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Abstract 

H-1 protoparvovirus (H-1PV) is a self-propagating virus, non-pathogenic in humans, 

endowed with oncolytic and oncosuppressive activities. H-1PV is the only member of 

the Parvoviridae family to be tested as an anticancer agent in a clinical setting. Results 

from clinical trials in patients with glioblastoma or pancreatic carcinoma showed that 

virus treatment is safe and well-tolerated. Virus treatment was associated with first 

signs of efficacy, including immune conversion of tumour microenvironment, good 

virus distribution in the tumour bed, as well as improved patient overall survival 

compared with historical controls. However, monotherapeutic use of the virus was not 

sufficient to eradicate the tumours. In this manner, my approach consists of further 

understanding the virus life cycle in order to improve H-1PV-based anticancer 

therapies. This knowledge can provide hints on which drugs or treatment modalities 

could be combined with the virus in order to enhance its oncotoxicity. In addition, a 

deeper understanding of H-1PV life cycle can help to identify biomarkers capable of 

predicting which patients would most likely benefit from virus treatment. To achieve 

this goal, previous members of the laboratory performed a druggable genome-wide 

siRNA library screening to identify putative modulators of H-1PV infection. Focusing 

on cellular factors potentially involved at the early steps of H-1PV infection, three top 

activators were identified: LAMC1, LGALS1 and AP2M1. (i) Laminin containing the 

γ1 chain, encoded by LAMC1, had previously been demonstrated to play a pivotal role 

at the level of binding and entry into cancer cells. Building on these results, I provide 

direct evidence that H-1PV binds to laminins through the sialic acid moieties present 

in these molecules. (ii) Galectin-1, encoded by LGALS1, is here shown to interact 

directly with H-1PV at the cell surface and promote the efficient virus internalisation 

into cancer cells. Knock-down/out of LGALS1 strongly decreases the ability of H-1PV 

to infect and kill cancer cells. These properties are rescued by the re-introduction of 

LGALS1 into cancer cells. The in silico analysis reveals that LGALS1 is overexpressed 

in glioblastoma and pancreatic carcinoma. In collaboration with Dr. Miletic 

(University of Bergen, Norway), we also show by immunohistochemistry analysis on 

122 glioblastoma biopsies that galectin-1 protein levels vary across the different 

tumours with higher levels detected in glioblastoma than normal tissues, and higher in 

recurrent in comparison with primary glioblastoma tumours. We also found a direct 

correlation between LGALS1 transcript levels and H-1PV oncolytic activity in 59 

cancer cell lines from different tumour origins. Together these results suggest that 

tumours with higher galectin-1 content may be a more suitable target for H-1PV. 

Strikingly, the addition of purified galectin-1 sensitises poorly susceptible glioma cell 

lines to H-1PV killing activity by rescuing virus cell entry. (iii) AP2µ1, encoded by 

AP2M1, is a subunit from the adaptor 2, a key regulator of clathrin-mediated 

endocytosis. Indeed, siRNA-mediated knockdown of AP2M1 or chemical inhibition 

of clathrin-mediated endocytosis strongly decreased H-1PV entry. Using electron and 

confocal microscopy, H-1PV particles were detected within clathrin-coated pits and 

vesicles, further corroborating that H-1PV uses clathrin-mediated endocytosis for cell 



 

x 

entry. In contrast, I observed no evidence of viral entry through caveolae-mediated 

endocytosis. I also show that H-1PV internalisation depends on dynamin activity, and 

that viral trafficking occurs from early to late endosomes, with low endosomal pH 

required for a successful infection. Based on the body of evidence gathered during this 

dissertation, I propose a model where H-1PV binds to the sialic acid present in 

laminins containing γ1 chains, and then galectin-1 promotes the efficient 

internalisation of virus particles through clathrin-mediated endocytosis. For the first 

time, this dissertation describes the cell entry pathways of oncolytic H-1PV. 
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Zusammenfassung 

Das H-1-Protoparvovirus (H-1PV) ist ein sich selbst vermehrendes Virus, das für den 

Menschen nicht pathogen ist und über onkolytische und onkosuppressive Aktivitäten 

verfügt. H-1PV ist das einzige Mitglied der Familie Parvoviridae, das in einem klinischen 

Umfeld als Antikrebsmittel getestet wurde. Ergebnisse aus  klinischen Studien bei 

Patienten mit Glioblastom oder Pankreaskarzinom zeigten, dass die Virusbehandlung 

sicher und gut verträglich ist. Die Virusbehandlung zeigte erste Anzeichen einer 

Wirksamkeit, einschließlich einer Immunumwandlung der Tumormikroumgebung, einer 

guten Virusverteilung im Tumorbett sowie einer Verbesserung der Gesamtüberlebenszeit 

der Patienten im Vergleich zu historischen Kontrollen. Die alleinige Anwendung des 

Virus als Therapie reichte jedoch nicht aus, um die Tumore zu eliminieren. Dahingehend 

möchte ich versuchen, den Lebenszyklus des Virus besser zu verstehen, um die auf H-

1PV-basierenden Krebstherapien zu verbessern. Dieses Wissen kann Hinweise darauf 

geben, welche Medikamente oder Behandlungsmodalitäten mit dem Virus kombiniert 

werden können, um dessen Onkotoxizität zu erhöhen. Darüber hinaus kann ein tieferes 

Verständnis des H-1PV-Lebenszyklus dazu beitragen, Biomarker zu identifizieren, die 

vorhersagen können, welche Patienten am wahrscheinlichsten von einer Virusbehandlung 

profitieren würden. Um dieses Ziel zu erreichen, hatten ehemalige Mitglieder des Labors 

ein medikamentöses genomweites Screening einer siRNA-Bibliothek durchgeführt, um 

mutmaßliche Modulatoren der H-1PV-Infektion zu identifizieren. Mit einem 

Schwerpunkt auf zelluläre Faktoren, die möglicherweise an der frühen Phase der H-1PV-

Infektion beteiligt sind, wurden drei Top-Aktivatoren identifiziert: LAMC1, LGALS1 und 

AP2M1. (i) Es wurde zuvor gezeigt, dass Laminin, das eine γ1-Kette enthält (codierte 

durch LAMC1), eine entscheidende Rolle beim Andocken und Eintreten des Virus  an und 

in die Krebszellen spielt. Aufbauend auf diesen Ergebnissen zeige ich, dass H-1PV über 

Sialinsäuren, die in diesen Molekülen vorhandenen sind, an Laminine bindet. (ii) Es wird 

hier gezeigt, dass Galectin-1, das von LGALS1 codiert wird, direkt mit H-1PV an der 

Zelloberfläche interagiert und die effiziente Virusinternalisierung in Krebszellen 

unterstützt. Durch den Knockout/Knockdown von LGALS1 wird die Fähigkeit von H-

1PV, Krebszellen zu infizieren und abzutöten, stark verringert. Diese Eigenschaften 

werden durch die Wiedereinführung von LGALS1 in Krebszellen wiederhergestellt.     

Eine in silico Analyse zeigt, dass LGALS1 beim Glioblastom und 

Bauchspeicheldrüsenkarzinom überexprimiert wird. Zudem zeigen wir in 

Zusammenarbeit mit Dr. Miletic (Universität Bergen, Norwegen) durch 

immunhistochemische Analyse von 122 Glioblastom-Biopsien, dass die Proteinspiegel 

von Galectin-1 in den verschiedenen Tumoren variieren, wobei im Glioblastom ein 

höherer Gehalt an Galectin-1 als in normalen Geweben nachgewiesen wurde und die 

Expression von Galectin-1 in rezidivierenden Tumoren höher im Vergleich zu primären 

Glioblastomtumoren ist. Wir fanden auch eine direkte Korrelation zwischen den LGALS1-

Transkriptmengen und der onkolytischen Aktivität von H-1PV in 59 Krebszelllinien 

unterschiedlicher Tumorherkunft. Zusammengefasst legen diese Ergebnisse nahe, dass 

Tumore mit einem höheren Gehalt an Galectin-1 ein geeigneteres Ziel für H-1PV sein 

könnten. Bemerkenswerterweise sensibilisiert die Zugabe von gereinigtem Galectin-1 

schlecht-anfällige Gliomzelllinien für die abtötende Wirkung von H-1PV, indem der 
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Eintritt des Virus in den Zellen wiederhergestellt wird. (iii) AP2µ1, codiert von AP2M1, 

ist eine Untereinheit aus dem Adapter 2, einem zentralen Regulator der 

clathrinabhängigen Endozytose. In der Tat verringerte der siRNA Knockdown von 

AP2M1 oder die chemische Hemmung der clathrinabhängigen Endozytose den Eintritt 

von H-1PV in die Zellen stark. Anhand von Elektronenmikroskopie und konfokaler 

Mikroskopie wurden H-1PV-Partikel in Clathrin-beschichteten Membranvertiefungen 

und Vesikeln nachgewiesen, wodurch weiter bestätigt wurde, dass H-1PV die 

clathrinabhängige Endozytose für den Zelleintritt verwendet. Im Gegensatz dazu 

beobachtete ich keine Hinweise auf einen Viruseintritt durch Caveolae-vermittelte 

Endozytose. Außerdem zeige ich, dass die Internalisierung von H-1PV von der Aktivität 

von Dynamin abhängt und dass der Virustransport von den frühen bis zu den späten 

Endosomen stattfindet, wobei für eine erfolgreiche Infektion ein niedriger endosomaler 

pH-Wert erforderlich ist. Basierend auf den hier gesammelten Beweisen schlage ich ein 

Modell vor, bei dem H-1PV an die Sialinsäure der γ1-Ketten von Lamininen bindet und 

Galectin-1 die effiziente Internalisierung von Viruspartikeln durch clathrinabhängige 

Endozytose fördert. Zum ersten Mal beschreibt diese Dissertation die Zelleintrittswege 

von onkolytischem H-1PV. 
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1 Chapter 1: General Introduction 

-1 parvovirus (H-1PV) shows an excellent safety profile and is endowed 

with natural oncolytic and oncosuppressive properties. Thanks to these 

features, H-1PV is considered a promising anticancer agent. More than 50 

years of research at the pre-clinical level elucidated many aspects of the H-1PV life 

cycle, making it one of the most extensively studied autonomously replicating 

parvoviruses. However, the early steps of H-1PV infection are still poorly understood. 

The main objective of this dissertation is to help to fill in this knowledge gap and 

provide new knowledge that could be used to improve H-1PV-based anticancer 

therapies. 

In the section 1.1, I first give a general overview on the oncolytic virus field. 

Thereafter, in the section 1.2, I introduce the Parvoviridae family (which H-1PV 

belongs to), from taxonomy to virus life cycle. In the section 1.3, I cover the 

mechanisms involved in H-1PV anticancer properties leading to its clinical 

assessment, and how to further improve them. 

 

1.1 Oncolytic Virus, a Warrior Against Cancer  

1.1.1 Emergence of oncolytic virotherapy 

Oncolytic viruses are viruses that preferentially infect and kill cancer cells, while 

sparing normal cells/tissues. The concept of using viruses as therapeutic agents for the 

treatment of cancer dates back to the beginning of the 20th century. Italian physician 

DePace realised a brief tumour regression in patients with cervical cancer after being 

administered with rabies vaccine (De Pace, 1912). Shortly after, Levaditi and Nicolau 

proposed that the virus replicated in the tumour and was able to destroy it (Levaditi 

and Nicolau, 1922). Over time, case-study reports of cancer regression in cervical 

cancer, Burkitt lymphoma, and Hodgkin lymphoma after virus infection, provided 

further evidence that viruses may also have oncosuppressive properties in certain 

conditions (Kuruppu and Tanabe, 2005). However, the absence of neither complete 

nor durable anti-tumour activity of viruses in some human trials, along with some 

safety issues, led to the almost abandonment of virotherapy. 

H 
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In recent decades, the emergence of genetic engineering made the modification of 

viruses possible in order to improve their safety, specific oncotropism and potency, 

thereby advancing biological therapy for cancer. Even though conventional therapies 

(chemo- and radio- therapies) constitute the preferable treatment options, these often 

present limitations by not offering a definitive cure.  As a result, the oncolytic 

virotherapy field has received renewed attention (Russell et al., 2012). Currently, more 

than forty oncolytic viruses belonging to ten different families are currently evaluated 

in clinical trials against different cancers (Figure 1.1A, B) (Kaufman et al., 2015) 

[please refer to the following systemic review for a thorough overview of all oncolytic 

viruses in phase I, II, and III clinical trials published to date (Cook and Chauhan, 

2020)]. Oncolytic viruses include viruses that are naturally oncotropic and viruses that 

have been genetically engineered to preferentially infect cancer cells. Naturally 

oncolytic viruses include reovirus (Maitra et al., 2012), Newcastle-disease virus 

(NDV) (Phuangsab et al., 2001) and H-1PV – the subject of this study (Geletneky et 

al., 2012). In contrast, adenovirus (Ad) (Sato-Dahlman and Yamamoto, 2018), 

measles (MeV) (Bajzer et al., 2008), vesicular stomatitis virus (VSV) (Ammayappan 

et al., 2013), vaccinia virus (VV) (Guo et al., 2019) or herpes simplex virus (HSV) 

(Miyagawa et al., 2015) are examples of genetically modified viruses. These genetic 

alterations may include limiting the virus binding to surface antigens typically present 

in cancer cells, to improve immunogenicity or simply to attenuate virus-induced 

pathogenicity (de Matos et al., 2020). 

Despite clinical trials using oncolytic viruses having reported no deaths or clinically 

serious side-effects, and pre-clinical evidence of their potential as anticancer agents 

being increasingly growing, implementation of virotherapy has been slow (Figure 

1.1C). Even so, three oncolytic viruses have already been approved for the treatment 

of advanced cancers. In 2004, ECHO-7 picornavirus (Rigvir) constituted the first 

approved virus to treat melanoma in Latvia (Alberts et al., 2018). However, in March 

2019, Rigvir distribution was stopped after the amount of virus was in smaller 

quantities than those declared. In 2005, a genetically-modified Ad (H101) was 

approved in China to treat nasopharyngeal carcinoma in combination with 

chemotherapy (Liang, 2018). The first U.S. Food and Drug Administration (FDA)-

approved virus occurred in 2015, and it was named Talimogene laherparepvec (T-

VEC) (Johnson et al., 2015). T-VEC comprises an attenuated herpes simplex virus 1 
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(HSV-1) encoding granulocyte-macrophage colony-stimulating factor (GM-CSF) and 

was authorised for the local treatment of unresectable cutaneous, subcutaneous, and 

nodal lesions in patients with melanoma recurrent after initial surgery (Andtbacka et 

al., 2015). Subsequently, T-VEC has been also approved in Israel, Australia and 

Europe. 

 

 

 

Figure 1.1. Overview of oncolytic virotherapy in the clinical setting. 

(A) Summary of the basic characteristics of oncolytic viruses currently being tested in 

clinical trials. Abbreviations: H-1PV: H-1 parvovirus; HSV1: herpes simplex virus 1; 

MLV: murine leukaemia virus; VSV: vesicular stomatitis virus; NDV: Newcastle 

disease virus. Adapted from (Cattaneo et al., 2008) and (Miest and Cattaneo, 2014) 

 
B 

A 
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using the BioRender.com software. (B) Cancer types tested in clinical trials using 

oncolytic viruses, and respective number of clinical studies. Abbreviations: GI, 

gastrointestinal. Figure retrieved from (Macedo et al., 2020). (C) Distribution of 

oncolytic viruses by clinical stage. Out of a total of 97 clinical trials reported from 

2000 to 2020: phase I (n=49), phase I/II (n=6), phase II (n=11), phase III (n=2) and 

not specified (n=29). Pie chart retrieved from (Macedo et al., 2020). 

 

1.1.2 Mechanisms behind viral oncotropism 

The concept of oncolytic virotherapy comprises viral replication and consequent lysis 

restricted to tumour cells. This selective replication may result from inherent or 

engineered features and need to be carefully taken into consideration. There are three 

main parameters playing a role in viral oncotropism: (i) abnormal cell receptors, (ii) 

aberrant signalling pathways, and (iii) tumour microenvironment (Kaufman et al., 

2015). 

(i) Abnormal cell receptors 

The earliest steps of the virus-host cell interaction comprise the binding of the virus to 

the cell surface and its subsequent entry. Several oncolytic viruses possess a natural 

tropism towards cell surface proteins which are aberrantly expressed in cancer cells 

(Figure 1.2). This is the case of Poliovirus co-receptor CD155 overexpressed in glioma 

cells (Merrill et al., 2004); Sindbis virus binds to the high-affinity laminin receptor, 

which promotes cancer cell invasion and is overexpressed in several cancers (Van den 

Brule et al., 1996); or echovirus 1 affinity for integrin α2β1, present at high levels in 

ovarian cancer (Shafren et al., 2005).  

On the other hand, oncolytic viruses can be modified in order to bind cell surface 

receptors expressed by cancer cells (Figure 1.2). For instance, the modification of Ad 

to incorporate an RGD sequence in the viral fibre increases infectivity by promoting 

the binding to αvβ3 and αvβ5 integrins, which are overexpressed at the surface of 

numerous tumours or tumour angiogenic vasculature  (Wickham et al., 1994, 

Wickham et al., 1993, Martínez-Vélez et al., 2019). Another example is the attenuation 

of VSV by virus pseudotyping in order to contain the non-neurotropic envelope 

glycoprotein of lymphocytic choriomeningitis virus (LCMV) instead of the VSV G 

protein. This modification increases tropism towards brain cancer cells and reduce 

neurotoxicity (Muik et al., 2011). 
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Figure 1.2. Oncolytic viruses target receptors aberrantly expressed in cancer 

cells. 

Cell surface receptors which are often upregulated in carcinogenesis are targeted by 

oncolytic viruses to enter into cancer cells. Certain viruses can enter cells through 

more than a one receptor, and in turn, certain receptors can be involved in the entry of 

more than one virus. Alternatively, certain viruses can enter cells via membrane fusion 

and syncytia formation. Question marks correspond to viruses for which a receptor 

has not yet been identified. Abbreviations: CAR: coxsackievirus-adenovirus receptor; 

DAF: decay accelerating factor; HVEM1: herpesvirus entry mediator 1; ICAM-1: 

intercellular adhesion molecule 1; LDLR: low-density lipoprotein receptor; NDV: 

Newcastle disease virus; SARs: sialic acid-containing receptors; SLAM: signalling 

lymphocytic activation molecule; VSV: vesicular stomatitis virus. Figure retrieved 

from (Kaufman et al., 2015). 

 

(ii) Aberrant signalling pathways 

The second main mechanism concerns viruses which exploit aberrant signalling 

pathways responsible for maintaining continuous cancer growth (Figure 1.3). The Ras 

signalling pathways are crucial regulators of cell proliferation and carcinogenesis 

(Gimple and Wang, 2019). In fact, Ras-transformed cells are significantly more 

susceptible to reovirus and VV infection. When reovirus infects normal cells, the 

protein kinase R (PKR) pathway is activated, which in turn halts protein synthesis and 
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stops viral spread (Bischoff and Samuel, 1989). However, Ras-transformed cancer 

cells do not activate the PKR pathway, and therefore, provide more  favourable 

conditions for viral infection and virus-induced cell lysis (Gong and Mita, 2014). As 

well, an attenuated HSV-1 oncolytic virus having the ICP34.5 and unique short 11 

glycoprotein (US11) viral genes deleted leads to preferential lysis of cancer cells (Liu 

et al., 2003, Hu et al., 2006). These deletions incapacitate the virus from blocking PKR 

phosphorylation, and thus, only allow the virus to replicate in PKR-defective cancer 

cells (Poppers et al., 2000). Another example concerns the frequent dysregulation of 

B cell lymphoma (BCL)-2 family of proteins in cancer cells to evade cell death 

(Adams and Cory, 2007), while NDV oncotropism depends on tumour resistance to 

apoptosis. In this manner, BCL-xL-overexpressing cells provide the incubation time 

needed for the virus to replicate and form syncytia essential for virus spread (Mansour 

et al., 2011). 

 

Figure 1.3. Oncolytic viruses target aberrant cellular signalling pathways. 

The expression of aberrant host cell proteins, responsible for maintaining continuous 

cancer growth, can be targeted by oncolytic viruses. (A) In normal cells, the cell cycle 

and growth are regulated by numerous elements, including the p53 tumour suppressor, 

A B 
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p16, protein kinase R (PKR) and retinoblastoma (Rb). When the cell cycle is 

dysregulated, these factors trigger an abortive apoptosis. PKR can also halt protein 

synthesis upon a virus infection. (B) In cancer cells, there is an uncontrolled cell 

division in which cell cycle arrest and/or programmed cell death are usually inhibited. 

For instance, mutations in RAS lead to exacerbated cellular proliferation can be 

exploited by reovirus, Newcastle disease virus (NDV) and vesicular stomatitis virus 

(VSV). Moreover, upregulation of RAS inhibits PKR, a feature that promotes the 

selective replication of reovirus, herpes simplex virus type 1 (HSV-1), adenovirus 

(Ad), vaccinia virus (VV) and influenza virus. Likewise, mutations in p53 tumour 

suppressor unable the activation of abortive apoptosis, and therefore, p53-defective 

cells are preferential targets of Ad, reovirus and parvoviruses. Additionally, abnormal 

expression of Rb and p16 increase susceptibility of cancer cells to oncolytic virus, 

namely Ad, HSV-1, VV and Reovirus. Upregulation of anti-apoptotic B cell 

lymphoma (BCL)-xL, commonly observed in cancer cells, facilitates NDV replication 

by providing the incubation time needed. Abbreviations: CDK, cyclin-dependent 

kinase; EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated 

kinase; MAPK, mitogen-activated protein kinase; MEK, MAPK/ERK kinase; 

PDGFR, platelet-derived growth factor receptor. Figure retrieved from (Kaufman et 

al., 2015). 

 

Besides having a dysfunctional cell growth rate, cancer cells frequently present 

defective antiviral response pathways (Figure 1.4). In healthy cells, type I interferons 

are important mediators of cellular antiviral and antitumour responses since they 

trigger immune responses to clear the viral infection as well as decrease cellular 

proliferation by triggering p53 pro-apoptotic signalling (Muñoz-Fontela et al., 2008). 

In cancer cells, replication of VV (Parato et al., 2012), NDV (Wilden et al., 2009), 

reovirus (Bischoff and Samuel, 1989), VSV (Stojdl et al., 2000), among others, can 

occur due to a flawed interferon antiviral response. 
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Figure 1.4. Oncolytic viruses take advantage of cancer immune evasion 

pathways. 

(A) A virus infection normally triggers an antiviral response in healthy cells to restrict 

the viral infection. Toll-like receptors (TLRs) are triggered by viral pathogen-

associated molecular patterns (PAMPs) while retinoic acid-inducible gene 1 (RIG-1) 

detects viral nucleic acid. After detection, there is activation of a signalling cascade 

including the myeloid differentiation primary response protein MYD88, TIR-domain-

containing adapter-inducing IFNβ (TRIF), IRF7, IRF3 and nuclear factor-κB (NF κB), 

leading to the production of type I interferon and pro-inflammatory cytokines. Local 

interferon production signal through the Janus kinase-signal transducer and activator 

of transcription (JAK-STAT) pathway, leading to upregulation of cell cycle regulators, 

including protein kinase R (PKR) and interferon-regulatory factor (IRF7), which 

restrict virus spread and further induces type I interferon transcriptional pathways. (B) 

The interferon-related antiviral response is often disrupted in cancer cells, where most 

of these factors (RIG-1, IRF3, IRF7) are downregulated. By downregulating 

molecules involved in virus detection, cancer cells are inevitably more susceptible to 

virus infection, as well as those factors involved in type I interferon signalling. The 

figure indicates viruses which have been described to have their replication facilitated 

by factors specifically deficient in cancer cells. Abbreviations: dsRNA: double-

stranded RNA; NDV: Newcastle disease virus; TRAF: TNF-associated factor; VSV: 

vesicular stomatitis virus. Figure retrieved from (Kaufman et al., 2015). 

 

 

 

 

 

A B 



Introduction 

9 

(iii) Tumour microenvironment 

The third major regulator of viral oncotropism is the tumour microenvironment. As 

the tumour grows, the blood supply quickly reaches a point where it is not sufficient, 

and some regions are left with an oxygen concentration lower than that observed in 

healthy tissues. The resulting hypoxic microenvironment with reduced perfusion 

confers resistance to conventional therapeutics like radio- and chemotherapy (Guo, 

2011). While lower oxygen levels have also been demonstrated to inhibit virus 

replication and oncolysis, replication of oncolytic HSV-1 is potentiated partly due to 

an increased expression of Growth Arrest and DNA Damage-Inducible Protein 

(GADD34) in cells in hypoxic conditions (Aghi et al., 2009). Likewise, VSV has been 

shown to have the inherent capacity to replicate under hypoxic tumour cells (Zhou et 

al., 2016). 

Cancer cells also secrete higher levels of matrix metalloproteinases than normal cells, 

which in turn degrade the extracellular matrix faster to promote tumour dissemination 

(Egeblad and Werb, 2002). Given this fact, MeV was genetically engineered to include 

metalloproteinase cleavage sites in its fusion protein. This modification makes the 

virus dependant on the host protease furin secreted by cancer cells, to process and 

activate its envelope fusion protein, ultimately enhancing virus safety (Springfeld et 

al., 2006). Another example is the preferential infection of tumour vasculature by some 

OVs (Hartley et al., 2020). For instance, VSV was shown to infect and kill tumour-

associated endothelial cells, thus destroying tumour vasculature. This was associated 

with a lower supply of nutrients and oxygen into the tumour microenvironment, and 

consequently, tumour shrinkage (Breitbach et al., 2011) 

 

1.1.3 Features required for an ideal oncolytic virus 

Oncolytic virotherapy emerged as a strategy to alleviate or even cure malignant 

tumours. However, not every virus is considered to be a good candidate. In truth, there 

are some features expected of oncolytic viruses in order to be used effectively in 

patients (Parato et al., 2005): not harmful/pathogenic to humans, have specificity for 

tumour over normal cells, have a fast replication cycle, do not recombine with host 
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genome, possibility of being systematically administered, induce a strong anti-cancer 

immunity, and allow genetic engineering.  

