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A B ST R AC T

Deep Learning-based models are becoming more and more relevant for an
increasing number of applications. Bayesian neural networks can serve as a
principled way to model the uncertainty in such approaches and to include
prior knowledge. This work tackles how to improve the training of Bayesian
neural nets (BNNs) and how to apply them in practice. We first develop a
variational inference-based approach to learn them without requiring samples
during training using the popular rectified linear unit activation function’s
piecewise linear structure. We then show how we can use a second approach
based on a central limit theorem argument to get a good predictive uncertainty
signal for an active learning task. We further build a reinforcement learning-
based approach in such an active learning setup, learning a second BNN that
requests labels to support the primary model optimally. As a third variant, we
then introduce a new method for learning BNNs by optimizing the marginal
likelihood via a model selection based approach, relying on the concept of
type-II maximum likelihood, also known as empirical Bayes. Using PAC-Bayes
theory to develop a regularization structure, we show how to combine it with a
popular deterministic model for out-of-distribution detection, demonstrating
improved results. Using this joint combination of empirical Bayes and PAC-
Bayes, we finally study how to use it to learn dynamical systems specified
via stochastic differential equations in a way that allows incorporating prior
knowledge of the dynamics and model uncertainty.
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Z U SA M M E N FA S S U NG

Deep Learning-basierte Modelle werden für eine zunehmende Anzahl von
Anwendungen immer relevanter. Bayes’sche neuronale Netze können als prinzi-
pielle Möglichkeit dienen, die Unsicherheit in solchen Ansätzen zu modellieren
und Vorwissen einzubeziehen. Diese Arbeit befasst sich damit, wie das Trai-
ning von Bayes’schen Neuronalen Netzen (BNNs) verbessert werden kann
und wie sie in der Praxis eingesetzt werden können. Wir entwickeln zunächst
einen auf Variationsinferenz basierenden Ansatz, um sie zu lernen, ohne dass
während des Trainings Stichproben benötigt werden, indem wir die stückweise
lineare Struktur der beliebten ReLU Aktivierungsfunktion verwenden. Dann
zeigen wir, wie wir einen zweiten Ansatz verwenden können, der auf einem
Argument des zentralen Grenzwertsatzes basiert, um ein gutes Vorhersageun-
sicherheitssignal für das Problem des Aktiven Lernens zu erhalten. Weiterhin
konstruieren wir einen auf Reinforcement Learning basierenden Ansatz für die-
ses Problem, welches ein zweites BNN lernt, um das primäre Modell optimal
zu unterstützen. Als dritte Variante führen wir dann eine neue Methode zum
Lernen von BNNs ein, indem wir die marginale Wahrscheinlichkeit über einen
auf Modellauswahl basierenden Ansatz optimieren, der sich auf das Konzept
eines Maximum-Likelihood-Schätzers vom Typ 2 stützt, auch bekannt als empi-
rical Bayes. Unter Verwendung der PAC-Bayes-Theorie zur Entwicklung einer
Regularisierungsstruktur zeigen wir, wie diese mit einem populären determi-
nistischen Modell zur Erkennung von Out-of-Distribution kombiniert werden
kann, und demonstrieren verbesserte Ergebnisse. Unter Verwendung dieser ge-
meinsamen Kombination von empirical Bayes und PAC-Bayes untersuchen wir
schließlich wie man damit dynamische Systeme, die durch stochastische Diffe-
rentialgleichungen spezifiziert sind, auf eine Weise lernen kann, die es erlaubt,
Vorwissen über die Dynamik und Modellunsicherheit einzubeziehen.
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1
I N T RO D U C T I O N

The theory of neural networks has witnessed several waves of popularity since
its inception more than half a century ago. Under the keyword “Deep Learning”
the current wave is larger than ever demonstrating its usefulness in a broad
range of applications as diverse as computer vision (He et al., 2015), protein
folding (Jumper et al., 2020), game playing (Silver et al., 2018), and text
generation (Brown et al., 2020).

These advances offer not only great potential for society but also pose new
questions. One is the similarly great potential of ethical danger and problems,
which we as researchers should always keep at the back of our minds instead
of simply stating “That’s not my department”, as Tom Lehrer so wonderfully
summarized in his classic song1. These problems will, however, not be the
topic of this thesis.

Instead, we target the question of how to use their probabilistic counterparts in
the form of Bayesian Neural Networks (BNNs). In their ideal form, they—and
Bayesian models in general (Ghahramani, 2015)—offer a principled way to
improve the feedback the researcher gets from neural nets from simple point
predictions to well-calibrated predictive uncertainties, indicating when one
can trust such a model. They allow for principled modelling of the uncertainty,
whether lack of predictive certainty is due to inherent randomness or lack of
observations. Additionally, they offer a principled way of performing model
selection, i.e. the comparison between different models and how to incorporate
prior knowledge instead of having to rely on purely black-box models.

BNNs have seen similar fluctuations in popularity as deterministic nets, from
being extensively studied in the early nineties (MacKay, 1992, 1995; Neal,
1995), to being superseded in popularity by Gaussian processes (Rasmussen
and Williams, 2006), which lead David MacKay to his popular question of
whether we have thrown “the baby out with the bathwater” in that choice, or
whether BNNs are justified in having their own parallel existence and benefits.
Following the increase in Deep Learning research, BNNs have grown similarly
in popularity again. However, the list of benefits compared to the deterministic
approaches mentioned above raises the question of why they haven’t simply
replaced their deterministic counterparts? The answer is hidden in the constraint
“in their ideal form”. While the ever-increasing computational power helps a lot,
the problem of there being “no free lunch” still applies. In practice, Bayesian

1 The quote is from Tom Lehrer’s song Wernher von Brown, see e.g. https://
tomlehrersongs.com/wernher-von-braun/ for the full lyrics.

1
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neural networks are still a lot more challenging to train, requiring simplifying
approximations to be usable.

This thesis aims to contribute to the growing body of literature that seeks to
answer MacKay’s question affirmatively, developing new methods of training
them more efficiently and exploring how to use them in various applications.
It is organized as follows.

The next chapter starts the journey by giving a high-level overview of the areas
and concepts required for the rest of the thesis, pointing to further reading
material for each of them. Its second task is to introduce the notation used
throughout. A summary of the notation, as well as details on the distributions,
special functions and inequalities, are also provided in the appendix (Chap-
ter 8). This chapter can also be skipped and referred to whenever necessary.
Throughout the thesis, we use marginal notes to allow for easy visual guidance,I am a marginal note
which helps the reader to jump to relevant parts quickly.

In Chapter 3 we introduce a new family of variational posterior distributions for
BNNs. Using the popular rectified linear unit (ReLU) activation, we can decom-
pose the forward pass, allowing us to learn a BNN without requiring samples
of the weights, as most common variational inference-based approaches do.
Additionally, this structure will enable us to learn part of the variational vari-
ables via closed-form updates, further improving the learning procedure and
demonstrate its usefulness and competitiveness on several standard regression
and classification tasks.

A second approach for (mostly) sampling-free learning is explored in Chapter 4.
We demonstrate that we can use a central limit theorem based variational
inference approach to get good predictive uncertainties. We use and evaluate
them in the application area of Active Learning. The second contribution in
that chapter is that we develop a way to replace the commonly hard-coded and
fixed acquisition function necessary for the active learning task, with a second
BNN that learns how to request new labels during the active learning process,
adapting itself to the specifics of the data set at hand.

We pursue this central limit theorem based approach further in Chapter 5 where
we introduce a new way to learn Bayesian neural nets, by formulating the train-
ing objective as an empirical Bayes/type-II Maximum Likelihood. We show
that this allows us to combine the model with evidential deep learning (Sensoy
et al., 2018) extending it to be able to distinguish between reducible (epis-
temic) uncertainty and irreducible (aleatoric) uncertainty. As this introduces
a wide range of hyperparameters, we show how to adapt PAC-Bayes gener-
alization bounds to our setup to get a reliably regularizing signal, showing
improved performance of the final model in the task of out-of-distribution
detection.

In Chapter 6 we consider another application that is learning stochastic dynam-
ics assuming some potential prior knowledge. We develop a way to learn such
stochastic differential equation-based models via Bayesian neural networks by
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deriving another PAC-Bayes based objective that allows for the incorporation
of prior knowledge.

publications and further collaborations
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2
BAC KG RO U N D

Throughout this chapter, we will introduce and give a high-level overview
of the background material required for the results discussed in the rest of
the thesis. This chapter serves a second goal: the discussion of background
material will also allow us to use this chapter as an introduction and reference
for the notation used throughout the thesis.

The following sections may be skimmed, or skipped upon first reading and
referred to whenever necessary. They aim to give intuition to the most relevant
topics needed to properly understand the following chapters, with references
to the literature for further background reading. The highlights in the margins
serve as guidance to quickly locate the relevant parts.

In the first section, we first discuss the Bayesian approach to learning, focusing
on our primary tool, variational inference. Section 2.2 gives a quick introduction
to neural networks, together with introducing the notation we will rely on
throughout the work. Afterwards, we discuss the concept of active learning
in Section 2.3. Section 2.4 gives an overview of reinforcement learning in the
form of Markov decision processes and one way to learn them. In Section 2.5
we introduce generalization bounds as used in the PAC-Bayes approach, and
finally close the chapter in Section 2.6 with stochastic differential equations
and a numerical method to solving them. See also the appendix for a list of
distributions and (in)equalities used throughout this work.

2.1 bayesian machine learning and variational inference

The thesis sails under the flag of Bayesian probabilistic machine learning. This
raises the question, what do we mean by that? And how does our understanding
fit in with the greater literature? We will not be able to give a thorough treatment
of the whole of the current Bayesian literature and how it is used in machine
learning, nor is this the right place for such an undertaking. Instead, we focus
on the relevant terms required for the later chapters, focusing primarily on the
area of variational inference.

For a general introduction to the Bayesian approach, the book by McEl-
reath (2020) offers an excellent practical introduction focusing on the area of
Bayesian statistics. For a useful follow-up Gelman et al. (2013) give a thorough
theoretical treatment. For probabilistic and Bayesian approaches to Machine
Learning Ghahramani (2015) gives a general overview, and there exist a couple
of great textbooks for a detailed introduction (MacKay, 2003; Bishop, 2006;
Barber, 2012; Murphy, 2012).

5
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yn

θ

xn

N

Figure 2.1: A general generative model. We use filled circles for observed variables
yn, xn and unfilled circles for latent ones (θ). The plate notation indicates
that there are N pairs (xn, yn).

