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SUMMARY  
Thymopoiesis is a process by which bone-marrow-derived lymphoid progenitor cells migrate 

to the thymus and undergo multi-step differentiation into mature CD4+ or CD8+ T-

lymphocytes. The entire process is tightly regulated and governed by the 

transcriptional/epigenetic changes necessary for lineage commitment and cellular identity. 

Genetic lesions such as somatically acquired point mutations or chromosomal 

rearrangements lead to differentiation blockade resulting in hematological malignancy 

known as T-cell acute lymphoblastic leukemia (T-ALL). While the thymopoiesis and T-ALL are 

well characterized by transcriptional studies, high-resolution mapping of the epigenetic 

changes is still lacking.  

DNA methylation (DNAm) changes involving the addition of de-novo, or the erasure of 

existing methyl groups from the cytosine nucleotide, are dynamic during cellular 

differentiation and form the cell-type-specific signatures. In this doctoral thesis, DNAm 

dynamics during the human thymopoiesis is studied by whole-genome bisulfite sequencing 

of seven distinct intra-thymic cell types. DNAm changes during the thymopoiesis are 

characterized by the uni-directional and irreversible loss methylation primarily occurring at 

the transcription factor binding sites critical for T-cell lineage commitment (e.g., NOTCH1 and 

MYB) and T-cell receptor rearrangements. A DNAm atlas of thymopoiesis is established by 

identifying 381 de-novo differentially methylated regions (tDMRs) that are highly conserved 

across cell-types originating from the thymic lineage. The tDMRs can recapitulate the in-silico 

ontogeny of T-cell differentiation and are validated in an independent dataset. Remarkably, 

combined analysis with bone-marrow-derived hematopoietic progenitors and peripheral 

derived mature blood cells shows the hypermethylation of tDMRs among non-lymphoid cell 

types suggesting the epigenetic silencing of pathways necessary for thymic lineage 

commitment.  

To further highlight the role of tDMRs in disease development, a combined array-centric 

analysis of intra-thymic cell types and a well-defined cohort of 143 primary adult T-ALLs was 

performed. Interestingly, DNAm classified the T-ALL cohort into five distinct subtypes (C1-C5) 

with characteristic levels of DNAm (C1 lowest level and C5 the highest). Moreover, each 
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subtype is correlated with a specific somatic event, including a novel adult T-ALL specific 

subtype with co-occurring DNMT3A/IDH2 mutations (C1), and well known transcriptionally 

deregulated subtypes resulting from TAL1 (C2), TLX3 (C3), TLX1/in cis-HOXA9 (C4), or in trans-

HOXA9 (C5) overexpression. Utilizing tDMRs as the blueprint, maturation arrest stages of T-

ALL subtypes are established, revealing a hierarchical ordering, with C1 and C5 arising earlier 

during the T-cell development followed by TLX3/1 overexpression (C3, C4) and TAL1 

deregulation (C5). Although tDMRs highlight the ontogeny of T-ALL subtypes, global DNAm 

levels did not correlate with the maturation arrest stages suggesting a non-linear association 

of DNAm and differentiation blockade. Subsequent integrative analysis with epigenetic marks 

associated with active transcription (H3K27ac and H3K4me1) revealed the hypomethylation 

of pathogenic enhancer elements. Importantly, careful survival analysis identified an 

unexpected, clinically aggressive hypermethylated subtype (C5) that can be targeted with DNA 

hypomethylating agents. Finally, using machine learning models, a 79 CpG classifier was 

developed for de-novo classification of newly diagnosed adult T-ALLs.  

In summary, results from the comprehensive analysis of DNAm changes during human 

thymopoiesis and the subsequent modifications leading to T-ALL provide meaningful insights 

into the role of DNAm in maintaining the cellular identity and disease development. 

Furthermore, the identification of clinically actionable hypermethylated T-ALL subtype paves 

the way for targeted epigenetic therapies.  
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ZUSAMMENFASSUNG 
Die Thymopoese ist ein Prozess, bei dem aus dem Knochenmark stammende lymphoide 

Vorläuferzellen in den Thymus wandern und eine mehrstufige Differenzierung zu reifen CD4+ 

oder CD8+ T-Lymphozyten durchlaufen. Der gesamte Prozess ist streng reguliert und wird von 

den transkriptionellen/epigenetischen Veränderungen gesteuert, die für das Lineage 

Commitment und die zelluläre Identität notwendig sind. Genetische Läsionen wie somatisch 

erworbene Punktmutationen oder chromosomale Rearrangements führen zu einer Blockade 

der Differenzierung und damit zu einer hämatologischen Malignität, die als akute 

lymphoblastische T-Zell-Leukämie (T-ALL) bekannt ist. Während die Thymopoese und die T-

ALL durch transkriptionelle Studien gut charakterisiert sind, fehlt es noch an einer 

hochauflösenden Kartierung der epigenetischen Veränderungen.  

DNA-Methylierungs (DNAm)-Veränderungen, die das Hinzufügen von de-novo oder das 

Löschen bestehender Methylgruppen vom Cytosin-Nukleotid beinhalten, sind während der 

zellulären Differenzierung dynamisch und bilden die zelltypspezifischen Signaturen. In dieser 

Dissertation wird die DNAm-Dynamik während der menschlichen Thymopoese durch 

Ganzgenom-Bisulfit-Sequenzierung von sieben verschiedenen intra-thymischen Zelltypen 

untersucht. DNAm-Veränderungen während der Thymopoese sind durch uni-direktionale und 

irreversible Verlust-Methylierung charakterisiert, die hauptsächlich an den 

Transkriptionsfaktor-Bindungsstellen auftritt, die für die T-Zell-Linienbindung (z.B. NOTCH1 

und MYB) und T-Zell-Rezeptor-Rearrangements entscheidend sind. Ein DNAm-Atlas der 

Thymopoese wird durch die Identifizierung von 381 de-novo differentiell methylierten 

Regionen (tDMRs) erstellt, die über Zelltypen, die aus der thymischen Abstammung stammen, 

hoch konserviert sind. Die tDMRs können die in-silico Ontogenie der T-Zell-Differenzierung 

rekapitulieren und werden in einem unabhängigen Datensatz validiert. 

Bemerkenswerterweise zeigt die kombinierte Analyse mit aus dem Knochenmark 

stammenden hämatopoetischen Vorläufern und aus der Peripherie stammenden reifen 

Blutzellen die Hypermethylierung der tDMRs unter den nicht-lymphoiden Zelltypen, was auf 

die epigenetische Stilllegung von Signalwegen hindeutet, die für die thymische Abstammung 

notwendig sind.  
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Um die Rolle der tDMRs bei der Krankheitsentwicklung weiter zu beleuchten, wurde eine 

kombinierte Array-zentrierte Analyse von intra-thymischen Zelltypen und einer gut 

definierten Kohorte von 143 primären erwachsenen T-ALLs durchgeführt. Interessanterweise 

klassifizierte DNAm die T-ALL-Kohorte in fünf verschiedene Subtypen (C1-C5) mit 

charakteristischen DNAm-Werten (C1 der niedrigste Wert und C5 der höchste). Darüber 

hinaus ist jeder Subtyp mit einem spezifischen somatischen Ereignis korreliert, einschließlich 

eines neuen erwachsenen T-ALL-spezifischen Subtyps mit gleichzeitig auftretenden 

DNMT3A/IDH2-Mutationen (C1) und gut bekannten transkriptionell deregulierten Subtypen, 

die aus TAL1 (C2), TLX3 (C3), TLX1/in cis-HOXA9 (C4) oder in trans-HOXA9 (C5) Überexpression 

resultieren. Unter Verwendung der tDMRs als Blaupause werden Reifungsarrest-Stadien von 

T-ALL-Subtypen etabliert, die eine hierarchische Anordnung aufzeigen, wobei C1 und C5 früher 

während der T-Zell-Entwicklung auftreten, gefolgt von TLX3/1-Überexpression (C3, C4) und 

TAL1-Deregulation (C5). Obwohl die tDMRs die Ontogenese der T-ALL-Subtypen hervorheben, 

korrelierten die globalen DNAm-Spiegel nicht mit den Stadien des Reifungsstopps, was auf 

eine nicht-lineare Assoziation von DNAm und Differenzierungsblockade hindeutet. Eine 

anschließende integrative Analyse mit epigenetischen Markierungen, die mit aktiver 

Transkription assoziiert sind (H3K27ac und H3K4me1), zeigte die Hypomethylierung von 

pathogenen Enhancer-Elementen. Wichtig ist, dass eine sorgfältige Überlebensanalyse einen 

unerwarteten, klinisch aggressiven hypermethylierten Subtyp (C5) identifizierte, der mit DNA-

hypomethylierenden Wirkstoffen gezielt behandelt werden kann. Schließlich wurde mit Hilfe 

von Machine-Learning-Modellen ein 79 CpG-Klassifikator für die de-novo-Klassifikation von 

neu diagnostizierten erwachsenen T-ALLs entwickelt.  

Zusammenfassend lässt sich sagen, dass die Ergebnisse der umfassenden Analyse der DNAm-

Veränderungen während der menschlichen Thymopoese und der nachfolgenden 

Modifikationen, die zu T-ALL führen, aussagekräftige Einblicke in die Rolle der DNAm bei der 

Aufrechterhaltung der zellulären Identität und der Krankheitsentwicklung liefern. Darüber 

hinaus ebnet die Identifizierung von klinisch wirksamen hypermethylierten T-ALL-Subtypen 

den Weg für gezielte epigenetische Therapien.  
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1 INTRODUCTION 

1.1 Thymopoiesis 

1.1.1 Immune System 

The human immune system comprises two constituents: the innate and the adaptive immune 

system, originating from the hematopoiesis (Figure 1). The innate immune system is 

generated by the hematopoietic system's myeloid compartment and consists of monocytes, 

neutrophils, eosinophils, basophils, and dendritic cells. It forms the hosts' immune system's 

primary defense and is responsible for immediate response against invading pathogens. The 

innate immune system is restricted in identifying the pathogens and limited by the repertoire 

of receptors, primarily consisting of conserved domains across a large group of pathogens. 

Recognition of microorganisms by the innate compartment utilizes special receptors known 

as pattern recognition receptors, which further activates defense mechanisms such as 

phagocytosis (by macrophages and neutrophils) or the secretion of interferons (Akira et al. 

2006). Of note, the innate immune system's defense mechanism is non-specific and often 

affects the host homeostasis (such as inflammation and fever). 

On the contrary, the adaptive immune system is highly specific and mediated by the 

specialized cells called lymphocytes originating from the hematopoietic system's lymphoid 

lineage. Unlike innate immunity, the adaptive immune system can recognize a wide array of 

pathogens and can result in long-term immunity against the same pathogen due to its ability 

to memorize. The adaptive immune system's diversity is facilitated by the somatic 

recombination of gene segments resulting in highly target specific receptors.  
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Figure 1. Comparison of Innate and Adaptive immune system.  

Left panel shows cell types involved in innate immunity whereas, right panel shows brief mode of action 
for B-lymphocytes and T-lymphocytes. Created with BioRender.com 

 

Broadly, lymphocytes from the adaptive immune system consisting of B-cells and T-cells, both 

of which serve a specific purpose and significantly differ in action mode. B-cells originate from 

bone marrow (BM) and form the humoral element of the adaptive immunity. B-cells 

themselves do not interact with the invading pathogens but generate antibodies that can bind 

to the specific antigens and neutralize the invading pathogens. Moreover, upon antigen 

recognition, a subset of B-cells differentiates into memory B-cells, recognizing and rapidly 

acting against the repeated stimuli.  

T-cells, however, originate from BM-derived lymphoid progenitors, which further undergo 

maturation in the Thymus (Schmitt et al. 1995). T-cell maturation in the thymus is a 

hierarchical process and involves positive selection – a process by which self-reacting T-cells 

are eliminated. A detailed process of T-cell maturation is discussed in subsequent chapters. 

Successfully differentiating T-cells leave the thymus and enter the periphery. Peripheral T-

cells are under constant surveillance and are activated upon interacting with the antigens 

presented by antigen-presenting cells (APC). Upon activation, T-cells undergo proliferation 

resulting in a clonal population of effector T-cells which can identify and eliminate the infected 

cells carrying the surface foreign antigen.  
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1.1.2 Thymus: structure and function 

Anatomically, the human thymus is a bi-lobed, granulated organ located above the heart. 

Historically, the thymus had been considered a vestigial organ with no functional properties 

and was observed to undergo involution - a process by which an organ loses its tissue mass 

along with age (Geenen 2017). Until the 1960’s when several experiments showed that 

thymectomy in neo-natal mice was fatal, and often the progeny lacked the proper functioning 

immune system. Further experiments over the years proved that the thymus is a critical 

immune organ and provides a required niche for developing a particular subset of immune 

cells, which was later identified as T-cells (Miller 2020). 

The thymus is a capsulated structure consisting of an outer cortical layer and the medulla's 

inner mass. Both cortex and medulla have a unique role in T-cell development and are 

distinguished by the sub-capsular zone (Figure 2). Specialized epithelial cells known as thymic 

epithelial cells (TECs) densely pack the tissue forming a mesh-like structure that allows 

maturing lymphocytes to move between the thymic compartments. The inner medulla region 

also houses APCs called dendritic cells, critical for modulating self-reacting T-cells. 

Lymphocytes are abundant in the cortex, whereas; dendritic cells significantly occur within 

the medulla.  

 

 

Figure 2. The anatomical structure of the human thymus. 

The thymus is a bi-lobed structure located above the heart. The thymus is a capsulated tissue consisting of 
an outer cortical layer and an inner mass called the medulla. Created with BioRender.com 
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Altogether, the thymus is a complex organ that provides the necessary niche for T-cell 

development while restricting the formation of intolerant and self-reactive immune cells. The 

overall process by which the progenitor cells migrating from the bone marrow enter the 

thymus, undergo multi-stage differentiation and selection to form functional and immune-

competent T-cells is known as thymopoiesis. 

1.1.3 Developmental stages of αβ T-cells 

Classical hematopoiesis involves specialized, self-renewing stem cells known as 

Hematopoietic Stem Cells (HSCs) – that undergo hierarchical and uni-directional 

differentiation process resulting in the formation of lineage-restricted cell types. Broadly, 

hematopoiesis gives rise to the Myeloid and Lymphoid lineages, which form the entire 

lymphatic system (Kondo et al.). Myeloid lineage constitutes cell types responsible for oxygen 

transportation (by erythrocytes), blood clotting (by platelet producing megakaryocytes), and 

the innate immune system. Lymphoid lineage involves cell types responsible for the adaptive 

immune compartment, namely, antibody-secreting B-cells and cytotoxic T-cells. While the 

formation of the myeloid derived hematopoietic cell types occurs in the bone marrow itself, 

mature T-cells develop in the thymus. Progenitor cells primed towards T-cells (known as TCPs) 

leave the bone marrow and migrate to the thymus via the lymphatic system. Migration of 

TCPs from BM to the thymus is guided by the signaling molecule Interleukin-7 (IL7) and 

depends on the expression of the IL7 receptor by TCPs. 
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Figure 3. Intrathymic T-cell development. 

Lymphoid progenitor cells primed towards T-cell development migrate from bone marrow and enter the 
thymus through the cortico-medullary junction. Early CD34+ thymic precursor (ETP) cells lacking CD4- and 

CD8- receptors commit to T-lineage in subsequent stages. Lineage commitment is proceeded by 
expressing T-cell receptors resulting in double-positive (DP; CD4+ CD8+ CD3+) cells. Depending on their 

interaction with class-1 MHC or class-2 MHC, DP cells differentiate into single-positive CD3+ or CD8+ cells. 
SP cells successfully surviving the selection, migrate to the medulla and leave the thymus. Created with 

BioRender.com 

 

Successfully responding TCPs enter the thymus through the outer cortex layer and are known 

as Early Thymic Progenitor cells (ETPs). ETPs then undergo a cascade of uni-directional 

developmental changes characterized by the expression of cell surface receptors and 

transcriptional profiles. These events are tightly regulated and occur in an orderly manner, 

ultimately resulting in fully functional CD4+ helper and CD8+ cytotoxic T-cells (Koch and 

Radtke). ETPs often show the expression of CD34 and still retain the stem cell-like properties. 

