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Thermal Expansion and Magnetostriction of Layered Correlated Electron

Systems

This work presents high-resolution thermal expansion and magnetostriction studies
revealing magnetoelastic coupling and thermodynamic properties of single-crystals
of the correlated electron systems Gd2PdSi3, Cu3Bi(SeO3)2O2Cl, and Cr2Ge2Te6.
Magnetization and speciĄc heat measurements complement the dilatometric inves-
tigations. Gd2PdSi3 is a metallic antiferromagnet with a complex phase diagram
which shows three phase transitions already in zero-Ąeld. Among other magnetic
orders it evolves a skyrmion lattice phase when a magnetic Ąeld is applied. This
skyrmion lattice phase is strongly enhanced under the application of uniaxial pressure.
New phase boundaries in the phase diagram are found and magnetoelastic coupling
is quantiĄed. The antiferromagnetic insulator Cu3Bi(SeO3)2O2Cl is a multiferroic
which shows geometric frustration. Its high-temperature structural phase transition
is strongly affected by uniaxial pressure, whereas pressure only has small effects on
the antiferromagnetic (AFM) transition at low temperatures. The low-temperature
AFM phase exhibits a metamagnetic spin-Ćip transition for 𝐵 ‖ 𝑐. Mixed-phase
behavior and linear magnetoelastic coupling are observed in the transition region.
Furthermore, the magnetic phase diagrams for the 𝑎- and 𝑏-axis of Cu3Bi(SeO3)2O2Cl
are constructed for the Ąrst time. Cr2Ge2Te6 is a layered quasi-two-dimensional
van der Waals material with a uniaxial magnetic anisotropy. The magnetoelastic
coupling in Cr2Ge2Te6 is directly measured and correlations up to high temperature
are observed. Furthermore, the critical behavior around the ferromagnetic phase
transition is analyzed and a Grüneisen analysis shows that applying uniaxial pressure
leads to large changes in the critical temperature.





Thermische Ausdehnung und Magnetostriktion an geschichteten elektronisch

korrelierten Systemen

In der vorliegenden Arbeit werden hochauĆösende Messungen der thermischen Aus-
dehnung und Magnetostriktion an Einkristallen der elektronisch korrelierten Systeme
Gd2PdSi3, Cu3Bi(SeO3)2O2Cl und Cr2Ge2Te6 vorgestellt. Hierbei werden sowohl
die magnetoelastische Kopplung als auch thermodynamische Eigenschaften unter-
sucht. Messungen der Magnetisierung sowie der speziĄschen Wärme ergänzen die
Dilatometrie. Gd2PdSi3 ist ein metallischer Antiferromagnet mit einem komplexen
Phasendiagramm, das bereits im Nullfeld drei Phasenübergänge aufweist. Neben
anderen magnetischen Ordnungen entwickelt Gd2PdSi3 in einem angelegten Mag-
netfeld eine Skyrmionengitter-Phase. Diese Phase wird durch uniaxialen Druck
deutlich stabilisiert. Im Phasendiagramm werden neue Phasen entdeckt und die
magnetoelastische Kopplung wird quantiĄziert. Der antiferromagnetische Isolator
Cu3Bi(SeO3)2O2Cl ist ein multiferroisches Material mit geometrisch frustrierten
Spins. Sein struktureller Phasenübergang bei hohen Temperaturen wird durch
uniaxialen Druck stark verändert, wohingegen Druck nur schwache Auswirkungen
auf den antiferromagnetischen (AFM) Phasenübergang bei tiefen Temperaturen
hat. Die antiferromagnetische Phase bei tiefen Temperaturen zeigt einen metam-
agnetischen Spin-Flip-Übergang für 𝐵 ‖ 𝑐. Im Bereich dieses Übergangs werden
Mischphasen-Verhalten und eine lineare magnetoelastische Kopplung beobachtet. Des
Weiteren werden die Phasendiagramme der 𝑎- und 𝑏-Achse zum ersten Mal erstelllt.
Cr2Ge2Te6 ist ein geschichtetes quasi-zweidimensionales van der Waals-Material mit
uniaxialer magnetischer Anisotropie. Die magnetoelastische Kopplung in Cr2Ge2Te6

wird direkt gemessen, wobei Korrelationen bis zu hohen Temperaturen beobachtet
werden. Weiterhin wird das kritische Verhalten in der Nähe des ferromagnetischen
Phasenübergangs analysiert und eine Grüneisenanalyse zeigt, dass uniaxialer Druck
zu starken Änderungen der kritischen Temperatur führt.





Introduction

The research of correlated electron systems is an exciting and versatile Ąeld. On
the one hand there is the quest for new materials which show exotic and novel
properties, e.g., low-dimensional behavior and the realization of theoretically pre-
dicted phenomena such as the quantum spin liquid state [1]. On the other hand the
efforts are plentiful to control and engineer these phenomena and to harness them for
technological applications. Two special low-dimensional magnetic phenomena became
particularly known to the public through the 2016 Nobel prize in physics which
was awarded to the condensed matter physicists Haldane, Kosterlitz and Thouless
”for theoretical discoveries of topological phase transitions and topological phases
of matter”. Kosterlitz and Thouless had discovered that for antiferromagnetically
coupled XY spins, i.e., spins constrained to a plane, an arrangement of magnetic
vortices and antivortices forms in the plane upon cooling. These vortices contact
each other at the Berezinskii-Kosterlitz-Thouless temperature and form a unique
quasi-long-range ordered state [2Ű4]. Haldane, on the other hand, had investigated
one-dimensional systems and found a fundamental difference between the excita-
tions of integer and half-integer spin chains [5, 6]. These are only two of the many
spectacular phenomena observed in correlated electron systems. Other intriguing
phenomena include metal-to-insulator (Mott) transitions, heavy fermion behavior,
superconductivity, and multiferroic effects [7].

In general, correlated electron materials are complex many-body systems in which
models of non-interacting electrons, such as the free electron gas, are not applicable
but electronic interactions have to be taken into account explicitly. Exactly computing
the properties of such complex many-body systems on an atomic level is a matter of
impossibility. SimpliĄed models such as the Hubbard model or the Heisenberg model
with effective Hamiltonians are therefore often applied to simplify the complexities
and to reduce the degrees of freedom [8]. Statistical mechanics provides the principles
and tools to then derive speciĄc macroscopic thermodynamic properties from atomic
or molecular behavior [9]. The behavior of the electrons themselves in electronically
correlated systems can lie on wide a spectrum between two extremes: one extreme is
the fully localized state, in which electrons are tightly bound to an atom. For such
electronic states notions from atomic physics can be applied. The other extreme is
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the delocalized state of itinerant electrons, where conventional band theory serves
as a starting point to which correlation effects are added [7]. The delocalization of
electrons is directly related to the exchange integral, i.e., the overlap of the electronic
wave functions, and therefore also to the distance between atoms. This links the
electronic state to the crystal lattice and elastic properties, and it introduces a route
through which chemical or mechanical pressure can have large effects on the state of
a system, especially on ordering phenomena.

Magnetic ordering phenomena, which are studied in this work on three particular
materials, represent a large area in correlated electron systems research. Long-range
magnetic orders can be manifold spanning from simple collinear and commensurate
ferromagnetic or antiferromagnetic orders to complex and possibly incommensurate
chiral or conical spin alignments. The research of some subgroups of these ordering
phenomena has evolved more rapidly than others, e.g., the investigation of skyrmion
systems is a Ąeld of research in its own right by now and skyrmionic spintronics
applications may be available in the midterm future [10].

Competing interactions are a key ingredient for the more complex magnetic ordering
phenomena. Geometric frustration is one example where the lattice geometry does
not allow the magnetic exchange interactions to be completely satisĄed as, e.g., for
antiferromagnetically coupled spins on an equilateral triangular lattice. This leads
to low ordering temperatures or in extreme cases even spin-liquid ground states.
Besides the two-dimensional edge-sharing or corner-sharing triangular lattices, with
the Kagomé lattice belonging to the latter, the FCC and pyrochlore lattices are
three-dimensional lattices which have brought forth many compounds that exhibit
strong geometric frustration [11, 12].

The Ąrst material studied in this work belongs to the class of rare-earth ternary
intermetallics R2TX3 (R = rare-earth element, T = transition metal, X = Si, Ge,
Ga, In) where both localized 4𝑓 electrons from the rare-earths and delocalized
(transition metal) conduction electrons are present [13]. This introduces an indirect
coupling mechanism between the 4𝑓 electrons via the conduction electrons, i.e., the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Depending on the interatomic
distance and the size of the electronic orbitals these interactions can be ferromagnetic
(FM) or antiferromagnetic (AFM). If the 4𝑓 ions are arranged appropriately, e.g.,
on a triangular lattice, geometric frustration may come into play. Gd2PdSi3 is an
intriguing example where the RKKY interaction and geometric frustration lead to a
skyrmion phase in a complex phase diagram of competing phases [14]. Many of the
properties of Gd2PdSi3 have been established but the coupling between the spin and
lattice degrees of freedom, the magnetoelastic coupling, has not been investigated.
This is gap is Ąlled in this work, along with a detailed thermodynamic analysis,
especially of the skyrmion lattice phase.
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Geometric frustration also plays an important role in the buckled-Kagomé antifer-
romagnet Cu3Bi(SeO3)2O2Cl, where competing FM and AFM interactions lead to
an exotic canted antiferromagnetic order at low temperatures [15, 16]. Beyond this
exotic magnetic order it also exhibits antiferroelectric [16] and even multiferroic [17]
properties. This complex interplay of charge, spin and lattice degrees of freedom
in Cu3Bi(SeO3)2O2Cl is very inviting for an in-depth study of its magnetoelastic
properties which are presented in this thesis.

Where magnetic interactions along one or two spatial dimensions are negligibly weak
(quasi-)low-dimensional magnetism results. According to the theorem formulated by
Mermin and Wagner a one- or two-dimensional system of isotropic (= Heisenberg)
spins cannot order, neither ferro- nor antiferromagnetically, at a non-zero tempera-
ture [18]. However, if the spins have a preferred orientation and the system is not
isotropic, long-range order, or at least quasi-long-range order as the one investigated
by Berezinskii, Kosterlitz and Thouless for 2D XY spins [2Ű4], may result. The most
extreme case of scalar, i.e., one-dimensional, spins is described by the well-known
one-dimensional Ising model. In this model long-range order only develops at zero
temperature. Ising spins on a two- or three-dimensional lattice, in contrast, order at a
Ąnite temperature, where the ordering temperature is comparable to the value of the
exchange interaction parameter 𝐽 [6, 19]. To transition from isotropic to anisotropic
spin behavior a form of magnetic anisotropy needs to be introduced to a system.
Magnetic anisotropy may arise from a single-ion anisotropy, i.e., the coupling of the
crystal Ąeld to the spin direction via spin-orbit coupling, dipole-dipole interactions,
shape anisotropy or from anisotropic exchange interactions.

The here reported ferromagnetic semiconductor Cr2Ge2Te6 presents an interesting
system with respect to anisotropy and low-dimensional order. Cr2Ge2Te6 is a quasi-
two-dimensional layered van der Waals material for which long-range order down to
the bilayer has been proven [20]. Moreover, it exhibits a uniaxial magnetic anisotropy
perpendicular to the van der Waals layers [21], which reorients to point along the
in-plane directions under hydrostatic pressure above 1 GPa [22]. A study of the
uniaxial pressure dependence of the critical temperature and critical magnetic Ąeld is
presented in this work along with an investigation of its magnetoelastic properties.

Gd2PdSi3, Cu3Bi(SeO3)2O2Cl, and Cr2Ge2Te6 belong to classes of correlated electron
systems which hold great potential for future technological applications. Skyrmion
materials are especially considered for ’abacus’-type applications such as the racetrack
memory in information storage and logic technologies, as well as for nanoscale radio-
frequency devices [10, 23]. Multiferroics hold the promise of low-power electric-Ąeld
control of magnetism, but are also available for the opposite effect, i.e., magnetic-Ąeld
control of electrical properties, which can be applied in bio-medical applications
such as in vivo target drug delivery and enhanced scaffolds for tissue engineering.
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The integration into photovoltaic devices is also investigated [24]. Lastly, quasi-two-
dimensional magnetic materials are envisioned to be used in low-power spintronic and
magnonic devices compatible with the complementary metal-oxide semiconductor
(CMOS) technology [25].

Although the three materials studied in this work, a metal, a semiconductor and
an insulator, are extremely different concerning their electronic properties, they are
united by the presence of spin-lattice coupling, the competition between different
degrees of freedom and critical phenomena at continuous phase transitions. De-
tecting phase transitions and understanding their nature is an essential part in the
effort to fundamentally understand the interactions and mechanisms in correlated
electron systems. This process is usually a jigsaw puzzle of results from many macro-
scopic and microscopic measurement techniques. For investigations of macroscopic
properties thermodynamic response functions such as the thermal expansion and
magnetostriction coefficients have proven highly valuable. They not only measure
the pressure dependence of the entropy or magnetization of a thermodynamic system
but also allow to directly observe the structural changes and effects of the coupling
to the crystal lattice of the spin, charge or orbital degrees of freedom [9]. Capac-
itance dilatometry is capable of resolving relative length changes on the order of
𝛥𝐿/𝐿 ≡ 10⊗8 to 10⊗9, i.e., tenths of an ångström or even below for the usually
millimeter-sized samples, which is much smaller than the average atomic distance
in solids [26]. This high-resolution and sensitivity allows for a detailed investiga-
tion of the phase diagram of solid-state systems as well as of their thermodynamic
properties. High-resolution thermal expansion and magnetostriction measurements
are applied throughout this work, complemented by magnetization and speciĄc heat
measurements where needed.

This work is structured as follows: In the first chapter a theoretical background
on thermodynamics and phase transitions is established which provides the basis
for understanding the measurements and results. Chapter two introduces the
experimental method of high-resolution capacitance dilatometry and the setup used
for the experiments. In the third chapter an investigation of the phase diagram,
thermodynamic properties and magnetoelastic coupling in the skyrmion-hosting
intermetallic Gd2PdSi3 is presented, with an emphasis on the effect of pressure
on the skyrmion lattice phase. Chapter four contains a detailed analysis of
the phase transitions in the multiferroic antiferromagnet Cu3Bi(SeO3)2O2Cl with
an additional focus on the magnetoelastic coupling and mixed-phase behavior for
magnetic Ąelds applied along the 𝑐-axis. In chapter five the quasi-two-dimensional
van der Waals ferromagnet Cr2Ge2Te6 is investigated. Correlations well above the
critical temperature and the effect of uniaxial pressure on the magnetic anisotropy
are two important aspects of the analysis. Chapter six concludes this work by
summarizing the results of the investigations.
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Chapter 1

Theory

In this chapter basic thermodynamic deĄnitions are given and the thermodynamic
foundations of this work are laid out. The Ąrst section introduces thermodynamic
potentials, which are the pillars of most of the subsequent discussions. Maxwell’s
relations are derived, which relate observables easily accessible in experiments to
quantities that are hard to measure. Linear response functions are the observables
that are measured in the experiments of this work. Importantly, the thermal
expansion coefficient and speciĄc heat are introduced as the pressure and temperature
dependence of the entropy of a system, respectively, whereas the magnetostriction
measures the pressure dependence of the magnetization. Finally, it is shown that a
constant Grüneisen parameter relates to a single dominant energy scale. Discussions
in this Ąrst section are mainly based on Ref. [27] (Ch. 16 and 28), Ref. [9] (Ch. 2)
and Ref. [28] (Ch. 6).

The second section introduces different deĄnitions of phase transitions, based on
thermodynamic potentials as well as symmetry-breaking and order parameters.
Furthermore, critical exponents and the corresponding (hyper)scaling relations are
introduced, closely following Ref. [29]. Finally, the Clausius-Clapeyron and Ehrenfest
relations are derived, which provide valuable tools to investigate the Ąeld and pressure
dependence of phase transition temperatures and critical Ąelds. These derivations
can be found in similar form in Refs. [9, 27].

1.1 Thermodynamic Background

A function of state of a system can be any physical quantity with a well-deĄned
value for each equilibrium state of the system. Such functions of state exhibit the
very useful property of undergoing the same change from one equilibrium state to
another, independent of the path traveled through parameter space. This also means
that they have no time dependence and exact differentials (i.e., zero integrals along
any closed loop in parameter space). The internal energy 𝑈 represents such a state
function, but it is not the only quantity to which this applies. Other state functions

1



2 Chapter 1 Theory

often encountered in thermodynamics are the pressure 𝑝, volume 𝑉 , temperature
𝑇 , and the entropy 𝑆. Combining different of these state functions in a way that
the resulting quantity has the dimensions of energy yields again a state function.
These state functions with a unit of energy are called thermodynamic potentials.
In principle an arbitrary number of thermodynamic potentials can be constructed,
however, not all of them are useful. On top of the internal energy, three further
potentials are extremely useful in thermodynamics and are therefore also widely
used. These are

• the enthalpy 𝐻: 𝐻 = 𝑈 + 𝑝𝑉 ,

• the Helmholtz function, or Helmholtz free energy, 𝐹 : 𝐹 = 𝑈 ⊗ 𝑇𝑆, and

• the Gibbs function, or Gibbs free energy, 𝐺: 𝐺 = 𝐻 ⊗ 𝑇𝑆.

In the following section these thermodynamic potentials and their derivatives are
brieĆy introduced.

1.1.1 Thermodynamic Potentials

The Ąrst law of thermodynamics states the conservation of energy for thermodynamic
processes. A change in energy for any thermodynamic potential can therefore be
expressed by its differential, e.g.,

𝑑𝑈 = 𝑇𝑑𝑆 ⊗ 𝑝𝑑𝑉 (1.1)

for the internal energy. Eq. (1.1) implies that the temperature 𝑇 and pressure 𝑝 can
be expressed as differentials of the internal energy:

𝑇 =
(︂

𝜕𝑈

𝜕𝑆

)︂

𝑉

(1.2)

𝑝 = ⊗

(︂

𝜕𝑈

𝜕𝑉

)︂

𝑆

(1.3)

Pressure and temperature can analogously be deĄned from the enthalpy 𝐻 (Tab. 1.1).
Both internal energy and enthalpy depend on the entropy 𝑆, which is very difficult
to vary in experiments. The Helmholtz function 𝐹 (𝑇, 𝑉 ) and the Gibbs function
𝐺(𝑇, 𝑝), with their easily accessible natural variables 𝑇 , 𝑉 and 𝑝 do not suffer from
this drawback and are therefore for experimental purposes the functions of choice. An
overview of the four thermodynamic potentials, their differentials and Ąrst derivatives
is given in Tab. 1.1. Note that the thermodynamic potentials can be transformed
into each other by Legendre transforms.

As stated above, these basic deĄnitions of the thermodynamic potentials can in
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Table 1.1: Thermodynamic potentials along with their differentials, natural variables
and first derivatives. Taken from [27].

Function of state Differential Natural variables First derivatives

Internal energy 𝑈 𝑑𝑈 = 𝑇𝑑𝑆 ⊗ 𝑝𝑑𝑉 𝑈 = 𝑈(𝑆,𝑉 ) 𝑇 =
(︀

𝜕𝑈
𝜕𝑆

)︀

𝑉
, 𝑝 = ⊗

(︀

𝜕𝑈
𝜕𝑉

)︀

𝑆

Enthalpy 𝐻 = 𝑈 + 𝑝𝑉 𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉 𝑑𝑝 𝐻 = 𝐻(𝑆,𝑝) 𝑇 =
(︀

𝜕𝐻
𝜕𝑆

)︀

𝑝
, 𝑉 =

(︁

𝜕𝐻
𝜕𝑝

)︁

𝑆

Helmholtz function 𝐹 = 𝑈 ⊗ 𝑇𝑆 𝑑𝐹 = ⊗𝑆𝑑𝑇 ⊗ 𝑝𝑑𝑉 𝐹 = 𝐹 (𝑇,𝑉 ) 𝑆 = ⊗
(︀

𝜕𝐹
𝜕𝑇

)︀

𝑉
, 𝑝 = ⊗

(︀

𝜕𝐹
𝜕𝑉

)︀

𝑇

Gibbs function 𝐺 = 𝐻 ⊗ 𝑇𝑆 𝑑𝐺 = ⊗𝑆𝑑𝑇 + 𝑉 𝑑𝑝 𝐺 = 𝐺(𝑇,𝑝) 𝑆 = ⊗
(︀

𝜕𝐺
𝜕𝑇

)︀

𝑝
, 𝑉 =

(︁

𝜕𝐺
𝜕𝑝

)︁

𝑇

general be expanded by adding other thermodynamic potentials. This may be

• the chemical potential Û, which represents the energy absorbed or released
by adding a particle to a thermodynamic system, multiplied by the change in
particle number 𝑑𝑁 , Û𝑑𝑁 , or

• a magnetic moment 𝑚 = 𝑀𝑉 (where 𝑀 is the volume magnetization of a
system) in an applied magnetic Ąeld 𝐵, yielding a term ⊗𝑚𝑑𝐵.1

Since in this work magnetic solid-state systems are investigated where no change
in particle number occurs, the chemical potential term is not relevant here. The
magnetic moment term, in contrast, is very important in this context. Adding this
term to the inner energy and applying two Legendre transforms then yields the
modiĄed total differentials for the Helmholtz and Gibbs functions

𝑑𝐹 = ⊗𝑆𝑑𝑇 ⊗ 𝑝𝑑𝑉 ⊗ 𝑚𝑑𝐵 (1.4)

𝑑𝐺 = ⊗𝑆𝑑𝑇 + 𝑉 𝑑𝑝 ⊗ 𝑚𝑑𝐵. (1.5)

1.1.2 Maxwell Relations

The total differentials of thermodynamic potentials may be rewritten by partial
differentials of their natural variables. Generally speaking, a state function 𝑓 with
variables 𝑥 and 𝑦 can be written as

𝑑𝑓 =
(︂

𝜕𝑓

𝜕𝑥

)︂

𝑦

𝑑𝑥 +
(︂

𝜕𝑓

𝜕𝑦

)︂

𝑥

𝑑𝑦. (1.6)

1 Note that throughout most of this work, as often done in standard English-speaking literature,
the magnetic flux density 𝐵 = Û0(𝐻 + 𝑀) will be referred to as the magnetic field although,
strictly speaking, 𝐻 represents the magnetic field (strength). Referring to 𝐵 as the magnetic
field also avoids confusion with the Helmholtz function 𝐻 in this chapter.
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This in principle enables experimental access to measuring changes in the different
thermodynamic quantities. However, not all quantities in the partial derivatives can
be measured easily. Maxwell’s relations are equations that build a bridge between
quantities that are hard to measure and ones which are much easier to access
experimentally. Since 𝑑𝑓 in Eq. (1.6) is an exact differential one has

(︂

𝜕2𝑓

𝜕𝑥𝜕𝑦

)︂

=
(︂

𝜕2𝑓

𝜕𝑦𝜕𝑥

)︂

. (1.7)

DeĄning

𝐹𝑥 =
(︂

𝜕𝑓

𝜕𝑥

)︂

𝑦

and𝐹𝑦 =
(︂

𝜕𝑓

𝜕𝑦

)︂

𝑥

(1.8)

yields
(︂

𝜕𝐹𝑦

𝜕𝑥

)︂

=
(︂

𝜕𝐹𝑥

𝜕𝑦

)︂

. (1.9)

This general idea can now be applied to each of the state functions 𝑈 , 𝐻, 𝐹 , and 𝐺
to result in the four Maxwell’s relations. For example looking at the Gibbs function
one gets

𝑑𝐺 = ⊗𝑆𝑑𝑇 + 𝑉 𝑑𝑝 (1.10)

𝑑𝐺 =
(︂

𝜕𝐺

𝜕𝑇

)︂

𝑝

𝑑𝑇 +
(︂

𝜕𝐺

𝜕𝑝

)︂

𝑇

𝑑𝑝, (1.11)

such that one can write 𝑆 = ⊗(𝜕𝐺/𝜕𝑇 )𝑝 and 𝑉 = (𝜕𝐺/𝜕𝑝)𝑇 . Taking the second
derivatives, since 𝑑𝐺 is an exact differential, one gets

(︂

𝜕2𝐺

𝜕𝑇𝜕𝑝

)︂

=
(︂

𝜕2𝐺

𝜕𝑝𝜕𝑇

)︂

, (1.12)

⊗

(︂

𝜕𝑆

𝜕𝑝

)︂

𝑇

=
(︂

𝜕𝑉

𝜕𝑇

)︂

𝑝

(1.13)
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where the last line is Maxwell’s relation derived from 𝐺. Analogously one obtains
the remaining three Maxwell’s relations from 𝑈 , 𝐻, and 𝐹 as

(︂

𝜕𝑇

𝜕𝑉

)︂

𝑆

= ⊗

(︂

𝜕𝑝

𝜕𝑆

)︂

𝑉

(1.14)

(︂

𝜕𝑇

𝜕𝑝

)︂

𝑆

=
(︂

𝜕𝑉

𝜕𝑆

)︂

𝑝

(1.15)

(︂

𝜕𝑆

𝜕𝑉

)︂

𝑇

=
(︂

𝜕𝑝

𝜕𝑇

)︂

𝑉

. (1.16)

For the interested reader, the so-called thermodynamic square [30, 31] is one of many
mnemonics to quickly recall the thermodynamic potentials and Maxwell’s relations.
Similar relations can be derived easily for systems including a magnetic moment or
particles with chemical potential. Alternatively, they can be read off from extended
versions of the mnemonic square [32Ű34].

1.1.3 Response Functions

The thermodynamic reaction of a system to a generalized force, such as 𝑇 or 𝑝,
is called a generalized susceptibility, or a response function. In this work linear
response functions, such as the isobaric speciĄc heat 𝑐p or the isobaric volume thermal
expansion coefficient Ñ are measured:

𝐶𝑝 =
(︂

𝜕𝐻

𝜕𝑇

)︂

𝑝

= 𝑇

(︂

𝜕𝑆

𝜕𝑇

)︂

𝑝

= ⊗𝑇

(︂

𝜕2𝐺

𝜕𝑇 2

)︂

𝑝

(1.17)

Ñ =
1
𝑉

(︂

𝜕𝑉

𝜕𝑇

)︂

𝑝

= ⊗
1
𝑉

(︂

𝜕𝑆

𝜕𝑝

)︂

𝑇

=
1
𝑉

(︂

𝜕2𝐺

𝜕𝑝𝜕𝑇

)︂

(1.18)

Maxwell’s relations are applied here to emphasize the meaning of 𝐶p and Ñ, which
respectively give a measure of the temperature dependence and the pressure depen-
dence of the entropy of a system. In this work the molar speciĄc heat, 𝑐p = 𝐶p/𝑁 ,
will usually be called the speciĄc heat. Selected response functions are also shown in
Tab. 1.2 along with their relation to the Gibbs function.

In the dilatometry setup in this work not the volume thermal expansion and magne-
tostriction are measured, but the linear thermal expansion coefficient Ð𝑖 and linear



6 Chapter 1 Theory

Table 1.2: Definition of selected response functions typically available in experiments.

Response function Symbol DeĄnition

SpeciĄc heat (constant pressure) 𝑐p 𝑇
(︀

𝜕𝑆
𝜕𝑇

)︀

𝑝,𝐵
⊗𝑇

(︁

𝜕2𝐺
𝜕𝑇 2

)︁

𝑝,𝐵

Thermal Expansion Coefficient Ñ 1
𝑉

(︀

𝜕𝑉
𝜕𝑇

)︀

𝑝,𝐵
1
𝑉

(︁

𝜕2𝐺
𝜕𝑝𝜕𝑇

)︁

𝑝,𝐵

Magnetostriction Coefficient 𝛬 1
𝑉

(︀

𝜕𝑉
𝜕𝐵

)︀

𝑝,𝑇
1
𝑉

(︁

𝜕2𝐺
𝜕𝑝𝜕𝐵

)︁

𝑝,𝑇

Isothermal Compressibility Ù ⊗ 1
𝑉

(︁

𝜕𝑉
𝜕𝑝

)︁

𝑇,𝐵
⊗ 1

𝑉

(︁

𝜕2𝐺
𝜕𝑝2

)︁

𝑇,𝐵

Magnetic Susceptibility ä(𝐵)
(︀

𝜕𝑀
𝜕𝐵

)︀

𝑝,𝑇
⊗ 1

𝑉

(︁

𝜕2𝐺
𝜕𝐵2

)︁

𝑝,𝑇

Magnetic Susceptibility ä(𝑇 )
(︀

𝜕𝑀
𝜕𝑇

)︀

𝑝,𝐵
⊗ 1

𝑉

(︁

𝜕2𝐺
𝜕𝑇 𝜕𝐵

)︁

𝑝,𝐵

magnetostriction Ú𝑖𝑗:

Ð𝑖 =
1
𝐿𝑖

(︂

𝜕𝐿𝑖

𝜕𝑇

)︂

𝑝

=
(︂

𝜕 ln 𝐿𝑖

𝜕𝑇

)︂

𝑝

(1.19)

Ú𝑖𝑗 =
1
𝐿𝑖

(︂

𝜕𝐿𝑖

𝜕𝐵𝑗

)︂

𝑇,𝑝

(1.20)

𝐿𝑖 is the length of the system (i.e., the investigated sample) along the 𝑖-axis. If Ð𝑖

is measured for three different crystallographic axes 𝑎, 𝑏, 𝑐 spanning the volume of
a sample the volume expansion coefficient can be calculated as Ñ = Ða + Ðb + Ðc.
The deĄnition of the linear magnetostriction tensor Ú𝑖𝑗 implies that in general the
applied magnetic Ąeld and measured length changes do not have to be along the
same direction. In the setup in this work, however, the magnetic Ąeld is aligned
along the measurement direction, 𝐵 ‖ 𝑑𝐿(𝐵), such that 𝑖 = 𝑗 and Ú𝑖𝑗 = Ú𝑖.

Finally, it is important to note that the magnetostriction coefficient 𝛬 measures the
change in magnetization 𝑀 = 𝑚/𝑉 under hydrostatic pressure 𝑝

𝛬 =
1
𝑉

(︂

𝜕𝑉

𝜕𝐵

)︂

𝑝,𝑇

=
1
𝑉

(︂

𝜕2𝐺

𝜕𝑝𝜕𝐵

)︂

𝑝,𝑇

= ⊗

(︂

𝜕𝑀

𝜕𝑝

)︂

𝑝,𝑇

. (1.21)

The same holds for Ú𝑖𝑗 and uniaxial pressure 𝑝𝑖

Ú𝑖𝑗 =
1
𝐿𝑖

(︂

𝜕𝐿𝑖

𝜕𝐵𝑗

)︂

𝑝,𝑇

=
1
𝐿𝑖

(︂

𝜕2𝐺

𝜕𝑝𝑖𝜕𝐵𝑗

)︂

𝑝,𝑇

= ⊗

(︂

𝜕𝑀𝑗

𝜕𝑝𝑖

)︂

𝑝,𝑇

. (1.22)
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1.1.4 Grüneisen Parameters

In the original work by Grüneisen a lattice of atoms in an anharmonic potential and
their lattice vibrations were investigated for different thermodynamic processes [35].
The Grüneisen parameter Ò was therein deĄned as the change in lattice vibration
frequency ævib caused by a volume change 𝑑𝑉 ,

Ò = ⊗
𝑉

ævib

𝜕ævib

𝜕𝑉
= ⊗

𝜕 ln ævib

𝜕 ln 𝑉
. (1.23)

As shown in Ref. [36] (Ch. 6.3), this change in lattice vibration frequency can be
related to both the thermal expansion and speciĄc heat of a system, resulting in

Ò𝑖 =
3ÙTÐ𝑖𝑉

𝑐v

(1.24)

Òvol =
ÙTÑ𝑉

𝑐v

, (1.25)

where ÙT is the isothermal compressibility and 𝑐v the speciĄc heat at constant
volume.

Alternatively the total differential of the entropy of a system with respect to 𝑇 and
𝑉 can be considered to arrive at a deĄnition of 𝛤 :

𝑑𝑆 =
(︂

𝜕𝑆

𝜕𝑇

)︂

𝑉

𝑑𝑇 +
(︂

𝜕𝑆

𝜕𝑉

)︂

𝑇

𝑑𝑉 (1.26)

= 𝐶𝑉 𝑑(ln 𝑇 ) +
Ñ𝑉

Ù𝑇

𝑑(ln 𝑉 ), (1.27)

such that at constant entropy (𝑑𝑆 = 0) one obtains

Ñ𝑉

Ù𝑇 𝐶𝑉

= ⊗

(︂

𝜕 ln 𝑇

𝜕 ln 𝑉

)︂

𝑆

⊕ 𝛤 (𝑇, 𝑉 ). (1.28)

Analogously, a Grüneisen parameter can be deĄned using 𝐶p and the adiabatic
compressibility, i.e., as

𝛤 (𝑇, 𝑉 ) ⊕
𝑉

Ù𝑆𝑇

𝜕𝑆/𝜕𝑝

𝜕𝑆/𝜕𝑇
=

Ñ𝑉

Ù𝑆𝐶𝑝

(1.29)

If the total entropy of a system has contributions from different degrees of freedom,
𝑆 =

∑︀

𝑛 𝑆𝑛, Eq. (1.26) shows that for each contribution a separate Grüneisen
parameter 𝛤𝑛 = (𝜕𝑆/𝜕 ln 𝑉𝑇 )/𝐶𝑛 can be deĄned. The Grüneisen parameter for the
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whole system is then an average weighted by the contribution to the heat capacity
of each component:

𝛤 =
∑︁

𝑛

𝛤𝑛𝐶𝑛/
∑︁

𝑛

𝐶𝑛 (1.30)

It can be shown that whenever all energy states of a system scale to the same single
characteristic energy 𝐽(𝑉 ), such that 𝑆 = 𝑆(𝑇/𝐽), one obtains

Ñ = ⊗
1
𝑉

(︂

𝜕𝑆

𝜕𝑝

)︂

𝑇

=
1
𝑉

𝑇

𝐽2

(︂

𝜕𝐽

𝜕𝑝

)︂

𝑇

𝑆 ′ =
1
𝑉

𝑇

𝐽

(︂

𝜕 ln 𝐽

𝜕𝑝

)︂

𝑇

𝑆 ′ (1.31)

𝐶𝑉 = 𝑇

(︂

𝜕𝑆

𝜕𝑇

)︂

𝑉

=
𝑇

𝐽
𝑆 ′. (1.32)

The ratio between thermal expansion coefficient and speciĄc heat

Ñ

𝐶𝑉

=
1
𝑉

𝜕 ln 𝐽

𝜕𝑝
(1.33)

is then a constant, i.e., independent of temperature. In this case a single dominant
and temperature independent Grüneisen parameter exists with

𝛤 =
1

Ù𝑇

𝜕 ln 𝐽

𝜕𝑝
= ⊗

𝜕 ln 𝐽

𝜕 ln 𝑉
, (1.34)

where the deĄnition of the isothermal compressibility and Eq. (1.28) were applied.
These results are applied throughout this work to determine the pressure dependence
of the respective dominating energy scale.

Note that although the deĄnitions of the Grüneisen parameter presented above
are the most widely used ones, other Grüneisen parameters may be met in the
literature [9], and may also be referred to as Grüneisen functions. In this work
the Grüneisen parameter 𝛤 is deĄned explicitly where it is put to use. All of the
deĄnitions in this work exclude the isothermal compressibility Ù such that 𝛤 is not
dimensionless.

1.2 Phase Transitions

A system in contact with its surroundings tends to minimize one of the thermodynamic
potentials deĄned above (𝑈 , 𝐻, 𝐹 , and 𝐺) to reach equilibrium. Which of the
potentials is minimized depends on the constraints applied to the system, e.g., 𝐺 is
minimized when 𝑇 and 𝑝 are Ąxed. The lowest possible energy state of a system is
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the so-called ground state, minimizing the sum of all interactions in a system.

