of the TPU (and most of other deep learning accelerators) is a
256x256 matrix-multiplication unit that is referred to as systolic array. Systolic
arrays are a variant of massively-parallel processor arrays, very suitable for
regular problems such as linear algebra operations, and a promising candidate to
address the increasing costs of data movements. The objective of such arrays
is to minimize instruction-fetch and data-access costs by constraining the data
flow to matrix and vector operations. However, data movements can only be
reduced if locality effects are sufficiently exploited and the data flow constraints
of a systolic array may result in poor utilization and latency increase. Such
domain-specific accelerators are usually very constraint when aiming to optimize
neural network through compression. For instance, the TPU allows 8-bit integer
and half-precision floating point formats while other (potentially lower-precision)
representations are not efficiently supported by hardware. Furthermore, the
dense structure of the systolic arrays demand for highly dense computations and
can not exploit fine-grained sparsity patterns.

2.3.5 Loop-Back vs. Data-Flow Architectures

One can roughly categories hardware platforms for deep learning inference
into loop-back and data-flow architectures: loop-back architectures use a fixed
processor and memory system to move data from off-chip memory to the processor

16

2.3 Hardware for Deep Learning

and leverage the available compute resources. This is performed for each layer
or operation sequentially until the inference is done. The drawback of loop-
back architectures is that it potentially requires many data movements from
and to off-chip memory, which is time and energy consuming. CPUs aim to
reduce these memory accesses by featuring large on-chip caches and reuse data as
much as possible. Similar are domain-specific accelerators, such as TPUs, which
usually feature a large and programmable scratch pad memory on chip. On the
contrary, GPUs feature large register files and aim to hide memory latency by
leveraging parallel slackness. Another critical aspect of loop-back architectures is
low compute utilization, which can potentially occur if certain layer or operation
types do not fit the static compute array (i.e. if operation size is too low). The
advantage of such generic compute architecture is, that they allow arbitrary
operations in combinations with productive code generations, since the hardware
does not need to be optimized for a certain task. Continuous improvements in
semi-conductor and processor technology are the main improvement factor of
such inference engines.

In contrast to this, data-flow architectures use a reconfigurable processor
and memory system for computing the inference. Here, each layer or operation
within a neural architecture is assigned a dedicated compute engine and its
own memory subsystem, in order to enable inference in a pipelined fashion.
This avoids off-chip accesses for intermediate operations completely by simple
forwarding the computed results to the next hardware layer. Furthermore, data-
flow architectures achieve excellent utilization of the available hardware logic,
since several compute engines can be tailored to the required operation type
and latency. One drawback of this inference architecture is, however, that it
requires long development costs, because it does not only require software but
also hardware optimizations. In addition, reconfigurable hardware comes at the
cost of reduced absolute compute power in comparison to ASIC designs. The
main limitation of data-flow architectures is that they demand the entire neural
architecture (weights and activations) to stay on chip, which is highly restrictive
for large models.

17

Background

2.4 Software for Deep Learning

Software frameworks are especially important for deep learning applications
because they are responsible for leveraging the available compute hardware
most efficiently while also offering the user a productive working environment.
Such software stacks can be roughly clustered into training frameworks for
developing models and inference frameworks for deploying models. This section
briefly introduces the most important software frameworks in the context of deep
learning that are used throughout this work.

2.4.1 Training Frameworks

There exists a large variety of deep learning frameworks that enable training
and inference of models on different hardware platforms. Such frameworks offer
interfaces for expressing ML models and an implementation for executing the
algorithms. Abstract expressions of an algorithm flow can be executed without
major modifications on a wide variety of heterogeneous systems, ranging from
mobile CPUs up to large-scale distributed systems containing hundreds of GPUs
or TPUs.

Some of the most popular frameworks are Theano, TensorFlow, PyTorch,
etc. which all map tensor operations onto hardware using highly optimized
libraries or code generation. These frameworks make gradient based optimization
particularly convenient: the user specifies the loss as a computation graph and the
gradient is calculated automatically by the framework using the backpropagation
algorithm. While most of such frameworks use the same libraries, they usually
differ in terms of graph optimizations and degrees of freedom when implementing
novel features.

2.4.2 Inference Frameworks

Training frameworks also support inference (or deployment) of models, however,
they are optimized for the learning process and do not effectively take advantage
of optimization techniques for deployment. On the contrary, specialized inference
frameworks are able to exploit certain inference potentials, which allow faster
inference, reduced memory footprint or less memory accesses. As a consequence,
it is an obvious step to train models in one framework and export the trained

18

2.4 Software for Deep Learning

models into a more specialized framework, in order to achieve highest performance
for deployment.

The TensorRT framework includes inference optimizer and runtime that
delivers low latency and high throughput for deep learning inference on NVidia
GPUs. It features different weight and activation formats in order to maximizes
throughput by quantizing models and layer fusion techniques to optimizes use of
GPU memory and bandwidth. Other features are auto tuning to selects best data
layers and algorithms for a targeted GPU platform as well as dynamic tensor
memory, which reduces the memory footprint and reuses memory for tensors
efficiently.

Another deployment framework is TensorFlow-Lite, which is similar to Ten-
sorRT but not vendor specific, thus, allows efficient inference on CPUs, GPUs and
TPUs. TensorFlow-Lite also exploits model compression through quantization,
specialized formats for reduced memory consumption as well as layer fusion
techniques. One of the key features of this frameworks is a focus on the use of
platform APIs for accelerated inference on various devices and small binary files.

2.4.3 Code and Hardware Generation

Inference frameworks, such as TensorRT and TensorFlow-Lite, are developed for
a certain use case or hardware platform. They heavily rely on pre-defined layers
and operations, which are ultimately mapped onto hardware platforms through
specialized libraries (i.e. cuDNN or GemmLowp). However, these frameworks
quickly fail to support deployment if novel operations or hardware is targeted.

TVM [21] is a compiler which exploits graph-level and operator-level opti-
mizations for high-performance deployment across diverse hardware backends (i.e.
ASIC, FPGA). The framework also supports low-precision formats, layer fusion
as well as techniques for reducing the memory footprint. The main difference to
other inference frameworks is that it automates optimization of low-level routines
for hardware by employing techniques for rapid exploration of code optimizations.
This makes the framework versatile to new compute platforms as well as model
features.

FINN [22] is a inference framework which is specialized in hardware generation
for Xilinx FPGA. It exploits extreme forms of quantization in order to generate on-
chip data-flow architectures, customized for each model. The resulting inference

19

Background

accelerators are extremely efficient in terms of throughput, latency and energy.
However, FINN is an vendor dependent experimental framework, which relies on
trained quantization and does not support various operation and layer types.

20

Chapter 3

Resource-Efficient Neural
Networks

DNNs prove particularly effective when big amounts of data and ample computing
resources are available. In real-world applications, however, the resources during
inference are typically limited, effectively preventing the resource-hungry models
to be deployed. Figure 3.1 illustrates three key challenges which have to be
jointly considered to facilitate DNNs in real-world applications:

Fig. 3.1 Three key aspects of resource-efficient neural networks. [2]

i) Efficient Representation: model requirements in terms of memory (i.e. pa-
rameters and activations) should match the usually limited resources in deployed
systems. ii) Computational Efficiency: the model should be computationally effi-
cient during inference, utilizing the available hardware optimally with respect to
time and energy. iii) Prediction Quality: model complexity versus prediction qual-

21

Resource-Efficient Neural Networks

ity trade-offs must be considered to achieve good prediction performance while
simultaneously reducing computational complexity and memory requirements.

These three aspect have motivated recent research interest in the field of
resource-efficient techniques for deep learning. This chapter gives an extensive
overview of the current research directions of such techniques, which are concerned
with reducing the model size and/or improving inference efficiency while at the
same time maintaining accuracy levels close to state-of-the-art models. The
content of this chapter has been published in collaboration with Wolfgang Roth
as an preprint [2].

There are three major directions of research concerned with enhancing
resource-efficiency in DNNs, which are:

Quantized Neural Networks Weights and activations of neural networks are
usually represented as single-precision floating point values and during
inference billions of floating-point operations are carried out. Quantization
techniques aim to reduce the number of bits used to represent these vaules,
in order to reduce the memory footprint and area cost to facilitates faster
inference using cheaper arithmetic operations.

Network Pruning Starting from a potentially large neural architecture, prun-
ing techniques aim to remove parts of the model during or after training.
The parts being removed range from individual parameters (denoted as
unstructured pruning) to a more global scale of neurons, channels, or even
entire layers (denoted as structured pruning). This structure granularity
ultimately depends on the hardware and software infrastructure of the
target computing platform.

Structural Efficiency This research direction includes a diverse set of tech-
niques that achieve resource-efficiency at the structural level of neural
networks. Knowledge distillation is a technique where a small student
model is trained to mimic the behaviour of a larger teacher. The idea of
weight sharing is to use a small set of weights that is shared among several
connections of the neural network in order to reduce the parameter footprint.
Several works have investigated special matrix structures that require less
parameters and allow for faster matrix multiplications. Furthermore, there
exist several manually designed architectures that introduced lightweight
building blocks or modified existing ones to enhance resource-efficiency.

22

3.1 Quantized Neural Networks

Most recently, neural architecture search has emerged that discover efficient
neural architectures automatically.

These techniques are not mutually exclusive and they can potentially be combined
to further enhance resource-efficiency. For instance, one can both sparsify a
model and reduce arithmetic precision while also optimizing by apply structural
efficiency techniques.

3.1 Quantized Neural Networks

Quantization aims to reduce the bit width for weights and/or activations of a
DNN from single-precision floating point (real-valued) to more efficient formats.
Reducing the number formats results in less storage requirements and in less
memory accesses, which are the most energy and time consuming operations
when computing predictions. Furthermore, low-bit formats can achieve higher
throughput or lower latency, since area savings allow for more parallelism due
to simpler instructions. The main challenge is to reduce the number of bits
as much as possible while maintaining prediction quality close to that of a
real-valued model. An extreme example of quantization are binary weights
w ∈ {−1,1} together with binary activations x ∈ {−1,1}, which enables inference
computations through hardware-friendly logical bit operations. This section
provides a literature overview of popular techniques that enable quantized neural
networks.

3.1.1 Early Quantization Techniques

Low-precision computations within ML models date back at least to the early
1990s: Höhfeld and Fahlman [23], [24] rounded the weights during training to
fixed-point formats with varying numbers of bits. This technique resulted in small
gradient updates that are rounded to zero and, consequently, stalling training
which they resolved by adding stochastic rounding. The same concept was recently
successfully adapted to modern DNNs by Gupta, Agrawal, Gopalakrishnan, et
al. [25].

Courbariaux, Bengio, and David [26] explored various numeric formats - such
as float point, fixed point and dynamic fixed point - for DNNs using varying
number of bits Avoiding multiplications through binary or ternary formats for

23

Resource-Efficient Neural Networks

X
⊙

A Z

Wq

QW

f(w)=round(w)

f′(w)=0

f′(w)=1

f(a)=sign(a)

f′(a)=0

f′(a)=I|a|≤1(a)

Fig. 3.2 A simplified building block of a neural network using the straight-through
estimator (STE). [2]

weights by stochastic quantization was proposed by Lin, Courbariaux, Memisevic,
et al. [27]. In Addition, activations are quantized to powers of two to enable
cheaper bit-shift operations for inference. Lin, Talathi, and Annapureddy [28]
use fixed-point formats for pre-trained real-valued models, where the required
bit width is identified through an optimization formulation that considers the
signal-to-quantization noise ratio.

3.1.2 Quantization-aware Training

Quantization routines usually deploy piece-wise constant functions with either
undefined or zero gradients, which prevents their use in gradient-based learning
optimizations. In recent years, the STE [16] became the most prevalent technique
to approximate the gradients. In this context floating-point weights are usually
maintained and quantized during forward propagation and, during backprop-
agation, the gradients are propagated through the quantization functions by
assuming that their gradient equals one. The whole process is illustrated in
Figure 3.2, where floating-point weights are updated using gradients computed
at the quantized weights. At deployment, the full-precision weights are dis-
carded and only the quantized low-precision weights are kept. This is denoted
as quantization-aware training and it is the most popular way of reducing the
number formats, as it achieves much better prediction quality than previous
discussed techniques.

[29] quantized the weights of DNNs to a binary format where they consider
deterministic and stochastic rounding during training (using the STE technique),
which dramatically reduces storage requirements. A similar technique was

24

3.1 Quantized Neural Networks

proposed by [30]: in addition to binary weights they also quantize activations to
a binary format using the sign function and STE. This technique not only reduces
storage requirements, but also activation memory and inference computations
can be performed using hardware-friendly logic operations.

Li, Zhang, and Liu [31] trained ternary weights w ∈ {−a,0,a} by setting
weights lower than a defined threshold ∆ to zero, and setting weights to either
−a or a otherwise. Li, Zhang, and Liu [31] quantized weights to a ternary format
w ∈ {−a,0,a} by thresholding the floating-point weights into three clusters, where
they aim to minimize the ℓ2 norm between floating point and ternary weight
matrix. A different a asymmetric ternary format w ∈ {−a,0, b} was proposed by
Zhu, Han, Mao, et al. [32] by leveraging trainable scaling a > 0 and b > 0 that
are optimized using gradient descent as well as different threshold function.

Similar to the ternary quantization techniques, Rastegari, Ordonez, Redmon,
et al. [33] use a floating-point scalar to scale the binary weights in each filter.
Lin, Zhao, and Pan [34] quantize weights through linear combinations of multiple
binary weight filters. Using the observation that weights and activations typically
exhibit a non-uniform distribution, Miyashita, Lee, and Murmann [35] proposed
to quantize values to powers of two. Cai, He, Sun, et al. [36] proposed a half-wave
Gaussian quantization that approximates the predominant ReLU activation
function better. Incremental network quantization [37] partitions weights of
a DNN into sets, where each set is quantized sequentially during a retraining
step until all sets are quantized. Jacob, Kligys, Chen, et al. [38] simulate the
quantization step during training in order to reduce the format to 8-bit integer
for deploying the models on general-purpose integer hardware. Liu, Wu, Luo, et
al. [39] use the observation that shortcut connections of ResNet architectures are
very sensitive to extreme forms of quantization. By only binarizing the residual
path and leaving the shortcut connections to floating point, they significantly
improve accuracy while achieving the potential of fast binary convolutions through
bit-wise operations.

One of the most accurate quantization techniques was proposed by Zhang,
Yang, Ye, et al. [40], where a learnable quantizer is used that reduces the
quantization error. They use the fact, that fixed-point numbers can be seen
as linear combination vT b with v = {20, . . . ,2K} and b ∈ {0,1}K and view
v ∈ RK as trainable parameters. This technique can be used for arbitrary bit
representations, however, training time increases gradually with the targeted

25

Resource-Efficient Neural Networks

amount of bits.
Zhou, Ni, Zhou, et al. [41] proposed a framework that allows for arbitrary bit

combinations for weights, activations as well as gradients, in order to additionally
leverage low-precision formats for training. In [42], weights, activations, weight
gradients, and activation gradients are subject to customized quantization func-
tions that allow for variable bit widths and facilitate integer arithmetic during
training and testing. In contrast to [41], the work in [42] accumulates weight
changes to low-precision weights instead of full-precision weights.

Another emerging trend towards reducing bit formats are techniques that
target mixed-precision quantization, where different layers obtain different bit
representations. Finding well approximating bit combinations is difficult due to
the large design space. Hardware-aware automatic quantization [43] supports
mixed precision formats (1-8 bits) where they find the optimal bit width for
each layer by considering a particular hardware architecture. The framework
leverages reinforcement learning to automatically determine the quantization
policy and it takes the hardware accelerator’s feedback in the design loop. Uhlich,
Mauch, Cardinaux, et al. [44] propose to parameterize the quantizer with the
step size and dynamic range where the bit width can then be inferred from
them. They show that a suited parameterization is the key to achieve a stable
training and a good final performance. Cai, Yao, Dong, et al. [45] proposed a
framework for mixed-precision quantization without any access to the training
or validation data. They optimize for a distilled Dataset, which is engineered to
match the statistics of batch normalization across different layers of the network.
An automatically determination of the mixed-precision bit setting for all layers
is used by a Pareto frontier based on a sensitive evaluation.

While most work on quantization based approaches is empirical with a focus
on prediction performance, some recent work gained more theoretical insights
[46], [47].

3.2 Pruning Networks

Pruning techniques aim to compress DNNs using sparsity by setting certain
parameters to zero, in order to reduce the memory consumption and to speed
up computations. Pruning variants can be roughly categorized into two cluster:
unstructured and structure pruning. Unstructured pruning sets individual weights

26

3.2 Pruning Networks

of a neural network to zero, without considering their position in a weight tensor.
Such forms are typically easier to implement and obtain a large amount of sparsity
without reducing prediction quality, however, they are difficult to implement (or
not viable) on parallel hardware. On the contrary, structured pruning techniques
set more coarse-grained structures of a tensor to zero, e.g., a whole channel of a
convolution tensor.

3.2.1 Unstructured Pruning

LeCun, Denker, and Solla [48] proposed optimal brain damage, an algorithm for
adapting the size of a neural network. They remove unimportant weights from
a model by using second-derivative information to trade-off training error and
model complexity. Similar to this, Hassibi and Stork [49] proposed to use an
approximated full covariance matrix instead to prune weights that cause the
least increase in loss function.

These initial techniques for network pruning were designed using small neural
models and are not viable for modern DNN, since second-derivative information
as well as covariance matrix are too compute intensive for such large models.
As a result, most modern pruning techniques rely on some simpler heuristics
for evaluating the importance of weights. Han, Pool, Tran, et al. [50] apply
magnitude-based threshold pruning by iterating between pruning and re-training
the model. Despite its simplicity, this technique is able to remove impressive
amounts of weights and is one of the most adopted pruning variants nowadays.
It is also integrated into deep compression [51], a technique for combined pruning
and quantization, which also leverages Huffman coding for further compression.

Guo, Yao, and Chen [52] proposed a dynamic pruning technique, which allows
wrongly pruned weights to be reincorporated again. Their techniques also relies
on threshold-based pruning but uses additional auxiliary weights to reappear if
their value exceeds a certain threshold.

3.2.2 Structured Pruning

Wen, Wu, Wang, et al. [53] use group lasso regularization in order to enforce
sparsity induction in a structured way dynamically during training. They control
the pruning amount simply by tuning the regularization strength and evalu-
ate several interesting structures, such as channel or entire layers. Another

27

Resource-Efficient Neural Networks

regularization-based technique was proposed by Liu, Li, Shen, et al. [54], where
the γ parameters of batch normalization are used. They add an ℓ1 regularization
term to the loss function, which punishes non-zero γ parameters and, ultimately,
forces certain parameters to zero. This results into pruning of whole channels,
since each γ parameter is shared across a feature map. Huang and Wang [55]
proposed trainable scaling factor to scale the outputs of specific structures, such
as neurons, groups or residual blocks. Again, these parameters are regularized
using an ℓ1 penalty and certain parameters - and consequently structures - are
forced to zero. Gordon, Eban, Nachum, et al. [56] proposed MorphNet, a tech-
nique to automate the design of DNN structures. They iteratively shrink and
expand a network by regularizing structures with respect to computations or
size. Thus, they not only enable pruning models, but also redesigning a baseline
architecture dynamically to the demands of certain computation and memory
requirements.

Luo, Wu, and Lin [57] proposed to evaluate the importance of certain struc-
tures by pruning channels that result in the least activation change in the
subsequent layer. Louizos, Welling, and Kingma [58] propose to multiply weights
with stochastic binary 0-1 gates associated with trainable probability parameters
that effectively determine whether a weight should be pruned or not. They
formulate an expected loss with respect to the distribution over the stochastic
binary gates, and by incorporating an expected ℓ0-regularizer over the weights,
the probability parameters are encouraged to be closer to zero. To enable the use
of the re-parameterization trick, a continuous relaxation of the binary gates using
a modified binary Gumbel softmax distribution is used [59]. They show that
their approach can be used for structured sparsity by associating the stochastic
gates to entire structures such as channels. Li and Ji [60] extended this work by
using the recently proposed unbiased ARM gradient estimator [61] instead of
using the biased Gumbel softmax approximation. Aflalo, Noy, Lin, et al. [62]
distill the knowledge from the over-parameterized parent network’s inner layer
by formulating the network pruning as a Knapsack Problem. This optimizes the
trade-off between the importance of neurons and their associated computational
cost and the pruned model is fine-tuned under the supervision of the parent
network.

28

3.3 Architecture Design

3.3 Architecture Design

Architecture design aims to find optimal neural architectures for a given task by
evaluating design principles and building blocks. Several of these techniques have
emerged over the past years, where the large majority targets resource-efficient
neural architectures. Architecture design can be mainly clustered into manual
architecture design and neural architecture search.

Manual Architecture Design

Initial DNN architectures for classification tasks are designed to use a set of
convolution layers for feature extraction followed by one or more fully-connected
layers for calculating the class probabilities. At the transition between convolution
and fully-connected layers, feature maps are usually reshaped into vectors that are
connected to the fully-connected layers. This transition is extremely parameter
consuming because a large number of feature maps are used at this point. Lin,
Chen, and Yan [13] proposed to use global average pooling to reduce the number
of parameters at this transition, by reducing the spatial dimension of each feature
map into a single feature through averaging. This does not only reduce the overall
parameter requirements, but also results into better generalization by removing
the spatial location of features before classification. They also leverage 1× 1
convolutions with weight kernels W∈R1×1×C×D, in order to reduce computation
and parameter demands of the model. These 1×1 convolutions can be seen as
feature pooling layers by performing the operation of a fully-connected layer over
each spatial location across feature maps.

Many popular architectures [12], [14], [15] adopted these two techniques to
scale model size while aiming for resource-efficient architectures. While global
average pooling is used in virtually any modern DNN for classification, 1× 1
convolutions are leveraged in various forms: Inception [12] splits standard K×K

convolutions into a cheaper 1×1 convolution for reduce the number of feature
maps before a subsequent K×K convolution is performed. ResNet architectures
[14] use bottleneck structures in the residual path, where a 1×1 convolution is
used for reducing the number of feature maps before the computational heavy
3× 3 convolution. Afterwards, the amount of features is increased again by
another 1×1 convolution before subsequently adding the tensor to the shortcut.
Similar is done in SqueezeNet [63] which uses 1×1 convolutions to reduce the

29

Resource-Efficient Neural Networks

number of feature maps before the tensors are subsequently forwarded to a parallel
1×1 and 3×3 convolution, respectively. The SqueezeNet architecture also avoids
fully-connected layers by directly using the output of global average pooling as
input to the softmax function. In addition, they compress the model using deep
compression [51]. The successor of the InceptionNet architecture [64] further
reduced resource requirements by proposing spatially separable convolutions
where a K×K convolution is split into a K×1 convolution followed by a 1×K

convolution.
The most influential architecture is MobileNet [65], which heavily relies on

depthwise-separable convolutions where a standard convolution in split into a
depthwise convolution and subsequent 1×1 convolution. Depthwise convolutions
use a K ×K filter for each feature map separately without considering the
cross-channel correlations and the 1×1 convolution then aggregates information
across channels. Depthwise-separable convolutions are less expressive than
standard convolutions, however, they are more computation and parameter
efficient. Certain drawbacks of this convolution type are discovered and discussed
in Chapter 7 of this work. Sandler, Howard, Zhu, et al. [66] combined the
idea of depthwise separable convolution and bottleneck structures and proposed
the inverted residual structure. Here, 1× 1 convolutions are used to increase
the number of feature maps before the computational cheap K×K depthwise
convolution is applied. The number of feature map is subsequently reduced by a
1×1 convolution before the shortcut is added. This inverted structure is more
computation and parameter efficient and, consequently, is the most used building
block for resource-efficient architectures.

Depthwise convolution can also be seen as group convolutions with group
size of one. Group convolutions were initially introduced in the AlexNet [10]
architecture to enable model parallelism on two GPUs. The basic idea of
group convolutions is to split the feature tensor into several groups and perform
independent convolutions on each group, before the outputs of these groups are
then stack again to a single tensor. Group convolution significantly reduce the
computation and parameter requirements, however, do not consider cross-group
correlations. In order to resolve this, Xie, Girshick, Dollár, et al. [67] proposed
to use group convolutions within residual bottleneck layers, where cross-feature
correlations are detected in the subsequent 1×1 convolution. They use a constant
split of feature maps throughout the model, however, Radosavovic, Kosaraju,

30

3.3 Architecture Design

Girshick, et al. [68] found that a constant group size is more beneficial.
While most works use 1× 1 convolutions in order to detect cross-channel

correlations after group (or depthwise) convolutions, Zhang, Zhou, Lin, et al.
[69] propose to use shuffle operations instead. The idea is to employ channel
shuffle operations after group convolutions to recover the interaction between
different groups.

All of the techniques described in this sections share the goal of reducing
memory and computation demands of a model. However, they do not reduce
activation demands, which can be crucial for accelerating inference and training.
This work focuses on all of these metrics in order to generate architectures, which
are not only parameter and computation efficient but also fast on hardware.

Neural Architecture Search

Neural architecture search (NAS) is an emerging field within automated ML
with a focus of automatic hyperparameter optimizations to maximize prediction
performance of models. In more detail, NAS algorithms aim to find optimal
solutions for architecture design hyperparameters, such as kernel size, number of
features or resolution configurations. This is done by minimizing the validation
error over architecture modifications, resulting in an extremely time consuming
process since many training runs are required. In addition, the design space of
DNNs is usually of exponential size in the number of layers. In order to reduce
the required design space, NAS algorithms typically leverage building blocks
and design principles developed by manual architecture design and have been
proven successful. For instance, most recently proposed NAS algorithms use the
depthwise-separable convolutions together with inverted residual block, due to
their parameter and compute efficiency.

