
Dissertation

submitted to the

Combined Faculty of Natural Sciences and

Mathematics

of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Fabian Klos

born in: Filderstadt, Germany

Oral examination: June 24, 2021





Embedding topological quantum field
theories functorially in the UV

Referees: Prof. Dr. Daniel Roggenkamp

Prof. Dr. Johannes Walcher





iii

Funktorielle Einbettungen topologischer Quantenfeldtheorien in
den UV

Der Renormierungsgruppenfluss (RG-Fluss) von Quantenfeldtheorien be-
schreibt die Veränderung von hohen Ultraviolett-Energien (UV) hin zu
niedrigen Infrarot-Energien (IR). In dieser Thesis wird eine neue Methode
entwickelt, die die Berechnung von topologischen IR-Korrelatoren direkt im
UV ermöglicht. Diese Methode basiert auf Domain-Wall-Projektionsdefekten
der Kodimension Eins und erlaubt eine vollständige Representation der topol-
ogischen IR-Theorie in der UV-Theorie. Der RG-Fluss einer Theorie kann
auf diese Weise als Fluss des Identitätsdefekts in der fixierten UV-Theorie
verstanden werden. Die vorgestellte Methode ist allerdings nicht beschränkt
auf RG-Fluss, sondern verallgemeinert zu topologischen Quantenfeldtheorien,
die über Projektionsdefekte auf Untertheorien projiziert werden.

Für Projektionsdefekte in triangulierten Defektkategorien, z.B. in topo-
logisch getwisteten 2d N = (2, 2)-Theorien, wird gezeigt, dass diese immer
einen komplementären Projektionsdefekt besitzen. Die ursprüngliche Theo-
rie zerfällt dann automatisch in die beiden den Projektoren zugeordneten
projizierten Theorien.

Die neue Methode wird angewendet auf Phasen von geeichten linearen
Sigma-Modellen und den RG-Fluss zwischen 2d supersymmetrischen Landau-
Ginzburg-Orbifold-Modellen. Die entsprechenden Defekte werden durch
Matrixfaktorisierungen beschrieben.

Embedding topological quantum field theories functorially in the
UV

Renormalization group (RG) flow describes how the behavior of quantum
field theories changes from high ultra-violet (UV) energies to low infra-red
(IR) energies. In this thesis, I describe a new method which allows the
calculation of topological IR correlators directly within the UV. This method
is based on codimension-one domain-wall defects and provides a complete
representation of the topological IR theory in terms of the UV theory. From
this perspective, RG flow of bulk theories can be regarded as RG flow of the
codimension-one identity defect in the fixed UV bulk theory. The procedure
is not restricted to RG flow but generalizes to topological quantum field
theories projected to subtheories by projection defects.

It is furthermore shown that projection defects in triangulated defect
categories (such as defects in 2d topologically twisted N = (2, 2) theories)
always come with complementary projection defects. The unprojected theory
then decomposes into the theories associated to the two projection defects.

The new method is applied to phases of gauged linear sigma models and
RG flows between 2d supersymmetric Landau-Ginzburg orbifold models, for
which the respective defects can be described in terms of matrix factorizations.
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Chapter 1

Introduction

Quantum field theories crucially depend on the energy scale. When this scale
shifts from ultraviolet energies (UV) to infrared energies (IR), renormalization
group (RG) flow describes how the behavior of the theory changes. For
example, heavy fields might be integrated out and new interactions arise.
In this thesis, I describe a new method which allows the calculation of IR
correlators directly within the UV. This method is based on codimension-one
domain-wall defects and provides a complete representation of the IR theory
in terms of the UV theory. In fact, the procedure is not restricted to RG
flow but generalizes to subtheories realized within a host theory.

The following introduction is mainly an adapted version of the introduc-
tions in [1, 2]. For more details on the connection between these papers and
this thesis, see the end of this introduction.

While the presented approach might also be useful in more general
situations, I focus on two-dimensional topological quantum field theories.
In such theories, the quantum fields depend on the two coordinates of a
two-dimensional manifold called worldsheet and all correlators are required
to be independent of variations of the worldsheet metric.

Starting point of the construction are RG defects as introduced in [3].
These are domain walls between UV and IR theories obtained in the following
way. Consider a perturbation of a scale invariant quantum field theory by
a relevant local operator. The RG flow drives the theory from the original
theory in the UV to some other theory in the IR. If the perturbation is
restricted to a finite region of spacetime, the RG flow drives the theory to the
IR on the domain of the perturbation, while leaving it at the UV on the rest
of spacetime. Along the way, it creates a domain wall R on the boundary of

1



2 CHAPTER 1. INTRODUCTION

the perturbation domain, separating the IR theory from the UV theory:

UV

UV

Perturbation

perturbed

UV

UV

RG-flow

RIR

UV

(1.1)

The RG defects R obtained in this way capture the entire relation between
UV and IR theories. They project UV degrees of freedom onto the IR theory
and embed IR degrees of freedom into the UV theory.

In order to get a good handle on defect lines, in particular the behavior
of correlation functions under changes of their position, we now pass to
the topologically twisted theory. Compatibility of the RG flow with the
topological twist assures that the respective RG defect descends to a defect
between the topologically twisted IR and UV theories. We still refer to this
defect as RG defect and to the topologically twisted theories as IR and UV
theories. (The notion of RG defects as defined in [3] does not require a
topological twist. In fact, examples of RG defects are known in full CFTs
[4], see also [5, 6]. We expect the ideas presented below to also be applicable
in this more general context, albeit in a more intricate way.)

Fusion1 of RG defects R with their downward oriented versions R† gives
rise to the trivial identity defect in the IR theory, R⊗R† ∼= IIR, while fusion
in the opposite order yields non-trivial defects P = R†⊗R in the UV theory:

UV

R R†

=

IIR

IR

=

IR

and

R† R

IR

=

P

UV

(1.2)

Intuitively, this can be understood as follows. Reading the first diagram
from right to left, R† embeds the IR degrees of freedom into the UV und
R projects back down onto the IR. From a purely IR point of view, the
resulting defect is invisible. Because the IR carries less information than

1In a TQFT one can move parallel defects infinitely close together resulting in a new,
fused defect. We will denote fusion of defects by ‘⊗’.
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the UV, opposite fusion depicted in the second equation is more interesting:
When projecting from the UV onto the IR and lifting the remaining degrees
of freedom back to the UV, information is lost and we obtain a non-trivial
defect in the UV.

The first equation of (1.2) is a central property of RG defects, which
ensures locality in the sense that islands of IR theories trivially connect:

R

R

UV

=

R
UV

It also implies that the defects P of the second equation are projection
defects, i.e. they are idempotent under fusion, P ⊗ P ∼= P . They project
onto IR degrees of freedom in the UV theory. Next to idempotency, the
defects P have a second defining property: They are (co)unital, which is
discussed later in this introduction.

Another consequence of (1.2) is that right R-loops evaluate to the identity:

R UV

IR

=

IR

(1.3)

(Since the IR carries less information than the UV, the above loop-condition
does not hold for left R-loops.) This can be used to express correlation
functions of the IR theory in terms of UV correlators by the following trick
familiar from the discussion of dualities and generalized orbifolds [7, 8, 9, 10]:
Because of equation (1.3), a given IR correlator is not changed upon insertion
of right R loops, c.f. step I in the example (1.4) below. Since we are dealing
with a topological quantum field theory, the UV islands created in this way
can be expanded without changing the correlation function until they cover
the entire spacetime surface, see step II in (1.4). The result is a correlation
function in the UV theory with a network of the projection defect P inserted.
For instance, a disk correlator in the IR with boundary condition BIR can
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be represented as a UV correlator in the following way.

〈

IR
BIR

〉 I
= 〈 R UV

IR
BIR

〉 II
= 〈 UV

BUV

〉
(1.4)

Of course, steps I and II involve many choices leading to representations of one
and the same IR correlation function by possibly different P -networks in the
UV. The latter can be related by sequences of local transformations, which
are generated by identities satisfied by the defects P and their junctions.

Carrying out this procedure on the level of correlators immediately reveals
how objects of the IR theory are represented in the UV. For instance, IR bulk
fields appear as field insertions on the defect P . Right2 boundary conditions
BIR are mapped to boundary conditions BUV = R†⊗BIR in the UV. Similarly,
IR defects DIR are mapped to defects DUV = R† ⊗DIR ⊗R in the UV. This
in particular applies to the defects associated to symmetries of the IR theory.
These symmetry defects encode the action of the symmetry group on all
objects of the theory, and they fuse according to the multiplication in the
symmetry group. Lifting IR symmetry defects to the UV one obtains UV
defects whose fusion is still governed by the IR symmetry group. This yields
a realization of the IR symmetry group in the UV, which however is not an
honest representation. After all, the identity defect in the IR corresponding
to the neutral element in the IR symmetry group is lifted to the projection
defect P in the UV. Thus, the lifted symmetries are only invertible on the
IR degrees of freedom.

In fact, given the projection defect P , the objects in the UV theory
representing IR objects can be characterized completely within the UV theory
without any reference to R: IR bulk fields are represented by defect fields
on P , right IR boundary conditions are represented by right UV boundary
conditions BUV which are invariant under fusion with P , P ⊗BUV

∼= BUV.
IR defects are represented by defects DUV in the UV, which are invariant

2As discussed in chapter 2.1, worldsheet diagrams are typically read from right to left.
A right boundary of a TQFT T is then considered to map the trivial theory to T . A left
boundary (which might refer to the same boundary condition) however maps T to the
trivial theory.
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under fusion with P from both sides, DUV ⊗ P ∼= DUV
∼= P ⊗ DUV, etc.

Given the projection defect P , one can therefore completely describe the IR
theory in the framework of the UV theory.

Through perturbations by different relevant operators, a UV theory might
permit many different RG flows leading to possibly different IR theories at
various engery scales. All of these theories with all their symmetries etc. can
be described by projection defects in one and the same UV theory. This
applies in particular if the theory is asympotically free in the UV, in which
case all possible IR theories can be realized by means of projection defects
in a free theory.

Remarkably, the description of IR correlators in terms of UV correlators
containing networks of the projection defect P = R†⊗R provides a radically
new view on bulk perturbations: instead of perturbing the theory on the
entire spacetime, we can restrict the perturbation on a network of thin strips.
These strips can even be made infinitely thin, effectively reducing the bulk
perturbation to a (one-dimensional) perturbation of the identity defect in
the UV theory. RG flow leaves the bulk theory at the UV, but drives the
identity defect to some projection defect P in the IR.

IUV

=
Perturbation RG flow

RR†

=

P

Concretely, one obtains the correlation function of the IR theory from the
one in the UV by first inserting an (invisible) network of the identity defect,
which in particular passes through all bulk insertions and runs parallel to
every boundary and also on both sides of any defect. The IR correlation
function can then be obtained by a defect RG flow on this network.

UV

IR UV

RG flow on bulk RG flow on identity defect I

!
=

(1.5)
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Under the flow UV boundary conditions and defects flow to their respective
fusion with P (which has not been drawn above for ease of readability). In
this way, bulk RG flows can be entirely studied in the fixed UV bulk theory
by means of perturbations of the UV identity defect.

The fact that one can describe IR theories in the UV without reference
to the RG defects R by using the respective ((co)unital) projection defects
P = R† ⊗R suggests applying this procedure to general such special defects
P , which do not a priori arise from RG flows. In this way, new ‘P -projected’
theories can be constructed from any (co)unital projection defect P in a
given TQFT. Spelled out, P is required to be idempotent with respect to
fusion, P ⊗ P ∼= P , and it must have a counit or unit. A counit of P is
a morphism (defect changing field) c : P → I from P to the identity (or
invisible) defect I of the theory which satisfies

P

c
=

P

and

P

c
=

P

. (1.6)

In these diagrams, which we read from bottom to top, dashed lines always
represent the identity defect. The identity defect exists in any theory and
does not affect correlation functions upon insertion. Moreover, there are
natural junction fields by which it can end (respectively begin) on any other
defect. The trivalent junctions of P are given by the isomorphisms P⊗P ∼= P .
Similarly, a unit of P is a morphism u : I → P from the identity defect to P ,
satisfying the corresponding relations obtained by vertical reflection of the
diagrams above.

Given such a (co)unital projection P in a TQFT, one can define the P -
projected theory. Its bulk fields are the defect fields on P , its boundaries are
the unprojected boundaries B satisfying P ⊗B ∼= B and its defects are the
unprojected defects D which obey P⊗D ∼= D⊗P ∼= D. Correlation functions
of the projected theory can then be obtained as correlation functions of the
unprojected theory with a network of the defect P inserted.

Interestingly, counitality (unitality) of P ensures that P splits as P ∼=
†R ⊗ R (P ∼= R† ⊗ R), where R is a defect between the unprojected and
projected theory and †R (R†) is an adjoint, i.e. an oppositely oriented version
of it. Moreover, R has invertible right quantum dimension

unproj.
TQFT

proj.
TQFT

R
=

which is just (1.3) in a different terminology. Hence, we have come full
circle and find that the existence of an RG defect R with invertible quantum
dimension is equivalent to the existence of a (co)unital projection defect P .
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In all examples considered in this thesis the boundary and defect spectra
are described by triangulated categories. This triangulation has an important
effect on the projection defects: Any counital projection defect P in this
set-up comes with a complementary unital projection defect P̄ , and vice-
versa, and the unprojected theory decomposes into the P -projected and
P̄ -projected theories. In particular, the direct sum of the two defects P and
P̄ can be deformed to the invisible defect of the unprojected theory.

Thesis organization. The thesis is organized as follows. In chapter 2
the general method is presented in detail. The chapter starts with the RG
defect point of view and the representation of IR degrees of freedom in the
UV. Furthermore, the relation of RG flow to defect flow is discussed. Then,
the opposite point of view starting with a (co)unital projection defect in any
TQFT is presented. Also, the generalized orbifold procedure is reviewed and
its relation to the presented method discussed. Proofs of various important
identities are relegated to appendix A.

Chapter 3 contains a review of 2d quantum field theories, N = (2, 2)-
supersymmetry and the topological B-twist. The corresponding B-type
defects and their mathematical description as matrix factorizations are
discussed. The defect and boundary categories are furthermore embedded
in the formalism of triangulated categories. Finally, orbifold models are
discussed, which are the building blocks for all examples considered in this
thesis.

In chapter 4 a major example is discussed in depth. Namely, the Zd-
orbifold of the Landau-Ginzburg model with chiral superfield X and su-
perpotential W (X) = Xd, which we denote by Md, admits RG flows to
Landau-Ginzburg orbifolds Md′ for all d′ < d. Applying the procedure de-
scribed above to these flows yields a realization of all modelsMd′ in terms of
projection defects inMd for d′ < d. In particular, taking d→∞ one obtains
a representation of all models Md′ in the theory of a free twisted chiral field.
The realization of the discussed models in terms of the generalized orbifold
procedure can be found in appendix B. Multiple calculations for RG defects
are relegated to appendix C.

Next, in chapter 5 the general method is applied to gauged linear sigma
models (GLSMs). Such models admit different phases, and the procedure of
this thesis allows to represent them directly in the linear sigma model. For
the latter, a formulation for the invisible defect I is proposed. Furthermore,
the results allow to describe D-brane transport between the different phases.

In chapter 6, (co)unital projection defects in theories with a triangulated
defect category are considered. It is proven that every counital projection
comes with a unital projection and vice-versa and that the direct sum of
these two defects can be perturbed to the invisible defect of the unprojected
theory. This finding is then applied to the example of chapter 4.



8 CHAPTER 1. INTRODUCTION

Finally, the most important findings of this thesis are summarized con-
cisely in chapter 7 and a few directions of possible future research are
discussed.

The method presented was developed with Prof. Dr. Daniel Roggenkamp
[1] and extended with him [2] and Prof. Dr. Ilka Brunner [11]. This thesis is
based on these three papers. In particular, chapters 2 and 4 are an adapted
version of [1], chapter 5 of [11] and chapter 6 of [2]. When putting together
publications [1, 2, 11] for this thesis, I have refrained from replacing the word
“we” by “I” in order to honor the contributions of my coauthors.



Chapter 2

RG-networks in two
dimensions

In this chapter, the basic mechanism of realizing TQFTs within a host
theory is presented. First, the stage is set by a review of one-dimensional
topological defects (section 2.1). Next up in section 2.2, I discuss RG defects
and how they give rise to projection defects. These projections can be used
to represent an IR TQFT within a UV TQFT (section 2.3) and indicate
that bulk RG flow can be understood as defect flow on the invisible defect
(section 2.4).

Conversely, given a (co)unital projection defect in some TQFT, a new
(IR) TQFT can be described within the host theory (section 2.5). In fact,
every such projector splits into RG defects (section 2.6). Finally, in section
2.7 the generalized orbifold procedure is reviewed and its relation to the
method of this thesis discussed (section 2.8).

This chapter closely follows the paper [1].

2.1 Topological defect lines

Of particular interest in this thesis are topological defect lines (and bound-
aries). Such lines can put constraints on fields along the defect contour (e.g.
t’Hooft defects) or add additional one-dimensional terms to the lagrangian
(e.g. Wilson lines). Because defect lines have codimension one, they can
also separate different 2d TQFTs on the same spacetime surface. Locally, a
neighborhood around a point on a defect D : T → T ′ separating two TQFTs
T and T ′ can be depicted as

D

T ′

T

9



10 CHAPTER 2. RG-NETWORKS IN TWO DIMENSIONS

Such diagrams are typically read from right to left and D is said to be a
defect from theory T to theory T ′. Sometimes defect lines are displayed with
arrows to emphasise this orientation. In the remainder of this section, we
review properties of defect lines following [12, 13, 14, 15].

Defect lines carry local degrees of freedom, called defect fields, which
can be inserted at points on defects. Defect fields can also separate different
defects or glue together defects at junctions. We denote the space of defect
changing fields between two defects D,D′ : T → T ′ by Hom(D,D′). Every
defect carries the identity field 1D ∈ Hom(D,D).

D

D′

T ′ T

In every 2d TQFT T there is a special invisible or identity defect IT , whose
insertion does not change correlation functions, and which can be connected
to any other defect. The defect fields on this defect are just the bulk fields
of the underlying 2d TQFT, Hom(IT , IT ) ∼= HT .

Due to topological invariance, defects and field insertions can be moved
on the spacetime surface without changing correlation functions, as long as
field insertions or defects do not cross. This in particular implies a vertical
composition of defect fields.

φ

ψ

= ψ ◦ φ

Similarly, when parallel defect lines D′ : T ′ → T ′′ and D : T → T ′ are brought
close together, they fuse to the defect D′ ⊗D : T → T ′′ and analogously for
field insertions:

φ ψ

D′ D

D̃′ D̃

= φ⊗ ψ

D′ ⊗D

D̃′ ⊗ D̃
= φ⊗ ψ

D′ D

D̃′ D̃

Sometimes a field insertion in such diagrams is omitted. Then, there is an
implicit insertion of the identity field. Furthermore, the invisible or identity
defect I is the neutral object with respect to fusion, i.e. D⊗ I ∼= D ∼= I ⊗D
for all defects D. Due to topological invariance vertical composition and
horizontal fusion commute.

Topological invariance also implies that one can bend a defect (to the
right or left) without changing correlators. This is described by the following
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two Zorro move identities (relations like this hold locally when inserted in
any correlator):

D

D

D†

ẽvD

c̃oevD

T ′

T

=

D

D

T ′
T

id
and D

D†

D†

T ′

T

c̃oevD

ẽvD

=

D†

D†

T
T ′

id
.

(2.1)
These diagrams involve additional structure: First of all, bending D to the
right results in a downwards oriented version D† of D, its right-adjoint.
Secondly, dotted lines depict the (invisible) identity defect I, which connects
to the defects D and D† in defect (junction) fields

ẽvD : D ⊗D† → IT ′

c̃oevD : IT → D† ⊗D,
(2.2)

called evaluation and coevaluation maps, respectively. Of course, one can
equally well bend the defect D to the left

†D D

T

T ′
and

†DD

T ′

T

giving rise to the left-adjoint †D of D. Topological invariance implies anal-
ogous Zorro move identities involving D and †D and the respective (co-)
evaluation maps

evD : †D ⊗D → IT

coevD : IT ′ → D ⊗ †D.

Of course for all defects D,
(†D)† ∼= D ∼= † (D†). For more details on

adjunctions of defects, see [15].

Boundaries B : 0→ T are a special kind of defect from the trivial theory
0 to the TQFT T.

B
T

They too carry local degrees of freedom (open-string states) which can sepa-
rate two different boundary conditions. In a well-defined TQFT, boundaries
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give rise to disk correlators

B
T

where the invisible defect I is used to insert bulk fields.

Mathematically, 2d TQFTs can be expressed in categorial language.
Namely, theories (including the zero-theory) assigned to parts of a worldsheet
are called objects, defects and boundaries separating two TQFTs are called
1-morphisms and field insertions separating two 1-morphisms are called
2-morphisms.

2.2 Projections from RG defects

Starting point of our construction are RG defects as defined in [3]. These
defects arise when 2d field theories are perturbed by local operators only
on part of the spacetime surface. The RG flow drives the theory to the IR
on the perturbation domain, while leaving it at the UV on the rest, thus
creating a defect on the boundary of the perturbation domain separating the
IR from the UV theory as in (1.1).

This RG defect encodes all aspects of the relationship between UV and
IR theories.1 In the following we will consider such RG defects in the context
of 2d topological quantum field theories.

Arising from local perturbations, RG defects have rather special prop-
erties. Locality postulates that perturbation on two adjacent domains is
nothing but the perturbation on the union of the domains. This implies that
fusion of an RG defect R with its opposite defect R† in the UV theory yields
the identity defect IIR in the IR:

R R†

IR UV IR =

IIR

IR IR .

In other words,the evaluation map R⊗R† → I has an inverse such that the
right quantum dimension of R is invertible and UV bubbles in the IR locally

1For instance, in [3] RG-defects are used to describe how boundary conditions behave
under perturbations of the bulk theory.
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connect:

∼=

R R†UV

IR

=

IR

IIR

and

IR
R R†

R R†
∼=

=

IR

UV

R R†
(2.3)

Since IIR is self-adjoint, R⊗R† ∼= IIR is equivalent to R⊗ †R ∼= IIR. By the
Zorro-moves, the latter isomorphism is given by the coevaluation map of R.

Utilizing that rightR loops evaluate to the identity, it is possible to express
correlation functions of the IR theory in terms of correlation functions in
the UV by the following trick: Given a correlation function of the IR theory,
one can insert right R loops without changing it. Expanding these islands of
UV theory until they cover the entire surface, the IR correlation function is
transformed into a correlation function of the UV theory with a network of
defects as in equation (1.4).

The network is built out of the defect P := R† ⊗ R (in the following
represented by green lines which we take as upwards oriented if an orientation
is not specified) and its junctions

P P

P

=

R†

R†

R

R

and

P P

P

=

R†

R†

R

R

which we call multiplication and comultiplication, respectively.

The defect P together with its junctions has some rather special features,
which easily follow from the properties (2.3) of R. In particular, P ⊗ P ∼= P ,
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and the following relations hold:

(1)
= and

(2)
=

We call the first one loop-omission property (or separability) and the second
one projection property. Beyond these, P also obeys the following identities:

associativity: =

coassociativity: =

and the Frobenius identities:

= =

Moreover, P comes with a unit

=

R† R

for which = = .

Indeed, instead of P = R† ⊗R we could just as well have chosen P ′ = †P =
†R ⊗ R as building block of the network above. The latter defect equally
satisfies the relations above with the only difference that instead of a unit, it
has a counit

=
†R R

for which = = .

In summary, any correlation function of the IR theory can be written as a
correlator in the UV with a P -network inserted. The correlation function is
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invariant under local changes of the P -network generated by loop-omission
and projection properties, the associativity and coassociativity relations and
the Frobenius identities. This in particular reflects the fact that the resulting
correlation function does not depend on how exactly the UV islands are
inserted into the IR correlators and how they are expanded.

2.3 Representing the IR in the UV

Having expressed the IR correlators in terms of UV correlators in the last
section, we now discuss how the defining structures of IR correlators such as
bulk fields, boundaries, defects and symmetries are represented in the UV
theory. The results can be summarized as follows: If one characterizes the
respective IR object by its relation to the IR identity defect IIR, then its UV
realization is obtained by replacing the IR identity defect by the defect P of
the UV theory, c.f. table 2.1. For simplicity we will restrict the discussion to
the case of unital projection defect P = R† ⊗R. The results are the same
for the counital case, and the argument is similar.

IR bulk fields. Let us first discuss bulk fields of the IR theory. Upon
expanding the UV islands in the IR, bulk fields become defect fields on P , i.e.
elements in Hom(P, P ) (represented in diagrams by dots on defects). Due to
topological invariance, they have to be compatible with the multiplication
on P . Namely,

R

R

R†

R†

=

R

R

R†

R†

=

R

R

R†

R†

implying

= = .

Considering the algebra P as P -bimodule, the IR bulk fields become P -
bimodule morphisms of P in the UV. By the same argument these morphisms
also respect the P -comodule structure on P :

= =
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IR object IR realization UV realization

Identity defect

(separable Frobenius)
algebra IIR

(Co-)unital projection
defect P

IR bulk fields

IIR-bimodule
morphisms of IIR

P -bimodule
morphisms of P

Left boundary
conditions

Right IIR-modules Right P -modules

Right boundary
conditions

Left IIR-modules Left P -modules

Defects

IIR-bimodules P -bimodules

Defect changing
fields

IIR-bimodule
morphisms

P -bimodule
morphisms

Defect fusion
fusion in the IR

D ⊗D′
fusion of UV
lifted defects
DUV ⊗D′UV

Adjunction
D†
†D

D†PUV = P ⊗D†UV ⊗ P
†PDUV = P ⊗ †DUV ⊗ P

Table 2.1: Dictionary of IR structures lifted into the UV.
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Now, not only are IR bulk fields lifted to P -bimodule morphisms of P in the
UV, the Hilbert space of bulk fields of the IR theory is in fact isomorphic to
the space of P -bimodule morphisms of P . More precisely, the map

IR

7−→
R

R†
UV

sending IR bulk fields to P -bimodule morphisms of P is an isomorphism.
This is spelled out in appendix A.1.

In fact, due to the special properties of P , all morphisms of P , i.e. all
defect fields on P are automatically P -bimodule morphisms of P and at the
same time also P -bicomodule morphisms of P , see appendix A.2. Thus, the
IR bulk Hilbert space is isomorphic to the space of defect fields on P .

IR boundary conditions and defects. Next, let us discuss left IR
boundary conditions. Upon inserting and expanding UV islands in the
IR theory, a left IR boundary condition BIR is lifted to the UV boundary
condition BUV := BIR ⊗R. The latter comes equipped with a map

BUV ⊗ P → BUV

BUV

arising from

BIR

R

R

UV .

It satisfies the identities

BUV

=

BUV

and

BUV

=

BUV

.

In other words, BUV is a right P -module. In fact, the unit of P induces a
P -comodule structure on any P -module, hence also on BUV:

BUV

≡

BUV

.

Therefore, left IR boundary conditions lift to right P -modules in the UV,
which automatically are also P -comodules.
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Conversely, all right P -modules arise in this way from IR boundary
conditions. To see this, note that due to the special properties of the defect
P , a left UV boundary condition B is a right P -module iff B ∼= B ⊗ P as
shown in appendix A.3. Hence, given a right P -module B, the IR boundary
condition BIR = B ⊗ R† satisfies BIR ⊗ R = B ⊗ R† ⊗ R = B ⊗ P ∼= B.
Thus, left IR boundary conditions are in one-to-one correspondence with
right P -modules in the UV.2

Analogously one finds that right IR boundary conditions BIR lift to left
P -modules BUV = R† ⊗ BIR in the UV, and defects DIR of the IR theory
lift to P -bimodules DUV = R† ⊗DIR ⊗R. Importantly, P itself is the UV
lift of the IR identity defect:

R† R

UV UVI

=

UV UV

A straightforward generalization of the discussion of IR bulk fields shows
that IR defect fields are lifted to bimodule morphisms of the respective UV
lifted defects, which again due to the special properties of P are nothing but
the defect fields of the UV lifts.

Fusion of IR defects. Because of R ⊗ R† ∼= IIR, the lift of fused IR
defects is the fusion of the lifted defects:

RR†

D ⊗ D̃

∼=

R R† RR†

D D̃

This is a rather special property closely tied to the projection property of P .

Adjunction of IR defects. While fusion of defects in the IR lifts to
fusion in the UV, adjunction is not compatible with the lift from IR to UV.
If for instance, an IR defect DIR is lifted to a defect DUV = R† ⊗DIR ⊗R
in the IR, then the right adjoint of the latter in the UV theory is given by
D†UV = R† ⊗ D†IR ⊗ R††, which in general does not coincide with the lift

R†⊗D†IR⊗R of the right adjoint of DIR to the UV theory. However, the two
are related: Selfadjointness of the IR identity defect yields R†† ⊗R† ∼= IIR,
and hence the UV lift of the adjoint can be expressed as R† ⊗D†IR ⊗ R ∼=

2Indeed, this also holds if one chooses to construct the network using P ′ = †R ⊗ R
instead of P = R† ⊗ R. In that case however BUV = BIR ⊗ †R inherits a natural P ′-
comodule structure, which by means of the counit on P ′ also induces a P ′-module structure
on BUV .
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D†UV ⊗ P ∼= P ⊗D†UV ⊗ P , leading to the notion of IR adjunction in the UV
theory, which we denote by

D†PUV := P ⊗D†UV ⊗ P .

Similarly, the UV lift of a left adjoint defect is given by3

†PDUV = P ⊗ †DUV ⊗ P .

These formulas are very natural. After all, the defining relation of adjoints
are the Zorro move identities (2.1), which involve the identity defect. Lifting
these identities from the IR theory to the UV replaces the identity defect
with the defect P :

DUV

=

DIR

R† R

For instance, lifting the IR Zorro move identities for the right adjoint to the
UV results in the relations

DUV

D
†P
UV =

DUV

and

D†PUV

DUV
=

D†PUV

.

It is easy to see that fusing the UV adjoint from both sides with P yields a
defect which satisfies the P -Zorro move identities, c.f. appendix A.4.

A special case is P itself: Since it is the UV lift of the IR identity
defect, which is selfadjoint, P is selfadjoint with respect to P -adjunction:
P ∼= P †P = P ⊗ P † ⊗ P .

IR symmetries. Also symmetries of the IR theory can be easily de-
scribed in the UV. As noted in [7] (see also [16]), symmetries of 2d field
theories can be described by symmetry defects gI which describe the action
of an element g of the symmetry group on any object in the field theory.

3The same formulas for left and right IR adjunction hold if one chooses to construct
the network using the counital P ′ = †R⊗R instead of P = R† ⊗R.
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These symmetry defects fuse according to the multiplication in the symmetry
group:

gI ⊗ hI = g·hI

Now, IR symmetry defects lift to the UV as any other defect: gI 7→
gIUV = R† ⊗ gI ⊗ R. Since IR fusion lifts to UV fusion, the fusion of the
lifted symmetry defects still respects the multiplication in the symmetry
group, gIUV⊗hIUV = g·hIUV. In that sense, the IR symmetry group is already
present in the UV theory. However it is not realized as a symmetry group in
the UV, since the lift of the IR identity defect, which is the symmetry defect
associated to the neutral element of the symmetry group, does not lift to the
identity defect, but rather to P . So the lifted symmetry defects are in general
not invertible defects in the UV, but instead satisfy gIUV ⊗ g−1IUV = P .

IR projectors and subsequent flows. Projection defects

P2 = (R2)† ⊗R2

in the IR theory associated to some RG flow from the IR theory to some
theory IR2 can also be lifted to the UV. The corresponding defects in the
UV theory are given by

P̃ = R† ⊗ P2 ⊗R = R† ⊗R†2 ⊗R2 ⊗R = (R2 ⊗R)† ⊗ (R2 ⊗R) .

These are precisely the projection defects built out of the RG defect R2 ⊗R
associated to the concatenation of RG flows from the UV via IR to IR2.

IR correlation functions. Having described how to realize IR objects
inside the UV theory, it is straightforward to represent IR correlators in
the UV theory: First, prepare the IR correlator by placing identity defects
through all field insertions, in particular bulk fields and at defect cusps.
Then replace all IR objects by the respective UV objects as described above.
Importantly, this includes the IR identity defect, which has to be replaced
by the UV projection defect P . The resulting UV correlator coincides with
the original IR correlator.