Considering the Gibbs free energy for a magnetic system, 𝐺 = 𝑈 + 𝑝𝑉 ⊗ 𝑇𝑆 ⊗ 𝑚𝐵,
and its total differential 𝑑𝐺 = ⊗𝑆𝑑𝑇 + 𝑉 𝑑𝑝 ⊗ 𝑚𝑑𝐵, one may imagine that if the
external parameters of the system, such as temperature, pressure or magnetic Ąeld,
are varied, an instability can occur due to the possibility of attaining a lower energy
state by a change in entropy, volume or magnetization. This then leads to a transition
between two distinct phases. A well-known example of phase transitions is the boiling
of water, where the gain in entropy (𝑑𝐺 < 0) by a transition from a liquid to a
gaseous phase outweighs the volume increase (𝑑𝐺 > 0). Another almost equally
well-known transition is from a paramagnetic phase to a ferromagnetic phase below
a critical temperature, where the long-range ordering of magnetic spins leads to a
decrease in entropy (𝑑𝐺 > 0), but also to a net magnetization (𝑑𝐺 < 0), with an
overall decrease in 𝐺.

1.2.1 Classifications of Phase Transitions

Different ways to classify phase transitions have been proposed in the past. The
historic Ehrenfest classiĄcation of phase transitions deĄned the order of a phase
transition as the order of the lowest differential of 𝐺 that shows a discontinuity at
the critical temperature 𝑇c. By this deĄnition a Ąrst-order transition is marked
by a discontinuity in the entropy 𝑆 = ⊗(𝜕𝐺/𝜕𝑇 )𝑝 or the volume 𝑉 = ⊗(𝜕𝐺/𝜕𝑝)𝑇 .
A second-order transition, on the other hand, exhibits a discontinuous jump in
one of the response functions shown in Tab. 1.2, e.g., in the speciĄc heat or the
thermal expansion coefficient. This classiĄcation has, however, proven inadequate for
a general description of phase transitions beyond the Ąrst order [9]. A more modern
classiĄcation of phase transitions only discriminates between phase transitions that
show a latent heat, called "Ąrst-order" or "discontinuous", and phase transitions
that do not. The latter are called continuous phase transitions and also include the
higher-order phase transitions according to the historic Ehrenfest classiĄcation.

Many, though not all, phase transitions involve the breaking of at least one symmetry
of a system. For the paramagnetic-to-ferromagnetic transition mentioned above the
spins possess a rotational symmetry in the high-temperature paramagnetic phase,
but not in the ferromagnetic phase below 𝑇c. At the same time the symmetry of the
crystal lattice does not necessarily change at 𝑇c. Symmetry-breaking therefore allows
for another classiĄcation of phase transitions. This classiĄcation uses the concept of
an order parameter. An order parameter is an observable that measures the degree
of order in one property of a system, e.g., in the magnetization, as it transitions
from one phase to another. Usually it is deĄned as zero above the phase transition
and Ąnite below, and often normalized such that it reaches a value of one when full
order with respect to the order parameter is achieved. For Ąrst-order transitions
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the order parameter changes discontinuously, whereas it varies continuously for
continuous transitions. Examples of order parameters for the systems investigated in
this work include the magnetization 𝑀 (which may be normalized by the saturation
magnetization, 𝑀/𝑀S) for ferromagnets, the sublattice magnetization �⃗� = �⃗�1 ⊗�⃗�2

for antiferromagnets, or the polarization 𝑃 for ferroelectrics. An order parameter can
be a scalar, a vector or a higher-rank tensor depending on the symmetry-breaking it
describes.

1.2.2 Critical Exponents

For continuous phase transitions the mean value of an order parameter is zero above
a critical temperature (or more general a critical point), whereas deviations from
the mean in space and time, i.e., Ćuctuations, can be non-zero. As a critical point is
approached the typical length scale of Ćuctuating clusters, the correlation length Ý,
increases. At the critical point it then diverges as

Ý ∝ ♣𝑡♣⊗Ü (1.35)

where Ü is the critical exponent of the correlation length and 𝑡 is a dimensionless
measure for the distance to the critical point. If the critical point occurs at a
temperature 𝑇c ̸= 0 the reduced temperature 𝑡 = ♣𝑇 ⊗ 𝑇c♣/𝑇c can be deĄned.
Fluctuations around a critical point do not only show spatial but also temporal
correlations. A measure for temporal correlations is the typical time scale on which
Ćuctuations decay, the correlation time ác. Approaching a critical point ác also
diverges according to

ác ∝ Ý𝑧 ∝ ♣𝑡♣⊗Ü𝑧, (1.36)

where 𝑧 is the dynamical critical exponent. In particular, the characteristic times
for relaxation and transport processes usually diverge upon approaching 𝑇c. This
phenomenon is known as critical slowing down. In terms of Ćuctuating spins in
a ferromagnet this can be understood as follows: as the temperature approaches
𝑇c from above, the correlation length increases, i.e., correlated blocks of spins of
increasing size form. To cause a Ćuctuation, a large block of spins needs to be
Ćipped, which is a slow process, and as the blocks increase in size ác diverges. These
divergences in correlation lengths and times resulting in singularities of physical
observables are called the critical behavior. Close to the critical point there is no
other characteristic length or time scale than Ý or ác [29]. As noted by Kadanoff [37]
this is the reason behind the scaling hypothesis by Widom [38].

In addition to the critical exponents Ü and 𝑧 there are a number of other exponents
which are widely used. They describe the dependence of the order parameter, its
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correlations, and different response functions on the distance from the critical point
and on the Ąeld conjugate to the order parameter. Tab. 1.3 summarizes the most
common deĄnitions. Note that not all of the exponents deĄned in Tab. 1.3 are

Table 1.3: Definitions of the commonly used critical exponents in reference to the
magnetization 𝑚 as the order parameter with 𝐵 being the magnetic field. Taken from
Ref. [29].

Exponent DeĄnition Conditions

SpeciĄc heat Ð 𝑐p ∝ ♣𝑡♣⊗Ð 𝑡 ⊃ 0, 𝐵 = 0
Order parameter Ñ 𝑚 ∝ (⊗𝑡)Ñ 𝑡 ⊃ 0 from below, 𝐵 = 0
Susceptibility Ò ä ∝ ♣𝑡♣⊗Ò 𝑡 ⊃ 0, 𝐵 = 0
Critical isotherm Ó 𝐵 ∝ ♣𝑚♣Ósign(𝑚) 𝐵 ⊃ 0, 𝑡 = 0
Correlation length Ü Ý ∝ ♣𝑡♣⊗Ü 𝑡 ⊃ 0, 𝐵 = 0
Correlation function Ö 𝐺(𝑟) ∝ ♣𝑟♣⊗𝑑+2⊗Ö 𝑡 = 0, 𝐵 = 0
Dynamical exponent 𝑧 ác ∝ Ý𝑧 𝑡 ⊃ 0, 𝐵 = 0

independent from one another. Based on the homogeneity relation for the free energy,
scaling laws for the four thermodynamic exponents Ð, Ñ, Ò, Ó can be obtained,

Ð + 2Ñ + Ò = 2 (1.37)

Ð + Ñ(Ó + 1) = 2 (1.38)

as well as two so-called hyperscaling relations for the correlation length and the
correlation function,

2 ⊗ Ð = 𝑑Ü (1.39)

2 ⊗ Ö =
Ò

Ü
. (1.40)

A set of critical exponents completely characterizes the critical behavior at a partic-
ular phase transition. Remarkably, results from renormalization group theory and
numerical calculations have shown that the behavior near the critical point depends
only on a few parameters: (a) The dimensionality of the order parameter, 𝐷 (and
therefore the symmetries of the Hamiltonian); (b) the lattice dimensionality, 𝑑; (c)
the range of interactions, i.e., whether interactions in the system are long-ranged or
short-ranged [39]. This means that universal scaling laws exist, which are independent
of a speciĄc thermodynamic system under study and there exist classes, so-called
universality classes, that are the same for many different phase transitions. A list of
universality classes, such as the 2D Ising, 3D Ising, 3D XY and 3D Heisenberg ones,
and their critical exponents calculated using renormalization group theory is given
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in Tab. 1.4.
Table 1.4: Critical exponents for different physical models according to calculations
applying renormalization group theory.
𝐷: Dimensionality of the order parameter, 𝑑: Lattice dimensionality.

Critical Exponents for Different Physical Models
Model 𝐷 𝑑 Ð Ñ Ò Ó 𝑛 𝑙 Ref.

Mean Ąeld theory (MFT) any any 0 0.5 1 3 0.667 1.333 [40]
Tricritical MFT any any 0.5 0.25 1 5 0.4 1.2 [41]
3D Heisenberg 3 3 Ű0.12 0.365 1.386 4.8 0.637 1.208 [41]

3D XY 2 3 Ű0.01 0.345 1.316 4.81 0.606 1.208 [41]
3D Ising 1 3 0.11 0.325 1.24 4.82 0.569 1.207 [41]
2D Ising 1 2 0 0.125 1.75 15 [42]

SigniĄcantly, both the mean-Ąeld model and the 2D Ising model exhibit a critical
exponent Ð = 0. From

♣𝑡♣⊗Ð = 𝑒⊗Ð≤ln (♣𝑡♣) = 1 ⊗ Ð ≤ ln (♣𝑡♣) + O(Ð2) (1.41)

it becomes visible that a purely logarithmic divergence is expected for ♣𝑡♣ ⊃ 0 and
Ð ⊃ 0. The difference between the mean-Ąeld and the 2D Ising model is that for
the mean-Ąeld model Ð is discontinuous at the phase transition whereas it is not
for the 2D Ising model. DeĄning Ð⊗ for 𝑇 < 𝑇C and Ð+ for 𝑇 > 𝑇C we hence have
Ð⊗ = Ð+ for the 2D Ising model, and Ð⊗ ̸= Ð+ for the mean-Ąeld model. The critical
exponents Ð and Ñ will be used in this work to analyze the critical behavior in the
thermal expansion coefficient and relative length changes. To avoid confusion with
the thermal expansion coefficients the critical exponents will be called Ð∘ and Ñc.
For the thermal expansion coefficient a scaling with the critical exponent Ð∘ is valid
if the assumption Ð ∝ 𝑐p holds.

1.2.3 Clausius-Clapeyron and Ehrenfest Relations

From the classiĄcation of phase transitions and the deĄnition of the thermodynamic
potentials important relations arise for discontinuous and continuous phase transitions.
At the phase boundary of Ąrst-order transitions, between two phases 1 and 2, the
Gibbs free energy 𝐺(𝑇,𝑝, 𝐵) is continuous, i.e.,

𝐺1(𝑇, 𝑝, 𝐵) = 𝐺2(𝑇, 𝑝, 𝐵) (1.42)

Where 𝐺1 and 𝐺2 are deĄned for the respective phases 1 and 2. Along the phase
boundary, the equation

𝐺1(𝑇 + 𝑑𝑇, 𝑝 + 𝑑𝑝, 𝐵 + 𝑑𝐵) = 𝐺2(𝑇 + 𝑑𝑇, 𝑝 + 𝑑𝑝, 𝐵 + 𝑑𝐵) (1.43)
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holds, such that

𝑑𝐺1(𝑇, 𝑝, 𝐵) = 𝑑𝐺2(𝑇, 𝑝, 𝐵). (1.44)

Applying Eq. (5) to Eq. (1.44) yields

⊗𝑆1𝑑𝑇 + 𝑉1𝑑𝑝 ⊗ 𝑚1𝑑𝐵 = ⊗𝑆2𝑑𝑇 + 𝑉2𝑑𝑝 ⊗ 𝑚2𝑑𝐵, (1.45)

with the entropy 𝑆𝑖, volume 𝑉𝑖 and magnetic moment 𝑚𝑖 in phases 1 and 2 for
𝑖 = 1,2. Following the phase boundary such that 𝑑𝐵 = 0 and rearranging Eq. (1.45)
leads to

(︂

𝑑𝑝

𝑑𝑇

)︂

𝐵

=
𝑆2 ⊗ 𝑆1

𝑉2 ⊗ 𝑉1

=
𝛥𝑆

𝛥𝑉
, (1.46)

which is known as the Clausius-Clapeyron equation, where sometimes 𝛥𝑆 is replaced
by the latent heat 𝐿 = 𝑇𝛥𝑆. This equation shows that the gradient of the phase
boundary in the 𝑇 ⊗ 𝑝 plane is purely determined by the change in entropy (or
equivalently the latent heat), the temperature at the phase boundary (i.e., 𝑇c), and
the difference in volume between the two phases. Analogously, in the 𝑇 ⊗ 𝐵 and
𝑝 ⊗ 𝐵 planes Clausius-Clapeyron-like relations can be obtained [9]:

(︂

𝜕𝑇

𝜕𝐵

)︂

𝑝

= ⊗
𝛥𝑚

𝛥𝑆
(1.47)

(︂

𝜕𝐵

𝜕𝑝

)︂

𝑇

=
𝛥𝑚

𝛥𝑉
(1.48)

When uniaxial pressure 𝑝𝑖 is applied along the 𝑖-axis of the system instead of
hydrostatic pressure 𝑝, the jump in volume changes to a jump in length, and 𝛥𝑉
needs to be replaced with 𝑉𝑚𝛥𝐿𝑖/𝐿𝑖, where 𝑉𝑚 is the molar volume. The dependence
of a critical temperature on an applied magnetic Ąeld in Eq. (1.47) can be derived
from the 𝐵 vs. 𝑇 phase diagram. With this information the entropy change at a
Ąrst-order phase transition can be calculated if no measurement for it exists. This
then enables calculating the initial pressure dependence, i.e., for 𝑝 ⊃ 0, of the critical
temperature from measurements of the thermal expansion according to Eq. (1.46).

For a second-order phase transition the Ąrst derivatives of 𝐺, i.e., 𝑆, 𝑉 and 𝑚, are
continuous across a phase transition and 𝑆1 = 𝑆2, 𝑉1 = 𝑉2. 𝑚1 = 𝑚2 along the phase
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boundary. Following the phase boundary such that 𝑑𝐵 = 0 one obtains
(︂

𝜕𝑆1

𝜕𝑇

)︂

𝑝

𝑑𝑇 +
(︂

𝜕𝑆1

𝜕𝑝

)︂

𝑇

𝑑𝑝 =
(︂

𝜕𝑆2

𝜕𝑇

)︂

𝑝

𝑑𝑇 +
(︂

𝜕𝑆2

𝜕𝑝

)︂

𝑇

𝑑𝑝 (1.49)

𝑐p,1

𝑇
𝑑𝑇 ⊗ 𝑉 Ñ1𝑑𝑝 =

𝑐p,2

𝑇
𝑑𝑇 ⊗ 𝑉 Ñ2𝑑𝑝 (1.50)

(︂

𝑑𝑇

𝑑𝑝

)︂

𝐵

= 𝑇𝑉
𝛥Ñ

𝛥𝑐p

. (1.51)

A Maxwell relation and the deĄnitons of 𝑐p and Ñ were applied to Ąnally arrive at
Eq. (1.51), which is the Ehrenfest relation. For uniaxial pressure along the 𝑖-axis
𝑝 can be changed to 𝑝𝑖 and Ñ changes accordingly to the linear thermal expansion
coefficient Ð𝑖. Further Ehrenfest-like relations can be obtained along the phase
boundary for 𝑑𝑇 = 0 and 𝑑𝑝 = 0. These will be mentioned in the text where they
are applied.
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Experimental Methods and Setup

The results presented in this work were mainly obtained by thermal expansion and
magnetostriction measurements using high-resolution capacitance dilatometry. These
data are complemented by magnetization and speciĄc heat measurements. High-
resolution capacitance dilatometry, the measurement setup, and related steps for
calibration and preparation of measurements are brieĆy introduced in the following
sections. Details for the magnetization and speciĄc heat measurement devices are
given as well.

2.1 High-Resolution Capacitance Dilatometry

Measurement techniques which detect microscopic length changes of atomic positions
and distances in a material Ű such as X-ray and neutron diffraction measurements Ű
routinely achieve a resolution of 𝛥𝑎/𝑎 ≍ 10⊗5 [9] for changes in lattice parameter
𝑎. High-resolution capacitance dilatometry on the other hand offers a technique for
measuring macroscopic properties Ű uniaxial bulk length changes Ű with an otherwise
unattainable extreme sensitivity for length changes on the order of 𝛥L/L = 10⊗8

to 10⊗9 [26]. The resolution of capacitance dilatometry is thus at least one order of
magnitude better than what interferometric techniques can achieve [43] and at least
three orders of magnitude better than strain-gauge techniques [44].

2.1.1 Measurement Principle

The measurement principle of capacitance dilatometry is based on the dependence of
the capacitance 𝐶 of two parallel capacitance plates on their distance 𝑑. A sample of
length 𝐿 is clamped between a movable plate and a Ąxed frame, to which the second
plate is attached. For an ideal plate capacitor with surface area 𝐴, the capacitance
is given by

𝐶 = 𝜀r𝜀0
𝐴

𝑑
(2.1)

15
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where 𝜀0 = 8.8542≤ 10⊗12 F/m is the vacuum permittivity and 𝜀r the dielectric
constant of the medium in between the capacitor plates. All measurements were
performed in a dilute helium gas environment (10 mbar to 30 mbar). At ambient
pressure and room temperature 𝜀r,He ≡ 1.00007(1) [45], which, at low pressures,
enables us to safely assume 𝜀r = 1.

If a sample changes length by 𝛥𝐿, this is directly translated to a change in plate
distance 𝛥𝑑 for the capacitor. For circular plates of radius 𝑟, an initial capacitance
𝐶0, and a Ąnal capacitance 𝐶 we obtain from Eq. (2.1)

𝛥𝐿 = 𝛥𝑑 = 𝜀0Þ𝑟2 𝐶 ⊗ 𝐶0

𝐶 ≤ 𝐶0

. (2.2)

Including a correction for the non-parallel alignment of the plates according to Pott
and Schefzyk [46], the length change can be determined as

𝛥𝐿 = 𝛥𝑑 = 𝜀0Þ𝑟2 𝐶 ⊗ 𝐶0

𝐶 ≤ 𝐶0

(︂

1 ⊗
𝐶 ≤ 𝐶0

𝐶2
max

)︂

. (2.3)

From this value, the relative length change 𝑑𝐿(𝑇 )/𝐿 w.r.t. the room temperature
length 𝐿 and its derivative with respect to temperature, the uniaxial thermal expan-
sion coefficient Ð𝑖 = 1/𝐿𝑖 𝑑𝐿𝑖/𝑑𝑇 , are calculated. In our evaluation routine, 𝐶0 is
the capacitance at the beginning of a temperature or Ąeld sweep, i.e., usually the
capacitance at lowest temperatures for a temperature sweep.

2.1.2 Dilatometers: Cell Design

In this work, a three-terminal capacitance standard-dilatometer from Kuechler
Innovative Measurement Technology was used for most of the measurements, with
𝑟 = 7 mm and 𝐶max = 146 pF [26]. A few measurements, mostly in zero Ąeld,
were also performed in a mini-dilatometer (𝑟 = 5 mm, 𝐶max = 95 pF) [47]. Unless
mentioned otherwise, the measurements shown in this work were performed in the
standard-dilatometer.

The setup of both dilatometers is very similar and will be brieĆy explained here on
the basis of the standard-dilatometer. A more thorough description of the two devices
and their design can be found in [26, 47]. Schematic drawings and a photograph of
the standard-dilatometer are shown in Fig. 2.1. Except for some insulating spacers,
all parts are machined out of high-purity beryllium-copper (Cu0.9816Be0.0184). The
lower capacitor plate (6 in Fig. 2.1) is mounted to the Ąxed outer cell frame (3), while
the upper capacitor plate (5) is Ąxed to the movable part (1). This movable part is
held in the frame by two 30 Ûm thick BeCu leaf springs (2), which allow the upper
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Kuechler et al. [26] we have:

𝛥𝐿sample
meas = 𝛥𝐿sample ⊗ 𝛥𝐿cell (2.4)

To calibrate 𝛥𝐿cell high-purity copper (99.999%) is measured as a reference material,
since it is expected to exhibit a thermal expansion coefficient close to the cell
body material Cu0.9816Be0.0184. The thermal expansion of copper in the relevant
temperature range is well known from literature [50] and applied to measure the
empty cell effect as

𝛥𝐿Cu
meas = 𝛥𝐿empty cell = 𝛥𝐿Cu

lit ⊗ 𝛥𝐿cell. (2.5)

The cell effect 𝛥𝐿cell is thus the difference between the length change of the copper
sample and the empty cell effect. It results mainly from the fact that by measuring
a sample with a length 𝐿0 a corresponding part of the CuBe-cell of the same length
is missing:

𝛥𝐿cell = 𝛥𝐿Cu
lit ⊗ 𝛥𝐿empty cell. (2.6)

For each measurement of a sample, a high-purity copper sample of roughly the same
size was measured to keep additional errors small. The true length of the sample
was then obtained by adding the calibrated cell effect to the measured length change
𝛥𝐿sample

meas

𝛥𝐿sample = 𝛥𝐿sample
meas + 𝛥𝐿cell (2.7)

= 𝛥𝐿sample
meas ⊗ 𝛥𝐿empty cell + 𝛥𝐿Cu

lit (2.8)

Finally, the relative length change of the sample normalized to its room temperature
length 𝐿0 is given by

(︂

𝛥𝐿

𝐿0

)︂sample

=
𝛥𝐿sample

meas ⊗ 𝛥𝐿empty cell

𝐿0

+
(︂

𝛥𝐿

𝐿

)︂Cu

lit

. (2.9)

The room temperature length is measured using a micrometer screw.

The cell effect for magnetostriction measurements was also considered in this work.
For a sample of 2.040 mm a relative length change of 𝛥𝐿/𝐿 ≡ 2⊗3 ≤10⊗7 from 0 T to
15 T was observed at 2 K. On the basis of this observation no background correction
was applied to magnetostriction measurements which Ű at low temperatures Ű showed
length changes on the order of 10⊗4 to 10⊗5.
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2.1.5 Sample Mounting and Applied Pressure

In rest position, the capacitance of the dilatometer is about 5.4 pF, which corresponds
roughly to a distance of 0.25 mm between the capacitor plates. Depending on the
sample properties Ű especially their stiffness and brittleness Ű the samples were
mounted at capacitances between 6 pF (to prevent bending or breaking) and 22 pF.
Mounting the sample necessarily applies a uniaxial stress, a force of a few N, onto
the sample surface [26]. To estimate the applied pressure on the sample surfaces
the spring constants of our standard- and mini-dilatometer had previously been
measured by S. Krippendorf [51] and M. Hoffmann [52]. Resulting pressures are
typically on the order of kPa to MPa. More precise estimations will be mentioned
where necessary.

2.1.6 Measurement Routine

Thermal expansion measurements were performed in a zero-Ąeld cooled manner
unless stated otherwise. Cooling rates varied between 1 K/min and 4 K/min. Upon
cooling from high temperatures (roughly 200 K and above) a relaxation sweep was
performed, i.e., a sweep from 2 K to 50 K or 60 K and back to 2 K at rates of
1 K/min to 1.5 K/min in order to release strains in the sample from previous rapid
cooling.

Magnetostriction measurements were performed after a waiting time of 60 min to
120 min to ensure thermalization of the sample and a stable temperature during the
Ąeld sweeps. Sweeping rates were typically set at 0.2 T/min or 0.3 T/min.

2.2 Magnetization and Specific Heat Measurements

Measurements of the isothermal magnetization and static magnetic susceptibility
ä(𝑇 ) = 𝑀(𝑇 )/𝐵, in a temperature range between 1.8 K and 300 K and Ąelds up
to 7 T, were performed in a Magnetic Properties Measurements System (MPMS3)
from Quantum Design. The MPMS3 combines a SQUID (Superconducting Quantum
Interference Device) magnetometer with Vibrating Sample Magnetometry (VSM) to
combine speed and high sensitivity.

Isothermal magnetization measurements at temperatures between 1.8 K and 300 K
and in Ąelds up to 14 T were performed in a Physical Properties Measurement
System (PPMS) from Quantum Design using the VSM option. For magnetization
measurements in Ąeld and temperature, samples were clamped between two quartz
cylinders in brass sample holders and additionally Ąxed with a small amount of high
temperature vacuum grease.

SpeciĄc heat measurements in temperatures down to 170 mK and Ąelds up to 14 T
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were also performed on the PPMS, using a dilution refrigerator insert for lowest
temperatures down to 50 mK. Unless stated otherwise, speciĄc heat data in this
work were measured by Ahmed Elghandour.
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Magnetoelastic Coupling in the Skyrmion Lattice Magnet

Gd2PdSi3

The following chapter has been accepted for publication in Physical Review B
under the title "Magnetoelastic Coupling and Phases in the Skyrmion Lattice Mag-
net Gd2PdSi3 Discovered by High-resolution Dilatometry" [53]. Copyright ©2021
American Physical Society. All rights reserved.

The data presented has been nearly completely measured and analyzed by the Ąrst
author, and the manuscript draft has been written by him. SpeciĄcally:

• Except for the speciĄc heat data (Fig. 1c, Fig. 3b, Fig. S3) all data have been
measured by S. Spachmann, including orienting and preparing the samples.
All plots were created by S. Spachmann.

• The data analysis (except for the Ątting of low-temperature speciĄc heat in Fig.
1c, inset ) including construction of the phase diagram has been completely
done by S. Spachmann.

• The manuscript draft has been written by S. Spachmann and he communicated
with the reviewers.

• A. Elghandour measured the speciĄc heat and took part in discussions on these
data.

• M. Frontzek and W. Löser provided the samples and took part in some discus-
sions.

• R. Klingeler supervised the measurements and supported data analysis.

• All authors proofread the manuscript.
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Abstract

We report detailed thermodynamic studies on high-quality single crystals of the cen-
trosymmetric skyrmion-hosting intermetallic Gd2PdSi3 by means of high-resolution
capacitance dilatometry in Ąelds up to 15 T which are complemented by speciĄc heat
and magnetization studies. Our dilatometric measurements show magnetoelastic
effects associated with antiferromagnetic order at TN1 = 22.3 K and TN2 = 19.7 K,
as well as strong Ąeld effects in an applied magnetic Ąeld of 15 T up to 200 K
(150 K) for 𝐵 ‖ 𝑐 (𝐵 ‖ 𝑎*, i.e. 𝐵 ⊥ 𝑐). The data allow us to complete the magnetic
phase diagram, including a new feature at 𝑇 * ≡ 12 K below which a new degree of
freedom becomes relevant. For the Ąrst time, the magnetic 𝐵 vs. 𝑇 phase diagram
for the 𝑎*-axis is also reported. Grüneisen analysis shows the onset of magnetic
contributions around 60 K, i.e., well above TN1. Uniaxial pressure dependencies of
opposite sign, ⊗1.3 K/GPa and 0.3 K/GPa, are extracted for the out-of-plane and
in-plane directions at TN1. For 𝑇 * we obtain 𝜕𝑇 */𝜕𝑝c = 1.4 K/GPa. In particular
we elucidate thermodynamic properties of the recently discovered skyrmion lattice
phase and show that it is strongly enhanced by uniaxial pressure.

3.1 Introduction

Ternary intermetallic compounds of the type R2TX3 (𝑅 = rare earth, 𝑇 = transition
metal, 𝑋 = element of main groups III to V) [13, 54] have been investigated exten-
sively over the past decades, due to their variety of intriguing electronic properties
ranging from superconductivity [55], giant magnetoresistance (GMR) [56Ű58], ferro-
magnetism [59] and incommensurate spin structures [14, 60], phenomena related to
Kondo physics and heavy fermions [61Ű63], to non-Fermi-liquid [61] and spin-glass
behavior [64Ű67]. This is particularly evident in the title material Gd2PdSi3 where
a skyrmion lattice phase featuring giant topological Hall and Nernst effect was
discovered recently [14, 68, 69].

Most members of the R2PdSi3 family of ternary silicides crystallize in a highly
symmetric AlB2-derived hexagonal structure (space group P6/mmm) with triangular
lattice layers of 𝑅3+ magnetic sites sandwiching honeycomb nets of Pd/Si sites.
While the Pd and Si ions were originally believed to be distributed statistically [70],
an X-ray and neutron diffraction study by Tang et al. showed for Ho2PdSi3 that these
ions actually order into a superstructure along both in- and out-of-plane directions,
while the overall centrosymmetry of the structure is retained [71]. This leads to two
nonequivalent sites for the 𝑅3+ ions, which has been shown to affect the magnetism
in an applied magnetic Ąeld for Er2PdSi3 [72]. While no structural phase transition
has been detected for R = Gd, Tb, Dy, Ho, Er and Tm, most R2PdSi3 compounds
show long-range magnetic order at low temperatures [73Ű75].
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These various ordering phenomena are driven by a delicate interplay of indirect
exchange coupling mediated by the conduction electrons, i.e., the Rudermann-Kittel-
Kasuya-Yosida (RKKY) interaction, spin-orbit coupling and the inĆuence of crystal
Ąeld (CF) effects. The Gd3+ ions in Gd2PdSi3, however, with a half-Ąlled 4𝑓 shell,
have vanishing orbital momentum (J ≡ S = 7/2) and are not inĆuenced by crystal
Ąeld effects. Magnetic order, therefore, arises from the RKKY interaction and
dipole-dipole interactions. Gd2PdSi3 exhibits two successive phase transitions around
𝑇N = 21 K [60] and was found to exhibit a skyrmion lattice (SkL) phase of Bloch-
type skyrmions in low magnetic Ąelds applied along the 𝑐-axis [14]. A number
of incommensurate spin structures both in zero-Ąeld as well as in higher applied
magnetic Ąelds have been identiĄed [60] and the phase diagram in Ąelds up to 9 T
has been established through resistance and magnetization measurements as well as
resonant X-ray scattering [14, 60, 73, 76]. Single crystal X-ray and neutron diffraction
measurements yielded lattice parameters at 300 K (2 K) of 𝑎 = 4.079 Å (4.066 Å)
and 𝑐 = 4.098 Å (4.091 Å), i.e. 𝛥𝑎/𝑎 = 3.2 ≤ 10⊗3 and 𝛥𝑐/𝑐 = 1.7 ≤ 10⊗3 [71].1

Except for these measurements of the lattice parameters, however, there is at present
no study on magnetoelastic effects in Gd2PdSi3. Therefore, with a particular focus
on the skyrmion lattice phase, we report detailed dilatometric studies of Gd2PdSi3 in
a wide range of temperatures and magnetic Ąelds. Our thermal expansion and
magnetostriction data show pronounced magnetoelastic coupling and Ąeld effects
extending up to temperatures of 150 K and above. Moreover, we uncover yet
unreported phases and an anomaly in zero-Ąeld which appears well below the Néel
transitions at TN1 = 22.3(5) K and TN2 = 19.7(5) K, thereby evidencing competing
interactions already in zero-Ąeld. We update the magnetic phase diagram for 𝐵 ‖ 𝑐-
axis, present for the Ąrst time the phase diagram for 𝐵 ‖ 𝑎*-axis, and discuss in
detail the thermodynamic properties for 𝐵 ‖ 𝑐. Our results in particular elucidate
the skyrmion lattice phase and we show that it is enhanced by uniaxial pressure.

3.2 Experimental Methods

Single crystals of Gd2PdSi3 have been grown by the optical Ćoating-zone method as
reported in Ref. [77, 78] and were previously studied by AC susceptibility, neutron
diffraction [73], and angle-resolved photoemission spectroscopy [79]. The magne-
tization was studied in the temperature regime from 1.8 K to 300 K in magnetic
Ąelds up to 7 T in a Magnetic Properties Measurement System (MPMS3, Quantum
Design) and up to 14 T in a Physical Properties Measurement System (PPMS,
Quantum Design) using the Vibrating Sample Magnetometry (VSM) option. SpeciĄc
heat measurements were performed on a PPMS-14 using a relaxation method on

1 Here, 𝛥𝑎 = 𝑎(300 K)-𝑎(2 K) and 𝛥𝑐 analogously.
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single crystals of 𝑚 = 20.79 mg (2 K-300 K) and 13.49 mg (0.15 K-3 K). High-
resolution dilatometry measurements were performed by means of a three-terminal
high-resolution capacitance dilatometer in a home-built setup placed inside a Vari-
able Temperature Insert (VTI) of an Oxford magnet system [26, 80]. With this
dilatometer, the relative length changes 𝑑𝐿𝑖/𝐿𝑖 along the crystallographic 𝑐 and
𝑎* directions, respectively, were studied on an oriented cuboid-shaped single crys-
tal of dimensions 2.480 × 1.300 × 1.459 mm3. Measurements were performed at
temperatures between 2 K and 300 K in magnetic Ąelds up to 15 T, applied along
the direction of the measured length changes, and the linear thermal expansion
coefficients Ð𝑖 = 1/𝐿𝑖 ≤ 𝑑𝐿𝑖(𝑇 )/𝑑𝑇 were derived. In addition, the Ąeld-induced length
changes 𝑑𝐿𝑖(𝐵𝑖) were measured at various Ąxed temperatures between 1.7 K and
200 K in magnetic Ąelds up to 15 T. The longitudinal magnetostriction coefficient
Ú𝑖 = 1/𝐿𝑖 ≤ 𝑑𝐿𝑖(𝐵𝑖)/𝑑𝐵𝑖 was derived from 𝑑𝐿𝑖(𝐵𝑖).

3.3 Experimental Results

3.3.1 Evolution of Magnetic Order at 𝐵 = 0

Uniaxial thermal expansion and speciĄc heat show pronounced anomalies around
20 K which are associated with the onset of long-range magnetic order (Fig. 3.1).
Close inspection of the anomalies indicates the proximity of not only one, but two
phase transitions around 𝑇N. While the anomaly at TN1 = 22.3(5) K is seen as a jump
in Ð𝑖, the anomaly at TN2 = 19.7(5) K (20.3(5) K for the 𝑎*-axis) is expressed as a
peak. This observation conĄrms the results by Hirschberger et al. of two consecutive
phase transitions in zero Ąeld [60]. Beyond these two known transitions, however,
our data display a third anomaly indicative of a phase transition which has not been
reported for single crystals of Gd2PdSi3. This anomaly, marked by 𝑇 * ≡ 13 K in
the inset of Fig. 3.1(b), is visible as a broad jump for both directions in Ð𝑖 which
extends between 10 K and 15 K and will be discussed in more detail below.

The speciĄc heat data show the three observed features at TN1, TN2 and 𝑇 *, too
(Fig. 3.1(c)). The shape of the anomalies in cp is analogous to their shape in Ð⊥.
At very low temperatures below about 400 mK a quasi-linear behavior of cp/𝑇
vs. 𝑇 2 is found (see the inset of Fig. 3.1(c)) reminding of similar observations in
Lu2PdSi3 and Ce2PdSi3 [62, 81]. In this temperature regime, the data are described
well by a linear and a cubic term, i.e., cp/𝑇 = Ò + Ñ𝑇 2. The quasi-linear term
is described by an effective Sommerfeld coefficient Ò = 52(5) mJ/(mol K2). This
parameter is in between the values obtained for Lu2PdSi3 (6.9 mJ/(mol K2)) and
Ce2PdSi3 (108 mJ/(mol K2)), the latter being discussed as evidence of heavy-fermion
behaviour [62]. Whereas phonons can be neglected in this temperature regime, the
coefficient Ñ = 1.25(3) J/(mol K4) is rather large and reĆects the contribution of
low-energy antiferromagnetic excitations.
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Figure 3.1: (a) Relative length changes 𝑑𝐿𝑖/𝐿𝑖 along the 𝑐 and 𝑎*-crystallographic
directions. Directions w.r.t. the Gd lattice are indicated in the inset. (b) Associated
linear thermal expansion coefficients Ð𝑖 as well as the calculated 1/3 volume expansion
ÐV. The inset displays the difference Ða∗,mag ⊗ Ðc,mag of the background corrected
thermal expansion coefficients Ði,mag = Ð𝑖 ⊗ Ðph. Vertical dashed lines indicate two
phase transitions and the dashed-dotted line (inset) is a guide to the eye highlighting
a feature around 𝑇 *. (c) Specific heat cp/𝑇 (black markers). Inset: Low-temperature
regime plotted as cp/𝑇 vs. 𝑇 2. The solid red line shows a fit with cp = Ò𝑇 + Ñ𝑇 3.
Dashed curves in all graphs mark the non-magnetic background as explained in the
text.
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The dashed lines in Fig. 1 show the phononic and electronic contributions to the
relative length changes, thermal expansion coefficients, and speciĄc heat. In order to
obtain these contributions, the speciĄc heat of the non-magnetic analog Lu2PdSi3 as
reported by Cao et al. [81] was Ątted by phononic Debye and Einstein terms, as well
as an electronic term, according to

𝑐𝑒𝑙,𝑝ℎ
𝑝 = Ò𝑇 + 𝑛D𝐷

(︂

𝑇

𝛩𝐷

)︂

+ 𝑛E𝐸

(︂

𝑇

𝛩𝐸

)︂

(3.1)

where Ò is the Sommerfeld coefficient, 𝑛D and 𝑛E are constants, 𝐷(𝑇/𝛩D) and
𝐸(𝑇/𝛩E) are the Debye and Einstein functions with the Debye and Einstein temper-
atures 𝛩D and 𝛩E. The Ąt to the Lu2PdSi3 speciĄc heat data yields 𝛩D = 213 K,
𝛩E = 454 K, with 𝑛D = 3.69 and 𝑛E = 1.98. Ò was Ąxed to the value reported by
Cao et al. of 6.93 mJ/(mol K2). Compared to 𝛩D = 191 K by Cao et al., extracted
from the low temperature regime, our value is slightly larger.

