
DISSERTATION

submitted to the

Combined Faculty of Natural Sciences and Mathematics

of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

M.Sc. Alberto Bailoni

Born in: Trento, Italy

Oral examination: 19-07-2021

Deep Learning for Graph-Based

Image Instance Segmentation

Referees: Prof. Dr. Fred A. Hamprecht

Prof. Dr. Carsten Rother

Abstract

Neuroscientists have been developing new electron microscopy imaging techniques and
generating large volumes of data to reconstruct the complete neural wiring diagram of
an organism’s central nervous system. The sheer size of these volumes makes manual
analysis infeasible. A fundamental step towards this goal is the automated segmentation
of neural tissue images. This thesis presents new efficient deep learning methods for
image instance segmentation and their applications to neuron segmentation.

Related work on instance segmentation focuses on training an accurate edge detector
(represented by a deep learning model) to predict transitions between different object
instances in an image. In this thesis, we propose novel graph partitioning algorithms
that can efficiently process these edge predictions and produce an instance segmentation.
We specifically focus on partitioning algorithms for signed graphs with both positive
and negative edge weights. By using signed graphs, the partitioning algorithm can find a
previously unspecified number of instances without requiring the user to manually specify
additional parameters (e.g., a tunable threshold).

In this thesis, we introduce a simple and efficient graph partitioning algorithm, the
Mutex Watershed, and prove its relation to the NP-hard multicut/correlation clustering
optimization problem. We then propose a generalized framework for agglomerative graph
clustering algorithms, called GASP, and prove that the Mutex Watershed is one of the
algorithms covered by it. This unifying framework allows us to conveniently study both
theoretical and empirical properties of the algorithms it describes. When combined with
the predictions of a deep neural network, some of the algorithms in the framework consti-
tute a segmentation pipeline that achieves state-of-the-art accuracy on the CREMI neuron
segmentation challenge without requiring to tune domain-specific hyper-parameters.

Finally, this thesis proposes a new bottom-up instance segmentation method for
large-scale volumetric images. The approach predicts single-instance segmentation masks
across the entire image, one for each pixel, in a sliding window style. All masks are de-
coded from a low dimensional latent representation, which results in a memory-efficient
pipeline. The method achieves competitive results on the CREMI neuron segmentation
challenge and is considerably robust to noise due to prioritizing predictions with the
highest consensus across overlapping masks.

5

Zusammenfassung

Neue Elektronenmikroskopiemethoden erlauben es Neurowissenschaftlern riesige Daten-
volumen zu akquirieren, um das neuronale Verknüfungsmuster des zentralen Nervensys-
tems vollständig zu rekonstruieren. Aufgrund der schieren Größe dieser Datensätze ist
eine manuelle Analyse kaummöglich. Deswegen sind automatisierte Segmentierungsmeth-
oden von Gehirngewebebildern unerlässlich. Diese Doktorarbeit entwickelt neue effiziente
Deep Learning gestützte Instanzsegementierungsmethoden und deren Anwendung auf
Neuronengewebebilder.

Bisherige Instanzsegmentierungsansätze konzentrieren sich auf die Entwicklung genauer
Kantendetektoren (meist in der Form eines tiefen neuronalen Netzes), um Grenzen zwis-
chen den verschiedenen Objektinstanzen eines Bilds zu bestimmen. Darauf aufbauend
schlagen wir in dieser Arbeit graphenbasierte Partitionsalgorithmen vor, welche die prog-
nostizierten Objektgrenzen nutzen, um Bildinstanzen zu bestimmen. Insbesondere be-
trachten wir Partitionierungsalgorithmen für Graphen mit sowohl positiven als auch neg-
ativen Kantengewichten. In solchen Graphen können Partitionierungsalgorithmen eine
zuvor nicht spezifizierte Anzahl von Objektinstanzen finden, ohne auf händisch angepasste
Parameter, zum Beispiel Schwellenwerte, zurückzugreifen.

In dieser Arbeit führen wir den einfachen und effizienten Graphpartitionierungsalgo-
rithmus Mutex Watershed ein und zeigen seine Verbindung zum NP-schweren Multicut /
Korrelationsclustering Optimierungsproblem. Anschließend entwickeln wir eine System-
atik von agglomerativen Graphclusteringsalgorithmen, GASP, und ordnen den Mutex
Watershed in diese Systematik ein. Die GASP Systematik vereinfacht unsere Analyse
der theoretischen und praktischen Eigenschaften der beschriebenen Algorithmen. Kom-
biniert mit den eingangs erwähnten Kantenvorhersagen eines tiefen neuronalen Netzes,
gehören einige der beschriebenen Algorithmen zu den besten Beiträgen im CREMI Neu-
ronensegementierungswettbewerb, ohne aufwendige Optimierung von anwendungsspezi-
fischen Hyperparametern zu benötigen.

Weiterhin schlagen wir in dieser Arbeit eine neue Instanzsegmentierungsmethode
für große dreidimensionale Bilddaten vor. Bei diesem Ansatz werden Instanzen von
unten nach oben bestimmt, indem für jeden Voxel basierend auf dessen Umgebung
eine Maske der ihn enthaltenden Instanz vorhergesagt wird. Diese Masken werden aus
einer niedrigdimensionalen Darstellung dekodiert, sodass der Speicherbedarf gering gehal-
ten wird. Auch diese Methode produziert kompetitive Ergebnisse im CREMI Neuro-
nensegementierungswettbewerb. Sie ist außerdem besonders widerstandsfähig gegenüber
Bildstörungen, da die vorhergesagten Instanzen aufgrund von hoher Übereinstimmung
zwischen den zahlreichen Instanzmasken, die sich in einem Voxel überlappen, ausgewählt
werden.

7

Acknowledgments

First of all, I would like to thank my Ph.D. advisor Professor Fred Hamprecht, whose
extensive knowledge and insight into the subject guided me through this project. He
constantly challenged me to go deeper into the topic, and I much appreciated his support
and encouragement both in positive and more challenging moments.

It has been a pleasure to collaborate with so many friendly, bright, and supportive
people in the Image Analysis and Learning group. I especially want to thank Steffen Wolf
for all the inspiring discussions about science and the many hours of fun work invested in
joint research projects related to the Mutex Watershed algorithm. I also want to thank
Constantin Pape for our close collaboration and the numerous brainstorming sessions
on automatic segmentation of 3D EM images. Nasim Rahaman, Constantin Pape, and
Steffen Wolf were a constant source of inspiration for me for developing better coding
skills. I like to thank Sebastian Damrich for exciting and engaging discussions on science
and beyond. I also want to thank my great officemate, Lorenzo Cerrone, for all the fun
conversations that made my working days much more enjoyable. I would also like to
thank present and previous lab members Steffen Wolf, Lorenzo Cerrone, Roman Remme,
Sebastian Damrich, Carsten Haubold, and Elke Kirschbaum for the helpful input and for
creating such an excellent and friendly working environment.

Particular thanks go to Anna Kreshuk and Ullrich Köthe for the valuable suggestions
and fruitful discussions on image segmentation, algorithms, and other exciting topics. I
would also like to thank Thomas Carraro for the collaboration on the project on seg-
mentation of EM images of batteries; and Carsten Rother for being the second referee
of this work. Special thanks to Barbara Werner, always so helpful and ready to fix any
unexpected bureaucratic issue.

Finally, my most special thanks go to Katya, my dearest and irreplaceable friend
without whom I would not be where and who I am today. Thanks to her, the past
years have been so unique and magical. Lastly, I would like to thank my sister and my
wonderful parents for their unconditional love and support throughout all the steps of
my life.

9

Contents

Abstract 5

Zusammenfassung 7

Acknowledgments 9

1 Introduction 15
1.1 Image Segmentation . 15
1.2 Deep Learning and Graph-Based Instance Segmentation 16

1.2.1 Neuron Segmentation in Connectomics 17
1.3 Graph Partitioning Algorithms . 20

1.3.1 Agglomerative Hierarchical Clustering 20
1.3.2 Signed Graph Partitioning . 22

1.4 Contribution and Overview of this Thesis 23

2 The Mutex Watershed Algorithm and its Objective 25
2.1 Introduction . 25
2.2 Related Work . 26
2.3 The Mutex Watershed Algorithm as an Extension of Seeded Watershed . 28

2.3.1 Definitions and notation . 29
2.3.2 Seeded watershed from a mutex perspective 29
2.3.3 Mutex Watersheds . 30
2.3.4 Time Complexity Analysis . 33

2.4 Theoretical characterization . 33
2.4.1 Review of the Multicut problem and its objective 33
2.4.2 Mutex Watershed Objective . 36
2.4.3 Proof of optimality via dynamic programming 37
2.4.4 Relation to the extended Power Watershed framework 40

2.5 Experiments . 43
2.5.1 Estimating edge weights with a CNN 43
2.5.2 ISBI Challenge . 46

2.6 Conclusion . 49

3 GASP: Generalized Agglomerative Algorithm for Signed Graph Parti-
tioning 51
3.1 Introduction . 51
3.2 Related work . 53
3.3 Generalized framework for agglomerative clustering of signed graphs . . . 54

3.3.1 Notation . 54

11

12 Contents

3.3.2 The GASP algorithm . 55
3.3.3 GASP: New and existing algorithms 56

3.4 Experiments . 58
3.4.1 Signed graph clustering problems 58
3.4.2 Details on neuron segmentation graph instances 59
3.4.3 Comparison of results and discussion 60

3.5 Conclusion . 67

4 Predicting Latent Single-Instance Masks 69
4.1 Introduction . 69
4.2 Related Work . 71
4.3 Model and Training Strategy . 72

4.3.1 Local Central Instance Masks . 72
4.3.2 Training Encoded Central Instance Masks End-To-End 72
4.3.3 Predicting Multi-Scale Central Instance Masks 73

4.4 Affinities with Uncertainty from Aggregated Masks 73
4.5 Experiments on Neuron Segmentation . 75

4.5.1 Architecture details of the tested models 75
4.5.2 Graph Partitioning Methods . 80
4.5.3 Results and Discussion . 80

4.6 Conclusions . 83

Conclusions 85

Appendices 87

A GASP 89
A.1 Implementation and complexity of GASP 89

A.1.1 Update rules . 89
A.1.2 Implementation . 89
A.1.3 Complexity . 91

A.2 Proofs of Propositions in Section 3.3.3 92
A.3 Adding structured noise to CNN predictions 97

List of Publications 99

Bibliography 101

List of Figures 113

List of Tables 115

List of Algorithms 117

Contents 13

Chapter 1

Introduction

1.1 Image Segmentation

The human brain is able to process information captured by our eyes and learn a remark-
ably rich representation of the world around us. However, developing an artificial system
that can achieve the same performance and robustness has long challenged researchers
from very diverse fields like psychology, physiology, engineering, computer science, and
artificial intelligence.

Computer vision is a multidisciplinary field of science that enables computers to gain
high-level understanding from digital images, videos, and other visual inputs. The idea
of “understanding digital images” usually means deriving a compressed and meaningful
description of the images that can then be used for further analysis. A typical example
is the task of image classification, where an image is assigned to exactly one label from
a fixed set of classes such as {cat, dog, person}. Another important example is image
segmentation, which is the process of partitioning an image into meaningful segments or
sets of pixels.

There exist two types of image segmentation: Semantic segmentation assigns each
pixel of the image to a label from a defined set of classes (e.g. person, car, tree, sky);
Instance segmentation assigns each pixel not only to a class but also to a unique instance
id so that different object instances belonging to the same class are distinguished (e.g.
car-1, car-2, person-1). In this thesis, we focus on instance segmentation. An example
of an application is the segmentation of neuronal tissue images (see Fig. 1.2 and 1.3).
In this task, there is only one class of objects (neuron cells), and each pixel has to be
assigned to its corresponding neuron cell so that all pixels belonging to the same neuron
cell are grouped together.

In the following sections, we will introduce the methods and graph partitioning algo-
rithms that are studied in this thesis, and show how they can be used to solve instance
segmentation tasks such as neuron segmentation.

15

16 1.2. Deep Learning and Graph-Based Instance Segmentation

1.2 Deep Learning and Graph-Based Instance Segmen-
tation

In the last decade, computer vision experienced incredible progress. This was due in
big part to deep learning, which is now omnipresent in the field of image analysis. As
a machine learning tool, fully-connected neural networks (also known as multilayer per-
ceptrons) encode the input through a number of non-linear fully-connected layers, where
each neuron in one layer is connected to all neurons in the next layer. The neural network
model’s architecture is defined by the arrangement of these layers. Convolutional neural
networks (CNNs) represent one of the most relevant classes of neural network architec-
tures used in computer vision and digital image analysis. A convolutional layer of a CNN
convolves its input and passes the result to the next layer. Convolution kernels shift over
input features and provide in this way translation equivariant responses. As compared to
fully-connected neurons, a convolutional neuron processes data only for its receptive field,
remarkably reducing the number of parameters in the network and making it less prone
to overfitting data. Thanks to these properties, CNNs recently demonstrated outstanding
performances at image-level understanding and recognition capabilities.

A specific type of CNN, called fully convolutional network (FCN) [98], proved to be
particularly good at solving image segmentation tasks. An FCN does not include any
fully-connected layer and transforms the height and width of the intermediate layers back
to the input image’s size. In this way, when applied to a semantic segmentation task,
the pixel-wise class predictions of an FCN have a one-to-one correspondence with the
input image in the spatial dimension. Few years ago, an improved version of FCN was
proposed, called U-Net [131], which is based on an encoder-decoder structure along with
long skip connections. These skip connections proved to be very successful at recovering
fine-grained details in the output predictions and, recently, the U-Net model became a
prevalent choice for solving image segmentation tasks in biological applications [90,131].
In the following chapters of this thesis, we will frequently make use of the U-Net model.

FCNs and CNNs have also been applied to instance segmentation tasks. There are
two main types of deep learning approaches to instance segmentation: proposal-based and
proposal-free methods. Proposal-based methods first perform object detection, for exam-
ple by predicting anchor boxes [128], and then assign a class and a binary segmentation
mask to each detected bounding box [61, 125]. However, the bounding boxes predicted
by these methods may overlap, which is not always desirable. In this thesis, instead, we
study proposal-free methods, which do not require object detection and directly group
pixels into instances. These types of methods are preferred in imagery with object in-
stances that cannot be approximated by bounding boxes and are much larger than the
field of view of the model.

This thesis focuses on graph-based proposal-free segmentation methods, which solve
the instance segmentation task by formalizing the input image as a graph. Nodes in the
graph usually represent pixels or sets of pixels (commonly named superpixels), whereas
graph edges express neighboring relationships between pixels. In these graph-based in-
stance segmentation approaches, an FCN is trained to predict the graph’s edge weights.
Then, a more or less complex graph-partitioning algorithm is employed to output the
final instance segmentation. The segmentation methods that are mostly related to this
thesis predict edge weights in the form of pixel-pair affinities [56,90,97], which represent
how likely it is for a pair of pixels to be in the same object instance. These approaches
not only predict affinities for pairs of direct-neighboring pixels in the image, but they

1.2. Deep Learning and Graph-Based Instance Segmentation 17

Figure 1.1. Reconstruction of the neural wiring diagram of the fruit-fly Drosophila
melanogaster. The neuronal processes are reconstructed from serial section transmission
EM (TEM) volumes (shown on the left) of the organism’s neural tissue. Four automat-
ically reconstructed neuron instances are displayed in different colors. On the right, the
ventral view of the brain is shown (image taken from [165]).

also learn long-range pixel-pair affinities, since this proved to improve training and help
the model to use large-scale features in images [90].

In the following section, we will review the task of neuron segmentation in the field of
connectomics, which has often been tackled by using graph-based instance segmentations
methods. Then, in Section 1.3, we will introduce the main graph partitioning algorithms
studied in this thesis.

1.2.1 Neuron Segmentation in Connectomics

Connectomics is a field of neuroscience with the goal of reconstructing the complete
neural wiring diagram of an organism’s central nervous system. This comprehensive map
of neural connections within a brain is known as the connectome. A fundamental step
towards the reconstruction of the connectome is the segmentation of neural tissue images,
which are commonly acquired using electron microscopy techniques (e.g., serial section
transmission EM) yielding 3D image volumes.

In 2017, the whole brain of an adult Drosophila melanogaster, with a volume of ap-
proximately 8·107µm3 and comprising∼100,000 neurons has been imaged with nanometer
resolution producing a dataset of 106 TB [165]. Similar projects are generating petabytes
of data [162], and a mouse brain of 500 mm3, at a typical isotropic resolution of 8 nm,
would require almost 1000 petabytes of data. Despite progress in collaborative anno-
tation [74], the sheer size of these volumes makes manual analysis infeasible. Thus,
automated processing, and especially automated neuron segmentation, is needed to re-
construct the complete organism’s neural wiring diagram.

The unique features of this segmentation problem, involving large volume datasets
and narrow elongated neuron segments that can span big portions of an organism’s brain,
encouraged the development of new proposal-free instance segmentation methods. Flood-
filling networks [64] and MaskExtend [101] use a CNN to iteratively extend one neuron at
a time. By using flood-filling networks, the dense connectome of half the central brain of
Drosophila melanogaster, containing around 25,000 neurons, was recently reconstructed
and publicly released [159]. In order to yield sufficient accuracy for correct circuit anal-
ysis, this impressive reconstruction involved significant proof-reading efforts by expert

18 1.2. Deep Learning and Graph-Based Instance Segmentation

Figure 1.2. Example of electron microscopy volume image of neuronal tissue with
isotropic resolution of 8× 8× 8 nm3 shown at three different scales. Data is taken from
the hemibrain [160]: the dataset covers a large portion of the central brain of the fruit
fly Drosophila melanogaster, including the mushroom body and central complex circuits
critical for associative learning and fly navigation. Data is three dimensional. Only one
2D image from the stack is shown.

1.2. Deep Learning and Graph-Based Instance Segmentation 19

Figure 1.3. Neuron segmentation data overlaid with the dense instance segmentation
obtained with the method proposed in Chapter 3 (GASP with average linkage). Colors
are randomly assigned. Note that the data is 3D, hence the same color could be assigned
to parts of segments that appear disconnected in 2D. Only one 2D image from the stack
is shown here. Data is taken from the test set of the CREMI neuron segmentation
challenge [40].

20 1.3. Graph Partitioning Algorithms

annotators, showing that further progress is still required in automated reconstruction
methods.

Another class of instance segmentation methods that proved to be particularly useful
in neuron segmentation is given by graph-based segmentation approaches. Originally,
many proposed methods predicted a boundary evidence map indicating how probable it is
for every voxel to be on the boundary between two neurons. After generating superpixels
and building a graph based on these boundary predictions, the final segmentation was
then determined as optimal cuts on this graph [6, 7, 20, 54, 102, 145]. Now, all of the
top submissions of the CREMI [40], SNEMI3D [140], and ISBI neuron segmentation
challenges employ convolutional neural networks [15, 90, 99]. Instead of predicting a
neuron-boundary probability map, most of these methods predict affinities between voxels
and directly use them to compute the edge weights of the graph [90, 99, 117, 118, 154].
An alternative approach to the direct prediction of affinities was proposed by [89], who
instead learn dense voxel embeddings via deep metric learning and derive affinities in the
embedded space.

In the next section, we will review some of the graph partitioning algorithms used in
these graph-based segmentation pipelines and studied in this thesis.

1.3 Graph Partitioning Algorithms

In the previous sections, we have seen that graph-based instance segmentation methods
have been successfully applied to neuron segmentation. In this section, we review the
basic ideas and notation of graph-based segmentation algorithms studied in this thesis.

Usually, graph-based image segmentation methods represent the image as a graph
G = (V,E). Each node u ∈ V corresponds to a pixel in the image and nodes are
connected by edges (u, v) ∈ E. A weight we is associated with each edge e ∈ E based
on some property of the pixels that it connects, such as their image intensities, gradients
or the output of an edge classifier (usually a neural network). Depending on the method
and application, the graph might be only sparsely connected, for example as a grid graph
(where every pixel is connected only its direct neighboring pixels) or a graph with limited
local neighborhood connectivity.

1.3.1 Agglomerative Hierarchical Clustering

The majority of graph clustering methods work with positive edge weights representing
similarities or distances between the nodes. These methods require the user to specify
the desired numbers of segments or a termination criterion (as in spectral clustering or
iterated normalized cuts) or even a stronger version of supervision by adding a seed for
each object (e.g. in seeded watershed or random walker).

Hierarchical clustering (HC) is another popular graph clustering method, which cre-
ates a hierarchy of clusters. Agglomerative HC is a bottom-up approach starting with
each node assigned to its own cluster and incrementally merging clusters starting from
those with the highest edge weight [86]. As compared to other divisive partitioning al-
gorithms (e.g. normalized graph cut), agglomerative clustering is a much more efficient
method that, with a heap data-structure, has a time complexity of O(m2 logm), where
m is the number of edges in the graph.

In Algorithm 1, we show a simplified pseudo-code describing this simple partitioning
algorithm. Apart from the weighted graph, another input of the algorithm is the so-called

1.3. Graph Partitioning Algorithms 21

6

27

10

9 6

27

10

9

6

27

10

96

27

10

9

C A B D

1

0

3

2

(a) (b)

D

B

A
C

D

B

A
C

D

B

A
C

D

B

A
C

10

8

4

Figure 1.4. Agglomerative Hierarchical Clustering (with Average linkage criterion) on
a toy graph. (a) On the left, the agglomeration steps of the algorithms are demonstrated
on a small graph with four nodes. Edge weights are shown in green. At every step, the
pair of clusters with highest interaction (according to average linkage) is merged. (b) On
the right, the resulting dendrogram is shown, representing the merging hierarchy.

Algorithm 1 Agglomerative Hierarchical Clustering
Input: Graph G(V,E,w) with affinity weights w : E → R+; linkage criterion W

1: Initialize clustering {{v1}, . . . , {v|V |}}, where each node is in its own cluster
2: Initialize empty dendrogram T
3: repeat
4: Select the two clusters S and S′ with highest interaction
5: Merge the two selected clusters S and S′, and update the dendrogram T accordingly
6: Update interactions between the new merged cluster S ∪ S′ and its neighboring clusters, based on

the linkage criterion W
7: until All nodes have been merged into a single cluster
8: return Dendrogram representing the merging order of clusters

linkage criterion, which defines the interaction between two clusters containing multiple
nodes. For example, average linkage criterion is a very common one, where the interaction
between two clusters is given by the average of all the edge weights connecting them.
Each time two clusters are merged by the algorithm at line 5, the interaction between
the newly formed merged cluster and its neighbors has to be updated by using the given
linkage criterion. Finally, the algorithm returns the hierarchy of clusters in the form of a
dendrogram, which is a rooted tree representing the order in which clusters were merged
(see toy example in Fig. 1.4).

A downside of hierarchical agglomerative algorithms is that, after running the algo-
rithm, the user has to choose a level in the cluster hierarchy in order to define the desired
output clustering. In Chapter 3, we will define a framework for agglomerative algorithms
that are parameter-free because they are based on graphs with both positive and negative
edge weights.

22 1.3. Graph Partitioning Algorithms

1.3.2 Signed Graph Partitioning

In contrast to the class of algorithms introduced in the previous section, this thesis
will investigate algorithms that can deal with both positive and negative edge weights,
corresponding to attraction and repulsion between nodes. Such a graph with positive
and negative edge weights is commonly known as signed weighted graph. The advantage
of using signed graphs is that balancing attraction and repulsion allows to perform the
clustering without defining additional parameters like the number of final clusters, making
this problem’s formalization particularly suited for applications where the number of
clusters is a-priori unknown. Balancing attraction and repulsion in the graph can be done
optimally by solving the so-called multicut optimization problem or correlation clustering
[32,68], which minimizes the sum of weights between clusters and can be formally defined
by the following integer linear program (for a more specific definition, see Section 2.4.1):

min
Π

∑
e∈E

wex
Π
e , where xΠ

e =

{
1 if e ∈ E1

Π

0 otherwise,
(1.1)

where Π denotes one of the possible clusterings of the graph G(V,E,w) with signed
edge weights w : E → R; and E1

Π ⊆ E is the set of edges “on cut” (i.e. all edges
that link nodes belonging to distinct clusters of Π). In general, solving the minimum
multicut problem is known to be NP-hard. Therefore any exact solver will fail to scale
to large graphs. However, in neuron segmentation and connectomics many approximate
solvers have been proposed [18,87,117,161] together with greedy agglomerative clustering
algorithms [69,72,92].

This thesis studies novel partitioning algorithms that are both parameter-free and
efficient. In Chapter 2, we introduce a new partitioning algorithm, the Mutex Water-
shed, and prove that it optimally optimizes an objective closely related to the multicut’s
objective in Eq. 1.1. Then, in Chapter 3, we show that the Mutex Watershed is actually
only one specific element of a larger class of agglomerative algorithms for signed graph
partitioning.

1.4. Contribution and Overview of this Thesis 23

1.4 Contribution and Overview of this Thesis

Throughout the past few years, proposal-free instance segmentation methods have been
successfully applied to biological imagery and achieved higher and higher accuracy, pri-
marily thanks to novel training strategies [90, 106]. Several of these methods train an
edge classifier (namely, a fully convolutional neural network) that can accurately predict
transitions between object instances. This thesis proposes novel graph partitioning al-
gorithms that can process these edge predictions and output an instance segmentation.
The proposed algorithms are efficient and achieve state-of-the-art segmentation results
without requiring the user to spend much time tuning complex dataset-dependent hyper-
parameters. The centerpiece of this thesis is a unifying framework, named GASP, for
agglomerative clustering algorithms of graphs with both attractive and repulsive interac-
tions between the nodes (Chapter 3). In the following, we give a brief overview of each
chapter’s content.

Chapter 2:

Chapter 3:

Chapter 4:

We propose an efficient algorithm for graph partitioning, the “Mutex Water-
shed”, and relate it to the multicut objective. The algorithm is deterministic,
very simple to implement, and has empirically linearithmic complexity. Un-
like seeded watershed, the Mutex Watershed algorithm can accommodate
not only attractive but also repulsive cues, allowing it to find a previously
unspecified number of segments without the need for explicit seeds or a tun-
able threshold. We also prove that this simple algorithm solves to global
optimality an objective function that is closely related to the multicut’s ob-
jective.

We introduce a review framework for graph clustering, named GASP, that
represents a generalization of agglomerative hierarchical clustering to graphs
with both attractive and repulsive edge weights. Thanks to this framework,
we explore many combinations of different linkage criteria, and study both
theoretical and empirical properties of these combinations. We show that
various existing partitioning algorithms can be reformulated in our frame-
work and introduce new algorithms for combinations that have not been
studied before. Finally, we conduct a comprehensive comparison of GASP
instantiations on a large variety of both synthetic and existing signed clus-
tering problems, in terms of accuracy but also efficiency and robustness to
noise.

We propose a new proposal-free instance segmentation method that is based
on single-instance segmentation masks predicted across the entire image in
a sliding window style. This method concurrently predicts all masks, one
for each pixel, and thus resolves any conflict jointly across the entire image.
Masks are decoded from a low dimensional latent representation, which re-
sults in great memory savings required for applications to large volumetric
images. Finally, predictions from overlapping masks are combined to ob-
tain all final instances concurrently. The result is a parameter-free method
that is strongly robust to noise and prioritizes predictions with the highest
consensus across overlapping masks.

Chapter 2

The Mutex Watershed Algorithm and
its Objective

In this chapter, we propose an efficient algorithm for graph partitioning, the “Mutex
Watershed”, and relate it to the multicut problem. Most prior work either requires seeds,
one per segment; or a threshold; or formulates the task as a multicut problem. Unlike
seeded watershed, the Mutex Watershed algorithm can accommodate not only attractive
but also repulsive cues, allowing it to find a previously unspecified number of segments
without the need for explicit seeds or a tunable threshold. We also prove that this simple
algorithm solves to global optimality an objective function that is intimately related to
the multicut’s integer linear programming formulation. The algorithm is deterministic,
very simple to implement, and has empirically linearithmic complexity. When presented
with short-range attractive and long-range repulsive cues from a deep neural network,
the Mutex Watershed gives state-of-the-art results in the ISBI 2012 EM segmentation
benchmark.

2.1 Introduction

Most image partitioning algorithms are defined over a graph encoding purely attractive
interactions. No matter whether a segmentation or clustering is then found agglomera-
tively (as in single linkage clustering / watershed) or divisively (as in spectral clustering
or iterated normalized cuts), the user either needs to specify the desired number of seg-
ments or a termination criterion. An even stronger form of supervision is in terms of
seeds, where one pixel of each segment needs to be designated either by a user or au-
tomatically. Unfortunately, clustering with automated seed selection remains a fragile
and error-fraught process, because every missed or hallucinated seed causes an under- or
oversegmentation error. Although the learning of good edge detectors boosts the quality
of classical seed selection strategies (such as finding local minima of the boundary map,
or thresholding boundary maps), non-local effects of seed placement along with strong
variability in region sizes and shapes make it hard for any learned predictor to place
exactly one seed in every true region.

In contrast to the above class of algorithms, multicut / correlation clustering partitions
vertices with both attractive and repulsive interactions encoded into the edges of a graph.
Multicut has the great advantage that a “natural” partitioning of a graph can be found,
without needing to specify a desired number of clusters, or a termination criterion, or
one seed per region. Its great drawback is that its optimization is NP-hard.

25

26 2.2. Related Work

Figure 2.1. Left: Overlay of raw data from the ISBI 2012 EM segmentation challenge
and the edges for which attractive (green) or repulsive (red) interactions are estimated
for each pixel using a CNN. Middle: vertical / horizontal repulsive interactions at inter-
mediate / long range are shown in the top / bottom half. Right: Active mutual exclusion
(mutex) constraints that the proposed algorithm invokes during the segmentation process.