NAS was initially proposed by Zoph and Le [70] using a technique to encode
neural architectures of arbitrary depth as sequences of tokens, sampled from
a controller RNN. The controller is trained using reinforcement learning with
validation error as a reward signal, in order to generate architecture that achieve
good generalization performance. While this technique is able to achieve excellent
prediction performance, the training effort is enormous due to the many training
runs. The required training time is the limiting factor for larger datasets, which
was partly solved by subsequent NAS techniques, e.g., in [71].

31

Resource-Efficient Neural Networks

A variation of the initial NAS algorithm was proposed by Tan, Chen, Pang, et
al. [72], which additionally considers the latency of the sampled models on mobile
devices. This step increases the required training time even more, however, they
train the sampled models for five epochs and select only the best performing
models for more epochs.

ProxylessNAS [73] proposed a different technique that aims to reduce the
training effort by avoiding a controller: they use a heavily over-parameterized
model with parallel path of different architecture blocks. Motivated by binary
quantization, they train the selection of a path by backpropagation using the STE
and keep only the selected path for each layer. In addition, they also consider
latency on various devices, such as (mobile) CPUs and GPUs, and implement a
differentiable regularizer in the cost function. This technique is promising because
of the low training effort as well as practical inference benefits, however, the
limiting factor is the available memory that needs to fit the over-parameterized
model.

In order to resolve this memory bottleneck, Stamoulis, Ding, Wang, et al.
[74] proposed to use a single-path instead of multi-path NAS. All operations
are combined in a single superblock where each operations uses a subset of the
superblock. The operation selection is done using trainable parameters that
determine thresholds for magnitude-based operation selection. Again, the STE
is used to approximate the threshold function during training.

Tan and Le [75] proposed a compound scaling technique for discovering
parameter and compute efficient architectures. First they identify a small model
with high prediction quality using NAS, which is muss less compute intensive
than identifying large models. Then, they simultaneously increase number of
layers and feature maps as well as spatial resolution, in order to find compound
scaling solutions.

The drawbacks of the discovered architectures using the compound scaling
technique was analyzed by Radosavovic, Kosaraju, Girshick, et al. [68]: the
authors found that the resulting architectures are parameter and compute efficient,
however, require an extremely high amount of activations, which results in low
training and inference performance. They proposed to design network design
spaces by parameterizing populations of architectures, which is analogous to
manual design of architectures, but elevated to the design space level. The best
performing models using their evaluation show interesting design principles that

32

3.3 Architecture Design

are in contrast to other models found with NAS.
Liu, Sun, Zhou, et al. [76] analyzed the implications of pruning by replicating

various techniques and training setups. They found that the common process of
training, pruning and fine-tuning is often not necessary for better performance
and only the discovered sparsity pattern is important. Consequently, training
models with the discovered sparsity patterns from scratch results in similar
performance as fine-tuning after pruning. Thus, pruning can also be seen as a
technique for NAS.

33

Chapter 4

Quantized Inference

Quantization is among the most promising compression techniques for reducing
memory requirements as well as accelerating inference. There exists a large
variety of quantization and implementation techniques, ranging from rather
conservative representations (such as half-precision floating point or 8-bit integer)
to extreme forms of quantization (such as binary or ternary representations).

This chapter gives detailed insights into quantized inference on various hard-
ware platforms, in order to gain an in-depth understanding of the potential as well
as implications of low-precision representations. First, low-precision arithmetic
is studied in Section 4.1 on the example of CPUs and an extension of the Eigen
library is presented, enabling various representations on ARM architectures.
Section 4.2 evaluates QNN inference on ARM CPUs using the library extension
together with popular and accurate quantization techniques. Then, QNNs are
trained, mapped and evaluated on FPGAs using the FINN data-flow architecture
in Section 4.3. Section 4.4 studies the efficiency of relatively conservative quan-
tized representation on general-purpose GPUs. Last, a real-world application
is presented in Section 4.5, which highlights the benefits and implications of
quantization. This chapter extends and summarizes three publications[1]–[3].

4.1 Low-Precision Signed-Integer GEMM

Latency and energy efficiency of DNNs mainly depend on the optimizations
of matrix-vector and matrix-matrix multiplication subroutines. The increasing
demand for these algorithms in scientific computing motivated explorations of
highly effective algorithmic optimizations, such as parallelization, vectorization,

35

Quantized Inference

caching and many more. These algorithms are usually wrapped into Basic Linear
Algebra Subroutines (BLAS) libraries, which are developed specifically for a
certain processor and can be used without any knowledge of the underlying
hardware or the expertise of algorithmic optimizations.

The prime example for the usage of BLAS libraries are ML frameworks (i.e.
Theano or TensorFlow), where users are able to develop hardware-agnostic code in
Python and, during execution, the code generation is performed using the BLAS
library Eigen for Intel and ARM CPUs or cuBLAS for NVidia GPUs. While this
software flow enables developers an extremely productive working environment
with highest performance, it also restricts research to the available features of the
respective framework. In the context of resource-constraint DNN inference, the
main missing feature are low-precision formats, since BLAS libraries are usually
developed for single-precision or double-precision floating-point format.

This section introduces an extension for the Theano framework using the
Eigen library, that offers signed-integer formats from 32-bit to binary precision.
Enabling such formats allows easy deployment and explorations of quantized
neural networks. The methodology is exemplified and evaluated using the ARM
Instruction Set Architecture (ISA), however, can be extended to other hardware
as well. This work has been published at the Workshop on UnConventional High
Performance Computing 2017 (UCHPC 2017), in conjunction with EuroPAR
2017 [1].

4.1.1 Methodology

There are two possible ways to enable low-precision matrix multiplication in ML
frameworks: the first one is to implement code from scratch and accelerate it for
a certain processor using compiler and algorithmic optimizations. The second
way is to use already optimized code and extend it for low-precision formats,
which is done in this work on the example of the Eigen library. The methodology
introduced in this section allows leaving most of the BLAS algorithm untouched
and only adapting the lowest level of the subroutine. This is not only beneficial
in terms of productivity but, more importantly, extremely important for the
performance since BLAS algorithms contain thousands lines of complicated code,
which are developed over a long period of time and achieve up to theoretical
peak performance of the respective processor.

36

4.1 Low-Precision Signed-Integer GEMM

BLAS libraries feature matrix-matrix and matrix-vector multiplication algo-
rithms, where elements of the resulting matrix C ∈ RI×J of two input matrices
A ∈ RI×N and B ∈ RN×J are calculated as

ci,j =
∑N

n=1 ai,n · bn,j . (4.1)

Consequently, the BLAS subroutines iterates over the input matrices and applies
a large amount of Multiply-Accumulate (MAC) operations. The performance of
these MAC operations highly depend on ths use of Single Instruction Multiple
Data (SIMD), which is a vectorization technique that enables the computation
of multiple data elements with a single instruction. SIMD exploits the low
cost of data-level parallelism in CMOS processes and are ubiquitous in current
architectures from powerful server CPUs to tiny microcontrollers.

The vectorization for matrix multiplications can be realized by either com-
puting different scalar products in parallel using broadcasting of single elements
along the SIMD lane or by computing single scalar products in parallel and
reducing the final results. The majority of BLAS implementations, including the
Eigen library, applies the broadcasting technique: let S = Slength

Owidth
be the number

of operands with a bit width of Owidth, within a SIMD lane of bit length Slength,
then the elements of C can be calculated in parallel as

ci,j , ..., ci,j+S =
∑N

n=1 ai,n · bn,j , ...,
∑N

n=1 ai,n · bn,j+S︸ ︷︷ ︸
1st SIMD stage

, (4.2)

where ai,n is broadcasted along the SIMD lane. Vectorization could be also
implemented by simply computing elements of A and B in parallel, however, the
broadcasting does not require a reduction within the SIMD lane, which is much
faster in practice.

While the broadcasting works efficient for floating-point arithmetic where the
bit width of intermediate registers can be kept constant through normalization,
it can not be applied to reduced-precision arithmetic in its basic form. Low-
precision formats are usually represented as integers (i.e. int8) that rely on
careful adjustments of intermediate and resulting registers. When multiplying
or adding two int8 values, the intermediate register has to be doubled to int16
or increased by one bit to int9, respectively, in order to guarantee no overflows
during the calculation. Consequently, the SIMD scheme of Equation 4.2 needs

37

Quantized Inference

to be adopted accordingly: let A = Slength

Awidth
be the number of accumulators with a

bit width of Awidth and W = Awidth
Owidth

the number of reduced-precision operands
with a bit width of Owidth within a SIMD lane of bit length Slength, then the
scalar products ci,j can be calculated as

ci,j , ..., ci,j+A =
∑N/W

n=1

2nd SIMD stage︷ ︸︸ ︷∑W

w=1 ai,n+w · bn+w,j ,
∑N/W

n=1

2nd SIMD stage︷ ︸︸ ︷∑W

w=1 ai,n+w · bn+w,j+A︸ ︷︷ ︸
1st SIMD stage

.

(4.3)
This step adds the 2nd SIMD stage where low-precision operands are multiplied
into product registers of length 2 ·Owidth and afterwards W times reduced into
register of length Awidth. The whole process is illustrated in Figure 4.1 on the
example of int8 operands: multiplications in combination with reduction refer to
the 2st SIMD stage and accumulations refer to the 1st SIMD stage.

Fig. 4.1 Simplified illustration of the MAC operation for int8_t representation. [1]

Introducing these two SIMD stages is beneficial for multiple reasons: first, the
BLAS algorithm can be seen as a black box without consideration about high-
level optimizations but all performance benefits of them. Second, the SIMD lane
is leveraged optimally since both, broadcasting (1st SIMD stage) and reduction
(2nd SIMD stage) are combined with their respective strengths. And last, only
the MAC operation is required to be adopted to the respective operand’s bit
width.

38

4.1 Low-Precision Signed-Integer GEMM

4.1.2 MAC Implementations

The methodology described in Section 4.1.1 is processor-agnostic and applicable
to a wide range of computing systems. However, the MAC implementation
highly depends on architectural features as well as available instructions and data
types. This section describes several MAC implementations for low-precision
formats using the ARM architecture, that dominates many domains of embedded
computing today and is therefore a prime candidate for DNN inference on
edge devices. The used data types are the low-precision signed integers int16,
int8, int4, int2, and int1 as well as the full-precision types int32/float32 for
comparison. ARM’s NEON vector extension is used for SIMD realization which
allows 128-bit vectorized instructions.

The implementation of single-precision floating point MAC is straight forward:
three vectors (a, b and c), each containing four float scalars, are simply forwarded
to ARM’s MAC instructions and the result can be returned.

1 f loat32x4_t macf32 (f loat32x4_t a , f loat32x4_t b , f loat32x4_t c)
2 {
3 // Mu l t i p l y and Accumulate : a∗b+c
4 return vmla_f32 (a , b , c) ;
5 }

This MAC routine can be consequently implemented using a single instruction
without the need of data conversion or bit-width adjustment. To enable other
formats, more sophisticated instructions are required: Table 4.1 summarizes
the used instructions for reduced-precision computations, such as multiplication
with bit-width doubling, accumulation and vector reduction as well as bit-wise
operations.

int16 and int8 MAC

Although NEON features single MAC instructions for int8 and int16 formats,
they can not be applied within the low-precision MAC routines, because they do
not allow doubling the bit width during multiplication. The VMULL instruction
is used instead that doubles the operand’s bit width during the multiplication to
int16 and int32, respectively. The multiplication of the highest and lowest 64-bit
vectors of input vectors a and b are performed sequentially, since instructions
with bit-width doubling are constraint to 64 bit operands. For the int16 MAC

39

Quantized Inference

Table 4.1 Instruction overview for the MAC operation.[1]

Operation Instruction Description

Multiplication

VMLA
Multiplies the elements of two vectors
and accumulates the elements of a third
vector - Supports 32/16/8 bit.

VMUL Multiplies the elements of two vectors -
Supports 32/16/8 bit.

VMULL
Multiplies the elements of two vectors
and doubles the bit width - Supports
32/16/8 bit.

VAND + VEOR Bitwise logic instruction - Supports
32/16/8 bit.

Reduction
VPADDL Adds adjacent pairs of elements of a

vector - Supports 32/16/8 bit.

VPADAL

Adds adjacent pairs of elements of a
vector and accumulates the result by
elements of a second vector - Supports
32/16/8 bit.

VCNT Counts the number of set bits of a vector
- Supports 8 bit.

Accumulation VADD Adds the elements of two vectors - Sup-
ports 32/16/8 bit.

implementation, the resulting vectors are summed up into a single vector before
the result is accumulated to vector c

1 int32x4_t macs16 (int16x8_t a , int16x8_t b , int32x4_t c) {
2 // Vector e x t r a c t i o n
3 int16x4_t high_a = vget_high_s16 (a) ;
4 int16x4_t high_b = vget_high_s16 (b) ;
5 int16x4_t low_a = vget_low_s16 (a) ;
6 int16x4_t low_b = vget_low_s16 (b) ;
7 // Mu l t i p l y
8 int32x4_t high_r = vmull_s16 (high_a , high_b) ;
9 int32x4_t low_r = vmull_s16 (low_a , low_b) ;

10 // Reduce
11 int32x4 r = vadd_s32 (high_r , low_r) ;
12 // Accumulate
13 return vadd_s32 (r , c) ;
14 }

As can be seen, the int16 MAC routine requires eight instructions because of
bit-width adjustments, while the float32 MAC can be computed within a single
instruction.

40

4.1 Low-Precision Signed-Integer GEMM

The int8 MAC implementation is very similar to int16, but requires an
additional reduction stage where adjacent pairs of elements are added before
accumulation.

1 int32x4_t macs8 (int8x16_t a , int8x16_t b , int32x4_t) {
2 // Vector e x t r a c t i o n
3 int8x8_t high_a = vget_high_s8 (a) ;
4 int8x8_t high_b = vget_high_s8 (b) ;
5 int8x8_t low_a = vget_low_s8 (a) ;
6 int8x8_t low_b = vget_low_s8 (b) ;
7 // Mu l t i p l y
8 int16x8_t high_m = vmull_s8 (high_a , high_b) ;
9 int16x8_t low_m = vmull_s8 (low_a , low_b) ;

10 // Reduce
11 int32x4_t high_r = vpadl l_s16 (high_m) ;
12 int32x4_t low_r = vpadl l_s16 (low_m) ;
13 int32x4 r = vadd_s32 (high_r , low_r) ;
14 // Accumulate
15 return vadd_s32 (r , c) ;
16 }

Thus, the int8 MAC routine requires two more instructions for the additional
reduction stage than the int16 implementations. The whole MAC sequence
is illustrated in Figure 4.1 on the example of int8 operands. This results
into an instruction increase of 2x and 1.25x for int16 and int8, respectively,
in comparison to float32 MAC, which is in contrast to the assumption that
low-precision formats can be used to accelerate computations. However, the low-
precision implementations have two favourable properties: first, their instructions
use simpler logic and can be computed in fewer cycles. Second, the reduced
operand’s bit width requires fewer memory accesses and, consequently, fewer
cycles for loading the data.

int4 MAC

While int8 and int16 formats are supported inherently by NEON, it lacks support
for int4 formats. In particular, the extraction of int4 values from the input
vectors causes a high instruction overhead. In order to perform the extraction,
the even and odd indexed int4 values are masked out from the 128-bit input
vectors a and b via bit-wise logic operations and the values are split into two
separate 128-bit vectors. Once the extraction is done, the obtained vectors can

41

Quantized Inference

be simply multiplied without bit-width doubling. Last, a three-layer reduction is
performed before the resulting vector elements are summed up.

int2 MAC

The multiplication of the int2 MAC is realized by evaluating the resulting positive
and negative values separately via bit-wise logic operations (AND, XOR). Then,
a 8-bit population count is performed to count the positive and negative values
within a 8-bit vector. The resulting positive values are subtracted by the resulting
negative values. Two reduction levels transform the int8 representation into
a int32 intermediate representation and accumulate the vector by elements of
input vector c.

int1 MAC

For the int1 MAC, the proposed technique by Courbariaux et al. [30] is used:
the basic idea is to replace the actual multiplications of input vectors a and b
with bit-wise XNOR operations and perform the reduction via population count
as:

a ·b = N −2 ·popc(xnor(a,b)), (4.4)

where xnor is the bit-wise logic operation, popc denotes the counting of set bits
and N is the length of vectors a and b. Since NEON includes only a 8-bit
population count, two further reduction levels are used in order to reduce the
results into a int32 intermediate representation. The result is subsequently
accumulated by input vector c.

1 int32x4_t macs8 (int8x16_t a , int8x16_t b , int32x4_t) {
2 // Mu l t i p l y
3 int8x16_t m = veor_s8 (a , b) ;
4 // Reduce
5 int8x16_t r0 = vcnt_s8 (m) ;
6 int16x8_t r1 = vpadl l_s (r0) ;
7 // Accumulate
8 return vpadal_s16 (r1 , c) ;
9 }

This routine requires ultimately four instructions, reducing the overall instruction
by 8x in comparison to float32 MAC. The int1 MAC is illustrated in Figure 4.2
(left).

42

4.1 Low-Precision Signed-Integer GEMM

Bit-Serial MAC

The binary MAC technique can be generalized to any bit combination through the
bit-serial MAC by iteratively computing binary MACs for each bit combination
as:

a ·b =
∑N

n=1
∑M

m=1 2n+m ·popc(and(an,bm)), (4.5)

where N and M are bit widths of operand a and b, respectively. While this
MAC technique greatly suits the demands of adaptive bit widths, it comes at
the cost of increased latency through instruction serialization.

4.1.3 Optimizing reduction depth

As discussed in Section 4.1.1, low-precision MAC operations consist of multi-
plication, reduction and accumulation, where the respective reductions require
the most time. The number of reductions within the MAC depends on the bit
width of operands as well as accumulators. Hence, the only way of reducing
the reduction time is to reduce the accumulator bit width, however, almost
all low-precision formats can not avoid 32-bit accumulators in order to avoid
overflows.

Binary and bit-serial computations differ because the multiplication produces
again binary results that are either -1 or +1. As illustrated in Figure 4.2 (left),
the first reduction layer of binary MAC is performed via 8-bit population count,
followed by two integer reductions before the result is added to the accumulator.
Considering that the scalar product of a row and a column vector takes N (matrix
depth) accumulations of a maximum value of 8, the maximum scalar value is N ·8
for the first reduction layer and N ·16 for the second reduction layer. Therefore,
a reduced bit width (Width) for the intermediate representation is sufficient if
N < 2W idth

W idth holds.
Consequently, the GEMM implementation can be modified for binary input

representation to dynamically adapt among 32-bit, 16-bit, and 8-bit accumulators
by only evaluating the matrix’ depth. As a result, 16-bit accumulators require
one reduction layer less (see Figure 4.2 middle) and 8-bit accumulators require
two reduction layer less (see Figure 4.2 right) , compared to 32-bit accumulators.
Obviously, the resulting representation of this optimization differs from the
expected output representation. Thus, the last MAC operation of the scalar

43

Quantized Inference

Fig. 4.2 Illustration of the binary MAC operation for 32-bit (left), 16-bit (middle)
and 8-bit (right) accumulators.

product of a row vector and a column vector has to reduce the intermediate
representation to a 32-bit output representation. As a result, the computational
complexity of the reductions can be reduced from O(n2) to O(n) which directly
translates into a significant performance improvement for matrices with small
(N < 32) and mid-sized (N < 4096) depths.

4.1.4 Performance Analysis

This section evaluates execution time and memory footprint of the low-precision
signed-integer extension for the Eigen library. The obtained results are compared
to the single-precision matrix-multiply routine of the original Eigen library on a
system with a 2.32 GHz ARM quad-core Cortex-A15 CPU. Table 4.2 reports
the execution time of various bit widths and matrix sizes.

The expected execution time of the core code sequence can be estimated using
instruction latency data from the ARM Technical Reference Manual [77]. Table
4.3 summarizes the estimated and measured speed-up of the GEMM operator
for different input representations in comparison to single precision. As can be
seen, the measured speed up roughly matches the estimations with some minor
deviations: i) Most observed speed-ups are actually higher than estimated, due

44

4.1 Low-Precision Signed-Integer GEMM

Table 4.2 Summary of the obtained results: execution time and speed-up (SU)
over float32 format.

Size Metric float32 int16 int8 int4 int2 int1

128 Time 0.18ms 0.37ms 0.16ms 0.22ms 0.12ms 0.05ms
SU 1.00 0.48 1.06 0.81 1.43 3.61

256 Time 1.34ms 2.94ms 1.26ms 1.66ms 0.44ms 0.08ms
SU 1.00 0.46 1.07 0.85 3.10 17.09

512 Time 11.54ms 24.02ms 10.03ms 12.92ms 3.27ms 0.54ms
SU 1.00 0.48 1.15 0.89 3.52 21.17

1024 Time 90.10ms 192.08ms 81.63ms 104.03ms 26.17ms 4.73ms
SU 1.00 0.47 1.11 0.87 3.43 18.99

2048 Time 0.70s 1.52s 0.61s 0.83s 0.20s 0.04s
SU 1.00 0.46 1.10 0.85 3.45 19.81

4096 Time 5.53s 12.15s 5.10s 6.57s 1.60s 0.26s
SU 1.00 0.46 1.09 0.84 3.43 20.83

8192 Time 44.72s 97.36s 40.88s 52.53s 12.74s 3.11s
SU 1.00 0.45 1.10 0.85 3.50 14.34

Table 4.3 Expected and actual speed up of the signed-integer GEMM derived
from the required cycles of the MAC operation.

Input Rep. Cycles Estimated Speed-Up Observed Speed-Up
int32 6 1 1
int16 30 0.40 0.45-0.48
int8 36 0.67 1.06-1.15
int4 69 0.70 0.81-0.89
int2 39 2.46 1.43-3.52
int1 15 12.80 3.61-21.17

to additional memory savings of the operator’s inputs. ii) Speed-ups of small
matrices (< 256× 256) combined with 1-bit and 2-bit formats are lower than
estimated, since Eigen enforces padding of small matrices.

Figure 4.3 illustrates the average speed-up of the low-precision implementa-
tions (using integer logic and bit-serial technique) and memory reduction. Both
techniques achieve similar latency between 1-4 bit, however, bit serial performs
slightly better for 2-bit and 4-bit computations, but it performs clearly worse than
integer logic for configurations that exceed 4 bit. In general, there is no latency
improvements for ≥ 4 bit with the exception of 8-bit formats, which slightly out-
performs floating-point computations. Besides the additional reduction overhead,
this is mainly due to instruction serialization caused by bit-width doubling when
the multiplication is performed. On the other hand, implementations using ≤ 3

45

Quantized Inference

bit for computations achieve relatively low latency, which is inline with extreme
forms of quantization.

Fig. 4.3 Memory footprint and execution time of 32-bit and reduced-precision
signed integer GEMM.

4.2 QNNs on CPUs

As shown in the previous section, quantized operations can significantly accelerate
inference on general-purpose CPUs using either integer or bit-serial arithmetic.
While these results are promising, it is a necessity to additionally evaluate the
prediction performance of neural networks within the targeted quantization
regime. The following sections explore the impact and implications of several
quantization techniques on a variety of tasks and datasets.

4.2.1 MLP on MNIST

This section evaluates the efficiency of binarization on ARM processors using
an MLP consisting of 3 hidden layers of 4096 units on the MNIST task. The
experimental setup and binarization technique follows the original implementation
of Hubara et al. [30] using the Theano framework. Binarization is applied to all
fully-connected layers with exception of the input layer, as is sensitive to such

46

4.2 QNNs on CPUs

Fig. 4.4 Runtime comparison of real-valued and binarized MLPs on the MNIST
task.

extreme forms of quantization. The low-precision Eigen extension is integrated
into Theano as a customized operator, in order to benchmark inference latency
of binarized neural networks.

Figure 4.4 reports error and runtime for the 10 thousand test samples of the
respective models. As can be seen, the two hidden layers of the real-valued model
require by far the most runtime, whereas input and output layers are relatively
fast. Through binarization it is possible to reduce the runtime of hidden layers by
a factor of 8.6×, which improves the overall runtime by a factor of 5.1× without
reducing the prediction performance.

The fully-connected layers use batch normalization and, subsequently, apply
the sign function as non-linearity. This normalization requires additional memory
accesses as well as floating-point computations, resulting in a high impact on exe-
cution time in comparison to the light-weight binarized computations. Umuroglu
et al. [22] showed that, for binarized neural networks, the same output can be
pre-computed using the parameters of the batch normalization layer, which can
be used as threshold parameter to determine the output activation. Applying
this thresholding technique in the evaluated binarized MLP further reduces the
runtime of hidden layers by a factor of 17.3× and the overall runtime by a factor
of 7.0×.

47

Quantized Inference

Fig. 4.5 Improvement of reduced precision over single-precision floating-point on
memory footprint and latency (green) and the respective test error of ResNet-32
on CIFAR-10 (blue).