〈
IR

〉 = 〈
UV

〉
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2.4 Bulk RG flow as defect flow

The previous discussion suggests a radically new view on bulk RG flow.
Namely, that bulk perturbations of a 2d theory can be understood as a
perturbation of a defect network in the fixed UV bulk theory. More precisely,
insertion and expansion of UV islands in the perturbed theory confines
the perturbation on ever smaller domains, which eventually become one-
dimensional. Hence, perturbed correlation functions are nothing but UV
correlation functions with networks of perturbed identity defects inserted.
RG flow then does not change the bulk UV theory, but drives the identity
defect in the UV to some projection defect P and defects (boundaries) to
their IR images, c.f. (1.5).

The two-dimensional RG flow in the bulk can hence be reduced to a
one-dimensional RG flow on the identity defect IUV. Such defect flows are of
course much easier to handle, because the underlying bulk theory does not
change. For instance, UV bulk fields (IUV-endomorphisms) and boundaries
(IUV-modules) flow to bulk fields and boundaries in the UV theory, which
are compatible with P , i.e. to P -bimodule morphisms of P and P -modules,
respectively.

Thus, if one can get a handle on perturbations of the identity defect
in a given TQFT, the structures (bulk space, boundaries, correlators, etc.)
associated to the corresponding perturbed bulk theory can be easily extracted.

2.5 IR theories from projections

In the previous discussion, we represented correlation functions of a perturbed
2d TQFT as correlation functions of the unperturbed UV theory with a
defect network inserted. While the starting point of the construction were RG
defects R, the correlation functions of the perturbed theory only depended
on the projection defect P = R† ⊗R. This suggests applying this method
to arbitrary unital or counital projection defects P , which have the same
properties as the defects associated to RG flows discussed in section 2.2: The
projection property, P ⊗ P ∼= P means that there are two junctions 4

multiplication

and

comultiplication

4As before, P is depicted in green, oriented from bottom to top.



22 CHAPTER 2. RG-NETWORKS IN TWO DIMENSIONS

satisfying the loop-omission (separability) and projection properties:

= and = .

The junctions turn P into an algebra as well as a coalgebra. We require P
to either have5

a unit , i.e. = =

or a counit , i.e. = = ,

see also (1.6).
As is shown in appendix A.6, the existence of a unit for a projection defect

implies coassociativity, while the existence of a counit implies associativity.
In fact, for projection defects, associativity, coassociativity and the Frobenius
identities

= and =

= =

are all equivalent to one another, c.f. appendix A.6. Thus, unital or counital
projection defects satsify all of them.

As in the context of RG defects discussed in section 2.3, replacing the
identity defect I in a 2d TQFT by an arbitrary projection defect P , and
inserting P -networks into the correlation functions one obtains correlation
functions of a new, P -projected 2d TQFT. The relation between the projected
and unprojected theories is exactly the same as the relation between IR and
UV theories discussed in section 2.3.

5The special case in which P has a unit as well as a counit is discussed in appendix A.5.
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Namely, given such a projection defect P , the P -projected theory can be
described in terms of the unprojected theory as follows. While bulk fields of
the unprojected theory can be regarded as endomorphisms (i.e. defect fields)
of the identity defect I, bulk fields of the projected theory can be realized
as endomorphisms of P in the unprojected theory. Boundary conditions of
the projected theory can be represented as boundary conditions B of the
unprojected theory, which are invariant under fusion with P , i.e. B ∼= P ⊗B,
and defect lines in the projected theory correspond to defect lines D in the
unprojected theory, which are invariant under fusion with P from both sides,
D ⊗ P ∼= D ∼= P ⊗D.

To every object (such as fields, boundary conditions, defects) in the
unprojected theory, one can associate a respective object of the projected
theory by surrounding it with the defect P . For instance, bulk fields φ of
the unprojected theory can be mapped to bulk fields of the projected theory
by encircling their insertions with P , and fusion with P maps any boundary
condition B of the unprojected theory to a P -invariant one representing a
boundary condition of the projected theory:

P

φ =

P

φ =

P

φ

P B

(2.4)

Correlation functions of the projected theory can then be obtained as
correlation functions of the unprojected theory with a network of the defect
P inserted. As will be shown in the next chapter, counitality (unitality)
of P ensures that P splits as P ∼= †R ⊗ R (P ∼= R† ⊗ R), where R is a
defect between the unprojected and projected theory and †R (R†) is an
adjoint, i.e. an opposite oriented version of it. Moreover, R has invertible
right quantum dimension, which allows to apply the trick of diagram (1.4).

2.6 Factorization of projection defects

We now come full circle by showing that any (unital or counital) projection
defect P factorizes as

P = R† ⊗R in caseP is unital

P = †R⊗R in caseP is counital ,

where R is an RG type6 defect between the P -projected theory on one side
and the original unprojected theory on the other. By analogy to the case of
RG flows, we call the original, unprojected theory UV and the P -projected
theory IR.

6R⊗R† is isomorphic to the identity defect
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The basic idea is the following. As P is a (co)algebra, it can be viewed
as a left and/or right (co)module over itself. Thus, the defect P can be
regarded as a defect in the original (UV) theory (the defect P itself), a defect
in the P -projected (IR) theory (the identity defect), or a defect separating
one of those from the other. To indicate which of the interpretations we are
referring to, we denote the respective defects as PUV|UV, PIR|IR, PIR|UV or
PUV|IR, respectively. For instance, viewed as a left P -(co)module and a right
IUV-(co)module P represents the defect PIR|UV between the P -projected (IR)
theory and the original (UV) theory

UVIR

PIR|UV

.

This defect plays the role of the RG defect R.

To show that it is indeed of RG type, we first need to determine its
adjoints. We will restrict our discussion to the case that P is unital. (There
is an analogous argument for the case of counital P .) Since PIR|UV is a
defect between IR and UV theory, the adjoints have to satisfy mixed Zorro
identities:

PIR|UV

=

PIR|UV

and

(
PIR|UV

)†
=

(
PIR|UV

)†
for the right adjoint and

PIR|UV

=

PIR|UV

and

† (PIR|UV

)
=

† (PIR|UV

)
for the left adjoint. Here, the defect P plays the role of the identity defect
on the IR side of the defect. For unital P , comultiplication induces a
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coevaluation map IUV → P → P ⊗ P , and, as is shown in appendix A.7(
PIR|UV

)†
= PUV|IR

†(PIR|UV

)
=
(
†P
)

UV|IR
.

(†P denotes the left adjoint of P in the UV theory.) Now, since fusion over
the IR theory is the same as fusion in the UV, it follows from the projection
property of P that

PUV|UV = P ∼= P ⊗ P = PUV|IR ⊗ PIR|UV = (PIR|UV)† ⊗ PIR|UV .

Moreover, the identity defect in the IR theory is represented by P in the UV
theory, and hence

IIR = PIR|IR = P ∼= P ⊗ P = PIR|UV ⊗ PUV|IR = PIR|UV ⊗ (PIR|UV)† .

Thus, any unital projection defect P factorizes as P = R† ⊗R, where R =
PIR|UV has the property thatR⊗R† ∼= IIR. Note that all the defectsR, R† and

IIR are represented by P in the UV theory, and the isomorphism R⊗R† → IIR

and its inverse are just given by the multiplication and comultiplication of
P , respectively. The loop-omission and projection property of P then imply

= and =

Similar considerations lead to an analogous factorization of counital projection
defects P . The role of the RG defect is again played by R = PIR|UV. But
the adjoints differ from the unital case:(

PIR|UV

)†
=
(
P †
)

UV|IR
† (PIR|UV

)
= PUV|IR,

which leads to slightly different factorizations

PUV|UV = P ∼= P ⊗ P = PUV|IR ⊗ PIR|UV = †(PIR|UV)⊗ PIR|UV ,

and

IIR = PIR|IR = P ∼= P ⊗ P = PIR|UV ⊗ PUV|IR = PIR|UV ⊗ †(PIR|UV) .

If P comes with both, a unit and a counit, it is self-adjoint (P † ∼= P ∼= †P ,
see appendix A.5), and the left and right adjoint of the induced RG defect
R are isomorphic, R† ∼= †R.



26 CHAPTER 2. RG-NETWORKS IN TWO DIMENSIONS

2.7 Review: Generalized orbifold theories

The generalized orbifold procedure [8, 17, 18, 19, 9, 20] is a method to
produce a new theory out of a given 2d TQFT T by inserting networks of
an endo-defect A : T → T into its correlation functions. These modified
correlation functions are well-defined if the defect A satisfies the following
special properties. It has to come with (co)multiplication and (co)unit fields

A⊗A→ A, A→ A⊗A, A→ I, I → A

which turn A into a separable Frobenius algebra, i.e. it obeys the (co)asso-
ciativity and (co)unit conditions

= , = = , = , = =

as well as the Frobenius and loop-omission properties:

= = , = .

The respective orbifold theory is denoted by (T,A). An obvious example
for a defect satsifying the above conditions is the identity defect A = I in
any TQFT. Orbifolding by I of course just gives back the original theory,
(T, I) ∼= T . In the following we will briefly outline how objects in the orbifold
(T,A) are defined in terms of objects in A.

For any two TQFTs T and T ′ with defects A and A′ as above an A-A′-
bimodule D is a defect D : T ′ → T with junctions A⊗D → D, D⊗A′ → D
such that

= , = = , = .

For two such bimodules D and D̃, HomA,A′(D, D̃) denotes the space of all
defect changing fields D → D̃ commuting with the bimodule structure, i.e.

= , = .
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Via the unit, such modules are automatically also comodules, c.f. [9, eqn.
(4.1)]:

:= , := .

With these notations at hand, one can now represent objects of the generalized
orbifold theory (T, A) in terms of objects of T as follows:

i) Its invisible defect is A.

ii) Its bulk Hilbert space is HomA,A(A,A), the space of A−A-bimodule
endomorphisms of A.

iii) Boundary conditions B of (T,A) are those boundary conditions B of
T carrying an appropriate A-module structure.

iv) The space of boundary condition changing fields between boundary
conditions B and B̃ is given by HomA(B, B̃), the space of A-module
morphisms from B to B̃.

v) Defects D from (T ′, A′) to (T,A) are A-A′-bimodules.

vi) The space of defect changing fields from defects D to D̃ is given by
HomA,A′(D, D̃), the space of A−A′-bimodule morphisms from D to
D̃.

vii) The fusion product D⊗A D̃ in the orbifold theory (T,A) of two defects
D and D̃ is given by the image of the fusion D⊗ D̃ in the unorbifolded
theory T under

viii) The adjoints of defects D in the orbifold theory are defined in the
following way in terms of the adjoints in the unorbifolded theory. The
A-actions on any defect D in (T,A) induce actions on its non-orbifold
adjoints †D and D†:

†D

†D

,

†D

†D

,

D†

D†

,

D†

D†

The action of an algebra A on any module can be twisted by an algebra
automorphism α : A→ A. So for any defect D in the orbifold theory,
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one can define twisted defects α(D) and (D)α by twisting the left,
respectively right A-action:

α(D)

= α

D

,

(D)α

= α

D

Left and right adjoints in the orbifold theory can be obtained by twisting
the respective adjoints in the unorbifolded theory by the Nakayama
automorphism

γA = .

More precisely, the left and right adjoints in the orbifold theory7 are
given by [9, Prop. 4.7]

∗D = γ−1
A

(
†D
)
, D∗ =

(
D†
)
γA′

. (2.5)

For ∗D, the (co)evaluation maps are given by

evD =

∗D D

◦ ξ, coevD = ϑ ◦
D ∗D

with the inclusion and projections maps ξ : ∗D ⊗A D → ∗D ⊗ D
and ϑ : D ⊗ ∗D → D ⊗A ∗D. There are similar formulas for the
(co)evaluation maps for D∗.

In its mostly used form, the generalized orbifold procedure allows to
describe defect and boundary spectra of orbifold theories in terms of the
original non-orbifold version. In this thesis, this is done for the example
of chapter 4 in appendix B. However, as shown in the next section this
version of the generalized orbifold is inherently non-local and only the
additional projection property allows to describe RG flow and the projection
to subtheories.

7In this section we denote adjunction in the orbifold by ‘∗’ to distinguish it from the
adjunction ‘†’ in the unorbidolded theory.
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2.8 Relation to the generalized orbifold procedure

The method described in section 2.5 above to construct a new 2d TQFT
by replacing the identity defect by a projection defect P is very close to
and in fact inspired by the generalized orbifold procedure summarized in
the previous section. The difference to our construction is the requirements
imposed on A.

In the generalized orbifold construction the defect A has to be a separable
Frobenius algebra8. This condition is very similar to the properties of
projection defects with two differences: On the one hand the defect A does
not have to satisfy the projection property, but is on the other hand required
to have both, a unit and a counit, which we do not demand of projection
defects. Moreover, it is often assumed in the generalized orbifold procedure
that left and right adjoints of any defect D are isomorphic, i.e. D† ∼= †D, so
that further conditions such as pivotality and symmetry can be demanded
(see e.g. [9]). We do not require such a condition, and in fact it is not met in
the example of chapter 4.

A projection defect P has both a unit and counit if and only if left and
right adjoints of the respective RG defects are isomorphic(

PIR|UV

)† ∼= PUV|IR ∼= †(PIR|UV

)
,

c.f. appendix A.5. In that case P is a separable Frobenius algebra, and
the construction described in section 2.6 is a special case of the generalized
orbifold construction.

The projection property of P brings about interesting new phenomena in
the generalized orbifold construction, which we will spell out in the remainder
of this section.

Let A be a separable Frobenius algebra in a given 2d theory. We will
represent it by green line segments in diagrams. Defects in the generalized
orbifold theory defined by A are given by defects in the underlying 2d theory,
which are A-(bi)modules. Let D and D̃ be two such (bi)modules. Their
fusion in the generalized orbifold theory is given by their tensor product
D ⊗A D̃ over the algebra A, pictorially

D D̃

≡
D D̃

.

In general, it is different from the fusion D⊗D̃ in the underlying unorbifolded
theory.

8a unital, counital, associative, coassociative algebra and coalgebra satisfying loop-
omission and Frobenius properties
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Indeed, similarly to projection defects, also separable Frobenius algebras
always factorize into defects between the orbifold and the underlying unorb-
ifolded theory and their adjoints. Namely, considered as a left A- and right
I-module9, A represents a defect R between orbifolded and unorbifolded the-
ory. Considered as right A- and left I-module it represents the adjoint defect
R† ∼= †R. Now, for any separable Frobenius algebra we have A⊗A A ∼= A,
or pictorially

= = .

Hence, A as a defect in the unorbifolded theory factorizes as A ∼= R† ⊗A R.
However, for generic A the defect R is not of RG type, i.e. R ⊗ R† is not
isomorphic to the identity defect in the orbifold theory. Hence, bubbles of
a generalized orbifold theory inserted in the unorbifolded theory do not in
general connect trivially:

6=

Instead, pushing two bubbles of the generalized orbifold against each other
creates a non-trivial defect at the interface of the two bubbles. Thus, the
generalized orbifold cannot be obtained by a local perturbation of the original
theory. This is only true if A additionally satisfies the projection property.

In that case, fusion in the generalized orbifold simplifies dramatically
– it reduces to fusion in the unorbifolded theory. Namely, for a separable
Frobenius algebra the projection property can be rephrased as

= ⇔ =

leading to the following simplification for defect fusion in the orbifold theory:

D D̃

unit
=

D D̃

proj.
=

D D̃

=

D D̃

.

9I is the identity defect of the underlying unorbifolded theory.
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Our construction can be viewed as a generalization of orbifold equivalence
[21, 22]. Two TQFTs are said to be orbifold equivalent if they are separated
by a defect whose left and right quantum dimensions are both invertible.
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Chapter 3

TQFTs from supersymmetric
Landau-Ginzburg theories

In order to apply the previously developed theory, this chapter reviews a
large class of two-dimensional topological field theories. First, 2d N = (2, 2)
supersymmetric LG models are summarized concisely. Second, it is reviewed
how these models can be twisted to obtain a topological theory. Next,
supersymmetric boundaries and defects surviving the topological twist are
introduced. Finally, LG orbifold models and their defect spectra are discussed.
The following two review chapters follow [23] unless indicated otherwise.

3.1 2d N = (2, 2) supersymmetry

Consider a two-dimensional plane parametrized by time x0 and space x1

with metric η00 = −1, η11 = 1. The Poincaré algebra is then generated by
the Hamiltonian H corresponding to time translations ∂0, momentum P
corresponding to space translations ∂1 and Lorentz boost M corresponding
to x0∂1 + x1∂0. Here, ∂i := ∂/∂xi. The Poincaré relations are given by

[H,P ] = 0

i[M,H] = −η00P

i[M,P ] = −η11H

An N = (2, 2) supersymmetric extension of this algebra by complex fermionic
generators Q±, Q̄± = (Q±)∗ can be constructed as follows. The (anti-)
commutators are given by

Q2
+ = Q2

− = Q̄2
+ = Q̄2

− = 0{
Q±, Q̄±

}
= H ± P

[iM,Q±] = ∓Q±, [iM, Q̄±] = ∓Q̄±
(3.1)

33
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with all others vanishing. There shall also be an axial R-symmetry U(1)A
and a vector R-symmetry U(1)V whose respective generators FA and FV
obey the commutation relations1

[iFV , Q±] = −iQ±, [iFV , Q̄±] = iQ̄±

[iFA, Q±] = ∓iQ±, [iFA, Q̄±] = ±iQ̄±
(3.2)

The corresponding representations of the N = (2, 2) supersymmetry algebra
are called supermultiplets and can conveniently be described by formally
adding fermionic anti-commuting variables θ±, θ̄± := (θ±)

∗
to the bosonic

spacetime variables x± := x0 ± x1. In terms of this superspace, the super-
charges become

Q± =
∂

∂θ±
+ iθ̄±∂±

Q̄± = − ∂

∂θ̄±
− iθ±∂±

where ∂± = ∂0 ± ∂1. Supermultiplets can then be written as functions of
superspace. Important superfields are the chiral superfield X (also called
(c, c)) and the twisted chiral superfield U (also called (a, c)). They admit the
component decompositions

X(xµ, θ±, θ̄±) = φ(y±) + θ+ψ+(y±) + θ−ψ−(y±) + θ+θ−F (y±) + ...

U(xµ, θ±, θ̄±) = v(ỹ±) + θ+χ̄+(ỹ±) + θ̄−χ−(ỹ±) + θ+θ̄−E(ỹ±) + ...
(3.3)

where y± = x±− iθ±θ̄± and ỹ± = x±∓ iθ±θ̄±.2 Here, F and E are auxiliary
fields and ... involves only derivatives in φ, ψ and v, χ, respectively. The
complex conjugates X̄ and Ū are called anti-chiral (or (a, a)) and twisted anti-
chiral (or (c, a)), respectively. Sums and products of (anti-)chiral superfields
are again (anti-)chiral superfields.

Axial and vector R-rotations act on a superfield with axial R-charge qA
and vector R-charge qV as

eiαFV : F(xµ, θ±, θ̄±) 7→ eiαqV F(xµ, e−iαθ±, eiαθ̄±)

eiβFA : F(xµ, θ±, θ̄±) 7→ eiβqAF(xµ, e∓iβθ±, e±iβ θ̄±).

Actions invariant under the supersymmetry variation

δε,ε̄ = ε+Q− − ε−Q+ − ε̄+Q̄− + ε̄−Q̄+

1If one or both of these R-symmetries is broken, the N = (2, 2) supersymmetry algebra
can be extended by central charges Z, Z̃. However, most examples discussed in this thesis
have unbroken R-symmetry.

2In the literature, these superfields are usually defined to be general superfields which
vanish upon action with differential operators D± or D± anti-commuting with the super-
charges. This allows to easily prove the invariance of action functionals under supersym-
metry variations.
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can now be built out of the invariant D-term, F-term and twisted F-term

SD =

∫
d2xd4θK(Fi, F̄i)

SW =

∫
d2xdθ−dθ+W (Xj)

∣∣
θ̄±=0

+

∫
d2xdθ̄+dθ̄−W (Xj)

∣∣
θ±=0

S
W̃

=

∫
d2xdθ̄−dθ+W̃ (Uk)

∣∣∣
θ̄+=θ−=0

+

∫
d2xdθ̄+dθ−W̃ (Uk)

∣∣∣
θ+=θ̄−=0

where K is any differentiable function of superfields Fi, W is a holomorphic
function of chiral superfields Xj and W̃ is a holomorphic function of twisted
chiral superfields Uk.

As a first concrete model, consider a Lagrangian of pure D-type with
chiral superfields X1, ..., Xn [23, 2.22]:3

Lkin =

∫
d4θK

(
Xk, X̄k

)
= −gij̄∂µφi∂µφ̄j̄ + igij̄ψ̄

j̄
− (D0 +D1)ψi−

+ igij̄ψ̄
j̄
+ (D0 −D1)ψi+ +Rik̄jl̄ψ

i
+ψ

j
−ψ̄

k̄
−ψ̄

l̄
+

Here, the final equality holds up to total derivatives in xµ, the auxiliary fields
have been eliminated and

gij̄ := ∂i∂j̄K
(
Xk, Xk

)
,

Dµψ
k
± := ∂µψ

i
± + ∂µψ

jΓijkψ
k
±

in the component decomposition of the Lagrangian and Γijk and Rij̄kl̄ are
expressions in gij̄ .

If we assume that gij̄ is a positive definite matrix, then {φi} describe the
local coordinates of an n-dimensional Kähler manifold M with Kähler metric
induced by gij̄ , Levi-Civita connection Γijk and Riemannian curvature Rij̄kl̄.
Because the action is invariant under Kähler transformations

K
(
Xk, X̄k

)
→ K

(
Xk, X̄k

)
+ f (Xk) + f̄

(
X̄k

)
for holomorphic functions f (Xk), this patch-wise construction extends to an
action for a map from the worldsheet to any Kähler manifold M of arbitrary
topology:

φ : Σ→M

This model is called supersymmetric non-linear sigma model (NLSM) on the
Kähler manifold M with metric g. M is called Calabi-Yau (CY) if its first
Chern class vanishes c1(M) = 0.

3For ease of readibility, the fermionic components ψk± of the superfield Xk carries a
superscript.
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Building on top of this model, one can add an F-term SW for a holomor-
phic function W on M . This model is called Landau-Ginzburg (LG) model
on M with superpotential W . If W is quasi-homogeneous, i.e.

W (λqiXi) = λW (Xi)

for the scaling dimensions qi of Xi, then the F-term is invariant under
changes of scale z → λz, dθ → λ−

1
2 dθ. In fact, one can prove [24, p.

331ff.] that supersymmetry protects such superpotentials from receiving any
renormalization terms upon scale variations. One can also show that for
quasi-homogeneous superpotentials W both R-charges U(1)A and U(1)V are
preserved classically and at the quantum level by assigning vector R-charge
2qi to Xi and axial R-charge 0 to all chiral fields [23]. The D-term contains
only irrelevant operators and all relevant operators are included in the F-term.
Hence, the fixed point of the renormalization group flow is dictated only by
the superpotential [25].

After this section, the models considered will be conformal fixed points
of LG (orbifold) models with quasi-homogeneous superpotentials, which
will also be referred to as LG models by abuse of language. Because they
are completely specified by their chiral superfields X1, . . . , Xn and their
superpotential W (X1, . . . , Xn), they will be depicted in spacetime diagrams
as

W (X1, ..., Xn)

For a proper treatment of the full N = 2 superconformal algebra see [26, 27].

Superpotentials W which are not quasi-homogeneous exhibit effective
flow [24, p. 336f.]. This means that W changes upon a redefinition of the
fields. An important example in this thesis is the theory with a single chiral
field X and superpotential

W (X) = Xd +Xk

with d > k. Under W → λW one can redefine X → λ−
1
dX such that scale

changes leave the higher dimension operator Xn invariant

W (X)→ Xn + λ
n−k
n Xk.

Thus, the superpotential effectively flows to W = Xk in the IR (λ→ 0) and
to W = Xn in the UV (λ→∞). In other words, if one perturbes the CFT
described by the superpotential Xd by adding the relevant term Xk to the
action, the conformal invariance is broken and the theory flows to the CFT
described by the LG model with superpotential Xk.
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3.2 Topological twist

Instead of calculating in the full field theory, one can alter the theory slightly
and restrict to a topological subsector which contains important information
about the full theory.

Chiral ring. Setting

QB := Q̄+ + Q̄−,

a chiral operator is defined to be an operator O commuting with QB

[QB,O] = 0.

A particular example of such an operator is the lowest component φ of a
chiral superfield X (3.3). One can show that the spacetime translation of a
chiral operator is QB-exact [24, p. 398]

i

2
∂±O = {QB, [Q±,O]}

and hence the QB cohomology class of such an operator is invariant under
worldsheet translations. In particular, two chiral operators can be moved to
space-like separation and hence they commute up to QB-exact terms. Because
the product of two chiral operators is again a chiral operator, the full set
of such operators forms a commutative ring called chiral ring. Analogous
statements hold for the operator QA := Q̄+ + Q−, which gives rise to the
twisted chiral ring [28].

One can show [24, p. 306] that the supersymmetric ground states are in
one-to-one correspondence with the elements of the chiral ring and for LG
models also with the critical points of the superpotential. In particular, for
a Landau-Ginzburg model with chiral fields X1, ..., Xn and superpotential
W , the chiral ring is given by [25, 29, 30]

C[X1, ..., Xn]/ 〈∂X1W, ..., ∂XnW 〉 .

Topological B-twist. Supersymmetric Landau-Ginzburg models with
unbroken R-symmetry can be turned into a topological theory. To see this,
one first Wick rotates the time coordinate x0 = −ix2 such that the worldsheet
metric becomes Euclidean. In particular, the Lorentz group SO(1, 1) turns
into the Euclidean rotation group SO(2)E = U(1)E . The supersymmetry
algebra (3.1), (3.2) remains largely unaffected, one simply replaces M by
−iME .

Twisting the theory means to regard the diagonal subgroup of U(1)E ×
U(1)A as the Euclidean rotation group. In other words, the generator
ME + FA is seen as the rotation generator. This of course alters the matter
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content’s spin. For example, the scalar component φ of a chiral multiplet
(3.3) with axial R-charge 0 is charged trivially under U(1)E and therefore
remains a scalar in the topological theory. The following table indicates
the transformation behavior of the component fields of a (twisted) chiral
superfield and the supercharges before and after the twist.4

φ ψ+ ψ− ψ̄+ ψ̄− Q+ Q− Q̄+ Q̄−

U(1)E 0 -1 1 -1 +1 -1 +1 -1 +1
U(1)A 0 -1 1 +1 -1 -1 +1 +1 -1
U(1)E′ 0 -2 2 0 0 -2 +2 0 0

In particular, the supercharge QB = Q̄+ + Q̄− is a scalar in the B-twisted
theory. Note that twisting only makes sense when the axial R-charges are
integral.

At the same time, the energy-momentum tensor also changes. For all
models of interest in this thesis, it is QB-exact, i.e.

T twisted
µν = {QB, Gµν}

for some fermionic symmetric tensor Gµν [24]. This implies that correla-
tion functions of QB-closed operators are independent of variations of the
worldsheet metric h:

δh 〈O1...Os〉 = 〈 1

4π

∫ √
hd2xδhµνT twisted

µν O1...Os〉 = 0

Therefore, one restricts the operator content of the B-twisted topological
Landau-Ginzburg model to QB-cohomology elements, i.e. the ground states
of the original theory. Then, the twisted theory is a topological theory [24,
p. 404].

Mirror symmetry. The supersymmetry algebra (3.1), (3.2) is invari-
ant under the outer automorphism

Q− ←→ Q− FV ←→ FA.

Mirror symmetry describes the equivalence of two N = (2, 2) supersymmetric
field theories whose symmetry generators are exchanged in this way. This
symmetry extends to theories with broken R-symmetries.

Instead of the axial R-symmetry U(1)A one can also use the vector R-
symmetry U(1)V to twist to a topological A-twisted theory. Mirror symmetry
then relates the B-twist of one N = (2, 2) supersymmetric theory to the
A-twist of a second N = (2, 2) supersymmetric theory.

4This table is an adapted version of the tables in [24, p. 401f.].
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3.3 B-type boundaries and defects

In order to apply the theory of chapter 2 to topologically B-twisted LG
models, a description for defects in these models is needed. In the follow-
ing, supersymmetric defects and boundaries in LG models which become
topologial defects in the twisted theory are reviewed. The mathematical
formulation in terms of matrix factorizations was first suggested by Kontsevic
and discussed in [31, 32, 33, 16, 34]. The first part of this chapter closely
follows [16] and the review [35].

Boundaries. On a worldsheet with boundary

W

the LG bulk action is a priori not invariant under B-type supersymmetry
variations. The breaking of this symmetry is due to the Warner term [36]
coming from

QB ·
∫

Σ
d2xd2θ W (Xi) =

∫
Σ

d2xdθ+dθ− (θ+∂+ + θ−∂−)W (Xi)

=

∫
∂Σ

dxdθ W (Xi|∂Σ) .

This variation can be cancelled by introducing d = 1,N = 2 boundary
superfields Πa = πa + θla consisting of auxiliary fields la and fermions πa
satisfing a Clifford algebra {πa, πb} = δab. These superfields obey5

DΠa = Ea (Xi|∂Σ)

for some polynomials Ea. One can now add a boundary superpotential

S∂Σ =

∫
∂Σ

dxdθ
∑
a

ΠaJa (Xi|∂Σ)

whose variation exactly cancels the Warner term if∑
a

JaEa = W. (3.4)

Letting a = 1, ..., k, the fermions can be written as generalized 2k × 2k-
dimensional Pauli matrices and the boundary BRST operator takes the
form

Q =
k∑
a=1

(πaJa + πaEa) =

(
0 dB1

dB0 0

)
.

5The differential operator D is a one-dimensional analogue of the differential operators
in two dimensions which appeared in the footnote around equation (3.3).
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In particular, condition (3.4) can be recast into Q2 = dB0 ·dB1 = dB1 ·dB0 =
W · 1. Any such decomposition of the superpotential in terms of square
matrices dB0, dB1 ∈ Mat (n, n;C[Xi]) gives a boundary condition for the
LG model. In the derivation just reviewed n must be a power of 2 for the
matrices dBi to describe a spinor representation. However, by allowing more
general boundary contributions it can be shown [37] that any n ∈ N>0 leads
to a valid boundary condition.

Rephrased mathematically6, every B-type boundary is determined by a Z2-
graded free module B = B0⊕B1 over the polynomial ring S := C[X1, ..., Xn],
with an odd endomorphism dB : B → B, which squares to W times the
identity map, i.e. d2

B = W idB, and B0 and B1 must be of the same rank.
One often unfolds such matrix factorizations into 2-periodic complexes

B : B1

dB1

dB0

B0 , dB =

(
0 dB1

dB0 0

)

twisted by W : dB1 ◦ dB0 = W · idB0 and dB0 ◦ dB1 = W · idB1 .
The space of boundary condition-changing fields Hom(B,B′) between two

boundaries represented by matrix factorizations B,B′ of W is given by the
homology of the induced Z2-graded complex on the space of homomorphisms
HomS(B,B′) of the respective S-modules7. More precisely,

Hom(B,B′) = H∗d(HomS(B,B′)) ,

with differential dφ = dB′ ◦ φ− (−1)degφ ◦ dB ,
(3.5)

for φ ∈ HomS(B,B′). Here deg denotes the Z2-degree. The space of
boundary-changing fields is Z2-graded with even and odd elements corre-
sponding to bosons and fermions, respectively. The operator product of
boundary-changing fields is just the composition of homomorphisms.

Defects. The above construction can be applied to defects by consider-
ing them as boundaries of the product theory (folding trick). Namely, such
a defect D

D
V (Z1, ..., Zm) W (X1, ..., Xn)

D
V (Z1, ..., Zm)

W

between two LG models specified by superpotentials V ∈ C[Z1, ..., Zm] and
W ∈ C[X1, ..., Xn] is described by a matrix factorization of V −W over the
ring C[Z1, ..., Zm, X1, ..., Xn].

6The remainder of this paragraph is an adapted version of the review in [1].
7Note that the Hom-complex is untwisted!
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After twisting, two defects can be brought together closely giving a new
defect. Such defect fusion is described by the tensor product of matrix
factorizations [16]. Namely, let U ∈ C[X1, . . . , Xm], V ∈ C[Y1, . . . , Yn],
W ∈ C[Z1, . . . , Zo] and D : W → V and D′ : V → U be matrix factorizations
of V −W and U−V , respectively. Then the fused defect is given by the tensor
product D′ ⊗D of matrix factorizations. This is the matrix factorization
built on the Z2-graded C[X1, . . . , Xm, Z1, . . . , Zo]-module D′ ⊗C[Y1,...,Yn] D
with homomorphism

dD′⊗D = dD′ ⊗ idD + idD′ ⊗ dD . (3.6)

This differential is to be understood with Koszul signs

(idD′ ⊗ dD)(ν ⊗ ω) = (−1)deg(ν)⊗ dD(ω).