Relevant for the following chapters is an understanding of the theory on the
following level. We always assume to be in the case of supervised learning
throughout this work. The variables in the models can then be grouped into
three broad groups. We assume to have observed features x, their targets y,1
and latent parameters θ governing their relationship. The generative model isGenerative Model
given in its most general form as summarized in Figure 2.1

θ ∼ p(θ)

yn|θ, xn ∼ p(yn|θ, xn) i = 1, . . . , N,

i. e. we have a prior p(θ), and a conditional p(y|x, θ). Note that we won’t
model a distribution over the features x, but still include them in terms of
notation in the conditional probability for y to show their relationship. One
could also extend most of the proposed approaches in the following chapters to
accommodate for probabilistic modelling of these x, which we will highlight
whenever relevant.

Having observed N pairs (x1, y1), . . . , (xN , yN) we will refer to them collec-
tively as D and use the shorthand p(D|θ) = ∏N

n=1 p(yn|θ, xn). The goal of
inference/learning in a Bayesian setting is then to find the posterior distributionInference via Bayes rule
over the latent variables after having observed the data D, i.e. p(θ|D), which
is given via Bayes rule as 2

p(θ|D) = p(D|θ)p(θ)
p(D) . (2.1)

At test time, i.e. during the application of the learned model, the optimal
posterior predictive distribution for y∗ given the features x∗ is then given asPrediction

p(y∗|x∗,D) =
∫︂

p(y∗|θ, x∗)p(θ|D)dθ. (2.2)

So far for the theory. Unfortunately, for both inference and prediction, we are
not able for most practically relevant models to come up with closed-form

1 Depending on the researcher’s context and socialization, the independent x and the dependent y,
are known under a wide variety of expressions. We will mostly stick to feature/target throughout
the thesis sometimes lapsing into input/output as is popular in the deep learning literature.

2 Note that in the deep learning literature the expression “inference” is often also applied to the
task of prediction, leaving the task mentioned above as either learning or without a term at all.
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expressions for each of the two distributions. For inference the marginal p(D)
is usually intractable, such that we cannot get an analytical posterior. Even
if we were to, the integral in the predictive step usually remains intractable,
requiring further approximations.

To solve the problem of the intractability of the posterior, there are two broad
classes of approaches. First, for inference we can rely either on a sampling-based
approach (Robert and Casella, 2013), or, what we will do instead use to ensure
scalability to deep networks is to rely on Variational Inference (Wainwright
and Jordan, 2008; Blei et al., 2017). We will introduce it in the next section,
but first, close this section by focusing specifically on the term p(D).

evidence and model selection This marginal p(D) is also known as Evidence and model
selectionthe evidence. The notation used above hides that all these probabilities depend

on the choice of model, or theory underlying the specified generative model.
For as specific theory or hypothesisH it would be more precise to write

p(θ|D,H) =
p(D|θ,H)p(θ|H)

p(D|H)
. (2.3)

The evidence p(D|H) is then the marginal likelihood the theory assigns to
the observed data after having marginalized over the latent parameters

p(D|H) =
∫︂

p(D|θ,H)p(θ|H)dθ.

Assuming we have access to this evidence, it opens a way to compare different
approaches in a principled way to perform model selection. For example, to
decide between two modelsH1,H2, we can, relying on Bayes theorem again,
compare their ratio as

p(H1|D)
p(H2|D)

=
p(H1)

p(H2)
· p(D|H1)

p(D|H2)
. (2.4)

Here, the first ratio on the right-hand side gives the relative prior probability
of each hypothesis. In contrast, the second provides a ratio of evidence terms
given each of the two models. This comparison then gives a principled Oc-
cam’s razor approach. A complex model can explain a lot of observed data
but necessarily assigns a lower probability to each one compared to a more
constrained model (Rasmussen and Ghahramani, 2001; MacKay, 2003). These
relative differences, then allow us to compare the posterior likelihood of each
of the two given that we have observed a specific D.

This model comparison will in its generality not be directly relevant for us
for model selection, rather only in offering a principled way of comparing
the final performance of different approaches in the literature. However, as
we will discuss in Chapter 5, it will become relevant in a more constrained
form. That is when we do not want to compare two general models H1 and
H2. Instead, consider a familyHα of models controlled by hyperparameters α.
For example in the general generative model, we described above, assume that
the prior depends on hyperparameters, for example consider it to be a normal
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distribution with a mean fixed to zero, but a precision hyperparameter given
by α, that is

θ ∼ N (θ|0, α−1),

yn|θ, xn ∼ p(yn|θ, xn), i = 1, . . . , N.

We can do posterior inference in that setup as before. However, instead of
relying on some grid search over possible α values to determine an optimal one,
p(D|Hα) offers a principled measure that we can optimize with respect to α.
This approach is known as empirical Bayes or type-II Maximum LikelihoodEmpirical Bayes

Type-II ML in the literature (Bishop, 2006; Murphy, 2012). It is popular for example in
the area of Gaussian Processes for fitting the hyperparameters of kernels, for
example the length-scale of an exponentiated quadratic kernel (Rasmussen and
Williams, 2006).

2.1.1 Variational Inference

Abstractly speaking, Variational Inference (VI) tries to approximate the in-
tractable p(θ|D) with a tractable distribution q(θ) from some family of dis-
tributions Q. Closeness between these two distributions is measured here in
terms of the Kullback-Leibler (KL) divergence (also known as relative entropyKullback-Leibler

divergence in information theory),

KL (q(θ) ∥ p(θ|D)) ≜ −
∫︂

q(θ) log
p(θ|D)

q(θ)
dθ

= −Eq(θ)

[︃
log

p(θ|D)
q(θ)

]︃
≥ − log

∫︂
p(θ|D)dθ = 0,

where the inequality uses Jensen’s inequality. We use ≜ to refer to equality
by definition. While it is not an actual distance (e.g. it lacks symmetry), it is
constrained to be positive, and one can further easily show that it equals zero
if and only if its arguments are equal. There are variations to this formulation,
for example expectation propagation (Minka, 2001, 2013) which considers
the opposite direction of the divergence, KL (p(θ|D) ∥ q(θ)), or Rényi’s α-
divergence based variational inference (Li and Turner, 2016), defined as

DRényi(p(θ)||q(θ)) = 1
α− 1

log
∫︂

p(θ)αq(θ)1−α dθ,

which in the limit of α → 1 recovers the KL divergence. However, we will
stay with the version most commonly known and understood as variational
inference.

This objective in itself still requires the intractable posterior. However, we canEvidence Lower Bound
make use of the following relationship by extending the log evidence as

log p(D) =
∫︂

q(θ) log p(D)dθ
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=
∫︂

q(θ) log
p(D)q(θ)

q(θ)
dθ

=
∫︂

q(θ) log
p(θ,D)q(θ)
p(θ|D)q(θ) dθ

=
∫︂

q(θ) log
p(θ,D)

q(θ)
dθ + KL (q(θ) ∥ p(θ|D))

≥
∫︂

q(θ) log
p(θ,D)

q(θ)
dθ.

The log marginal probability is independent of the θ, giving us an upper bound.
Simultaneously, the KL expression’s positivity ensures that maximization of
the resulting lower bound minimizes the desired objective. We will refer to
this final expression as the Evidence Lower BOund (ELBO) throughout this
thesis.

This leaves the choice of distributions as an open question. We will revisit
the following two main approaches in the later chapters. The first is to specify
a factorization of the q(θ) into M groups of variables, such that q(θ) =

∏M
m=1 qm(θm). This factorization allows us to rewrite the ELBO, focusing on

the m-th group, as∫︂
q(θ) log

p(θ,D)
q(θ)

dθ
c
=
∫︂

qm(θm)Eq ̸=m(θ ̸=m) [log p(θ,D)]dθm

−
∫︂

qm(θm) log qm(θm)dθm,

slightly abusing the notation with q ̸=m(θ ̸=m) = ∏i ̸=m qi(θi). We use c
= to

refer to equality up to a constant term. If we treat the other latent variables as
fixed, this is a negative Kullback-Leiblere divergence. As it is maximized when Optimal updates via

coordinate ascentboth of its inputs are equal, the optimal solution q∗m is then given as

log q∗m(θm)
c
= Eq ̸=m(θ ̸=m) [log p(θ,D)] .

If this expectation is analytically tractable, we have found an optimal update for
each of the M factors given the others. We can learn the variational posterior by
a coordinate ascent approach, iteratively updating each factor until convergence.
If that is possible, we have gained an efficient way of learning the variational
posterior. If not, we have just exchanged one intractable objective for another.
In Chapter 3 we will discuss one practical use case where these updates are
indeed partially applicable. However, for most practical use cases with neural
networks, this will not be the case requiring us to go one step further. In the
following chapters, we will always rely on a full factorization, i.e. every variable
is its own group, referred to as mean-field. Mean-field

The second approach extends the first in specifying a factorization and an
explicit parameterization of these distributions, for example by assuming the
variational posterior to be an isotropic multivariate normal distribution with
mean and variance parameters to be determined. Assuming that this variational
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posterior is parameterized by ϕ, the objective becomes a maximization of the
ELBO, giving the optimal choice of parameters as

ϕ∗ = arg max
ϕ

Eqϕ(θ) [log p(D|θ)] + KL
(︁
qϕ(θ) ∥ p(θ)

)︁
,

which releases us from the intractable posterior and consists only of tractable
distributions. This allows us to make direct usage of the vast gradient-based
optimization literature to optimize the objective. The final form also gives us
the typical form of an objective decomposing into a term controlling the data
fit, here the expected log-likelihood of the data, and a second term serving as
a regularizer, here the Kullback-Leibler divergence between the variational
posterior and the prior.

The prior and variational posterior are both under our control, and can therefore
be chosen so that this KL term is either analytically tractable or can be closely
approximated. The first term has the problem that the expectation, which we
could approximate via samples, is computed with respect to the density qϕ(θ),
which depends on the parameters ϕ we require the gradients of. There are two
common approaches to solve this problem.

The first approach uses the fact that we can reformulate the gradient of theScore gradient
expectation as

∇ϕEqϕ(θ) [log p(D|θ)] = ∇ϕ

∫︂
log p(D|θ)qϕ(θ)dϕ

=
∫︂

log p(D|θ)∇ϕqϕ(θ)dθ

=
∫︂

log p(D|θ)
∇ϕqϕ(θ)

qϕ(θ)
qϕ(θ)dθ

=
∫︂

log p(D|θ)∇ϕ log qϕ(θ)qϕ(θ)dθ

= Eqϕ(θ)

[︁
log p(D|θ)∇ϕ log qϕ(θ)

]︁
,

leaving the expecation to be approximated via samples. As this relies only on the
score function ∇ϕ log qϕ(θ), it is applicable to a large family of distributions
without too many constraints. However, it tends to introduce a relatively large
variance into the gradient.