Moreover, ETPs also lack CD4 and CD8 markers (known as double negative or DN cells). In 

general, critical stages of development of human αβ T-cells involves differentiation of ETP 

cells (CD34+ CD1A- ) into immature single-positive cells (ISPs; CD34- CD1A+ CD4+ CD8- CD3- ), 

then into double-positive (DP; CD4+ CD8+ CD3+) cells, and finally forming a mature single-

positive (SP; CD4+ CD8- CD3+ , CD4- CD8+ CD3+ ) cells (Figure 3). 
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It is worth noting that the ETP cells, albeit migrating to the thymus, still retain the capacity to 

give rise to non-T-cell populations such as B-cells and some of the myeloid cells (Bell and 

Bhandoola 2008). During the subsequent stages, ETPs lose their multi-potency and commit 

towards T lineage in a process often referred to as lineage commitment. T-cell lineage 

commitment involves activating specific cellular signaling pathways and transcription factors 

(TFs), critical for T-cell development. A receptor-ligand-driven NOTCH pathway plays a crucial 

role in T-cell lineage commitment (Radtke et al. 1999). Briefly, NOTCH receptors expressed by 

the early lymphocytes interact with the delta-like protein 4 (DLL4) ligands found on the 

cortical TECs, thereby initiating the NOTCH signaling system. The binding of NOTCH to DLL4 

results in the cleavage and migration of intracellular NOTCH (ICN) into the nucleus, further 

activating the target genes necessary for T-cell development (Schmitt and Zuniga-Pflucker 

2002). Additionally, downstream expression of key transcription factors such as GATA3, TCF7, 

BCL11B, E2A, HEB, and RUNX form regulatory networks to facilitate T-cell development 

(Hosoya et al. 2009; Ashworth et al. 2010). 

1.2 T-cell Acute Lymphoblastic Leukemia 

1.2.1 Molecular biology and pathogenesis of T-ALL 

T-cell Acute Lymphoblastic Leukemia (T-ALL) is a sub-type of lymphoblastic leukemia 

characterized by T-cell differentiation defects resulting in the formation and accumulation of 

immature, partially differentiated, and non-functional thymocytes (Raetz and Teachey 2016). 

Clinically, T-ALL patients show massive infiltration of bone marrow with immature 

thymocytes, enlarged thymus, increased white blood cells, neutropenia, anemia, and 

thrombocytopenia (You et al. 2015). T-ALL is common among children (10-15% of all ALLs) 

and young adults (20% of all ALLs) (Hunger and Mullighan 2015; Litzow and Ferrando 2015). 

Recent advances in the intense chemotherapy regimens have resulted in high cure rates for 

T-ALL (up to 80% for pediatric T-ALL and 50% for adults) (Pui et al. 2008; Stock et al. 2013). 

However, a substantial portion of patients displays clinical relapse with resistance to further 

therapy. 

The primary pathogenesis involves somatically acquired genetic lesions such as point 

mutations, copy number aberrations, and chromosomal translocations. Earlier work by 

several groups identified activating mutations in NOTCH1 and its downstream target FBXW7 
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in ca. 60% of the T-ALL cases (Weng et al. 2004). Mutations in NOTCH pathways now serve as 

T-ALL hallmarks and tend to co-occur with deletions in CDKN2A. However, recent genomic 

studies backed by massively parallel sequencing have allowed further comprehensive 

characterization of the disease, thereby identifying somatic mutations in over 100 driver 

genes affecting several previously overlooked pathways. Especially genes involved in PI3K-

AKT (29%), JAK-STAT (5%), Ras (4%), Ribosomal (3%), Ubiquitination (9%), and RNA processing 

(9%) were identified (Liu et al. 2017). 

In addition to the somatically acquired mutations, T-ALL is characterized by chromosomal 

translocations, resulting in the expression of undesired transcription factors which impede 

the T-cell development. Some of the critical transcription factors that are over-expressed in 

T-ALL include basic helix-loop-helix (bHLH) family members (TAL1, TAL2, LYL1) (Powell-Jones 

et al. 1976; Begley et al. 1989), LMO genes (LMO1, LMO2) (McGuire et al. 1989; Kennedy et 

al. 1991; Royer-Pokora et al. 1991), and developmental associated HOX genes (HOXA9, 

HOXA10, TLX1, TLX2, and TLX3) (Soulier et al. 2005). The most common mechanism of 

overexpression of these transcription factors involves enhancer hijacking, placing a gene 

under the influence of strongly expressed enhancers. In T-ALL, transcription factors are 

identified most commonly under the T-cell developmental associated genes (e.g., TCR-α or 

TCR-δ enhancer). In addition to the enhancer hijacking, a small portion of T-ALL patients show 

overexpression of TFs mediated by mutations in upstream non-coding regions, which creates 

binding pockets for its target genes by acting as neo-enhancers (e.g., de-novo MYB binding 

sites created by promoter mutations in TAL1) (Mansour et al. 2014).  

1.2.2 Oncogenic transcription factors in T-ALL 

bHLH transcription factors 

Aberrantly expressed bHLH family transcription factors include TAL1, TAL2, and LYL genes 

(LYL1/LYL2). TAL1 is deregulated in over 25% of T-ALL while the rest are expressed in less than 

2% of T-ALL. A common overexpression mechanism involves chromosomal rearrangements, 

which place TAL1 near the regulatory regions associated with T-cell developmental specific 

genes TCRα and TCR-δ (Begley et al. 1989; Bernard et al. 1990; Chen et al. 1990). Besides, 

mutations in upstream regions of TAL1 are shown to create binding sites for MYB 

transcription factors leading to the monoallelic expression of TAL1 (Mansour et al. 2014). 

Mechanistically, conditional expression of TAL1 in T-cells leads to leukemic transformation in 
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mice models (Condorelli et al. 1996). Moreover, TAL1 forms a regulatory circuit with RUNX1, 

GATA3, forming a feed-forward loop that drives the leukemic oncogenic programs (Sanda et 

al. 2012). TAL1 deregulated T-ALLs often occur at the later stage of T-cell development and 

are associated with a poor prognosis (Sanda and Leong 2017). Epigenetically, DNA 

methylation (DNAm) based studies have shown TAL1 deregulation leads to hypomethylated 

CpG islands and resembles normal thymic cell types (Touzart et al. 2020). 

HOX family transcription factors 

HOX family genes are well described in Drosophila as the associated developmental genes 

involved in body segmentation and body parts formation (Garcia-Fernandez 2005; Pearson et 

al. 2005). Similar to TAL1, chromosomal translocations place the cluster of HOX genes 

(HOXA9/HOXA10) near the regulatory genes associated with the TCR-α/TCR-δ genes leading 

to its overexpression (Soulier et al. 2005). HOXA genes are aberrantly expressed in about 3% 

of the T-ALL and are related to poor outcomes. Developmentally, HOXA deregulation is 

characteristic of ETP-ALL and occurs earlier during the T-cell development (Soulier et al. 2005). 

In addition to HOXA19/10, TLX1/3 are the well-known deregulated HOX family genes 

frequently overexpressed in T-ALL. TLX1 and TLX3 expression also show distinct enrichment 

among pediatric and adult T-ALL, with TLX1 being more frequent in adult T-ALL (25%), 

whereas TLX3 is more frequent in pediatric samples (25%) (Ferrando et al. 2004). Moreover, 

TLX3 overexpression is driven by translocations placing the gene near the BCL11B gene, 

whereas TLX1 is placed near TCR-δ enhancers (Bernard et al. 2001). Clinically, TLX1/3 positive 

patients show a better prognosis and overall survival (De Keersmaecker and Ferrando 2011). 

Moreover, gene expression studies have identified a standard set of genes and pathways 

altered in both the subgroups suggesting a traditional mode of action (Della Gatta et al. 2012). 

Developmentally, TLX1/3 deregulation occurs post-T-cell commitment stage of T-cell 

development. 

1.2.3 T-ALL classification 

Broadly, T-ALL is classified based on the oncogenic TF expression or immunophenotypes, both 

of which reflect the T-cell maturation arrest stages. In particular, both arrays and sequencing-

based gene expression studies have observed sample grouping according to the expression 

of oncogenic TFs with subtype-specific gene expression signatures (Ferrando et al. 2002; Chen 
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et al. 2018b). TF-based oncogenic subgroups also form distinct risk categories that reflect the 

therapeutic response and clinical outcomes (Figure 4). 

 

 

Figure 4. Gene expression-based distinct molecular subgroups of T-ALL. 

Early T-cell progenitor (ETP) ALLs arise much early during the T-cell development and show the expression 
of CD34. ETP ALLs carry genetic aberrations leading to the expression of HOXA. Early cortical T-ALL does 

not show expression of CD34 and express TLX1/TLX3. Late cortical T-ALL shows high TCR and express 
bHLH family TF such as TAL and LMO genes. Created with BioRender.com 

 

T-ALLs with early maturation arrest during T-cell development are often referred to as ETP-

ALL and are known to be clinically aggressive (Coustan-Smith et al. 2009). ETP-ALLs show gene 

expression signature similar to myeloid progenitors and often carry less frequent mutations 

in NOTCH1. Besides, mutations in myeloid-like genes such as DNMT3A, RUNX, RAS, IDH are 

found in ETP-ALL (Van Vlierberghe et al. 2013). On the contrary, T-ALLs with maturation arrest 

during the early cortical stage of T-cell development show overexpression of TLX proteins 

(TLX1/TLX3) and are clinically responsive. Studies have indicated that the overall survival of 

TLX deregulated T-ALLs is significantly higher than the rest of the subtypes (De Keersmaecker 

and Ferrando 2011). Finally, T-ALLs with maturation arrest stage during the late cortical stage 

of T-cell development include overexpression of bHLH family TFs - TAL1, LMO1/LMO2. 
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Genomically, this subtype harbors enriched mutations in the PTEN tumor suppressor gene 

and is known to be clinically aggressive (D'Angio et al. 2015). 

In addition to gene expression-based subtype classification, T-ALLs have also formed distinct 

groups according to their DNAm profile. An array-based study measuring DNAm levels of 

27,000 CpG sites across a cohort of T-ALLs, classified the disease into two groups, namely 

CIMP+ and CIMP- (CIMP: CpG Island Methylation Phenotype) (Haider et al. 2019). According 

to the classification, CIMP+ T-ALLs show hypermethylation in CpG rich promoter regions 

whereas, CIMP- T-ALL showed hypomethylation. Moreover, CIMP- T-ALLs were associated 

with the worst survival, thereby acting as a biomarker for T-ALL risk stratification (Kraszewska 

et al. 2012). 

1.2.4 Pediatric T-ALL v/s Adult T-ALL 

Significant differences between pediatric and young adult T-ALL arise in the overall frequency 

of the disease itself, alterations in epigenetic mutations, and TLX positive incidences. 

Importantly, clinical outcomes associated with adult T-ALL are significantly worse when 

compared to the pediatric counterpart (80% five years overall survival for pediatric v/s 50% 

for young adult) (Hunger and Mullighan 2015; Litzow and Ferrando 2015). 

Genetically, young adult T-ALLs harbor a significantly higher fraction of mutations in 

epigenetic factors (DNMT3A, IDH1/2) and JAK1/JAK3 (Liu et al.). DNMT3A/IDH mutations are 

most common among myeloid malignancies (Ley et al. 2010). Studies have speculated 

possible age-related, clonal hematopoiesis-associated mutations based on their allelic 

frequencies and elderly age group associated with DNMT3A mutant T-ALLs (Bond et al. 2019). 

Moreover, these patients belong to ETP-ALL and display shorter event-free survivals. In 

addition to the differences in mutational patterns, adult T-ALLs harbor a significantly higher 

proportion of TLX1 positive T-ALLs whereas, TLX3 positive T-ALLs are more frequent in 

pediatric T-ALLs. Considering these differences, adult T-ALL forms a distinct subtype with a 

characteristic molecular profile and clinical outcomes (Table 1). 
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Oncogenic events Adult T-ALL Pediatric T-ALL 
TLX1 overexpression 30% 5-10% 
TLX3 overexpression 5% 20-25% 
DNMT3A mutations 10% 0% 
IDH1/IDH2 mutations 5-7% 0% 
JAK1/JAK3 mutations 18-30% <3% 

 
Table 1. Significant genetic differences between pediatric and adult T-ALL 

 

1.3 Epigenetics 

Epigenetics, in broad terms, can be defined as the study of observable changes (e.g., in gene 

expression) that are not due to the direct consequences of genetic changes such as single 

nucleotide polymorphisms. Often epigenetics involves modifications to the DNA or to the 

histones around which it is wrapped. Epigenetic changes are heritable and sensitive to 

environmental changes (Weinhold 2006). Epigenetic modifications can be broadly 

categorized into three forms: DNA methylation, post-translational modifications to the 

histones such as acetylation, methylation, ubiquitination, and the chromatin organization 

itself (Figure 5). All of these modifications greatly influence gene expression and play a 

significant role in providing cellular identity. 
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Figure 5. Epigenetic modifications.  

DNA methylation involves the addition of methyl groups to the cytosine residues, the levels of which 
correlate with gene expression. DNA is tightly coiled around a histone, which, when densely packed, leads 

to a condensed form called heterochromatin (closed state). On the contrary, when histones are loosely 
separated, they form euchromatin (open state). Open chromatin is often occupied by transcription factors 
or RNA polymerases controlling the gene expression of target genes. Histone modifications involve post-

translational modifications to the histone tail, such as methylation, acetylation, ubiquitination, and 
phosphorylation. These modifications broadly mark the regulatory regions which control the gene 

expression. Created with BioRender.com 

 

1.3.1 DNA methylation 

Of all the three epigenetic modifications, DNAm is the simplest to study. DNAm involves a 

covalent addition of a methyl group to the 5th carbon of the cytosine nucleotide base resulting 

in 5mC. DNA methylation is often associated with transcriptional repression and acts as a 

proxy for transcriptional activity (Watt and Molloy 1988). DNAm is also found to be heritable 

and is copied to the daughter cells upon cell division (Greenberg and Bourc'his 2019). In 

addition to transcriptional regulation, DNAm plays a diverse role in developmental biology 

and disease development (Greenberg and Bourc'his 2019).  
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Several enzymes of the DNA methyltransferase (DNMTs) family facilitate the addition of de-

novo (by DNMT3A, DNMT3B) and copying of existing methyl groups (by DNMT1) whereas, 

TET (TET1, TET2, TET3) enzymes play a crucial role in the erasure of existing methyl groups (Li 

and Zhang 2014)  (Figure 6). DNAm prominently occurs at cytosines preceded by the guanine 

base in 5’-3’ direction - known as CpG sites. Although CpG sites occur throughout the genome, 

selected genomic regions such as promoters harbor a cluster of CpG sites known as CpG 

Islands (CGI). CGIs show a lack of DNAm compared to the rest of the genome and significantly 

correlate with the gene expression (Jeong et al. 2014). Similarly, several studies have also 

found a lack of DNAm of CpG sites in non-coding enhancer regions, which is interpreted and 

controls the binding of TFs, thereby regulating the target gene expression (Angeloni and 

Bogdanovic 2019). Overall, DNAm plays a crucial role in suppressing non-lineage-specific 

genes, thereby maintaining cellular identity. 

 

 

Figure 6. The DNA methylation pathway.  

The DNA methyltransferases (DNMTs) add a methyl group to the 5th carbon of cytosine resulting in 5-
methylcytosine (5-mC). 5mC can be oxidized to 5-hydroxymethylCytosine (5-hmC) by the TET family of 

enzymes (TET1/2/3) which is iteratively converted to unmethylated cytosine. Created with BioRender.com 

 

1.3.2 Mutations of cytosine modifiers in leukemia 

Feinberg et al. argue that cancers arising from distinct cells of origin are more similar since 

they all harbor unstable and disturbed epigenome (Feinberg et al. 2016). The inconsistent 
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epigenome theory is backed by the vast number of mutations in the genes associated with 

chromatin remodelers and cytosine modifiers in solid tumors and leukemias (Baylin and Jones 

2016). Moreover, Leukemias carry a significant portion of mutations in cytosine modifiers 

DNMT3A, TET, and IDH, thereby affecting the DNAm pathway (Figure 7). Myeloid leukemias, 

in particular, harbor mutations in all three before-mentioned genes whereas, T-ALLs show 

mutations in DNMT3A and IDH genes (Cancer Genome Atlas Research 2013; Liu et al. 2017). 

In both the leukemias, mutations in these genes are associated with a poor prognosis and 

form distinct risk groups. 

 

Figure 7. Deregulation of DNA methylation pathway.  