4.2.2 Prediction Accuracy, Memory Footprint and La-
tency

Results obtained in the previous section indicate efficient compression and accel-
eration potential through binarization without resulting in accuracy degradation.
However, the MNIST task is relatively simple to solve and the excellent results
might not be representative for other more complex task. This section evaluates
low-precision inference on ARM CPUs using the example of the CIFAR-10 task,
which is considerably harder to solve than MNIST. A ResNet variant is used
as neural architecture with 32 layers and, again, the first layer is not quantized.
The quantization framework of Zhou et al. [41] is used for training the low-bit
models, where weights and activations use equally defined bit widths. The latency
improvement, in comparison to the single-precision floating point implementation,
is estimated using the average improvements of Section 4.1.4.

Figure 4.5 reports improvement factors of memory and latency (green) in
comparison to the floating-point model as well as test error (blue) of the various
models. Whereas binarization works without considerable accuracy loss on
the MNIST task, it results in a severe degradation on the CIFAR-10 tasks.

48

4.2 QNNs on CPUs

This ultimately indicates the performance implications when binarization is
applied to real-world applications, since such extreme accuracy losses are not
acceptable. The model gains a substantial amount of accuracy when the bit
width of activations and weights is increased to 2 bit. The inference latency of
2-bit models is about 4× slower than binarized models, however, there is still a
speedup of 2× in comparison to the floating-point model. While 2-bit models are
a good trade-off between inference performance and accuracy, only 4-bit models
achieve single-precision accuracy. However, 4-bit (or higher bit) models do not
achieve faster inference potential on these kind of processors.

4.2.3 Analyzing the Impact of Quantization Techniques

The key insight from previous section is that models with < 4 bits achieve highest
inference performance while models with ≥ 4 bits result in real-valued accuracy.
Further acceleration of ≥ 4 bit computations is difficult, because of the instruction
and processor limitations. On the other hand, there is improvement potential in
regard of optimizing quantization techniques for < 4 bit representations.

This section studies the impact of several popular quantization technique
on model accuracy in the hardware-efficient range of [1,3] bit. The techniques
explored here are DoReFa-Net [41], BNN [30], BWN [29], TTQ [32] and LQ-Net
[40]. TTQ is modified to uniform quantization in order to be inline with the
low-bit inference library, while the original TTQ implementation leverages non-
uniform weight representations. For this experiment, the DNNs are quantized
in the three modes (i) weight only, (ii) activation only, and (iii) combined
weight and activation quantization, respectively. However, some quantization
approaches are designed for a particular mode, e.g., BWN and TTQ only consider
weight quantization whereas BNN only considers combined weight and activation
quantization. For combined quantization the same bit widths is used for the
weights and the activations. The data complexity is increased from CIFAR with
10 to 100 classes, in order to better highlight the performance differences of the
various techniques. Furthermore, a more parameter and computation efficient
DenseNet [15] variant is used with bottleneck as well as compression layers and
a depth of a 100.

Figure 4.6 reports test accuracy for different bit setting and indicates several
interesting quantization aspect: i) As expected, the test error decreases gradually

49

Quantized Inference

Fig. 4.6 Comparison of several popular quantization techniques using the
DenseNet-BC-100 architecture trained on the CIFAR-100 dataset. The hor-
izontal red line shows the error of the real-valued baseline. Quantization is
performed using different bit widths in the three modes activation only (blue),
weight only (green) and combined weight and activation quantization (purple),
respectively.

with increasing bit widths for all quantization modes and for all quantization
approaches. ii) Prediction performance is more sensitive to activation than
to weight quantization. iii) Weight and activation quantization interfere each
other, which means that combined quantization achieves less accuracy than the
worst single-mode quantization. The best overall performing quantization is
LQ-net [40], which outperforms other techniques throughout all bit combinations.
However, this accuracy efficiency comes at the cost of much longer training
time: the time per iteration increases by a factor of up to 4.6 (depending on the
bit width) for LQ-Net, ultimately resulting in a trade-off between training and
inference time.

4.3 QNNs on FPGA

The prime platform for QNNs are data-flow architectures on FPGAs, where
the main objective is to keep all required data for inference in on-chip memory.

50

4.3 QNNs on FPGA

Fig. 4.7 Throughput and accuracy on a Xilinx Ultra96 board using varying bit
width on the CIFAR-10 task.

Staying entirely on chips enables inference in a pipelined fashion, resulting in
high-throughput and low-energy performance. Furthermore, the low-resource
requirements of bit-serial compute units allows for a high amount of parallelism.

This section evaluates QNNs on FPGAs using the FINN framework [22]
for generating data-flow architectures on reconfigurable hardware. Figure 4.7
shows test accuracy over throughput for the FINN framework using several
bit combinations on a Xilinx Ultra96 board. The CIFAR-10 tasks is used for
evaluation on a variant of the VGG architecture and the reported results were
produced within the Master’s thesis of Hendrik Borras. In order to guarantee a
reasonable comparison of the varying bit combinations, the configuration of the
FINN framework is adjusted so that highest throughput is targeted with respect
to the available resources (BRAM, LUTs, etc.) of the device.

As expected, the test accuracy increases gradually with additional bits while
the throughput decreases accordingly. The Pareto front indicates, that the best
performing models use a combination of 1 bit for weights and a gradual increase of
activations to ≤ 3 bits. Afterwards the models perform best if weights are scaled
to 2 bits and activation bit width is further increased to 4 bits. This seconds
the observation of the previous section, which shows that model performance is
sensitive to activation rather than weight quantization.

51

Quantized Inference

(a) Jetson Xavier. (b) Jetson Nano.

Fig. 4.8 Latency and accuracy on the ImageNet task using different supported
formats on NVidia boards.

4.4 QNNs on GPU

FPGAs feature reconfigurable hardware and offer excellent opportunities for
bit-serial computations within a data-flow architecture. This technique, however,
requires all data to be on chip, possible preventing larger models to be deployed or
the use of higher bit-width formats. On the contrary, on-chip memory is a scarce
resource on GPUs but the latency-tolerating programming model enables high
compute and data throughput. As a consequence, GPUs are capable of deploying
very large models while also achieving high utilization of the massively-parallel
cores. The drawback of GPUs is that inference performance depends on the use
of BLAS libraries and the built-in data formats, which ultimately constrains the
degrees of freedom when deploying quantized models.

State-of-the-art accelerators by NVidia started to support quantized opera-
tions in form of rather conservative representation such as half-precision floating
point and 8-bit integer. Figure 4.8 shows the latency with respect to accuracy
using single-precision, half-precision as well as 8-bit integer formats for weights
and activations. The inference latency is measured on NVidia’s Jetson Nano and
Xavier boards, using the cuDNN library and TensorRT compiler. The reported
accuracy refers to single-precision ResNet models (using 18, 36, 50, 101, 152
layers) on the ImageNet task and the same accuracy is reported for half-precision
as well as 8-bit integer representations, because no accuracy degradation is
assumed.

52

4.5 Resource Efficient Deep Eigenvector Beamforming

Half-precision floating point achieves 2.2 - 2.7× faster inference execution
on the Xavier board and 1.8 - 1.9× on the Nano board, in comparison to
single-precision floating point. Reducing the bit representation to 8-bit integer
results into further speedups of 3.4 - 4.2× on the Xavier board. Please note that
the Nano board does not feature hardware support for 8-bit integer and, thus,
there is no acceleration potential on this platform. These results highlight the
importance of supporting quantized operations on general-purpose and domain-
specific accelerators as well as their corresponding software stack and libraries.

4.5 Resource Efficient Deep Eigenvector Beam-
forming

There is an increasing interest in using neural networks in several speech en-
hancement applications. For instance, they are used in the field of acoustic
beamforming for estimating the speech mask. This mask is used to determine
the power spectral density (PSD) matrices of the multi-channel speech and noise
signals, which are used to obtain Generalized Eigen Vector (GEV) beamformer.
While neural networks achieve impressive performances on such tasks, the models
are inefficient when deployed in resource-constraint environments due to their
computational and memory requirements.

In collaboration with Matthias Zöhrer, the DNN responsible for speech mask
estimation is replaced with a BNN and evaluated on an ARM CPU. This work
has been published at International Conference on Acoustics, Speech and Signal
Processing (ICASSP) [3]. The binary GEV beamformer is evaluated using the
CHiME4 corpus [78], which provides 2 and 6 channel recordings of a close-talking
speaker corrupted by four different types of ambient noise. Table 4.4 reports the
Word Error Rate (WER) for the 2 and 6 channel data using DNNs and BNNs
with a GEV-PAN beamformer.

Binarization is able to accelerate the 513 neuron models for both, 2 and 6
channel data, by a factor of 11.9×, however, it also results into 7.8% and 1.6%
accuracy degradation, respectively. This severe accuracy loss can be compensated
by scaling the width of the BNN model from 513 to 1024 neurons, which reduces
the gap to the DNN to 3.0% and 1.6%. As a consequence, the resulting BNN
models achieve prediction performance close to the real-valued model, but with

53

Quantized Inference

Table 4.4 Test WER, runtime and speedup for DNN and BNN models.

Neurons WER Runtime Speedup
2 channel % ms

DNN 513 27.6 16.7 1.0×
BNN 513 35.4 1.4 11.9×
BNN 1024 30.6 8.1 2.1×

6 channel % ms
DNN 513 18.7 16.7 1.0×
BNN 513 21.2 1.4 11.9×
BNN 1024 20.3 8.1 2.1×

2.1× faster inference.

4.6 Summary

Reducing the resolution of weights and activations through quantization is one
of the most promising techniques in order to enable efficient inference on edge
systems. However, there is no general guarantee that any type of quantization
is advantageous on any type of processor. Unsupported data formats, bad
scalability of bit width or accuracy loss may cause performance degradation if
the setup is not chosen properly. In this context, the key insights of this section
are:

• Binarization greatly reduces memory and inference time, however, can
potentially cause severe accuracy degradation of the model.

• There is a general observation that model accuracy benefits more from
increasing the bit width of activation rather than weights.

• CPUs can leverage low-bit formats (≤ 3 bit) for faster inference, however,
fail at benefiting from higher bit configurations (> 3 bit), due to lack of
hardware support.

• FPGAs are excellent at benefiting from quantization by leveraging extreme
low-bit representation (≤ 4 bit), bit-serial computations as well as data-flow
architectures.

54

4.6 Summary

• Modern GPUs and their respective BLAS libraries support conservative
representation (i.e. half-precision floating point or 8-bit integer), which
shows great acceleration potential while not degrading prediction accuracy.

In summary of this section, it can be stated that quantization shows excellent
compression potential for neural networks. The main drawbacks are increased
training time, possible accuracy degradation and unsupported data formats.
The latter issue, however, is likely to be resolved with upcoming processors
technologies that support these formats, which can be seen on the evolving
NVidia accelerators.

55

Chapter 5

Reduce-and-Scale

The previous section explored in detail the potential as well as the implications
of quantization on various hardware platforms: extreme low-bit inference is
highly beneficial on reconfigurable and general-purpose hardware. The drawback
here is that such extreme forms of quantization can lead to severe accuracy
degradation. Increasing the bit width without explicit hardware support is not
very advantageous on general-purpose processors. However, there is a large
availability of these processors already available in our society: for instance,
ARM produced about 160 billion chips that are used in edge platforms, such as
mobile phones, tablet computers or smart devices.

In order to leverage these widely spread architectures, it is necessary to
develop techniques that compress neural networks without sacrificing prediction
performance and, at the same time, map well onto such generic systems and
platforms. The insights gained in Section 4 indicate that non-uniform outperforms
uniform quantization and weights require less bits than activations. Furthermore,
weights can contain a substantial amount of sparsity which potentially reduces
inference time, since MAC computations with zero operand can be simply skipped.
However, the standard matrix-multiplication algorithms - including quantized
and bit-serial techniques - can not implement or leverage such representations.

This section introduces the Reduce-and-Scale (RaS) technique, a compres-
sion and inference algorithm co-design, developed for high accuracy as well
as hardware-efficient mapping. RaS exploits non-uniformly quantized weights,
including configurable sparsity, and uniformly quantized activations in order to
maintain prediction performance. The inference algorithm maps this representa-
tion using vectorization and parallelization onto the processor. This work has

57

Reduce-and-Scale

been published at the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2018 [4].

5.1 Quantization

The quantization technique represented in this section is based on 8-bit uniformly
quantized activations and non-uniform ternary quantization for weights. In
more detail, the weights are trained following the Trained Ternary Quantization
(TTQ) [32] technique and activations are mapped to a fixed-point format. This
unusual combination aims to maintain the prediction quality while substantially
decreasing the memory and computation requirements of the models.

5.1.1 Quantizing Weights

TTQ [32] uses two trainable scaling coefficients W p
l and W n

l for each layer l

for representing positive or negative weights. Both coefficients are independent,
asymmetric parameters and are trained together with their respective weights w.
The ternary weights w̃i

l are obtained by applying the thresholding function

w̃i
l =

W p

l : wi
l > ∆l

0 : |wi
l | ≤∆l

−W n
l : wi

l <−∆l

(5.1)

on the real-valued weights wi
l , where positively and negatively clustered values

are assigned to W p
l and W n

l , respectively. Values that are neither positively nor
negatively clustered are explicitly pruned. The clustering is performed based on
the layer-wise threshold parameter ±∆l, calculated using the absolute maximum
value of the real-valued weights and the hyperparameter t, as:

∆l = t ·max(|wl|). (5.2)

The sparsity within the quantized weight tensor can be controlled through the
global hyperparameter t, where a higher threshold results into more sparsity. This
representation is beneficial because it increases the model complexity through
trainable bit representations which are optimized using gradient descent. At the
same time, the hyperparameter t can be manually tuned in order to maximize

58

5.1 Quantization

sparsity for a targeted accuracy or to tradeoff prediction performance with
resource efficiency.

5.1.2 Quantizing Activations

RaS can efficiently implement non-uniform weight representations and benefits
of sparsity, however, it relies on uniform representations for activations. Such
representation are limited by integer and fixed-point formats that can be calcu-
lated using the integer ISA of general-purpose processors. Fixed-point formats
are better suited for activations because they can be represented as probabilities
in the interval of [0, 1] and, thus, would need scaling when implemented with
integer representation. While fixed-point formats can easily express the probabil-
ity interval by a variable length fractional part, they are usually not supported
by general-purpose processors and can potentially cause a significant instruction
overhead when computed with integer hardware.

The RaS algorithm can avoid such instruction overheads on integer hardware
(further discussed in Section 5.2) and, therefore, enables the use of fixed-point
formats. In order to quantize the pre-activations ai, they need to be bound to
the interval of [0, 1] as:

ac
i =

0 : ãi ≤ 0

ãi : 0 < ãi < 1

1 : ãi ≥ 1

(5.3)

which ultimately extends the ReLU functions by an additional clipping function.
After passing the bounding function, the activations can be quantize to k-bit
fixed-point formats ãi as:

ãi = 1
2k−1round((2k−1)ac

i)), (5.4)

where k represents the bit width which needs to be set statically. RaS mainly
uses k = 8, because 8-bit representations are usually enough to avoid accuracy
degradation during quantization. Furthermore, 8-bit formats can be excellently
mapped to most general-purpose processors while lower-precision formats do not
map well. However, the bit width of activations is in general configurable to any
k ≥ 1. Although there is also a large amount of sparsity within the activation
tensors (induced by the activation function), RaS does not exploit this during

59

Reduce-and-Scale

inference.

5.2 Inference

The main operation during inference of neural networks is to calculate scalar
products of activation vectors a and weight vectors w with equal length N . For
real-valued operands, this requires multiplying activations with their respective
weights and accumulating the products into the resulting scalar c as:

c =
∑N

i=1 ai ·wi, ai,wi ∈ R ∀i. (5.5)

Thus, the inference can be decomposed into a large number of MAC operations.
The overall objective is to reduce the requirements of such MAC computations
as well as the memory accesses to the operands.

5.2.1 Sparse and Integer Inference

The inference requirements can be reduced by applying pruning and incorporating
sparse algorithms. For real-valued weights and activations that contain a certain
sparsity level within the parameters, the scalar products can be calculated as:

c =
∑
i∈il

ai ·wi, where il = {i||wi|> 0}, (5.6)

using float-point arithmetic. Vectorization is applicable to sparse algorithm by
broadcasting wi to all S operands along the SIMD lane and computing several
ai,j ...ai,j+S in parallel. Similar applies to parallelization: although there is the
potential issue of load imbalance between threads, this does not result into inferior
performance on general-purpose CPUs due to the small amount of parallel cores.
While sparse algorithms are able to effectively reduce computations, the main
drawback of purely sparse inference is the high number of memory accesses,
because non-zero floating-point values as well as their indices need to be fetched
from memory.

It is also viable to combine sparse algorithms with low-precision formats, in
order to further reduce the amount of memory accesses. While it is practically
infeasible to leverage sparsity using the bit-serial technique and, hence, use
extreme forms of quantization, it is beneficial to use the rather conservative 8-bit

60

5.2 Inference

or 16-bit formats. Real numbers with fractional parts need to be represented as
integers to take advantage of low-precision formats on general-purpose hardware,
which is a trade off between precision and efficiency. The generalized fixed-point
format is represented as [QI .QF], where QI denotes the bits of the integer and
QF denotes the bits of the fractional part of the number. Let the activations
be represented by only an 8-bit fractional part (e.g. Q0.8) and weights be
represented by only an 8-bit integer part (e.g. Q8.0), which results in computing
the MACs as:

(Q16.16)Accu = (Q16.16)Accu+(Q8.8)((Q0.8)I · (Q8.0)W), (5.7)

(int32)Accu = (int32)Accu+(int16)((int8)I · (int8)W). (5.8)

The bit with of both operands need to be summed up (Q(8+0).(0+8) = Q8.8)
to guarantee no overflows during multiplication, resulting in 16-bit integer in-
structions. Next, the calculated Q8.8 product is added to the larger Q16.16
accumulator (avoiding overflows), which requires 32-bit integer instructions.
Compared to single-precision floating point, this means an theoretical improve-
ment of 4× for fetching operands from memory, 2× for multiplication and 1×
for accumulation. However, the practical improvements are rather low, since
floating-point MAC can be performed with one instruction, while Equation 5.7
requires two instructions.

5.2.2 RaS Inference

According to the weight quantization (Equation 5.1) , the weight tensor of a
layer consists of real-valued elements {W p

l ,0,W n
l }. Based on this representation,

positively and negatively weighted values can be treated independently and
zero-weighted values can be skipped. As a consequence, the calculation for RaS
can be reformulated and scalar products can be obtained as:

c = W p
l ·
∑
i∈ipl

ai +W n
l ·

∑
i∈inl

ai, where (5.9)

ipl = {i|wi = W p
l } and inl = {i|wi = W n

l }. (5.10)

This results in only two real-valued multiplications per scalar product and reduces
the major part of the computations to additions. Furthermore, only the indices

61

Reduce-and-Scale

and activations need to be fetched from memory, while common sparse algorithms
also require the weights. Parallelization and vectorization is also applicable to
this algorithm by computing several ai in parallel and vectorizing ai,j ...ai,j+S

along the SIMD lane.
According to the activation quantization (Equation 5.3), the activations of a

layer are represented by an 8-bit fractional fixed-point format. Combined with
the accumulation technique of RaS (Equation 5.9), this enables to compute the
MAC as:

(Q8.8)Accu = (Q8.8)Accu+(Q0.8)I, (5.11)

(int16)Accu = (int16)Accu+(int8)I. (5.12)

As can be seen, this results into a much more efficient calculation than the sparse
technique: by avoiding the multiplication, the requirement of expanding the bit
width is removed, which allows the use of simple 16-bit integer instructions for
the major part of the computations. As reported in Table 5.1, these instructions
are very fast (in comparison to floating-point MACs) while also being cheap in
terms of energy. The overall benefits of the RaS technique can be summarized as:

Table 5.1 Cycles and energy per MAC and addition (ADD) operation. [4]

Instruction Cycles (normalized) Energy (pJ)
float32 MAC 8 4.60
int16 MAC 3 1.60
int16 ADD 1.5 0.05

i) Efficient calculation of fixed-point arithmetic on integer hardware by avoiding
multiplications and bit-width expanding. ii) Virtually removing memory accesses
to weights. iii) Efficiently leveraging sparsity and reduced-precision formats.

5.2.3 RaS Algorithm

RaS is a promising candidate for efficient inference on general-purpose processors,
however, certain code optimizations that are implemented in BLAS libraries can
not be applied. Such optimizations include memory tiling techniques (depending
on the memory hierarchy of the processor) are not compatible with sparse memory
accesses. Consequently, the RaS algorithm requires novel techniques for achieving

62

5.2 Inference

competitive performance to such libraries. This section describes the design of
the algorithm with respect to the used quantization functions and its implications
to the processors.

First, the original weight tensor Wl is transposed into WT
l to increase data

locality during runtime. This leads to a sparse ternary tensor with arbitrary
positive and negative scaling factors (as illustrated in Equation 5.13).

WT
l =

0 W p

l W p
l 0 W n

l

W n
l 0 0 W p

l 0
W p

l W n
l 0 W n

l W n
l

 (5.13)

The next step is to create an appropriate sparse format for the quantized
parameters: positive and negative weighted parameters are split into two separate
arrays and the zeros-weighted elements are removed. Then all indices i for which
the respective element in the weight tensor WT

l is either W p
l or W n

l are extracted
and their indices are stored in Ip

l or In
l . This separation of WT

l into Ip
l and In

l is
illustrated as:

Ip
l =

1 2
3
0

 and In
l =

4
0
1 3 5

 . (5.14)

Creating this sparse format is done after training and before deployment and,
hence, does not cause additional processing overhead at inference.

After transforming the weight tensor into the sparse format, Algorithm 1
is used to compute the RaS scalar products. The algorithm requires the 8-bit
fixed-point activation tensor (int8)Input, the 16-bit sparse lists Ip

l and In
l , as

well as both real-valued scaling factors W p
l and W n

l as inputs. There are two
accumulator arrays Accup and Accun used to accumulate the 8-bit fixed-point
inputs on the basis of the previously obtained indices. These accumulations
are performed on the basis of Equation 5.11, using vectorized 16-bit integer
addition. After accumulating the inputs, the results are cast to single-precision
floating point, multiplied with the scaling coefficients W p

l and W n
l and finally

accumulated to the result.
The algorithm is optimized for ARM processors, however, the same opti-

mizations are also applicable to other processors. Parallelization is implemented

63

Reduce-and-Scale

using OpenMP (in Operation 1) without the need of synchronization and the
accumulations (in Operation 5 and 11) are vectorized using the ARM NEON
processor extension.

Algorithm 1 RaS matrix-matrix multiplication algorithm. [4]
Input: (int8)Input,(int16)Ip

l ,(float32)Wp
l ,(int16)In

l ,(float32)Wn
l

Output: (float32)Output

1: for row := 0 to Input.rows() do
2: for el := 0 to Ip

l [row].elements() do
3: index← Ip

l [row][el]
4: for col := 0 to Input.cols() do
5: (int16)Accup[col]← (int16)Accup[col]+ (int8)Input[row][index]
6: end for
7: end for
8: for el := 0 to In

l [row].elements() do
9: index← In

l [row][el]
10: for col := 0 to Input.cols() do
11: (int16)Accun[col]← (int16)Accun[col]+ (int8)Input[row][index]
12: end for
13: end for
14: for col := 0 to Input.cols() do
15: (float32)Resp← castF ixedPoint16ToF loat32((int16)Accup[col])
16: (float32)Resn← castF ixedPoint16ToF loat32((int16)Accun[col])
17: Output[row][col]← (float32)Wp

l ·Resp +(float32)Wn
l ·Resn

18: end for
19: end for

5.3 Compression

Storage requirements of DNNs are one of the most critical factors when deploying
them onto resource-constrained environments. The vast majority of storage is
produced by the weights of a model, while biases and other parameters - such as
batch-normalization coefficients - only contribute a negligible amount. One can
easily imagine that an embedded systems in a real-world scenario does not only
employ a single, but rather several models for different use cases. Transmitting

64

5.3 Compression

these models for each deployment is infeasible, since it results in high latency
and it requires online connectivity, which may be not given due to environmental
or security reasons.

Based on the quantization function of the weights (Equation 5.1), only two
bits are required to store each weight, which already exploits a compression
rate of 16× compared to the single-precision counterpart. However, the ternary
weights can also contain a large amount of sparsity, indicating an even further
potential for compression.

In order to leverage the sparsity in combination with ternary weights, the
transposed weight tensor WT

l is flattened, the signs are stored together with their
indices and Huffman coding is applied. Both indices and signs are organized as
vectors (il respectively sl). First, the indices and signs of the scaling coefficients
are determined by evaluating all non-zero elements in the weight matrix (il =
{i|wi

l ̸= 0}). For the non-zero signs of vector sl, only a single bit per element
is required to distinguish between positive and negative scaled weights. After
extracting the non-zero indices into vector il, the distance vector dl is calculated,
which is based on the distances between consecutive elements of the previously
obtained index vector (dj

l = ij−1
l − ijl , with i−1

l = 0). Obtaining sl and dl from
WT

l is illustrated in Eq. 5.15, 16, 17 and 18.

WT
l =

0 W p

l W p
l 0 W n

l

W n
l 0 0 W p

l 0
W p

l W n
l 0 W n

l W n
l

 (5.15)

sl =
(
0 0 1 1 0 0 1 1 1

)
(5.16)

il =
(
1 2 4 5 8 10 11 13 14

)
(5.17)

dl =
(
1 1 2 1 3 2 1 2 1

)
(5.18)

Evaluating the distance vector ultimately reduces the amount of possible values
and increases the frequency of appearance of the obtained values. In order to
leverages the frequency of appearance within the distance vector dl, Huffman
coding is applied. This encoding technique uses fewer bits to encode values with
a high and more bits to encode values with lower frequency of appearance. A
single codebook is used that contains the codes for all layers, in order to reduce
the search space and decoding is simply done by looking up the values in the
codebook.