Since the factorized polynomials add upon taking the tensor product, this
is indeed a matrix factorization of (U − V ) + (V − W ) = U − W , i.e.
D′ ⊗D : W → U .8

Mathematically, defect-changing fields take the same form as their bound-
ary equivalent. However, multiple defects can be joint together at a junction,
i.e. a defect-changing field φ ∈ Hom (D1 ⊗ ...⊗Dl, Dl+1 ⊗ ...⊗Dl+N ) be-
tween tensor products of defects.

φ

Note that boundary conditions can be considered a special case of defects,
namely those with a trivial theory on one side. The trivial LG theory is
the theory with no chiral fields and zero superpotential. Right (left) B-type
boundary conditions of a Landau-Ginzburg theory with superpotential W
can therefore be described by matrix factorizations of W (−W ).

Identity defect. The invisible or identity defect I has been determined
in [15], see also [39]. If the variables to the left of I are called Xi and the
ones to the right carry an additional prime,

I
W (X1, ..., Xn) W (X ′1, ..., X

′
n)

8A priori, such tensor product matrix factorizations are of infinite rank. It can be
shown however, that tensor products of finite-rank matrix factorizations are isomorphic to
finite-rank matrix factorizations [16]. See also [38].
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then the module of I is given by the exterior algebra

Λ

(
n⊕
i=1

C[X1, ..., Xn, X
′
1, ..., X

′
n] · θi

)

based on n anticommuting variables θi. Defining the polynomial

∂X,X
′

i W :=
W (X ′1, ..., X

′
i−1, Xi, ..., Xn)−W (X ′1, ..., X

′
i, Xi+1, ..., Xn)

Xi −X ′i
,

the twisted differential on I is

dIW =

n∑
i=1

[
(Xi −X ′i) · θ∗i + ∂X,X

′

i W · θi
]
.

In [15, 39] also the left and right actions of I on a defect D have been
determined.

λD

D

V (Z1, ..., Zm)
W (X1, ..., Xn)

ρD

D

V (Z1, ..., Zm)
W (X ′1, ..., X

′
n)

λ−1
D

D

V (Z1, ..., Zm)
W (X1, ..., Xn)

ρ−1
D

D

V (Z1, ..., Zm)
W (X ′1, ..., X

′
n)

Namely, λD first projects IV to θ-degree zero and subsequently identifies
Z ′i = Zi and similarly for ρD. Their inverses are given by

λ−1
D (ei) =

∑
l≥0

∑
a1<...<al

∑
j

θa1 ...θal

{
∂Z,Z

′
al

dD...∂
Z,Z′
a1

dD

}
ji
⊗ ej

ρ−1
D (ei) =

∑
l≥0

∑
a1<...<al

∑
j

(−1)

(
l
2

)
+l|ei|ej ⊗

{
∂X,X

′
a1

dD...∂
X,X′
al

dD

}
ji
θa1 ...θal

where ei are the generators of D0 ⊕D1.

Associated modules. The computation of defect fusion for non-trivial
superpotentials can be simplified by using that matrix factorizations of W
over a polynomial ring S are related to finitely generated modules over
Ŝ := S/(W ) as explained in [16, 3]. Namely, if such a matrix factorization is
given by the matrices (d1, d0), one associates to it the Ŝ-module

MD = coker(d1 : D1 ⊗S Ŝ → D0 ⊗S Ŝ).

Reversely, free resolutions of finitely generated modules over Ŝ := S/(W )
necessarily turn two-periodic after finitely many steps [40]. This two-periodic
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part gives a matrix factorization of W over S. For example, MD has the
following free two-periodic resolution.

. . .
d0−→ D1 ⊗S Ŝ

d1−→ D0 ⊗S Ŝ
d0−→ D1 ⊗S Ŝ

d1−→ D0 ⊗S Ŝ −→MD → 0 .

Isomorphisms between modules associated to matrix factorizations of
the same polynomial W give rise to isomorphisms of the respective matrix
factorizations. This is relevant for defect fusion, because the two-periodic
part of the free resolution of coker(dD′⊗D)1 in (3.6) equals the two-periodic
part of the free resolution of

coker ((dD′)1 ⊗ idD0, idD′0 ⊗ (dD)1) .

This equation simplifies defect fusion considerably. For example, the invisible
defect I can this way be regarded to be a tensor product over the complex
numbers of the one-dimensional matrix factorizations

C[X1, ..., Xn, X
′
1, ..., X

′
n]

(Xi −X ′i)

∂X,X
′

i W

C[X1, ..., Xn, X
′
1, ..., X

′
n].

Indeed, the module corresponding to a fused defect D ⊗ I is then given by

coker(dD1, (X1 −X ′1), ..., (Xn −X ′n)) ∼= coker(dD1)

where the latter differential dD1 has shifted variables Xi 7→ X ′i. In other
words, D ⊗ I ∼= D.

Adjunctions. Adjoints, i.e. left and right bent versions satisfying the
Zorro moves of chapter 2.1, of B-type defects and boundaries in LG models
have been studied in [41, 15] (see [39] for a review). They are given by

D† ∼= D∨[n] , †D ∼= D∨[m] , (3.7)

where D∨ is the dual of a matrix factorization D, consisting of the dual
modules (D∨)i = (Di)

∨, and the maps

dD∨ =

(
0 d∨D0

−d∨D1 0

)
.

Moreover, (·)[m] denotes the shift of Z2-degree by m:

D[m] : D1+mmod 2

(−1)nd1+mmod 2

(−1)mdmmod 2

Dmmod 2
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While the first isomorphism in (3.7) is given by the identity map, the second
isomorphism contains a crucial minus sign [15, remark 5.1]

†D → D∨[m]

ν 7→ (−1)m|ν|ν

for ν ∈ D0 or D1. The corresponding (co)evaluation maps (2.2) are described
by

ẽvD(ej ⊗ e∗i ) =
∑
l≥0

∑
a1<...<al

(−1)l+(n+1)|ej |θa1 ...θal ·

· Res


{
∂Z,Z

′
al dD...∂

Z,Z′
a1 dD · ΛXdX

}
ij

∂X1W, ..., ∂XnW



evD(e∗i ⊗ ej) =
∑
l≥0

∑
a1<...<al

(−1)

(
l
2

)
+l|ej |θa1 ...θal ·

· Res


{

ΛZ · ∂X,X
′

al dD...∂
X,X′
a1 dDdZ

}
ij

∂Z1W, ..., ∂ZmW


c̃oevD(γ̄) =

∑
i,j

(−1)(r̄+1)|ej |+sn
{
∂X,X

′

br
dD...∂

X,X′

b1
dD

}
ji
e∗i ⊗ ej

coevD(γ) =
∑
i,j

(−1)

(
r+1

2

)
+mr+sm

{
∂Z,Z

′

b1
dD...∂

Z,Z′

br
dD

}
ij
ei ⊗ e∗j

where ΛX := (−1)n∂X1dD...∂XndD and ΛZ := ∂Z1dD...∂ZmdD. bi, b̄j̄ and
sn, sm ∈ Z2 are the unique numbers with b1 < ... < br, b̄1 < ... < b̄r̄ and
γ̄θb̄1 ...θb̄r̄ = (−1)snθ1...θn, γθb1 ...θbr = (−1)smθ1...θm.

The categorial structure. Defects between Landau-Ginzburg models
give rise to the structure of a 2-category. Objects are the Landau-Ginzburg
models (potentials), 1-morphisms are the defects between different Landau-
Ginzburg models (matrix factorizations of the difference of potentials) and
2-morphisms are the defect changing fields (morphisms between matrix
factorizations).

In the case of B-type LG models, the defect and boundary categories
carry even more structure – they are triangulated. As discussed in the next
section, such a triangulation requires the existence of exact triangles, which -
in the case at hand - arises from the cone-construction [42]. The cone of a
morphism φ : D → E between two matrix factorizations D,E ∈ hmf(W ) is
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given by

cone(φ : D → E) : E1 ⊕D0

(
dE1 φ0

−dD0

)

(
dE0 φ1

−dD1

) E0 ⊕D1. (3.8)

Physically, this corresponds to a deformation (or perturbation) of the sum
E ⊕ D[−1]. The exact triangles, which can be shown to satisfy all the
necessary properties of the next section [42], are those isomorphic to triangles
of the form

D
φ−→ E

idE
0


−−−−−→ cone(φ : D → E)

(
0,−idD[1]

)
−−−−−−−−−→ D[1].

A straightforward computation reveals that fusion ⊗, shift [·] and cone
construction all pairwise commute. In other words, shift and fusion take exact
triangles to exact triangles. Hence, the defect categories in Landau-Ginzburg
models satisfies all the requirements of a tensor triangulated category as
spelled out in the next section. Furthermore, the boundary categories
are triangulated and fusion between defects and boundaries respects the
triangulated structure of both defect and boundary categories.

3.4 Triangulated defect categories

In this section, which appeared in [2], some basic properties of triangulated
tensor categories are reviewed. For the full set of axioms see e.g. [42]. A
tensor triangulated category T comes with automorphisms [n] called shift
functors for all n ∈ Z. Moreover, it comes with a collection of exact (or
distinguished) triangles

C
φ→ D

ψ→ E
χ→ C[1] (3.9)

satisfying a list of axioms. Here C,D,E ∈ obj(T ). For instance, for every
morphism φ : C → D between objects C,D ∈ obj(T ) there is an object
cone(φ) ∈ obj(T ) which fits into an exact triangle

C D cone(φ) C[1].
φ

The cone of the identity morphism idC of any object C is trivial, cone(idD) =
0. Moreover, the shift functor takes exact triangles to exact triangles, and
the triangle (3.9) is exact if and only if the rotated triangle

D
ψ→ E

χ→ C[1]
−φ[1]→ D[1]
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is exact.

A morphism of triangles consists of morphisms, c, d, e such that all squares
in

C ′ D′ E′ C ′[1]

C D E C[1]

φ′

�

ψ′

�

χ′

�
φ

c

ψ

d

χ

e c[1]

commute. If c, d, e are isomorphisms, they define an isomorphism of triangles.
Another important property of triangulated categories is that any triangle
isomorphic to an exact triangle is itself exact. Moreover, for exact triangles,
the existence of the first two (and hence also the fourth) vertical morphisms
in

C ′ D′ E′ C ′[1]

C D E C[1]

φ′

�

ψ′

�

χ′

�
φ ψ χ

implies the existence of the dashed morphism with all squares commut-
ing. The morphism induced in this way by two isomorphisms is itself an
isomorphism.

Since our aim is to describe defects, we require T to be a tensor category,
in particular it comes with a product ⊗ on objects and morphisms with
neutral element I ∈ obj(T ). Moreover, this product is compatible with the
triangulated structure. More precisely, it commutes with the shift functor
[n] and cone construction of T , i.e.

(D ⊗ E)[1] ∼= D[1]⊗ E ∼= D ⊗ E[1]

cone(φ : D → E)⊗ F ∼= cone(φ⊗ idF : D ⊗ F → E ⊗ F )
(3.10)

To put it differently, the induced functors ·⊗D and D⊗· for any D ∈ obj(T )
are triangulated, i.e. compatible with the triangulated structure. Furthermore,
morphisms are taken to commute with the isomorphisms D ∼= I ⊗D and
D ∼= D⊗ I. This is expressed by the existence of four commutative diagrams
of the type

I ⊗D I ⊗ E

D E

id⊗φ

�

φ

∼ ∼

D

φ

E

=

D

φ

E

On the right hand side we have provided the relation in string diagram
notation. The other three diagrams can be obtained by mirroring the given
defect diagrams.
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3.5 LG orbifolds and equivariant defects

An ordinary topological LG model specified by a superpotential W can be
orbifolded by a finite group G giving rise to the LG orbifold model denoted
W/G [43, 18]. The B-twists of these models constitute the primary examples
in this thesis.

In detail, consider a finite group G acting linearly on the polynomial ring
C[X1, ..., Xn] of chiral fields such that the superpotential W ∈ C[X1, ..., Xn]
is invariant,

W (g ·X1, ..., g ·Xn) = W (X1, ..., Xn)

for all g ∈ G. In the orbifold construction, one first allows new representations
constituting the g-twisted sectors Hg. The untwisted sector H0 is the original
Hilbert space. In the CFT operator picture on the cylinder, a g-twisted field
obeys φ(e2πiσ) = gφ(σ). Second, one keeps only the g-invariant states in the
g-twisted sector. In other words, the Hilbert space of the LG orbifold model
is

Horbifold =
⊕

conj. class {g}
of G

PgHg

where Pg implements the projection onto g-invariant states and the sum is

only over conjugacy classes because Hg ∼= Hhgh−1
.

Equivariant defects. The description of B-type defects in Landau-
Ginzburg models by means of matrix factorizations extends in a straight-
forward manner to the context of Landau-Ginzburg orbifolds. (For more de-
tails on defects in Landau-Ginzburg orbifolds see [3].) Let V ∈ C[X1, . . . , Xn]
and W ∈ C[Y1, . . . , Ym] be two superpotentials and GV and GW be orbifold
groups leaving the respecting superpotential invariant. Then, B-type defects
between the respective LG orbifolds can be described by G = GV × GW -
equivariant matrix factorizations of V −W [3, 44, 45]. These are matrix
factorizations D : W → V as before, which are additionally equipped
with a representation ρD of G. The latter has to be compatible with
the module structure on D and has to commute with dD. Denoting by
ρ the representation of G = GV × GW on the combined polynomial ring
S = C[X1, . . . , Xn, Y1, . . . , Ym] this means that for all g ∈ G

ρD(g)(s · p) = ρ(g)(s) · ρD(g)(p), ∀s ∈ S, p ∈ D = D0 ⊕D1,

ρD(g) ◦ dD = dD ◦ ρD(g) .

Given two equivariant matrix factorizations D,D′ : W → V , the com-
plex HomS(D,D′) carries an action of G = GV × GW which commutes
with the differential d of (3.5), inducing a representation on the homology
H∗d(HomS(D,D′)). The space of defect-changing fields in the orbifold theory
is then given by the G-invariant part HomG(D,D′) = (H∗d(HomS(D,D′)))G.
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The operator product of defect-changing fields is again just composition of
homomorphisms.

Defect fusion carries over from the unorbifolded LG models by taking
invariant parts. More precisely, let U ∈ C[X1, . . . , Xm], V ∈ C[Y1, . . . , Yn]
and W ∈ C[Z1, . . . , Zo] be polynomials invariant under actions of groups
GU , GV , GW on the respective polynomial rings. And let D : W → V
and D′ : V → U be GV × GW -, respectively GU × GV -equivariant matrix
factorizations. Then the tensor product D′⊗D is a GU×GV ×GW -equivariant
matrix factorization of U −W . Fusion of the defects in the orbifold theory
is then given by the GV -invariant part D′ ⊗GV D := (D′ ⊗D)GV of D′ ⊗D,
which is of course GU ×GW -equivariant.

Adjunction of defects D in the orbifold theory is given by adjunction
(3.7) in the underlying unorbifolded theory, where however the G-action
on the adjoints is twisted. This can be seen in a systematic way in the
generalized orbifold construction reviewed in section 2.7 which offers a
completely general framework to describe orbifold theories using defects in
the underlying unorbifolded theory. In the example of the next chapter, the
generalized orbifold procedure is used to explicitely determine adjoints and
(co)evaluations maps.

Importantly, categories of equivariant matrix factorizations inherit the
tensor triangulated structure from the categories of matrix factorizations.

Identity defect. Given an abelian symmetry group G in the original
non-orbifold theory, one can construct defects gI that implement the symme-
try operation. The matrix factorizations of these symmetry defects are built
on the same module as the identity matrix factorization, but the differential
is twisted by the symmetry [16]

dgI =
n∑
i=1

[
(Xi − g(X ′i)) · θ∗i + ∂X,X

′

i W (X, g(X ′)) · θi
]
.

The identity defect in Landau-Ginzburg orbifolds can now be constructed
from the identity defect of the unorbifolded LG model by summing over all
symmetry defects gI of the unorbifolded Landau-Ginzburg model associated
to orbifold group elements [3]

Iorb =
⊕
g∈G

gI . (3.11)

This defect can be brought in the equivariant form discussed above. For
G = Zd this is executed explicitely in appendix B.6.



Chapter 4

Application: LG orbifolds
with one chiral superfield

As a first example, the procedure of chapter 2 is applied to the (topologically
B-twisted conformal fixed point of the) LG orbifold with a single chiral field
X, superpotential Xd and orbifold group Zd. An element a ∈ Zd of the

orbifold group acts on the chiral field X by X 7→ e
2πia
d X. This section is an

excerpt from [1].

LG orbifolds and their defects have been described in section 3.5. Explicit
formulae for adjunctions and (co)evaluation maps are obtained by applying
the generalized orbifold procedure of section 2.7 to the non-orbifold formulae
of section 3.3, see appendix B.

4.1 Defects and adjoints

A defect D : Xd/Zd → Zd
′
/Zd′ is given by a G = Zd′×Zd-equivariant matrix

factorization of Zd
′ −Xd. Since G is commutative, its representations on

D can be specified by G-gradings or -charges of the generators of the free
S = C[Z,X]-module D = D0⊕D1. We will indicate them in square brackets
and specify a G-equivariant matrix factorization as

D : SM


[lM , rM ]

[lM+1, rM+1]
...

[l2M−1, r2M−1]

 dD1

dD0

SM


[l0, r0]
[l1, r1]

...
[lM−1, rM−1]

 ,

where dD1 and dD0 are M ×M -square matrices.

According to the generalized orbifold procedure adjoints then take the

49
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form, c.f. appendix B.4,

D† : SM


[−r0 + 1,−l0]
[−r1 + 1,−l1]

...
[−rM−1 + 1,−lM−1]

 dTD1

−dTD0

SM


[−rM + 1,−lM ]

[−rM+1 + 1,−lM+1]
...

[−r2M−1 + 1,−l2M−1]


†D : SM


[−r0,−l0 + 1]
[−r1,−l1 + 1]

...
[−rM−1,−lM−1 + 1]

 dTD1

−dTD0

SM


[−rM ,−lM + 1]

[−rM+1,−lM+1 + 1]
...

[−r2M−1,−l2M−1 + 1]


(4.1)

Note that left adjoints differ from right adjoints by a shift in G-charges by
[−1, 1]. We write †D = D†{[−1, 1]}.

An important example is the identity defect Id : Xd/Zd → Zd/Zd which
is represented by the following Zd × Zd-equivariant matrix factorization (c.f.
appendix B.6)

Id : Sd


[1, 0]

[2,−1]
[3,−2]

...




Z 0 ... 0 −X
−X Z

0 −X Z
...

. . .
. . .

0 −X Z


dId0

Sd


[0, 0]

[1,−1]
[2,−2]

...

 .

One easily reads off that this defect is self-adjoint, i.e. I†d
∼= Id ∼= †Id.

4.2 RG defects

For d > 2, the models Xd′/Zd′ exhibit relevant perturbations by twisted
chiral fields which trigger renormalization group flows to Landau-Ginzburg
orbifolds Xd′/Zd′ of the same type but with d′ < d.1 The associated RG
defects have been constructed in [3]. They preserve B-type supersymmetry
and can therefore be described by Zd′ × Zd-equivariant matrix factorizations
of Zd

′ −Xd. Indeed, due to a singularity in the parameter space, there are
different flows fromMd/Zd toMd′/Zd′ . The corresponding RG defects R =
R(m,n0, . . . , nd′−1) are specified by m ∈ Zd, and integers n0, . . . , nd′−1 ≥ 1,

1These are mirror to flows between the unorbifolded Landau-Ginzburg models with
superpotentials W = Xd and W ′ = Xd′ triggered by deformation of the superpotential W
by lower degree polynomials.
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such that n0 + ...+nd′−1 = d. They are represented by matrix factorizations

R : Sd
′

 [1,−m]
[2,−m−n1]

[3,−m−n1−n2]

...

 dR1

dR0

Sd
′

 [0,−m]
[1,−m−n1]

[2,−m−n1−n2]

...

 ,

dR1 =


Z 0 ... 0 −Xn0

−Xn1 Z
0 −Xn2 Z
...

. . .
. . .

0 −Xnd′−1 Z


(4.2)

where S = C[X,Z]. For more details see [3]. In the following we will
sometimes take the subscripts of the ni to be elements in Zd′ by defining
ni+z d′ = ni for all z ∈ Z.

Using this concrete realization of RG defects, one can now explicitly carry
out the construction outlined in section 2 and represent the LG orbifolds
Md′/Zd′ in Md/Zd for any d′ < d. In order to construct the respective
projection defects, we need right and left adjoints of the defects R, which
can easily be read off from formula (4.1). They are given by

R† : Sd
′

 [m+1,0]
[m+1+n1,−1]

[m+1+n1+n2,−2]

...

 dR†1

dR†0 = dTR0

Sd
′

 [m+1,−1]
[m+1+n1,−2]

[m+1+n1+n2,−3]

...


and

†R : Sd
′

 [m,1]
[m+n1,0]

[m+n1+n2,−1]

...


d†R1

d†R0 = dTR0

Sd
′

 [m,0]
[m+n1,−1]

[m+n1+n2,−2]

...


for

dR†1 = d†R1 =


Z −Xn1

Z −Xn2

. . .
. . .

Z −Xnd′−1

−Xn0 Z


A straightforward calculation presented in appendix C.1 then shows that
indeed

R⊗Zd R
† ∼= Id′

R⊗Zd
†R ∼= Id′ ,

i.e. the defects R are indeed of RG type. Fusion in the opposite order
yields the respective projection defects (see appendix C.2 for the explicit
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calculation). For the unital projection defect P = R† ⊗Zd′ R one obtains

P : P1

dP1

dP0

Sd
′


[m+ 1 +

∑d′−1
l=1 nl,−m]

[m+ 1,−m− n1]
[m+ 1 + n1,−m− n1 − n2]

...

[m+ 1 +
∑d′−2

l=1 nl,−m−
∑d′−1

l=1 nl]

 ,

where

dP1 =


Zn0 0 ... 0 −Xn0

−Xn1 Zn1

0 −Xn2 Zn2

...
. . .

. . .

0 −Xnd′−1 Znd′−1

 . (4.3)

and

P1 = Sd
′


[m+ 1,−m]

[m+ 1 + n1,−m− n1]
[m+ 1 + n1 + n2,−m− n1 − n2]

...

[m+ 1 +
∑d′−1

l=1 nl,−m−
∑d′−1

l=1 nl]


The counital projection defect P ′ = †R ⊗Zd′ R is given by the left adjoint
P ′ = †P of P .

4.3 Representing Md′/Zd′ in Md/Zd for d′ < d

The projection defects constructed from RG defects in the previous section
can now be used to represent Landau-Ginzburg orbifoldsMd′/Zd′ in orbifolds
Md/Zd for d′ < d.

Bulk Hilbert space. The orbifoldsMd′/Zd′ only possess a single bulk
chiral field, namely the identity field. Therefore, the bulk Hilbert space in
the B-twisted model is trivial, it just contains the vaccuum. One easily
checks, that this is also true for Hom(P, P ). Hence, the bulk Hilbert space
of Md′/Zd′ agrees with the space of defect fields on the projection defect in
Md/Zd.

2

2Since the bulk Hilbert spaces are trivial, this is not that interesting. However, there
is a way to describe also the twisted chiral fields in the B-twisted LG orbifolds Md/Zd.
Namely, being orbifold twist fields, they can be realized as defect changing fields between
symmetry defects. This realization then lifts from IR to UV using projection defects, i.e.
one can realize the twisted chiral fields in Md′/Zd′ by defect changing fields in Md/Zd.
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Boundary conditions. Next, we demonstrate how to represent the
boundary conditions of Md′/Zd′ as P -invariant boundary conditions in the
models Md/Zd.

Elementary left boundary conditions in a theory Md/Zd are represented
by the Zd-equivariant matrix factorizations

Bd
k,N : C[X]

(
[N + k]

) Xk

−Xd−k
C[X]

(
[N ]
)

of −Xd, where k ∈ {1, . . . , d− 1} and N ∈ Zd.
As is shown in appendix C.3, a UV boundary condition BUV = Bd

k,N is
invariant under fusion with P , i.e. BUV ⊗ P ∼= BUV iff

k = ni + ...+ ni−l

and N =

[
−m−

i∑
a=1

na

]

for an i ∈ Zd′ and an l ∈ {0, ..., d′ − 2}. These are of course nothing but the
lifts BIR⊗Zd′R of IR boundary conditions to the UV. Namely, for BIR = Bd′

l,M

one finds [3]

BIR ⊗Zd′ R = Bd
(n−M−l+1+...+n−M ),(−m−

∑−M
a=1 na)

.

IR symmetries. The Landau-Ginzburg orbifold model Md′/Zd′ ex-
hibits a Zd′-symmetry. The action of an element a ∈ Zd′ on the theory is
described by the symmetry defect aId′ = Id′{[a, 0]} ∼= Id′{[0,−a]} obtained
by shifting the charges of the identity defect Id′ by [a, 0] or equivalently
by [0,−a]. These defects fuse according to the group multiplication in the
symmetry group Zd′ :

aId′ ⊗Zd′ bId′ = a+bId′ , for a, b ∈ Zd′ .

As any IR defects, they lift into the UV theory Md/Zd by fusion with RG
defects

aId′ 7−→ R† ⊗Zd′ aId′ ⊗Zd′ R =: aP.

These lifted defects also fuse according to multiplication in the symmetry
group, i.e. aP ⊗Zd bP = a+bP , and therefore give a realization of the IR
symmetry in the UV. The neutral element of the group however lifts to
the defect 0P = P and not to the identity defect in the UV. The lifted IR
symmetries are therefore not invertible in the full UV theory, and hence are
not symmetries of the UV theory.
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The explicit form of aP can be easily derived by means of a slight variation
of the calculation of P as carried out in appendix C.4. The result is

aP : (aP )1

dP1

dP0

Sd
′


[m+ 1 +

∑d′−1
l=1 nl,−m−

∑−a
j=1 nj ]

[m+ 1,−m−
∑1−a

j=1 nj ]

[m+ 1 + n1,−m−
∑2−a

j=1 nj ]
...

[m+ 1 +
∑d′−2

l=1 nl,−m−
∑d′−1−a

l=1 nl]

 ,

where

dP1 =


Zn0 0 ... 0 −Xn0−a

−Xn1−a Zn1

0 −Xn2−a Zn2

...
. . .

. . .

0 −Xnd′−1−a Znd′−1

 .

and

(aP )1 = Sd
′


[m+ 1,−m−

∑−a
j=1 nj ]

[m+ 1 + n1,−m−
∑1−a

j=1 nj ]

[m+ 1 + n1 + n2,−m−
∑2−a

j=1 nj ]
...

[m+ 1 +
∑d′−1

l=1 nl,−m−
∑d′−1

l=1 nl]


For a = 0, this is the matrix factorization describing P . The lifted IR
symmetry defects aP are obtained from it by shifting the exponents of X
by a steps while keeping left Zd-charges fixed and adapting the right ones
accordingly.

4.4 The limit d→∞

As discussed in the beginning of this section, the RG flows between LG
orbifolds Md/Zd are nothing but the mirror versions of flows between LG
models Md generated by deformations of the superpotentials W = Xd by
lower degree polynomials. Indeed, all the models Md′ can be obtained
as perturbations of the free chiral field theory (W = 0) by superpotential
deformations. Thus, employing our procedure provides a representation of all
the models Md′ inside the theory of a free chiral field, which can be thought
of as the limit M∞ = limd→∞Md of the models Md.

In order to make this more explicit we again take the mirror perspective.
The representation of the respective RG defects in terms of matrix factor-
izations then allows us to explicitly realize all the LG orbifolds Md′/Zd′ by
means of projection defects in the theory of the free twisted chiral field. The
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latter can be described as the limit M∞/Z∞ = limd→∞Md/Zd and can be
thought of as a U(1)-equivariant version of the free chiral field.

RG defects between Md′/Zd′ and M∞/Z∞ can be obtained as limits of
the RG defects (4.2) representing flows Md/Zd →Md′/Zd′ , where one ni is
sent to ∞ while the others are kept fixed. Since d =

∑
i ni, then also d→∞.

Indeed, we can choose n0 →∞ and compensate for this choice by allowing a
shift of the charges of R by [k, 0], k ∈ Zd′ . In the limit, entries Xn0 in the
matrix factorization have to be replaced by 0, and the Zd-equivariance turns
into a U(1)-equivariance. This way, one obtains the Zd′ × U(1)-equivariant
matrix factorizations

R∞ : Sd
′

 [k+1,−m]
[k+2,−m−n1]

[k+3,−m−n1−n2]

...

 dR1

dR0

Sd
′


[k,−m]

[k + 1,−m− n1]
[k + 2,−m− n1 − n2]

...


of Zd

′
. They are specified by integers m ∈ Z, n1, ..., nd′−1 ∈ N and k ∈ Zd′ .

The maps are given by

dR1 =


Z 0 ... 0 0

−Xn1 Z
0 −Xn2 Z
...

. . .
. . .

0 −Xnd′−1 Z



dR0 =



Zd
′−1 0 0 ...

Zd
′−2Xn1 Zd

′−1 0 ...

Zd
′−3Xn1+n2 Zd

′−2Xn2 Zd
′−1 . . .

Zd
′−4Xn1+n2+n3 Zd

′−3Xn2+n3 Zd
′−2Xn3

. . .
...

...
...

. . .


.

These matrix factorizations represent RG defects between Md′/Zd′ and

M∞/Z∞. Indeed R∞ ⊗R†∞ ∼= IIR as is spelled out in appendix C.5.

In explicit calculations, it is not difficult to see that fusion commutes with
the limit d→∞, at least as long as the theory squeezed between the defects
is kept fixed in the limit. In particular, the limit d→∞ of projection defects
is the fusion P∞ = R†∞ ⊗ R∞ of the limit of RG defects. The projection
defect realizing Md′/Zd′ within the limit theory M∞/Z∞ takes the form

P∞ : (P∞)1

dP1

dP0

Sd
′


[m+ 1 +

∑d′−1
l=1 nl,−m]

[m+ 1,−m− n1]
[m+ 1 + n1,−m− n1 − n2]

...

[m+ 1 +
∑d′−2

l=1 nl,−m−
∑d′−1

l=1 nl]

 ,
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where S = C[Z,X],

dP1 =


0 0

−Xn1 Zn1

−Xn2 Zn2

. . .
. . .

−Xnd′−1 Znd′−1

 .

and

(P∞)1 = Sd
′


[m+ 1,−m]

[m+ 1 + n1,−m− n1]
[m+ 1 + n1 + n2,−m− n1 − n2]

...

[m+ 1 +
∑d′−1

l=1 nl,−m−
∑d′−1

l=1 nl]





Chapter 5

Application: Phases of
gauged linear sigma models

The topic of this chapter, which was published in [11], are two-dimensional
gauged linear sigma models (GLSMs) with U(1) gauge groups. These are
2d N = (2, 2) supersymmetric gauge theories coupled to chiral superfields
carrying possibly different charges under the U(1) gauge group, such that
the respective superpotentials W are U(1) invariant.

Gauged linear sigma models exhibit different phases for different ranges
of the Fayet-Iliopoulos parameter r associated to the U(1) gauge group [46].
For non-anomalous gauged linear sigma models, where axial and vector R-
symmetries are preserved at the quantum level, the RG flow drives the GLSM
to a (Kähler) moduli space of superconformal field theories parametrized
by the complexified Fayet-Iliopoulos parameter t. The phases correspond to
different domains of this moduli space. In contrast, in the anomalous case,
the FI parameter is a running coupling constant, and the different phases
correspond to fixed points under the RG flow.

The phases typically exhibit gauge symmetry breaking. For instance,
in geometric phases, in which the theory can be effectively described by a
non-linear sigma model, the gauge group is typically completely broken. On
the other hand, in phases in which the theory can be described by Landau-
Ginzburg models (Landau-Ginzburg phases), a finite subgroup of the gauge
group remains unbroken and survives as an orbifold group.