The second approach is known as the reparameterization trick (Kingma andReparametrization trick
Welling, 2014) and is applicable for distributions that allow for a reparametriza-
tion into a parameter-free base distribution together with a deterministic para-
metric transformation. For example using for a normal variational posterior
with ϕ = (µ, σ) we have that

θ ∼ N (θ|µ, σ2) ⇒ θ = µ + σε, ε ∼ N (ε|0, 1),

which allows us to rewrite the expectation as

Eqϕ(θ) [log p(D|θ)] = Eε∼N (0,1) [log p(D|g(ϕ, ε)] .
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While this tends to yield a lot less noisy gradients, it greatly limits the variety
of applicable distributions. Throughout this work, we will rely on using normal
distributions as the variational posteriors, which allows us to rely on this
second variant which gives us a good enough gradient signal. Finally, we
should mention that approaches to reduce this expectation term’s gradient
variance further, both in the score function as well as the reparametrization
formulation, are still an ongoing research area (Roeder et al., 2017; Figurnov
et al., 2018; Tucker et al., 2018), together with their extension to discrete
variables (Jang et al., 2016; Maddison et al., 2016; Tucker et al., 2017).

Having learned such a variational posterior, we can then approximate the
predictive distribution given a new data point x∗ as

p(y∗|x∗,D) =
∫︂

p(y∗|θ, x∗)p(θ|D)dθ (2.5)

≈
∫︂

p(y∗|θ, x∗)qϕ(θ)dθ. (2.6)

Depending on the specific choice of the likelihood and the variational posterior
this integral might be tractable, but in practice, especially in the setting of
Bayesian neural networks, where the mapping is still highly nonlinear, it needs
to be approximated further via samples giving us finally

p(y∗|x∗,D) ≈
1
S

S

∑
s=1

p(y∗|θ(s), x∗), θ(s) ∼ qϕ(θ). (2.7)

2.1.2 Probability and Uncertainty

What is probability? What is uncertainty? Is there true randomness? These
questions have occupied philosophers and scientists throughout the centuries
and will keep occupying them in the future. We will not provide a broad
philosophical discussion here summarizing the different lines of thought and
the many different schools and subschools, arguing for or against a specific
interpretation. Instead, we summarize the interpretation used within this thesis
and invite the reader to a cup of tea to meet for a philosophical discussion after
he or she has finished the thesis. Throughout this work, we follow a Bayesian
approach of using probability to quantify our uncertainty, by using it to encode
our belief state about the world, conditioned on our past observations. How to
update these beliefs given new information consistently is then prescribed by
the Bayes rule.

In this sense, there is just one probability and thus, uncertainty. However, the
machine learning literature distinguishes three different types of uncertainty,
popularized in the deep learning literature by Kendall and Gal (2017). These
are aleatoric, epistemic, as well as predictive uncertainty.

For us epistemic uncertainty is the model uncertainty about our parameters, aleatoric vs epistemic
uncertaintyi.e. the uncertainty in their posteriors distributions after having observed some

data. It is a reducible uncertainty, as further observations can help us learn
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more about the relationship between the data and the parameters, becoming
more certain about it. Aleatoric is the uncertainty that remains independent of
the number of observations, i.e. is irreducible within our model. The condition
“within our model” is important to note here as a different model might be able to
reduce this uncertainty, blurring the line between the two somewhat. Predictive
uncertainty lastly is the uncertainty in our predictions after marginalizing over
all our parameters, giving us the posterior predictive, which combines every
source of uncertainty.

2.2 (bayesian) neural nets

This section does not aim to give a full introduction and overview of the world
of neural networks and deep learning. See for example the recent textbook by
Goodfellow et al. (2016) for that. Its aim is primarily to introduce the notation
as we will use it in the following chapters and in the second part introduce
the variant of Bayesian Neural networks that is the most common one. That
way we combine the abstract discussion of variational inference from the last
section with a specific use case, which will serve as an important baseline
throughout the rest of this work.

One thing to note is that although we will later also rely on architectures with
convolutional layers, the theoretical discussions here and in the following
chapters always focus notationwise on the fully-connected use case. However,
they usually directly generalize unless we explicitly discuss differences.

neural network Throughout this work we will assume the followingNeural Network
structure/architecture of the models we consider. The consist of

• an input x ∈ Rn0 , which we usually assume to be deterministic,

• L layers with weights Wl ∈ Rnl×nl−1 for l = 1, . . . , L,

• a nonlinear activation function r(·) between them, which is applied
elementwise to its input.

A neural net layer is then just a matrix-vector multiplication followed by the el-
ementwise application of some nonlinear function. Refering to weight matrices
collectively as θ = (W1, . . . , WL), and to the network as a function f (·; θ), we
have for example that a three layer neural net has the following structure

f (x; θ) = W3r(W2r(W1x)),

where we incorporated the bias terms into the weight matrices, which we will
continue to do, suppressing the bias terms from the notation.

As we will often be required to consider a net not in its totality, but on the
level of the individual layers, we will refer to the output of the l-th layer before
the subsequent application of an activation function as the pre-activation fl ,pre-activation
and after the application of the activation function as the post-activation hl .post-activation
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Summarized as equations, this gives us

fl ≜ Wlhl−1

hl ≜ r( fl),

where we use h0 = x as a further shorthand and r(·) applies to each dimen-
sion individually, i.e. elementwise. The computation of each of these terms,
starting from the input to the output layer is known as the forward pass. Given
the dimensionalities specified above hl is an nl dimensional vector, which
to stay with the metaphor of the brain are referred to as nl neurons in the
literature.

bayesian neural network Bayesian Neural Networks (BNNs) have Bayesian Neural Network
been studied since at least the early nineties (MacKay, 1992, 1995; Neal, 1995;
Lampinen and Vehtari, 2001). In parallel with the recent growth in popularity
of deterministic neural nets, they have become popular again (Blundell et al.,
2015; Kingma et al., 2015) and are an active field of study as we will see
throughout this thesis. Like our discussion of their deterministic counterparts,
the field is moving too fast for this to be the right place for a complete overview.
Instead, we will introduce the two most common approaches, which we will
also revisit throughout the next chapters as they will reappear as comparisons
and baselines.

The first of the two makes use of a common regularization strategy in the MCDropout
deterministic neural network literature. Dropout (Srivastava et al., 2016) con-
sists of dropping a random set of neurons per layer, that is setting them to
zero and ignoring their actual value, during each forward pass, each with a
specific probability p. Introduced originally as a regularization technique to
avoid overfitting Gal and Ghahramani (2016a,b) showed in a series of papers
that this approach could be seen as implicitly performing variational inference
with a specific family of variational distributions. This strategy is popular as it
can trivially be applied to any existing architecture with neither theoretical nor
real implementation constraints. We will refer to it as MCDropout throughout
the rest of this work.

The second approach makes the connection to variational inference and a
Bayesian approach even closer. The generative model is given as

Wl ∼ p(Wl), l = 1, . . . , L

yn ∼ p(yn|xn, θ), ∀n.

Assuming a mean-field variational posterior over the weights q(θ) to be a
multivariate normal distribution we have as the parameters to be learned the
mean and variance paramters of each of the weights, summarized as ϕ. The
ELBO objective to be maximize is then as before

Eqϕ(θ) [log p(D|θ)] + KL
(︁
qϕ(θ) ∥ p(θ)

)︁
.
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Given the usual choice of a normal prior, the second term is a Kullback-Leibler
divergence between normal distributions, which is analytically tractable. We
are not limited to this prior and could instead rely on sparsity inducing pri-
ors (Ghosh and Doshi-Velez, 2017), or more heavy-tailed distributions (Fortuin
et al., 2020). We will however stick to a normal prior in the experiments.

To make the expectation independent of the parameters to be optimized, we rely
on the reparametrization trick (Kingma and Welling, 2014) already discussedReparametrization trick
in the general variational inference introduction and use the deterministic
transformation of a parameter-free base distribution as

a ∼ N (a|µ, σ2)⇒ a = µ + σε, ε ∼ N (ε|0, 1).

Denoting this transformation via g(·; µ, σ) we have

Eqϕ(θ) [log p(D|θ)] = EN (ε|0,1) [log p(D|g(ε; ϕ)] ,

allowing us to approximate the resulting expectation with a simple Monte
Carlo approximation, which during training is often further reduced to relying
on a single sample as an approximation.

Throughout the forward pass instead of sampling weights, we finally rely on the
fact that a matrix product with a multivariate normal vector is again normally
distributed and instead sample the output of each layer, referred to as the localLocal reparametrization

trick reparametrization trick, which greatly reduces the gradient variance as Kingma
et al. (2015) showed. As this means a sampling of the pre-activations, and is
as such similar to the vanilla dropout we will refer to it as Variational DropoutVarOut
(VarOut) in the experiments. It can be interpreted as replacing the Bernoulli
dropout with a normal dropout where the dropout rate is not specified a priori
but rather learned adaptively.

As the neural network setting usually involves a large number of data points,
the log-likelihood can further be approximated when computing the gradients
via a batch of size M as

log p(D|θ) =
N

∑
n=1

log p(yn|xn, θ) ≈ N
M

M

∑
m=1

log p(ym|xm, θ).

This introduction has solely relied on variational methods instead of purely
sampling-based approaches to training Bayesian neural networks. Springenberg
et al. (2016) for example have successfully relied on using stochastic gradient
HMC (SGHMC) (Chen et al., 2014), a stochastic mini-batch approximation
to Hamiltonian Monte Carlo (Betancourt, 2017) to train BNNs for the task of
Bayesian optimization, where smaller networks are sufficient, but in general,
such approaches greatly suffer from scalability issues which is why variational
inference based approaches seem to be preferred. We will rely solely on the
variational setup throughout this work.
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regression and classification For most of the following chapters, Regression and
Classificationwe will consider regression and classification tasks, using a normal likelihood

for the first case and a categorical for the second.