The first clear requirement is the lack of pathogenicity for humans. Oncolytic viruses 

should ideally not be human pathogens to reduce the chances of a pre-existing 

immunity which compromise the therapeutic success. As well, oncolytic viruses 

should present an excellent safety profile by specifically infecting cancer cells in order 

to avoid damage on normal tissues.  

Another important aspect of oncolytic virotherapy is the viral life cycle. The virus 

should replicate rapidly, not involve recombination with the host cell DNA, induce 

cytolysis and spread before the establishment of an antiviral immune response. A virus 

capable of cell-to-cell transmission is believed to have an additional advantage since 

it is not as exposed, and therefore, the immune involvement would be delayed. 

Systemic administration of the virus is also very desirable to treat patients with 

advanced/metastatic disease, given that this administration route allows the targeting 

of the metastases apart from the primary tumour. Moreover, this delivery route may 

enhance the generation of antitumour immune responses compared to intratumorally 

administration (Kuhn et al., 2008). As well, systemic administration is less invasive 

and more standardisable, and therefore, preferable for the treatment of patients with 

inaccessible cancers, including brain cancer (when the virus has the ability to cross the 

blood brain barrier). 

The potential of oncolytic viruses to induce a strong anti-tumour immunity is also an 

important aspect. Ideally, the oncolytic virus is able to turn an immunosuppressive 

tumour into an inflammatory environment. Due to the resulting recruitment of macro-

phages and T cells, as well as other immune cells attracted by the cytokines released, 

the oncolytic viruses are able to destroy the tumour and generate immunological 

memory to restrict later tumour relapses. 

Last but not least, an ideal oncolytic virus candidate should be receptive to genetic 

modifications, including insertion of immunostimulatory genes to further increase the 

anti-cancer immune response (e.g. a gene encoding for an immune modulator), or 

genes that increase the oncolytic potential of the virus (e.g. a pro-drug convertase or a 

pro-apoptotic gene). 
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Taken together, it becomes unlikely that a virus presents all the above-mentioned 

characteristics. Uncertainties about the advantages of one virus over another, or even 

about the possibility of a certain oncolytic virus being more appropriate for a particular 

cancer type than another, demands further research on the field. 
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1.2 Parvoviridae, a Family Filled with Diversity 

Among the oncolytic viruses, the protoparvovirus H-1PV, belonging to the 

Parvoviridae family, is the subject of this study. H-1PV constitutes the most 

extensively studied oncolytic parvovirus and has shown remarkable oncolytic 

potential. In this section, I firstly cover the taxonomy as well as the basic biology of 

parvoviruses. At last, I describe the several steps of the H-1PV life cycle. 

 

1.2.1 Taxonomy 

The family consists of two subfamilies, Parvovirinae, which includes viruses of 

vertebrates, and Densovirinae, which includes viruses of insects and other 

invertebrates (Cotmore et al., 2014) (Figure 1.5). Currently, there are eight genera 

classified as members of the Parvovirinae subfamily, considering their molecular 

properties: (i) Amdoparvovirus, with mustelids, skunk, and raccoons as natural hosts;  

(ii) Bocaparvovirus, comprising a variety of parvoviruses from dogs, marine 

mammals, primates, and ungulates; (iii) Dependoparvovirus, including the adeno-

associated viruses (AAV), which is composed, with a few exceptions, of viruses which 

rely on a helper virus for their own replication (Naso et al., 2017); (iv) 

Erythroparvovirus, viruses with specific tropism for erythroid cells; (v) 

Copiparvovirus, having pigs and cows as natural hosts; (vi) Aveparvovirus, which 

infect birds; (vii) Tetraparvovirus, includes at least two ungulate parvoviruses (James, 

2017); and the (viii) Protoparvovirus (PtPV), which comprises rodent parvoviruses 

e.g. H-1PV (see below) (Ros et al., 2017). 

Within the Parvovirinae subfamily, there are viruses from five genera known to infect 

humans: the Bocaparvovirus human bocavirus (HBoV), whose infection cause 

respiratory diseases in children and rare fetal infections (Manteufel and Truyen, 2008); 

the Dependoparvovirus AAV types 1 to 5, whose infection alone is not known to cause 

any disease (Rajapaksha et al., 2018);  the Erythroparvovirus B19, that causes the fifth 

disease that usually affects children, but can also affect adults (Lunardi et al., 2008); 

the Tetraparvovirus human parvovirus (PARV) 4, which is asymptomatic (Matthews 

et al., 2014); and the PtPV bufavirus thought to cause gastroenteritis in both children 
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and adults (Qiu et al., 2017). Up to now, no human viruses were known to exist in the 

other three genera (Amdoparvovirus, Aveparvovirus and Copiparvovirus).  

The genus PtPV of the Parvoviridae contains the following species (Cotmore et al., 

2014, Ros et al., 2017): Rodent protoparvovirus 1 (H-1PV, minute virus of mice 

(MVM), Kilham rat virus, LuIII virus, mouse parvovirus, tumor virus X, rat minute 

virus); Rodent protoparvovirus 2 (rat parvovirus 1); Carnivore protoparvovirus 

1 (canine parvovirus (CPV) and feline panleukopenia parvovirus (FPV)); Primate 

protoparvovirus 1 (bufavirus) and Ungulate parvovirus 1 (porcine parvovirus (PPV)). 

The oncotropic and oncolytic properties of rodent PtPVs, with particular emphasis to 

H-1PV, have been extensively studied at the pre-clinical level. Thanks to their 

remarkable ability to preferentially infect and kill human cancer cell lines of different 

origins, there has been a growing interest to use these viruses as anti-cancer agents 

(Rommelaere et al., 2010). 

 

Figure 1.5. Parvoviridae family.   

Overview of a simplified phylogenetic tree of the genera in subfamilies Densovirinae 

(boxes in green) and Parvovirinae (boxes in blue). Selected examples of viruses with 

respective atomic structures are shown. Viral atomic structures were retrieved as 
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follows: Bombyx mori densovirus 1, Penaeus stylirostris penstyldensovirus 1, Galleria 

mellonella densovirus, bovine parvovirus 1 (BPV1), adeno-associated virus 2 (AAV-

2), human parvovirus B19 (B19) were all obtained from (Cotmore et al., 2019); while 

comparison of minute virus of mice (MVM) to H-1 parvovirus (H-1PV) was obtained 

from (Allaume et al., 2012). Radial distances (Å) from the particle centre are coloured 

according to scales bars ranging from blue to red. An asymmetric unit diagram is 

labelled to indicate icosahedral 2-, 3- and 5- fold axes in the H-1PV structure. 

 

In general terms, the PtPV genome is a linear, single-stranded DNA molecule of 

approximately 5 kb enclosed within an icosahedral capsid of 25 nm in diameter 

(Bretscher and Marchini, 2019). The capsid structure is characterised by three main 

elements: (i) a spike-like protrusion at the 3-fold axis of symmetry; (ii) a depression, 

called dimple, at the 2-fold axis; (iii) a pore located at 5-fold axis, connecting the inside 

of the virion to the exterior (Cotmore and Tattersall, 2007). The PtPV genome 

encompasses two gene units: the non-structural (NS) and the viral particle (VP) gene 

units (Figure 1.6). The early P4 promoter controls the expression of NS encoding for 

NS1 and NS2 proteins, whereas the late P38 promoter (transactivated by NS1) controls 

the expression of VP gene unit encoding the VP1, VP2 capsid proteins and the small 

alternatively translated protein (SAT) (Cotmore and Tattersall, 2007). VP3, another 

structural protein, is created through proteolytic cleavage of the VP2 N-terminal 

region (Cotmore and Tattersall, 2007). At both extremities, the viral genome contains 

palindromic sequences that form hairpin structures, which serve as self-priming 

origins during viral DNA replication (Li et al., 2013b).  

 

1.2.2 Parvoviral proteins 

NS1 is a multifunctional protein which regulates many PtPVs processes (Nüesch and 

Rommelaere, 2014). In H-1PV, the protein consists of 672 amino acids with a 

molecular weight of approximately 83 kDa. It is expressed early after infection and it 

is mainly located in the nucleus due to a nuclear localisation signal (NLS) in its 

sequence (Legendre and Rommelaere, 1994). Still, a fraction of the protein can also 

be found in the cytoplasm (Nüesch and Tattersall, 1993). Given its ATPase and 

helicase activities, NS1 initiates viral DNA amplification and regulates virus gene 

expression by modulating the activity of its own P4 promoter and transactivating the 

late P38 promoter (Noesch et al., 1992, Wilson et al., 1991, Rhode, 1985, Li and 
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Rhode, 1990). NS1 activities are tightly regulated in time and space through post-

translational modifications (Nüesch, 2006). A pertinent example is the 

phosphorylation pattern of NS1 changing throughout the MVM infection cycle. These 

changes are carried out by members of the phosphoinositide-dependent kinase 1 

(PDK1) / protein kinase C (PKC) / protein kinase B (PKB) signalling cascade (Nüesch 

et al., 2003, Dettwiler et al., 1999, Lachmann et al., 2003, Nüesch et al., 2001). During 

H-1PV infection, in addition to be phosphorylated, acetylation of NS1 was found to 

modulate NS1-mediated transcription and cytotoxicity (Li et al., 2013a, Hristov et al., 

2010) (see also sub-section 1.3.2). 

NS2 is a protein of about 25 kDa and is generated through the alternative splicing of 

NS1. NS2 exists as three isoforms: NS2P, NS2Y and NS2L (in order of abundance) 

(Ruiz et al., 2006). The functions of this protein in H-1PV infection are not entirely 

known, yet studies in MVM show that NS2 indirectly promotes virus replication and 

is required for full cytopathic potential (Legrand et al., 1993, Brandenburger et al., 

1990). 

The recently identified SAT protein is expressed at later stages of infection. It is 

encoded within the VP gene unit a few nucleotides downstream of the VP2 initiation 

codon. SAT of PPV accumulates in the endoplasmic reticulum and plays a role in virus 

release and spreading (Zádori et al., 2005). Indeed, PPV SAT knockout spreads slower 

as a consequence of prolonged cell integrity. Additionally, SAT increases endoplasmic 

reticulum stress and accelerates the cell death during infection (Mészáros et al., 2017). 

The capsid VP proteins present an overlapping amino acid sequence, with VP1 (81 

kDa) and VP2 (65 kDa) generated by alternative splicing from the same mRNA, and 

are expressed at a ratio 1:5 (Tattersall et al., 1976). Apart from VP1 and VP2 sharing 

a common C-terminal sequence (593 amino acids), VP1 presents a unique N-terminal 

region of 142 amino acids. This region contains a phospholipase A2 (PLA2) enzymatic 

domain as well as basic NLS, both essential for targeting the capsid to the cellular 

nucleus (Vihinen‐Ranta et al., 1997) (see also sub-section 1.2.3). VP3, a truncated 

version of VP2, is generated by proteolytic cleavage of 25 amino acids at the VP2 N-

terminus. The viral capsid is, in its whole, composed of 60 protein subunits: ∼10 

copies of VP1 and ∼50 copies of VP2 in empty capsids or a combination of VP2 and 

VP3 in full virions (Halder et al., 2013a). 
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Figure 1.6. Protoparvovirus genome.  

Parvovirus genome is flanked by hairpin structures on either end. Arrows indicate 

early P4 and late P38 promoters, responsible for transcription of non-structural (NS) 

and capsid (VP) gene units, respectively. From top to bottom, segments represent 

transcripts of NS1, NS2, VP1, VP2 and small alternatively translated (SAT) genes; 

along with AAAAAA polyadenylation sites. This figure was adapted from The 

ViralZone database (http://viralzone.expasy.org) using the BioRender.com software. 

 

1.2.3 Early steps of infection 

Recognition of cell surface factors is the first step in the viral infection, and conse-

quently, represents a key parameter of tropism and pathogenesis. Up to now, different 

receptor molecules, including proteins or carbohydrates, have been discovered to be 

involved in parvovirus-binding interactions. For instance, CPV and FPV interact with 

the transferrin receptor to bind and infect cells (Parker et al., 2001). Considered to be 

one of the most commonly receptors used in nature, sialic acid (SA; N-

acetylneuraminic acid) glycan was first shown to play a role in MVM cellular binding 

and entry (López-Bueno et al., 2006, Olofsson and Bergström, 2005, Cotmore and 

Tattersall, 1987). Later, it was also demonstrated that SA is required for the infection 

of PPV (Boisvert et al., 2010) and H-1PV (Allaume et al., 2012). Neuraminidase 

treatment, resulting in cleavage of SA from the cellular surface, indeed impairs the 

cell attachment of these viruses (Allaume et al., 2012). While Chinese hamster ovary 

(CHO) Pro-5 cells, which present SA on the cell surface, are permissive to H-1PV 

infection, the two isogenic CHO Lec 1 and Lec 2 mutants lacking SA, are resistant. 

http://viralzone.expasy.org/
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Additionally, the capsid 2-fold axis of symmetry was described to be quite important 

to dictate H-1PV infectivity. In particular, I367 and H373 residues in H-1PV capsid 

(I362 and K368, respectively, in MVM) were identified to participate in the interaction 

with SA exposed on the cellular membrane (Allaume et al., 2012, López-Bueno et al., 

2008). 

After virus attachment to the cellular membrane, PtPVs can be internalised by the host 

cell through different pinocytic pathways (Harbison et al., 2008) (Figure 1.7). 

Clathrin- and caveolae-mediated endocytosis are two pathways dependent on 

dynamin, while macropinocytosis, lipid raft-mediated and clathrin/caveolae-

independent endocytosis do not rely on dynamin activity (Doherty and McMahon, 

2009, Mercer et al., 2010). Clathrin-mediated endocytosis (CME) is the route 

commonly employed by small viruses to enter into cells. The same holds true for most 

PtPVs (Boisvert et al., 2010, Dudleenamjil et al., 2010, Parker and Parrish, 2000, 

Vendeville et al., 2009, Quattrocchi et al., 2012), yet the route used by H-1PV in 

particular remains to be described. Initially, adaptor protein 2 (AP2) complexes are 

recruited to the plasma membrane, which is followed by the formation of a three-

dimensional clathrin coat. As the event progresses, invagination of the membrane 

occurs, leading to a clathrin-coated pit. Thereafter, dynamin self-assembles around the 

vesicle neck to cleave a mature pit from the plasma membrane. 

Apart from the typical CME, PtPVs are known to use alternative endocytic pathways. 

For instance, both FPV and CPV are uptaken by cells via binding to the transferrin 

receptor, which is typically endocytosed by CME. However, even though deletions or 

mutations on the internalisation motif of the transferrin receptor decreased virus 

uptake from the cell surface, viral infection still took place (Hueffer et al., 2004), 

suggesting the possibility of alternative internalisation mechanisms. In what concerns 

MVM entry, the virus has been shown to take at least three different endocytic routes. 

In murine A9 fibroblasts, MVM endocytosis occurs through clathrin- and caveolae-

mediated endocytosis dependent on dynamin activity. However, in transformed cells, 

clathrin-independent carriers (CLIC)-mediated internalisation was shown to take place 

independently of dynamin (Garcin and Panté, 2015). PPV can also enter cells through 

macropinocytosis (Boisvert et al., 2010). These findings show that even though 

internalisation by clathrin represents the main entry route of PtPVs, alternative routes 

are sometimes involved in the viral uptake, in parallel or in certain cells. 
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Figure 1.7. Different endocytic pathways taken by parvoviruses. 

Clathrin-mediated endocytosis (CME) and caveolae-mediated endocytosis are the 

most common endocytic pathways. In addition, viruses can take other endocytic 

routes, such as clathrin/caveolae-independent, clathrin-independent carriers (CLIC) or 

macropinocytosis. At last, vesicles fuse with sorting endosomes. At the top, 

parvoviruses reported to enter cells through each pathway are listed. AAV: adeno-

associated virus; AP-2: adaptor protein 2; B19: parvovirus B19; BPV: bovine 

parvovirus; CPV: canine parvovirus; CLIC: Clathrin-independent carriers; FPV: 

feline parvovirus; MVMp: minute virus of mice prototype; PPV: porcine parvovirus. 

Refer to text for further details. This figure was created with BioRender.com. 

 

Subsequently, the vesicle is released into the interior of the cell, uncoats and typically 

fuses with an endosome (McMahon and Boucrot, 2011) (Figure 1.8). However, 

endosomal trafficking of PtPV virions was suggested to be a slow process, with 

endosomal escape being the limiting factor of MVM nuclear translocation. The viral 

capsid slowly undergoes conformational changes in the VP1 protein driven by the 

lysosomal acidic pH. As a result, the PLA2 enzymatic domain of VP1 is exposed and 

leads to the digestion of the endosomal membrane, facilitating the release of virus 

particles from the late endosome to the cytoplasm (Cotmore and Tattersall, 2007, 

Suikkanen et al., 2003, Canaan et al., 2004, Zádori et al., 2001, Dorsch et al., 2002). 

Studies using lysosomotropic drugs have demonstrated that several PtPVs rely on the 

endosomal acidification for a productive infection, such as CPV (Parker and Parrish, 
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2000, Vihinen-Ranta et al., 1998, Basak and Turner, 1992), MVM (Mani et al., 2006, 

Ros et al., 2002), among other parvoviruses.  

Incoming PtPV particles are then transported to the nucleus, in the case of MVM 

assisted by the cytoskeleton and motor proteins like dynein (Suikkanen et al., 2003). 

In the case of H-1PV, entry into the nucleus starts with the virus interacting with 

nuclear pore complex proteins, subsequently leading to the exposure of the unique 

sequence of VP1 containing NLS. VP1 triggers the permeabilisation of the nuclear 

membrane, ultimately causing the amplified calcium efflux in the nuclear periphery 

and the activation of PKC-α and cyclin-dependent kinase 2 (cdk2), a central factor 

governing the structure of the nuclear envelope. These kinases induce hyper 

phosphorylation of lamins, the components of the nuclear matrix, causing 

depolymerization and transient nuclear disruption (Porwal et al., 2013). 

The mechanism and exact time where PtPVs undergo uncoating (prior, during or after 

entry into the nucleus) is not well defined. There is evidence that viral capsids stay 

assembled in the cytoplasm and enter the nucleus intact. Indeed, CPV infection is 

prevented by neutralising antibodies that recognise intact capsids in the cytoplasm and 

nucleus (Vihinen-Ranta et al., 2000). Research indicates that PtPV DNA is most likely 

pushed out from intact capsids, as different treatments were able to expose viral DNA 

without causing complete capsid disassembly (Cotmore et al., 1999). In this manner, 

the 3’ terminal hairpin is left accessible to prime DNA synthesis, while the 5’ end is 

unreachable and remains attached to the capsid (Cotmore et al., 2010).  

 

1.2.4 Replication and egress 

Similarly to most DNA viruses, PtPVs replicate in the nucleus making extensive use 

of the cellular replication machinery. The virus remains silent waiting for the host cell 

to enter S-phase in order to begin viral DNA replication (Cotmore and Tattersall, 

2005). The replication process involves the conversion of viral ssDNA into double-

stranded DNA (dsDNA) intermediate which permits subsequent transcription of viral 

messenger RNA (mRNA). Thereafter, replication of the viral genome occurs through 

a complex “rolling hairpin” mechanism (Berns, 1990). This process integrates several 

cellular proteins (including the replicator protein A (RPA) and cyclin A (Christensen 
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and Tattersall, 2002, Bashir et al., 2000)) along with a large group of transcription 

factors which activates the P4 promoter and lead to the expression of NS proteins 

(Deleu et al., 1999) (see also sub-section 1.3.1). After translation of NS1 in the 

cytoplasm, it travels into the nucleus to drive viral DNA replication and VP gene unit 

transcription (Cotmore and Tattersall, 2007). Once the structural proteins are produced 

in the cytoplasm and imported to the nucleus, the progeny virions are assembled 

(Lombardo et al., 2000, Lombardo et al., 2002) and actively released to the cytoplasm 

(Eichwald et al., 2002, Maroto et al., 2004, Miller and Pintel, 2002). At last, progeny 

virions are trafficked via the endoplasmic reticulum, passing through the Golgi to the 

plasma membrane, while undergoing post-assembly modifications essential for 

infectivity (Bär et al., 2008, Bär et al., 2013). 

  



Introduction 

21 

 

Figure 1.8. Protoparvovirus life cycle, from cellular binding to reaching the 

nucleus. 

(1) Initially, PtPV capsids bind to receptor(s) on the cell surface. (2) After lateral 

diffusion, viral capsids are taken into pre-formed/forming clathrin pits. (3) 

Alternatively, viral capsids may detach from their receptors. (4) Viral capsids are 

internalised through CME and subsequently, (5) follow the endocytic route in which 

the acidic pH and enzymes trigger structural changes in the virus capsid. (6) These 

structural rearrangements lead to the exposure of VP2-Nt, and subsequently to VP1-

Nt. Usually, only a small percentage of virus particles manage to escape the endosomal 

membrane via VP1-encoded phospholipase A2 activity. (7) On the other hand, many 

incoming virus particles fail to escape from endosomes and end up accumulating in 

the degradative lysosomes. (8) In the cytoplasm, PtPV particles take advantage of the 

cellular cytoskeleton and motor proteins to make their way to the nucleus. (9) Entry 

via nuclear pore or permeabilization of the nuclear envelope have both been suggested 

to be the mechanisms through which the virus and/or the genome enters the nucleus. 

(10) The timing and site of capsid uncoating are also not known. However, it has been 

proposed that viral capsids enter the nucleus intact, and the uncoating would occur 

upon interaction with the nuclear pore complex (NPC) proteins and/or after nuclear 

entry. Retrieved from (Ros et al., 2017). 

  



 

22 

1.3 H-1PV, Bench to Bedside and Back Again 

In this section, the major discoveries regarding the main cellular factors involved in 

the H-1PV life cycle and the mechanisms underlying virus-induced cancer cell death 

are reported. Importantly, these studies set the foundation for the recent clinical trials 

in glioblastoma and pancreatic carcinoma.  

 

1.3.1 Determinants of parvovirus infection  

Even though parvoviruses were isolated from transplanted human tumours (Toolan et 

al., 1960), following studies quickly disregarded the virus to be oncogenic. Instead, 

they were found to present a natural tropism towards cancer cells and to spare healthy 

cells (Toolan, 1961, Rommelaere and Cornelis, 1991). The oncoselectivity observed 

is a complex phenomenon mostly due to various factors at different steps of the virus 

life cycle which are underrepresented in non-tumour cells (Angelova et al., 2015) 

(Figure 1.9). Part of these factors are not solely present in tumours, but instead 

characteristic of actively proliferating cells. A pertinent example is related to the S-

phase dependence: the cyclin A/CDK2 complex is required for viral genome 

replication, as well as the E2F family of transcription factors for activation of the early 

P4 viral promoter (Bashir et al., 2001, Deleu et al., 1999). PtPVs possess a limited 

coding capacity and are unable to make quiescent cells undergo S-phase (Weitzman, 

2006, Bashir et al., 2000). Therefore, since transformed cells often skip growth control 

and are constantly in proliferation, oncolytic PtPVs replicate in these cells more 

efficiently. Cell migration, which is a common feature of aggressive tumours, was 

recently demonstrated to promote MVM uptake in cancer cells (Garcin and Panté, 

2014). 

Other factors are inherently more specific for cancer cells, resulting from aberrant 

overexpression or atypical activation due to (epi)genetic changes. It is known that H-

1PV life cycle is dependent on the activity of PKCα and CDK1, responsible for nuclear 

envelope breakdown to promote virus translocation into the nucleus (Porwal et al., 

2013). At the level of viral gene expression, the Ets and ATF transcription factors were 

described to activate the early P4 MVM promoter (Perros et al., 1995, Fuks et al., 

1996). Additionally, while PKCη/Rdx complex formation and simultaneous PDK1 
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phosphorylation represent a hallmark of highly aggressive brain tumours, these also 

favour H-1PV amplification and NS1-induced cell death (Bär et al., 2015). As well, 

high-mobility group box protein 1 (HMBG-1) was shown to initiate MVM DNA 

amplification from the right-hand viral origin (Cotmore and Tattersall, 1998, Cotmore 

and Tattersall, 2005). Still at the viral replication level, ATM kinase-mediated DNA 

damage response was demonstrated to promote MVM replication and virus-induced 

cell cycle arrest (Adeyemi et al., 2010). Another example concerns the Raf kinase 

isoforms, which are often overexpressed, activated, or mutated in cancer cells (Leicht 

et al., 2007). At the level of progeny virion assembly, Raf-1 kinase was found to 

phosphorylate VP proteins of MVM, an important step to further import these 

intermediates into the nucleus for capsid assembly (Riolobos et al., 2010). Proteins 

like XPO1, PKB, PKC and Radexin are implicated at various steps concerning MVM 

viral maturation and egress (Bär et al., 2008, Nüesch et al., 2009, Eichwald et al., 

2002) 

Some factors are shown to act as direct binding partners of PtPV proteins, such as 

cellular transcription factors [TATA binding protein (TBP), general transcription 

factor 2A (TFIIA), and SP1/3] or replication factors (RPA) (Lorson et al., 1998, Krady 

and Ward, 1995, Christensen and Tattersall, 2002). Some other factors are not found 

in complexes with PtPV proteins, but instead, come together in certain areas of 

infected cells. Particularly, factors of the cell DNA replication machinery (e.g. RPA, 

POLA1/POLa, PCNA, and RF-C) and DNA damage response (e.g. RPAP32, γH2AX, 

NBS1-P, and ATM) are recruited to subnuclear viral replication centres called APAR 

bodies (Bashir et al., 2001, Adeyemi et al., 2010, Ruiz et al., 2011). As a result, this 

redistribution is thought to support PtPV multiplication and promote host DNA 

synthesis shutoff.  