The question addressed in this chapter is how the boundary sectors (i.e.
the D-branes) behave under transitions between different phases of GLSMs.
This transport of D-branes between different phases of abelian gauged linear
sigma models has initially been studied in [47] for the non-anomalous “Calabi-
Yau” case. Results on the anomalous “non-Calabi-Yau” case appeared more
recently in [48, 49]. With a careful analysis, the authors of these papers
obtain a prescription of the D-brane transport on the level of individual
D-branes: Starting in one phase, a D-brane is first lifted to the gauged

57
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linear sigma model. This lift is a priori not unique, but requires certain
choices. These choices correspond to the homotopy classes of paths along
which the D-brane can be smoothly transported in parameter space (“grade
restriction rule”). Having lifted a D-brane in such a way that it can be
smoothly transported along the chosen path, one only has to push down the
lift to the other phase.

In this chapter, the transport of D-branes is discussed from a defect point
of view providing a uniform and functorial description of brane transport. In
this setting, supersymmetry preserving defect lines (domain walls) connect
different phases of a GLSM or a GLSM and one of its phases.

phase1 phase2 GLSM phase

Supersymmetry preserving defects can be merged with boundaries (fusion)
and in this way give rise to an action on D-branes.

B
GLSM 7−→

D
phase GLSM

B D ⊗B
phase

This action is functorial, and hence any supersymmetric defect between two
theories yields a functor between the respective D-brane categories.

In this chapter, the strategies of the previous chapters are employed in
the context of abelian GLSMs to obtain transition defects between different
phases of GLSMs as well as defects between GLSMs and their phases. In this
way, we derive a novel method for brane transport and in particular recover
the grade restriction rule of [47, 48, 49] from this point of view. While we
do have compatible results, our derivations are rather different from those
of [47, 48, 49]. In our discussion we decouple all gauge degrees of freedom
and merely take into account the matter sector, the only remnant of the
gauge symmetry being an equivariance condition. This subsector is under
good control and still captures the physics of the (B-type) supersymmetry
preserving sector, including perturbations, boundary conditions and defects.
Our arguments mainly rely on the rigidity of defect constructions in this
setting. The defects we construct on this level directly mediate between the
different phases and do not exhibit an explicit t dependence.

In section 5.1 we outline the general ideas. In particular, we discuss the
construction of defects connecting different phases of a GLSM and explain
how they factorize into defects lifting phases to the GLSM and those pushing
down the GLSM to phases. Furthermore, we introduce projection defects
which realize the phases inside the GLSM. Their action on the D-brane
category of the GLSM corresponds, in the language of [47, 49], to the
projection of GLSM branes to “grade restricted” representatives.

The starting point for the construction of the transition defects is the
identity defect of the GLSM theory which will be constructed explicitly in
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section 5.1.3. For this, one needs to generalize the constructions of orbifold
identity defects of chapter 3.5, which will be revisited here thoroughly, to
continuous (abelian) groups. We show that this can be achieved (in the
context of equivariant matrix factorizations) by introducing new bosonic
fields constrained to the defect. Our expectation is that this idea can be
applied more generally in topological field theories.

In section 5.2, we illustrate the construction in an explicit class of exam-
ples, namely the U(1)-gauged linear sigma models with two chiral fields, X
and P , and superpotential W = P d

′
Xd, d′ < d. These anomalous models

have two different Landau-Ginzburg orbifold phases. The UV phase is de-
scribed by the Landau-Ginzburg orbifold with superpotential W = Xd and
orbifold group Zd, and the IR phase by the Landau-Ginzburg orbifold with
superpotential W = P d

′
and orbifold group Zd′ . Along the RG flow, d− d′

vacua decouple to a Coulomb branch taking with them a set of D-branes.
All of this is encoded in the transition defects we construct here. Moreover,
in this example the phase transition between UV and IR phase of the GLSM
corresponds the RG flow between the Landau-Ginzburg models describing
the UV and IR phases [50]. The RG defects for these flows are the ones of
chapter 4, and we indeed find that our transition defects between UV and
IR phase agree with the respective RG defects.

This chapter is based on [11].

5.1 Phases of GLSMs and defects

5.1.1 Phases of GLSMs

We are considering two-dimensional N = (2, 2) gauged linear sigma models
with abelian gauge groups [46], which we review now. By Xi, i = 1, . . . , n we
denote the chiral superfields of the theory. Their representation under the
gauge group U(1)k is specified by the charge matrix Qai , where i = 1, . . . , n
and a = 1, . . . , k. For each U(1)-factor of the gauge group the theory contains
a field strength multiplet, a twisted chiral field Σa, a = 1, . . . , k. We also
allow for a superpotential W , which is a gauge invariant polynomial in the
superfields Xi.

The classical bosonic potential for the scalar parts xi of the chiral super-
fields Xi and σa of the twisted chiral fields Σa is given by

U =

n∑
i=1

∣∣∣∣∣
k∑
a=1

Qai σaxi

∣∣∣∣∣
2

+
e2

2

k∑
a=1

(
n∑
i=1

Qai |xi|2 − ra
)2

+

n∑
i=1

∣∣∣∣∂W∂xi (x1, ..., xn)

∣∣∣∣2 .
(5.1)

Here, ra ∈ R is the Fayet-Iliopoulos (FI) parameter of the ath U(1) gauge
factor. Together with the corresponding θ-angle θa it forms a complex
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parameter ta = ra − iθa. (The gauge couplings, e of the U(1)-factors are
assumed to be equal.)

The classical vacuum manifold is obtained as the space of solutions to
the equation U = 0 modulo gauge transformations. Its nature depends
crucially on the specific values of (r1, ..., rk). The subspace parametrized by
the expectation values of the matter fields is commonly referred to as the
Higgs branch, whereas the scalars σa parametrize a Coulomb branch. Phases
in which the gauge group is completely broken and all modes transverse
to {U = 0} are massive are called geometric phases. In these phases, the
Higgs branch is effectively described by a non-linear sigma model with
target space {U = 0}/U(1)k. If on the other hand the space of vacua
{U = 0}/U(1)k consists of a single point and all modes transverse to the
orbit of the complexified gauge group remain massless, the Higgs branch is
effectively described by a Landau-Ginzburg (orbifold) theory. Such phases
are called Landau-Ginzburg phases. Besides these extreme ones, GLSMs can
also exhibit various mixed phases. Furthermore, classically at r = 0, all fields
can be 0. This means that some of the σa can be non-zero, and parametrize
vacua on another branch, the Coulomb branch.

An important quantum effect is the renormalization of the Fayet-Ilio-
poulus parameters:

ra(µ) = raUV +Qatot log
µ

MUV
. (5.2)

Here MUV denotes a UV energy scale, µ the scale under consideration, and
Qatot =

∑N
i=1Q

a
i is the total charge of the respective U(1) factor. If Qatot = 0

for all a, the axial R-symmetry of the theory is non-anomalous and the FI
parameters do not run. The ta are genuine parameters of the theory. This
case is called the “Calabi-Yau case”.

If one of the total charges is non-zero, the respective FI parameter does
run under the RG flow. The direction of the running and with it the nature
of the low energy IR phase is determined by the sign of the total charge.

In general, the low energy IR phase to which the system is driven by the
RG flow consists of several branches. In the specific example considered in
section 5.2, there is a Higgs branch described by a Landau-Ginzburg model
as well as several massive vacua located on a Coulomb branch.

Note that also in the anomalous case the system can explore various
different phases [49]. For this, one chooses rUV such that at some intermediate
energy scale the system is well described by the desired phase. Our main
example in section 5.2 features, besides the IR phase, an additional phase
corresponding to the UV fixed point. This UV phase is a Landau-Ginzburg
phase as well, but in contrast to the IR phase, it is a pure Higgs phase, i.e. it
does not have additional Coulomb vacua.
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5.1.2 Phases of GLSMs and defects

We now want to obtain defects describing the transition between different
phases of the same GLSM, much in line with the construction of RG defects
in previous chapters. The general idea is to start with the identity or invisible
defect IGLSM in the GLSM, and to push the GLSM down to different phases
on the two sides of it:

IGLSM
GLSM GLSM phase2 phase1

RG12

A priori this requires tuning the ta on the two sides of the defect to different
regimes. We avoid doing this explicitly by going to an extreme UV limit of
the theory, in which the gauge coupling e becomes very small and the gauge
sector decouples [47]. In this limit, the theory reduces to the matter sector,
describing the Higgs branch of the original theory. The gauge group still
acts on the matter fields, and physical observables must be gauge invariant.
The defects are B-type supersymmetric, and depend on the parameters ta

only indirectly. In this setup, the transition to a phase restricts the allowed
field configurations and breaks the (remnant of the) gauge symmetry to a
subgroup. The details strongly depend on the respective phase.

For instance, the class of examples we will discuss in section 5.2 features
Landau-Ginzburg phases. In such phases, some of the fields obtain a vacuum
expectation value, reducing the spectrum of massless excitations and breaking
the gauge symmetry to a finite subgroup. Pushing down to such a phase then
involves setting the respective fields to their vacuum expectation values and
relaxing the invariance condition accordingly. The general strategy outlined
here should be applicable to any phases of abelian GLSMs. Prof. Brunner
and Prof. Roggenkamp will discuss transitions to geometric phases in a
forthcoming paper [51].

Note that one obtains a possibly different defect for every homotopy class
of paths connecting two given phases in the parameter space spanned by the
ta. Thus, in general there will not be one transition defect descending from
the gauged linear sigma model, but many, and the choices of defects should
correspond to choices of paths. On the other hand, there can be more RG
flows and with it RG defects between different phases of a GLSM then the
ones described within the GLSM.

Indeed, the transition defects RG12 between two phases of a GLSM
factorize over the GLSM, i.e. RG12 can be obtained as the fusion of a defect
T 1 from phase1 to the GLSM and a defect R2 from the GLSM to phase2:

RG12 ∼= R2 ⊗ T 1 .

phase1GLSMphase2
R2 T 1
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The defects T 1 and R2 are obtained from the GLSM identity defect, by
pushing down only on one side. T 1 is obtained by pushing down IGLSM on
the right to phase1 and R2 by pushing down IGLSM on the left to phase2:

IGLSM

GLSM GLSM GLSM phase1

T 1

IGLSM

GLSM GLSM phase2 GLSM

R2

The Ri encode the push down from the GLSM to phasei and the T i, the
embedding of phasei into the GLSM. The functors associated to those defects
describe the respective operation on D-brane categories.

Note that in the same way that there can be several transition defects
RG12 between different phases we expect more than one possible defect T i

lifting the phase to the GLSM.1 This will be discussed in more detail for the
concrete example in section 5.2.

Since the transition between one and the same phase has to be trivial,
the defects Ri and T i have to satisfy the condition

Ri ⊗ T i ∼= Iphasei , (5.3)

where Iphasei is the invisible defect of phasei. This implies that the combina-
tion

P i = T i ⊗Ri

is a projection defect from the GLSM to itself. That means P i is an
idempotent with respect to fusion, P i ⊗ P i ∼= P i, and realizes phasei inside
the GLSM in the sense of chapter 2. In particular, the corresponding functor
projects the category of D-branes of the GLSM onto the image of the functor
associated to T i. Thus, the phasei branes are realized by P i-invariant branes
in the GLSM. Indeed, the latter precisely play the role of the branes called
grade restricted in [47] and the action of the projection defects corresponds to
the operation of associating to a GLSM brane a grade restricted representative.
We will see this explicitly in the example discussed in section 5.2.

We have collected the various defects and their actions on D-branes in

1Indeed, one could also push the path dependence on the Rj .
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the following diagram:

GLSM branes

P j-invariant
subcategory

P i-invariant
subcategory

phasej
branes

phasei
branes

push
down Ri

push
down Rj

transition P j

lift T j lift T i

transition Rj ⊗ T i

⊂ ⊂

Note that along an RG flow, Higgs vacua can migrate to the Coulomb
branch and become massive. Since we only include the Higgs branch in our
discussion, we cannot see this directly. Instead, we observe that D-branes
attached to those vacua decouple from the theory. This decoupling of D-
branes is encoded in the defects introduced above. They can be constructed
out of the identity defect of the respective GLSM, which will be introduced
in the next section.

5.1.3 GLSM Identity Defects

Starting point of our construction are the identity defects of abelian GLSMs,
which have not appeared in the literature so far. As discussed above, we will
focus on the Higgs branch of the respective GLSM. In particular, we will
decouple the gauge sector and only consider the U(1)k-orbifold of the matter
sector. The relevant defects and D-branes can then be described by means
of U(1)k-equivariant matrix factorizations.

Before discussing the identity defects in GLSMs, we reformulate the
identity defects in Landau-Ginzburg (orbifold) models presented in sections
3.3 and 3.5.

A reformulation of the orbifold identity defect. For this chapter,
we introduce the following notation.

S(X),(X′) = C[X1, . . . , Xn, X
′
1, . . . , X

′
n]

C(X),(X′) = S(X),(X′)/(W (X1, . . . , Xn)−W (X ′1, . . . , X
′
n))

Replacing X or X ′ by − in the subscripts means setting the respective
variables to zero. The module of the non-orbifold identity defect of chapter
3.3 is then given by the tensor product of the algebra of chiral fields S(X)(X′)

with the exterior algebra of a vector space V = spanC{θ1, . . . , θn} spanned
by additional variables θ1, . . . , θn:

Inon-orb. = I0 ⊕ I1 = S(X)(X′) ⊗ Λ (V ) (5.4)
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The identity defect in Landau-Ginzburg orbifolds is now constructed
from the identity defect of the unorbifolded LG model using the method
of images (i.e. summing images under the orbifold group and specifying a
representation of the stabilizer subgroup). Let G be a finite abelian orbifold
group. The identity defect of the orbifold model can be obtained by summing
over all symmetry defects gI

non-orb of the unorbifolded Landau-Ginzburg
model associated to orbifold group elements

Iorb =
⊕
g∈G

gI
non-orb . (5.5)

Note here that one has to orbifold by G×G, the product of the orbifold groups
on the left and on the right of the defect, but that the diagonal subgroup
acts as an isomorphism on the non-orbifolded identity defect. Hence only a
non-diagonal copy of G, which we take to be the copy Gr acting trivially on
the left of the defect contributes to the sum above.

The module on which the orbifolded identity matrix factorization is built
is therefore a direct sum of |G| copies of the module (5.4) associated to the
identity defect in the unorbifolded Landau-Ginzburg model. We can regard
it as a tensor product of the module Inon-orb with the regular representation
Vreg of the group Gr:

Iorb ∼= Inon-orb ⊗ Vreg.

The differential acts diagonally in the standard basis g ∈ Gr of the regular
representation, while the orbifold group acts in this basis by permuting the
copies of the modules Inon-orb according to the group law.

Since Gr is finite and abelian, we can diagonalize the group action on
Iorb. This can be accomplished by decomposing the regular representation
into irreducibles, which in the case of abelian Gr are all one-dimensional. In
this way, we obtain a basis of Iorb, in which Gr acts diagonally. Any finite
abelian group is isomorphic to a product Zd1 × . . .× Zdr . We will spell out
the details for the case, in which it is isomorphic to a single factor Gr ∼= Zd.
The generalization to more factors is straightforward.

A basis of Vreg corresponding to the irreducible representations can be
obtained by performing the following transformation:

ej =
∑
g∈Zd

ξ−gjg , 0 ≤ j < d , (5.6)

where ξ = exp(2πi/d) is an elementary dth root of unity. g 7→ ξjg is the
character of the irreducible representation ρj defined by ρj([n]d) = ξjn.
Hence, ej is the basis vector of the irreducible representation ρj([n]d) = ξjn,

which is of course nothing but the j-fold tensor product of ρ1: ρj = ρ⊗j1 .

Thus, we can write ej = e⊗j1 . Note that ρ⊗d1 = ρ0. Writing ej = α−j , the
regular representation can be expressed as

Vreg
∼= C[α]/(αd − 1) . (5.7)
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Note that this is not only a vector space, but also a ring, and that multiplica-
tion in this ring corresponds to taking the tensor product of representations.
This allows us to rewrite the identity matrix factorization in the Landau-
Ginzburg orbifold with orbifold group G = Zd as

Iorb = S(X)(X′) ⊗ Λ(V )⊗ C[α]/(αd − 1) (5.8)

with differential

dIorb =
n∑
i=1

[
(Xi − αQiX ′i) · θ∗i + ∂X,αX

′

i W · θi
]

for

∂X,αX
′

i W =

(
W (αQ1X ′1, ..., α

Qi−1X ′i−1, Xi, ..., Xn)

−W (αQ1X ′1, ..., α
QiX ′i, Xi+1, ..., Xn)

)
Xi − αQiX ′i

.

Here, Qi denote the charges of the chiral fields Xj under the orbifold group
Zd, i.e. [n] ∈ Zd acts on the chiral fields as Xj 7→ ξQjnXj . α can be regarded
as a new bosonic defect field carrying charg (1,−1) under the product Zd×Zd
of the left and right orbifold groups.2

The representation on Iorb under G×G is now completely fixed by the
choice of a one-dimensional representation of the diagonal subgroup, since the
latter left the identity defect of the non-orbifold theory invariant. We choose
it to be trivial to obtain the identity defect in the orbifold theory. (Other
choices lead to defects implementing the quantum symmetry of the orbifold
theory.) The representations of G×G on the module (5.8) is determined by
the representation on the chiral fields Xi, the θi (which transform like the
Xi) and the representation on αi.

Let us give an explicit example which will be important later. Consider
the Landau-Ginzburg model with a single chiral superfield X, superpoten-
tial W (X) = Xd and orbifold group G = Zd. [n]d ∈ Zd acts on X by
multiplication with a phase

X 7→ e2πind′/dX

which leaves W (X) invariant. (X has charge d′ under Zd.) Following the
construction above, one obtains the identity matrix factorization

Iorb : Sα{[1]d, [0]d}
i1 = (X − αd′X ′)

i0 =
∏d−1
i=1 (X − ξiαd′X ′)

Sα{[0]d, [0]d} ,

2The charge under the action of the right group is clear, because α represents the basis
vector of the irreducible representation ρ−1 under the right group. That it has charge 1
under the left group follows because Vreg was chosen to be invariant under the left-right
diagonal subgroup.
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where Sα := C[X,X ′, α]/(αd − 1), and the {·, ·} denote a shift in Zd × Zd-
charges. The associated C(X)(X′)-module is given by

Sα/(X − αd′X ′) . (5.9)

One can unpack this, by replacing α by a cyclic shift matrix. This yields the
equivalent representation

Iorb :Sd

 {[1]d,[0]d}
{[2]d,[−1]d}

...
{[d]d,[−1+d]d}


ı1 = (XId − εd

′
X ′)

ı0 =
∏d−1
i=1 (XId − ξiεd

′
X ′)

Sd

 {[0]d,[0]d}
{[1]d,[−1]d}

...
{[d−1]d,[−1+d]d}

,
(5.10)

see also chapter 4.1. Here S = C[X,X ′], Id is the d× d-identity matrix, and

εd =


0 1

1
. . .
. . .

. . .

1 0

 (5.11)

denotes the d× d-shift matrix.

The identity defect in abelian gauged linear sigma models. For
gauged linear sigma models, mainly boundaries were considered in the
literature, see [47, 48, 52]. Defects can in principle be discussed along the
same lines, for example using the folding trick, see [53, 54] or section 3.3.
In [53] identity defects of Landau-Ginzburg phases of GLSMs are lifted to
GLSMs. Using such constructions, one cannot obtain an identity defect of
the GLSM itself, because the lifts are matrix factorizations of finite rank.

We now use the method presented in the previous section to construct an
identity defect for a U(1)-orbifold of a Landau-Ginzburg model with chiral
fields X1, . . . , Xn and superpotential W ∈ C[X1, . . . , Xn]. The action of U(1)
on the chiral fields is specified by their charges (Q1, . . . , Qn), where ϕ ∈ U(1)
acts on Xj by Xj 7→ e2πiQjϕXj . (Generalizations to higher rank abelian
gauge groups are straightforward.)

Since the orbifold group is infinite (and not even countable), the method
of images cannot be applied in this situation. As it turns out, the formulation
with the additional defect field α however can be adapted. The irreducible
representations of U(1) are countable, ρj(ϕ) = e2πijϕ, j ∈ Z, with ρi ⊗
ρj ∼= ρi+j . But in contrast to the case of representations of Zd, not all
representations can be obtained as tensor products of a single representation
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ρ−1. One needs an additional representation ρ1 to generate all representations
by means of the tensor product. So in the U(1)-case, instead of one additional
bosonic defect field α, one has to introduce two fields α, α−1 which are inverse
to each other, i.e. αα−1 = 1. They carry U(1)× U(1)-charges (1,−1) and
(−1, 1), respectively.

With these additional fields one can construct the following defect in
complete analogy to (5.8)

I = S(X),(X′) ⊗ Λ(V )⊗ C[α, α−1]/(αα−1 − 1) (5.12)

with differential

dI =

n∑
i=1

[
(Xi − αQiX ′i) · θ∗i + ∂X,αX

′

i W · θi
]
,

∂X,αX
′

i W =

(
W (αQ1X ′1, ..., α

Qi−1X ′i−1, Xi, ..., Xn)

−W (αQ1X ′1, ..., α
QiX ′i, Xi+1, ..., Xn)

)
Xi − αQiX ′i

.

The U(1)× U(1)-representation on this matrix factorization is completely
determined by the transformation properties of the fields Xi, i.e. their U(1)-
charges Qi. The θi transform as the Xi.

Note that this matrix factorization is of infinite rank!

As in the case of finite orbifolds, there is the possibility of shifting the
charges of the orbifold group on one side, relative to the one on the other.
The defect with such a shift implements a quantum symmetry. Since we are
interested in the identity defect, we set this shift to zero.

As alluded to above, the generalization to orbifold groups U(1)k k > 1 is
straightforward. One just has to introduce a pair of additional fields (α, α−1)
for each U(1)-factor.

In the discussion of the identity defect of finite Landau-Ginzburg orbifolds
in the last subsection, we just gave a different but equivalent representation
of the known identity defect. In the case of the U(1)-orbifold, the defect
(5.12) is new, and we have to show that it really is the identity defect, i.e.
that it behaves as the unit with respect to fusion.

To do so, we use associated modules as explained in section 3.3 and
introduce some additional notation:

S
(α,α−1)
(X),(X′) = S[α, α−1]/(αα−1 − 1)

C
(α,α−1)
(X),(X′) = C(X),(X′)[α, α

−1]/(αα−1 − 1) .

To the matrix factorization I constructed above we associate the C(X),(X′)-
module

MI = C
(α,α−1)
(X),(X′)/

(
X1 − αQ1X ′1, . . . , Xn − αQnX ′n

)
(5.13)
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following the discussion of associated modules in chapter 3.3. Namely, this
module has a free resolution, which after finitely many steps turns into the
two-periodic complex induced by the matrix factorization I.

Let P ′ be a U(1)-equivariant matrix factorization of W (X ′1, . . . , X
′
n). The

analysis of the fusion I ⊗ P ′ now runs in complete analogy of the discussion
of the fusion of the identity defect in the unorbifolded Landau-Ginzburg
models, except for the fact that the fusion in the orbifold corresponds only
to the part of the tensor product matrix factorization which is invariant
under the gauge group associated to the model squeezed in between the two
defects.

Let

MP ′ = coker(p′1 : P ′1 ⊗S(−)(X′) C(−)(X′) → P ′0 ⊗S(−)(X′) C(−)(X′))

be the module associated to P ′. The matrix factorization given by the fusion
of I and P ′ can be extracted from the U(1)-invariant part MU(1) of the
C(X),(−)-module

M = MI ⊗C(−)(X′) MP ′ .

The relations in (5.13) can now be used to replace all X ′i by α−QiXi. This
eliminates all the variables X ′i. Let us next choose generators er of MP ′ ,
on which U(1) acts diagonally, with respective U(1)-charge qr. Then M is
generated by αi ⊗ er, where i ∈ Z. Most of these generators are not U(1)-
invariant though. Only the ẽr := α−qr ⊗ er generate MU(1). Thus, for each
generator er of MP ′ of U(1)-charge qr there is exactly one generator of MU(1),
which also has U(1)-charge qr. (Recall that α has U(1)×U(1)-charge (1,−1).)
The relations between the generators er in MP ′ become relations between the
respective generators ẽr, where all the X ′i are replaced by Xi. Thus, MU(1)

is isomorphic to the module MP associated to the matrix factorization P
obtained from P ′ by replacing all X ′i by Xi. Therefore, fusion with I maps
matrix factorizations to equivalent ones, and the matrix factorization I acts
as the identity matrix factorization.

5.2 Example: superpotential W (X,P ) = XdP d′

5.2.1 The model and its phases

In this section we exemplify our method in a concrete example of a gauged
linear sigma model with two Landau-Ginzburg phases. The model has a
single U(1)-gauge group and two chiral fields X and P of U(1)-charges
Qx = d′, respectively Qp = −d. Its superpotential is given by W = XdP d

′
.

We assume d > d′, and for simplicity we restrict to the case where d and d′

are coprime integers.
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For this model, the scalar potential (5.1) takes the form

U =|σ|2
(
Q2
x|x|2 +Q2

p|p|2
)

+
e2

2

(
Qx|x|2 +Qp|p|2 − r

)2
+ |∂xW (p, x)|2 + |∂pW (p, x)|2 .

The total charge Qtot = d′ − d < 0 is negative, which means that the Fayet-
Iliopoulos parameter (5.2) runs under the RG flow, from r << 0 in the UV
to r >> 0 in the IR. The model exhibits two Landau-Ginzburg phases.

For r < 0, the D-term constraint coming from the second term above
requires p 6= 0. This breaks the U(1) gauge symmetry to Z|Qp| = Zd and σ
must vanish according to the first term. Because of the first superpotential
term, x also vanishes and hence |p|2 = r

Qp
= − r

d . We obtain a Landau-

Ginzburg orbifold model with one chiral field X, superpotential Xd and
orbifold group Zd.

For r > 0, the roles of X and P are interchanged. The D-term constraint
yields x 6= 0, which further implies that σ and p vanish. The U(1) gauge
group is broken to Z|Qx| = Zd′ , and |x|2 = r

Qx
= r

d′ . We arrive at a Landau-

Ginzburg orbifold model with chiral field P , superpotential P d
′

and orbifold
group Zd′ .

Classically, there is a Coulomb branch emerging at r = 0, parametrized
by σ. Due to a twisted superpotential, the values of σ will be restricted to a
finite set of d− d′ massive vacua that appear in the IR phase.

In the following we will use our general strategy to construct defects
describing the transitions between UV and IR phase of this model, defects
embedding the two phases in the GLSM as well as defects projecting the
GLSM to the phases.

Note that there is an effective description of the mirror of this GLSM in
terms of an ordinary Landau-Ginzburg model [55], which we have already
met at the end of section 3.1 - namely the Landau-Ginzburg model with one
chiral field X and superpotential

W = Xd + et/dXd′ .

The deformation parameter λ = et/d of the superpotential is related to the
complexified Fayet-Iliopoulus parameter t = r − iθ of the GLSM. λ runs
under the RG flow from λ = 0 in the UV to λ =∞ in the IR. In the UV, the
model is therefore described by a LG model with superpotential W = Xd

and in the IR by a LG model with superpotential W = Xd′ .

Now, flows of Landau-Ginzburg models triggered by deformations of the
superpotentials are relatively well under control, and at least some aspects of
them can be studied very explicitly. For instance, it is not difficult to analyze
what happens to the vacua of the model, which correspond to critical points
of the superpotential. In the case at hand, some of these vacua (d− d′ many)
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move off to infinity under the RG flow, and decouple from the theory, taking
with them some (A-type) D-branes attached to them.

This decoupling of D-branes is well described by RG defects associated
to the flows. Indeed, all the RG defects corresponding to flows of Landau-
Ginzburg models with a single chiral superfield but general deformations of
the superpotential

W = Xd +
d−1∑
i=1

λiX
i , (5.14)

have been constructed in [3].3 Thus, the transition defects between UV and
IR phases of the GLSM which we will obtain here can be checked against
known results. We find complete agreement.

5.2.2 GLSM identity defect

The starting point of our analysis is the identity defect of the GLSM as
constructed for the general abelian GLSMs in section 5.1.3. In this case, it is
a U(1)× U(1)-equivariant matrix factorization of the difference W (X,P )−
W (Y,Q) = XdP d

′ − Y dQd
′

of the superpotentials of the gauged linear sigma
models on either side of the defects. The two U(1)-factors correspond to the
gauge groups of the models on the left and the right of the defect, respectively.

For clarity, we will repeat and spell out some details of the construction
of the identity defect in this example. We first introduce new variables
(corresponding to degrees of freedom on the identity defect) α and α−1

which satisfy αα−1 = 1 and which carry U(1)× U(1)-charges |α| = (1,−1)
and |α−1| = (−1, 1). Using these fields, we can write the difference of the
superpotentials as follows

W (X,P )−W (Y,Q) = XdP d
′ − Y dQd

′

= XdP d
′ − αdd′Y dP d

′
+ αdd

′
Y dP d

′ − Y dQd
′

=
(
Xd − (αd

′
Y )d

)
P d
′
+ Y d

(
(αdP )d

′ −Qd′
)

= P d
′
d−1∏
i=0

(X − ξiαd′Y ) + Y d
d′−1∏
i=0

(αdP − (ξ′)iQ) .

Here ξ = e2πi/d and ξ′ = e2πi/d′ are elementary dth, respectively d′th roots
of unity.

The matrix factorization associated to the identity defect is then given by
the Koszul-type matrix factorization associated to (X−αd′Y ) and (αdP −Q).
More precisely, denoting the C[X,P, Y,Q]-modules

S = S(X,P )(Y,Q) = C[X,P, Y,Q]

and S̃ = S
(α,α−1)
(X,P )(Y,Q) = S(X,P )(Y,Q)[α, α

−1]/(αα−1 − 1) .

3More precisely, they have been constructed in the mirror theories.
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the identity matrix factorization can be written as

I : S̃2

(
{d′, 0}
{0,−d}

) i1

i0

S̃2

(
{0, 0}
{d′,−d}

)
(5.15)

Here {·, ·} indicates the U(1)× U(1)-charge of the respective generator and

i1 =

(
(X − αd′Y ) −(αdP −Q)

Y d
∏d′−1
i=1 (αdP − (ξ′)iQ) P d

′∏d−1
i=1 (X − ξiαd′Y )

)

i0 =

(
P d
′∏d−1

i=1 (X − ξiαd′Y ) (αdP −Q)

−Y d
∏d′−1
i=1 (αdP − (ξ′)iQ) (X − αd′Y ) .

)

This is nothing but the GLSM identity matrix factorization (5.12) spelled
out for the special case at hand. To it we associate the module

MI = C
(α,α−1)
(X,P )(Y,Q)/((X − α

d′Y ), (αdP −Q)) (5.16)

over the ring

C = C(X,P )(Y,Q) = S(X,P )(Y,Q)/(W (X,P )−W (Y,Q)) ,

where
C

(α,α−1)
(X,P )(Y,Q) = C(X,P )(Y,Q)[α, α

−1]/(αα−1 − 1) ,

c.f. the general case (5.13). The Koszul resolution of MI turns into the
two-periodic complex induced by the identity matrix factorization I after
two steps.

5.2.3 Pushing down the identity defect into phases

Going into the phases of the GLSM, one of the two chiral fields gets a vacuum
expecation value (which we can take to be 1), and the gauge group is broken
to the subgroup leaving this chiral field invariant. We can therefore push
down any defect of the GLSM into a phase by setting the respective chiral
field to 1 in the associated matrix factorization and considering it equivariant
with respect to the residual gauge group. In fact, this can be done on either
side of the defect yielding defects from the GLSM into the phases or from
the phases to the GLSM. Moreover, one can push down to phases on both
sides of the defect, possibly into different phases on the two sides, which
gives rise to defects in the phases or from one phase to another.

In the next section, we will apply this push-down to the GLSM identity
defect. Pushing down to the UV phase on the right side and the IR phase
on the left, we will obtain a defect describing the transition from the UV
phase to the IR phase. Indeed, we will reproduce RG defects of chapter 4,
as expected.
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Before we come to this, as a warm-up we first discuss the simpler case,
where the GLSM identity defect is pushed down to the same phase on both
sides, which we choose to be the UV phase. The push down to the IR can
be dealt with in a similar way.

To push down the GLSM identity defect to the UV phase on both sides,
we have to set P and Q to 1 in the matrix factorization (5.15) and consider
it equivariant with respect to the residual gauge group Zd × Zd. We can do
this on the level of the associated module (5.16).