Scaling the Debye and Einstein temperatures by the different masses of Lu and Gd we
obtain a scaling factor [82] of 𝛩D,LPS/𝛩D,GPS = 0.962. The speciĄc heat and thermal
expansion of Gd2PdSi3 were thus Ątted with Ąxed 𝛩D = 222 K = 𝛩D,LPS/0.962 and
correspondingly 𝛩E = 471 K. For the Ąt to the speciĄc heat, Ò = 52 mJ/(mol K2)
was also Ąxed. For the thermal expansion the electronic contribution was negligibly
small and therefore omitted, i.e. it was Ątted by

Ð𝑝ℎ = 𝑛D𝐷

(︂

𝑇

𝛩𝐷

)︂

+ 𝑛E𝐸

(︂

𝑇

𝛩𝐸

)︂

(3.2)

with parameters 𝑛D and 𝑛E. The phononic contributions to 𝑑𝐿𝑖/𝐿𝑖 in Fig. 1(a) were
obtained by integrating the background obtained for the respective Ð𝑖.

Subtracting the electronic and phononic backgrounds from the speciĄc heat and
thermal expansion coefficients yields their respective magnetic contributions which
extend up to about 60 K. This agrees with the temperature regime where the
magnetization exhibits a non-linear Ąeld dependence up to 7 T (see Fig. S1). From
cp,mag/𝑇 the changes in magnetic entropy, 𝑆mag, above 150 mK are calculated. We
obtain a constant 𝛥𝑆mag(𝑇 > 150 mK) = 31.3 J/(mole K) above 60 K, which is 90%
of the full expected magnetic entropy of 2𝑅 ln 8 = 34.6 J/(mole K), where 𝑅 is the
universal gas constant.

Returning to the thermal expansion data, we see that the anomalies in the thermal
expansion coefficients, at TN1 and TN2, are of opposite sign for the 𝑐- and 𝑎*-axis,
indicating opposite pressure dependencies 𝜕𝑇N𝑖/𝜕𝑝c < 0 and 𝜕𝑇N𝑖/𝜕𝑝a∗ > 0. The
volume thermal expansion also indicates a negative hydrostatic pressure dependence
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𝜕𝑇N𝑖/𝜕𝑝 < 0 for both antiferromagnetic transitions.

The Grüneisen ratio of the thermal expansion coefficient and the speciĄc heat is a
valuable quantity to determine the relevant energy scales driving the system and to
quantify its pressure dependencies. In the presence of one dominant energy scale
𝜀, this ratio is independent of temperature and enables the determination of the
pressure dependence of 𝜀, i.e. [83, 84],

𝛤𝑖 =
Ð𝑖

𝑐p

=
1

𝑇𝑉m

𝜕𝑆/𝜕𝑝𝑖

𝜕𝑆/𝜕𝑇
=

1
𝑉m

𝜕 ln 𝜀

𝜕𝑝𝑖

. (3.3)

Here, 𝑉m is the molar volume and the index 𝑖 indicates a linear direction or the
volume. At 𝑇N, Eq. 3.3 converts to 𝛤 = (𝑇N𝑉𝑚)⊗1 ≤𝜕𝑇N/𝜕𝑝. Comparing the magnetic
contributions Ð𝑖,mag and cp,mag hence allows to identify temperature regimes where
the Grüneisen relation implies only one dominant energy scale while appropriate
scaling enables to read off the respective parameter 𝛤i,mag. As shown in Fig. 3.2, the
overall behavior of Ð𝑖,mag and cp,mag is similar except for a distinct jump in Ð𝑖,mag at
≍ 12 K which is much less pronounced in the magnetic speciĄc heat. In both cases,
magnetic contributions start to evolve around 60 K.

Despite the overall similar behavior, there are differences at higher temperatures,
too. While the 𝑎*-axis shows a nearly perfect overlap between Ð𝑖,mag and cp,mag down
to 14 K as shown in Fig. 3.2(a), we only observe a very good agreement around
TN1 and TN2 for the 𝑐-axis, in a range from 17 K to about 23 K. We also note that
below ≍14 K our results indicate the failure of Grüneisen scaling rather than the
presence of just a different scaling parameter.

Our data, however, clearly imply the presence of a single dominant energy scale
at and around the magnetic ordering temperatures TN1 and TN2. The obtained
Grüneisen parameters amount to 𝛤c,mag = ⊗91(13) ≤ 10⊗8 mol/J and 𝛤a∗,mag =
22(3) ≤ 10⊗8 mol/J. From these values, moderate pressure dependencies are derived,
i.e., we obtain negative pressure dependencies 𝜕𝑇N1/𝜕𝑝c = ⊗1.3(2) K/GPa and
𝜕𝑇N2/𝜕𝑝c = ⊗1.4(2) K/GPa for uniaxial pressure applied along the 𝑐-axis. The
uniaxial pressure dependencies for 𝑝 ‖ 𝑎*-axis are positive and more than a factor of
four smaller, i.e., 0.31(5) K/GPa for TN1 and 0.34(5) K/GPa for TN2.

While our data hence evidence that the ordering phenomena at TN1 and TN2 are
governed by the same energy scale, an additional energy scale becomes relevant
upon further cooling, around 𝑇 *, as proven by the failure of Grüneisen scaling (cf.
Fig. 3.2). Closer inspection of the associated anomalies implies not only a broad
jump-like increase in the thermal expansion coefficients but also a less pronounced
anomaly in cp which is visible much more clearly in the cp/𝑇 data in Fig. 3.1c.
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Figure 3.2: Magnetic contributions to the thermal expansion coefficient (left ordinate)
and specific heat (right ordinate) for (a) the 𝑎*-axis and (b) the 𝑐-axis after subtracting
phononic and electronic contributions as described in the text.a

a The 𝑇 -scale for Ðc,mag was shifted by +0.4 K to match the specific heat anomaly.

In an attempt to deduce the anomaly size associated with the respective features
we obtain 𝛥𝑐*

p ≡ 2.7(5) J/(mole K), 𝛥Ð*
V ≡ 1.8 ≤ 10⊗6/K, 𝛥Ð*

c ≡ 4.1(6) ≤ 10⊗6/K,
𝛥Ð*

a∗ ≡ ⊗1.0(3) ≤10⊗6/K. The changes in magnetization around T* are very small for
both axes and could not be seen in the isothermal magnetization 𝑀(𝐵). However,
temperature sweeps of the magnetization in static Ąeld evidence a jump in 𝜕ä/𝜕𝑇 ,
which is visible for 𝐵 ⊙ 0.2 T (0.25 T) for 𝐵 ‖ 𝑐 (𝐵 ‖ 𝑎*) (see SI, Fig. S10(a)). At
0.2 T the jump height amounts to 5.6(1.4)≤10⊗3ÛB/(f.u. K). Further values are listed
in Tab. S7.
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3.3.2 Thermal Expansion at B ̸= 0 and Magnetostriction

The effect of high magnetic Ąelds on the thermal expansion and speciĄc heat is
shown in Fig. 3.3. A number of observations can be made: (1) The sharp features
indicating phase transitions are absent at 𝐵 = 15 T. (2) SigniĄcant entropy is shifted
to higher temperatures and, at 𝐵 = 15 T, signiĄcant Ąeld effects are visible at least
up to 150 K in all shown quantities, in particular for Ðc even up to about 200 K. (3)
Magnetostriction from 0 T to 15 T is positive (negative) for the 𝑐-axis (𝑎*-axis), and
(4) the temperature region of negative thermal expansion of the 𝑐-axis extends up to
about 65 K at 15 T, compared to 38 K in zero-Ąeld. Note, that the magnetostriction
data fully agree to the thermal expansion data at 𝐵 ̸= 0 T as shown by the (green)
vertical lines in the inset of Fig. 3.3.

Magnetostriction data at 𝑇 ≡ 2 K shown in Fig. 3.4(a) and (d) further conĄrm strong
magnetoelastic coupling and in addition clearly show the Ąeld-induced phase transi-
tions. For comparison the isothermal magnetic susceptibility ä(𝐵) = 𝜕𝑀(𝐵)/𝜕𝐵 is
also presented on the same Ąeld scale for both directions (Fig. 3.4(b-c)). Considering
the data for 𝐵 ‖ 𝑐, four anomalies can be identiĄed (Fig. 3.4(a)): Up to 3.5 T, there
are two sharp peaks in Úc signalling jumps in 𝑑𝐿c(𝐵) with only small Ąeld-hysteresis,
followed by a broad peak with a large hysteresis of ≍0.8 T. The size of the anomalies
for up- and down-sweep differs strongly. All three anomalies indicate discontinuous
phase transitions. Corresponding anomalies and hystereses are also visible in the
magnetic susceptibility. In addition, there is a broad downward jump in Úc at around
9 T, above which magnetostriction becomes virtually zero which is also reĆected by
small ä, i.e., rather full alignment of magnetic moments in Ąeld (please note the
logarithmic scale in Fig. 3.4(b) and (c)). The overall region where hysteresis is visible
extends from about 6 T down to the lowest Ąelds (see the inset in Fig. 3.4(a)) but
no remanent magnetostriction is visible which would indicate irreversible changes
in the sample, e.g., through domain effects. Four features are also visible in Úa∗ for
𝐵 ‖ 𝑎* (Fig. 3.4(d)). These anomalies are smaller in magnitude, much broader and
less well-deĄned than for the 𝑐-axis. Similar to the Ąndings for Úc(𝐵 ‖ 𝑐), there is a
jump at higher Ąelds, at about 7.3 T, but here of opposite sign. Again, it signals a
continuous transition to the saturated phase of vanishing magnetostriction. In con-
trast to 𝐵 ‖ 𝑐, the magnetostriction measurements 𝑑𝐿a∗(𝐵 ‖ 𝑎*) feature pronounced
remanent magnetostriction below 5 K, i.e., non-zero overall length changes after
sweeping the Ąeld from 0 T to 15 T and back to 0 T. At 1.8 K, this amounts to
(𝛥𝐿/𝐿)rem = 1.4 ≤ 10⊗5. We attribute this observation to the irreversible effects of
structural or magnetic domains as seen, e.g., in CoCl2 [85], NiCl2 [86] and NiTiO3 [87].
Such irreversible domain effects seem to be absent in the measurements along the
𝑐-axis. The transition between a multidomain and single domain state may thus
be fully reversible for 𝐵 ‖ 𝑐. We conclude that hysteresis found for 𝐵 ‖ 𝑎* below
3.5 T is both due to the discontinuous nature of the phase transitions and domain
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Figure 3.3: The effect of high fields on (a) the thermal expansion coefficient
(𝐵 = 15 T) and (b) the specific heat cp/𝑇 (𝐵 = 14 T) as compared to zero-field
measurements. The inset in (a) shows the relative length changes. Vertical green bars
indicate magnetostriction data from 0 T to 15 T at several temperatures.

effects.

Both data sets, hence, imply a series of four phase transitions in magnetic Ąeld, at
𝑇 ≡ 2 K, which is also corroborated by magnetization studies (also see Fig. S7)
and agrees to the recently published phase diagram for 𝐵 ‖ 𝑐 [60]. Following the
notations in Refs. [14, 60] for the phases appearing for 𝐵 ‖ 𝑐, we label the respective
phases as IC-1, A, IC-2, DP, and Ąeld induced ferromagnetic (ĄFM) phase, with
IC-1/IC-2 being characterized by incommensurate spin conĄgurations, A by the
formation of a skyrmion lattice (SkL), and DP by the depinning of the direction of
magnetic moments (see also the phase diagram in Fig. 3.6). We note, however, that
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while the magnetostriction data evidence Ąeld-driven structural changes, domain
effects may obscure the actual phase transitions up to the Ąeld and temperature
regions at which a single domain state is achieved. In particular, broad peaks in
the magnetostriction coefficients as seen in Úa∗ (Fig. 3.4(b), S4(e) and (f)) do not
necessarily indicate the actual phase boundaries, but the peak positions may differ
from those found in the magnetization studies, as shown by a phenomenological
model by Kalita et al. [85]. Therefore, for the further thermodynamic analysis of the
phase boundaries as well as the construction of the phase diagram, for 𝐵 ‖ 𝑎* we
will only consider anomalies in the magnetostriction which can directly be linked to
anomalies in isothermal magnetization.

In order to obtain the phase boundaries, we have performed thorough magnetostric-
tion and isothermal magnetization studies at various Ąxed temperatures as well as
corresponding temperature sweeps at Ąxed magnetic Ąeld (see Figs. S4, S5, S7) 1.
This is demonstrated in Fig. 3.5, where the thermal expansion coefficients in low
Ąelds up to 3 T and the corresponding magnetization data are presented. For 𝐵 ‖ 𝑐
(Fig. 3.5(a) and (b)), the evolution of two different phase boundaries can be traced
straightforwardly. SpeciĄcally, applying small Ąelds yields a suppression of TN2 while
the jump at TN1 becomes more distinguished. In increasing Ąeld TN1 is also sup-
pressed to lower temperature, but to a smaller extent (Fig. 3.5a). Above 0.3 T the
peak assigned to TN2 at zero-Ąeld changes its shape, signaling the transition from the
previously reported skyrmion lattice A phase to the IC-2 phase. It is associated with
a jump 𝛥äA

c in the static susceptibility from one 𝑇 -independent value to another
(Fig. 3.5(b)). At 0.4 T, a second feature corresponding to the transition from the
A phase to the IC-1 phase is visible in both Ðc and äc, while above 0.9 T (1 T
for äc) all features below TN1 are gone. Quantitatively, 𝛥äA

c gradually decreases
from 0.91 ÛB/Gd3+ at 0.9 T and 8.6 K to 0.36 ÛB/Gd3+ at 0.4 T and 16.4 K. The
pronounced jump in Ðc at TN1 corresponds to a kink in the static susceptibility, i.e.,
a jump in its derivative (see SI, Fig. S7).

As mentioned before, anomalies seen for measurements along the 𝑎*-axis are in
general much weaker and less well-deĄned than for the 𝑐-axis. Furthermore, the
evolution of anomalies in the thermal expansion and the static susceptibility along
the 𝑎*-axis is even more complex than for 𝐵 ‖ 𝑐 (Fig. 3.5(c) and (d)). In zero-Ąeld,
the anomaly at 𝑇 * is also visible (see Fig. 3.1, as well as SI, Fig. S10(d)) and can be
traced up to 0.4 T in 𝜕ä/𝜕𝑇 . Also, a jump in Ð⊥ evolving from TN1 can be followed
to lower temperatures for increasing Ąelds, corresponding to a jump in 𝜕ä/𝜕𝑇 . Above
0.6 T this jump in 𝜕ä/𝜕𝑇 splits into two jumps, uncovering an additional phase

1 Magnetization measurements have been performed following the zero-field cooling (ZFC) protocol
unless stated otherwise, i.e., the sample was cooled to lowest temperatures before the field was
applied and the data were recorded during warming.
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between the IC-2 and ĄFM phases, while we only see one broad jump in Ð⊥.
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Figure 3.4: Magnetostriction coefficients Ú𝑖 (𝑖 = 𝑐, 𝑎*) and isothermal magnetic
susceptibility, 𝜕𝑀/𝜕𝐵, at temperatures around 2 K, for 𝐵 ‖ 𝑐 (a-b) and 𝐵 ‖ 𝑎* (c-d).
Note the logarithmic scale in (b) and (c). Insets in (a) and (d) show the relative length
changes 𝑑𝐿i(𝐵)/𝐿i. Triangles and empty circles mark anomalies in (a-d). Red markers
and lines represent up-sweeps, black ones down-sweeps.
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Figure 3.5: Thermal expansion coefficients (a,c) and static magnetic susceptibility
ä = 𝑀/𝐵 (b), respectively its derivative 𝜕ä/𝜕𝑇 (d), for (a-b) 𝐵 ‖ 𝑐 and (c-d) 𝐵 ‖ 𝑎*.
Curves are offset vertically by (a) 1.6≤10⊗6/K, (b) 0.5 erg/(G2 mol), (c) 1≤10⊗6/K,
and (d) 0.2 erg/(G2 mol K), respectively, for better visibility. 0.75 T to 3 T data in
(d) are multiplied by a constant as indicated in the legend and 3 T data is offset by
1.5 erg/(G2 mol K) instead of 1.4 erg/(G2 mol K). "FCW" indicates a field-cooled-
warming measurement.a Empty circles mark temperature positions of the anomalies
as extracted for the phase diagram.

a For the field-cooled warming protocol, the sample is cooled in the applied field to the lowest
temperatures and measured during the subsequent warming process.
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3.4 Discussion

From our detailed dilatometric and thermodynamic data we construct the phase
diagrams for the 𝑐- and 𝑎*-axes in Fig. 3.6. While the general features for 𝐵 ‖ 𝑐
conĄrm previous results [14, 60, 76], our data evidence two phases in zero-Ąeld
which were previously unknown: (1) Our isothermal magnetization data between
19 K and 22 K (SI, Fig. S7) clearly indicate that the IC-2 phase does not extend to
zero Ąeld, but there is a separate pocket closed off by a phase boundary extending
from the edge of the A(SkL) phase to TN1 = 22.3 K. We label this new phase IC-3,
since incommensurate spin structures were previously reported for this temperature
regime [14]. (2) Furthermore, the phase boundary at 𝑇 * splits the IC-1 phase into
IC-1 and IC-1’ (Fig. 3.1(b) inset). The yet unreported phase diagram for 𝐵 ‖ 𝑎*
in general shows a similar behavior, with the critical Ąelds of the IC-1’ and IC-4
phases at lowest temperatures assuming higher values than IC-1’ and the A phase
for the 𝑐-axis. The IC-4 phase appearing for 𝐵 ‖ 𝑎* (see Fig. 3.6b) reminds of
the A(SkL) phase for 𝐵 ‖ 𝑐, however, it was shown previously by angle-dependent
resistivity measurements in the 𝑎*-𝑐-plane at 2 K that it does not connect to the
A(SkL) phase [88]. The magnetic structure of this phase needs to be clariĄed by
diffraction studies. One major difference between the phase diagrams is seen for
𝐵 ‖ 𝑎*, where the IC-2 phase is not directly adjacent to the Ąeld-induced FM phase,
but there is an additional phase (labelled B) in between (see Fig. 3.5(c) and (d)).
The B phase is bordered by two jumps both in cp as well as in 𝜕ä/𝜕𝑇 .

From the anomalies in the thermal expansion, speciĄc heat and magnetization at the
phase boundaries we calculated the uniaxial pressure and Ąeld dependence of the
critical temperatures and critical Ąelds, as well as the entropy changes at the phase
boundaries for 𝐵 ‖ 𝑐-axis. Considering 𝑇 *(𝐵) marking a continuous phase transition,
the associated jumps in speciĄc heat (𝛥cp), magnetic susceptibility (𝛥(𝜕𝑀/𝜕𝐵)),
and thermal expansion coefficient (𝛥Ð) are connected with the magnetic Ąeld and
pressure dependencies of 𝑇 * by the Ehrenfest-type relations (see e.g. Ref. [9, 89])

(︂

𝜕𝑇 *

𝜕𝐵𝑖

)︂

𝑝

= ⊗𝑇 * 𝛥(𝜕𝑀𝑖

𝜕𝑇
)𝐵
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and
(︂

𝜕𝑇 *

𝜕𝑝𝑖

)︂

𝐵

= 𝑇 *𝑉m
𝛥Ð𝑖

𝛥𝑐p

. (3.5)

Using the molar volume 𝑉m = 7.06 ≤ 10⊗5 m3/mol (see Ref. [73]) as well as the
anomaly values presented above and in Tab. S7 Ű for their extraction from the
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Figure 3.6: Phase diagrams for (a) 𝐵 ‖ 𝑐 and (b) 𝐵 ‖ 𝑎* constructed from different
experimental techniques as indicated in the legends. The shaded areas show two
strong hysteresis regimes. The abbreviations for the phases are: paramagnetic (PM),
incommensurate magnetic orders (IC-x), antiferromagnetic (A,B), antiferromagnetic
skyrmion lattice (SkL), and depinned phase (DP).

experimental data see the supplement, Fig. S10 Ű we obtain a moderate uniaxial
pressure dependence of 𝜕𝑇 */𝜕𝑝c = ⊗1.4(3) K/GPa. In a Ąeld of 0.2 T, the Ąeld
dependence is very small and amounts to only 𝜕𝑇 */𝜕𝐵c = ⊗37(13) mK/T. At 0.3 T,
𝜕𝑇 */𝜕𝐵c rises to ⊗0.28(18) K/T. These results demonstrate that the IC-1 phase is
stabilized both under pressure and applied Ąeld at the expense of the IC-1’ phase.
Also, from these values we can calculate the expected jump in 𝜕𝑀/𝜕𝐵 (𝛥ä), at
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𝑇 *(𝐵) via

(︂

𝜕𝑇 *

𝜕𝐵
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𝑝

= ⊗
𝛥
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𝜕𝑀
𝜕𝐵

)︀

𝑝,𝑇

𝛥
(︀

𝜕𝑀
𝜕𝑇

)︀

𝑝,𝐵

. (3.6)

At 0.2 T this yields 𝛥ä = ⊗2 ≤ 10⊗4ÛB/(f.u. T), which is well below the resolution
limit of our experiment, explaining why our isothermal magnetization studies do not
show anomalies at 𝑇 * (see SI, Fig. S10). Note, that in an early report on Gd2PdSi3 by
Mallik et al. the authors detected a jump in the effective local Ąeld ♣Beff ♣ at 15 K by
Mössbauer spectroscopy and attributed it to a lower ordering temperature of one of
the two Gd sites in Gd2PdSi3. This transition was not detected in any of the later
reports on single crystalline samples, but our results presented in this work clearly
conĄrm its presence.

The phase boundaries between the A(SkL), IC-2, and DP phases are of discontinuous
nature, exhibiting jumps 𝛥𝐿𝑖/𝐿𝑖 in the length changes and 𝛥𝑀 in the magnetization
(i.e., 𝛥𝑚 in magnetic moment). Therefore, the Clapeyron equations [9]
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𝜕𝑇𝑐

𝜕𝑝𝑖

)︂

𝐵

= 𝑉m

𝛥𝐿𝑖
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𝛥𝑆
(3.7)
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𝛥𝑚𝑖

𝛥𝑆
= ⊗
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𝛥𝑆

(3.8)
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𝑇

= 𝑉m

𝛥𝐿𝑖

𝐿𝑖

𝛥𝑚𝑖

(3.9)

apply for the pressure and Ąeld dependence of the respective critical temperatures
𝑇c and critical Ąelds 𝐵c. Hence, the observed slopes 𝜕𝑇𝑐/𝜕𝐵 (see Tab. S1ŰS4) and
the jumps 𝛥𝑀 allow us to obtain the associated entropy changes 𝛥𝑆.

For the transition from the incommensurate IC-1’ phase to the skyrmion lattice
A phase, a jump 𝛥𝑀 = 0.99(10)ÛB/Gd accompanies the 𝑐-axis contraction of
𝛥𝑑𝐿c/𝐿c = ⊗10.8(1.1) ≤ 10⊗6 at 4.3 K. Applying the above-mentioned thermody-
namic relations yields small entropy changes on the order of 𝛥𝑆calc = 125(13) mJ/-
mol K and a negative uniaxial pressure dependence of 𝜕𝑇c/𝜕𝑝𝑖 = ⊗6.1(9) K/GPa.
At higher temperatures these values decrease down to 110(11) mJ/mol K and
⊗1.5(2) K/GPa at 16 K (see Tab. S1). The 𝑐-axis also contracts at the transition
from the skyrmion lattice A phase to the IC-2 phase, but these contractions are much
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smaller (𝛥𝑑𝐿c/𝐿c = ⊗2.4(3) ≤ 10⊗6 at 4.3 K) while the jumps in magnetization again
roughly correspond to one Bohr magneton per Gd ion (𝛥𝑀 = 1.01(11)ÛB/Gd at
4.3 K). Accordingly, this phase boundary shows much smaller pressure dependence,
i.e., 𝜕𝑇c/𝜕𝑝𝑖 = ⊗0.47(7) K/GPa at 4.3 K (see Tab. S2). At the same time, the
steeper slope of the phase boundary 𝐵c(𝑇 ) implies larger changes in entropy of
360(40) mJ/mol K at 4.3 K which increases to almost 600(60) mJ/mol K at 16 K.
We note that the analysis of anomalies from temperature instead of Ąeld sweeps
conĄrms these values (Tab. S3). Looking at higher Ąelds, the slope of the phase
boundary from IC-2 to the depinned phase (DP) is very small, changing from a
small negative slope below 6 K to a small positive slope above. Considering the
measured anomalies 𝛥𝑀 = 0.08(4)ÛB/Gd at 4.3 K, this yields negligible associ-
ated entropy changes (Tab. S4). In contrast, there are pronounced lattice effects
(𝛥𝑑𝐿c/𝐿c = ⊗17(2) ≤ 10⊗6 at 1.77 K) yielding a very large pressure dependence for
the phase boundary IC-2 ⊃ DP.

The results of the thermodynamic analyses are shown in table I as well in tables S1
to S4 in the supplement. In particular, our analysis evidences pronounced negative
uniaxial pressure dependencies for all three phase transitions between IC-1/IC-1’,
A(SkL), IC-2 and DP at low temperatures. This implies that the IC-1’/IC-1, A(SkL)
and IC-2 phases are all destabilized by pressure along the 𝑐-axis with respect to the
higher temperature phases, i.e., the Ąeld-induced FM phase Ű and the paramagnetic
phase at low Ąelds Ű is stabilized.

In particular, our data for 𝐵 ‖ 𝑐 provide further information on the skyrmion phase.
Both the onset of the SkL phase from incommensurate magnetic order IC-1/IC-1’
and its transition into the incommensurate IC-2 phase are discontinuous in nature.
In both cases, transitions are associated with the increase of magnetization by about
1 ÛB/Gd. Rather Ćat phase boundaries in the magnetic phase diagram are indicative
of comparably small entropy changes. Our quantitative analysis evidences that
the evolution of the SkL phase, depending on the temperature, yields an entropy
gain of 𝛥𝑆 ≡ 100 ⊗ 150 mJ/(mol K) while the entropy jumps at the transition
out of the skyrmion phase by 300-600 mJ/(mol K). These values are by far larger
than for the chiral magnet MnSi where latent heat at the phase boundaries only

Table 3.1: Relevant quantities and anomaly sizes at the phase boundaries of the
skyrmion lattice phase, at 𝑇 = 4.3 K, and in magnetic fields 𝐵 ‖ 𝑐 which have
been either directly extracted from the experimental data or were obtained by using
thermodynamic relations as given in the text.

𝑇 𝐵𝑐 𝛥(𝑑𝐿/𝐿) 𝛥𝑚 𝜕𝐵c/𝜕𝑇 𝛥𝑆calc 𝜕𝑇c/𝜕𝑝i 𝜕𝐵c/𝜕𝑝𝑖

Transition (K) (T) (10⊗6) (ÛB/Gd) (T/K) (mJ/mol K) (K/GPa) (mT/GPa)
IC-1 ⊃ A(SkL) 4.3∘0.1 0.49∘0.02 Ű10.8∘1.1 1.0∘0.1 Ű0.01 125∘13 Ű6.1∘0.9 Ű50∘50
A(SkL) ⊃ IC-2 4.3∘0.1 1.04∘0.03 Ű2.4∘0.3 1.0∘0.1 Ű0.03 360∘40 Ű0.47∘0.07 Ű15∘2
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amount to a few mJ/(mole K) [90]. Uniaxial pressure along the 𝑐-axis signiĄcantly
enhances the SkL phase as seen by the uniaxial pressure dependencies of the transition
temperatures. SpeciĄcally, at 4 K there is a rapid decrease of the IC-1/IC-1’ ⊃
A(SkL) transition temperature 𝜕𝑇in/𝜕𝑝𝑐 ≡ ⊗6 K/GPa, leading to an expansion of
the A(SkL) phase towards lower temperatures under pressure. At the same time the
temperature of the A(SkL) ⊃ IC-2 transition, i.e. exiting the SkL phase towards
higher temperatures, changes by only 𝜕𝑇out/𝜕𝑝𝑐 ≡ ⊗0.5 K/GPa (see tables I and
II). Enhancement of skyrmion lattice phases under pressure is also observed in
other materials. In the insulating skyrmion system Cu2OSeO3, Levatić et al. report
a dramatic enhancement of the skymion pocket under pressure by about 8 K at
0.6 GPa [91]. While in Gd2PdSi3 the SkL phase appears at lower temperatures, our
results (𝜕𝑇in/𝜕𝑝𝑐 ⊗ 𝜕𝑇out/𝜕𝑝𝑐) imply about half of this effect. We also note similar
Ąndings to the ones reported at hand in the chiral magnet MnSi [92, 93] where
uniaxial pressure along [001] yields a rapid decrease of the onset temperature of the
skyrmion phase while the high temperature phase boundary shows a much smaller
pressure dependence 1. Recent theoretical studies by Hayami et al. investigated the
inĆuence of single-ion anisotropy on the formation and stability of the skyrmion
lattice phase. They show that easy-axis anisotropies stabilize magnetic-Ąeld-induced
skyrmion crystals in frustrated magnets [94] and easy-axis (easy-plane) anisotropy
substantially increases (decreases) the stable Ąeld-range for a Skyrmion lattice. These
Ąndings suggest, that the pressure dependencies stabilizing the skyrmion lattice phase
in Gd2PdSi3 may originate from small distortions in the local environment of Gd
leading to an increase of the weak magnetic anisotropy of the Gd moments.

The transition from the depinned phase to the Ąeld-induced ferromagnetic phase
is of a continuous type. It exhibits a jump in the magnetostriction coefficient
𝛥Ú = ⊗4.7(5) ≤ 10⊗5/𝑇 (at 1.77 K) and in the derivative of the magnetization
𝛥𝜕𝑀/𝜕𝐵 = ⊗0.159(16)ÛB/(T Gd) (T = 1.9 K). Using an Ehrenfest relation, the
uniaxial pressure dependence of the critical Ąeld can be expressed as 𝑑𝐵c/𝑑𝑝𝑖 =
𝛥Ú/𝛥(𝑑𝑀/𝑑𝐵), which yields 𝑑𝐵c/𝑑𝑝𝑐 = 1.9(5) T/GPa at 1.77 K, i.e. the depinned
phase is stabilized under uniaxial pressure 𝑝𝑐. Similarly, using the anomaly values
listed in Tab. S5, we Ąnd uniaxial pressure dependencies of the critical Ąeld between
⊗0.65(16) T/GPa (10 K) and ⊗0.50(8) T/GPa (14 K) at the continuous transition
IC-2 to ĄFM.

While Gd2PdSi3 shows only moderate frustration, magnetic entropy and length
changes are observed up to about 2.7 TN1 (60 K), thereby implying the evolution of
short range magnetic order in this temperature regime. Effects of Ćuctuations above

1 For MnSi, this also holds for pressure along [111] and [110]. From our data only uniaxial pressure
effects 𝑝 ‖ 𝑐 are accessible so that a comparison for the other directions cannot be made.
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𝑇N in Gd2PdSi3 were observed before in resistivity measurements. Measurements on
polycrystalline samples show a well-deĄned minimum around 45 K [95] which was also
conĄrmed in single crystals [68]. A theoretical explanation of this behavior based on
the RKKY-interaction in combination with frustration was given by Wang et al. [96].
Grüneisen scaling suggests that these precursor Ćuctuations are of the IC-1/IC-3 type.
Both ordering phenomena are driven by the same dominating energy scale which
differs from the one driving IC-1’. As expected for a Gd3+-system, magnetoelastic
coupling is moderate. It is, hence, somehow surprising that magnetostriction is
large at high temperatures and displays pronounced effects up to 200 K. In addition,
despite linear Ąeld dependence of the magnetization, magnetostriction does not
follow a 𝐵2-law below 200 K (see Fig. S6) as would be expected from the relation
𝑑𝐿𝑖/𝐿𝑖 = ⊗1/2𝑉 𝜕ä𝑖/𝜕𝑝𝑖𝐵

2 in the paramagnetic regime [97]. Tentatively, magne-
tostriction above 100 K implies negative uniaxial pressure dependence, 𝜕ä/𝜕𝑝𝑐 < 0,
of the magnetic susceptibility while 𝜕ä/𝜕𝑝a∗ > 0. This observation suggests that
antiferromagnetic exchange interactions are strengthened by uniaxial pressure along
the 𝑐-axis and weakened upon application of 𝑝 ‖ 𝑎*. Notably, however, the long-
range magnetic ordering temperatures do not follow this trend as 𝜕𝑇N/𝜕𝑝𝑐 < 0 which
further highlights the complex nature of magnetism in Gd2PdSi3.

3.5 Conclusions

For the Ąrst time, high-resolution dilatometry was used to study the interplay between
magnetism and the lattice of single crystalline Gd2PdSi3. Strong magnetoelastic
coupling and Ąeld effects up to high temperatures are found. Pronounced anomalies
in the thermal expansion, magnetostriction and magnetization allow us to obtain
the magnetic phase diagram. This yields in particular several novel phases for 𝐵 ‖ 𝑐
while the B vs. T phase diagram for 𝐵 ‖ 𝑎* has not yet been reported at all in
the literature. Grüneisen analysis shows the onset of magnetic contributions well
above TN1, and the pressure dependencies of ordering phenomena are obtained. In
particular, we Ąnd that uniaxial pressure strongly enhances the skyrmion lattice
phase.
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Supplementary Material:
Magnetoelastic Coupling and Phases in the Skyrmion Lattice
Magnet Gd2PdSi3 Discovered by High-resolution Dilatometry

Figure S1: Static magnetic susceptibility ä = 𝑀/𝐵 for (a) 𝐵 ‖ 𝑎* and (b) 𝐵 ‖ 𝑐 (b).
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Figure S2: (a-b) Thermal expansion measurements up to 220 K for 𝐵 ‖ 𝑐 in magnetic
fields up to 15 T. (a) Thermal expansion coefficient Ðc. The inset shows the magnified
low temperature region with an offset of 1.2 ≤ 10⊗6 1/K. (b) Relative length changes
𝑑𝐿c(𝑇 )/𝐿c. Vertical lines mark the changes 𝛥𝐿(𝐵)/𝐿 derived from magnetostriction
measurements. The data at different fields are normalized by these changes at 4.3 K.
(c-d) Thermal expansion measurements up to 100 K for 𝐵 ‖ 𝑎* in magnetic fields up to
15 T. (c) Thermal expansion coefficient Ð⊥ offset by 2 ≤ 10⊗7 1/K. (d) Relative length
changes 𝑑𝐿a∗(𝑇 )/𝐿a∗ . Vertical lines again mark the changes 𝛥𝐿(𝐵)/𝐿 taken from
magnetostriction measurements. The data at different fields are offset and normalized
by these changes at 2.2 K w.r.t. the zero-field data.
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Figure S3: Comparison of the scaled Lu2PdSi3 specific heat cp/𝑇 measured by Cao
et al. [81] (red empty circles) with the Debye and Einstein fit (blue line). Note that
the Lu2PdSi3 data was interpolated and therefore contains more data points than the
published data.