The main insight of this chapter is that when both attractive and repulsive interac-
tions between pixels are available, then a generalization of the watershed algorithm can
be devised that segments an image without the need for seeds or stopping criteria or
thresholds. It examines all graph edges, attractive and repulsive, sorted by their weight
and adds these to an active set iff they are not in conflict with previous, higher-priority,
decisions. The attractive subset of the resulting active set is a forest, with one tree rep-
resenting each segment. However, the active set can have loops involving more than one
repulsive edge. See Fig. 2.1 for a visual abstract.

In summary, the principal contributions of this chapter are, first, a fast deterministic
algorithm for graph partitioning with both positive and negative edge weights that does
not need prior specification of the number of clusters (section 2.4); and second, its theo-
retical characterization, including proof that it globally optimizes an objective related to
the multicut correlation clustering objective (2.4).

Combined with a deep net, the algorithm also happens to define the state-of-the-art
in a competitive neuron segmentation challenge (Section 2.5).

2.2 Related Work

In the original watershed algorithm [22,149], seeds were automatically placed at all local
minima of the boundary map. Unfortunately, this leads to severe over-segmentation.
Defining better seeds has been a recurring theme of watershed research ever since. The
simplest solution is offered by the seeded watershed algorithm [23]: It relies on an oracle
(an external algorithm or a human) to provide seeds and assigns each pixel to its nearest
seed in terms of minimax path distance.

In the absence of an oracle, many automatic methods for seed selection have been
proposed in the last decades with applications in the fields of medicine and biology.
Many of these approaches rely on edge feature extraction and edge detection like gradient
calculation [4, 123]. Other types of methods generate seeds by first performing feature
extraction [124,156], whereas others first extract region of interests and then place seeds

2.2. Related Work 27

inside these regions by using thresholding [3], binarization [138], k-means [109] or other
strategies [1, 2].

In applications where the number of regions is hard to estimate, simple automatic seed
selection methods, e.g. defining seeds by connected regions of low boundary probability,
don’t work: The segmentation quality is usually insufficient because multiple seeds are
in the same region and/or seeds leak through the boundary. Thus, in these cases seed
selection may be biased towards over-segmentation (with seeding at all minima being
the extreme case). The watershed algorithm then produces superpixels that are merged
into final regions by more or less elaborate postprocessing. This works better than using
watersheds alone because it exploits the larger context afforded by superpixel adjacency
graphs. Many criteria have been proposed to identify the regions to be preserved during
merging, e.g. region dynamics [57], the waterfall transform [21], extinction values [148], re-
gion saliency [112], and (α, ω)-connected components [142]. A merging process controlled
by criteria like these can be iterated to produce a hierarchy of segmentations where im-
portant regions survive to the next level. Variants of such hierarchical watersheds are
reviewed and evaluated in [122].

These results highlight the close connection of watersheds to hierarchical clustering
and minimum spanning trees/forests [105, 110], which inspired novel merging strategies
and termination criteria. For example, [134] simply terminated hierarchical merging by
fixing the number of surviving regions beforehand. [100] incorporate predefined sets of
generalized merge constraints into the clustering algorithm. Graph-based segmentation
according to [50] defines a measure of quality for the current regions and stops when
the merge costs would exceed this measure. Ultrametric contour maps [9] combine the
gPb (global probability of boundary) edge detector with an oriented watershed transform.
Superpixels are agglomerated until the ultrametric distance between the resulting regions
exceeds a learned threshold. An optimization perspective is taken in [60, 78], which
introduces h-increasing energy functions and builds the hierarchy incrementally such that
merge decisions greedily minimize the energy. The authors prove that the optimal cut
corresponds to a different unique segmentation for every value of a free regularization
parameter.

An important line of research is given by partitioning of graphs with both attractive
and repulsive edges [73]. Solutions that optimally balance attraction and repulsion do
not require external stopping criteria such as predefined number of regions or seeds. This
generalization leads to the NP-hard problem of correlation clustering or (synonymous)
multicut (MC) partitioning. Fortunately, modern integer linear programming solvers
in combination with incremental constraint generation can solve problem instances of
considerable size [8], and good approximations exist for even larger problems [117, 161]
Reminiscent of strict minimizers [91] with minimal L∞-norm solution, our work solves
the multicut objective optimally when all graph weights are raised to a large power.

Related to the proposed method, the greedy additive edge contraction (GAEC) [72]
heuristic for the multicut also sequentially merges regions, but we handle attractive and
repulsive interactions separately and define edge strength between clusters by a maximum
instead of an additive rule. The greedy fixation algorithm introduced in [92] is closely
related to the proposed method; it sorts attractive and repulsive edges by their absolute
weight, merges nodes connected by attractive edges and introduces no-merge constraints
for repulsive edges. However, similar to GAEC, it defines edge strength by an additive
rule, which increases the algorithm’s runtime complexity compared to the presented Mu-
tex Watershed. Also, it is not yet known what objective the algorithm optimizes globally,

28 2.3. The Mutex Watershed Algorithm as an Extension of Seeded Watershed

if any.

Another beneficial extension is the introduction of additional long-range edges. The
strength of such edges can often be estimated with greater certainty than is achievable
for the local edges used by watersheds on standard 4- or 8-connected pixel graphs. Such
repulsive long-range edges have been used in [164] to represent object diameter con-
straints, which is still an MC-type problem. When long-range edges are also allowed to
be attractive, the problem turns into the more complicated lifted multicut (LMC) [62].
Realistic problem sizes can only be solved approximately [18, 72], but watershed su-
perpixels followed by LMC postprocessing achieve state-of-the-art results on important
benchmarks [20]. Long-range edges are also used in [90], as side losses for the boundary
detection convolutional neural network (CNN); but they are not used explicitly in any
downstream inference.

In general, striking progress in watershed-based segmentation has been achieved by
learning boundary maps with CNNs. This is nicely illustrated by the evolution of neu-
rosegmentation for connectomics, an important field we also address in the experimental
section. CNNs were introduced to this application in [63] and became, in much re-
fined form [36], the winning entry of the ISBI 2012 Neuro-Segmentation Challenge [11].
Boundary maps and superpixels were further improved by progress in CNN architec-
tures and data augmentation methods, using U-Nets [132], FusionNets [126] or inception
modules [20]. Subsequent postprocessing with the GALA algorithm [80,115], conditional
random fields [146] or the lifted multicut [20] pushed the envelope of final segmenta-
tion quality. MaskExtend [101] applied CNNs to both boundary map prediction and
superpixel merging, while flood-filling networks [65] eliminated superpixels altogether by
training a recurrent neural network to perform region growing one region at a time.

Most networks mentioned so far learn boundary maps on pixels, but learning works
equally well for edge-based watersheds, as was demonstrated in [119, 166] using edge
weights generated with a CNN [26,145]. Tayloring the learning objective to the needs of
the watershed algorithm by penalizing critical edges along minimax paths [26] or end-to-
end training of edge weights and region growing [155] improved results yet again.

Outside of connectomics, [13] obtained superior boundary maps from CNNs by learn-
ing not just boundary strength, but also its gradient direction. Holistically-nested edge
detection [81, 158] couples the CNN loss at multiple resolutions using deep supervision
and is successfully used as a basis for watershed segmentation of medical images in [27].

We adopt important ideas from this prior work (hierarchical single-linkage clustering,
attractive and repulsive interactions, long-range edges, and CNN-based learning). The
proposed efficient segmentation framework can be interpreted as a generalization of [100],
because we also allow for soft repulsive interactions (which can be overridden by strong
attractive edges), and constraints are generated on-the-fly.

2.3 The Mutex Watershed Algorithm as an Extension of
Seeded Watershed

In this section we introduce the Mutex Watershed Algorithm, an efficient graph clustering
algorithm that can ingest both attractive and repulsive cues. We first reformulate seeded
watershed as a graph partitioning with infinitely repulsive edges and then derive the
generalized algorithm for finitely repulsive edges, which obviates the need for seeds.

2.3. The Mutex Watershed Algorithm as an Extension of Seeded Watershed 29

Algorithm 2 Mutex version of seeded watershed algorithm

1: procedure SeededWatershed(G(V,E), pos. weights w : E → R+, seeds S ⊆ V)
2: A+ ← ∅
3: A− ← {(s, t) ∈ S × S | s ̸= t}
4: for (i, j) = e ∈ E in descending order of we do
5: if not connected(i, j;A+) and not mutex(i, j;A+, A−) then
6: A+ ← A+ ∪ e ▷ Merge i, j and inherit mutex constraints of the parent clusters

7: return A+ ∪A−

The output clustering is defined by the connected components of the final attractive active set A+.

2.3.1 Definitions and notation

Let G = (V,E,w) be a weighted graph. The scalar attribute w : E → R associated
with each edge is a merge affinity: the higher this number, the higher the inclination of
the two incident vertices to be assigned to the same cluster. Conversely, large negative
affinity indicates a greater desire of the incident vertices to be in different clusters. In
our application, each vertex corresponds to one pixel in the image to be segmented. We
call an edge e ∈ E repulsive if we < 0 and we call it attractive if we > 0 and collect them
in E− = {e ∈ E |we < 0} and E+ = {e ∈ E | we > 0} respectively.

In our application, each vertex corresponds to one pixel in the image to be segmented.
The Mutex Watershed algorithm, defined in Section 2.3.3, maintains disjunct active sets
A+ ⊆ E+, A− ⊆ E−, A+∩A− = ∅ that encode merges and mutual exclusion constraints,
respectively. Clusters are defined via the “connected” predicate:

∀i, j ∈ V :

Πi→j = {paths π from i to j with π ⊆ E+}
connected(i, j;A+) ⇔ ∃ path π ∈ Πi→j with π ⊆ A+

cluster(i;A+) = {i} ∪ {j : connected(i, j;A+)}

Conversely, the active subset A− ⊆ E− of repulsive edges defines mutual exclusion rela-
tions by using the following predicate:

mutex(i, j;A+, A−) ⇔ ∃ e = (k, l) ∈ A− with

k ∈ cluster(i;A+) and

l ∈ cluster(j;A+) and

cluster(i;A+) ̸= cluster(j;A+)

Admissible active edge sets A+ and A− must be chosen such that the resulting clustering
is consistent, i.e. nodes engaged in a mutual exclusion constraint cannot be in the same
cluster: mutex(i, j;A+, A−) ⇒ not connected(i, j;A+). The “connected” and “mutex”
predicates can be efficiently evaluated using a union find data structure.

2.3.2 Seeded watershed from a mutex perspective

One interpretation of the proposed method is in terms of a generalization of the edge-
based watershed algorithm [103–105] or image foresting transform [48]. This algorithm
can only ingest a graph with purely attractive interactions, E− = ∅. Without further
constraints, the algorithm would yield only the trivial result of a single cluster comprising

30 2.3. The Mutex Watershed Algorithm as an Extension of Seeded Watershed

-∞

14

15

12

161720

8

14

18

9 5
157

6
161720

1214

18

9 5
157

6

161720

8

(a) (b)

-∞
∞∞ ∞ -∞

Figure 2.2. Two equivalent representations of the seeded watershed clustering obtained
using (a) a maximum spanning tree computation or (b) Algorithm 2. Both graphs share
the weighted attractive (green) edges and seeds (hatched nodes). The infinitely attractive
connections to the auxiliary node (gray) in (a) are replaced by infinitely repulsive (red)
edges between each pair of seeds in (b). The two final clusterings are defined by the
active sets (bold edges) and are identical. Node colors indicate the clustering result, but
are arbitrary.

all vertices. To obtain more interesting output, an oracle needs to provide seeds (e.g. one
node per cluster). These seed vertices are all connected to an auxiliary node (see Fig. 2.2
(a)) by auxiliary edges with infinite merge affinity. A maximum spanning tree (MST) on
this augmented graph can be found in linearithmic time; and the maximum spanning tree
(or in the case of degeneracy: at least one of the maximum spanning trees) will include
the auxiliary edges. When the auxiliary edges are deleted from the MST, a forest results,
with each tree representing one cluster [48, 104,105].

We now reformulate this well-known algorithm in a way that will later emerge as
a special case of the proposed Mutex Watershed: we eliminate the auxiliary node and
edges, and replace them by a set of infinitely repulsive edges, one for each pair of seeds
(Fig. 2.2 (b)). Algorithm 2 is a variation of Kruskal’s MST algorithm operating on the
seed mutex graph just defined, and gives results identical to seeded watershed on the
original graph.

This algorithm differs from Kruskal’s only by the check for mutual exclusion in the
if-statement. Obviously, the modified algorithm has the same effect as the original algo-
rithm, because the final set A+ is exactly the maximum spanning forest obtained after
removing the auxiliary edges from the original solution.

In the sequel, we generalize this construction by admitting less-than-infinitely re-
pulsive edges. Importantly, these can be dense and are hence much easier to estimate
automatically than seeds with their strict requirement of only-one-per-cluster.

2.3.3 Mutex Watersheds

We now introduce our core contribution: an algorithm that is empirically no more ex-
pensive than a MST computation; but that can ingest both attractive and repulsive cues
and partition a graph into a number of clusters that does not need to be specified be-
forehand. Neither seeds nor hyperparameters that implicitly determine the number of
resulting clusters are required.

The Mutex Watershed, Algorithm 3, proceeds as follows. Given a graph G = (V,E)

2.3. The Mutex Watershed Algorithm as an Extension of Seeded Watershed 31

14

18

9 5
157 -10

-13-11

-2

-19

-1

6

12

161720

8 8

8 8

8

14

18

9 5
157 -10

-13-11

-2

-19

-1

6

12

161720

1414

18

9 5
157 -10

-13-11

-2

-19

-1

6

12

161720

14

18

9 5
157 -10

-13-13-11

-2

-19

-1

6

12

161720

14

18

9 5
157 -10

-13-11

-2

-19

-1

6

1212

161720

14

18

9 5
157 -10

-13-11

-2

-19

-1

6

12

161720

88

(a) Iteration 1 (b) Iteration 2

(c) Iteration 7 (d) Iteration 8

(e) Iteration 9 (f) Final active set

Figure 2.3. Some iterations of the Mutex Watershed Algorithm 3 applied to a graph
with weighted attractive (green) and repulsive (red) edges. Edges accumulated in the
active set A after a given number of iterations are shown in bold. The connect all
parameter of the algorithm is set to False, so that only the positive edges belonging
to the maximum spanning tree of each cluster are added to the active set. Once the
algorithm terminates, the final active set (f) defines the final clustering (indicated using
arbitrary node colors). Some edges are not added to the active set because they are mutex
constrained (yellow highlight) or because the associated nodes are already connected and
in the same cluster (blue highlight).

32 2.3. The Mutex Watershed Algorithm as an Extension of Seeded Watershed

Algorithm 3 Mutex Watershed Algorithm

1: procedure MutexWatershed(G(V,E), w : E → R, boolean connect all)
2: A+ ← ∅; A− ← ∅
3: for (i, j) = e ∈ E in descending order of |we| do
4: if e ∈ E+ then
5: if not mutex(i, j;A+, A−) then
6: if not connected(i, j;A+) or connect all then
7: merge(i, j): A+ ← A+ ∪ e ▷ Merge i, j and inherit constraints of parent clusters

8: else
9: if not connected(i, j;A+) then
10: addmutex(i, j): A− ← A− ∪ e ▷ Add mutex constraint between i and j

11: return A+ ∪A−

The output clustering is defined by the connected components of the final attractive active set A+. The
connect all parameter changes the internal cluster connectedness from trees to fully connected, but does
not change the output clustering. The connected predicate can be efficiently evaluated using union find
data structures.

with signed weights w : E → R, do the following: sort all edges E, attractive or repulsive,
by their absolute weight in descending order into a priority queue. Iteratively pop all
edges from the queue and add them to the active set one by one, provided that a set of
conditions are satisfied. More specifically, assuming connect all is False, if the next edge
popped from the priority queue is attractive and its incident vertices are not yet in the
same tree, then connect the respective trees provided this is not ruled out by a mutual
exclusion constraint. If on the other hand the edge popped is repulsive, and if its incident
vertices are not yet in the same tree, then add a mutual exclusion constraint between
the two trees. The output clustering is defined by the connected components of the final
attractive active set A+.

The crucial difference to Algorithm 2 is that mutex constraints are no longer pre-
defined, but created dynamically whenever a repulsive edge is found. However, new
exclusion constraints can never override earlier, high-priority merge decisions. In this
case, the repulsive edge in question is simply ignored. Similarly, an attractive edge must
never override earlier and thus higher-priority must-not-link decisions.

The boolean value of the connect all input parameter of the algorithm does not influ-
ence the final output clustering, but defines the internal cluster connectedness: when it
is set to True, the algorithm adds all attractive intra-cluster edges to the active set A+.
When it is set to False, then a maximum spanning tree is built for each cluster similarly
to the seeded watershed. This variant of the algorithm will be helpful in the next section
2.4 to highlight the relation between the Mutex Watershed and the multicut problem.

Fig. 2.3 illustrates the proposed algorithm: Fig. 2.3a and Fig. 2.3b show examples
of an unconstrained merge and an added mutex constraint, respectively; Fig. 2.3c and
Fig. 2.3d show, respectively, an example of an attractive edge (we = 14) and repulsive
edge (we = −13) that are not added to the active set because their incident vertices
are already “connected” and belong to the same tree of the forest A+; finally, Fig. 2.3e
shows an attractive edge (we = 12) that is ruled out by a previously introduced mutual
exclusion relation.

2.4. Theoretical characterization 33

2.3.4 Time Complexity Analysis

Before analyzing the time complexity of algorithm 3 we first review the complexity of
Kruskal’s algorithm. Using a union-find data structure (with path compression and union
by rank) the time complexity of merge(i, j) and connected(i, j) is O(α(V)), where α
is the slowly growing inverse Ackerman function, and the total runtime complexity is
dominated by the initial sorting of the edges O(E logE) [38].
To check for mutex constraints efficiently, we maintain a set of all active mutex edges

M [Ci] = {(u, v) ∈ A−|u ∈ Ci ∨ v ∈ Ci}

for every Ci = cluster(i) using hash tables, where insertion of new mutex edges (i.e.
addmutex) and search have an average complexity of O(1). Note that every cluster
can be efficiently identified by its union-find root node. For mutex(i, j) we check if
M [Ci] ∩M [Cj] = ∅ by searching for all elements of the smaller hash table in the larger
hash table. Therefore mutex(i, j) has an average complexity of O(min(|M [Ci]|, |M [Cj]|).
Similarly, during merge(i, j), mutex constraints are inherited by merging two hash tables,
which also has an average complexity O(min(|M [Ci]|, |M [Cj]|).
In conclusion, the average runtime contribution of attractive edgesO(max(|E+|·α(V), |E+|·
M)) (checking mutex constraints and possibly merging) and repulsive edges O(max(|E−|·
α(V), |E−|)) (insertion of one mutex edge) result in a total average runtime complexity
of algorithm 3:

O(max(E logE , EM)). (2.1)

where M is the expected value of min(|M [Ci]|, |M [Cj]|) and α(V) ∈ O(log V) ∈ O(logE)
1.
In the worst case O(M) ∈ O(E), the Mutex Watershed Algorithm has a runtime com-
plexity of O(E2). Empirically, we find that O(EM) ≈ O(E logE) by measuring the
runtime of Mutex Watershed for different sub-volumes of the ISBI challenge (see Figure
2.4), leading to a

Empirical Mutex Watershed Complexity: O(E logE) (2.2)

2.4 Theoretical characterization

Towards the Multicut framework. In section 2.3.3, we have introduced the Mutex
Watershed (MWS) algorithm as a generalization of seeded watersheds and the Kruskal
algorithm in particular. However, since we are considering graphs with negative edge
weights, the MWS is conceptually closer to the multicut problem and related heuristics
such as GAEC and GF [92]. Fortunately, due to the structure of the MWS it can be
analyzed using dynamic programming. This section summarizes our second contribution,
i.e. the proof that the Mutex Watershed Algorithm globally optimizes a precise objective
related to the multicut.

2.4.1 Review of the Multicut problem and its objective

In the following, we will review the multicut problem not in its standard formulation
but in the Cycle Covering Formulation introduced in [88], which is similar to the MWS

1In the worst case G is a fully connected graph, with |E| = |V |2, hence log |V | = 1
2 log |E|.

34 2.4. Theoretical characterization

106 107

Total Number of Edges —E—

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
un

ti
m
e[
s]
/
T
ot
al

N
um

b
er

of
E
dg
es

—
E
—

1e-7

Figure 2.4. Runtime T of Mutex Watershed (without sorting of edges) measured on
sub-volumes of the ISBI challenge of different sizes (thereby varying the total number
of edges E). We plot T

|E| over |E| in a logarithmic plot, which makes T ∼ |E|log(|E|)
appear as straight line. A logarithmic function (blue line) is fitted to the measured T

|E|
(blue circles) with (R2 = 0.9896). The good fit suggests that empirically T ≈ O(E logE).

formulation as it also considers the set of attractive and repulsive edges separately. Pre-
viously, in Sec. 2.3.1, we defined a clustering by introducing the concept of an active set
of edges A = A+ ∪ A− ⊆ E and the connected/mutex predicates. In particular, an active
set describes a valid clustering if it does not include both a path of only attractive edges
and a path with exactly one repulsive edge connecting any two nodes i, j ∈ V :

connected(i, j;A+) =⇒ not mutex(i, j;A+, A−). (2.3)

In other words, an active set is consistent and describes a clustering if it does not contain
any cycle with exactly one repulsive edge (known as conflicted cycles).

Definition 2.4.1. Conflicted cycles – We call a cycle of G conflicted w.r.t. (G, w) if
it contains precisely one repulsive edge e ∈ E−, s.t. we < 0. We denote by C−(G, w) ⊆
C(G, w) the set of all conflicted cycles. Furthermore, given a set of edges A ⊆ E, we
denote by C−(A,G, w) ⊆ C−(G, w) the set of conflicted cycles involving only edges in A.

2.4. Theoretical characterization 35

A2 A2
+0

01

1
000

01

0
100

1

1

2 2 2

2

2

0A
1

A
1

+

1 0

1 1 1

Figure 2.5. Consistent and inconsistent active sets – Two different active edge sets
A1 ⊆ E (on the left) and A2 ⊆ E (on the right) on identical toy graphs with six nodes,
attractive (green) and repulsive (red) edges. The value of the edge indicator xA ∈ {0, 1}|E|

defined in Eq. 2.4 is shown for every edge. Members of the active sets are shown as solid
lines. On the left, the active set A1 is consistent, i.e. does not include any conflicted
cycle C−(G, w) (see Def. 2.4.1): Therefore, it is associated with a clustering (represented
by arbitrary node colors). On the right, the active set A2 is not consistent and includes
at least one conflicted cycle (highlighted in yellow), thus it cannot be associated with a
node clustering.

From now on, in order to describe different clustering solutions in the framework of
(integer) linear programs, we associate each active set A with the following edge indicator
xA

xA := 1{e /∈ A)} ∈ {0, 1}|E|. (2.4)

In this way, the cycle-free property C−(A,G, w) = ∅ of an active set can be reformulated
in terms of linear inequalities:

∀C ∈ C−(G, w) :
∑
e∈EC

xA
e ≥ 1 ⇐⇒ C−(A,G, w) = ∅. (2.5)

In words, the active set cannot contain conflicted cycles; or vice versa, every conflicted
cycle must contain at least one edge that is not part of the active set. Following [88],
via this property we describe the space of all possible clustering solutions by defining the
convex hull SC(G, w) of all edge indicators corresponding to valid clusterings of (G, w):

Definition 2.4.2. Let SC(G, w) denote the convex hull of all edge indicators x ∈ {0, 1}|E|

satisfying the following system of inequalities:

∀C ∈ C−(G, w) :
∑
e∈EC

xe ≥ 1. (2.6)

That is, SC(G, w) contains all edge labelings for which every conflicted cycle is broken at
least once. We call SC(G, w) the set covering polyhedron with respect to conflicted cycles,
similarly to [88].

Fig. 2.5 summarizes these definitions and provides an example of consistent and incon-
sistent active sets with their associated clusterings and edge indicators.

As shown in [88], the multicut optimization problem can be formulated with con-
straints over conflicted cycles in terms of the following integer linear program (ILP),
which is NP-hard:

min
x∈SC(G,w)

∑
e∈E

|we|xe. (2.7)

36 2.4. Theoretical characterization

The solution of the multicut problem is given by the clustering associated to the connected
components of the active set Â+ = {e ∈ E+|x̂e = 0}, where x̂ ∈ {0, 1}|E| is the solution
of (2.7).

2.4.2 Mutex Watershed Objective

We now define the Mutex Watershed objective that is minimized by the Mutex Watershed
Algorithm (proof in subsection 2.4.3) and show how it is closely related to the multicut
problem defined in Eq. (2.7). Lange et al. [88] introduce the concept of dominant edges
in a graph. For example, an attractive edge f ∈ E+ is called dominant if there exists a
cut B with f ∈ EB such that |wf | ≥

∑
e∈EB\{f} |we|. These highlight an aspect of the

multicut problem that can be used to search for optimal solutions more efficiently. Not
all weighted graphs contain dominant edges; but if, assuming no ties, we raise all graph
weights to a large enough power a similar property emerges.

Definition 2.4.3. Dominant power: Let G = (V,E,w) be an edge-weighted graph,
with unique weights w : E → R. We call p ∈ N+ a dominant power if:

|we|p >
∑

t∈E, wt<we

|wt|p ∀e ∈ E, (2.8)

In contrast to dominant edges [88], we do not consider edges on a cut but rather all edges
with smaller absolute weight. Note that there exists a dominant power for any finite set
of edges, since for any e ∈ E we can divide (2.8) by |we|p and observe that the normalized
weights |wt|p/|we|p (and any finite sum of these weights) converges to 0 when p tends to
infinity.

By considering the multicut problem in Eq. (2.7) and raising the weights |we| to a
dominant power p, we fundamentally change the problem structure:

Definition 2.4.4. Mutex Watershed Objective: Let G = (V,E,w) be an edge-
weighted graph, with unique weights w : E → R and p ∈ N+ a dominant power. Then the
Mutex Watershed Objective is defined as the integer linear program

min
x∈SC(G,w)

∑
e∈E

|we|p xe (2.9)

where SC(G, w) is the convex hull defined in Def. 2.4.2.

In the following section, we will prove that this modified version of the multicut
objective, which we call Mutex Watershed Objective, is indeed optimized by the Mutex
Watershed Algorithm:

Theorem 2.4.1. Let G = (V,E,w) be an edge-weighted graph, with unique weights w :
E → R and p ∈ N+ a dominant power. Then the edge indicator given by the Mutex
Watershed Algorithm 3

xMWS := 1

{
e /∈MWS

(
G, w, connect all=True

)}
minimizes the Mutex Watershed Objective in Eq. (2.9).

2.4. Theoretical characterization 37

Algorithm 4 Conflicted-Cycles Mutex Watershed

1: procedure ConflictedCyclesMWS(G(V,E), w : E → R)
2: A← ∅
3: for (i, j) = e ∈ E in descending order of |we| do
4: if C−(A ∪ {e},G, w) = ∅ then
5: A← A ∪ e
6: return A

Equivalent formulation of the Mutex Watershed Algorithm 3, with input parameter connect all=True.
The set of conflicted cycles C−(A,G, w) is defined in Def. 2.4.1. The output clustering is defined by the
connected components of the final attractive active set A+ = A ∩ E+.

2.4.3 Proof of optimality via dynamic programming

In this section we prove Theorem 2.4.1, i.e. that the Mutex Watershed Objective defined
in 2.4.4 is solved to optimality by the Mutex Watershed Algorithm 4. Particularly, in
the following Sec. 2.4.3 we show that the edge indicator associated to the solution of the
MWS algorithm lies in SC(G, w), whereas in Sec. 2.4.3 we prove that it solves Eq. 2.9 to
optimality.

Cycle consistency

The Mutex Watershed algorithm introduced in Sec. 2.3 iteratively builds an active set
A = A+ ∪ A− such that nodes engaged in a mutual exclusion constraint (encoded by
edges in A−) are never part of the same cluster. In other words, this means that the
active set built by the Mutex Watershed at every iteration does never include a conflicted
cycle and is always consistent. In particular, for any attractive edge (i, j) = e+ ∈ E+

and any consistent set A that fulfills C−(A,G, w) = ∅:

not mutex(i, j, A+, A−) ⇔ C−(A ∪ {e+},G, w) = ∅

Similarly, for any repulsive edge (s, t) = e− ∈ E−:

not connected(s, t, A+) ⇔ C−(A ∪ {e−},G, w) = ∅

Therefore, we can rewrite Algorithm 3 in the form of Algorithm 4. This new formulation
makes it clear that

C−
(
MWS

(
G, w, connect all=True

))
= ∅. (2.10)

Thus, thanks to Eq. 2.5 and definition 2.4.2, it follows that the MWS edge indicator
xMWS defined in 2.4.1 lies in SC(G, w):

xMWS ∈ SC(G, w). (2.11)

Optimality

We first note that the Mutex Watershed Objective 2.4.4 and Theorem 2.4.1 can easily be
reformulated in terms of active sets to minimize

argmin
A⊆E

−
∑
e∈A

|we|p s.t. C−(A,G, w) = ∅. (2.12)

We now generalize the Mutex Watershed (see Algorithm 5) and the objective such that
an initial consistent set of active edges Ã ⊆ E is supplied:

38 2.4. Theoretical characterization

Algorithm 5 Initialized Mutex Watershed

1: procedure InitializedMWS((G(V,E), w : E → R, initial active set Ã)
2: A← ∅
3: for e ∈ E \ Ã in descending order of weight do
4: if C−(A ∪ Ã ∪ {e},G, w) = ∅ then
5: A← A ∪ e
6: return A

Mutex Watershed algorithm starting from initial active set Ã. An initial set Ã of active edges is given
as additional input and the final active set is such that A ⊆ E \ Ã. Note that Algorithm 4 is a special
case of this algorithm when Ã = ∅. Differences with Algorithm 4 are highlighted in blue.