65

Reduce-and-Scale

5.4 Evaluation

The efficiency of RaS is evaluated in terms of test accuracy, memory footprint
and inference rate in Frames Per Second (FPS) on an ARM Cortex-A57 processor.
This evaluation is done on three different DNNs and datasets: a simple ConvNet
on SVHN, ResNet-44 on CIFAR-10 and AlexNet on ImageNet.

The proposed RaS technique is compared to single-precision floating point
(baseline), binarization (BNN) and an 8-bit integer implementation (Int8). The
baseline implementation relies on the GEMM operator of the Eigen library for
benchmarking the throughput. BNN quantization is performed using DoReFa-
Net and the extended version of the Eigen library (as described in Section
4.1) for benchmarking the throughput. Google’s gemmlowp library 1 is used
for benchmarking 8-bit integer inference, while the accuracy is not reproduces
because no prediction degradation is assumed for such representations.

The sensitive first and last layer of the architectures are not quantized (as
commonly practised) in order to avoid sacrificing accuracy. Furthermore, all
GEMM operations are vectorized and parallelized in order to guarantee a fair
comparison. Last, all reported results are based on equal models, including
identical hyperparameters and epochs for training.

5.4.1 SVHN

Results for the four different implementations on the SVHN task are summarized
in Table 5.2 where the single-precision baseline model achieves 97.5% accuracy
with a classification rate of 258 FPS and a memory footprint of 8.3 MB. Binariza-
tion improves the baseline throughput by 5.5× and reduces storage requirements
by 27.8× while only sacrificing 0.5% classification accuracy. Hence, SVHN is a
prime example where binarization achieves excellent performance improvement.
Using 8-bit integer for inference only improves the throughput by 1.4× and stor-
age by 4.0×. This indicates that there is much more redundancy in the model,
however, 8-bit quantization is not able to leverage it. Similar to binarization,
RaS is able to create 89% sparsity within the weight tensors and accelerate
throughput by 5.2× and memory by 43.3× while achieving baseline accuracy.

1https://github.com/google/gemmlowp

66

https://github.com/google/gemmlowp

5.4 Evaluation

Table 5.2 Results for ConvNet on the SVHN dataset. [4]

Baseline BNN Int8 RaS
Accuracy 97.5% 97.0% – 97.5%
Sparsity 0% 0% 0% 89%
Inference Rate 258 FPS 1,409 FPS 368 FPS 1,337 FPS
Memory Footprint 8,321kB 299kB 2,080kB 192kB

Consequently, RaS is able to adapt to this rather simple task and outperforms
all other implementations.

5.4.2 CIFAR-10

Next, the results on the more complex CIFAR-10 tasks are evaluated using
the popular ResNet architecture with 44 layers (see Table 5.3). As can be
seen, binarization is able to accelerate computation by a factor of 7.7× and
compresses memory by 32.0×. These impressive improvements come at the cost
of an 5.0% accuracy drop, which highlights the drawbacks of binarization on
complex tasks. Again, 8-bit integer inference achieves a solid improvement of

Table 5.3 Results for ResNet-44 on CIFAR-10 dataset.[4]

Baseline BNN Int8 RaS
Accuracy 92.6% 87.6% – 92.4%
Sparsity 0% 0% 0% 58%
Inference Rate 69 FPS 532 FPS 100 FPS 191 FPS
Memory Footprint 2,622kB 82kB 655kB 117 kB

1.5× higher throughput and 4.0× less storage. On the contrary, RaS can adapt
to the task and model and improves throughput by 2.8× and memory by 22.4×
by leveraging 58% sparsity. This indicates that RaS also performs reasonable
well under rather low sparsity levels. In summary, binarization results in a high
accuracy degradation and int8 into mediocre improvements, while RaS achieves
superior performance by compromising efficiency and accuracy.

5.4.3 ImageNet

Last, all four implementations are evaluated on the competitive and large-scale
image task ImageNet in Table 5.4. Here, binarization accelerates computations

67

Reduce-and-Scale

by 5.5× and reduces storage by 10.2×. The accuracy degradation for binarized
networks is 10.8% and 21.9% for Top1 and Top5 accuracy, respectively, indicating
that such aggressive quantization techniques fail on large-scale image tasks. The

Table 5.4 Results for AlexNet on ImageNet dataset.[4]

Baseline BNN Int8 RaS
Top-1 Accuracy 56.2% 45.4% – 56.4%
Top-5 Accuracy 78.3% 56.4% – 79.0%
Sparsity 0% 0% 0% 63%
Inference Rate 4 FPS 22 FPS 7 FPS 8 FPS
Memory Footprint 244MB 24MB 61MB 25MB

rather conservative 8-bit integer representation performs much better on such
complex tasks and achieves 1.8× and 4.0× improvement in terms of classification
ratio and memory, respectively. Similar to this is the performance of RaS, which
accelerates inference by 2.0× and reduces memory by 9.8× at 63% sparsity.

5.4.4 Trading Accuracy with Efficiency

The main objective of compression techniques is to remove as much redundancy
as possible while maintaining prediction performance. Experiments on SVHN,
CIFAR-10 and ImageNet show that neither extreme quantization through bina-
rization nor conservative representation through 8-bit integer formats are able to
adapt to this objective. However, RaS shows excellent adapting properties in
this context.

Deploying DNNs in resource-constrained systems or under real-time require-
ments enforces certain demands on memory footprint, latency and inference rate.
In order to meet these demands, it is more efficient to train a larger model and
accept a trade-off between accuracy and efficiency. For instance, an increase of
the sparsity threshold from t = 0.30 to t = 0.35 for the RaS technique on the
SVHN dataset results in only 0.7% accuracy degradation, while the achieved
sparsity increases from 89% to 96%. This sparsity increase reduces the memory
footprint to 95kB and increases the inference rate to 1,538 FPS. Table 5.5 and
5.6 report the model metrics for a varying sparsity threshold t for CIFAR-10 and
ImageNet, respectively.

Applied to the CIFAR-10 task, an accuracy loss of 1.5% and 2.5% can
accelerate inference to 3.7× and 4.3×, while reducing storage requirements

68

5.4 Evaluation

Table 5.5 Results for RaS using ResNet-44 on CIFAR-10 for a varying threshold-
parameter t. [4]

t = 0.25 t = 0.30 t = 0.35
Accuracy 92.4% 91.1% 90.1
Sparsity 58% 63% 71%
Inference Rate 191 FPS 255 FPS 293 FPS
Memory Footprint 117 kB 108 kB 90 kB

to 24.3× and 29.1×, respectively. Similar can be observed on the ImageNet
task where 0.8% and 1.3% less Top-5 accuracy enables 4.3× and 5.0× faster
computation at 11.1× and 12.8× reduced storage.

Table 5.6 Results for AlexNet on ImageNet for a varying threshold-parameter t.
[4]

t = 0.05 t = 0.10 t = 0.15
Top-1 Accuracy 56.4% 54.7% 53.7%
Top-5 Accuracy 79.0% 77.5% 77.0%
Sparsity 63% 78% 88%
Inference Rate 8 FPS 17 FPS 20 FPS
Memory Footprint 25MB 22MB 19MB

The results obtained in this section highlight the sensitivity of the models
on different tasks to sparsity: while all evaluated architectures allow a certain
amount of sparsity (typically > 60%) without sacrificing prediction performance,
they rapidly loose accuracy after reaching their critical sparsity level. At the
same time, RaS is able to leverage even small increases of sparsity and, therefore,
allows excellent trade-offs between accuracy and efficiency.

5.4.5 Scaling BNNs

Binarization is highly effective in terms of inference rate and memory requirements,
but can cause severe accuracy degradation if the task is too complex. One could
argue that the accuracy loss can be compensated by either making the neural
network wider (increasing the amount of neurons per layer) or deeper (increasing
the amount of layers), which is basically a tradeoff between training and inference
time.

In this experiment, the ResNet architecture on CIFAR-10 is scaled by deepen-
ing the binarized model until it roughly reaches full-precision accuracy (ResNet-44

69

Reduce-and-Scale

baseline). The results show that binarization requires an increase from 44 to
272 layers in order to achieve 91.2% test accuracy. The resulting model is still
much smaller than the baseline model, however, it is 4.7× larger than a RaS
model with similar accuracy. In addition, the scaling of BNNs requires 6.5×
more training time in comparison to RaS.

5.4.6 Comparing to Deep Compression

RaS is not the first compression technique that leverages sparsity in the weight
tensor while quantizing weights and activations differently. Deep Compression
[51] is the most popular compression technique in this context: it quantizes the
weights of convolution layers to 8 bit, the dense layers to 5 bit (including an
explicit pruning function) and the activations to 16 bit. The indices to non-
zero weights are further compressed by Huffman coding. Deep Compression is
compared to RaS in Table 5.7 on the example of AlexNet on the ImageNet task.

Table 5.7 Comparison of Deep Compression and RaS (memory footprint and
sparsity refer to AlexNet on ImageNet). [4]

Deep Compression RaS
Top-1 Accuracy 57.2% 56.4%
Top-5 Accuracy 80.3% 79.0%
Memory Footprint (all layers) 6.9 MB 25.2 MB
Memory Footprint (hidden layers only) 5.9 MB 8.7 MB
Compression Ratio (all layers) 97.1% 89.7%
Compression Ratio (hidden layers only) 97.4% 96.2%
Sparsity (all layers) 89% 63%
Sparsity (hidden layers only) 90% 68%
Energy costs per PE (using data from) 153.6pJ 15.4pJ
CLB LUTs per PE 765 64
Maximum frequency of PEs 384MHz 400MHz

As can be seen, Deep Compression achieves 7.4% better compression ratio
and 26% more sparsity than RaS, which is mainly because RaS does not quantize
the first and last layers, and the output layer of AlexNet alone has a size of 16
MB. When comparing only the quantized layers, Deep Compression achieves
only 1.2% better compression ratio. Still, Deep Compression achieves about
22% more sparsity which directly translates into fewer operations, but relies
on 5-/8-bit multiplications with 16-bit activations. An FPGA synthesis report

70

5.5 N-Ary Quantization

(Vivado design suite) indicates that for one Processing Element (PE) consisting
of 8 channels and using 8×8 inputs, a MAC unit requires roughly 10 times more
Configurable Logic Blocks (CLBs) than an accumulator, as it is required for RaS.

Furthermore, Deep Compression is designed to be employed on the Efficient
Inference Engine (EIE) [79], a specialized ASIC for performing inference tasks
on compressed neural networks. However, it does not enable better efficiency
on general-purpose processors (such as ARM CPUs) while RaS is specifically
designed to be employed on these forms of processors.

5.5 N-Ary Quantization

The previous sections showed that the RaS technique is able to compression and
accelerate inference for a variety of models and tasks. As discussed in Section 5.1,
RaS leverages the non-uniform ternary quantization TTQ [32] for weights and
a simple fixed-point representation for activations. While this discretization is
able to generate excellent efficiency on rather simpler tasks or complex tasks on
highly over-parameterized architectures (such as AlexNet or VGG), it results in
sever performance degradation on large-scale images (i.e. ImageNet) on modern
architectures (i.e. ResNet or Inception) as well as recurrent neural networks.

This section addresses the issue of accuracy degradation by introducing N-
Ary Quantization, a scalable non-uniform quantization technique for weights,
that is based on trainable scaling factors in combination with nested-means
clustering. The main idea of this clustering technique is to split the weight
distribution iteratively into multiple quantization intervals until a pre-defined
discretization level is reached. By adopting the concept of TTQ [32], all weights
within a certain quantization interval are assigned the same trainable scaling
factor. Activations are quantized following a linear discretization technique that
takes the statistical properties of batch normalization into account and is inline
with the RaS inference algorithm.

5.5.1 Weight Quantization

The n-ary quantization technique follows the same basic concept as previously
discussed techniques, where full-precision weights are maintained for training and
quantized during forward propagation. The gradient of the full-precision weights

71

Reduce-and-Scale

is approximated by backpropagating through quantization functions using STE.
However, n-ary differs from previous techniques by introducing multiple scaling
factors, novel weight representations and scalable nested-means clustering

Scaling Factors

TTQ [32] uses two independent and trainable non-uniform scaling factors αl
+ and

αl
− per layer that are determined by gradient descent and represent the non-zero

weights. This adjusts the scaling factors so as to minimize the given loss function
and, thus, is more accurate than other proposed scaling factors (i.e. mean of
absolute floating-point weights). At the same time the model capacity is increased
significantly due to non-uniform scaling. As a consequence, the n-ary quantization
adopts these gradient-based scaling factors and extends the ternary case to
arbitrary intervals. More formally: let δl

−Kn
< .. . < δl

−1 < 0 < δl
+1 < .. . < δl

+Kp

be a set of interval thresholds that partition the real numbers into intervals

∆l
−Kn

=
(
−∞,−δl

−Kn

)
, ∆l

−i =
[
δl

−i−1, δl
−i

)
, (5.19)

∆l
+i =

[
δl

+i, δ
l
+i+1

)
, ∆l

+Kp
=
[
δl

+Kp
,∞

)
. (5.20)

To each interval ∆l
i, a trainable scaling factor αl

i is assigned that is used to
represent the weights as wq = αl

i⇔ w ∈∆l
i. The scaling factors αl

i are updated
during training using gradients computed as

∂E

∂αl
i

=
∑

wl∈∆l
i

∂E

∂
(
wl
)q , (5.21)

where E denotes the loss function and
(
wl
)q

denotes the quantized weights. A
fixed scaling factor αl

0 = 0 is assigned to the sparse interval, which is defined as
∆l

0 = [δl
−1, δl

+1) and is not updated during gradient descent.

N-Ary Representations

Non-uniform weight quantization enables various explorations of interesting
weight representations, beyond binary and ternary forms. Weight distributions
tend to be gaussian and symmetric around zero (see Fig. 5.1) and, hence, well
approximating weight representations also exhibit a symmetry around zero. Table
5.8 summarizes several of such representations with a focus to be inline with the

72

5.5 N-Ary Quantization

RaS inference technique. Hence, only representation with sparsity potential are
chosen, but arbitrary other forms are possible.

Table 5.8 Different non-uniform n-ary weight representations.

Notation Representation Bit width
Binary {α−0,α+0} 1
Ternary {α−1,0,α+1} 2

Quaternary+ {α−1,0,α+1,α+2} 2
Quaternary- {α−2,α−1,0,α+1} 2

Quinary {α−2,α−1,0,α+1,α+2} 3

A non-uniform binary representation might be beneficial for gaining accuracy
while achieving high compression rates (32×) and, hence, enabling low storage
costs. However, it is not suited for inference accelerations, since it violates the
requirements for bit-serial calculations and it does not feature sparsity, which
is a fundamental issue for RaS. As seen in the previous sections, non-uniform
ternary representation offer both, low storage and high throughput potential.

Whereas these representations are well studied in related literature, other
n-ary weight representations are possible and facilitate similar compression and
inference levels while improving model capacity. For instance, quaternary weights
can also be encoded with only two bits, but introduce either an additional positive
(quaternary+) or negative (quaternary-) scaling factor, respectively. Quinary
weights extend ternary weights by one positive and one negative value, but are
still encoded with only two bits in a sparse format.

Nested-Means Clustering

Trainable scaling factors and appropriate weight representations are vital for
prediction performance, however, the single most important factor for an optimal
approximation is weight clustering, which is required to partition a set of weights
that are later represented by a single discrete value per cluster (see Section 5.5.1).
Such a clustering can be implemented either statically (once before retraining)
or dynamically (repeatedly during training) by calculating thresholds δ, which
represent the boundaries of the respective cluster.

The static variant has the advantage of allowing iterative clustering algorithms
to be applied (e.g. k-means clustering), that are able to find optimal solution

73

Reduce-and-Scale

for the cluster assignment. The clustering algorithm is usually applied to pre-
trained real-valued parameters and subsequently fine tuned after quantization
in an additional training step. As a consequence, the optimal solution found
by an iterative algorithm is likely to become non-optimal during the following
fine tuning process. On the contrary, applying an iterative clustering approach
repeatedly during training is practically infeasible, since it causes a dramatic
increase in training time.

A practical useful clustering solution is to calculate cluster thresholds during
training based on the statistics of the underlying real-valued weight distribution.
For instance, TTQ [32] uses the maximum absolute value (see Equation 5.2) to
distinguish among positive, negative or zero quantized weights. The training
time is virtually unaffected by this rather simple calculation. However, having an
additional hyperparameter for each cluster renders the mandatory hand tuning
infeasible for multiple clusters (i.e. quaternary or quinary). Furthermore, the
sensitivity to the maximum value results in aggressive threshold changes caused
by weight updates.

In order to overcome these issues, a symmetric nested-means clustering
algorithm is applied for assigning full-precision weights to a set of quantization
clusters. First, the weights are split into a positive and a negative cluster (Il

+1

and Il
−1). Then, these clusters are further divided at their arithmetic means

δl
+i and δl

−i into two subclusters . Each cluster obtains an inner cluster and an
outer cluster containing the tail of the distribution. The subclusters containing
the tail of the distribution (Il

+i+1 and Il
−i−1) are repeatedly divided at their

arithmetic means until the targeted number of quantization intervals is reached.
More formally, nested-means clustering iteratively computes

δl
+i = 1

|Il
+i|

∑
j∈Il

+i

wl
j and δl

−i = 1
|Il

−i|
∑

j∈Il
−i

wl
j (5.22)

Il
+i+1 = {j|wl

j ≥ δl
+i} and Il

−i−1 = {j|wl
j < δl

−i}, (5.23)

starting with Il
+1 = {j|wl

j ≥ 0} and Il
−1 = {j|wl

j < 0}. The whole clustering
process is shown in Fig. 5.1 on the example of seven quantization clusters.

This clustering technique is beneficial in the context of RaS for several reasons:
nested-means clustering dynamically defines the cluster thresholds in a way that
the cluster intervals approximate the underlying weight distributions well. Next,

74

5.5 N-Ary Quantization

Fig. 5.1 Nested-means intervals of a trained ResNet layer.

the mean is less sensitive to weight updates than the maximum absolute weight
value [32], allowing for more stability during training and better convergence.
Also, nested-means clustering is free of hyperparameters and requires only one
arithmetic mean per cluster, which is computationally efficient. Furthermore, the
nested-means clustering is highly beneficial when increasing the pruning ratio:
the inner cluster threshold can be extended with a configurable hyperparameter
to t · δl

+1 and t · δl
−1, enabling to control the amount of sparsity within the model.

The iteratively computed nested-means clustering allows that all other cluster
thresholds adapt to increasing or decreasing t and, therefore, offers a high amount
of flexibility when tuning the networks towards higher efficiency or accuracy.

5.5.2 Activation clipping

The activation quantization in Section 5.1.2 approximates the ReLU function
through a clipping function, in order to bound the inputs to a layer into a pre-
defined interval. This is necessary for the subsequently applied linear quantization
function, since the ReLU function produces unbounded outputs. For simplicity,
the upper bound of this clipping function is set to a fixed value of one, which
showed empirically good performance. However, experiments on more recent
architectures and large-scale image tasks indicate that this upper bound causes

75

Reduce-and-Scale

accuracy degradation.
This section reasons about activation distributions and derives an appropriate

clipping interval. First, it is necessary to modify the clipping function of Equation
5.3 to a more generic interval, which can be defined as:

ac
i =

0 : ãi ≤ 0

ãi : 0 < ãi < γ

γ : ãi ≥ γ

, (5.24)

where γ denotes the hyperparameter for the upper bound. Consequently, the
linear quantization functions needs to be also modified in order to adapt to the
generic interval [0,γ], which can be calculated as:

Qa(x) = γ

2k−1︸ ︷︷ ︸
scale

·round
(

2k−1
γ

Qc(x)
)

︸ ︷︷ ︸
k-bit integer

. (5.25)

The selection of the clipping parameter γ ultimately results in a tradeoff
between zero gradients and quantization errors: small values of γ produce zero
gradients in the clipped interval [γ,∞]. On the other side, large values of γ result
in a large interval [0,γ] that needs to be quantized. This is problematic if only a
few bits are used as quantization errors might become large.

In order to define an appropriate clipping interval, the observation is used
that pre-activations tend to have a Gaussian distribution [9]. In a Gaussian
distribution, most values lie within a rather small range and there are only a few
outliers that yield a high absolute range. For instance, 99.7% of the values lie
within three standard deviations σ of the mean µ [80]. This empirical rule is
a good approximation to filter out outliers and define the clipping interval as
γ = µ+3σ.

This approach approximates the ReLU function well but suffers from the
drawback that µ and σ need to be repeatedly calculated during training. In recent
years, batch normalization [9] became a standard tool to accelerate convergence of
state-of-the-art DNNs. Batch normalization transforms individual pre-activations
to approximately have zero mean and unit variance across all data samples. Cai
et al. [36] experimentally showed that the pre-activation distribution after batch
normalization are all close to a Gaussian with zero mean and unit variance.

76

5.5 N-Ary Quantization

Therefore, a fixed clipping parameter γ = 3 is selected as it results in a small
quantization interval [0,γ] while also keeping the number of clipped activations
x > γ small.

5.5.3 Evaluation

The evaluation of the n-ary quantization technique, including the novel nested-
means clustering as well as activation clipping, is evaluated on the large-scale
image classification task ImageNet [81]. ResNet [14] and Inception [9] architec-
tures are used as representatives for state-of-the-art architectures. The quantized
networks are initialized with pre-trained real-valued parameters. All convolution
and fully-connected layers are quantized except the input and output layers, to
avoid accuracy degradation.

Weight Quantization

The n-ary weight quantization technique is evaluated on ternary, quaternary-
and quinary representations and summarized in Table 5.9. Additionally, the
results for TTQ [32] are reported for comparison.

As shown in Section 5.4.3, TTQ achieves floating-point baseline accuracy on
ImageNet using the AlexNet architecture. However, there is an accuracy drop
of 3.4% for TTQ on ResNet18 (in comparison to the baseline model), which
shows the impact of quantization on modern architectures. Similar applies to the
Inception architecture, where the accuracy degradation of TTQ is 6.1%. N-ary
quantization improve the accuracy of ternary quantization (in comparison to
TTQ) by 1.2% and 2.6% for ResNet18 and Inception, respectively, by using the
adaptive and more stable nested-means clustering. Still, there is an accuracy
gap of 2.2% and 3.5% of ternary to the baseline model.

The scalability potential of the n-ary technique can be used to reduce this
accuracy gap by trading efficiency with prediction performance. For the ResNet18
model, quaternary and quinary can reduce the gap to 1.2% and 0.7% and for the
Inception model to 2.3% and 1.4%, respectively. Furthermore, all representation
show a stable learning behaviour throughout the training process, which can
be seen on the training curves in Figure 5.2a. The sparsity level of all models
are similar to the experiments using the AlexNet architecture, indicating similar

77

Reduce-and-Scale

Table 5.9 Validation accuracy (Top1, Top5) of ResNet18 and Inception-BN on
ImageNet for 2-bit weights.

Weights Activations Sparsity Top1 Top5
ResNet-18 bits bits % % %
Baseline 32 32 0 70.4 89.5

TTQ 2 32 – 67.0 87.3
Ternary 2 32 61 68.2 88.0

Quaternary- 2 32 57 69.2 88.7
Quinary 3 32 53 69.7 89.0

Inception-BN bits bits % % %
Baseline 32 32 0 73.1 91.4

TTQ 2 32 58 67.0 87.3
Ternary 2 32 58 69.6 89.1

Quaternary- 2 32 52 70.8 89.8
Quinary 3 32 54 71.7 90.3

compression and inference improvements, however, significantly higher absolute
accuracy.

Impact of Nested-Mean Clustering

Nested-means clustering naturally defines the cluster thresholds in a way that the
cluster intervals become smaller for larger weights (see Figure 5.1). The results
on ResNet and ImageNet indicate that such properties achieve high prediction
performance. However, it is unclear whether this observation is true or the models
are resilient to that. This section validates the effectiveness of the nested-mean
clustering by comparing it to quantile clustering.

Assuming that the weights are approximately Gaussian distributed, the
cluster thresholds can be computed so that each cluster approximately contains
a pre-specified amount of weights. Let Φ−1(p) be the quantile function of the
standard Gaussian distribution with zero mean and unit variance. Given a
vector ppp = (p1, . . . ,pL) of pre-specified cluster probabilities that sum to one, the
thresholds are computed as δl

i = µl
w +σl

wΦ−1(∑j≤i pj), where µl
w and σl

w are the
mean and the standard deviation of the weights in layer l, respectively.

Table 5.10 summarizes the accuracy using quinary weights of both nested-
means and quantile clustering for several cluster sizes ppp. First, cluster sizes
are defined equally before the cluster size of smaller weights are incrementally

78

5.5 N-Ary Quantization

(a) For varying weight representations. (b) For varying activation representations.

Fig. 5.2 Training curves of validation error (Top1, Top5) of ResNet-18 on Ima-
geNet.

Table 5.10 Validation accuracy (Top1) using quinary weights of nested-means
clustering and quantile-clustering for several quantiles for ResNet18 on ImageNet.