It will be useful to introduce some notation. Replacing the name of a
variable with a ‘·’ in the subscripts of the rings S(X,P )(Y,Q), C(X,P )(Y,Q) or

C
(α,α−1)
(X,P )(Y,Q) just means setting the respective variable to one.4 For instance

S(X,·)(Y,Q) = C[X,Y,Q]

C(X,·)(Y,Q) = S(X,·)(Y,Q)/(W (X, 1)−W (Y,Q))

C
(α,α−1)
(X,·)(Y,Q) = C(X,·)(Y,Q)[α, α

−1]/(αα−1 − 1) .

Pushing down the GLSM identity defect to the UV phase on both sides
yields the module

MUV UV
I = C

(α,α−1)
(X,·)(Y,·)/((X − α

d′Y ), (αd − 1)) .

Note that due to the relation αd − 1 this module is of finite rank, and in fact
isomorphic to the module (5.9) associated to the identity matrix factorization
of the LG model describing the UV phase. In fact, identifying5

C
(α,α−1)
(X,·)(Y,·)/(α

d − 1) ∼= Cd(X,·)(Y,·)


{[0]d, [0]d}
{[1]d, [−1]d}

...
{[d− 1]d, [−d+ 1]d}

 ,

where {·, ·} denotes the shift in Zd × Zd-charge of the respective generators,
one can write MUV UV

I as cokernel of the map ıUV
1 = (XId − Y εd

′
d ),

ıUV
1 : Cd(X,·)(Y,·)

 {[d′]d,[0]d}
{[d′+1]d,[−1]d}

...
{[d′+d−1]d,[−d+1]d}

→ Cd(X,·)(Y,·)

 {[0]d,[0]d}
{[1]d,[−1]d}

...
{[d−1]d,[−d+1]d}

.
Here, as before Id denotes the d× d-identity matrix and εd the d× d-shift
matrix (5.11).

Indeed, ıUV
1 ıUV

0 = (Xd − Y d)Id for

ıUV
0 =

d−1∏
i=1

(XId − ξiY εd
′
d ) .

4Or to put it differently, by diving the rings by the corresponding ideals.
5the generator αi is sent to the generator ei
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Hence, ıUV
1 is a factor of a matrix factorization of W (X, 1)−W (Y, 1), namely

IUV : Sd(X,·)(Y,·)

 {[1]d,[0]d}
{[2]d,[−1]d}

...
{[d]d,[−d+1]d}

 ıUV
1

ıUV
0

Sd(X,·)(Y,·)

 {[0]d,[0]d}
{[1]d,[−1]d}

...
{[d−1]d,[−d+1]d}


(5.17)

This matrix factorization corresponds to the identity defect (5.10) in the
UV phase. Thus, the module MUV UV

I is associated to the identity matrix
factorization in the UV phase. Pushing down the GLSM identity defect on
both sides to the UV, one therefore produces the identity defect in the UV
phase. Similarly, pushing down the GLSM identity defect to the IR phase
on both sides yields the IR identity defect. This is of course what is to be
expected.

5.2.4 RG defects from the GLSM identity

Next, we push down the GLSM identity defect to the UV on the right and
to the IR on the left, to obtain a transition defect between UV and IR phase.
Note that there is more than one (homotopy class of) paths from UV to IR.
So there should be more than one such transition defects.

Implementing the push-down involves setting those variables to 1 in the
GLSM identity matrix factorization, which correspond to fields acquiring
a vacuum expectation value in the respective phases. These are X (IR
phase on the left of defect) and Q (UV phase on the right). On the level of
C(·,P )(Y,·)-modules this yields

MUV IR
I = C

(α,α−1)
(·,P )(Y,·)/((Y − α

−d′), (P − α−d)) .

In contrast to the push down to the same phase on both sides, this module
is of infinite rank, leading to a matrix factorization of infinite rank, which
does not correspond to one of the RG defects between the respective Landau-
Ginzburg models. We propose that under the push-down to the phases, the
module (and the respective matrix factorization) has to be truncated to
finite rank. The truncation is not unique, but it turns out, that the different
choices of truncation exactly correspond to the different paths from UV to
IR.6 Concretely, we introduce an upper bound N on the α-exponents7

MUV IR
I (N) =

αNC(·,P )(Y,·)[α
−1]

((Y − α−d′), (P − α−d))αNC(·,P )(Y,·)[α−1]
.

6We expect the truncation to be related to the gradability of the resulting matrix
factorization with respect to R-symmetry. The latter ensures definite gluing conditions for
the spectral flow operators of the respective SCFTs along the defect. This is needed to
impose a stability condition in the sense of [56] on the level of the defect.

7Later we will show that N determines the charge window for the grade restriction rule
which appears in [47].
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This module is now of finite rank. It has generators ei := αN−i for 0 ≤ i < d′

of Zd′ × Zd-charges ([N − i]d′ ,−[N − i]d). To write down the relations in a
convenient way we define a, b ∈ N with b < d′ such that

d = ad′ + b . (5.18)

Then the generators satisfy relations

Pei = PαN−i = αN−d−i = Y aαN−d−i+ad
′

=

{
Y aei+b , i+ b < d′

Y a+1ei+b−d′ , i+ b ≥ d′

and the module MUV IR
I (N) is isomorphic to the cokernel of a map

rg1 :Cd
′

(·,P )(Y,·)

 {[N−d]d′ ,[−N ]d}
{[N−d−1]d′ ,[−N+1]d}

...
{[N−d−d′+1]d′ ,[−N−1+d′]d}


→ Cd

′

(·,P )(Y,·)

 {[N ]d′ ,[−N ]d}
{[N−1]d′ ,[−N+1]d}

...
{[N−d′+1]d′ ,[−N+d′−1]d}

 ,

which can be written as rg1 = (P Id′ − εbd′IY ), where IY denotes the diagonal
d′ × d′-matrix with Y a as its first d′ − b diagonal entries and Y a+1 as the
last b diagonal entries. Explicitly

rg1 =



P −Y a+1

. . .
. . .

. . . −Y a+1

−Y a . . .
. . .

. . .

−Y a P


.

Now
d′−1∏
i=0

(P Id′ − (ξ′)iεbd′IY ) = (P d
′ − Y d)Id′ ,

and hence, rg1 together with rg0 =
∏d′−1
i=1 (P Id′ − (ξ′)iεbd′IY ) defines a matrix

factorization RGN :

Sd
′

(·,P )(Y,·)

 {[N−d]d′ ,−[N ]d}
{[N−1−d]d′ ,−[N−1]d}

...
{[N−d′+1−d]d′ ,−[N−d′+1]d}


rg1

rg0

Sd
′

(·,P )(Y,·)

 {[N ]d′ ,−[N ]d}
{[N−1]d′ ,−[N−1]d}

...
{[N−d′+1]d′ ,−[N−d′+1]d}


(5.19)



5.2. EXAMPLE: W (X,P ) = XDPD
′

75

Pushing down the GLSM identity defect to the UV on the right and to the IR
on the left with truncation N yields a defect between the Landau-Ginzburg
models in the UV and in the IR, given by the matrix factorization RGN . Note
that N only appears in the grading of the matrix factorization RGN , and that
RGN = RGN+dd′ . Furthermore, the shift in N corresponds to conjugation
with the quantum symmetries of the respective Landau-Ginzburg phases,
RGN+1 = Q−1

IR ⊗RN ⊗QUV.

Thus, we obtain dd′ many different transitions defects between the two
phases. These indeed correspond to particular renormalization group defects
between Landau-Ginzburg orbifolds describing the UV and IR phases [3].
In fact RG defects between these Landau-Ginzburg orbifolds corresponding
to general perturbations of type (5.14) would allow for a more generic
distribution of powers of Y in the map rg1, of the form

rggen1 =



P −Y nb

. . .
. . .

. . . −Y nd′

−Y n1
. . .

. . .
. . .

−Y nb−1 P


.

where
∑
na = d and the grades appearing in (5.19) have to be modified

accordingly, c.f. [3]. The transition defects we obtain from the gauged linear
sigma model are special cases of these defects which exhibit a maximally
homogeneous distribution of powers of Y in rg1.

Summarizing, by pushing down to UV and IR on the right, respectively
left side of the GLSM identity defect with an additional truncation we obtain
an RG defect between the UV and IR phases, which is known to describe the
transport between UV and IR Landau-Ginzburg models. Different choices of
the truncation parameter N only shift the charges of the matrix factorization,
in particular RGN ∼= RG0{[N ]d′ ,−[N ]d} ∼= QNIR ⊗RG0 ⊗Q−NUV . The charge
shifts are quantum symmetries of the Landau-Ginzburg orbifolds in IR and
UV. They can be obtained as monodromies of the GLSM upon encircling
the Landau-Ginzburg points in the Kähler parameter space. Thus, up to
winding around the limit points, we obtain one defect describing the flow
between UV and IR phases of the GLSM.

5.2.5 Factorization of RG defects

Using the fact that the GLSM identity defect is an idempotent,

I ∼= I ⊗ I , (5.20)
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we can factorize the RG defects RGN over the GLSM. More precisely

RGN ∼= RIR ⊗ TUV
N ,

where RIR is a defect from the GLSM to the IR phase obtained by pushing
down the GLSM identity defect to the IR on the left side, and TUV

N is a defect
from the UV phase to the GLSM model obtained by pushing the GLSM
identity defect to the UV on the right and truncating.8 Let us discuss the
factor defects in turn.

TUV
N . The module associated to TUV

N is obtained by setting Q = 1 in
(5.16) and then truncating the α-spectrum. This yields the C(X,P )(Y,·)-module

MUV GLSM
I (N) =

αNC(X,P )(Y,·)[α
−1]

((Y − α−d′X), (P − α−d))αNC(X,P )(Y,·)[α−1]
.

It is finitely generated with generators ei = αN−i, of U(1) × Zd-charge
(N − i,−[N − i]d), where 0 ≤ i < d. The generators satisfy relations

Y ei = Y αN−i = XαN−i−d
′

=

{
Xei+d′ , i+ d′ < d
PXei+d′−d , i+ d′ ≥ d , (5.21)

and MUV GLSM
I (N) is isomorphic to the cokernel of the map

t1 :Cd(X,P )(Y,·)

 {N,−[N−d′]d}
{N−1,−[N−1−d′]d}

...
{N−d+1,−[N−d+1−d′]d}


→ Cd(X,P )(Y,·)

 {N,[−N ]d}
{N−1,−[N−1]d}

...
{N−d+1,−[N−d+1]d}

 ,

with t1 = (εd
′
d IPX − Y Id). Here IP is the diagonal d × d-matrix with 1 in

the first b = d − d′ diagonal entries and P in the last d′ diagonal entries.
Explicitly,

t1 =



−Y PX
. . .

. . .
. . . PX

X
. . .

. . .
. . .

X −Y


.

8Note that the truncation could also be implemented on R instead, or on both R and T .
As it turns out, pushing the truncation on T and not on R leads to a nice interpretation of
the factor defects.
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Now,
d−1∏
i=0

(εd
′
d IPX − ξiY Id) = P d

′
Xd − Y d ,

and hence, together with the map t0 =
∏d−1
i=1 (εd

′
d IPX − ξiY Id), t1 defines a

matrix factorization of W (X,P )−W (Y, 1). Thus, the module MUV GLSM
I (N)

has a free two-periodic resolution induced by the matrix factorization

TUV
N : Sd(X,P )(Y,·)

 {N,−[N−d′]d}
{N−1,−[N−1−d′]d}

...
{N−d+1,−[N−d+1−d′]d}


t1

t0

Sd(X,P )(Y,·)

 {N,−[N ]d}
{N−1,−[N−1]d}

...
{N−d+1,−[N−d+1]d}

 .

(5.22)

This matrix factorization represents the factor defect TUV
N . Note that it is of

rank d and exhibits U(1)-charge shifts only in the set {N − d+ 1, N − d+
2, . . . , N} of d consecutive integers starting at N − d+ 1. Fusion with the
defect TUV

N therefore lifts D-branes from the UV phase to GLSM branes in
the charge window {N − d+ 1, . . . , N} in the terminology of [47].

Indeed, there is another way to arrive at the defects TUV
N . One can

start with the identity defect in the UV phase and then lift on the left to
the GLSM. Lifting in this case means inserting variables P into the rank-d
Zd×Zd-equivariant matrix factorization of Xd−Y d in such a way as to make
it into a U(1)× Zd-equivariant matrix factorization of P d

′
Xd − Y d. (Lifting

D-branes in such a manner is an important ingredient in the discussion of
D-brane transfer between LG and geometric phases of abelian GLSMs in
[47].) In this way one obtains a defect from the UV phase to the GLSM.
This defect is automatically of finite rank, so a truncation of the kind we had
to impose when coming from the GLSM is not necessary. On the other hand,
the lift involves many choices. One of the choices corresponds to the choice
of N , the maximal U(1)-charge. When that is fixed there are still choices left,
and only one of them leads to the defects TUV

N . In fact, TUV
N corresponds to

the unique lift of the UV identity defect, which has maximal U(1)-charge N ,
and whose U(1)-charges populate {N − d+ 1, . . . , N}. That means it is the
only such lift, which upon fusion sends all UV branes to GLSM branes in
the respective charge window of length d in the terminology of [47].

As a side remark, pushing down the defect TUV
N on the left to the IR

(setting X = 1), one obtains the RG defect RGN . Pushing down on the left
to the UV (setting P = 1), yields the identity defect in the UV phase.

Of course, defects TN can be constructed for any phase. Pushing the
GLSM identity defect to the IR on the right, in a similar fashion yields
defects T IR

N from the IR phase to the GLSM.
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RIR. RIR is obtained by pushing down to the IR on the left of the
GLSM identity defect. Pushing down on the level of modules yields the
C(·,P )(Y,Q)-module

MGLSM IR
I = C

(α,α−1)
(·,P )(Y,Q)/((Y − α

−d′), (P − α−dQ)) .

This module is of infinite rank. Note that Y is invertible in this module.
One way to look at it is as a limit of truncated modules

MGLSM IR
I = lim

N→∞
MGLSM IR
I (N)

with

MGLSM IR
I (N) =

αNC(·,P )(Y,Q)[α
−1]

((Y − α−d′), (P − α−dQ))αNC(·,P )(Y,Q)[α−1]
.

The truncated module is finitely generated with generators ei = αN−i,
0 ≤ i < d′ of Zd′ × U(1)-charges ([N − i]d′ ,−N + i). They satisfy relations

Pei = PαN−i = QαN−i−d = Y aQαN−i−b

=

{
Y aQei+b , i+ b < d′

Y a+1Qei+b−d′ , i+ b ≥ d′

Therefore, MGLSM IR
I (N) is isomorphic to the cokernel of the map

rIR
1 : Cd

′

 {[N−d]d′ ,−N}
{[N−1−d]d′ ,−N+1}

...
{[N−d′+1−d]d′ ,−N+d′−1}

→ Cd
′

 {[N ]d′ ,−N}
{[N−1]d′ ,−N+1}

...
{[N−d′+1]d′ ,−N+d′−1}


C := C(·,P )(Y,Q)

with rIR
1 = (P Id′ −Qεbd′IY ). Here IY is the d′ × d′-diagonal matrix with Y a

as the first d′ − b diagonal entries and Y a+1 as the last b diagonal entries.
Explicitly,

rIR
1 =



P −QY a+1

. . .
. . .

. . . −QY a+1

−QY a . . .
. . .

. . .

−QY a P


.

Now,
∏d′−1
i=0 (P Id′ − (ξ′)iQεbd′IY ) = P d

′ − Y dQd
′

=: rIR
1 rIR

0 , and therefore
the truncated modules have two-periodic resolutions induced by the matrix
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factorizations

RIR
N : Sd

′

 {[N−d]d′ ,−N}
{[N−1−d]d′ ,−N+1}

...
{[N−d′+1−d]d′ ,−N+d′−1}

 rIR
1

rIR
0

Sd
′

 {[N ]d′ ,−N}
{[N−1]d′ ,−N+1}

...
{[N−d′+1]d′ ,−N+d′−1}


S := S(X,P )(Y,·)

One can think of the matrix factorization associated to RIR as the limit
limN→∞R

IR
N . Note that N only shifts the charges of this matrix factorization!

As we will see later, left-fusion with the defect RIR just sets X to 1 in
the matrix factorization RIR is fused with.

In the following we will also need the defects RUV obtained by pushing
the GLSM identity defect to the UV on the left. The associated module is
given by

MGLSM UV
I = C

(α,α−1)
(X,·)(Y,Q)/((X − α

d′Y ), (αd −Q)) ,

which can be obtained as a limit N → −∞ of the truncated modules9

MGLSM UV
I (N) = αNC(X,·)(Y,Q)[α]/((X − αd′Y ), (Q− αd))αNC(X,·)(Y,Q)[α] .

An analysis analogous to the IR case yields an associated matrix factorization

RUV
N : Sd

 {[N+d′]d,−N}
{[N+1+d′]d,−N−1}

...
{[N+d−1+d′]d,−N−d+1}

 rUV
1

rUV
0

Sd

 {[N ]d,−N}
{[N+1]d,−N−1}

...
{[N+d−1]d,−N−d+1}


S := S(X,P )(Y,·)

with rUV
1 = (XId − Y εd

′
d IQ), rUV

0 =
∏d−1
i=1 = (XId − ξiY εd

′
d IQ), where IQ is

the diagonal matrix with 1 in its first d − d′ diagonal entries and Q in its
last d′. Explicitly,

rUV
1 =



X −QY
. . .

. . .
. . . −QY

−Y . . .
. . .

. . .

−Y X


.

The matrix factorization RUV can then be thought of as the limit

lim
N→−∞

RUV
N .

Left-fusion with RUV implements the push-down to the UV phase, i.e. setting
P to 1.

9Note that compared to the IR case, truncation is implemented in the opposite direction.
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5.2.6 Projection defects

In the previous section we have shown that the defects RGN describing the
transition from UV to IR phase factorize as RGN ∼= RIR ⊗ TUV

N . Here TUV
N

is the defect lifting the UV phase into the GLSM, and RIR is the defect from
the GLSM to the IR phase implementing the push-down to the IR.

Indeed, we can also consider the fusion RUV⊗TUV
N . This defect describes

the lift of the UV to the GLSM and the subsequent push-down to the same
phase. Since identity defects are idempotent, I ⊗ I ∼= I, this defect can be
obtained by pushing down to the UV phase on both sides of the GLSM
identity defect, combined with a truncation. The untruncated push-down
was calculated in section 5.2.3. The result is the identity defect of the UV
phase. Indeed, it is not difficult so see that the truncation essentially does
not change the calculation, and that also the truncated push-down yields
the identity defect of the UV phase

RUV ⊗ TUV
N
∼= IUV . (5.23)

Another way to obtain this result is to use the fact (discussed below) that
left-fusion with defects Ri just implements the push-down to phasei, i.e. it
just sets the variable to 1, which is associated to the field obtaining a non-
trivial vacuum expectation value in phasei. In the case of RUV, this is the
variable P . Setting P = 1 in the matrix factorization TUV

N given in (5.22)
indeed yields the UV identity matrix factorization IUV, c.f. (5.17).

Of course, one can also straightforwardly calculate the fusion. As we
already used in section 5.1.3, on the level of modules, fusion corresponds to
the part of the tensor product which is invariant under the gauge group of
the model in between the fused defects [3]. One obtains(

MGLSM UV
I ⊗MUV GLSM

I (N)
)U(1)

which is the same as C
(α,α−1)
(X,·)(Y,Q)

((X − αd′Y ), (αd −Q))

⊗C[Y,Q]

βNC(Y,Q)(Z,·)[β
−1]

((Z − β−d′Y ), (Q− β−d))βNC(Y,Q)(Z,·)[β−1]

)U(1)

and turns into(
βNC(X,·)(Z,·)[α, α

−1, β−1]

((αα−1 − 1), (Z − (αβ)−d′X), (αd − β−d))βNC(X,·)(Z,·)[α, α−1, β−1]

)U(1)

∼=
(αβ)NC(X,·)(Z,·)[(αβ)−1]

((Z − (αβ)−d′X), (1− (αβ)−d))(αβ)NC(X,·)(Z,·)[(αβ)−1]
.
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With the same arguments as in section 5.2.3 this can be seen to be a module
associated to the identity matrix factorization IUV of the Landau-Ginzburg
orbifold in the UV.

Analogously one finds

RIR ⊗ T IR
N
∼= IIR .

Relation (5.23) implies that the defect

PUV
N = TUV

N ⊗RUV

is idempotent, i.e. PUV
N ⊗ PUV

N
∼= PUV

N . This defect realizes the UV phase
inside the GLSM in the sense of chapter 2. In particular, the category of
D-branes in the UV phase is equivalent to the subcategory of GLSM branes
invariant under fusion with PUV

N .

A module associated to PUV
N can be obtained as

MPUV
N

= MUV GLSM
I (N)⊗MGLSM UV

I

which is given by(
αNC(X,P )(Y,·)[α

−1]

((Y − α−d′X), (P − α−d))αNC(X,P )(Y,·)[α−1]

⊗C[Y ]

C
(β,β−1)
(Y,·)(Z,R)

((Y − βd′Z), (βd −R))

Zd

.

This is isomorphic to(
αNC(X,P )(Z,R)[α

−1, β, β−1]

((ββ−1−1),(P−α−d),(βd−R),(α−d
′
X−βd′Z))αNC(X,P )(Z,R)[α

−1,β,β−1]

)Zd
The Zd-invariant generators are given by (αβ)N−i(βd)m for i ∈ N0 and m ∈ Z.
They carry U(1) × U(1)-charges (N − i,−N + i −md). Defining γ := αβ
and δ := β−d of U(1)× U(1) charges (1,−1) and (0, d) respectively, one can
write

MPUV
N

∼=
γNC(X,P )(Z,R)[γ

−1, δ]

((P − γ−dR), (Xγ−d′ − Z), (δR− 1))γNC(X,P )(Z,R)[γ−1, δ]
.

Note that R is invertible in this module! It can be considered as a module
over the ring

Cδ(X,P )(Z,R) :=
C(X,P )(Z,R)[δ]

(δR− 1)C(X,P )(Z,R)[δ]
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in which R is invertible. Over this ring, MPUV
N

is finitely generated with

generators ei := γN−d+1+i, 0 ≤ i < d of U(1)× U(1)-charges (N − d+ 1 +
i,−N + d− 1− i). They satisfy relations

Xei = Zei+d′ , i+ d′ < d

PXei = RZei+d′−d , i+ d′ ≥ d

Thus, as module over the ring Cδ(X,P )(Z,R), MPUV
N

is isomorphic to the cokernel
of the map

p1 : Cd



{N−d+1+d′,−N+d−1}
{N−d+2+d′,−N+d−2}

...
{N,−N+d′}

{N−d+1,−N+d′−1}
{N−d+2,−N+d′−2}

...
{N−d+d′,−N}


→ Cd

 {N−d+1,−N+d−1}
{N−d+2,−N+d−2}

...
{N,−N}



C := Cδ(X,P )(Z,R)

with p1 = (XIP − Zεd
′
d IR). Here IP is the diagonal d× d-matrix whose first

d− d′ diagonal entries are 1 and whose last d′ diagonal entries are P , and
IR is the diagonal d × d-matrix whose first d − d′ entries are 1 and whose
last d′ entries are R. Concretely,

p1 =



X −PZ
. . .

. . .

X
. . .

PX
. . .

. . . −PZ

−Z . . .
. . .

. . .

−Z PX


Note that10

d−1∏
i=0

(
Xε−id

′

d IP ε
id′
d − ξiZεd

′
d IR

)
= XdP d

′ − ZdRd′ .

Hence, p1 together with p0 =
∏d−1
i=1

(
Xε−id

′

d IP ε
id′
d − ξiZεd

′
d IR

)
forms a matrix

10 In fact, this is true for any choice of diagonal matrices IP = diag(Pn1 , . . . , Pnd) and
IR = diag(Rm1 , . . . , Rmd) with

∑
ni = d′ =

∑
mi.
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PUV
N : Sd



{N−d+1+d′,−N+d−1}
{N−d+2+d′,−N+d−2}

...
{N,−N+d′}

{N−d+1,−N+d′−1}
{N−d+2,−N+d′−2}

...
{N−d+d′,−N}


p1

p0

Sd

 {N−d+1,−N+d−1}
{N−d+2,−N+d−2}

...
{N,−N}



S := Sδ(X,P )(Z,R)

of W (X,P )−W (Y,Q) over the ring

Sδ(X,P )(Z,R) = C[X,P,Z,R, δ]/(δR− 1)C[X,P,Z,R, δ]

of chiral fields of the GLSM on the left and right of the defect, in which the
field R is made invertible.

5.2.7 Action on D-branes

Here, we will discuss the action of the defects T iN , Ri and P iN on D-branes
(boundary conditions).

Ri. Fusion with a defect Ri acts on D-branes by pushing down the
respective GLSM matrix factorizations to phasei by setting the variable
obtaining a vacuum expectation value in the phase to 1. More precisely, let

P : P1 = Sr(Y,Q)


b1
...
br


p1

p0

Sr(Y,Q)


a1
...
ar

 = P0

be a U(1)-equivariant matrix factorization of Y dQd
′

representing a D-brane
in the GLSM. Here, we use the following notation:

S(Y,Q) = C[Y,Q]

C(Y,Q) = S(Y,Q)/(Y
dQd) .

As before, replacing one of the variables in the subscript with a ‘·’ means
that we set the respective variable to 1. So, in particular S(Y,·) = C[Y ] and

C(Y,·) = C[Y ]/(Y d). To this matrix factorization we associate the C(X,P )-
module

MP = coker

P ′1 := Cr(Y,Q)


b1
...
br

 p1−→ Cr(Y,Q)


a1
...
ar

 =: P ′0

 .
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We can now calculate the fusion P̂ = RUV ⊗ P . On the level of modules we
obtain an associated C(X,·)-module

M
P̂

=
(
MGLSM UV
I ⊗S(Y,Q)

MP

)U(1)

=

 C
(α,α−1)
(X,·),(Y,Q)

((Y − α−d′X), (Q− αd))
⊗S(Y,Q)

MP

U(1)

The U(1)-invariant generators of this module are given êi := αaiei, where
the ei, 1 ≤ i ≤ r are the generators the module P ′0 of U(1)-charge ai. Note
that α has Zd × U(1)-charge ([1]d,−1), and hence, the Zd-charge of êi are
just the induced Zd-charges [ai]d. The relations from the first tensor factor
set the variable Y to α−d

′
X and Q to αd. The relations from the second

tensor factor, coming from the matrix p1 can then be written in terms of the
matrix p̂1 = p1(Y = X,Q = 1) obtained from p1 by setting Y to X and Q
to 1. One obtains

M
P̂
∼= coker

P̂ ′1 := Cr(X,·)


[b1]d

...
[br]d

 p̂1−→ Cr(X,·)


[a1]d

...
[ar]d

 =: P̂ ′0

 .

This module is associated to the Zd-equivariant matrix factorization

P̂ : P̂1 = Sr(X,·)


[b1]d

...
[br]d


p̂1

p̂0

;Sr(X,·)


[a1]d

...
[ar]d

 = P̂0

of Xd. The matrices p̂i are obtained from the respective pi by setting Y to
X and Q to 1. An analogous result holds for the action of RIR.

Thus, Ri indeed fuses with GLSM branes by setting the variables acquiring
a non-trivial vacuum expectation value in phasei to 1 in the respective matrix
factorization, and breaking the gauge symmetry accordingly.

T i
N . Fusion with TUV

N lifts Zd-equivariant matrix factorizations of Xd

to U(1)-equivariant matrix factorizations of P d
′
Xd. Since RUV⊗TUV

N
∼= IUV

and RUV acts by setting P = 1, the lifted matrix factorization has to reduce
to the original one upon setting P = 1. Thus, such lifts are obtained
by inserting P ’s into the matrices of the original matrix factorizations in
such a way that the Zd-representations on the matrix factorizations lift to
U(1)-representations. In fact, for a given matrix factorization there are
many possible lifts. As it turns out, fusion with TUV

N produces lifts whose
U(1)-representations have charges in {N − d+ 1, N − d+ 2, . . . , N}.
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Let us illustrate this in the example of Zd-equivariant linear rank-1
factorizations

LUV
[a]d

: S(Y,·){[a+ d′]d}
Y

Y d−1

S(Y,·){[a]d}

of Xd. These matrix factorizations generate the category of Zd-equivariant
matrix factorizations of Xd, i.e. the category of UV D-branes.

Now, any of the U(1)-equivariant rank-1 matrix factorizations

LGLSM
c,m : S(X,P ){c+ d′ −md}

Y Qm

Y d−1Qd
′−m

S(Y,Q){c}

of XdP d
′

is a lift of LUV
[a]d

for c ∈ a+ dZ and 0 ≤ m ≤ d′. Namely,

RUV ⊗ LGLSM
c,m

∼= LUV
[a]d

,

or to put it differently, setting Y = X and Q = 1 in LGLSM
c,m produces LUV

[a]d
.

Next, we will compute to which of the lifts LGLSM
c,m a matrix factorization

LUV
[a]d

is mapped under fusion with TUV
N . As before we will compute the fusion

on the level of modules. To LUV
[a]d

we associate the C(Y,·)-module

MLUV
[a]d

= C(Y,·){[a]d}/(Y ) .

The fusion TUV
N ⊗LUV

[a]d
is then given by the matrix factorization associated

to the C(X,P )-module given by the Zd-invariant part of the tensor product(
MUV GLSM
I ⊗C[Y ] MLUV

a

)Zd
=

(
αNC(X,P )(Y,·)[α

−1]

((Y − α−d′X), (P − α−d))αNC(X,P )(Y,·)[α−1]
⊗C[Y ]

C(Y,·){[a]d}
(Y )

)Zd
∼=

(
αNC(X,P )[α

−1]{a}
((P − α−d), α−d′X)αNC(X,P )[α−1]{a}

)Zd
.

There is just one Zd-equivariant generator of this module over C(X,P ), namely

αN−{N−a}d of U(1)-charge N−{N−a}d. Here {·}d denotes the representative
of the rest class [·]d modulo d in the range {0, . . . , d−1}. There is one relation,
namely

PnXαN−{N−a}d = 0 , where n =

{
0 , d′ − {N − a}d ≤ 0
1 , d′ − {N − a}d > 0

. (5.24)
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Hence, (
MUV GLSM
I ⊗C[Y ] MLUV

[a]d

)Zd
∼= C(X,P )/P

nXC(X,P ) .

which is associated to the matrix factorization

S(X,P ){N − {N − a}d + d′ − nd}
XPn

Xd−1P d
′−n

S(X,P ){N − {N − a}d} ,

This is nothing but LGLSM
N−{N−d}d,n, where the value of n depends on a as

stated in (5.24). Hence:

TUV
N ⊗ LUV

[a]d
∼= LGLSM

N−{N−d}d,n .

Note that due to the specific dependence of n on a, the U(1)-charges of
the generators (of the module of) the matrix factorization lie in the set
{N − d+ 1, N − d+ 2, . . . , N} of d consecutive integers ≤ N .

Indeed, this is the way TUV
N acts on any boundary condition11. It

lifts the Zd-equivariant matrix factorization of Xd to a U(1)-equivariant
matrix factorization of P d

′
Xd by inserting factors of P into the matrix

factorization in such a way that the Zd-representation lifts to U(1), and
that furthermore the U(1)-charges of the lifted representation all lie in
{N − d+ 1, N − d+ 2, . . . , N}. More precisely, let

P : Sr(Y,·)


[b1]d

...
[br]d


p1

p0

Sr(Y,·)


[a1]d

...
[ar]d


be a rank-r Zd-equivariant matrix factorization of Y d. Then one can show
that TUV

N ⊗ P is given by the U(1)-equivariant matrix factorization

P̂ : Sr(X,P )


N − {N − b1}d

...
N − {N − br}d


p̂1

p̂0

Sr(X,P )


N − {N − a1}d

...
N − {N − ar}d


of XdP d

′
, where the matrix p̂1 is obtained from p1 by replacing each monomial

Y r in the matrix entry (p1)ij by PnXr, with

n = max{0,−
(
{N − ai}d − d′r

)
div d} .

‘div’ denotes the division with (non-negative) remainder. Similarly p̂0 is
obtained from p0 by replacing monomials Y r in (p0)ij by PnXr with

n = max{0,−
(
{N − bi}d − d′r

)
div d} .

One arrives at a similar conclusion for the action of T IR
N , where however the

U(1)-charges of the lifted matrix factorization have to lie in the smaller set
{N − d′ + 1, . . . , N} of d′ consecutive integers ≤ N .