Table S1: Relevant quantities and jumps, calculated changes of entropy, and calculated
pressure dependencies for the discontinuous transition in magnetic field from IC-1/IC-
1’ ⊃ A(SkL) and IC-3 ⊃ IC-2 for the 𝑐-axis according to Eq. (3.7). The column of
𝜕𝐵c/𝜕𝑇 was calculated by taking the derivative of a polynomial fit to the values 𝐵c(𝑇 )
for IC-1/IC-1’ ⊃ A(SkL) and a linear fit (between between 18.39 K and 19 K as well
as between 19 K and 21 K) for IC-3 ⊃ IC-2.

IC-1/IC-1’ ⊃ A(SkL) Ű 𝑐-axis: Relevant quantities, entropy changes and uniaxial pressure dependencies
𝑇 𝐵𝑐 𝛥(𝑑𝐿/𝐿) 𝛥𝑚 𝜕𝐵c/𝜕𝑇 𝛥𝑆calc 𝜕𝑇c/𝜕𝑝i 𝜕𝐵c/𝜕𝑝𝑖

(K) (T) (10⊗6) (ÛB/Gd) (T/K) (mJ/mol K) (K/GPa) (T/GPa)
1.77 0.52∘0.02 Ű7.3∘0.8 1.00∘0.10 Ű0.01135 126∘13 Ű4.1∘0.6 Ű0.046∘0.007
4.3 0.49∘0.02 Ű10.8∘1.1 0.99∘0.10 Ű0.01133 125∘13 Ű6.1∘0.9 Ű0.069∘0.010
5.01 0.48∘0.02 Ű8.9∘0.9 0.99∘0.10 Ű0.01151 127∘13 Ű4.9∘0.7 Ű0.056∘0.008
7.94 0.45∘0.02 Ű8.4∘0.9 0.95∘0.10 Ű0.01318 140∘14 Ű4.2∘0.6 Ű0.056∘0.008
9.83 0.42∘0.02 Ű8.7∘0.9 0.81∘0.08 Ű0.01499 135∘14 Ű4.6∘0.7 Ű 0.068∘0.010
9.99 0.42∘0.02 Ű7.2∘0.8 0.81∘0.08 Ű0.01516 137∘14 Ű3.7∘0.6 Ű0.056∘0.008
12.02 0.38∘0.02 Ű7.0∘0.7 0.75∘0.08 Ű0.01783 149∘15 Ű3.3∘0.5 Ű0.059∘0.009
14.35 0.34∘0.02 Ű4.5∘0.5 0.52∘0.05 Ű0.02260 131∘14 Ű2.4∘0.4 Ű0.055∘0.008

16 0.30∘0.02 Ű2.4∘0.3 0.40∘0.04 Ű0.02505 110∘11 Ű1.5∘0.2 Ű0.038∘0.006
IC-3 ⊃ IC-2 Ű 𝑐-axis: Relevant quantities, entropy changes and uniaxial pressure dependencies

18.39 0.30∘0.04 Ű9∘2 0.24∘0.03 Ű0.1 270∘40 Ű2.3∘0.6 Ű0.23∘0.06
20.27 0.23∘0.04 Ű3.8∘0.4 0.21∘0.05 -0.04 94∘30 Ű2.9∘0.8 Ű0.12∘0.03
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Figure S4: Magnetostriction measurements at temperatures from 1.7 K to 25 K
for 𝐵 ‖ 𝑐 (a-c) and 𝐵 ‖ 𝑎* (d-f): The relative length change 𝑑𝐿(𝐵)/𝐿 (a, d) and
magnetostriction coefficient Ú𝑖 (b, c, e, f) are shown. Solid lines in (a, d) represent up-
sweeps, dashed lines down-sweeps. Triangles pointing upwards in (d) mark up-sweeps,
triangles pointing downwards mark down-sweeps. Data in (a-c, insets also) and (e)
are shifted vertically for better visibility by: (a) different amounts, (b, c) 6 ≤ 10⊗6 1/T,
(e) 3.7 ≤ 10⊗6 1/T (3.5 K data is omitted). Insets show magnifications of the low field
regions.
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Figure S5: Magnetostriction measurements at temperatures above TN1 for 𝐵 ‖ 𝑐
(a-b) and 𝐵 ‖ 𝑎* (c-d): The relative length change 𝑑𝐿(𝐵)/𝐿 (a, c) and magnetostriction
coefficient Ú𝑖 (b, d) are shown. Solid lines in (a, c) represent up-sweeps, dashed lines
down-sweeps. Triangles pointing upwards in (b, d) are up-sweeps, triangles pointing
downwards mark down-sweeps.

Table S2: Relevant quantities and jumps, calculated changes of entropy, and calculated
pressure dependencies for the discontinuous transition in magnetic field from A(SkL)
to IC-2 for the 𝑐-axis according to Eq. (3.7). The column of 𝜕𝐵c/𝜕𝑇 was calculated
by taking the derivative of a polynomial fit to the values 𝐵c(𝑇 ).

A(SkL) ⊃ IC-2 Ű 𝑐-axis: Relevant quantities, entropy changes and uniaxial pressure dependencies
𝑇 𝐵𝑐 𝛥(𝑑𝐿/𝐿) 𝛥𝑚 𝜕𝐵c/𝜕𝑇 𝛥𝑆calc 𝜕𝑇c/𝜕𝑝i 𝜕𝐵c/𝜕𝑝𝑖

(K) (T) (10⊗6) (ÛB/Gd) (T/K) (mJ/mol K) (K/GPa) (T/GPa)
1.77 1.11∘0.03 0 0.95∘0.10 Ű0.028 300∘30 0 0
4.3 1.04∘0.03 Ű2.4∘0.3 1.01∘0.11 Ű0.031 360∘40 Ű0.47∘0.07 Ű0.015∘0.002
5.01 1.01∘0.02 Ű1.4∘0.2 1.00∘0.10 Ű0.033 370∘40 Ű0.27∘0.04 Ű0.009∘0.002
7.94 0.91∘0.02 Ű2.5∘0.3 0.99∘0.10 Ű0.041 450∘50 Ű0.40∘0.06 Ű0.016∘0.003
9.83 0.82∘0.02 Ű5.1∘0.5 0.98∘0.10 Ű0.048 520∘60 Ű0.69∘0.10 Ű0.033∘0.005
9.99 0.82∘0.02 Ű2.9∘0.3 0.98∘0.10 Ű0.048 530∘60 Ű0.39∘0.06 Ű0.019∘0.003
12.02 0.7∘0.02 Ű5.9∘0.6 0.93∘0.10 Ű0.057 590∘60 Ű0.70∘0.10 Ű0.040∘0.006
14.35 0.56∘0.02 Ű5.9∘0.6 0.75∘0.08 Ű0.069 580∘60 Ű0.72∘0.11 Ű0.050∘0.007

16 0.45∘0.02 Ű4.0∘0.4 0.66∘0.07 Ű0.079 580∘60 Ű0.49∘0.07 Ű0.039∘0.006
18.39 0.23∘0.02 -0.095
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Figure S6: Relative length changes 𝑑𝐿/𝐿 plotted vs. 𝐵2. The uniaxial pressure
dependence of the susceptibility is related to the magnetostriction by the Maxwell
relation 𝜕(𝑑𝐿/𝐿)/𝜕𝐵 = ⊗𝜕𝑀/𝜕𝑝. For a paramagnetic material with 𝑀 = ä𝐵 we thus
have 𝑑𝐿/𝐿 = ⊗1

2𝜕ä/𝜕𝑝𝐵2, i.e. 𝜕ä/𝜕𝑝 is proportional to the slope in the above plot.
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Figure S7: Measurements of the isothermal magnetization as well as the static
magnetic susceptibility ä(𝑇 ) and their derivatives for 𝐵 ‖ 𝑐 (a-d) and 𝐵 ‖ 𝑎* (e-h). ä(𝑇 )
measurements were performed in a zero-field cooled manner unless stated otherwise
(FCW: field-cooled warming, FCC: field-cooled cooling). Data are offset for better
visibility by (b) 1.2 ÛB/(T Gd), (c, inset) 4.5 ≤ 10⊗6 m3/mol, (d) ⊗8 ≤ 10⊗7 m3/(mol K),
(f) 1.1 ÛB/(T Gd), (g, inset) 5 ≤ 10⊗6 m3/mol, and (h) ⊗1.4 ≤ 10⊗6 m3/(mol K) starting
with the data for 𝐵 = 0.10 T.
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Figure S8: Close-up of the measurements of the magnetic susceptibility 𝜕𝑀/𝜕𝐵 for
𝐵 ‖ 𝑐 (a) and 𝐵 ‖ 𝑎* (b) in the temperature regime of the IC-3 ⊃ IC-2 transition.

Table S3: Relevant quantities and jumps, calculated changes of entropy, and calculated
pressure dependencies for the discontinuous transition in temperature from A(SkL) to
IC-2 for the 𝑐-axis according to Eq. (3.7). The column of 𝜕𝑇/𝜕𝐵 was calculated by
taking the derivative of a polynomial fit to the values Tc(B), including the values from
0 T to 0.3 T.

A(SkL) ⊃ IC-2 Ű 𝑐-axis: Relevant quantities
𝐵 𝑇c 𝛥(dL/L) 𝛥𝑚 𝜕𝑇c/𝜕𝐵 𝛥Scalc 𝑑𝑇c/𝑑𝑝i

(T) (K) (10⊗6) (ÛB/Gd) (K/T) (mJ/mol K) (K/GPa)
0 19.7∘0.5 no SkL

0.1 19.3∘0.3 no SkL Ű4.8
0.2 18.8∘0.5 no SkL Ű8.1
0.3 17.9∘0.7 no SkL Ű10.8
0.4 16.4∘0.4 Ű5.0∘1.0 0.36∘0.04 Ű13.0 310∘40 Ű1.2∘0.3
0.5 15.3∘0.4 Ű7.4∘1.0 0.54∘0.04 Ű14.8 410∘40 Ű1.3∘0.2
0.6 13.6∘0.3 Ű7.0∘0.7 0.70∘0.04 Ű16.0 490∘30 Ű1.02∘0.12
0.7 12.0∘0.3 Ű5.1∘0.5 0.77∘0.04 Ű16.7 510∘30 Ű0.70∘0.08
0.8 10.4∘0.3 Ű2.7∘0.3 0.86∘0.04 Ű17.0 560∘30 Ű0.34∘0.04
0.9 8.60∘0.3 Ű1.3∘0.1 0.91∘0.04 Ű16.7 610∘30 Ű0.15∘0.02
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Figure S9: (a) Relative length changes 𝑑𝐿c/𝐿c and (b) magnetostriction coefficient
Úc in the low-field regime at temperatures below and above TN1 and TN2 for 𝐵 ‖ 𝑐.
Only up-sweeps are shown.

Table S4: Relevant quantities and jumps, calculated changes of entropy, and
calculated pressure dependencies for the discontinuous transition in magnetic field
from IC-2 to DP for the 𝑐-axis according to Eq. (3.7). The column of 𝜕𝐵c/𝜕𝑇 was
calculated by taking the derivative of a polynomial fit to the values 𝐵c(𝑇 ).

IC-2 ⊃ DP Ű 𝑐-axis: Relevant quantities, entropy changes and uniaxial pressure dependencies
𝑇 𝐵𝑐 𝛥(𝑑𝐿/𝐿) 𝛥𝑚 𝜕𝐵c/𝜕𝑇 𝛥𝑆calc 𝜕𝑇c/𝜕𝑝i 𝜕𝐵c/𝜕𝑝𝑖

(K) (T) (10⊗6) (ÛB/Gd) (T/K) (mJ/mol K) (K/GPa) (T/GPa)
1.77 3.51∘0.05 Ű17.1∘1.7 0.08∘0.03 Ű0.04∘0.04 16∘16 Ű80∘80 Ű1.4∘0.6
4.3 3.44∘0.05 Ű12.2∘2 0.08∘0.04 Ű0.014∘0.014 7∘7 Ű130∘130 Ű0.9∘0.4
5.01 3.44∘0.10 Ű11.8∘0.4 0.07∘0.03 Ű0.008∘0.008 3∘3 Ű250∘250 Ű1.0∘0.6
7.94 3.45∘0.15 Ű6∘3 0.044∘0.018 0.018∘0.009 -4∘3 100∘80 -0.9∘0.6
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Figure S10: Extraction of 𝑇 * from thermal expansion (a, d), 𝜕ä/𝜕𝑇 (b, e) and
𝜕𝑀/𝜕𝐵 for 𝐵 ‖ 𝑐 (a-c) and 𝐵 ‖ 𝑎* (d-f). Vertical lines mark the position of 𝑇 * for the
different measurements. Data in (a) and (d) are offset by 2 ≤ 10⊗6 1/K and 1 ≤ 10⊗6 1/K,
respectively.
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Table S5: Relevant quantities and jumps and calculated field and pressure dependen-
cies for the continuous transition from IC-2 to the field-induced ferromagnetic (fiFM)
phase for the 𝑐-axis according to Eq. (3.4), (3.5).

IC-2 ⊃ ĄFM Ű 𝑐-axis: Relevant quantities, entropy changes and uniaxial pressure dependencies
T (K) Bc (T) 𝛥Ú (10⊗6/T) 𝛥(𝜕𝑀/𝜕𝐵) (ÛB/(T Gd)) 𝜕𝐵c/𝜕𝑝i (T/GPa)
9.99 3.7∘0.1 15∘2 Ű0.15∘0.03 -0.7∘0.2
12.02 3.0∘0.1 17∘2 Ű0.19∘0.03 -0.6∘0.2
14.35 2.3∘0.1 19∘2 Ű0.25∘0.03 -0.5∘0.1

Table S6: Relevant quantities and jumps and calculated field and pressure dependen-
cies for the continuous transition from the depinned phase (DP) to the field-induced
ferromagnetic (fiFM) phase for the 𝑐-axis according to Eq. (3.4), (3.5).

DP ⊃ ĄFM Ű 𝑐-axis: Relevant quantities, entropy changes and uniaxial pressure dependencies
T (K) Bc (T) 𝛥Ú (10⊗5/T) 𝛥(𝜕𝑀/𝜕𝐵) (ÛB/(T Gd)) 𝜕𝐵c/𝜕𝑝i (T/GPa)
1.77 8.8∘0.5 Ű4.7∘1.0 Ű0.159∘0.018 1.9∘0.5
4.3 7.94∘0.4 Ű1.9∘1.0 Ű0.094∘0.009 1.3∘0.7
5.01 6.6∘0.4 Ű1.4∘1.0 Ű0.074∘0.018 1.2∘0.9
7.94 6.48∘0.6 Ű0.7∘0.4 Ű0.065∘0.018 0.6∘0.4

Table S7: Relevant quantities, jumps, and calculated field and pressure dependencies
for the continuous transition at T* from IC-1 to IC-1’ for the 𝑐-axis according to
Eq. (3.4), (3.5). Note that the cp data was only measured at 0 T. The jumps in field
𝐵 were scaled by the changes of the jumps in Ðc, i.e., 𝛥cp(B) = cp(0) ≤ 𝛥Ð(B)/𝛥Ð(0).

IC-1 ⊃ IC-1’ Ű 𝑐-axis
B Tc 𝛥Ðc 𝛥cp 𝛥(𝜕𝑀/𝜕𝑇 ) 𝑑𝑇c/𝑑𝑝𝑖 𝑑𝑇c/𝑑𝐵𝑖

(T) (K) (10⊗6) (J/mol K) (10⊗3ÛB/f.u. K) (K/GPa) (K/T)
0 12.8∘0.7 4.1∘0.5 Ű2.7∘0.5 Ű1.4∘0.3

0.2 12.15∘0.5 2.7∘0.4 Ű1.8∘0.4 Ű5.6∘1.4 Ű1.3∘0.4 Ű0.037∘0.013
0.25 11.45∘0.5 Ű11∘4
0.3 10.6∘0.5 0.9∘0.3 Ű0.6∘0.3 Ű16∘6 Ű1.1∘0.7 Ű0.28∘0.18
0.35 8.4∘0.5 Ű20∘7





Chapter 4

Magnetoelastic Coupling and Phase Diagram of the

Buckled-Kagomé Antiferromagnet Cu3Bi(SeO3)2O2Cl

In this chapter a thorough investigation of the buckled-Kagomé antiferromagnetic
Cu3Bi(SeO3)2O2Cl using thermal expansion, magnetostriction and magnetization
measurements is presented. Background information on physical phenomena, possible
applications and structural properties of Cu3Bi(SeO3)2O2Cl are given in the intro-
duction. The experimental methods section then gives an overview of the samples
used in the study along with information on basic characterization and orientation of
the samples. This section is followed by the experimental results, which are directly
discussed as they are presented, to facilitate keeping an overview over the different
observed phenomena and their interpretation. The results and discussion section
is divided into four sections. The Ąrst section focuses on the results of thermal
expansion measurements in zero-Ąeld. This includes a Grüneisen analysis and an
analysis of the critical scaling at the observed phase transitions. The following
section presents the effects of a magnetic Ąeld in terms of thermal expansion and
magnetostriction data. An emphasis in this section is on the phenomena observed
for measurements along the 𝑐-axis with 𝐵 ‖ 𝑐. In the third section magnetization
measurements in Ąedls up to 14 T are presented, from which the phase diagrams
in the fourth and last section are constructed. Finally, a conclusion sums up the
Ąndings from this study on Cu3Bi(SeO3)2O2Cl.

4.1 Introduction

Since the revival of frustrated magnetism as a highly active research Ąeld in the
1990s [98], many Kagomé lattice compounds have been discovered, synthesized, and
investigated extensively. The corner-sharing triangles of the Kagomé lattice provide
a rich playground for geometric frustration [11, 99]. Classically, this geometric
frustration can lead to macroscopic ground state degeneracies and branches of
zero-energy excitations which prevent any long-range order down to the lowest
temperatures [98, p. 208]. An ideal 𝑆 = 1/2 Kagomé Heisenberg antiferromagnet
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is one realization of a system in which this phenomenon, the so-called (quantum)
spin liquid state, is expected. However, geometrically frustrated systems provide a
much broader range of phenomena than only the spin liquid state. Among them are
fractionalized magnetization plateaus, chiral and helical spin arrangements as well
as spin glass, spin nematic, and spin ice behaviors [98].

In a number of geometrically frustrated systems such as FeTe2O5Cl [100], PbCu3TeO7

[101], and Ni3V2O8 multiferroic behavior has been found [102, 103]. Multiferroics
are deĄned as systems which exhibit more than one of the primary ferroic properties
Ű ferromagnetism, ferroelectricity and ferroelasticity Ű in the same phase [104]. From
a technological perspective they are especially sought-after for controlling magnetism
via electric Ąelds. This comes with the promise of a substantially lower energy
consumption than manipulating magnetic states via magnetic Ąelds [105]. Possible
applications range from ultra-low power logic-memory to radio- and high-frequency
devices: electric Ąeld-tunable radio-frequency/microwave signal processing, magnetic
Ąeld sensors, magnetoelectric random access memory (MERAM) and voltage-tunable
magnetoresistance. An introduction to the Ąeld of multiferroics along with a basic
overview is given in Refs. [106Ű108].

Cu3Bi(SeO3)2O2Cl, "the" francisite, after which the francisite family is named, crys-
tallizes in a special realization of the Kagomé lattice [109] and exhibits multiferroic
properties at low temperatures [16, 17]. What makes the francisite Kagomé lattice
peculiar is a buckling of the Kagomé layers along the out-of-plane (𝑐) direction
(Fig. 4.1(a)). Cu2+ (𝑆 = 1/2) ions are the magnetic centers forming the Kagomé lat-
tice in the 𝑎𝑏-plane of Cu3Bi(SeO3)2O2Cl (more often called CBSCl in the following)
(Fig. 4.1(b)). They are situated at two different crystal sites, Cu1 and Cu2. Both
Cu1 and Cu2 ions are found in a square planar coordination with Cu-O bond lengths
of 1.933 Å to 1.978 Å. These plaquettes are non-parallel, as visible in Fig. 4.1(a) and
(b). Along the 𝑐-axis Cu ions are connected by long BiŰO bonds with a bond length
of about 2.8 Å (not shown in the Ągure). While the Bi3+ ions sit in tunnels along
the 𝑎-axis (omitted in Fig. 4.1), stacked in line with the Cu2 ions along 𝑐, the Cl⊗

ions are situated in tunnels along the 𝑐-axis in the center of Cu1ŰCu2 hexagons in
the 𝑎𝑏-plane (Fig. 4.1(b)). The stereochemically active Se4+ ions are situated in the
same tunnels with the Cl ions.

The correct space group of CBSCl has been a matter of debate for several years. The
latest reports assign the orthorhombic 𝑃𝑚𝑚𝑛 space group to the high temperature
phase with an orthorhombic to orthorhombic structural phase transition at 𝑇S

≡ 115 K. The low-temperature phase is suggested to be the nonpolar, possibly
antiferroelectric (AFE) [110], 𝑃𝑐𝑚𝑛 phase [16]. However, minor inclusions of a
ferroelectric 𝑃21𝑚𝑛 phase may be present below 𝑇S within the matrix of the major
AFE phase [110]. The magnetic structure of CBSCl at 2 K has been determined by
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4.3 Results and Discussion

4.3.1 Thermal Expansion at B = 0

Thermal expansion measurements in zero-Ąeld show pronounced anomalies at 𝑇S =
120.7(5) K and 𝑇N = 26.4(3) K (Fig. 4.4). Both anomalies appear as clear kinks in
the relative length changes (Fig. 4.4(b)), i.e., signaling continuous phase transitions.
The magnitudes and signs of the anomalies differ for all three axes, indicating a
strong anisotropy of the uniaxial pressure dependence of the corresponding ordering
phenomena already in zero-Ąeld. The length changes at temperatures between 𝑇S

Figure 4.4: (a) Thermal expansion coefficients Ð𝑖 and (b) relative length changes
𝑑𝐿𝑖/𝐿𝑖 in zero-field for the crystallographic 𝑎-, 𝑏-, and 𝑐-axis of Cu3Bi(SeO3)2O2Cl.
Insets show a magnification of the low temperature regime around 𝑇N with zero y-values
indicated by horizontal dashed lines. Vertical dotted lines in (b) mark 𝑇N and 𝑇S. (c)
Volume expansion coefficient Ñ and (c) relative volume changes 𝑑𝑉/𝑉 in zero-field
calculated from adding Ð𝑖 and subsequent integration to obtain 𝑑𝑉/𝑉 .

and 𝑇N are also highly anisotropic. While the 𝑎-axis elongates linearly towards 𝑇N,
the 𝑐-axis shrinks about twice as fast. The changes of the 𝑏-axis in this temperature
window, as for the whole measured temperature regime, are small compared to
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the other axes. Below 𝑇S the 𝑏-axis slightly elongates until about 107 K and then
contracts down to 𝑇N.

By adding up the Ð𝑖 for the 𝑎-, 𝑏-, and 𝑐-axis the volume expansion coefficient Ñ is
obtained (Fig. 4.4(c)). Integrating Ñ yields the relative volume changes (Fig. 4.4(d)).
A positive jump with an additional peak on top of it at 𝑇S, and a positive peak at
𝑇N mark the structural and magnetic phase transitions in the volume, respectively,
indicating positive pressure dependencies for both transitions.

In the following sections the antiferromagnetic phase transition at 𝑇N is investigated,
especially by means of a Grüneisen analysis and critical scaling analysis of the
spontaneous strain. Subsequently, the structural transition at 𝑇S is discussed.

The Antiferromagnetic Transition at 𝑇N

The strong lattice changes related to the phase transition at 𝑇N provide evidence
for magnetoelastic coupling in CBSCl. These changes are highly anisotropic, with
the 𝑐-axis lattice changes being the smallest, whereas the 𝑏-axis anomaly, which
is opposite in sign, has a peak height in Ðb of about twice the size. The changes
along the 𝑎-axis are again much stronger. The peak in Ða is positive and two to
three times larger than for the 𝑏-axis. Note also that the 𝑎-axis shows a negative
thermal expansion with a minimum around 14 K. This behavior is discussed in more
detail below. The lattice changes observed by the dilatometric measurements Ąt very
well with the changes in lattice parameter obtained from X-ray Diffraction (XRD)
measurements by Pregelj et al. [114].

Both qualitative and quantitative results on the pressure dependence of the phase
transitions can be drawn from a Grüneisen analysis, i.e., comparing the speciĄc
heat and thermal expansion data. A Ąrst impression is obtained by simply dividing
Ð𝑖 by cp to obtain 𝛤𝑖 (Fig. 4.5). This includes no assumptions about magnetic or
other contributions to the lattice changes and speciĄc heat, and yields a number
of instructive observations: (1) Above 𝑇S the Grüneisen ratio is approximately
constant for all axes as well as for the volume, implying that the competition between
interactions is fully resolved at these high temperatures and a single dominating
energy scale remains. (2) Below 𝑇S all axes show different behavior, while the volume
Grüneisen ratio is nearly constant, only starting to rise signiĄcantly below 40 K
towards a peak at 𝑇N. The strong anisotropy seen in the pure zero-Ąeld thermal
expansion data is reĆected here. (3) At the phase transitions the anomalies in
thermal expansion are much more pronounced than in the speciĄc heat, which leads
to signiĄcant peaks in 𝛤𝑖. The 𝑐-axis around 𝑇N is an exception in this respect, where
only a small anomaly is visible in 𝛤c.

For further quantitative analysis a phononic background is subtracted. For this
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Figure 4.5: Grüneisen ratio 𝛤𝑖 = Ð𝑖/𝑐p

for all axes (a-c) and the volume (d) ob-
tained as described in the text. Note that
the 𝑐-axis thermal expansion data was
shifted by –0.15 K prior to division by cp

for better overlap with the cp data at 𝑇N.

Figure 4.6: Phononic background
fits (lines) to (a) the specific heat [115]
and (b) the low temperature thermal
expansion data (circles) in zero-field as
explained in the text.

purpose both thermal expansion and speciĄc heat are Ątted by Debye and Einstein
contributions according to

𝑐𝑝ℎ
𝑝 = 𝑛D1𝐷

(︂

𝑇

𝛩𝐷1

)︂

+ 𝑛D2𝐷

(︂

𝑇

𝛩𝐷2

)︂

+ 𝑛E𝐸

(︂

𝑇

𝛩𝐸

)︂

, (4.1)

where 𝑛D1,2 and 𝑛E are constants, and 𝐷(𝑇/𝛩D1,2) and 𝐸(𝑇/𝛩E) are the Debye and
Einstein functions with the Debye and Einstein temperatures 𝛩D1,2 and 𝛩E. A Ąt to
the speciĄc heat below the onset of 𝑇S, at 35 K to 93 K, yields nD1 = 3.25, nD2 = 6.14
and nE = 12.1 with 𝛩D1 = 127 K, 𝛩D2 = 377 K and 𝛩E = 1063 K. These Debye and
Einstein temperatures are then used to Ąt the thermal expansion data in the range
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from 35 K to 60 K. Due to the high value of the Einstein temperature, however, the
contribution of Einstein modes to the thermal expansion below 100 K is negligible.
Therefore, and in order to reduce the number of free parameters, the Einstein mode
is omitted for the thermal expansion Ąt. The resulting background Ąts are shown in
Fig. 4.6. The Ąts for the 𝑐-axis and volume describe the data very well Ű the 𝑐-axis
up to about 80 K and the volume up to 𝑇S Ű while the 𝑎- and 𝑏-axis only coincide
with the data in a narrow temperature range, roughly between 40 K and 54 K.

Subtracting the background yields the magnetic contributions to the speciĄc heat
and thermal expansion coefficient. The comparison of magnetic contributions Ð𝑖,mag

and cp,mag as shown in Fig. 4.7(a-d) evidences an onset of magnetic contributions,
i.e., effects of short-range correlations, at 35 K to 40 K for both Ð𝑖,mag and cp,mag.
Scaling the Ð𝑖,mag ordinates appropriately, a very good overlap at 𝑇N, between 23 K
and 27 K, is obtained for all axes and the volume, implying a single dominant energy
scale in this narrow temperature window. Above 27 K, the overlap is reasonable
but not perfect for the 𝑎-axis and the volume, while for the 𝑏-axis a different scaling
factor can be used to yield a perfect overlap. More signiĄcantly, below 23 K both
the speciĄc heat and the 𝑐-axis thermal expansion coefficient show a shoulder-like
anomaly around 15 K which is neither visible in the in-plane data nor in the volume.
This anomaly will be discussed below, together with data measured in non-zero
applied magnetic Ąeld.

The magnetic Grüneisen ratios in Fig. 4.7(e-h) emphasize the different behavior: the
𝑎- and 𝑏-axis qualitatively show a similar evolution of 𝛤𝑖,mag with temperature, but
of opposite sign, whereas 𝛤c,mag evolves differently. It assumes an approximately
constant value up to 15 K before it decreases, reaches a minimum at 𝑇N, and then
increases again. The low temperature regimes for the in-plane 𝛤a,mag and 𝛤b,mag are
also roughly constant, but only up to about 10 K before they increase or decrease,
respectively. Both reach a plateau above 22 K and exhibit a jump to a different
constant value above 𝑇N. 𝛤vol is constant from 6 K to 10 K, then gradually increases,
reaches a plateau at 21 K and continues to increase above 𝑇N.

As noted in the previous chapter on Gd2PdSi3 (Sec. 3.3.1), for a constant Grüneisen
ratio the uniaxial pressure dependence of a dominating energy scale 𝐽 can be
calculated according to

𝛤𝑖 =
Ð𝑖

𝑐p

=
1

𝑇N𝑉m

𝜕𝑆/𝜕𝑝𝑖

𝜕𝑆/𝜕𝑇
=

1
𝑉m

𝜕 ln 𝑇N

𝜕𝑝𝑖

=
1

𝑉m

𝜕 ln 𝐽

𝜕𝑝𝑖

, (4.2)

where the dominant energy scale is directly related to the transition temperature
𝑇N. Considering only magnetic contributions, the pressure dependence of 𝑇N is then
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Figure 4.7: Comparison of the magnetic contributions to the specific heat (red
circles, left ordinates) and thermal expansion coefficient (black circles, right ordinates)
along the (a) 𝑎-axis, (b) 𝑏-axis, (c) 𝑐-axis, and (d) for the volume expansion. (e-h)
Magnetic Grüneisen ratio 𝛤𝑖,mag = Ð𝑖,mag/𝑐p,mag for (a-c) all axes and (d) the volume
obtained as described in the text. Note that the 𝑐-axis thermal expansion data was
shifted by –0.15 K for better overlap with the cp,mag data at 𝑇N.
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determined by

𝜕𝑇N

𝜕𝑝𝑖

= 𝑉m𝑇N𝛤𝑖,mag, (4.3)

where 𝑉m = 1.333 ≤10⊗4 m3/mol is the molar volume and the index 𝑖 indicates a linear
direction or the volume. The values of 𝛤𝑖,mag and resulting pressure dependencies are
listed in Tab. 4.1. The 𝑎- and 𝑐-axis show positive uniaxial pressure dependencies of
1.8(4) K/GPa and 0.33(10) K/GPa, whereas 𝑇N decreases under uniaxial pressure
along the 𝑏-axis by about ⊗0.62(15) K/GPa (⊗0.8(2) K/GPa if the data are brought
to overlap for 𝑇 > 𝑇N instead of 𝑇 < 𝑇N). For hydrostatic pressure an increase of 𝑇N

by about 1.4(3) K/GPa is expected. This matches very well with the linear increase
of about 1 K/GPa obtained on polycrystalline CBSCl samples in pressures up to
1.3 GPa by Wu et al. [17].

Table 4.1: Pressure dependence of the transition temperatures calculated from the
magnetic Grüneisen ratios 𝛤𝑖,mag at 𝑇N, as well as from the jumps 𝛥Ð𝑖 and 𝛥𝑐p at 𝑇S

for all crystallographic axes. The value 𝑑𝑇S/𝑑𝑝 for the volume is calculated as the sum
of all three axes.

𝛤𝑖,mag 𝜕𝑇N/𝜕𝑝𝑖 𝛤𝑖 𝜕𝑇S/𝜕𝑝𝑖

(10⊗7 mol/J) (K/GPa) (10⊗7 mol/J) (K/GPa)
𝑎-axis 5.0 1.8∘0.4 Ű11.9 Ű19∘6
𝑏-axis Ű1.8 Ű0.62∘0.15 Ű3.5 Ű5.7∘1.1
𝑐-axis 0.93 0.33∘0.10 16.9 27∘3
volume 4.0 1.4∘0.3 Ű 2.3∘1.0

The magnetic interactions in CBSCl have been calculated [15, 111] as well as
investigated experimentally by inelastic neutron scattering studies [16]. According to
these studies, strong ferromagnetic (FM) nearest-neighbor (NN) exchange couplings
(𝐽1 and 𝐽 ′

1) and antiferromagentic (AFM) next-nearest neighbor (NNN) exchange
interactions (𝐽2) are present in the 𝑎𝑏-plane of CBSCl giving rise to a canted AFM
spin conĄguration. Dzyaloshinskii-Moriya (DM) interactions lift an inĄnite ground
state degeneracy and select the uniform canted phase already at the classical level [15]
The FM couplings are 𝐽1 = ⊗76 K (𝐽 ′

1 = ⊗70 K) for the Cu1ŰCu1 (Cu1ŰCu2) NN
exchange couplings, whereas the strength of the AFM NNN Cu1ŰCu1 interactions
has been calculated to be 𝐽2 = 55 K [15]. Besides, both FM and AFM interlayer
couplings are present: 𝐽⊥1 = ⊗0.4 K (FM) between Cu1 and Cu2 spins in adjacent
layers along 𝑐; and 𝐽⊥2 between Cu2 spins. The strong anisotropy observed in
the thermal expansion data and Grüneisen ratios evidences the different uniaxial
pressure dependence of these exchange couplings along the three crystallographic
axes. While the FM NN exchange pathways 𝐽1 lie along the 𝑎-axis and 𝐽 ′

1 diagonally
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in the 𝑎𝑏-plane, the AFM NNN couplings 𝐽2 lie along the 𝑏-axis. As the results in
Tab. 4.1 imply, pressure along the 𝑎-axis strengthens the overall antiferromagnetic
interactions, thereby increasing 𝑇N, while pressure along 𝑏 leads to a decrease of 𝑇N,
i.e., strengthening overall FM interactions.

Uniaxial pressure applied along the 𝑎-axis presumably leads to a decrease of the
Cu1ŰOŰCu1 bond angle and an increase in the Cu1ŰOŰCu2 bond angle. For CuŰOŰ
Cu bridging angles close to 90◇ the Goodenough-Kanamori-Anderson rules suggest
a ferromagnetic exchange interaction. Calculations of the angle dependence of the
CuŰOŰCu exchange interaction in CuGeO3 suggest a FMŰAFM crossover for bridging
angles around 96◇Ű98◇ [116]. As Rousochatzakis et al. pointed out [15], the FM
couplings in francisites may extend to much higher bridging angles due to the twisted
geometry of the CuO4 plaquettes. This was also observed in the Kagomé mineral
kapellasite [117] and in other Cu2+-based quantum magnets [118]. A qualitatively
similar change in bond angles as expected for pressure along the 𝑎-axis was observed
for Te substitution in the Se site of CBSCl [17]. The Te substitution leads to an
anisotropic change of lattice parameters. The in-plane lattice parameters increase, by
0.65% for the 𝑎-axis and 1.09% for the 𝑏-axis at 60% Te doping, whereas the 𝑐-axis
lattice parameter slightly decreases by ⊗0.21%. Because the elongation of the 𝑏-axis
is stronger than of the 𝑎-axis, the room temperature Cu1ŰOŰCu1 (Cu1ŰOŰCu2)
bond angles decrease (increase) from 111.936(1)◇ to 111.0(9)◇ (⊗0.83%) (113.194(0)◇

to 115.0(6)◇, 1.6%), while 𝑇N increases strongly by about 5 K [17]. This is in line
with the positive uniaxial pressure dependence of 𝑇N found above for the 𝑎-axis.