Interferon is another cellular feature that is considered to have a role in oncotropism. 

Regarding MVM, the virus showed to be able to counteract the production of type I 

interferon in transformed cells, whereas it failed to do so in normal cells (Grekova et 

al., 2010). However, the sensitivity of PtPVs to interferons remains controversial. 

PtPV infection (including of H-1PV) failed to induce type I interferon production in 

several human cancer cells, as well as in normal human cells (Paglino et al., 2014, 

Angelova and Rommelaere, 2019). 
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Altogether, the aforementioned highlights only explain in part the PtPV oncotropism, 

and additional studies are needed to fully understand why these viruses are oncotropic. 

 

 

Figure 1.9. Cell disturbances induced upon parvovirus infection. 

Parvovirus replication occurs in the nucleus and strictly depends on factors present 

during the cellular S-phase. Conversion of viral single-stranded into double-stranded 

DNA is carried out by RFs under the control of cyclin A. Thereafter, E2F and 

transcription factors (ATF/CREB, ETS, and NF-Y) turn on the parvoviral early P4 

promoter, responsible for the expression of NS1 and NS1 non-structural proteins. In 
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turn, NS1 transactivates the late p38 promoter which leads to expression of structural 

genes. Besides, NS1 interacts directly with factors of the DNA replication (RPA 1-3) 

and transcription (TBP, TFIIA, and SP1) machineries to promote parvoviral DNA 

replication/transcription and to disturb DNA/RNA metabolic processes. Interactions 

with NS1-CKII and NS2-XPO1 mostly interfere with cell signalling and nuclear 

export, respectively. As a result, these events cause oxidative stress, DNA damage, 

cell-cycle arrest, cytoskeleton structure rearrangements, mitochondrial membrane 

depolarization, and/or lysosome permeabilisation, ultimately leading to cell death. Of 

note, expression of NS1 alone is sufficient to cause cell death. The oncoselectivity of 

parvoviruses is mainly attributed to two features: the presence of permissive factors 

and the flawed antiviral response observed in cancer cells (indicated with *). 

Abbreviations: ds, double-stranded; GSN, gelsolin; GTF2A/TFIIA, general 

transcription factor 2A; RF, replication factor; SP1/3, Sp1/3 transcription factor; TBP, 

TATA binding protein; TF, transcription factor; TPM2/5: tropomyosin 2/5; VP, PV 

capsid proteins; XPO1, exportin 1 (CRM1 yeast homolog). Retrieved from (Nüesch 

et al., 2012). 

 

1.3.2 Parvovirus-induced cell death 

PtPVs usurp cellular mechanisms and interfere with cellular signalling cascades in 

order to induce cell growth arrest and cytotoxicity (Figure 1.9). Assessment of PtPV 

oncolytic activity in vitro and in vivo has been primarily performed with H-1PV and 

MVM. These viruses have been showing oncolytic and oncosuppressive potential in a 

broad range of cancer types, including glioblastoma (GBM) (Herrero y Calle et al., 

2004), pancreatic ductal adenocarcinoma (Li et al., 2013a), cervical carcinoma (Li et 

al., 2013a), lung cancer (Marchini, Bonifati & Rommelaere, unpublished results), 

melanoma (Moehler et al., 2011), gastric cancer (Liu et al., 2005), neuroblastoma 

(Lacroix et al., 2010), breast cancer (Muharram et al., 2010), hepatoma (Moehler et 

al., 2001), sarcoma (Lacroix et al., 2018, Geiss et al., 2017), Burkitt lymphoma 

(Angelova et al., 2009a), colon cancer (Malerba et al., 2003), and medulloblastoma 

(Lacroix et al., 2014) (Figure 1.10).  
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Figure 1.10. Current status of protoparvovirus-based studies in various models. 

Tumour entities already tested for susceptibility to PtPV treatment are listed. These 

studies collectively show that PtPVs have a broad tropism. Retrieved from (Hartley et 

al., 2020). 

 

Cell death resulting from an oncolytic virus infection can take place through various 

mechanisms and pathways simultaneously. With respect to PtPV, viral infection has 

been demonstrated to lead to great disturbances in different organelles of the host cell. 

While CPV was shown to depolarise the mitochondria during infection (Nykky et al., 

2014), PPV induces irreversible endoplasmic reticulum stress through SAT viral 

protein (Mészáros et al., 2017). Moreover, H-1PV is able to induce nuclear envelope 

disintegration (Porwal et al., 2013), and disturb the lysosomal membrane leading to 

the release of cathepsin B into the cytosol (Krämer, Hristov & Marchini, unpublished 

results). MVM was described to disrupt the host cell cytoskeleton actin and 

tropomyosin filaments through caseine kinase IIa (CKIIa)-mediated phosphorylation 

of NS1 (Nüesch et al., 2005, Bär et al., 2008, Nüesch and Rommelaere, 2007, Daeffler 

et al., 2003). This is thought to have a greater impact on tumour cells, which lack the 

most rigid actin or the abundant levels of tropomyosin 1 (Bhattacharya et al., 1990). 

In the long run, the abovementioned processes lead to the activation of a stress 

response and cell death. The specific cell death mechanism triggered depends on the 

parvovirus and the cellular physiological status. For example, NS1 of H-1PV can 
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induce cell cycle arrest in G2 phase (Hristov et al., 2010) and trigger apoptosis 

(Ohshima et al., 1998, Hristov et al., 2010, Li et al., 2013a), necrosis (Chen and Qiu, 

2010, Ran et al., 1999), or cathepsin-mediated lysosomal cell death (Di Piazza et al., 

2007). This way, H-1PV manages to overcome a possible resistance of cancer cells to 

a particular cell death pathway. Furthermore, H-1PV triggers oxidative stress via 

accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), 

culminating in cell death (Hristov et al., 2010, Li et al., 2013a). However, the 

magnitude of the oxidative stress is largely dependent on the antioxidative capacity of 

the host cell, which can also account for the discrepancies in the virus-induced cell 

death pathways. While cells that manage to neutralise ROS/RNS usually die through 

controlled cytochrome c-mediated apoptosis, those cells which tolerate more damage 

likely undergo necrosis (Scherz-Shouval and Elazar, 2007).  

PtPVs have the potential to trigger an immunogenic cell death associated with the 

release of pathogen- and danger-associated molecular patterns (PAMPs, DAMPs) and 

tumour-associated antigens (TAAs), leading to potent and long-lasting anti-cancer 

immunity (Figure 1.11). In pancreatic cancer cells, H-1PV alone induced the release 

of HMGB-1, a hallmark of immunogenic cell death (Angelova et al., 2014). In 

melanoma cells, H-1PV infection provoked a high and long-lasting release of heat-

shock protein 72, thereby enhancing tumour immunogenicity (Moehler et al., 2003). 

Consequently, an immunogenic cell death leads to the activation of the dendritic cells 

(Moehler et al., 2005), a feature also observed in glioma cells upon H-1PV and MVM 

infection (Grekova et al., 2012, Angelova and Rommelaere, 2019). Thereafter, the 

cascade involves the release of pro-inflammatory cytokines such as type I interferons, 

tumour necrosis factor alpha (TNF-α), and interleukin (IL)-6, triggering natural killer 

(NK) and T cell activation. The latter are responsible for killing cancer cells by 

secreting perforin and granzyme B (Geletneky et al., 2017, Bhat and Rommelaere, 

2013, Bhat et al., 2011). Indeed, the immune system is crucial for full therapeutic 

potential (Angelova and Rommelaere, 2019, Geletneky et al., 2015, Marchini et al., 

2019). Cytotoxic T cells are key to fight metastases of Morris hepatoma cells in rats 

administered with a therapeutic vaccine consisting of H-1PV-infected autologous 

tumour cells (Raykov et al., 2007). Likewise, antibody depletion of cytotoxic T cells 

in an immunocompetent rat GBM model markedly reduced H-1PV oncosuppressive 

properties (Geletneky et al., 2010b). NOD SCID mice with xenografted human 
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pancreatic adenocarcinoma, later reconstituted with autologous dendritic cells and T 

cells primed with H-1PV-infected cell lysates caused a strong inhibition of tumour 

development (Grekova et al., 2014). 

Overall, the reasons behind the growing interest in H-1PV as an anti-cancer agent lie 

within several aspects. Firstly, H-1PV offers a remarkable safety profile. The virus is 

not a human pathogen and was never associated with any human disease. Secondly, 

since the rat is the natural host of H-1PV, humans have generally not been exposed to 

it, which prevents the quick elimination of the virus inoculum by a pre-existing 

antiviral immunity (Allaume et al., 2012). H-1PV presents an oncolytic 

oncosuppressive potential extensively shown in numerous pre-clinical models, 

including tumours resistant to standard therapies (Hartley et al., 2020). H-1PV-

induced cell death is immunogenic with ability to elicit strong anticancer immune 

responses (Marchini et al., 2019). Last but not least, the fact that H-1PV lacks an 

envelope and is currently the smallest oncolytic virus under development, facilitates 

the crossing of physiological barriers such as the brain-blood barrier and the virus 

distribution within the tumour bed. Together, these constituted the grounds to proceed 

to clinical evaluation (Bretscher and Marchini, 2019).  

 

 

Figure 1.11. Oncolytic parvovirus-induced (immunogenic) cell death. 

(A) Parvovirus infection triggers cytoskeletal stress, production of reactive 

oxygen/nitrogen species (ROS/RNS) and the DNA damage response. These events 

lead to cell lysis and release of progeny virions. (B) Cell lysis leads to release of 



Introduction 

29 

damage-associated molecular patterns (DAMPs), including heat shock proteins 

(HSPs) and high-mobility group box protein 1 (HMGB-1); pathogen-associated 

molecular patterns (PAMPs) including viral nucleic acid, proteins, and capsids; 

tumour-associated antigens (TAAs); and pro-inflammatory cytokines such as type I 

interferons. (C) The listed factors promote the maturation and activation of dendritic 

cells (DC) and natural killer cells (NK). PAMPs are recognised by pattern recognition 

receptors (PRRs) and type I interferons by interferon-α receptors (IFAR) both 

expressed by DCs. Consequently, DCs generate pro-inflammatory cytokines 

(including interleukin (IL)-12 and tumour necrosis factor (TNF)-α), which are 

recognised by cytokine receptors (CR) on T and NK cells. (D) Mature DCs proceed to 

antigen cross-presentation via the major histocompatibility complex (MHC) to T cells 

to promote their activation and expansion. Ultimately, the release of perforins, 

granzymes and cytokines by T cells and NK cells mediates the lysis of cancer cells. 

 

1.3.3 Clinical evaluation of H-1PV treatment 

The first clinical use of H-1PV in humans dates back to 1965. Under compassionate 

use, two young patients with advanced disseminated osteosarcoma were treated 

intramuscularly with H-1PV (Toolan et al., 1965). Virus treatment was well tolerated, 

and patients developed an extensive viremia and subsequent virus neutralising 

antibodies. Later on, a phase I clinical study was carried out in France in 1993 (Le 

Cesne et al., 1993). A group of 12 patients with skin metastases resulting from various 

types of solid tumours were submitted to an intralesional dose-escalation H-1PV 

treatment. The virus treatment took place every 10 days, and seroconversion was 

observed 10-15 days after the first injection. Apart from a low-grade fever in 3/12 

patients, no other significant H-1PV-induced side-effects were observed, providing 

evidence that H-1PV treatment is safe. Remarkably, two patients stabilised the disease 

throughout the observation period, and patients who had been injected at a location far 

from the metastasis showed traces of viral genomes/proteins.  

Thanks to the encouraging progress it had been made so far, the first phase I/IIa 

clinical trial was launched in 2015 to treat 18 patients with recurrent GBM 

(ParvOryx01) (Geletneky et al., 2017, Geletneky et al., 2014a, Geletneky et al., 

2014b). The primary goals of this study concerned safety, tolerability, 

pharmacokinetics, and maximum tolerated dose. Additionally, tissue samples were 

harvested during tumour resection for later analysis of viral components and tumour 

microenvironment assessment. Firstly, half of the total viral dose was administered 

either intravenously or intratumourally prior to tumour resection. Ten days after virus 
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treatment, the second half of the viral dose was administered into the wall of the 

resection cavity. As a result, the ParvOryx01 trial successfully proved that H-1PV is 

safe and well tolerated, with risk assessment excluding a maximum tolerated dose 

reached or virus spread from person to person. As anticipated from studies in rats 

(Geletneky et al., 2010b), analysis of post-treatment tumour tissues revealed that H-

1PV was able to cross the blood-brain barrier and spread widely through the tumour 

after intravenous administration. Patients submitted to H-1PV treatment also presented 

markers of virus replication, microglia/macrophage activation and cytotoxic T cell 

infiltration within the tumour, with scarce T regulatory cells, suggesting a H-1PV-

induced immunogenic stimulus. Consequently, the treatment led to an improved 

progression-free survival and median overall survival in comparison with historical 

recurrent GBM cases (noncontemporary controls, a meta-analysis of the survival 

trends of GBM patients treated with all different modalities). Given that the rat is the 

natural host for H-1PV, humans have no pre-existing immunity against the virus and 

therefore, the therapeutic window of H-1PV is supposed to be larger in comparison to 

that of other oncolytic viruses based on human pathogens. Nevertheless, 

seroconversion was later detected in patients in a dose-dependent manner after 10 days 

from administration (Geletneky et al., 2017). Taken as a whole, the outcome remains 

highly favourable and provides a new stimulus towards further clinical development.  

In a later attempt to enhance H-1PV efficacy, patients suffering from GBM were 

treated in a compassionate use program with a combination of H-1PV followed by 

angiogenesis inhibitor (bevacizumab), and some co-treated with PD-1 checkpoint 

blockade (nivolumab) and a histone deacetylase inhibitor (valproic acid) (Geletneky 

et al., 2018, Geletneky et al., 2016). At last, seven out of nine patients presented an 

objective tumour response, with two of these showing a complete (albeit temporary) 

remission and five a partial tumour reduction. 

More recently, another clinical trial was launched, this time to treat inoperable 

metastatic pancreatic carcer with a co-treatment of H-1PV and gemcitabine (Hajda et 

al., 2017). Seven patients with at least one hepatic metastasis were first treated 

intravenously with 40% of the total viral dose, while the remaining dose was later 

administered intra-metastatic followed by gemcitabine treatment. ParvOryx02 

presented additional endpoints regarding the immunogenic potential of H-1PV, 

comprising the assessment of tumour-infiltrating cells as well as cytokines released 
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upon virus treatment. The ParvOryx02 trial was completed in the first trimester of 

2019 and the entire assessment has not been disclosed yet. As of now, the excellent 

safety and tolerability of the treatment was confirmed. Additionally, two out of seven 

patients responded to the treatment by showing clear changes in the tumour 

microenvironment, induction of specific immune responses, as well as extended 

overall survival (Hajda et al., 2017). 

 

1.3.4 Strategies to improve H-1PV anticancer activity 

H-1PV has successfully demonstrated in vitro and in vivo its broad tumour-

suppressive potential. In early phase clinical trials, H-1PV treatment showed to be safe 

and well-tolerated in glioma and pancreatic carcinoma patients. Virus treatment was 

also associated with first evidence of efficacy, including ability to cross the blood-

brain barrier after intravenous delivery; effective distribution and expression in the 

tumour bed; immuno-conversion of tumour microenvironment; and improved patient 

overall survival in comparison to historical controls (Ungerechts et al., 2017, 

Geletneky et al., 2017). However, similar to other oncolytic viruses, H-1PV treatment 

was unable to eradicate the tumour in patients at the regimes used (Hartley et al., 

2020). Therefore, there is an urgent need to improve the clinical outcome of H-1PV 

oncolytic therapy. The main approaches being currently followed are summarised in 

Figure 1.12: combination therapy, development of second-generation viral vectors, 

and characterisation of the H-1PV life cycle. In the following sub-sections, I report 

some examples of success within each strategy. 
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Figure 1.12. Strategies to improve H-1PV anticancer efficacy. 

There are three main strategies being adopted to improve H-1PV anticancer efficacy: 

combination therapy with other treatment modalities, development of second-

generation parvovirus vectors, and characterisation of H-1PV life cycle (of particular 

relevance to this study). The latter may contribute to identify permissive factors 

(positive or negative modulators) for a successful virus infection. This knowledge can 

reveal biomarkers to help find patients who my respond better to H-1PV-based 

therapies. This figure was adapted from (Hartley et al., 2020). Abbreviations: Ad, 

adenovirus; H-1PV, H-1 parvovirus; HDAC, histone deacetylase; IFN, interferon; PV, 

parvovirus; shRNA, short hairpin RNA. 

 

1.3.5 Combination therapy 

A human tumour is described as a (epi)genetically and phenotypically heterogeneous 

population of (cancer) cells (Lawrence et al., 2013). It is, therefore, unlikely that an 

oncolytic virus could infect and destroy a widespread disseminated disease entirely in 

every patient. An encouraging approach to improve virus anticancer efficacy relies on 

combining different therapeutics (thoroughly reviewed in (Angelova et al., 2021)). 
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Parvo-virotherapy has been combined with radiotherapy (Geletneky et al., 2010a), 

chemotherapy (Moehler et al., 2011, Li et al., 2013a, Angelova et al., 2009b), 

immunotherapy (Goepfert et al., 2019, Geletneky et al., 2018), histone deacetylase 

inhibitors (Marchini et al., 2013, Marchini et al., 2016), BH3 mimetics (Marchini et 

al., 2015b), and interferon-gamma (Grekova et al., 2011).  

Gemcitabine (cytostatic) (Angelova et al., 2009b, Angelova et al., 2014, Hajda et al., 

2017) and valproic acid (anti-epileptic) (Li et al., 2013a) are two drugs already 

available on the pharmaceutical market which have demonstrated to synergise with H-

1PV in the fight against pancreatic cancer. In GBM, the first clinical indications of 

improved anticancer efficacy were observed with a co-treatment of H-1PV + 

bevacizumab + nivolumab, in addition to valproic acid (mentioned in sub-section 

1.3.3) (Geletneky et al., 2018, Geletneky et al., 2016). 

 

1.3.6 Development of second-generation parvovirus vectors 

Another strategy which has been implemented to improve H-1PV anticancer efficacy 

relies on developing improved versions of wild-type H-1PV, by selecting fitness virus 

mutants, modifying the virus capsid, arming the virus with immune stimulators / RNA 

interference cassettes, or even generating chimeric viruses. 

Naturally occurring parvovirus variants sporadically occur due to spontaneous genetic 

modifications. A H-1PV variant with a 114 nucleotide in-frame deletion was isolated 

from a newborn human kidney cell line during a routine viral plaque purification 

(Faisst et al., 1995). Yet, the deletion turned out to enhance viral fitness by improving 

nuclear export and spreading in comparison to wild-type H-1PV (Weiss et al., 2012).  

H-1PV can also be subjected to genetic engineering. Given that H-1PV enters in most 

normal cells (even though these infections are not productive (Angelova et al., 2015)), 

there was an attempt to get the virus to target cancer cells more specifically. For this 

purpose, residues in the viral capsid were altered, rendering H-1PV unable to 

recognise the SA present at the cell surface. Thereafter, a RGD-4C peptide was 

inserted in the dimple region of the H-1PV capsid to force the virus to bind to αvβ3 

and αvβ5 integrins (Allaume et al., 2012), which are frequently overexpressed in 

cancer cells and tumour vasculature. Another example concerns the insertion of CpG 
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motifs, which are well described to have immunostimulatory activity, into the 

untranslated region of the H-1PV VP gene unit (Raykov et al., 2008). Indeed, modified 

viruses presented enhanced immunogenicity in in vitro and in vivo studies (Grekova 

et al., 2014).  

The creation of chimeric viruses was also adopted to overcome some of limitations 

encountered when using wild-type H-1PV, namely its limited packaging capacity. To 

this end, a novel adenovirus-parvovirus (Ad-PV) chimeric virus was generated 

through insertion of an engineered H-1PV genome into the Ad5 genome. The Ad acts 

as a carrier to efficiently bring the H-1PV genome into cancer cells, from which 

progeny virions are produced and propagate independently within the tumour bed (El-

Andaloussi et al., 2012a). The chimera has several advantages, namely bringing H-

1PV specifically to cancer cells (by taking advantage of the experience accumulated 

about the retargeting of the Ad to cancer cells), bringing the H-1PV genome inside 

cells which are refractory to H-1PV at the level of binding and/or entry, as well as the 

possibility of insertion of large transgenes into the Ad backbone to potentiate the 

ability of H-1PV to kill cancer cells and trigger more robust anticancer immune 

responses.  

 

1.3.7 Characterisation of H-1PV life cycle 

The strategy followed in this thesis primarily relates to the identification of host cell 

factors modulating H-1PV life cycle. A deeper understanding of H-1PV life cycle can 

help identifying biomarkers to predict which patients would most likely benefit from 

virus treatment. In addition, this knowledge can provide hints on which drugs could 

be combined with the virus in order to enhance its oncotoxicity (Hartley et al., 2020).  

The earliest and arguably the most important stage of the virus infection occurs when 

a virus particle encounters a host cell and interacts with surface receptors as a means 

to enter into the cell. In the case of H-1PV, SA has been shown to be an essential 

component for cell attachment, a property shared with other PtPVs (Halder et al., 

2013b, Allaume et al., 2012). In order to identify host proteins that could be involved 

in the binding and/or entry of H-1PV, our laboratory recently performed a druggable 

genome-wide siRNA library screening to identify putative modulators of H-1PV 
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infection. As a result, laminin-γ1 and galectin-1 were highlighted as potential players 

in H-1PV life cycle (these results laid the foundation for this study and are described 

in sub-section 3.1.1). 

 

Laminins 

Laminins are a family of heterotrimeric glycoproteins containing an α, a β and a γ 

chain. In humans, there have been described 15 isoforms named after the 

corresponding combination out of the five α, four β and three γ chains (Aumailley et 

al., 2005). The chains are connected via disulphide bonds at their C-terminal regions 

and together make up a triple coiled-coil structure resulting in a “crucifix”-shaped 

macro-molecule of at least 400 kDa. Laminins are part of the extracellular matrix and 

are important constituents of the basal lamina, shaping cell differentiation, migration 

and adhesion (Durbeej, 2010). Laminins are ubiquitously expressed, yet isoforms are 

typically cell- and tissue-specific (Qin et al., 2017). As well, laminins are heavily 

glycosylated, and importantly, contain terminal SA residues  (Bouchara et al., 1997). 

Even though laminins are a component of the extracellular matrix, which acts as a 

physical barrier to protect tissues from invading pathogens, several microorganisms 

(including viruses) have been described to hijack laminins as attachment factors 

(Singh et al., 2012). For instance, human papilloma virus (HPV) type 11 has been 

demonstrated to bind to laminin-5 (Laminin α3β3γ2) (Culp et al., 2006). Likewise, 

laminins were found to participate in VV cell attachment (Chiu et al., 2007). 

Retroviruses have also been reported to interact with elements from the extracellular 

matrix. In particular, human immunodeficiency virus type 1 (HIV-1) proteins 

gp120/160 were shown to bind to the C-terminal heparin-binding domain of laminins, 

as well as of fibronectin and vitronectin. Yet surprisingly, this interaction was reported 

to reduce HIV-1 infectivity of CD4+ T cells  (Bozzini et al., 1998). Altogether, these 

findings indicate that laminin-pathogen interactions play an important role during 

infection, and while in some cases these are beneficial for the pathogen, some others 

are detrimental. 

 

 

 



 

36 

Galectins 

Besides laminins, the siRNA library screening also revealed the possible involvement 

of galectins in H-1PV life cycle. In truth, in the past few years, there has been a 

growing interest in the role of lectin-glycan interactions related to the field of host-

microbe interactions. Up to now, 15 galectins have been identified in mammals 

encoded by the LGALS genes, but only 12 have been found in humans (Vasta et al., 

2012a). Yet, they are also conserved through evolution across many phyla, namely 

birds, fish, amphibians, drosophila, nematodes, fungi and sponges (Leffler et al., 

2002). All galectins share a highly conserved ~130 amino acid carbohydrate 

recognition domain (CRD) that interacts with β-galactosides (Di Lella et al., 2011), 

generally found in N-linked or O-linked glycans. They can also be labelled as S-type 

lectins given that their stability and carbohydrate binding is dependent on disulphide 

bonds (Kuroi et al., 2020). However, despite the presence of a highly conserved CRD, 

galectins present noticeable differences in their binding properties. In fact, galectins 

can be sub-divided into three groups: prototype, tandem repeat and chimera. In the 

prototype galectins belong Gal-1, 2, 5, 7, 10, 13, 14 and 15 as monomers, with Gal-1, 

2, 11, 13, 14 and 15 able to form homodimers. Tandem repeat-type galectins, namely 

Gal-4, 6, 8, 9 and 12 have two different CRDs connected by a flexible peptide linker. 

Gal-3 is the only chimera-type galectin which presents one CRD and one non-lectin 

domain. Galectins are synthesised in the cytoplasm and accumulate there until they 

are secreted via a poorly characterised pathway. Transport across the plasma 

membrane may occur through vesicles or direct protein translocation through a poorly 

characterised pathway, termed as non-classical (Wilson et al., 1989, Elola et al., 2007).  

Galectins are multivalent and are able to bind to multiple glycans on the same cell, 

with the extracellular matrix or even on neighbouring cells (Garner and Baum, 2008, 

Vasta et al., 2012b, Chen et al., 2014). They are involved in a variety of physiological 

functions including cell migration, mediation of cell–cell interactions, cell–matrix 

adhesion, transmembrane signalling, inflammation, and immune response (Johannes 

et al., 2018). In addition, galectins have been reported to have a broad activity in the 

modulation of host-microbe interactions. Of particular interest for this thesis, galectins 

and their role in regulating viral infections have been the subject of numerous reviews 

recently (Machala et al., 2019b, Wang et al., 2019) as well as of a book chapter (Li et 

al., 2020). Galectins play a significant role, from initiation of infection and virus 
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recognition, to modulating the innate and adaptive immune response, which can be 

attributed to their remarkable ability to crosslink glycosylated receptors and/or viral 

glycoproteins. To date, Gal-1 (prototype), Gal-3 (chimeric) and Gal-9 (tandem-repeat) 

have been considered the major regulators of viral infection within the galectin family. 