11or more generally defects
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P i
N . Since fusion is associative, the last two sections imply the following

action of the projection defects PUV
N
∼= TUV

N ⊗RUV. Let

P : Sr(Y,Q)


b1
...
br


p1

p0

Sr(Y,Q)


a1
...
ar


be a U(1)-equivariant matrix factorization of Y dQd

′
. Then PUV

N ⊗ P is
isomorphic to the U(1)-equivariant matrix factorization

P̂ : Sr(X,P )


N − {N − b1}d

...
N − {N − br}d


p̂1

p̂0

Sr(X,P )


N − {N − a1}d

...
N − {N − ar}d


of XdP d

′
. Here the matrix p̂1 is obtained from p1 by replacing each monomial

Y rQs in the matrix entry (p1)ij by XrPn, with

n = max{0,−
(
{N − ai}d − d′r

)
div d} .

Similarly p̂0 is obtained from p0 by replacing monomials Y rQs in (p0)ij by
XrPn with

n = max{0,−
(
{N − bi}d − d′r

)
div d} .

Thus, the matrix factorization P̂ is obtained from P by shifting all U(1)-
charges into the range {N − d+ 1, . . . , N} by adding integer multiples of d,
setting all Q in the matrices to 1 and inserting factors of P in a way ensuring
U(1)-equivariance of P̂ .

One finds an analogous result for P IR, where the charges are shifted by
integer multiples of d′ into the smaller set {N − d′ + 1, . . . , N}, Y is set to 1
and factors of X are inserted in a way ensuring U(1)-equivariance.

RGN . As alluded to above, the defects RGN describing the transitions
between UV and IR phase are special RG defects between the Landau-
Ginzburg orbifolds in the UV and the IR. The action of general RG defects
have been discussed at length in [3]. In particular, there is an instructive
picture of the D-brane transport coming from the corresponding flow between
unorbifolded Landau-Ginzburg models in the mirror theory. These flows
are tiggered by lower order perturbations of the superpotential W (X) =
Xd +

∑
i<d λiX

i. During the flows some vacua of the theory, corresponding
to critical points of W move off to infinity and decouple, taking with them
certain A-branes attached to them. (For more details see [3].)

The factorization RGN ∼= RIR⊗TUV
N together with the action of the RIR

and TUV
N discussed in the previous sections now leads to a stepwise description
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of the action of RGN . Start with a D-brane in the UV phase. For simplicity
we only discuss D-branes described by a rank-1 matrix factorizations

P : S(Y,·){[a+ rd′]d}
Y r

Y d−r
S(Y,·){[a]d} . (5.25)

Under the action of TUV
N P gets lifted to the U(1)-equivariant matrix factor-

ization

P ′ : S(X,P ){N − {N − a− rd′}d}}
XrPn

Xd−rP d
′−n

S(X,P ){N − {N − a}d} ,

of XdP d
′
, where

nd = rd′ + {N − a− rd′}d − {N − a}d

=⇒ n = rd′ div d+

{
0 , {N − a}d ≥ {rd′}d
1 , {N − a}d < {rd′}d

(5.26)

RIR then pushes down this matrix factorization to the IR Landau-Ginzburg
model by setting X = 1, resulting in the Zd′-equivariant matrix factorization

P ′′ : S(·,P ){[N−{N−a−rd′}d}]d′}
Pn

P d
′−n

S(·,P ){[N−{N−a}d]d′} , (5.27)

of P d
′
. Thus, RGN ⊗ P ∼= P ′′.

Note that in case n = 0 and n = d′ in (5.26), the matrix factorization P ′′

is trivial, and hence the D-brane corresponding to the matrix factorization P
in (5.25) decouples under the RG flow. That is the case whenever rd′ < d and
{N−a}d ≥ {rd′}d (n = 0) or r ≥ d−s with sd′ ≤ d and {N−a}d < {−sd′}d
(n = d′).

So for instance, the degree-1 linear matrix factorizations P (i.e. those
with r = 1) with a = N − b for d > b ≥ d′ decouple under the RG flow,
whereas the ones for d′ > b ≥ 0 are mapped to degree-1 linear matrix
factorizations in the IR.

In general, it follows from (5.26) that n ≤ r, so the degree of the matrix
factorization does not increase during the flow. Either it stays the same,
or it decreases. A decrease means that the corresponding D-brane decays
during the flow and at least one constituent decouples.

Let us illustrate this in a specific example, namely for d = 8 and d′ = 5,
i.e. we are considering a U(1)-GLSM with superpotential W = X8P 5, where
the U(1)-charges of X and P are 5 and −8, respectively. The transition
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defects RGN describe a certain RG flows between the Landau-Ginzburg
orbifolds X8/Z8 and P 5/Z5. For simplicity we will discuss the action of
RG0, i.e. we set N = 0.12 Let us first consider the action on linear rank-1
factorizations

P : S(Y,·){[−b+ 5]8}
Y

Y 7

S(Y,·){[−b]8} (5.28)

for 0 ≤ b < 8. Under the action of T0 these are mapped to the matrix
factorizations

P ′ : S(X,P ){−b+ 5}
X

X7P 5

S(X,P ){−b} , (5.29)

for 5 ≤ b < 8, and to

P ′ : S(X,P ){−b− 3}
XP

X7P 4

S(X,P ){−b} , (5.30)

for 0 ≤ b < 5. These are the lifts of the Z8-equivariant matrix factorizations
(5.28) of X8 to U(1)-equivariant matrix factorizations of X8P 5 whose charges
are contained in {−7,−6, . . . , 0}. Acting with RIR essentially sets X = 1 and
breaks the U(1) to Z5. In the first case, 5 ≤ b < 8, the matrix factorizations
(5.29) are mapped to the trivial matrix factorizations

P ′′ : S(·,P ){−[b]5}
1

P 5

S(·,P ){−[b]5} .

The D-branes corresponding to (5.28) for 5 ≤ b < 8 therefore decouple under
the RG flow. For 0 ≤ b < 5, on the other hand, the matrix factorizations
(5.30) are mapped to the linear factorizations

P ′′ : S(·,P ){−[b+ 3]5}
P

P 4

S(·,P ){−[b]5} .

The corresponding D-branes do not decouple.
Next, let us discuss the action on quadratic matrix factorizations

P : S(Y,·){[−b+ 2]8}
Y 2

Y 7

S(Y,·){[−b]8} . (5.31)

12N can be shifted by a quantum symmetry. This is a charge shift which can be
implemented by a charge shifted versions of the identity defect in the respective LG
orbifold [3].
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Acting on them with T0, one obtains

P ′ : S(X,P ){−b+ 2}
X2P

X6P 4

S(X,P ){−b} , (5.32)

for 2 ≤ b < 8 and

P ′ : S(X,P ){−b− 6}
X2P 2

X6P 3

S(X,P ){−b} , (5.33)

for 0 ≤ b < 2. Again, the matrix factorization P ′ is the lift of the matrix
factorization P in (5.31) to the GLSM whose charges lie in {−7, . . . , 0}.
Acting with RIR then yields the linear matrix factorizations

P ′′ : S(·,P ){−[b+ 3]5}
P

P 4

S(·,P ){−[b]5} .

for the case 2 ≤ b < 8 and the quadratic matrix factorizations

P ′′ : S(·,P ){−[b+ 1]5}
P 2

P 3

S(·,P ){−[b]5} .

for 0 ≤ b < 2. In the latter case, a quadratic matrix factorization is mapped
to a quadratic matrix factorization under the action of RG0. In the case
2 ≤ b < 8, the degree decreases from 2 to 1. Indeed, this can be completely
understood in terms of the linear matrix factorizations. Namely, the quadratic
matrix factorizations P in (5.31) can be written as a cone of two linear matrix
factorizations as in (5.28), one specified by the same label b and one specified
by {b− 5}8. In case both of those linear matrix factorizations survive the
flow, i.e. for 0 ≤ b < 2 the quadratic matrix factorization P is again
mapped to a quadratic matrix factorization under RG0. For the other cases,
2 ≤ b < 8, however, one of the two linear matrix factorizations is mapped
to the trivial one under RG0. Under the RG flow, the quadratic matrix
factorization decays into the two constituent linear factorizations and one of
them decouples. Thus, the quadratic matrix factorization flows to a linear
matrix factorization.

In this way, one can explain the action of RG0 on any rank-1 matrix
factorization

P : S(Y,·){[−b+ 5r]8}
Y r

Y 8−r
S(Y,·){[−b]8} . (5.34)
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The result can be read off from the general formulas above. We summarize
it in the following table:

degree of
P : r

charge shift of P
specified by b

charges of lift
TN ⊗ P

degree of
P ′′ : n

1 5 ≤ b < 8 −b,−b+ 5 0
1 0 ≤ b < 5 −b,−b− 3 1
2 2 ≤ b < 8 −b,−b+ 2 1
2 0 ≤ b < 2 −b,−b− 6 2
3 7 ≤ b < 8 −b,−b+ 7 1
3 0 ≤ b < 7 −b,−b− 1 2
4 4 ≤ b < 8 −b,−b+ 4 2
4 0 ≤ b < 4 −b,−b− 4 3
5 1 ≤ b < 8 −b,−b+ 1 3
5 0 ≤ b < 1 −b,−b− 7 4
6 6 ≤ b < 8 −b,−b+ 6 3
6 0 ≤ b < 6 −b,−b− 2 4
7 3 ≤ b < 8 −b,−b+ 3 4
7 0 ≤ b < 3 −b,−b− 5 5

5.2.8 Comparison with other approaches

The current section, which appeared in [11], was mainly written by Prof. Dr.
Ilka Brunner and Prof. Dr. Daniel Roggenkamp and is included here for
completeness.

D-Brane transport between phases of abelian gauged linear sigma models
has been investigated before with very different methods. The non-anomalous
“Calabi-Yau” case was studied in [47]. A discussion going beyond abelian
gauge groups as well as an extension to anomalous models can be found in
the more recent work [48, 49].

In [48, 49], hemisphere partition functions are computed in curved back-
grounds with B-type boundary conditions on the equator by means of path
integral localization. As a result of the curvature of the background, these
precisely capture the dependence of B-type boundary conditions on the
parameters appearing in the gauge sector. A thorough analysis of analytic
and convergence properties of hemisphere partition functions, then allows
to determine the brane transport between different phases. This as well as
the arguments in [47] rely on a detailed analysis of the boundary conditions
imposed in the gauge sector.

The approach taken in the present paper is very different. We decouple
the gauge sector, and boundary conditions in this sector are not taken into
account. Essentially13, we only consider information accessible to the B-

13with the exception of the truncation, which we introduced to obtain the RG defects
from the GLSM identity defect, and which presumably is related to stability



92 CHAPTER 5. PHASES OF GLSMS

twisted model. That means that we cannot control any analycity or explicit
dependence on t. Remarkably, our approach still yields many similar results
that we highlight in the following.

A crucial ingredient in the discussion of D-brane transport in [47] as well
as [48, 49] are so called “charge windows”. A D-brane whose U(1)-charges all
lie in this window can be transported smoothly from one phase to another.
Partition functions of these grade restricted branes are well behaved in
both phases involved. Any D-brane in the GLSM has a grade restricted
representative, which can be obtained by binding D-branes which are trivial
in the phase in which the transport starts. The charge window is determined
by the choice of the homotopy class of paths in parameter space, along which
the D-branes are transported.

In our approach, the defect RGN automatically takes care that branes
are transported through such windows. Indeed the defect T iN lifting a phase
i to the GLSM automatically maps D-branes from phasei to grade restricted
GLSM branes, where the exact window is determined by the truncation
parameter N . The projection defect P iN realizing phasei in the GLSM
projects the category of GLSM branes on the grade restricted subcategory,
i.e. it maps every D-brane to the respective grade restricted representative.

Note that a in the treatment of [48, 49] a D-brane transport between
two phases actually involves two charge windows, a “large window” which
ensures smooth transport as alluded to above, and a “small window” lying in
the large one 14. D-branes, whose charges completely lie in the small window
flow to the new conformal fixed points, while D-branes, whose charges lie in
the large window, but not completely in the small one undergo some kind
of decay. (In [48, 49] this is determined by analyzing the asympotics of the
hemisphere partition functions.)

In our approach both these windows appear naturally and on the same
footing. The large window is determined by the projection PUV

N associated
to the phase, in which the transport starts, and the small window comes
from the projection P IR

N associated to the phase, in which the transport ends.
Indeed, on the level of the GLSM the transport from phase i to phase j can
be described by the fusion P IR

N ⊗ PUV
N of the respective projection defects.

Transporting branes from one phase to another can involve monodromies.
In [48, 49] these are naturally associated with shifts in the two windows, either
the large window as a whole, or the small window inside the large window.
In our case, the windows are determined by the truncation parameters N ,
which can be shifted by a quantum symmetry, which exactly realizes the
monodromy around the fixpoint of the respective phase.

Transporting branes from the GLSM to a phase can be done using two
different functors. The authors of [49] consider geometric phases and define
two functors Fflow and Fgeom. The first one corresponds to the actual flow

14The two windows coincide in the Calabi-Yau case.
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from the GLSM to the phase, the second one to a restriction to field configu-
ration allowed by the deleted sets of the toric geometry/GLSM description.
In our case, we have two defects from the GLSM to a given phasei, R

i
N and

Ri, the truncated and the untruncated descent defects. RiN depends on the
the truncation parameter, and hence a path in parameter space, whereas
Ri merely sets certain fields to 1. So these are precisely the analogues of
Fflow and Fgeom. In the same way as in [49], where the two functors agree

on grade restricted branes, we have RjN ⊗ P iN ∼= Rj ⊗ P i. This is also the
reason, why RIR

N does not feature more prominently in our discussion: The
lifts TUV

N directly lift the UV phase to grade restricted branes, and we chose
to factorize RGN = RIR ⊗ TUV

N . We could have used the cutoff version of
RIR as well, writing equivalently RGN = RIR

N ⊗ TUV
N .

One reason, why our approach, which is essentially based on the B-
twisted model, still captures all this information might be the fact that
functoriality is a strong constraint. Functoriality is inherent in the defect
approach, and B-type defects seem to be rather rigid. With the exception
of the truncation, which we introduced in an ad-hoc fashion to obtain RG
defects from the GLSM identity defect, and which probably has its origins in
stability considerations, there were no choices involved in our construction.
Furthermore, this choice exactly aligns with the choice of paths between the
respective phases.

It would be very interesting to understand the relation of our approach
to the ones in [47, 48, 49] even better. For one thing, in [48, 57] the D-
brane central charge and concrete dependence on the twisted chiral moduli
is investigated quite explicitly. In particular, in [57] the mathematics of
central charges in Landau-Ginzburg orbifolds is studied in detail. By general
arguments, we expect that RG (or deformation) defects act on these objects
via fusion, and it should be possible to formulate this operation in a natural
way. On the other hand, one could try to incorporate the functoriality
constraint directly into the approach of [48, 49] by applying their analysis to
the GLSM identity defect constructed in section 5.1.3.

5.3 Conclusions

In this chapter, we have constructed defects that concretely describe the
behavior of D-branes under transitions between phases of abelian gauged
linear sigma models. They act on objects and morphisms of the respective
D-brane categories via fusion, and this action is automatically functorial.
A key ingredient is the new construction of the identity defect in gauged
linear sigma models presented in section 5.1.3. Our approach gives a novel
perspective on earlier work [47, 48, 49] on D-brane transport in GLSMs. This
chapter is concluded with a list of interesting points for future investigation.

• The starting point for the construction of our defects RGN that imple-
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ment the transition between a UV and IR Landau-Ginzburg phase of
a U(1)-gauged linear sigma model is the identity defect of the GLSM.
The bosonic defect fields that we use to construct it create an infinite
dimensional Chan-Paton-like space. In other words, the modules on
which the associated equivariant matrix factorization is built are of
infinite rank. Introducing a finite cutoff N for these modules, we obtain
defects RGN in agreement with expectations and earlier results [3].
The choice of cutoff corresponds to a choice of homotopy class of paths
in Kähler parameter space. While we formulate all defects and bound-
aries on the level of the B-twisted model, which decouples from Kähler
parameters, a (mild) Kähler dependence sneaks back in via the cutoff.
We expect the choice of cutoff to be related to stability, one of the
indicators being that the cutoff is necessary to ensure consistent gluing
conditions on a spectral flow operator of an IR conformal field theory.
It would be very interesting to investigate further, whether stability
conditions in phases can be discussed on the level of the GLSM, and
how this relates to defects.

• It would be very interesting to combine our approach with the one of
[47, 48, 49]. Applying their methods to the GLSM identity defect would
at the same time explicitly incorporate the constraint of functoriality
in their approach as well as elucidate the precise origin of the cutoff
appearing in our construction.

• In section 5.2 we applied the general approach outlined in section 5.1 to
a specific class of U(1)-gauged linear sigma models which only exhibit
Landau-Ginzburg phases. It would be very interesting to apply it to
more interesting models, in particular those featuring geometric or
mixed phases. Indeed, a paper on this topic is already in preparation
[51].

• The construction of the identity defect should also generalize to non-
abelian gauged linear sigma models. It would be very interesting to
spell this out and obtain transition and monodromy defects also for
phases of non-abelian GLSMs.

• While in two dimensions our methods are particularly powerful, as the
fusion of defects is well-controllable, our basic ideas are not limited to
this and it would be quite interesting to discuss phase transitions and
possibly dualities from this point of view also in higher dimensions.



Chapter 6

Complementary projections

We now consider topological quantum field theories whose defect categories
are tensor triangulated as defined in section 3.4. This in particular holds
for topologically twisted N = (2, 2) superconformal field theories [42], see
the end of section 3.3. We show that in this setup any counital projection
defect P comes with a complementary unital projection defect P̄ , and vice-
versa, and that the unprojected theory decomposes into the P -projected
and P̄ -projected theories. This is spelled out in section 6.1. In section 6.2
this finding is illustrated for the example of projection defects in B-twisted
Landau-Ginzburg orbifold models.

This chapter is based on [2]. In contrast to the other chapters of this
thesis, unital projection defects are denoted by P̄ in this chapter and P is
reserved for counital projections. In particular, P is given by R† ⊗ R in
chapter 4 and by †R⊗R in the current chapter.

6.1 Complementary Projection Defects

From now on, we assume that the defect category is tensor triangulated
as explained in section 3.4. We show that every counital projection defect
P comes with a complementary unital projection defect P̄ and vice-versa.
Complementarity of a pair (P, P̄ ) means that

mutual fusion vanishes P ⊗ P̄ ∼= 0 ∼= P̄ ⊗ P , and

the identity defect is isomorphic to a cone I ∼= cone(s : P̄ [−1]→ P ) .
(6.1)

In fact, we can also start with two defects P and P̄ which are idempotent
with respect to fusion and satisfy conditions (6.1). Then, P carries a unit
and P̄ a counit. Physically, the second condition in (6.1) means that the sum
P ⊕ P̄ of the two projectors can be deformed (or perturbed) to the identity
defect.

In the following we use the triangulated structure to show our claim in
three steps. First, we prove that every counital projection defect comes with

95
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a complementary unital projection defect. Second, we argue that conversely,
every unital projection defect comes with a complementary counital projec-
tion defect. And third, we show that for any pair (P, P̄ ) of complementary
idempotent defects, P is counital and P̄ is unital. Afterwards we discuss
how, given such a pair of complementary projection defects, the host theory
decomposes into the projected theories associated to P and P̄ .

(i) Counital projections have unital complementary projections.
Let P be a counital projection defect P ∈ obj(T ). In other words, it satisfies
P ⊗ P ∼= P and there is a morphism c : P → I such that the following two
squares commute:

P ⊗ P I ⊗ P P ⊗ P P ⊗ I

P P P P

c⊗idP

�

idP⊗c

�∼

idP

∼

idP

∼ ∼

These two relations are just the counit conditions (1.6), see also section 2.5.
Defining P̄ := cone(c : P → I), the exact triangle with respect to the counit
becomes

P I P̄ P [1].c u s[1]
(6.2)

The key idea is now the following: c obeys counit conditions, u obeys unit
conditions and cone(s) ∼= I is isomorphic to the identity defect. Given any
of the three morphisms s, c or u satisfying the respective condition, the
triangulated structure implies that the other morphisms exist and satisfy the
respective conditions. Let us spell this out for the case at hand.

Applying · ⊗ P to (6.2) one obtains the upper row of

P ⊗ P I ⊗ P P̄ ⊗ P P [1]⊗ P

P P 0 P [1]

c⊗idP

�∼

idP

∼ ∼

Since · ⊗ P is a triangulated functor, it is an exact triangle. The counit
conditions gives rise to the left commuting square. By the axioms of triangu-
lated categories, the lower triangle is also exact, the dashed morphism exists
and all squares commute. Also, the dashed morphism is an isomorphism.
Hence, P̄ ⊗ P ∼= 0. Similar considerations lead to P ⊗ P̄ ∼= 0.

Next, applying the functor P̄ ⊗ · to (6.2) yields

P̄ ⊗ P P̄ ⊗ I P̄ ⊗ P̄ P̄ ⊗ P [1]

0 P̄ P̄ 0

idP̄⊗c

�

idP̄⊗u

∼ ∼

idP̄

∼ .
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Again, both rows are exact triangles. Because morphisms from the zero
object are unique, the first square commutes. Hence, the dashed morphism
exists, makes all squares commute and is an isomorphism. Therefore, P̄ is
idempotent with respect to ⊗ and the first of the two unit conditions

P̄ P̄ P̄ P̄

P̄ ⊗ I P̄ ⊗ P̄ I ⊗ P̄ P̄ ⊗ P̄

idP̄

�

idP̄

�∼

idP̄⊗u

∼

u⊗idP̄

∼ ∼

holds. In the same way, application of · ⊗ P̄ to (6.2) implies the second unit
condition. P̄ is therefore a unital projection defect.

It remains to show that the identity defect I is isomorphic to a cone of a
morphism P̄ [−1]→ P . This follows by rotating the exact triangle (6.2) to

P̄ [−1]
s−→ P

c−→ I
u−→ P̄ .

(ii) Unital projections have counital complementary projec-
tions. The above arguments also work the other way around: the existence
of an idempotent P̄ ∈ obj(T ) with unit u : I → P̄ implies the existence of a
complementary counital idempotent

P := cone(u[−1] : I[−1]→ P̄ [−1]) ∈ obj(T ) .

Of course, applying the construction in (i) to this projection P gives back
the original projection P̄ . Namely, the counit of P is the left morphism in
(6.2) and automatically cone(c : P → I) ∼= P̄ .

Vice-versa, starting with a unital projection defect P and first con-
structing the counital projection defect P̄ as in (i) and then applying the
construction in (ii) returns the original projection defect P .

(iii) Complementary projections are (co)unital. We now turn
the above discussion around and start with two idempotents P, P̄ ∈ obj(T )
satisfying

P ⊗ P ∼= P , P̄ ⊗ P̄ ∼= P̄ , P ⊗ P̄ ∼= 0 ∼= P̄ ⊗ P .

Moreover, we assume that there is a morphism s : P̄ [−1] → P such that
cone(s) ∼= I. In other words,

P̄ [−1]
s−→ P → I → P̄

is exact. Application of P ⊗ · to this triangle gives rise to the first row of

P ⊗ P̄ [−1] P ⊗ P P ⊗ I P ⊗ P̄

0 P P 0

idP⊗s

�∼ ∼

idP

∼ ∼ .
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The first square commutes because there is a unique morphism from the zero
object into any object. Hence, the middle square also commutes and yields
the second counit condition. Similarly, application of the exact functors
· ⊗ P , P̄ ⊗ · and · ⊗ P̄ leads to the first counit condition on P and the unit
conditions on P̄ . Hence, of two complementary projectors one is always
unital and the other counital.

Next, we will show how, given a complementary pair (P, P̄ ) of projection
defects, the unprojected theory decomposes into the P -projected theory
and the P̄ -projected theory. Let us start with the spectrum of boundary
conditions.

Decomposition – boundary spectrum. The category of boundary
conditions of the unprojected theory decomposes into the subcategories of
boundary conditions of the two projected theories. Namely, every boundary
condition B in the unprojected theory can be expressed as

B ∼= I ⊗B ∼= cone(s : P̄ [−1]→ P )⊗B
∼= cone(s⊗ idB : P̄ ⊗B[−1]→ P ⊗B).

(6.3)

Hence, every boundary condition in the unprojected theory is a cone of a
morphism s⊗ idB from a P̄ -invariant boundary condition to a P -invariant
boundary condition. The category of boundary conditions in the unprojected
theory is therefore generated by the subcategories of P̄ - and P -invariant
boundary conditions. The latter correspond to the categories of boundary
conditions in the P̄ - and P projected theories, respectively. By complemen-
tarity, the two subcategories are disjoint

P ⊗B ∼= B ⇒ P̄ ⊗B ∼= P̄ ⊗ P ⊗B ∼= 0

P̄ ⊗B ∼= B ⇒ P ⊗B ∼= P ⊗ P̄ ⊗B ∼= 0

and due to (6.3) all boundary conditions in the kernel of P ⊗· are P̄ -invariant
and vice-versa:

P ⊗B ∼= 0 ⇒ P̄ ⊗B ∼= B

P̄ ⊗B ∼= 0 ⇒ P ⊗B ∼= B

Decomposition – bulk spectrum. Similarly, the bulk spectrum of
the unprojected theory can be reconstructed from the bulk spectra of the
two projected theories, once s is known.

First, every bulk field φ : I → I induces an endomorphism of P by
enclosing it with the appropriate projection defect.1 Because of the counit

1There is also an equivalent point of view: Concatenation with the counit (unit) gives

a morphism P
φ◦c−−→ I (I

u◦φ−−→ P̄ ) and the morphisms P → I (I → P̄ ) can be seen to be
one-to-one with the endomorphisms of P (P̄ ). In fact, one can regard the (co)unit as the
one-dimensional equivalent of an RG defect mapping bulk fields of the unprojected (UV)
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and projection properties of P , this endomorphism, which we call α(φ) can
be written in several ways, see (2.4). The first one is

α(φ) : P I ⊗ P I ⊗ P P.∼ φ⊗idP ∼ (6.4)

The same holds for the endomorphisms ᾱ(φ) induced on the complementary
unital projector P̄ :

ᾱ(φ) : P̄ I ⊗ P̄ I ⊗ P̄ P̄∼ φ⊗idP̄ ∼ (6.5)

Thus, we have a map End(I)→ End(P )⊕End(P̄ ), φ 7→ (α(φ), ᾱ(φ)). In fact,
the image of this map is not End(P )⊕End(P̄ ) but rather End(P̄ [−1]

s→ P ),
the pairs of morphisms (α, ᾱ) ∈ End(P ) ⊕ End(P̄ ) which are compatible
with s, i.e. all those (α, ᾱ) such that the following diagram commutes

P̄ [−1] P

P̄ [−1] P

s

�
s

ᾱ[−1] α

This can be read off from the first two columns of the following diagram

P̄ [−1] P I P̄

I ⊗ P̄ [−1] I ⊗ P I ⊗ I I ⊗ P̄

I ⊗ P̄ [−1] I ⊗ P I ⊗ I I ⊗ P̄

P̄ [−1] P I P̄

s

�

c u

idI⊗s

∼

�

idI⊗c

∼

idI⊗u

∼ ∼

idI⊗s

φ⊗id[−1]

�

idI⊗c

φ⊗id

idI⊗u

φ⊗id φ⊗id

s

∼

c

∼

u

∼ ∼

Note that all squares, and in particular the ones on the left commute.
Composing the vertical maps, one arrives at the following diagram

P̄ [−1] P I P̄

P̄ [−1] P I P̄

s

�

c u

s

ᾱ[−1]

c

α

u

φ ᾱ (6.6)

where α = α(φ) and ᾱ = ᾱ(φ) and of course all squares commute. This
shows the claim that (α(φ), ᾱ(φ)) ∈ End(P̄ [−1]

s→ P ).

into the projected theory (IR). This connects to ideas in [58] and might be interesting for
dimensions greater than two [59] where the RG defects of this chapter appear as a form of
(co)unit.
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On the other hand, since the rows in (6.6) are exact triangles, any
endomorphism (α, ᾱ) ∈ End(P̄ [−1]

s→ P ) gives rise to an endomorphism
φ ∈ End(I). The latter in turn satisfies α(φ) = α and ᾱ(φ) = ᾱ which
follows from the commutativity of squares in (6.6), namely

φ = c
φ

= c
α

= α

for the counital projection defect P and

φ = u
φ

= u
ᾱ

= ᾱ

for the unital projection defect P̄ .

Hence, End(I) ∼= End(P̄ [−1]
s→ P ), and the algebra of bulk fields of the

unprojected theory can be reconstructed from the ones of the two projected
theories. This discussion naturally extends to the fermionic bulk spectrum
Hom(I[−1], I).

6.2 Application to Landau-Ginzburg models

As explained at the end of section 3.3, the defect and boundary categories of B-
twisted Landau-Ginzburg models and their orbifolds are tensor triangulated.
Hence, the previous discussion of complementary projection defects applies
to all these models. In the following, the construction is applied to the
Landau-Ginzburg orbifolds of chapter 4.

Landau-Ginzburg orbifolds Xd/Zd. We again consider the Landau-
Ginzburg orbifold with a single chiral field X, superpotential W = Xd, for
some d ∈ N≥2, orbifolded by the group Zd. An element [n] ∈ Zd acts on X
by X 7→ exp(2πind )X, and hence leaves the superpotential W invariant.

RG defects describing the flow from the orbifoldXd/Zd toXd′/Zd′ , d > d′,
were constructed in [3] and discussed in chapter 4. They can be represented
in terms of Zd × Zd-equivariant matrix factorizations R of rank d′ which are
parametrized by a choice of m ∈ Zd and n0, ..., nd′−1 ∈ N>0 which sum up to
d = n0 + ...+nd′−1. These RG defects give rise to counital2 projection defects

2Similarly, P̄ := R† ⊗R are unital projection defects realizing the IR theory within the
theory at the UV. Note again the difference in notation to chapter 4: The unital projection
P given by R† ⊗R in that chapter is denoted by P̄ in the current chapter. Here, P refers
to the counital version †R⊗R.
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P := †R⊗R realizing the IR theory Xd′/Zd′ within the UV theory Xd/Zd.
They are represented by the Zd × Zd-equivariant matrix factorizations

P : P1


Zn1 0 ... 0 −Xn0

−Xn1 Zn2

0 −Xn2
. . .

...
. . . Z

nd′−1

0 −Xnd′−1 Zn0


dP0

P0 = Sd
′


{[r0],[−r0]}
{[r1],[−r1]}
{[r2],[−r2]}

...
{[rd′−1],[−rd′−1]}


of Zd − Xd. Here, S = C[X,Z], {·, ·} indicates the Zd × Zd-charge of the
respective S-module generator, and [ri] = [m + n1 + ... + ni] ∈ Zd. The
charges of P1 can easily be inferred from the ones of P0. For more details
see chapter 4. To simpify notation, we will consider the indices i of ri and
ni to be defined modulo d′.

The counit c : P → I is given by the evaluation map P := †R⊗R→ I
which can be determined explicitely for the case at hand with the fomulae of
appendix B.8 based on [15, 9]

(c0)ji = −d
′ − 1

d′
δj,ri , (c1)kj = −d

′ − 1

d′
δj,jkZ

nj+1−1−[k−rj ]X [k−rj ] .

Here, [k − rj ] denotes the representative of (k − rj) mod d in {0, . . . , d− 1},
and jk the unique j ∈ Zd′ that minimizes [k − rj ].

Given the counit, a straightforward computation reveals that the comple-
mentary projection defect P̄ of P is isomorphic to a direct sum

P̄ =
⊕
i∈Zd′

with ni>1

P̄i (6.7)

of multiple unital projection defects P̄i, one for each ni > 1. The summands
P̄i are given by the rank-ni matrix factorizations

P̄i : Sni


−X Z

−X Z

. . .
. . .
−X Z

Zd−ni+1 −Xd−ni+1



dP0

Sni


{[ri−1+1],[−ri−1−1]}
{[ri−1+2],[−ri−1−2]}
{[ri−1+3],[−ri−1−3]}

...
{[ri−1],[−ri+1]}
{[ri],[−ri−1]}


One can check that each P̄i is a projection defect with P̄i ⊗ P̄j ∼= δi,jP̄i, and

that it is unital. In fact, it factorizes as P̄i ∼= R†i ⊗Ri, where each Ri is an RG



102 CHAPTER 6. COMPLEMENTARY PROJECTIONS

defect from Xd/Zd to Xni/Zni . Therefore, P̄i realizes the Landau-Ginzburg
orbifold theory Xni/Zni inside Xd/Zd.