The results at hand show that uniaxial pressure along the 𝑏-axis is expected to
have an inverse effect on the Cu1ŰOŰCu1 and Cu1ŰOŰCu2 bond angles compared to
pressure along the 𝑎-axis. This is in agreement with the opposite sign of 𝜕𝑇N/𝜕𝑝b, i.e.,
𝜕𝑇N/𝜕𝑝b < 0, signaling an overall strengthening of FM interactions by application
of pressure along 𝑏.

The dominant interlayer couplings 𝐽⊥,1 (Cu1ŰCu2) and 𝐽⊥,2 (Cu2ŰCu2) (dashed lines
in Fig. 4.1(a)) were determined by Rousochatzakis et al. as FM 𝐽⊥,1 = ⊗0.4 K and
AFM 𝐽⊥,2 = 2 K, respectively [15]. Applying uniaxial pressure along 𝑐 leads to an
increase in 𝑇N (Tab. 4.1), i.e., strengthening of the AFM coupling 𝐽⊥,2 between Cu2
spins with respect to 𝐽⊥,1.

The Antiferromagnetic Transition at 𝑇N: Critical Scaling

In order to investigate the scaling behavior of the thermal expansion in the vicinity of
𝑇N, the spontaneous strain 𝜀𝑖,mag = (𝛥𝐿𝑖/𝐿𝑖)mag which is related to the onset of long-
range magnetic order is derived by integrating Ð𝑖,mag with respect to temperature. For
better comparability the 𝜀𝑖,mag are normalized by their value at lowest temperatures,
𝜀𝑖,0, as shown in Fig. 4.8. Notably, the 𝑎- and 𝑏-axis exhibit a very similar behavior,
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whereas the 𝑐-axis differs strongly below 𝑇N. The increase in spontaneous strain
along the 𝑐-axis is much slower and suppressed below 𝑇N with respect to the in-plane
directions. This behavior is probably caused by competing interactions along the 𝑐-
axis and possibly hints at two competing order parameters in this temperature regime.
Moreover, the spontaneous strains 𝜀𝑖,mag/𝜀𝑖,0 show an order-parameter-like evolution:
The values are zero above 𝑇N, increase steeply below, and subsequently reach a
saturation value. This order-parameter-like behavior suggests that a quantitative
analysis of the data with a power law

𝜀𝑖,mag

𝜀𝑖,0

= 𝐴 ≤ ♣𝑇 ⊗ 𝑇N♣Ñc,𝑖 (4.4)

will yield valuable information on the phases by means of the critical exponent
Ñc. The temperature window from 22.8 K to 25.8 K as indicated in Fig. 4.8 was
used for the Ąts. The resulting exponents Ű despite the qualitatively different 𝑐-axis
behavior Ű are very similar, Ñc,a = 0.38(3). Ñc,b = 0.35(3), and Ñc,c = 0.35(3). In

Figure 4.8: Spontaneous strain 𝜀𝑖,mag = 𝛥𝐿𝑖/𝐿𝑖 related to 𝑇N normalized to the
value at lowest temperatures. Critical exponent fits for the 𝑎-, 𝑏-, and 𝑐-axis are marked
by red, black and dashed red lines, respectively. Vertical dotted lines indicate the
temperature regime used for the fits. Horizontal dashed line indicates zero spontaneous
strain.

order to relate the exponents found above to one of the known critical exponents, an
assumption has to be made about the relation between Ñc and an order parameter
which describes the transition from the paramagnetic to the antiferromagnetic phase.
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If a linear relation between the spontaneous strain and the order parameter 𝑄 is
assumed, Ñc,i corresponds to the critical exponents reported for different models (see
Tab. 1.4). Within error bars the values then correspond to the 3D XY (𝑑 = 3, 𝐷 = 2,
Ñc ≡ 0.345) and the 3D Heisenberg model (𝑑 = 3, 𝐷 = 3, Ñc ≡ 0.365). This Ąnding
is in line with previous experimental reports and calculations on CBSCl. Although
for the brother compound CBSBr, Pregelj et al. claimed a 2D XY character, with
Ñc ⊘ 0.23 obtained from neutron diffraction measurements near 𝑇N = 27.4 K [114],
the effective 3D spin model by Rousochatzakis et al. describes many of the properties
of Cu3Bi(SeO3)O2X (X = Cl, Br) by Heisenberg spins together with Dzyaloshinskii-
Moriya (DM) interactions and symmetric anisotropic exchange interactions. While
Rousochatzakis et al. found the symmetric anisotropic exchange interactions from
their calculations to be too small to play any appreciable role in the magnetism of
the francisites, Constable et al. found them necessary to satisfactorily simulate the
spin-wave spectra from inelastic neutron scattering experiments [16]. As mentioned
above, the strength of the interlayer couplings 𝐽⊥,1 (Cu1ŰCu2) and 𝐽⊥,2 (Cu2Ű
Cu2) was determined by Rousochatzakis et al. as ⊗0.4 K (ferromagnetic) and 2 K
(antiferromagnetic), respectively [15]. These numbers are small, but still on the order
of 3% of the largest intralayer couplings and therefore not small enough for a pure
two-dimensional behavior. In conclusion, the data in this work support the presence
of 3D magnetic behavior in Cu3Bi(SeO3)2O2Cl at low temperatures.

The Structural Phase Transition

The structural phase transition at 𝑇S not only shows a Ú-like behavior in Ð𝑖, indicat-
ing strong Ćuctuations and a second order phase transition, but it also shows a clear
jump on top of the Ú-like feature in Ða and Ðc (Fig. 4.4(a)). For Ðc the Ú-peak is
very pronounced and positive, while it is weaker and negative for Ðb and Ða. The
total jump heights in Ð𝑖 of 𝛥Ða = 1.78(8) ≤ 10⊗5/K, 𝛥Ðb = 5.3(3) ≤ 10⊗6/K, and
𝛥Ðc = ⊗2.53(8) ≤ 10⊗5/K were determined using an area conserving interpolation
shown in Fig. 4.9(a-c). The transition temperatures related to this interpolation are
121.0(3) K, 120.7(3) K and 121.1(3) K, respectively. The jump heights reĆect the
strong anisotropy present in the system. Notably, above 𝑇S the thermal expansion
coefficient along the 𝑏-axis essentially assumes the value it had before the Ćuctuations
around 𝑇S set in, while there are signiĄcant jumps in Ða and Ðc. Above 𝑇S all axes
show a small, roughly linear increase in Ð𝑖, with absolute values 2 Ðb ≡ Ðc ≡ Ða.
The speciĄc heat of CBSCl also shows an anomaly at 𝑇S (Fig. 4.6(a) and 4.9(d)). For
an entropy-conserving interpolation the jump size in cp/𝑇 was extracted, amount-
ing to 𝛥cp/𝑇 = ⊗0.125(8) J/(mol K2) at 𝑇S = 120.2(2) K, which translates to
𝛥cp = ⊗15(1) J/(mol K).

From the jump heights in thermal expansion and speciĄc heat the uniaxial pressure
dependence of 𝑇S can be derived using the Ehrenfest relation via the Grüneisen ratio,
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Figure 4.9: Determination of the jump heights in (a-c) thermal expansion coefficient
and (d) specific heat by an area-conserving interpolation as described in the text.

similarly as before for 𝑇N, but now considering the jumps in Ð𝑖 and cp:

𝛤𝑖 =
𝛥Ð𝑖

𝛥𝑐p

=
1

𝑇𝑉m

𝜕𝑆/𝜕𝑝𝑖

𝜕𝑆/𝜕𝑇
. (4.5)

The pressure dependence of 𝑇S is then determined by

𝜕𝑇S

𝜕𝑝𝑖

= 𝑉m𝑇S𝛤𝑖, (4.6)

where 𝑉m = 1.333 ≤ 10⊗4 m3/mol is the molar volume and the index 𝑖 indicates a
linear direction or the volume. The resulting uniaxial pressure dependencies are
large for the 𝑎- and 𝑐-axis, 𝜕𝑇S/𝜕𝑝𝑎 = ⊗23(6) K/GPa and 𝜕𝑇S/𝜕𝑝𝑐 = 27(3) K/GPa,
while 𝜕𝑇S/𝜕𝑝𝑏 = ⊗6.7(1.0) K/GPa is much smaller. Adding up the uniaxial pressure
dependence for the three axes yields a hydrostatic pressure dependence of 𝑑𝑇/𝑑𝑝 =
2.3(1.5) K/GPa. The results including the Grüneisen ratios are also summarized in
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Tab. 4.1.

To investigate further the behavior of the thermal expansion coefficient around 𝑇S

the spontaneous strain 𝜀𝑖 = 𝛥𝐿𝑖/𝐿𝑖 was extracted. For the extraction of 𝜀𝑖 linear
as well as second- and third-order polynomial functions were Ątted to the relative
length changes between 126 K and 200 K, in order to test the differences in Ątting
parameters arising from the different backgrounds. The Ąts and resulting spontaneous
strains are shown in the appendix (Fig. B.1). Power-law Ąts according to

𝜀 = 𝐴 ≤ ♣𝑇 ⊗ 𝑇S♣𝑝 (4.7)

were performed on all resulting spontaneous strain data, in the range from 115 K to
119.6 K. The Ąt results are summarized in Tab. 4.2 and the spontaneous strain of
each of the axes is shown in Fig. 4.10. A number of observations can be made from
the plot and Ąt results: (1) The general behavior of the three axes is very similar.
(2) The 𝑎- and 𝑐-axis show the same critical exponent 𝑝 ≡ 0.71(2) (averaged over
the different Ąts), but their strains are of opposite sign. (3) While the qualitative
behavior of the axes is similar, the strain along the 𝑏-axis at 𝑇S is smaller by a
factor of four and its corresponding critical exponent 𝑝 ≡ 0.77(2) is slightly higher
compared to the other two axes.

Figure 4.10: Spontaneous strain 𝜀𝑖 at 𝑇S and power-law fitting. The left (right)
ordinate refers to the 𝑎- and 𝑐-axis (𝑏-axis). Second- (third-)order polynomials were
subtracted from the 𝑏- and 𝑐-axis (𝑎-axis) 𝑑𝐿𝑖/𝐿𝑖 data to obtain the spontaneous strain
around 𝑇S as described in the text. Power-law fits are indicated by solid lines and the
horizontal dashed line indicates zero spontaneous strain. Note the negative sign of 𝜀c.
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Table 4.2: Power law function fit parameters for different backgrounds subtracted
from 𝑑𝐿𝑖/𝐿𝑖 to obtain the spontaneous strain 𝜀. All fits were performed in the
temperature regime from 115 K to 119.6 K, i.e., in the vicinity of the phase transition.

Fitting results for the spontaneous strain at 𝑇S

𝜀 = 𝐴♣𝑇 ⊗ 𝑇S♣𝑝

Axis & Background 𝑇S (K) A (10⊗5) 𝑝
𝑎-axis
2nd order polynomial 120.92 2.68(1) 0.713(2)
3rd order polynomial 120.81 2.61(2) 0.715(1)
𝑏-axis
2nd order polynomial 120.99 2.323(4) 0.773(1)
3rd order polynomial 120.69 2.136(6) 0.771(2)
𝑐-axis
linear 120.42 0.639(3) 0.716(3)
2nd order polynomial 120.90 0.771(7) 0.714(4)
3rd order polynomial 120.55 0.686(7) 0.712(5)

For a qualitative impression the linear thermal expansion coefficients Ð𝑖, plotted
against the reduced temperature 𝑡 = ♣(𝑇 ⊗ 𝑇S)/𝑇S on a logarithmic scale, are shown
in Fig. 4.11. The results for 𝑡 / 0.03 are very sensitive to the choice of 𝑇S. Changing
𝑇S by about 0.1 KŰ0.2 K, however, does not change the qualitative behavior. The
values of 𝑇S chosen for the data in Fig. 4.11 are 𝑇S,a = 119.95 K, 𝑇S,b = 120.15 K,
and 𝑇S,c = 120.22 K. Two distinct linear regimes become visible in this plot, as
marked by straight lines in Fig. 4.11. The behavior very close to 𝑇S probably shows a
critical slowing down, originating here from the softening of the phonon mode which
drives the structural phase transition [112]. Critical slowing down sets in around
0.01 𝑡 for the 𝑎- and 𝑐-axis, and around 0.03 𝑡 for the 𝑏-axis, i.e., in a temperature
window of 1 KŰ4 K around 𝑇S.

The nature of the phase transition at 𝑇S was debated for some time. Initial hints to its
existence were discovered by Millet et al. [119] by a change of slope in the inverse static
susceptibility. Miller et al. found 16 additional phonon modes below 115 K but were
not able to resolve a new structure [120]. They suggested a loss of centro-symmetry by
a second-order transition to the polar orthorhombic 𝑃𝑚21𝑛 or 𝑃21𝑚𝑛 space groups.
A study of high-resolution synchrotron powder diffraction and density functional
calculations of lattice dynamics by Prishchenko et al. found the nonpolar 𝑃𝑐𝑚𝑛
space group to be lowest in energy for both CBSCl and CBSBr [121]. Especially,
they uncovered structural instabilities in the lattice leading to an antiferroelectric
distortion in CBSCl below 115 K and suggested a residual disorder scenario as the
driving force for the transition. The distortion was found to involve cooperative
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Figure 4.11: Logarithmic scaling of thermal expansion data around 𝑇S. Lines are
guides to the eye.

displacements along the 𝑎-axis of Cu and Cl atoms, originating from the optimization
of interatomic distances of the weakly bonded halogen atoms [121]. The Cu2ŰCl
distance was found to shorten from 3.205 Å in the undistorted structure to 2.782(6) Å
in the distorted structure. Neutron diffraction studies by Constable et al. conĄrmed
the structural transition from the 𝑃𝑚𝑚𝑛 phase to the 𝑃𝑐𝑚𝑛 phase with a doubling
of the 𝑐 cell parameter [16]. Additionally, their dielectric measurements revealed
an antiferroelectric phase below 𝑇S and a linear magnetoelectric coupling below 𝑇N.
Most recently a publication by Milesi-Brault et al. described the structural transition
at 𝑇S as a rare archetype of a transition driven by a soft antipolar phonon mode [112].
They were able to track this phonon mode on both sides of 𝑇S with a linear behavior
of the squared phonon energy according to the classical theory of soft-mode-driven
transitions [122, 123]. Furthermore, they concluded from the slope 𝜕𝐸2/𝜕𝑇 that a
phenomenological description of the transition by means of a Landau model should
include at least the sixth order term 𝑐𝑄6/6. At the same time they acknowledged the
complexity of the transition and the fact that the simple image of the transition as
being driven by the antipolar displacements of Cl ions is only an approximation.

The results presented here give direct evidence of the strong Ćuctuations well below
𝑇S as seen in the thermal expansion coefficients. To relate the critical exponents
extracted from the spontaneous strain to a universality class of the observed second
order transition, a physical model is needed to clarify the relation between strain and
the order parameter 𝑄 of the transition. This is beyond the scope of this work and
will be a future task to be performed by the author. It shall be noted, however, that
for a possible relation 𝜀 ≍ 𝑄2 the critical exponent Ñc = 0.5𝑝 would be 0.35(1) and
0.39(2) for the 𝑎- and 𝑐- as well as the 𝑏-axis, respectively. These values Ąt to the 3D
XY model (𝑑 = 3, 𝐷 = 2, Ñc = 0.345) and the 3D Heisenberg model (𝑑 = 3, 𝐷 = 3,
Ñc = 0.365) and are also close to the 3D Ising model (𝑑 = 3, 𝐷 = 1, Ñc = 0.325), i.e.,
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showing three-dimensional ordering.

4.3.2 Thermal Expansion and Magnetostriction at B ̸= 0

Fig. 4.12 shows the effect of an applied magnetic Ąeld of B = 15 T on the thermal
expansion. From highest temperatures to the structural phase transition at 𝑇S no
Ąeld effect is observed for any of the axes. For the 𝑐-axis, the 0 T and 15 T data
coincide also below 𝑇S to about 27 K. Below 27 K a small and positive Ąeld effect on
the order of 𝛥𝐿c/𝐿c = 1 ≤10⊗5 is visible, but no anomaly indicating a phase transition
remains. The scenario for the in-plane directions differs strongly: SigniĄcant Ąeld
effects become visible around 100 K. For the 𝑏-axis (with 𝐵 ‖ 𝑏) a positive Ąeld effect
is observed. No phase transition is observed at B = 15 T and the length change
from 0 T to 15 T at the lowest temperatures amounts to 𝛥𝐿b/𝐿b = 4.1 ≤ 10⊗5. The
𝑎-axis, in contrast to 𝑏 and 𝑐, shrinks upon application of a magnetic Ąeld and shows
a broad peak in Ða around 22 K. Due to this peak the length change in Ąeld at the
lowest temperatures is much larger than for the other axes, 𝛥𝐿a/𝐿a ≡ ⊗3.1 ≤ 10⊗4.
In summary, the 𝑐-axis shows only a minor Ąeld effect at low temperatures, whereas
a substantial Ąeld effect is visible below the structural phase transition at 𝑇S for the
in-plane directions. The transition temperature 𝑇S itself is unchanged by an applied
magnetic Ąeld, i.e., the structural changes are not coupled to magnetic phenomena.

In order to trace the evolution of the phase transition at 𝑇N in an applied magnetic
Ąeld, thermal expansion and magnetostriction as well as magnetization measurements
were performed for all axes.

𝐵 ‖ 𝑐: Field-Induced Mixed Phase Behavior

The thermal expansion of the 𝑐-axis in Ąelds between 0 T and 1 T in comparison to
the Fisher speciĄc heat [124] derived from the static susceptibility äc are presented in
Fig. 4.13. The Ąeld dependence of the transition at 𝑇N in zero-Ąeld is clearly visible
and qualitatively identical in both Ðc and 𝜕(äc𝑇 )/𝜕𝑇 . The peak heights increase
from 0 T to 0.5 T and then broaden substantially in higher Ąelds, extending over a
range of 10 K (from 3.2 K to 13 K) at 0.8 T. Especially, above 0.4 T the behavior
starts to look more like two subsequent phase transitions rather than a single broad
transition, i.e., with an intermediate phase of enhanced thermal expansion. At 0.9 T
no sign of a phase transition remains.

A similar one-to-one correspondence as observed between the thermal expansion
and static susceptibility data is also observed between the magnetostriction and
isothermal magnetization (Fig. 4.14): At 2.3 K (2.0 K for 𝑀(𝐵)) a sharp step is
observed in the up-sweeps of both magnetization and magnetostriction. This step
extends from 0.80 T to 0.86 T where a plateau is reached. The down-sweep shows
considerable hysteresis and an almost instantaneous jump at 𝐵 ≡ 0.76 T of negligible
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Figure 4.12: Comparison of relative length changes 𝑑𝐿𝑖/𝐿𝑖 (a-c) and thermal
expansion coefficients Ð𝑖 (d-f) in zero-field (closed circles) and B = 15 T (open circles).
Insets in (c) and (f) show a magnification of the low temperature window.

width. At higher temperatures the hysteresis decreases and vanishes above 20 K.
In Fig. 4.14(c) and (d) the hysteresis regions are colored for better visibility, with
the magnetostriction down-sweeps shifted up by 6 mT to correct for the remanent
Ąeld of the superconducting magnet in the thermal expansion setup. Notably, the
hysteresis does not extend over the complete step-like transition. The data between
10 K and 20 K show that the hysteresis is related to the upper boundary of the
transition, and a jump in magnetization and magnetostriction to a linear behavior is
observed. Below 10 K the hysteresis is larger than the width of the step, such that
no linear behavior but only an abrupt jump is observed in the down-sweeps. Note
that the magnetostriction is fully reversible. This suggests a well-ordered ground
state as well as a high single crystal quality with few defects which could lead to the
creation of antiferromagnetic domains.
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Figure 4.13: (a) Fisher’s specific heat calculated from the static magnetic suscepti-
bility, (b) thermal expansion coefficient, and (c) relative length changes for 𝐵 ‖ 𝑐 for
B = 0 to B = 1 T. The inset in (a) presents a magnification of the low temperature
region. Vertical bars in (c) mark the relative length changes 𝛥𝐿(𝐵) from 0 T to 0.8 T
and 1 T, respectively, obtained from magnetostriction measurements.
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Figure 4.14: Comparison of relative length changes 𝑑𝐿c(𝐵)/𝐿c(0) (a, c) and
isothermal magnetization (b, d) for 𝐵 ‖ 𝑐. Note that (c) and (d) show a magnification
of the transition region and only data for selected temperatures. Hysteresis is marked
by colored areas. Magnetostriction down-sweeps in (c) are shifted by 6 mT to correct
for the remanent field of the magnet.

The behavior described here both in Ąeld and temperature is related to the mixed
antiferromagnetic (AFM)/ferromagnetic(FM) phase which was predicted from theory
and observed in experiments for metamagnets before [113, 125, 126]. Wyatt observed
a linear increase in 𝑀(𝐻) between 𝐻a = 4 kOe and 6.8 kOe on the cubic lattice of
Dy3Al5O12 with 𝐻0 applied along one of the high symmetry axes [125]. He also found
a clear and simple explanation of this effect: Below a critical magnetic Ąeld 𝐻𝑎 the
spins are aligned antiferromagnetically with zero demagnetizing Ąeld. For 𝐻0 > 𝐻𝑎,
i.e., above the spin-Ćip Ąeld, the AFM couplings will be broken and a Ąeld-induced
ferromagnetic alignment is expected. However, in the Ąeld-induced ferromagnetic
phase there will be a large demagnetizing Ąeld 𝐻d. If the spin-Ćip occurred all at once
in the whole sample, the resulting internal Ąeld would be 𝐻int = 𝐻0 ⊗ 𝑁 ≤ 𝑀S, with
the demagnetizing factor 𝑁 and the saturation magnetization 𝑀S. Since for 𝐻0 > 𝐻𝑎
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with 𝐻0 < 𝐻𝑎 + 𝑁 ≤ 𝑀S one gets 𝐻int < 𝐻𝑎, the transition would not occur at all.
At the same time the material cannot exist in an unmagnetized state for 𝐻0 > 𝐻𝑎.
Therefore, in an external Ąeld range 𝐻𝑎 < 𝐻0 < 𝐻𝑎 + 𝑁 ≤ 𝑀S the antiferromagnetic
alignment will be partially broken, and the sample is in a mixed phase state with
well-deĄned regions of parallel and antiparallel phases with an average magnetization
�̄� . The ratio of the amounts of the two phases will then adjust automatically
in any external Ąeld so that the internal Ąeld is 𝐻int = 𝐻𝑎 = 𝐻0 ⊗ 𝑁 ≤ �̄� for
𝐻𝑎 < 𝐻0 < 𝐻𝑎 + 𝑁 ≤ 𝑀S. While 𝐻0 increases linearly in the mixed phase, so does
the average magnetization with slope 1/𝑁 .

To use another terminology: in the mixed phase the increasing external Ąeld leads to
the creation of ferromagnetic domains (and destruction of antiferromagnetic order)
along the 𝑐-axis, which produce an increasing demagnetizing Ąeld and average mag-
netization until saturation is reached. Stryjewski and Giordano also described this
behavior as typical for metamagnets [126]. More recent experiments on antiferromag-
netically coupled multilayers studied the creation, morphology, and magnetization
of the so-called metamagnetic domains [127, 128]. More importantly, the mixed
phase behavior has been studied in detail employing neutron scattering, muon spin
relaxation, speciĄc heat, ac and dc magnetization measurements, as well as electron
magnetic resonance in the CBSCl brother compound Cu3Bi(SeO3)2O2Br (CBSBr).
In the mixed phase of CBSBr broadband absorption for excitations extending over at
least ten decades of frequency was found, opening an exciting potential for technolog-
ical applications [113]. The data in this work conĄrm the presence of the mixed phase
also in CBSCl, making it also interesting for a number of applications related to
broadband microwave absorption such as microwave Ąlters, signal-to-noise enhancers,
optical signal processing, electromagnetic interference shielding etc. with potential
electric or magnetic Ąeld control [113].

Also in CBSBr, a hysteresis behavior of the upper boundary of the mixed phase
analogous to the one desribed for CBSCl here was found in electron spin resonance
(ESR) experiments [129]. However, in CBSBr the hysteresis at 5 K only extends to
about 1/3 of the mixed phase, while for CBSCl at 5 K it extends almost over the
entire mixed phase.

Connecting the process described for the mixed phase above to the thermal expan-
sion data, the increased thermal expansion can be ascribed to the breaking of the
antiferromagnetic coupling as temperature increases, and the concomitant creation of
ferromagnetic domains until saturation is reached. Also the linear magnetostriction
in the mixed phase is expected to arise from a linear process of successively Ćipping
the AFM coupled layers, i.e., the creation of ferromagnetic domains which increase
in size/number with increasing Ąeld.
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𝐵 ‖ 𝑐: Linear Magnetoelastic Coupling

As seen in the previous section both the positions and relative heights of the magneti-
zation and magnetostriction jumps at the metamagnetic transition for different tem-
peratures match very well with each other (Fig. 4.14). Normalizing the jump heights
in magnetization and relative length changes by their value at 2 K emphasizes the pro-
portionality 𝛥𝑀 ≍ 𝛥𝐿c between the jumps, with 𝛥𝑀/(𝛥𝐿/𝐿) = 1.1(1) ≤ 105ÛB/Cu
(Fig. 4.15).

Figure 4.15: Comparison of jumps in magnetization (left ordinate) and relative
length changes (right ordinate) normalized by their value at 2 K.

This proportionality means that the magnetization and magnetostriction couple to
the order parameter 𝑄 related to the antiferromagnetic (AFM) to ferromagnetic
(FM)/paramagnetic (PM) transition in the same way. Notably, this coupling is gone
above 𝑇N, i.e., in the paramagnetic phase: the magnetization at 30 K shows a clear
linear increase, whereas the magnetostriction at the same temperature is virtually
zero. Furthermore, the magnetostriction at 24.8 K is also non-zero below the jump at
0.45 T. Therefore, the similar behavior in magnetization and magnetostriction is not
limited to the region of linear increase but is present in magnetic Ąelds below this
region as well. Considering the discussion of the mixed phase in the last section, the
non-zero magnetostriction and magnetization at 24.8 K, near 𝑇N, can be understood
by breaking the AFM alignment of the stacked francisite layers along the 𝑐-axis
below 𝐻𝑎 due to thermal excitations. Above 𝑇N no AFM alignment and thus no
creation of FM domains takes place, and hence magnetostriction is zero. Since in the
mixed phase the internal magnetic Ąeld 𝐻int = 𝐻0 ⊗ 𝐻𝑑 is expected to rise linearly,
the observed behavior does not only imply a linear dependence 𝐿(𝐻) ≍ 𝑀(𝐻) but
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also a linear magnetoelastic coupling 𝐿(𝐻int) 𝐻int which can be described by a linear
magnetostriction coefficient 𝑑 as 𝑑𝐿/𝐿 = 𝑑 ≤ 𝐻int. One could for simplicity state that
there is a linear magnetoelastic coupling in the mixed phase, but this would ignore
the data at 24.8 K below 𝐵𝑐 as well as the observed hysteresis. I consider it thus
more accurate to state that a linear magnetoelastic coupling in CBSCl exists with
respect to the internal Ąeld.

The phenomenon of linear magnetoelastic coupling was investigated extensively
in the late 1950s and early 1960s, both in ferro- and antiferromagnetic materials.
According to Zvezdin et al., linear magnetostriction was Ąrst observed in CoF2 by
Borovik-Romanov and co-workers [130]. Among many others, antiferromagnetic
examples include hematite (Ð-Fe2O3) [131], dysprosium orthoferrite [130] (DyFeO3),
and more recently the multiferroic TbMnO3 [132]. In all of these compounds linear
magnetostriction is closely related to the presence of antiferromagnetic domains.
Moreover, Birss and Anderson worked out a list of 35 magnetic crystal classes
in which linear magnetostriction is expected as a dominant effect from symmetry
considerations [133]. The magnetic point group of CBSCl, 𝑚𝑚′𝑚, is not among the
point groups in which a linear magnetostriction is expected to be dominant. This does
not mean, however, that it may not, as observed, be dominant. In addition to the
linear magnetoelastic coupling, Constable et al. argued that 𝑚𝑚′𝑚 is also compatible
with a linear magnetoelectric coupling [16]. And indeed, a linear magnetoelectric
coupling was shown experimentally by Wu et al. [17]. They measured the electric
polarization in CBSCl in an applied magnetic Ąeld up to 4 T with 𝐵 ‖ 𝑐 at 10 K,
showing a linear behavior above the spin-Ćip transition. However, the behavior of
the polarization in the mixed phase can not be derived from the data by Wu et
al. because the magnetic Ąeld scale on which the data is presented is too large to see
it. It would be interesting to see the electric polarization in the AFM phase and the
mixed phase region with increasing and decreasing magnetic Ąeld in greater detail to
draw conclusions about the multiferroic behavior of CBSCl, especially the relation
between the linear magnetoelastic and magnetoelectric couplings.
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Quantitative Analysis of the Phase Boundaries for 𝐵 ‖ 𝑐

For a quantitative analysis the Clausius-Clapeyron equation and related equations [9]
are used to investigate the pressure dependence of the AFM to FM phase boundary
for both temperature and Ąeld sweeps:
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The change in entropy related to the transition is also calculated. To enable this
analysis, the mixed phase which is discussed above as an intermediate phase is
treated in this analysis as one phase transition region, i.e., the transition is treated
as a Ąrst order transition. All results are shown in Tab. 4.3.

At the lowest temperatures the calculated change in entropy related to the phase
transition at 𝐵𝑐 is 𝛥𝑆calc = 30(14) mJ/(mol K). As the phase transition shifts to lower
Ąelds at higher temperatures this value increases, reaching about 300 mJ/(mol K) at
25 K. In contrast, the uniaxial pressure dependence 𝜕𝑇N/𝜕𝑝c is very large and positive,
34(16) K/GPa at 2 K, due to the nearly Ćat phase boundary at lowest temperatures.
As the critical Ąeld decreases with temperature, this number decreases strongly. At
15 K (25 K) it decreases to 6.0(1.5) K/GPa (1.3(4) K/GPa) and approaches the
zero-Ąeld value of 0.33(10) K/GPa. Lastly, the uniaxial pressure dependence of the
critical Ąeld along 𝑐 is also positive. Even though the absolute values are small, on the
order of 𝜕𝐵c/𝜕𝑝c = 80(10) mT/GPa, the relative pressure dependencies 𝜕𝑙𝑛(𝐵c)/𝜕𝑝
are around 10(1)% due to the small critical Ąeld. In summary, uniaxial pressure along
the 𝑐-axis stabilizes the antiferromagnetic order both in temperature and in Ąeld.
In terms of exchange interactions, this means an increase in the antiferromagnetic
interlayer coupling 𝐽⊥,2 between Cu2 spins and/or weakening of the ferromagnetic
𝐽⊥,1 between Cu1 and Cu2 by an applied uniaxial pressure as also observed in the
zero-Ąeld data.

𝑎- & 𝑏-axis: In-Field Thermal Expansion

In contrast to studies on the 𝑐-axis, in-plane measurements along the 𝑎- and 𝑏-axis
pose a veritable challenge. Due to the plate-like sample geometry aligning the single
crystals along their crystallographic axes yields large error bars. A small tilting of
5◇ to 10◇ away from the desired axis is easily possible for the 𝑎- and 𝑏-axis. In an
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Table 4.3: Jump heights, calculated changes in entropy, field and pressure depen-
dencies for the discontinuous transition in magnetic field from AFM to FM for 𝐵 ‖ 𝑐
according to Eq. (4.8). The quantity 𝜕𝐵c/𝜕𝑇 was calculated by taking the derivative
of two polynomial fits in different temperature regimes to the values 𝐵c(𝑇 ) in the
phase diagram.

AFM ⊃ FM Ű 𝑐-axis: Extracted and calculated quantities
T Bc Sweep 𝛥𝐿c/𝐿c 𝛥𝑀 𝜕𝐵c/𝜕𝑇 𝛥𝑆calc 𝜕𝑇N/𝜕𝑝 𝜕𝐵𝑐/𝜕𝑝 𝜕ln(𝐵𝑐)/𝜕𝑝

(K) (T) (10⊗6) (ÛB/Cu) (mT/K) (mJ/mol K) (K/GPa) (mT/GPa) (%/GPa)
2.0∘0.1 0.82 𝐵 7.8∘0.5 0.82∘0.02 Ű2.2∘1.0 30∘14 34∘16 76∘6 9.3∘0.7
5.0∘0.1 0.81 𝐵 7.8∘0.5 0.8∘0.02 Ű2.2∘1.0 29∘14 35∘17 78∘6 9.6∘0.7
10.0∘0.2 0.80 𝐵 7.5∘0.5 0.78∘0.02 Ű7∘3 90∘40 11∘5 77∘6 9.6∘0.7
15.0∘0.2 0.75 𝐵 7.2∘0.5 0.74∘0.02 Ű13∘3 160∘40 6.0∘1.5 77∘6 10.4∘0.8
17.9∘0.4 0.70 𝑇 6.8∘0.5 0.69∘0.07 Ű17∘3 200∘40 4.6∘1.0 79∘10 11.3∘1.4
20.0∘0.2 0.66 𝐵 5.8∘0.4 0.65∘0.02 Ű27∘8 290∘90 2.6∘0.8 71∘6 10.8∘0.9
21.9∘0.3 0.60 𝑇 5.1∘0.4 0.56∘0.06 Ű38∘8 360∘90 1.9∘0.5 72∘10 12.1∘1.6
24.0∘0.2 0.50 𝑇 3.1∘0.4 0.36∘0.04 Ű60∘20 360∘130 1.1∘0.5 69∘12 14∘3
25.0∘0.2 0.44 𝐵 3.1∘0.4 0.20∘0.02 Ű94∘20 320∘80 1.3∘0.4 120∘20 28∘5
25.3∘0.2 0.40 𝑇 1.2∘0.3 0.12∘0.04 Ű142∘30 280∘120 0.6∘0.3 80∘40 20∘9

applied magnetic Ąeld such seemingly small misalignment yields a Ąnite effective
Ąeld along the other axes, and respective changes of the resulting magnetic phase
diagrams are signiĄcant. (see appendix, e.g., Figs. B.2 and B.4).