Mutations in cytosine modifiers such as DNMT3A and TET enzymes can dysregulate standard DNAm 
pathways. The oncometabolite 2-hydroxygluterate produced by IDH1/2 mutants can indirectly affect 
DNAm by inhibiting a-ketoglutarate essential for TET enzymatic activity. Created with BioRender.com 

 

DNMT3A belongs to the DNA methyltransferase family consisting of DNMT31, DNMT3A, 

DNMT3B, and DNMT3L. Of the four DNMTs, DNMT3A is mutated in up to 20-25% of 

myeloid/adult T-cell leukemias and is often associated with poor clinical outcomes (Cancer 

Genome Atlas Research et al. 2013). The mutational profile of DNMT3A includes a well-known 

hotspot R882 which accounts for ~60% and ~20% of all variants in AML and T-ALL, respectively 

(Ley et al. 2010; Grossmann et al. 2013). Immune compromised mice models transferred with 

Dnmt3a deficient HSCs develop myeloid/lymphoid leukemia with characteristic secondary 

mutations and methylation patterns (Mayle et al. 2015). Moreover, elderly healthy individuals 
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harbor DNMT3A mutations without leukemia's typical symptoms, resulting in a condition now 

widely known as clonal hematopoiesis (Jaiswal et al. 2014). These observations suggest that 

DNMT3A mutations predispose HSCs for malignant transformation. 

Functionally, TET2 (Ten Eleven Translocation-2) behave opposite to that of DNMTs and are 

involved in catalyzing methylated cytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which 

is converted back to unmethylated cytosine. TET2 mutations are found in ca. 10% of 

leukemias, and unlike DNMT3A, TET2 mutations lack any functional hotspots. Phenotypically, 

TET2 mutants have decreased 5hmC (Ko et al. 2010; Ley et al. 2010). Mice models with Tet2 

deletions resulted in increased HSC renewal and progressive development of proliferating 

myeloid malignancies (Moran-Crusio et al. 2011). 

IDH1/2 (Iso-citrate dehydrogenase) genes are key players in the citric-acid cycle and convert 

isocitrate to a-ketoglutarate. IDH1/2 are mutated in ca. 10% of leukemias and are mutated 

mutually exclusively (Cancer Genome Atlas Research et al. 2013). Similar to DNMT3A, IDH1 

and IDH2 genes carry functional hotspots at R132(H) and R140(Q), respectively. Mutations in 

IDH result in the accumulation of oncometabolite 2-hydroxygluterate (2HG), disrupting the 

pathways dependent on the α-ketoglutarate through competitive inhibition. Moreover, 2HG 

can inhibit TET enzymes from de-methylating the 5mC, resulting in hypermethylation 

phenotype in AML (Figueroa et al. 2010a).  

Altogether, it is abundantly clear that leukemias' epigenome, in particular, is highly unstable 

with preferential mutations in cytosine modifiers which affects the DNAm, and thereby 

possible gene expression. 

1.3.3 DNA methylation as a biomarker and targets for therapy 

Given the critical role of DNAm in maintaining the cellular identity and epigenomic stability, 

several studies have utilized DNAm as a marker to characterize multiple cancers (Figueroa et 

al. 2010b; Capper et al. 2018). Moreover, the relative stability of DNAm makes it a stable 

epigenetic marker in studying relatively older samples preserved in paraffin-embedded 

tissues. 

Figueroa et al. analyzed DNAm from over 100 AML patients. They found that a seemingly 

homogenous cohort consists of 14 distinct clusters correlating with the specific genetic 
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aberrations (Figueroa et al. 2010b). Similarly, Nordlund et al. analyzed DNAm data from over 

750 pediatric ALL samples and found characteristic methylation patterns associated with 

several genomic regions (Nordlund et al. 2013). The cancer genome atlas (TCGA) program also 

houses DNAm data for over 10,000 tumors from 30 distinct tumor types. Recently, (Capper et 

al. 2018) performed DNAm analysis over a cohort of 10,000 glioblastomas, which now serves 

as a classifier to diagnose and predict tumor type. In addition to using DNAm in disease 

classification, DNAm has been used to discover cancer risk prediction biomarkers. For 

example, Borssen et al. performed DNAm analysis of 43 pediatric T-ALL samples and classified 

the disease into two blocks based on the methylation levels of CpG islands (Borssen et al. 

2013). Of the two, a subtype with hypermethylation in CGI regions - termed as CpG Island 

Methylator Phenotype (CIMP) showed a favorable prognosis whereas, CIMP negative samples 

were associated with poor clinical outcome. Similar attempts are made in aggressive 

melanoma in predicting the overall survival (Guo et al. 2019). 

Due to its reversible nature and aberrant levels under disease conditions, DNAm forms an 

attractive candidate for targeted therapies. Accordingly, several drugs are used in the clinical 

setting to treat multiple leukemia subtypes (Table 2). 5-Azacytidine and Decitabine - two of 

the well-known drugs that target and act as DNA hypomethylating agents, bringing down the 

tumorigenesis potential (Gardin and Dombret 2017). DNA hypomethylating agents are 

primarily beneficial in treating elderly patients (>60 years old) classified as unfit for intense 

chemotherapies (DiNardo and Wei 2020). Moreover, several in-vivo and clinical studies have 

demonstrated the benefits of hypomethylating agents among specific subgroups of 

hypermethylated leukemias. 
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Drug target Interaction type Reference 
Decitabine DNMT3A/TET2/ 

IDH1/TET2 
Inhibitor (Metzeler et al. 2012) 

Procaine DNMT3A Inhibitor (Li et al. 2018) 
Azacitidine DNMT3A/TET2 Inhibitor NA 
Ivosidenib IDH1 Inhibitor (Rohle et al. 2013; 2015; 

DiNardo et al. 2018; 
Lowery et al. 2019) 

Enasidenib IDH2 Inhibitor (Medeiros et al. 2017; 
Stein et al. 2017; Yen et al. 

2017) 
Venetoclax IDH1/IDH2 NA (Konopleva et al. 2016; 

Huemer et al. 2019) 
Table 2. FDA approved epigenetic drugs potentially targeting cytosine modifiers (direct or indirect) 

 

1.3.4 Assays for measuring DNA methylation  

Given the importance of DNAm in cancer and its application in clinical settings, several assays 

have been developed to quantify the methylation changes. Among the available options 

(Table-3), the three primary assays include: 

1. Bisulfite conversion of cytosine to uracil followed by,  

a. Array-based methylation quantification 

b. Massive parallel sequencing 

2. Nanopore mediated single-molecule DNA sequencing 

Treating DNA with sodium-bisulfite converts unmethylated cytosines to uracil whereas, 

methylated cytosines remain unchanged. The methylation status from the modified bases can 

be measured by high throughput assays such as DNAm arrays or whole-genome bisulfite 

sequencing (WGBS). Array-based assays have been historical of popular choice, and can 

measure DNAm of hundreds of thousands of CpG sites. Illumina Infinium arrays (Illumina Inc, 

San Diego, CA) employ two loci-specific probes, namely, M-probe for methylated loci and U-

probe for unmethylated loci. The DNAm level is quantified by the ratio of fluorescence signal 

emitted by the two probes. Earlier versions of arrays measured DNAm levels of ca. 450K sites 

primarily located at CpG rich promoters (Illumina Human Methylation 450K; also known as 

450K arrays) whereas, recent updates have increased the coverage to ca. 850K arrays 
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targeting the regions of known enhancer elements (Infinium MetthylationEPIC; also known 

as EPIC arrays).   

Although arrays provide a cost-effective solution for DNAm analysis, they are hindered by the 

limited coverage. Human DNA, for example, contains ca.  28 million CpG sites distributed 

across promoters and regulatory elements. EPIC arrays, however, only target ca. 1.6% of the 

same, thereby missing critical information. These limitations are overcome by massively 

parallel sequencing approaches such as WGBS, which can measure genome-wide DNAm level 

at a base-pair resolution (Lister et al. 2009). WGBS can provide the DNAm status of regulatory 

elements such as enhancers and repressors in greater detail and allows robust integration 

with gene expression. Compared to arrays, WGBS is expensive, and the downstream analysis 

is computationally intensive due to the massive coverage. 

In contrast, the second approach involving third generation nanopore sequencing allows low 

cost and rapid quantification of DNAm  (Jain et al. 2018). Moreover, nanopore sequencing 

allows direct detection of methylated cytosines from naive DNA and avoids complex and 

expensive bisulfite conversion (Rand et al. 2017; Simpson et al. 2017). However, current 

nanopore sequencing still suffers from high error rates (~10%) and accurate discrimination of 

ionic currents from cytosine and 5mC is an active area of on-going research (Schatz 2017).  
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 Array-based Second gen. 
sequencing based 

Third gen. 
sequencing based 

C and 5mC 
discrimination 

Bisulfite treatment Bisulfite treatment electrolytic current 
signals from naïve 
DNA 

Platforms Infinium HM450K, 
Infinium EPIC 

Illumina short read 
sequencer 

Oxford Nanopore 
MinION 

Library prep. - WGBS, RRBS, PBAT - 
Cost (Relative to 
array-based) 

* WGBS (***)/ RRBS 
(**) 

* 

Coverage^ Infinium HM450K 
(ca. 1.5%), Infinium 
EPIC (ca. 3%) 

WGBS (100%), RRBS 
(5-10%) 

100% 

Computational 
analysis  

Easy Complex Complex 

Accuracy High High Low  
^relative to human methylome consisting of ca. 28 million CpGs.; C = Cytosine; 5mC = 
methylated cytosine; WGBS = whole genome bisulfite sequencing; RRBS = Reduced 
representation bisulfite sequencing; PBAT = Post bisulfite adapter tagging 

Table 3. Comparison of assays for quantifying DNA methylation.  
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2 AIMS OF THE THESIS 
Understanding the role of DNAm in thymopoiesis provides insights into epigenetic 

modulation during T-cell development. Like hematopoiesis, thymopoiesis involves progenitor 

cells undergoing multi-step uni-directional differentiation resulting in mature and fully 

functional thymocytes. Several studies have already characterized the role of DNAm in 

hematopoiesis using both array-based and sequencing-based approaches (Bock et al. 2012). 

However, such attempts have been sobering for thymopoiesis and lack extensive analysis 

(Rodriguez et al. 2015). Similarly, in leukemia, a significant fraction of either transcriptional or 

DNAm published research has mainly focused on pediatric T-ALL (Borssen et al. 2013; Liu et 

al. 2017). It is now clear that adult T-ALL differs significantly from pediatric T-ALL at the 

molecular and clinical outcomes. Extensive characterization of adult T-ALL is lacking to date 

and deserves much-needed attention. The current thesis addresses these two issues by 

utilizing multiple omics data generated for distinct intra-thymic cell types and a rare adult T-

ALL cohort. 

2.1 DNA methylation dynamics of human αβ T-cell development 

DNAm provides an epigenetic history of cellular development and is inherited to the daughter 

cells. These epigenetic signatures are retained post differentiation and can be traced back to 

the parental cell of origin. Using DNAm as an epigenetic signature, here we address the 

following questions: 

1. Changes in global methylation levels during thymopoiesis 

2. Characteristics of regulatory regions associated with the differentiation 

3. Comparative analysis with the hematopoiesis 

We utilize WGBS to measure DNAm levels of seven distinct intra-thymic cell types. To 

facilitate the analysis of the complex data types resulting from WGBS, we describe a software 

framework called methrix. Results from the study were used to perform a comparative 

analysis between intra-thymic cell types and the hematopoietic cells. Finally, we describe the 

thymus lineage-specific, developmentally associated genomic regions, which constitute as an 

epigenetic atlas for thymopoiesis. 
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2.2 Epigenetic blueprint of adult T-ALL 

Adult T-ALLs make up to 30% of all ALLs among adults, and much is unknown about the 

epigenetic profiles governing T-ALL subtypes and their association with the clinical outcome. 

Studies in pediatric ALL have shown hypo methylated groups to be associated with poor 

clinical outcomes (Borssen et al. 2013). Similarly, gene expression data has identified distinct 

transcriptional subgroups (Liu et al. 2017). Here, we use DNAm data to further characterize 

adult T-ALL by addressing the following issues: 

1) Identification of distinct epigenetic T-ALL subtypes 

2) Somatic landscapes of adult T-ALL 

3) Enhancer landscapes of T-ALL 

4) Deciphering the maturation arrest stages of T-ALL subgroups 

To achieve these, we employ Illumina Infinium EPIC arrays to measure DNAm from a cohort 

of well-characterized adult T-ALLs. Using the DANm profiles, we use a robust clustering 

strategy to describe epigenetic subtypes. Subtypes are further characterized using mutational 

profiles, histone modifications, and gene expression. Finally, we integrate normal thymic 

developmental-associated genomic regions to describe maturation arrest stages of T-ALL 

subtypes. 
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3 RESULTS 

3.1 DNA methylation dynamics of human αβ T-cell development 

The hematopoietic system is responsible for the generation of myeloid and lymphoid cells 

that make up the entire lymphatic system. Although hematopoiesis gives rise to lymphoid 

progenitor cells, the formation of mature T-lymphocytes occurs within the thymus – a process 

known as thymopoiesis. Handful of studies have attempted to gauge the DNAm changes 

during thymopoiesis using either array-based (Rodriguez et al. 2015) or sequencing-based 

approaches (Cieslak et al. 2020). However, they have suffered from limitations such as 

restricted coverage of arrays (ca. 3% of DNA methylome) or by the lack of biological replicates. 

Furthermore, comparative analysis of intrathymic cell types with lymphatic T-cells and BM-

derived progenitor cells is lacking and can provide the thymic signatures necessary for cellular 

identity.  

To map the DNAm dynamics of thymopoiesis, we applied WGBS to generate a genome-wide 

DNAm map of seven distinct intrathymic cell types from multiple neo-natal thymi collected 

from patients undergoing thymectomy. We compared the results to BM and peripheral cell 

types and defined the thymic signature, which can recapitulate the thymopoiesis 

differentiation trajectory in an independent dataset.  

3.1.1 DNA methylation map of intra-thymic cell types 

Using Fluorescence-activated cell sorting (FACS), we isolated seven distinct intrathymic cell 

types from multiple thymi collected from neonates undergoing cardiac surgery. The cell types 

include; immature early thymic CD34+ precursors (CD34+ CD1A-, CD34+ CD1A+), immature 

single CD4+ cells (ISP CD4+), early cortical cell types with low TCR expression (CD4+ CD8+ CD3-

), late cortical cells with high TCR expression (CD4+ CD8+ CD3+), and finally mature single 

CD4+ and CD8+ positive cells (Figure 8A) (Table 5).  

The isolated cell types represent T-cell differentiation's hierarchical organization and provide 

a valuable resource to study the dynamics of DNAm governing the thymopoiesis. Following 

WGBS using the SWIFT protocol, the initial analysis revealed a non-significant yet gradual loss 

of methylation along with the T-cell differentiation. Loss of DNAm is prominent post-beta-

selection leading to the TCR expression (Figure 8B). To further analyze the DNAm at 
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regulatory regions, we used publicly available and well-defined BLUEPRINT regulatory regions 

(Zerbino et al. 2015). BLUEPRINT regulatory build is an effort from Ensembl genome browser 

which attempts to summarize regulatory regions in human genome by analyzing publicly 

available datasets encompassing epigenetic marks and transcription factor binding sites 

(TFBS). It consists of ca. 500,000 genomic loci classified into six distinct categories: CTCF, distal 

enhancers, TFBS, open chromatin regions, promotes and its flanking regions. BLUEPRINT loci's 

aggregated DNAm levels revealed a common hypomethylation trend among promoters, 

whereas the rest showed varying degrees of hypermethylation (Figure 8C). 

Moreover, several of the regulatory regions associated with the T-cell development genes 

showed a distinct DNAm pattern. For example, a CTCF binding site near the CD34 promoter 

showed a gradual methylation gain (Schmitt et al. 1995). The promoter flanking region of 

BCL11B – a master TF associated with the T-cell fate decision - showed severe 

hypomethylation during the terminal stages of T-cell development (Kastner et al. 2010) 

(Figure 8D). 
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Figure 8. DNAm during human thymopoiesis.  

A. FACS sorted intrathymic cell types. Cell surface receptors are shown along with the cell types organized 
by maturation hierarchy. Sorting was performed by Aurore Touzart.. B. Violin plots of average global 

DNAm (5-kb windows) levels for all samples color-coded by cell type. C. Violin plot of aggregated DNAm 
levels for BLUEPRINT regulatory regions. D and E. Example plots of DNAm levels at selected BLUEPRINT 

loci.  