Definition 2.4.5. Energy optimization subproblem. Let G = (V,E,w) be an edge-
weighted graph. Define the optimal solution of the subproblem as

S(G, Ã) := argmin
A⊆(E\Ã)

T (A) with T (A) := −
∑
e∈A

|we|p, (2.13)

s.t. C−(A ∪ Ã,G, w) = ∅, (2.14)

where Ã ⊆ E is a set of initially activated edges such that C−(Ã,G, w) = ∅.

We note that for Ã = ∅, the optimal solution S(G, ∅) is equivalent to the solution mini-
mizing the Mutex Watershed Objective and Eq. (2.12).

Definition 2.4.6. Incomplete, consistent initial set: For an edge-weighted graph
G = (V,E,w) a set of edges Ã ⊆ E is consistent if

C−(Ã,G, w) = ∅. (2.15)

Ã is incomplete if it is not the final solution and there exists a consistent edge ẽ that can
be added to Ã without violating the constraints.

∃ ẽ ∈ E \ Ã s.t. C−(Ã ∪ {ẽ},G, w) = ∅ (2.16)

Definition 2.4.7. First greedy step: Let us consider an incomplete, consistent initial
active set Ã ⊆ E on G = (V,E,w). We define

g := argmax
e∈(E\Ã)

|w(e)| s.t. C−(Ã ∪ {e},G, w) = ∅. (2.17)

as the feasible edge with the highest weight, which is always the first greedy step of Algo-
rithm 5.

In the following two lemmas, we prove that the Mutex Watershed problem has an optimal
substructure property and a greedy choice property [38], which are sufficient to prove that
the Mutex Watershed algorithm finds the optimum of the Mutex Watershed Objective.

Lemma 2.4.2. Greedy-choice property. For an incomplete, consistent initial active
set Ã of the Mutex Watershed, the first greedy step g is always part of the optimal solution

g ∈ S(G, Ã).

2.4. Theoretical characterization 39

Proof. We will prove the theorem by contradiction by assuming that the first greedy
choice is not part of the optimal solution, i.e. g /∈ S(G, Ã). Since g is by definition the
feasible edge with highest weight, it follows that:

|w(e)| < |w(g)| ∀e ∈ S(G, Ã). (2.18)

We now consider the alternative active set A′ = {g}, that is a consistent solution, with

T (A′) = −|wg|p
(2.8)
< −

∑
t∈S(G,Ã)

|wt|p = T
(
S(G, Ã)

)
(2.19)

which contradicts the optimality of S(G, Ã).

Lemma 2.4.3. Optimal substructure property. Let us consider an initial active set
Ã, the optimization problem defined in Equation 2.13, and assume to have an incomplete,
consistent problem (see Def. 2.4.6). Then it follows that:

1. After making the first greedy choice g, we are left with a subproblem that can be
seen as a new optimization problem of the same structure;

2. The optimal solution S(G, Ã) is always given by the combination of the first greedy
choice and the optimal solution of the remaining subproblem.

Proof. After making the first greedy choice and selecting the first feasible edge g defined in
Equation 2.17, we are clearly left with a new optimization problem of the same structure
that has the following optimal solution: S(G, Ã ∪ {g}).
In order to prove the second point of the theorem, we now show that:

S(G, Ã) = {g} ∪ S(G, Ã ∪ {g}). (2.20)

Since algorithm 5 fulfills the greedy-choice property, g ∈ S(G, Ã) and we can add the edge
g as an additional constraint to the optimal solution:

S(G, Ã) =argmin
A⊆(E\Ã)

T (A)

s. t. C−(A ∪ Ã,G, w) = ∅; g ∈ A

(2.21)

Then it follows that:

S(G, Ã) = {g} ∪ argmin
A⊆ E\(Ã∪{g})

T (A)

s. t. C−
(
A ∪ {g} ∪ Ã,G, w

)
= ∅

(2.22)

which is equivalent to Equation 2.20.

Proof of Theorems 2.4.1. In Lemmas 2.4.2 and 2.4.3 we have proven that the opti-
mization problem defined in 2.12 has the optimal substructure and a greedy choice prop-
erty. It follows through induction that the final active set MWS

(
G, w, connect all=True

)
found by the Mutex Watershed Algorithm 4 is the optimal solution for the Mutex Wa-
tershed objective (2.12) [38].

40 2.4. Theoretical characterization

Algorithm 6 Generic hierarchical optimization

1: procedure GHO(Q0, . . . , Qt−1)
2: M0 = argminx∈Rm Q0(x)
3: for k ∈ 1, . . . , t− 1 do
4: Mk = argminx∈Mk−1

Qk(x)
Return: some x∗ ∈Mt−1

5: return some x∗ ∈Mt−1

Generic hierarchical optimization algorithm introduced in [111]. The sequence of continuous functions
Qk : Rm → R is sorted according to the associated scales λk (Eq. 2.23).

2.4.4 Relation to the extended Power Watershed framework

The Power Watershed [39] is an important framework for graph-based image segmenta-
tion that includes several algorithms like seeded watershed, random walker and graph
cuts. Recently, [111] extended the framework to even more general types of hierarchical
optimization algorithms thanks to the use of Γ-theory and Γ-convergence [24, 43]. In
this section, we show how the Mutex Watershed algorithm can also be included in this
extended framework2 and how the framework suggests an optimization problem that is
solved by the Mutex Watershed.

Mutex Watershed as hierarchical optimization algorithm

We first start by introducing the extended Power Watershed framework and restating the
main theorem from [111]:

Theorem 2.4.4. [111] Extended Power Watershed Framework. Consider three
strictly positive integers p,m, t ∈ N+ and t real numbers

1 ≥ λ0 > λ1 > . . . λt−1 > 0 (2.23)

Given t continuous functions Qk : Rm → R with 0 ≤ k < t, define the function

Qp(x) :=
∑
0≤k<t

λp
kQk(x). (2.24)

Then, if any sequence (xp)p>0 of minimizers xp of Qp(x) is bounded (i.e. there exists
C > 0 such that for all p > 0, ||xp||∞ ≤ C), the sequence is convergent, up to taking a
subsequence, toward a point of Mt−1, which is the set of minimizers recursively defined
in Algorithm 6.

Proof. See [111] (Theorem 3.3).

We now show that the Mutex Watershed algorithm can be seen as a special case
of the generic hierarchical Algorithm 6, for a specific choice of scales λk and functions
Qk(x) : Rm → R (see definitions (2.25, 2.26) below) .

Scales λk: Let w̃k be the signed edge weights w : E → R ordered by decreasing absolute
value |w̃1| > |w̃2| > . . . > |w̃t−1|. If two edges share the same weight, then the weight

2The connection between the Mutex Watershed and the extended Power Watershed framework was
kindly pointed out by an anonymous reviewer.

2.4. Theoretical characterization 41

Algorithm 7 PowerWatershed Mutex Watershed

1: procedure PWSMWS(Q0, . . . , Qt−1)
2: M0 = argminx∈R|E| Q0(x) = ISC(G, w)
3: for k ∈ 1, . . . , t− 1 do
4: Mk = argminx∈Mk−1

∑
e∈Ek

xe

5: return some x∗ ∈Mt−1

Special case of the general hierarchical Algorithm 6 obtained by substituting Def. (2.25) and (2.26).
With the additional assumption of unique signed weights w : E → R, this algorithm is equivalent to the
Mutex Watershed Algorithm 4. The sequence of functions Qk : Rm → R defined in Eq. 2.26 is sorted
according to the associated scales λk in Eq. 2.25. ISC(G, w) is defined in Eq. 2.27

is called w̃k for both and Ek ⊆ E denotes the set of all edges with weight w̃k. We then
define the scales λk as

λk :=

{
1 if k = 0⏐⏐⏐ w̃k

2w̃1

⏐⏐⏐ otherwise.
(2.25)

The continuous functions Qk(x) : R|E| → R are defined as follows

Qk(x) :=

{
|E| ·minx′∈ISC(G,w) ||x′ − x|| if k = 0∑

e∈Ek
xe otherwise,

(2.26)

where ISC(G, w) is defined as:

ISC(G, w) := SC(G, w) ∩ {0, 1}|E|. (2.27)

In words, Q0(x) is proportional to the distance between x and the closest point on the
set ISC(G, w), whereas Qk(x) depends only on the indicators xe of edges in Ek, for k > 0.

Algorithm 7 is obtained by substituting the scales λk and functionsQk(x) (respectively
defined in Eq. (2.25) and (2.26)) into Algorithm 6 . The algorithm starts by setting M0

to ISC(G, w), i.e. by restricting the space of the solutions only to integer edge labelings x
that do not include any conflicted cycles. Then, in the following iterations k ∈ 1, . . . , t−1,
the algorithm solves a series of minimization sub-problems that in the most general case
are NP-hard, even though they involve a smaller set of edges Ek ⊆ E. Nevertheless, if
we assume that all weights are distinct, then |Ek| = 1 for all k and the solution to the
sub-problems amounts to checking if the new edge can be labeled with xe = 0 without
introducing any conflicted cycles. This procedure is identical to Algorithm 3: at every
iteration, the Mutex Watershed tries to add an edge to the active set A, provided that
no mutual exclusion constraints are violated.

In summary, the framework in [111] provides a new formulation of the Mutex Wa-
tershed Algorithm that is even applicable to graphs with tied edge weights. In practice,
when edge weights are estimated by a CNN, we do not expect tied edge weights.

Convergence of the sequence of minimizers

In this section, we see how Theorem 2.4.4 also suggests a minimization problem that
is solved by the Mutex Watershed algorithm. A short summary is given in the final
paragraph of the section.
First, we make sure that the conditions of Theorem 2.4.4 are satisfied when we apply it
to Algorithm 7:

42 2.4. Theoretical characterization

Lemma 2.4.5. Let us consider the scales λk and continuous functions Qk(x) : R|E| → R
respectively defined in Eq. (2.25) and (2.26). For any value of p ∈ N+, let xp ∈ R|E| be a
minimizer of the function Qp(x) defined in Eq. (2.24). Then, the minimizer xp lies in the
set ISC(G, w). From this, it follows that any sequence of minimizers (xp)p>0 is bounded
and the conditions of Theorem 2.4.4 are satisfied.

Proof. The function Qp(x) can be explicitly written as (see Eq. 2.24, 2.25 and 2.26):

Qp(x) =
∑
0≤k<t

λp
kQk(x) (2.28)

= |E| min
x′∈ISC(G,w)

||x− x′||+
∑
1≤k<t

⏐⏐⏐⏐ w̃k

2w̃1

⏐⏐⏐⏐p ∑
e∈Ek

xe (2.29)

= |E| min
x′∈ISC(G,w)

||x− x′||+
∑
e∈E

⏐⏐⏐⏐ we

2w̃1

⏐⏐⏐⏐p xe. (2.30)

We then denote these two terms by:

Qp
A(x) := |E| min

x′∈ISC(G,w)
||x− x′||, (2.31)

Qp
B(x) :=

∑
e∈E

⏐⏐⏐⏐ we

2w̃1

⏐⏐⏐⏐p xe. (2.32)

Intuitively, we now prove that the minimizer xp of Qp(x) lies in ISC(G, w) by showing
that the first term Qp

A(x) is always “dominant” as compared to Qp
B(x).

First, we note that the gradient of the first term Qp
A(x) has always norm equal to |E| and

points in the direction of the closest point x′ ∈ ISC(G, w). Given a generic point y ∈ R|E|,
the only two cases when the gradient ∇xQ

p
A(x) does not exists are: i) if y ∈ ISC(G, w);

ii) if there are at least two points x′′, x′′′ ∈ ISC(G, w) such that ||y − x′′|| = ||y − x′′′||.
Clearly, Qp

A(x) presents minima only in the first case, when y ∈ ISC(G, w).
On the other hand, the second term Qp

B(x) is always differentiable and the norm of its
gradient is never greater than

√
|E|:

||∇xQ
p
B(x)|| <

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐∇x

(∑
e∈E

xe

)⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐ =√|E| (2.33)

where we used the fact that w̃k/2w̃1 < 1 for every 1 ≤ k < t. Thus, the magnitude of the
gradient given by the first term is always larger compared to the one given by the second
term. We then conclude that the objective can always be reduced unless xp is a point of
ISC(G, w).

Then, given any p ∈ N+ and the Def. (2.25, 2.26), we have that the minimization of the
function Qp(x) defined in Eq. (2.24) is given by the following problem:

argmin
x∈Rm

Qp(x) = argmin
x∈Rm

∑
0≤k<t

λp
kQk(x) (2.34)

= argmin
x∈ISC(G,w)

∑
1≤k<t

⏐⏐⏐⏐ w̃k

2w̃1

⏐⏐⏐⏐p ∑
e∈Ek

xe (2.35)

= argmin
x∈ISC(G,w)

1

|2w̃1|p
∑
e∈E

|we|p xe (2.36)

2.5. Experiments 43

where we used Lemma 2.4.5 and restricted the domain of the argmin operation to
ISC(G, w), so that Q0(x) = 0 for all x ∈ ISC(G, w).

It follows from Lemma 2.4.5 and Theorem 2.4.4 that a sequence of minimizers (xp)p>0

of the problem (2.36) converge, up to taking a subsequence, to the solution x∗ returned
by Algorithm 7. More specifically, we know that any minimizer xp of (2.36) is in the
discrete set ISC(G, w). Hence, the convergent sequence of minimizers (xp)p>0 eventually
becomes constant and there exists a p′ ∈ N+ large enough such that xp = x∗ for all p ≥ p′.
In other words, in the case of unique weights and p ≥ p′ large enough, the solution x∗

of the Mutex Watershed Algorithm 7 solves the problem (2.36), which is just a rescaled
version of the Mutex Watershed Objective we introduced in Sec. 2.4.2.

To summarize, we used the extended Power Watershed framework to show that the
Mutex Watershed provides a solution to the minimization problem in Eq. (2.36) for p
large enough. In particular, this problem suggested by the Power Watershed framework is
the same one previously derived in Sec. 2.4.2 by linking the Mutex Watershed Algorithm
to the multicut optimization problem.

2.5 Experiments

We evaluate the Mutex Watershed on the challenging task of neuron segmentation in
electron microscopy (EM) image volumes. This application is of key interest in connec-
tomics, a field of neuro-science that strives to reconstruct neural wiring digrams spanning
complete central nervous systems. The task requires segmentation of neurons from elec-
tron microscopy images of neural tissue – a challenging endeavor, since segmentation has
to be based only on boundary information (cell membranes) and some of the boundaries
are not very pronounced. Besides, cells contain membrane-bound organelles, which have
to be suppressed in the segmentation. Some of the neuron protrusions are very thin, but
all of those need to be preserved in the segmentation to arrive at the correct connec-
tivity graph. While a lot of progress is being made, currently only manual tracing or
proof-reading yields sufficient accuracy for correct circuit reconstruction [136].

We validate the Mutex Watershed algorithm on the most popular neural segmentation
challenge: ISBI2012 [11]. We estimate the edge weights using a CNN as described in
Section 2.5.1 and compare with other entries in the leaderboard as well as with other
popular post-processing methods for the same network predictions in Section 2.5.2.

2.5.1 Estimating edge weights with a CNN

The common first step to EM segmentation is to predict which pixels belong to a cell
membrane using a CNN. Different post-processing methods are then used to obtain a
segmentation, see section 2.2 for an overview of such methods. The CNN can either
be trained to predict boundary pixels [20, 36] or undirected affinities [54, 90] which ex-
press how likely it is for a pixel to belong to a different cell than its neighbors in the
6-neighborhood. In this case, the output of the network contains three channels, cor-
responding to left, down and next imaging plane neighbors in 3D. The affinities do not
have to be limited to immediate neighbors – in fact, [90] have shown that introduction
of long-range affinities is beneficial for the final segmentation even if they are only used
to train the network. Building on the work of [90], we train a CNN to predict short-
and long-range affinities and then use those directly as weights for the Mutex Watershed
algorithm.

44 2.5. Experiments

We estimate the affinities / edge weights for the neighborhood structure shown in
Figure 2.6. To that end, we define local attractive and long-range repulsive edges. When
attractive edges are only short-range, the solution will consist of spatially connected
segments that cannot comprise “air bridges”. This holds true for both (lifted) multicut
and for Mutex Watershed. We use a different pattern for in-plane and between-plane
edges due to the great anisotropy of the data set. In more detail, we pick a sparse ring of
in-plane repulsive edges and additional longer-range in-plane edges which are necessary
to split regions reliably (see Figure 2.6a). We also added connections to the indirect
neighbors in the lower adjacent slice to ensure correct 3D connectivity (see Figure 2.6b).
In our experiments, we pick a subset of repulsive edges, by using strides of 2 in the XY-
plane in order to avoid artifacts caused by occasional very thick membranes. Note that the
stride is not applied to local (attractive) edges, but only to long-range (repulsive) edges.
The particular pattern used was selected after inspecting the size of typical regions. The
specific pattern is the only one we have tried and was not optimized over.

In total, C+ attractive and C− repulsive edges are defined for each pixel, resulting in
C+ + C− output channels in the network. We partition the set of attractive / repulsive

edges into subsets H+ and H− that contain all edges at a specific offset: E+ =
⋃C+

c=1H
+
c

for attractive edges, with H− defined analogously. Each element of the subsets H+
c and

H−
c corresponds to a specific channel predicted by the network. We further assume that

weights take values in [0, 1].

Network architecture and training

We use the 3D U-Net [34, 132] architecture, as proposed in [54]. Our training targets
for attractive / repulsive edges

∗
w±

can be derived from a groundtruth label image
∗
L

according to

∗
w+

e=(i,j)=

{
1, if

∗
Li=

∗
Lj

0, otherwise
(2.37)

∗
w−

e=(i,j)=

{
0, if

∗
Li=

∗
Lj

1, otherwise
(2.38)

Here, i and j are the indices of vertices / image pixels. Next, we define the loss terms:

J +
c = −

∑
e∈H+

c
(1− w+

e)(1−
∗
w+

e)∑
e∈H+

c
((1− w+

e)
2 + (1− ∗

w+
e)

2)
(2.39)

J −
c = −

∑
e∈H−

c
w−

e

∗
w−

e∑
e∈H−

c
((w−

e)
2 + (

∗
w−

e)
2)

(2.40)

for attractive edges (i.e. channels) and repulsive edges (i.e. channels).
Equation 2.39 is the Sørensen-Dice coefficient [47,143] formulated for fuzzy set mem-

bership values. During training we minimize the sum of attractive and repulsive loss terms

J =
∑C+

c J +
c +

∑C−

c J −
c . This corresponds to summing up the channel-wise Sørensen-

Dice loss. The terms of this loss are robust against prediction and / or target sparsity, a
desirable quality for neuron segmentation: since membranes are locally two-dimensional
and thin, they occupy very few pixels in three-dimensional the volume. More precisely,
if w+

e or
∗
w+

e (or both) are sparse, we can expect the denominator
∑

e((w
+
e)

2 + (
∗
w+

e)
2) to

be small, which has the effect that the numerator is adaptively weighted higher. In this

2.5. Experiments 45

(9, 4)(-9, 4)

(9,-4)(-9,-4)

(4, 9)

(4, -9)

(-4, 9)

(-4, -9) (0,-9)

(0, 9)

(9, 0)(-9,0)

(9,-9)

(9, 9)

(-9, -9)

(-9,9)

(0,-27)

(0, 27)

(27, 0)(-27,0)

(a) XY-plane neighborhood with local attractive edges (green) and sparse
repulsive edges (red) with approximate radius 9 and further long-range con-
nections with distance 27

(b) Due to the great anisotropy of the data we limit the Z-plane edges to
a distance of 1. The direct neighbors are attractive, whereas the indirect
neighbors are repulsive.

Figure 2.6. Local neighborhood structure of attractive (green) and repulsive (red) edges
in the Mutex Watershed graph.

46 2.5. Experiments

sense, the Sørensen-Dice loss at every pixel i is conditioned on the global image statistics,
which is not the case for a Hamming-distance based loss like Binary Cross-Entropy or
Mean Squared Error.

We optimize this loss using the Adam optimizer [75] and additionally condition learn-
ing rate decay on the Adapted Rand Score [11] computed on the training set every 100
iterations. During training, we augment the data set by performing in-plane rotations
by multiples of 90 degrees, flips along the X- and Y-axis as well as elastic deformations.
At prediction time, we use test time data augmentation, presenting the network with
seven different versions of the input obtained by a combination of rotations by a multiple
of 90 degrees, axis-aligned flips and transpositions. The network predictions are then
inverse-transformed to correspond to the original image, and the results averaged.

2.5.2 ISBI Challenge

The ISBI 2012 EM Segmentation Challenge [11] is the neuron segmentation challenge
with the largest number of competing entries. The challenge data contains two volumes
of dimensions 1.5 × 2 × 2 microns and has a resolution of 50 × 4 × 4 nm per pixel. The
groundtruth is provided as binary membrane labels, which can easily be converted to a
2D, but not 3D segmentation. To train a 3D model, we follow the procedure described
in [20].

The test volume has private groundtruth; results can be submitted to the leaderboard.
They are evaluated based on the Adapted Rand Score (Rand-Score) and the Variation
of Information Score (VI-Score) [11].

Our method holds the top entry in the challenge’s leader board3 at the time of submis-
sion, see Table 2.1. This is especially remarkable insofar as it is simpler than the methods
holding the other top entries. Three out of four rely on a CNN to predict boundary lo-
cations and postprocess its output with the complex pipeline described in [20]. This
post-processing first generates superpixels via distance transform watersheds. Then it
computes a merge cost for local and long-range connections between superpixels. Based
on this, it defines a lifted multicut partioning problem that is solved approximately. In
contrast, our method finds an optimal solution of its objective purely on the pixel level.

Comparison with other segmentation methods

The weights predicted by the CNN described above can be post-processed directly by
the Mutex Watershed algorithm. To ensure a fair comparison, we transform the same
CNN predictions into a segmentation using basic and state-of-the-art post-processing
methods. We start from simple thresholding (THRESH) and seeded watershed. Since
these cannot take long-range repulsions into account, we generate a boundary map by
taking the maximum4 values over the attractive edge channels. Based on this boundary
map, we introduce seeds at the local minima (WS) and at the maxima of the smoothed
distance transform (WSDT). For both variants, the degree of smoothing was optimized
such that each region receives as few seeds as possible, without however causing severe
under-segmentation. The performance of these three baseline methods in comparison
to Mutex Watershed is summarized in Table 2.2. The methods were applied only in
2D, because the high degree of anisotropy leads to inferior results when applied in 3D. In

3http://brainiac2.mit.edu/isbi challenge/leaders-board-new
4The maximum is chosen to preserve boundaries.

2.5. Experiments 47

(a) Mutex Watershed (b) Mutex Watershed

(c) Multicut partitioning based
segmentation (MC-FULL)

(d) Thresholding of local boundary
maps (THRESH)

(e) Watershed, seeded at local minima
of the smoothed input map (WS)

(f) Distance Transform
Watershed (WSDT)

Figure 2.7. Mutex Watershed and baseline segmentation algorithms applied on the
ISBI Challenge test data. Red arrows point out major errors. Orange arrows point to
difficult, but correctly segmented regions. All methods share the same input maps.

48 2.5. Experiments

Method Rand-Score VI-Score

UNet + MWS 0.98792 0.99183
ResNet + LMC [157] 0.98788 0.99072
SCN + LMC [151] 0.98680 0.99144
M2FCN-MFA [139] 0.98383 0.98981
FusionNet + LMC [126] 0.98365 0.99130

Table 2.1. Top five entries at time of submission on the ISBI 2012 EM Segmenta-
tion Challenge. Our Mutex Watershed (MWS) is state-of-the-art without relying on the
complex lifted multicut postprocessing used by most other top entries.

Method Rand-Score VI-Score Time [s]

MWS 0.98792 0.99183 43.3
MC-FULL 0.98029 0.99044 9415.8
LMC 0.97990 0.99007 966.0
THRESH 0.91435 0.96961 0.2
WSDT 0.88336 0.96312 4.4
MC-LOCAL 0.70990 0.86874 1410.7
WS 0.63958 0.89237 4.9

Table 2.2. Comparison on the ISBI 2012 EM Segmentation Challenge to other segmen-
tation strategies, all of which are based on our CNN. Runtimes were measured on a single
thread of a Intel Xeon CPU E5-2650 v3 @ 2.30GHz.

contrast, the Mutex Watershed can be applied in 3D out of the box and yields significantly
better 2D segmentation scores.

Qualitatively, we show patches of results in Figure 2.7. The major failure case for
WS (Figure 2.7e) and WSDT (Figure 2.7f) is over-segmentation caused by over-seeding
a region. The major failure case for THRESH is under-segmentation due to week bound-
ary evidence (see Figure 2.7d). In contrast, the Mutex Watershed produces a better
segmentation, only causing minor over-segmentation (see Figure 2.7a, Figure 2.7b).

Note that, in contrast to most pixel-based postprocessing methods, our algorithm
can take long range predictions into account. To compare with methods which share
this property, we turn to the multicut and lifted multicut-based partitioning for neu-
ron segmentations as introduced in [8] and [62]. As proposed in [7], we compute costs
corresponding to edge cuts from the affinities estimated by the CNN via:

se =

{
log w+

e

1−w+
e
, if e ∈ E+

log 1−w−
e

w−
e

, otherwise,
(2.41)

We set up two multicut problems: the first is induced only by the short-range edges (MC-
LOCAL), the other by short- and long-range edges together (MC-FULL). Note that the
solution to the full connectivity problem can contain “air bridges”, i.e. pixels that are
connected only by long-range edges, without a path along the local edges connecting
them. However, we found this not to be a problem in practice. In addition, we set up a
lifted multicut (LMC) problem from the same edge costs.

Both problems are NP-hard, hence it is not feasible to solve them exactly on large
grid graphs. For our experiments, we use the approximate Kernighan Lin [71,72] solver.

2.6. Conclusion 49

Even this allows us to only solve individual 2D problems at a time. The results for MC-
LOCAL and MC-FULL can be found in Table 2.2. The MC-LOCAL approach scores
poorly because it under-segments heavily. This observation emphasizes the importance
of incorporating the longer-range edges. The MC-FULL and LMC approaches perform
well. Somewhat surprisingly, the Mutex Watershed yields a better segmentation still,
despite being much cheaper in inference. We note that both MC-FULL, LMC and the
Mutex Watershed are evaluated on the same long-range affinity maps (i.e. generated by
the same CNN with the same set of weights).

2.6 Conclusion

We have presented a fast algorithm for the clustering of graphs with both attractive and
repulsive edges. The ability to consider both gives a valid alternative to other popular
graph partitioning algorithms that rely on a stopping criterion or seeds. The proposed
method has low computational complexity in imitation of its close relative, Kruskal’s
algorithm. We have shown which objective this algorithm optimizes exactly, and that
this objective emerges as a specific case of the multicut objective. It is possible that
recent interesting work [88] on partial optimal solutions may open an avenue for an
alternative proof. Finally, we have found that the proposed algorithm, when presented
with informative edge costs from a good neural network, outperforms all known methods
on a competitive bioimage partitioning benchmark, including methods that operate on
the very same network predictions.

Chapter 3

GASP: Generalized Agglomerative
Algorithm for Signed Graph Partitioning

In this chapter, we propose a theoretical framework that generalizes simple and fast algo-
rithms for hierarchical agglomerative clustering to weighted graphs with both attractive
and repulsive interactions between the nodes. This framework defines GASP, a General-
ized Algorithm for Signed graph Partitioning, and allows us to explore many combinations
of different linkage criteria and cannot-link constraints. We prove the equivalence of ex-
isting clustering methods to some of those combinations and introduce new algorithms for
combinations that have not been studied before. We study both theoretical and empiri-
cal properties of these combinations and prove that some of these define an ultrametric
on the graph. We conduct a systematic comparison of various instantiations of GASP
on a large variety of both synthetic and existing signed clustering problems, in terms of
accuracy but also efficiency and robustness to noise. Lastly, we show that some of the
algorithms included in our framework, when combined with the predictions from a CNN
model, result in a simple bottom-up instance segmentation pipeline. Going all the way
from pixels to final segments with a simple procedure, we achieve state-of-the-art accu-
racy on the CREMI 2016 EM segmentation benchmark without requiring domain-specific
superpixels.

3.1 Introduction

In computer vision, the partitioning of weighted graphs has been successfully applied to
tasks as diverse as image segmentation, object tracking and pose estimation. Most graph
clustering methods work with positive edge weights only, which can be interpreted as
similarities or distances between the nodes. These methods require users to specify the
desired numbers of clusters (as in spectral clustering) or a termination criterion (e.g. in
iterated normalized cuts) or even to add a seed for each object (e.g. seeded watershed or
random walker).