At the lowest temperatures the magnetostriction of the 𝑎- and 𝑏-axis exhibits very
strong anomalies in Ú with peak heights on the order of 104/T. For the 𝑎-axis, a
step-like negative jump is observed in 𝑑𝐿a(𝐵) with a subsequent linear behavior,
while a gradual rise in 𝑑𝐿b(𝐵) dominates at the 𝑏-axis. At temperatures of 10 K and
below this rise turns into a jump-like behavior. Furthermore, for the 𝑎-axis Úa shows
a broad transition reminiscent of the mixed phase of the 𝑐-axis. The critical Ąelds
at around 2 K are 𝐵𝑐,a ≡ 5.6 T and 𝐵𝑐,b ≡ 6.5 T. While the latter is close to the
saturation Ąeld determined by magnetization measurements presented below (7.1 T),
the 𝑎-axis is expected to show no abrupt transition but a simple saturating behavior
at Ąelds around 15 T or higher [15]. For both axes, measurements on several crystals
were performed to reproduce the observed features. Even though the qualitative
behavior in Ąeld was similar Ű positive and negative magnetostriction for the 𝑎- and
𝑏-axis, respectively, as well as the jumps for 𝐵 ‖ 𝑎 and a gradual rise for 𝐵 ‖ 𝑏 Ű the
critical Ąelds differed widely, from 5.5 T to 7.5 T for the 𝑎-axis and 4.5 T to 6.5 T
for the 𝑏-axis. Furthermore, two transitions were visible in several cases, especially
for 𝐵 ‖ 𝑏. In one case this can be explained by contact twinning, as reported by
Pring et al. [109]. For the other cases a quick calculation shows that the strong
peaks in Úa and Úb are explained well by a tilt of the crystal towards the 𝑐-axis. For
magnetic Ąelds 𝐵exp applied at an angle Ð with respect to the 𝑐-axis such tilting
yields an effective Ąeld 𝐵c,eff = 𝐵exp ≤ sin Ð along the 𝑐-axis. If this Ąeld reaches
𝐵exp > 𝐵𝑐 ≡ 0.8 𝑇 , the metamagnetic transition is triggered. For 𝐵𝑐,a = 5.6 T and
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𝐵𝑐,b = 6.5 T as mentioned above, this yields a tilting of about 8◇ and 7◇, respectively.
This tilt towards 𝑐 also explains the mixed phase behavior and its width visible in the
𝑎-axis data. Due to this tilting, the in-plane thermal expansion and magnetostriction
measurements by themselves cannot be used either to construct the phase diagram or
to analyze the phase transitions in Ąeld for 𝐵 ‖ 𝑎, 𝑏. Therefore, magnetization data
presented below clarify which of the observed anomalies originate purely from the 𝑎-
or 𝑏-axis, and which anomalies originate from a combined effect due to the tilting
towards the 𝑐-axis. Selected thermal expansion and magnetostriction measurements
are shown in the appendix (Figs. B.2 to B.5).

Excitations in the Long-Range Ordered Phase

Finally, an inspection of the broad shoulder at about 15 K which was observed in
cp,mag and Ðc,mag (Fig. 4.7) is in order. To determine its Ąeld dependence the phononic
background which was used for the zero-Ąeld speciĄc heat data (Fig. 4.6) was also
subtracted from cp measurements in Ąelds of 3 T, 5 T and 7 T with 𝐵 ‖ 𝑐. For the
thermal expansion data Ðc,mag at 1 T and 15 T was also extracted. To emphasize
the features in the background corrected data, cp,mag/𝑇 and Ðc,mag/𝑇 are plotted in
Fig. 4.16. In the speciĄc heat data two features become clearly distinguishable at
𝐵 > 𝐵𝑐. The Ąrst anomaly remains constant at about 15 K in increasing Ąeld, only
slightly decreasing in intensity. The second feature broadens and shifts to higher
Ąelds from 27.4 K at 3 T to 33.4 K at 7 T. Similar observations can be made for
Ðc,mag/𝑇 : a peak around 15 K remains up to highest Ąelds, whereas a second feature
is seen at 1 T around 28 K. At 15 T this feature is not distinguishable from the
broad high temperature tail of the peak at 15 K.

The anomaly at higher temperatures in thermal expansion and speciĄc heat can
readily be assigned to the crossover from the Ąeld-induced ferromagnetic phase to
the paramagnetic phase. In fact, the shoulder in Ðc,mag at 1 T hints at a peak at
about 27 K. This Ąts perfectly with the crossover line in the 𝑐-axis phase diagram
shown below (Fig. 4.22).

The origin of the Ąeld-independent 15 K anomaly, on the other hand, can not be
deĄnitely determined. A Schottky anomaly can be ruled out, because it would shift
in an applied magnetic Ąeld. Furthermore, plotting Ðc,mag/𝑇 3/2 vs. 𝑇 3/2 (Fig. 4.16(b)
inset) shows a linear behavior, i.e., Ðc,mag 𝑇 3, with a negative offset. While the offset
is related to ferromagnetic magnons Ű ÐFM 𝑐p,FM 𝑇 3/2 Ű this linear behavior signals
either phononic or antiferromagnetic magnonic contributions. In the ferromagnetic
phase above the critical Ąeld no AFM magnons can be present, therefore the linear
rise suggests a phononic origin of the 15 K anomaly.

Several observations have been reported in the AFM and FM phases for 𝐵 ‖ 𝑐 in
CBSCl, which may be related to the anomaly: Infrared reĆection and transmission
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Figure 4.16: Contributions after subtracting a phononic background as explained in
the text to (a) the specific heat in fields up to 7 T and (b) the thermal expansion in
zero-field as well as at B = 1 T and 15 T for 𝐵 ‖ 𝑐. Vertical dashed lines at 15 K mark
the peak position. The inset in (b) shows Ðc,mag/𝑇 3/2 vs. 𝑇 3/2. Black lines represent
linear fits to the data.

studies by Miller et al. found two low-frequency phonon excitations at 5 K [120].
One of them, at 33.1 cm⊗1 (≡ 48 K), is visible in zero-Ąeld and only shifts slightly,
to about 35 cm⊗1 in Ąelds 𝐵 ‖ 𝑐 of 10 T. For 𝐵 ⊥ 𝑐 the resonance frequency of
this phonon mode decreases. Miller et al. tentatively assigned this phonon branch
to magnon excitations, based on their analysis of previously reported oscillator
strengths of magnons and electromagnons. The second phonon excitation at 5 K was
only observed for 𝐵 ‖ 𝑐 in the ferromagnetic phase, with a frequency of 10.5 cm⊗1

(≡ 15.1 K) at 1 T [120]. This phonon shifts linearly in an applied magnetic Ąeld, up
to about 16 cm⊗1 (23 K) at 7 T.

Constable et al. reported a global spin gap of 1.57 meV (18.2 K) [16]. This Ąts with
the temperature scale of the anomaly and would suggest a relation to magnonic
excitations. The presence in zero-Ąeld, i.e., in the AFM phase, would then be
explained by ferromagnetic spin-waves within the ferromagnetically coupled layers.

Lastly, Wang et al. observed two resonances at 1.23 meV (14.3 K) and 1.28 meV
(14.8 K) in CBSBr in time-domain THz spectra at 3.9 K [134]. They also performed
electron spin resonance (ESR) measurements which suggest that these two resonances
are of magnetic origin and shift to higher frequencies in higher magnetic Ąelds.
However, a Ćat, i.e., Ąeld-independent, resonance would not be seen by spectroscopic
Ąeld-sweeps around 300 GHz. Frequency sweeps at different magnetic Ąelds would
be necessary to observe such a resonance.

In conclusion, low-energy optical phonons, potentially coupled to magnon excitations,
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seem to be the cause for the anomalies observed around 15 K.

4.3.3 Magnetization Measurements

Magnetization measurements along the 𝑎-axis (corresponding to 215◇ in Fig. 4.3(d)),
the 𝑏-axis (315◇), and in-between both axes (260◇, not shown) were performed in order
to investigate the in-plane phase diagram of CBSCl. The results of the measurements,
together with the magnetization measurements of the 𝑐-axis, are brieĆy presented in
the following paragraphs.

Fig. 4.17(a) shows a comparison of the isothermal magnetization at 2 K up to 7 T
for all three crystal axes. For 𝐵 ‖ 𝑐 the magnetization jumps at the metamagnetic
transition to a value of 0.82 ÛB/Cu, while the in-plane directions show no transition
up to 7 T. 𝑀b, however, shows an increasing slope above 4 T after an initially
linear rise, while 𝑀a increases linearly up to the highest measured Ąeld. The slopes
of the magnetization curves are 0.045(3) ÛB/(T Cu), 0.089(3) ÛB/(T Cu), and
0.009(2) ÛB/(T Cu) for the 𝑎-, 𝑏-, and 𝑐-axis, respectively.

Figure 4.17: (a) Isothermal magnetization at T = 2 K and (b) static magnetic
susceptibility ä = 𝑀/𝐻 at 𝐵 = 1 T for 𝐵 ‖ 𝑎 (black), 𝐵 ‖ 𝑏 (red), and 𝐵 ‖ 𝑐 (blue).
Errors bars are on the order of the size of the data points.

Nikolaev et al. calculated the slopes of the magnetization curves for the tilted Cu1
spins for the 𝑎- and 𝑐-axis. They obtained 𝜕𝑀a/𝜕𝐵 = 0.15 ÛB/T (0.044 ÛB/T) and
𝜕𝑀c/𝜕𝐵 = 0.0073 ÛB/T (0.0061 ÛB/T) from the conventional local-density approxi-
mation including spin-orbit coupling, and Hartree Fock (HF) calculations (results in
parentheses) [111]. These values, especially from the Hartree Fock calculations, agree
with the values obtained in this work within experimental error bars. Furthermore,
Nikolaev et al. calculated the work 𝑊b done by the magnetic Ąeld 𝐵 ‖ 𝑏 when spins
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are fully polarized in Ąeld as 𝑊b = 2.2 ÛBT. Integrating 𝑀b from 0 T to 7 T at
2 K yields 𝑊b,exp = 2.26 ÛBT, which is in good agreement with the calculations
and indicates that the spins are nearly fully polarized at 7 T. An overview of the
theoretical and experimental results is given in Tab. 4.4.

Table 4.4: Experimental results from magnetization measurements in comparison to
the theoretical results by Nikolaev et al. [111].

𝜕𝑀a/𝜕𝐵 𝜕𝑀b/𝜕𝐵 𝜕𝑀c/𝜕𝐵 Wb

(ÛB/T) (ÛB/T) (ÛB/T) (ÛBT)
This work 0.045(3) 0.089(3) 0.009(2) 2.26
LDA+SO [111] 0.15 - 0.0073 -
Hartree Fock [111] 0.044 - 0.0061 2.2

The isothermal magnetization for all axes and at various temperatures is shown
in Fig. 4.18. For 𝐵 ‖ 𝑎 no sign of a phase transition is seen at low temperatures
(Fig. 4.18(a) and (b)). Only at 20 K and 25 K a peak in the susceptibility is
observed. For 𝐵 ‖ 𝑏, at 2 K a clear kink is visible in the magnetization at 7.1 T
(Fig. 4.18(c) and (d)) analogous to the behavior predicted [15] and observed [114]
in Cu3Bi(SeO3)2O2Br. At higher temperatures this peak shifts to lower Ąelds while
retaining its characteristic shape. The features for 𝐵 ‖ 𝑐 (Fig. 4.18(e) and (f)) were
discussed in detail before and are not mentioned further here.

The static magnetic susceptibility at B = 1 T visualizes the strong anisotropy for the
three axes once more (Fig. 4.17(b)). The evolution of the phase transition in ä𝑖 and
𝜕(ä𝑖𝑇 )/𝜕𝑇 in Ąelds up to 14 T (1 T for 𝐵 ‖ 𝑐) for the different axes is presented in
Fig. 4.19. Measurements up to 6 T for the 𝑎- and 7 T for the 𝑏-axis were performed
in an MPMS3 on a very small crystal (𝑚 = 0.60(5) mg, thus with a large error bar),
and measurements up to 14 T in a PPMS-14 (sample with 𝑚 = 8.88(5) mg). While
the 𝑎-axis shows only minor shifts with increasing Ąeld (26.3 K at 1 T to 20.0 K
at 14 T), the 𝑏-axis shows a strong suppression in Ąeld, to 7.7 K at 7 T, with no
transition visible at higher Ąelds.

With this knowledge on the in-plane magnetization, a small feature observed in the
magnetostriction of CBSCl stands out (Fig. 4.20). While the large peaks related to
the metamagnetic transition are very prominent, a small additional anomaly in Úb

is visible at slightly higher Ąelds. The position of this feature corresponds exactly
to the peaks in the 𝑏-axis susceptibility 𝜕𝑀/𝜕𝐵. Therefore, the transition towards
saturation is visible in the magnetostriction data for 𝐵 ‖ 𝑏, but along with a much
larger peak from triggering the metamagnetic transition while measuring along 𝑏 due
to a small effective magnetic Ąeld along 𝑐.
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Figure 4.18: Isothermal magnetization and magnetic susceptibility 𝜕𝑀𝑖/𝜕𝐵 at low
temperatures for (a, b) 𝐵 ‖ 𝑎, (c, d) 𝐵 ‖ 𝑏 and (e, f) 𝐵 ‖ 𝑐.
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Figure 4.19: Static magnetic susceptibility ä = 𝑀/𝐻 and derived Fisher’s specific
heat in magnetic fields up to 14 T for 𝐵 ‖ 𝑎 (a, d), 𝐵 ‖ 𝑏 (b, e), and 𝐵 ‖ 𝑐 (c, f). Data
up to 6 T in (a, d) and up to 7 T (b, e) were measured in the MPMS3, data at higher
fields up to 14 T in the PPMS. The inset in (c) shows a magnification for fields up
to 0.6 T around 𝑇N. The inset in (f) shows a magnification of the low temperature
region. Data in (a) are offset by ⊗1.5 ≤ 10⊗3 erg/(G2 mol).
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Figure 4.20: Comparison of magnetostriction coefficient Úb (a, c) and isothermal
magnetic susceptibility 𝜕𝑀/𝜕𝐵 (b) for 𝐵 ‖ 𝑏. Vertical lines in (b) and (c) mark the
critical fields observed in both quantities.
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4.3.4 Phase Diagrams

From the in-plane magnetization measurements the low temperature phase diagrams
for the 𝑎- and 𝑏-axis are constructed and presented in Fig. 4.21. The 𝑏-axis shows
a transition from the antiferromagnetic (AFM) phase to the Ąeld-polarized phase
at 𝐵c,b = 7.1(2) T, and an extrapolation of the 𝑎-axis data, by simply stretching
the 𝑏-axis phase boundary along the magnetic Ąeld axis, yields 𝐵c,a = 20.6(5) T.
Calculations of the magnetization process in CBSCl yielded saturation Ąelds of
5.8 T (𝐵 ‖ 𝑏) and 17 T (𝐵 ‖ 𝑎), which are both lower than the experimentally
observed Ąelds, but close to them [111]. In comparison, the brother compound
Cu3Bi(SeO3)2O2Br shows a saturation along the 𝑏-axis at a similar Ąeld, about 7 T,
whereas 𝐵c,a is nearly 40% higher than the value of 15 T in CBSBr which was also
obtained by extrapolation [114].

Figure 4.21: Low-temperature magnetic phase diagram for 𝐵 ‖ 𝑎 (blue area) and
𝐵 ‖ 𝑏 (green area) constructed from magnetization measurements. Closed (open)
markers refer to measurements in the MMPS (PPMS). Extrapolation: The blue area
is obtained by scaling the green area along the y-axis to match the markers for 𝐵 ‖ 𝑎
up to 14 T.

The 𝑐-axis phase diagram in Fig. 4.22 is constructed from the peaks, and left and right
Ćanks where the mixed phase sets in, in Ðc and Úc as well as peaks in the susceptibility
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in Ąeld and temperature. The points marking the crossover between the Ąeld-induced
FM and PM phases are extracted from the minimum in 𝜕äc/𝜕𝑇 . Qualitatively, this
phase diagram is identical to the CBSBr phase diagram for 𝐵 ‖ 𝑐 [113], however,
the critical Ąeld is slightly higher and 𝑇N lower compared to Cu3Bi(SeO3)2O2Br
(𝑇N = 27.4 K).

Figure 4.22: Low-temperature magnetic phase diagram in fields up to 1 T for 𝐵 ‖ 𝑐
constructed from magnetization and dilatometric measurements as indicated in the
legend and mentioned in the text. The shaded region displays the hysteresis visible in
magnetization and magnetostriction down-sweeps, with the dashed lines indicating
down-sweep phase boundaries. Where hysteresis and the mixed phase overlap, white
lines indicate phase boundaries obtained from up-sweep data.
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4.4 Conclusion

The multiferroic buckled-Kagomé francisite Cu3Bi(SeO3)2O2Cl is investigated by
thermal expansion, magnetostriction, magnetization and speciĄc heat measurements.
Strong Ćuctuations persist in a large temperature range below the structural phase
transition at 𝑇S = 120.7(5) K, with critical exponents of 2Ñc = 0.71(2) at 𝑇S for the
𝑎- and 𝑐-axis as well as 0.77(2) for the 𝑏-axis. Large uniaxial pressure dependencies
are found for 𝑇S, in contrast to a moderate hydrostatic pressure dependence of
𝑑𝑇/𝑑𝑝 = 2.3(1.5) K/GPa. The spontaneous strain around the antiferromagnetic
transition at 𝑇N = 26.4 K, with critical exponents of Ñc = 0.35(4) (𝑏- and 𝑐-axis)
and Ñc = 0.38(3) (𝑎-axis), is in the range of the 3D XY and 3D Heisenberg models
and suggests a 3D magnetic ordering. The 𝑐-axis was studied in detail below 𝑇N. A
Ąeld-induced mixed phase behavior above 0.4 T was uncovered, analogous to the
related francisite Cu3Bi(SeO3)2O2Br. In this mixed phase, linear magnetoelastic
coupling is present for 𝐵 ‖ 𝑐. Uniaxial and hydrostatic pressure dependencies of 𝑇N

are small, ranging from ⊗0.62(15) K/GPa for 𝑝 ‖ 𝑏 and 0.33(10) K/GPa for 𝑝 ‖ 𝑐 to
1.8 K/GPa for 𝑝 ‖ 𝑎, with a hydrostatic pressure dependence 𝑑𝑇N/𝑑𝑝 = 1.4(3) K/GPa.
The pressure dependence of the critical Ąeld, as well as the change in entropy at
the antiferromagnetic (AFM) to ferromagnetic/paramagnetic phase boundary, are
derived using thermodynamic relations, revealing a stabilization of the AFM phase
under applied pressure 𝑝 ‖ 𝑐. For the 𝑎- and 𝑏-axis the phase diagram is derived
from magnetization measurements, with critical Ąelds of 𝐵c,a = 20.6 T (obtained by
extrapolation) and 𝐵c,b = 7.1. The 𝑐-axis phase diagram is constructed from the
thermal expansion, magnetostriction and magnetization data, showing a critical Ąeld
of 𝐵c,c = 0.8 T at 2 K.

Many aspects of the physics of Cu3Bi(SeO3)2O2Cl are well understood, including
theoretical models for the relevant magnetic interactions. This study adds a thermo-
dynamic analysis, especially of the effects of uniaxial pressure, the magnetic phase
diagrams of the 𝑎- and 𝑏-axis, and a detailed high-resolution study of lattice changes
with temperature and especially in applied magnetic Ąelds, which to this point were
missing.





Chapter 5

Dilatometric Studies of the Ferromagnetic Semiconducting Van

der Waals Compound Cr2Ge2Te6

In this chapter the experimental results on Cr2Ge2Te6 are presented and discussed.
An introduction on Cr2Ge2Te6 is followed by a note on experimental details and
especially the necessary signal corrections. Then the experimental results are pre-
sented along with their discussion, before a conclusion sums up the insights gained
in this chapter. The presentation of results is divided into three main sections. The
main focus of the Ąrst Ű and by far largest Ű section is on data obtained from thermal
expansion, complemented by speciĄc heat data where needed for the thermodynamic
analysis. Zero-Ąeld thermal expansion is presented Ąrst, followed by a brief paragraph
describing the effect of an applied magnetic Ąeld of 15 T. The following subsection
discusses the Grüneisen parameters of the zero-Ąeld data, from which the uniaxial
pressure dependence of the critical temperature is derived. Subsequently, magnetic
contributions to the thermal expansion coefficient in an applied magnetic Ąeld are
discussed, followed by a critical scaling analysis of both the thermal expansion
coefficient and of the strain resulting from the magnetic contribution to the thermal
expansion. In the second section magnetostriction measurements are presented in
conjunction with isothermal magnetization data. From these results the uniaxial
pressure dependence of the magnetization in Cr2Ge2Te6 is derived. The Ąnal section
contains the phase diagrams for the measured directions.

5.1 Introduction

In early 2017, long-range magnetic order in pristine 2D crystals Ű down to the
bilayer in Cr2Ge2Te6 [20] and the monolayer in CrI3 [135] Ű was Ąrst observed.
Research into two-dimensional (2D) materials had already been rapidly growing after
the Ąrst production of single-layer graphene [136]. This ground-breaking discovery
further spurred research into quasi-2D layered van der Waals (vdW) materials.
Previously, extrinsically-induced magnetic responses had been studied in thin Ąlms,
whereas the new magnetic 2D materials offer the advantages that they decouple from
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substrates, allow electrical control, are mechanically Ćexible, and open to chemical
functionalization [25]. Quasi-2D layered vdW materials are interesting both from a
fundamental point of view and from an applications perspective: on the fundamental
side, they open up the opportunity to study ground states, fundamental excitations
and magnon dynamics in 2D magnets [25]; on the applications side, new roads to
sensing, computing, and data storage can be envisioned with atomically thin magneto-
optical and magnetoelectric devices for ultracompact spintronics or on-chip optical
communications. Recent examples of steps towards Cr2Ge2Te6-based applications
include the realization of a Cr2Ge2Te6-based phase-change random access memory
(PCRAM) [137] and efficient switching of the magnetization by spin-orbit torque as
a step towards spintronic devices [138].

Cr2Ge2Te6 crystallizes in the trigonal space group 𝑅3̄ (No. 148) and belongs to the
class of layered van der Waals (vdW) transition metal trichalcogenides (TMTC). The
edge-sharing transition metal chalcogenide octahedra form a honeycomb network
(indicated in red in Fig. 5.1(b)). These honeycomb layers are stacked onto each other
in an ABC-stacking with a van der Waals (vdW) gap along the crystallographic
𝑐-axis (Fig. 5.1(a) and (b)) [139]. In its bulk form Cr2Ge2Te6 is a quasi-2D ferro-
magnetic semiconductor, with 𝑇C= 65 K [140, 141], and has been shown to retain
its ferromagnetic property at least down to the bilayer [20]. This key feature of
low-dimensional magnetism at non-zero temperature arises from the presence of a
magnetic anisotropy, circumventing the effects of the Mermin-Wagner theorem [18]
which forbids long-range order at non-zero temperatures for isotropic spins in low
dimensions (𝐷 ⊘ 2) due to gapless magnonic Ćuctuations. Anisotropy leads to the
opening of a gap in the magnon density of states and thus allows for static long-range
order to form. At zero external pressure Cr2Ge2Te6 shows a uniaxial magnetic
anisotropy with the magnetic easy-axis along the crystallographic 𝑐-axis [21, 140,
141]. This anisotropy is presumably caused by spin-orbit coupling of the Cr ions
in connection to the underlying crystallographic lattice as well as off-site spin-orbit
coupling effects between Cr and Te ions [22, 141].

Furthermore, Cr2Ge2Te6 shows an anisotropic temperature dependence of the lattice
as shown by Carteaux et al. [139]. Down to 100 K the lattice parameters 𝑎 and 𝑐
shrink monotonously. However, around 100 K the 𝑎-axis starts to increase towards
lower temperatures while the 𝑐-axis shrinks further. The increase of the 𝑎-parameter
leads to a value of 6.820 Å at 5 K which is larger than 6.812 Å at 270 K. This indicates
that Cr2Ge2Te6 has a strong magnetostriction effect, i.e., a coupling between the
onset of ferromagnetic interactions and the anisotropic behavior of the underlying
lattice. So far, no detailed thermal expansion and magnetostriction studies have
been reported for Cr2Ge2Te6 to explore the magnetoelastic coupling, which motivates
the high-resolution thermal expansion and magnetostriction measurements in this
chapter.
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Ąeld using demagnetization factors of 𝑁 = 0.746 for 𝐵 ‖ 𝑐 and 𝑁 = 0.099 for
𝐵 ⊥ 𝑐 (Fig. 5.2(a) and (b)). Further correction factors due to the sample geometry
were obtained based on the experimental data of a square nickel Ąlm [142]. To
extract correction factors for the side lengths of 2.0 mm and 1.3 mm a square of
equal area with a side length of 1.65 mm was assumed. For measurements with
𝐵 ‖ 𝑐, along the thin direction, power-law Ąts to the data provided in Ref. [142]
for vibration amplitudes of 1.0 mm to 5.0 mm yielded the correction factor 𝑓 at
1.65 mm at different amplitudes. A linear interpolation of these data points resulted
in 𝑓 = 1.086 for the amplitude of 1.8 mm at which all measurements were performed.
For a vertical alignment of the sample, with 𝐿 = 1.3 mm and 𝐵 ⊥ 𝑐, third-order
polynomial Ąts were applied to extract 𝑓 at different vibration amplitudes. A linear
interpolation of the resulting values for the different amplitudes yielded 𝑓 = 1.061
for an amplitude of 1.8 mm. The effect of the corrections is shown in Fig. 5.2(d).
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𝑇C = 65.3(4) K (c-axis). The origin of this difference is discussed below after the
calculation of the uniaxial pressure dependence for the two axes. While the anomalies
evidence a continuous phase transition, their signs imply opposite pressure depen-
dence for uniaxial pressure applied in-plane (⊥ 𝑐) and cross-plane (‖ 𝑐), respectively.
Note that the anomalies extend from the lowest temperatures up to at least 100 K.
This is associated with negative in-plane thermal expansion up to nearly 95 K while
Ðc is positive in the whole temperature regime under study. Note further, however,
that due to the softness of the samples in-plane length changes were difficult to
measure and hence possess larger errors than cross-plane data. In particular, different
mounting of the sample yielded a smaller anomaly in Ð⊥ while negative thermal
expansion extended to around 70 K only. Negative thermal expansion up to 95 K,
however, Ąts very well with the observations of Carteaux et al. mentioned in the
introduction, who found an increase in the 𝑎-axis lattice parameter, i.e., in-plane,
below 100 K [139].

High-Field Behavior at 𝐵 = 15 𝑇

Applying an external magnetic Ąeld of 15 T yields two distinct Ąeld-induced effects
on the length changes up to at least 200 K as shown by Fig. 5.3 (red lines and
symbols). The data in (a) are shifted vertically to coincide at highest temperatures,
exposing a Ąeld effect at 15 T which starts between 210 K and 250 K. Vertical lines
in Fig. 5.3 display experimentally determined magnetostriction (𝐿(15𝑇 ) ⊗𝐿(0))/𝐿(0)
at various temperatures, thereby conĄrming the magnetic Ąeld effect. A Ąeld effect
up to high temperatures is seen especially well in the thermal expansion coefficient
in Fig. 5.3(b). The deviation between the 0 T and 15 T data following their overlap
at high temperatures marks its onset. Besides, the peak in the thermal expansion
coefficients shifts to higher temperatures with applied Ąeld for both directions, to
90 K for 𝐵 ⊥ 𝑐 and 103 K for 𝐵 ‖ 𝑐, and broadens substantially. For 𝐵 ‖ 𝑐, the data
imply shrinking of the 𝑐-axis for 30 K . 𝑇 . 210 K in an applied Ąeld of 15 T with
respect to zero-Ąeld, while magnetostriction is very small outside this temperature
regime. In contrast, magnetostriction is positive for 𝐵 ⊥ 𝑐 but changes sign at
≍ 37 K (see inset of Fig. 5.3a).

Grüneisen Scaling and High-Temperature Correlations at 𝐵 = 0

In order to estimate non-phononic contributions to the thermal expansion of Cr2Ge2Te6,
the high temperature regime is Ątted by means of a Debye approximation

Ð𝑝ℎ = Ò ≤ 𝑐𝐷
𝑝ℎ(𝑇 )

= Ò ≤ 9 ≤ 𝑛𝐷 ≤ 𝑘𝐵
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Figure 5.3: (a) Relative length changes in zero-field and at 𝐵 = 15 T for 𝐵 ⊥ 𝑐
(left axis) and 𝐵 ‖ 𝑐 (right axis) and (b) corresponding thermal expansion coefficients.
Dashed lines show the estimated phonon background (see the text). For (a), ordinates
have been scaled to obtain good overlap of both zero field data and phonon background
above 220 K. 15-Tesla data have been shifted with respect to the measured magne-
tostriction at 150 K (𝐵 ‖ 𝑐) and to overlap at high temperatures (𝐵 ⊥ 𝑐). Vertical
lines indicate the length changes between 0 T and 15 T obtained from magnetostriction
measurements at selected temperatures. Inset in (a) highlights the low-temperature
behavior of 𝑑𝐿⊥(𝑇 )
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where Ò is an effective Grüneisen parameter on the order of 10⊗7 used to scale the
phonon speciĄc heat 𝑐𝐷

𝑝ℎ to the thermal expansion, 𝑛𝐷 is the number of atoms in the
unit cell, 𝑘𝐵 the Boltzmann constant and 𝛩𝐷 the Debye temperature. A Ąt of the
speciĄc heat yields a Debye temperature of 𝛩𝐷 = 241 K and 𝑛𝐷 = 9.85 which is
very close to 10, as expected for the 10 atoms in the unit cell. The resulting thermal
expansion backgrounds using Òc ≡ 1.0 ≤ 10⊗7 and Ò⊥ ≡ 4.5 ≤ 10⊗8 are shown as dashed
lines in Fig. 5.3. In Fig. 5.4 the speciĄc heat with the phononic background Ąt is
presented along with the speciĄc heat of In2Ge2Te6 (blue circles). The latter lies
both above (low temperatures) and below (high temperatures) the speciĄc heat of
Cr2Ge2Te6. A scaling of the data with the ratio of In and Cr masses did not resolve
the problem, therefore the Debye background Ąt was preferred to the non-magnetic
analog for background subtraction.

Figure 5.4: Specific heat of Cr2Ge2Te6 (black circles) and In2Ge2Te6 (blue cir-
cles) [143] as well the Debye background fit (red line) as described in the text.

The data in Fig. 5.3 (dashed lines) show that above roughly 220 K thermal ex-
pansion is described well by the phonon background. Upon cooling non-phononic
thermal expansion evolves, which is anisotropic in nature. This non-phonon behavior
is attributed to magnetic degrees of freedom. Note that the associated entropy
changes are very small at high temperatures so that a reliable estimate of magnetic
entropy changes is impossible. Lin et al. did publish a magnetic speciĄc heat of
Cr2Ge2Te6 [144], but the background function they subtracted to obtain it is highly
disputable. The Grüneisen ratio Ò𝑖 = Ð𝑖/c𝑝 in Fig. 5.5, however, conĄrms the
presence of an additional degree of freedom below about 220 K as also evidenced
by anisotropy in Ð𝑖. SpeciĄcally, while an approximately constant Ò(𝑇 ) at high
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temperatures implies the presence of only one dominant, phonon, energy scale [83,
84], the progressive evolution of a competing degree of freedom, i.e., that of magnetic
Ćuctuations, is clearly conĄrmed by the data.

Figure 5.5: Ratio of thermal expansion coefficients and specific heat Ò𝑖 = Ð𝑖/c𝑝, with
zero-field thermal expansion data from the mini-dilatometer (see appendix, Fig. C.1).
Inset: High-temperature behavior. Dashed lines are guide to the eye.

Magnetic correlations up to high temperature are a key feature in Cr2Ge2Te6 and
the isostructural compound Cr2Si2Te6. Most importantly, these features imply the
presence of 2D correlations up to high temperatures. For Cr2Ge2Te6 correlations up to
160 K were deduced by Sun et al. from the deviation of a Curie-Weiss Ąt to the static
magnetic susceptibility and a concomitant broadening of the X-band electron spin
resonance (ESR) intensity for both in-plane and cross-plane crystal directions [145].
Such deviations from a purely paramagnetic behavior in X-band ESR spectra at least
up to 100 K were also noted by Zeisner et al. [140] (Fig. 5.15). Additionally, angle-
resolved photoemission spectroscopy (ARPES) spectra of Cr2Ge2Te6 at 150 K, at
more than two times 𝑇C, were better described by calculations for the ferromagnetic
state than for the paramagnetic state [146]. The magnetic Ćuctuations seen in
the Grüneisen ratio therefore provide the Ąrst macroscopic measurement of high
temperature correlations and the related quasi-2D behavior in Cr2Ge2Te6.
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Similar van der Waals compounds, such as the ferromagnetic (FM) and antiferromag-
netic (AFM) semiconductors Cr2Si2Te6 (FM), MnPSe3 (AFM), and MnPS3 (AFM),
also show characteristic short-range correlations up to high temperatures [147, 148].
For Cr2Si2Te6 static and dynamic in-plane magnetic correlations were observed
in neutron diffraction and inelastic neutron scattering experiments at least up to
300 K [147], similarly to MnPSe3 and MnPS3 where magnetic excitations were visible
up to 200 K, the highest measured temperatures [148]. Such high-temperature behav-
ior was repeatedly interpreted as pointing to low-dimensional exchange interactions
with the presence of in-plane correlations to high temperatures [147, 148].

Grüneisen analysis allows not only a qualitative but also a quantitative analysis. A
reliable quantitative analysis of the thermal expansion and speciĄc heat data is possi-
ble due to the large size of the anomalies. Therefore, the Debye background obtained
above is subtracted from the thermal expansion and speciĄc heat, respectively. For
the thermal expansion it is scaled to the high-temperature regime of Ð⊥ and Ðc. The
resulting magnetic contributions are plotted together such that the peaks around 𝑇C

have a maximal overlap. From the ratio of the ordinates in Fig. 5.6 the magnetic
Grüneisen ratio Ò𝑖,mag = Ð𝑚𝑎𝑔/𝑐𝑝,𝑚𝑎𝑔 is obtained. This yields Òc,mag ≡ 2.3 mol/MJ
and Ò⊥,mag ≡ ⊗1.4 mol/MJ in the regime of 10 K around the ferromagnetic transition.
Using the Ehrenfest relation, the obtained values of Ò𝑖 yield the uniaxial pressure

Figure 5.6: Comparison of Ð𝑖,mag (red symbols) and cp,mag (black symbols) at
B = 0 T for the in-plane direction (a) and the c-axis (b) yielding the Grüneisen
parameters Ò⊥ = 1.4 mol/MJ and Ò𝑐 = 2.3 mol/MJ.

dependence of the ordering temperatures, i.e., 𝜕𝑇C/𝜕𝑝𝑖 = 𝑇C𝑉mÒ𝑖,mag. The results
deduced using the molar volume 𝑉m = 5 ≤ 10⊗4 m3/mol are 𝜕𝑇C/𝜕𝑝c = 74(10) K/GPa
and 𝜕𝑇C/𝜕𝑝⊥ = ⊗45(10) K/GPa. The hydrostatic pressure dependence can be
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inferred as 𝑑𝑇C/𝑑𝑝 = 2 ≤ 𝜕𝑇C/𝜕𝑝⊥ + 𝜕𝑇C/𝜕𝑝c = ⊗16 K/GPa. Notably, the behavior
for Ðc,mag and Ð⊥c,mag is very different around 𝑇C (Fig. 5.6): while Ðc,mag shows
a rather symmetric behavior around 𝑇C, Ð⊥c,mag and cp,mag show an asymmetric
behavior. This difference may be related to the pressure applied perpendicular to the
van der Waals gap for Ðc, which is absent for Ð⊥c and cp. The forces employed by
the setup unto the sample are on the order of 0.2(1) N for the in-plane measurements
and 0.8(2) N for measurements along the 𝑐-axis. With surface areas of few mm2

for the 𝑐-axis and few tenths of a mm2 for the in-plane measurements, this leads
to pressures on the order of hundreds of kPa (𝑐-axis) to few MPa (⊥𝑐) applied
onto the sample surfaces. Considering the pressure dependence calculated above,
this would lead to shifts in 𝑇C up to 0.1 K at most, i.e., it cannot account for the
difference of about 0.6 K of 𝑇C for the two measured directions. A small thermal
gradient is an alternative possible explanation for the difference in 𝑇C, i.e., cross-plane
thermal conductivity along 𝑐 would need to be lower than the in-plane, ⊥𝑐, thermal
conductivity, which has been observed in van-der-Waals compounds before [149Ű151].
However, the difference in 𝑇C may also simply arise from the use of two different
samples with different thickness and slightly different stacking defects.

The effects of pressure on Cr2Ge2Te6 have been investigated in several publications,
both experimentally and based on calculations [152Ű154]. In all of these works the
effect of hydrostatic pressure was studied, and a decrease in 𝑇C with applied pressure
was unambiguously identiĄed. Also, the resulting behavior was explained by the
decrease of CrŰCr and CrŰTe bond lengths and an increase in CrŰTeŰCr bond angle
away from 90◇ [153].