 

It is now well established that the mature lymphatic cells arise from the immature progenitor 

cells undergoing uni-directional differentiation (Till and McCulloch 1980). The epigenetic 

changes during the differentiation control the gene expression programs critical for cellular 

identity. We compared each of the intra-thymic cells to the most immature CD34+CD1A- 

progenitor cells to gauge such differences in mature cells (Figure 9A). De-novo differentially 

methylated regions (DMRs) (P < 0.01, |meth| > 0.2) identified by the comparison varied 

between the cell types but showed a linear trend of loss of methylation along with the 

differentiation. Interestingly, the number of hypomethylated DMRs post-positive-selection 

was significantly higher (Figure 9B). To characterize the DMRs, we utilized the LOLA (Locus 

Overlap Enrichment Analysis) core database consisting of binding sites from over a hundred 

transcription factors and histone modifications arising from multiple sources (Sheffield and 

Bock). Enrichment results from LOLA categorized DMRs as overlapping with the TFBS strongly 

associated with T-cell development. Especially NOTCH1, MYB, and RBPJ transcription factor 
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binding sites dominated the DMRs, suggesting that the loss of methylation facilitates the 

binding of TFs critical for T-cell development (Figure 9C).  

 

 
Figure 9. The progressive loss of DNAm during thymopoiesis.  

A. Outline of differential methylation analysis. Each cell type is compared to the most primitive 
CD34+CD1A- intra-thymic cells. B. Barplot of differentially methylated regions in each cell type (v/s 

CD34+CD1A-). C. Transcription factor binding sites that are enriched within the DMRs. Each dot represents 
a ChIP-seq dataset from LOLA core database. Y-axis threshold of two corresponds to an FDR cutoff of 0.05.  

 

Overall, our WGBS results highlight the progressive loss of DNAm along with the 

differentiation. The regions undergoing loss of DNAm harbor banding sites for core TFs 

necessary for proper T-cell development. 

3.1.2 Dynamics of regulatory regions during thymopoiesis 

Although previous results showed a sequential loss of DNAm compared to the progenitor 

cells, the relative changes in DNAm at each stage of differentiation were still lacking. To 

identify such changes, once again, we resorted to the known regulatory regions from 

BLUEPRINT. Restricting the analysis to BLUEPRINT regions, we compared every mature cell 
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type to its predecessor cell type - referred to as step-1 (CD34+CD1A- v/s CD34+CD1A+), step-

2 (CD4+ISP v/s CD34+CD1A+), step-3 (CD4+CD8+CD3- v/s CD4+ISP), step-4 (CD4+CD8+CD3+ 

v/s CD4+CD8+CD3-), step-4a (CD4+ v/s CD4+CD8+CD3+) and step4b (CD8+ v/s 

CD4+CD8+CD3+) (Figure 10A).  Similar to the previous analysis, the analysis showed that each 

differentiation step is characterized by loss of methylation, and the mature terminal cells from 

step-4a and step-4b contained the greatest number of changes (Figure 10A; right panel). 

Differentially methylated BLUEPRINT regions at each step contained characteristic loci 

associating with the genes responsible for stage transitions. For example, a promoter flanking 

region of RAG1 – a gene critical for TCR rearrangement – showed massive loss of methylation 

at step-3, during which the beta-selection occurs (Yannoutsos et al. 2001) (Figure 10C). 

Similarly, ZBTB7B responsible for CD4+ commitment shows specific hypomethylation during 

step-4a (Wildt et al. 2007) (Figure 10C).  
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Figure 10. Stage-specific DNAm changes during T-cell differentiation.  

A. Schematic representation of differential methylation analysis. Each cell type is compared with the 
immediate upstream progenitor. The bar plot shows the number of differentially methylated BLUEPRINT 

regulatory regions. B and C. Example plots of DNAm levels at selected BLUEPRINT loci RAG1 (B) and 
ZBTB7B (C) respectively. D. Scatter plot of differentially methylated BLUEPRINT regulatory regions at step-

4a and step-4b, respectively.  Significant regions (FDR < 0.05 and |meth| > 0.2) are colored in brown. E. 
Venn diagram of differentially methylated loci from panel D. F. Transcription factor binding sites that are 
enriched within the CD4+ or CD8+ specific loci. Each dot represents a ChIP-seq dataset from the LOLA core 

database. G. Distribution of DNAm among RUNX1 binding sites across all thymic cell types.  

 

Final stages of T-cell development involve the differentiation of DP TCR-high cells to either 

single MHC class-2 restricted CD4+ or MHC class-1 restricted CD8+ cells (step-4a and step-4b). 

Commitment towards either cell type involves lineage-specific changes necessary to express 

cell-type-specific genes and silencing of the others. To characterize such differentially 

methylated CD4+ or CD8+ specific regions, we further analyzed step-4a and step-4b in detail. 

Both step-4a and step-4b contained massive methylation loss across thousands of BLUEPRINT 

regulatory regions (Figure 10D).  Overlapping the results further revealed many common 
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regulatory elements in addition to CD4+ and CD8+ specific regulatory regions (Figure 10E). 

We next resorted to LOLA functional enrichment tool which uses a core database of TFBS 

from hundreds of publicly available datasets along with open chromatin and histone marks 

(Sheffield and Bock 2016). Characterizing the CD4 and CD8 specific by LOLA enrichment 

analysis showed a plethora of preferentially enriched transcription factors (Figure 10F).  For 

example, GATA family TFs were significantly found within the CD4+ specific hypomethylated 

regions, whereas EBF1 and RUNX1 were mainly found among CD8+ areas (Figure 10F). To 

further validate the results, we obtained RUNX1 binding sites from the CUTLL1 T-ALL cell line. 

Aggregated DNAm levels of the RUNX1 peaks showed hypomethylation among CD8+ cells 

compared to CD4+ cells suggesting the critical role of RUNX1 in CD8+ fate decision.  

Overall, our results show a loss of DNAm across regulatory regions necessary for T-cell 

differentiation and the CD4+ and CD8+ specific regulatory regions with binding sites for TFs 

associated with the fate decision. 

3.1.3 Defining thymic developmental associated genomic regions 

DNAm changes are strongly associated with organ development and embryogenesis across 

mammalian species. For example, the absolute necessity of deposition of de-novo, or the 

erasure of existing methyl groups at distinct stages of embryogenesis, guarantees the proper 

mammalian development from fertilization to birth (Greenberg and Bourc'his 2019). Similarly, 

DNAm changes govern the bone marrow hematopoiesis and, the changes can 

computationally reconstruct the entire hematopoietic system. Using DNAm changes, Farlik et 

al. characterized a core set of regulatory regions defining the hematopoiesis and predicting 

the specific cell type (Farlik et al. 2016). To validate if the defined hematopoietic territories 

apply to thymopoiesis, we obtained the publicly made available datasets of hematopoiesis 

and measured the dynamics of DNAm (Farlik et al. 2016). As expected, the hematopoietic 

regulatory regions were variable across all 16 distinct cell types, including bone marrow-

derived progenitors and peripheral blood-derived mature myeloid and lymphoid cells (Figure 

11A). However, the same genomic regions showed no changes during the thymopoiesis, and 

the intrathymic cell types showed constant hypermethylation (Figure 11B). These 

observations suggest that although thymopoiesis begins with the thymic progenitor cells 

arriving from bone marrow, they undergo distinct DNAm changes and are specific to thymic 

cell types.  
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Figure 11. Developmental associated thymic DMRs.  

A. DNAm dynamics of hematopoiesis associated epigenetic signature regions. B. DNAm of hematopoiesis 
associated epigenetic signature regions in intrathymic cell types. C. Schematic representation of 

differential methylation analysis. Each cell type is compared with the immediate upstream progenitor. The 
heatmap shows DNAm levels of thymic DMRs at each step of differentiation (N = 381). D. Phylogenetic 

tree constructed from aggregated DNAm signals across thymic DMRs. E. DNAm of thymic DMRs in 
hematopoietic cell types. DMR: Differentially methylated region 

 

To address the missing gap, we performed a de-novo DMR analysis and identified genomic 

regions specific to each step of thymic differentiation. Like previous results, terminally 

differentiated CD4+ and CD8+ cells contained the largest number of DMRs whereas, step-4 

contained no significant DMRs. Of note, almost all of the DMRs showed irreversible changes 

in DNAm, involving hypo-methylation of cell type-specific DMRs coupled with the silencing of 

the same in progenitor cells (Figure 11C). The mechanism suggests the necessity of silencing 

genomic regions associated with the pathways that are no longer needed post-cell 

commitment. Besides, the entire process leaves a trail of developmental breadcrumbs 

sufficient to reconstruct the thymopoiesis (Figure 11D). 

Moreover, analogous to previous results wherein hematopoietic signature regions are 

hypermethylated in thymic cell types (Figure 11B), the newly defined thymic signature 

regions (tDMRs; N = 381) showed significant hypermethylation among hematopoietic cells 
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(Figure 11E). Primarily, BM-derived progenitor cells were significantly hypermethylated, while 

the mature B-cells and NK-cells showed hypomethylation. Peripheral blood-derived CD4+ and 

CD8+ cells, however, were strongly hypomethylated for tDMRs. The preferential 

hypomethylation of tDMRs in PB-derived CD4+ and CD8+ cells further highlight that although 

the cells are terminally differentiated and migrated to the lymphatic system, the signatures 

associated with the parental cell of origin are epigenetically imprinted and serves as cellular 

identity.  

3.1.4 DNA methylation predicts lymphatic hierarchy 

To further validate the specificity of tDMRs, we measured DNAm across six distinct 

intrathymic cell types using Illumina Infinium EPIC arrays targeting over 850,000 CpG sites 

across the human genome. The principal component analysis (PCA) analysis using the DNAm 

levels at hematopoietic signature regions defined by Farlik et al. failed to distinguish thymic 

cell types (Figure 12A) whereas, tDMRs accurately determined the same while maintaining 

the known hierarchy (Figure 12B).  

Next, we compiled an independent collection of cell types originating from hematopoiesis 

including, BM-derived progenitors and PB-derived mature cell types. The collected data from 

multiple sources were carefully combined with the in-house thymic arrays resulting in a total 

of 18 cell types (Figure 12C, D) (Jung et al. 2015) (Salas et al. 2018). Similarly, constructing a 

phylogenetic tree using the aggregated DNAm signals across hematopoietic signature regions 

and tDMRs, revealed the hierarchical organization of the lymphatic cell types (Figure 12E). All 

the cell types originating from the lymphoid branch of hematopoiesis were separated from 

the mature PB-derived myeloid monocytes and neutrophils. Among the tree's lymphoid arm, 

immature intrathymic cell types were clustered at the top and were closer to the PB-derived 

mature NK and B-cells. Of note, intrathymic ETP cells retain the potential to de-differentiate 

into B- and NK-cells and, their placement near the same suggests the shared epigenetic 

signatures (Luc et al. 2012). Next, intrathymic mature CD4/8 cells were placed closer to the 

PB-derived CD4/8 cells implying that the terminally differentiated cells have a conserved 

epigenome regardless of the tissue microenvironment.  

Overall, the results validate tDMRs in an independent dataset generated using a different 

platform. 
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Figure 12. Validation of thymic DMRs in arrays. 

 A. PCA of intrathymic cell types using hematopoiesis associated epigenetic signature regions. B. PCA of 
intrathymic cell types using thymic DMRs. C. Overview of array-based public datasets used for validation. 
Key steps in quality control are mentioned. D. Overview of cell types used for validation. E. Hierarchical 

organization of lymphatic cell types predicted using DNAm levels at hematopoiesis associated epigenetic 
signature regions and thymic DMRs. 

 

3.1.5 Hypomethylation of regulatory regions is characteristic of thymopoiesis 

To further characterize the association of DNAm with the transcriptional program, we 

collected gene expression data and histone marks associated with the active transcription. 

Notably, the DNAm dynamics at the promoter regions of T-cell development genes showed a 

significant inverse correlation with the corresponding gene expression (Figure 13A). Also, 

genes associated with the tDMRs showed a non-significant trend towards inverse correlations 

(Figure 13B). 
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Figure 13. DNAm and gene expression during thymopoiesis.  

A. Transcriptional and promoter DNAm (TSS+/-750bp) dynamics of candidate genes involved in T-cell 
development. B. Heatmaps of gene expression and promoter DNAm of genes annotated with the thymic 

DMRs. 

 

Super enhancers (SE) are genomic regions marked by the hyperacetylation of lysine 27 on 

histone H3 (H3K27ac) (Pott and Lieb 2015). SEs have been identified in several normal cells 

and are primarily associated with the genes necessary for cellular identity (Hnisz et al. 2013). 

For example, genes such as Oct4, Sox2, and Nanog in mouse embryonic cells are all marked 

by SE (Whyte et al. 2013). Similarly, we utilized H3K27ac ChIP-seq datasets for five of the 

intrathymic cell types to define thymopoiesis's SE landscape. Results indicated a progressive 

increase in the number of SEs with the mature single CD8+ cells containing the most 

significant number (Figure 14A). The same observation of the incremental number of 

hypomethylated DMRs during T-cell differentiation suggests a coordinated hypomethylation 

and enhancers' activation. Despite the significant overlap in the SE genes between 

differentiation steps, several SEs occurred in a cell-type-specific manner. For example, the 

ERG gene contained an SE in CD34+ ETP cells, whereas RAG1, a critical gene necessary for TCR 

rearrangements, harbored an SE during the early cortical stage of T-cell differentiation (Figure 

14B, C).  
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Figure 14. Identification of super-enhancers in intrathymic cell types.  

A. Hockey stick plots of super-enhancers identified in five distinct thymic cell types. Dots in black are 
super-enhancers, whereas typical enhancers are highlighted in gray. Essential cell-type-specific genes 

associating with the super-enhancers are highlighted B. CD34+  specific super-enhancer region near the 
ERG gene. C. RAG1 linked super-enhancer in the early cortical stage of T-cell development.  

 

In addition to SE analysis, we combined H3K27ac with H3K4me1 – another histone mark 

associated with the active transcription – and defined three distinct sets of enhancer classes, 

namely, active enhancers (H3K27ac+ H3K4me1+), poised enhancers (H3K27ac- H3K4me1), 

and Putative/Primed enhancers (H3K4me1- H3K27ac+) (Figure 15A).  Besides, we also 

compiled H3K4me3 – a promoter mark associated with active transcription. Overall, these 

histone marks provided a comprehensive status of regulatory regions actively regulating the 

transcriptional programs. Using the LOLA program, we performed an enrichment analysis to 

decipher the characteristics of tDMRs. Interestingly, thymic DMRs significantly overlapped 

with the active promoters (marked by H3K4me3 peaks) than the overall background promoter 

regions, suggesting that CpG dense promoters' marked by tri-methylation of the histone tail, 

correlates with the corresponding gene expression (Figure 15B). 

Moreover, thymic DMRs were located inside the active and putative enhancers, while poised 

enhancers showed no enrichment. The results highlight the previous observations wherein 
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DNAm levels discriminated the active and poised enhancers. Likewise, as expected, thymic 

DMRs were also found to overlap significantly with SE regions, critical for cellular identity (Bell 

et al. 2016).  

 

 
Figure 15. Hypomethylation of regulatory regions  

A. ChIP-seq binding profiles of H3K4me1 and H3K27ac histone marks for three distinct regulatory genomic 
regions (Active, Poised and Putative enhancers) in CD34+ thymic cells. Regulatory regions are displayed as 

5 kb regions centered around the peak. The top line plot shows average signal density, whereas bottom 
heat maps display ChIP-seq signal for individual peaks. Color gradient reflects the thickness of the ChIP-

seq signal. B. Dot plot for the enrichment of thymic DMRs (X-axis) in various regulatory regions (Y-axis) as 
highlighted in the plot's left side. Dots are color-coded for significance. The size of the dots represents P 

values in the log10 scale. 

 

Overall, our results indicate that the thymic DMRs (often hypomethylated) occur among 

genomic regulatory regions associating with the active promoter marks (H3K4me3) or active 

enhancer. 
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3.2 Epigenetic blueprint of adult T-ALL 

To understand the role of DNAm in the origin/development of leukemia and to identify 

clinically relevant subgroups, we collected a cohort of 143 primary young adult T-ALLs from 

two French ALL cooperative groups (22 from GRALL-2003 and 121 GRALL-2005). All samples 

underwent assays to measure DNAm of ca. 850,000 CpG sites using Illumina Infinium 

Methylation EPIC BeadChips (EPICA arrays). As a control, DNAm data for six distinct 

intrathymic cell types are generated using EPIC arrays. Targeted sequencing of a panel of 

genes involved in leukemic pathogenesis was also performed. Copy number status for the 

same genes is obtained using SALSA MLPA P383 T-ALL probe mix (MRC-Holland, Amsterdam, 

Netherland). Besides, samples were validated for known T-ALL driver events such as 

overexpression of TAL1, TLX1/3, and HOXA transcription factors. Maturation arrest stages and 

ETP phenotypes were predicted using surface markers and TCR rearrangements. Other 

phenotypic and oncogenetic features are obtained as described in (Bergeron et al. 2007; Bond 

et al. 2016). A complete summary of cohort characteristics is provided in Table 7. For a subset 

of samples, gene expression (N = 48) and ChIP-sequencing (N = 12) of histone marks 

associated with the active transcription (H3K27ac, H3K4me1, H3K4me3) are also generated.  