Other graph clustering methods work with so-called signed graphs, which feature both
positive and negative edge weights corresponding to attraction and repulsion between
nodes. The advantage of signed graphs over unsigned graphs is that balancing attraction
and repulsion allows us to obtain a clustering without defining additional parameters. A
canonical formulation of the signed graph partitioning problem is the multicut or corre-
lation clustering problem [32, 68]. This problem is NP-hard, though many approximate
solvers have been proposed [18,87,117,161] together with greedy agglomerative clustering

51

52 3.1. Introduction

c) INSTANCE SEGMENTATION PIPELINE:

b) GASP LINKAGE CRITERIA:

a) GASP, GENERALIZED AGGLOMERATIVE ALGORITHM
FOR SIGNED GRAPHS PARTITIONING

d) GASP AGGLOMERATION ORDER:

Raw Data

Iteration 1 Iteration 3 DendrogramIteration 2Iteration 1

Cluster j

Cluster i

CNN Predictions Instance Segmentation

RUN GASP
ON SIGNED GRAPH

(no parameters needed)

HC-Avg
(GASP with Average Linkage)

GAEC
(GASP with Sum Linkage)

G
A
EC

(G
A
SP

w
ith

Su
m
Li
nk
ag
e)

Sum Linkage:

Absolute Maximum Linkage:

Average Linkage:

Single Linkage:

Complete Linkage:

+4

-10

+1

+7

-10

Su
m(

+3
,+

5)
=

+8

+5 +6 +6

+7

-10 -10

+3

+3

+7

+4

-10

Su
m

(-
10

,+
6)

=
-4

ACD

BABA

CDDC

B A C D B

+7 1

0

3

2

-4

+8

Figure 3.1. (a) Some iterations of GASP on a graph with attractive (green) and repul-
sive (red) interactions. At each iteration, the yellow edge with highest weight is contracted
(example with sum linkage criterion is shown). (b) Linkage criteria demonstrated on two
small clusters (see definitions in Table 3.1 below). (c) Application of GASP to instance
segmentation: we show raw data from the CREMI neuron-segmentation challenge and
some predictions of our CNN model, where white pixels represent boundary evidence.
(d) Seemingly similar linkage criteria can result in very different clustering dynamics,
as shown in this example: color coded sequence of merges from early (white) via late
(brown) to never (black).

algorithms [69, 72, 92, 154]. Agglomerative clustering algorithms for signed graphs have
clear advantages: they are parameter-free and efficient. Despite the fact that a variety
of these algorithms exist, no overarching study has so far been conducted to compare
their robustness and efficiency or to provide guidelines for matching an algorithm to the
partitioning problem at hand.

The first contribution presented in this chapter is a simple theoretical framework that
generalizes over agglomerative algorithms for signed graphs by linking them to hierar-
chical clustering (HC) on unsigned graphs (Section 3.3.2). This framework defines an
underlying basic algorithm and allows us to explore its combinations with different link-
age criteria and cannot-link constraints (see Fig. 3.1a, 3.1b, and Table 3.1). As second
contribution, in Section 3.3.3, we formally prove that some of the combinations corre-
spond to existing clustering algorithms, and introduce new algorithms for combinations
which have not been explored before. By analyzing their theoretical properties, we also
show that some of them define an ultrametric on the graph (see Table 3.1).

Third, we evaluate the algorithms on a large variety of both existing and synthetically
generated signed graph clustering problems (Section 3.4). Fourth and finally, we also test
the algorithms on instance segmentation – a computer vision task consisting of assigning
each pixel of an image to an object instance – by partitioning graphs whose edge weights
are estimated by a CNN (see Fig. 3.1c and Section 3.4.3). Our experiments show that the
choice of linkage criterion markedly influences how clusters are grown by the agglomera-
tive algorithms (Fig. 3.1d), making some linkage methods more suited for certain types
of clustering problems. We benchmark the clustering algorithms by focusing on their
efficiency, robustness and tendency to over- or under-cluster. On instance segmentation,
we show that the tested agglomerative algorithms strongly outperform recently proposed
spectral clustering methods, and that average-linkage based agglomerative algorithms

3.2. Related work 53

GASP

Sum
Linkage

Absolute Maximum
Linkage

Average
Linkage

Single
Linkage

Complete
Linkage∑

e∈Eij

we we with e = argmax
t∈Eij

|wt|
∑

e∈Eij

we

/⏐⏐Eij

⏐⏐ max
e∈Eij

we min
e∈Eij

we

Unsigned graphs - HC-Single HC-Avg HC-Single HC-Complete

Signed graphs GAEC [72] Mutex Watershed [154] HC-Avg HC-Single HC-Complete

Signed graphs +
cannot-link-constr HCC-Sum Mutex Watershed [154] HCC-Avg HCC-Single HC-Complete

Table 3.1. Conceptual contribution: Properties of clustering algorithms included in the
proposed GASP framework, given a linkage criterion, a type of graph (signed or unsigned)
and the optional use of cannot-link constraints. New constrained hierarchical clustering
algorithms (HCC) proposed in this thesis are highlighted in yellow. For algorithms type-
set in bold font we prove that they define an ultrametric on the graph (Eq. 3.3). For
algorithms in the green box we show that they are weight-shift invariant (Prop. 3.3.2).
Notation: Eij = (Si×Sj)∩E denotes the set of edges connecting two clusters Si, Sj ⊆ V .

achieve state of the art results on the CREMI 2016 challenge for neuron segmentation of
3D electron microscopy image volumes of brain tissue.

3.2 Related work

Proposal-free instance segmentation methods adopt a bottom-up approach by di-
rectly grouping pixels into instances. In the last years, there has been a growing interest
in such methods that do not involve object detection because, in certain types of data,
object instances cannot be approximated by bounding boxes [14, 79]. Some use metric
learning to predict high-dimensional associative pixel embeddings that map pixels of the
same instance close to each other [45, 49, 89, 114] and then retrieve final instances by
applying a clustering algorithm [82]. Other recent methods let the model predict the
relative coordinates of the instance center [30, 113] or, given a pixel (x, y), they train a
model to generate the mask of the instance located at (x, y) [141].

Edge detection also experienced recent progress thanks to deep learning, both on
natural images [56,81,97,158] and biological data [35,90,101,137]. In neuron segmentation
for connectomics, a field of neuroscience we also address in our experiments, boundaries
are converted to final instances with subsequent postprocessing and superpixel-merging:
some use a combinatorial framework [20], others use loopy graphs [70, 83] or trees [53,
94,96,101,147] to represent the region merging hierarchy. Flood-filling networks [64] and
MaskExtend [101] used a CNN to iteratively grow one region/neuron at the time. A
structured learning approach was also proposed in [54,144].

Agglomerative graph clustering has often been applied to instance segmentation
[10, 95, 129, 135] because of its efficiency as compared to other divisive approaches like
graph cuts. Novel termination criteria and merging strategies have often been proposed:
the agglomeration in [100] deploys fixed sets of merge constraints; the popular graph-
based method [51] stops the agglomeration when the merge costs exceed a measure of
quality for the current clusters. The optimization approach in [77] performs greedy
merge decisions that minimize a certain energy, while other pipelines use classical linkage
criteria, e.g. average linkage [90,97], median [54] or a linkage learned by a random forest

54 3.3. Generalized framework for agglomerative clustering of signed graphs

classifier [80, 116].

Clustering of signed graphs has the goal of partitioning a graph with both attrac-
tive and repulsive cues. Finding an optimally balanced partitioning has a long history in
combinatorial optimization [33,58,59]. NP-hardness of the correlation clustering problem
was shown in [17], while the connection with graph multicuts was made by [46]. Modern
integer linear programming solvers can tackle problems of considerable size [7], but ac-
curate approximations [18,117,161], greedy agglomerative algorithms [69,72,92,153] and
persistence criteria [87, 88] have been proposed for even larger graphs. Another line of
research is given by spectral clustering methods that, on the other hand, require the user
to specify the number of clusters in advance. Recently, some of these methods have been
generalized to graphs with signed weights [31,41,85], whereas others let the user specify
must-link and cannot-link constraints between clusters [42,127,150].

This chapter reformulates the clustering algorithms of [72, 92, 154] in a generalized
framework and adopts ideas from the proposal-free instance segmentation methods [90,
97,154] to predict edge weights of a graph.

3.3 Generalized framework for agglomerative clustering
of signed graphs

3.3.1 Notation

Graph formalism We consider an undirected simple edge-weighted graph G(V,E,w+, w−)
with both attractive and repulsive edge attributes. The weight function w+ : E → R+

associates to every edge a positive scalar attribute w+
e ∈ R+ representing a merge affinity

or a similarity measure. On the other hand, w− : E → R+ associates to each edge a
split tendency w−

e ∈ R+. Graphs of the type G(V,E,w+, w−) are often defined as signed
graphs G(V,E,w), featuring positive and negative edge weights we ∈ R. Following the
theoretical considerations in [88], we define signed weights as we = w+

e − w−
e .

Multicut objective We call the set Π = {S1, . . . , SK} a clustering or partitioning if
V = ∪S∈ΠS, S ∩ S ′ = ∅ for different clusters S, S ′ and every cluster S ∈ Π induces a
connected subgraph of G. For any clustering Π of G, we denote as E0

Π = {euv ∈ E | ∃S ∈
Π : u, v ∈ S} the set of edges linking nodes in the same cluster. Its complementary
set E1

Π = E \ E0
Π of edges linking nodes belonging to distinct clusters, is known as the

multicut of G associated to clustering Π. The instance of the NP-hard minimum cost
multicut problem w.r.t. G(V,E,we) is the task of finding a clustering that optimally
balances the attraction and repulsion in the graph and is given by the following binary
integer program:

min
Π

∑
e∈E

wex
Π
e , where xΠ

e =

{
1 if e ∈ E1

Π

0 otherwise.
(3.1)

Linkage criteria and hierarchical trees Let the interaction W(S, S ′) ∈ R between two
clusters S, S ′ be defined as a function, named linkage criterion, depending on the weights
of all edges connecting clusters S and S ′, i.e. (S × S ′) ∩ E where × denotes the outer
product. The linkage criteria tested in this chapter are listed and defined in Table 3.1. A

3.3. Generalized framework for agglomerative clustering of signed graphs 55

dendrogram T is a rooted binary tree1 representing the merging order of an agglomerative
algorithm, such that the leaves of the tree are in one-to-one correspondence with V and
each node of the tree represents a merge between two clusters. Let TR, TL ⊂ T denote the
subtrees rooted at the two children of the root node in T . For any two leaves u, v ∈ V , let
T [u∨ v] be the subtree rooted at the least common ancestor (u∨ v) ∈ T of nodes u and v
(furthest from the root), and let leaves(T [u∨v]) ⊆ V be the set of leaves of this subtree.
Given an agglomerative algorithm with merging tree T , let hT : V × V → N denote
the dendrogram-height of each (u ∨ v) ∈ T , which is defined as the iteration number at
which nodes u, v ∈ V were merged by the algorithm (see example in Fig. 3.1a). We also
define WT (u, v) as the signed interaction W(S, S ′) between the two clusters S, S ′ that
were merged at iteration hT (u, v):

WT (u, v) ≡ W
(
leaves(TR[u ∨ v]), leaves(TL[u ∨ v])

)
(3.2)

3.3.2 The GASP algorithm

Our main contribution is a generalized agglomerative algorithm for signed graph par-
titioning (GASP) that generalizes hierarchical clustering (HC) to signed graphs. The
framework, defined in the following, encompasses several known and new agglomerative
algorithms on display in Table 3.1, which are differentiated by the linkage criterion em-
ployed, similarly to HC.

In Algorithm 8, we provide simplified pseudo-code for the proposed GASP algorithm.
GASP implements a bottom-up approach that starts by assigning each node to its own
cluster and then iteratively merges pairs of adjacent clusters. The algorithm proceeds in
three phases.

In phase one, GASP selects the pair of clusters with the highest absolute interaction
|W(S, S ′)|, so that the most attractive and the most repulsive pairs are analyzed first. If
the interaction is repulsive and the algorithm option addCannotLinkConstraints is True,
then the two clusters are constrained so that their members can never merge in subsequent
steps of phase one. If the interaction is attractive, then the clusters are merged, provided
that they were not previously constrained. After each merge, the interaction between
the merged cluster and its neighbors is updated according to one of the linkage criteria
W(S, S ′) listed in Table 3.1. Phase one terminates when all the remaining clusters are
either constrained or share repulsive interactions. Note that, on unsigned graphs, in
phase one all nodes are merged into a single cluster and GASP is then equivalent to a
standard hierarchical clustering algorithm.

Phase two: Now that the clusters have grown in size, the algorithm removes the
constraints previously introduced in phase one and merges all the clusters that still share
an attractive interaction, merging the most attractive one first2. The final clustering Π∗

returned by GASP is found at the end of phase two and it is then composed of clusters
sharing only mutual repulsive interactions.

Finally, in phase three, the algorithm keeps merging all clusters until only a single
one is left and then returns the hierarchical tree T ∗ representing the full sequence of
merging steps. The algorithm was implemented using a standard HC implementation
with computational complexity O(N2 logN) (details left in Appendix A.1).

1In general, one could look at trees that are not binary. However, the algorithms discussed in this
chapter always generate binary hierarchical trees, so nothing would be gained by this generalization.

2Note that in the version of GASP without cannotLinkConstraints, nothing happens in phase two
because all remaining interactions are repulsive.

56 3.3. Generalized framework for agglomerative clustering of signed graphs

Algorithm 8 GASP
Input: Graph G(V,E,w+, w−); linkage criterion W;

boolean addCannotLinkConstraints
Output: Final clustering Π∗, rooted binary hierarchical tree T ∗

1: Initial clustering: Π = {{v1}, . . . , {v|V |}}
2: Initialize hierarchical tree T ∗ with leaf nodes V = {v1, . . . , v|V |}
3: Initialize cluster interactions with we = w+

e − w−
e , ∀e ∈ E

4: // Phase 1: Merge positive interactions (possibly using constraints)
5: Push incident nodes of every edge e ∈ E to priority queue (PQ) with priority |we|
6: repeat
7: Pop S, S′ ∈ Π with highest interaction |W(S, S′)| from PQ
8: if

[
W(S, S′) > 0

]
and

[
S, S′ not constrained

]
then

9: Merge clusters S, S′ and update hierarchical tree T ∗

10: Update interactions & constraints with neighboring clusters
11: else if addCannotLinkConstr and

[
W(S, S′) ≤ 0

]
then

12: Add CannotLink Constraint between S and S′

13: until
[
PQ is empty

]
14: // Phase 2: Remove constraints & merge all positive interactions
15: Push signed interactions W(S, S′) to PQ, ∀S, S′ ∈ Π
16: repeat
17: Pop S, S′ ∈ Π with highest interaction W(S, S′) from PQ
18: if

[
W(S, S′) > 0

]
then

19: Merge clusters S, S′ and update hierarchical tree T ∗

20: Update interactions with neighboring clusters

21: until
[
W(S, S′) ≤ 0

]
22: Save the final clustering Π∗ ← Π
23: // Phase 3: Merge negative interactions until one single cluster is left
24: repeat
25: Pop S, S′ ∈ Π with highest interaction W(S, S′) from PQ
26: Merge clusters S, S′ and update hierarchical tree T ∗

27: Update interactions with neighboring clusters
28: until

[
Only one cluster is left in Π

]
29: return Π∗, T ∗

3.3.3 GASP: New and existing algorithms

Here, we focus on five linkage methods (see columns of Table 3.1). Many more linkage
criteria have been applied to unsigned graphs [51,54,116], involving median-based or size-
regularized methods, but we decided to focus on those five criteria because they represent
the most popular choices.

Sum Linkage On signed graphs, the sum of two attractive (or repulsive) interactions
is still attractive (repulsive). On the other hand, on unsigned graphs, a strong attractive
interaction could be obtained by summing many weak interactions, which depending on
the application could be undesirable. This explains why, to our knowledge, an agglom-
erative algorithm with sum linkage has never been used on unsigned graphs. On signed
graphs, such an algorithm was pioneered in [72, 92] and was named Greedy Agglomera-
tive Edge Contraction (GAEC)3. All variations of GASP decrease the multicut objective
defined in Eq. 3.1 each time two clusters with positive interaction are merged. But only

3An algorithm equivalent to GAEC was recently independently re-proposed in [29].

3.3. Generalized framework for agglomerative clustering of signed graphs 57

GAEC always makes the greedy choice that most decreases the multicut objective at
each iteration. The authors of [92] propose an algorithm named GreedyFixation, which,
in our framework, is equivalent to phase one of GASP using cannot-link-constraints and
a sum linkage. However, running both phase one and two of GASP with sum linkage
(algorithm named HCC-Sum in this chapter) performed better than GreedyFixation in
our experiments.

AbsMax Linkage This linkage method is also specific to signed graphs, since on un-
signed graphs it would be equivalent to single linkage. Here, we prove that the Mutex
Watershed Algorithm [154] introduced in Chapter 2 can be seen as an agglomerative
algorithm with AbsMax linkage (proofs of the following three propositions are given in
Appendix A.2):

Proposition 3.3.1. The GASP Algorithm 8 with AbsMax linkage, with or without can-
not link constraints, returns the same final clustering Π∗

AbsMax also returned by the Mu-
tex Watershed Algorithm (MWS) [154] (see Chapter 2), which has empirical complexity
O(N logN).

Average, Single, and Complete Linkage These three linkage criteria have been thor-
oughly studied on unsigned graphs, but never - until very recently - on signed graphs.
In concurrent independent related work [29], the authors prove that applying these three
linkage methods to a signed graph is equivalent to applying them to the unsigned graph
obtained by shifting all edge weights by a constant. Here, we prove which of the algo-
rithms studied here are “intrinsically signed” and do not have this invariance-property:

Proposition 3.3.2. We call an agglomerative algorithm “weight-shift invariant” if the
dendrogram T returned by the algorithm is invariant w.r.t. a shift of all edge weights
we by a constant α ∈ R. Among the variations of GASP, only hierarchical clustering
with Average (HC-Avg), Single (HC-Single), and Complete linkage (HC-Complete) are
weight-shift-invariant (see green box in Table 3.1).

Although average and single linkage methods have been largely studied on unsigned
graphs, to our knowledge, they have never been combined with cannot-link constraints
on signed graphs4, so we name these algorithms HCC-Avg and HCC-Single.

Algorithms defining an ultrametric The connection between agglomerative algorithms
and ultrametrics5 is well known. Usually, ultrametrics are associated to strictly positive
similarity or dissimilarity measures on a graph. In our framework, a trivial ultrametric is
always given by the height hT of the dendrogram. However, for some of the GASP varia-
tions, we now define an ultrametric based on the edge weights and the signed interactions
between clusters, generalizing what has been done for HC on unsigned graphs [66,107]. To
define this measure and prove its ultrametric property, we first map the signed interaction

4Note that Complete linkage methods return the same clustering whether constraints are enforced or
not (proof in Lemma A.2.3, in Appendix).

5A metric space (X, d) is an ultrametric if, for every x, y, z ∈ X, d(x, y) ≤ max{d(x, z), d(y, z)}.

58 3.4. Experiments

WT defined in Eq. 3.2 to positive “pseudo-distances” dT : V × V → R+:

dT (u, v) ≡

{
0 if u = v

M −WT (u, v) if u ̸= v
∀u, v ∈ V (3.3)

where M ≡ ϵ+ max
u′,v′∈V, u′ ̸=v′

WT (u
′, v′) (3.4)

and where ϵ > 0. We then prove the following proposition:

Proposition 3.3.3. Among the algorithms included in the GASP framework (see Table
3.1), only Mutex Watershed and hierarchical clustering with Average (HC-Avg), Single
(HC-Single) and Complete linkage (HC-Complete) define an ultrametric (V, dT ∗), where
dT ∗ is defined in Eq. 3.3 and T ∗ is the tree returned by the GASP Algorithm 8.

In summary, in this section we have extended the family of HC algorithms [66, 107]
with “weight-based ultrametrics” to signed graphs. Next, we move to their empirical
evaluation.

3.4 Experiments

3.4.1 Signed graph clustering problems

We evaluate the agglomerative clustering algorithms included in our framework on a large
collection of both synthetic and real-world graphs with very different structures. The size
of the graphs ranges from a few hundred to hundreds of millions of edges.

Synthetic SSBM graphs We first consider synthetic graphs generated by a signed
stochastic block model (SSBM). We use an Erdős-Rényi random graph model G(N, p)
with N vertices and edge probability p. Following the approach in [41], we partitioned
the graph into k ground-truth clusters, such that edges connecting vertices belonging to
the same cluster (different clusters, respectively) have Gaussian distributed edge weights
centered at µ = 1 (µ = −1, respectively) and with standard deviation σ = 0.1. To model
noise, the sign of the edge weights is flipped independently with probability η.

Existing signed graphs We use clustering instances from the OpenGM benchmark [67]
as well as biomedical segmentation instances [117]. The dataset Image Segmentation
contains planar region-adjacency-graphs (RAG) that are constructed from superpixel

Clustering problem Graph Type #I |V | |E|

Modularity Clustering [25] complete 6 34-115 561-6555
Image Segmentation [5] RAG 100 156-3764 439-10970
Knott-3D (150-300-450) [7] 3D-RAG 24 572-17k 3381-107k
CREMI-3D-RAG (OurCNN) 3D-RAG 3 134k-157k 928k-1065k
Fruit-Fly Level 1-4 [117] 3D-RAG 4 5m-11m 28m-72m
CREMI-gridGraph (OurCNN) gridGraph 15 39m 140m
Fruit-Fly Level Global [117] 3D-RAG 1 90m 650m

Table 3.2. List of compared signed graph clustering problems: for each, we specify the
number of instances #I, number of nodes |V |, and number of edges |E| per instance.

3.4. Experiments 59

adjacencies of photographs. The Knott-3D datasets contains 3D-RAGs arising from
volume images acquired by electron microscopy (EM). The set Modularity Clustering
contains complete graphs constructed from clustering problems on small social networks.
The Fruit-Fly 3D-RAG instances were generated from volume image scans of fruit fly
brain matter. Instances Level 1-4 are progressively simplified versions of the global
problem obtained via block-wise domain decomposition [117].

Grid-graphs from CNN predictions We also evaluate the clustering methods on the
task of neuron segmentation in EM image volumes using training data from the CREMI
2016 EM Segmentation Challenge [40]. We train a 3D U-Net [34, 131] using the same
architecture as [54] and predict long-and-short range affinities as described in [90]. The
predicted affinities ae ∈ [0, 1], which represent how likely it is for a pair of pixels to
belong to the same neuron segment, are then mapped to signed edge weights we = ae−0.5,
resulting in a 3D grid-graph having a node for each pixel/voxel of the image6. We divided
the three CREMI training samples, consisting of ∼196 million voxels each, into five sub-
blocks for a total of 15 clustering problems (named CREMI-gridGraph in Table 3.2). See
the following Section 3.4.2 for extended details about training, data augmentation, and
how we remove tiny clusters left after running GASP on the CREMI-gridGraph clustering
problems.

3D-RAG from CNN-predictions Lastly, we use the predictions of our CNN model to
generate three graph instances (one for each CREMI training sample, named CREMI-
3D-RAG in Table 3.2), which have very similar structure to the Knott-3D and Fruit-Fly
instances. We obtain these problems by using a pipeline that is very common in neuron
segmentation: a watershed algorithm generates superpixels and from those a 3D region-
adjacency graph is built, where edge weights are given by the CNN predictions averaged
over the boundaries of adjacent superpixels (details in the following Section 3.4.2).

3.4.2 Details on neuron segmentation graph instances

Training and data augmentation The data from the CREMI challenge is highly
anisotropic and contains artifacts like missing sections, staining precipitations and sup-
port film folds. To alleviate difficulties stemming from misalignment, we use a version
of the data that was elastically realigned by the challenge organizers with the method
of [133]. In addition to the standard data augmentation techniques of random rotations,
random flips and elastic deformations, we simulate data artifacts. We randomly zero-out
slices, decrease the contrast of slices, simulate tears, introduce alignment jitter and paste
artifacts extracted from the training data. Both [54] and [90] have shown that these kinds
of augmentations can help to alleviate issues caused by EM-imaging artifacts. We use
L2 loss and Adam optimizer to train the network. The model was trained on all three
samples with available ground truth labels.

CREMI-gridRag instances Our 3D UNet model predicts the same set of 12 long-and-
short range affinities as described in [90]. When building the pixel-grid graph, we add
both direct neighbors connections and the long-range connections predicted by our model

6To map affinities to signed weights, we also tested the logarithmic mapping proposed in [7, 52], but
it performed worse in our experiments.

60 3.4. Experiments

(every voxel is connected to other six voxels via direct connections and other 18 voxels
via long-range edges). Empirically, when long-range predictions of the CNN are added
as long-range connections in the graph, GASP achieves better scores as compared to
when only direct-neighbors predictions are used. Our intuitive explanation of this is
that, where there is a clear boundary evidence between two segments, the long-range
predictions of the CNN model are more certain than the direct-neighbor ones, because
it is often impossible to estimate the exact ground-truth label transition for pixels that
are very close to a boundary evidence. However, empirically, we also find that GASP
achieves the best scores when only 10% of the long-range connections are randomly
sampled and added to the grid-graph. When all the long-range connections predicted by
the CNN are added to the graph (18 connections for every voxel), all versions of GASP
tend to perform more over-clustering errors. In practice, we explain this by observing
that many challenging parts of the studied neuron segmentation data involve thin and
elongated segments, and our model sometimes fails to connect distant pairs of pixels that,
according to the ground-truth labels, should belong to the same segment (even though, in
this case, the direct neighboring predictions are correct). To sum up, the scores we report
in Tables 3.5a are obtained by using only 10% of the long-range predictions, since this was
the setup that performed the best. After running GASP, we use a simple post-processing
step to delete small segments on the boundaries, most of which are given by single-voxel
clusters. On the neuron segmentation predictions, we deleted all regions with less than
200 voxels and used a seeded watershed algorithm to expand the bigger segments.

CREMI-3D-rag instances We build these clustering problems by generating superpix-
els and then building a 3D region adjacency graph. Due to the anisotropy of the data,
we generate 2D superpixels by considering each 2D image in the stack singularly. First,
we generate a boundary-evidence map by taking an average over the two direct-neighbor
predictions of the CNN model (one for each direction in the 2D image of the stack) and
applying some additional smoothing. Then, we threshold the boundary map, compute a
distance transform, and run a watershed algorithm seeded at the maxima of the distance
transform (WSDT). The degree of smoothing was optimized such that each region re-
ceives as few seeds as possible, without however causing severe under-segmentation. The
computed 2D superpixels are then used to build a 3D region-adjacency graph (3D-rag).
The weights of the edges are given by averaging the CNN affinities over the boundaries
of adjacent superpixels.

3.4.3 Comparison of results and discussion

Multicut objective values In Table 3.3, we report the values of the multicut objective
obtained for clustering with different GASP algorithms7. Although many heuristics were
proposed to better optimize this objective [18,19,71], these methods are out of the scope
of this work, since they do not scale to the largest graph instances considered here. By
looking at results in Table 3.3, we observe that GAEC almost always achieves the lowest
objective values, expect in the CREMI-gridGraph instances. Despite this, on graphs
where a ground truth clustering is known, GAEC does not achieve the lowest ARAND
errors (see Tables 3.5a and 3.5b).

7Objective values achieved by Single and Complete linkage methods are much worse compared to
other algorithms and are reported in Table ??, in Appendix.

3.4. Experiments 61

0.0 0.1 0.2 0.3 0.4
Amount of flip-noise (flip-probability η)

0.0

0.2

0.4

0.6

0.8

1.0
A

R
A

N
D

E
rr

or

(a) k = 20, p = 0.1

0.0 0.1 0.2 0.3 0.4
Amount of flip-noise (flip-probability η)

0.0

0.2

0.4

0.6

0.8

1.0

A
R

A
N

D
E

rr
or

GAEC

SPONGEsym

HC-Avg

MWS

SPONGE

(b) k = 50, p = 0.2

Figure 3.2. ARAND errors (median values over 20 experiments, lower is better) on syn-
thetic graphs generated with SSBM. We consider k ground truth communities of random
size. Graphs have N = 10000 nodes and edges are randomly added with probability p.

Size of growing clusters: Sum vs Avg linkage In all the studied clustering problems,
we empirically observe that sum-linkage algorithms like GAEC grow clusters one after the
other, as shown in Fig. 3.1d and Fig. 3.3 by the agglomeration order of GAEC8. This is
intuitively explained by the following: initially, many of the most attractive edge weights
have very similar values; when the two nodes u, v with the highest attraction are merged,
there is a high chance that they will have a common neighboring node t belonging to the
same cluster; thus, the interaction between the merged nodes uv and t is likely assigned to
the highest priority, because it is given by the sum of two highly attractive edge weights.
This will then start a “chain reaction” where only a single cluster is agglomerated at the
time. In the following, we will show how this unique flooding strategy of the sum-linkage
methods can be both an advantage or a disadvantage, depending on the type of clustering
problem.

Comparison to spectral clustering The spectral clustering methods for signed graphs
SPONGEsym and SPONGE proposed by [41] achieved state of the art performances
on SSBM synthetic graphs. Their competitive performances are also confirmed by our
experiments in Fig. 3.2. However, these methods do not scale up to the large graph
instances considered here and they also require the user to specify the true number of
clusters in advance, which is not known for other graph instances tested in this chapter. In
Table 3.4, we report the scores achieved by these methods on a much smaller sub-instance
of the CREMI-gridGraph problem: even when the true number of clusters is specified in
advance for the spectral methods, they perform much worse than other GASP algorithms,
with an accuracy penalty of almost 50%. For these reasons, we exclude them from our
other comparison experiments.

8This flooding agglomeration-strategy of GAEC was also observed in [69].