While Gal-1 and Gal-3 can promote or inhibit virus infections, Gal-9 usually 

antagonises the infection (Li et al., 2020) (Figure 1.13). Even so, the specific outcome 

of these galectin-virus interactions heavily depends on the particular galectin, cell 

type, pathogen, and the surrounding microenvironment. For instance, Gal-1 was 

reported to stabilise the binding of HIV to the host CD4 receptor on the surface of T 

cells by crosslinking CD4 and viral gp120 (Ouellet et al., 2005). On the other hand, 

Gal-1 inhibits Influenza A virus infection by directly interacting with the viral 

envelope glycoproteins (Yang et al., 2011). Gal-3 is the only galectin identified up to 

date to modulate the infection of a PtPV. Indeed, MVM uptake into LA9 mouse cells 

is facilitated by Gal-3 (Garcin et al., 2015). In contrast, Gal-9 was found to block 

human cytomegalovirus entry into multiple permissive cell types (Machala et al., 

2019a). 

 

Figure 1.13. Galectin-1, Galectin-3 and Galectin-9 effect on viral infections. 

Galectins can promote and/or inhibit viral infections. Galectin-1 (purple), galectin-3 

(orange) and galectin-9 (green). Arrows pointing up (↑) refer to a promoting role, 

while arrows pointing downwards (↓) indicate inhibition. Schematic summary adapted 

from (Machala et al., 2019b). 
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1.4 Research objectives 

The ultimate aim of this thesis was to characterise the early steps of H-1PV infection, 

particularly how the virus binds to the cell membrane and enters into cancer cells. This 

study builds upon previous results of the laboratory, including the discovery that SA 

plays a key role in H-1PV infection (Allaume et al., 2012), and the identification of 

possible modulators of H-1PV life cycle by a siRNA library screening previously 

performed (described in sub-section 3.1.1.). I particularly focused on those factors 

which have been described to play a role in mediating cell attachment and entry of a 

number of microorganisms, including several viruses. The factors identified in the 

siRNA library screening as putative top-activators of H-1PV infection (i.e. siRNA-

mediated silencing of genes which strongly decreased H-1PV transduction) were: 

− Laminin γ1 chain, encoded by the LAMC1 gene. 

− Galectin-1, encoded by the LGALS1 gene. 

− Adaptor protein 2 subunit µ1, endoded by the AP2M1 gene. 

Initially, I participated in the study that demonstrated that laminins, in particular those 

containing the γ1 chain, play a pivotal role in H-1PV attachment at the cell surface, 

and entry into the cells (Kulkarni et al., in press). Nevertheless, most of my work 

focused on the characterisation of the role of Gal-1 and AP2µ1 in H-1PV infection. 

More specifically, the main goals of my thesis were: 

i. The confirmation that Gal-1 is a positive modulator of H-1PV life cycle. 

ii. The elucidation of the role of Gal-1 in H-1PV infection. 

iii. The confirmation that AP2µ1 participates in the H-1PV life cycle. 

iv. The characterisation of the endocytic pathways used by H-1PV to enter cancer 

cells.  
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2 Chapter 2: Materials and Methods 

2.1 Cells 

2.1.1 Cell culture 

The cervical carcinoma-derived HeLa cell line was a gift from Angel Alonso (German 

Cancer Research Center, Heidelberg, Germany). The pancreatic ductal 

adenocarcinoma-derived BxPC3 cell line was procured from Tumorbank (German 

Cancer Research Center). The low-passage-number glioblastoma-derived NCH125 

and NCH37 cell lines were given by Karsten Geletneky (Heidelberg University 

Hospital, Heidelberg, Germany). The glioblastoma-derived U251 cell line was 

obtained from the National Cancer Institute (NCI; Rockville, MD, USA). 

Glioblastoma-derived LN308, T98G, and A172-MG were obtained from Iris 

Augustin’s laboratory (German Cancer Research Center). The NCH125 LGALS1 KO 

and NCH125 CRISPR Control cell lines have been established in this study (see 

below). All cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM), 

supplemented with 10% FBS, 100 units/mL penicillin, 100 μg/mL streptomycin, and 

2 mM L-glutamine (all from Gibco, Thermo Fischer Scientific, Darmstadt, Germany) 

in a humidified incubator at 37 °C. 

NB324K cells were obtained from ATCC (LGS Standards GmBH, Wesel, Germany) 

and cultured in Minimum Essential Medium (MEM) supplemented with 5% FBS, 100 

units/mL penicillin, 100 μg/mL streptomycin, and 2 mM L-glutamine. 

The 53 cancer lines belonging to the NCI-60 panel were cultured in Roswell Park 

Memorial Institute medium (RPMI) supplemented with 10% FBS and 2 mM L-

glutamine. 

All cancer cell lines were regularly tested for mycoplasma contamination using a 

VenorGEM OneStep Mycoplasma contamination kit (Minerva Biolabs, Berlin, 

Germany) and tested by a human cell authentication test (Multiplexion GmbH, 

Mannheim, Germany). 
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2.1.2 Generation of LGALS1 knockout cell line 

CRISPR/Cas9-mediated knockout of LGALS1 in NCH125 was accomplished using 

galectin-1 Double Nickase Plasmid ([h]sc-400941-NIC), whereas the CRISPR/Cas9 

negative control was obtained using the Control CRISPR/Cas9 Plasmid (sc-418922; 

both from Santa Cruz). NCH125 cells were seeded in a 6-well plate at about 70% 

confluency. Twenty-four hours later, 2 µg of DNA were transfected using 

Lipofectamine LTX (ThermoFisher Scientific) according to the vendor's protocol. 

Selection of transfected cells was carried out in normal growth medium containing 1 

µg/mL puromycin (ThermoFisher Scientific) for 72 hours. Individual clones were 

obtained by limiting dilution. Knockout was confirmed by Western Blotting (see 

below). 

 

2.2 Viruses 

2.2.1 Wild-type H-1PV 

Wild-type H-1PV was produced as previously described (Allaume et al., 2012). In 

brief, virus stocks were amplified by infecting NB324K cells at a multiplicity of 

infection (MOI) of 100 viral genomes/cell. When cell lysis became apparent (generally 

5-7 days post-infection), cells were harvested and subjected to three freeze and thaw 

cycles. Crude cell extracts were digested using 50 U/mL Benzonase nuclease ultrapure 

(E8263; Sigma Aldrich, Taufkirchen, Germany) for 30 min at 37 °C. Afterwards, viral 

particles were purified through an iodixanol discontinuous gradient as described by 

Zolotukhin and colleagues (Pace et al., 1999).  

Viral titres were quantified by plaque assay as previously described (El-Andaloussi et 

al., 2011). In short, NBK324K cells were infected with serial dilutions of purified H-

1PV for 1 hour, followed by replacement of virus suspension with an overlay of 0.68% 

Bacto Agar (BD 214010; Becton, Dickinson and Company, Heidelberg, Germany) in 

MEM supplemented with 5% FBS. At five days post-infection, plaque formation was 

detected by incubating cells with 0.18% neutral red containing 0.85% Bacto Agar 

diluted in PBS. Plaques were counted from duplicates and titres were expressed as 

plaque forming units (pfu) per mL. 
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2.2.2 Recombinant H-1PV expressing EGFP 

The recombinant H-1PV containing the green fluorescent protein-encoding gene 

(recH-1PV-EGFP) was produced as previously described (El-Andaloussi et al., 

2012b). This parvovirus is non-replicative and has the same capsid of the wild-type. 

Furthermore, recH-1PV-EGFP contains the EGFP gene under the control of the 

natural P38 late promoter (in turn regulated by NS1). 

In brief, virus stocks were amplified by infecting NB324K cells with recH-1PV-EGFP 

and Ad-VP-helper (El-Andaloussi et al., 2011). When cytotoxicity became apparent 

(generally starting 36-48 hours post-infection), cells were harvested and subjected to 

three freeze and thaw cycles. Crude cell extracts were digested using 50 U/mL 

Benzonase nuclease ultrapure for 30 min at 37 °C. Afterwards, viral particles were 

purified through an iodixanol discontinuous gradient as described by Zolotukhin and 

colleagues (Pace et al., 1999).  

In order to titrate the recH-1PV-EGFP, 4.0 × 104 HeLa cells were seeded in 96-well 

plates and infected on the next day with 100 µL of different dilutions of purified recH-

1PV-EGFP. At 24 hours post-infection, EGFP-positive cells were counted by 

fluorescence microscopy (see below). Virus titters were calculated as number of green 

cells × dilution factor × 10; and expressed as transduction units (TU) per mL. 

 

2.3 High-throughput siRNA library screening 

The screening was performed by Dr. Laurent Brino and first described here (Kulkarni 

et al., in press). In short, the human druggable genome siRNA set 4.0 library consists 

of siRNA pools (each gene was targeted by a pool of fours siRNAs) targeting a total 

of 6961 cellular genes (Qiagen, Hilden, Germany). The transfection protocol was 

optimised to achieve 90-95% efficiency with minimal toxicity, and it was performed 

in triplicates. Firstly, the siRNA pools were reverse transfected using the 

INTERFERin transfection reagent (Polyplus-transfection SA, Illkirch, France) into 

HeLa cells growing in μClear 96-well microplates (Greiner, Frickenhausen, 

Germany). After 48 hours, two sets of cells were infected with recH-1PV-EGFP used 
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at 0.3-0.4 TU/cell. A third set of cells was left untreated to control cytotoxicity 

associated with each siRNA pool. Three additional siRNAs were used as internal 

controls in every microplate:  

(i) NS1 siRNA_5 (5'GAATGGTTACCAATCTACC3') targets the NS1 coding region, 

used as a positive control given that NS1 viral protein is indispensable for H-1PV 

transduction.  

(ii) scramble siRNA (5'AATTCTCCGAACGTGTCACGT3' – Qiagen) is a negative 

control given that it is a non-targeting siRNA.  

(iii) polo-like kinase-1 (PLK1) siRNA (5'CAACCAAAGTCGAATATGA3') was 

used to control transfection efficiency given that its silencing leads to cell death.  

Twenty-four hours post-infection, plates were processed as described for Fluorescent 

microscopy (see below) and EGFP-positive cells were counted. For this purpose, high-

throughput cell imaging was carried out with the INCELL1000 HCS epifluorescent 

microscope (GE Healthcare Life Sciences, Freiburg, Germany). The Multi Target 

Analysis module (IN Cell Investigator software, GE Healthcare Life Sciences, 

Chicago, IL, USA) was used to detect DAPI-stained cell nuclei (total number of cells) 

and EGFP in order to calculate the percentage of EGFP-positive cells. Analysis of 

single-cell data and statistical significance were carried out with the RReportGenerator 

software (Raffelsberger et al., 2008). The percentage of EGFP-positive cells obtained 

from transfecting cells with the scramble siRNA was used as a baseline to normalise 

the percentage obtained from transfecting cells with all the other siRNA pools. 

 

2.4 Cell viability and proliferation assays 

2.4.1 MTT viability assay 

To determine cell viability after virus infection, the conversion of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) (Sigma-Aldrich 

Chemie GmbH, Steinheim, Germany) was measured. For this purpose, cells were 

seeded on a 96-well plate at a density of 2,000 cells/well in 50 μL of culture medium 

supplemented with 10% FCS. The day after, 50 μL of serum-free medium containing 

wild-type H-1PV were added on top of the cells. In rescue experiments, cells were 
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treated with H-1PV at an MOI of 5 pfu/cell, or 5 μg/mL of recombinant galectin-1 

(ab50237, Abcam, Cambridge, UK), or both simultaneously. Every 24 hours post-

treatment, over a total of 4 time-points, 10 μL of 5 mg/mL MTT were added and 

subsequently incubated for 2 hours at 37 °C. Thereafter, the supernatant was aspirated, 

and the plates were air-dried at 37 °C overnight. To solubilise the formazan product, 

cells were then incubated with 100 μL of isopropanol for 20 min with moderate 

shaking and the absorbance was read with an ELISA reader at 570 nm. Viability of 

treated cells was expressed as a ratio of the measured absorbance (average of 3 

replicates per condition) to the corresponding absorbance of untreated cells (arbitrarily 

defined as 100%). 

 

2.4.2 xCELLigence 

Cell proliferation was monitored using the xCelligence system (ACEA Biosciences 

Inc., San Diego, CA, USA) in real time according to the manufacturer’s instructions. 

In short, 8 × 104 cells were seeded per well in a 96-well E-plate (Roche, Mannheim, 

Germany) in a total volume of 100 µL of complete DMEM medium.  

Concerning the Gal-1 experiments, cells were treated during the cellular growth phase 

with H-1PV at an MOI of 5 pfu/cell, or 5 μg/mL of recombinant galectin-1 (ab50237, 

Abcam), or both simultaneously. Cell proliferation was monitored in real time every 

30 min. Data is expressed as “Cell index” (n=3) calculated by the RTCA software as 

a measure of cell adhesion, and therefore, cell viability. 

Concerning the endocytic pathways experiments, cells were treated during the cellular 

growth phase with different inhibitors (see below) for 45 min, and subsequently 

washed with PBS. Cellular proliferation was monitored in real time every 30 min. Data 

is expressed as “Normalised cell index” (n=3) calculated by the RTCA software based 

on the average values of each experimental condition. 
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2.5 Microscopy 

2.5.1 Fluorescent Microscopy 

Cells were first washed one time with PBS, fixed on ice for 15 min with 3.7 % 

paraformaldehyde, permeabilised for 10 min with 1% Triton X-100, and stained with 

4′,6-diamidin-2-phenylindol (DAPI) to visualise the cell nuclei. Fluorescence images 

of EGFP-positive cells were acquired using a BZ-9000 fluorescence microscope 

(Keyence Corporation, Osaka, Japan) with a 10X objective (Ferreira et al., 2020). 

 

2.5.2 Confocal microscopy 

For the galectins study, cells were seeded at a density of 3.5 × 103 cells per spot on 

spot-slides and cultured in 50 µL of complete medium. On the next day, cells were 

infected with wild-type H-1PV at a MOI of 500 pfu/cell (total volume of 70 µL) in 

DMEM medium containing 5% FCS. At 2 hours post-infection, cells were processed 

as described for Fluorescence microscopy. Antibody staining was performed for 1 

hour using the following antibodies (dilution 1:500): mouse monoclonal anti-H-1PV 

capsid (a conformational antibody kindly provided by Barbara Leuchs; DKFZ Virus 

Production and Development Unit, Heidelberg, Germany (Leuchs et al., 2016)), and 

rabbit polyclonal anti-galectin-1 (HPA000646; Sigma-Aldrich). 

For the endocytic pathways study, cells were first put on ice for 15 min and then 

infected with wild-type H-1PV at a MOI of 500 pfu/cell (total volume of 70 µL) in 

DMEM medium containing 5% FCS. At 1 hour post-infection, the temperature was 

shifted to 37 °C for different times, and then processed as described for Fluorescence 

microscopy. Antibody staining was performed for 1 hour using the following 

antibodies (dilution 1:500): mouse monoclonal anti- H-1PV capsid, rabbit monoclonal 

anti-clathrin heavy chain (D3C6; Cell Signalling), rabbit monoclonal anti-EEA1 

(3288; Cell Signalling), rabbit monoclonal anti-Rab7 (9367T; Cell Signalling) and 

rabbit polyclonal anti-LAMP-1 (CD107a) (AB2971; Merck).  

Afterwards, the following antibodies were used as secondary antibodies: anti-mouse 

Alexa Fluor 594 IgG (A11005; Thermo Fisher Scientific), and anti-rabbit Alexa Fluor 

488 IgG (A11008; Thermo Fisher Scientific). Nuclei were stained with DAPI. Images 
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in the red channel (H-1PV), green channel (varied cellular proteins), or blue channel 

(DAPI) were acquired with a confocal microscope (Leica TCS SP5 II). Picture 

analysis was performed recurring to the Leica LAS X Software (Ferreira et al., 2020). 

 

2.5.3 Electron microscopy 

The electron microscopy experiments were performed in collaboration with the 

Electron Core Facility of DKFZ, in particular with Dr. Karsten Richter (Ferreira et al., 

2020). Firstly, HeLa cells were seeded at a density of 8 x 104 cells/well on punched 

sheets of ACLAR-Fluoropolymer films (Electron Microscopy Sciences) placed in 24-

well plates. On the next day, cells were infected with H-1PV at a MOI of 2000 pfu/cell 

for 1 hour at 4 °C in DMEM medium containing 5% FCS– this step refers to the viral 

attachment at the cell surface. Temperature was shifted to 37 °C for 0, 5, 10, 20 or 30 

min in order to catch the different steps involved in the internalisation event. 

Afterwards, ACLAR-Fluoropolymer films were embedded in epoxy resin for ultrathin 

sectioning according to a routine protocol. In short, chemical fixation was performed 

in buffered aldehyde (1 mM CaCl2, 2% glutaraldehyde, 4% formaldehyde, 1 mM 

MgCl2 in 100 mM Ca-cacodylate, pH 7.2). Post-fixation was carried out in buffered 

1% osmium tetroxide, while en bloc staining was carried out in 1% uranylacetate. 

After adherent cells were dehydrated using graded steps of ethanol, they were flat-

embedded in epoxy resin (mixture of methylnadic anhydride, glycid ether and 

dodecenyl-succinic-anhydride; Serva). Contrast-staining was achieved with lead-

citrate and uranylacetate. Analysis of ultrathin sections (thickness of 60 nm) was 

performed with a Zeiss EM 910 (Carl Zeiss) at 120 kV and electron micrographs taken 

with a slow-scan charge-coupled device camera (TRS, Olympus). 

 

2.6 Enzyme-linked Immunosorbent Assay (ELISA) 

Microtiter 96-well plates (Nunc-Immuno MaxiSorp surface plate; Thermo Fisher 

Scientific) were pre-coated overnight at 4° C with 1 µg/well of purified laminin LN411 

(BioLamina, Sundbyberg, Sweden), 1 µg/well of recombinant galectin-1 (ab50237, 

Abcam), 2.56 µg/well of collagen type IV (Sigma), 2.56 µg/well of human plasma 

fibronectin (Merck Millipore), or 2.5% albumin bovine fraction V (BSA; SERVA) 
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diluted in 50 mM sodium carbonate (pH 9.6). Washing was performed five times 

between every step with 0.1% Tween 20/PBS. Blocking was performed using 2% 

BSA/PBS for 2 hours at room temperature. Afterwards, 7 × 108 pfu H-1PV diluted in 

2% BSA/PBS were added or not to the wells and incubated overnight at 4 °C. 

Detection of bound viral particles was carried out using a mouse anti-H-1PV capsid 

antibody (dilution 1:500)(Leuchs et al., 2016) for 2 hours at room temperature, 

followed by peroxidase-conjugated goat anti-mouse antibody (1:500) for another 2 

hours. Finally, we incubated each well with 3,3′,5,5′-tetramethylbenzidine (TMB) 

substrate solution (Pierce™, Thermo Fisher Scientific) for approximately 7 min, by 

which time the reaction was stopped using Stop solution (N600; Thermo Fisher 

Scientific). Optical density was read at 450 nm using the Thermo Multiskan EX 

Microplate photometer (Thermo Fisher Scientific). 

 

2.7 siRNA-mediated knockdown 

Cells were seeded at a density of 4 × 104 cells/well in 24-well plates and cultured in 

500 µL of regular growth medium. After 24 hours, cells were transfected with 10 nM 

siRNA using Lipofectamine RNAiMAX (Thermo Fisher Scientific, Carlsbad, 

California, USA) according to the vendor’s recommended protocol. The following 

siRNAs were used for the galectins study (all purchased from Life Technologies, 

Paisley, Scotland): Silencer Select LGALS1 siRNA (Cat. N. 4390824), Silencer 

LGALS3 siRNA (Cat. N. 11332) and Silencer Select Negative Control #2 siRNA (Cat. 

N. 4390846). The following siRNAs were used to target laminin γ1 (all purchased 

from Qiagen): LAMC1#1 (Cat. N. SI00035742), LAMC1#2 (Cat. N. SI02757475), 

and AllStars Negative siRNA (Cat. N. SI03650318) used as negative control. For the 

endocytic pathway study, the following siRNAs were used: AP2M1 ON-TARGET 

plus Human siRNA SMARTpool (L-008170-00-0005) and, as a negative control, the 

plus Non-targeting pool (D-001810-10-05) (Dharmacon, Thermo Fisher Scientific); 

two CAV1 Silencer Select Validated siRNAs (s2446 and s2448; Life Technologies) 

and Silencer Select Negative Control #2 siRNA (Life Technologies) as a control. 

After 24 hours, the medium was replaced, and cells were grown for an additional 24 

hours to allow efficient gene silencing. The cells were then infected for 24 hours with 

recH-1PV-EGFP at 0.3-0.4 TU/cell. Cells were then washed once with PBS and 
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processed for fluorescence microscopy as described below. At least three independent 

experiments, each performed in duplicate, were performed for every condition. 

 

2.8 Western Blotting 

Firstly, cells were harvested, washed one time with PBS, and lysed for 30 min on ice 

using RIPA buffer (1% NP-40; 150 mM NaCl; 10 mM Tris-HCl pH 7.5; 1 mM EDTA 

pH 8; 0.5% Na-deoxylcholate; 0.5% SDS) containing EDTA-free protease inhibitor 

(11697498001; Roche)). After removing cellular debris by centrifugation, the protein 

content was measured using the bicinchoninic acid (BCA) assay (Thermo Fisher 

Scientific), following the manufacturer’s instructions. Protein separation was carried 

out by SDS-PAGE using 30 to 50 µg of protein. Afterwards, separated proteins were 

transferred onto Hybond-P membrane (GE Healthcare). Target proteins were 

identified using the following antibodies: rabbit anti-NS1 SP8 anti-serum (Bodendorf 

et al., 1999) and rabbit anti-VP1/2 anti-serum (Kestler et al., 1999) at 1:5000 dilution; 

rabbit polyclonal anti-galectin-1 (HPA000646; Sigma Aldrich, Hamburg, Germany), 

rabbit monoclonal anti-caveolin-1 (D46G3; Cell Signalling), mouse monoclonal anti-

β-tubulin (T8328; Sigma Aldrich), mouse monoclonal anti-GAPDH (sc-365062; 

Santa Cruz Biotechnology), mouse monoclonal anti-vinculin (sc-25336; Santa Cruz 

Biotechnology) at 1:1000 dilution, and rabbit polyclonal AP2M1 (ab96679; Abcam) 

at 1:500 dilution. Thereafter, membranes were incubated with horseradish peroxidase-

conjugated secondary antibodies (Santa Cruz, Heidelberg, Germany) at dilution 

1:1000. Detection of proteins was carried out using the Western Blot 

Chemiluminescence Reagent Plus (Perkin Elmer Life Sciences) and exposed to films 

(Hyperfilm™ ECL; GE Healthcare).  

 

2.9 Plasmid transfection 

To rescue the LGALS1 expression, the plasmid encoding for LGALS1 gene was used 

(SC118705, OriGene Technologies, Inc., Rockville, MD, USA). NCH125 Control and 

LGALS1 KO cells were seeded at a density of 3 × 105 cells/well in a 6-well plate. On 

the next day, NCH125 Control and LGALS1 KO cells were transfected with 2.5 µg of 
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DNA using Lipofectamine LTX (ThermoFisher Scientific) or mock-transfected for 48 

hours. 

 

2.10 Binding/entry assays 

Firstly, the culture medium was replaced with 200 µL serum-free medium containing 

H-1PV at MOI 5 pfu/cell. In Gal-1 rescue experiments, cells were treated with H-1PV 

at an MOI of 5 pfu/cell, or 5 μg/mL of recombinant galectin-1 (ab50237, Abcam), or 

both simultaneously. Infection was performed for 1 hour at 4 °C to only allow cell 

surface virus binding or for 4 hours at 37 °C to also allow virus cell internalisation. 

Cells were extensively washed with PBS, and trypsinised for 5 min and collected in 

200 µL of serum-containing medium. Cells were then subjected to three snap freeze-

thaw cycles. Viral DNA was purified from cell lysates using the QiAamp MinElute 

Virus Spin kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. Afterwards, cell-associated H-1PV genomes were assessed by 

quantitative PCR (see below). 

 

2.11 Polymerase chain reaction (PCR) 

2.11.1 Quantitative PCR (qPCR) 

Viral genomes were quantified by following a parvovirus-specific TaqMan qPCR 

protocol as previously described (Allaume et al., 2012). Briefly, the TaqMan probe 

costume-designed targets the viral DNA region encoding for NS1 (forward primer: 5'-

GCGCGGCAGAATTCAAACT-3'; reverse primer: 5'- CCACCTGGTTGAGCCAT 

CAT-3', purchased from Applied biosystem). As well, the probe contains a 

fluorophore at the 5' end and a quencher molecule at the 3' end (5'-6- FAM-ATGCA 

GCCAGACAGTTA-MGB-3', Applied biosystem). The primers recognising the NS1 

region are the following: forward primer: 5’-GCGCGGCAGAAT TCAAACT-3’; 

reverse primer: 5’-CCACCTGGTTGAGCC ATCAT-3’ (Applied biosystem). The 

DNA concentration of the samples was calculated based on a standard curve. The 

curve was generated by performing a regression line on eight dilutions of the plasmid 

pMVM+Δ800 (containing the H-1PV NS1 target sequence) with known copy numbers 
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(101-108). The master mix (40 µL/samples) was prepared as follows: 1.3 µL forward 

primer (10 pmol/µL), 1.3 µL reverse primer (10 pmol/µL), 1.3 µL TaqMan probe (10 

pmol/µL), 23.4 µL reaction mix (TaqMan Universal PCR Master Mix 2X, Applied 

Biosystem), 13 µL sterile H2O. Afterwards, 6.7 µL of sample DNA, standard or H2O 

(negative control) were mixed with 40 µL of master mix. At last, 20 µL of the mixture 

were applied on a 96-well PCR plate in duplicate, and the plate was subsequently 

sealed with adhesive transparent cover and centrifuged at 3000 rpm for 5 min. Thermal 

cycling conditions included 2 min at 50 °C, 10 min at 95 °C, proceeding with 40 cycles 

of 95 °C for 15 sec and 60 °C for 1 min. 