3.2.1 The somatic landscape of adult T-ALL 

As expected, our results from targeted sequencing included mutations of hallmark genes in 

expected proportions: NOTCH1 (66%), FBXW7 (20%), CDKN2A (69%), PHF6 (38%), DNM2 

(20%), and BCL11B (15%) (Figure 16A) (Liu et al. 2017). Restricting our analysis to potentially 

driver genes (mutated in >2% of the cohort) further revealed recurrently altered pathways 

among adult T-ALL, including Cell cycle (70%), NOTCH signaling (71%), JAK-STAT signaling 

(38%), and in transcription regulators (50%) (Figure 16B). Most importantly, we observed an 

unexpectedly high frequency of alterations in epigenetic modulators (58%) and cytosine 

modifiers involved in the DNAm pathway (18%). Among genes involved in establishing DNA 

methylation patterns, DNMT3A was the most frequently mutated (14%), followed by TET2 

(5%), IDH2 (4%), TET3 (3%), and IDH1 (1%) (Figure 16C).  

However, mutations in DNAm pathways have been reported in T-ALL, and their higher 

frequency in our cohort suggested possible cohort-specific biases. To further validate the 

results, we re-analyzed an independent publicly available T-ALL cohort (Chen et al. 2018b). 
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Dividing the cohort into a young adult (> 16 years old) and pediatric (<16 years old) 

recapitulated a higher frequency of DNAm variants, exclusively in young adult patients (Figure 

16D). Most importantly, all of the IDH2 mutations co-occurred with DNMT3A suggesting their 

potential synergistic role for the underlying leukemogenesis. 

 

 
Figure 16. The somatic landscape of adult T-ALL. 

 A. Oncoplot is depicting the mutational status of genes altered in at least 5% of the cohort. The bottom 
annotation bar shows the deregulated oncogenic transcription factors. B. Barplot of recurrently mutated 

pathways in adult T-ALL. C. Mutations in epigenetic regulators and DNAm pathway. DNMT3A mutants co-
occur with IDH2. D. Significantly differentially mutated genes between adult and pediatric T-ALL. Data 

obtained from (Chen et al. 2018b). 

 

In addition to mutational analysis, we used EPIC arrays to characterize copy number variations 

(CNV) in adult T-ALL. CNV results were then summarized using GISTIC to identify recurrent 

CNVs (Figure 17A, B). Effects include frequent deletions in the 9p21.3 arm harboring the 

CDKN2A gene known to be deleted in over 70% of the T-ALL. We also observed partial 

deletions of 15q arm in ca. 40% of the samples associating with the poor clinical outcome 

(Heerema et al. 2002). Although our results show commonly found CNV patterns in ALL, EPIC 

arrays' resolution limits the robust CN interpretation.  
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Figure 17. The copy number variations in adult T-ALL.  

A. Summarized results of recurrent copy number alterations in adult T-ALL. Red bars indicate 
amplifications, and blue bars indicate deletions. The height of the bars indicates the magnitude of the 
alterations. Top-5 most altered cytobands are labeled. B. Top-10 recurrent copy number deletions and 

amplifications. Each bar shows a patient sample color-coded for amplification or deletion events. 

 

3.2.2 DNA methylation identifies distinct T-ALL subtypes 

“To better understand the role of DNAm in T-ALL leukemogenesis, we performed genome-

wide DNAm analysis using Illumina Infinium Methylation EPIC BeadChip (EPIC arrays) for 143 

primary adult T-ALL samples, as well as for six distinct sorted normal thymic T-cell 

subpopulations.”  

By utilizing a carefully designed analysis pipeline, including data normalization, removing 

probes associated with SNPs and those located on CNVs, we performed clustering to identify 

leukemic subtypes (Figure 18A). Our Non-negative matrix factorization (NMF) based analysis 

indicated the presence of five distinct clusters irrespective of the number of probes used 

(Figure 18B) (Gaujoux and Seoighe 2010). Moreover, these five clusters were highly stable 

and showed a high correlation between the results with little to no sample movement as the 

number of probes varied (Figure 18C).  
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Figure 18. Identification of epigenetic clusters.  

A. Pre-processing and QC steps involved in analyzing raw Illumina EPIC arrays. R packages used in 
particular stages are mentioned within parenthesis in italics. B. Cophenetic correlation (Y-axis) is 

measured for a range of values (2...10, X-axis). Optimum value is chosen when the correlation value 
reaches maximum followed by no-change or decrease in correlation metric. The same step was performed 

for varying probes as represented by the lines with a color gradient. Arrowhead represents the optimal 
value chosen for downstream analysis (N = 5). C. Cluster stability was measured by re-running clustering 
with n=5 for the different number of probes as indicated in the top annotation bar. Heatmap represents 
spearman-correlation coefficient between samples. The inner panel shows pairwise Rand-index values, 

which means similarity between two clustering results.  

 

Repeating clustering analysis by removing probes located on chromosomes X and Y showed 

no significant differences either (Figure 19A). To further test the clustering's robustness, we 

generated EPIC arrays data for an independent series of 29 adult T-ALL samples (not included 

in the GRAALL 2003-2005 trial) and repeated the clustering (N = 143+29). Once again, our 

NMF results indicated five components (Figure 19B). Further clustering resulted in the same 

order for discovery samples even in the presence of an independent validation cohort. Finally, 

we randomly sampled 80% of the initial cohort (N = 114) and repeated the clustering. Rand 

Index - a similarity score between two clustering results - was measured between original 

clusters and new clusters generated on subsamples. Repeating the entire process ten times, 

and results showed high similarity (Figure 19C) (Rand index 0.85 – 0.99), thereby confirming 

the obtained clusters' stability. Overall, the results suggest that the adult T-ALL consists of five 

distinct subtypes and the conserved methylomes. 
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Figure 19. Assessing the stability of epigenetic clusters.  

Cophenetic metric and Spearman correlation heatmaps for clustering results in the presence or absence of 
XY probes (A) or when combined with an independent cohort of 29 samples (B). C. Clustering results for 
the initial cohort (N = 143) and ten subsampled cohorts (N = 114). Right bar plot indicates a similarity 

score (Rand index) between the original cluster and subsampled clusters. 

 

Finally, we used the top 5% of most variable probes (N = 38583) for all our downstream 

analyses and defined the five distinct clusters, which all showed significant levels of DNAm 

(Figure 20A-C). Based on the global DNAm levels, clusters are named - C1, C2, C3, C4, and C5, 

with C1 displaying the lowest level of DNAm and C5 the highest. Compared to normal thymic 

cell types, C1 and C2 showed no significant overall differences, whereas C3, C4, and C5 showed 

hypermethylation (Figure 20C). 
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Figure 20. Epigenetic clusters in T-ALL.  

A. Heatmap of spearman correlation coefficient values between all leukemic samples. Top annotation 
bars indicate cluster sizes (n) and titles, respectively (top to bottom). B. Uniform Manifold Approximation 
and Projection (UMAP) plot of T-ALL samples color-coded according to the cluster. C. Violin plots depicting 

genome-wide DNAm values for every group. (*** P < 0.001 two-tailed t-tests for mean differences). 

 

3.2.3 Characterization of the subtypes 

The five identified clusters were significantly associated with signature maturation arrest 

stages and genetic drivers (Figure 21A-D). Cluster C1 (n = 14 samples, 9.8%) contained samples 

with ETP phenotype (7/11; P < 0.01) showing immature maturation arrest stages (9/12; P < 

0.01). Moreover, C1 samples contained lessened classical T-ALL drivers (TLX, TAL1, and HOXA). 

C2 samples showed maturation arrest at αβ-lineage (28/31; P < 0.01) and significant over-

representation of TAL1 oncogene expression (16/33; P < 0.01). C3 and C4 contained samples 

with TLX3 (14/22) and TLX1 (25/38) overexpression, respectively. Alongside TLX1 

deregulation, a subset of C4 samples also showed overexpression of HOXA9 due to 

chromosomal translocation involving TCR-β locus (7/37; cis). C3 and C4 also differed in their 

maturation arrest stages, with C3 having samples largely at TCR-γδ whereas, C4 contained 

largely of αβ-lineage. In contrast, C5 – a hypermethylated group – contained samples with 

HOXA9 overexpression due to chromosomal translocation involving MLL/MLL10 gene (16/30; 
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trans). Moreover, similar to C1, C5 samples were of ETP phenotype with immature maturation 

arrest stage.  

 

 
Figure 21. Characterization of epigenetic clusters in T-ALL. 

 A. Plot shows the association between maturation arrest stages (row) and T-ALL samples (columns). Each 
column represents a sample. The color-coded bottom annotation bar shows corresponding cluster 

assignments—T-cell maturation stages order rows (from the top most immature to the bottom-most 
mature). Gray bars indicate data not available. B. Bar plots display the significant association between 

clusters and maturation arrest stages (Fisher's exact test; P < 0.01). Bars are annotated with the ratio of 
samples belonging to a maturation arrest stage (as indicated by the bar title), and the total number of 
samples within the clusters. Bottom gray bars indicate the number of instances in the background with 

the highlighted maturation arrest stage. C. Heatmap shows the association between genetic events (row) 
and T-ALL samples (columns). D. Bar plots display a significant association between clusters and genetic 

events (Fisher's exact test; P < 0.01).  

 

In addition to differences in maturation arrest stages and overexpression of oncogenic 

transcription factors, clusters differed in their somatic mutational profiles. Mainly, genes 

involved in establishing DNAm – DNMT3A and IDH2 - were significantly found in C1 (FDR < 0.1; 

Fisher’s exact test) (Figure 22A). Moreover, all of the IDH2 mutations co-occurred with 

DNMT3A making it a characteristic of C1. Although DNMT3A contained a known R882 hotspot, 

unlike myeloid malignancies, they occurred at a lower frequency (~50% in AML vs. 30% in T-

ALL) (Ley et al. 2010). IDH2 variants, however, primarily occurred at known hotspot R140 

(Figure 22B). PTEN variants – mainly of the type loss of function INDELS – significantly 

occurred in C2 whereas, WT1 and STAT5B occurred in C3, affecting the PI3K signaling pathway. 

Similarly, a significant fraction of C4 samples were of BCL11B mutants. C5 samples mainly 

contained mutations in PRC2 complex genes – SUZ12 and EZH2. 
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In conclusion, our data-driven analysis of DNAm profile identifies five distinct groups of adult 

T-ALL characterized by the maturation arrest stages, overexpression of oncogenic 

transcription factors, and mutations in signaling pathways.  

 
Figure 22. Somatic characteristics of epigenetic clusters  

A. Cluster-specific mutations were found across the cohort (Fisher's exact test; FDR < 0.05). B. 
Lollipop plot for DNMT3A (top) and IDH2 (bottom). Recurrent R882 and R140 mutational hotspots 

in DNMT3A IDH2 are named. 

 

3.2.4 Origins of DNMT3A mutations 

In addition to methylation profiles, we carefully analyzed and characterized the distribution 

of somatic mutations. IDH2 and DNMT3A were frequently altered and, similar to myeloid 

malignancies we observed co-occurrence of IDH2 and DNMT3A mutations (Figure 22A) (Hou 

et al. 2012). Mutations in DNMT3A were largely of gain-of-function type with 30% of them 

being at R882 hotspot thereby affecting methyl-transferase domain whereas, mutations in 

IDH2 occurred at known oncogenic hotspot R140 (Figure 22B).  

Furthermore, in contrast to myeloid leukemia, we observed that ~30% of the DNMT3A 

mutations showed high variant allelic frequency (VAF) possibly due to either bi-allelic loss or 

loss of heterozygosity (uni-parental disomy) (Figure 23A). The same observation was also 

made in a public cohort of adult T-ALL samples derived from whole exome studies (Chen et 

al. 2018b). Copy-number analysis showed no deletions/amplifications in genomic loci 

containing DNMT3A (chromosome-2, p23.3), thereby suggesting possible homozygous 

mutations in T-ALL (see Figure 17). It is possible that small focally deletions or amplifications 

of DNMT3A exist but are below the resolution of the EPIC arrays. High frequency of possible 

bi-allelic loss of DNMT3A events in T-ALL also suggests positive selection pressure for 
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DNMT3A mutants, thereby leading to rapid progression of the disease. This is further 

corroborated by survival analysis, whereby we observed DNMT3A (C1) samples showed the 

worst survival among all the samples (see Figure 30).  

 

Figure 23. Clonal origins of DNMT3A mutation 

A. Variant Allele Frequency for DNMT3A variants in TCGA AML (Cancer Genome Atlas Research 2013), 
adult T-ALL from a published cohort (Chen et al. 2018b), and in present cohort. B. A small but non-

significant correlation was observed between VAF and age (Pearson cor. 0.29; P-value > 0.05) 

 

In addition to VAF, we also observed that overall age of the patients belonging to C1 was 

significantly higher compared to rest of the cohort (median age 45 years; P < 0.001; Wilcoxon 

rank-sum test). C1 samples also showed a small but non-significant positive correlation 

between age and VAF (Figure 23B). Given high age group, high VAF, and possible bi-allelic loss 

– one likely hypothesis could be that DNMT3A mutations have evolved from clonal 

hematopoiesis, where a dormant DNMT3A mutant clone acquired a second hit by means of 

bi-allelic loss thereby leading to a full-blown T-ALL. Although clonal hematopoiesis is primarily 

observed in myeloid leukemia, a recent case report has shown clonal hematopoiesis mediated 

T-cell lymphoma in a 45-year-old patient (Tiacci et al. 2018). These combined observations 

and evidence from literature urges the need for further in-depth analysis of origin of DNMT3A 

mutations in T-ALL. 

3.2.5 DNA methylation changes in regulatory regions 

To further understand the heterogeneity among the epigenetic clusters, we generated a 

genome-wide map of histone modifications associated with the active transcription, namely, 

H3K27ac and H3K4me3 (12 primary T-ALL; 7 to C2, 2 to C4, and 3 to C5). PCA based on the 
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active promoter marks (H3K4me3) and enhancer marks (H3K27ac) similarly segregated the 

samples to that of DNAm. Samples showed clear separation by their cluster assignment, 

reflecting a conserved epigenome at multiple layers (Figure 24A, B). Besides marking the 

regulatory regions for enhancers, H3K27ac peaks also harbor a subset called super-enhancers 

– known to be associated with the cellular identity and maintaining the oncogenic programs 

(Pott and Lieb 2015). Using H3K27ac, we created super and typical enhancer landscapes for 3 

of the 5 clusters for which enough samples were available. The overall number of super-

enhancers identified in T-ALL were significantly higher compared to the normal T-cells (P < 

0.001; t-test) (Figure 24C). SE-associated genes in T-ALL contained genes known to be 

involved in T-cell maturation and T-ALL leukemogenesis (Figure 24D). In particular, driver 

genes associated with the clusters (such as TAL1 in C2, TLX1 in C4, and HOXA genes in C5) had 

large blocks of super-enhancers encompassing the gene bodies and upstream regions (Figure 

24E).  

Next, to correlate the changes in DNAm and histone marks, we compared each cluster with 

the normal thymic subpopulations to identify differentially methylated probes (DMP) (FDR < 

0.05, |meth change| > 0.2). This analysis revealed varying degrees of DMPs with C1 (34424 

hyper/21478 hypo) and C2 (48538 hyper/ 27757 hypo) displaying the approximately equal 

proportion of hyper- and hypo- methylated probes. In contrast C3 (76873 hyper/ 22272 hypo), 

C4 (97297 hyper/ 26728 hypo), and C5 (101198 hyper/ 14503 hypo) showed large number of 

hypermethylated probes (Figure 25A). Further genomic and CpG annotations of the DMPs 

showed hypermethylated DMPs strongly being enriched in promoters and CGIs across all the 

clusters (Figure 25B). 
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Figure 24. Enhancer landscape of epigenetic clusters.  

Principal component analysis of primary T-ALL samples based on active H3K27ac peaks (peaks 2500 bp 
away from known TSS) (A) and H3K4me3 peaks (B). Samples are color-coded according to their 

corresponding cluster. C. Boxplot of the number of super-enhancers identified in each T-ALL sample, 
groups, and thymic cell types (X-axis) (*** t-test; P < 0.01). D. Super Enhancers identified for each T-ALL 

cluster. Key SE associated genes are mentioned in italics. SEs are highlighted in black dots, whereas typical 
enhancers are in gray E. Examples of cluster-specific track plots display H3K2Ac signals for TAL1 (in C2), 

TLX1 (in C4), and HOXA (in C5) genes.  