62 3.4. Experiments

Multicut objective values (average across instances, lower is better)
Clustering problem GAEC [72] HCC-Sum MWS [154] HC-Avg HCC-Avg HC-Single HC-Complete

Modularity Clustering -0.457 -0.453 -0.073 -0.467 -0.467 0.000 -0.201
Image Segmentation -2,955 -2,953 -2,901 -2,903 -2,896 -1,384 -2,102
Knott-3D (150-300-450) -36,667 -36,652 -35,200 -35,957 -35,631 -2,522 30,629
CREMI-3D-rag -1,112,287 -1,112,286 -1,109,731 -1,112,177 -1,112,100 -1,038,709 -748,734,869
Fruit-Fly Level 1-4 -151,022 -151,017 -150,879 -150,909 -150,876 -71,477 -128,733
CREMI-gridGraph -73,317,601 -73,328,867 -73,330,568 -73,502,947 -73,474,856 -45,194,180 311,598,700
Fruit-Fly Level Global -151,688 -151,596 -146,315 -150,466 -150,171 -4,422 6,876

Table 3.3. We compare algorithms in the GASP framework by their value of the multicut
objective defined in Eq. 3.1 (lower is better).

Figure 3.3. Clustering dynamics and accuracy of GASP variations on stochastic block
models. The dendrograms result from three versions of GASP on a synthetic graph
generated with SSBM (250 nodes, edge probability p = 0.05, flipping probability η = 0.1).
Red and blue colors show which of the two equal-sized ground-truth communities each
node belongs to. At the top, dendrograms are truncated at the level of the final clustering
Π∗ returned by GASP.

GASP on synthetic SSBM graphs

GASP algorithms using cannotLinkConstraints are not expected to perform well on these
graphs, because of the type of employed sign noise, so we focus our comparison only on
the GAEC, HC-Avg and MWS algorithms (using Sum, Average, and AbsMax linkage
methods, respectively). Empirically, we observe that GAEC is the agglomerative algo-
rithm performing best on SSBM graphs, on par with spectral method SPONGEsym (see
Fig. 3.2). Given the simple properties of SSBM graphs, we can now give a detailed expla-
nation of these empirical results. In SSBM graphs, the number of edges Eij ≡ (Si×Sj)∩E
connecting two clusters Si, Sj is proportional to the product |Si|·|Sj| of cluster sizes. With
Sum or Avg linkage methods, due to the law of large numbers, the flipping noise is “av-
eraged out” as soon as the set Eij becomes larger and clusters grow in size. On the other
hand, when clusters are small, it can happen that, for few clusters, several of their edges
in Eij are flipped and the algorithm makes a mistake by merging two clusters belonging
to different ground truth communities. From this observation, it follows that the flooding
strategy of the sum-linkage algorithm GAEC is a very good strategy on these types of
graphs, because clusters are immediately grown in size (see dendrograms in Fig. 3.3).
Average linkage method HC-Avg instead performs much worse on these graphs because
it grows small equally-sized clusters and makes several wrong merge-decisions at the be-
ginning. Lastly, the MWS algorithm is not expected to perform well on these graphs
because of the high sensitivity of the AbsMax linkage to flipping noise. In the following
Proposition 3.4.1, we prove that, at every iteration, the MWS algorithm makes a mistake

3.4. Experiments 63

Method ARAND Error

HC-Avg (GASP with Avg Linkage) 0.1034
GAEC [72] (GASP with Sum Linkage) 0.1035
MWS [154] (GASP with AbsMax linkage) 0.1068
SPONGEsym [41] 0.4161
Lsym [85] 0.8069
SPONGE [41] 0.9211
BNC [31] 0.9926

Table 3.4. GASP compared to spectral clustering methods on a small crop of the
CREMI neuron segmentation dataset. Since spectral methods cannot scale to the full
CREMI dataset, we evaluated them on a smaller 10× 100× 100 sub-volume of CREMI
training sample B. Despite the fact that the true number of ground truth clusters was
given as an input to the spectral methods, GASP significantly outperformed them.

with at least probability η, independently on the sizes of the two clusters that are popped
from priority queue. In summary, for the SSBM, we can obtain a deep understanding
of the dynamics induced by various linkage criteria, and find that GAEC gives highest
accuracy by a large margin.

Proposition 3.4.1. Consider a graph generated by an Erdős-Rényi signed stochastic
block model (SSBM) as described in Section 3.4.1, with N nodes, edges added with proba-
bility p, sign-flip probability η < 0.5, k ground-truth clusters, and edge weights Gaussian-
distributed with standard deviation σ. Then, at every iteration, GASP with Absolute
Maximum linkage (or, in other words, the Mutex Watershed algorithm) always makes a
mistake with at least probability η.

Proof. Thanks to Lemma A.2.3 we know that GASP with Absolute Maximum linkage
returns the same clustering whether or not cannot-link-constraints are used. Thus, in
the following, we prove the proposition considering the version enforcing constraints. Let
us consider a generic iteration of the algorithm, where two clusters Sα and Sβ have the
highest priority and are popped from priority queue. Then, the MWS algorithm will either
merge or constrain them depending on the fact that their interaction WAbsMax(Sα, Sβ) is
positive or negative (note that, with AbsMax linkage, an interaction can never be positive
and constrained, as shown in Lemma A.2.3). By construction of the SSBM, every edge
e ∈ E in the graph has a absolute weight distributed as |we| ∼ N (1, σ2). Thus, every
edge e′ ∈ (Sα×Sβ)∩E connecting the two clusters has the same probability to have the
highest absolute weight, and the sign of the interactionWAbsMax(Sα, Sβ) will only depend
on the sign of this highest edge. Therefore, the probability that the MWS merges two
clusters is simply given by the fraction of positive weighted edges connecting them.

Let Π̃ = {S̃1, . . . , S̃k} denote the ground truth clustering, and S̃αi = Sα ∩ S̃i denote
the intersection between cluster Sα and a ground-truth cluster S̃i. If the generated graph
is dense, i.e. p = 1, then the total number of edges connecting clusters Sα and Sβ that
have a true attractive or repulsive weight is (according to the ground truth labels)

Γ+ =
k∑

i=1

|S̃αi||S̃βi|, Γ− =
k∑

i=1

k∑
j=1,j ̸=i

|S̃αi||S̃βj|. (3.5)

When the edges in the graph are randomly added with a probability p, then the ac-
tual number of true attractive and repulsive interactions connecting the two clusters is

64 3.4. Experiments

(according to the ground truth labels):

γ+ ∼ B(Γ+, p), γ− ∼ B(Γ−, p), (3.6)

where B(Γ, p) is the binomial distribution:

B(γ; Γ, p) = Γ!

γ!(Γ− γ)!
pγ(1− p)Γ−γ. (3.7)

Here, we only assume that γ++γ− > 0, i.e. there is at least one edge connecting the two
clusters (otherwise their interaction would be zero and the MWS would not have popped
them from priority queue).

So far we have been talking about attractive and repulsive connections according to the
ground truth labels. In our SSBM however every edge has a uniform probability η to have
its sign flip, so the actual number of attractive interactions connecting the two clusters
will be instead given by the sum of the true attractive interactions γ+

nf ∼ B(γ+, 1 − η)
that have not been flipped, plus the true negative interactions γ−

f ∼ B(γ−, η) that have
been flipped. Putting everything together, given two clusters with γ+ true attractive
interactions and γ− true negative ones, the highest-absolute-weight edge connecting them
has the following probability to be positive:

P[WAbsMax(Sα, Sβ) > 0; γ+, γ−] =

γ+∑
γ+
nf=0

γ−∑
γ−
f =0

B(γ−
f ; γ

−, η)B(γ+
nf ; γ

+, 1− η) ·
(
γ+
nf + γ−

f

γ+ + γ−

)
(∗)
=

γ+(1− η) + γ−η

γ+ + γ− (3.8)

where in (∗) we used the fact that the expected value of a binomial distribution B(γ, η)
is γη.

Now we note that this probability is bounded in the interval [η, 1− η]. So, regardless
of whether the two clusters Sα and Sβ should be merged or constraint according to
ground truth labels, the probability not to make the correct decision is always at least
η. Remarkably, while the exact probability in Eq. 3.8 depends on the number of edges
connecting the two clusters γ+ + γ− and thus on the cluster sizes, the bounds do not.
Thus, this result shows that, unlike Sum or Avg linkage methods, the MWS algorithm
is unable to reliably correct for the sign flip noise even for big clusters linked by many
edges.

GASP on neuron segmentation graph instances

SSBM graphs are non-planar, and every edge has the same probability to be present
in the graph. On the other hand, the gridGraph and 3D-RAG graphs of Table 3.2 are
sparse and have a very regular structure: regardless of whether a node represents a pixel
or a superpixel, it will only have edge connections with its neighbors in the image (up to
a certain hop distance). Tables 3.5a-3.5b show that average linkage methods (HC-Avg,
HCC-Avg) strongly outperform other methods on CREMI-gridGraph instances and also
achieve the best scores on CREMI-3D-rag graphs. Sum-based linkage methods (GAEC,
HCC-Sum) have a two times higher ARAND error on grid-graphs and often return under-
clustered segments (see failure cases in Fig. 3.4). This suggests that the flooding strategy

3.4. Experiments 65

ARAND VOI VOI Runtime
Error split merge (s)

HC-Avg 0.0487 0.387 0.258 2344
HCC-Avg 0.0492 0.389 0.259 2892
MWS [154] 0.0554 0.440 0.249 688
GAEC [72] 0.0856 0.356 0.338 4717
HCC-Sum 0.0872 0.365 0.337 4970
HC-Complete 0.9211 4.536 0.211 1020
HC-Single 0.9264 0.060 4.887 312
HCC-Single 0.9264 0.060 4.887 6440

(a) CREMI-gridGraph (OurCNN)

ARAND VOI VOI Runtime
Error split merge (s)

HC-Avg 0.0896 0.603 0.323 86
HCC-Avg 0.0898 0.600 0.325 87
GAEC [72] 0.0905 0.606 0.323 89
HCC-Sum 0.0910 0.608 0.323 85
MWS [154] 0.1145 0.825 0.295 86
HCC-Single 0.5282 0.437 1.367 88
HC-Single 0.5282 0.437 1.367 85
HC-Complete 0.5654 2.253 0.249 86

(b) CREMI-3D-RAG (OurCNN)

Needs CREMI ARAND VOI VOI
superpixels? Score Error split merge

OurCNN: 3D-RAG + LiftedMulticut X 0.221 0.108 0.339 0.115
GASP: OurCNN + gridGraph + HCC-Avg O 0.224 0.113 0.361 0.085
GASP: OurCNN + gridGraph + HC-Avg O 0.224 0.114 0.364 0.083
PNI CNN [90] X 0.228 0.116 0.345 0.106
LSI-Masks [16] O 0.246 0.125 0.383 0.107
GASP: OurCNN + 3D-RAG + HCC-Avg X 0.257 0.132 0.438 0.063
GASP: OurCNN + 3D-RAG + HC-Avg X 0.262 0.135 0.448 0.063
MALA CNN + MC [54] X 0.276 0.132 0.490 0.089
CRU-Net [163] X 0.566 0.229 1.081 0.389

(c) CREMI Challenge leader-board

Table 3.5. (a-b): Scores and run times of algorithms in the GASP framework on the
CREMI-gridGraph and CREMI-3D-RAG clustering problems: average linkage methods
achieved the best accuracy. Measures shown are: Adapted-Rand error (ARAND, lower
is better); Variation of Information (VOI) [12] (VOI-merge for under-clustering error and
VOI-split for over-clustering error, lower values are better). (c): Current leading entries
in the CREMI challenge leaderboard. CREMI-score is given by the geometric mean of
(VOI-split + VOI-merge) and ARAND error (lower is better).

66 3.4. Experiments

Figure 3.4. Failure cases of three versions of GASP applied to neuron segmentation.
Only wrongly segmented regions are highlighted in different warm colors. Red arrows
point to wrongly split regions; yellow arrows point to false merge errors. HC-Avg returned
the best segmentation. Data is 3D, hence the same color could be assigned to parts of
segments that appear disconnected in 2D.

2 3 4 5 6 7 8 9 10
Amount of structured noise added to edge weights

0.00

0.05

0.10

0.15

0.20

A
R

A
N

D
E

rr
or

HC-Avg

HCC-Avg

GAEC

HCC-Sum

MWS

Figure 3.5. ARAND errors (median values over 20 experiments, lower is better) on
CREMI-gridGraph clustering problems perturbed with structured noise. Average-linkage
algorithms proved to be the most robust.

3.5. Conclusion 67

observed previously in the sum-linkage methods does not work on grid-graphs, because in
this setup edge weights are predicted by a CNN and noise is strongly spatially-correlated 9.
To fully test this hypothesis, we conduct a set of experiments where the CNN predictions
are perturbed by adding structured noise and simulating additional artifacts like “holes”
in the boundary evidence10. The plot in Fig. 3.5 confirms that HC-Avg and HCC-Avg are
very robust algorithms on this data, followed by Sum-linkage algorithms and the Mutex
Watershed algorithm (MWS). It is not a surprise that the AbsMax linkage used by MWS
is not robust to this type of structured noise. However, the scores and runtimes in
Table 3.5a prove how MWS can achieve high accuracy with 70% lower runtime compared
to HC-Avg.

Complete and Single Linkage We use these two linkage methods as baselines to high-
light the difficulty of the studied graph clustering problems listed in Table 3.2. Scores
in Tables 3.5a-3.5b show their poor performance: Single linkage hierarchical clustering
(HC-Single), which here is equivalent to thresholding the edge weights at we = 0 and
computing connected components in the graph, often returned few big under-segmented
clusters. HC-Complete returned instead a lot of over-segmented clusters.

Results on CREMI challenge Table 3.5c shows that the HCC-Avg and HC-Avg cluster-
ing algorithms achieve state-of-the-art accuracy on the CREMI challenge, when combined
with predictions of our CNN. Most of the other entries (apart from LSI-Masks [16]) em-
ploy super-pixels based post-processing pipelines and cluster 3D-region-adjacency graphs.
As we show in Table 3.5b, using superpixels considerably reduces the size of the clus-
tering problem and, consequently, the post-processing time. However, our method op-
erating directly on pixels (gridGraph + HCC-Avg) achieves better performances than
superpixel-based methods (3D-RAG + HCC-Avg) and does not require the parameter
tuning necessary to obtain good super-pixels, which is usually highly dataset dependent.
To scale up our method operating on pixels, we divided each test-volume into four sub-
blocks, and then combined the resulting clusterings by running the algorithms again on
the combined graph. The method 3D-RAG + LiftedMulticut based on the lifted multicut
approximation of [20] achieves the best scores overall, but it takes into account different
information through the lifted edge weights that also depend on additional raw-data and
shape information from highly engineered super-pixels.

3.5 Conclusion

We have presented a unifying framework for agglomerative clustering of graphs with
both positive and negative edge weights. This framework allowed us to explore new
combinations of constraints and linkage criteria and to perform a consistent evaluation of
all algorithms in it. We have then analyzed several theoretical and empirical properties
of these algorithms. On instance segmentation, algorithms based on an average linkage
criterion outperformed all the others: they proved to be simple and robust approaches to

9This effect is not as strong on 3D-RAG graphs, because edge weights are computed by averaging
CNN predictions (and noise) over the boundaries of adjacent supervoxels.

10See Appendix A.3 for details about how we perturbed the CREMI-gridGraph problems by using
Perlin noise [120, 121], which is one of the most common gradient noises used in procedural pattern
generation.

68 3.5. Conclusion

process short- and long-range predictions of a CNN. On biological images, these simple
average agglomeration algorithms achieve state-of-the-art results without requiring the
user to spend much time tuning complex task-dependent pipelines based on super-pixels.

Chapter 4

Predicting Latent Single-Instance
Masks

In this chapter we introduce a new proposal-free instance segmentation method that
builds on single-instance segmentation masks predicted across the entire image in a sliding
window style. In contrast to related approaches, this method concurrently predicts all
masks, one for each pixel, and thus resolves any conflict jointly across the entire image.
Specifically, predictions from overlapping masks are combined into edge weights of a
signed graph that is subsequently partitioned to obtain all final instances concurrently.
The result is a parameter-free method that is strongly robust to noise and prioritizes
predictions with the highest consensus across overlapping masks. All masks are decoded
from a low dimensional latent representation, which results in great memory savings
strictly required for applications to large volumetric images. We test our method on the
challenging CREMI 2016 neuron segmentation benchmark where it achieves competitive
scores.

4.1 Introduction

Instance segmentation is the computer vision task of assigning each pixel of an image
to an instance, such as individual car, person or biological cell. There are two main
types of successful deep learning approaches to instance segmentation: proposal-based
and proposal-free methods. Recently, there has been a growing interest in the latter.
Proposal-free methods do not require object detection and are preferred in imagery as
studied here, in which object instances cannot be approximated by bounding boxes and
are much larger than the field of view of the model.

Some recent successful proposal-free approaches [64, 93, 101] tackle instance segmen-
tation by predicting, for a given patch of the input image, whether or not each pixel in
the patch is part of the instance that covers the central pixel of the patch. This results
a probability mask, which from now on we call central instance mask. These masks are
then repeatedly predicted across the entire image, either in a sliding window style or by
starting from a seed and then shifting the field of view depending on the previously pre-
dicted masks. Final object-instances are then obtained by aggregating predictions from
overlapping masks which is in itself a nontrivial and interesting problem.

In this chapter, we introduce a new proposal-free segmentation method that is also

69

70 4.1. Introduction

Input image

Output embeddings

c.) Encoded-Neighborhood Branch (ENB)

b.) Dense-Neighborhood Branch (DNB)

a.) Sparse-Neighborhood Branch (SNB)

W
W

H

W

H

16

H

W

H

E

Ground truth instances Ground truth central
instance mask

Reshape

W

H

C K2

K2

C

K

K

K

K

K

K

K

K

W

H

Q

1 x 1

1 x 1

1 x 1

K

K

Reshape

ReshapeFully
connected Conv

Convolutional layer

Fully connected layer

Conv

Backbone
model

Reshape layer

Figure 4.1. Comparison between the proposed method and the strong baseline repre-
senting the current state-of-the-art. Left: At the top-left corner, an example of binary
central instance mask for a given ground truth label image; below, the backbone model
predicts feature maps with the spatial dimensions of the input image. Right: a.) Sparse-
neighborhood branch used in the baseline model to predict affinities for a given sparse
neighborhood structure; b) Simple generalization of the sparse-neighborhood branch to
predict dense central instance masks; c) Proposed encoded-neighborhood branch predicting
central instance masks in a low-dimensional latent space.

based on predicting central instance masks1. However, our approach comes with four main
advantages compared to previous methods. Firstly, our model concurrently predicts all
central instance masks, one for each pixel, by using a fully-convolutional approach with
much smaller computational footprint than previous methods, which iteratively predict
one instance at the time, one mask after the other [64, 101]. Secondly, our approach
predicts central instance masks in a low dimensional latent representation (see Fig. 4.1c),
which results in great memory savings that are strictly required to apply the method
to large volumetric images. Thirdly, the proposed approach aggregates predictions from
overlapping central instance masks without the need for any extra parameter or threshold
and outputs predictions with associated uncertainty; and, finally, all final object-instances
are obtained concurrently, as opposed to previous methods predicting them one-by-one
with subsequent conflict resolution.

Additionally, we systematically compare the proposed model with the current state-
of-the-art proposal-free method both on natural and biological images [15,56,90,97,154].
This strong baseline consists of a fully-convolutional network predicting, for each pixel,
an arbitrary predefined set of short- and long-range affinities, i.e. neighborhood relations
representing how likely it is for a pair of pixels to belong to the same object instance (see
Fig. 4.1a).

1For interesting, closely related but independent work, see [99].

4.2. Related Work 71

Our method achieves competitive scores on the challenging CREMI 2016 neuron seg-
mentation benchmark. In our set of validation experiments, we show how predicting
encoded central instance masks always improves accuracy. Moreover, when predictions
from overlapping masks are combined into edge weights of a graph that is subsequently
partitioned, the result is a method that is strongly robust to noise and gives priority to
predictions sharing the highest consensus across predicted masks. This parameter-free
algorithm, for the first time, outperforms super-pixel based methods, which have so far
been the default choice on the challenging data from the CREMI competition challenge.

4.2 Related Work

Many of the recent successful instance segmentation methods on natural images are
proposal-based : they first perform object detection, for example by predicting anchor
boxes [128], and then assign a class and a binary segmentation mask to each detected
bounding box [61, 125]. Proposal-Free methods on the other hand directly group pixels
into instances. Recent approaches use metric learning to predict high-dimensional asso-
ciative pixel embeddings that map pixels of the same instance close to each other, while
mapping pixels belonging to different instances further apart, e.g. [82,89]. Final instances
are then retrieved by applying a clustering algorithm. A post-processing step is needed
to merge instances that are larger then the field of view of the network.

Aggregating Central Instance Masks The line of research closest to ours predicts
overlapping central instance masks in a sliding window style across the entire image. The
work of [93] aggregates overlapping masks and computes intersection over union scores
between them. In neuron segmentation, flood-filling networks [64] and MaskExtend [101]
use a CNN to iteratively grow one instance/neuron at a time, merging one mask after
the other. Recently, the work of [102] made the process more efficient by employing a
combinatorial encoding of the segmentation, but the method remains orders of magnitude
slower as compared to the convolutional one proposed here, since in our case all masks
are predicted at the same time and for all instances at once. The most closely related
work to ours is the independent preprint [99], where a very similar model is applied to the
BBBC010 benchmark microscopy dataset of C. elegans worms. However, here we propose
a more efficient model that scales to 3D data, and we provide an extensive comparison
to related models predicting long-range pixel-pair affinities.

Predicting Pixel-Pair Affinities Instance-aware edge detection has experienced recent
progress due to deep learning, both on natural images and biological data [15, 56, 90, 97,
119, 137, 154, 163]. Among these methods, the most recent ones also predict long-range
affinities between pixels and not only direct-neighbor relationships [56, 90, 97]. Other
related work [54, 144] approach boundary detection via a structured learning approach.
In neuron segmentation, boundaries predicted by a CNN are converted to final instances
with subsequent postprocessing and superpixel-merging. Some methods define a graph
with both positive and negative weights and formulate the problem in a combinatorial
framework, known as multicut or correlation clustering problem [32]. In neuron segmen-
tation and connectomics, exact solvers can tackle problems of considerable size [7], but
accurate approximations [117, 161] and greedy agglomerative algorithms [15, 92, 153] are
required on larger problems.

72 4.3. Model and Training Strategy

(a) (b)

(c) (d)

Figure 4.2. Examples of ex-
pected (a-b) and not expected
(c-d) binary 2D central in-
stance masks.

M
as

k
u

M
as

k
u

v Mask

(a) High affinity (b) Low affinity

(c) No evidence(b) Low affinity

Maskv

u

v

u v

u

v

u

v

u

v

u
v

Figure 4.3. Computing instance-aware affinity be-
tween pixels u and v from instance masks associated
to the central pixel in the patch (orange cross).

4.3 Model and Training Strategy

In this section, we first define central instance masks in Sec. 4.3.1. Then, in Sec. 4.3.2,
we present our first main contribution, a model trained end-to-end to predict encoded
central instance masks, one for each pixel of the input image.

4.3.1 Local Central Instance Masks

The method presented here proposes to distinguish between different object instances
based on instance-aware pixel-pair affinities in the interval [0, 1], which specify whether
or not two pixels belong to the same instance or not. Given a pixel of the input image
with coordinates u⃗ = (ux, uy), a set of affinities to neighboring pixels within a K × K
window is learned, where K is an odd number. We define the K ×K-neighborhood of a
pixel as: NK×K ≡ NK ×NK , where NK ≡

{
−K−1

2
, . . . , K−1

2

}
and represent the affinities

relative to pixel u⃗ as a central instance maskMu⃗ : NK×K → [0, 1].
We represent the associated training targets as binary ground-truth masks M̂u⃗ :

NK×K → {0, 1}, which can be derived from a ground-truth instance label image L̂ :
H ×W → N with dimension H ×W :

∀ u⃗ ∈ H ×W, ∀ n⃗ ∈ NK×K M̂u⃗(n⃗) =

{
1, if L̂(u⃗) = L̂(u⃗+ n⃗)

0, otherwise.
(4.1)

We actually use similar definitions in 3D, but use 2D notation here for simplicity.

4.3.2 Training Encoded Central Instance Masks End-To-End

In several related work approaches [15, 56, 90, 97, 154], affinities between pairs of pixels
are predicted for a predefined sparse stencil representing a set of N short- and long-range
neighborhood relations for each pixel (N = 8 sparse-neighborhood branch of Fig. 4.1a).
The N output feature maps are then trained with a binary classification loss.

On paper, this training method can be easily generalized to output a feature map
of size K2 × H × W and thus predict a full K × K central instance mask for each

4.4. Affinities with Uncertainty from Aggregated Masks 73

pixel of the input image (see dense-neighborhood branch in Fig. 4.1b). Nevertheless, in
practice, this model has prohibitively large memory requirements for meaningful values
of K, precluding application to 3D data of interest here.

However, among the 2K·K conceivable binary masks M̂u⃗ : NK2 → {0, 1}, in practice
only a tiny fraction corresponds to meaningful instance masks (see some examples in Fig.
4.2). This suggests that it is possible to find a compact representation that spans the
manifold of expected instance shapes.

As our first main contribution, we test this assumption by training a model end-to-end
to predict, for each pixel u⃗ ∈ H×W of the input image, a latent vector zu⃗ ∈ RQ encoding
theK×K central instance maskMu⃗ centered at pixel u⃗ (see encoded-neighborhood branch
in Fig. 4.1c). The backbone model is first trained to output a more compact Q×H ×W
feature map and then a tiny convolutional decoder network is applied to each pixel of
the feature map to decode masks. During training, decoding one mask for each pixel in
the image would be too memory consuming. Thus, we randomly sample R pixels with
coordinates u⃗1, . . . , u⃗R and only decode the associated masksMu⃗1 , . . . ,Mu⃗R

. Given the

ground-truth central instance masks M̂u⃗i
defined in Eq. 4.1, the training loss is then

defined according to the Sørensen-Dice coefficient formulated for fuzzy set membership
values, similarly to what was done in [154]. Ground-truth labels are not always pixel-
precise and it is often impossible to estimate the correct label for pixels that are close
to a ground-truth label transition. Thus, in order to avoid noise during training, we
predict completely empty masks for pixels that are less than two pixels away from a label
transition, so that the model is trained to predict single-pixel clusters along the ground-
truth boundaries. In our experiments, this approach performed better than masking the
training loss along the boundaries.

4.3.3 Predicting Multi-Scale Central Instance Masks

Previous related work [56,90,97] shows that predicting long-range affinities between dis-
tant pixels improves accuracy as compared to predicting only short-range ones. However,
predicting large central instance masks would translate to a bigger model that, on 3D
data, would have to be trained on a small 3D input field of view. This, in practice, usually
decreases accuracy because of the reduced 3D context available to the network. Thus, we
instead predict multiple central instance masks of the same window size 7× 7× 5 but at
different resolutions, so that the lower the resolution the larger the size of the associated
patch in the input image. These multiple masks at different resolutions are predicted by
adding several encoded-neighborhood branches along the hierarchy of the decoder in the
backbone model, which in our case is a 3D U-Net [34,131] (see Fig. 4.5). In this way, the
encoded central instance masks at higher and lower resolutions can be effectively learned
at different levels in the feature pyramid of the U-Net.

4.4 Affinities with Uncertainty from Aggregated Masks

In order to obtain an instance segmentation from the predictions of the model presented
in Sec. 4.3, we now compute instance-aware pixel-pair affinities for a given sparse N -
neighborhood structure (see Table 4.3 in supplementary material for details about the
structure) and use them as edge weights of a pixel grid-graph G(V,E), such that each
node represents a pixel / voxel of the image. The graph is then partitioned to obtain
object instances.

74 4.4. Affinities with Uncertainty from Aggregated Masks

Algorithm 9 Affinities from Aggregated Central Instance Masks

Input: Graph G(V,E); central instance masksMu⃗ : NK×K → [0, 1]
Output: Affinities āe ∈ [0, 1] with variance σ2

e for all edges e ∈ E

1: for each edge e = (u⃗, v⃗) ∈ E in graph G do
2: Get coordinates u⃗ = (ux, uy) and v⃗ = (vx, vy) of pixels linked by edge e
3: Collect all T masksMc⃗1 , . . . ,Mc⃗T including both pixel u⃗ and pixel v⃗
4: Init. vectors [a1, . . . , aT] = [w1, . . . , wT] = 0 for affinities and evidence weights
5: for i ∈ 1, . . . , T do
6: Get relative coords. of u⃗ and v⃗ with respect to the central pixel c⃗i
7: ai ← min

(
Mc⃗i(u⃗− c⃗i),Mc⃗i(v⃗ − c⃗i)

)
▷ Fuzzy-AND: both values active

8: wi ← max
(
Mc⃗i(u⃗− c⃗i),Mc⃗i(v⃗ − c⃗i)

)
▷ Fuzzy-OR: at least one value active

9: Get weighted affinity average āe =
∑

i aiwi /
∑

i wi

10: Get weighted affinity variance σ2
e =

∑
i wi(ai − āe)

2 /
∑

i wi

11: return āe, σ
2
e for each e ∈ E

In this section, we propose an algorithm that, without the need of any threshold
parameter, aggregates predictions from overlapping central instance masks and outputs
edge weights with associated uncertainty. Related work either thresholds the predicted
central instance masks [64, 99, 101] or computes Intersection over Union (IoU) scores
for overlapping patches [93]. However, an advantage of predicting pixel-pair affinities
/ pseudo-probabilities as compared to IoU scores is that affinities can easily be trans-
lated into attractive and repulsive interactions in the grid-graph and a parameter-free
partitioning algorithm can be employed to yield instances.