 

2.11.2 Reverse transcriptase quantitative PCR (RT-qPCR) 

Total RNA was extracted using the RNeasy Mini kit (Qiagen) according to the 

manufacturer's protocol. Thereafter, cDNA was synthesised using the QuantiTect 

Reverse Transcription Kit (Qiagen) according to the manufacturer's protocol. The 

Applied Biosystems 7300 Real-Time PCR System (Applera Deutschland GmbH, 

Darmstadt, Germany) was used for qPCR analysis. Amplification reaction mixture 

was added to 96-well optical reaction plate containing 3 μl of template cDNA pre-

diluted 1:10, 12.5 μl 2×QuantiFast SYBR Green PCR Master Mix, 2.5 μl 10× 

QuantiTect Primer Assay and RNase-free water. 

QuantiTect Primer Assay used: 

AP2M1 Hs_AP2M1_1_SG QuantiTect Primer Assay  (QT00089334) 

GAPDH Hs_GAPDH_1_SG QuantiTect Primer Assay (QT00079247) 

A non-template reaction was also included. RT-PCR was performed to assess the 

expression levels of AP2M1 and of the endogenous control GAPDH, which was found 

to have the most consistent expression level in this study. Each reaction was performed 

with two biological replicates with three technical replicates each. Cycling conditions 

recommended by the manufacturer for fast two-step RT-PCR were followed. The 2-

ΔΔCt method was applied in order to determine the fold-change for AP2M1 gene 

expression between control siRNA- and AP2M1 siRNA-treated cells. 
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2.12 Flow cytometry (FACS) 

Cells were seeded at a density of 5 × 105 cells/well in a 6-well plate. On the following 

day, cells were infected with H-1PV at a MOI of 25 pfu/cell for 1 hour at 4 °C. The 

following steps were all performed on ice. Cells were washed with ice-cold PBS and 

then gently scrapped off with a cell lifter. Next, cells were fixed with 2% PFA for 15 

min and blocked with 2.5% BSA/PBS for 20 min. Cells were then incubated with H-

1PV anti-capsid antibody (dilution 1:500) for 30 min, and subsequently with Alexa 

Fluor 488 goat α-mouse (1:500) for 30 min. Three washes with 2.5% BSA/PBS were 

performed between each staining step. FACS analysis was carried out using a FACS 

Calibur (BD Biosciences, San Jose, CA). 

 

2.13 Tissue Microarray 

The tissue microarray was performed by Dr. Jubayer Hossain. GBM biopsies obtained 

from the Haukeland University Hospital, Bergen, Norway (project approved by the 

regional ethical committee) were used to carry out GBM tissue microarrays. The 

microarray includes 122 biopsies from GBM patients: 61 primary GBM and 49 

recurrent GBM, plus 12 biopsies from normal tissues (brain, tonsil and liver, 4 from 

each organ). Immunohistochemical staining was carried out as described previously 

(Hossain et al., 2019b) using galectin-1 antibody (sc-166618, Santa Cruz) at a dilution 

of 1:200 followed by a biotinylated anti-mouse antibody (Vector Laboratories) at a 

dilution of 1:1100. Galectin-1 positive cells were counted via automated counting as 

described previously (Hossain et al., 2019a). 

 

2.14 Determination of the H-1PV EC50 for the NCI-60 cell 

lines 

This screening was performed Dr. Serena Bonifati, a previous member of the laboratory, 

and was first described here (Kulkarni et al., in press). Briefly, cell proliferation was 

monitored in real time using the xCELLigence system (see above). Cells were seeded on 

a 96-well E-Plate at a density of 4,000–16,000 cells/well (according to cell doubling rate). 

After 24-72 hours, cells were infected with increasing amounts of wild-type H-1PV (MOI 
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= 0, 0.05, 0.25, 21 0.5, 1, 5, 10 and 50 pfu/cell). Cell proliferation was monitored for 5–7 

days, every 30 min, and expressed as “Normalised cell index” (n=3). Only 53 cancer cell 

lines were included given that sic leukaemia cancer cell lines, which grow in suspension, 

were not compatible with the xCELLigence system.  

The subsequent analysis was performed by Dr. Francisco Azuaje and described here 

(Kulkarni et al., in press). In short, a two-step data analysis method (Kinsner-

Ovaskainen et al., 2013) was used to derive EC50 values (H-1PV concentration able to 

kill 50% of cells) for each cell line at 24, 48, 72 and 96 hours post-infection using the 

“Normalised cell index” values obtained from the xCELLigence system as an input. 

Correlations between gene expression and EC50 analyses were calculated in R (Hmisc 

and ggplot2 libraries, Pearson correlation and corresponding P values). Two independent 

gene expression datasets were used: the NCI-60 (53 cell lines) and the CCLE (The Cancer 

Cell Line Encyclopaedia – with 38 cell lines in common with the NCI-60 panel found in 

the database) (Barretina et al., 2012). 

 

2.15 Measurement of transcript levels 

Gene expression levels of LGALS1, as well as of ACTB, GAPDH and PGK1 reference 

genes, were quantified recurring to NanoString Technologies (Seattle, WA, USA) as 

described here (Kulkarni et al., in press). The analysis was performed at the NCounter 

Core Facility of the University of Heidelberg by Ralph Roth and Beate Niessler. 

Accession numbers and target sequences of genes analysed by nCounter expression 

profiling can be found below:  

LGALS1 gene (accession number NM_002305.4):  

GGTGCGCCTGCCCGGGAACATCCTCCTGGACTCAATCATGGCTTGTGGTCTG

GTCGCCAGCAACCTGAATCTCAAACCTGGAGAGTGCCTTCGAGTGCGA 

ACTB gene (accession number NM_001101.2):  

TGCAGAAGGAGATCACTGCCCTGGCACCCAGCACAATGAAGATCAAGATCA

TTGCTCCTCCTGAGCGCAAGTACTCCGTGTGGATCGGCGGCTCCATCCT 

GAPDH gene (NM_001256799.1):  

GAACGGGAAGCTTGTCATCAATGGAAATCCCATCACCATCTTCCAGGAGCG

AGATCCCTCCAAAATCAAGTGGGGCGATGCTGGCGCTGAGTACGTCGTG 
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PGK1 gene (NM_000291.2):   

GCAAGAAGTATGCTGAGGCTGTCACTCGGGCTAAGCAGATTGTGTGGAATG

GTCCTGTGGGGGTATTTGAATGGGAAGCTTTTGCCCGGGGAACCAAAGC 

 

2.16 Treatment with inhibitors of endocytosis pathways 

The following inhibitors were used at sublethal concentrations: hypertonic sucrose 

(Carl Roth), 0.40 M; chlorpromazine (Sigma-Aldrich), 2.5 µg/mL for HeLa or 5 

µg/mL for NCH125; pitstop 2 (Sigma-Aldrich), 30 µM; nystatin (Sigma-Aldrich), 10 

µg/mL; methyl-β-cyclodextrin (MβCD; Sigma-Aldrich), 10 mM; Dynole™ Series Kit 

containing Dynole 31-2 and 34-2 (Abcam), 5 µM; bafilomycin A1 (BafA1; Cell 

Signalling), 10 nM; and ammonium chloride (NH4CL; 1145, Merck), 25 mM. 

In short, cells were seeded at a density of 8 × 104 cells/well in 24-well plates. On the 

next day, cells were pre-treated for 45 min with the different pharmacological 

inhibitors, and subsequently infected with recH-1PV-EGFP at an MOI of 0.2–0.3 

TU/cell for 4 hours. Next, cells were washed two times with PBS and cultured for 

additional 20 hours. At 24 hours post-infection, cells were processed as described for 

Fluorescent microscopy. 

 

2.17 Transferrin uptake analysis 

Transferrin uptake control assays were performed using human transferrin Texas-Red 

conjugated (T2875, Invitrogen, Thermo Fisher Scientific). For this purpose, cells were 

incubated for 10 min with 25 µg/mL transferrin in serum-free media and processed as 

described for Fluorescent microscopy. 

 

2.18 Statistical analysis 

Results are shown as the average of three replicated experiments ± standard deviation 

(SD). Statistical significance was determined by one-way ANOVA using GraphPad 

Prism. Only values above p<0.05 were considered significant: p≤0.05 (*), p≤0.01 (**) 

and p≤0.001 (***). 
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3 Chapter 3: Laminin-γ1 and Galectin-1 have a 

crucial role in H-1PV infection 

In this chapter, I start by summarising the results obtained from a siRNA library 

screening previously performed in the laboratory which led to the identification of 

laminin-γ1, Gal-1 and AP2µ1 as putative cellular factors involved in H-1PV cell 

infection. These findings constitute the starting point of this dissertation, and therefore, 

are described in the section 3.1. They are part of a paper accepted for publication in 

Nature Communications in which I contributed for and listed as second author (Kulkarni 

et al., in press). Thus, this chapter contains figures and text taken from or based on this 

manuscript. 

The results concerning Gal-1 are described from section 3.2. onwards and have also 

formed a manuscript which is ready to be submitted to a peer-reviewed journal. The 

findings referring to AP2µ1 are later described in Chapter 4 and have also been 

published recently (Ferreira et al., 2020). 

 

3.1 Previous results from the laboratory 

3.1.1 Identification of putative modulators of the H-1PV life cycle 

by siRNA library screening   

RNA interference is an effective approach to study gene function by silencing gene 

transcription. At a large scale, high throughput siRNA screenings can provide the 

insights on which genes are important in a particular biological context (Silva et al., 

2008). In our particular case, we were interested in identifying host cell factors which 

could modulate the H-1PV infection. For this purpose, previous members of the 

laboratory have carried out a high-throughput siRNA library screening in cervical 

carcinoma-derived HeLa cells using a siRNA library targeting the human druggable-

genome (6961 genes, each targeted by a pool of four siRNAs) (Figure 3.1A). Briefly, 

cells were reverse transfected with siRNA and subsequently infected with recH-1PV-

EGFP (El-Andaloussi et al., 2011). Twenty-four hours post-infection, cells were fixed, 

and EGFP-positive cells were counted. This parvovirus is non-replicative and has the 

same capsid of the wild-type. Furthermore, recH-1PV-EGFP contains the EGFP gene 
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under the control of the natural P38 late promoter (in turn regulated by NS1). Therefore, 

the EGFP signal directly correlates with the ability of the virus to reach the nucleus and 

initiate its own gene transcription. 

Upon analysis of the EGFP transduction levels, the genes were categorised into 

activators (gene silencing leads to lower EGFP signal), repressors (gene silencing leads 

to higher EGFP signal), or unrelated (silencing did not significantly affect EGFP signal) 

(Figure 3.1B). In parallel, uninfected siRNA-transfected cells were submitted to a cell 

viability assay in order to assess knockdown-induced cytotoxicity. All those genes 

whose silencing led to viability levels lower than 70% were excluded from subsequent 

analysis. 
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Figure 3.1. siRNA library screening reveals factors putatively involved in H-1PV 

life cycle. 

(A) The whole human druggable genome siRNA library, composed of 6961 siRNA 

pools (four siRNAs per pool for each gene) was reverse transfected into Hela cells. The 

reactions were performed in 96-well plates in triplicate. After 48 hours, cells were 

infected with recH-1PV-EGFP. After 24 hours, the percentage of EGFP-positive cells 

were quantified as a measure of H-1PV transduction efficiency. Representative images 
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of putative activators and putative repressors are shown. In addition, cell viability was 

also measured (the whole process is described in Chapter 2: Materials and Methods). 

(B) The bar graph depicts the distribution of the results. The x-axis indicates the 

percentage of EGFP-positive cells, whereas the y-axis indicates the number of genes in 

which that percentage was observed. EGFP levels observed upon control scrambled 

siRNA transfection was used a baseline. In this manner, bars coloured in blue indicate 

those genes where knockdown led to a decrease in virus transduction (putative 

activators); bars coloured in red indicate those genes where knockdown led to an 

increase in virus transduction (putative repressors); and bars coloured in yellow indicate 

those genes where knockdown did not significantly alter the virus transduction 

(unrelated). The portion of the bars coloured in black refer to those genes in which gene 

knockdown in non-infected cells decreased viability by more than 70%, and therefore, 

excluded from further analysis. Numbers on top of each column designate the number 

of genes in each group. (C) The table lists the results obtained for GNE, LAMC1, 

LGALS1 and AP2M1. 

 

Firstly, we focused on host cell factors which positively modulate the H-1PV infection. 

Therefore, we proceeded for subsequent analysis with those genes which presented H-

1PV transduction levels lower than 70% (top activators) and viability levels greater than 

70%. As a result, we obtained 151 genes. Within the top activators, we focused on 

candidates possibly involved in the first steps of H-1PV infection, that is binding and 

entry. It is known that H-1PV entry occurs through SA, a property shared with other 

PtPVs (Halder et al., 2013b, Allaume et al., 2012). Correspondingly, among the top 

activators, there is bifunctional UDP-N-acetylglucosamine 2-epimerase/N-

acetylmannosamine kinase (GNE) which initiates and regulates the biosynthesis of N-

acetylneuraminic acid (NeuAc), a precursor of SA (Hinderlich et al., 2013). Indeed, 

siRNA-mediated knockdown of GNE led to a decrease of H-1PV transduction of 70% 

(Figure 3.1C). Afterwards, we entered the activators into the PANTHER classification 

system in order to group them into protein classes (Figure 3.2). As a result, we found 

that the top protein classes were protein modifying enzymes (25.30%), metabolite 

interconversion enzyme (22.20%), translational protein (7.10%), transmembrane signal 

receptor (7.10%), and gene-specific transcriptional regulator (6.10%). Of particular 

interest to virus cell attachment and entry, we found LAMC1 and LGALS1 genes within 

the extracellular matrix proteins (2%), and CCKAR, TGFBR2, ACVRL1, DRD4, MC4R, 

IFNAR2, and GPR92 as transmembrane signal receptors (7.1%). 
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Figure 3.2. Distribution of activators of H-1PV life cycle. 

The top 151 activators of H-1PV life cycle were classified based on their cellular fiction 

through a PANTHER analysis (http://www.pantherdb.org/). This tool was used to 

annotate the genes/proteins according to their cellular functions. 

 

3.1.2 H-1PV uses laminin γ1 for its attachment at the cell surface 

LAMC1 gene, encoding for laminin γ1 chain, caught our attention since its knockdown 

reduced H-1PV transduction by more than 70%. As well, laminins are known to be 

heavily glycosylated proteins with terminal SA residues. Bearing in mind that H-1PV 

infection is strictly dependent on SA, Kulkarni et al., investigated the role of laminins 

in H-1PV cell attachment (Kulkarni et al., in press). Characterisation of H-1PV/laminin 

interaction revealed that laminins, and in particular those containing the γ1 chain, play 

a key role in mediating H-1PV attachment at the cell surface, and subsequent entry into 

cancer cells. While siRNA-mediated knockdown of LAMC1 strongly reduces binding 

and entry into permissive cells, overexpression of LAMC1 cDNA enhances H-1PV 

binding and entry in the same cells. Additionally, heparin, a known ligand of laminins, 

inhibits cellular binding of H-1PV in a concentration-dependent manner.  
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Given the involvement of laminins in H-1PV life cycle, my contribution to this study 

was to verify whether there was a direct binding of H-1PV to laminins. To this end, I 

performed an ELISA in which plates were pre-coated with different laminins containing 

the γ1 chain (LN211, LN221, LN411, LN421), a laminin not containing the γ1 chain 

(LN332), collagen IV and fibronectin, as well as BSA (negative control). I found that 

H-1PV binds strongly to those laminins containing γ1 chain, whereas binding to laminin 

332, collagen IV and fibronectin occurred at a much lower extent (Figure 3.3A). 

Thereafter, I assessed whether the binding of H-1PV to laminin occurred through SA. 

For this purpose, I repeated the ELISA experiment with an additional step of 

neuraminidase treatment, in order to remove the SA residues from the laminins, prior to 

virus incubation. As a result, I found that the binding of H-1PV to laminins was 

completely abolished, suggesting that H-1PV binds to laminins through SA moieties 

(Figure 3.3B). 

At last, given that Kulkarni et al., had shown that treatment with heparin binding domain 

of laminins reduced H-1PV transduction in HeLa cells in a dose-dependent manner, I 

attempted to recapitulate this finding in an ELISA setting. For this purpose, I started by 

pre-coating wells with laminin 421 which showed high level of binding to H-1PV in the 

previous assay. Then, I treated wells with heparin before the addition of H-1PV. As a 

result, heparin significantly decreased H-1PV-laminin interactions (Figure 3.3C). Given 

that binding of H-1PV to BSA-conjugated heparin was comparable to that of wells pre-

coated with BSA alone, this ruled out direct binding of the virus to heparin. Collectively, 

these findings provided further evidence towards demonstrating that H-1PV binds to 

laminins via SA moieties likely present within the heparin-binding site(s). 
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Figure 3.3. H-1PV binds directly to laminins via sialic acid likely within the 

heparin-binding site(s). 

(A) Wells were pre-coated with purified laminins (LN211, LN221, LN411, LN421, 

LN332), collagen type IV, fibronectin or BSA. After blocking of non-specific binding, 

wells were incubated with H-1PV or left untreated. Subsequently, wells were subjected 

to repeated washing steps to remove unbound/loosely bound viral particles. Those viral 

particles which remained bound were detected using a virus capsid conformational 

antibody by ELISA. (B) Wells were pre-coated with purified laminins (LN411, LN421) 

or BSA, and subsequently incubated or not with neuraminidase (NA). Bound particles 

were detected by ELISA as per (A). (C) Wells were pre-coated with purified LN421, 

BSA-conjugated heparin or BSA. The wells containing LN421 or BSA were pre-treated 

with heparin, NA or left untreated. ELISA was performed as per (A). Each column 

indicates the mean value ± the standard deviation bars (n=2; **p<0.01; ***p≤0.001). 

Retrieved from (Kulkarni et al., in press). 

 

A B 

C 
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3.2 Galectin-1, but not galectin-3, knockdown hampers H-

1PV infection 

Besides laminins, the LGALS1 gene, encoding for Gal-1, emerged in the same screening 

as another top-activator of H-1PV transduction, as its silencing decreased H-1PV 

transduction by approximately 70%. It is also known that galectins interact with 

laminins (Cousin and Cloninger, 2016). These reasons prompted us to hypothesise that 

Gal-1 could be involved in H-1PV infection at the level of virus entry. This hypothesis 

was also supported by the recent discovery that MVM (a PtPV closely related to H-1PV) 

requires Gal-3 to efficiently infect mouse cells (Garcin et al., 2013, Garcin et al., 2015). 

I started by confirming the results of the siRNA library screening by performing a 

knockdown of LGALS1 by using an independent siRNA. Additionally, given the role of 

Gal-3 in MVM cell entry, the effect of siRNA-mediated silencing of LGALS3 was also 

investigated. The recH-1PV-EGFP was used for the experiments since the EGFP signal 

directly correlates with the ability of the virus to reach the nucleus and initiate its own 

gene transcription (El-Andaloussi et al., 2011). 

Cervical cancer-derived HeLa, glioma-derived NCH125 and pancreatic carcinoma-

derived BxPC3 cell lines were transfected with siRNAs targeting LGALS1 or LGALS3 

genes, or a scrambled siRNA. After 48 hours, cells were infected with recH-1PV-EGFP 

and grown for further 24 hours. Efficient gene silencing was achieved for both genes in 

cells transfected with respective siRNAs (Figure 3.4 lower panel). However, only the 

siRNA targeting LGALS1 significantly decreased H-1PV transduction by more than 

55%. As opposed to what was observed during MVM infection, silencing of LGALS3 

did not significantly alter H-1PV transduction when compared with scrambled-

transfected cells (Figure 3.4 upper panel). These results confirm original data from 

siRNA library screening which indicate that Gal-1, but not Gal-3, plays a key role in H-

1PV infection in the cell lines tested. 
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Figure 3.4. H-1PV transduction is reduced in LGALS1, but not LGALS3, 

knockdown cell lines. 

HeLa, NCH125 and BxPC3 cells were transfected with siRNAs targeting LGALS1, 

LGALS3 or with a scrambled siRNA. At 48 hours post-transfection, cells were infected 

with recH-1PV-EGFP for 4 hours and grown for additional 20 hours. Cells were then 

processed as described in Chapter 2: Materials and Methods. Numbers represent the 

average percentage of EGFP-positive cells relative to the number of EGFP-positive cells 

observed in untreated cells, which was arbitrarily set as 100% (ns=p>0.05; 

***p≤0.001). The protein levels of Gal-1 and Gal-3 on lysates derived from HeLa, 

NCH125 and BXPC3 siRNA-transfected cells were analysed by Western blotting. Beta-

tubulin was used as a loading control. 
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3.3 Galectin-1 knockout impairs H-1PV infection in 

NCH125 cells 

To further investigate the biological role of Gal-1 in H-1PV infection, I took advantage 

of the CRISPR-Cas9 technology and established the NCH125 LGALS1 KO cell line 

(LGALS1 KO) in which the LGALS1 was knocked out. Alongside, I established the 

NCH125 Control cell line (Control) for which a non-targeting guide RNA control 

sequence was used. Given that H-1PV requires S-phase factors expressed in 

proliferating cells for a productive infection (Nuesch et al., 2012), I evaluated the 

proliferation of LGALS1 KO versus Control cells. Both cell lines proliferate at a similar 

rate as shown by real time monitoring of cell proliferation via xCELLigence (Figure 

3.5).  

 

Figure 3.5. Cell proliferation of NCH125 Control versus NCH125 LGALS1 KO. 

NCH125 Control and LGALS1 KO cells were seeded in a 96-well E-plate and grown 

for five days. Cell proliferation was monitored with the xCELLigence System. Curves 

represent the mean Cell Index value ± standard deviation (n=3). 

 

I analysed H-1PV transduction efficiency by infecting both cell lines with recH-1PV-

EGFP. As a result, a significant decrease in transduction activity was found in LGALS1 

KO cells (47%) in comparison with Control cells (Figure 3.6A). Strikingly, transfection 

of LGALS1 KO cells with a plasmid encoding the LGALS1 gene 48 hours prior to 

infection rescued the reduction in H-1PV transduction and re-established Gal-1 levels 

to those observed in NCH125 Control cells (Figure 3.6A). Additionally, I evaluated the 

levels of the viral proteins after 48 hours post-infection with the wild-type H-1PV. In 

agreement with previous results, Western blotting analysis revealed that NS1 and VP1 
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viral protein levels were lower in NCH125 LGALS1 KO in comparison to Control cells 

(Figure 3.6B). 

 

Figure 3.6. H-1PV infectivity is reduced in NCH125 LGALS1 KO cells. 

(A) H-1PV transduction is decreased in NCH125 LGALS1 KO cells and re-established 

by transfecting the cells with a plasmid carrying the LGALS1 gene. LGALS1 KO cells 

were transfected with a plasmid encoding the LGALS1 gene, treated only with 

lipofectamine (Mock transf) or left untreated. Forty-eight hours post-transfection, cells 

were infected with recH-1PV-EGFP for 24 hours. NCH125 Control cells were also 

included, and the level of virus transduction set arbitrarily at 100% (ns=p>0.05; 

***p≤0.001). On the right side, Western blotting analysis shows the levels of galectin-

1 at the time of infection.  Β-tubulin was used as a loading control. (B) NCH125 Control 

and NCH125 LGALS1 KO cells were infected with H-1PV used at an MOI of 2 pfu/cell 

for 48 hours, and NS1 and VP1 viral protein levels were assessed by Western blotting. 

Beta-tubulin was used as a loading control. 
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3.4 Galectin-1 knockout decreases H-1PV oncolytic 

activity in NCH125 cells 

As the LGALS1 knockdown/out decreases the overall amount of H-1PV inside the cells, 

I further assessed whether this would ultimately result in a reduced oncolytic activity. 

For this purpose, I assessed the susceptibility of LGALS1 KO and Control cell lines to 

H-1PV infection in a time course experiment in which cell viability of infected cells was 

assessed every 24 hours for a total of 96 hours. As shown in Figure 3.7A, while viability 

of Control cells decreased progressively over time, LGALS1 KO cells were less 

sensitive to H-1PV infection and their viability remained high throughout the 

experiment (above 75%).  Remarkably, the susceptibility of LGALS1 KO cells to H-

1PV oncotoxicity was re-established by infecting cells together with human 

recombinant Gal-1. Indeed, cell viability of LGALS1 KO cells infected with H-1PV 

dropped from 74 to 18% in the presence of Gal-1, while control experiment showed that 

the protein itself at the concentrations used was not toxic to the cells (Figure 3.7B). 

Altogether, these results highlight the critical role of Gal-1 in H-1PV infection in 

NCH125 glioma cells.  

 

 

Figure 3.7. H-1PV has a reduced oncolytic activity in NCH125 LGALS1 KO cells 

which is rescued by supplementing recombinant Gal-1 protein. 

(A) H-1PV oncolytic activity is reduced in NCH125 LGALS1 KO cells. Control and 

LGASL1 KO cells were infected with H-1PV at an MOI of 1 pfu/cell. Cell viability was 

assessed every 24 hours for a total of 96 hours by MTT. The curve plot depicts the mean 

± standard deviation (n=3; ***p≤0.001) for each time-point expressed as a percentage 

of cell viability compared to corresponding uninfected cells. (B) Purified Gal-1 rescues 

H-1PV oncolytic activity in NCH125 LGALS1 KO cells. Control and LGASL1 KO 

cells were infected (or not) with H-1PV at an MOI of 1 pfu/cell, in the presence or 
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absence of 5 μg/mL of human recombinant Gal-1. Cell viability was assessed at 72 hours 

post-infection by MTT. Columns depict the percentage (mean value) of cell viability 

compared to uninfected cells ± standard deviation bars (n=3; ns=p>0.05; ***p≤0.001). 