 

In solid cancers and leukemias, DNAm changes in regulatory regions have been linked to 

preserving the cellular identity and malignant transformation. (Bell et al. 2016; Benetatos and 

Vartholomatos 2018). Therefore, we analyzed the dynamics of DNAm changes in regulatory 

elements of normal T-cell and T-ALL clusters. We used the LOLA to perform the enrichment 

analysis of DMPs among promoter-associated histone marks (H3K4me3), active gene 

expression (active, poised, and putative), SE and TE regions (Figure 25C) (Sheffield and Bock 

2016). Results showed the yin-yang distribution of DMPs with hypermethylated DMPs 

primarily concentrated in TSS (+/- 1000 bps) and active promoters (H3K4me3 peaks) of genes 

involved in T-cell development. Hypermethylated DMPs also occurred among poised-
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enhancers (H3K4me1+/H3K27ac-) of T-cells. However, hypomethylated DMPs significantly 

overlapped with enhancer regions derived from T-ALL clusters. Especially, SE and TE regions 

showed hypomethylation, suggesting an activated downstream expression of genes. 

Since we observed the enrichment of hypomethylated DMPs among SE regions, we next 

performed the motif analysis within 100 bps surrounding the SE-associated DMPs. Results 

contained motifs characteristic of the corresponding oncogenic drivers (Figure 25D). For 

example, C1 had myeloid-like motifs such as CEBP, GATA1/2, PU1, and AP1. C2 showed the 

motif enrichment of TAL1 and RUNX, GATA and MYB, which are known to form an 

autoregulatory loop (Sanda et al. 2012). C5 being driven by HOXA9 overexpression contained 

many HOXA family motifs in a cluster-specific manner. 

Overall, our results show the hypomethylation of T-ALL-associated active enhancer regions 

and hypermethylation of promoters associated with normal T-cell development. 
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Figure 25. T-ALL enhancers are hypomethylated  

A. Numbers of hyper- and hypomethylated DMPs identified in each T-ALL cluster (C1- C5) compared to 
normal pooled thymic subpopulations. B. CpG and genomic annotations of hyper and hypo differentially 

methylated probes placed in each group compared to pooled normal thymic cells. C. Dot plot for the 
enrichment of hyper- and hypomethylated DMPs across all 5 clusters (X-axis) in various regulatory regions 
(Y-axis) as highlighted in the left side of the plot. Dots are color-coded for significance and size of the dots 

represents P values in log10 scale. D. Disease-associated TF motifs detected among hypomethylated 
DMPs (+/- 100bp) enriched within T-ALL associated super and typical enhancer regions. 
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3.2.6 Integrative analysis of DNA methylation and gene expression 

We used RNA-sequencing to produce expression profiles for a total of 48 samples (C1=4, 

C2=13, C3=6, C4=7, C5=14), including four normal total thymus controls, to understand the 

impact of DNAm on gene expression. Although the samples seemed to cluster according to 

their methylation cluster in the PCA of the RNA-seq results, the distinction between the 

different leukemia groups appeared to be much less precise than their methylation signature. 

Surprisingly, whole thymus samples clustered with C2 samples in the same way as DNAm 

findings did (Figure 26A). Also, clusters had a strong expression of their candidate 

transcription factors (Figure 26B). By comparing each group to total thymus samples, we 

performed differential gene expression (DGE) analysis. This study showed different degrees 

of gene expression changes, with C1 having the lowest number of DE genes and C5 having the 

highest number (DEGs). A large number of DE genes were up-regulated, indicating activated 

gene expression profiles (Figure 26C). We conducted a correlation study between gene 

expression and the corresponding promoter DNAm levels of all protein-coding genes (N = 

15,912 genes) across 44 T-ALL samples to determine the genome-wide effect of DNAm on 

gene expression. A small percentage of genes (N = 235) significantly correlated with promoter 

DNAm levels (FDR < 0.1) (Figure 26D). Multiple studies have shown that DNA methylation 

levels at promoter regions do not always correlate with gene expression levels (Lister et al. 

2009; Challen et al. 2011). However, except for the C1 cluster, we found a consistent inverse 

relationship between DE genes and their promoter DNA methylation levels, with up-regulated 

genes having lower methylation levels than down-regulated genes (Figure 26E). 
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Figure 26. Integrated analysis of DNAm and gene expression. 

 A. Principal component analysis of gene expression data for 48 samples (44T-ALL + 4 total thymus). 
Samples are color-coded for their T-ALL cluster. B. Heatmap of known T-ALL oncogenes. Top annotation 

bars depict validated genetic annotations. C. Barplot of the number of differentially expressed genes 
(DEGs) in each cluster compared to total thymus samples (FDR < 0.1).  Up and down-regulated genes are 

color-coded for their fold change range. D. Histogram of Pearson correlation coefficient between 
promoter* DNAm and gene expressions of all protein-coding genes (N = 15,912 genes) across all tumor 
samples (N = 44). E. Distribution of gene expression (Up and Down-regulated genes from panel C) and 

their corresponding promoter* DNAm for every cluster. Notches indicate 95% CI around the median. (*** 
P < 0.001, t-test for differences in mean. 

*Promoter DNAm is estimated by averaging the beta values from probes within 1200 bp upstream and 
800 bp downstream of known TSS. 

 

“As a result, we identified cluster-specific genes with a strong inverse association between 

DNAm and gene expression in a robust manner to better represent DNAm clusters. Within 

promoter regions, we used all of the DMPs (from Figure 26A) and looked at their 

corresponding gene expression (Figure 27). With an inverse association between DNAm and 

gene expression, careful cataloging of these genes discovered some interesting cluster-

specific genes involved in oncogenesis. In C1 - among hypomethylated and overexpressed 

genes, we identified the myeloid factors, AZU1, CSF3, oncogenic genes EGFL7 (Papaioannou 

et al. 2017), FES (Zhang et al. 2009), SLC2A5 (Lai et al. 2020), and S100A6 (He et al. 2017; 

Zheng et al. 2017; Chen et al. 2018a). Similarly, C2 included CD160 (Lesesve et al. 2015), CD47 

(Pai et al. 2019), FOSL1 (Jiang et al. 2020), MAPK8 (Chorzalska et al. 2018; Pyo et al. 2018; 

Lehmann et al. 2019; Newman et al. 2019) and MYEOV (de Almeida et al. 2006; Moreaux et 
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al. 2010) in C3, and CAPG, RGS17 (Bodle et al. 2018; Li and Luo 2018), FAM83A (Yu et al. 2020), 

LGALS(Shih et al. 2019), NCR1 (Cheminant et al. 2019) and EMP1 (Aries et al. 2014) in C5. 

Contrarily, inactivation of tumor suppressor genes (TSG) by DNA hypermethylation has been 

suggested as a hallmark of cancers. Therefore, we observed several TSGs that are 

hypermethylated with decreased expression; C5 contained the largest number of DEGs with 

well-known inactivated TSGs such as:  ALS2CL (Lee et al. 2010), AMPH (Yang et al. 2019), 

CMTM8 (Zhang et al. 2016), DEPDC7 (Liao et al. 2017), HOOK1 (Sun et al. 2017), MITF (Vivas-

Garcia et al. 2020), MPPED2 (Gu et al. 2019), PCDH9 (Lv et al. 2017), RARRES1 (Roy et al. 2017), 

RASEF (Maat et al. 2008), RNF180 (Deng et al. 2016), S100A16 (Zhang et al. 2019) and SLFN5 

(Wan et al. 2019).” 

 

 
Figure 27: Identification of cluster-specific dysregulated genes.  

Scatter plot of gene expression and DNAm differences in DMPs between tumor and normal samples for all 
5 clusters (C1-C5). Dark gray color indicates genes significantly differentially expressed (FDR < 0.1; from 
Figure 16C). Selected genes known to be associated with the T-ALL pathogenesis are highlighted in red 

and annotated. 

 

In conclusion, our combined analysis of DNAm and gene expression datasets reveal the role 

of transcriptional and epigenetic modifications in a coordinated way, leading to the 

identification of several clusters of specific oncogenes and TSGs. 

3.2.7 Maturation arrest stages of T-ALL subtypes 

Since our WGBS based analysis of intrathymic cell types was able to identify developmental 

associated genomic regions and reconstruct the thymopoiesis trajectory (see Figure 11D), we 

asked if the same results can be used to predict the maturation arrest stages of T-ALL clusters.  
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By utilizing the tDMRs identified from our WGBS analysis, we performed the PCA, which 

separated the thymic cell types on a two-dimensional plane with cell types organized by their 

maturation stages (Figure 28A). Phylogenetic trees from the same data reconstructed the 

thymopoiesis ontogeny (Figure 28B). Next, using this phylogenetic tree as a reference, we 

projected our entire cohort of T-ALLs which showed the potential maturation arrest stages of 

T-ALLs (Figure 28C). The combined tree still maintained the T-cell ontogeny even in the 

presence of T-ALLs suggesting the robustness of tDMRs in preserving the cellular identity 

(Figure 28D). Moreover, T-ALL samples were hierarchically ordered with the ETP ALLs (C1 and 

C5) occurring during the earlier stages, followed by TLX deregulated clusters (C3 and C4) and 

finally TAL1 deregulations (C1). These results are also summarized by the phylogenetic tree 

constructed from T-ALL groups' aggregated methylation levels (Figure 28D inset plot). 

Importantly, all 5 clusters were placed midst of ISP and DP TCR stages of T-cell development, 

indicating that maturation arrest occurs earlier during T-cell differentiation.  
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Figure 28. DNA methylation predicts T-cell differentiation and maturation arrest stages of T-ALL clusters.  

A. Principal Component Analysis (PCA) shows separation and ordering of T-cell subtypes according to 
different maturation stages (clockwise from bottom left to bottom right). B. T-cell developmental 

phylogenetic tree inferred from tDMPs shows the placement of T-cell subtypes. C. PCA of normal T-cell 
and T-ALL methylomes using tDMPs. Normal T-cell subpopulations (n = 12) are depicted in diamond 

shapes, and T-ALLs (n = 143) are circles - color-coded according to the cluster (C1 – C5). The known T-cell 
developmental trajectory starting from CD34 is shown as a red curve overlaid on top of normal T-cell 

population. D. Phylogenetic tree of the entire cohort (n = 143 T-ALLs; n = 12 normal T-cells) constructed 
using tDMPs shows ordering of T-ALL samples (color-coded according to their corresponding clusters) 

along T-cell developmental pathway (left to right). Normal T-cells are in thick black circles labeled for cell-
types. Inlet panel shows a simplified phylogenetic tree constructed with average DNAm levels of 

epigenetic clusters along with normal T-cell types (in diamond shapes) shows the order of maturation 
arrest stages of T-ALL subtypes (in circles) along the T-cell developmental pathway (left to right). 

 

Of note, we find that global DNAm levels of these clusters do not correlate with the 

developmental arrest stages, implying a non-linear association of DNAm levels and 

maturation arrest stages (Figure 29A). Besides, as expected, oncogenic TFs accumulated at 

precise locations in a hierarchical order (Figure 29B).   
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Figure 29. Associating between DNAm levels, TF overexpression with T-ALL ontogeny.   

Phylogenetic tree with samples color-coded for global DNA methylation levels (A) and TF deregulation (B). 
Black dots represent normal thymic cell types. The inset plot shows the density of mutated samples along 

the trajectory. 

 

Overall, the results suggest the potential role of DNAm in predicting the normal T-cell 

developmental trajectory and the order of maturation arrest stages for the five epigenetic T-

ALL subgroups. 

3.2.8 Epigenetic clusters are associated with the clinical outcome 
 

CIMP-negative T-ALL patients have been shown to be significantly associated with higher 

cumulative incidence of relapse as compared to CIMP-positive patients suggesting a 

prognostic relevance of DNAm profiles in T-ALL (Borssen et al. 2016). This was also observed 

in adult T-ALL (Touzart et al. 2020). Thus, we tested the prognostic relevance of the five DNAm 

clusters (C1-C5) which revealed association with diverse levels of overall survival (OS) and 

event-free survival (EFS) (P = 0.08 and P = 0.045, respectively) (Figure 30A, B). As reported 

previously, TLX clusters C3 and C4 displayed favorable outcomes, whereas hypomethylated C1 

showed unfavorable results (Ferrando et al. 2004). 
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Figure 30. Overall Survival (OS) and Event Free Survival (EFS) of methylation clusters. 

 A and B. OS (A) and EFS (B) for five epigenetic groups (C1-C5). P-values are estimated from the log-rank 
test. Bottom tables show risk table. 

 

“Based on genome-wide DNAm levels, we classified five clusters into three groups with 

significantly distinct DNAm levels, C(1+2), C(3+4), and C(5), which displayed hypomethylation, 

intermediate-hypermethylation, and high-hypermethylation respectively (Figure 31A, B). 

Patients in the hypomethylated C(1+2) subgroup demonstrated shorter OS (5-year OS 

probability; 50% [95% CI = 35% to 63%] vs 71.5% [95% CI = 58% to 81%]; P = 0.031) and EFS 

(5-year EFS probability; 44% [95% CI = 30% to 57%] vs 69% [95% CI = 55% to 79%]; P = 0.015) 

as compared to the intermediate-hypermethylated C(3+4) subgroup. Interestingly, the high-

hypermethylated C(5) subgroup displayed distinct clinical outcome and had significantly 

poorer survival probability as compared to the C(3+4) subgroup (5-year OS probability; 53% 

[95% CI = 34% to 68%] vs 72% [95% CI = 58% to 81%]; P = 0.037) and EFS (5-year EFS 

probability; 46% [95% CI = 28% to 62%] vs 69% [95% CI = 55% to 79%]; P = 0.045). C5 and C(1+2) 

patients with ETP-ALL showed similar shorter OS and EFS (Figure 31C).“ 
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Figure 31. Prognostic impact of DNA methylation.  

A. UMAP of clusters classified into hypo (C1+2), intermediate (C3+4) and hypermethylated (C5) subgroups. B. 
Average genome-wide DNA methylation of C1+2, C3+4, and C5 subgroups (*** P < 0.001 two-tailed t-tests 

for differences in mean) C. Overall Survival (OS) for patients classified into hypomethylated (C1+2), 
intermediate hypermethylated (C3+4), and hypermethylated (C5) subgroups. The risk table indicates the 

number of individuals at risk for a given time point. P-values are derived from log-rank test. D. Event Free 
Survival (EFS) for patients classified into C1+2, C3+4, and C5 subgroups. 

 

“Importantly, it does not seem to be linked to the same clinical parameters in adverse 

prognosis as C(5) and C(1+2). C5 patients have shown a poor early response with significantly 

slower D8 prednisone and D15, and higher MRDs (Minimal Residual Disease; 28.1% versus 

54.2%, Bone marrow response, 21.9% versus 66.7% and negative MRD induction, and 38.1% 

versus 78.3%), respectively, unlike C(1+2) patients, which shows a low level of early response 

with marked slowness in both D8 prednisone and D15 (Table 4).“ 
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  C(1+2) C(3+4) C(5) P-value† 
  N= 48 N=63 N=32   
Clinical Subsets Analyzed         
The median age in years (range) 26.2 (16.3-59.1) 30.5 (16.4-57.2) 31.4 (18.8-59) 0,3 
age >45 years- no./total no. (%) 6/48 (13%) 6/63 (10%) 5/32 (15%) 0,67 
Sex ratio, Male/Female- no. 38/10 46/17 23/9 0,7 
WBC (G/L), median (range) 69.9 (0.9-604.4) 37 (4.1-645) 31.2 (2.2-241.6) 0,3 
CNS involvement- no./total no. 
(%) 7/48 (15%) 8/63 (13%) 5/32 (16%) 0,9 
Early Response         
Prednisone response 
- no./total no. (%) 

 
26/48 (54%) 44/63 (70%) 9/32 (28%) 0,001 

Bone marrow response 
- no./total no. (%) 

 
30/45 (67%) 41/63 (65%) 7/32 (22%) <0.001 

MRD (TP1) <10-4 
- no./total no. (%) 

 
18/23 (78%) 33/39 (85%) 8/21 (38%) 0,001 

Complete remission 
- no./total no. (%) 

 
44/48 (92%) 61/63 (99%) 29/32 (94%) 0,4 

WBC (G/L), white blood cells; CNS, central nervous system; MRD (TP1), post-induction minimal residual 
disease; †Fisher’s exact test Mann-Whitney tests were used where appropriate. 

 

Table 4. Clinical characteristics of the three prognostic subgroups^.  

Multivariate survival analysis performed by Guillaume P. Andrieu 

 

In general, our data found a subset of T-ALL with a low primary therapeutic response, which 

paves the way for unique epigenetic therapeutic plans. 