Assuming a homogeneous observation noise we have for a target y in the case
of regression that

y = f (x; θ) + ε,

with ε ∼ N (ε|0, σ2). While for the classification case, assuming the task is to
classify among K categories in a multi-class setting, we have that

P(y = k) = ζ( f (x; θ))k. (2.8)

Here we have defined ζ(·) as the softmax function. We will also consider the ζ(a)j ≜
exp(aj)

∑k exp(ak)

multi-label setup where y ∈ {0, 1}K can potentially belong to multiple classes
at the same time, in which case we have as the likelihood that

p(y) =
K

∏
k=1
Ber
(︁
yk|σ( f (x; θ)k)

)︁
, (2.9)

and have σ(·) as the logistic sigmoid. σ(a) ≜ 1
1+exp(−a)

2.3 active learning

As we will discuss the concept of Active Learning (AL) together with the
adaptions we suggest in mathematical detail in Chapter 4, this section will
remain on the abstract equation-free level.

Broadly speaking, we can consider active learning as belonging somewhere
between supervised and unsupervised learning. The former has access to a
pre-existing set of data pairs (x, y) and wants to find a relationship between
them to predict the targets of newly arriving unlabeled data optimally. On the
other hand, unsupervised learning algorithms only have access to x trying to
find patterns within the observations without a specific prediction task.

Active learning is motivated by the realization that in practice, data becomes
cheaper and cheaper. Simultaneously, the acquisition of the targets belonging to
a specific x often remains expensive insofar as it requires human intervention
and usually domain knowledge of the particular task to be solved. As such
active learning still wants to learn a predictive relationship between features and
target but tries to minimize the number of labelled data pairs required. It relies
on the realization that not all data are created equal for each task. Instead of
learning given a fixed training data set, the algorithm learns from a small initial
data set and has access to an additional extensive unlabeled amount of data.
Assigning a score to each of the unlabeled data points, based on how useful they
likely are for improving the overall performance if a label were provided, the
highest-scoring points can be provided to a human, an “oracle”, to be labelled.
The underlying model is then be retrained given the new information, and the
process can be iterated until the desired performance is reached. See Figure 2.2
for a summary of the circular structure of this process.
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Figure 2.2: Standard Active Learning pipeline. The standard active learning
pipeline is summarized as the interplay between three parts. An ora-
cle provides a set of labeled data for a predictor to learn on. It, in turn,
provides some signal to the guide, a usually fixed, hard-coded acquisition
function, which communicates to the oracle which points to label next,
restarting the cycle.

Metaphorically one can consider the example of a child learning. It is given
some supervision and can explicitly request further information on objects or
relationships it does not yet know or understand. This rough metaphor also
indicates that active learning can be seen as part of a much larger lifelong
learning framework. A model is not considered trained to convergence and
done, but gets updated throughout its usage. Similarly to a child learning a lot
in an unobserved interactive fashion, unsupervised learning on the unlabeled
data and data augmentation on the labeled observations offers great potential,
and is actively pursued in the literature.

We will in Chapter 4 focus solely on the plain setting of active learning, as
it already poses a lot of open questions to be solved. For example what kind
of a model can learn well and efficiently from little data, while also being
useful in practice and additionally provide a helpful signal of how it could
be improved to have an efficient way to request new labels. Of course, this in
practice also becomes an even larger question, as the score should not only
reflect how the model can be best improved and but also how to accommodate
the human expert effectively. For example a model learning to perform image
segmentation, i.e. a pixel-level classification of images, might be optimally
improved by labelling individual pixels in separate images. Still, in practice, it
will be more efficient to label parts of an image directly even though not all
pixels might be strictly necessary.

See Settles (2012) for a recent textbook on active learning. Note also that this
active learning task formulation is closely related to what is known as Bayesian
Optimization (Snoek et al., 2012; Agnihotri and Batra, 2020). The task there
is not to optimize the time/cost of a human expert by optimally requesting new
labels. Rather the task can be seen as a meta-optimization step, where the goal is
to optimize the performance of an underlying model for as little training time as
possible. A second model, usually a Gaussian Process, is here trained to suggest
new hyperparameters, that hopefully improve performance, to be evaluated
next. Given the long training run time of current deep learning models and
their sensitivity to hyperparameter choices, a simple grid search that iterates
over all possible configurations is not even remotely possible (even if we were
to ignore the fact that many hyperparameters are not discrete, but continuous).



2.4 reinforcement learning via markov decision processes 17

Optimizing which set of parameters to evaluate next can then either rely on
human expertise and clever decisions (see, e.g. Isensee et al. (2020) for an
extensive study on how to set parameters in the task of image segmentation), or
such a Bayesian optimization scheme. It was, for example employed with great
success in the training of Alpha Go and similar models (Chen et al., 2018b;
Silver et al., 2018).

2.4 reinforcement learning via markov decision processes

The field of Reinforcement Learning (RL) is huge and vastly growing, so this
will not be an exhaustive overview. The primary source we base our introduction
in this section on is the excellent textbook by Sutton and Barto (2018), which
gives a complete introduction to the field. We will only focus on one concept
from reinforcement learning that is most relevant for Chapter 4. This is the
concept of a Markov Decision Process (MDP).

In an MDP, we consider for discrete time steps t = 1, 2, . . ., an agent interacting Markov Decision Process
with an environment. Given that the environment is in a state St at time t, the
agent performs an action At, which in turn influences the environment resulting
in a state St+1 and a reward Rt+1. The model is fully specified by the set of
possible actions A (which we consider to be discrete), a set of also discrete
possible states S , rewardsR ⊆ R, and transition probabilities specifying the Transition probability
relationship between the time steps, as

p(St+1 = s′, Rt+1 = r|St = s, At = a),

i.e. the probability of observing a state s′ and receiving reward r, after the agent
performs an action a in state s. Given this tuple of specifications (S ,R,A, p),
the task is to learn how to perform the actions to maximize the cumulative
reward. That is to maximize the expected future returns, return

Gt ≜ Rt+1 + · · ·+ RT,

assuming a maximum of T time steps. Or in the case of a setup without a fixed
end point, we define it with a discount factor γ ∈ [0, 1) as

Gt ≜
∞

∑
i=0

γiRt+1+i = Rt+1 + γGt+1,

giving us a recursive relationship.

To optimize this we require two additional functions. The policy π specifies Policy
how to act given a specific state, i.e. it gives the probability that At = a, given
that St = s, which we denote as π(a|s). The second is the value function Value function
vπ(·), giving the value of being in a specific state and following a particular
policy π as the expected return

vπ(s) ≜ Eπ [Gt|St = s] .

It gives a similar recursive relationship, known as the Bellman equation

vπ(s) ≜ Eπ [Gt|St = s]
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= Eπ [Rt+1 + γGt+1|St = s]

= ∑
a

π(a|s)∑
s′,r

p(s′, r|s, a)
(︁
r + γvπ(s′)

)︁
.

A policy π is then better as a policy π′ if its value function is higher, i.e.
vπ(s) ≥ vπ′(s), ∀s, giving rise to the optimal value as v∗(s) ≜ maxπ vπ(s)
for a specific state s.

While there are a wide variety of methods how to solve this task, depending
on the underlying structure of states and actions, we will focus the discussion
here only on the policy gradient method as it will be the relevant approach wePolicy gradient and

REINFORCE pursue later.

It considers the policy as a parametric function, which we denote here as
πθ(s, a) for some set of parameters θ, optimizing them via a gradient ascent
approach given some performance score

J(θ) ≜ vπθ
(s0),

for some start state s0. It can be shown (see e.g. Chapter 13 of Sutton and Barto
(2018) for a proof), that its gradient is then given as

∇J(θ) ∝ Eπ

[︃
Gt
∇π(At|St, θ)

π(At|St, θ)

]︃
= Eπ [Gt∇ log π(At|St, θ)] ,

known as the REINFORCE algorithm (Williams, 1992). This allows us to
update the parameters of the policy given only an observed sequence of actions,
states, and rewards, to improve the desired value function. We assume that the
gradients of π with respect to θ are available, which they usually are by design,
e.g. in our case due to the representation of π via a neural net.

Additionally it is common to introduce what is known as a baseline b(·) with
an expected value of zero, but which still helps to reduce the gradient variance.
This gives us the final gradient ascent updates as

θt+1 ← θt + λ(Gt − b(St))∇ log π(At|St, θt),

for some learning rate λ. The baseline formulation here uses that for some
density p(x) and a constant c we have

Ep(x) [c∇ log p(x)] =
∫︂

cp(x)∇ log p(x)dx

= c
∫︂
∇p(x)dx = c∇

∫︂
p(x)dx = 0,

which holds as long as b(·) is independent of the actions taken at time t.

2.5 pac-bayes

Chapters 5 and 6 make strong use of the concept of Probably Approximately
Correct (PAC) learning, a term which dates back to Valiant (1984), but the
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concept itself is well known in statistcs in general. While we rely in those
chapters primarily on the PAC-Bayes theory (see, e.g. Guedj (2019) for a
recent tutorial) to derive theoretically justified objectives to be optimized, and
less for what it was initially designed for we will nevertheless give a high-level
introduction to the concept here and get more concrete in those chapters.

The concept PAC refers to is: Given that we have trained our model on a set
of examples, how much can we trust it? In the sense of how much does the
performance as measured by some objective generalize to unseen data.

A PAC approach tries to address this by formalizing this desire stating that
the observed performance should be close to the performance on unseen data,
with a high probability, i.e.

P
(︁
|observed− unseen| ≤ ε

)︁
> 1− δ, (2.10)

for some δ ∈ (0, 1].

To be mathematically more precise, assume that we have an observed data
set D consisting of N pairs (xn, yn) coming from an unobserved distribution
∆, i.e. D ∼ ∆N . Additionally, we have a predictor h(·) that tries to predict
the target yn given the input xn. Its performance is measured by some loss
function l(·, ·), for example a squared difference in the case of regression. The
observed performance is given by the empirical risk Empirical risk

RD(h) ≜
1
N

N

∑
n=1

l
(︁
h(xn), yn

)︁
.

Its counterpart is the unknown theoretical risk Theoretical risk

R(h) ≜ Ex,y∼∆ [l(h(x), y)] .

The goal is then to derive a generalization bound

R(h) ≤ RD(h) + ε(N, δ)

that holds with a probability of 1− δ, for a suitable ε(·), similar to the con-
struction of a 1− α confidence interval.

Take for example a single predictor and the task of classification with the loss
being the error, such that

l(h(x), y) ≜

{︄
1, if h(x) = y

0, else
.