Here, we propose a simple algorithm to aggregate predictions from multiple patches:
Fig. 4.4 shows a simplified example of how Algorithm 9 computes the affinity for an
edge e linking a pair of pixels u⃗ and v⃗. As a first step, the algorithm loops over all
predicted central instance masks including both u⃗ and v⃗. However, not all these masks
are informative, as we visually explain in Fig. 4.3: a mask Mc⃗i centered at pixel c⃗i
provides any evidence about the affinity between pixels u⃗ and v⃗ only if at least one of the
two pixels belongs to the mask (fuzzy OR operator at line 8 in Alg. 9). If both pixels do
not belong to it, we cannot say anything about whether they belong to the same instance
(see Fig. 4.3c). We model this with an evidence weight wi ∈ [0, 1], which is low when
both pixels do not belong to the mask. On the other hand, when at least one of the
two pixels belongs to the mask, we distinguish two cases (fuzzy AND operator at line 7
in Alg. 9): i) both pixels belong to the mask (case in Fig. 4.3a), so by transitivity we
conclude they should be in the same instance and their affinity ai should tend to one; ii)
only one pixel belongs to the mask (case in Fig. 4.3b), so that according to this mask
they are in different instances and their affinity should tend to zero.

At the end, we compute a weighted average āe and variance σ2
e of the collected affinities

from all overlapping masks, such that masks with more evidence will contribute more on
average, and the obtained variance is a measure of how consistent were the predictions
across masks. The algorithm was implemented on GPU using PyTorch and the variance
was computed via Welford’s online stable algorithm [152].

4.5. Experiments on Neuron Segmentation 75

Figure 4.4. Proposed method to average overlapping masks and compute the affinity
between pixel u and pixel v (highlighted in red in the ground-truth segmentation on the
left). For simplicity, we only consider three masks among all the ones including both
pixels u and v. In Mask 1, only v is part of the mask, so there is a strong evidence for no
affinity between u and v; in Mask 2, u is predicted to be part of the mask only with a low
confidence, so the contribution of this mask in the final average will be weak; in Mask
3, both pixels are not part of the central instance mask, so there is no evidence about
their affinity. The final affinity value of edge (u, v) is given by the weighted average of
the collected affinities ai weighted with the evidence weights wi: āe =

∑3
i=1 aiwi /

∑
i wi

4.5 Experiments on Neuron Segmentation

We evaluate and compare our method on the task of neuron segmentation in electron
microscopy (EM) image volumes. This application is of key interest in connectomics, a
field of neuro-science with the goal of reconstructing neural wiring diagrams spanning
complete central nervous systems. We test our method on the competitive CREMI 2016
EM Segmentation Challenge [40] that is currently the neuron segmentation challenge
with the largest amount of training data available. The dataset comes from serial section
EM of Drosophila fruit-fly brain tissue and consists of 6 volumes of 1250 × 1250 × 125
voxels at resolution 4× 4× 40 nm3, three of which come with publicly available training
ground truth. We achieved the best scores by downscaling the resolution of the EM data
by a factor (1

2
, 1
2
, 1), since this helped increasing the 3D context provided as input to the

model. We use the second half of CREMI sample C as validation set for our comparison
experiments in Table 4.1 and then we train a final model on all the three samples with
available ground truth labels to submit results to the leader-board in Tab. 4.2. Results are
evaluated using the CREMI score, which is given by the geometric mean of Variation of
Information Score (VOI split + VOI merge) and Adapted Rand-Score (Rand-Score) [12].
See Sec. 3.4.2 for more details on data augmentation, strongly inspired by related work.

4.5.1 Architecture details of the tested models

As a backbone model we use a 3D U-Net consisting of a hierarchy of four feature maps
with anisotropic downscaling factors (1

2
, 1
2
, 1), similarly to [89,90,154]. Models are trained

with the Adam optimizer and a batch size equal to one. Before applying the loss, we
slightly crop the predictions to prevent training on borders where not enough surrounding
context is provided. Fig. 4.5 shows the details on the 3D-UNet architecture and Table 4.3
lists the sparse neighborhood structures predicted by the sparse-neighborhood branches.

76 4.5. Experiments on Neuron Segmentation

Only the outputs at the highest resolution (given by branches SNB1, ENB1 and ENB2)
are used to compute edge weights in the pixel grid-graph. A visualization of the predicted
single-instance mask latent spaces is given in Fig. 4.7.

The input volume has shape 272× 272× 12 which is equivalent to a volume of 544×
544 × 12 voxels in the original resolution 4 × 4 × 40 nm3. Before to apply the loss, we
crop the predictions to a shape 224 × 224 × 9 in order to avoid border artifacts2. The
final model trained on all available ground truth labels is trained with a slightly larger
input volume of 288× 288× 14.

Baseline Model (SNB) As a strong baseline, we re-implement the current state-of-the-
art and train a model to predict affinities for a sparse neighborhood structure (Fig. 4.1a).
We perform deep supervision by attaching three sparse-neighborhood branches (SNB) at
different levels in the hierarchy of the UNet decoder and train the coarser feature maps
to predict longer range affinities. Details about the used neighborhood structures and
the architecture can be found in Table 4.3 and Fig. 4.5.

Proposed Model (ENB) We then train a model to predict encoded central instance masks
(Fig. 4.1c). Similarly to the baseline model, we provide deep supervision by attaching
four encoded-neighborhood branches (ENB) to the backbone U-Net. As explained in Sec.
4.3.3, all branches predict 3D masks of shape 7×7×5, but at different resolutions (1, 1, 1),
(1
4
, 1
4
, 1) and (1

8
, 1
8
, 1), as we show in the architecture in Fig. 4.5. A visualization of the

learned latent spaces is given in Fig. 4.7.

Combined Model (SNB+ENB) Finally, we also train a combined model to predict
both central instance masks and a sparse neighborhood of affinities, by providing deep
supervision both via encoded-neighborhood and sparse-neighborhood branches. The
backbone of this model is then trained with a total of seven branches: three branches
equivalent to the ones used in the baseline model SNB, plus four additional ones like
those in the ENB model (see Fig. 4.5).

Efficient Affinities for any Sparse Neighborhood An advantage of training dense
central instance masks is that the graph N -neighborhood structure can be defined at
prediction time, after the model has been trained. As an alternative to the method
presented in Sec. 4.4 that aggregates overlapping masks, here we propose the following
efficient approach to predict affinities for a sparse neighborhood structure: Given a model
that has been already trained end-to-end to predict encoded central instance masks, we
stack few additional convolutional layers that are trained to convert the Q-dimensional
latent mask space to N output feature maps representing affinities for the chosen sparse
neighborhood structure. These last layers are not trained jointly with the full model, so
in practice they are very quick and easy to train with a binary classification loss. By using
this method, we avoid to decode all masks explicitly (one for each pixel) and achieve great
time and memory savings. As a result, we obtain a model that at inference time is no
more memory-consuming than the current state-of-the-art approach predicting affinities
only for a specific sparse neighborhood structure.

2Instead of cropping directly the final predictions, we perform several crops in the decoder part of the
UNet model (see Upsample + Crop connections in Fig. 4.5) in order to optimize GPU-memory usage.

4.5. Experiments on Neuron Segmentation 77

(5x5x1)

Skip connection

Convolutional layer Encoded Neigh. Branch

Sparse Neigh. BranchGroup Norm. + ReLU

Upsample (2x2x1) + Crop

Strided Convolution (2,2,1)

1 32 32

64

48 32

32

10

32

10

32

18

ENB2

(5x5x1)

Mask shape: (7,7,5)
Resolution: (1,1,1)

Mask shape: (7,7,5)
Resolution: (, ,1)1

4

ENB3

SNB2

ENB4

ENB

SNB3

SNB

ENB1

SNB1

128

256

128

64

(3x3x3) (3x3x3) (3x3x3)

1
4

Mask shape: (7,7,5)
Resolution: (, ,1)1

4
1
4

Mask shape: (7,7,5)
Resolution: (, ,1)1

8
1
8

Figure 4.5. The architecture of the model, which is strongly inspired by the 3D-
UNet models proposed in [54, 90]. Red numbers indicate the number of used feature
maps. As we explain in Sec. 4.5.1, in this work we consider three models: i) a baseline
model based on the three sparse-neighborhood branches SNBi=1,2,3, shown in the figure;
ii) another model based on the four encoded-neighborhood branches ENBi=1,2,3,4; iii) and,
finally, a combined model trained with all seven branches shown in the Figure. Even
though the input of the model is a 3D volume, here, for simplicity, we show an example
of 2D input image taken from the stack. As output of the sparse-neighborhood branches
SNBi=1,2,3, we show few channels representing some of the predicted affinities (see Table
4.3 for details on the sparse neighborhood structures predicted by each branch SNBi=1,2,3).
We also show the first three principal components of the encoded masks predicted by
the encoded-neighborhood branches ENBi=1,2,3,4. All branches ENBi=1,2,3,4 predict central
instance masks of the same window size 7× 7× 5, but at different resolutions.

78 4.5. Experiments on Neuron Segmentation

Figure 4.6. Raw data from the validation set overlaid with the final instance segmenta-
tion obtained with our method: affinities are computed by averaging overlapping masks
(MaskAggr); the final segmentation is achieved by running the Mutex Watershed algo-
rithm on the obtained graph with positive and negative edge weights. Note that the
data is 3D, hence the same color could be assigned to parts of segments that appear
disconnected in 2D.

4.5. Experiments on Neuron Segmentation 79

a)
G
ro
un
d
T
ru
th

La
be
ls

z = 0z = -1z = -2 z = +1 z = +2

c)
La
te
nt
sp
ac
e

en
c.
ne
ig
h.
br
an
ch
1

d)
La
te
nt
sp
ac
e

en
c.
ne
ig
h.
br
an
ch
2

e)
La
te
nt
sp
ac
e

en
c.
ne
ig
h.
br
an
ch
3

f)
La
te
nt
sp
ac
e

en
c.
ne
ig
h.
br
an
ch
4

b)
R
aw

Im
ag
e

Figure 4.7. Visualization of the predicted single-instance mask latent spaces
– Each column represents a 2D image from the 3D stack (only five are shown here). (a)
Ground-truth labels. (b) Raw image given as input to the model. (c-d-e-f) Visualization
of the first three principal components of the 32-dimensional mask latent spaces predicted
by the encoded-neighborhood branches ENBi=1,2,3,4 in our model. Note how latent spaces
learned at different levels of the U-Net pyramid show different feature-scales, because they
encode central instance masks at different resolutions.

80 4.5. Experiments on Neuron Segmentation

4.5.2 Graph Partitioning Methods

Given the predicted encoded central instance masks, we compute affinities ae either with
the average aggregation method introduced in Sec. 4.4 (MaskAggr) or the efficient
approach described in the previous section 4.5.1. The result of either is a signed pixel grid-
graph, i.e. a graph with positive and negative edge weights that needs to be partitioned
into instances. The used neighborhood connectivity of the graph, which is very similar
to the one used in related work [90,154], is given in Table 4.3. Positive and negative edge
weights we are computed by applying the additive transformation we = ae − 0.5 to the
predicted affinities.

To obtain final instances, we test different partitioning algorithms. The Mutex Wa-
tershed (MWS) [154] is an efficient algorithm to partition graphs with both attractive
and repulsive weights without the need for extra parameters. It can easily handle the
large graphs considered here with up to 108 nodes/voxels and 109 edges3. In Fig. 4.6, we
show the resulting instance segmentation obtained by computing affinities from central
instance masks and then running the Mutex Watershed algorithm on the obtained graph
with positive and negative edge weights.

Then, we also test another graph partitioning pipeline that has often been applied to
neuron segmentation because of its robustness. This method first generates a 2D super-
pixel over-segmentation from the model predictions and then partitions the associated
region-adjacency graph to obtain final instances. Super-pixels are computed with the
following procedure: First, the predicted direct-neighbor affinities are averaged over the
two isotropic directions to obtain a 2D neuron-membrane probability map; then, for
each single 2D image in the stack, super-pixels are generated by running a watershed
algorithm seeded at the maxima of the boundary-map distance transform (WSDT).
Given this initial over-segmentation, a 3D region-adjacency graph is built, so that each
super-pixel is represented by a node in the graph. Edge weights of this graph are computed
by averaging short- and long-range affinities over the boundaries of neighboring super-
pixels. Finally, the graph is partitioned by applying the average agglomeration algorithm
proposed in [15] (GaspAvg).

After running the graph partitioning method, we use a simple post-processing step to
delete small segments on the boundaries, most of which are given by single-voxel clusters.
On the neuron segmentation predictions, we deleted all regions with less than 200 voxels
and used a seeded watershed algorithm to expand the bigger segments.

4.5.3 Results and Discussion

Pre-Training of the Encoded Space The proposed model based on an encoded-neighborhood branch
can be properly trained only if the dimension Q of the latent space is large enough to
accommodate all possible occurring neighborhood patterns. To find a small but suffi-
ciently large Q, we trained a convolutional Variational Auto-encoder (VAE) [76, 130] to
compress binary ground-truth central instance masks M̂u⃗ into latent variables zu⃗ ∈ RQ

and evaluated the quality of the reconstructed binary masks via the reconstruction loss.
We concluded that Q = 32 is large enough to compress the masks considered here con-
sisting of 7 × 7 × 5 = 245 pixels. As a first experiment, we tried to make use of this
VAE-pretrained latent space to train the proposed encoded-neighborhood branch and pre-

3Among all edges given by the chosen neighborhood structure, we add only 10% of the long-range
ones, since the Mutex Watershed was shown to perform optimally in this setup [15,154].

4.5. Experiments on Neuron Segmentation 81

(a) (b) (c)

(d) (e) (f)

Figure 4.8. Comparison between different affinities and their robustness to noise. (a-b)
Raw data and ground-truth labels. (c-d) Affinities predicted by the sparse-neighborhood
branch, which is trained with a dense binary classification loss (high affinities are red).
(e-f) Affinities computed by averaging overlapping masks as explained in Sec. 4.4 (Mask-
Aggr). Affinities from averaged masks are smoother and present a more consistent bound-
ary evidence in the noisy region highlighted by the red circle in (a). Here we show affinities
along the horizontal (-4, 0, 0) and vertical (0, -4, 0) directions.

dict encoded masks directly in this space by using an L2 loss on the encoded vectors.
However, similarly to the findings of [99], this approach performed worse than directly
training the full model end-to-end as described in Sec. 4.3.2.

Training Encoded Masks As we show in our validation experiments in Tab. 4.1, models
trained to predict encoded central instance masks (ENB) achieved better scores than the
current state-of-the-art method predicting affinities for a sparse neighborhood structure
(SNB). Our interpretation of this result is that using the encoding process to predict
central instance masks encourages the model to predict segment shapes that are consistent
in a larger neighborhood, which can be helpful to correctly segment the most difficult
regions of the data.

Aggregating Overlapping Masks In our validation experiments of Tab. 4.1, we also
test the affinities computed by averaging over overlapping masks (MaskAggr), as de-
scribed in Sec. 4.4. We then partition the resulting signed graph by using the Mutex
Watershed, which has empirical linearithmic complexity in the number of edges. Our ex-
periments show that, for the first time on this type of more challenging neuron segmenta-
tion data, the Mutex Watershed (MWS) achieves better scores than the super-pixel-based
methods (WSDT+GaspAvg), which have so far been known to be more robust to noise
but also require the user to tune more hyper-parameters.

We also note that the MWS achieves competitive scores only with affinities computed
from aggregating overlapping masks (MaskAggr). This shows that the MWS algorithm
can take full advantage of the central instance aggregation process by assigning the highest
priority to the edges with largest attractive and repulsive weights that were consistently
predicted across overlapping masks.

On the other hand, most of the affinities trained with the sparse-neighborhood

82 4.5. Experiments on Neuron Segmentation

Train
Sparse

Neighbor.
(SNB)

Train
Encoded
Masks
(ENB)

Aggregate
Overlapping

Masks
(MaskAggr)

Partitioning
algorithm

No
superpixels
required

CREMI-Score
(lower is better)

VI-merge
(lower is better)

X X X MWS X 0.153 0.272
O X X MWS X 0.184 0.273
O X O MWS X 0.419 0.302
X X O MWS X 0.532 0.447
X O O MWS X 1.155 0.874

O X O WSDT+GaspAvg O 0.173 0.234
X X O WSDT+GaspAvg O 0.237 0.331
X O O WSDT+GaspAvg O 0.254 0.355
X X X WSDT+GaspAvg O 0.334 0.388
O X X WSDT+GaspAvg O 0.357 0.391

Table 4.1. Comparison experiments on our CREMI validation set. Training encoded
central instance masks (ENB) achieved better scores than the current state-of-the-art
approach training only affinities for a sparse neighborhood (SNB). The model that per-
formed best was the one using the method proposed in Sec. 4.4 to average overlapping
masks (MaskAggr).

branch and a dense binary classification loss are almost binary, i.e. they present val-
ues either really close to zero or really close one (see comparison between different types
of affinities in Fig. 4.8). This is not an ideal setup for the MWS, which is a greedy algo-
rithm merging and constraining clusters according to the most attractive and repulsive
weights in the graph. In fact, in this setting the MWS can often lead to over-segmentation
and under-segmentation artifacts like those observed in the output segmentations of the
(SNB+ENB+MWS) and (SNB+MWS) models. Common causes of these mistakes can
be for example inconsistent predictions from the model and partially missing boundary
evidence, which are very common in this type of challenging application (see Fig. 4.8 for
an example).

Finally, we also note that superpixel-based methods did not perform equally well on
affinities computed from aggregated masks and the reason is that these methods were
particularly tailored to perform well with the more binary-like classification output of
the sparse-neighborhood branch.

Training Both Masks and a Sparse Neighborhood In our validation experiments, the
combined model, which was trained to predict both a sparse neighborhood (SNB) and
encoded central instance masks (ENB), achieved the best scores and yielded sharper and
more accurate mask predictions. In general, providing losses for multiple tasks simul-
taneously has often been proven beneficial in a supervised learning setting. Moreover,
the dense gradient of the encoded-neighborhood branch, which focuses on locally correct
predictions, nicely complements the sparse gradient4 of the encoded-neighborhood branch,
which focuses on predictions that are consistent in a larger neighborhood. We expect
this to be another reason why the combination of affinities and central instance masks
performed best in our experiments.

Results on Test Samples The evaluation on the three test samples presented in Tab.
4.2 confirms our findings from the validation experiments: among the methods tested

4The gradient of the encoded-neighborhood branch is sparse, due to GPU-memory constraints as
explained in Sec. 4.3.2.

4.6. Conclusions 83

Model

Train
Sparse

Neighbor.
(SNB)

Train
Encoded
Masks
(ENB)

Aggregate
Overlapping

Masks
(MaskAggr)

Partitioning
algorithm

No
superpixels
required

CREMI-Score
(lower is better)

GaspUNet [15] X O O WSDT+LMulticut O 0.221
GaspUNet [15] X O O GaspAvg X 0.224
PNIUNet [90] X O O Z-Watershed+Agglo O 0.228
OurUNet X X X MWS X 0.246
OurUNet O X O WSDT+GaspAvg O 0.268
MALAUNet [54] X O O WSDT+Multicut O 0.276
OurUNet X X O WSDT+GaspAvg O 0.280
CRUNet [163] O O O 3D-Watershed O 0.566
LFC [119] X O O Z-Watershed+Agglo O 0.616

Table 4.2. Representative excerpt of the published methods currently part of the
CREMI leaderboard [40]. The best method proposed here achieves competitive scores
and is based on an efficient parameter-free algorithm that does not rely on superpixels.
For more details about the partitioning algorithms used by related work, see references
in the first column.

here, the best scores are achieved by the combined model (ENB+SNB) and by using
the Mutex Watershed algorithm (MWS) on affinities averaged over overlapping masks
(MaskAggr). Our method achieves comparable scores to the only other method in the
leader-board that does not rely on super-pixels (line 3 in Table 4.2). This method uses
the average agglomeration algorithm GaspAvg proposed in [15] instead of the MWS.
GaspAvg has been shown to be more robust to noise than Mutex Watershed, however it
is also considerably more computationally expensive to run on large graphs like the ones
considered here.

4.6 Conclusions

We have presented a new proposal-free method predicting encoded central instance masks
in a sliding window style, one for each pixel of the input image, and introduced a
parameter-free approach to aggregate predictions from overlapping masks and obtain all
instances concurrently. When applied to large volumetric biological images, the result-
ing method proved to be strongly robust to noise and compared favorably to competing
methods that need super-pixels and hence more hyper parameters.

84 4.6. Conclusions

Graph neighborhood
structure

(16 neighbors)

SNB1

(18 neighbors)
SNB2

(10 neighbors)
SNB3

(10 neighbors)

(0, 0, -1) (0, 0, -1) (0, 0, -1) (0, 0, -1)
(-1, 0, 0) (-1, 0, 0) (-4, 0, 0) (-4, 0, 0)
(0, -1, 0) (0, -1, 0) (0, -4, 0) (0, -4, 0)
(-4, 0, 0) (-4, 0, 0) (0, 0, -2) (0, 0, -2)
(0, -4, 0) (0, -4, 0) (0, 0, -3) (0, 0, -3)
(-4, -4, 0) (-4, -4, 0) (0, 0, -4) (0, 0, -4)
(4, -4, 0) (4, -4, 0) (-14, 0, 0) (-12, 0, 0)
(-4, 0, -1) (-4, 0, -1) (0, -14, 0) (0, -12, 0)
(0, -4, -1) (0, -4, -1) (-14, -14, 0) (-12, -12, 0)
(-4, -4, -1) (-4, -4, -1) (14, -14, 0) (12, -12, 0)
(4, -4, -1) (4, -4, -1) - -
(0, 0, -2) (0, 0, -2) - -
(-8, -8, 0) (0, 0, -3) - -
(8, -8, 0) (0, 0, -4) - -
(-12, 0, 0) (-8, -8, 0) - -
(0, -12, 0) (8, -8, 0) - -

- (-12, 0, 0) - -
- (0, -12, 0) - -

Table 4.3. Sparse neighborhood structures – In this table, we represent sparse
neighborhood structures (see for example the one shown in Fig. 4.1a) as lists of offsets
(δx, δy, δz) indicating the relative coordinates of neighboring pixels with respect to the
central pixel. The first column shows the neighborhood structure of the pixel grid-graph,
such that each pixel / node is connected to 16 neighbors. In the following columns, we
provide the neighborhood structures predicted by the three sparse-neighborhood branches
SNBi used in our model (see architecture in Fig. 4.5). These neighborhood structures
were inspired by the ones used in [90,154] but were adapted to our version of the CREMI
data that is downscaled by a factor (1

2
, 1
2
, 1). Note that the offsets provided here are given

in the downscaled resolution.

Conclusions

In this thesis, we have introduced new graph-based instance segmentation methods and
applied them to automated segmentation of neural tissue image volumes. Until a few
years ago, most of the instance segmentation pipelines employed in neuron segmenta-
tion consisted of several post-processing steps [20, 54, 55, 90, 96, 101, 117]. Many of these
pipelines included a fully convolutional neural network trained to delineate boundaries
between different neuronal processes in the image. These boundary predictions were
first processed by a superpixel-generation algorithm, which would then return an over-
segmentation, i.e., a segmentation where all pixels in an image’s segment belong to the
same neuronal process, but there can be many segments associated with one neuron. This
initial over-segmentation was then converted into a graph whose nodes represented super-
pixels, whereas edges expressed neighboring relationships. Finally, a graph partitioning
algorithm returned the final instance segmentation.

These pipelines were rather complex and required the user to spend time tuning task-
dependent hyper-parameters related to the superpixel generation algorithm. However,
they used to be necessary to achieve state-of-the-art results because, at the time, deep
learning models would often predict inconsistent boundaries, including holes and gaps.
A way to fix this problem was then to generate superpixels and accumulate the model’s
predictions along boundaries separating the segments so that noise would be average out.

Recently, the performances of fully convolutional models have dramatically improved,
primarily thanks to novel training strategies [90,106]. Many instance segmentation meth-
ods now predict pixel-pair affinities [56, 90, 97], representing how likely it is for a pair of
pixels to be in the same object instance. These approaches do not only predict affinities
for pairs of direct-neighboring pixels: they also learn affinities between distant pixels.
Predicting such long-range relations proved to be very beneficial during training because
the model learns to more effectively detect large-scale features in images [90].

In this thesis, we have developed several new graph partitioning algorithms that are
simple and parameter-free. By combining these algorithms with short- and long-range
affinities from a deep convolutional neural network, we have shown that it is now pos-
sible to achieve state-of-the-art accuracies on neuron segmentation without relying on
superpixels or other dataset-dependent post-processing pipelines.

In Chapter 2, we have introduced a new efficient algorithm, the Mutex Watershed,
to cluster graphs with both attractive and repulsive edge weights. The proposed algo-
rithm has low computational complexity and is closely related to Kruskal’s algorithm for
minimum spanning tree computation [84]. We prove that this algorithm finds the global
optimum of an objective function and that this objective is closely related to the multicut
optimization problem and the power watershed framework. The Mutex Watershed algo-
rithm achieved state-of-the-art results on the ISBI neuron segmentation challenge. After
our results were published, it also became part of two other state-of-the-art segmentation
pipelines used for neuron segmentation [89,99].

85

86 4.6. Conclusions

In Chapter 3, we have then proved that the Mutex Watershed algorithm is part of a
larger generalized framework, named GASP, for agglomerative clustering of graphs with
both positive and negative edge weights. We have analyzed several theoretical and em-
pirical properties of the algorithms in it, by exploring new and existing combinations
of linkage criteria and applying them to different types of graphs. Algorithms based on
an average linkage criterion proved to be simple and robust approaches when applied to
an instance segmentation task. On large volume images, these simple average agglom-
eration algorithms achieved state-of-the-art results on the competitive CREMI neuron
segmentation challenge.

Finally, in Chapter 4, we introduced a novel proposal-free method predicting encoded
single-instance masks in a sliding window style, one for each pixel of the input image, and
introduced a parameter-free approach to aggregate predictions from overlapping masks
and obtain all instances concurrently. The resulting pipeline proved to be strongly robust
to noise when applied to large neuron segmentation volumetric images. The method
also endows its predictions with an uncertainty measure, depending on the consensus of
overlapping single-instance masks. Future work could use these uncertainty measures to
estimate the confidence of individual instances, which may help facilitate the subsequent
proof-reading step still needed in neuron segmentation.

The proposed unifying framework for agglomerative clustering algorithms also opens
several opportunities for further research. Future work could investigate which objectives
are optimized by the algorithms included in the GASP framework and study how they
relate to the multicut / correlation clustering problem. A generalized GASP objective
function could also be linked to existing cost functions for hierarchical clustering on
unsigned graphs with positive edge weights [37,44,108]. Another research direction is the
structured learning of graph edge weights, which optimizes the segmentation performance
directly. The fact that this approach has already been successfully applied to instance
segmentation and other graph partitioning algorithms [28, 54, 82, 155] suggests that it
could be similarly used to achieve an end-to-end training of the segmentation pipelines
presented in this thesis that rely on agglomerative algorithms in the GASP framework.

Appendices

87

Appendix A

GASP

A.1 Implementation and complexity of GASP

A.1.1 Update rules

During the agglomerative process, the interaction between adjacent clusters has to be
properly updated and recomputed, as shown in Algorithm 8. An efficient way of imple-
menting these updates can be achieved by representing the agglomeration as a sequence of
edge contractions in the graph. Given a graph G(V,E,w) and a clustering Π, we define the
associated contracted graph G̃Π(Ṽ , Ẽ, w̃), such that there exists exactly one representative
node |Ṽ ∩ S| = 1 for every cluster S ∈ Π . Edges in Ẽ represent adjacency-relationships
between clusters and the signed edge weights w̃e are given by inter-cluster interactions
w̃(euv) = WSu,Sv , where Su denotes the clustering including node u. For the linkage
criteria tested in this article, when two clusters Su and Sv are merged, the interactions
between the new cluster Su ∪ Sv and each of its neighbors depend only on the previous
interactions involving Su and Sv. Thus, we can recompute these interactions by using an
update rule f that does not involve any loop over the edges of the original graph G:

W(Su ∪ Sv, St) =f
[
W(Su, St),W(Sv, St)

]
(A.1)

=f(w̃(eut), w̃(evt)) (A.2)

In Fig. A.1 we show an example of edge contraction and in Table A.1 we list the update
rules associated to the linkage criteria we introduced in Table 3.1.