3.2.9 Machine learning models predict risk associated T-ALL subgroups  
 

Considering the stable nature of DNAm and relative ease in measuring, many studies involving 

solid tumors and leukemias have utilized DNAm to predict disease subtypes and prognostic 

groups (Figueroa et al. 2010b; Capper et al. 2018). Accordingly, we thought methylation 

cluster prediction could be an interesting diagnostic and prognostic biomarker in clinical 

 
^ Table copied from the soon-to-be published joint manuscript: Epigenetic blueprint identifies 
poor outcome and hypomethylating agent-responsive T-ALL subgroup 
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practice. We first classified our entire cohort into training (60%; N = 86) and test (40%; N = 

57) datasets. Next, we generated Random Forest (RF) models using the training dataset to 

predict epigenetic and prognostic clusters (Figure 32A). These models were also cross-

validated for maximum accuracy using 10-fold cross-validation. Using recursive feature 

selection, we then derived a minimal set of probes that could assign samples in the test 

dataset to either of the five epigenetic or prognostic clusters with high accuracy. The first 

model, which consists of 79 CpG probes (common across 450K and 850K arrays), correctly 

assigned test samples to their five methylation clusters with an accuracy of 96.29% (52 of 54 

were correctly classified) whereas, the second model classified test samples as C(1+2), C(3+4), 

and C(5) groups with an accuracy of 98.21% using a minimal set of 59 probes (Figure 32B, C). 

Besides, we built a final model to predict favorable C(3+4) or unfavorable C(1+2+5) risk groups. A 

predictor of only seven methylation probes predicted the risk group with an accuracy of 

91.2% on the test cohort (Figure 32D). We believe that these models could be of clinical 

relevance in the better assignment of risk groups. 
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Figure 32. Random Forest (RF) models predict epigenetic clusters and survival. 

A. Overview of steps involved in RF model and feature selection B. Heatmap of most informative probes 
depicting predicted clusters (C1, C2, C3, C4, and C5) on the test dataset. C. Heatmap of most 

informative probes displaying the predicted methylation groups (hypomethylated, hyper-
intermediate, and hyper-high) on the test dataset. D. OS of favorable and unfavorable subgroups 

(top panel). Heatmap of 7 CpG signature for predicting prognostic groups, unfavorable (C1, C2, C5) 
and favorable (C3 and C4) (bottom panel). 

 

To further validate the RF models' accuracy in predicting the five epigenetic T-ALL subtypes in 

an independent cohort, we generated EPIC data for a series of samples that were not included 

in the GRAALL 2003-2005 trial (N = 29). This model was able to classify the samples in the 

validation cohort into 5 clusters which were well correlated with their genetic drivers (Figure 
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33). However, we believe this type of analysis would greatly benefit by training on large 

cohorts as the model tends to perform better. 

 

Figure 33. Validation of random forest models in an independent cohort 

Heatmap of most informative probes selected by recursive feature selection (N = 79 probes) depicting 
predicted clusters on the validation dataset (N=29 samples). Top annotation bars indicate key oncogenic 

events associated with each sample. 
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4 DISCUSSION 
4.1.1 DNA methylation dynamics of thymopoiesis 

Using high coverage WGBS of sorted cells isolated from multiple thymi at distinct stages of T-

cell differentiation, we describe the high-resolution mapping of DNAm dynamics during 

human thymopoiesis. Although there have been attempts to achieve the same, they have 

lacked coverage and are limited to arrays-based assays (Rodriguez et al. 2015). A recent study 

by BLUEPRINT consortia has performed in-depth multi-omics of epigenetic modifications; 

however, there still existed an opportunity to address the specific queries (Cieslak et al. 2020).  

Our comprehensive analysis reveals a sequential loss of DNAm during thymopoiesis. The loss 

of DNAm is most prominent post T-cell commitment and is reflected in the number of 

identified DMRs. Similar results are also shown in B-cell development and some of the 

myeloid cell maturation (Farlik et al. 2016; Oakes et al. 2016). The systematic loss of 

methylation observed in multiple branches of hematopoiesis suggests the critical 

requirement of demethylation in lineage commitment regardless of the terminal cell fate. 

Besides, methylation losses are prominent among binding sites for master T-cell transcription 

factors such as NOTCH1, MYB, and RBPJ. Several studies over the decades have made it clear 

that the critical mode of action of DNAm involves regulating the binding sites for TFs, and the 

same seems to be true for thymopoiesis. 

Next, our comparative analysis of CD4+ and CD8+ fate decisions across BLUEPRINT regulatory 

regions shows a significant overlap in the loci that are differentially methylated from the 

progenitor double-positive cells. Classically, two possible models have been proposed for CD4 

or CD8 commitment; an instructive model involving MHC class-1 or MHC class-2 ligands whose 

interactions with CD8 or CD4 decide the final fate; and the stochastic model involving a 

random selection and commitment towards CD4 or CD8 (Kappes et al. 2005). Regardless of 

the mechanism, DNAm changes required for functional specificity highlight the underlying 

genomic characteristics. For example, our results show that RUNX1 binding regions are 

significantly hypomethylated among the specific areas for CD8+ cell commitment. This 

observation is corroborated by the study wherein ZBTB7B causes differentiation towards CD4 

by antagonizing RUNX (Wildt et al. 2007).  
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By performing a careful de-novo DMR analysis, we reveal a stage-specific genomic region 

undergoing differential methylation (tDMRs). Significantly, tDMRs show uni-directional and 

irreversible loss of methylation at each step of differentiation. Similar observations have also 

been made in the array-based analysis and seem to be thymopoiesis' epigenetic nature 

(Rodriguez et al. 2015). Interestingly, stage-specific loss of methylation shows 

hypermethylation in predecessors, whereas the same remains hypomethylated in successors. 

The observation suggests the progressive epigenetic silencing of pathways no longer needed 

in the newly differentiated cell type. 

Moreover, tDMRs are highly stable and can be used to construct the lineage of thymopoiesis. 

The functional properties and stability of DMRs have also been shown in hematopoiesis to 

predict the cell types and lineage tracing (Farlik et al. 2016). Similarly, our combined analysis 

of hematopoiesis and thymopoiesis in an independent dataset further validates the tDMRs 

and now serves as an epigenetic atlas for T-cell development.  

4.1.2 DNA methylation identifies high risk associated T-ALL subgroups  

“Epigenetic studies in T-ALL have historically been based on CpG-rich regions (Milani et al. 

2010; Borssen et al. 2013; Nordlund et al. 2013; Borssen et al. 2016). The recent extensive 

study of pediatric T-ALL DNA methylomes showed that CpG islands are hypermethylated with 

the PRC2 target genes and already present in preleukemic thymocytes (Roels et al. 2020b). 

Our extensive analysis of 143 T-ALL samples using EPIC arrays has established five distinct T-

ALL subgroups with distinct DNAm levels. Four of the five clusters were associated with the 

known oncogenic TFs whereas, a novel hypomethylated subgroup associating with the poor 

clinical outcome was identified (Ferrando et al. 2002). These findings show the role of 

oncogenic developmental events that redefine the underlying methylome in leukemogenesis. 

The previously described gene expression-based analysis is complemented with features of 

these DNAm clusters. Extensive overlaps in transcriptional signatures between TLX1 and TLX3 

T-ALL, for example, have been shown by expression-based studies. However, these two 

subgroups are robustly distinguished from their DNAm patterns and their phases of 

methylation-based arrest, indicating a deeper variation in the deregulated pathways. Based 

on the mode of overexpression, HOXA9 deregulated samples showed significant differences 

in DNAm. Those with HOXA9 deregulation in cis (under the influence of the TCR enhancer) 

clustered with TLX1 deregulated samples (C4) displaying early cortical maturation arrest 
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stages, whereas those with HOXA9 deregulation in trans (under the influence of SET-NUP214, 

MLLT10, or MLL fusions) formed a distinct hypermethylation cluster (C5), associated with early 

cortical maturation arrest stages (Bond et al. 2016) . Moreover, PRC2 mutations are frequent 

in the C5 subgroup. Immature/ETP ALLs were divided into two groups by DNAm: C1 

hypomethylated DNMT3A/IDH2-rich ALLs and C5 hypermethylated trans-HOXA/PRC2 ALLs, 

paving the way for alternative therapy. TAL1 deregulated samples clustered together, 

indicating a disruption of common downstream pathways, regardless of the mechanism of 

deregulation (SIL-TAL1, or upstream neo-enhancer (Mansour et al. 2014). TAL1 is one of the 

most frequently deregulated driver oncogenes in T-ALL (approximately 30% of cases), either 

through deletions (SIL-TAL1; 10-20%), oncogenic neoenhancer (20%) or rare V(D)J-mediated 

translocations [t(1;14); 1-2%) (Bernard et al. 1990). However, such lesions are absent in about 

40% of TAL1+ cases, indicating that TAL1 is overexpressed for unknown reasons. Only 16/34 

samples in cluster C2 had either the SIL-TAL1 deletion or the oncogenic neoenhancer, implying 

that the rest of the samples show TAL1 overexpression due to unknown mechanisms.” 

“Cluster C1, enriched for co-occurring DNMT3A/IDH2 mutants, has no previously identified TF 

overexpression. However, all DNMT3A/IDH2 mutated cases had NOTCH1 mutations, 

suggesting the synergistic role of the deregulated epigenome and NOTCH1 signaling in 

oncogenesis (Grossmann et al. 2013; Kramer et al. 2017). Single mutations in epigenetic 

factors (DNMT3A, IDH1, TET2/3) involved in DNAm, however, were not associated with a 

specific methylome, raising the question of the role played by such genomic alterations in 

leukemogenesis. Cluster-specific methylome analysis revealed systematic DMP distribution, 

with significant hypermethylation of T-cell developmental associated active promoters and 

poised enhancers and significant hypomethylation of T-ALL-related enhancers. Our findings 

corroborate previous results of enhancer hypomethylation in solid tumors and leukemia (Bell 

et al. 2016; Benetatos and Vartholomatos 2018).” 

“Our integrated gene expression and DNAm analysis, similar to cluster-specific somatic and 

epigenetic alterations, highlights the combined effects of DNAm and gene expression in T-

ALL. SLC2A5, for example, is hypomethylated and overexpressed in C1, is also overexpressed 

in a subset of AML and childhood Philadelphia chromosome+ ALL, and linked to a poor 

prognosis. The encoded protein is a fructose transporter that increases fructose use by 

leukemic cells and is responsible for fructose uptake by the small intestine (Mansour et al. 
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2018; Lai et al. 2020). JDP2, a C1-specific bZIP transcription factor, has been identified as a 

novel oncogene in ETP T-ALL and has been linked to a poor prognosis. Another gene, EMP1, 

is linked to poor pediatric ALL and confers prednisolone resistance (Aries et al. 2014). It is 

hypomethylated/overexpressed in C5, and our multivariate analysis also discovered a link 

between C5 and an inadequate early prednisone response.” 

“The recapitulation of the maturation arrest stages is another important finding of this study. 

Lymphopoiesis is a complicated process involving the stage-specific expression of several 

transcription factors and cell surface markers (Koch and Radtke 2011). Our DNAm-based 

phylogenetic trees accurately captured this ontogeny, demonstrating the importance of 

DNAm in thymopoiesis regulation. These findings support previous reports in mouse 

hematopoiesis, which show that DNAm dynamics choreograph myelopoiesis and 

lymphopoiesis (Ji et al. 2010). Similar reports are also made in human lymphopoiesis, where 

DNAm dynamics during B cell maturation show a steady progression of changes (Oakes et al. 

2016). By combining T-ALL samples, these phylogenetic trees accurately captured the known 

clinically relevant subgroups, indicating developmental arrest at different stages of thymic 

maturation. An independent study using open chromatin signals revealed similar results, 

highlighting the conserved epigenetic marks at multiple layers (Erarslan-Uysal et al. 2020). 

Overall, our findings show that C5 and C1 are characterized by trans overexpression of HOXA 

and alterations in myeloid-like genes, respectively, occur early, followed by C3 (enriched in 

TLX3 cases) and C4 (increased in TLX1 and cis HOXA deregulated instances). Finally, C2 

enriched in TAL1 deregulated samples occurred with the known late cortical maturation stage 

arrests. The plasticity induced by DNAm in tumor progression is further highlighted by 

observing hypomethylated disease enhancers and maturation arrest stages.” 

Using Random Forest model, we defined a prognostic predictor consisting of only seven 

differentially methylated probes. This methylation-based predictor could be an interesting 

tool to refine risk group at the time of diagnosis and it would be important to validate its 

accuracy in an independent cohort of patients. 

Unlike previous transcriptional studies, we were able to identify patient clusters with clinical 

significance and an unexpected subgroup of hypermethylated patients (C5) who showed poor 
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prognosis and could benefit from targeted epigenetic therapies (Soulier et al. 2005; 

Homminga et al. 2011). 

4.1.3 Conclusion 

In the current doctoral thesis, a comprehensive analysis of DNA methylation dynamics during 

human thymopoiesis is performed. Results show that T-cell differentiation is characterized by 

the gradual loss of methylation, primarily occurring at genomic regions associated with the 

NOTCH and MYB binding sites. Using rigorous statistical analyses, regulatory regions 

associated with the thymopoiesis are established which, serves as an epigenetic atlas for 

intra-thymic T-cell development. These regions are distinct from BM-derived cell types and 

conserved across mature peripheral T-lymphocytes.  

Besides, the DNAm landscape of a rare cohort of adult T-ALL is studied, resulting in identifying 

five distinct epigenetic subtypes, including a novel subgroup with co-occurring DNMT3A/IDH2 

mutations (C1). The subtypes are characterized by specific maturation arrest stages and their 

oncogenic drivers (Figure 34).  Using gene expression data, subtype-specific gene signatures 

were established. Moreover, integrative analysis with ChIP-seq data revealed the 

hypomethylation of oncogenic enhancer elements and hypermethylation of T-cell 

developmental associated regulatory regions. Furthermore, we define the epigenetic barcode 

(random forest models) for each cluster to be used for de-novo subtype prediction of newly 

diagnosed T-ALLs. Finally, we identify a novel hypermethylated subtype that can be 

potentially targeted with DNA hypomethylating agents.  

 

Figure 34. Summary of DNAm based T-ALL subtypes.  



DISCUSSION 

65 
 

 

Our combined analysis of thymopoiesis and adult T-ALL shows that the DNAm during normal 

thymopoiesis is linear; however, an oncogenic hit during the early developmental stages 

results in the differentiation blockade. “The results further highlight two intertwined DNA 

methylation differences in T-ALL: those preexisting in the cell-of-origin relating to the T-cell 

differentiation and the T-ALL acquired neoplastic changes.” These overall changes can be used 

to decipher the ordering and origin of T-ALL subgroups (Figure 35). 

 

 
 

Figure 35. Intertwined DNAm methylomes predict maturation arrest stages of T-ALL.  

A visual summary of the DNAm dynamics during normal T-cell development (left) and the oncogenic hits 

leading to distinct T-ALL subgroups (right). The hypo-methylated pathogenic enhancer elements 

characterize the T-ALL subgroups. The visualization is inspired from classic Waddington’s ‘ball rolling down 

the hill’ epigenetic model. 
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5 MATERIALS AND METHODS 

5.1 Intra-thymic and T-ALL samples 

5.1.1 Intra-thymic cell types 

To study the DNAm dynamics during the thymopoiesis we isolated seven distinct intra-thymic 

cell types using FACS. Cell-types included rare CD34+ early thymic progenitor cells, TCR 

negative, TCR positive, mature CD4+ and CD8+ cells (Table 55). 

Thymic sub-population Number of thymi (biological replicates) 
CD34+ CD1A- 4 
CD34+ CD1A+ 4 
Immature single CD4+ (4ISP)  4 
Early cortical CD4+CD8+CD3-TCR- 2 
Late cortical CD4+CD8+CD3+TCR+ 2 
CD4+CD8- 2 
CD4-CD8+ 2 

Table 5. FACS sorted intra-thymic cell types.  