Applying the Hoeffding inequality (see appendix) gives us Hoeffding’s inequality

P(|R(h)− RD(h)| > ε) ≤ 2 exp(−2Nε2),

and choosing ε =
√︂

log(2/δ)
2N gives the desired probabilistic guarantee. For a fi-

nite set of predictorsH this quarantee can directly be extended such that

P(∀h ∈ H : |R(h)− RD(h)| > ε) ≤ 2Me−2Nε2
,
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assuming |H| = M. A modified ε =
√︂

log(2M/δ)
2N keeps the desired bound.

In order to extend this to infinite hypothesis spacesH, the Vapnik-Chernvonenkis
(VC) dimension can be used in order to derive a similar generalization bound
(see e.g. Wasserman (2013)).

The PAC-Bayesian approach (McAllester, 1998; Germain et al., 2016) variesPAC-Bayes
from the discussion so far in that it introduces two specific distributions over
the setH. The first P, is any distribution overH independent of the observed
data, and the second any data-dependent, learned, distribution Q, over the same
space of hypothesis. In that sense, it is similar to the Bayesian setup, where
we would have a prior and a posterior. However, it is more general. For the
Bayesian framework, these two distributions are highly related insofar as they
are coupled via the Bayes Theorem. PAC-Bayes generalizes this in that it allows
us to consider any two distributions, as long as they fullfil the constraints of
the former being independent of the data.3

This approach has given rise to a wide variety of bounds (e.g. McAllester,
1998, 1999; Catoni, 2007). One bound we will rely on during Chapter 6, relies
on an adaptation of a bound due to Maurer (2004), which we summarize here
in a slightly looser form which gives us a more explicit structure (Tolstikhin
and Seldin, 2013).

a pac-bayes bound. For any prior P over some family of hypothesisH,A PAC-Bayes bound
N > 8 observations, and any δ ∈ (0, 1] we have that

P

⎛⎝∀Q onH : R(Q) ≤ RD(Q) +

√︄
KL (Q ∥ P) + log 2

√
N

δ

2N

⎞⎠ ≥ 1− δ.

where KL (· ∥ ·) speficies the Kullback-Leibler divergence.

2.6 stochastic differential equations

This overview on SDEs will, by necessity, remain at a relatively high level. As
we will require them primarily for the chapter on learning SDEs, i.e. Chapter 6,
we will discuss the relevant parts needed in that chapter here, and refer the
reader to Särkkä and Solin (2019) for a recent textbook length treatment of the
topic, that introduces the subject from the ground up, and that we also rely on
for the following summary of results.

Consider first an arbitrary Ordinary Differential Equation (ODE),

dht

dt
= f (ht, t), (2.11)

with some known starting condition h0. We use the shorthand ht ≜ h(t) to be
consistent with later notation. Instead of considering analytical solutions that

3 Q could potentially be also independent of the data, but then the whole task of learning and
evaluating a generalization guarantee would become somewhat useless.
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depend on the problem’s specific structure, we can rely on numerical approxi-
mations to solve it. Integrating over a small time period ∆t we have

ht+∆t = ht +
∫︂ t+∆t

t
f (hτ, τ)dτ ≈ ht + f (ht, t)∆t,

where the tightness of the approximation depends on the size of ∆t. We can then
solve the differential equation by what is known as the Euler Method.

euler method In order to approximately solve the differential equation Euler Method
(2.11) over a time interval [0, T] (with T > 0) split the interval into K parts
0 = t0 < t1 < · · · < tK = T and approximate the solution recursively
as

ĥtk+1 = ĥtk + f (ĥtk , tk)∆tk, k = 0, . . . , K

where ∆tk = tk+1 − tk.

The order of a numerical integration is defined as the largest ρ such that there
exists a constant C for which the following inequality holds

|ĥtK − htK | ≤ C∆tρ,

where we assumed K equally spaced steps of length ∆t. The Euler method, as
defined above, can be shown to have order ρ = 1. In practice, there is a large
family of better numerical integration methods. However, as we will rely on
a variant of the Euler method for stochastic differential equations, we require
only this approximation scheme.

Why extend the ODE setup from above to a Stochastic Differential Equa- Stochastic Differential
Equationtion (SDE)? One of the benefit of the extension from ODEs to SDEs is that

it allows us to model uncertainty in the task at hand, be it due to inherent
randomness in the dynamics or due to imprecision and errors in the model
assumptions. The general form of an SDE is given as

dht

dt
= f (ht, t) + G(ht, t)Wt. (2.12)

Here f (·, ·) is known as the drift function, while G(·, ·) is matrix-valued
diffusion function4. The stochastic noise process Wt finally is some white
noise, defined formally as a random function with the two properties

1. Ws, Wt are independent if s ̸= t,

2. the mapping t ↦→Wt is a Gaussian Process (Rasmussen and Williams,
2006) with zero mean function and a Dirac delta correlation kernel
k(s, t) = δ(t− s)Q, where Q is the spectral density of the process.

While other stochastic processes are possible and used, we rely only on this
Gaussian process formulation with the spectral density given as the identity
matrix in this work.

In analogy to the Euler method for ODEs, one can derive a similar approxima-
tion scheme for SDEs, known as the Euler-Maruyama (EM) method.

4 Also known as the dispersion function, but we will rely on the former term.
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euler-maruyama method In order to approximately solve the stochas-Euler-Maruyama Method
tic differential equation (2.12) over a time interval [0, T] (with T > 0), split
the interval into K parts 0 = t0 < t1 < · · · < tK = T and approximate the
solution as follows. Draw ĥt0 ∼ p(xt0) and iterate over the following two steps
from k = 1, . . . , K:

i) Sample
∆βk ∼ N

(︁
∆βk|0, Q∆tk

)︁
,

ii) Compute

ĥtk+1 = ĥtk + f (ĥtk , tk)∆tk + G(ĥt, t)∆βk.

Assuming the time steps ∆t to be equally spaced, we can derive as in the
ODE case the order of convergence. For stochastic methods, we distinguish
between two different types of convergence. The strong order of convergenceStrong/Weak convergence
considers the expectation of the absolute difference and requires the existence
of a constant C such that

E
[︂⃓⃓

ĥtK − htK

⃓⃓]︂
≤ C∆tγ.

The weak convergence on the other hand considers instead the absolute value
of the expectations, i.e. ⃓⃓

E[ĥtK ]−E [htK ]
⃓⃓
≤ C∆tα.

For the Euler-Maruyama methods as discussed above it can be shown that these
exponents are given as γ = 1

2 and α = 1.

See the textbooks by Särkkä and Solin (2019) and Kloeden and Platen (2011) for
proofs to the claims above and a principled derivation of the Euler-Maruyama
method, which requires a proper discussion of the Itô calculus.
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SA M P L I NG - F R E E VA R I AT I O NA L I N F E R E N C E O F
BAY E S I A N N E U R A L N E T WO R K S BY VA R I A N C E
BAC K P RO PAGAT I O N

The advent of deep learning libraries (Abadi et al., 2015; The Theano De-
velopment Team, 2016; Paszke et al., 2019) has made fast prototyping of
novel neural net architectures possible by writing short and straightforward
high-level code. Their availability triggered an explosion of research output
on application-specific neural net design, which allowed for fast improvement
of predictive performance in almost all fields where machine learning is used.
The next grand challenge is to solve mainstream machine learning tasks with
more time-efficient, energy-efficient, and interpretable models that make pre-
dictions with attached uncertainty estimates. Industry-scale applications also
require models that are robust to adversarial perturbations (Szegedy et al.,
2014; Goodfellow et al., 2015).

The Bayesian modelling approach provides principled solutions to all of the
challenges mentioned above. Bayesian Neural Networks (BNNs) (MacKay,
1992) lie at the intersection of deep learning and the Bayesian approach
that learns the parameters of a machine learning model via posterior infer-
ence (MacKay, 1995; Neal, 1995). We can upgrade a deterministic net with
an arbitrary architecture and loss function to a BNN simply by placing a prior
distribution over its parameters, turning them into random variables.

Unfortunately, the non-linear activation functions at the layer outputs render di-
rect methods to estimate the posterior distribution of BNN weights analytically
intractable. A recently established technique for approximating this posterior
is Stochastic Gradient Variational Bayes (Kingma and Welling, 2014), which
suggests reparameterizing the variational distribution and then Monte Carlo
integrating the intractable expected data fit part of the ELBO. However, sample
noise for a cascade of random variables distorts the gradient signal, leading to
unstable training. Improving the sampling procedure to reduce the variance of
the gradient estimate is an active research topic. Recent advances in this vein
include the local reparameterization trick (Kingma et al., 2015) and variance
reparameterization (Molchanov et al., 2017; Neklyudov et al., 2017).

We here follow a second research direction of approaches (Hernández-Lobato
and Adams, 2015; Kandemir, 2018; Wu et al., 2019) that avoid Monte Carlo
sampling and the associated precautions required for variance reduction and
present a novel BNN construction that makes variational inference possible
with a closed-form ELBO. Without a substantial loss of generality, we restrict

This chapter is based on and extends Haußmann et al. (2020b).

23
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0

0

0

Figure 3.1: ReLU decomposition. We decompose the ReLU function into an identity
function and a Heaviside step function, which is in turn approximated
with a Bernoulli distribution.

the activation functions of all neurons of a net to the popular Rectified Linear
Unit (ReLU) for most of this chapter and show how to extend it to other
piecewise linear activation functions at the end. We build our formulation
on the fact that the ReLU function can be expressed as the product of the
identity function and the Heaviside step function: max(0, x) = x · 1(x). The
Heaviside step function is defined as

1(x) ≜

{︄
1, x > 0

0, x ≤ 0
.

Following Kandemir (2018) we exploit the fact that we are devising a prob-
abilistic learner and introduce latent variables z to mimic the deterministic
Heaviside step functions. Throughout this chapter, we denote the distribution
induced by this step function as

z ∼ δx>0 ≜ Ber(z|1(x)),

i.e. a Bernoulli distribution that places either all of its mass on class one or
class zero. This can then be relaxed to a non-deterministic Bernoulli

z ∼ δx>0 ≜ Ber(z|1(x)) ≈ Ber
(︁
z|σ(Cx)

)︁
,

with some C ≫ 0 and the logistic sigmoid function σ(·). The idea is illustrated
in Figure 3.1.