A.1.2 Implementation

Our implementation of GASP is based on an union-find data structure and a heap allowing
deletion of its elements. In Phases 2 and 3, GASP is equivalent to a standard hierarchical
agglomerative clustering algorithm with complexity O(N2 logN). In Algorithm 10, we
show our implementation of phase 1, involving cannot-link constraints. In phase 1, the
algorithm starts with each node assigned to its own cluster and sorts all edges e ∈ E in a
heap/priority queue (PQ) by their absolute weight |we| = |w+

e −w−
e | in descending order,

so that the most attractive and the most repulsive interactions are processed first. It
then iteratively pops one edge euv from PQ and, depending on the priority w̃uv, does the
following: in case of attractive interaction w̃uv > 0, provided that euv was not flagged as a
cannot-link constraint, merge the connected clusters, perform an edge contraction of euv in

89

90 A.1. Implementation and complexity of GASP

Algorithm 10 Implementation of GASP - Phase 1

Input: G(V,E,w+, w−) with N nodes and M edges; boolean
addCannotLinkConstraints

Output: Final clustering

1: G̃(Ṽ , Ẽ)← G(V,E,w+, w−) ▷ Init. contracted graph
2: UF ← initUnionFind(V) ▷ Init. data structure representing clustering
3: PQ.push(|we|, e) ∀e ∈ E ▷ Init. priority queue in desc. order of |we| = |w+

e −w−
e |, O(|E|)

4: canBeMerged[e]← True ∀e ∈ E ▷ Init. cannot-link constraints
5:

6: while PQ is not empty do
7: w̃, euv ← PQ.popHighest() ▷ O(log |E|)
8: assert UF.find(u) ̸= UF.find(v) ▷ Edges in PQ always link nodes in different clusters
9: if (w̃ > 0) and canBeMerged[euv] then
10: PQ, canBeMerged, Ẽ ← UpdateNeighbors(u, v)
11: Ṽ ← Ṽ \ {v}, Ẽ ← Ẽ \ {euv} ▷ Update contracted graph
12: UF.merge(u, v) ▷ Merge clusters, O(α(|E|))
13: else if (w̃ ≤ 0) and addCannotLinkConstraints then
14: canBeMerged[euv]← False ▷ Constrain the two clusters

15: return Final clustering given by union-find data structure UF

1: function UpdateNeighbors(u, v)
2: Nu = {t ∈ Ṽ |eut ∈ Ẽ}
3: Nv = {t ∈ Ṽ |evt ∈ Ẽ}
4: for t ∈ Nv do ▷ Loop over neighbors in G̃ of deleted node v
5: Ẽ ← Ẽ \ {evt}
6: w̃vt ← PQ.delete(evt) ▷ Delete edge evt from PQ and get the old edge weight,
O(log |E|)

7: canBeMerged[eut]← canBeMerged[eut] and canBeMerged[evt]
8: if t ∈ Nu then ▷ Check if t is a common neighbor of u and v
9: w̃ut ← PQ.delete(eut) ▷ O(log |E|)
10: PQ.push(|f(w̃ut, w̃vt)|, eut) ▷ O(log |E|)
11: else
12: Ẽ ← Ẽ ∪ {eut}
13: PQ.push(|w̃vt|, eut) ▷ O(log |E|)
14: return PQ, canBeMerged, Ẽ

Algorithm 11 Mutex Watershed Algorithm proposed in Chapter 2

Input: G(V,E,w+, w−) with N nodes and M edges
Output: Final clustering

1: UF ← initUnionFind(V)
2: for (u, v) = e ∈ E in descending order of |we| = |w+

e − w−
e | do

3: if UF.find(u) ̸= UF.find(v) then ▷ Check if u, v are already in the same cluster
4: if (we > 0) and canBeMerged(u, v) then ▷ Check for cannot-link constraints
5: UF.merge(u, v) and inherit constraints of parent clusters
6: else if (we ≤ 0) then
7: Add cannot-link constraints between parent clusters of u, v

8: return Final clustering given by union-find data structure UF

A.1. Implementation and complexity of GASP 91

Linkage criteria Update rule f

Sum: f(w̃1, w̃2) = w̃1 + w̃2

Absolute
Maximum:

f(w̃1, w̃2) =

{
w̃1 if |w̃1| > |w̃2|
w̃2 otherwise

Average: f(w̃1, w̃2) = weightAvg{w̃1, w̃2}

Single: f(w̃1, w̃2) = max{w̃1, w̃2}

Complete: f(w̃1, w̃2) = min{w̃1, w̃2}

Table A.1. The table lists the update rules f(w̃1, w̃2) associated to the linkage criteria
of Table 3.1 and that are used to efficiently update the interactions between clusters.

z u

v

s

t

z u

v

s

t

z u

v

s

t

u u

vu

z

t

z

u

t

z
u

t

G
ra
ph

an
d

cl
us
te
rin
g

C
on
tra
ct
ed

gr
ap
h

(i) (ii) (iii)

Figure A.1. Example of edge contraction. First row: original graph G; clustering
Π (gray shaded areas) with dashed edges on cut; cannot-link constraints (violet bars).
Second row: contracted graph G̃Π. In step ii), edge euv is contracted and node v deleted
from G̃Π. In step iii), double edges etu and etv resulting from the edge contraction are
replaced by a single edge with updated interaction.

G̃Π and update the priorities of new double edges as explained in Fig. A.1. If, on the other
hand, the interaction is repulsive (w̃uv ≤ 0) and the option addCannotLinkContraints

of Alg. 10 is True, then the edge euv is flagged as cannot-link constraint.

A.1.3 Complexity

In the main loop of Phase 1, the algorithm iterates over all edges, but the only iterations
presenting a complexity different from O(1) are the ones involving a merge of two clusters,
which are at mostN−1. By using a union-find data structure (with path compression and
union by rank) the time complexity of merge(u, v) and find(u) operations is O(α(N)),
where α is the slowly growing inverse Ackerman function. The algorithm then iterates
over the neighbors of the merged cluster (at most N) and updates/deletes values in
the priority queue (O(log |E|)). Therefore, similarly to a heap-based implementation
of hierarchical agglomerative clustering, our implementation of GASP - Phase 1 has a
complexity of O(N2 logN). In the worst case, when the graph is dense and |E| = N2,
the algorithm requires O(N2) memory. Nevertheless, in our practical applications the
graph is much sparser, so O(|E|) = O(N). With a single-linkage, corresponding to the

92 A.2. Proofs of Propositions in Section 3.3.3

choice of the Maximum update rule in our framework, the algorithm can be implemented
by using the more efficient Kruskal’s Minimum Spanning Tree algorithm with complexity
O(N logN), but only when cannotLinkConstraints are not used. Moreover, GASP with
Absolute Maximum linkage can be implemented more efficiently (see next section).

A.2 Proofs of Propositions in Section 3.3.3

Lemma A.2.1. If GASP Algorithm 8 with Complete linkage criteria enforces a
constraint between two clusters in Phase 1, then the interaction between the clusters will
never become positive over the course of the following agglomeration steps.

Proof. Two clusters are constrained in Phase 1 only if their interaction is repulsive and,
with complete linkage, the signed interaction between two clusters can only decrease over
the course of the agglomeration. Thus, if two clusters are constrained by the algorithm,
their negative interaction cannot increase and become positive later on in the agglomer-
ation process.

Lemma A.2.2. If GASP Algorithm 8 with AbsMax linkage criteria enforces a con-
straint between two clusters in Phase 1, then the interaction between the clusters will
never become positive over the course of the following agglomeration steps.

Proof. During the agglomeration the interaction between two clusters can only increase
in absolute value. Thus, the negative interaction W(Si, Sj) < 0 between two constrained
clusters can possibly become positive over the course of next agglomeration steps only
if there is at least another pair of clusters in the graph that has a positive interaction
W(Sl, St) > 0 higher in absolute value: |W(Sl, St)| > |W(Si, Sj)|. If such clusters Sl, St

with positive interaction exist, we note that they must also be constrained (in the opposite
case, the algorithm would have already merged them before to constrain Si and Sj,
because their priority is higher). In other words, a constrained negative interaction can
become positive only if there is already another positive constrained interaction: but this
can never be the case because initially all constrained interactions are negative.

Lemma A.2.3. In the GASP Algorithm 8 with AbsMax or Complete linkage criteria
(see linkage definition in Table 3.1), the same final clustering is returned whether or not
cannot-link constraints are enforced.

Proof. In phase 1 of Algorithm 10, two clusters are merged only if the condition at line 9
is satisfied (i.e. when an interaction is both positive and not constrained). From Lemma
A.2.1 and Lemma A.2.2 follows that with Complete and AbsMax linkage an interaction
can never be both positive and constrained at the same time, so we directly conclude that
the constrained and unconstrained versions of the algorithm will perform precisely the
same agglomeration steps in phase 1. In phase 2 (after constraints have been removed) no
clusters are merged because all interactions are already negative (whether they previously
constrained or not). Thus, both constrained and unconstrained versions of GASP return
the same clustering Π∗.

Proposition 3.3.1. The GASP Algorithm 8 with AbsMax linkage, with or without can-
not link constraints, returns the same final clustering Π∗

AbsMax also returned by the Mu-
tex Watershed Algorithm (MWS) [154] (see Chapter 2), which has empirical complexity
O(N logN).

A.2. Proofs of Propositions in Section 3.3.3 93

Input graph

+5 +6

+7

-10

+3

BA

DC

Dendrogram built by GAEC

A C D B

+7 1

0

3

2

-4

+8

Input graph

+2 +3

+4

-13

0

BA

DC

Dendrogram built by GAEC

A C D B

+4 1

0

3

2

-11

+3

Shift edge-weights by

Figure A.2. Counter-example showing that GAEC is not weight-shift invariant.

Proof. From Lemma A.2.3 it directly follows that GASP with AbsMax linkage criterion
returns the same final clustering whether or not cannot-link constraints are enforced. In
the following, we prove that MWS (see pseudocode 11) and the constrained AbsMax
version of GASP also return the same clustering. Both algorithms sort edges in descend-
ing order of the absolute interactions |we| and then iterate over all of them. The only
difference is that MWS, after merging two clusters, does not update the interactions
between the new cluster and its neighbors. However, since with an Abs. Max. linkage
the interaction between clusters is simply given by the edge with highest absolute weight
|we|, the order by which edges are iterated over in GASP is never updated. Thus, both
algorithms perform precisely the same steps and return the same clustering.

Proposition 3.3.2. We call an agglomerative algorithm “weight-shift invariant” if the
dendrogram T returned by the algorithm is invariant w.r.t. a shift of all edge weights
we by a constant α ∈ R. Among the variations of GASP, only hierarchical clustering
with Average (HC-Avg), Single (HC-Single), and Complete linkage (HC-Complete) are
weight-shift-invariant (see green box in Table 3.1).

Proof. Theorem 1 in [29] proves that hierarchical clustering with Average (HC-Avg),

94 A.2. Proofs of Propositions in Section 3.3.3

Input Graph

Input Graph

Shift edge-weights by

Dendrogram built by HCC-Sum,
MWS, HCC-Avg, and HCC-Single

Dendrogram built by HCC-Sum,
MWS, HCC-Avg, and HCC-Single

-1

+8

+2

+6

+9
+7

-10

B

A

E

DC

+1

+10

+4

+8

+11
+9

-8

B

A

E

DC

BC ED A

1

0

4

3

2

BC ED A

1

0

4

3

2

Figure A.3. Counter-example showing that HCC-Sum, MWS, HCC-Avg, and HCC-
Single are not weight-shift invariant.

Single (HC-Single), and Complete linkage (HC-Complete) are weight-shift invariant.

The same is not true for GASP with Sum linkage criteria (GAEC and HCC-Sum),
because by adding a constant α to all edge weights we, the interaction between two
clusters Si and Sj is increased by a factor α|Eij|, which depends on the number of edges
|Eij| connecting the two clusters. Thus, when all edge weighs of the graph are shifted, the
agglomeration order may change. For a simple example of this, it is enough to consider
the toy graph in Fig. 3.1a and shift the weights of the graph by α = −3 (see Fig. A.2).

The constrained versions of GASP (HCC-Avg and HCC-Single) are also not weight-
shift invariant: here, the algorithm merges or constrains clusters in a given order, de-
pending on the absolute interactions |W(Si, Sj)| between clusters; so, when edge weights
are shifted by a constant α, the sorting by absolute value can change arbitrarily together
with the agglomeration order, as we show in the counter-example of Fig. A.3. Similarly,
the Mutex Watershed algorithm is not weight-shift invariant because it uses a linkage
criterion that compares weights by their absolute values (see again counter-example in
Fig. A.3.

Proposition A.2.1. Consider a graph G(V,E,we), a linkage criterion W, and an ag-
glomerative algorithm returning a binary rooted tree T with height hT . Then, (V, dT)
defined in Eq. 3.3 is an ultrametric if and only if the following is true:

∀u, v, t ∈ V

hT (u, v) < hT (u, t)⇒WT (u, v) ≥ WT (u, t) (A.3)

A.2. Proofs of Propositions in Section 3.3.3 95

In words, condition A.3 means: if the algorithm merges nodes u, v before to merge nodes
u, t, then the signed interaction WT (u, v) between u and v has to be higher or equal than
WT (u, t).

Proof. From the definition of dT , it follows that:

dT (u, u) = 0 ∀u ∈ V (A.4)

dT (u, v) ≥ 0 ∀u, v ∈ V (A.5)

dT (u, v) = dT (v, u) ∀u, v ∈ V. (A.6)

In order to show that (V, dT) is an ultrametric, we only need to prove the ultrametric
property:

dT (u, v) ≤ max{dT (u, t), dT (v, t)} ∀u, v, t ∈ V. (A.7)

When at least two of the three nodes u, v, t ∈ V are the same, this property follows from
Eq. A.4 and Eq. A.5. When nodes u, v, t ∈ V are distinct, from the definition of dT it
follows that Eq. A.7 is equivalent to:

WT (u, v) ≥ min{WT (u, t),WT (v, t)}. (A.8)

In the following, we prove both sides of the if and only if statement in the proposi-
tion. First, we prove the (⇐) side, i.e. that if assumption A.3 holds, then (V, dT) is an
ultrametric and A.8 holds.

Case 1: in Eq. A.8, t ∈ V is part of the sub-tree T [u ∨ v]. In other words, the
algorithm first merges node t with either node u or v, and then u and v are merged
together. Let us assume that t is first merged with u (the following proof also holds for
the opposite case in which t is first merged with v):

hT (u, t) < hT (u, v) = hT (v, t). (A.9)

Thus, by combining the last equation with assumption (A.3), it follows that

WT (u, t) ≥ WT (v, t) and WT (u, v) =WT (v, t) (A.10)

and Eq. A.8 follows (becoming an equality in this case).
Case 2: in Eq. A.8, t ∈ V is not part of the sub-tree T [u ∨ v]. Thus, the algorithm

first merges nodes u and v, and then it merges node t together with the cluster containing
u and v:

hT (u, v) < hT (u, t) = hT (v, t). (A.11)

Thus, from assumption A.3 we have that

WT (u, v) ≥ WT (u, t) and WT (u, v) ≥ WT (v, t), (A.12)

so also in this case Eq. A.8 follows.
Next, we are left to prove the (⇒) side of the if and only if statement: if (V, dT) is

an ultrametric, then assumption A.3 holds. To prove this statement, we first rephrase it
in the following equivalent form: if assumption A.3 does not hold, then (V, dT) is not an
ultrametric and A.8 does not hold. If we negate assumption A.3, there must be at least
three u, v, t ∈ V such that:

hT (u, v) < hT (u, t) and WT (u, v) <WT (u, t). (A.13)

96 A.2. Proofs of Propositions in Section 3.3.3

The first condition, in words, is again assuming that the algorithm first merges nodes u
and v, and later it also merges node t with the cluster containing u and v. Thus, we can
rephrase this assumption as:

WT (u, v) <WT (u, t) =WT (v, t). (A.14)

From this, it follows that

WT (u, v) < min{WT (u, t),WT (v, t)}, (A.15)

which is exactly the negation of the ultrametric property A.8.

Proposition 3.3.3. Among the algorithms included in the GASP framework (see Table
3.1), only Mutex Watershed and hierarchical clustering with Average (HC-Avg), Single
(HC-Single) and Complete linkage (HC-Complete) define an ultrametric (V, dT ∗), where
dT ∗ is defined in Eq. 3.3 and T ∗ is the tree returned by the GASP Algorithm 8.

Proof. Thanks to Prop. A.2.1, we know that (V, dT ∗) is an ultrametric if and only if
assumption A.3 holds. Thus, in the following, we will prove which variations of the
GASP Algorithm 8 satisfy assumption A.3. In other words, we need to prove in which
cases GASP merges clusters according to a monotonously decreasing order of signed
interactions W .

GASP puts clusters in a priority queue (Algorithm 8, lines 5 and 15) and merges
them starting from those with the highest interaction (lines 9, 19, and 26). However,
the priority queue is updated each time two clusters are merged (lines 10, 20, and 27).
Thus, to ensure a monotonously decreasing merging order, updated interactions involving
a merged cluster should always be lower or equal than previously existing interactions
(condition 1):

∀Si ∈ Π \ {S1, S2},
W(S1 ∪ S2, Si) ≤ max{W(S1, Si),W(S2, Si)} (A.16)

where Π is a clustering, W is a linkage criteria, and S1, S2 ∈ Π are two clusters merged
by the algorithm at a given iteration. If this condition is true then, in the following
iterations, GASP can only merge clusters with lower (or equal) interaction values.

We also note that, in phase 1, the algorithm skips interactions that are both positive
and constraint (condition at line 8 in Algorithm 8) and merges them only later in phase
2 (line 19), when constraints are removed. Clearly, whenever this happens, a decreasing
merging order is no longer ensured. Thus, on top of condition 1, we also have that no
merging decisions should be “delayed” from phase 1 to phase 2 (condition 2).

Condition 1 always holds for Average, Single, Complete, and AbsMax linkage criteria,
but not for a Sum linkage criteria, because the sum of two positive numbers a, b is
always higher than max{a, b}. This is also demonstrated in the toy example of Fig. 3.1a,
proving that, in general, Sum-linkage algorithms like GAEC or HCC-Sum do not define
an ultrametric on the graph.

Thanks to Lemma A.2.3, we have that condition 2 always holds for algorithms based
on AbsMax and Complete linkage, proving that the Mutex Watershed and HC-Complete
algorithms define an ultra-metric (whether or not cannot-link-constraints are enforced).
On the other hand, condition 2 does not hold for other variations of GASP involving
cannot-link-constraints (HCC-Sum, HCC-Avg, and HCC-Single), which do not then de-
fine an ultrametric.

A.3. Adding structured noise to CNN predictions 97

Finally, the remaining not constrained versions of GASP (HC-Avg, HC-Single, and
HC-Complete) satisfy both conditions, so they define an ultrametric, confirming the well-
known results of related work in hierarchical clustering on unsigned graphs [66,107].

A.3 Adding structured noise to CNN predictions

Additionally to the comparison on the full training dataset, we performed more experi-
ments on a crop of the more challenging CREMI training sample B, where we perturbed
the predictions of the CNN with noise and we introduced additional artifacts like missing
boundary evidences.

In the field of image processing there are several ways of adding noise to an image,
among which the most common are Gaussian noise or Poisson shot noise. In these cases,
the noise of one pixel does not correlate with its neighboring noise values. On the other
hand, predictions of a CNN are known to be spatially correlated. Thus, we used Perlin
noise1, one of the most common gradient noises used in procedural pattern generation.
This type of noise n(x) ∈ [0, 1] generates spatial random patterns that are locally smooth
but have large and diverse variations on bigger scales. We then combined it with the
CNN predictions p(x) in the following way:

F̃ (x;K) = F (x) +K ·max (N(x), 0) , (A.17)

where N(x) = Logit[n(x)]; F (x) = Logit[p(x)] and K ∈ R+ is a positive factor repre-
senting the amount of added noise. The resulting perturbed predictions F̃ (x;K) are then
under-clustering biased, such that the probability for two pixels to be in the same cluster
is increased only if N(x) > 0 (see Fig. A.4b and A.4c). Note that in these experiments we
focused only on predictions perturbed with under-clustering biased noise (and not over-
clustering biased noise). The reason is that generating realistic over-clustering biased
CNN predictions is more complex and cannot be simply done by adding Perlin noise: as
we show in Fig. A.4c, by adding Perlin noise we can easily “remove” parts of a boundary
evidence, but it is not possible to generate random new realistic boundary evidence.

In our experiments, each pixel is represented by a node in the grid-graph and it is
linked to nnb other nodes by short- and long-range edges. Thus, the output volume of
our CNN model is a four-dimensional tensor with nnb channels: for each pixel / voxel,
the model outputs nnb values representing affinities of different edge connections. We
then generated a 4-dimensional Perlin noise tensor that matches the dimension of the
CNN output. The data is highly anisotropic, i.e. it has a lower resolution in one of the
dimensions. Due to this fact, we chose different smoothing parameters to generate the
noise in different directions.

1In our experiments, we used an open-source implementation of simplex noise [121], which is an
improved version of Perlin noise [120]

98 A.3. Adding structured noise to CNN predictions

ca b

Figure A.4. CNN predictions on a slice of the CREMI neuron segmentation challenge
with and without additional spatially-correlated noise. (a) Raw data (b) Original CNN
predictions F (x), where blue pixels represent boundary evidence (c) Strongly perturbed
version F̃ (x;K) of the predictions defined in Eq. A.17 withK = 8. Long-range predictions
are not shown.

List of Publications

I contributed to the following peer reviewed publications:

• Alberto Bailoni2, SteffenWolf2, Constantin Pape, Nasim Rahaman, Anna Kreshuk,
Ullrich Köthe, and Fred A. Hamprecht. “The Mutex Watershed and Its Objective:
Efficient, Parameter-Free Image Partitioning.” In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI). 2020.

• Alberto Bailoni, Constantin Pape, Steffen Wolf, Anna Kreshuk, and Fred A.
Hamprecht. “Proposal-free volumetric instance segmentation from latent single-
instance masks.” In: German Conference on Pattern Recognition (GCPR). 2020.

• Steffen Wolf, Constantin Pape, Alberto Bailoni, Nasim Rahaman, Anna Kreshuk,
Ullrich Kothe, and Fred A. Hamprecht. “The mutex watershed: efficient, parameter-
free image partitioning.” In: Proceedings of the European Conference on Computer
Vision (ECCV). 2018.

• Elke Kirschbaum, Alberto Bailoni, and Fred A. Hamprecht. “DISCo: Deep learn-
ing, Instance Segmentation, and Correlations for cell segmentation in calcium imag-
ing”. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention (ISBI). 2020.

• Steffen Wolf, Yuyan Li, Constantin Pape, Alberto Bailoni, Anna Kreshuk, and
Fred A. Hamprecht. “The Semantic Mutex Watershed for Efficient Bottom-Up
Semantic Instance Segmentation.” In: Proceedings of the European Conference on
Computer Vision (ECCV) (2020).

• Adrian Wolny, Lorenzo Cerrone, Athul Vijayan, Rachele Tofanelli, Amaya Vilches
Barro, Marion Louveaux, Christian Wenzl, Sören Strauss, David Wilson-Sánchez,
Rena Lymbouridou, Susanne S Steigleder, Constantin Pape, Alberto Bailoni,
Salva Duran-Nebreda, George W Bassel, Jan U Lohmann, Miltos Tsiantis, Fred
A Hamprecht, Kay Schneitz, Alexis Maizel, and Anna Kreshuk. “Accurate and
versatile 3D segmentation of plant tissues at cellular resolution”. In: Elife, 9,
e57613. 2020.

The following publications are currently under peer review:

• Alberto Bailoni, Constantin Pape, Steffen Wolf, Thorsten Beier, Anna Kreshuk,
and Fred A. Hamprecht. “A Generalized Framework for Agglomerative Clustering
of Signed Graphs applied to Instance Segmentation”. arXiv preprint arXiv:1906.11713.
(2021)

2Both authors contributed equally

99

Bibliography

[1] M. Abdelsamea. An enhancement neighborhood connected segmentation for 2D-
Cellular Image. International Journal of Bioscience, Biochemistry and Bioinfor-
matics, 1(4), 2011.

[2] A. Q. Al-Faris, U. K. Ngah, N. A. M. Isa, and I. L. Shuaib. Breast MRI tumour
segmentation using modified automatic seeded region growing based on particle
swarm optimization image clustering. In Soft Computing in Industrial Applications,
pages 49–60. Springer, 2014.

[3] A. Q. Al-Faris, U. K. Ngah, N. A. M. Isa, and I. L. Shuaib. Computer-aided
segmentation system for breast MRI tumour using modified automatic seeded region
growing (BMRI-MASRG). Journal of digital imaging, 27(1):133–144, 2014.

[4] M. A. Alattar, N. F. Osman, and A. S. Fahmy. Myocardial segmentation using con-
strained multi-seeded region growing. In International Conference Image Analysis
and Recognition, pages 89–98. Springer, 2010.

[5] B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Hamprecht. Probabilistic
image segmentation with closedness constraints. In 2011 International Conference
on Computer Vision, pages 2611–2618. IEEE, 2011.

[6] B. Andres, U. Koethe, T. Kroeger, M. Helmstaedter, K. L. Briggman, W. Denk,
and F. A. Hamprecht. 3d segmentation of sbfsem images of neuropil by a graphical
model over supervoxel boundaries. Medical image analysis, 16(4):796–805, 2012.

[7] B. Andres, T. Kroeger, K. L. Briggman, W. Denk, N. Korogod, G. Knott,
U. Koethe, and F. A. Hamprecht. Globally optimal closed-surface segmentation
for connectomics. In European Conference on Computer Vision, pages 778–791.
Springer, 2012.

[8] B. Andres, T. Kröger, K. L. Briggmann, W. Denk, N. Norogod, G. Knott, U. Köthe,
and F. A. Hamprecht. Globally optimal closed-surface segmentation for connec-
tomics. In Proc. ECCV’12, part 2, number 7574, pages 778–791, 2012.

[9] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical
image segmentation. IEEE Trans. Patt. Anal. Mach. Intell., 33(5):898–916, 2011.

[10] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierar-
chical image segmentation. IEEE transactions on pattern analysis and machine
intelligence, 33(5):898–916, 2011.

[11] I. Arganda-Carreras, S. Turaga, D. Berger, et al. Crowdsourcing the creation of im-
age segmentation algorithms for connectomics. Front. Neuroanatomy, 9:142, 2015.

101

102 Bibliography

[12] I. Arganda-Carreras, S. C. Turaga, D. R. Berger, D. Cireşan, A. Giusti, L. M. Gam-
bardella, J. Schmidhuber, D. Laptev, S. Dwivedi, J. M. Buhmann, et al. Crowd-
sourcing the creation of image segmentation algorithms for connectomics. Frontiers
in neuroanatomy, 9:142, 2015.

[13] M. Bai and R. Urtasun. Deep watershed transform for instance segmentation.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2858–2866. IEEE, 2017.

[14] M. Bai and R. Urtasun. Deep watershed transform for instance segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5221–5229, 2017.

[15] A. Bailoni, C. Pape, S. Wolf, T. Beier, A. Kreshuk, and F. A. Hamprecht. A gener-
alized framework for agglomerative clustering of signed graphs applied to instance
segmentation. arXiv preprint arXiv:1906.11713, 2019.

[16] A. Bailoni, C. Pape, S. Wolf, A. Kreshuk, and F. A. Hamprecht. Proposal-free
volumetric instance segmentation from latent single-instance masks. arXiv preprint
arXiv:2009.04998, 2020.

[17] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine learning,
56(1-3):89–113, 2004.

[18] T. Beier, B. Andres, U. Köthe, and F. A. Hamprecht. An efficient fusion move
algorithm for the minimum cost lifted multicut problem. In European Conference
on Computer Vision, pages 715–730. Springer, 2016.

[19] T. Beier, T. Kroeger, J. H. Kappes, U. Kothe, and F. A. Hamprecht. Cut, glue
& cut: A fast, approximate solver for multicut partitioning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 73–80, 2014.

[20] T. Beier, C. Pape, N. Rahaman, and T. e. a. Prange. Multicut brings automated
neurite segmentation closer to human performance. Nature Methods, 14(2):101–102,
2017.

[21] S. Beucher. Watershed, hierarchical segmentation and waterfall algorithm. In Proc.
ISMM’94, volume 94, pages 69–76, 1994.

[22] S. Beucher and C. Lantuéjoul. Use of watersheds in contour detection. In Int.
Workshop on Image Processing, Rennes, France, Sept. 1979. CCETT/IRISA.

[23] S. Beucher and F. Meyer. The morphological approach to segmentation: the wa-
tershed transformation. Optical Engineering, 34:433–433, 1992.

[24] A. Braides. A handbook of γ-convergence. In Handbook of Differential Equations:
stationary partial differential equations, volume 3, pages 101–213. Elsevier, 2006.

[25] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wag-
ner. On modularity clustering. IEEE transactions on knowledge and data engineer-
ing, 20(2):172–188, 2007.

Bibliography 103

[26] K. Briggman, W. Denk, S. Seung, M. N. Helmstaedter, and S. C. Turaga. Max-
imin affinity learning of image segmentation. In Advances in Neural Information
Processing Systems, pages 1865–1873, 2009.

[27] J. Cai, L. Lu, Z. Zhang, F. Xing, L. Yang, and Q. Yin. Pancreas segmentation in
MRI using graph-based decision fusion on convolutional neural networks. In Proc.
MICCAI, 2016.

[28] L. Cerrone, A. Zeilmann, and F. A. Hamprecht. End-to-end learned random walker
for seeded image segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12559–12568, 2019.

[29] M. H. Chehreghani. Hierarchical correlation clustering and tree preserving embed-
ding. arXiv preprint arXiv:2002.07756, 2020.

[30] B. Cheng, M. D. Collins, Y. Zhu, T. Liu, T. S. Huang, H. Adam, and L.-C. Chen.
Panoptic-DeepLab. arXiv preprint arXiv:1910.04751, 2019.

[31] K.-Y. Chiang, J. J. Whang, and I. S. Dhillon. Scalable clustering of signed net-
works using balance normalized cut. In Proceedings of the 21st ACM international
conference on Information and knowledge management, pages 615–624. ACM, 2012.

[32] S. Chopra and M. R. Rao. On the multiway cut polyhedron. Networks, 21(1):51–89,
1991.

[33] S. Chopra and M. R. Rao. The partition problem. Mathematical Programming,
59(1-3):87–115, 1993.

[34] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. 3D U-
Net: learning dense volumetric segmentation from sparse annotation. In Interna-
tional Conference on Medical Image Computing and Computer-Assisted Interven-
tion, pages 424–432. Springer, 2016.

[35] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Deep neural net-
works segment neuronal membranes in electron microscopy images. In Advances in
neural information processing systems, pages 2843–2851, 2012.

[36] D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Deep neural net-
works segment neuronal membranes in electron microscopy images. Proc. NIPS’12,
2012.