The numbers derived above describe the initial pressure dependence, i.e., for 𝑝 ⊃ 0,
and should thus be compared to the initial pressure dependence in other measurements.
Both Sun et al. [152] and Fumega et al. [154] observed an initial drop of 𝑇C of
⊗14 K/GPa, in the range from 0 GPa to 0.25 GPa, and from 0 GPa to 0.1 GPa,
respectively. This corresponds well to 𝑑𝑇/𝑑𝑝 = ⊗16 K/GPa derived from thermal
expansion and speciĄc heat above. Sakurai et al. found a hydrostatic pressure
dependence of ⊗3.8 K/GPa [153], but from only two data points in a much larger
pressure range, from 0 GPa to 1.3 GPa. This cannot resolve the initial steeper
drop in 𝑇C observed in the other reports. However, it is in line with ≡ ⊗4 K/GPa
between two data points at 0 GPa and 1 GPa found in one of the other reports [154].
Fumega et al. also investigated the effect of hydrostatic pressure on the exchange
couplings 𝐽in and 𝐽out in Cr2Ge2Te6, using a simpliĄed spin model with respect to
other publications. 𝐽in is the sum of two exchange contributions, the direct CrŰCr
exchange across the octahedral edge, which is antiferromagnetic (AF) between two
half-Ąlled t2g bands, and the indirect CrŰTeŰCr superexchange at approximately 90-
degrees. This indirect superexchange, according to Goodenough-Kanamori-Anderson
rules, can be either FM or AF, depending on the extent of the delocalization and
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correlation superexchange effects [154, 155]. 𝐽out, on the other hand, is the inter-plane
exchange coupling between CrŰCr neighbors. In the calculations by Fumega et al. Jout

increases from 12 K at 0 GPa to about 29 K at 5.6 GPa hydrostatic pressure, while
Jin decreases from about 28 K to 20 K in the same pressure regime, with a steeper
initial change, by about 35%/GPa for 𝐽out and ⊗10%/GPa for 𝐽in. At pressures
above 7 GPa a transition to a metallic state, potentially together with a structural
phase transition, was predicted [154]. Ge et al. and Dong et al. found a semiconductor
to metal transition at about 14 GPa [156, 157]. The change in coupling strengths
𝐽in and 𝐽out observed for hydrostatic pressure suggests that similar effects may be
the cause for the uniaxial cross-plane (‖ 𝑐) and in-plane (⊥ 𝑐) pressure dependence.
Uniaxial cross-plane pressure may lead to an increase in 𝐽out and a stabilization of
ferromagnetism, whereas uniaxial in-plane pressure may induce a decrease in 𝐽in,
thereby weakening ferromagnetic interactions and leading to a suppression of 𝑇C.
This simpliĄed picture lends itself as an explanation but calculations will be necessary
to actually test the effect of uniaxial pressure on bond angles and exchange coupling
strengths.

A comparison of the pressure effects in Cr2Ge2Te6 to the isostructural compounds
CrI3 and VI3 is surprising. Although being of similar magnitude, the hydrostatic
pressure dependence is positive, i.e., of opposite sign than for Cr2Ge2Te6 [158, 159].
Moreover, the initial effect of uniaxial pressure in CrI3 shows the same positive
cross-plane (‖ 𝑐) and negative in-plane (⊥ 𝑐) behavior, but is almost two magnitudes
smaller than for Cr2Ge2Te6 [160]. Such large uniaxial pressure effects are very
welcome for device applications, e.g., for sensing, data storage or computing, because
they enable control of the transition temperature, especially enhancing 𝑇C with the
goal of room temperature applications. The feasibility of such 𝑇C-enhancement in
Cr2Ge2Te6 has been shown by Wang et al., with electrochemical intercalation of
organic molecules in the van der Waals gap leading to an enhancement of 𝑇C to
208 K, three times the value of pristine Cr2Ge2Te6 [161]. Besides, they found a
concomitant change of the magnetic easy-axis direction from the 𝑐-axis direction to
the 𝑎𝑏-plane.

The uniaxial and hydrostatic pressure dependence in Cr2Ge2Te6 may thus not only
be discussed in terms of varying exchange interaction strengths, but also in terms
of a pressure-dependent magnetic anisotropy, especially a pressure dependence of
the intrinsic magnetocrystalline anisotropy. Magnetocrystalline anisotropy can arise
from a coupling of the magnetic spins to the lattice via the crystal electric Ąeld
and spin-orbit coupling. If this is the case, pressure-induced lattice distortions will
also have an effect on the magnetocrystalline anisotropy. For Cr2Ge2Te6 a uniaxial
magnetic anisotropy has been reported, along with investigations of its temperature
dependence [141, 145, 162]. In principle, the magnetocrystalline anisotropy is a
material constant and therefore independent of temperature or applied magnetic
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Ąeld. On a macroscopic level, however, many ferromagnets, e.g., Fe, Co, and Ni,
exhibit a temperature dependence of the magnetocrystalline anisotropy constant.
This behavior can be understood in the frame of the theory laid out by Zener [163],
by the effect of temperature Ćuctuations on the anisotropy of the magnetization.
Selter et al. suggested that the uniaxial anisotropy along the 𝑐-axis is responsible for
the low-temperature magnetic phase seen for 𝐵 ⊥ 𝑐. They described the change in
magnetization direction in an applied magnetic Ąeld on this basis, with moments
pointing along the 𝑐-axis in zero-Ąeld and gradually rotating towards the in-plane
direction as a Ąeld 𝐵 ⊥ 𝑐 is applied. Studies of the hydrostatic pressure dependence
of the magnetic anisotropy in Cr2Ge2Te6 by Lin et al. claimed a reorientation from
a uniaxial anisotropy to an easy-plane anisotropy in the 𝑎𝑏-plane between 1.0 GPa
and 1.5 GPa [22]. Contrasting this study, Sakurai et al. found no reorientation
of the magnetic anisotropy under hydrostatic pressure up to 2.5 GPa [153]. They
did Ąnd evidence for a signiĄcant decrease of the magnetocrystalline anisotropy
energy constant of Cr2Ge2Te6 upon application of hydrostatic pressure, along with a
suppression of 𝑇C, but no sign change in the anisotropy constant was found [153].
In contrast, an increase in 𝑇C is expected if the uniaxial anisotropy is enhanced by
(uniaxial) pressure. With this in mind, the positive uniaxial pressure dependence of
𝑇C for 𝑝 ‖ 𝑐 suggests an enhancement of the uniaxial anisotropy, while the decrease
in 𝑇C for 𝑝 ⊥ 𝑐 suggests it weakens for pressure applied along the in-plane direction,
just as for hydrostatic pressure.

Magnetic Contributions to the Thermal Expansion for 𝐵 > 0

The magnetic contribution to the thermal expansion for 𝐵 > 0 is obtained by
subtracting the zero-Ąeld phonon background from the thermal expansion coefficient
at different Ąelds. By integrating Ð𝑖,mag (𝑖 = 𝑐, ⊥𝑐) with respect to temperature the
spontaneous strain 𝜀mag = (𝑑𝐿/𝐿)mag related to the evolution of ferromagnetic order
is obtained. Fig. 5.7 shows both the zero-Ąeld data and the evolution of Ð𝑖,mag in
various magnetic Ąelds for 𝐵 ‖ 𝑐 (top) and 𝐵 ⊥ 𝑐 (bottom). The main Ąndings
are: (1) a broadening of the anomaly at 𝑇C and shift of the extrema towards higher
temperatures with higher Ąelds. The length changes at low temperatures related to
magnetism therefore decrease with increasing Ąeld, whereas the thermal expansion
is enhanced at higher temperatures. For 𝐵 = 15 T, the extrema are shifted by
about 30 K with respect to 𝑇C in zero-Ąeld, indicating a moderate stabilization of
ferromagnetism. The magnetic entropy is expected to shift accordingly. (2) The
overall magnetic length changes are approximately independent of the magnetic
Ąeld except for the above-mentioned sign change of magnetostriction 𝑑𝐿⊥(𝐵) below
≍37 K. Furthermore, for 𝐵 ⊘ 15 T the enhanced thermal expansion at higher
temperatures does not signiĄcantly affect the high-temperature onset of magnetic
length changes. Magnetic contributions for both directions extend up to about 220 K,
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Figure 5.7: Magnetic contribution to the thermal expansion coefficient, Ð𝑖,mag,
𝑖 = 𝑐, ⊥, in various magnetic fields up to 15 T. Colored triangles in (c) and (d) mark
the peak positions while dashed lines illustrate the general trend of the transition
temperatures.

nearly independently of the magnitude of the applied Ąeld. (3) In contrast to the
general trend in magnetic Ąelds, small Ąelds below 0.2 T yield a suppression of the
anomaly for 𝐵 ⊥ 𝑐 as highlighted in Fig. 5.7(c) and (d). The extrema are marked
by colored triangles (same colors as the corresponding data) and the dashed lines
illustrate their Ąeld dependence. For Ąelds up to 0.17 T the peak in Ð⊥ Ąrst shifts to
lower temperatures, at which point the peak Ćattens at the top, indicating a splitting
into two peaks, one shifting to higher and one to lower temperatures. However, no
two single peaks are clearly distinguishable in the data at a given Ąeld, which can be
attributed to the large width of the overall peak. For 𝐵 ‖ 𝑐, the peak in Ðc shifts to
higher temperatures in increasing Ąelds, with no suppression at small Ąelds. Selter et
al. recently published the speciĄc heat in small magnetic Ąelds [141]. The behavior
observed in the thermal expansion exactly matches their Ąndings (Fig. 5.8).
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and (c)). For Ðc,mag the data overlap perfectly within error bars for 𝑡 < 0.1, and
show a linear regime, i.e., logarithmic scaling. This is a strong indication for 2D
Ising spins as the overlap of the data shows that Ð⊗ = Ð+ and logarithmic scaling
indicates Ð∘ ≡ 0. The behavior of Ð⊥c,mag, on the other hand, clearly differs for
𝑇 > 𝑇C and 𝑇 < 𝑇C. Although such behavior could originate from the phononic
background, data for 𝐵 ⊙ 1 T up to 5 T show a very good overlap to values of 𝑡
of above 0.35. Notably, at 5 T the data scale for 𝑡 < 0.45 with 𝑇C = 77.8 K, i.e.,
within 35 K above and below 𝑇C. Moreover, the Ð⊥,mag data for 𝑇 < 𝑇C show linear
behavior nearly to 𝑡 = 1, i.e., logarithmic scaling down to lowest temperatures. Very
close to the phase transition logarithmic scaling breaks down and Ð𝑖,mag becomes
nearly constant. This behavior is presumably related to a critical slowing down.

The very large temperature window for which logarithmic divergence applies is
illustrated in Fig. 5.10. Red lines show logarithmic Ąts

Ð𝑖 = 𝑎 ⊗ 𝑏 ≤ ln (♣𝑇 ⊗ 𝑇C♣) (5.2)

to the zero-Ąeld thermal expansion coefficients, where 𝑏 = Ð∘ ≤const. The temperature
window for the Ątting was 42 K to 64 K (65.2 K to 120 K) for 𝑇 < 𝑇C (𝑇 > 𝑇C)
for the in-plane data, and 2.3 K to 64.1 K (66 K to 148 K) for the 𝑐-axis. For the
𝑐-axis logarithmic scaling applies from the lowest temperatures to about 120 K Ű or
even 200 K within experimental error bars. The Ąts to Ð⊥ show a similar behavior
with a good overlap of the Ąt from about 240 K down to 45 K. A logarithmic
divergence at the critical temperature 𝑇C was calculated by Onsager for the speciĄc
heat of a two-dimensional (2D) Ising model [19]. As stated in the theory section
(Sec. 1.2.2), the mean-Ąeld model also exhibits Ð∘ = 0, with the difference from the
2D Ising model that a discontinuity in Ð∘ is expected. Fitting the zero-Ąeld thermal
expansion coefficients with the same parameter 𝑏 above and below 𝑇C does not work
well, suggesting that a mean-Ąeld model may describe the data better than the 2D
Ising model.

Souza et al. proposed a different approach to determining critical exponents from
thermal expansion coefficients which also relies on the close relation between thermal
expansion and speciĄc heat [170]. From thermodynamic considerations, especially
using the Ehrenfest equation, Souza et al. concluded that if the speciĄc heat 𝑐*

p ⊕
𝑐p ⊗ 𝑎 ⊗ 𝑏𝑇 can be superimposed with ÖÐ𝑇 , where Ö is a constant with units of
J/(mol K), Ð𝑇 diverges with the same critical exponent as 𝑐p. These assumptions are
analogous to the assumptions implied for the Grüneisen analysis in Sec. 5.3.1. For
the logarithmic divergence in this section 𝑐p ≍ Ð was assumed instead of 𝑐p ≍ Ð𝑇 .
Moreover, Ö is related to the pressure dependence of the critical temperature by
𝑑𝑇C/𝑑𝑝 = 𝑉m/Ö, with the molar volume 𝑉m. For the uniaxial pressure dependence
derived from the Grüneisen analysis this yields Öc = 6.757 ≤ 103 J/(mol K) and
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Figure 5.9: Magnetic contributions to Ð𝑖 for selected fields for (a-b) 𝐵 ‖ 𝑐, and (c-f)
𝐵 ⊥ 𝑐, with respect to the reduced temperature 𝑡 on a logarithmic scale. Black (red)
circles mark data for 𝑇 < 𝑇C (𝑇 > 𝑇C). Corresponding values for 𝑇C are shown in the
figures. Lines in (c) are a guide to the eye.
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Figure 5.10: Logarithmic fits to the zero-field thermal expansion coefficient for (a)
the 𝑐-axis and (b) the in-plane direction. Fit results are indicated in the plot. Fit
ranges are given in the text.

Ö⊥ = ⊗1.111 ≤ 104 J/(mol K). Including both a constant and a linear background,
the canonical expression for critical behavior which is employed in the following is

Ö𝑖Ð𝑖𝑇 ♠
𝐴∘

Ð
♣𝑡♣⊗Ð(1 + 𝐸∘♣𝑡♣ä) + 𝐵 + 𝐷𝑡, (5.3)

where ä = 0.5 and 𝑡 ⊕ (𝑇 ⊗ 𝑇C)/𝑇C is again the reduced temperature [171]. The
plus-minus subscripts denote quantities which are potentially different above (+)
and below (⊗) 𝑇C. Ö𝑖Ð𝑖𝑇 is shown together with 𝑐p* in Fig. 5.11(a). Here, instead
of a constant and a linear term, a polynomial background was subtracted from 𝑐p

to obtain 𝑐p*. As for the Grüneisen analysis, the scaled in-plane thermal expansion
and the speciĄc heat 𝑐p* overlap, while ÖcÐc𝑇 shows a similar behavior around 𝑇C

but slightly higher values and a different behavior for temperatures above 𝑇C. Fits
according to Eq. 5.3 are presented in Fig. 5.11(b). For these Ąts, 𝑇C was Ąxed to
65.3 K (64.7 K) for the 𝑐-axis (in-plane) as well as 𝐵 = 0. The applied temperature
window for the Ąts was from 53 K to 88.5 K (67.9 K), respectively, i.e., including
temperatures both above and below 𝑇C. Separate Ąts for 𝑇 < 𝑇C and 𝑇 > 𝑇C were
also preformed, as well as Ąts to Ð𝑖,mag (both not shown). The Ąts in Fig. 5.11(b)
yield Ð∘ = 0.041(7), 𝐴 = 1.3(2), 𝐷 = 31.3(9), 𝐸 = ⊗1.10(4) for the 𝑐-axis and
Ð∘ = 7.5 ≤ 10⊗7 ∘ 0.011, 𝐴 = 2.3 ≤ 10⊗5 ∘ 0.34, 𝐷 = ⊗72 ∘ 8, 𝐸 = ⊗2.9(1) with
large interdependencies between the Ąt parameters. Indicated errors are of statistical
nature. Fits to Ð⊥,mag yielded 0.03 < Ð∘ < 0.14, for different temperature windows
and different combinations of Ąxing the Ąt parameters to zero or a Ąxed value.

Considering these results, a number of conclusions can be drawn: (1) The critical
exponent Ð∘ varies widely depending on the temperature window. (2) Within its
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Figure 5.11: (a) Scaling of Ö𝑖Ð𝑖𝑇 and 𝑐p*. (b) Critical fits to the scaled zero-field
thermal expansion coefficient Ö𝑖Ð𝑖𝑇 for the 𝑐-axis (red line) and the in-plane direction
(black line). Fit results are discussed in the text. Fit ranges are indicated by vertical
bars. The lower boundary applies for both fits.

variation Ð∘ is always positive and small, namely, 0 ⊘ Ð∘ < 0.15. (3) A small and
positive Ð∘ is in line with calculations for the 3D Ising model (Ð ≡ 0.11), but also
with the 2D Ising model and mean Ąeld theory (Ð = 0) (see Tab. 1.4 and Ref. [41]).

A further quantitative analysis can be performed using the spontaneous strain 𝜀mag,
which shows an order-parameter-like behavior below 𝑇C. Above 𝑇C 𝜀mag does not,
unlike the francisite in the previous chapter, assume a constant value due to the short-
range magnetic correlations up to high temperatures. However, the behavior below
𝑇C is reminiscent of an order parameter, with a steep rise and subsequent transition
to a saturation value at lowest temperatures. A comparison of the spontaneous
strain to the intensity of the magnetic (1 0 1) Bragg peak as measured by neutron
diffraction [139] conĄrms its relation to the magnetic order parameter (Fig. 5.12). In
order to account for the different 𝑇C of the neutron diffraction and thermal expansion
data the temperature axes have been scaled. The evolution of the in-plane 𝜀⊥,,mag

coincides with the neutron intensity evolution over the whole temperature window
below 𝑇C, whereas for the 𝑐-axis the data do not overlap well below 40 K. This may
suggest an additional effect at low temperatures for the 𝑐-axis.

The spontaneous strain represents a secondary order parameter, in contrast to the
primary order parameter 𝑄 of a system. For a paramagnetic to ferromagnetic
transition the magnetization normalized to the saturation magnetization, 𝑀/𝑀S, is
an order parameter. The relationship between the spontaneous strain 𝜀 and 𝑄 may be
described by a Ginzburg-Landau expansion of the free energy density 𝐹 . Assuming
a coupling between the order parameter and the lattice strains enables to derive the
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Figure 5.12: Neutron intensity for the (1 0 1) Bragg peak in comparison to the
spontaneous strain 𝜀𝑖,mag = (𝑑𝐿𝑖/𝐿𝑖)mag in zero-field. Neutron intensities taken
from [139].

relationship between 𝜀 and 𝑄 in thermal equilibrium without external stress, i.e.,
from 𝜕𝐹/𝜕𝜀 = 0 (see, e.g., Ref. [172]). Here, 𝜀𝑖,mag evolves in the same manner as the
neutron scattering Bragg peak intensity. Since this intensity has been shown to follow
a ♣𝑇 ⊗ 𝑇C♣2Ñc-behavior near 𝑇C in both ferro- and antiferromagnetic systems [173,
174], the zero-Ąeld and 𝐵 > 0 data are Ątted with 𝜀𝑖,mag = 𝜀0 +𝐴 ≤ ♣𝑇 ⊗𝑇C♣2Ñc . Fits to
𝜀𝑖,mag in the vicinity of 𝑇C, from 57 K to 64 K, yield 2Ñc = 0.66(8) and 2Ñc = 0.67(8)
for the zero-Ąeld 𝑐-axis and in-plane data, respectively (Fig. 5.13). To obtain the
values 𝑇C was Ąxed to 65.3 K (𝑐-axis) and 64.7 K (in-plane) and values 0.4 K above
and below to observe the changes in the critical exponent. Furthermore, different
temperature windows were applied for the Ąts to test the resulting variation of Ñc.
The relatively large error bars reĆect these variations. 1

Strictly speaking the critical exponents as introduced in Sec. 1.2.2 are only valid in
zero-Ąeld. Nonetheless, in order to trace the evolution of Ñc in Ąeld, the spontaneous
strain for 𝐵 > 0 was Ątted in the same way as the zero-Ąeld data, for both 𝐵 ⊥ 𝑐
and 𝐵 ‖ 𝑐. The Ąts yield values of 0.65 < 2Ñc < 0.72 and 0.62 < 2Ñc < 0.68,
respectively, indicating that the phase transition does not change its nature in an
applied magnetic Ąeld. In Fig. 5.14(a) and (b) the resulting critical exponents are
displayed along with the exponents expected for different physical models (horizontal
dashed lines). For the 2D Ising model one would expect 2Ñc = 0.25, which is well
below the obtained values (Tab. 1.4). Due to the large error bars the physical

1 A fit to 𝜀𝑖,mag in a very large temperature window from 31.5 K to 64 K fields 2Ñc = 0.43, i.e.,
Ñc = 0.215. With the choice of a smaller window close to 𝑇C Ñc assumes higher values.
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Figure 5.13: Spontaneous strain 𝜀mag = (𝑑𝐿𝑖/𝐿𝑖)mag in zero-field. Vertical lines
indicate the temperature regime, 57 K to 64 K, used for the fits.

Figure 5.14: Critical exponents extracted from 𝜀𝑖,mag for (a) 𝐵 ⊥ 𝑐 and (b) 𝐵 ‖ 𝑐 as
described in the text. Horizontal dashed lines indicate the expectations for different
physical models.



114
Chapter 5 Dilatometric Studies of the Ferromagnetic Semiconducting Van der Waals

Compound Cr2Ge2Te6

model which applies for the ferromagnetic phase in Cr2Ge2Te6 cannot be determined
unambiguously from the critical behavior of the spontaneous strain near 𝑇C. However,
approximately the determined critical exponents lie closest to the value expected for
the three-dimensional Ising model.

As alluded to at the beginning of this section, the critical behavior around 𝑇C in
Cr2Ge2Te6 has been studied by different groups, mostly based on isothermal magne-
tization measurements. Tab. 5.1 presents an overview of these results. SigniĄcantly,
the experimentally-derived critical exponents vary widely. Results for the critical
exponent Ñc, which was also studied above, fall in the range 0.177 ⊘ Ñc ⊘ 0.35,
spanning the range of values close to the 2D Ising model (Ñc = 0.125) almost up to
the 3D Heisenberg model (Ñc = 0.365). Lin et al. considered that, due to its smaller
van der Waals gap and larger cleavage energy as compared to Cr2Si2Te6, Cr2Ge2Te6

may be close to a tricritical point, i.e., a change from second-order to Ąrst-order
behavior of the phase transition. This smaller van der Waals gap and larger cleavage
energy may lead to a transition from 2D to 3D magnetism [144]. Some authors
came to the conclusion that Cr2Ge2Te6 cannot be described by any single theory
model [145].

In contrast to arguments for 3D behavior in Cr2Ge2Te6, the presence of quasi-
2D magnetism in bulk Cr2Ge2Te6 has been supported by different experimental
techniques: On a microscopic level measurements of the angular dependence of
the electron spin resonance (ESR) linewidth suggest the intrinsic 2D nature of
magnetism [140] (Fig. 5.15). On the macroscopic level the small entropy related
to the peak in the speciĄc heat at 𝑇C of about 2 J/(mol K) has been interpreted
as an indication of 2D magnetism, with entropy shifted to higher temperatures
due to magnetic Ćuctuations [141]. The full magnetic entropy expected for an
𝑆 = 3/2 system would be about ten times higher, i.e., 𝑆mag = 2𝑅 ln (2 ≤ 3/2 + 1) =
23.05 J/(mol K). Furthermore, the Curie-Weiss temperatures observed for Cr2Ge2Te6

are well above 𝑇C, around 90 KŰ100 K [140, 141], whereas usually 𝛩CW & 𝑇C in
ferromagnets exhibiting three-dimensional magnetic order. This suppression of 𝑇C

has also been attributed to two-dimensional behavior [141].

In the isostructural compound Cr2Si2Te6 Cr spins exhibit a weak single-ion anisotropy,
on the order of 25ÛeV, originating from a small distortion of the surrounding Te
octahedra [147]. In this compound 2D-Ising behavior of the Cr spins was observed
with values of Ñc = 0.17[175] and more recently Ñc = 0.151(2) [147], along with
strong in-plane 2D correlations up to 300 K [147]. At the same time 3D magnetic
order below 𝑇C = 31 K was suggested, with results from inelastic neutron scattering
experiments pointing to Heisenberg-like spins [147]. Furthermore, a transition from
2D to 3D behavior was unveiled by high-multipole nonlinear optical polarimetry [176].
This transition was reported at 𝑇3D ≍ 60 K, whereas the onset of 2D correlations
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Table 5.1: Critical exponents determined from experiments on Cr2Ge2Te6 as reported
in different works. Abbreviations of the methods used to extract the exponents:
Modified Arrott plot (MAP), Kouvel-Fisher plot (KFP), critical isotherm (CI), relative
cooling power (RCP). 𝛥𝑆max

𝑀 is the maximum of the magnetic specific heat calculated
from magnetization measurements.
𝑎: First-principles calculations, exponent derived from calculated magnetization

Critical exponents from different works on Cr2Ge2Te6

Ref. Method TC (K) Ñc Ò Ó 𝑛 𝑙 𝑚
[144] MAP 67.9 0.242 0.985 5.07
[164] MAP 62.7 0.196 1.32 7.73
[164] KFP 62.7 0.2 1.28 7.4
[164] CI 62.7 7.96
[165] 𝛥𝑆max

𝑀 & RCP 66.4 0.177 1.746 10.869
[166] 𝛥𝑆max

𝑀 & RCP 65.6 0.61 1.21
[166] MAP 65.6 0.242 0.985 5.07
[166] KF 65.6 0.24 1 5.167
[145] äac 62.8 0.35 1.43 5.24
[167] 𝛥𝑆max

𝑀 & RCP 62.7 0.51 1.13 1.13
[167] MAP 62.7 0.196 1.32 7.7 0.47 1.13 1.135
[167] KF 62.7 0.2 1.28 7.4 0.46 1.135 1.129
[167] CI 62.7 7.73 1.129
[169] CI 65.5 0.221 1.42 7.29
[168] calc.𝑎 103 0.341

This work 𝜀mag 64.7 0.33

was observed already at around 𝑇2D ≍ 110 K, well below 𝑇C. Structural distortions
observed at 𝑇2D and 𝑇3D were attributed to ionic displacements along different totally
symmetric normal-mode coordinates, consistent with an onset of interlayer and
intralayer spin correlations, respectively [176]. It is surprising, then, that the critical
exponent exhibits a value corresponding to 2D Ising spins in a temperature range in
which 3D correlations are present.

A similar transition from 2D to 3D magnetism may very well also be present in
Cr2Ge2Te6. The spin correlations visible as an onset of magnetic strain (Fig. 5.13)
and a deviation from constant Grüneisen scaling (Fig. 5.5) around 200 K can then
be interpreted as signs of 2D spin correlations, whereas 3D correlations are expected
to evolve at lower temperatures. Where this transition from 2D to 3D behavior takes
place cannot be derived from the macroscopic measurements presented in this work.
Sensitive microscopic techniques such as NMR or high-multipole nonlinear optical
polarimetry will be required to answer this open question.
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Figure 5.16: Relative length changes 𝑑𝐿⊥(𝐵)/𝐿⊥ of Cr2Ge2Te6 at T ≡ 2 K. Inset:
Magnetostriction coefficient Ú⊥. Up- (down-) sweeps are marked by black (red) and
filled (open) symbols. Blue lines show a fit to 𝑑𝐿⊥(𝐵)/𝐿⊥ in low fields as indicated in
the plot.

approaches 𝑇C.

The magnetostriction for 𝐵 ‖ 𝑐 below 𝑇C is of opposite sign (Fig. 5.18(a) and (b)). In
conjunction with the isothermal magnetization data for 𝐵 ‖ 𝑐 (Fig. 5.18(c) and (d))
a number of observations can be made: (1) The magnetostriction is negative and a
continuous behavior is observed in 𝑑𝐿(𝐵) without any anomalies, i.e., there is no phase
transition up to 15 T. (2) As 𝑇 approaches 𝑇C the magnitude of magnetostriction also
rises strongly. (3) Around 𝑇C the magnetostriction shows a strong hysteresis between
up- and down-sweeps, which is not visible for 𝐵 ⊥ 𝑐 nor in the magnetization. The
absence of hysteresis in the magnetization data suggests a merely structural origin.
Considering the weak bonding of the van der Waals layers this hysteresis may arise
from small rearrangements of the van der Waals layers when the sample shrinks as
the magnetic Ąeld decreases. (4) The magnetic susceptibility 𝜕𝑀c/𝜕𝐵 (Fig. 5.18(d))
also rises strongly as the temperature approaches 𝑇C both from above and from
below. Note that the magnetic Ąeld of the magnetostriction data is not corrected
for the demagnetization Ąeld which would yields a shift of about ⊗0.2 T for 𝑇 < 𝑇C

(see Fig. 5.2).

Increasing the temperatures above 𝑇C leads to a gradual decrease of magnetostriction
for both 𝐵 ⊥ 𝑐 (Fig. 5.19(a) and (b)) and 𝐵 ‖ 𝑐 (Fig. 5.19(c) and (d)). The qualitative
behavior for the two directions is similar but again of opposite sign. Ú𝑖 reaches a
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Figure 5.17: (a) Magnetostriction 𝑑𝐿⊥/𝐿⊥, (b-c) magnetostriction coefficients Ú⊥, (d-
e) isothermal magnetization, and (f) magnetic susceptibility for different temperatures.
Solid (dashed) lines in (a) represent up- (down-)sweeps of magnetic field 𝐵 ⊥ 𝑐. The
inset in (a) shows magnetostriction up-sweeps at low fields between 2.3 K and 59 K.
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Figure 5.18: (a) Magnetostrictive length changes 𝑑𝐿c/𝐿c and (b) corresponding
magnetostriction coefficients (up-sweeps only) Úc at temperatures below 𝑇C. (c)
Isothermal magnetization and (d) magnetic susceptibility for different temperatures
below and above 𝑇C. Solid (dashed) lines in (a) represent up- (down-)sweeps of
magnetic field 𝐵 ‖ 𝑐. Insets in (b) and (d) show magnifications of the low-field region.

peak at low Ąelds and temperatures close to 𝑇C, i.e., at 70 K. This peak broadens
and shifts to higher Ąelds as temperature is increased. Two major differences are
visible between the in-plane and cross-plane directions: (a) The magnitude of 𝑑𝐿c(𝐵)
is larger by a factor of roughly 1.5 and (b) the hysteresis visible for 𝐵 ‖ 𝑐 up to
125 K is absent for 𝐵 ⊥ 𝑐.

Before turning to a quantitative analysis of the magnetostriction and magnetization
data, a qualitative conclusion concerning the magnetostriction in Cr2Ge2Te6 shall be
drawn. As shown in the theory section (Sec. 1.1.3), the magnetostriction coefficient
represents a measure for the pressure dependence of the magnetization 𝑀 at constant
temperature

Ú𝑖 = ⊗
𝜕𝑀𝑖

𝜕𝑝𝑖

⃒

⃒

⃒

⃒

T

. (5.4)
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Figure 5.19: Magnetostriction coefficients Ú𝑖 for different temperatures above 𝑇C

for (a) 𝐵 ⊥ 𝑐 and (b) 𝐵 ‖ 𝑐. Filled (open) symbols indicate up- (down-)sweeps of
the magnetic field. (c) and (d) show the corresponding relative length changes. Solid
(dashed) lines indicate up- (down-)sweeps.

The magnetostriction data show that uniaxial pressure along the 𝑐-axis leads to
an increase in magnetization 𝑀 ‖ 𝑐, whereas pressure applied perpendicular to
the 𝑐-axis and for 𝐵 > 𝐵c causes a decrease of the in-plane magnetization. At
temperatures below 𝑇C at magnetic Ąelds 𝐵 < 𝐵c in-plane stress also causes an
increase in magnetization, with a sign change of 𝜕𝑀⊥/𝜕𝑝⊥ at 𝐵c. As the temperature
rises towards 𝑇C the magnitude of the pressure dependence increases for both axes,
i.e., the magnetization becomes more susceptible to a change in pressure near 𝑇C.
This behavior is in line with the uniaxial pressure dependence of 𝑇C obtained in
the Grüneisen analysis above. The strongly negative dependence of 𝑇C for uniaxial
pressure applied along the in-plane direction leads to a shift of the paramagnetic
phase to lower temperatures, so a decrease in magnetization is expected. Analogously,
the phase boundary of the ferromagnetic phase shifts to higher temperatures for
𝑝 ‖ 𝑐, such that at a constant temperature magnetization is expected to increase
under uniaxial pressure. These Ąndings are in line with a strengthening (weakening)
of the uniaxial anisotropy constant for 𝑝 ‖ 𝑐 (𝑝 ⊥ 𝑐) as stated above.

A quantitative evaluation of the pressure dependence of the magnetization, or
equivalently the static magnetic susceptibility, shows pronounced peaks near 𝑇C,
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with values 𝜕 ln(ä𝑐)/𝜕𝑝𝑐 close to ∘1000%/GPa (Fig. 5.20). Furthermore, for 𝐵 ⊥ 𝑐
a strong rise in 𝜕 ln(ä⊥)/𝜕𝑝⊥ only occurs above 50 K.

Figure 5.20: Uniaxial pressure dependence of the static magnetic suscetibility,
𝜕 ln(ä𝑖)/𝜕𝑝𝑖, for (a) 𝐵 ‖ 𝑐 and (b) 𝐵 ⊥ 𝑐. Values up to 100 K were calculated from
the maximum value of Ú⊥ and the magnetization at the corresponding field. Values at
125 K and above were calculated from Ú𝑖 at 15 T and a linear extrapolation of the
isothermal magnetization up to this field.

From the quadratic-in-Ąeld behavior of the magnetostriction at low Ąelds a temperature-
dependent coupling constant 𝑎(𝑇 ) is obtained (Fig. 5.21). At 2 K it assumes a value
of ⊗1.87 ≤10⊗4/B2 and increases in magnitude as the temperature is increased towards
𝑇C, leading to a stronger magnetostriction effect at higher temperatures approaching
𝑇C, in line with the increase in the pressure dependence of the magnetization dis-
cussed in the previous section. Moreover, the isothermal magnetization also shows a
more rapid increase at low Ąelds as temperature is increased towards 𝑇C (Fig. 5.17(e)
and (f)). This behavior can be linked to the evolution of the effective uniaxial
anisotropy constant 𝐾U,eff with temperature [141, 162]. As temperature increases,
𝐾U,eff decreases and it becomes easier to rotate the magnetic moments towards the
in-plane direction. Hence the coupling constant 𝑎(𝑇 ) increases. It therefore seems to
be inversely linked to 𝐾U,eff .

To obtain the uniaxial pressure dependence of the critical Ąeld from the jumps in Ú⊥

and 𝜕𝑀/𝜕𝐵 an Ehrenfest-like relation can be applied:
(︂

𝜕Bc

𝜕𝑝⊥

)︂

T

=
𝛥Ú

𝛥
(︀

𝜕𝑀
𝜕𝐵

)︀

T

(5.5)

where 𝑝⊥ is the uniaxial pressure, 𝛥Ú the jump height in Ú at the transition,
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Figure 5.21: Coupling constant 𝑎(𝑇 ) extracted from square field dependence
𝑑𝐿⊥(𝐵)/𝐿⊥ = 𝑎(𝑇 ) ≤ 𝐵2 of the magnetostriction for 𝐵 ⊥ 𝑐 at low fields. Error bars at
low temperatures are about the size of the circles.

𝛥(𝜕M/𝜕B) the jump in the derivative of M(B) at 𝐵c.

The analysis yields a strong uniaxial pressure dependence of the critical magnetic
Ąeld of 𝜕𝐵c/𝜕𝑝⊥ = ⊗3.7(6) T/GPa. This value remains approximately constant up
to 60 K and implies that the low-temperature and high-Ąeld ferromagnetic phase is
stabilized under an applied pressure 𝑝 ⊥ 𝑐. Furthermore, uniaxial pressures 𝑝 ⊥ 𝑐 on
the order of 0.1 GPa are expected to be sufficient to suppress the low-temperature
phase completely . The negative sign of 𝜕𝐵c/𝜕𝑝⊥ is in line with 𝜕𝑀⊥/𝜕𝑝⊥ > 0 above
𝐵c and with 𝜕𝑀⊥/𝜕𝑝⊥ < 0 below 𝐵c. This also agrees to a weakening of the uniaxial
magnetic anisotropy along 𝑐. An overview of the extracted jump sizes and resulting
pressure dependencies is given in Tab. 5.2.