We will show how the asymptotic account of this relaxation converts the
likelihood calculation into a chain of linear matrix operations, giving way to a
closed-form computation of the data-fit term of the Evidence Lower Bound
in mean-field variational BNN inference. In our construction, the data-fit
term lends itself as the sum of a standard loss (e.g. mean-squared error) on
the expected prediction output and the predictor variance. This term has a
recursive form, describing how the variance back-propagates through the layers
of a BNN. We refer to our model as Variance Back-Propagation (VBP).
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Experiments on several regression and classification tasks show that VBP
can perform competitive to and improve upon other recent sampling-free as
well as sampling-based approaches to BNN inference. Last but not least, VBP
presents a generic formulation that is directly applicable to all weight prior
selections as long as their Kullback-Leibler (KL) divergence with respect to the
variational distribution is available in closed form, including the common log-
Uniform (Kingma et al., 2015; Molchanov et al., 2017), Normal (Hernández-
Lobato and Adams, 2015), and horseshoe (Louizos et al., 2017) priors.

3.1 bayesian neural nets with decomposed feature maps

Given a data set D = {(xn, yn)N
n=1} consisting of N pairs of d-dimensional

feature vectors xn and targets yn, the task is to learn in a regression setting1

with a normal likelihood

w ∼ p(w),

y|X, w ∼ N
(︁
y| f (X; w), β−11

)︁
,

for X = {x1, ..., xN} and y = {y1, ..., yN}, with β as the observation preci-
sion, and 1 an identity matrix of suitable size2. The function f ( · ; w) specifies
a feed-forward multi-layer neural net parameterized by weights w, with ReLU
activations between the hidden layers. p(w) is an arbitrary prior over these
network weights.

3.1.1 The Identity-Heaviside Decomposition

As mentioned in the introduction, a ReLU function can be decomposed into
max(0, u) = u · 1(u) This allows us to express the post-activation feature
map vector hl of a data point at layer l + 1 as

hl = f l ◦ zl

with f l = Wlhl−1 and zl = 1
(︁
Wlhl−1)︁,

where hl−1 is the feature map vector of the same data point at layer l − 1, the
matrix Wl contains the weights to map from layers l− 1 to l and ◦ denotes the
element-wise Hadamard product of equal sized matrices or vectors. For l = 0,
i.e. the input, we set h0 = x. f l is the linear pre-activation output vector of
layer l. We refer to zl as the activation vector. When the argument of the 1(·)
function takes a vector as its input, we mean its elementwise application to all
inputs. We denote the this factorized formulation of the feature map hl as the
Identity-Heaviside Decomposition.

1 See Section 3.1.7 for the extension to classification.
2 This formulation overloads the notation with 1 referring to a matrix, and 1(·) to the step-

function. However, it should always be clear from the context which of the two is referred
to.
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Figure 3.2: Plate diagram for a BNN with two hidden layers using the Identity-
Heaviside decomposition.

Applying this decomposed expression for example on a feed-forward neural
net with two hidden layers, we get3

y = f (x; w) = w⊤3
(︁
z2 ◦W2(z1 ◦W1x)

)︁
+ ε,

with ε ∼ N (0, β−1), for a single data point consisting of the input-output pair
(x, y). Note that given the binary activations z1 and z2 of the step function, the
predictor output can be computed following a chain of linear operations.

3.1.2 The Probabilistic Model

For zl
nj—the jth activation at the lth layer for data point n—we can approximate

the Heaviside step function, by assuming that zl
nj is Bernoulli distributed

zl
nj ∼ Ber

(︂
zl

nj|σ(C ·w⊤l j hl
n)
)︂

, (3.1)

where σ(·) is the logistic sigmoid function. The approximation becomes preciseσ(x) ≜ 1
1+exp(−x)

as C → ∞.

Applying the Identity-Heaviside decomposition and Bernoulli relaxation to an
L-layer BNN we obtain as the overall generative model

wl j ∼ p(wl j), ∀l, j

zl
nj|wl j, hl

n ∼ Ber
(︂

zl
nj|σ(C ·w⊤l j hl

n)
)︂

, ∀l, n, j

y|w, X, Z ∼ N
(︁
y| f (X; w), β−11

)︁
,

where Z is the collection of activation variables zl
nj. See Figure 3.2 for the plate

diagram of a BNN with two hidden layers with this generative model.

3.1.2.1 Relation to V-ReLU-Net

The decomposition of the ReLU activation has been proposed before in the con-
text of learning BNNs as the Variational ReLU Network (V-ReLU-Net) (Kan-
demir, 2018). That work aimed to derive a gradient-free closed-form variational

3 We suppress the bias terms of each layer from the notation as it can directly be incorporated by
extending the respective weights matrices.
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inference scheme updating each variable to the local optimum conditioned on
the other variables. This necessitates not only the decomposition we described
above but also a further mean-field decoupling of the BNN layers. Translated to
our notation, the V-ReLU-Net has for hl

nj—the post-activation unit j of layer l
and data point n—the following model

wl j ∼ N (wl j|0, α−11),

f l
nj|wl jhl−1

n ∼ N ( f l
nj|w⊤l j hl−1

n , β−1),

zl
nj| f l

nj ∼ Ber
(︁
zl

nj|σ(C f l
nj)
)︁
,

hl
nj|zl

nj, f l
nj ∼ N (hl

nj|zl
nj f l

nj, γ−1),

where α, β, γ are fixed hyperparameters. This means introducing additional
normal distributions over each pre- & post-activation unit of each layer in the
network. This setup allows one to learn a mean-field variational posterior, by
iterating through the latent variables and updating the distribution of each to
the optimal distribution conditioned on the others, thereby sidestepping the
necessity of a gradient-based update scheme.

While such factorization across layers enjoys gradient-free variational update
rules, it suffers from poor local maxima due to lack of direct feedback across
non-neighbouring layers. Our formulation loosens this update scheme in the
way we discuss in the following sections. Our experiments show that the benefit
of gradient-free closed-form updates tends not to be worth the added constraints
placed on the BNN for our kind of problems.

3.1.3 Variational Inference of the Posterior

In the Bayesian context, as discussed in the background chapter, learning
consists of inferring the posterior distribution over the free parameters of the
model

p(θ|D) = p(y|θ, X)p(θ)∫︁
p(y|θ, X)p(θ)dθ

, (3.2)

which is intractable for neural nets due to the integral in the denominator. Hence
we need to resort to approximations. Our study focuses on variational inference
due to its computational efficiency. It approximates the true posterior by a
proxy distribution qϕ(θ) with a known functional form parameterized by ϕ and
minimizes the Kullback-Leibler divergence between qϕ(θ) and p(θ|D)

KL
(︁
qϕ(θ) ∥ p(θ|D)

)︁
.

After a few algebraic manipulations, minimizing this KL divergence and maxi-
mizing the functional below turn out to be equivalent problems

Lelbo = Eqϕ(θ) [log p(y|θ, X)]⏞ ⏟⏟ ⏞
Ldata

−KL
(︁
qϕ(θ) ∥ p(θ)

)︁⏞ ⏟⏟ ⏞
Lreg

. (3.3)

This functional is often referred to as the Evidence Lower BOund (ELBO), as
it is a lower bound to the log marginal distribution log p(y|X) known as the
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evidence. The ELBO has the intuitive interpretation that Ldata is responsible
for the data fit, as it maximizes the expected log-likelihood of the data, and
Lreg serves as a complexity regularizer by punishing unnecessary divergence
of the approximate posterior from the prior.

In our setup, θ consists of the global weights w and the local activations Z. For
the weights, we follow prior art (Hernández-Lobato and Adams, 2015; Kingma
et al., 2015; Molchanov et al., 2017) and adopt the mean-field assumption that
the variational distribution factorizes across them. We assume each variational
weight distribution to follow q(wl

ij) ≜ N (wl
ij|µl

ij, (σ
l
ij)

2) and parameterize the
individual variances via their logarithms to avoid the positivity constraint giving
us ϕ ≜ {(µl

ij, log σl
ij)ijl}. We also assign an individual factor to each zl

nj local
variable. Rather than handcrafting this factor’s functional form, we calculate
its ideal form having other factors fixed, as detailed below in Section 3.1.5.
The final variational distribution is given as

q(Z)qϕ(W) ≜
N

∏
n=1

L

∏
l=1

nl−1

∏
i=1

nl

∏
j=1

q(zl
nj)qϕ(wl

ij), (3.4)

where nl denotes the number of units at layer l.

This allows us to rewrite the ELBO Lelbo as

Lelbo = Eq(Z)qϕ(W) [log p(y|W , Z, X)]

−Eqϕ(W) [KL (q(Z) ∥ p(Z|W , X))]

−KL
(︁
qϕ(W) ∥ p(W)

)︁
,

splitting it into three terms. As our ultimate goal is to obtain the ELBO in
closed form, we have that for the third term any prior on weights that lends
itself to an analytical solution of KL (q(W) ∥ p(W)) is acceptable. We have
a list of attractive and well-settled possibilities to choose from, including for
example: i) the Normal prior (Blundell et al., 2015) for mere model selection,
ii) the log-Uniform prior (Kingma et al., 2015; Molchanov et al., 2017) for
atomic sparsity induction and aggressive synaptic connection pruning, and
iii) the horseshoe prior (Louizos et al., 2017) for group sparsity induction and
neuron-level pruning. Here, we stick to a simple normal prior to be maximally
comparable to our baselines, rendering this term tractable.

We will discuss the second term of Lelbo, Eqϕ(W) [KL (q(Z) ∥ p(Z|W , X))]Decomposition of the
ELBO in greater detail in Proposition 2, which leaves the first term that is responsible

for the data fit. For our regression likelihood, we can decomposeLdata as

Ldata = Eq(Z)qϕ(W) [log p(y|W , Z, X)]

c
= −β

2

N

∑
n=1

Eq(Z)qϕ(W)

[︂(︁
yn − f (xn; w)

)︁2
]︂

= −β

2

N

∑
n=1

{︂ (︂
yn −Eq(Z)qϕ(W) [ f (xn; w)]

)︂2



3.1 bayesian neural nets with decomposed feature maps 29

+ varq(Z)qϕ(W) [ f (xn; w)]
}︂

, (3.5)

where c
= indicates equality up to an additive constant, and the second equality

is due to the common reformulation used in the bias-variance decomposition
of the mean-squared error.