[37] V. Cohen-Addad, V. Kanade, F. Mallmann-Trenn, and C. Mathieu. Hierarchical
clustering: Objective functions and algorithms. Journal of the ACM (JACM),
66(4):1–42, 2019.

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, Third Edition. The MIT Press, 3rd edition, 2009.

[39] C. Couprie, L. Grady, L. Najman, and H. Talbot. Power watershed: A unifying
graph-based optimization framework. IEEE Trans. Patt. Anal. Mach. Intell., 33(7),
2011.

104 Bibliography

[40] C. CREMI. Miccai challenge on circuit reconstruction from electron microscopy
images, 2017.

[41] M. Cucuringu, P. Davies, A. Glielmo, and H. Tyagi. SPONGE: A generalized
eigenproblem for clustering signed networks. In AISTATS, 2019.

[42] M. Cucuringu, I. Koutis, S. Chawla, G. Miller, and R. Peng. Simple and scalable
constrained clustering: a generalized spectral method. In Artificial Intelligence and
Statistics, pages 445–454, 2016.

[43] G. Dal Maso. An introduction to Γ-convergence, volume 8. Springer Science &
Business Media, 2012.

[44] S. Dasgupta. A cost function for similarity-based hierarchical clustering. In Pro-
ceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages
118–127, 2016.

[45] B. De Brabandere, D. Neven, and L. Van Gool. Semantic instance segmentation
with a discriminative loss function. arXiv preprint arXiv:1708.02551, 2017.

[46] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Correlation clustering in
general weighted graphs. Theoretical Computer Science, 361(2-3):172–187, 2006.

[47] L. R. Dice. Measures of the amount of ecologic association between species. Ecology,
26(3):297–302, 1945.

[48] A. X. Falcão, J. Stolfi, and R. de Alencar Lotufo. The image foresting trans-
form: Theory, algorithms, and applications. IEEE Trans. Patt. Anal. Mach. Intell.,
26(1):19–29, 2004.

[49] A. Fathi, Z. Wojna, V. Rathod, P. Wang, H. O. Song, S. Guadarrama, and K. P.
Murphy. Semantic instance segmentation via deep metric learning. arXiv preprint
arXiv:1703.10277, 2017.

[50] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient Graph-Based Image Segmen-
tation. Int. J. Comput. Vision, 59(2):167–181, 2004.

[51] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmenta-
tion. International journal of computer vision, 59(2):167–181, 2004.

[52] J. R. Finkel and C. D. Manning. Enforcing transitivity in coreference resolution. In
Proceedings of the 46th Annual Meeting of the Association for Computational Lin-
guistics on Human Language Technologies: Short Papers, pages 45–48. Association
for Computational Linguistics, 2008.

[53] J. Funke, F. A. Hamprecht, and C. Zhang. Learning to segment: training hierarchi-
cal segmentation under a topological loss. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 268–275. Springer,
2015.

[54] J. Funke, F. D. Tschopp, W. Grisaitis, A. Sheridan, C. Singh, S. Saalfeld, and
S. C. Turaga. Large scale image segmentation with structured loss based deep
learning for connectome reconstruction. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2018.

Bibliography 105

[55] J. Funke, C. Zhang, T. Pietzsch, M. A. G. Ballester, and S. Saalfeld. The candidate
multi-cut for cell segmentation. In 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018), pages 649–653. IEEE, 2018.

[56] N. Gao, Y. Shan, Y. Wang, X. Zhao, Y. Yu, M. Yang, and K. Huang. SSAP:
Single-shot instance segmentation with affinity pyramid. In The IEEE International
Conference on Computer Vision (ICCV), October 2019.

[57] M. Grimaud. New measure of contrast: the dynamics. In P. D. Gader,
E. R. Dougherty, & J. C. Serra, editor, Proc. Image Algebra and Morphological
Processing, volume 1769 of SPIE Conf. Series, pages 292–305, 1992.

[58] M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a clustering
problem. Mathematical Programming, 45(1-3):59–96, 1989.

[59] M. Grötschel and Y. Wakabayashi. Facets of the clique partitioning polytope.
Mathematical Programming, 47(1-3):367–387, 1990.

[60] L. Guigues, J. P. Cocquerez, and H. Le Men. Scale-sets image analysis. International
Journal of Computer Vision, 68(3):289–317, 2006.

[61] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. arXiv preprint
arXiv:1703.06870, 2017.

[62] A. Horňáková, J.-H. Lange, and B. Andres. Analysis and optimization of graph de-
compositions by lifted multicuts. In International Conference on Machine Learning,
pages 1539–1548, 2017.

[63] V. Jain, J. F. Murray, F. Roth, S. Turaga, V. Zhigulin, K. L. Briggman, M. N.
Helmstaedter, W. Denk, and H. S. Seung. Supervised learning of image restoration
with convolutional networks. Proc. ICCV’07, pages 1–8, 2007.

[64] M. Januszewski, J. Kornfeld, P. H. Li, A. Pope, T. Blakely, L. Lindsey, J. Maitin-
Shepard, M. Tyka, W. Denk, and V. Jain. High-precision automated reconstruction
of neurons with flood-filling networks. Nature methods, 15(8):605, 2018.

[65] M. Januszewski, J. Kornfeld, P. H. Li, A. Pope, T. Blakely, L. Lindsey, J. Maitin-
Shepard, M. Tyka, W. Denk, and V. Jain. High-precision automated reconstruction
of neurons with flood-filling networks. Nature methods, page 1, 2018.

[66] S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254,
1967.

[67] J. Kappes, B. Andres, F. Hamprecht, C. Schnorr, S. Nowozin, D. Batra, S. Kim,
B. Kausler, J. Lellmann, N. Komodakis, et al. A comparative study of modern
inference techniques for discrete energy minimization problems. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1328–1335,
2013.

[68] J. H. Kappes, M. Speth, B. Andres, G. Reinelt, and C. Schn. Globally optimal
image partitioning by multicuts. In International Workshop on Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition, pages 31–44. Springer,
2011.

106 Bibliography

[69] A. Kardoost and M. Keuper. Solving minimum cost lifted multicut problems by
node agglomeration. In ACCV 2018, 14th Asian Conference on Computer Vision,
Perth, Australia, 2018.

[70] V. Kaynig, A. Vazquez-Reina, S. Knowles-Barley, M. Roberts, T. R. Jones,
N. Kasthuri, E. Miller, J. Lichtman, and H. Pfister. Large-scale automatic re-
construction of neuronal processes from electron microscopy images. Medical image
analysis, 22(1):77–88, 2015.

[71] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
The Bell system technical journal, 49(2):291–307, 1970.

[72] M. Keuper, E. Levinkov, N. Bonneel, G. Lavoué, T. Brox, and B. Andres. Efficient
decomposition of image and mesh graphs by lifted multicuts. In Proc. ICCV’15,
pages 1751–1759, 2015.

[73] M. Keuper, S. Tang, Y. Zhongjie, B. Andres, T. Brox, and B. Schiele. A multi-cut
formulation for joint segmentation and tracking of multiple objects. arXiv preprint
arXiv:1607.06317, 2016.

[74] J. S. Kim, M. J. Greene, A. Zlateski, K. Lee, M. Richardson, S. C. Turaga, M. Pur-
caro, M. Balkam, A. Robinson, B. F. Behabadi, et al. Space–time wiring specificity
supports direction selectivity in the retina. Nature, 509(7500):331–336, 2014.

[75] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. 2015.

[76] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[77] B. R. Kiran and J. Serra. Global–local optimizations by hierarchical cuts and
climbing energies. Pattern Recognition, 47(1):12–24, 2014.

[78] B. R. Kiran and J. Serra. Globallocal optimizations by hierarchical cuts and climb-
ing energies. Pattern Recognition, 47(1):12–24, 2014.

[79] A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and C. Rother. Instancecut:
from edges to instances with multicut. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5008–5017, 2017.

[80] S. Knowles-Barley, V. Kaynig, T. R. Jones, A. Wilson, J. Morgan, D. Lee,
D. Berger, N. Kasthuri, J. W. Lichtman, and H. Pfister. RhoanaNet pipeline:
Dense automatic neural annotation. arXiv:1611.06973, 2016.

[81] I. Kokkinos. Pushing the boundaries of boundary detection using deep learning.
arXiv:1511.07386, 2015.

[82] S. Kong and C. C. Fowlkes. Recurrent pixel embedding for instance grouping. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 9018–9028, 2018.

[83] N. Krasowski, T. Beier, G. W. Knott, U. Koethe, F. A. Hamprecht, and A. Kreshuk.
Improving 3D EM data segmentation by joint optimization over boundary evidence
and biological priors. In 2015 IEEE 12th International Symposium on Biomedical
Imaging (ISBI), pages 536–539. IEEE, 2015.

Bibliography 107

[84] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1):48–50,
1956.

[85] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. De Luca, and S. Al-
bayrak. Spectral analysis of signed graphs for clustering, prediction and visualiza-
tion. SIAM, 2010.

[86] G. N. Lance and W. T. Williams. A general theory of classificatory sorting strate-
gies: 1. Hierarchical systems. The computer journal, 9(4):373–380, 1967.

[87] J.-H. Lange, B. Andres, and P. Swoboda. Combinatorial persistency criteria for
multicut and max-cut. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6093–6102, 2019.

[88] J.-H. Lange, A. Karrenbauer, and B. Andres. Partial optimality and fast lower
bounds for weighted correlation clustering. In International Conference on Machine
Learning, pages 2898–2907, 2018.

[89] K. Lee, R. Lu, K. Luther, and H. S. Seung. Learning dense voxel embeddings for
3d neuron reconstruction. arXiv preprint arXiv:1909.09872, 2019.

[90] K. Lee, J. Zung, P. Li, V. Jain, and H. S. Seung. Superhuman accuracy on the
SNEMI3D connectomics challenge. arXiv preprint arXiv:1706.00120, 2017.

[91] Z. Levi and D. Zorin. Strict minimizers for geometric optimization. ACM Trans.
Graph., 33(6):185:1–185:14, Nov. 2014.

[92] E. Levinkov, A. Kirillov, and B. Andres. A comparative study of local search al-
gorithms for correlation clustering. In German Conference on Pattern Recognition,
pages 103–114. Springer, 2017.

[93] S. Liu, X. Qi, J. Shi, H. Zhang, and J. Jia. Multi-scale patch aggregation (MPA) for
simultaneous detection and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3141–3149, 2016.

[94] T. Liu, C. Jones, M. Seyedhosseini, and T. Tasdizen. A modular hierarchical ap-
proach to 3D electron microscopy image segmentation. Journal of neuroscience
methods, 226:88–102, 2014.

[95] T. Liu, M. Seyedhosseini, and T. Tasdizen. Image segmentation using hierarchical
merge tree. IEEE transactions on image processing, 25(10):4596–4607, 2016.

[96] T. Liu, M. Zhang, M. Javanmardi, N. Ramesh, and T. Tasdizen. SSHMT: Semi-
supervised hierarchical merge tree for electron microscopy image segmentation. In
European Conference on Computer Vision, pages 144–159. Springer, 2016.

[97] Y. Liu, S. Yang, B. Li, W. Zhou, J. Xu, H. Li, and Y. Lu. Affinity derivation and
graph merge for instance segmentation. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 686–703, 2018.

108 Bibliography

[98] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for seman-
tic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015.

[99] L. Mais, P. Hirsch, and D. Kainmueller. Patchperpix for instance segmentation.
In Proceedings of the European Conference on Computer Vision, pages 288–304.
Springer International Publishing, 2020.

[100] F. Malmberg, R. Strand, and I. Nyström. Generalized hard constraints for
graph segmentation. In Scandinavian Conference on Image Analysis, pages 36–
47. Springer, 2011.

[101] Y. Meirovitch, A. Matveev, H. Saribekyan, D. Budden, D. Rolnick, G. Odor, S. K.-
B. T. R. Jones, H. Pfister, J. W. Lichtman, and N. Shavit. A multi-pass approach
to large-scale connectomics. arXiv preprint:1612.02120, 2016.

[102] Y. Meirovitch, L. Mi, H. Saribekyan, A. Matveev, D. Rolnick, and N. Shavit.
Cross-classification clustering: An efficient multi-object tracking technique for 3-D
instance segmentation in connectomics. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 8425–8435, 2019.

[103] F. Meyer. Minimum spanning forests for morphological segmentation. In Mathe-
matical morphology and its applications to image processing, pages 77–84. 1994.

[104] F. Meyer. Topographic distance and watershed lines. Signal processing, 38(1):113–
125, 1994.

[105] F. Meyer. Morphological multiscale and interactive segmentation. In NSIP, pages
369–377, 1999.

[106] F. Milletari, N. Navab, and S.-A. Ahmadi. V-net: Fully convolutional neural net-
works for volumetric medical image segmentation. In 2016 fourth international
conference on 3D vision (3DV), pages 565–571. IEEE, 2016.

[107] G. W. Milligan. Ultrametric hierarchical clustering algorithms. Psychometrika,
44(3):343–346, 1979.

[108] B. Moseley and J. Wang. Approximation bounds for hierarchical clustering: Av-
erage linkage, bisecting k-means, and local search. Advances in neural information
processing systems, 30:3094–3103, 2017.

[109] D. M. N. Mubarak, M. M. Sathik, S. Z. Beevi, and K. Revathy. A hybrid re-
gion growing algorithm for medical image segmentation. International Journal of
Computer Science & Information Technology, 4(3):61, 2012.

[110] L. Najman. On the equivalence between hierarchical segmentations and ultrametric
watersheds. J. of Mathematical Imaging and Vision, 40(3):231–247, 2011.

[111] L. Najman. Extending the power watershed framework thanks to Γ-convergence.
SIAM Journal on Imaging Sciences, 10(4):2275–2292, 2017.

Bibliography 109

[112] L. Najman and M. Schmitt. Geodesic saliency of watershed contours and hier-
archical segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence,
18(12):1163–1173, 1996.

[113] D. Neven, B. D. Brabandere, M. Proesmans, and L. V. Gool. Instance segmentation
by jointly optimizing spatial embeddings and clustering bandwidth. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8837–
8845, 2019.

[114] A. Newell, Z. Huang, and J. Deng. Associative embedding: End-to-end learning
for joint detection and grouping. In Advances in Neural Information Processing
Systems, pages 2277–2287, 2017.

[115] J. Nunez-Iglesias, R. Kennedy, T. Parag, J. Shi, and D. Chklovskii. Machine learn-
ing of hierarchical clustering to segment 2D and 3D images. PLoS one, 8:e71715,
2013.

[116] J. Nunez-Iglesias, R. Kennedy, T. Parag, J. Shi, and D. B. Chklovskii. Ma-
chine learning of hierarchical clustering to segment 2D and 3D images. PloS one,
8(8):e71715, 2013.

[117] C. Pape, T. Beier, P. Li, V. Jain, D. D. Bock, and A. Kreshuk. Solving large
multicut problems for connectomics via domain decomposition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–10,
2017.

[118] C. Pape, A. Matskevych, A. Wolny, J. Hennies, G. Mizzon, M. Louveaux, J. Musser,
A. Maizel, D. Arendt, and A. Kreshuk. Leveraging domain knowledge to improve
microscopy image segmentation with lifted multicuts. Frontiers in Computer Sci-
ence, 1:6, 2019.

[119] T. Parag, F. Tschopp, W. Grisaitis, S. C. Turaga, X. Zhang, B. Matejek, L. Ka-
mentsky, J. W. Lichtman, and H. Pfister. Anisotropic EM segmentation by 3d
affinity learning and agglomeration. arXiv preprint 1707.08935, 2017.

[120] K. Perlin. An image synthesizer. ACM Siggraph Computer Graphics, 19(3):287–296,
1985.

[121] K. Perlin. Noise hardware. Real-Time Shading SIGGRAPH Course Notes, 2001.

[122] B. Perret, J. Cousty, S. J. F. Guimaraes, and D. S. Maia. Evaluation of hierarchical
watersheds. IEEE Transactions on Image Processing, 27(4):1676–1688, 2018.

[123] R. Pohle and K. D. Toennies. Segmentation of medical images using adaptive
region growing. In Medical Imaging 2001: Image Processing, volume 4322, pages
1337–1346. International Society for Optics and Photonics, 2001.

[124] S. Poonguzhali and G. Ravindran. A complete automatic region growing method
for segmentation of masses on ultrasound images. In 2006 International Conference
on Biomedical and Pharmaceutical Engineering, pages 88–92. IEEE, 2006.

110 Bibliography

[125] L. Porzi, S. R. Bulo, A. Colovic, and P. Kontschieder. Seamless scene segmen-
tation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8277–8286, 2019.

[126] T. M. Quan, D. G. Hilderbrand, and W.-K. Jeong. FusionNet: a deep fully
residual convolutional neural network for image segmentation in connectomics.
arXiv:1612.05360, 2016.

[127] S. S. Rangapuram and M. Hein. Constrained 1-spectral clustering. In AISTATS,
volume 30, page 90, 2012.

[128] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

[129] Z. Ren and G. Shakhnarovich. Image segmentation by cascaded region agglomer-
ation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2011–2018, 2013.

[130] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082,
2014.

[131] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[132] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for
biomedical image segmentation. Proc. MICCAI’15, pages 234–241, 2015.

[133] S. Saalfeld, R. Fetter, A. Cardona, and P. Tomancak. Elastic volume reconstruction
from series of ultra-thin microscopy sections. Nature methods, 9(7):717, 2012.

[134] P. Salembier and L. Garrido. Binary partition tree as an efficient representation
for image processing, segmentation, and information retrieval. IEEE Trans. Image
Proc., 9:561–576, 2000.

[135] P. Salembier and L. Garrido. Binary partition tree as an efficient representation for
image processing, segmentation, and information retrieval. IEEE transactions on
Image Processing, 9(4):561–576, 2000.

[136] P. Schlegel, M. Costa, and G. S. X. E. Jefferis. Learning from connectomics on the
fly. Current opinion in insect science, 24:96–105, 2017.

[137] U. Schmidt, M. Weigert, C. Broaddus, and G. Myers. Cell detection with star-
convex polygons. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 265–273. Springer, 2018.

[138] J. Shan, H.-D. Cheng, and Y. Wang. A novel automatic seed point selection al-
gorithm for breast ultrasound images. In 2008 19th International Conference on
Pattern Recognition, pages 1–4. IEEE, 2008.

Bibliography 111

[139] W. Shen, B. Wang, Y. Jiang, Y. Wang, and A. L. Yuille. Multi-stage multi-
recursive-input fully convolutional networks for neuronal boundary detection. 2017
IEEE International Conference on Computer Vision (ICCV), pages 2410–2419,
2017.

[140] C. SNEMI3D. Isbi 2013 challenge: 3d segmentation of neurites in em images, 2013.

[141] K. Sofiiuk, O. Barinova, and A. Konushin. AdaptIS: Adaptive instance selection
network. In Proceedings of the IEEE International Conference on Computer Vision,
pages 7355–7363, 2019.

[142] P. Soille. Constrained connectivity for hierarchical image decomposition and sim-
plification. IEEE Trans. Patt. Anal. Mach. Intell., 30(7):1132–1145, 2008.

[143] T. Sørensen. A method of establishing groups of equal amplitude in plant sociology
based on similarity of species and its application to analyses of the vegetation on
danish commons. Biol. Skr., 5:1–34, 1948.

[144] S. C. Turaga, K. L. Briggman, M. Helmstaedter, W. Denk, and H. S. Seung. Max-
imin affinity learning of image segmentation. pages 1865–1873, 2009.

[145] S. C. Turaga, J. F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Briggman,
W. Denk, and H. S. Seung. Convolutional networks can learn to generate affinity
graphs for image segmentation. Neural Computation, 22(2):511–538, 2010.

[146] M. G. Uzunbaş, C. Chen, and D. Metaxas. Optree: a learning-based adaptive wa-
tershed algorithm for neuron segmentation. In Int. Conf. Medical Image Computing
and Computer-Assisted Intervention (MICCAI’14), pages 97–105, 2014.

[147] M. G. Uzunbas, C. Chen, and D. Metaxas. An efficient conditional random field ap-
proach for automatic and interactive neuron segmentation. Medical image analysis,
27:31–44, 2016.

[148] C. Vachier and F. Meyer. Extinction value: a new measurement of persistence. In
Worksh. Nonlinear Signal and Image Processing, volume 1, pages 254–257, 1995.

[149] L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based
on immersion simulations. IEEE Trans. Pattern Analysis Machine Intelligence,
(6):583–598, 1991.

[150] X. Wang, B. Qian, and I. Davidson. On constrained spectral clustering and its
applications. Data Mining and Knowledge Discovery, 28(1):1–30, 2014.

[151] M. Weiler, F. A. Hamprecht, and M. Storath. Learning steerable filters for rotation
equivariant CNNs. pages 849–858, 2018.

[152] B. Welford. Note on a method for calculating corrected sums of squares and prod-
ucts. Technometrics, 4(3):419–420, 1962.

[153] S. Wolf, A. Bailoni, C. Pape, N. Rahaman, A. Kreshuk, U. Köthe, and F. A.
Hamprecht. The mutex watershed and its objective: Efficient, parameter-free image
partitioning. arXiv preprint arXiv:1904.12654, 2019.

112 Bibliography

[154] S. Wolf, C. Pape, A. Bailoni, N. Rahaman, A. Kreshuk, U. Köthe, and F. Ham-
precht. The mutex watershed: Efficient, parameter-free image partitioning. Proc.
ECCV’18, 2018.

[155] S. Wolf, L. Schott, U. Köthe, and F. Hamprecht. Learned watershed: End-to-end
learning of seeded segmentation. Proc. ICCV’17, 2017.

[156] J. Wu, S. Poehlman, M. D. Noseworthy, and M. V. Kamath. Texture feature
based automated seeded region growing in abdominal MRI segmentation. In 2008
International Conference on BioMedical Engineering and Informatics, volume 2,
pages 263–267. IEEE, 2008.

[157] C. Xiao, J. Liu, X. Chen, H. Han, C. Shu, and Q. Xie. Deep contextual residual
network for electron microscopy image segmentation in connectomics. In Biomedical
Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, pages 378–381.
IEEE, 2018.

[158] S. Xie and Z. Tu. Holistically-nested edge detection. In Proc. ICCV’15, pages
1395–1403, 2015.

[159] C. S. Xu, M. Januszewski, Z. Lu, S.-y. Takemura, K. Hayworth, G. Huang, K. Shi-
nomiya, J. Maitin-Shepard, D. Ackerman, S. Berg, et al. A connectome of the adult
drosophila central brain. BioRxiv, 2020.

[160] C. S. Xu, M. Januszewski, Z. Lu, S.-y. Takemura, K. J. Hayworth, et al. A connec-
tome of the adult drosophila central brain. bioRxiv, 2020.

[161] J. Yarkony, A. Ihler, and C. C. Fowlkes. Fast planar correlation clustering for image
segmentation. In Proc. ECCV’12, pages 568–581, 2012.

[162] W. Yin, D. Brittain, J. Borseth, M. E. Scott, D. Williams, J. Perkins, C. S. Own,
M. Murfitt, R. M. Torres, D. Kapner, et al. A petascale automated imaging
pipeline for mapping neuronal circuits with high-throughput transmission electron
microscopy. Nature communications, 11(1):1–12, 2020.

[163] T. Zeng, B. Wu, and S. Ji. DeepEM3D: approaching human-level performance on
3D anisotropic EM image segmentation. Bioinformatics, 33(16):2555–2562, 2017.

[164] C. Zhang, J. Yarkony, and F. A. Hamprecht. Cell detection and segmentation using
correlation clustering. In Proc. MICCAI’14, pages 9–16, 2014.

[165] Z. Zheng, J. S. Lauritzen, E. Perlman, C. G. Robinson, M. Nichols, D. Milkie,
O. Torrens, J. Price, C. B. Fisher, N. Sharifi, et al. A complete electron microscopy
volume of the brain of adult drosophila melanogaster. Cell, 174(3):730–743, 2018.

[166] A. Zlateski and H. S. Seung. Image segmentation by size-dependent single linkage
clustering of a watershed basin graph. arXiv:1505.00249, 2015.

List of Figures

1.1 Illustration of neuron reconstruction . 17
1.2 Image of neuronal tissue at different scales 18
1.3 Dense segmentation obtained with GASP and average linkage 19
1.4 Agglomerative Hierarchical Clustering demonstrated on a toy graph . . . 21

2.1 Overview of raw data, CNN predictions, and mutual exclusion constraints 26
2.2 Two equivalent representations of the seeded watershed clustering 30
2.3 Some iterations of the Mutex Watershed Algorithm 31
2.4 Runtime of the Mutex Watershed algorithm 34
2.5 Consistent and inconsistent active sets 35
2.6 Local neighborhood structure of the graph 45
2.7 Segmentations results for Mutex Watershed and baseline algorithms . . . 47

3.1 GASP: some iterations on a toy graph with different linkage criteria . . . 52
3.2 ARAND errors on synthetic graphs . 61
3.3 Clustering dynamics of GASP variations on synthetic graphs 62
3.4 Failure cases of GASP on neuron segmentation 66
3.5 ARAND errors of GASP on clustering problems perturbed with structured

noise . 66

4.1 Comparison between proposed and state-of-the-art methods 70
4.2 Examples of expected and not expected masks 72
4.3 Affinities from single-instance masks . 72
4.4 Proposed method to average overlapping masks 75
4.5 Architecture of the used UNet model . 77
4.6 Raw data and obtained instance segmentation on neuron segmentation . 78
4.7 Visualization of the predicted single-instance mask latent spaces 79
4.8 Comparison between different affinities and their robustness to noise . . . 81

A.1 Example of edge contraction . 91
A.2 Counter-example: GAEC is not weight-shift invariant 93
A.3 Counter-examples for not weight-shift invariant algorithms 94
A.4 CNN predictions with and without additional spatially-correlated noise . 98

113

List of Tables

2.1 Results on ISBI 2012 EM Segmentation Challenge 48
2.2 Different segmentation strategies on ISBI 2012 EM Segmentation Challenge 48

3.1 Conceptual contribution: Clustering algorithms in GASP framework . . . 53
3.2 List of studied signed graph clustering problems 58
3.3 Multicut objective values achieved by different algorithms 62
3.4 ARAND errors of GASP and spectral clustering algorithms 63
3.5 Scores of GASP algorithms on CREMI neuron segmentation challenge . . 65

4.1 Comparison experiments on CREMI validation set 82
4.2 Achieved scores on the CREMI neuron segmentation challenge 83
4.3 Sparse neighborhood structures . 84

A.1 Update rules associated to different linkage criteria 91

115

List of Algorithms

1 Agglomerative Hierarchical Clustering 21
2 Mutex version of seeded watershed algorithm 29
3 Mutex Watershed Algorithm . 32
4 Conflicted-Cycles Mutex Watershed . 37
5 Initialized Mutex Watershed . 38
6 Generic hierarchical optimization . 40
7 PowerWatershed Mutex Watershed . 41
8 GASP . 56
9 Affinities from Aggregated Central Instance Masks 74
10 Implementation of GASP - Phase 1 . 90
11 Alternative formulation of the Mutex Watershed Algorithm 90

117

	Abstract
	Zusammenfassung
	Acknowledgments
	1 Introduction
	1.1 Image Segmentation
	1.2 Deep Learning and Graph-Based Instance Segmentation
	1.2.1 Neuron Segmentation in Connectomics

	1.3 Graph Partitioning Algorithms
	1.3.1 Agglomerative Hierarchical Clustering
	1.3.2 Signed Graph Partitioning

	1.4 Contribution and Overview of this Thesis

	2 The Mutex Watershed Algorithm and its Objective
	2.1 Introduction
	2.2 Related Work
	2.3 The Mutex Watershed Algorithm as an Extension of Seeded Watershed
	2.3.1 Definitions and notation
	2.3.2 Seeded watershed from a mutex perspective
	2.3.3 Mutex Watersheds
	2.3.4 Time Complexity Analysis

	2.4 Theoretical characterization
	2.4.1 Review of the Multicut problem and its objective
	2.4.2 Mutex Watershed Objective
	2.4.3 Proof of optimality via dynamic programming
	2.4.4 Relation to the extended Power Watershed framework

	2.5 Experiments
	2.5.1 Estimating edge weights with a CNN
	2.5.2 ISBI Challenge

	2.6 Conclusion

	3 GASP: Generalized Agglomerative Algorithm for Signed Graph Partitioning
	3.1 Introduction
	3.2 Related work
	3.3 Generalized framework for agglomerative clustering of signed graphs
	3.3.1 Notation
	3.3.2 The GASP algorithm
	3.3.3 GASP: New and existing algorithms

	3.4 Experiments
	3.4.1 Signed graph clustering problems
	3.4.2 Details on neuron segmentation graph instances
	3.4.3 Comparison of results and discussion

	3.5 Conclusion

	4 Predicting Latent Single-Instance Masks
	4.1 Introduction
	4.2 Related Work
	4.3 Model and Training Strategy
	4.3.1 Local Central Instance Masks
	4.3.2 Training Encoded Central Instance Masks End-To-End
	4.3.3 Predicting Multi-Scale Central Instance Masks

	4.4 Affinities with Uncertainty from Aggregated Masks
	4.5 Experiments on Neuron Segmentation
	4.5.1 Architecture details of the tested models
	4.5.2 Graph Partitioning Methods
	4.5.3 Results and Discussion

	4.6 Conclusions

	Conclusions
	Appendices
	A GASP
	A.1 Implementation and complexity of GASP
	A.1.1 Update rules
	A.1.2 Implementation
	A.1.3 Complexity

	A.2 Proofs of Propositions in Section 3.3.3
	A.3 Adding structured noise to CNN predictions

	List of Publications
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