 

3.5 H-1PV uptake, but not cell surface attachment, is 

reduced in NCH125 LGALS1 KO cells 

The results shown above demonstrate that Gal-1 is involved in the H-1PV infection 

mechanism. However, whether Gal-1 is required for H-1PV attachment at the cell 

surface, internalisation or both events, remains to be defined. To elucidate the role of 

Gal-1 in H-1PV infection, I first performed virus binding/entry assays. LGALS1 KO 

and Control cell lines were infected with wild-type H-1PV at 37 °C for different amounts 

of time (0.5, 1, 2 and 4 hours) and subsequently, cell-associated viral DNA was assessed 

by qPCR. In agreement with previous results, I observed a decrease in the amount of 

cell-associated H-1PV DNA in LGALS1 KO cells compared to the Control cell line 

(Figure 3.8A). Addition of recombinant Gal-1 increased the amount of cell-associated 

H-1PV genome to values that were similar to those found in H-1PV-infected Control 

cells (Figure 3.8B). 

Concerning the possible involvement of Gal-1 in H-1PV cell surface attachment, 

LGALS1 KO and Control cell lines were infected with H-1PV at 4 °C for 1 hour. Under 

these conditions, only virus attachment at the cell surface occurs, while cell entry is 

prevented. After removing cell unbound H-1PV particles, those that remained attached 

to the cell surface were stained with an anti-capsid antibody and analysis was performed 

by FACS. No significant differences were observed in the fluorescence signal (H-1PV 

binding) between the LGALS1 KO and Control cells (Figure 3.8C). The same findings 

were obtained by qPCR analysis (Figure 3.8D). Together, these results support that Gal-

1 is involved in H-1PV cell entry rather than H-1PV cell attachment. 
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Figure 3.8. H-1PV cellular uptake, but not cell surface binding, is reduced in 

NCH125 LGALS1 KO cells. 

(A) H-1PV binding/entry assays by qPCR. NCH125 Control and LGALS1 KO cells 

were infected with H-1PV for 0.5, 1, 1.5, 2 and 4 hours at 37 °C. Cells were then 

extensively washed, harvested, and encapsidated viral DNA was extracted and subjected 

to a qPCR. Columns in the graph show the number of copies of cell-associated H-1PV 

genome with relative standard deviations (***p≤0.001). (B) Binding/entry is rescued by 

the addition of purified recombinant Gal-1. At the time of H-1PV infection, Gal-1 was 

added (or not) to the culture medium. Infection was carried out for 4 hours. Numbers 

indicate the percentage of cell-associated genome relative to NCH125 Control cells 

infected with H-1PV arbitrarily set as 100% (ns=p>0.05; ***p≤0.001). (C) H-1PV cell 

surface binding-assessed by FACS. A representative flow cytometry histogram with 

overlay of NCH125 Control (black) and NCH125 LGALS1 KO cells (blue) showing no 

difference in H-1PV-associated cells is shown. Cells were either mock- or H-1PV-

infected for 1 hour at 4 °C. Cells were not permeabilised for the FACS analysis and cell 

surface bound H-1PV particles were detected with a specific anti-capsid antibody. (D) 

H-1PV binding-only assessed by qPCR. NCH125 Control and LGALS1 KO cells were 

infected with H-1PV for 1 hour at 4 °C. Cells were then washed, harvested, and extracted 

encapsidated viral DNA was then quantified by qPCR. 
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3.6 Both laminin γ1 and galectin-1 participate in virus 

binding/entry 

Given that laminin γ1 was described to have a determinant role in H-1PV cellular 

attachment and subsequent internalisation, I assessed whether the absence of both 

laminin γ1 and Gal-1 would lead to a further decrease of internalised H-1PV compared 

to either one alone. For this purpose, siRNA-mediated knockdown of LAMC1 was 

performed in NCH125 Control or LGALS1 KO cells. Cells were subsequently infected 

with H-1PV for 4 hours at 37 °C and viral genomes were analysed by qPCR. 

Quantification of cell-associated viral genomes revealed that knockdown of LAMC1 led 

to 23% or 66% of viral genomes (upon LAMC1 siRNA 1 or 2, respectively) in 

comparison to NCH125 Control cells treated solely with control siRNA (Figure 3.9). 

NCH125 LGALS1 KO cells treated with control siRNA presented a 50% decrease of 

internalised H-1PV as previously observed. Yet, this amount was further reduced to 

13% or 35% (upon LAMC1 siRNA 1 or 2, respectively) (Figure 3.9). These results 

demonstrate that these two factors cooperate in bringing H-1PV into cancer cells, and 

are therefore, determinant for a successful infection. 

 

Figure 3.9. Effect of LAMC1 knockdown in NCH125 LGALS1 KO cells on H-1PV 

entry. 

NCH125 Control and NCH125 LGALS1 KO cells were transfected with two different 

siRNAs targeting LAMC1 or a negative control siRNA. At 48 hours post-transfection, 

cells were infected with wild-type H-1PV for 4 hours at 37 °C. Cells were then 

extensively washed, harvested, and encapsidated viral DNA was extracted and subjected 

to a qPCR. Numbers indicate the percentage of cell-associated genome relative to 

NCH125 Control cells transfected with the control siRNA arbitrary set as 100% 
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(ns=p>0.05; ***p≤0.001). The protein levels of laminin γ1 and Gal-1 on cell lysates 

were analysed by Western blotting. GAPDH was used as a loading control. 

 

3.7 H-1PV binds directly to galectin-1 

Results above support that Gal-1 is involved in the entry of H-1PV into cancer cells. To 

further characterise H-1PV/Gal-1 interaction at the molecular level, I investigated 

whether the virus has the ability to directly bind to purified Gal-1. To this end, I 

performed ELISA assays in which wells were pre-coated either with Gal-1 or BSA as a 

negative control, and subsequently incubated with an increasing number of H-1PV 

particles. As plotted in Figure 3.10A, I found that H-1PV binds to Gal-1 in a dose-

dependent manner, whereas BSA failed to capture the virus. Next, I performed ELISA 

experiments in which the binding affinity of H-1PV to Gal-1 was compared with that of 

laminin γ1 chain, previously shown to strongly interact with H-1PV (Kulkarni et al., in 

press) (sub-section 3.1.2.). As controls, wells were also pre-coated with Gal-3, collagen, 

fibronectin or BSA. A strong binding activity of H-1PV was observed only in wells pre-

coated with Gal-1 and laminin γ1, whereas binding to Gal-3, collagen or fibronectin 

occurred at a much lower extent (Figure 3.10B). 

 

Figure 3.10. H-1PV binds directly to galectin-1. 

(A) H-1PV binds to Gal-1 in a dose dependent manner. A 96-well plate was coated with 

either human recombinant galectin-1 or BSA. Increasing amounts of H-1PV were 

allowed to bind overnight to the immobilised protein. After washing, captured virus 

particles were detected by ELISA using specific anti-capsid antibody as described in the 

Materials and Methods section. (B) H-1PV binds to Gal-1 and laminin γ1 chain with 

similar efficiency. A 96-well plate was coated with the indicated proteins, including 

laminin γ1 chain and Gal-3. On the following day, half of the wells were treated with 

7×108 H-1PV particles. ELISA was performed as described in panel A. Columns show 
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binding affinity values (O.D. 450nm) expressed as a mean ± standard deviation bars 

(n=2; ns=p>0.05; ***p≤0.001). 

 

3.8 Galectin-1 is a marker of bad prognosis in various 

tumour types including glioblastoma 

Growing evidence indicate that overexpression of Gal-1 is associated with metastasis 

formation, tumour recurrence and poor tumour prognosis (Wu et al., 2018). Analysis of 

brain tumour expression datasets using the GlioVis web application 

(http://gliovis.bioinfo.cnio.es/) confirmed that LGALS1 overexpression is associated 

with worse overall survival in brain tumours. Focusing particularly on GBM, we also 

observed that these tissues have significantly higher expression of LGALS1 in 

comparison to those from healthy individuals (Figure 3.11A). Furthermore, the analysis 

revealed a steady increase in LGALS1 expression from the WHO grade II to IV gliomas 

(Figure 3.11B). As well, high LGALS1 expression is associated with poor prognosis in 

glioma (Figure 3.12). 

 

Figure 3.11. LGALS1 is overexpression in high-grade glioma. 

Analysis of LGALS1 expression retrieved from the REMBRANDT dataset using the 

GlioVis portal. (A) Comparison based on histology, namely non-tumour versus 

glioblastoma multiforme (GMB). (B) Comparison based on WHO grade II, III and IV 

gliomas. Statistical significance was assessed by Tukey’s honestly significant difference 

test (***p<0.001). 

A B 

http://gliovis.bioinfo.cnio.es/
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Figure 3.12. Higher levels of LGALS1 are associated with poor prognosis in glioma. 

Kaplan-Meier survival curves for patients with glioma and glioblastoma (GBM) are 

divided in two groups based on the LGALS1 expression. Analysis was retrieved from 

the Rembrandt, Gravendeel and TCGA_GBMLGG datasets using the GlioVis portal. 

The number of patients in each group and the log-rank p value are indicated. HR: hazard 

ration. 
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Next, we investigated whether Gal-1 varied between normal brain tissue, primary and 

recurrent GBM. For this purpose, I collaborated with Dr. Miletic and Dr. Hossain in the 

University of Bergen performed a home-made protein tissue microarray in a cohort of 

122 GBM patient biopsies, comprised by 12 biopsies from normal tissues (brain, liver 

and tonsil – 4 from each organ), 61 primary and 49 recurrent tumour biopsies (Figure 

3.13A). Expression pattern of Gal-1 in these biopsies was analysed by 

immunohistochemistry using an anti-galectin-1 antibody. Overall, low levels of Gal-1 

in normal tissues were observed when compared to GBM biopsies (1.9 vs 10.0) (Figure 

3.13B). Among GBM samples, a diversified Gal-1 expression profile was found, with 

recurrent GBM expressing significantly higher levels of Gal-1 in comparison with 

primary GBM (13.7 vs 7.0) (Figure 3.13C). As well, (45% of recurrent GBM expressed 

Gal-1 at medium or high levels were observed against 20% in primary GBM) (Figure 

3.13A). 
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Figure 3.13. Differential expression of galectin-1 in normal tissues, primary and 

recurrent GBM biopsies. 

(A) Overview of the tissue microarray. This study included biopsies from normal tissue 

(n=12), primary GBM (n=61) and recurrent GBM (n=49). Biopsies were categorised 

based on galectin-1 expression after immunostaining with anti-galectin-1 antibody: low 

(<10% positive cells), medium (10-30% positive cells) or high expression (>30% 

positive cells). Number of biopsies which fell into each category are indicated under 

each representative image. Quantification of galectin-1 positive cells (%) was performed 

as described in the M&M section using in-house software. (B) Comparative analysis of 

galectin-1 expression between healthy tissues and GBM (primary and recurrent); or (C) 

between primary and recurrent GBM. The average number of galectin-1-positive cells 

is indicated with a horizontal line and with the value on top. (**p≤ 0.01; ***p≤0.001). 
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3.9 LGALS1 expression profile of NCI-60 cells positively 

correlates with H-1PV oncotoxicity. 

At this point of my study, I looked for a putative correlation between the LGALS1 gene 

expression levels and H-1PV oncotoxicity. To this end, Serena Bonifati, and Coll. 

(during her PhD studies in Dr. Marchini’s laboratory) have screened cancer cell lines 

belonging to the National Cancer Institute (NCI)-60 panel for their susceptibility to H-

1PV. This panel includes 60 cell lines derived from different tissue origins, namely lung, 

central nervous system, melanoma, breast, renal, ovarian, colon, prostate, and leukaemia 

(Shoemaker, 2006). Analysis of virus-mediated oncotoxicity was performed by 

xCELLigence in 53 cell lines for 5-7 days in response to increasing amounts of wild-

type H-1PV. The seven leukemic cell lines had to be excluded from the panel since they 

were suspension-growing cells, and therefore, not compatible with the xCELLigence 

system. The viral MOI responsible for killing 50% of the cell population at 72 hours 

post-infection (EC50) was calculated (Figure 3.14). As a result, 36 cell lines were found 

to be highly susceptible to H-1PV oncolytic activity (cytotoxic and cytostatic effects 

observed at MOI ≤10); 11 cell lines to have low sensitivity (effects observed between 

MOI 10–50); and 6 cell lines to be refractory to the highest H-1PV dose tested (MOI 

50). 

The NCI-60 cancer cell lines have had their gene expression profile fully characterised 

and made publicly available (Shoemaker, 2006). In this manner, the EC50 values were 

merged with the LGALS1 gene expression levels to investigate a possible correlation 

between the two. Indeed, the LGALS1 mRNA levels moderately anti-correlated with the 

EC50 values (Figure 3.15). To corroborate this finding, an independent gene expression 

dataset was also assessed – the Cancer Cell Line Encyclopaedia (CCLE) – using the 38 

NCI-60 cell lines that were found in the database. A consistent anti-correlation was 

found both using the NCI-60 and the CCLE, suggesting that cells expressing higher 

levels of LGALS1 may be more susceptible to virus killing activity (Figure 3.15).  
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Figure 3.14. NCI-60 cancer cell lines susceptibility to H-1PV oncolytic activity. 

Susceptibility of cancer cell lines from the NCI-60 panel to H-1PV infection was 

assessed by the xCELLigence system. A total of 53 cancer cells were incubated with 

different amounts of wild-type H-1PV or left untreated. (A) The cell viability profile of 

SNB-75 (H-1PV-sensitive) and COLO205 (H-1PV-resistant) cell lines are shown as 

representative examples. (B) The heatmap depicts the susceptibility of each cell line 

based on the H-1PV MOI causing 50% of cell death (EC50) at 24, 48, 72 and 96 hours 

post-infection measured by xCELLigence. EC50 values range from dark blue (lowest) 

to dark red (highest). Black indicates those cases where EC50 values were not 

determined (ND). 



Results  

75 

 

Figure 3.15. Correlation between H-1PV oncolytic activity and LGALS1 gene 

expression of cancer cell lines. 

Fifty-three cancer cell lines from the National Cancer Institute (NCI)-60 panel were 

tested for their susceptibility in response to H-1PV infection by xCELLigence. H-1PV 

EC50 values were calculated as the viral MOI that kills 50% of the cell population at 72 

hours post-infection measured by xCELLigence (see Figure 3.14). (A) LGALS1 

expression versus H-1PV EC50. LGALS1 gene expression was retrieved from the NCI-

60 database. Scatter plot depicts the LGALS1 expression levels of the 53 cancer cell 

lines on the x-axis, and the corresponding EC50 (at 72 hours post-infection) on the y-

axis. Each blue dot corresponds to a cell line and the black line corresponds to a linear 

regression. (B) LGALS1 levels are moderately anti-correlated with H-1PV EC50. 

LGALS1 gene expression was retrieved from the NCI-60 (53 cell lines) and Cancer Cell 

Line Encyclopedia (CCLE) (38 cell lines).  Bar plot depicts the correlation between the 

gene expression of each independent dataset and the EC50 values (Pearson’s 

correlation). Significant anti-correlation with r = -0.36 and p< 0.001 (null hypothesis: r 

= 0) 
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3.10 LGALS1 expression positively correlates with H-1PV 

oncolysis in glioma cell lines. 

Glioma cancer cell lines are generally susceptible to H-1PV oncolysis (Herrero y Calle 

et al., 2004). However, not all cancer cell lines respond similarly, ranging from highly 

to lowly permissive, or even resistant to H-1PV. Kulkarni et al., has recently described 

four semi-permissive glioma cell lines to H-1PV infection, namely U251, LN308, T98G 

and A172-MG which express low levels of LAMC1 (Kulkarni et al., in press). Yet, it is 

possible that other cell components may account for the poor susceptibility of these cell 

lines to H-1PV infection. Using the NanoString technology, assessment of LGALS1 

levels revealed that the levels were much lower in the four semi-permissive glioma cell 

lines than those found in the two H-1PV-sensitive glioma cell lines (NCH125 and 

NCH37) (Figure 3.16A). Monitoring of cell viability in real time by xCELLigence 

confirmed previous results showing that NCH125 and NCH37 cell lines are efficiently 

killed by H-1PV at an MOI of 5 (pfu/cell); while U251, LN308, T98G and A172-MG 

cell lines are not. Remarkably, susceptibility of these cell lines to H-1PV oncotoxicity 

was substantially enhanced by addition of human recombinant Gal-1 (Figure 3.16B). 

Consistent with previous results, addition of exogenous Gal-1 promoted H-1PV entry in 

the four glioma cell lines, by increasing the cell-associated viral genomes by 1.5- to 2.8-

fold, while not interfering with the viral binding to the cell surface (Figure 3.16C). 

Together, these results confirmed that Gal-1 plays a critical role in H-1PV infection at 

the level of virus entry and provide important evidence that Gal-1 levels can determine 

the outcome of H-1PV infection. As well, these results further support the assessment 

of LGALS1/Gal-1 levels and pave the way for its usage to predict the success of H-1PV 

infection. 
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Figure 3.16. Galectin-1 levels in glioma cell lines determine the success of H-1PV 

infection. 

(A) Total mRNA was isolated from glioma cell lines susceptible (NCH125; NCH37) or 

semi-permissive (U251; LN308; T98G; A172-MG) to H-1PV infection and LGALS1 

mRNA transcripts were measured using NanoString analysis. Bar graph depicts the 

LGALS1 transcript counts and numbers on the top of the columns indicate gene 

expression fold-changes between susceptible (NCH125 or NCH37) and semi-

permissive (U251, LN308, T98G, and A172-MG) cancer cell lines. (B) NCH125 and 

NCH37 cell lines were either infected with H-1PV at an MOI of 5 pfu/cell (green) or 

left untreated (red). Poorly susceptible cell lines were infected with H-1PV at an MOI 
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of 5 pfu/cell (green), incubated with 5 μg/mL of human recombinant Gal-1 (pink), H-

1PV and Gal-1 simultaneously (blue), or left untreated (red). Cell viability was assessed 

by xCELLigence every 30 min in real time. The curve shows the “Cell index” mean 

(n=3) at any given time proportional to the viability of the cell population. Black arrows 

indicate the time of treatment. (C) H-1PV entry is rescued upon Gal-1 administration. 

U251; LN308; T98G and A172-MG cells were incubated with H-1PV alone or H-1PV 

and Gal-1. Incubations were carried out either for 1 hour at 4 °C (binding-only), or for 

4 hours at 37 °C (binding/entry). Cells were then washed, harvested, and encapsidated 

viral DNA was extracted and subsequently quantified by qPCR. Columns in the graph 

show the fold change of number of copies of cell-associated H-1PV genome relative to 

the virus-infected cells arbitrarily set as 1, with respective standard deviations (ns= 

p>0.05; **p≤ 0.01; ***p≤0.001).    
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4 Chapter 4: H-1PV enters cancer cells through 

clathrin-mediated endocytosis 

Contrarily to other parvoviruses, the H-1PV entry pathways remain to be elucidated. In 

this chapter, I report the study on the route that H-1PV uses to enter in cervical 

carcinoma HeLa and glioma NCH125 cells. For this purpose, in collaboration with the 

DKFZ Electron Microscopy Core Facility and with Dr. Clemens Bretscher, post-doc in 

the laboratory, I performed electron microscopy and immunofluorescence analyses. 

Afterwards, I carried out siRNA-mediated knockdown and chemical inhibition of key 

factors involved in the endocytic pathways. These are part of a paper recently published 

in Viruses (Ferreira et al., 2020) (see Appendix).  

 

4.1 Electron microscopy shows H-1PV associated with 

clathrin-coated pits 

In collaboration with Dr. Karsten Richter from the DKFZ Electron Microscopy facility, 

we performed an electron microscopy analysis to gain insights into the H-1PV entry 

pathways. For this purpose, a high MOI (2000 pfu/cell) was used given that ultrathin 

sections of cells need a considerable number of viruses for a successful detection. 

Infection of HeLa cells with H-1PV was carried out at 4 °C for 1 hour to only allow the 

virus to bind to the cell surface. H-1PV was detected  at the plasma membrane bound to 

darker regions resembling clathrin-enriched areas (Figure 4.1A) (Locker and Schmid, 

2013). Afterwards, cells were shifted to 37 °C to allow virus internalisation. After 5 min, 

the regions rich in clathrin and associated with H-1PV particles started to bend (Figure 

4.1B). Between 10 to 30 min, H-1PV particles were found in clathrin-coated pits (Figure 

4.1C) or already in the cytoplasm inside a clathrin-coated vesicle (Figure 4.1D). 

Of note, H-1PV was never found inside small flask-shaped vesicles which are typically 

associated to caveolae-mediated endocytosis (Short, 2018). Therefore, these findings 

suggest that H-1PV is internalised mostly (if not exclusively) through CME.  
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Figure 4.1. H-1PV is internalised via clathrin-mediated endocytosis. 

HeLa cells were infected with H-1PV at an MOI of 2000 pfu/cell for various amounts 

of time. (A) Infection for 1 hour at 4 °C showed the virus associated to thickened 

(clathrin-rich) regions on the plasma membrane. (B) Infection at 37 °C revealed that in 

the first 5 min, H-1PV particles are observed in zones of membrane curvature. (C) 

Roughly 10 min after infection at 37 °C, viral particles are detected in clathrin-coated 

pits which are still joined to the plasma membrane. The pit is progressively invaginated 

into the cell and the neck constricted. (D) Between 10–30 min at 37 °C, viral particles 

are detected in the cytoplasm inside a clathrin-coated vesicle. 

 

4.2 H-1PV co-localises with clathrin upon entry 

The electron microscopy analysis provided initial evidence that H-1PV enters cells via 

a clathrin-dependent pathway. In order to investigate this mechanism through an 

independent approach, together with CB, we looked for a potential co-localisation of H-

1PV particles and clathrin heavy chain (CHC). For this purpose, I infected HeLa cells 

with H-1PV for 1 hour at 4 °C and shifted the temperature to 37 °C for 30 min to achieve 

a synchronised infection. Analysis by confocal microscopy revealed patches of H-1PV 

overlaid with CHC (Figure 4.2). This result corroborates the evidence supporting that 

H-1PV is internalised via CME. 
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Figure 4.2. Co-localisation of H-1PV and clathrin upon virus entry. 

HeLa cells were infected with H-1PV for 1 hour at 4 °C and followed by an incubation 

for 30 min at 37 °C. Subsequently, cells were processed for confocal microscopy, 

including the staining using anti-H-1PV capsid and anti-clathrin-heavy chain (CHC) 

antibodies. Cell nuclei were visualised by DAPI staining. Confocal microscopy analysis 

showed that H-1PV particles (Alexa Fluor 594, red) co-localised with CHC (Alexa Fluor 

488, green) during infection. On the right, three examples of regions where co-

localisation was observed are shown zoomed in. 

 

4.3 H-1PV enters cells preferentially via clathrin-mediated 

endocytosis  

Given the previous results, I assessed whether H-1PV infection would be affected if 

certain endocytic pathways were targeted using pharmacological inhibitors. I chose 

HeLa and NCH125 cancer cell lines, which are highly permissive to H-1PV infection 

(Hristov et al., 2010, Li et al., 2013a), and evaluated the impact of the inhibition using 

the recH-1PV-EGFP. 

To inhibit CME, I used hypertonic sucrose, chlorpromazine (CPZ) and pitstop 2. 

Hypertonic sucrose is one of the most popular inhibitors of CME and is reponsible for 

trapping clathrin in microcages (Heuser and Anderson, 1989). CPZ is a cationic 

amphiphatic chemical inhibitor that causes the misassembly of clathrin lattices at the 

cell surface (Wang et al., 1993). Pitstop 2 mechanism consists of binding to and blocking 

the amino terminus domain of clathrin (von Kleist et al., 2011). Taking into 

consideration that H-1PV is strictly dependent on the host cell to enter S-phase to start 

viral DNA replication, I first checked if the inhibitors altered normal cellular 

proliferation. At the concentrations used, the different inhibitors did not alter the 

proliferation rate of HeLa or NCH125 cells (Figure 4.3).   
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Figure 4.3. Pharmacological inhibitors do not hinder cellular proliferation. 

(A) HeLa and (B) NCH125 cells were seeded in a 96-well E-plate and left untreated or 

treated with DMSO, hypertonic sucrose, chlorpromazine (CPZ), pitstop 2, Dynole 31-

2, Dynole 34-2, MβCD, nystatin, bafilomycin A1 (BafA1) or ammonium chloride 

(NH4Cl) for 45 min and then grown for an additional 72 hours. Inhibitors were applied 

at the same concentrations used for studying H-1PV entry pathways. Cell growth was 

monitored with the xCELLigence System. Curves represent the mean Cell Index value 

from 3 wells ± SD (n=3). (C) HeLa or (D) NCH125 cells’ doubling time for the first 24 

hours after treatment was generated using the xCELLigence System. Data is plotted as 

the “Normalised Cell Index”, that is the Cell Index mean from 3 wells ± SD, normalised 

to the time of treatment. 
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Then, I tested if the drugs were efficient at inhibiting the CME at the concentrations 

which did not affect cell proliferation. To this end, I monitored the internalisation of 

TexasRed-labelled transferrin, a protein proven to enter cells exclusively via CME 

(Mayle et al., 2012). Having proven that, the three inhibitors were used at the minimum 

concentration at which an efficient block of transferrin uptake was observed (Fig. 4.4 

lower panel). 