In this form, the first term is the squared error evaluated at the mean of the
predictor f (·). The second term is its variance, which infers the total amount
of model variance to account for the epistemic uncertainty in the learning
task (Kendall and Gal, 2017). The desire for a sampling-free solution to (3.5)
therefore translates to the requirement of an analytical solution to the expecta-
tion and variance terms.

posterior predictive Before we derive how to compute the variance Posterior predictive in
the case of regressionand expectation terms in a sampling-free manner, we first discuss how to per-

form prediction in the model. The posterior predictive for a test point x∗

p(y∗|x∗,D) =
∫︂∫︂

p(y∗|x∗, W , Z)p(Z, W |D)dZ dW ,

remains intractable, even using the proposed Identity-Heaviside decomposition.
We therefore approximate it as

p(y∗|x∗,D) ≈
∫︂∫︂
N
(︁
y∗| f L

∗ , β−1)︁N (︂ f L
∗
⃓⃓
E
[︂

f L
∗

]︂
, var

[︂
f L
∗

]︂)︂
d f L
∗

= N
(︂

y∗
⃓⃓
E
[︂

f L
∗

]︂
, β−1 + var

[︂
f L
∗

]︂)︂
,

where f L
∗ ≜ f (x∗; w). Assuming that we can compute these two terms, the

posterior predictive can be approximately computed in closed form. Next, we
discuss how to compute them in a sampling-free manner.

3.1.4 Closed-form Calculation of the Data Fit Term

the expectation term When all feature maps of the predictor are Computing the
ExpectationIdentity-Heaviside decomposed and the zl

nj’s are approximated by Bernoulli
distributions as described in Section 3.1.2, the expectation

Eq(Z)qϕ(W) [ f (xn; w)]

can be calculated in closed form, as f (xn; w) consists only of linear operations
over independent variables according to our mean-field variational posterior
assumption allowing the expectation to commute operation orders. This order
interchangeability enables us to compute the expectation term in a single
forward pass where each weight takes its mean value with respect to its related
factor in the approximate distribution q(Z)qϕ(W). For instance, for our earlier
example of a Bayesian neural net with two hidden layers, we have

Eq(Z)qϕ(W) [ f (xn; w)]

= Eq(Z)qϕ(W)

[︂
w3
⊤(z2

n ◦W2(z1
n ◦W1xn))

]︂
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= E [w3]
⊤
(︂
E
[︁
z2

n
]︁
◦E [W2]

(︂
E
[︂
z1

n

]︂
◦E [W1] xn

)︂)︂
.

Consequently, we can calculate the squared error part of the data-fit term
in closed form. This interchangeability property of linear operations against
expectations holds as long as we keep independence between the layers. Hence
one could also extend it to a non-mean-field case, where the weights of a single
layer follow for example a general multivariate normal distribution without
being constrained to a diagonal covariance matrix.

the variance term calculated via recursion The second termComputing the Variance
in (3.5) that requires an analytical solution is the variance

varq(Z)qϕ(W) [ f (xn; w)] .

Its derivation relies on using the following two identities on the relationship
between the variances of two independent random variables a and b:

var [a + b] = var [a] + var [b] , (3.6)

var [a · b] = var [a] var [b] +E [a]2 var [b] + var [a]E [b]2

= E
[︁
a2]︁ var [b] + var [a]E [b]2 . (3.7)

Applying these well-known identities to the linear output layer activations f L

of the n-th data point4 we have

var
[︂

f L
]︂
= var

[︂
w⊤L hL−1

]︂
= var

[︄
nL

∑
j=1

wLjhL−1
j

]︄

=
nL

∑
j=1
E
[︂
w2

Lj

]︂
var

[︂
hL−1

j

]︂
+ var

[︁
wLj
]︁
E
[︂

hL−1
j

]︂2
.

Given the normal variational posterior over the weights, we directly have

E
[︂
w2

Lj

]︂
= µ2

Lj + σ2
Lj and var

[︁
wLj
]︁
= σ2

Lj,

while E
[︂

hL−1
j

]︂
consists again of a series of linear operations and can be

computed as described above in the case ofE [ f (x; w)]. For var
[︂

hL−1
j

]︂
finally

we can use the second variance identity again and arrive at

var
[︂

hL−1
j

]︂
= var

[︂
zL−1

j · f L−1
j

]︂
= E

[︂
(zL−1

j )2
]︂

var
[︂

f L−1
j

]︂
+ var

[︂
zL−1

j

]︂
E
[︂

f L−1
j

]︂2
.

Combining these results we have for the j-th dimension of the post-activation
hl

j of an arbitrary hidden layer l

var
[︂

hl
j

]︂
= var

[︄
nl

∑
i=1

zl
iw

l
ijh

l−1
i

]︄
4 We suppress the n index throughout following derivations to reduce the notational overhead.
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=
nl

∑
i=1

var
[︂
zl

iw
l
ijh

l−1
i

]︂
=

nl

∑
i=1
E
[︂
(zl

i)
2
]︂

var
[︂
wl

ijh
l−1
i

]︂
+ var

[︂
zl

i

]︂ (︂
E
[︂
wl

ij

]︂
E
[︂

hl−1
j

]︂)︂2

=
nl

∑
i=1
E
[︂
(zl

i)
2
]︂ {︂
E
[︂
(wl

ij)
2
]︂

var
[︂

hl−1
i

]︂
+ var

[︂
wl

ij

]︂
E
[︂

hl−1
i

]︂2 }︂
+ var

[︂
zl

i

]︂ (︂
E
[︂
wl

ij

]︂
E
[︂

hl−1
j

]︂)︂2
. (3.8)

If we assume that we can evaluate E
[︁
(zl

i)
2]︁ and var

[︁
zl

i
]︁
, which we derive

in the next section, the only term left to evaluate is the variance of the post-
activations at the previous layer var

[︂
hl−1

i

]︂
. Hence, we arrive at a recursive

description of the model variance. Following this formula, we can express
var [ f (xn; w)] as a function of var

[︁
hL−1

n
]︁
, then var

[︁
hL−1

n
]︁

as a function of
var

[︁
hL−2

n
]︁
, and repeat this procedure until the observed input layer, where

variance is zero var
[︁
h0

n
]︁
= var [xn] = 0.

For noisy or otherwise probabilistic input, one can directly inject the desired
variance model of the input data into the input layer, which would still not
break the recursion and keep the formula valid, for example by assuming that
the input features xn are known up to an observation variance of var [xn] = σ2.
Computing this variance term thus only requires a second pass through the
network in addition to the one needed when the expectation term is computed,
sharing many of the required calculations, allowing us to perform both ef-
ficiently. As this formula reveals how the analytical variance computation
recursively back-propagates through the layers, we refer to our construction as
Variance Back-Propagation (VBP).

Note that this section’s derivations only consider an elementwise, diagonal,
variance ignoring covariance terms between, e.g. hl

i and hl
j. This is due to

computational constraints, as the current approach allows us to pass two nl
dimensional vectors, representing mean and variance forward to the next layer,
while an explicit covariance construction would entail the creation of an nl × nl
dimensional matrix for each layer, greatly increasing the computational cost.
Our empirical evaluations show that this restriction does not cost us with
respect to predictive performance. The central limit and moment matching
based approaches we will discuss later on suffer from similar constraints and
need to perform the same restrictions. For completeness, we will discuss this
structure of the covariance and how to compute it in greater detail at the end
of this chapter.

Learning the parameters ϕ of the variational posterior qϕ(W) to maximize this
analytical form of the ELBO then follows via mini-batch stochastic gradient
descent, using any of the common gradient update schemes.
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3.1.5 Updating the Binary Activations

The results so far are analytically tractable contingent upon having the existence
of a tractable expression for each of the q(zl

nj) factors in the variational posterior
in (3.4). While we update the variational parameters of the weight factors via
gradient descent of the ELBO, for the binary activation distributions q(zl

nj), we
choose to perform the update at the function level. Benefiting from variational
calculus, we fix all other factors in q(Z)qϕ(W) except for a single q(zl

nj)

and find the optimal functional form for this remaining factor. We devise in
Propositon 1 an approach for calculating such variational updates.

proposition 1. Consider a Bayesian model including the generative pro-Variational posterior of z

cess excerpt below

...
a ∼ p(a),

z|a ∼ δa>0 ≈ Ber
(︁
z|σ(Ca)

)︁
,

b|z, a ∼ p(b|g(z, a)),
...

for some arbitrary function g(z, a) and C ≫ 0. If the variational inference
of this generative model is to be performed with an approximate distribution
Q = · · · q(a)q(z)q(b) · · ·5, the optimal closed-form update for z is

q(z)← Ber
(︁
z|σ(CEq(a) [a])

)︁
,

and for C → ∞ we have

q(z)← δEq(a)[a]>0.

For our specific case, this translates for a finite C to

q(zl
nj)← Ber

(︂
zl

nj
⃓⃓
σ
(︁
C ·∑iE

[︂
wl

ij

]︂
E
[︂

hl−1
ni

]︂ )︁)︂
,

and in the limit to6

q(zl
nj)← δ

E
[︂
wl

j

]︂⊤
E[hl−1

n ]>0
,

involving only terms that are already computed during the forward pass compu-
tation of the expectation term and can be done concurrently to that forward pass.
The Bernoulli distribution in turn provides us analytical expressions for the
remaining expectation and variance terms in the computation of (3.8).

5 Note that q(b) might or might not exist depending on whether b is latent or observed. We here
assume that b is latent, with the proof following analogously for an observed b.

6 Note that as this delta distribution is just a deterministic Bernoulli, its expectation is the binary
outcome of the condition it tests and the variance is zero.
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proof of proposition 1. Consider the following reformulation of the
Bernoulli probability mass function for a logistic sigmoid σ(·)

Ber(z|σ(a)) = σ(a)z(1− σ(a))1−z = eazσ(−a).

Using this reformulation and the general form of the optimal solution of q(z)
given the other parameters (see the Background chapter for details) the update
can be computed as

log q(z)← Eq(a)q(b) [log p(a)p(z|a)p(b|z, a)] + const
c
= Eq(a) [log p(a)] +Eq(a) [log p(z|a)]

+Eq(a)q(b) [log p(b|g(z, a))]
c
= Eq(a) [log p(a)] +Eq(a) [log σ(−Ca)]

+ CzEq(a) [a] +Eq(a)q(b) [log p(b|g(z, a))] .

Here, the first two terms do not depend on z and can hence be dropped into
the constant while of the third and fourth terms, the third will dominate for
C ≫ 0. We are then left with with the unnormalized logarithm of a Bernoulli
density giving us

q(z)← Ber
(︁
z|σ(CEq(a) [a])

)︁
.