Clustering Method Top1 [%]
Nested-Mean 69.7

p(α−2) p(α−1) p(0) p(α+1) p(α+2)
20% 20% 20% 20% 20% 68.8
11% 22% 33% 22% 11% 69.3
8% 17% 50% 17% 8% 69.4
6% 11% 66% 11% 6% 69.2

increased while, at the same time, the cluster size of larger weights are decreased.
The accuracy improves if larger clusters are assigned to small weights and smaller
clusters to large weights, which consequently validates the hypothesis.

Activation quantization

The last experiment evaluates the activation quantization using ResNet-18 on
ImageNet. The clipped ReLU and γ = 3 is used for quantized activations and
compared to the ReLU without clipping and quantization for 32-bit activations.
Table 5.11 reports the validation accuracy for several activation bit widths in
combination with ternary quantization for weights.

As can be seen, the clipping interval [0,3] for activation, that is motivated
by the statistical attributes of batch normalization, virtually does not affect

79

Reduce-and-Scale

Table 5.11 Validation accuracy (Top1,Top5) and increase in training time for
different activation bit-width of ResNet-18 on ImageNet.

Weights Activations Top1 Top5
Ternary 32 68.2 88.0
Ternary 8 68.1 88.0
Ternary 4 68.1 88.1
Ternary 2 66.2 86.7

prediction performance for bit width larger or equal to 4 bit. Only a very
aggressive quantization down to 2 bit results in a 2.0% accuracy drop. Last, all
evaluated activation bit widths result in a stable learning behaviour, as can be
seen on the training curves in Figure 5.2b.

Quantizing LSTMs

The previous sections evaluated several quantization techniques on convolution
and fully-connected layers on image recognition tasks without considering recur-
rent neural networks. In this section, quantization experiments are performed on
LSTM layers using a speech recognition task and the implications of such recur-
rent architectures are studied under low-bit considerations. This experiment is
performed on a real-world temporal classification problem: phonetic labelling on
the TIMIT speech corpus. The task is to annotate the utterances in the TIMIT
test set with the phoneme sequences that gives the lowest possible Label Error
Rate (LER). Model and experimental setup follow the initial implementation of
Graves et al. [82].

Applying weight quantization to LSTMs in the original setup of Graves et al.
[82] leads to Not a Number exceptions and, hence, does not converge. The main
problem here are exploding gradients when the underlying real-valued weights of
the model become very large. In order to resolve these exploding gradients, it
is necessary to apply a normalization technique which can stable each value to
reduce the gradient problem.

Batch Normalization (BN) [9] is the most popular normalization technique
due to its excellent performance on convolution and fully-connected layers. BN
is also applicable to LSTMs and, furthermore, resolves exploding gradients when
quantization is applied. However, the experiments on the TIMIT task indicate,

80

5.5 N-Ary Quantization

(a) For different normalization techniques. (b) For different quantization techniques using
Layer Normalization (LN).

Fig. 5.3 Training curves of Label Error Rate (LER) using LSTMs on TIMIT.

Table 5.12 LER on TIMIT for various normalization, quantization techniques
and Weights (W) representations.

Method W Train Validation
LSTM 32 24.6 30.0
LSTM+TTQ 2 NaN NaN
LSTM+NAQ 2 NaN NaN
LSTM+BN 32 31.6 34.8
LSTM+LN 32 21.9 26.6
LSTM+LN+TTQ 2 30.1 31.4
LSTM+LN+NAQ 2 25.4 28.2
LSTM+LN+NAQ 1 28.4 30.0

that BN leads to severe performance degradation. As can be seen in Figure 5.3a,
BN converges similarly fast than the unnormalized model, but results in 4.8%
less final accuracy. Another normalization technique is Layer Normalization
(LN) [83], which has proven successful on recurrent neural networks as well. LN
converges faster than BN and the unnormalized model and also outperforms the
baseline by 3.4% accuracy.

Figure 5.3b shows the learning curves of the model using LN in combination
with TTQ and n-ary quantization. As can be seen, both quantization techniques
converge due to the applied normalization, but n-ary quantization outperforms
TTQ. The final validation accuracy of the n-ary technique is 3.2% more accurate
than TTQ while both are using ternary representation. Surprisingly, binary
quantization also outperforms TTQ by 1.4% even though it uses only half the

81

Reduce-and-Scale

Table 5.13 LER on TIMIT for varying sparsity levels..

t Sparsity Train Validation
1.0 62% 25.4 28.2
1.4 75% 26.9 28.9
1.6 80% 27.2 29.4
1.8 84% 27.4 29.2
1.8 87% 34.3 34.3

bits for the weights of the LSTMs.
Last, Table 5.13 reports accuracy for varying sparsity levels of the model

by increasing the threshold parameter t. The results indicate a similar sparsity
level than convolutions and, consequently, a similar acceleration potential using
RaS inference. Furthermore, n-ary is able to create more than 80% sparsity
within the ternary weights without significantly reducing prediction accuracy.
This ultimately shows the compression potential of the n-ary technique, since it
is applicable and efficient on convolution, fully-connected as well as recurrent
layers.

5.6 Summary

Approximating weights using non-uniform representations achieves impressive
theoretical improvements and does not result into severe accuracy degradation.
However, such representations are not supported in common software stacks
and, hence, do not result into inference acceleration by default. The proposed
RaS technique is able to adapt to this representation and leverages extreme low-
precision formats as well as sparsity while being inline with hardware requirements
of modern CPUs. The key insights of this sections are:

• Extreme forms of quantization (as discussed in Section 4.2) fail to achieve
single-precision floating point accuracy on state-of-the-art DNNs (i.e.
ResNet) and large-scale datasets.

• N-ary formats can potentially contain a large amount of sparsity and,
in combination with fixed-point activations, outperform the accuracy of
uniformly quantized models (i.e. binarization).

82

5.6 Summary

• RaS compression and algorithm is highly efficient in terms of storage as
well as inference and even outperforms well-engineered BLAS libraries (i.e.
(binary) Eigen, Gemmlowp) with just a few lines of code.

RaS is a promising technique for a wide range of processors, especially since
it does not require specialized low-precision formats. While RaS maps well to
vectorized and parallel CPUs, the main drawback is load imbalance when mapped
to massively-parallel architectures.

83

Chapter 6

Parameterized Structured
Pruning

The previous chapter introduced a novel compression technique in combination
with the RaS algorithm, that builds an efficient inference framework for a large
variety of general-purpose hardware platforms. While the RaS algorithm is
able to elegantly map sparse and non-uniformly quantized neural networks
onto parallel-vector units (such as CPUs), it produces load imbalance through
fine-grained sparsity that prevents efficient deployment onto massively-parallel
processors. These domain-specific accelerators, however, are increasingly used in
embedded systems because they significantly outperform their general-purpose
counterpart: for instance, NVIDIA’s Jetson Nano system is about 26 times
faster than ARM’s Cortex-A53 on the ResNet-50 model at a similar energy
consumption. Consequently, there is a need to implement compression techniques
that map well onto these architectures.

Structured pruning can prevent the drawback of load imbalance by inducing
sparsity in a hardware-friendly manner, however, pruning structures is not as
trivial as individual weights and potentially causes high accuracy degradation.
Structured pruning techniques for neural networks from related literature are
usually either retraining or regularization based. Retraining techniques measure
the error in loss functions between unpruned and pruned weights or activations
and aim to minimize the respective errors. Regularization techniques add an l1

penalty term to the loss function of randomly initialized neural networks, which
pushes unimportant structures to zero.

This chapter introduces Parameterized Structured Pruning (PSP), a novel

85

Parameterized Structured Pruning

compression technique based on learnable structure parameters and low-overhead
magnitude pruning. Together with regularization, PSP creates a highly flexible
framework for massively-parallel processors (such as GPUs and TPUs). This work
has been published at the 6th International Conference on Machine Learning,
Optimization, and Data Science (LOD) [6].

6.1 Parameterization

PSP is inspired by magnitude-based pruning methods where weights below a
certain threshold are set to zero. This rather simple technique achieves high
sparsity rates while being computational very efficient and, hence, can be used
dynamically during training, which optimizes the learning process since the
weights are not statically set to zero. However, magnitude-based pruning can
only be applied to single weights and is not applicable to a whole set of weights
within a defined structure. This section introduces a parameterization that
ultimately enables magnitude-based pruning on arbitrary defined structures
within a neural network.

Let each layer be a abstract processing units, where each unit computes an
activation function of the form

z = g(W⊕x), (6.1)

where W is a weight tensor, x is an activation tensor, ⊕ denotes a linear operation
(e.g. a convolution) and g(·) is a non-linear function. The goal is to learn a
structured sparse substitute Q for the weight tensor W, so that all weights
in Q can be pruned simultaneously. It is vital for the prediction performance
to identify the importance of sparse substitutes Q that contribute less to the
objective function and can consequently be pruned. This importance can be
learned by parameterizing the substitutes Q and optimizing them together with
the weights of W using backpropagation. It is therefore necessary to divide
the tensor W into subtensors {wi} so that each wi = (wi,j)m

j=1 contains the m

weights of structure i. The subtensor {wi} is substituted by structured sparse
tensor qi during forward propagation as

qi = wiαi (6.2)

86

6.2 Regularization

where αi is the respective structure parameter of the pre-defined structure i. The
gradient of αi is calculated, following the chain rule as

∂E

∂αi
=

m∑
j=1

∂E

∂wi,j
, (6.3)

where E represents the objective function. As a result, the structure parameters
αi descend towards the predominant direction of the weights within structure
i. Furthermore, structures that contribute more to the objective function are
represented with high magnitudes while low-contributing structures are repre-
sented with low magnitudes. Consequently, all αi are optimized together with
the weights in their respective structure i but can be regularized and pruned
independently. It should be noted that the introduced auxiliary parameters
require additional memory and computation, however, they are folded into the
weight tensor W before inference, resulting in no memory or compute overhead
during deployment.

6.2 Regularization

Training over-parameterized neural networks without regularization produces
large weights which result in an unstable network, since small variations in
the input data can result into large changes in the output predictions. Such
a behaviour leads to over-fitting models because they memorizes these small
variations in training samples and, ultimately, performs well on the learned
data but poorly on unseen samples. Furthermore, large-magnitude weights
have a lower effective learning rate that additionally reduces the generalization
performance.

As a consequence, the learning algorithm needs to be modified by changing
the loss function, in order to encourage the neural network to use smaller weights.
This is primarily done by adding an term to the loss function that penalizes
parameters. Here, the most popular choices are the ℓ1 and ℓ2 vector norm that
are similar but produce significantly different models. Both norms limit the
growth of the weights and, consequently, reduce the complexity of the neural
network, which can be also leveraged for pruning the structure parameters αi.
The ℓ1 norm is based on the absolute magnitude of the structure parameters and

87

Parameterized Structured Pruning

is added to the loss function as

Eℓ1(αi) = E(αi)+λ|αi|, (6.4)

where λ is the regularization strength. This modification of the loss function -
for SGD based learning algorithms - changes the update rule for the structure
parameters to

∆αi(t+1) =−η
∂E

∂αi
−λη sign(αi), (6.5)

where η is the learning rate. The ℓ2 norm is based on the squared magnitude of
the structure parameters, where the loss is calculated as

Eℓ2(αi) = E(αi)+ λ

2 α2
i . (6.6)

Based on the derivative of the ℓ2 norm, the gradient updates are calculated as

∆αi(t+1) =−η
∂E

∂α
−ληαi. (6.7)

The gradient for the ℓ1 term is undefined at zero and one everywhere else. As
a consequence, ℓ1 regularization only considers the direction of the parameters
while ℓ2 regularization also takes the magnitude into account. This makes the
ℓ2 term to the defacto standard regularizer and it is used in all popular neural
network architectures as well as training techniques.

The proposed parameterization in combination with regularization shrinks
the complexity (variance of the defined structures) of a neural network, where the
magnitude of the structure parameters indicate its importance. This shrinking of
the structures can be best visualized using the parameter values: Figure 6.1a-6.1d
shows the ℓ1 regularized structure distributions. As can be seen, a large amount
of parameters are close to or exactly zero, but there is no clear border which
separates important and unimportant structures. However, if the parameters are
regularized with the ℓ2 term, the structures form unimodal, bimodal and trimodal
distributions (Fig. 6.1e-6.1h), indicating a clear distinction between important
and unimportant structures parameters. The ℓ2 penalty term ultimately seems
to be the better regularizer for the required structure separation, but it has
the drawback that many structures are pushed only close to zero, while the ℓ1

penalty term pushes them exactly to zero.

88

6.3 Pruning

(a) ℓ1 reg.; group 0 (b) ℓ1 reg.; group 1 (c) ℓ1 reg.; group 2 (d) ℓ1 reg.; group 3

(e) ℓ2 reg.; group 0 (f) ℓ2 reg.; group 1 (g) ℓ2 reg.; group 2 (h) ℓ2 reg.; group 3

Fig. 6.1 Different distributions of column-wise structure parameters with ℓ1 and
ℓ2 regularization of a fully trained ResNet with 18 layers on ImageNet. The
distributions correspond to the first convolution in the first block in the respective
group. No pruning was performed (ϵ = 0). Note that peaks visually close to zero
are not exactly zero. [6]

6.3 Pruning

While ℓ1 regularization implicitly sparsifies parameters, ℓ2 regularized parameters
require explicit sparsification that can be performed using threshold-based mag-
nitude pruning. Let νi be the regularized dense structure parameter associated
with structure i, then the sparse structure parameter αi is obtained as:

αi(νi) =

0 |νi|< ϵ

νi |νi| ≥ ϵ
, (6.8)

where ϵ is a hyperparameter that defines the pruning threshold. This threshold
function can be applied after training the neural network in order to obtain a
static pruning mask, which can be used to statically set certain structures to
zero before fine tuning the sparse network. However, it can not be used in this
form dynamically during training, as the function is not differentiable at ±ϵ and
the gradient is zero in [−ϵ, ϵ], making the network harder to train. Similar to
quantization functions, the gradient of αi needs to be approximated by defining
an STE as:

∂E

∂νi
= ∂E

∂αi
. (6.9)

89

Parameterized Structured Pruning

(a) Weight (b) Column (c) Channel (d) Kernel (e) Layer

Fig. 6.2 Illustration of fine-grained (Fig. 6.2a) and several structured forms
of sparsity (Fig. 6.2b-6.2d) for a 4-dimensional convolution tensor. The large
squares represent the kernels, and the corresponding horizontal and vertical
dimensions represent the number of input feature and output feature maps,
respectively. The computation of all structured forms of sparsity can be lowered
to matrix multiplications (independent of stride and padding). [6]

This technique enables the use of the sparse parameter αi for forward propaga-
tion and the dense parameter νi for backward propagation. As a consequence,
the dense structure parameters νi are updated instead of the sparse structure
parameters αi, improving convergence and, ultimately, resulting in a better
performance because improperly pruned structures can reappear if νi moves out
of the pruning interval [−ϵ, ϵ].

6.4 Hardware-Friendly Structures

Let the convolution operator be defined with the hyperparameters R, S, C and
K, where R×S is the filter kernel size, C the number of input and K the number
of output feature maps per layer. This section discusses the potential use of these
hyperparameters in order to create structure tensors that are, not only beneficial
for hardware, but also for creating a large amount of sparsity. The targeted
hardware platforms are highly-parallel architectures such as domain-specific
accelerators based on systolic arrays, general-purpose GPUs as well as data-flow
architectures on FPGAs.

The most fine-grained structure definition is to assign each weight wi a
parameter αi, where α ∈RR×S×C×K . This structure definition is obviously equal
to simple weight pruning and produces unstructured sparsity in the weight tensor
(see Fig. 6.2a), which has poor hardware properties.

90

6.4 Hardware-Friendly Structures

6.4.1 Column Pruning

Convolutions are usually lowered to matrix multiplications in order to leverage
data locality and reuse of specialized hardware architectures (systolic arrays) and
highly optimized BLAS libraries. Here, the im2col technique is applied, where
discrete input blocks (depending on filter size and stride) are duplicated and
reshaped into columns of two dimensional matrices. These auxiliary matrices
are usually significantly larger then the discrete inputs as well as the weight
tensors and are, therefore, the most memory consuming part when performing
convolutions. The structure tensor can be defined to α ∈RR×S×C , so that whole
columns in the flatted weight tensor are sparsified and the respective row of the
input data can be removed. For this individual structure, the corresponding
gradient is calculated as:

∂E/∂αr,s,c =
K∑

k=1
∂E/∂Wk,c,r,s (6.10)

This structure sparsification is denoted as column pruning (see Fig. 6.2b) and
has many desirable properties: (i) The structure granularity is relatively fine,
promising a large amount of sparsity. (ii) The resulting operation is a dense matrix
multiplication, which is inline with highly parallel hardware and BLAS algorithms.
(iii) It compresses not only parameters and removes computations, but also
compresses the extremely high memory requirements of auxiliary matrices.

6.4.2 Channel Pruning

While column pruning features excellent hardware properties, its applicability
to commercial available accelerators (for instance NVidia GPUs or TPUs) is
challenging because they offer an opaque software stack, that allows user to
only implement convolution operators as black boxes. It is possible to write and
optimize CUDA routines for the required operators but highest performance
depends on the usage of the cuDNN and cuBLAS library. On the other hand,
one could argue that im2col can be implemented in a CUDA routine, followed by
subsequently calling the matrix multiplication operator of cuBLAS. This, however,
would result in inferior performance, since cuDNN internally implements im2col
into the shared memory of the streaming multiprocessors which reduces global
memory requirements and bandwidth dramatically. In order to leverage these

91

Parameterized Structured Pruning

processors and their libraries, it is necessary to prune all weights connected to an
input or output feature map, so that the whole channels and their corresponding
feature maps can effectively be removed (see Fig. 6.2c). The structure for input
and output channel are defined by αin ∈RC and αout ∈RK , where the respective
gradients are calculated as:

∂E/∂αc =
K∑

k=1

R∑
r=1

S∑
s=1

∂E/∂Wk,c,r,s,

∂E/∂αk =
C∑

c=1

R∑
r=1

S∑
s=1

∂E/∂Wk,c,r,s.

Channel pruning is not only beneficial for the software stack but also for reducing
the memory requirements of discrete inputs to the convolution operator, since
feature maps can be removed completely. Very deep neural networks implement
various branching techniques in order to avoid the vanishing gradient problem
that comes along with deepening the networks. These branches may constrain
or even prevent channel pruning at certain positions, because feature maps are
connected to multiple convolutional layers. Resulting implications and a novel
solution for this issue is introduced and discussed in detail in Chapter 7.

6.4.3 Kernel Pruning

The typical kernel shapes of convolution operations in modern neural architectures
are 3× 3, 5× 5 or 7× 7, depending on the estimated or evaluated distance of
correlations in the feature maps. These dense and quadratic kernels consume
a large amount of computations and parameters, although non-quadratic and
sparse kernels (see Figure 6.2d) could potentially perform similar well but with
much fewer resources, which can also be observed with dilated convolution. In
order to create such sparse kernels with PSP, the structure tensor is defined by
α ∈ RR×S , where the gradient is calculated as:

∂E/∂αr,s =
K∑

k=1

C∑
c=1

∂E/∂Wk,c,r,s. (6.11)

Sparse kernels allow larger receptive fields with fewer layers while - depending on
the compression rate - not requiring more parameters and computations. This
form of sparsity is especially promising in data-flow architecture, where direct

92

6.5 Experiments

convolutions can be implemented with dedicated hardware configurations for
each layer.

6.4.4 Layer Pruning

DNNs require different stages, where the effective receptive field is varied in order
to capture various correlations in the features. Instead of increasing the filter
kernels, which would quickly violate the given resources of hardware platforms,
the feature resolution is changed through pooling and striding. The standard
setting for large-scale image classification using ImageNet is to half the feature
resolution in each stage from 224×224, to 56×56, to 28×28, to 14×14 and to
7×7, before the resulting features are forwarded to the global-average layer. The
amount of blocks (or layers) per stage is usually not constant: for instance, the
popular ResNet-50 architecture uses 1−3−4−6−3 blocks in their respective
stages. Finding such configurations in an iterative manner is extremely time
consuming and requires expert knowledge on the respective data. An alternative
technique is to simply initialize all stages with the same amount of layers and
finally prune the relatively unimportant layers. This can be done by defining the
structure tensor as a scalar (α ∈ R) and calculating the gradient as:

∂E/∂α =
K∑

k=1

C∑
c=1

R∑
r=1

S∑
s=1

∂E/∂Wk,c,r,s, (6.12)

which consequently prunes the layers with the lowest gradients. Pruning whole
layers is obviously beneficial for every hardware platform and can be used together
with other sparse structures (i.e. kernels or channels).

6.5 Experiments

6.5.1 Evaluating PSP

This section evaluates the effectiveness of PSP and validates the proposed
techniques through extensive comparison to other schemes. The evaluation is
performed on a ResNet model with 56 layers using the CIFAR-10 dataset and
columns (Fig. 6.2b) are set as the targeted structured sparsity. Fig. 6.3 reveals
the overall experiment using several decoupled elements of PSP. The moving

93

Parameterized Structured Pruning

Fig. 6.3 ResNet network with 56 layers on CIFAR10 and column pruning. [6]

average of the test error is reported using a single run, in order to save training
time of the models. Baseline accuracy of the ResNet-56 is 6.35% and is shown as
red line in the plot. The dashed vertical lines indicate the maximum amount of
sparsity while the baseline accuracy (±0.25%) is still maintained.

A popular metric for evaluating the importance of structures is the l1 norm,
which is calculated as:

||wi||1 =
m∑

j=1
|wi,j |, (6.13)

for the m weights within structure i. Structures can be simply compared using the
magnitude of this norm and, following a threshold heuristic, subsequently pruned.
The first experiment analyses the effectiveness of the proposed parameterization
of structures compared to a standard structure evaluation using the l1 norm.
Both techniques are implemented using the same threshold heuristic in order
to give an fair comparison and PSP is used without regularization (λ = 0).
Here, the thresholds are chosen dynamically during training in a way that each
layer obtains a pre-defined amount of sparsity. The sparsity level per layer
is varied in [0%,90%] with 10% step size. As can be seen, the importance
evaluation of structures through parameterization clearly outperforms the l1

norm technique. This performance benefit can be explained by the amount of

94

6.5 Experiments

threshold changes during optimization: the parameterization technique only
updates a single parameter per iteration that can change weather a structure
is pruned or not. On the contrary, there are m possible parameter updates
per iteration that can influence this for the l1 norm technique. Especially for
dynamic pruning processes, a stable structures selection is necessary in order to
guarantee convergence.

The previous experiment uniformly distributed the sparsity of the model by
fixing the sparsity in each layer to the same amount, which is not optimal since
sparsity is naturally distributed heterogeneously. In this experiment, the threshold
function of Equation 6.8 in combination with a static threshold parameter ϵ is
used in order to allow such heterogeneous sparsity distributions. Without explicit
regularization this would result in very low pruning rations, since the structure
parameters α would simply move out of the pruning interval [−ϵ, ϵ]. Thus, l1
and l2 penalties are applied on α in order to push them towards zero. Since
these regularization terms feature different pruning properties (see Section 6.2),
the experimental setup needs to be carefully selected accordingly: for the l1
penalty, the threshold is fixed to ϵ = 10−3, with an initial regularization strength
of λ = 10−10 that is increased by a factor of 10 for each sparsity level. For the l2
penalty, the regularization strength is fixed to λ = 10−4, with an initial threshold
ϵ = 0.0 that is increased by 2 · 10−2 for each sparsity level. The comparison
between l1 and l2 regularization reveals, that l2 consistently outperforms l1.
Even for very small pruning ratios, the l1 techniques performs worse than the
baseline model, which can be explained by the findings in Section 6.2. More
specifically, the gap to the baseline accuracy is caused by a lower effective learning
rate (compared to l2) for the model, that consequently reduces the generalization
performance.

6.5.2 Pruning different structures

Section 6.4 discusses several hardware-friendly structures with varying granularity
and targeting various massivel- parallel processor types, such as domain-specific
accelerators based on systolic array, general-purpose GPUs and data-flow archi-
tectures on reconfigurable logic. This section evaluates the introduced structure
granularities from a theoretical perspective and analyzes the potential through
comparing the amount of layers, parameters as well as MAC operations. The

95

Parameterized Structured Pruning

Table 6.1 Column-, channel-, shape- and layer-pruning using PSP, validated on
DenseNet40 (k = 12) on the CIFAR10 dataset. M and G represents 106 and 109,
respectively. [6]

Model Layers Parameters MACs Error [%]
Baseline 40 1.02M 0.53G 5.80
Column pruning 40 0.22M 0.10G 5.76
Channel pruning 40 0.35M 0.18G 5.61
Kernel pruning 40 0.92M 0.47G 5.40
Layer pruning 28 0.55M 0.28G 6.46
Layer+channel pruning 33 0.48M 0.24G 6.39

evaluation is performed on the example of a DenseNet architecture, with 40
layers and a growth rate of k = 12 on the CIFAR-10 dataset. The regularization
strength is set to λ = 10−4 and the pruning threshold to ϵ = 0.1. Table 6.1 reveals
the results of the structure evaluation.

As can be seen, the best performing structure is column pruning, which is
able to compress the model by roughly a factor of 5 while not degrading the
prediction performance. The high compression rate is very promising since the
structure is inline with the demand of recent trends towards systolic-array based
accelerators.

Channel pruning performs slightly worse, but is still able to compress the
model by a factor of 3 with a small improvement in test accuracy. This com-
pression rate reflects the possible performance improvements on general-purpose
GPUs, where sparse columns can not be leveraged efficiently.