Pre-treatment with sucrose drastically reduced H-1PV transduction by over 90% in 

HeLa and 80% in NCH125 cell lines compared to cells left untreated (Figure 4.4 upper 

panel). In contrast, when cells were treated with sucrose 3 hours post-infection (by the 

time H-1PV particles had already been internalised), the H-1PV transduction was not 

substantially affected, showing that sucrose restricts H-1PV transduction at the level of 

virus entry (Figure 4.5). In agreement with these results, I observed a solid decrease of 

H-1PV transduction upon pre-treatment of cells with CPZ (roughly 90% reduction in 

both cell lines) or with pitstop 2 (60% reduction in Hela and more than 70% in NCH125 

cells) compared to cells left untreated (Figure 4.4). 
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Figure 4.4. Blocking clathrin-mediated endocytosis using chemical inhibitors 

results in significant reduction of H-1PV transduction. 

(A) HeLa and (B) NCH125 cells were pre-treated for 45 min with different inhibitors of 

CME (hypertonic sucrose, chlorpromazine (CPZ) or pitstop 2) or left untreated. 

Subsequently, cells were infected with recH-1PV-EGFP for 4 hours in the presence of 

the inhibitor. At 20 hours post-infection, cells were processed as described in Chapter 

2: Materials and Methods. Numbers indicate the average percentage of EGFP-positive 

cells observed after each treatment relative to the number of EGFP-positive cells 

observed in untreated cells, which was arbitrarily set as 100%. On the lower panel, the 

transferrin uptake control (Texas-Red) for every pharmacological inhibitor is shown. 

 

 

Figure 4.5. Hypertonic sucrose has no effect on H-1PV transduction if added 3 

hours post-infection. 

(A) HeLa and (B) NCH125 cells were infected with recH-1PV-EGFP for 3 hours, and 

then treated or not with sucrose for 45 min. At 20 hours post-infection, cells were 

processed as described in Chapter 2: Materials and Methods. Numbers indicate the 

average percentage of EGFP-positive cells observed after treatment relative to the 

number of EGFP-positive cells observed in untreated cells, which was arbitrarily set as 

100%.  

 

AP-2 complexes are heterotetramers which play an essential role in CME. These 

adaptors are responsible for initiating the CME and the assembly of clathrin-coated pits 

(McMahon and Boucrot, 2011). To further confirm the involvement of CME in H-1PV 

uptake, I performed siRNA-mediate silencing of AP2M1, the gene encoding for the 

subunit µ1 of AP2 (Kadlecova et al., 2017). In order to do so, I transfected HeLa and 

NCH125 cells with pool of siRNAs targeting AP2M1 or a pool of non-targeting siRNAs 

(scrambled), and subsequently infected cells with recH-1PV-EGFP. As a result, I 

observed a robust reduction in H-1PV transduction in both cell lines (more than 60% 

when compared with the scrambled siRNA-treated cells) (Figure 4.6 upper panel). 

Under these conditions, transferrin uptake was efficiently blocked (Figure 4.6 middle 

panel). Additionally, even though AP2µ1 protein was under our detection limit with the 

antibodies used in both cell lines, I validated the knockdown efficiecy by quantitative 
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reverse transcription PCR (RT-qPCR) (Figure 4.6 lower panel). These results 

demonstrate that H-1PV enters HeLa and NCH125 cells through CME, and confirm 

AP2µ1 involvement in H-1PV life cycle as previously suggested by the siRNA library 

screening (Figure 3.1). 

 

 

Figure 4.6. Knockdown of AP2M1 results in significant reduction of H-1PV 

transduction. 

(A) HeLa and (B) NCH125 cells were transfected with a siRNA pool targeting either 

AP2M1 or control siRNA (scrambled). At 48 hours post-transfection, cells were infected 

with recH-1PV-EGFP for 4 hours and grown for an additional 20 hours. Cells were 

processed as described in Chapter 2: Materials and Methods. Numbers indicate the 

average percentage of EGFP-positive cells relative to the number of EGFP-positive cells 

observed in control siRNA-transfected cells, which was arbitrarily set as 100%. On the 

middle panel, the transferrin uptake (Texas-Red) for after siRNA knockdown is shown. 

On the lower panel, the assessment of AP2M1 gene relative expression by RT-qPCR is 

shown. Presented values were calculated using the 2-ΔΔCt method in order to determine 

the fold-change for AP2M1 gene expression between control siRNA- and AP2M1 

siRNA-treated cells using GAPDH as the endogenous control. The values represent the 

mean ± SD (n=3).  
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4.4 H-1PV does not enter cells via caveolae-dependent 

endocytosis 

To explore if H-1PV uses other endocytic pathways apart from the CME to enter HeLa 

and NCH125 cells, I used nystatin and methyl-β-cyclodextrin (MβCD) to inhibit the 

caveolae-mediated endocytosis. Both inhibitors act by disrupting lipid rafts, in particular 

by depleting cells from cholesterol required for caveolae-mediated viral uptake 

(Anderson et al., 1996, Kilsdonk et al., 1995). Pre-treatment of cells with nystatin or 

MβCD at the concentrations used did not significantly increase or decrease H-1PV 

transduction, providing evidence that H-1PV does not take this endocytic route to enter 

in HeLa or NCH125 cells (Figure 4.7). 

 

 

Figure 4.7. Inhibition of caveolae-mediated endocytosis does not decrease H-1PV 

transduction. 

(A) HeLa and (B) NCH125 cells were pre-treated for 45 min with 10 µg/mL nystatin, 

10mM methyl-β cyclodextrin (MβCD) or left untreated. Cells were then infected with 

recH-1PV-EGFP for 4 hours in the presence of the inhibitors. At 20 hours post-infection, 

cells were processed as described in Chapter 2: Materials and Methods. Numbers 

indicate the average percentage of EGFP-positive cells observed after each treatment 

relative to the number of EGFP-positive cells observed in untreated cells, which was 

arbitrarily set as 100%. 

 

To confirm these results, I performed a siRNA-mediated knockdown of CAV1. This 

gene encodes for caveolin-1, which represents the key factor in caveolae-mediated 

endocytosis. Knockdown of CAV1 using two different siRNAs did not reduce H-1PV 

transduction when compared to control siRNA-transfected cells. On the contrary and 

surprisingly, I observed an increase of H-1PV transduction upon CAV1 downregulation 
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(Figure 4.8), suggesting that caveolin-1 may represent a negative modulator of virus life 

cycle. 

 

Figure 4.8. Knockdown of CAV1 increases H-1PV transduction. 

(A) HeLa and (B) NCH125 cells were transfected with two different siRNAs (#1 or #2) 

targeting CAV1 or a control siRNA. At 48 hours post-transfection, cells were infected 

with recH-1PV-EGFP for 4 hours and grown for an additional 20 hours. Cells were then 

processed as described in Chapter 2: Materials and Methods. Numbers indicate the 

average percentage of EGFP-positive cells relative to the number of EGFP-positive cells 

observed in control siRNA-transfected cells, which was arbitrarily set as 100%. On the 

lower panel, analysis by Western blotting show caveolin-1 protein levels present on 

lysates derived from HeLa or NCH125 siRNA-transfected cells. Vinculin was used as a 

loading control. 

 

Given the phenotype observed in CAV1 siRNA-transfected cells, I reconsidered the 

possibility that similarly to the siRNA, targeting caveolae-mediated endocytosis with 

MβCD (at different concentrations to those described in Fig. 4.7) could enhance H-1PV 

transduction. Cells were pre-treated with different concentration of MβCD ranging from 

10 to 320 μM (Figure 4.9). Consistent with previous results, no significant differences 

in H-1PV transduction levels were observed in all conditions tested. These results 

suggest that although caveolin-1 may act as a negative modulator of H-1PV infection, 

its role in virus life cycle is most likely not at the level of virus entry. Altogether, the 

results described here do not support a role of caveolae-mediated endocytosis in H-1PV 

entry into HeLa and NCH125 cells. 
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Figure 4.9. Treatment with higher concentrations of MβCD do not result in 

increased H-1PV transduction. 

(A) HeLa and (B) NCH125 cells were pre-treated with increasing concentrations of 

MβCD ranging from 0 to 320 μM. Cells were subsequently infected with recH-1PV-

EGFP for 4 hours in presence of the inhibitor. At 20 hours post-infection, cells were 

processed as described in Chapter 2: Materials and Methods. Graph represents the 

average percentage of EGFP-positive cells ± SD (n=3) observed after treatment relative 

to the number of EGFP-positive cells observed in untreated cells, which was arbitrarily 

set as 100%. 

 

4.5 H-1PV internalisation is dependent on dynamin 

Dynamin is a GTPase responsible for mediating the fission of the plasma membrane 

during endocytosis. Upon invagination of the newly formed clathrin-coated pit, 

dynamin reaches the vesicle neck and excises the endocytic vesicle (Kumari et al., 

2010). Dynamin is reported to be involved in clathrin- and caveolae-mediated 

endocytosis, yet generally not in macropinocytosis (Singh et al., 2017). In order to assess 

the importance of dynamin activity in H-1PV entry, I used a highly selective inhibitor, 

Dynole 34-2 (Hill et al., 2009, Robertson et al., 2014), as well as Dynole 31-2, its 

inactive counterpart. Firstly, I optimised the concentration of the drugs to achieve an 

efficient block of transferrin uptake (Fig. 4.10 lower panel). Then, I found that Dynole 

34-2, at the concentration used to block transferrin uptake, markedly decreased H-1PV 

transduction to only 8% in HeLa and 13% in NCH125 cells when compared to untreated 

cells (Figure 4.10 upper panel). In contrast, Dynole 31-2 negative control did not 

significantly alter H-1PV transduction. These findings show that dynamin plays an 

important role in H-1PV infection. 
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Figure 4.10. Dynamin is involved in H-1PV cell entry 

(A) HeLa and (B) NCH125 cells were pre-treated with the active Dynole 34-2 or its 

inactive counterpart, Dynole 31-2, as a negative control. Cells were subsequently 

infected with recH-1PV-EGFP for 4 hours in the presence of the inhibitor. At 20 hours 

post-infection, cells were processed as described in Chapter 2: Materials and Methods. 

Numbers indicate the average percentage of EGFP-positive cells observed after each 

treatment relative to the number of EGFP-positive cells observed in untreated cells, 

which was arbitrarily set as 100%. On the lower panel, the transferrin uptake control 

(Texas-Red) for each treatment is shown.  

 

4.6 H-1PV hijacks endosomes during intracellular 

trafficking 

The Rab GTPases are a large family of proteins playing a key role in endosomal 

formation, maintenance and trafficking (Jordens et al., 2005). Early endosome antigen 

1 (EEA1) is a Rab-5A effector protein involved in sorting early endocytic 

vesicles (Wilson et al., 2000). Rab-7 is considered to be the key regulator of traffiking 

from early to late endosome (Vanlandingham and Ceresa, 2009). Lysosomal-associated 

membrane protein 1 (LAMP-1) is abundant in both late endosomes and lysosomes, 

where is responsible for  maintaining lysosomal integrity and pH (Eskelinen et al., 2003, 

Eskelinen, 2006). In order to track the endocytic trafficking of H-1PV, I infected HeLa 

cells for 1 hour at 37 °C, and subsequently analysed whether H-1PV colocalised with 
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EEA1, Rab-7 and LAMP-1 endosomal markers by antibody staining. Analysis by 

confocal microscopy revealed that H-1PV co-localised with EEA1, Rab-7 and LAMP-

1 proteins during viral entry (Figure 4.11), providing further important evidence that H-

1PV hijacks the endocytic machinery to reach the nucleus. 

 

Figure 4.11. H-1PV intracellular trafficking takes place through the endosomal 

system. 

HeLa cells were infected with H-1PV at a MOI of 500 (pfu/cell) for 1 hour at 37 °C. 

Then, H-1PV capsid (Alexa Fluor 594) and individual endosomal markers (EEA1, Rab-

7 or LAMP-1 – Alexa Fluor 488) were detected using antibodies as described in Chapter 

2: Materials and Methods. Cell nuclei were visualised by DAPI staining. Two examples 

of co-localisation are shown enlarged on the right side. 
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4.7 Low endosomal pH is required for a productive H-1PV 

infection 

At last, I investigated whether the low pH present in the endosomes could provide the 

conditions necessary for a successful H-1PV infection. According to what has been 

described for other PtPVs, the acidic pH triggers conformational changes leading to 

virus uncoating and nuclear translocation (Mani et al., 2006). To test the importance of 

acidic pH during H-1PV infection, two drugs were used. Ammonium chloride (NH4Cl) 

is a lysosomotropic weak base capable of increasing the pH (Misinzo et al., 2008). 

Bafilomycin A1 (BafA1) is an inhibitor of vacuolar H+-ATPases which prevents the 

acidification of endosomes (Yoshimori et al., 1991). 

Pre-treatment with NH4Cl led to a marked reduction of H-1PV transduction in HeLa 

and NCH125 cells (39% and 30%, respectively) compared to untreated cells (Figure 

4.12 A, B). An even stronger reduction was observed upon treatment with BafA1, which 

almost abolished H-1PV transduction (Figure 4.12 C, D). Taken together, these findings 

indicate that H-1PV, similarly to other PtPVs (Ros et al., 2017), requires low endosomal 

pH to achieve a productive infection. 

 

 

Figure 4.12. Low endosomal pH is essential for a productive H-1PV infection.   

(A, C) HeLa and (B, D) NCH125 cells were pre-treated for 45 min with either 

ammonium chloride (NH4CL) or bafilomycin A1 (BafA1), respectively, or left 

untreated. Cells were subsequently infected with recH-1PV-EGFP for 4 hours in the 

presence of each inhibitor. At 20 hours post-infection, cells were processed as described 

in Chapter 2: Materials and Methods. Numbers indicate the average percentage of 
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EGFP-positive cells observed after each treatment relative to the number of EGFP-

positive cells observed in untreated cells, which was arbitrarily set as 100%. 
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5 Chapter 5: General discussion 

5.1 H-1PV in the race against cancer 

Oncolytic viruses are a thriving new addition to current cancer therapies. An 

assessment of the clinical trials reveals that the most common oncolytic viruses under 

clinical evaluation are Ad, HSV-1, reovirus and poxvirus (Macedo et al., 2020). In 

general, most studies did confirm the safe and highly tolerable profile of virotherapy 

across different viruses, combination options and delivery routes (Macedo et al., 

2020). However, the majority of the studies constituted early phase trials revealing 

how novel this approach still is (Figure 1.1C). At the later stages of clinical testing, 

the outcome has not been always positive. For example, a recent phase III clinical trial 

of Pexa-Vec, an oncolytic vaccinia virus encoding for GM-CSF, in combination with 

sorafenib did not improve overall survival in patients bearing hepatocellular 

carcinoma (GEN, 2019). Another instance implicates the vocimagene amiretrorepvec 

(Toca 511). This is a replicating retrovirus encoding a cytosine deaminase, an enzyme 

which converts the pro-drug 5-fluorocytosine (Toca FC) into 5-fluorouracil in the 

tumour microenvironment. A phase II/III randomised clinical trial of Toca 511/FC 

(n=201) versus standard of care treatment (n=202) for assessment in patients with 

recurrent high-grade glioma has been completed by the end of 2019. The outcome 

revealed that the administration of Toca 511/FC did not improve overall survival 

compared with standard of care treatment (Cloughesy et al., 2020). 

On the other hand, T-VEC, an attenuated HSV-1 encoding GM-CSF, offers a more 

positive view over the oncolytic virus field. T-VEC has been approved by the 

competent agencies of the United States of America (FDA) and Europe (EMA) to treat 

advanced melanoma (Andtbacka et al., 2015). Building on this success, T-VEC was 

further tested in combination with ipilimumab in a small phase I trial (Puzanov et al., 

2016), and in a larger phase II trial with 198 patients with melanoma (Chesney et al., 

2018). The outcome of the latter study revealed that the response rate went from 18% 

(ipilimumab alone) to 38% (combination treatment). Another pilot phase I trial 

involving a combination treatment with T-VEC and pembrolizumab resulted in a 

response rate of 62% in patients with advanced melanoma (Ribas et al., 2017). 

However, a large randomised clinical trial assessing T-VEC and pembrolizumab 
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against pembrolizumab alone was recently terminated due to futility 

(ClinicalTrials.gov: NCT02263508). 

Among the oncolytic viruses currently being tested in the clinical setting, there is H-

1PV with promising and distinguishing features. Firstly, H-1PV is not pathogenic to 

humans and has never been associated with any disease in humans. Secondly, H-1PV 

presents remarkable oncotropic and oncosuppressive potential, as demonstrated in 

vitro and in several animal models (Marchini et al., 2015a, Bretscher and Marchini, 

2019). Thirdly, given that the rat is the natural host for H-1PV, the human population 

does not have pre-existing antiviral immunity. These features confer H-1PV an 

advantage over other oncolytic viruses based on human pathogens, for which 

neutralising antibodies could exist and clear the virus right after administration 

(Hartley et al., 2020). 

H-1PV has been evaluated in patients with recurrent GBM and pancreatic carcinoma 

in early phase clinical trials (Geletneky et al., 2012, Hajda et al., 2017). 

Monotherapeutic treatment of H-1PV was demonstrated to be safe and well tolerated. 

In addition, first surrogate signs of anticancer efficacy were observed, including 

immunoconversion of the tumour microenvironment, improved patient tumour 

progression-free survival and overall survival in comparison with historical controls 

(Hartley et al., 2020). However, the virus was unable to eradicate the tumours at the 

regimen used. A few possible reasons might explain this finding, such as insufficient 

viral doses, restricted virus spreading, high tumour heterogeneity, exceptionally 

immunosuppressive microenvironment within the glioma, emergence of tumour cells 

resistant to virus infection and/or the development of anti-H-1PV neutralising 

antibodies. In fact, seroconversion was detected in patients in a dose-dependent 

manner (Geletneky et al., 2017). However, seroconversion also indicates that there is 

an activation of antiviral immunity, which ultimately enhances intratumoural 

infiltration of immune cells (Gujar et al., 2018). Taken as a whole, the outcome 

remains highly favourable and provides a new stimulus towards further clinical 

development in order to improve H-1PV anticancer efficacy. 

To this end, several strategies have been adopted (reviewed in (Hartley et al., 2020)). 

In this dissertation, my main goals referred to the improvement of H-1PV-based 

therapies by characterising the infection mechanisms of H-1PV, particularly at the 
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level of binding and entry into cancer cells. For instance, this knowledge can help 

identify new drugs to enhance H-1PV replication in cancer cells and/or its oncolytic 

activity by modulating H-1PV-related cellular pathways. Furthermore, these factors 

may also serve as reliable biomarkers that could predict whether a tumour is 

susceptible or resistant to H-1PV infection. Patients could be screened for the presence 

of specific markers, and subsequently referred for smart clinical trials based on how 

likely they would respond to virotherapy. Groups of patients presenting parameters 

associated with poor response to treatment could be submitted to combination therapy 

and/or second-generation H-1PV vectors, or redirected to other treatments (e.g. other 

oncolytic viruses or immunotherapies). 

Along these lines, our laboratory has previously performed a high-throughput siRNA 

library screening to dissect the interplay between H-1PV and the host. This approach 

has been widely used to identify virus cellular modulators (Hirsch, 2010). Within the 

oncolytic virus field, Allan and colleagues elucidated some of the mechanisms 

underlying Maraba rhabdovirus infection by using a genome-wide siRNA library 

screening (Brun et al., 2010, Mahoney et al., 2011). The screening revealed that 

transient inhibition of components involved in the endoplasmic reticulum stress 

response sensitised cancer cells to caspase-2-dependent apoptosis induced by a 

subsequent Maraba infection (Mahoney et al., 2011). As well, Maraba oncolytic virus 

combined with a small molecule inhibitor of IRE1α, an endoplasmic reticulum kinase, 

demonstrated significantly increased oncolytic efficacy in resistant tumour models 

(Mahoney et al., 2011). These findings further supported the potential of the siRNA 

screening technology to improve H-1PV-based therapies. Our high-throughput siRNA 

library screening in HeLa cells using a siRNA library targeting the human druggable-

genome revealed three positive modulators involved in binding and entry into cancer 

cells: LAMC1, LGALS1 and AP2M1 genes.  
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5.2 Laminin-γ1 and Galectin-1 proteins have a crucial role 

in H-1PV infection 

The virus life cycle is a multistep process heavily dependent on the presence and 

abundance of viral (co-)receptors, processing enzymes and proteins required for a 

productive infection. Levels and activity of these determinants may vary in different 

cancer cells, determining their susceptibility to a particular virus.  

Kulkarni et al., found that laminins, in particular those containing the laminin γ1 chain, 

have an important role in virus cell attachment and entry, and therefore, are crucial 

factors for a successful H-1PV infection (Kulkarni et al., in press)(Fig. 5.1). Moreover, 

I showed that the SA moieties of laminins are essential for H-1PV/laminins interaction 

by ELISA, thus indicating that laminin-SA provides a docking place for the virus to 

anchor at the cell surface. Nevertheless, other sialylated proteins are also likely 

implicated in H-1PV early steps of infection. This hypothesis is supported by the fact 

that NA treatment fully prevented H-1PV binding and entry, whereas a residual 

activity was still seen upon knockdown of laminins (Kulkarni et al., in press). 

 

Figure 5.1. Schematic model of the interaction of laminins with H-1PV. 

Laminins containing the γ1 chain may form different heterodimer complexes with α 

chains (1-5) and β chains (1-4). Binding of H-1PV to laminins occurs through SA 

moieties, and therefore, neuraminidase (NA) inhibits this interaction by cleaving the 

SA. Heparin (H) can also interfere with the laminin/H-1PV interaction likely by 

competing with H-1PV for the heparin-binding domains present on laminins. Figure 

retrieved from (Kulkarni et al., in press). 
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The siRNA library screening also revealed that silencing of LGALS1 strongly impaired 

H-1PV virus transduction by approximately 70% in HeLa cells. In this manner, these 

results prompted us to explore whether Gal-1 is involved in H-1PV early steps of 

infection. 

In Chapter 3, I demonstrate that Gal-1 plays a central role in H-1PV infection at the 

level of H-1PV cell entry, rather than cell attachment, indicating a distinct role from 

laminins in virus cell cycle. Furthermore, I provide evidence that H-1PV physically 

interacts with Gal-1 as confirmed by ELISA (Figure 3.10A). On the other hand, H-

1PV did not bind to immobilised Gal-3 (Figure 3.10B) and knockdown of LGALS3 

did not impair H-1PV infection (Figure 3.4), further supporting the specificity of the 

H-1PV/Gal-1 interaction. 

Up to now, Gal-3 was the only galectin implicated in a PtPV infection. Indeed, 

knockdown of LGALS3 rendered LA9 mouse fibroblasts less susceptible to MVM 

infection. This phenotype was not due to a reduced binding to the cell surface; instead, 

Gal-3 was responsible for promoting an efficient virus uptake (Garcin et al., 2013). 

My findings indicate that Gal-1 is essential for a productive H-1PV infection at the 

level of entry, with no evidence of its requirement in viral binding to the plasma 

membrane of NCH125 cells. Therefore, these results suggest that the mechanisms 

through which Gal-1 mediate H-1PV entry are similar to that of Gal-3 in MVM 

infection (Garcin et al., 2015). However, the fact that H-1PV and MVM engage 

different galectins for their entry process may contribute to their different tropism. 

Based on these results, we propose a model in which H-1PV interacts with different 

classes of molecules, rather than with a single cell surface receptor, in order to enter 

into cancer cells. Laminins containing γ1 chains would accumulate virus in the vicinity 

of the cell surface via SA, while Gal-1 would promote the efficient internalisation of 

virus particles. The exact mechanisms through which Gal-1 participates in H-1PV cell 

entry still remain to be elucidated. One possibility is that H-1PV hijacks extracellular 

Gal-1 to enter into the cells. Our results show that addition of exogenous purified Gal-

1 boosts H-1PV infection at the level of virus entry, thereby sensitising semi-

permissive cancer cells to H-1PV-mediated oncolysis. The exact mechanism through 

which galectin(s) translocate across the cell membrane remains poorly understood 

(Bänfer and Jacob, 2020). Even so, previous research has shown that inhibition of the 
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lipid raft-dependent pathway does not impede Gal-1 internalisation; instead, a total 

block of Gal-1 internalisation was only observed when both CME and lipid rafts were 

disrupted, demonstrating that Gal-1 enters cells through various mechanisms, 

including CME (Fajka-Boja et al., 2008, Lepur et al., 2012). Therefore, it may be 

possible that H-1PV uses Gal-1 to enter cancer cells through CME (the pathway taken 

by H-1PV, as further discussed below). 

Alternatively, Gal-1 could bridge the virus to other cellular factors involved in H-1PV 

entry e.g. a transmembrane receptor or a co-receptor (further discussed below in 

Chapter 6). A number of studies have shown that the multivalent binding activity of 

Gal-1 and other galectins are able to cross-link carbohydrates and glycoconjugates 

(Brewer, 2002, Garner and Baum, 2008). For instance, Gal-1 cross-linking has the 

ability to massively redistribute a diverse population of glycoproteins on the cell 

surface of T cells and segregate them into membrane microdomains (Pace et al., 1999). 

Gal-1 has also been associated with the assembly and remodelling of the extracellular 

matrix, and to bind to various components there present, especially those containing 

polylactosamine chains, such as laminins (Moiseeva et al., 2003, Moiseeva et al., 

2000). In this respect, LAMC1 knockdown on NCH125 LGALS1 KO cells further 

decreased H-1PV cell uptake (Figure 3.9), providing evidence that laminins and Gal-

1 may cooperate in the early steps of H-1PV infection with not entirely overlapping 

roles. Yet, as there is still a residual internalisation of H-1PV in LGALS1 knockout / 

LAMC1 knockdown cells, it possible that H-1PV may use alternative pathways to 

enter the cells and that other still unidentified cell factors are involved in the process. 

On the other hand, remaining laminins containing or not the laminin-γ1 chain may 

contribute for residual H-1PV entry, independently from Gal-1. Future studies need to 

be carried out to shed light on the different cellular factors involved in the early stages 

of H-1PV infection. 