We obtain the following picture. The counital projector P = †R⊗R asso-
ciated to an RG defect from Xd/Zd → Xd′/Zd′ specified by (m,n0, . . . , nd′−1)
projects the theory Xd/Zd in the UV to the IR theory Xd′/Zd′ . The respec-
tive complementary unital projection defect P̄ projects to the stack3⊕

i∈Zd′
with ni>1

Xni/Zni

of Landau-Ginzburg orbifold theories.

Xd/Zd

Xd′/Zd′
⊕
i∈Zd′

with ni>1

Xni/Zni

P P̄

In fact, the mirror of the RG flow described by the defect R is a flow from
the unorbifolded Landau-Ginzburg model with superpotential W = Xd to
the one with superpotential W ′ = Xd′ triggered by a perturbation of the
superpotential by lower order terms. The parameters ni specify how the
critical points of W behave under the flow. More precisely, the (d − 1)-
times degenerate cricial point of W = Xd breaks up into a (d′ − 1)-times
degenerate critical point which is associated to the IR theory, and (ni − 1)-
times degenerate cricial points for each ni > 1. The latter run off to infinity
and decouple from the theory. The complementary projection defect P̄
projects onto all the decoupling parts of the theory.

We will conclude this example by discussing the decomposition of the
category of boundary conditions of the UV theory with respect to the
complementary pair (P, P̄ ). B-type boundary conditions of the Landau-
Ginzburg orbifold theory Xd/Zd can be described by Zd-equivariant matrix
factorizations of Xd. The category of these matrix factorizations is generated
by the rank-1 linear matrix factorizations

B1
[c] : C[X]{[c+ 1]}

X1

Xd−1
C[X]{[c]}.

Here [c] ∈ Zd determines the Zd-action. All other Zd-equivariant matrix
factorizations of Xd can be obtained from the B1

[c] via successive cone con-

3Such stacks are sometimes also referred to disjoint unions [60], because sigma models
whose target spaces are disjoint unions are particular examples.
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structions. For instance, any rank-1 Zd-equivariant matrix factorization

Bk
[c] : C[X]{[c+ k]}

Xk

Xd−k
C[X]{[c]}

of Xd can be expressed via (3.8) as cone of a morphism φ = (−1, Xd−1) :
B1

[c][1]→ Bk−1
[c+1],

Bk
[c]
∼= C[X]2

(
{[c+ k]}
{[c+ 1]}

)
(
Xk−1 −1

X

)

(
Xd−k+1 Xd−k

Xd−1

) C[X]2
(
{[c+ 1]}
{[c]}

)
.

Thus, by induction on k, any rank-1 matrix factorization Bk
[c] can be obtained

as successive cone of linear matrix factorizations B1
[c].

Employing methods of [3, 16] to calculate fusion, we find that the action
of P on the linear boundary conditions of the UV theory Xd/Zd is given by

P ⊗B1
[c]
∼=

{
B
ni+1

[c] if [c] = [ri] for some i

0 otherwise
. (6.8)

Since [ri] 6= [rj ] for i 6= j, this implies that d′ linear boundary conditions
have a non-trivial image under fusion with P . Since fusion commutes with
the cone construction, the images B

ni+1

[ri]
generate the category of P -invariant

boundary conditions. The latter corresponds to the category of boundary
condition of the P -projected theory, and is indeed isomorphic to the category
of boundary conditions of the IR theory Xd′/Zd′ .

On the other hand there are (d − d′) linear boundary conditions B1
[c],

[c] /∈ {[ri] | i} annihilated by the fusion with P . They generate the P̄ -invariant
subcategory, i.e. the category of boundary conditions of the P̄ -projected
theory. Indeed, the summands P̄i of P̄ fuse with linear boundary conditions
according to

P̄i ⊗B1
[c]
∼=


B1

[c] if [c] ∈ {[ri−1 + 1], [ri−1 + 2], ..., [ri − 1]}
Bd−ni+1

[ri]
if [c] = [ri−1]

0 otherwise

. (6.9)

We explicitly recover the decomposition of the category of boundary con-
ditions into the P -invariant and P̄ -invariant subcategories (c.f. the discussion
around (6.3)). The category of boundary conditions of Xd/Zd is generated
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by the linear boundary conditions B1
[c]. The ones with [c] /∈ {[ri] | i} are

annihilated by P and hence are P̄ -invariant. Moreover, for all i with ni = 1
the linear boundary conditions B1

[ri−1] are P -invariant: P ⊗B1
[ri−1]

∼= B1
[ri−1]

and P̄ ⊗B1
[ri−1]

∼= 0. The only linear boundary conditions which are neither

P - nor P̄ -invariant are the B1
[ri−1] with ni > 1. For these, (6.8) and (6.9)

yield
P ⊗B1

[ri−1]
∼= Bni

[ri−1] and P̄ ⊗B1
[ri−1]

∼= Bd−ni+1
[ri]

.

Hence, they can be represented as cones of morphisms

P̄ ⊗B1
[ri−1][−1] ∼= Bd−ni+1

[ri]
[−1] −→ P ⊗B1

[ri−1]
∼= Bni

[ri−1]

between objects of the P̄ -invariant and the P -invariant subcategories, see
(6.3). Explicitly,

B1
[ri−1]

∼= C[X]2
(

{[ri]}
{[ri−1 + 1]}

)
(
Xni X

Xd−ni+1

)

(
Xd−ni −1

Xni−1

) C[X]2
(
{[ri−1]}
{[ri]}

)
.

The decomposition on the level of the generators determines the decomposi-
tion of the entire category of boundary conditions into P - and P̄ -invariant
subcategories.

6.3 Conclusions

In this chapter it was shown that in theories whose defect categories are
tensor triangulated, projection defects always come in complementary pairs
(P, P̄ ). These have the following properties. P is counital and P̄ is unital,
and the identity defect is isomorphic to a cone of a morphism s : P̄ [−1]→ P .

From chapter 2.6 we know that (co)unital projection defects always split,
i.e. there are RG-type defects R̄ (R) such that P̄ ∼= R̄† ⊗ R̄ (P ∼= †R ⊗R),
and the projection defects realize projected theories in the given host theory.
The fact that in the triangulated setup, projection defects always come in
complementary pairs means that whenever there is a projection defect in this
context, the host theory decomposes into the projected theory associated to
P and the complementary projected theory associated to P̄ .

In the explicit example we considered, the counital projection defect P
splits as P ∼= †R⊗R, where R is the RG defect associated to a renormalization
group flow between the Landau-Ginburg orbifolds Xd/Zd in the UV and
Xd′/Zd′ in the IR (d > d′). Hence, P realizes the IR theory inside the UV.
The complementary projection defect P̄ in this case collects all the parts of
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the theory which decouple during the RG flow; and the UV theory deomposes
into two parts, the IR theory on the one hand and the decoupling parts on
the other.

An insteresting open question is the physical significance of the fact that
the identity defect in the host theory is isomorphic to the cone of some
morphism s : P̄ [−1] → P . Obviously this means that P ⊕ P̄ deforms to
the identity defect. If P ⊕ P̄ was itself a (co)unital projection defect, with
a well-defined projected theory associated to it, then this implies that the
latter can be deformed (or perturbed) to the host theory. However, in general
P ⊕ P̄ is neither unital nor counital. Hence, it is not clear to what extent
P ⊕ P̄ describes an honest topological quantum field theory. It would be
interesting to shed some light on the physical significance of the sum P ⊕ P̄
and the cone condition.
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Chapter 7

Summary and outlook

In this thesis, I have presented a new method which allows for a complete
representation of one topological quantum field theory within another (chap-
ter 2 and appendix A). This procedure was found to have two equivalent
points of view.

First, every (co)unital projection defect P gives rise to a new topological
theory: Its spectrum equals the bulk spectrum of the new theory, boundaries
and defects invariant under fusion with P constitute the boundary and defect
spectra of the new theory and correlators of the new theory can be calculated
in terms of the original theory by inserting networks of the defect P . The
projection defect P also gives a functor from the original theory to the new
one: Bulk fields encircled by P give a field on P and boundaries (defects)
fused with P give P -invariant boundaries (defects).

Second and equivalently, every two such theories are related by an RG
defect R - a defect whose loop around one theory collapses trivially. By fusion
and encircling, R allows to functorially map objects from either theory to the
other. What is more, this way the second theory is completely embedded into
the first and all its properties (bulk/boundary/defect spectra, symmetries
and correlators) are realized within the first. Conversely, R allows to project
bulk, boundary and defect spectra of the first theory into the second. This
process is not reversible - and tightly connected to RG flow. Namely, such
RG defects arise naturally from the invisible defect I if the theory on one
side of I is perturbed and flows to some IR fixed point.

The review chapter 3 then set the stage for concrete applications by
introducing two-dimensional supersymmetric quantum field theories and
their topological B-twist. It furthermore introduced (equivariant) matrix
factorizations, which allow to describe the topological defect and boundary
spectra of B-twisted Landau-Ginzburg (orbifold) theories. This formalism
also provides a method to calculated defect fusion explicitely.

As a first application, the presented procedure was applied in depth to
Landau-Ginzburg orbifolds with a single chiral field, superpotential W = Xd

107
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and orbifold group Zd (chapter 4 and appendices B, C). Taking the limit
d → ∞, it was possible to realize all these theories within the theory of a
single free twisted chiral field.

Next up, the method of chapter 2 was used to represent different phases
of gauged linear sigma models within the GLSM itself (chapter 5). First, a
clever rephrasing of the orbifold identity defect allowed a generalization to
continuous orbifold groups, which gives a description of the identity defect of
a topologically twisted gauge decoupled sector of the GLSM. Pushing down
the two sides of this defect results in the sought-for RG defects which realize
the two phases within the GLSM, describe the mapping of GLSM objects
into both phases and allow to move D-branes between the two phases.

Finally, in chapter 6 an interesting observation was proved: If the defect
spectra of the TQFTs in question are triangulated - as they are in our exam-
ples - then every (co)unital projection defect comes with a complementary
projection defect. Hence, the host theory decomposes into the two projected
theories associated to the two projectors. This finding was applied to the
LG orbifold example of chapter 4.

Looking ahead, there are multiple avenues of possible investigation, some
of which have already been discussed at the end of chapters 5 and 6. In the
following, this list is extended along the lines of [1].

• It would be interesting to apply the construction outlined in this thesis
to other examples of RG flows and to find representations of more
elaborate 2d TQFTs in free theories by means of projectors. For
example, the treatment of flows between LG orbifolds discussed in
chapter 4 carries over to flows between orbifolds of free chiral field
theories. The latter theories can be obtained from LG orbifolds by
setting the superpotentials to zero. The respective RG defects can be
described in terms of matrix factorizations and have been worked out
in [61].

• In the example of LG orbifolds Md/Zd one could explicitly compare
the bulk flows studied in section 4.2 with the corresponding flows of the
identity defects. While the identity defects can be described by means
of matrix factorizations, the respective relevant perturbations are by
twisted chiral fields. Such perturbations are not as easily treated in
the matrix factorization framework as defect perturbations by chiral
fields such as the ones discussed in [62]. In the case at hand however,
the twisted chiral fields generating the perturbations are orbifold twist
fields. As such, they do have a representation in the matrix factorization
framework as defect changing fields. This possibly allows for an explicit
analysis of the respective defect perturbations in this case. Hence,
it might be possible to work out in this concrete example how the
projection defects P associated to bulk flows arise as perturbations of
identity defects.
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• The LG orbifolds of chapter 4 were realized within the theory of a free
twisted chiral field, which can be seen as a U(1)-equivariant version
of the free chiral field. It would be interesting to write this down
explicitely using the U(1)-equivariant identity defect of chapter 5.

• The construction described in this paper heavily relies on topological
covariance. So an obvious question is whether it has any bearing on
non-topological QFTs (beyond topologically twisted supersymmetric
theories). Indeed, one can perturb the identity defect in non-topological
QFTs and RG defects exist in more general theories, see e.g. [4].
However, fusion of non-topological defects is singular in general. Still,
at least in some cases it is possible to define a reasonable notion of
fusion [5, 63], so that defects P can be constructed from RG defects.
The role of these defects is less clear, but it would be very interesting to
study them in examples. Perhaps they are related to the line operators
appearing in the context of integrable perturbations of conformal field
theories [64, 65, 66, 67, 68].

• While the discussion in this paper is restricted to 2d TQFTs, we
expect that bulk perturbations of TQFTs can be described by means
of codimension-one projection defects in any dimension. Indeed, the
generalized orbifold construction has been extended from dimension
two to higher dimensions in [59]. It would be very interesting to apply
the methods described in this paper to higher-dimensional TQFTs.



110 CHAPTER 7. SUMMARY AND OUTLOOK



Appendix A

Properties of projection
defects

A.1 IR bulk fields in the UV

Here, we show that if a projection defect P in the UV factorizes as P ∼= R†⊗R
with R⊗R† ∼= IIR, then P -bimodule morphisms on P are one-to-one with
IR bulk fields (IIR-bimodule morphisms of IIR). The latter are mapped into
the UV by the homomorphism

IR

7→

UV

, (A.1)

where the junctions are given by the isomorphisms P ∼= R†⊗R. (To keep the
notation light, we refrain from putting arrows on RG defects. We mark UV
and IR theory by dark, respectively light background.) By the projection
property the right hand side is a P -bimodule morphism of P . We claim that
the inverse to the homomorphism (A.1) is given by

UV

7→

IR

.
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Let us first check that the composition IR → UV → IR evaluates to the
identity on IR bulk fields:1

IR

7→

UV

7→

IR

P∼=R†⊗R
=

R⊗R†∼=IIR=

Similarly, the composition UV → IR → UV is the identity on P -bimodule
morphisms of P :

UV

7→

IR

7→

UV

P∼=R†⊗R
=

bimod. mor.
=

loop
=

Therefore we have established that the map (A.1) is an isomorphism from
the space of IR bulk fields to the space of P -bimodule morphisms of P .

A.2 Bimodule equal bicomodule morphisms

For any projection defect, bimodule morphisms over itself are automatically
cobimodule morphisms and vice versa. In other words, the two types of

1For readability, IIR has been omitted.
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morphisms are one-to-one: = =


1:1←→

 = =


This is easy to see. A bimodule morphism for example (left-hand side above)
automatically obeys

loop
=

bimod. mor.
=

proj.
=

bimod. mor.
=

proj.
= .

The argument that bicomodule morphisms also respect the bimodule structure
follows by turning the diagrams above upside down.

Indeed, if the projection defect P comes with a unit then all morphisms
of P automatically respect the bicomodule structure, and by the above
also the bimodule structure on P . (This easily follows from the projection
property.) Hence, in this case all morphisms of P are bimodule morphisms
and bicomodule morphisms. The same is true if P has a counit.

A.3 P -modules B and B ⊗ P ∼= B

In this appendix we show that for a projection defect P , any left boundary
condition B is a right P -module if and only if B⊗P ∼= B. This in particular
means that left IR boundary conditions can be represented by left boundary
conditions B in the UV which are invariant under fusion with P , i.e. B⊗P ∼=
B. This statement extends to right boundaries and defects.

First, a left P -module (whose comodule structure is induced by the unit
on P ) obeys B ⊗ P ∼= B:

B

(co)module
=

unit
=

proj.
=

unit
=

and

B

=
module

=
loop + unit

= .
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If on the other hand a left boundary condition B satisfies B ⊗ P ∼= B, B
inherits the P -module structure of P itself. Namely, there are junctions
B ⊗ P → B and B → B ⊗ P such that

B

= and

B

= .

This implies that

B

and

B

define P -module, respectively P -comodule structures on B, which are also
inverse to each other and hence provide isomorphisms B ⊗ P ∼= B.

A.4 P -adjunction

In this appendix we show that the adjunction of IR defects is lifted to the
UV by the following formulas

D†P = P ⊗D† ⊗ P
†PD = P ⊗ †D ⊗ P

where P is the corresponding projection defect, and D is a defect in the UV
theory representing an IR defect. We will only consider the first equation
and will furthermore restrict to the case that P is unital. The arguments for
the second equation and the counital case are similar. The IR right adjoints
have to satisfy the following Zorro move identities

D

UV

D†P
=

D

,

D†P

D =

D†P

.

These are satisfied for D†P above when we choose the following natural
(co-)evaluation maps

D ⊗D†P

P
,

D†P ⊗D

P
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D†P ⊗ P

D†P

,

D†P

P ⊗D†P
.2

Namely,

D†P

D

=
D†

D

=

D

and

D†P

D†P

≡ unit
=

proj.
= =

D†P

.

using unit condition, Zorro-move and the definition of D†P in the last step.
For counital P and left-adjoints the above diagrams have to be flipped
appropriately.

The defect P is a P -module and a P -comodule, so it can be regarded as
an IR defect. As such, it should be selfadjoint, and, using the above notion
of IR adjunction one finds that this is indeed the case: P †P ∼= P ∼= †PP . If

2The lower maps follow as natural generalizations from the generalized orbifold procedure
[9, Prop. 4.7]. Namely,

= =
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for instance P is unital, the two maps

P † ⊗ P

P

and

P † ⊗ P

P

are inverse to each other and hence provide isomorphisms P ∼= P † ⊗ P . The
projection property of P , P ⊗ P ∼= P implies that P †P = P ⊗ P † ⊗ P ∼= P .
The argument for counital P is analogous.

A.5 Projections with unit and counit

If a projection defect has a unit as well as a counit, it is automatically
self-adjoint as there are natural (co)evaluation maps:

= =

The equalities follow from the two Frobenius and (co)unit properties. If P
has a unit, any P -module automatically carries a P -comodule structure. Vice
versa, any P -comodule is automatically a P -module in case P has a counit.
If P has both, a unit and a counit, these two constructions are compatible:
Starting with a P -module, a P -comodule structure is induced which in turn
induces a P -module structure. This P -module structure is identical to the
original one:

=

As discussed in section 2.6, all projection defects P factorize into RG
type defects P ∼= R† ⊗R. For example, unitary P factorize as(

PIR|UV

)†
= PUV|IR

†(PIR|UV

)
=
(
†P
)

UV|IR
.

For selfadjoint projection defects P , the respective RG type defects R then
satisfy †R ∼= R†.
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A.6 (Co)multiplication and Frobenius properties

Here, we show the equivalence of associativity, coassociativity and the two
Frobenius properties for projection defects and how they follow from the
existence of a (co)unit. The identities in question are:

ass.
= and

coass.
=

Frob. 1
= and

Frob. 2
=

Equivalence is shown by the following chain of implications

associativity⇒ Frob. 2⇒ coassociativity⇒ Frob. 1⇒ associativity.

associativity ⇒ Frob. 2:

proj.
=

ass.
=

loop
=

Frob. 2 ⇒ coassociativity:

proj.
=

Frob. 2
=

loop
=

coassociativity ⇒ Frob. 1:

proj.
=

coass.
=

loop
=
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Frob. 1 ⇒ associativity:

proj.
=

Frob. 1
=

loop
=

Next, we show how the existence of a unit for a projection defect implies
coassociativity:

unit ⇒ coassociativity:

unit.
=

proj.
=

proj. + unit
=

In the last step we applied the projection property to the left and the lower
defect. Turning these diagrams upside down shows how associativity follows
from the existence of a counit.

A.7 Adjoints of induced RG defects

Right and left adjoints of the induced RG defect PIR|UV must satisfy the
Zorro move identities

PIR|UV

=

PIR|UV

and

(
PIR|UV

)†
=

(
PIR|UV

)†
,

PIR|UV

=

PIR|UV

and

† (PIR|UV

)
=

† (PIR|UV

)
.

We will discuss the case that P has a unit. The counital case can be treated
analogously. Indeed, it is easy to see that(

PIR|UV

)†
= PUV|IR,
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i.e. P regarded as defect from IR to UV is the right adjoint of P regarded
as a defect from UV to IR. The evaluation map is just given by the algebra
P ⊗ P → P and the coevaluation map is induced by the unit IUV → P →
P ⊗ P . (The Zorro identities immediately follow from associativity and the
unit condition.) It is slightly more involved to see that the left adjoint is
given by

† (PIR|UV

)
=
(
†P
)

UV|IR
,

the left adjoint of P regarded as a defect from the IR to the UV theory.
Evaluation and coevaluation are given by the maps

†P

†P

P

:=
†P

†P

P

and

P

P

†P
:=

P

†PP

P ,

which define the right P -module structure of †P and the right †P -comodule
structure of P , respectively. The first Zorro identity then follows from the
UV Zorro move and loop omission, while the second one additionally requires
associativity and the unit property.
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Appendix B

Orbifold minimal models as
generalized orbifolds

Here, we construct the Landau-Ginzburg orbifolds Md/Zd as generalized
orbifolds following [9, Chapter 7]. To distinguish objects in the orbifold
from objects in the unorbifolded theory, we adopt the following notation,
which is different from the one used in the main text: the identity defect
in Md is denoted by I, whereas the identity defect in the orbifold theory
is represented by the orbifold defect A. Also, adjunction in the orbifold is
denoted by ‘∗’ to distinguish it from adjunction ‘†’ in the unorbifolded theory.
This notation is only used in this appendix. In chapter 4 of the main text, we
do not explicitly refer to the orbifold construction and therefore do not need
this distinction. There, I denotes the identity defect and ‘†’ the adjunction
in the orbifold theory Md/Zd.

B.1 Orbifold identity defect

The modelsMd/Zd are standard orbifolds. In this case the defect A is given
by the direct sum of the defects implementing the respective actions of all the
symmetries in the orbifold group: A = ⊕g∈Zd (gI). The symmetry defects gI
can be represented by the rank-one matrix factorizations (η = e2πi/d)

gI : C[Z,X]ed+[g]

ηgZ −X

Zd−Xd

ηgZ−X

C[Z,X]e[g]. (B.1)

where [g] denotes the representative of g ∈ Zd in {0, . . . , d− 1}, and the ea,
a ∈ {0, . . . , 2d−1} are the generators of the respective rank-one free modules
(gI)0,1. gI is the right twist of the identity defect I in Md by g ∈ Zd.

Since A is the direct sum of the gI, the modules A0 and A1 are rank-d
free modules generated by e0, . . . , ed−1 and ed, . . . , e2d−1, respectively. In the

121
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basis (ea), the differential of the matrix factorization A takes the form

(dA)ab = δa,b−d(η
aZ −X) + δa−d,b

d∑
l=1

η−l·aZd−lX l−1

for a, b = 0, ..., 2d− 1.
The following maps give A a separable Frobenius structure [9, Prop. 7.1]:

1. The unit I = 0I ↪→ A is given by the obvious inclusion while the counit
is the projection multiplied by d

A� I , ei 7→ d ·
{
ei , i ∈ {0, d}
0 , otherwise

2. Multiplication and comultiplication

Y d

Zd Xd

,

Y d

Zd Xd

are given by

A⊗A → A

e[g] ⊗ Y qe[h] 7→ (ηgZ)q e[g+h]

e[g] ⊗ Y qed+[h] 7→ (ηgZ)q ed+[g+h]

e[g]+d ⊗ Y qe[h] 7→ 0

e[g]+d ⊗ Y qe[h]+d 7→ 0

and

∆ : A→ A⊗A

e[g] 7→
1

d

∑
h∈Zd

[
e[g−h] ⊗ e[h]

+ed+[g−h] ⊗
{
∂Z,Y

Zd −Xd

ηhZ −X

}Z→ηg−hZ
ed+[h]

]
ed+[g] 7→

1

d

∑
h∈Zd

[
e[g−h] ⊗ ed+[h] + ηhed+[g−h] ⊗ e[h]

]
,

(B.2)

where g, h ∈ Zd and q ∈ N. Moreover,

∂Z,Y Zi =
Zi − Y i

Z − Y

and {. . .}Z→ηg−hZ means that all instances of Z within the brakets
have to be replaced by ηg−hZ after performing all operations. These
formulas can be obtained from the natural junctions of symmetry
defects hI with the identity defect I = 0I. The calculation for the
comultiplication is sketched in appendix B.7 below.
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In appendix B.6, we will reexpress the orbifold identity defect A using an
equivariant basis.

B.2 Nakayama automorphism

The Nakayama automorphism (c.f. appendix 2.7) takes the form [18, Example
3.1]

γA =
∑
g∈Zd

det(g) · 1gI

where det(g) denotes the matrix representing the action of g on the chiral
fields of the model to the right of A. In our case, g acts on X by multiplication
with ηg and hence γA reduces to

γA : A→ A

ea 7→ ηaea.

A Frobenius algebra B is symmetric iff γB = idB [9, 69]. Since γA 6= idA, A
is not symmetric. Therefore, left and right adjoints of defects in the orbifold
theory (see equation (2.5)) generally differ(

D†
)
γA′

= D∗ 6∼= ∗D = γ−1
A

(
†D
)
.

This means that we do not have a general prescription of how to close
defect loops in Md/Zd. However, loops of RG defects can be closed with an
explicit natural morphism.

B.3 Bulk space

The (c, c)-bulk space of the orbifold Md/Zd contains only the identity id :
A→ A. However, in the unorbifolded theory the defect A carries additional
fields – one for each g 6= 0:

ψg : A→ A

e[h] 7→
Zd −Xd

(ηiZ −X)(ηh+gZ −X)
ed+[g+h]

ed+[h] 7→ e[g+h]

These correspond to the twist fields in the orbifold theory.

B.4 Defects and their adjoints

Consider a rank-M Zd′ × Zd-equivariant matrix factorization D of Zd
′ −Xd

with equivariant generators f0, . . . , fM−1 of D0 and fM , . . . , f2M−1. Let
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[lk, rk] be the Zd′ × Zd-charges of fk. As discussed in the second part of B.7,
these charges determine the A-action on D. Denoting the chiral fields as in

Z

Y

X and X

Y

Z ,

one obtains
A⊗D → D

ea ⊗ Y pfk 7→ δ|ea|,0 · (ε
aZ)p · εa·lk · fk.

and
D ⊗A→ D

fk ⊗ Y pea 7→ δ|ea|,0 · fk · η
−a·rk(η−aX)p

where ε = e
2πi
d′ and η = e

2πi
d are elementary d′th, respectively dth roots of

unity.
In appendix B.6 below, we will define equivariant generators for A itself,

and will reexpress the A-action on D in terms of these generators.
The adjoints in the orbifold theory are given by ∗D = γ−1

A

(†D) and

D∗ =
(
D†
)
γA′

, see equation (2.5). Here D† ∼= D∨[1] ∼= †D denotes adjunction

in the unorbifolded models, c.f. equation (3.7) in section 3.3. An explicit
calculation carried out in the last part of appendix B.7 determines the
induced A-action on D†, c.f. equation (B.10). From this, one can read off

the Zd × Zd′ charges of the equivariant generators f †k and †fk of D† and †D
to be

[−rk+M + 1,−lk+M + 1].

Here, we have extended the range of indices of the charges r and l to Z

by identification modulo 2M , i.e. ri+2Mz = ri and li+2Mz = li for i ∈
{0, . . . , 2M − 1} and z ∈ Z.

Twisting by the Nakayama automorphism one then obtains the charges of
the generators f∗k and ∗fk of the matrix factorizations describing the orbifold
adjoints D∗ and ∗D. They are given by

[−rk+M ,−lk+M + 1]

and [−rk+M + 1,−lk+M ],

respectively. By construction, ∗D and D∗ obey the Zorro moves whose
building blocks are provided in B.8.

B.5 Left boundary conditions and their adjoints

As special case of defects, a left boundary condition in Md/Zd is a Zd-
equivariant matrix factorization B of −Xd. Using the same notation as in
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appendix B.4, we denote the generators of the modules B0 and B1 by fk and
their Zd-charges by [rk] which as in the general case determine the A-action

on B. The induced charges on the right and left adjoint generators f †k of B†

and †fk of †B are [−rk+M + 1] and [−rk + 1], respectively. Using B∗ = B†

and ∗B = γ−1(†B), the charges of the adjoint generators f∗k and ∗fk become

f∗k : [−rk+M + 1]
∗fk : [−rk]

The explicit expressions of the relevant (co-)evaluation maps for defects as
well as boundaries are given in appendix B.8.

B.6 Equivariant generators of the orbifold identity
defect

One can define equivariant generators of the orbifold identity matrix factor-
ization A (c.f. section B.1) by

e′b =
1

d

∑
c

δ|eb|,|ec|η
−(b+|eb|)cec,

where the original generators ec are expressed in terms of the equivariant
ones as

ec =
∑
b

δ|eb|,|ec|η
c(b+|ec|)e′b

In this basis, the matrix factorization A takes the equivariant form

A : Sd

 [1, 0]
[2,−1]

...





Z 0 ... 0 −X

−X . . .

0
...

. . .
...

...
...

0 −X Z


Sd

 [0, 0]
[1,−1]

...

 .

where S := C[Z,X]. (This is the form used in [3].) The A-action on
equivariant matrix factorizations determined in appendix B.7 and used in
appendix B.4 simplifies in this basis.

Consider a Zd × Zd-equivariant matrix factorization D of Zd −Xd. Let
f0, . . . , fM−1 and fM , . . . , f2M−1 be Zd × Zd-equivariant generators of D0
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and D1, respectively. Denote the Zd × Zd-charges of fk by [lk, rk]. In terms
of the equivariant generators e′i of A, the A-action

Z

Y

X and X

Y

Z (B.3)

becomes
A⊗D → D, e′a ⊗ Y pfk 7→ δa,[p+lk] Z

p fk

D ⊗A→ D, fk ⊗ Y pe′a 7→ δa,[−rk−p] fkX
p.

B.7 Important calculations

In this appendix we sketch some calculations used in the main text and the
previous sections of this appendix.

Comultiplication of identity defect A

Following [9, 15], we define λ−1
hI

: hI → I ⊗ hI to be the natural junction of
the identity defect with the symmetry defect hI. It is given by

e[h] 7→ 1⊗ e[h] + θ ⊗
{
∂Z,Y

Zd −Xd

ηhZ −X

}
ed+[h]

ed+[h] 7→ 1⊗ ed+[h] + ηhθ ⊗ e[h].

Here X and Z are the chiral fields of the models to the right, respectively
left of the defects, and Y is the chiral field of the model sandwiched between
the defects I and hI. Twisting by g from the left (i.e. fusion by gI from the

left) one obtains junction fields ∆g,h := g

(
λ−1
hI

)
: g+hI → gI ⊗ hI:

e[g+h] 7→ e[g] ⊗ e[h] + ed+[g] ⊗
{
∂Z,Y

Zd −Xd

ηhZ −X

}Z→ηgZ
ed+[h]

ed+[g+h] 7→ e[g] ⊗ ed+[h] + ηhed+[g] ⊗ e[h].

(Here, the notation {. . .}Z→ηgZ means that that all instances of Z in the
brackets have to be replaced by ηgZ after performing all calculations.)

Summing up all the ∆g,h yields the comultiplication

∆ =
1

d

∑
g,h

∆g,h : A→ A⊗A

e[g] 7→
1

d

∑
h∈Zd

∆g−h,h(e[g])

ed+[g] 7→
1

d

∑
h∈Zd

∆g−h,h(ed+[g])
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of the identity defect A in the orbifold. It is spelled out completely in
equation (B.2).

B.7.1 A-actions on equivariant defect

According to [9, Section 7.1], the data of a G × H-equivariant defect is
encoded in its left and right fusion with the symmetry defects AG and AH .
Namely, it is described by a matrix factorization together with isomorphisms

• ϕg : gD → D such that ϕe = idD and ϕg1 ◦ g1(ϕg2) = ϕg1+g2 and

• φh : Dh → D such that φe = idD and φh1 ◦ (φh2)h1 = φh1+h2 .

Here, one can think of gD as the matrix factorization where all variables Zi to
the left of D have been replaced by g(Zi), see for example gI in (B.1). Also,
for some morphism α : D → D′ of matrix factorizations, g(α)h : gDh → gD

′
h

is the same morphism considered as a morphism between the respective
twisted matrix factorizations. However, special attention has to be paid to
morphisms including an identification of variables. For example, the left and
right I-actions λD : I ⊗D → D and ρD : D ⊗ I → D identify the middle
variable with the one on the left or right, respectively. The identification of
variables in the twisted versions g(λD) and (ρD)−h must respect the twist.

Following the proof of Thm. 7.2 in [9], the above data determine the left
AG-action on D:∑

g∈G

(
AG ⊗D � gI ⊗D

g(λD)−−−−→ gD
ϕg−→ D

)
.