Kernel pruning seems to have rather bad compression properties, which
is surprising considering the popularity of dilated convolutions that feature
sparse kernels explicitly. However, this structures obtains the best test accuracy,
indicating that the hyperparameters ϵ and λ are not optimal, but fine tuning
these parameters for each structure requires too much training time for this kind
of evaluation.

Layer pruning is able to remove 12 layers from the model, but at the same time,
shows the worst accuracy degradation of all structure, which is not surprising
due to the extreme coarse structure. On the other hand, when combined with
channel pruning, it reduces less layers while compression the overall model more
and achieving better accuracy. This might be a good solution for processor types

96

6.5 Experiments

that require large amounts of parallel computations.

6.5.3 CIFAR-10/100 and ImageNet

Section 6.5.2 evaluated possible hardware-efficient structures for pruning, where
column sparsity clearly achieves the highest compression rates while excellently
mapping onto systolic-array based accelerators. This section leverages column
sparsity on different neural architectures with varying configurations and several
datastets, in order to evaluate the performance of PSP while simultaneous
considering data complexity, neural architecture and over parameterization. The
regularization strength is fixed to λ = 10−4 and the pruning threshold to ϵ = 0.1
for DenseNet and ϵ = 0.2 for ResNet architectures.

Neural Architectures: Section 2 introduced the evolution of neural designs,
where two groundbreaking techniques are discussed that prevent the vanishing
gradient problem: residual and dense connectivity between layers. This exper-
iment aims to measure the resource efficiency of both techniques in terms of
required MACs and parameters. Structured pruning is the perfect tool for such
experiments, since it compresses the standard architectures to a minimum while
maintaining the structure for efficient hardware deployment. The results are
summarized in Table 6.2 for CIFAR-10/100 and 6.3 for ImageNet. As can be seen,
dense connectivity outperforms residual connections for all datasets. There is
especially one interesting tendency to observe: DenseNet is increasingly superior
to ResNet with increasing complexity of the dataset. While both techniques
successfully prevent vanishing gradients during optimization, dense connections
allow for higher feature reuse, which ultimately reduces the amount of required
computations and parameters. It should be noted, that dense connections can
in practice potentially be inefficient due to load imbalance and high activation
requirements. These drawbacks are further discussed in detail in Chapter 7.

Another popular technique for designing neural architectures are the bot-
tleneck layers, where 1× 1 convolutions are applied to reduce the amount of
features before entering layers with larger kernels. This reduces the amount of
required computations and parameters but increases the number of layers and
activations. Structured pruning can obliterate the need for these bottleneck lay-
ers, since computations and parameters can be reduced explicitly. For instance,
the DenseNet121 network in combination with PSP and without bottleneck

97

Parameterized Structured Pruning

Table 6.2 ResNet and DenseNet on CIFAR10/100 using column pruning. M and
G represents 106 and 109, respectively. [6]

Error
Model Layer Parameter MACs [%]

CIFAR10
ResNet 56 0.85M 0.13G 6.35
ResNet-PSP 56 0.21M 0.03G 6.55
DenseNet (k = 12) 40 1.02M 0.27G 5.80
DenseNet-PSP (k = 12) 40 0.22M 0.05G 5.76
DenseNet (k = 12) 100 6.98M 1.77G 4.67
DenseNet-PSP (k = 12) 100 0.99M 0.22G 4.87

CIFAR100
ResNet 56 0.86M 0.13G 27.79
ResNet-PSP 56 0.45M 0.07G 27.15
DenseNet (k = 12) 40 1.06M 0.27G 26.43
DenseNet-PSP (k = 12) 40 0.37M 0.08G 26.30
DenseNet (k = 12) 100 7.09M 1.77G 22.83
DenseNet-PSP (k = 12) 100 1.17M 0.24G 23.42

removes 2.6× parameters, 4.9× MACs and 1.9× layers while only degrading
top-5 accuracy by 2.3%.

Over parameterization: in order to increase the prediction performance
of neural networks, the architectures need to be enlarged by either widening or
deepening the respective model. This enlargement usually tremendously increases
the required computation and memory requirements of the model, due to heavy
over parameterization. In this experiment, the DenseNet architecture is increased
from 40 to 100 layers, which reduces the test error by 1 % at the cost of 7× more
computations and parameters. After pruning the models, the cost for the 1%
performance improvement is only 4× more computations and parameters. This
highlights the ability of PSP to adopt automatically to the over parameterization
without any hyperparameter tuning.

Dataset complexity: similar to over parameterization is the increase of
data complexity, where either the input resolution is changed, the amount of
training samples or prediction classes. For instance, the CIFAR-10 and CIFAR-
100 datasets have similar samples but they feature 10 and 100 classes, respectively,
which changes the prediction complexity. When trained using the same model
(e.g. ResNet-56) and pruned, it can be observed that PSP automatically adapts to

98

6.6 Summary

Table 6.3 ResNet and DenseNet on ImageNet using column pruning. [6]

Model Layer Parameters MACs Top-1 [%] Top-5 [%]
ResNet-B 18 11.85M 1.82G 29.60 10.52
ResNet-B-PSP 18 5.65M 0.82G 30.37 11.10
ResNet-B 50 25.61M 4.09G 23.68 6.85
ResNet-B-PSP 50 15.08M 2.26G 24.07 6.69
DenseNet-BC 121 7.91M 2.84G 25.65 8.34
DenseNet-BC-PSP 121 4.38M 1.38G 25.95 8.29
DenseNet-C 63 10.80M 3.05G 28.87 10.02
DenseNet-C-PSP 63 3.03M 0.58G 29.66 10.62
DenseNet-C 87 23.66M 5.23G 26.31 8.55
DenseNet-C-PSP 87 4.87M 0.82G 27.46 9.15

the complexity of the task. As a result, the CIFAR-10 model is ∼ 2× smaller than
the CIFAR-100 model, while both compressed models maintain the prediction
performance of the baseline model.

6.6 Summary

In order to effectively compress DNNs, quantization and pruning are usually
considered. However, unconstrained sparsity usually leads to unstructured par-
allelism, which maps poorly to massively-parallel processors and substantially
reduces the efficiency of general-purpose processors. Similar applies to quanti-
zation which often requires dedicated hardware. This section introduced PSP,
a novel structured pruning technique which reduces memory and compute re-
quirements while creating a form of sparsity that is inline with massively-parallel
processors. PSP exhibits parameterization of arbitrary structures in a weight
tensor and uses weight decay to force certain structures towards zero, while
clearly discriminating between important and unimportant structures. Combined
with threshold-based magnitude pruning and backward approximation, PSP can
remove a large amount of structure while maintaining prediction performance.
The key insights of this section are:

• Processors and software stacks have different requirements in terms of struc-
ture within computations and do not benefit from unstructured sparsity.

99

Parameterized Structured Pruning

• Structured pruning is able to generate computations that are inline with
such accelerators and the proposed PSP technique features large degrees of
freedom when defining structures.

• The amount of sparsity within a model depends on the over parameter-
ization of the model, neural architecture as well as complexity of the
task.

PSP is a highly flexible tool for compressing DNNs while targeting a certain
processor architecture, especially because it can be combined with quantization.
Using this techniques is ultimately a trade-off between training and inference
time, since optimal submodels can be found in the larger baseline architecture.

100

Chapter 7

Architecture Search

PSP greatly removes unimportant structures dynamically during training and
it is a highly flexible framework that is able to target virtually any digital
computing platform. The previous chapter evaluated PSP on ResNet and
DenseNet architectures, which have been proposed in related literature and are
very popular due to their efficiency and scalability. However, the connectivity in
these architectures severely influences channel pruning because features connected
to a certain pruned channel can not be simply removed as they may be connected
to a channel in another layer. This has two major drawbacks: first, activation
memory is not reduced if a feature map is connected to multiple channels. Second,
software stacks for most accelerators are not able to leverage such sparse-channel
patterns efficiently. Another issues regarding the previously discussed structures
is that they are not inline with most libraries for DNNs and, hence, do not map
well onto their respective accelerators.

This chapter uses PSP together with architecture search in order to explore the
design space and efficiency of neural networks for a specific hardware and software
architecture. NVIDIA’s Xavier and Nano processors are used as evaluation
platforms using the TensorRT compiler framework in order to achieve high
performance and productivity on these devices. The structures for PSP are
adjusted to the demands of the cuDNN library and analyzed using several
performance critical metrics as well as benchmarks. Last, the sigmoidal building
block is introduced, a novel connectivity for DNNs that is motivated by residual
connections, but allows for more efficient channel pruning.

The methodology introduced in this chapter does not only results into efficient
inference models through pruning, but also enables a detailed analyzes of design

101

Architecture Search

principles and techniques for DNNs. The information found using this setup
gives valuable insights into the limitation of current architecture principles and
shows the potential for future neural designs. More importantly, it shows the
impact of activation memory on latency and throughput, which appears to be of
higher relevance than parameters and computations.

7.1 Design Space Exploration

Scaling neural networks in width or depth is required to increase their prediction
performance. The initial deep architectures are scaled in width rather than depth,
which increases the amount of parameters and computations dramatically, since
they usually increase quadratic with the width. Inception blocks reduce this
quadratically scaling by placing several independent layers in parallel. Scaling
the depth rather than the width is promising because computations and memory
increase linearly with the depth, however, the backpropagation algorithm quickly
becomes a bottleneck as gradients are vanishing for very deep architectures. There
have been two major breakthroughs in the architecture design of neural networks
that prevent the vanishing gradient problem, which occurs when many layers are
stacked sequentially. These breakthroughs are residual and dense connections
between layers, enabling much deeper architectures and, therefore, more accurate
and efficient models. Virtually any advanced architecture nowadays - found
by human or machine design - implements either or both forms of connectivity.
While both connectivity patterns target the same issue, there impact on efficiency
as well as design space opportunities differ significantly. This section details
about the implications of these building blocks and explores possible design space
decisions.

7.1.1 Building Blocks

Machine learning frameworks and compilers - including highly optimized libraries
such as TensorFlow and TensorRT - constrain the user to a certain degree of
freedom in terms of designing operators. This section explores the most popular
building blocks for DNNs and explains their possible design configurations within
these frameworks. The design parameters include filter width and height (k×k),

102

7.1 Design Space Exploration

Fig. 7.1 Inception block.

stride (s), group size (g), number of features w as well as element wise tensor
addition, split and concatenation operations.

Inception

Figure 7.1 illustrates the inception block, which is based on several parallel and
independent layers with varying filter sizes (usually 1×1, 3×3 and 5×5 kernels),
operating on the same features. The resulting feature maps are concatenated
into a large activation tensor which is forwarded towards the next block. The
primary aim of the inception block is to capture multiple correlations in the
feature space while keeping the network depth relatively shallow, in order to
avoid vanishing gradients. Of course, the same could be achieved with a single -
large enough - layer as well, however, the inception block is significantly smaller
in terms of parameters and computations.

Inception blocks offer a large amount of possible configurations: each block i

allows arbitrary filter kernels ki,0×ki,0, ki,1×ki,1, ki,2×ki,2, any group size in
1≤ gi≤wi−1,0, as well as any number of output feature maps for each convolution
wi,1, wi,2, wi,3 ≥ 0. An appropriate solution for these configurations can be found
explicitly by using group, kernel and channel pruning. The number of output
feature maps for the whole block is implicitly defined by the parallel convolutions
wi,0 = wi,1 +wi,2 +wi,3.

Residual Connections

While Inception blocks enable a resource indulgent width scaling of the architec-
ture, they lack the ability of depth scaling due to vanishing gradients. However,

103

Architecture Search

(a) Without downsampling. (b) With downsampling.

Fig. 7.2 Basic residual block.

depth scaling is usually much more beneficial in terms of computations, parame-
ters and accuracy. Residual blocks enable extreme depth scaling of architectures
through connections between layers, which ultimately prevent the gradients from
vanishing. Figure 7.2 illustrates the basic version of residual blocks - composed
of two convolution layers - computing residuals that are element wise added to
the shortcut connection.

The design space of the basic blocks is relatively restricted in comparison
to Inception blocks, because of the introduced residual connections. These
enforce equal sizing of input and output features to the block within a stage
to ws, which is defined by the output of the 1×1 convolution, responsible for
down sampling the features. Furthermore, ws needs to be set statically and can
not be found dynamically through pruning, because the additive term prevents
feature maps from being set to zero throughout the stage. This means that only
wi,0 can be found through pruning and all ws need to be tuned by human or
algorithmic design (i.e. reinforcement learning). Group sizes gi,0, gi,1 and kernel
sizes ki,0×ki,0, ki,1×ki,1 are independent of the residual connections and can be
pruned as well.

Another popular version is the standard residual block (see Figure 7.3), where
1×1 convolutions are placed before and after the ki×ki layer. In comparison
to the basic block, the standard block reduces parameters and computations
while it enables a large amount of features in the model, consequently increasing
activation requirements.

104

7.1 Design Space Exploration

(a) Without downsampling. (b) With downsampling.

Fig. 7.3 Standard residual block.

For the standard block wi,0, wi,1 as well as gi and ki× ki can be learned
through pruning, while ws needs to be set statically. The 1×1 convolutions are
usually not combined with grouping, since these layers are very parameter and
computation efficient.

Dense Connections

Motivated by residual blocks, dense architectures connect each layer to every
other layer in the model, enabling excellent gradient flow during training. As
illustrated in Figure 7.4, the basic dense block concatenates input to output
features of each layer, enforcing feature sharing within the model, which positively
affects parameter and computation efficiency. However, this requires a large
amount of activation memory, since all features within the model are forwarded
incrementally to the subsequent layers.

The dense connectivity offers a larger design space than the relatively re-
strictive residual connections through concatenating instead of element-wise
adding the activation tensors. Here, the number of features wi,1, group size gi

and kernel size ki× ki can be learned through structured pruning. The num-
ber of input features to the block is implicitly specified by the previous block

105

Architecture Search

(a) Without downsampling. (b) With downsampling.

Fig. 7.4 Basic dense block.

(a) Without downsampling. (b) With downsampling.

Fig. 7.5 Standard dense block.

wi,0 = wi−1,1 +wi−1,0 or wi,0 = wi−1,1 +wi−1,2.
Because of the linear scaling of input features maps to the block wi,0, the

dense architecture becomes extremely resource-demanding for very deep models.
The standard dense block aims to resolve this issue by reducing the number of
input feature through a 1×1 convolution before the expensive ki×ki layer to a
constant factor wi,1. This works well for parameters and computations but does
not reduce the activation number.

The standard block achieves the same design space as the basic block: all
block parameters wi,1, wi,2, wi,3 and gi, ki×ki can be learned explicitly while
wi,0 results implicitly from the previous block.

106

7.2 Evaluating the Efficiency of Building Blocks through Camuy

7.2 Evaluating the Efficiency of Building
Blocks through Camuy

The design space exploration from previous section shows a large variety of
possible solution for creating neural architectures and compressing them through
structured pruning. While Inception and Dense building blocks allow a large
design space and excellent pruning opportunities, Residual blocks constrain
the degrees of freedom and require additional static adjustments. This section
evaluates these building blocks on massively-parallel processors using the Camuy
emulation framework, in order to explore their implications when mapped onto
hardware. The content of this section has been published in collaboration with
Kevin Stehle at the Workshop on IoT, Edge, and Mobile for Embedded Machine
Learning (ITEM), collocated with ECML-PKDD [7].

7.2.1 Camuy

Camuy is a lightweight model of a weight-stationary systolic array for linear
algebra operations that is integration into the machine learning tool TensorFlow
through custom operators. It allows quick explorations of different neural archi-
tectures and configurations (such as systolic array dimensions) and estimates
required cycles, data movement costs, as well as array utilization. The tool can
assist hardware experts to design processors arrays based on a certain neural
designs, and machine learning experts to design neural architectures that fit well
onto a certain processor.

Camuy is designed following a weight-stationary systolic array, which is a
promising candidate to address the increasing costs of data movements and
implements a large amount of parallel Processing Elements (PEs). In more
detail, the basic architecture of the emulation framework is modelled very similar
to Google’s TPUv1. Here, the activations flow horizontally and partial sums
vertically through the PE array. Each PE is modelled with four data registers:
two weight registers to support double buffering, one activation register, and
output register for the partial sum. Activations are forwarded from memory
through FIFOs to the PEs. Computations for the emulation are performed
multi-threaded and vectorized on CPU using the Eigen library.

107

Architecture Search

7.2.2 Evaluation

Four architectures are exemplary chosen for the evaluation where each model
covers a different design solution: VGG16 and Inception represent rather shallow
models that are scaled in width, while ResNet-152 and DenseNet-264 represent
deep models with their respective form of connectivity. The main objective here
is to evaluate the potential performance of the various techniques on parallel
hardware. This is done through estimating utilization of systolic arrays with
varying height and width, which is emulated using Camuy. Utilization is a
measure that shows how well a certain workload can utilize the available compute
resources and, hence, is a key metric for applications on massively-parallel
hardware. Figure 7.6 shows the evaluated utilization in form of heatmaps.

As can be seen, the VGG-16 architecture achieves a good utilization for
systolic arrays of up to 128 PEs wide. This is not surprising since the model
applies only a few wide layers and consequently exhibits great parallelization
potential. The Inception architecture achieves a slightly worse utilization in
comparison to VGG-16, because of varying kernel sizes within each block and a
smaller number of features. The ResNet-152 model also shows a good utilization
for larger arrays and, therefore, good parallelization potential while also enabling
very deep architectures. This can be explained by avoiding the vanishing gra-
dients through element-wise additions of the features, creating homogeneous
computations throughout the model. The DenseNet-264 architecture achieves
the worst utilization of all models, resulting from high variance of the operands
due to many concatenation operations. As a result, ResNet architectures exhibit
the best properties for massively-parallel hardware because they enable extreme
depth scaling while also featuring homogeneous computations that utilize PEs
well.

7.3 Sigmoidal Residuals

The residual block enables very deep architectures, resulting in resource-efficient
models, and shows excellent mapping behaviour on parallel processors. However,
as discussed in Section 7.1, the building-block design constrains the degrees of
freedom for structured pruning. This section introduces sigmoidal residuals that
are motivated by the original residual technique and able to decrease vanishing

108

7.3 Sigmoidal Residuals

(a) VGG 16 layers (b) Inception

(c) ResNet 152 layers (d) DenseNet 264 layers

Fig. 7.6 Systolic array utilization for varying height (y axis) and width (x axis)
for several architectures based on heatmaps. [7]

109

Architecture Search

(a) Without downsampling. (b) With downsampling.

Fig. 7.7 Sigmoidal residual block.

gradients, but allow for better pruning opportunities.

7.3.1 Building Block

The original residual building block consists of two or three layers, where the
input to the block is connected through a shortcut to the output of a block. This
connection is realized using an element-wise addition term on the activations and
reduces vanishing gradients. The addition term eliminates pruning opportunities
at the interfaces of the block (see ws in Figure 7.3), because pruned features
can be cancelled out by features from consecutive blocks. In order to solve
the issue of pruning the interfaces, the sigmoidal residual block (Figure 7.7)
replaces the element-wise additive with a multiplicative term. The multiplication
consequently enables pruning since all consecutive blocks to a pruned feature
will result into a multiplication with a zero-valued feature map.

An important design parameter of such building blocks is the so called width
multiplier, that states the difference between ws−1 and ws. The most common
choice for this parameter is ws

ws−1
= 2, resulting in a doubling of features maps for

each stage, where all blocks within a stage have the same ws. Using the sigmoidal
block, it is now possible to prune features after the 1×1 convolution layers that
are required for increasing the number of feature maps. As a consequence, the

110

7.3 Sigmoidal Residuals

width multiplier ws
ws−1

can be found dynamically during training, resulting in
higher compression through a larger design space.

7.3.2 Backward Properties

The sigmoidal block is clearly better suited than the residual block for dynamically
learning the architecture through pruning. However, the residual block has certain
properties that enable deeper architectures as well as better backward flow. This
section explains the differences between sigmoidal and residual block during
training and shows their implications with respect to backward properties.

Formally, with xl and xl+1 being the input and output vectors of the block l,
the residual is defined as:

xl+1 = xl + F (xl,Wl), (7.1)

where F (x,{Wi}) denotes the two or three layers within a block to be learned and
xl the shortcut connection. Stacking several of these blocks in a stage (without
a layer for down sampling or width expansion), can be formulated as:

xL = xl +
L∑

i=l

F (xi,Wi), (7.2)

where L states the number of blocks per stage. Based on this formulation and
following the chain rule of backpropagation, the backward path can be formulated
as:

∂E

∂xl
= ∂E

∂xL

∂xL

∂xl
= ∂E

∂xL
(1+ ∂

∂xl

L∑
i=l

F (xi,Wi)). (7.3)

The gradient ∂E
∂xl

can be split into two terms, where the first term ∂E
∂xL

is
independent of the architecture’s depth L. As a consequence, this term is not
influenced by the layers within the residual blocks and allows that information is
directly propagated to any block within the stage, ultimately enabling the design
of very deep architectures.

The backward properties of the sigmoidal block differ to the residual block,
due to the change from the additive to the multiplicative term. Formally, the
sigmoidal building block calculates the output vector xl+1 based on the input xl

as:
xl+1 = xl ·σ(F (xl,Wl)), (7.4)

111

Architecture Search

where σ(x) = 1
(1+e−x) , representing the sigmoid function. When recursively

applying this building block within an deep architecture, the final output vector
xL can be obtained as:

xL = xl ·
L∏

i=l

σ(F (xi,Wi)), (7.5)

for a network with L sigmoidal blocks. This results in different backward
propagation properties in comparison to the original residual building block.
Following the chain rule of backpropagation, the backward path can be formulated
as:

∂E

∂xl
= ∂E

∂xL

∂xL

∂xl
= ∂E

∂xL
(

L∏
i=l

σ(F (xi,Wi))+xl
∂

∂xl

L∏
i=l

σ(F (xi,Wi))). (7.6)

While the gradient of the original residual block obtains one term that directly
propagates information without any interference of other layers, the gradient
of the sigmoidal block is interfered by the term ∏L

i=l σ(F (xi,Wi)). Without
sigmoid function, large values of F (xi,Wi) > 1 result into exploding gradients
for deep architectures. However, through applying the sigmoid function before
multiplication, the values of the term are constrained to 0 < σ(F (xi,Wi)) < 1,
which consequently resolve exploding gradients. On the other hand, small values
of the term σ(F (xi,Wi)) < 0, in combination with very deep architectures results
into vanishing gradients due to the multiplication. The experiments done with
the sigmoidal block, however, indicate that this issue is not arising for commonly
used depth L < 20, and the final performance is not inferior to residual blocks.
Thus, while the scalability of the proposed block is in principle problematic, it
is a necessary trade-off for a larger design space in pruning based architecture
search.

7.4 Structure definitions

Standard machine learning frameworks, libraries and compilers, such as Tensor-
Flow, cuDNN, TensorRT, etc. constrain their users by only enabling certain
configurations of operators. The design parameters for convolution operators
allow arbitrary filter width and height, striding, group size and number of input or
output channels. All of these configurations must be inline with the constraints of

112

7.4 Structure definitions

(a) Input channels. (b) Output channels.

Fig. 7.8 Channel pruning within a convolution operator.

their respective building blocks. Most of the structures definitions in Section 6.4
either violate or do not cover the design parameters of such frameworks, with
the exception of channel and layer pruning. This section explains the required
extensions of PSP in order to perform extensive architecture search through
pruning.

7.4.1 Channel pruning

The most important structure for architecture search is pruning of channels.
Figure 7.8 illustrates the four-dimensional convolution tensor, where the large
squares represent the kernels, and the corresponding horizontal and vertical
dimensions represent the number of input and output feature maps, respectively.
While pruning input channels (Figure 7.8a) is already explored in Section 6.4,
output channels (Figure 7.8b) are of utmost importance for the previously
introduced building blocks. The pruning is implemented - following the PSP
technique - by adding auxiliary parameters for each input or output channel to
either weight or activation tensor.

For the Inception block, output channel pruning is used for obtaining wi,1,
wi,2, wi,3 and the resulting wi,0. For residual and sigmoidal blocks, pruning of
input channels is used for wi,0 and wi,1, while output channels are required for
ws. Last, the dense block requires output channel pruning for wi,1, wi,2 and wi,3.
Both pruning structures are highly desirable because they do not only reduce
parameters and computations, but also activations and, therefore, the overall

113

Architecture Search

(a) Group size = 2. (b) Group size = 1.

Fig. 7.9 Group pruning within a convolution operator.

memory requirements.

7.4.2 Group pruning

Grouping of convolution operations refers to splitting the feature maps and per-
forming independent computations on them in order to reduce the requirements
of a model. Figure 7.9 illustrates group pruning on the example of a group size
of two (Figure 7.9a) and one (Figure 7.9b). This pruning structure is realized by
iteratively splitting the weight tensor and parameterizing the diagonal elements
of the splits. Consequently, the group size gi of a layer is determined by the
number of input/output feature maps wi and the split si which is learned through
pruning, as: gi = wi

si
.

Following this technique, the possible splits per layer are constrained to
si = 0,1,2,4,8,16 or 32, in order to reduce training time. In comparison to
other techniques, this enables a much larger design space. Related publications
on the subject of architecture search (either automatic or hand-tuned) highly
leverage group convolutions by either setting the group size or split to a constant
value across the whole network. While the vast majority of related work uses
gi = 1 (also denoted as depth-wise convolution) to reduce the possible search
space, recent work [68] showed that gi > 1 achieves better efficiency. The main
benefit of such grouping techniques is that they allow extremely parameter and
computation efficient models while achieving high accuracy. However, they often
result in tremendous activation requirements, resulting in a high number of

114

7.4 Structure definitions

(a) Layer wise. (b) Channel wise.