Gal-1, and galectins in general, have been described to be involved in various viral 

infections at different levels, leading to their promotion or inhibition. For instance, 

Gal-1 was shown to stabilise the binding of HIV-1 to CD4+ T cells by cross-linking 

the viral gp120 and the host CD4 receptor, thereby assisting the infection of such cells 

(Ouellet et al., 2005). Furthermore, soluble Gal-1 enhanced the uptake of HIV-1 by 

monocyte-derived macrophages, while Gal-3 had no effect on infection (Mercier et 

al., 2008). Enterovirus 71 is another example where Gal-1 has a supporting role. Gal-
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1 was shown to facilitate the infection by interacting with the carbohydrate residues in 

VP1 and VP3 domains, leading to a more efficient release and dissemination to other 

cells (Lee et al., 2015). During Nipah virus infection, Gal-1 enhances virus cell 

attachment to primary human endothelial cells (Garner et al., 2015). In contrast, the 

same group showed that later in the replication cycle, Gal-1 exerts inhibitory effects. 

Indeed, Gal-1 specifically binds to NiV-F and NiV-G viral glycoproteins which are 

responsible for cell-cell fusion and syncytia formation. This block by Gal-1 in such a 

crucial step ultimately results in Nipah virus infection inhibition (Levroney et al., 

2005, Garner et al., 2010). The inhibitory effect by Gal-1 is also observed in influenza 

A infection both in vitro and in vivo. Gal-1 binds directly to the envelope glycoproteins 

stopping influenza from inducing hemagglutination, thereby impairing infectivity. 

Accordingly, LGALS1 KO mice presented poorer survival rates in comparison to wild-

type mice after influenza infection (Yang et al., 2011). 

Apart from the role of galectins in virus infections, they are also linked to apoptosis, 

angiogenesis, cell migration and tumour-immune escape (Chou et al., 2018a). In 

particular, high levels of Gal-1 have been reported to be associated with cancer 

progression, poor prognosis and recurrence (reviewed in (Wu et al., 2018)). Several 

cancer types have been implicated, including gastric cancer (Chen et al., 2013), 

ovarian cancer (Schulz et al., 2017), pancreatic cancer (Martinez-Bosch et al., 2018) 

and GBM (Chou et al., 2018b), to only name a few. In accordance with previous 

studies, our in-silico analysis revealed that GMB presents significantly higher levels 

of LGALS1 than normal tissues, and that LGALS1 expression increases from grade II 

to IV gliomas (Figure 3.11). In terms of survival, high LGALS1 expression is 

associated with a poor prognosis in glioma (Figure 3.12). To complement the 

bioinformatic analysis, I collaborated with Dr. Miletic and Dr. Hossain (University of 

Bergen, Norway) to assess a cohort of 122 patient biopsies by immunohistochemistry, 

where we found higher levels of Gal-1 in biopsies from patients with recurrent versus 

primary GBM, while in normal tissues the levels were relatively low (Figure 3.13). 

These findings corroborate previous studies showing that elevated levels of Gal-1 are 

associated with GBM (Jung et al., 2008, Verschuere et al., 2013, Astorgues-Xerri et 

al., 2014), and further support the usage of H-1PV to treat GBM, especially those with 

high Gal-1 protein content, given the key role that this protein has in virus entry and 

oncolysis. 
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We also found a correlation between the LGALS1 expression levels and the ability of 

H-1PV to induce oncolysis in 59 cancer cell lines (Figures 3.14, 3.15, 3.16). These 

results suggest that tumours with elevated LGALS1 expression levels are likely to be 

more susceptible to H-1PV oncolytic activity. Furthermore, I show that while virus 

attachment is unaffected, virus entry is enhanced in U251, LN308, U87 and A172-MG 

semi-permissive cell lines when H-1PV is administrated together with recombinant 

Gal-1 (Figure 3.16). Consequently, susceptibility of these glioma cells to H-1PV 

oncolytic activity increases, suggesting that certain levels of Gal-1 are required for an 

efficient productive H-1PV infection. Altogether, these findings support the idea that 

Gal-1 represents a limiting factor for H-1PV oncolysis, and therefore, that tumours 

with high Gal-1 expression are more likely to respond to H-1PV treatment. As well, 

these findings open up new scenarios of treatment in which exogenous administration 

of recombinant Gal-1 could constitute a promising adjunctive in H-1PV-based 

therapies. However, given the role of Gal-1 in carcinogenesis (Blanchard et al., 2016), 

a possible use of Gal-1 together with H-1PV has to be carefully evaluated. 

 

5.3 H-1PV enters cancer cells through clathrin-mediated 

endocytosis 

We demonstrated that H-1PV uses CME to infect HeLa and NCH125 cancer cells 

through independent methods. (i) Electron microscopy analysis of Hela cells infected 

with H-1PV revealed viral particles in regions resembling clathrin-enriched plasma 

membrane, as well as inside clathrin-coated vesicles minutes later in the infection 

(Figure 4.1). Of note, there was no evidence of H-1PV entering cells through a 

pathway that was not CME during this analysis. (ii) Confocal microscopy analysis 

confirmed association of H-1PV to CHC (Figure 4.2). (iii) Usage of pharmacological 

inhibitors (hypertonic sucrose, CPZ and pitstop 2) provided further evidence for the 

dependence of H-1PV on CME (Figure 4.4). (iv) siRNA-mediated knockdown of 

AP2M1, a gene encoding for the µ1 subunit of the AP2, further validated the role of 

CME as a key endocytic pathway (Figure 4.6). 

Previous studies have shown that PtPVs use CME for cell entry (reviewed in (Ros et 

al., 2017)). Therefore, our findings are in accordance with the generalised idea that 
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PtPVs use CME as the default endocytic pathway. Nonetheless, some PtPVs have also 

proven to make use of alternative endocytic routes. For example, MVM hijacks at least 

three pathways, namely caveolae- and clathrin-independent carrier-mediated 

endocytosis, besides CME (Garcin and Panté, 2015). Furthermore, PPV enters cells 

through CME as well as macropinocytosis (Boisvert et al., 2010). Both CPV and FPV 

bind to the transferrin receptor, normally taken up via CME. Nevertheless, FPV is 

believed to enter cells through alternative routes. This idea stems from the fact that 

mutations or deletions in the internalisation motif of the transferrin receptor do not 

arrest viral infection completely; instead, they only decrease virus uptake (Hueffer et 

al., 2004). Even though it is not possible to entirely exclude the possibility of H-1PV, 

similar to other PtPVs, taking other endocytic pathways, the findings in HeLa and 

NCH125 cancer cells seem to rule out caveolae-mediated endocytosis as a crucial 

entry route. In fact, cells pre-treated with inhibitors of caveolae-mediated endocytosis, 

namely nystatin or MβCD, did not affect H-1PV transduction in HeLa or NCH125 

cells, indicating that these inhibitors do not alter H-1PV uptake (Figure 4.7). These 

findings are consistent with earlier studies showing that PPV (Boisvert et al., 2010) 

and BPV (Dudleenamjil et al., 2010) are not internalised via caveolae-mediated 

endocytosis. On the other hand, siRNA silencing of CAV1 boosted H-1PV 

transduction levels (Figure 4.8), suggesting that caveolin-1 could potentially interfere 

with H-1PV infection. During HIV infection, caveolin-1 restricts infection in different 

ways. For instance, caveolin-1 suppresses NF-kB p65 acetylation in macrophages 

which leads to viral gene expression repression. As well, caveolin-1 was shown to 

interact with HIV viral proteins in order to hinder virus infection (Simmons Jr et al., 

2012, Lin et al., 2012). Another example is seen during influenza A virus infection 

when abundant levels of caveolin-1 prevents infection in mouse embryo fibroblasts, 

while depletion of caveolin-1 reverses the phenotype (Bohm et al., 2014). In any case, 

further research has to be done to effectively demonstrate if caveolin-1 acts as a 

negative modulator of H-1PV infection. In case caveolin-1 role is validated, 

antagonists or specific inhibitors could represent a successful approach to enhance H-

1PV clinical outcome in those cancers presenting high levels of caveolin-1. 

I also provide valuable findings showing that dynamin is implicated in H-1PV cell 

entry (Figure 4.10). Likewise, dynamin is also involved in MVM entry in murine A9 

fibroblasts, a mechanism which follows clathrin- and caveolae-mediated endocytosis 
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(Garcin and Panté, 2015). On the other hand, dynamin was also shown to not be 

required in MVM entry in mouse mammary cells transformed with polyomavirus 

middle T antigen, which occurs through clathrin-independent carrier-mediated 

endocytosis (Garcin and Panté, 2015).  

Macropinocytosis is another entry pathway utilised by viruses, and is usually defined 

as a dynamin-independent mechanism (Swanson and Watts, 1995, Preta et al., 2015). 

Within the group of PtPVs, PPV has been identified to use macropinocytosis to enter 

cells (Boisvert et al., 2010). Regarding H-1PV, the fact that inhibition of dynamin 

practically abolished the infection, makes it highly improbable that H-1PV enters 

HeLa and NCH125 cancer cells through macropinocytosis. 

Many viruses have been reported to hijack Rab-dependent entry routes to get inside 

the cells. Among the most commonly used, Rab-5 and -7 GTPases are the major 

traffiking regulators of early and late endosomes, respectively. LAMP-1, on the other 

hand, is present in both late endosomes and lysosomes (Jordens et al., 2005, Zhang et 

al., 2018). Here, I found that H-1PV co-localises with EEA1, a marker of early 

endosomes, as well as with Rab-7 and LAMP-1, markers of late endosomes (Figure 

4.11). These findings show that H-1PV particles take advantage of the endocytic 

machinery during their cytosolic traffiking, similarly to other PtPVs (Ros et al., 2017). 

However, it is possible that H-1PV also ends up in LAMP-1-positive lysosomes. In 

truth, the fact that the virus follows a non-infectious route is a finding replicated with 

other PtPVs. A considerable fraction of MVM incoming virions is often sequestered 

in LAMP1-positive lysosomes, which restricts the efficiency at which the virus 

translocates to the nucleus (Mani et al., 2006). Moreover, CPV particles also 

accumulate in perinuclear LAMP2-positive lysosomes (Suikkanen et al., 2002). 

Although highly probable, it remains to be demonstrated whether H-1PV gets also 

trapped in the lysosomes. Purification of lysosomes from H-1PV infected cells could 

clarify this point (Aguado et al., 2016). 

Earlier work has demonstrated that the low pH inside the endocytic compartments, 

alterations in redox conditions, and acid proteases and phosphatases cause 

conformational rearrangements in the catalytic PLA2 domain of the VP1 capsid protein 

(Zádori et al., 2001, Mani et al., 2006, Farr et al., 2005). These changes are particularly 

important for PtPV particles release from late endosomes to the cytoplasm, and to their 
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subsequent nuclear translocation (Suikkanen et al., 2003, Canaan et al., 2004, Zádori 

et al., 2001, Vihinen-Ranta et al., 2002). Among PVs, the acidic environment in 

endosomes has been demonstrated to be crucial for a successful infection of   B19V 

(Quattrocchi et al., 2012), CPV (Parker and Parrish, 2000, Vihinen-Ranta et al., 1998, 

Basak and Turner, 1992) and MVM (Mani et al., 2006, Ros et al., 2002). Likewise, I 

showed that pre-treatment with NH4Cl or BafA1 heavily restricted H-1PV infection 

(Figure 4.12). The precise mechanisms through which H-1PV escapes from the 

endosome and subsequently enters the nucleus, and ultimately the site where the viral 

genome becomes available for replication remain to be elucidated.  

For the first time, this study reveals that H-1PV is internalised through CME 

dependent on dynamin activity. As well, the entry mechanism occurs via EEA1 and 

Rab-7 and relies on the acidification of endosomes. Nevertheless, we should not 

exclude entirely the possibility of H-1PV using different endocytic routes in other cell 

types.  

 

5.4 Model of H-1PV entry and infection 

Based on the body of evidence gathered during this thesis, we propose a model where 

laminins containing γ1 chains would initially accumulate virus in the vicinity of the 

cell surface via SA. Gal-1 would then promote the efficient internalisation of viral 

particles into a pre-formed or forming clathrin-coated pit. The CME mechanism is 

dependent on AP-2 adaptors, and after the clathrin-coated pit is formed, dynamin 

GTPase activity would constrict the vesicle neck and release it into the interior of the 

cell. Afterwards, H-1PV would hijack the cellular endosomal system and travel from 

early to late endosomes where acidic pH is essential. Those viral particles which 

successfully escaped the late endosome would move towards the nucleus, whereas 

those which did not would naturally be directed to lysosomes through a non-infectious 

route (Figure 5.2). 
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Figure 5.2. Schematic model of H-1PV entry and infection. 

(1) Laminins, in particular those containing the γ1 chains, promote virus attachment 

at the cell surface. H-1PV binding to laminins occurs via the SA moieties. (2) Galectin-

1 promotes efficient H-1PV internalisation. (3) H-1PV internalisation occurs through 

CME dependent on AP2µ1 and dynamin activity. (4) H-1PV particles are trafficked 

within the cell from early (early endosome A1 – EEA1) to late endosomes (Ras-related 

protein 7 – Rab-7). (5) The progressive lower pH present in late endosomes induces 

conformational rearrangements in the VP1 capsid leading to the exposure of the PLA2 

enzymatic domain. (6) H-1PV escapes from the endosome to the cytoplasm and travels 

to the nucleus. Alternatively, viral particles are not able to escape from the endosomes 

and eventually end up in lysosomes (lysosomal-associated membrane protein 1 – 

LAMP-1) following a non-infectious route. (7) Entry via nuclear pore or 

permeabilisation of the nuclear envelope have both been suggested to be the 

mechanisms through which the virus and/or the genome enters the nucleus. (8) The 

timing and site of capsid uncoating are also not known. However, it has been proposed 

that viral capsids enter the nucleus intact, and the uncoating would occur upon 

interaction with the nuclear pore complex proteins and/or after nuclear entry (Ros et 

al., 2017). Created with BioRender.com 
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6 Chapter 6: Future Perspectives and Concluding 

Remarks 

In this chapter, I will first focus on some of the open questions regarding the H-1PV 

entry pathways and suggest possible approaches to address them. In the second part, I 

will discuss the challenges faced in the oncolytic virus field and where, in my opinion, 

joint efforts need to be put into to improve H-1PV clinical outcome and of onco-

virotherapy in general. At the end, I will provide my concluding remarks.   

 

6.1 Early steps of H-1PV infection 

The work reported in this thesis provides a first characterisation of the cell entry 

mechanisms of H-1PV. By doing so, new questions arise warranting further work on 

this topic. 

6.1.1 What is the H-1PV receptor(s)? 

We show that sialylated laminins are key mediators of virus cell attachment and entry 

through SA, whereas Gal-1 mediates virus entry. However, it is possible that other 

cellular factors yet to be identified are also involved in H-1PV binding/entry. 

Laminins, for instance, have many different partners at the cell surface, including a 

variety of integrins (e.g. α1β1, α2β1, α3β1, α6β1, α6β4, α7β1, α9β1, αvβ3), 67 kDa 

laminin receptor, heparan sulfate proteoglycans (perlecan and agrin), dystroglycan, 

syndecans, carbohydrate adduct of proteins-1 (HNK-1), Lutheran, and sulphated 

glycolipids. Also, we found in the library screening genes encoding for 

transmembrane signal receptors as putative positive modulators of H-1PV infection, 

including CCKAR, TGFBR2, ACVRL1, DRD4, MC4R, IFNAR2, and GPR92 (Kulkarni 

et al., in press), suggesting that some of these factors may play a role in virus cell 

entry. Yet, to my knowledge there are no reports in the literature that the products of 

these genes interact with members of the laminin/galectin families. Future studies 

should be directed in order to verify whether these genes truly represent H-1PV 

modulators or are simply false positive arising from siRNA off-target effects.  
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In addition to siRNA screenings, there are several methods to identify viral cell 

receptors (reviewed in (Barrass and Butcher, 2020)). For instance, a method that was 

successfully used to identify receptors for vaccinia virus was the “cross-linking mass 

spectrometry” (Frei et al., 2012). It is known that the interaction virus-receptor is 

transient, and therefore, the usage of cross-linkers can help detection by introducing 

covalent linkages between H-1PV and the host protein(s). Thereafter, the protein 

complexes formed are pulled down with a specific conformational antibody 

recognising the virus capsid and subsequently analysed through mass spectrometry. 

Potential candidates could be validated by performing siRNA-mediated knockdown / 

CRISPR knockout, co-localisation experiments, competition assays and mutagenesis, 

to only name a few approaches.  

 

6.1.2 Is Gal-1 and H-1PV endocytosis linked? 

Results presented in this thesis described that Gal-1 is required for an efficient uptake 

of H-1PV and internalisation occurs via CME. Yet, it remains to be demonstrated 

whether or not Gal-1 and H-1PV are endocytosed together. To this end, an electron 

microscopy analysis of H-1PV entering the cells through CME could be coupled with 

immunolabeling of Gal-1 using a specific antibody. This would allow visualisation of 

Gal-1 presence (or absence) in clathrin-coated pits and/or vesicles. Previous research 

has shown that Gal-1 enters cells through various mechanisms, including CME (Fajka-

Boja et al., 2008). In this line of thought, it would be also interesting to investigate 

whether Gal-1 has a role in promoting CME as the preferred route for H-1PV entry. 

Knowing that that H-1PV uses CME to enter NCH125 glioma cells, it would be 

interesting to evaluate whether the virus penetrates NCH125 LGALS1 KO through 

the same pathway. 

 

6.1.3 Can Gal-1 (and laminin γ1) role be validated in vivo? 

We found a direct correlation between the LGALS1 expression profile and the 

susceptibility of cancer cells to H-1PV oncolytic activity. Interestingly, this correlation 

was also found with LAMC1 (Kulkarni et al., in press). These studies support the idea 

of using these two genes as biomarkers to predict the success of H-1PV infection. 
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However, their use as prediction markers needs further validation. A promising 

approach involves analysing spheroids derived from fresh tumour tissues. By cutting 

the tissues into small pieces and letting them round up in culture, these structures 

maintain the primary features of the primary tumour, and therefore, constitute a 

clinically relevant platform to study virus binding/entry, infection and oncolysis, and 

correlate these with Gal-1/laminin levels (Kemp et al., 2020). 

Further validation could involve engrafting animal models with tumours expressing 

Gal-1, laminin γ1 or both, at very high or low levels. After tumours grow, animals 

could be injected intratumourally (or intravenously) with infectious H-1PV. 

Monitoring of tumour growth and survival curves would validate if Gal-1/laminin high 

levels would render tumours more susceptible to H-1PV oncolytic activity. 

Concerning oncotropism, H-1PV preferential accumulation in the grafted tumours 

could also be tracked by immunofluorescence analysis and viral nucleic acids could 

be detected by fluorescence in situ hybridization (FISH) and combined with 

simultaneous immunofluorescent staining for Gal-1 and/or laminin γ1 (Kiprianova et 

al., 2020). 

Given that clinical trials have been carried out with H-1PV, it would be worth 

assessing the protein levels of Gal-1 and/or laminin γ1 in tumour specimens from 

patients treated with H-1PV and correlate them with H-1PV presence. 

In case a correlation between Gal-1/laminins expression and H-1PV oncolytic activity 

holds true in vivo, there are several subsequent approaches that can be adopted. As 

mentioned before, exogenous administration of Gal-1, for instance, should be 

considered to boost virus oncolytic activity. Alternatively, second-generation H-1PV 

vectors could also be designed. For example, one promising approach would be to 

make use of the Ad-PV chimera (El-Andaloussi et al., 2012a). In short, Ad simply acts 

as a carrier by bringing the H-1PV genome into cancer cells, as well as the LGALS1 

gene under a CMV promoter. Given that Gal-1 is secreted and can exert its functions 

in neighbouring cells, Ad-PV chimera-infected cells would release Gal-1 protein 

which could be later used by progeny H-1PV particles to infect neighbouring cancer 

cells, thereby improving overall H-1PV infection and oncolytic potential. 

Alternatively, it would also be possible to test a co-infection of H-1PV and replication 

deficient Ad encoding for Gal-1. 
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6.1.4 Are there other galectins involved in H-1PV infection? 

Apart from investigating a possible correlation between LGALS1 expression profile of 

the NCI-60 cancer cell line panel and H-1PV oncolytic activity, the analysis was also 

performed in a similar fashion for other galectins (data not shown). Indeed, other 

galectins may be involved in regulating H-1PV infection. In particular, LGALS9 stood 

out as a putative negative modulator. It would be interesting to characterise Gal-9 role 

in infection similarly to what was done in the Gal-1 study. 

Additionally, it would be worth assessing whether galectin expression levels increase 

or decrease over the course of H-1PV infection. A pertinent example regarding Gal-1 

is the fact that human T-cell leukaemia virus type 1 (HTLV-I)-infected T cells were 

reported to present higher Gal-1 levels (Gauthier et al., 2008). 

 

6.1.5 Is caveolin-1 a negative modulator of H-1PV infection? 

Even though evidence of H-1PV entry through caveolae-mediated endocytosis was 

never found, knockdown of CAV1, encoding caveolin-1, increased H-1PV 

transduction very significantly. Hence, caveolin-1 could act as a negative modulator 

of H-1PV infection. To further support this hypothesis, caveolin-1 has been reported 

to interfere with other viral infections, such as of HIV-1(Simmons Jr et al., 2012, Lin 

et al., 2012) or influenza A virus (Bohm et al., 2014). Indeed, studying the negative 

modulators of H-1PV infection comprises an interesting line of research, very much 

unexplored up to now. 
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6.2 General aspects to be considered in the virotherapy 

field 

Clinical implementation of oncolytic virotherapy has been rather slow, partly due to 

the many questions which remain to be elucidated for most oncolytic viruses. There 

are uncertainties about the advantages of one virus over another, concerning the cancer 

type and the stage of the patients, the delivery route, and the schedule of 

administration. Additionally, there are also several aspects concerning genetic 

modifications, transgene expression, different combination strategies and predictive 

biomarkers, to optimally match viral species with permissive tumour and patient 

features. These and other questions demand further research on the oncolytic virus 

field. 

Another challenge in the process of successfully translating viral-based therapeutics 

to the clinic concerns the large-scale virus production in compliance with Good 

Manufacturing Practice (GMP) guidelines. Production of H-1PV-related vectors in 

quantity and quality to match the clinical demand requires efforts in the search for 

more productive packaging cell lines and optimal growth conditions (preferably by 

adopting scalable bioreactor platforms using suspension cell lines). As well, an 

improved purification protocol with higher purification yield and lower costs is 

needed.  

Another obstacle across the oncolytic virus field is that numerous studies are carried 

out in monolayer cultures of cancer cell lines. These studies hardly mimic the complex 

and three-dimensional tumour structures actually observed in patients. Spheroids 

come as an alternative approach to try to replicate the tumour cells more accurately, 

and therefore, with more clinical relevance. Using patient-derived GBM neurospheres, 

H-1PV was shown to induce oncolysis and to have a preferential tropism towards 

stem-like cells (Josupeit et al., 2016). 

Last but not least, there is an urgent need for better disease models for in vivo testing. 

Pre-clinical validation of findings obtained in vitro, including of combination 

treatments or new viral vectors, are commonly performed in one of two types of 

models: xenograft or immunocompetent syngeneic models. In spite of offering 

important hints of tolerability and efficacy, they come with serious limitations. 
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Xenograft models are generated by implanting cultured human cancer cells into 

immunocompromised rodents (Kelland, 2004). This approach usually involves 

growing the tumour in a non-natural site (subcutaneous) and does not take into account 

the crucial contribution of the immune system for the success of the treatment. As 

well, tumours established from cell lines rarely reflect the complexity or heterogeneity 

of those tumours seen in patients. On the other hand, immunocompetent syngeneic 

models have tumours originated from the same species (Barnes, 2015). However, 

these models can often be misleading given that the tumour cells are rodent, and 

therefore, express the rodent homologues of key factors and do not always recapitulate 

human diseases, human (epi)-genetic complexity, or the human immune system. In 

order to obtain more relevant hints on the clinical outcome of H-1PV-based therapies 

and move different therapeutic strategies faster to the clinics, humanised animal 

models are preferred since they retain a high level of similarity to human tumours. In 

the parvovirus field, researchers used a humanised patient-derived pancreatic cancer 

xenograft model, using ex vivo primed dendritic and T cells to reconstitute the immune 

system of the immunodeficient mice (Grekova et al., 2014). 

In a nutshell, there is an urgent need for new and better therapies, most likely involving 

a combination of chemo-/radio-/immune-therapies and (likely genetically engineered) 

oncolytic viruses (Figure 1.12). Likewise, there is an equivalent eagerness to develop 

model systems which can better translate the conditions observed in a cancer patient 

in order to predict with accuracy the antitumour potential of a given oncolytic virus or 

combination treatment. 
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6.3 Concluding remarks 

For the first time, this study characterises the early steps of H-1PV infection. We show 

that H-1PV attachment and entry are regulated by various cellular factors, including 

laminins and Gal-1, present in the extracellular matrix. Additionally, we also show 

that H-1PV enters cells through CME, and highjacks the endosomal machinery to 

reach the nucleus. 

We show that H-1PV depends on Gal-1 expression to efficiently enter and infect 

glioma cells, and that LGALS1 expression levels in 59 cancer cells lines from different 

tumour entities correlate with their susceptibility to H-1PV oncolytic activity. 

Remarkably, administration of purified Gal-1 to poorly-susceptible glioma cells 

rendered them more permissive to H-1PV oncolytic activity opening up new scenarios 

of treatment in which H-1PV could be combined with recombinant Gal-1 protein. 

In conclusion, this study brings us closer to deciphering the H-1PV oncotropism and 

its inherent oncolytic properties. As detailed before, this new knowledge could be 

exploited for improving H-1PV-based therapies and increase its clinical potential in 

cancer virotherapy. 
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