FACS sorting and library preparation performed by Aurore Touzart, Marion Bähr, and Dieter Weichenhan 

5.1.2 Adult T-ALL cohort 

“A total of 143 adult patients diagnosed with T-ALL (15-60 years old) from two French ALL 

cooperative groups (N = 22 from GRAALL-2003 and N = 121 from GRAALL-2005) had their 

blood or bone marrow analyzed. Between November 2003 and November 2005, the GRAALL-

2003 protocol was a multicenter Phase II trial that enrolled 76 adults with T-ALL, 50 of whom 

had enough diagnostic tumor material for NGS study. Still, only 22 had enough high-quality 

DNA for the EPIC array (Huguet et al. 2018). The GRAALL-2005 Phase III multicenter 

randomized trial was very similar to the GRAALL-2003 trial. During induction and late 

intensification, a randomized evaluation of an intensified sequence of hyper-fractionated 

cyclophosphamide was added (Maury et al. 2016). In the GRAALL-2005 study, 261 adults with 

T-ALL were randomized between May 2006 and May 2010, with 185 having diagnostic 

material available for the NGS study. Despite this, only 121 people had enough high-quality 

DNA to use in the EPIC array. The availability of high-quality DNA was the primary criterion 

for inclusion in this study. The 143 patients' survival rates were comparable to those of the 

remaining 194 T-ALL patients. The study cohort's initial white blood cell count (WBC) was 

higher, as expected in retrospective studies (Table 6).”  
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GRAALL (2003/05) Study Cohort  
(N=143) 

Non-investigated 
(N=194) 

P-value 

Baseline characteristics 
Male 107 132 0.18 

Median Age (range) - Years  29.9 (16.3-59.1) 34.1 (16.8-59.5) 0.01 
Median WBC ccount (Range) 40.5 (0.9-645.0) 19.8 (0.9-573.0) <0.001 
CNS involvement – no/total (%) 20/143 (14%) 15/194 (8%) 0.07 
Outcome characteristics  
Prednisone response – no/total 
(%) 

79/143 (55%) 126/194 (65%%) 0.09 

CR  -– no/total (%) 134/143 (94%) 181/194 (93%) 0.99 
Allo-SCT - – no/total (%) 53/143 (37%) 48/194 (30%) 0.20 
5y-EFS (95%CI) 55% (47-63) 57% (50-64) 0.72 
5y-OS (95%CI) 60% (51-68) 67% (60-73) 0.30 
(GRAALL-2003/05 trials). WBC, white blood cell count; CNS, central nervous system; CR, complete remission; 
EFS, event-free survival; OS, overall survival; CI, confidence interval; Allo-SCT, allogeneic stem cell 
transplantation. 

Table 6. Clinical characteristics and outcome of the study cohort versus non-investigated patients^.  

 

“More than 80% of the blasts were found in all of the samples. As previously stated, 

phenotypic and oncogenetic characteristics were obtained (Bergeron et al. 2007; Asnafi et al. 

2009; Bond et al. 2016). ETP- ALL is defined as previously described using the classic 

immunophenotypic criteria: reduced or no expression of CD1a, CD5, and CD8, and positivity 

for at least one of the following antigens: CD34, CD117, HLA-DR, CD13, CD33, CD11b, or CD65 

(Coustan-Smith et al. 2009; Bond et al. 2017). Informed consent was obtained from all 

patients at enrolment. All trials were conducted per the declaration of Helsinki, approved by 

local and multicenter research ethical committees. The GRAALL-2003 and -2005 studies were 

registered at http://www.clinicaltrials.gov as #NCT00222027iv and #NCT00327678v, 

respectively. A complete summary of the cohort is described in the Table 7.” 

 

 
^ Table copied from the soon-to-be published joint manuscript: Epigenetic blueprint identifies 
poor outcome and hypomethylating agent-responsive T-ALL subgroup 

iv https://clinicaltrials.gov/ct2/show/NCT00222027 
v https://clinicaltrials.gov/ct2/show/NCT00327678 
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Characteristic Value& 
Median age at study entry (range) – year 29.9 (16.3-59.1) 
Sex ratio (Male/Female) – no. 107/36 
T-cell Receptor subsets analyzed – no./total no. (%)  

  Immature (IM0. IMδ. IMγ) 33/127 (26) 
  IMβ/pre-αβ 66/127 (52) 
  TCRαβ+ 14/127 (11) 
  TCRγδ+ 14/127 (11) 

Early T-cell precursor (ETP) Immunophenotype – no./total no. (%) 25/125 (20) 
High risk patients* – no./total no. (%) 61/143 (43) 
Oncogenetic category – no./total no. (%)  

  TLX1 28/137 (20) 
  TLX3 19/137 (14) 
  SIL-TAL1/TAL1-neoenhancer 17/137 (12) 
  CALM-AF10 6/137 (4) 
  None of the above 67/137 (49) 

HOXA deregulation+ – no./total no. (%)  
  Cis 7/127 (6) 
  Trans 17/127 (13) 
  Unknown 11/127 (9) 

Mutations in epigenetic factors – no./total no. (%)  
  DNMT3A 20/143 (14) 
  IDH1 3/143 (2) 
  IDH2 6/143 (4) 
  TET2 7/143 (5) 
  TET3 4/143 (3) 

Early response – no./total no. (%)  
  Prednisone response 80/143 (56) 
  Bone marrow response 78/140 (56) 
  Complete remission 134/143 (94) 

&Percentages may not total 100 because of rounding up.  
*High risk: NOTCH1/FBXW7WT OR NOTCH1mut + [KRAS, NRAS, PTEN]mut 
+Cis: HOXA overexpression under the influence of TCRβ enhancer  

  Trans: HOXA overexpression under the result of SET-NUP214, MLLT10, or MLL fusion 
Table 7: Characteristics of the 143 T-ALL patients^ 

 
^ Table copied from the soon-to-be published joint manuscript: Epigenetic blueprint identifies 
poor outcome and hypomethylating agent-responsive T-ALL subgroup 
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5.2 Data analysis 

5.2.1 WGBS analysis 

Raw sequencing reads resulting from WGBS were processed with 'trimmomatic' to remove 

adapter sequences and other biases such as random priming (Bolger et al. 2014). Reads were 

further checked for methylation biases near the 5'/3' ends and trimmed whenever necessary. 

Final QC passed reads were aligned to hg19 reference genome using bwa-methvi 'aligner with 

default arguments. Post alignment PCR de-duplication was done using the Picard 

MarkDuplicatesvii tool. Final methylation calling was performed using 'methylctools,' and 

results were exported as bedgraph files. 

5.2.2 Methrix – a comprehensive suite for DNA methylation analysis 

To facilitate the analysis of large bedgraph files from WGBS, we developed a computational 

framework in the R programming language called methrix (Mayakonda et al. 2020). Methrix 

allows flexible importing of bedgraph or similar bedgraph like tsv files in a systematic manner. 

An overview of the package structure and usage is shown in Figure 36. At the heart of the 

package, the function read_bedgraphs takes care of file format discrepancies while 

aggregating them into a single matrix-like object. Another benefit includes adding uncovered 

CpGs from the reference genome, which results in a homogenous output. Support for a large 

cohort is made possible by facilitating serialized on-disk arrays, thereby decreasing the 

memory footprint. Moreover, functions for sub-setting and aggregating over genomic regions 

are also implemented. methrix_report is another process that generates an extensive QC 

HTML report for the entire cohort. 

 

 
vi https://github.com/brentp/bwa-meth 
vii https://broadinstitute.github.io/picard/ 
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Figure 36. Comprehensive analysis of WGBS with Methrix package.  

Data analysis with methrix involves importing bedgraph files along with the reference CpGs using 
read_bedgraphs(). The resulting Methrix object can be passed several downstream functions for quality 

control, summarization, and visualization. 

 

Furthermore, methrix offers several benefits over the existing tools as shown in the Table 8 

and complements the analysis of WGBS data in an efficient manner. Methrix is made available 

on Biocodnuctorviii and source code is hosted on GitHubix.  

 

 
viii https://www.bioconductor.org/packages/release/bioc/html/methrix.html 
ix https://github.com/CompEpigen/methrix 
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Table 8. Comparison of methrix with similar Bioconductor packagesD.  

 

Bedgrpah files resulting from WGBS of thymic cell types or for hematopoietic cell types 

obtained from publicly available database (Farlik et al. 2016), were imported and processed 

with methrix in R. Downstream analysis, such as identifying de-novo differentially methylated 

regions, was done using the dmrseq package (Korthauer et al. 2019). Methylation levels of 

known regulatory regions associated with the transcriptional regulation were compiled from 

the Ensemble databasex and processed with methrix (Zerbino et al. 2015). Differentially 

 
D Table copied from the published article: Methrix: an R/bioconductor package for systematic 
aggregation and analysis of bisulfite sequencing data. Mayakonda et al (2020). 
x http://www.ensembl.org/info/genome/funcgen/regulatory_build.html 

 methrix bsseq methylKit RnBeads 
Supports bedGraph-like files 
 

Yes No Yes Yes 

Strand inference and collapsing Yes Yes No Yes 

 
Filling up of uncovered CpG loci 

Yes No No Yes 

 
SNP filtering 

Yes No No Partial^ 

 
Coverage masking 

Yes No No No 

 
Extensive interactive html reports 
 

Yes No No Yes 

Supports on-disk arrays Yes+ Yes+ No Yes$ 

De novo DMR calling No Yes Yes No 

Number of  
dependencies*  

90 64 103 162 

^RnBeads lacks removal of SNPs based on minor allelic frequencies.  
+Utilizing HDF5Array Bioconductor backend.  
$Utilizing ff CRAN backend.  
*Number of package dependencies are as reported on the corresponding Bioconductor landing 
pages.  
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methylated Ensemble regulatory regions (FDR < 0.05; |meth| > 20%) were then identified 

using limma (Ritchie et al. 2015). 

5.2.3 EPIC array analysis 

IDAT files generated from the T-ALL cohort were processed with the RnBeads R package 

(Assenov et al. 2014). Necessary quality control steps, including removing probes assigned to 

SNPs and probes located on copy number altered regions, were also removed. Differentially 

methylated probes were identified using limma package using an FDR cut-off of 0.05 and an 

absolute methylation change of 10%. The batch correction was done using the Combat 

function implemented as a part of the svaxi package. 

5.2.4 Dimensional reduction 

“To identify epigenetic clusters, we used Non-negative Matrix Factorization (NMF) on the top 

5% of most variable probes (N = 38,583) (Gaujoux and Seoighe 2010). NMF decomposes a 

matrix into two smaller matrices whose product sufficiently recomposes the original matrix. 

Critical step in NMF is identifying the number of factors. We used a semi-supervised method 

in which, NMF is run on a range of values and the cophenetic correlation coefficientxii 

(measure of goodness of fit) was determined. An optimal number of clusters was identified 

for which cophenetic correlation reaches its maximum value (Brunet et al. 2004). 

Furthermore, to measure the fitness of identified clusters, we repeated the above clustering 

procedure for varying number of probes (5000 up to 38583). Clusters were stable and reached 

maximum cophenetic correlation coefficient at N = 5. Finally, we used 5 clusters generated 

by using N = 38,583 probes for all downstream analysis. These 5 epigenetic clusters were also 

robust as measured by rand-index, and samples showed little to no changes in cluster 

assignments as the number of probes used for clustering increased. Moreover, we randomly 

sampled 80% of the initial cohort (N = 114) and repeated the clustering. Rand Index - a 

similarity score between two clustering results - was measured between original clusters and 

new clusters generated on subsamples. Clusters were later visualized using Uniform Manifold 

Approximation and Projection (UMAP).” 

 
xi https://bioconductor.org/packages/release/bioc/html/sva.html 
xii https://en.wikipedia.org/wiki/Cophenetic_correlation 
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5.2.5 Gene expression analysis 
 

RNA sequencing for the 44 adult T-ALL samples was performed at the INSERM Paris using the 

standard library preparation protocol. Fastq files were filtered for quality control and aligned 

to hg19 human transcriptome using STAR aligner (Dobin et al. 2013). Expression level gene 

counts were generated using the featurecounts program. Similarly, counts for intrathymic cell 

types were obtained from the gene expression omnibus (GEO) (Roels et al. 2020a). Counts 

were imported into R, and differential expression analysis was done using the DESeq2 

program by accounting batch covariates wherever necessary (FDR < 0.1 and logFC > 0.6) (Love 

et al. 2014). 

5.2.6 ChIP-seq analysis 

ChIP-sequencing for histone modifications H3K27ac, H3K4me1, and H3K4me3 were 

performed for 12 T-ALL samples at INSERM Paris using standard library protocol. Fastq files 

were aligned to the hg19 reference genome using the bwa-mem aligner, and peak calling was 

done using the MACS2 program (Zhang et al. 2008). Identified peaks were filtered for UCSC 

blacklisted regions. Different ChIP-seq visualizations such as heatmaps were done using the 

deeptools package (Ramirez et al. 2014). ChIP-seq tracks were generated using the trackplotxiii 

R script. Using the dynamics of H3K27ac and H3K4me1 signals, we defined three enhancer 

classes, namely active, putative, and poised enhancers (Table 9). 

 H3K27ac H3K4me1 
Active enhancers + + 
Poised enhancers - + 
Putative enhancers + - 
Super Enhancers + (12KB) NA 

Table 9. Enhancer classes based on H3K27ac and H3K4me1 marks 

 

 
xiii https://github.com/PoisonAlien/trackplot 
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Super enhancers are identified using Rank Ordering of Super Enhancers (ROSE)xiv software by 

merging consecutive H3K27ac peaks located within 12kb intervals. H3K27ac signals for the 

merged peaks are ordered by H3K27ac signal intensity, and a mathematical cut-off is 

estimated based on which the merged enhancers are classified as super or typical enhancers. 

5.2.7 Copy number and somatic variant analysis 

EPIC arrays were processed with conumeexv Bioconductor package, which estimates genome-

wide copy number variations by merging the signals from methylated and unmethylated 

probes followed by normalization against the pre-defined controls. Estimated Copy 

numbersxvi are summarized using circular binary segmentation implemented in the DNAcopy 

package (Olshen et al. 2004). Segmentation results from the entire T-ALL cohort (N = 143) 

were summarized using GISTIC, which identifies the recurrent copy number alterations across 

the cohort (Olshen et al. 2004; Mermel et al. 2011). Oncoplots, pathway analysis, and other 

visualizations for somatic variants were performed with maftools Bioconductor package 

(Mayakonda and Koeffler 2016). 

5.2.8 Trajectory analysis 

Hematopoiesis and thymopoiesis ontogeny analysis were done using developmental 

associated EPIC probes or the DMRs identified from WGBS analysis. A data matrix containing 

aggregated methylation values for regions of interest was generated. The Manhattan distance 

between the samples was estimated using the dist function in R. The distance matrix was used 

for neighbor-joining and phylogenetic tree construction with the apexvii package. 

5.2.9 Survival analysis 

All statistical analyses are performed in R statistical environment using multitude of software 

packages (version 4.4)xviii. Uni-variate survival analysis was done using survxix package with 

 
xiv http://younglab.wi.mit.edu/super_enhancer_code.html 
xv https://bioconductor.org/packages/release/bioc/html/conumee.html 
xvi Conumee analysis from IDAT files was performed by Dr. Yassen Assenov 
xvii https://cran.r-project.org/web/packages/ape/index.html 

xviii https://cran.r-project.org/ 
xix https://cran.r-project.org/web/packages/survival/index.html 
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log-rank test. “For multivariate survival analysis, since methylation subgroups were strongly 

associated with maturation arrest and tumor biology, we only considered age, log(WBC), CNS 

involvement, prednisone response, and D8 bone marrow response as covariates to avoid 

multicollinearity. Methylation clusters were reduced to a 3-class variable with intermediate 

methylation clusters (C(3+4)) considered as baseline. Covariates finally used in the multivariate 

cox model were those associated with outcome in univariate analyses (P < 0.1).”  
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PRESENTATIONS 

 
 

7.1 Conference talks 

• Methylation based subtype characterization of adult T-ALL. European Hematology 

Association annual meeting 25 (EHA25), Frankfurt. (2020-06). 

• Methylation based subtype characterization of adult T-cell Acute Lymphoblastic 

Leukemia. Heidelberg Leukemia Network (HeLeNe) annual meeting, Heidelberg. (2019-11) 

 

7.2 Poster presentations 
 

• Methrix: An R package for efficient processing of bedGraph files from large-scale 

methylome cohorts. European Conference on Computational Biology (ECCB) annual 

meeting-2019. Basel. (2019-07) 

• Methrix: An R package for efficient processing of bedGraph files from large-scale 

methylome cohorts. DKFZ research program, Functional and structural genomics annual 

scientific retreat-2020. Kloster Schöntal. (2020-02) 
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9 SOFTWARE TOOLS DEVLOPED 
 
 
• Methrix: An R package for fast and flexible DNA methylation analysis. Source code 

available at: https://github.com/CompEpigen/methrix 

• Trackplot: An R script to generate IGV style locus tracks from bigWig files. Source code 

available at: https://github.com/PoisonAlien/trackplot 

• Peakseason: An R package for rapid rapid bigWig file summarization and visualization. 

Source code available at: https://github.com/PoisonAlien/peakseason 
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