Fig. 7.10 Kernel pruning of a convolution operator.

memory accesses and poor data reuse and, thus, poor inference performance.

7.4.3 Kernel pruning

The kernel size kw,i×kh,i per layer i is one of the most critical design parameters
of convolution layers, because large kernels result in high resource requirements
while small kernels may not be sufficient for detecting longer distance correlations.
Kernel pruning (see Figure 6.2d) is already introduced in Section 6.4, however,
it is not applicable to the targeted compute stack as it only allows dense kernels.
In order to generate kernel pruning in a way that it is inline with libraries and
compilers, the structure definition needs to be able to create dense kernels with
variable width kw,i and height kh,i. This pruning variant is implemented through
a parameterization of horizontal and vertical slices for all kernels (Figure 7.10a)
or per output channel (Figure 7.10b) of a layer.

If the pruning is performed for all kernels of a layer (Figure 7.10a), any height
and width combination is possible kw,i,kh,i ≥ 0, which implicitly includes layer
pruning. If it is performed per output channel (Figure 7.10a), only quadratic
kernels with odd configurations are enabled, in order to reduce the amount of
parallel executed layers. The latter techniques is used to generate Inception
like architectures (see Figure 7.1) from a single dense layer, which allows better
performance through higher utilization and larger models. Related architecture
search techniques only employ squared kernels with odd configurations: kw,i =
kh,i = 1,3,5,7, ultimately limiting the possible design space significantly. On

115

Architecture Search

the contrary, learning the kernels through pruning enables a much larger design
space and, therefore, better efficiency for the resulting inference models.

7.4.4 Combining pruning methods

In order to increase the overall efficiency, it is necessary to combine different
pruning structures which is not trivial with respect to the software stack. Kernel
pruning can be simply combined with channel as well as group pruning while
being compatible with the targeted software stack. However, the combination
of channel and group pruning interfere each other, preventing these structures
to be applied together dynamically. The main problem here is that all groups
within a layer are required to have the identical amount of feature maps and
channel pruning potentially produces varying amounts of feature maps. In order
to resolve this issue, the group size gi can be set statically for each layer and
channel pruning applied dynamically during training. Here, it is necessary to
share the same pruning mask across all groups within a layer to guarantee that
all groups obtain the same amount of feature maps.

7.5 Elastic-net regularization

The initially introduced technique for PSP leverages ℓ2 regularization with a fixed
regularization strength λ to force the structure parameters towards zero and uses
the threshold parameter ϵ (see Equation 5.2) to create sparsity. This combination
aims to remove as much unimportant structures during training as possible while
not sacrificing prediction performance. However, the structure definitions from
Section 6.4 are much finer than the required structures for architecture search
and, hence, allow higher sparsity. More coarse-grained structures, such as groups
or kernels, require heavier regularization for creating sparsity which cannot be
simply realized by increasing the regularization strength of the ℓ2 penalty or
threshold parameter ϵ.

To create high sparsity ratios for these structures, ℓ1 regularization needs
to be considered. Section 6.5.1 empirically compares ℓ1 and ℓ2 regularization
- in terms of accuracy with respect to sparsity - and indicates that the latter
performs significantly better. Figure 6.1 shows that ℓ1 regularized parameter
distributions are roughly one order of magnitude larger than equally trained

116

7.6 Evaluation

networks with ℓ2 regularization. Thus, the effective learning rate is lower for ℓ1

regularized parameter which ultimately reduces the generalization performance
of the model. Consequently, the regularization term needs to be a combination
of ℓ1 and ℓ2 as:

Eℓe(αi) = E(αi)+λℓ1 |αi|+
λℓ2

2 α2
i , (7.7)

where λℓ1 and λℓ2 are the respective regularization strength parameters. This
technique is also denoted as Elastic-net regularization in related literature [84].
Based on this modification of the loss function, the updates for the structure
parameters are calculated as:

∆αi(t+1) =−η
∂E

∂αi
−λℓ1η sign(αi)−λℓ2ηαi. (7.8)

As can be seen, the −λℓ2ηαi term pushes the parameters towards zero and enables
better generalization through high effective learning rate, while the −λℓ1η sign(αi)
term pushes certain structures to zero and creates sparsity. For the original PSP
training, λℓ2 is set to a fixed value and pruning threshold ϵ is increased for more
sparsity. The training setup is changed here by setting λℓ2 and ϵ to a fixed value
and varying λℓ1 in order to control the sparsity.

7.6 Evaluation

The evaluation of previously elaborated building blocks and structures is per-
formed on the CIFAR-10 as well as ImageNet task and analysed with respect
to performance. The performance is measured using theoretical metrics such
as number of MACs, parameters, activations and timing metrics for inference.
Latency and throughput (in FPS) are evaluated using TensorRT and cuDNN
on NVidias Jetson Nano and Xavier boards. All training runs use a fixed value
for the ℓ2 regularization strength as λℓ2 = 10−4 while ℓ1 is varied according to
the desired amount of sparsity. The threshold parameter for pruning is set to
ϵ = 0.01 for all experiments.

7.6.1 CIFAR-10

This section explores the performance of different building blocks as well as
pruning structures on the CIFAR-10 task. Figure 7.11 reports the theoretical

117

Architecture Search

and Figure 7.12 measured metrics of the evaluation.

Comparing Different Structures

The initial configurations of the neural networks follows the Wide Residual
Networks (WRN) [85] with a depth of 28 layers, as this is one of the top
performing architectures on this task. WRN uses the basic residual block (see
Figure 5.2) with 3×3 convolutions and without grouping. The WRN architecture
is modified to use the sigmoidal residuals (see Figure 7.7) in order to enable the
pruning of feature maps. It should be noted that this modification does not
result into accuracy degradation in comparison to the original residual block.

In a first step channel (Res: Channel), group (Res: Group) and kernel (Res:
Kernel) pruning are evaluated separately on the modified WRN architecture.
When considering FLOPs and parameters, which are the main metrics in related
literature with respect to resource-efficient neural networks, it is clear that channel
and group pruning significantly outperform kernel pruning. This indicates a high
sensitivity of the kernel size to the overall accuracy. Group and channel pruning
perform very similar on these two metrics, especially for highly compressed
models. However, when also considering the activation and overall memory
(parameters + activations), group pruning performs significantly worse because it
does not remove any activations and relies on a well-defined initial configurations.
As a result, channel pruning is the best performing compression structure when
applied in isolation.

In a next step, the group size is set to gi = 64 and channel pruning is applied
(Res: G=64 Channel), in order to evaluate the performance of combined sparse
structures. This combination performs worse than pure channel pruning for
all metrics and requires a large amount of activations. Ultimately, it can be
stated that group convolutions are excellent at reducing FLOPs and parameters
but can harm the overall memory requirements by increasing the amount of
activations. This observation is in clear contrast to related literature where group
convolutions are heavily applied (gi = 1) on this task and activations (or memory)
are basically ignored.

118

7.6 Evaluation

(a) Flops (b) Parameters

(c) Activations (d) Memory

Fig. 7.11 Performance metrics of several pruning structures and building blocks.

119

Architecture Search

Building Blocks

Previous experiments found that pure channel pruning performs best on CIFAR-
10 task. This section compares the performance of channel pruning on (sigmoidal)
residual and dense building blocks, in order to find the best performing archi-
tecture and compression setting on this task. A DenseNet variant is created
for this experiment which uses the basic dense block (see Figure 7.4). The
architecture is scaled in depth to 28 layers and the width is varied until it roughly
matches parameters and computations of the (sigmoidal) residual architecture
from previous section to guarantee a fair comparison. No group convolution is
applied and the channels are removed dynamically through pruning. Figure 7.11
compares both architecture using residual (Res: Channel) and dense (Dense:
Channel) building blocks.

As can be seen, the dense outperforms the residual block in terms of FLOPs
as well as parameters. In terms of activations, however, residual blocks are clearly
more beneficial, which also influences the overall memory. In summary it can be
stated that dense building blocks are more parameter/computation efficient and
residual blocks are more memory efficient.

Measuring Inference Speed

The previous section explored several pruning structures and building blocks
which indicate different potential with respect to computation and memory
efficiency. This section evaluates how these metrics impact the inference speed
in terms of latency (with a batch size of 1) as well as throughput (batch size of
32). Figure 7.12 reports the inference metrics for the Jetson Nano board using
half-precision floating point for weights and activations.

As can be seen, the various models in each regime (structure or building
block) show similar behaviour for latency and throughput. The worst performing
regimes are group and kernel pruning as well as the combination of fixed grouping
and channel pruning. Especially interesting is group pruning: although it greatly
reduces FLOPs and parameters, it fails at translating this reduction into faster
computations. As opposed to this, pure channel pruning using residual and
dense building blocks achieves the best performance. These results highlight the
importance of reducing memory (or more specifically activations) rather than
FLOPs, in order to reduce latency or increase throughput.

120

7.6 Evaluation

(a) Latency (batch size = 1). (b) Throughput (batch size=32).

Fig. 7.12 Inference metrics of several pruning structures and building blocks.

7.6.2 ImageNet

This section evaluates several promising models as well as pruning on the large-
scale ImageNet task. The evaluated models in this section are the most popular
architectures proposed in related literature: ResNet [14], ResNext [67], DenseNet
[15], MobileNetV1 [65], MobileNetV2 [66] and RegNet [68]. The reported ac-
curacy of these models is extracted from the original publications while the
pruning results are obtained through training the models. Please note that
only models are evaluated which share a similar training setup (i.e. number of
epochs, data augmentation, stochastic regularization) and convolution layer only
(which excludes models with squeeze-and-excitation modules) to guarantee a
fair comparison. Furthermore, all models are rebuilt and evaluated on hardware
using an identical benchmark setting.

Comparing Different Models and Structures

The performance metrics in terms of FLOPs, parameters, activations and memory
of the above mentioned models are reported in Figure 7.13. Models without
group convolutions (ResNet, DenseNet) or with a constant split rather than group
size (ResNext) are the worst performing in terms of FLOPs and parameters.
In contrast, models with constant group sizes such as MobileNetV1 (g = 1),
MobileNetV2 (g = 1) and RegNet (g = 8,16,24,48) perform best on these metrics.
In terms of activations, however, models with g = 1 perform worse than those
with larger or no group size. Interestingly, almost all models have similar overall

121

Architecture Search

(a) Flops (b) Parameters

(c) Activations (d) Memory

Fig. 7.13 Performance metrics of several architectures.

memory requirements, with the exception of RegNet (best performing) and
DenseNet (worst performing).

This analysis indicates that the overall best performing architectures - in
terms of compute and memory efficiency - are those with a constant group size
(MobileNetV1, MobileNetV2 and RegNet). Furthermore, it can be assumed
that larger group sizes (g > 1) are the only configurations that allow for a
better memory efficiency. However, this assumption cannot be verified by the
available data because the RegNet models are optimal representations for this
task, extracted from distributions of hundreds of models, while the MobileNets
are found using rather simple heuristics. As a consequence, it is possible that
RegNet performs better because of much more training time invested in finding
well-performing architectures.

In order to effectively evaluate the impact of the group size on accuracy

122

7.6 Evaluation

and memory efficiency, an isolated experiment is necessary. For this evaluation,
two models with equal configuration but different group sizes are created and
compressed using channel pruning. The model configuration used here follows
the ResNet-50 architecture with 3 - 4 - 6 - 3 blocks in their respective stages
(56×56 - 28×28 - 14×14 - 7×7). The building blocks are implemented using
sigmoidal residuals without bottleneck, since compression is achieved through
grouping and channel pruning. Figure 7.13 reports the metrics of both models,
where one model uses a group size of g = 1 (G = 1 CP) while the other uses a
g = 64 (G = 64 CP) for the inner convolution layer.

In terms of FLOPs, both models show a similar efficiency whereas the g = 1
configuration achieves a better parameter efficiency. With respect to activations,
however, the g = 64 configuration is significantly more efficient which ultimately
translates into a better overall memory efficiency. Interestingly, the memory
consumption of the g = 1 configuration is almost identical to ResNet, ResNext,
MobileNetV1 and MobileNetV2. These results validate that group convolutions
are necessary to reduce computations on this task but only larger group sizes
are able to reduce memory requirements. Another promising observation is the
effectiveness of the proposed pruning methodology: both evaluated models show
competitive performance to their MobileNet and RegNet counterparts but require
much less training time to develop.

Measuring Latency

This section studies the impact of the various analyzed models from the previous
section on the inference time using half- and single-precision floating point as
well as 8-bit integer representations. Figure 7.14 reports the latency (batch size
= 1) of several precision formats on the Jetson Xavier and Figure 7.15 on the
Nano board.

As can be seen, the overall best performing architectures for all precision
formats on the Xavier board are architecture using residual blocks with a group
size of g = 1. This is surprising since the theoretical analysis showed that larger
groups are equally compute and even more memory efficient. In general, there
can be an increasing performance gap observed with decreasing precision formats
between models with g = 1 and g > 1. This gap cannot be explained by some
principled issues but rather by certain practical considerations: virtually any
work on architecture search focuses on models using g = 1, due to their extreme

123

Architecture Search

(a) Float32 (b) Float16

(c) Int8

Fig. 7.14 Latency on Jetson Xavier.

efficiency with regard to FLOPs and parameters, which is the main metric studied
in related literature. The work done by Radosavovic et al. [68] (introducing the
RegNet family), is the first that actually studied larger groups and the impact on
activation memory as well. Therefore, hardware vendors optimize their compute
stack with respect to highly used configurations and lack the efficient support of
novel configurations.

As opposed to the latency results on the Xavier board, the best performing
models on the Nano board are configurations with larger groups for all precision
formats. These results are inline with the theoretical analyses and highlight
the importance of careful architecture selection. However, the gap between
models with g = 1 and g > 1 is lower than expected on the basis of theoretical
improvements.

124

7.6 Evaluation

(a) Float32 (b) Float16

Fig. 7.15 Latency on Jetson Nano.

7.6.3 General Feature Scaling

The previous sections extensively studied the impact of various building blocks
and sparse structures on compute and memory requirements as well as inference
time. These results indicate that residual building blocks achieve superior
efficiency in comparison to other techniques. Especially the combination of
residual blocks with channel pruning creates the most promising architectures by
removing whole feature maps from the model. This section introduces a general
pattern of feature-map scaling that frequently appears when channel pruning is
applied to models using residual blocks.

Designing neural architectures with residuals requires the engineer to carefully
select the number of feature maps in the respective blocks (see Figure 7.3). A
common tactic here is to use a constant width multiplier α (typically α≈ 1.5−2.5)
after each stage, which ultimately scales the amount of feature maps after each
stage as ws = ws−1 ·α. The amount of features for the inner layer are set based
on the (inverted) bottleneck ratio β (typically β ≈ 0.25−6.0) as wi,0,wi,1 = β ·ws.
For instance, ResNet models usually set α = 2.0 and β = 0.25, which dramatically
reduces the search space. On the contrary, channel pruning enables finding
fine-grained solutions for each block and, consequently, achieves better efficiency.
Figure 7.16 shows the amount of feature maps for each layer and for several
training epochs when channel pruning is applied, where each colour denotes a
different stage. In this experiment, the regularization strength is increased every
5 epochs. As can be seen, there can be an exponential increase of feature maps

125

Architecture Search

observed, representing a general tendency when pruning such models.

Fig. 7.16 Feature visualization

This observation enables the development of an alternative scaling rule for
feature maps, removing the requirement for channel pruning and has a similar
search space to a constant width multiplier and (inverted) bottleneck ratio. Let
N be the number of layers within a model, then the number of features of layer n

can be obtained as: wn = a · en·b + c, where a,b,c is the design space that can be
found by hand or any automatic heuristic technique (i.e. reinforcement learning).
Figure 7.17 exemplifies such a scaling rule based on the fit using data obtained
from the pruned models (see Figure 7.16).

As can be seen, the resulting model overlaps the hand-designed ResNet in
the early layers, but has much more features in the later layers before the feature
maps are forwarded to the final prediction part of the model. Such an exponential
scaling rule makes intuitively sense, since it can be assumed that every layer
adds more features to the model with increasing depth. This is also promising
from a computational perspective, because it mainly increases the amount of
parameters, which has only a small impact on the overall memory and compute
requirements.

126

7.7 Summary

Fig. 7.17 Feature scaling.

7.7 Summary

Designing neural networks by searching for appropriate architectures is one of
the key challenges in the field of deep learning. The ultimate goal is to cover as
many design parameters as possible while being also efficient in terms of training
time and resources. This section proposed a novel combination of structured
pruning and efficient building blocks in order to find such architectures. The
methodology introduced in this section is beneficial for mainly two reasons: first,
it enables to study the impact of building blocks and sparse structures for a
certain task by covering a large design space without the need for extreme long
training time. Second, it allows to compress neural networks in a structured way,
which is inline with virtually any accelerator and their respective software stack.
The key insights of this sections are:

• Inference time in terms of latency and throughput mainly correlate to
memory requirements rather than computations and parameters.

• The pervasively used depth-wise convolution (group size of 1) is excellent
at reducing computations and parameters, but fails at reducing the number
of activations, leading to poor inference and training performance.

127

Architecture Search

• The best performing models on the popular CIFAR-10 and ImageNet tasks
use a combination of residual blocks without or with large group sizes.

128

Chapter 8

Comparing Compression
Techniques on Hardware

The last chapters studied several compression techniques with considerations
on the targeted software stack and hardware. Each chapter has a focus on
leveraging compression to accelerate inference computations as much as possible
while maintaining prediction quality of the uncompressed model. While baseline
models (i.e. real-valued operators or un-pruned tensors) reveal insights on
how much performance can be improved for a certain processor, there is no
absolute overview of the various hardware regimes. This chapter compares
these specialized forms of compression on their respective hardware in terms
of absolute performance to evaluate the most promising compute concepts for
neural networks.

The comparison is done using small-sized and resource-constrained embedded
processors which exhibit a similar energy regime. An ARM Cortex-A57 is used
as representative for CPUs, NVidia’s Jetson Nano for GPUs and the Xilinx
Ultra96 for FPGAs. CIFAR-10 is chosen for this comparison as it offers a good
trade-off between real-world example and training time, which is essential for
the viability of such an evaluation. ResNet variants are used for CPU as well as
GPU experiments and a VGG variant for FPGA, sine the used FINN framework
does not support residual connections. Figure 8.1 reports the performance in
terms of FPS over accuracy of the various models and the three devices.

The reported metrics for CPU inference correspond to 8-bit integer quanti-
zation in combination with the Gemmlowp library, sparse-ternary quantization
using the RaS algorithm and binarized weights/activations using the binary

129

Comparing Compression Techniques on Hardware

Fig. 8.1 Overall comparison of several compression techniques on CPU, GPU
and FPGA using the CIFAR-10 dataset.

Eigen extension. This variety of different compression and algorithm techniques
highlights the flexibility of such processors and the potential to leverage compres-
sion for inference. ARM’s ISA features SIMD instructions for bit manipulation
and integer formats, enabling low-precision computations while also supporting
floating-point arithmetic. Furthermore, the combination of high-frequency and
low-parallelism cores enables the deployment of unstructured sparsity. This
means that CPUs are well suited for compressed neural networks, however, the
comparison to massively-parallel accelerators shows that they lack the necessary
amount of parallelism to achieve competitive throughput. The upside of CPUs is
that they feature a relatively large memory, allowing large and accurate models
to be deployed.

The reported metrics for FPGA inference correspond to uniformly quantized
weights/activations together with bit-serial inference using the FINN framework.
It is possible to implement dedicated hardware instances for each layer and
perform inference in a pipelined fashion through re-configurable logic, which
virtually avoids off-chip memory accesses. Furthermore, bit-serial processing
elements require only few logic instances in comparison to their floating-point and
integer counterparts. This enable FPGAs to excel at extreme high-throughput

130

inference and high utilization of the available hardware resources. Such data-flow
architecture, however, demand the entire model (including activations) to stay
on chip, possibly preventing larger models to be deployed.

The reported metric for GPU inference correspond to structured sparse models
using channel pruning in combination with half-precision floating point formats.
GPUs are relatively constrained in terms of flexibility when deploying compressed
models, due to the requirement of using optimized libraries and their respective
software stack. However, they show a good compromise of general-purpose and
re-configurable processor, enabling high throughput and accuracy. Additionally,
they feature a large off-chip memory which allows - together with latency hiding
techniques - high-throughput inference of large models.

131

Chapter 9

Discussion

In this chapter, the main insights from this work are reviewed and further
discussed, especially in a more global context. Furthermore, current trends in
technology are taken into account which have been proposed in related literature
while the work on this thesis was done. Finally the broader impact of this work
is evaluated and its potential use towards further research directions.

9.1 Potential and Limitations of Compression

Compression techniques for neural networks are an excellent tool for creating effi-
cient inference models for resource-constrained systems. This section reviews the
potential of the analyzed techniques as well as their implications and limitations
with respect to task and hardware.

9.1.1 Data Representation

The insights gained in this work highlight the potential of quantization while
also considering the implications with respect to model accuracy and hardware
platform. Binarization greatly reduces memory and the resulting computations
suit computer architectures very well, however, severe accuracy degradation is
likely to occur. Other forms of extreme quantization can avoid the accuracy
loss but are difficult to realize on hardware due to different bit requirements.
For instance, the evaluations indicate that activations require more bits than
parameters and LSTM require more bits than convolution or fully-connected
layers. This generates a high variance in possible bit-combinations.

133

Discussion

Supporting any bit-combinations of weights and activations using integer
arithmetic units is infeasible in hardware due to area constraints. Bit-serial
units can resolve this issue by sequentially computing arbitrary bit-combination,
however, at the cost of higher latency caused by serialization. Ras inference
might be a good solution for this problem, but scales poorly to massive amounts
of parallelism due to load imbalance.

Another concerning implication of quantization is the required hardware
resources of the real-valued model, which is required for quantization. While
this is not problematic for small models on simple tasks, the required real-valued
model is likely to be the limiting factor when targeting large models on complex
tasks.

One promising way to resolve the implications of quantization is to use
rather conservative forms of bit representations. The community standard for
such conservative quantization forms is currently half-precision floating point
for training and 8-bit integer for inference. The recently proposed Posit [86]
format might be a good solution for reducing the bit with for both, training and
inference.

9.1.2 Structural Efficiency

Structural efficiency through structured pruning or pre-defined structured sparsity
(i.e. architecture search) is likely to be the most promising candidate for efficient
neural networks. Unlike unstructured sparsity, such compute structures can be
mapped very well on massively-parallel processors and reduce the overhead of
indexing non-zero elements. The insights gained in this work indicate that there
is a large variety of efficient structures within neural networks, however, they
need to be selected carefully with considerations on the hardware/software stack
as well as tasks.

For instance, many tool stacks of domain-specific or general-purpose accelera-
tors demand using their respective BLAS libraries for utmost efficiency. These
tool stacks are rather restrictive in terms of structure definition and potentially
slow down the progress of efficient models. Furthermore, one of the key insights
of this work is that inference speed (latency or throughput) depends on memory
rather than computations. This is in contrast with most architectures published
in related literature, as they heavily leverage extreme group convolutions in

134

9.2 Transferability of Insights

order to reduce computations and parameters. The results of this work indicate
that large or no group convolutions - depending on the dataset - achieve best
performance in terms of latency/throughput over accuracy, although they are
not the most parameter and computation efficient models.

Structured pruning is excellent at generating efficient neural architectures from
larger over-parameterized models by exhibiting the most important sub-structures.
The main implication here is the size of the unpruned model, which usually
requires a large amount of memory and training time. Similar to quantization,
this could be the bottleneck when complex tasks are targeted or the accelerators
used for training do not feature enough memory.

9.2 Transferability of Insights

Identifying useful techniques for deep learning is extremely difficult due to the
large variety of possible solutions and strategies. Considerations in terms of
computations or memory with respect to accuracy depends on many aspects,
such as application, neural architecture, training setup, etc. The methodology of
this work follows a strategy which aims to simplify these aspects. This section
discusses the transferability of technique and insights of this work to other task,
neural architectures and training setups.

9.2.1 Other Tasks

Most of the evaluation in this work is done on image-classification tasks, such
as ImageNet, CIFAR-10/100, SVHN and MNIST. The reason behind the task
selection is based on comparability: the vast majority of novel techniques for
deep learning (i.e. compression or architecture) are evaluated on these tasks, in
order to set a common benchmark when comparing metrics such as inference/-
training speed or memory/computations. Furthermore, image classification is
one of the key tasks where deep learning excels and significantly outperforms
feature-engineering concepts. The major drawback of deep learning here is that
it consumes much more resources than such hand-designed classification and,
consequently, is a well suiting task when considering resource efficiency.

Another important reason why image classification is essential for evaluation
is that such models serve as building blocks for other highly important computer

135

Discussion

vision tasks. Object detection is the task of image classification with localization of
multiple objects, where bounding boxes need to be predicted as well as the object
class within each box. State-of-the-art models on this task implement a bounding
box generator (i.e. region proposal network) in combination with a standard
classification model (i.e. ResNet or MobileNet) as backbone. The computational
heavy lifting and memory requirements of such combined models is caused by
the classification model. Consequently, improvements of compression techniques
on pure classification tasks directly transfer to object detection tasks. Image
segmentation is the task of splitting an image into segments where specific pixels
that belong to a certain object need to be identified. This is done by predicting
classes for each pixel in an image and, hence, forms again a classification task.
However, state-of-the-art models for this task do not simply employ standard
classification models, but rather define specialized architectures (i.e. UNet).
Thus, it can be assumed that the general trends of this work are transferable
since both task are alike.