In the magnetostriction data short-range correlations up to 150 K are also visible.
Fig. 5.22 shows the high-temperature magnetostriction with a quadratic scaling of
the x-coordinate. A system in the fully paramagnetic regime should yield a quadratic
relationship 𝛥𝐿(𝐵)/𝐿 ≍ 𝐵2 [97]. In Fig. 5.22 non-quadratic behavior is still visible
at 149 K, indicating Ąnite short-range correlations, while at 199 K fully paramagnetic
behavior has set in.

In summary, the magnetostriction data in conjunction with measurements of the
isothermal magnetization provide valuable insights into the magnetoelastic coupling
in Cr2Ge2Te6. A rotation of the magnetic moments leads to the negative quadratic-
in-Ąeld magnetostriction for the in-plane direction, with a clear change in behavior
as the moments are fully aligned with the applied magnetic Ąeld. The temperature
dependence of the coupling correlates with the decrease of the effective uniaxial
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Table 5.2: Temperatures, jump sizes and resulting calculated pressure dependence of
𝐵𝑐 as well as change in bulk modulus 𝛥Ù derived from an Ehrenfest-like thermodynamic
analysis according to Eq. 5.5.

𝐵 ⊥ 𝑐: FM (𝑀∠𝐵) ⊃ FM (𝑀 ‖ 𝐵)
T 𝛥Ú⊥ T 𝛥(𝜕𝑀⊥/𝜕𝐵) (𝜕Bc/𝜕p)T

(K) (10⊗5/T) (K) (ÛB/Cr) (T/GPa)
Ú⊥ 𝑀(𝐵)

2.25 19.3 2.2 Ű4.62 Ű3.7(6)
5.1 18.7 5 Ű4.60 Ű3.6(6)
10.0 19.0 10 Ű4.51 Ű3.8(6)
19.8 18.6 20 Ű4.49 Ű3.7(6)
29.7 17.9 30 Ű4.65 Ű3.5(5)
39.7 18.7 40 Ű4.82 Ű3.3(5)
49.6 24.1 50 Ű5.21 Ű3.2(5)
59.3 27.8 60 Ű5.42 Ű4.0(6)

anisotropy constant 𝐾U,eff . Lastly, the derived uniaxial pressure dependence of the
magnetization is strongly enhanced near 𝑇C, in agreement with the large uniaxial
pressure dependence of 𝑇C.

Figure 5.22: Magnetostriction 𝑑𝐿/𝐿 at 100 K and above with a quadratic scaling of
the x-coordinate. Dashed lines indicate linear fits in the range from 11 T to 15 T.
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5.3.3 Phase Diagrams

Thermal expansion, magnetostriction and magnetization data presented above are
used to construct the magnetic 𝐵 vs. 𝑇 phase diagrams for 𝐵 ‖ 𝑐 and 𝐵 ⊥ 𝑐 (Fig. 5.23).
Overall trends in the phase diagram are visualized by color coding obtained from
the magnetic contribution to the thermal expansion (𝐵 ‖ 𝑐, Fig. 5.23(a)) and the
magnetostriction coefficients Ú⊥ (𝐵 ⊥ 𝑐, Fig. 5.23(b)) while extrema in Ð and Ú are
used to show the Ąeld and temperature dependencies of thermodynamic anomalies.

For 𝐵 ‖ 𝑐 only a single phase transition, separating the paramagnetic (PM) high-
temperature and ferromagnetic (FM) low-temperature phase is seen (Fig. 5.23(a)).
The peaks in Ðc (for low Ąelds see Fig. 5.7(c)) mark the transition temperature (black
triangles). Positions of the broad peaks in Úc, which display a small hysteresis, are
also shown (smaller red triangles). These peaks in Úc signal a change of bending
of the 𝑑𝐿(𝐵) curves from right- to left-bending and are attributed to the crossover
from para- to ferromagnetism. A horizontal red arrow in Fig. 5.23(a) visualizes the
effect of uniaxial pressure 𝑝 ‖ 𝑐 on the phase boundary, i.e., a stabilization of the
low-temperature ferromagnetic phase. The pressure dependence of the magnetization
is also indicated for the FM and PM phase.

For the in-plane direction an additional phase is seen in the magnetization and
magnetostriction measurements. The magnetic Ąelds corresponding to half the
jump height in Ú⊥ and 𝜕𝑀⊥/𝜕𝐵⊥ are marked in Fig. 5.23(b) by brown triangles
and red diamonds, respectively. Upwards- (downwards-)pointing triangles signal
magnetostriction up- (down-)sweeps. Black triangles again mark the peaks in Ð⊥, as
shown for low Ąelds in Fig. 5.7(d). The low-Ąeld phase has been described by Selter
et al. as a phase where the magnetic moment initially points along the 𝑐-axis, i.e.,
along the direction of the uniaxial anisotropy, and is rotated gradually towards the
direction of the applied Ąeld as 𝐵 increases [141]. The phase transition at 0.44 T
(2 K) then marks the saturation Ąeld. As shown above and illustrated by the red
arrows in Fig. 5.23(b) uniaxial pressure 𝑝 ⊥ 𝑐 suppresses 𝑇C and 𝐵c, destabilizing
the low-Ąeld FM phase with respect to the PM and high-Ąeld FM phases. The phase
diagrams presented here agree with those presented by Selter et al. from speciĄc heat
and 𝑀(𝑇 ) measurements [141].
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Figure 5.23: Magnetic phase diagram for (a) 𝐵 ‖ 𝑐 and (b) 𝐵 ⊥ 𝑐. Colors in
(a) show Ðc,mag, in (b) Ú⊥. Symbols show anomalies detected in thermal expansion,
magnetostriction and magnetization as described in the text. Red arrows indicate the
uniaxial pressure dependence of the transition temperature or critical field for 𝑝 ‖ 𝐵.
The uniaxial pressure dependence of the static magnetic susceptibility is also indicated.
Grey lines are contour lines.



126
Chapter 5 Dilatometric Studies of the Ferromagnetic Semiconducting Van der Waals

Compound Cr2Ge2Te6

5.4 Conclusion

The quasi-2D layered van der Waals compound Cr2Ge2Te6 has been studied by high-
resolution thermal expansion and magnetostriction, supported by magnetization and
speciĄc heat measurements. The Grüneisen parameter in zero-Ąeld reveals correlations
up to 200 K, which are interpreted as a sign of 2D spin correlations. Such correlations
have also been observed in related layered van der Waals compounds. A Grüneisen
analysis uncovers large uniaxial pressure dependencies of opposite sign, 𝜕𝑇C/𝜕𝑝c =
74 K/GPa and 𝜕𝑇C/𝜕𝑝⊥ = ⊗45 K/GPa, and a moderate initial hydrostatic pressure
dependence 𝑑𝑇/𝑑𝑝𝑝⊃0 = ⊗16 K/GPa. An analysis of the critical scaling in the
vicinity of 𝑇C tentatively suggests a one-dimensional order parameter, i.e., 2D or
3D Ising spins. Applying a magnetic Ąeld of 15 T yields a strong enhancement of
𝑇C and Ąeld effects up to high temperatures of about 200 K. For Ąelds 𝐵 ⊥ 𝑐 a
negative quadratic-in-Ąeld magnetostriction is observed in the low-temperature and
low-Ąeld phase. The coupling constant of this behavior correlates with the observed
decrease of the effective uniaxial magnetic anisotropy constant. A calculation of
the pressure dependence of the critical Ąeld from thermodynamic relations shows
that the high-Ąeld phase is stabilized under pressure 𝑝 ⊥ 𝑐. Furthermore, Cr2Ge2Te6

exhibits a very large effect of pressure on the static magnetic susceptibility near 𝑇C.
This is in agreement with the strong effect of uniaxial pressure on 𝑇C.

A possible explanation of the derived pressure dependencies is an enhancement
(weakening) of the uniaxial magnetic anisotropy for uniaxial pressure applied along
the stacking direction (𝑎𝑏-plane) of the van der Waals layers.

The large pressure effects and quasi-2D nature of magnetism in Cr2Ge2Te6 present an
intriguing playground for Cr2Ge2Te6-based technological applications, bringing into
reach room-temperature ferromagnetism in 2D materials. Chemically engineering this
material holds the promise of expanding the toolkit of the semiconductor industry
by adding the functionalities of intrinsic magnetism.
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Summary

In this work high-resolution thermal expansion and magnetostriction measurements
on the correlated electron systems Gd2PdSi3, Cu3Bi(SeO3)2O2Cl, and Cr2Ge2Te6

are presented. The investigated temperature window spans from 1.8 K to 300 K and
magnetic Ąelds up to 15 T are applied. The thermal expansion and magnetostriction
are measured using a capacitive dilatometry setup which measures the absolute value
of the capacitance with a resolution of 10⊗6 pF. This allows the detection of relative
length changes on the order of 𝛥𝐿/𝐿 ≡ 10⊗8 to 10⊗9, well below the resolution
of X-ray or neutron diffraction techniques. In combination with magnetization
and speciĄc heat measurements both magnetic and structural phase transitions are
investigated.

In the skyrmion-hosting intermetallic Gd2PdSi3 large spins of 𝑆 = 7/2 are arranged
on a triangular lattice. A delicate interplay of indirect exchange coupling mediated
by the conduction electrons, i.e., the Rudermann-Kittel-Kasuya-Yosida (RKKY)
interaction, dipole-dipole interactions and geometric frustration leads to complex
incommensurate spin arrangements and the competition between nearly degenerate
phases. A positive Curie-Weiss temperature and at the same time antiferromagnetic
order are further signs of the strong competition between ferromagnetic and antifer-
romagnetic interactions in Gd2PdSi3, which result in a complex phase diagram. One
of these phases is a Ąeld-induced skyrmion lattice phase, one of the Ąrst skyrmion
phases found on a centrosymmetric lattice where Dzyaloshinskii-Moriya interactions
are absent and other competing interactions are at the basis of the canted spin
arrangement. Thermal expansion measurements of Gd2PdSi3 show magnetoelastic
effects associated with incommensurate antiferromagnetic order at TN1 = 22.3 K
and TN2 = 19.7 K, conĄrming the presence of two phase transitions around 20 K.
Moreover, Grüneisen scaling unveils the evolution of an additional competing energy
scale at 𝑇* which was not seen in previous studies of this material. The nature of this
weak phase transition can not be determined from thermodynamic measurements,
but its presence is conĄrmed by measurements of the static magnetic susceptibility,
although the signatures are weak. Detailed neutron diffraction and inelastic neutron
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scattering studies, or other microscopic measurements of similar sensitivity, will be
necessary to further elucidate the nature of the changes at 𝑇*. Besides the changes at
𝑇*, a Grüneisen analysis shows the onset of magnetic correlations around 60 K, well
above 𝑇N, and a weak uniaxial pressure dependence of the transition temperatures,
𝜕𝑇N,1/𝜕𝑝c = ⊗1.3 K/GPa and 𝜕𝑇N,1/𝜕𝑝a∗ = 0.3 K/GPa. In an applied magnetic
Ąeld the correlation region extends signiĄcantly and strong Ąeld effects on the lattice
are visible up to 200 K (150 K) for 𝐵 ‖ 𝑐 (𝐵 ‖ 𝑎*, i.e. 𝐵 ⊥ 𝑐). The phase transitions
show pronounced anomalies in the magnetostriction coefficient for 𝐵 ‖ 𝑐, whereas
they are much weaker and less well-deĄned for 𝐵 ‖ 𝑎*. It was previously believed
that the IC-2 phase in Gd2PdSi3 extends to zero-Ąeld between TN1 and TN2. In
contrast, magnetization and magnetostriction measurements signal the presence of
an additional phase boundary which separates the small pocket between TN1 and TN2

from the IC-2 phase, although their spin arrangements may be very similar. Analyz-
ing the thermodynamic properties of the phase boundaries surrounding the skyrmion
lattice phase shows that this phase is strongly enhanced by uniaxial pressure, similar
to results for other skyrmion phases such as in Cu2OSeO3 and MnSi.

The physics of the multiferroic buckled-Kagomé francisite Cu3Bi(SeO3)2O2Cl (CB-
SCl) is very different from Gd2PdSi3. Not only is it an insulator, such that there are
no mechanisms involving interactions with conduction electrons, but in contrast to
the nearly isotropic Gd spins, the Cu 𝑆 = 1/2 spins show highly anisotropic behavior
at low temperatures. In zero-Ąeld two phase transitions are detected by thermal
expansion measurements between 2 K and 300 K: A structural phase transition
at 𝑇S = 120.7(5) K, with critical exponents of 2Ñ = 0.71(2) at 𝑇S for the 𝑎- and
𝑐-axis as well as 0.77(2) for the 𝑏-axis, and an antiferromagnetic phase transition at
𝑇N = 26.4(3) K. The structural phase transition is unique to CBSCl among the fran-
cisites, owing to the small Cl ions which can move easily in the hexagonal channels
in the lattice in contrast to bigger Br and I halide ions in other francisite compounds.
The nature of this structural phase transition, a cooperative displacement of Cu and
Cl ions introducing an antiferroelectric phase, is well studied both experimentally
and from theoretical calculations. Grüneisen analysis reveals a large uniaxial pressure
dependence of 𝑇S, with 𝜕𝑇S/𝜕𝑝a = ⊗19(6) K/GPa, 𝜕𝑇S/𝜕𝑝b = ⊗5.7(1.1) K/GPa,
and 𝜕𝑇S/𝜕𝑝c = 27(3) K/GPa, in contrast to a moderate hydrostatic pressure de-
pendence of 𝑑𝑇S/𝑑𝑝 = 2.3(1.5) K/GPa. For the antiferromagnetic transition at
𝑇N = 26.4 K, critical exponents of Ñ = 0.35(4) (𝑏- and 𝑐-axis) and Ñ = 0.38(3)
(𝑎-axis), are obtained for power-law Ąts to the spontaneous strain, in the range
of the 3D XY and 3D Heisenberg models, suggesting a three-dimensional order
parameter and lattice dimensionality, 𝑑 = 3 and 𝐷 = 3. Uniaxial and hydrostatic
pressure dependencies of 𝑇N and the critical Ąeld, as well as the change in entropy
at the antiferromagnetic (AFM) to ferromagnetic (FM)/paramagnetic (PM) phase
boundaries for 𝐵 ‖ 𝑐, are derived from thermodynamic relations. The analysis shows
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that the AFM phase is stabilized for uniaxial pressure 𝑝 ‖ 𝑐, 𝑎 whereas 𝑝 ‖ 𝑏 stabilizes
the PM phase. From magnetization measurements the magnetic phase diagrams
for the 𝑎- and 𝑏-axis are constructed. Critical Ąelds of 𝐵c,a = 20.6 T (obtained by
extrapolation) and 𝐵c,b = 7.1 are observed at 2 K, slightly higher than previous
calculations. The low-Ąeld AFM phase for 𝐵 ‖ 𝑐 is especially interesting, holding
the potential for technological applications which use the broadband absorption
discovered in the phase transition window. Applying of a magnetic Ąeld 𝐵 ‖ 𝑐
triggers the metamagnetic transition, a spin-Ćip of the antiferromagnetic layers to a
ferromagnetic alignment, at a small critical Ąeld 𝐵c,c = 0.8 T. The transition region
exhibits a mixed phase behavior above 0.4 T, analogous to the related francisite
Cu3Bi(SeO3)2O2Br. In the mixed phase, a linear increase is observed in the magne-
tization 𝑀(𝐵) and magnetostriction 𝑑𝐿(𝐵), i.e., a linear magnetoelastic coupling is
present for 𝐵 ‖ 𝑐. Different theoretical calculations have shown that many of the
aspects of the magnetism in Cu3Bi(SeO3)2O2Cl are well understood, e.g., observed
spin-wave excitations have been modelled successfully. The present work adds a
detailed high-resolution study of the lattice changes in CBSCl, in zero-temperature
and especially in an applied magnetic Ąeld. The magnetic phase diagrams in the
𝑎𝑏-plane have not been reported previously and the thermodynamic analysis provides
insights into the effects of uniaxial pressure on the phase boundaries of CBSCl which
had been missing to this point.

The quasi-two-dimensional (2D) layered van der Waals compound Cr2Ge2Te6 is in
the focus of much current research due to the discovery that it retains ferromag-
netism down to the bilayer. In the bulk form it is a ferromagnetic semiconductor
with 𝑇C ≡ 65 K and promising both for investigating fundamental physics such as
two-dimensional excitations, and for novel technological applications. The magne-
tocrystalline anisotropy in quasi-2D materials is also of great interest to the scientiĄc
community, for if it can be controlled purposefully, transition temperatures can be
engineered and large-scale technological applications are within reach. Zero-Ąeld
thermal expansion measurements of Cr2Ge2Te6 reveal magnetic contributions to
the thermal expansion up to 200 K. Results from Electron Spin Resonance exper-
iments on Cr2Ge2Te6 have shown deviations from paramagnetic behavior up to
about 150 K before. Similar correlations have also been observed in related layered
van der Waals compounds, and are interpreted as a sign of short-range 2D spin
correlations up to high temperatures. An analysis of the critical behavior in the
vicinity of 𝑇C tentatively suggests a one-dimensional order parameter, i.e., 2D or
3D Ising spins, with a logarithmic divergence of Ð𝑖. However, the critical exponents
have to be taken with caution, because they show large error bars and a clear
distinction between the exponents for Ising, XY, and Heisenberg models is not
possible. Importantly, Cr2Ge2Te6 shows very large effects of uniaxial pressure on 𝑇C.
A Grüneisen analysis yields 𝜕𝑇C/𝜕𝑝c = 74 K/GPa and 𝜕𝑇C/𝜕𝑝⊥ = ⊗45 K/GPa, i.e.,
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a strong enhancement for pressure perpendicular to the van der Waals layers, and a
strong suppression of 𝑇C for in-plane stress. A moderate initial hydrostatic pressure
dependence 𝑑𝑇/𝑑𝑝𝑝⊃0 = ⊗16 K/GPa is in line with other reports. Applying a large
magnetic Ąeld of 15 T yields a strong enhancement of 𝑇C and Ąeld effects on the
lattice up to high temperatures of about 200 K for both the cross-plane and in-plane
directions. For Ąelds 𝐵 ⊥ 𝑐 a negative quadratic-in-Ąeld magnetostriction is observed
in the low-temperature and low-Ąeld phase, with an increasingly negative coupling
constant as the temperature is increased towards 𝑇C. The pressure dependence
of the critical Ąeld is calculated and shows that the high-Ąeld phase is stabilized
under pressure 𝑝 ⊥ 𝑐. Furthermore, the pressure dependence of the static magnetic
susceptibility near 𝑇C is found to be very large as a result of the large uniaxial
pressure dependence of 𝑇C itself. The derived pressure dependencies can be explained
by an enhancement of the uniaxial magnetic anisotropy for uniaxial pressure applied
along the stacking-direction of van der Waals layers. Uniaxial pressure along the
𝑎𝑏-plane, in contrast, weakens the uniaxial magnetic anisotropy. The large pressure
effects and quasi-2D nature of magnetism in Cr2Ge2Te6 present an intriguing play-
ground for Cr2Ge2Te6-based technological applications, bringing room temperature
ferromagnetism in 2D materials into reach. For further investigations of a possible
transition from 2D to 3D behavior in Cr2Ge2Te6 measurements using highly sensitive
microscopic techniques such as the high-multipole nonlinear optical polarimetry used
on Cr2Si2Te6 will be necessary.

The electronic properties of the three compounds investigated in this work, a metal,
a semiconductor and an insulator, are extremely different. What joins them, however,
are the presence of spin-lattice coupling and critical phenomena at continuous phase
transitions as well as the competition between different degrees of freedom. The
thermodynamic methods applied in this work reveal these competing interactions
as well as the effects of pressure on the different phases, especially by analyzing
the Grüneisen parameter of the different systems. The unparalleled resolution
of capacitance dilatometry thereby proves valuable in detecting even weak phase
transitions and analyzing critical behavior.
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A Mini-Dilatometer Reference Measurements

Fig. A.1 shows thermal expansion reference measurements for the mini-dilatometer
on high-purity aluminum samples. Copper samples for cell effect measurements were
of similar lengths (1.016 mm and 1.993 mm) as the aluminum samples (1.080 mm,
1.913 mm, and 1.992 mm). Related measurements were performed within few days
up to at most three months. Reference measurements for the standard-dilatometer
are shown in Ref. [177].

Figure A.1: Selected thermal expansion reference measurements on high-purity
aluminum of different lengths in comparison to Ref. [50]. (a) Relative length changes
𝛥𝐿/𝐿 and (b) thermal expansion coefficient Ð. Insets in (a) and (b) show absolute
and relative deviations from (𝛥𝐿/𝐿)lit and Ðlit, respectively.
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B Cu3Bi(SeO3)2O2Cl: Additional Figures

B.1 Critical Scaling at 𝑇S: Background Subtraction

Figure B.1: (a-c) Different background fits to the 𝑑𝐿𝑖/𝐿𝑖 data and (d-f) resulting
spontaneous strain in Cu3Bi(SeO3)2O2Cl around 𝑇S.
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148 B Cu3Bi(SeO3)2O2Cl: Additional Figures

B.2 In-Plane Thermal Expansion for 𝐵 ̸= 0

Figure B.2: (a) Thermal expansion coefficient and (b) relative length changes of
Cu3Bi(SeO3)2O2Cl for 𝐵 ‖ 𝑎 at low temperatures and in fields up to 15 T. Vertical
lines indicate 𝛥𝐿(𝐵) from 0 T to 7 T obtained from magnetostriction sweeps.
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Figure B.3: (a) Thermal expansion coefficient and (b) relative length changes of
Cu3Bi(SeO3)2O2Cl for 𝐵 ‖ 𝑏 at low temperatures and in fields up to 15 T. Vertical
lines indicate 𝛥𝐿(𝐵) from 0 T to 2 T (blue), 5 T (brown) and 15 T (light green)
obtained from magnetostriction sweeps.
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B.3 In-Plane Magnetostriction

Figure B.4: (a-b) Magnetostrictive length changes 𝑑𝐿(𝐵)/𝐿(0) and (c-d) magne-
tostriction coefficient (c-d) of Cu3Bi(SeO3)2O2Cl for 𝐵 ‖ 𝑎 (a, c) and 𝐵 ‖ 𝑏 (b, d) at
temperatures up to 50 K. Closed (open) symbols signify up- (down-)sweeps.
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Figure B.5: (a) Magnetostrictive length changes 𝑑𝐿(𝐵)/𝐿(0) and (b) magnetostric-
tion coefficients of Cu3Bi(SeO3)2O2Cl for 𝐵 ‖ 𝑏 at temperatures above 𝑇N. Closed
(open) symbols signify up- (down-)sweeps.





C Cr2Ge2Te6: Additional Figures

C.1 Zero-Field Thermal Expansion – Mini-Dilatometer Data

Since measurements in applied magnetic Ąeld were only performed in the standard-
dilatometer, thermal expansion data shown in the chapter on Cr2Ge2Te6 (Ch. 5) are
mainly from this dilatometer. However, zero-Ąeld thermal expansion measurements
in the mini-dilatometer were of better quality, especially for the 𝑐-axis. These data
are shown in Fig. C.1 in comparison to the standard-dilatometer zero-Ąeld data. The
mini-dilatometer data set was used for the Grüneisen ratio 𝛤𝑖 in Fig. 5.5.

Figure C.1: Comparison of (a) thermal expansion coefficient and (b) relative length
changes of Cr2Ge2Te6 in zero-field as measured in the standard-dilatometer (closed
circles in (a)) and the mini-dilatometer (open circles in (a)) on different samples.

C.2 Critical Scaling: ÛÐmag𝑇

Logarithmic Ąts to the scaled magnetic contribution of the zero-Ąeld thermal expan-
sion coefficient Ö𝑖Ð𝑖,mag𝑇 are shown in Fig. C.2. Fit parameters are indicated in the
graph. The data underscore the large temperature regime of logarithmic behavior
already seen in Fig. 5.10.
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154 C Cr2Ge2Te6: Additional Figures

Figure C.2: Logarithmic fits to the scaled magnetic contribution of the zero-field
thermal expansion coefficient Ö𝑖Ð𝑖,mag𝑇 of Cr2Ge2Te6.

C.3 Critical Scaling: Critical Fits to Ð𝑖,mag

Fig. C.3 shows the spontaneous strain 𝜀mag in magnetic Ąelds 𝐵 ⊙ 0 for both 𝐵 ‖ 𝑐
and 𝐵 ⊥ 𝑐 along with critical Ąts 𝜀𝑖,mag = 𝜀0 + 𝐴 ≤ ♣𝑇 ⊗ 𝑇C♣2Ñc . Critical exponents Ñc

resulting from the Ąts are shown in Fig. 5.14.

Figure C.3: Spontaneous strain 𝜀mag of Cr2Ge2Te6 in magnetic fields 𝐵 ⊙ 0 for (a)
𝐵 ‖ 𝑐 and (b) 𝐵 ⊥ 𝑐.
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C.4 Universal Scaling of Ðmag

A study of the magnetic entropy 𝛥𝑆M(𝑇,𝐵) of Cr2Ge2Te6 by Sun and Luo showed
that under different magnetic Ąelds up to 4.5 T 𝛥𝑆M(𝑇,𝐵) can be scaled into a single
curve independent of external Ąeld and temperature [166]. Such scaling behavior for
continuous phase transitions has been observed experimentally in a wide range of
materials and the limits of scaling, independent of the applied physical model such
as a mean-Ąeld or 3D Ising model, were recently studied [178].

A similar scaling behavior as for the magnetic entropy can also be observed for the
magnetic contribution to the thermal expansion coefficient (Fig. C.4 and Fig. C.5).
For this purpose the Ð𝑖,mag data at different Ąelds are normalized to their respec-
tive peak value. Furthermore, the temperature above and below 𝑇C is re-scaled
independently:

𝜃 =

⎧

⎨

⎩

𝑇C⊗𝑇
𝑇𝑟1⊗𝑇C

, 𝑇 ⊘ 𝑇C

𝑇 ⊗𝑇C

𝑇𝑟2⊗𝑇C

, 𝑇 ⊙ 𝑇C

where 𝑇𝑟1 and 𝑇𝑟2 are scaling constants and in general arbitrary. For 𝐵 ‖ 𝑐 the data
were scaled to the data at 0.2 T, i.e., 𝑇𝑟1(0.2 𝑇 ) = 0 and 𝑇𝑟2(0.2 𝑇 ) = 0, whereas
data for 𝐵 ⊥ 𝑐 are normalized to the zero-Ąeld data. The zero-Ąeld data for both
axes shows a much enhanced peak and was therefore not normalized to its peak
value, but in a way to match with the data in applied magnetic Ąeld. Data from
0.5 T to 15 T for 𝐵 ‖ 𝑐 can be scaled very well for 𝑇 < 𝑇C and up to about 𝛩 = 0.07
for 𝑇 > 𝑇C (Fig. C.4(a)). For 𝐵 ⊥ 𝑐 data in the same Ąeld range scale well from
about 𝛩 = ⊗0.08 to 𝛩 = 0.06 (Fig. C.4(c)). 𝑇𝑟1 and 𝑇𝑟2 show a similar behavior as
𝑇𝑟1 and 𝑇𝑟2 for the magnetic entropy in [166].
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Figure C.4: Universal scaling behavior of Ð𝑖,mag in Cr2Ge2Te6 with scaling constants
𝑇r1 and 𝑇r2 for (a,b) 𝐵 ‖ 𝑐 and (c,d) 𝐵 ⊥ 𝑐.

Figure C.5: Universal scaling behavior of Ð𝑖,mag in Cr2Ge2Te6 at low magnetic fields.



Acknowledgments

At this point I want to extend my thanks to the large number of people who made
this work possible.

First and foremost I want to thank Prof. Dr. Rüdiger Klingeler who gave me the
opportunity to work on these interesting materials. Thank you for your open door,
the many enlightening discussions, and the helpful feedback on my work. I enjoyed
learning from the way you think about experimental results and integrating your
approaches into my own thinking. Thank you for your support, your trust and your
honesty.

My gratitude also goes to Prof. Dr. Maurits Haverkort for taking on the role of
second referee.

I want to thank Dr. Wolfgang Löser, Prof. Dr. Alexander Vasiliev, and Dr. Saicha-
ran Aswartham for providing the Gd2PdSi3, Cu3Bi(SeO3)2O2Cl, and Cr2Ge2Te6

samples, respectively. I thank Dr. Matthias Frontzek for discussions on Gd2PdSi3
and Dr. Saicharan Aswartham for his feedback on the Cr2Ge2Te6 chapter.

Many people helped to proofread and improve what has been written in these pages.
I want to thank Jan Arneth and Lukas Gries for the effort they put into reading
through the whole thesis to Ąnd spelling errors, repetitions and hard to read sentences.
A thanks goes to Marco Hoffmann for proofreading the experimental methods part,
as well as to Ahmed Elghandour and Kaustav Dey for a Ąnal proofreading of the
Gd2PdSi3 manuscript. I especially thank Martin Jonak for meticulously correcting
the Cu3Bi(SeO3)2O2Cl and Cr2Ge2Te6 chapters and giving ideas on how to improve
the wording. My gratitude extends to all of you for putting your time and efforts
into helping me succeed. You have been great colleagues over the past years. This
also includes Dr. Changhyun Koo, Dr. Liran Wang, Dr. Johannes Werner, Dr. Sven
Sauerland, Waldemar Hergett, Lena Spillecke, Lennart Singer and the rest of present
or past members of F25. Each one of you made our work group what it is with its
spirit of support and encouragement. It was my pleasure to work alongside you and
to have one or the other chat in between my often quite focused work. Thank you
especially to Dr. Liran Wang and Dr. Sven Sauerland for teaching me how to do
thermal expansion measurements and helping me with my Ąrst measurements.

Our experiments would not be possible had we not a constant supply of helium as
well as one or the other new part from the precision mechanics workshop. Thank

157



158

you to Rudi Eitel for keeping the liqueĄer running and Werner Lamade, Julia Bing,
and Christian Herdt for the support with new hardware, ranging from precisely cut
Cu samples for calibration measurements to the many pieces of our new zero-Ąeld
dilatometry setup.

My gratitude also goes to those who work (or worked) mostly in the background
here at the Kirchhoff Institute and our graduate school, the HGSFP, to provide
the environment for our scientiĄc work, both in administration and IT. As repre-
sentatives for many others I want to thank Dr. Harald Jacobsen, Dr. Robert Weis,
apl. Prof. Sandra Klevansky, Beatrice Schwöbel, Corina Müller, and Jessica Bender
for their direct or indirect support.

I had the pleasure to supervise Marco Hoffmann, Rahel Ohlendorf, Lukas Fischer,
Lukas Gries and Jan Arneth for their bachelor and master theses. It was my joy and
honor to walk through this part of your life with you and see you grow. Thank you
for your willingness to learn and to let me teach you what I could.

Martin Jonak and Marco Hoffmann, I very much appreciate your friendship and I
will not forget the intense weeks we lived through together at the EMFL facilities in
Nijmegen and Dresden-Rossendorf.

Finally, on a more personal and emotional level: There are many more people who
are not directly connected to this work, but whose friendship, encouragement and
correction have shaped who I am, how I think and how I live. You also have part
in this work and its success. I might not name you here, because the list would be
fairly long, but still: thank you for your friendship! So to name but a few:

Thank you Jürgen and Sabine Spachmann, my dear parents, for your unceasing
support and love. Your generosity is overwhelming and I am deeply grateful for who
you are.

Thank you Matthias Keller, my mentor, for the wisdom and understanding you
have shared with me over the past four years Ű and also for celebrating my scientiĄc
successes with me. Your guidance has already had a lasting effect on my thinking
and I am looking forward to what is to come.

A thanks to my Ćat mates Aaron Bürger and Florian Friedrich. Our Ćat was a
place of rest and joy for me. Thank you for your friendship, the brief or longer
conversations, games nights and more.

And then there is one person who made many processes during the last one and
a half years of this work feel much lighter and easier than they would have been
otherwise. Rebekka Neumann, my Ąancée, even though we were often separated by
the much too large distance between Heidelberg and Berlin, your love and support
have been invaluable to me over the past months. Thank you. I love you.



159

And last but not least: My deepest gratitude goes to the God I love and honor.
The one who is love and life. My hope and peace, my strength and shield, in many
situations when I was troubled or insecure. And my joy whenever I count the many
blessings in my life.

Soli deo gloria.


	Table of Contents
	1 Theory
	1.1 Thermodynamic Background
	1.1.1 Thermodynamic Potentials
	1.1.2 Maxwell Relations
	1.1.3 Response Functions
	1.1.4 Grüneisen Parameters

	1.2 Phase Transitions
	1.2.1 Classifications of Phase Transitions
	1.2.2 Critical Exponents
	1.2.3 Clausius-Clapeyron and Ehrenfest Relations


	2 Experimental Methods and Setup
	2.1 High-Resolution Capacitance Dilatometry
	2.1.1 Measurement Principle
	2.1.2 Dilatometers: Cell Design
	2.1.3 Experimental Setup
	2.1.4 Cell-Effect: Calibration of a Dilatometer
	2.1.5 Sample Mounting and Applied Pressure
	2.1.6 Measurement Routine

	2.2 Magnetization and Specific Heat Measurements

	3 Magnetoelastic Coupling in the Skyrmion Lattice Magnet Gd2PdSi3
	3.1 Introduction
	3.2 Experimental Methods
	3.3 Experimental Results
	3.3.1 Evolution of Magnetic Order at B=0
	3.3.2 Thermal Expansion at B = 0 and Magnetostriction

	3.4 Discussion
	3.5 Conclusions

	4 Magnetoelastic Coupling and Phase Diagram of the Buckled-Kagomé Antiferromagnet Cu3Bi(SeO3)2O2Cl
	4.1 Introduction
	4.2 Experimental Methods
	4.3 Results and Discussion
	4.3.1 Thermal Expansion at B = 0
	The Antiferromagnetic Transition at TN
	The Antiferromagnetic Transition at TN: Critical Scaling
	The Structural Phase Transition

	4.3.2 Thermal Expansion and Magnetostriction at B = 0
	Bc: Field-Induced Mixed Phase Behavior
	Bc: Linear Magnetoelastic Coupling
	Quantitative Analysis of the Phase Boundaries for Bc
	a- & b-axis: In-Field Thermal Expansion
	Excitations in the Long-Range Ordered Phase

	4.3.3 Magnetization Measurements
	4.3.4 Phase Diagrams

	4.4 Conclusion

	5 Dilatometric Studies of the Ferromagnetic Semiconducting Van der Waals Compound Cr2Ge2Te6
	5.1 Introduction
	5.2 Experimental Details
	5.3 Results and Discussion
	5.3.1 Thermal Expansion
	Zero-field
	High-Field Behavior at B = 15 T
	Grüneisen Scaling and High-Temperature Correlations at B = 0
	Magnetic Contributions to the Thermal Expansion for B > 0
	Critical Scaling Analysis

	5.3.2 Magnetostriction and Magnetization
	5.3.3 Phase Diagrams

	5.4 Conclusion

	6 Summary
	List of Publications
	Bibliography
	Appendix
	A Mini-Dilatometer Reference Measurements
	B Cu3Bi(SeO3)2O2Cl: Additional Figures
	B.1 Critical Scaling at TS: Background Subtraction
	B.2 In-Plane Thermal Expansion for B =0
	B.3 In-Plane Magnetostriction

	C Cr2Ge2Te6: Additional Figures
	C.1 Zero-Field Thermal Expansion – Mini-Dilatometer Data
	C.2 Critical Scaling: magT
	C.3 Critical Scaling: Critical Fits to i,mag
	C.4 Universal Scaling of mag