The right action includes the canonical isomorphism hI → I−h which we will
comment on later:∑

h∈H

(
D ⊗AH � D ⊗ hI → D ⊗ I−h

(ρD)−h−−−−→ D−h
φ−h−−→ D

)
. (B.4)

Turning to our example, set G = Zd′ and H = Zd and consider a G×H-
equivariant defect D, i.e. a Zd′ × Zd-equivariant matrix factorization D of
Zd
′ −Xd. Let f0, . . . , fM−1 and fM , . . . , f2M−1 be equivariant generators of

D0, respectively D1. Denote the Zd′ × Zd-charges of ek by

[lk, rk].

In other words the action of (g, h) ∈ Zd′ × Zd is given by

ZpfkX
q 7→ (εgZ)p · εg·lkfkηh·rk · (ηhX)q (B.5)

where ε = e
2πi
d′ , η = e

2πi
d .
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We now reformulate this group action in terms of left and right A-actions.
It is not hard to see that in our case the above isomorphisms are given by1

ϕg : gD → D φh : Dh → D

fk → εg·lkfk fk → fkη
h·rk .

The explicit form of the left A-action on D then turns out to be

A⊗D → D

ea ⊗ Y pfk 7→ δ|ea|,0 · (ε
aZ)p · εa·lk · fk

for the same choice of variables as in (B.3) (| · | denotes the Z2-charge). This
coincides with the expected action (B.5). The right A-action on the other
hand takes the form

D ⊗A→ D

fk ⊗ Y pea 7→ δ|ea|,0 · fk · η
−a·rk(η−aX)p

where we emphasize the crucial minus sign for the right charges which differs
from the expected (B.5). It originates from the fact that the symmetry defect
A was defined as the direct sum of the left twisted identity morphisms which
requires us to include the canonical isomorphism

hI → I−h

ei 7→ ηh·|ei|ei, i = 0, 1

in the construction (B.4).

B.7.2 Left A-action on right adjoint

As explained in appendix 2.7 item viii), adjoints of defects in the orbifold the-
ory are induced by their non-orbifold counterpart. Here, given an equivarant
matrix factorization D of Zd

′ −Xd, we explicitely calculate the induced left
A-action (i.e. the left charges, see previous calculation) on the non-orbifold
adjoint D†. This leads to the charges of the right adjoint in the orbifold
theory as D∗ ∼= (D†)γ .

Let f0, . . . , fM−1 be equivariant generators of D0 and fM , . . . , f2M−1

equivariant generators of D1. We denote the Zd′ × Zd-charges of fk by
[lk, rk]. Then, D†0 and D†1 are generated by f †0 , . . . , f

†
M−1 and f †M , . . . , f

†
2M−1

respectively, where f †i = f∨i+M for i < M and f †i = f∨i−M for i ≥ M . (‘∨’
denotes the dual.)

1ϕg ◦ g(ϕh) = ϕg+h is trivial and dD ◦ ϕg = ϕg ◦ g(dD) amounts to dD being a degree
zero map, i.e. ek and dD(ek) carrying the same Zd′ × Zd charges.
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From the explicit expressions of the (co-)evaluation maps [15] we obtain

the map A⊗D† → D†. Namely, generator ea ⊗ f †i is sent to δ|ea|,0 times

− δ|f†i |,0
M−1∑
k=0

Res


(

[∂Xd0]X→X
′′ ·η−ar,0 ·∂X,η

−aX′′d1+

+ηa[∂X,X
′′

d0]X→η
aX ·[∂Xd1]X→X

′′ ·η−ar,1

)Z→Z′
i,k

dX ′′

d ·X ′′d−1

 f †k

− δ|f†i |,1
2M−1∑
k=M

Res


(

[∂Xd1]X→X
′′ ·η−ar,1 ·∂X,η

−aX′′d0+

+ηa[∂X,X
′′

d1]X→η
aX ·[∂Xd0]X→X

′′ ·η−ar,0

)Z→Z′
i−M,k−M

dX ′′

d ·X ′′d−1

 f †k
(B.6)

for the following choice of variables

X

X ′′
Z ′

D†
= X

X ′′

Z ′

D†
.

Here η = e2πi/d, and ηr,0 and ηr,1 are the diagonal matrices

ηr,0 = diag(ηr0 , ..., ηrM−1)

ηr,1 = diag(ηrM , ..., ηr2M−1).

Moreover, ∂X,X
′′

is the divided difference operator which is defined as

∂X,X
′′
g(X, . . .) =

g(X, . . .)− g(X ′′, . . .)

X −X ′′

on any polynomial g, and the residue Res
[
g·dX′′
X′′d−1

]
picks out the prefactor of

X ′′d−2 in the polynomial g ∈ C[Z ′, X,X ′′].
We now simplify expression (B.6) by calculating the X ′′d−2-term in the

numerator. We first derive a few identities which follow from the very
definition of a graded matrix factorization.

From the basic property of matrix factorizations d0d1 = (Zd
′ −Xd)1 one

can deduce

∂X,X
′′
(−d ·Xd−1) = [∂Xd0|X→X

′′
· ∂X,X′′d1 + ∂X,X

′′
d0 · [∂Xd1|X→X

′′

+
{(
∂X,X

′′
∂Xd0

)
· d1 + d0 ·

(
∂X,X

′′
∂Xd1

)}
.

Now, we will simplify the derivation by assuming that the matrices d0 and d1

do not contain terms Xn for n ≥ d . This is certainly true for all the matrix
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factorizations relevant in this appendix and chapter 4, namely the ones
associated to RG and projection defects, boundary conditions etc. Under
this assumption, the curly bracket part of the last equation does not contain
a term ∼ X ′′d−2, and hence{

[∂Xd0]X→X
′′ · ∂X,X′′d1 + ∂X,X

′′
d0 · [∂Xd1|X→X

′′
}
ik

= −dX ′′d−2
δik + ...

(B.7)
where ... contains only powers (X ′′)n with n < d − 2. In order to make
contact with equation (B.6) we replace ∂X,X

′′
d0 in (B.7) by ∂X,X

′′
d0|X→η

aX

which does not alter the leading X ′′-term:{
[∂Xd0]X→X

′′ · ∂X,X′′d1 + ∂X,X
′′
d0|X→η

aX · [∂Xd1|X→X
′′
}
ik

=− dX ′′d−2
δik + ...

(B.8)

Also, since d1 is of grade zero

η−ar,0 · [d1|X→η
−aX = d1 · η−ar,1

which together with the definition of the divided difference operator yields

η−ar,0 · ∂
X,η−aX′′d1

∣∣∣ leading
X′′-term

= ∂X,X
′′
d1

∣∣∣ leading
X′′-term

· ηa · η−ar,1 . (B.9)

Here, ∂X,η
−aX′′d1

∣∣∣ leading
X′′-term

is the matrix d1 with all entries Xp+1 replaced by

(η−a ·X ′′)p and similarly for ∂X,X
′′
d1

∣∣∣ leading
X′′-term

. Finally, we evaluate the first

summand of (B.6). It is given by −δ|ea|,0δ|f†i |,0 times

M−1∑
k=0

Res


(

[∂Xd0]X→X
′′ ·η−ar,0 ·∂X,η

−aX′′d1+

+ηa[∂X,X
′′

d0]X→η
aX ·[∂Xd1]X→X

′′ ·η−ar,1

)
i,k

dX

d ·X ′′d−1


Z→Z′

f †k

For a given k = 0, ...,M − 1, (B.9) turns the corresponding summand into

Res


(

[∂Xd0]X→X
′′ ·∂X,X′′d1·ηa·η−ar,1 +...

+ηa[∂X,X
′′

d0]X→η
aX ·[∂Xd1]X→X

′′ ·η−ar,1

)
i,k

dX

d ·X ′′d−1


Z→Z′

f †k

where ‘...’ indicates that we omitted terms which do not contribute to the
residue. This is the same as

Res


(

[∂Xd0]X→X
′′ ·∂X,X′′d1+

+[∂X,X
′′

d0]X→η
aX ·[∂Xd1]X→X

′′

)
i,k

· η−a(rk+M−1)dX

d ·X ′′d−1


Z→Z′

f †k .
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Finally, multiplication with −δ|ea|,0δ|f†i |,0, summation over k and application

of (B.8) gives

− δ|ea|,0δ|f†i |,0
M−1∑
k=0

Res

[
(−dX ′′d−2δik + ...)dX

d ·X ′′d−1

]Z→Z′
· η−a(rk+M−1)f †k

= δ|ea|,0δ|f†i |,0
ηa(−ri+M+1)f †i .

The second summand in equation (B.6) can be determined in a similar
way and also takes a similar form. We find that the left charges of D† are
the negative right charges of D shifted by +1:

A⊗D† → D†

ea ⊗ f †i 7→ δ|ea|,0η
a(−ri+M+1)f †i .

(B.10)

B.8 (Co)evaluation maps

Finally, we provide the explicit (co)evaluation maps used in calculations
in the main text. They follow from the generalized orbifold construction,
(c.f. appendix 2.7) and the expressions of [15]. Throughout, [...] denotes
the representative in {0, . . . , d − 1} modulo d. Furthermore, ∂Z,XZi =

Zi−Xi

Z−X , σ =

(
1 0
0 −1

)
, η = e

2πi
d , ε = e

2πi
d′ , ηr = diag(ηr0 , ηr1 , ηr2 , ...), εl =

diag(εl0 , εl1 , εl2 , ...) and ε1+l = diag(ε1+l0 , ε1+l1 , ε1+l2 , ...).

Orbifold evaluation map (left)

evD =

∗D D

Zd
′

Xd

X ′d

◦ ξ,

where ξ : ∗D ⊗A D → ∗D ⊗D is the inclusion. evD : ∗D ⊗A D → A sends
∗fk ⊗ Znfi to

1

d

∑
h∈Zd

Res

[
Zn
(
σ · ∂ZdD · ηhr

)
(k+M),i

d′ · Zd′−1

]
e[h]

+
1

d

∑
j

∑
h∈Zd

Res


Zn
(
σ · ∂ZdD · ηhr ·

[
∂X,X

′
dD

]X→ηhX
· σ
)

(k+M),i

d′ · Zd′−1

 ed+[h]
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Orbifold evaluation map (right)

ẽvD =

D∗D

Xd′
Z ′d

Zd

◦ ξ

where ξ : D ⊗A D∗ → D ⊗D∗ is the inclusion. ẽvD : D ⊗A D∗ → A sends
fi ⊗Xnf∗k to

− 1

d′

∑
h∈Zd′

e[−h]Res

(∂XdD · εhl
)Z→Z′

(k+M),i
Xn

d ·Xd−1


− 1

d′

∑
h∈Zd′

ed′+[−h]Res


(
∂XdZ→Z

′
D · εh1+l · ∂Z,ε

hZ′dD

)
(k+M),i

Xn

d ·Xd−1


Orbifold coevaluation map (left)

coevD = ϑ ◦

D ∗D

XdZd
′

Z ′d
′

where ϑ : D ⊗ ∗D → D ⊗A ∗D is the projection.

coevD : A→ D ⊗A ∗D

ea 7→ δ|ea|,0
∑
ij

(−1)|ej |
({

∂Z,Z
′
dD

}Z 7→εaZ)
ij

εalifi ⊗ f∗(j+M)

+ δ|ea|,1
∑
i

(−1)|ei|εalifi ⊗ f∗(i+M)

Orbifold coevaluation map (right)

c̃oevD = ϑ ◦

D∗ D

Zd

Xd′

X ′d
′
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where ϑ : D ⊗D∗ → D ⊗A D∗ is the projection.

c̃oevD : A→ D∗ ⊗D

ea 7→ δ|ea|,0
∑
ij

(
∂X,η

−aX′dD

)
ji
f∗(i+M) ⊗ fjη

−arj

+ δ|ea|,1η
a
∑
i

(−1)|ei|f∗(i+M) ⊗ fiη
−ari

Orbifold evaluation map (right) for boundaries

ẽvB =

B∗B

Xd

ẽvB : B ⊗A B∗ → C

fi ⊗Xpf∗k 7→ −Res

[
Xp (∂XdB)(k+M),i dX

d ·Xd−1

]

Orbifold coevaluation map (left) for boundaries

coevB =

B ∗B

Xd

coevB : C→ B ⊗A ∗B

1 7→
∑
i

fi ⊗ ∗fi
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Appendix C

Explicit calculations for RG
defects in LG orbifolds

In this appendix we explicitly check that the RG defects R between LG
orbifolds presented in section 4.2 satisfy the RG property that R⊗R† ∼= I
(appendix C.1) and determine the corresponding projection defects P = R†⊗
R (appendix C.2). We show how IR boundary conditions and symmetries are
realized in the UV (appendices C.3 and C.4) and we perform the calculation

R∞ ⊗R†∞ ∼= IIR (appendix C.5). For the purpose of this appendix we again
adopt the generalized orbifold notation of appendix B.

C.1 R⊗A R∗ ∼= A

Here, we show that R⊗A R∗ ∼= A. (In this appendix we adopt the following
notation from appendix B: ⊗A denotes fusion in the generalized orbifold
theory defined by A, while ⊗ denotes the fusion in the unorbifolded theory.
Moreover, ∗ denotes adjunction in the orbifold theory, while † refers to
adjunction in the unorbifolded theory.) Fusion of B-type defects has been
discussed in [16], for the orbifold version see [3].

As explained in those papers, matrix factorizations of W over a polynomal
ring R are related to finitely generated modules over R̂ := R/(W ) as free
resolutions of such modules always turn two-periodic after finitely many
steps [40]. The two-periodic part then gives a matrix factorization of W .

In order to calculate R⊗A R∗, we fix the coordinates on all three parts
of the worldsheet to be Z, X and Y :

R R∗

IR UV IR

Zd
′

Xd Y d′

135
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The matrix factorization describing R is given by

R : R1

dR1 =


Z 0 ... 0 −Xn0

−Xn1 Z
0 −Xn2 Z
...

. . .
. . .

0 −Xnd′−1 Z



dR0

R0,

see section 4.2. The generators f[i], i ∈ Zd′ , of R0 carry Zd′ × Zd-charges

[i,−m−
∑i

l=1 nl] while the generators ed′+[i] of R1 have charges [i+ 1,−m−∑i
l=1 nl].
According to section 4.1, the right adjoint R∗ is given by the matrix

factorization

R∗ : R∗1

dR∗1 =


Y −Xn1 0 ... 0
0 Y −Xn2

... Y
. . .

0
. . . −Xnd′−1

−Xn0 Y



dR∗0

R∗0,

The generators f∗[k], k ∈ Zd′ , of R∗0 carry Zd × Zd′-charges [+m+
∑k

l=1 nl +

1,−k − 1], and the generators f∗d′+[k] of R∗1 carry charges [+m+
∑k

l=1 nl +

1,−k − 1].
Following the tensor product descriptions of sections 3.3 and 3.5, the

matrix factorization describing R ⊗A R∗ is the one associated to the Zd-
invariant part of the C[Z, Y ]/(Zd

′ − Y d′)C[Z, Y ]-module

M := coker

(
idR0 ⊗ dR∗1 dR1 ⊗ idR∗0
dR0 ⊗ idR∗1 −idR1 ⊗ dR∗0

)
.

The two-periodic resolution of M is isomorphic to the two-periodic part of
the resolution of

M ′ := coker (dR1 ⊗ idR∗0, idR0 ⊗ dR∗1) .

The module M ′ is generated by f l[i],[k] := f[i] ⊗ X lf∗[k]. They satisfy the
relations

Zf[i] = Xni+1f[i+1] and Y f∗[k] = Xn[k]f∗[k−1],
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which allow to reduce the generators to f l[i],[k] with 0 ≤ l < min(ni, nk+1).
These carry Zd′ × Zd × Zd′-charges

[i,−m−
i∑

j=1

nj + l +m+
k∑
j=1

nj + 1,−k − 1].

The Zd-invariant part (M ′)Zd is generated by the Zd-invariant generators of
M ′, which are given by f̂[i] := fni−1

[i],[i−1]. They carry Zd′ × Zd′-charges [i,−i]
and satisfy the relations

Zf̂[i] = Y f̂[i+1].

Hence, (M ′)Zd is isomorphic to the module coker(dA1), which implies that
the matrix factorization R ⊗A R∗ is isomorphic to the identity defect A
in Md′/Zd′ . Taking the left adjoint of this equation immediately yields
R⊗A ∗R ∼= A as well.

C.2 The projection defect P

Having shown R ⊗A R∗ ∼= A in the previous appendix, we are now in a
position to determine the projection defect P = R∗ ⊗A R. The projection
P ′ = ∗R⊗A R based on the left adjoint ∗R can then easily be obtained by
left adjunction P ′ = ∗P .

The calculation of P follows the same route as the calculation of R⊗AR∗
in appendix C.1 above. First, we fix the chiral fields on all three parts of the
worldsheet to be Y , Z and X:

R∗ R

UV IR UV

Y d Zd
′

Xd

The matrix factorizations R and R∗ are described in appendix C.1. As in
the derivation of R⊗A R∗ ∼= I, the matrix factorization R∗ ⊗R is given by
the two-periodic part of the free resolution of the Zd′-invariant part of the
C[X,Y ]/(Y d −Xd)C[X,Y ]-module

M ′ := coker(dR∗1 ⊗ idR0 , idR∗0 ⊗ dR1).

The latter is generated by

f l[k],[i] := f∗[k]Z
l ⊗ f[i]

subject to the relations

Y nkf∗[k−1] = Zf∗[k] and Zf[i] = Xni+1f[i+1].
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These relations allow to reduce the generators to the ones with l = 0. The
remaining generators f0

[k],[i] carry Zd × Zd′ × Zd-chargesm+

[k]∑
j=1

nj + 1,−k − 1 + i,−m−
[i]∑
j=1

nj

 .
The Zd′-invariant part of M ′ is generated by the Zd′-invariant generators, i.e.
those f0

[k],[i], for which [−k − 1 + i] = 0. These are the f̂[i] := f0
[i−1],[i], which

are subject to the relations

Y ni f̂[i] = Xni+1 f̂[i+1].

They carry Zd × Zd-chargesm+

[i−1]∑
j=1

nj + 1,−m−
[i]∑
j=1

nj

 .
Comparing with the matrix factorization P given in equation (4.3), one finds

that (M̃ ′)Zd′ ∼= coker(p1) (where Z has to be replaced by Y in p1). Hence,
R∗ ⊗R is isomorphic to the matrix factorization P given in section 4.2.

C.3 Boundary conditions satisfying B ⊗A P ∼= B

We now determine the boundary conditions, which are invariant under fusion
with P . Elementary left boundary conditions in Md/Zd are given by the
Zd-equivariant matrix factorizations

BUV : C[Z]
(
[N + k]

) Zk

−Zd−k
C[Z]

(
[N ]
)
.

of −Zd, where k,N ∈ Zd, k 6= 0, c.f. section 4.3. The aim is to identify
those boundary conditions, for which BUV ⊗A P ∼= BUV. To do so, we just
calculate the fusion as is done in the previous appendices. We denote the
generators of B0 and B1 by b0 and b1, respectively. They have Zd-charge
[N ], respectively [N + k]. The generators f̂[i] of P0 have Zd × Zd-charge

[m+ 1 +
∑[i−1]

l=1 n[l],−m−
∑[i]

l=1 n[l]], c.f. appendix C.2.
To determine the fusion BUV⊗P , we again employ the method described

in appendix C.1. For this, we determine generators and relations of the Zd-
invariant part of the C[X]/XdC[X]-module M ′ := coker(dB1 ⊗ idP0, idB0 ⊗
dP1):

b0Z
k = 0

Znif[i] = Xn[i+1]f[i+1]

(C.1)

For BUV ⊗A P ∼= BUV to hold, out of all the generators b0Z
q ⊗ f[i] of the

fusion product exactly one generator may survive in (M ′)Zd . It must
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• be invariant under the left Zd-action, i.e.N + q +m+ 1 +

[i−1]∑
l=1

nl

 = 0

• carry right Zd-charge [N ], i.e.−m− [i]∑
l=1

nl

 = [N ]

• has to be a generator with respect to C[X] and in particular cannot be
eliminated by (C.1), i.e.

q < ni and q < k

and

• it has to satisfy b0Z
q ⊗ f[i]X

k = 0.

The first two conditions fix N = −m−
∑[i]

j=1 and imply q = ni − 1 which is
consistent with q < ni. The last condition becomes

k ∈ {ni, ni + ni−1, ..., ni + ...+ ni−d′−2} .

These conditions are equivalent to BUV ⊗A P ∼= BUV and imply that BUV

must be of the form

BUV : C[Z]
Zni+...+ni−I

−Zd−ni−...−ni−I
C[Z]

(
−m−

∑i
l=1 nl

)
for arbitrary i ∈ Zd′ and I ∈ {0, ..., d′ − 2}.

C.4 IR symmetry defects in the UV

Following section 4.3, the IR Zd′-symmetry is realized in the UV by means
of the defects

R∗ ⊗A aId′ ⊗A R =: aP.

As aId′ ⊗A R is described by the same matrix factorization as R but with all
left charges shifted by +a, we can employ the same set-up as in appendix C.2
and only shift charges by +a where necessary. The corresponding module
M ′ is generated by

f l[k],[i] := f∗[k]Z
l ⊗ f[i]
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with Zd × Zd′ × Zd-chargesm+

[k]∑
j=1

nj + 1,−k − 1 + l + i+ a,−m−
[i]∑
j=1

nj


subject to the relations

Y nkf∗[k−1] = Zf∗[k] and Zf[i] = Xni+1f[i+1].

While the relations can be used to reduce generators to those with l = 0, Zd′-
invariance gives the condition [i+ a− k − 1] = 0. The remaining generators
f̂[i] := f0

[i−1],[i−a] of (M ′)Zd′ obey

Y ni f̂ [i] = Xni−a+1f[i+1]

and carry Zd × Zd-chargesm+

[i−1]∑
j=1

nj + 1,−m−
[i−a]∑
j=1

nj

 .
One now easily reads off that (M ′)Zd′ is isomorphic to the cokernel of the
matrix p1 of the matrix factorization aP given in section 4.2. Thus, the lifted
symmetry defects are isomorphic to these matrix factorizations.

C.5 R∞ ⊗U(1) R
∗
∞
∼= IIR

In this appendix we show that one can insert loops of the U(1)-equivariant
Landau-Ginzburg theory with a single chiral superfield and zero superpo-
tential into the Landau-Ginzburg orbifold models Md′/Zd′ , d

′ ≥ 3 without
affecting correlators. The respective RG defects are described by the matrix
factorizations R∞ of Zd

′
presented in section 4.4:

R∞ : Sd
′

 [k+1,−m]
[k+2,−m−n1]

[k+3,−m−n1−n2]

...

 dR1

dR0

Sd
′

 [k,−m]
[k+1,−m−n1]

[k+2,−m−n1−n2]

...

 .

Here m ∈ Z, k ∈ Zd′ and n1, ..., nd′−1 ∈ N. Moreover, S = C[Z,X],

dR1 =


Z 0 ... 0 0
−Xn1 Z

0 −Xn2 Z
...

. . .
. . .

0 −Xnd′−1 Z
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and

dR0 =


Zd
′−1 0 ... ... 0

Zd
′−2Xn1 Zd

′−1 0 ... 0

Zd
′−3Xn1+n2 Zd

′−2Xn2 Zd
′−1 . . .

...
...

...
. . .

. . . 0

Xn1+...+nd′−1 ZXn2+...+nd′−1 ... Zd
′−2Xnd′−1 Zd

′−1

 .

The adjoint

R∗∞ : S̃d
′

 [m+1,−k]
[m+1+n1,−k−1]

[m+1+n1+n2,−k−2]

...


dR∗1

dR∗0

S̃d
′

 [m+1,−k−1]
[m+1+n1,−k−2]

[m+1+n1+n2,−k−3]

...

 ,

dR∗1 =


Y −Xn1

Y −Xn2

. . .
. . .

Y −Xnd′−1

Y


can be obtained by taking the limit d→∞ of R∗. It is a matrix factorization
of −Y d′ . S̃ = C[X,Y ] and dR∗0 is given by −dTR0 with Z replaced by Y .

According to section 3.5, the fusion product R∞ ⊗U(1) R
∗
∞ is given by

the U(1)-invariant part of the tensor product matrix factorization R∞⊗R∗∞.
The U(1)-invariant generators of the latter are

g(i,j) := fi ⊗Xni+...+nj+1−1f∗j [k + i,−k − 1− j]
g(d′+i,j) := fd′+i ⊗Xni+...+nj+1−1f∗j [k + 1 + i,−k − 1− j]
g(i,d′+j) := fi ⊗Xni+...+nj+1−1f∗d′+j [k + i,−k − j]

g(d′+i,d′+j) := fd′+i ⊗Xni+...+nj+1−1f∗d′+j [k + 1 + i,−k − j]

for 1 ≤ i ≤ d′ − 1 and 0 ≤ j ≤ i− 1. The Zd′ ×Zd′-charges of the generators
are specified in square brackets. Here, fi and f∗i label the generators of R∞
and R∗∞, respectively. The generators with 0 ≤ i < d′ are Z2-even and the
ones with d′ ≤ i < 2d′ are Z2-odd. Setting

l =
i(i+ 1)

2
+ j, 0 ≤ l ≤M :=

(d′ + 1)(d′ − 2)

2
,

one can order the generators as follows

gl = g(i,j)

gM+l = g(d′+i,d′+j)

g2M+l = g(d′+i,j)

g3M+l = g(i,d′+j).
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(
R∞ ⊗U(1) R

∗
∞
)

0
is then generated by the gl and gM+l for 0 ≤ l ≤ M and(

R∞ ⊗U(1) R
∗
∞
)

1
by the g2M+l and g3M+l for 0 ≤ l ≤M .

In terms of the generators, the U(1)-invariant tensor product matrix
factorization

d = dR ⊗U(1) 1 + 1⊗U(1) dR∗ =:

(
d1

d0

)
takes the form

(d1)(p,q),(d′+i,j) = δq,j(Zδp,i − δp,i+1)

(d1)(d′+p,d′+q),(d′+i,j) = δp,iθ(j − q)Y d′−1−(j−q)

(d1)(p,q),(i,d′+j) = δp,i(Y δq,j − δq+1,j)

(d1)(d′+p,d′+q),(i,d′+j) = δq,jθ(p− i)Zd
′−1−(p−i)

(d0)(d′+i,j),(p,q) = δj,qθ(i− p)Zd
′−1−(i−p)

(d0)(i,d′+j),(p,q) = −δi,pθ(q − j)Y d′−1−(q−j)

(d0)(d′+i,j),(d′+p,d′+q) = −δi,p(Y δj,q − δj+1,q)

(d0)(i,d′+j),(d′+p,d′+q) = δj,q(Zδi,p − δi,p+1)

(C.2)

where 1 ≤ i, p ≤ d′, 0 ≤ j < i, 0 ≤ q < p and θ(x) =

{
1, x ≥ 0

0, x < 0
.



C
.5
.
R
∞
⊗
U

(1
)
R
∗∞
∼=
I
IR

143
For example, for d′ = 5 one obtains

d1 =



Z Y
−1 Z Y −1

Z Y
−1 Z Y −1

−1 Z Y −1
Z Y

−1 Z Y −1
−1 Z Y −1

−1 Z Y −1
Z Y

Y 4 Z4

Y 4 Y 3 Z3 Z4

Y 4 Z4

Y 4 Y 3 Y 2 Z2 Z3 Z4

Y 4 Y 3 Z3 Z4

Y 4 Z4

Y 4 Y 3 Y 2 Y Z Z2 Z3 Z4

Y 4 Y 3 Y 2 Z2 Z3 Z4

Y 4 Y 3 Z3 Z4

Y 4 Z4
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Stripping off trivial summands this matrix factorization reduces to the
IR identity matrix factorization (S′ = C[Z, Y ])

IIR : S′
d′


[1,0]

[2,−1]
[3,−2]

...
[d′,−d′+1]




Z 0 ... 0 −Y
−Y Z
0 −Y Z
...

. . .
. . .

0 −Y Z



dIIR0

S′
d′


[0,0]

[1,−1]
[2,−2]

...
[d′−1,−d′+1]


In order to see this, we perform a change of basis on (C.2):

d1 = S · d̃1 · T−1, d0 = T · d̃0 · S−1,

where S and T−1 are defined by

(S)(p,q),(i,j) = δq,j(δp,i − Zδp+1,i)

(S)(p,q),(d′+i,d′+j) = 0

(S)(d′+p,d′+q),(i,j) = −δp+1,iY
d′−1−(j−q)θ(j − q)

− δi,j+1

[
Zd
′−p+i−1Y q−iθ(q − i)

+Zi−1−pY d′+q−iθ(i− 2− p)
]

(S)(d′+p,d′+q),(d′+i,d′+j) = δq,j(δp,i + θ(i− p− 1)Zi−p)

+ δi,d′−1δj,0θ(q − 1)Zd
′−1−pY q

and

(T−1)(d′+p,q),(d′+i,j) = δq,jδp,i

+ δi,d′−1

(
−δq,jZd

′−1−pθ(d′ − 1− p)

+δp,d′−1Y
q−jθ(q − j − 1)

)
(T−1)(p,d′+q),(d′+i,j) = −δi,d′−1δq+1,pθ(q − j − 1)Zd

′−1−qY q−1−j

(T−1)(d′+p,q),(i,d′+j) = −δq,jY
(
δp+1,i + Zi−p−1θ(i− p− 2)

)
+ δq+1,jZ

i−p−1θ(i− p− 1)

(T−1)(p,d′+q),(i,d′+j) = δp,iδq,j + δq,jδq+1,pθ(i− p− 1)Zi−p.

Here again 1 ≤ i, p ≤ d′, 0 ≤ j < i, 0 ≤ q < p. Then

(d̃1)(p,q),(d′+i,j) = −δq,jδp,i+1 + Zδi,d′−1δp,d′−1δq,d′−2δj,d′−2

(d̃1)(d′+p,d′+q),(d′+i,j) = δp,d′−1δi,d′−1(Wδq,j+1 − Y δq,0δj,d′−2)

(d̃1)(p,q),(i,d′+j) = −Y δp,iδq,jδi,j+1 + Zδp+1,iδp,jδp,q+1

(d̃1)(d′+p,d′+q),(i,d′+j) = δi,p+1δq,jW + δi,1δj,0δp,d′−1δq,0Z
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and

(d̃0)(d′+i,j),(p,q) = −δi+1,pδj,qW + δi,d′−1δj,d′−2δp,q+1Z
pY d′−1−p

(d̃0)(i,d′+j),(p,q) = −δi,j+1δp,q+1

(
θ(p− i)Y d′−1−p+iZp−i

+θ(i− p− 1)Zd
′−i+pY i−p−1

)
(d̃0)(d′+i,j),(d′+p,d′+q) = δp,d′−1δi,d′−1

(
δj+1,q − Y d′−1δj,d′−2δq,0

)
(d̃0)(i,d′+j),(d′+p,d′+q) = −δi,p+1δj,q + δp,d′−1δq,0δi,j+1Z

d′−iY j

are matrix factorization of W = Zd
′ − Y d′ which reduce to the indentity

matrix factorization.



1
46

A
P
P
E
N
D
IX

C
.
E
X
P
L
IC

IT
C
A
L
C
U
L
A
T
IO

N
S

In the example d′ = 5 d1 above turns into

d̃1 =



−Y Z
−1

−Y Z
−1

−1
−Y Z

−1
−1

−1
Z −Y
0 0 W

0 0 W
W
0 0 W

W
W

−Y Z
W

W
W


which is easily recognized as the matrix associated to a sum of the identity matrix factorization IIR with a number of trivial
rank-one matrix factorizations.
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In the general case, the generators not belonging to trivial summands
are the ones labelled by the restricted index sets

{(i, j) |i = j + 1} ⊂
{

(i, j)
∣∣i = 1, ..., d′ − 1;

j = 0, ..., i− 1}{
(d′ + i, d′ + j)

∣∣i = d′ − 1, j = 0
}
⊂
{

(d′ + i, d′ + j)
∣∣i = 1, ..., d′ − 1;

j = 0, ..., i− 1}{
(d′ + i, j)

∣∣i = d′ − 1, j = d′ − 2
}
⊂
{

(d′ + i, j)
∣∣i = 1, ..., d′ − 1;

j = 0, ..., i− 1}{
(i, d′ + j) |i = j + 1

}
⊂
{

(i, d′ + j)
∣∣i = 1, ..., d′ − 1;

j = 0, ..., i− 1}

Restricting to these generators yields the IR identity defect IIR.
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