9.2.2 Other Neural Architectures

The neural architectures used in this work consist of mainly convolution layers
for feature extraction and fully-connected layers for classification. Variations
of such structures are generated through different scaling (i.e. width, depth,
etc.) and connectivity (i.e. residual or dense). However, other forms of neural
architecture exist and need to be considered as well.

Recently, channel attention techniques (i.e. squeeze-and-excitation modules)
are widely used for computer vision tasks and show great potential. Such attention
modules are usually implemented as part of the residual blocks and use additional
fully-connected or convolution layers on global metrics, such as the arithmetic
mean of each feature map. This aims at increasing model complexity with little
impact on parameter and computation requirements. The architectures used in
this work do not exploit such channel attention modules, because the focus is on
comparability of compression technique rather than achieving state-of-the-art
accuracy. However, such modules do not interfere with the concepts and insights
of this work and add potential for further improvements.

Another important area of neural architectures are Transformer models [87],
which highly depend on the attention mechanism. They were originally introduce

136

9.2 Transferability of Insights

in the field of natural language processing in order to overcome limitations of
recurrent architectures and exhibit excellent performance on sequence-to-sequence
tasks. While combinations of convolutions and attention layers are already very
popular, recent research [88] studied the impact of Transformer architectures for
computer vision. Surprisingly they achieve similar accuracy than convolution
architectures or even outperform them in terms of parameters and computations.
The techniques and insights of this work are in principle also transferable to
Transformers, however, the benefits are not obviously predictable: the most
time consuming operations in Transformers are tensor splits, concatenations
and transposes while matrix multiplications only account for a small fraction
[89]. Consequently, reducing computations and memory through compression
techniques does not result in similar inference improvements as for convolution
architectures.

9.2.3 Other Training Setups

All reported results of experiments in this work follow a specific training setup,
which is assumed to be a community standard. For instance, all experiments on
the ImageNet dataset are performed using random crop-and-resize technique for
data augmentation, no explicit regularization but weight decay and a training
routine of 100 epochs. The main advantage of this setup is that it enables a fair
comparison between different techniques and architectures without reproducing
the results of related work, which would not be feasible considering the training
time on such tasks.

Most of the recently reported gains in accuracy for such tasks are based on
enhancements to the training setup and regularization techniques. For instance,
training techniques for ImageNet include deep supervision, Cutout, DropPath,
AutoAugment, etc. which improves validation accuracy dramatically, but results
into much longer training time (i.e. ≈ 400 epochs). Such different settings
prevent a fair comparison and can lead to false assumption of certain techniques:
for instance, the authors of EfficientNet [90] claim 4.9x parameter and 11x
computation reductions in comparison to ResNet, however, the training time
and setup are completely different. Hence, the results are not comparable and
do not reflect to advanced architecture proposals. The aim of this work is to
create an comparable overview of compression and hardware techniques rather

137

Discussion

than producing state-of-the-art performance and, hence, is not competitive with
reported results using such advanced training settings. The techniques and
insights gained in this work, however, to not interfere with additional training
enhancement and allow for further improvements in future directions.

9.3 Broader Impact and Future Directions

The most promising candidates for mobile DL applications are massively-parallel
ASICs, using 8-bit integer formats and structured sparse computations. Chapter
7 evaluated the effectiveness of several popular building blocks and design spaces
of convolutions in order to identify efficient inference models as well as design
principles. PSP in combination with the methodology introduced in Chapter 7
offers a framework that has more potential than just creating efficient inference
models. It can be used to evaluate the effectiveness of other performance
improving techniques such as data augmentation, modules, etc. as well. This
section highlights the broader impact as well as some possible future directions
of the proposed technique and methodology.

9.3.1 Advanced Data Augmentation

Data augmentation is an effective technique for improving the prediction quality
of DNNs by applying transformations on the training samples, such as rotations,
translations, shears, etc. Such augmentation techniques are obviously highly
dependent on the targeted task and training data and usually do not generalize
well to other tasks. Most augmentations for a given dataset are manually designed
using considerations on potential invariances within the training data. Another
emerging field are techniques based on a reinforcement policy that searches a
defined design space for the best performing augmentation. All of these techniques
evaluate a certain augmentation by only considering a fixed architecture and
the increase or decrease in validation quality. However, this does not necessarily
result into the most efficient techniques, since a certain augmentation may not
increase validation accuracy but into less resources. Consequently better results
can be achieved by optimizing augmentation and neural architecture together,
which can be done by the methodology in Chapter 7 in combination with PSP.

138

9.3 Broader Impact and Future Directions

9.3.2 Advanced Modules

Advanced modules for DNNs are an another emerging techniques which can
significantly improve prediction quality. Such modules are commonly added to
standard architectures (i.e. ResNet, MobileNet) and include shuffling of feature
maps or attention techniques. Especially attention modules are used excessively
lately and exist is many different forms and variations. Again, the effectiveness
of such modules are evaluated by using a fixed architecture and considering only
the increase or decrease in validation quality. Using the proposed methodology
enables the evaluation of both, architecture and validation quality together. This
is a highly desirable goal, since different modules can lead to different DNN
architectures, which can not be identified by only evaluating validation quality.

139

Chapter 10

Conclusion

DNNs are a key technology nowadays and the main driving factor for many
recent performance boosts in AI applications. They prove particularly effective
when big amounts of data and ample hardware resources are available. The
hardware requirements in terms of memory and compute resources are the limiting
factor for their applicability in embedded systems. Such systems are handheld
or head-worn devices which characterize the future of consumer and industry
products.

Efficient ML models, hardware accelerators and software frameworks are of
fundamental importance, in order to enable such applications in mobile device.
This work presented and analyzed various techniques to improve these funda-
mental directions from an holistic view and considers them together instead of
separately. From ML perspective, hardware and software stacks are considered
for developing compression techniques and architectures. From software perspec-
tive, algorithms and libraries are developed and selected to adapt to model and
hardware demands. Last, hardware platforms are selected with respect to the
requirements of ML models and promising computing concepts (i.e. data-flow or
loop-back architecture).

The evaluation of various quantization techniques and data representations
showed that binarization greatly reduces memory and computation complexity,
however, causes severe accuracy degradation for most tasks. Ternary formats
significantly improve upon the accuracy of binarization while also inducing
implicitly large amounts of sparsity. Experiments using other precision formats
indicate that accuracy is more sensitive to activation than to weight quantization.
Furthermore, non-uniformly quantized weights are significantly more accurate

141

Conclusion

than their uniform counterpart but the implementation difficulty for inference
increases. Conservative formats, such as 8-bit integer and half-precision floating
point, usually do not result into accuracy degradation.

Unstructured sparsity patterns within DNNs can theoretically achieve ex-
tremely low-complex inference models, however, they do not map well onto parallel
hardware. The pruning framework PSP is able to adapt to the requirements of
(massively) parallel processors and creates structured sparse computation, tailored
to a specific hardware or software stack. Various experiments indicate different
potential with respect to structure granularity, task and over-parameterization
of the model.

Identifying efficient DNN design spaces and principles using the PSP frame-
work and architecture modifications discovered some interesting insights: dense
connectivity patterns achieve excellent computation and parameter efficiency,
however, require large activation memory and result into a high variance of
computation dimensions. Residual connectivity offers a good trade-off between
computation/parameter and activation efficiency and achieved highest inference
performance throughout this work. In addition, aggressive group convolutions
achieved excellent computation/parameter efficiency, however, these metrics
do not translate well to latency and throughput, since activation memory is
increased. The best performing models use either no or larger groups, which is
in contrast to architectures proposed in related literature.

All evaluated hardware platforms exhibit a certain potential with respect to
model architecture, data format and computation structure. The limited amount
of parallelism in CPUs and their high frequency enables efficient computations
of highly sparse models. Furthermore, using the RaS technique enables efficient
inference of highly sparse and aggressively quantized models in combination.
FPGAs excel through reconfigurable logic, enabling implementations of any data
formats and, consequently, suiting aggressively quantized models very well. In
addition, they allow for data-flow architecture which reduce off-chip accesses to a
minimum and result into high utilization of the processing units. The throughput
oriented technology behind GPUs are an excellent fit for DNNs in general and
can nowadays leverage structured-sparse computations as well as lower-precision
formats. Domain-specific accelerators can be specifically tailored to DNNs in
terms of data formats, operations and computational dimensions.

This work contributes a comprehensive study of ML techniques in the domain

142

of embedded system, considering the entire compute stack. It ranges from
high-level optimizations such as architecture search and compression to low-level
algorithmic and arithmetic implementations. This makes this work valuable to
hardware, software as well as ML engineers and researchers targeting the field
of embedded ML. In addition, this work motivates more research with a focus
on the entire software/hardware stack, which has been neglected in recent years.
Finally, several future directions are discussed which build on top of the gained
insights and methodologies discovered in this work.

143

Conclusion

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Dr. Holger
Fröning. I have been very fortunate to receive his guidance for the last years and
for the opportunity to work on such an interesting research topic. In each stage,
Holger gave me excellent advice, most generous support as well as sincere and
constructive feedback. I am deeply indebted to him for his continuous positive
encouragement and the various opportunities I had during the last years.

I would also like to thank my co-advisor, Professor Dr. Franz Pernkopf. I had
the privilege to have access to his professional expertise and invaluable advice.
Franz enabled me to collaborate with his group members Dr. Matthias Zöhrer
and Wolfgang Roth who contributed through their excellent research to this
work. The countless insightful discussions with them helped me bridging the gap
between hardware and deep learning research.

It has been a pleasure to work with my colleagues from Holger’s Computing
Systems Group. I would like to thank Andrea Seeger, Dr. Benjamin Klenk, Dr.
Alexander Matz, Dr. Felix Zahn, Lorenz Braun, Bernhard Klein and Vahdaneh
Kiani for their encouragement and help during the last years. Additionally,
I want to thank Andreas Melzer, Kevin Stehle and Hendrik Borras who also
contributed to this work with their master theses.

I sincerely thank my family and friends who supported me throughout this
exciting journey. Thank you for your patients, moral support and for always
believing in me.

I gratefully acknowledge funding by the German Research Foundation (DFG)
under the project number FR3273/1-1 and the Austrian Science Fund (FWF)
under the project number I2706-N31. I am also grateful to the Ruprecht-Karls
University Heidelberg and the Faculty for Mathematics and Computer Science
for the opportunity to pursue the doctorate and the Institute of Computer
Engineering for the opportunity to work in such an excellent research environment.

144

145

References

[1] G. Schindler, M. Mücke, and H. Fröning, “Linking application description
with efficient simd code generation for low-precision signed-integer gemm,”
in Euro-Par 2017: Parallel Processing Workshops, Cham: Springer Inter-
national Publishing, 2018, pp. 688–699, isbn: 978-3-319-75178-8 (cit. on
pp. 3, 35, 36, 38, 40).

[2] W. Roth, G. Schindler, M. Zöhrer, L. Pfeifenberger, R. Peharz, S. Tschi-
atschek, H. Fröning, F. Pernkopf, and Z. Ghahramani, “Resource-efficient
neural networks for embedded systems,” in ArXiv, 2020 (cit. on pp. 3, 21,
22, 24, 35).

[3] M. Zöhrer, L. Pfeifenberger, G. Schindler, H. Froning, and F. Pemkopf,
“Resource efficient deep eigenvector beamforming,” in 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
2018, pp. 3354–3358 (cit. on pp. 3, 35, 53).

[4] G. Schindler, M. Zöhrer, F. Pernkopf, and H. Fröning, “Towards efficient
forward propagation on resource-constrained systems,” in European Con-
ference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), 2018, pp. 426–442 (cit. on pp. 3,
58, 62, 64, 67–70).

[5] G. Schindler, W. Roth, F. Pernkopf, and H. Fröning, “N-ary quantization
for cnn model compression and inference acceleration,” in Openreview, 2018
(cit. on p. 3).

[6] ——, “Parameterized structured pruning for deep neural networks,” in 6th
International Conference on Machine Learning, Optimization, and Data
Science (LOD), 2020 (cit. on pp. 3, 86, 89, 90, 94, 96, 98, 99).

[7] K. Stehle, G. Schindler, and H. Fröning, “On the difficulty of designing
processor arrays for deep neural networks,” in Workshop on IoT, Edge, and
Mobile for Embedded Machine Learning (ITEM), collocated with ECML-
PKDD, 2020 (cit. on pp. 3, 107, 109).

[8] H. Robbins and S. Monro, “A stochastic approximation method,” The
Annals of Mathematical Statistics, 1951 (cit. on p. 10).

[9] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proceedings of the 32nd
International Conference on Machine Learning, 2015 (cit. on pp. 10, 76,
77, 80).

147

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” in Advances in Neural Information
Processing Systems (NIPS), 2012 (cit. on pp. 11, 30).

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations (ICLR), 2015 (cit. on p. 11).

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Conference on Computer Vision and Pattern Recognition (CVPR), 2015
(cit. on pp. 12, 29).

[13] M. Lin, Q. Chen, and S. Yan, “Network in network,” in International
Conference of Learning Represenation (ICLR), 2014 (cit. on pp. 12, 29).

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016 (cit. on pp. 12, 29, 77, 121).

[15] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 2261–2269 (cit. on pp. 12, 29, 49,
121).

[16] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,” CoRR,
2013 (cit. on pp. 13, 24).

[17] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading
digits in natural images with unsupervised feature learning,” Advances in
Neural Information Processing Systems (NIPS), 2011 (cit. on p. 14).

[18] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 2012 (cit. on p. 14).

[19] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “ImageNet: A large-
scale hierarchical image database,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2009 (cit. on p. 14).

[20] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and
A. R. LeBlanc, “Design of ion-implanted mosfet’s with very small physical
dimensions,” IEEE Journal of Solid-State Circuits, 1974 (cit. on p. 15).

[21] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu, L.
Ceze, C. Guestrin, and A. Krishnamurthy, “TVM: end-to-end optimization
stack for deep learning,” CoRR, 2018 (cit. on p. 19).

[22] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2017 (cit. on pp. 19, 47,
51).

148

[23] M. Höhfeld and S. E. Fahlman, “Learning with limited numerical precision
using the cascade-correlation algorithm,” IEEE Trans. Neural Networks,
1992 (cit. on p. 23).

[24] ——, “Probabilistic rounding in neural network learning with limited
precision,” Neurocomputing, 1992 (cit. on p. 23).

[25] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in International Conference on
Machine Learning (ICML), 2015 (cit. on p. 23).

[26] M. Courbariaux, Y. Bengio, and J. David, “Training deep neural networks
with low precision multiplications,” in International Conference on Learning
Representations (ICLR) Workshop, vol. abs/1412.7024, 2015 (cit. on p. 23).

[27] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural networks
with few multiplications,” CoRR, vol. abs/1510.03009, 2015 (cit. on p. 24).

[28] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantization
of deep convolutional networks,” in International Conference on Machine
Learning (ICML), 2016, pp. 2849–2858 (cit. on p. 24).

[29] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in Advances
in Neural Information Processing Systems (NIPS), 2015 (cit. on pp. 24,
49).

[30] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bina-
rized neural networks,” in Proceedings of the 30th International Conference
on Neural Information Processing Systems, 2016 (cit. on pp. 25, 42, 46,
49).

[31] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” CoRR,
vol. abs/1605.04711, 2016 (cit. on p. 25).

[32] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
International Conference on Learning Representations (ICLR), 2017 (cit.
on pp. 25, 49, 58, 71, 72, 74, 75, 77).

[33] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
European Conference on Computer Vision (ECCV), 2016 (cit. on p. 25).

[34] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolutional
neural network,” in Neural Information Processing Systems (NIPS), 2017
(cit. on p. 25).

[35] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neural networks
using logarithmic data representation,” CoRR, vol. abs/1603.01025, 2016
(cit. on p. 25).

[36] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low precision
by half-wave Gaussian quantization,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2017 (cit. on pp. 25, 76).

149

[37] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quan-
tization: Towards lossless cnns with low-precision weights,” in International
Conference on Learning Representations (ICLR), 2017 (cit. on p. 25).

[38] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2018 (cit. on p. 25).

[39] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K. Cheng, “Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational
capability and advanced training algorithm,” in European Conference on
Computer Vision (ECCV), 2018 (cit. on p. 25).

[40] D. Zhang, J. Yang, D. Ye, and G. Hua, “Lq-nets: Learned quantization
for highly accurate and compact deep neural networks,” in European
Conference on Computer Vision (ECCV), 2018, pp. 373–390 (cit. on pp. 25,
49, 50).

[41] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients,”
CoRR, 2016 (cit. on pp. 26, 48, 49).

[42] S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with inte-
gers in deep neural networks,” in International Conference on Learning
Representations (ICLR), 2018 (cit. on p. 26).

[43] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019 (cit. on p. 26).

[44] S. Uhlich, L. Mauch, F. Cardinaux, K. Yoshiyama, J. A. Garcia, S. Tiede-
mann, T. Kemp, and A. Nakamura, “Mixed precision dnns: All you need
is a good parametrization,” in International Conference on Learning Rep-
resentations, 2020 (cit. on p. 26).

[45] Y. Cai, Z. Yao, Z. Dong, A. Gholami, M. W. Mahoney, and K. Keutzer,
“Zeroq: A novel zero shot quantization framework,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020
(cit. on p. 26).

[46] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein, “Training quan-
tized nets: A deeper understanding,” in Advances in Neural Information
Processing Systems (NIPS), 2017 (cit. on p. 26).

[47] A. G. Anderson and C. P. Berg, “The high-dimensional geometry of binary
neural networks,” in International Conference on Learning Representations
(ICLR), 2018 (cit. on p. 26).

[48] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systems (NIPS), 1989 (cit. on
p. 27).

150

[49] B. Hassibi and D. G. Stork, “Second order derivatives for network pruning:
Optimal brain surgeon,” in Advances in Neural Information Processing
Systems (NIPS), 1992 (cit. on p. 27).

[50] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural network,” in Advances in Neural Information
Processing Systems (NIPS), 2015 (cit. on p. 27).

[51] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
in International Conference on Learning Representations (ICLR), 2016
(cit. on pp. 27, 30, 70).

[52] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
DNNs,” in Advances in Neural Information Processing Systems (NIPS),
2016 (cit. on p. 27).

[53] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in Neural Information
Processing Systems (NIPS), 2016 (cit. on p. 27).

[54] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learn-
ing efficient convolutional networks through network slimming,” CoRR,
vol. abs/1708.06519, 2017. arXiv: 1708.06519. [Online]. Available: http:
//arxiv.org/abs/1708.06519 (cit. on p. 28).

[55] Z. Huang and N. Wang, “Data-driven sparse structure selection for deep
neural networks,” in European Conference on Computer Vision (ECCV),
2018 (cit. on p. 28).

[56] A. Gordon, E. Eban, O. Nachum, B. Chen, T. Yang, and E. Choi, “Mor-
phnet: Fast & simple resource-constrained structure learning of deep net-
works,” IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018 (cit. on p. 28).

[57] J. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for deep
neural network compression,” CoRR, vol. abs/1707.06342, 2017. arXiv:
1707.06342. [Online]. Available: http://arxiv.org/abs/1707.06342 (cit. on
p. 28).

[58] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural net-
works through l_0 regularization,” in International Conference on Learning
Representations (ICLR), 2018 (cit. on p. 28).

[59] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-
softmax,” in International Conference on Learning Representations (ICLR),
2017 (cit. on p. 28).

[60] Y. Li and S. Ji, “L0-ARM: Network sparsification via stochastic binary
optimization,” in European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML PKDD), 2019
(cit. on p. 28).

151

http://arxiv.org/abs/1708.06519
http://arxiv.org/abs/1708.06519
http://arxiv.org/abs/1708.06519
http://arxiv.org/abs/1707.06342
http://arxiv.org/abs/1707.06342

[61] M. Yin and M. Zhou, “ARM: augment-reinforce-merge gradient for stochas-
tic binary networks,” in International Conference on Learning Representa-
tions (ICLR), 2019 (cit. on p. 28).

[62] Y. Aflalo, A. Noy, M. Lin, I. Friedman, and L. Zelnik, Knapsack pruning
with inner distillation, 2020. arXiv: 2002.08258 [cs.LG] (cit. on p. 28).

[63] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K.
Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and <1mb model size,” CoRR, vol. abs/1602.07360, 2016 (cit. on p. 29).

[64] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2016 (cit. on p. 30).

[65] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, 2017 (cit. on pp. 30, 121).

[66] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2018 (cit. on pp. 30,
121).

[67] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2017 (cit. on pp. 30, 121).

[68] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár, “De-
signing network design spaces,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2020 (cit. on pp. 30, 32, 114, 121, 124).

[69] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2018 (cit. on p. 31).

[70] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in International Conference on Learning Representations (ICLR),
2017 (cit. on p. 31).

[71] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2018 (cit. on p. 31).

[72] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “Mnasnet:
Platform-aware neural architecture search for mobile,” 2019 (cit. on p. 32).

[73] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture search
on target task and hardware,” in International Conference on Learning
Representations (ICLR), 2019 (cit. on p. 32).

152

http://arxiv.org/abs/2002.08258

[74] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J.
Liu, and D. Marculescu, “Single-path NAS: designing hardware-efficient
convnets in less than 4 hours,” in European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD), 2019 (cit. on p. 32).

[75] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolu-
tional neural networks,” in International Conference on Machine Learning
(ICML), 2019 (cit. on p. 32).

[76] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of
network pruning,” in International Conference on Learning Representations
(ICLR), 2019 (cit. on p. 33).

[77] ARM, “Cortex-a9 neon media - technical reference manual,” Tech. Rep.,
2008 (cit. on p. 44).

[78] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third ’CHiME’
speech separation and recognition challenge: Dataset, task and baselines,”
in IEEE 2015 Automatic Speech Recognition and Understanding Workshop
(ASRU), 2015 (cit. on p. 53).

[79] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“Eie: Efficient inference engine on compressed deep neural network,” in
Proceedings of the 43rd International Symposium on Computer Architecture
(ISCA), 2016 (cit. on p. 71).

[80] N. V. Smirnov and I. V. Dunin-Barkovskĭı, Mathematische Statistik in der
Technik: ser. Mathematik für Naturwissenschaften und Technik. Deutscher
Verlag der Wissenschaften, 1963 (cit. on p. 76).

[81] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009 (cit. on p. 77).

[82] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with recurrent
neural networks,” in Proceedings of the 23rd International Conference on
Machine Learning, 2006 (cit. on p. 80).

[83] J. Ba, J. Kiros, and G. Hinton, “Layer normalization,” 2016 (cit. on p. 81).
[84] H. Zou and T. Hastie, “Regularization and variable selection via the elastic

net (vol b 67, pg 301, 2005),” Journal of the Royal Statistical Society Series
B, 2005 (cit. on p. 117).

[85] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proceedings
of the British Machine Vision Conference (BMVC), 2016 (cit. on p. 118).

[86] Gustafson and Yonemoto, “Beating floating point at its own game: Posit
arithmetic,” Supercomput. Front. Innov.: Int. J., 2017 (cit. on p. 134).

153

[87] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems (NIPS), I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.,
Curran Associates, Inc., 2017 (cit. on p. 136).

[88] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and
N. Houlsby, “An image is worth 16x16 words: Transformers for image recog-
nition at scale,” in International Conference on Learning Representations,
2021 (cit. on p. 137).

[89] H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse attention archi-
tecture with cascade token and head pruning,” in International Symposium
on High-Performance Computer Architecture (HPCA), 2020 (cit. on p. 137).

[90] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolu-
tional neural networks,” in International Conference on Machine Learning
(ICML), 2019 (cit. on p. 137).

154

	Table of contents
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Datasets
	2.3 Hardware for Deep Learning
	2.4 Software for Deep Learning

	3 Resource-Efficient Neural Networks
	3.1 Quantized Neural Networks
	3.2 Pruning Networks
	3.3 Architecture Design

	4 Quantized Inference
	4.1 Low-Precision Signed-Integer GEMM
	4.2 QNNs on CPUs
	4.3 QNNs on FPGA
	4.4 QNNs on GPU
	4.5 Resource Efficient Deep Eigenvector Beamforming
	4.6 Summary

	5 Reduce-and-Scale
	5.1 Quantization
	5.2 Inference
	5.3 Compression
	5.4 Evaluation
	5.5 N-Ary Quantization
	5.6 Summary

	6 Parameterized Structured Pruning
	6.1 Parameterization
	6.2 Regularization
	6.3 Pruning
	6.4 Hardware-Friendly Structures
	6.5 Experiments
	6.6 Summary

	7 Architecture Search
	7.1 Design Space Exploration
	7.2 Evaluating the Efficiency of Building Blocks through Camuy
	7.3 Sigmoidal Residuals
	7.4 Structure definitions
	7.5 Elastic-net regularization
	7.6 Evaluation
	7.7 Summary

	8 Comparing Compression Techniques on Hardware
	9 Discussion
	9.1 Potential and Limitations of Compression
	9.2 Transferability of Insights
	9.3 Broader Impact and Future Directions

	10 Conclusion
	References