For C → ∞, we get the desired

lim
C→∞

σ(CEq(a) [a]) = δEq(a)[a]>0

3.1.5.1 The Expected KL Term on Z

A side benefit of these optimal q(zl
nj) distributions is that the complicated

Eqϕ(W) [KL (q(Z) ∥ p(Z|W , X))] term can be calculated analytically subject
to a controllable degree of relaxation as we now show in Proposition 2.

proposition 2. For the model and the inference scheme as discussed
in Proposition 1 with q(a) = N (a|µ, σ2), in the relaxed delta formulation
δa>0 ≈ Ber

(︁
a|σ(Ca)

)︁
with some finite C > 0, the expected KL divergence

Eq(a) [KL (q(z) ∥ p(z|a))] is (i) approximately analytically tractable and (ii)
its magnitude goes to 0 quickly as |µ| increases, with σ controlling how fast it
drops towards 0.

proof of proposition 2. Given the update rule from Proposition 1, we
have the following form for p(z|a) and q(z),

p(z|a) = Ber
(︁
z|σ(Ca)

)︁
q(z) = Ber

(︁
z|σ(CE [a])

)︁
.
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The KL divergence inside the expectation then can be rewritten, using the refor-
mulation of the Bernoulli distribution as in the proof of Proposition 1,

KL (q(z) ∥ p(z|a)) = Eq(z) [log q(z)− log p(z|a)]
= Eq(z)

[︁
log
(︁

exp(CE [a] z)σ(−CE [a])
)︁]︁

−Eq(z)
[︁
log
(︁

exp(Caz)σ(−Ca)
)︁]︁

= CEq(z) [z]
(︁
E [a]− a) + log

σ(−CE [a])
σ(−Ca)

.

Taking the expectation Eq(a) [·] of this expression cancels the first term and
we are left with

Eq(a) [KL (q(z) ∥ p(z|a))] = Eq(a)

[︃
log

σ(−CE [a])
σ(−Ca)

]︃
= Eq(a) [log(1 + exp(Ca))]− log(1 + exp(CE [a])).

Let soft(·) ≜ log(1 + exp(·)) be the softplus function. With this we can
rewrite the result as

Eq(a) [soft(Ca)]− soft
(︂

CEq(a) [a]
)︂

.

In order to compute a closed form approximation to this, note that

soft(x) ≈
{︄

x, for x ≫ 0

0, for x ≪ 0
= max(0, x).

That is for a sufficiently large C we have approximately

Eq(a) [soft(Ca)]− soft(CEq(a) [a])

≈ C
(︂
Eq(a) [max(0, a)]−max(0,Eq(a) [a])

)︂
.

For a normally distributed a ∼ N (a|µ, σ2), we can calculate the two expecta-
tions in this term, giving us the analytical expression

C
(︂

µΦ
(︂µ

σ

)︂
+ σϕ

(︂µ

σ

)︂
−max(0, µ)

)︂
, (3.9)

where ϕ(·) and Φ(·) are the pdf and cdf of a standard Normal distribution.
For |µ| → ∞ we have ϕ

(︁ µ
σ

)︁
→ 0 and µΦ

(︁ µ
σ

)︁
→ max(0, µ), i.e. the overall

expression goes to zero as desired.

This Proposition deserves several comments. The first is that the approximation
δa>0 ≈ Ber

(︁
a|σ(Ca)

)︁
is tight even for decently small C values (≈ 10), which

allows us to keep a close relationship to the Identity-Heaviside Decomposition
and also to the theoretical requirements arising within the proofs, as well as the
numerical ones within the implementation. The second comment is that the
Proposition relies on the assumption that p(a) follows a normal distribution.
In our case, we have for a specific zl

nj that

al
nj = w⊤l j hl

n =
nl

∑
i=1

wl
ijh

l
ni.
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Figure 3.3: Visualization of Equation (3.9). The analytical approximation to the
expected KL term over the activations, computed with C = 1.

This sum allows us to use a central limit theorem argument (Wang and Man-
ning, 2013; Wu et al., 2019), to fulfil this assumption. The relevant µl

nj, σl
nj

parameters can be computed via a moment-matching approach, analogously to
our general derivations above.

As discussed in the proof, the analytical approximation to the term quickly
drops to zero as |µ| → ∞, which we visualize in Figure 3.3. It is tightly
concentrated around zero, with σ controlling how fast it drops to zero.

How large is the error we make in approximating the softplus to get the final
analytical expression? Figure 3.4 shows the corresponding plot if we instead
approximate the expectations via samples. The qualitative behaviour is the
same, with smaller maxima and somewhat heavier tails.

In the experiments we drop this expected KL term from the ELBO as it be-
comes negligible for a sufficiently constrained variance. This soft constrained
on the variance terms of the layers however is already enforced through the
varq(Z)qϕ(W) [ f (xn; w)] term in Equation (3.5) and the pre-activations tend to
become either clearly positive or clearly negative.

3.1.6 Convolutions, Pooling, and other Transformations

As a linear operation, convolutional layers are directly applicable to the VBP Convolution
formulation by modifying all the sums between weights and feature maps
accordingly with sliding windows. Doing the same will also suffice for the
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Figure 3.4: Visualization of Eq(a) [KL (q(z) ∥ p(z|a))]. The parameters, µ, σ, and
C influence the equation in different ways. The larger |µ|, the closer
the expression is to 0. σ controls the width and thus how fast the term
drops to 0, while C finally scales the whole expression. For this plot,
we approximate the softplus by sampling one million points from the
corresponding normal distribution for each µ, σ pair with C = 1.
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calculation of var [ f (xn; w)], and the argumentation follows as in the case of
fully connected layers.

In the proposed model, one layer affects the next only via sums and products of Max Pooling
variables, which is not the case for max-pooling. Even though convolutions are
found to be sufficient for building state-of-the-art architectures (Springenberg et
al., 2015), where the reduction of resolution can, for example, be accomplished
by employing them with a greater stride, we show at the end of this chapter
(see Section 3.5.1) with Proposition 3 how VBP can be adapted to allowing
for max-pooling, by suitably extending Proposition 1.

As networks grow deeper it was shown that introducing skip connections, Skip/Residual
connectionswhere the activation of an earlier layer is concatenated to the input of a later

layer, or residual connections, where the activation from a previous layer is
added to a later layer, to improve the flow of gradient information becomes
very helpful (see, e.g. Ronneberger et al., 2015; He et al., 2016; Huang et al.,
2017). We can directly use such connections in the VBP setup with minimal
modifications.

Similarly, with increasing depth, normalization transformations become more Normalization
relevant. While there is a large variety of methods, the most popular so far
still seems to be Batch-Norm (Ioffe and Szegedy, 2015), where a batch of
activations is normalized to have mean zero and standard deviation of one. As
this introduces a dependency between the normalized activations it cannot be
applied directly to the model we propose. Group-Norm (Wu and He, 2018)
and other recent propositions suffer from similar problems. However, Actnorm,
as suggested by Kingma and Dhariwal (2018) for their Glow model, can be
used to allow for normalization in VBP. Here the normalization parameters are
initialized by passing a mini-batch of data through the initial net, and adapting
the parameters to ensure normalization of each activation. Afterwards, they
are no longer updated based on the current data but instead treated as regular
hyperparameters. We can update them in the same gradient-based manner as
the parameters of the variational distributions.

Lastly, the proposed model can be adapted to any kind of piecewise linear acti- Other activation
functionsvation function, such as Leaky ReLU (Maas et al., 2013) and its close relation

Parametric ReLU (He et al., 2015). Similarly, the hyperbolic tangent activa-
tion which is relevant especially in recurrent networks can be approximated
piecewise linearly, for example as

H(x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x > 1

−1, if x < −1

x, else
,

known as the hard hyperbolic tangent. We show at the end of this chapter
in Section 3.5.2 how to extend VBP from the ReLU to such more complex
piecewise linear activations.
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3.1.7 Classification

More important than the adaptations to different neural network architecture
modifications is the transformation from the regression setting discussed so
far to the classification problem. There, we cannot directly decompose the
expected log-likelihood

Eq(Z)qϕ(W) [log p(y|W , Z, X)] ,

as we did in Equation (3.5) for regression.

In the case of a binary classification, we can treat y as a vector of latentBinary Classification
decision margins and squash it with a binary-output likelihood p(t|y). Follow-
ing Hensman et al. (2013) who used a similar trick for Gaussian processes, the
log-marginal likelihood of the resultant bound is given as

log p(t|X) = log
∫︂

p(t|y)p(y|X)dy

≥ log
∫︂

p(t|y) exp(Lelbo)dy ≜ Lclsf,

where we used that Lelbo is a lower bound to the log-marginal likelihood
log p(y|X). Choosing a probit likelihood p(t|y) = Ber

(︁
t|Φ(y)

)︁
, where Φ

is the Normal cdf as above, the integral becomes tractable. Referring to the
two Kullback-Leibler terms of the Lelbo term jointly as C and focusing for
notational simplicity on a single data point7, we have that

Lclsf ≜ log
∫︂

p(t = 1|y) exp(Lelbo)dy

= log
∫︂

p(t = 1|y) exp
(︁
E [log p(y|W , Z, x)]− C

)︁
dy

= log
∫︂

p(t = 1|y) exp
(︁
E [log p(y|W , Z, x)]

)︁
dy− C

= log
∫︂

Φ(y)N
(︁
y|E [ f (x; w)] , β−1)︁dy + var [ f (x; w)]− C

= log
√︁

β
∫︂

Φ(y)ϕ
(︁√︁

β(y− x)
)︁
dy + var [ f (x; w)]− C

= log Φ

(︄
E [ f (x; w)]√︁

1 + 1/β

)︄
+ var [ f (x; w)]− C.

The expectation and variance expression in the resulting objective can be
computed as in the case of regression.

This can then also be trivially extended to multi-class, multi-label classification,
by switching to a one-hot encoding for yn and treating it as C (assuming C
classes) one-vs-all problems in the case of multi-class classification. We will
use this approach in the next chapter and discuss it in greater detail there.

A downside of this one-hot encoded one-vs-all approach is that while it givesMulti-class Classification

7 As the ELBO decomposes into a sum of independent log-likelihoods, its exponentiated version
decomposes into a product of integrals, each of which can be treated independently. This allows
for the trivial extension to the case of multiple data points.
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us a tractable integral, it ignores the information given by the constraint that
in a multi-class setting we know that exactly one class is given. Throughout
the experiments we focus on this more common setup with a unique label, i.e.
where we have yn ∈ {0, 1}C with the constraint that ∑j ynj = 1.

This gives us a categorical likelihood

y|w, X, Z ∼ Cat
(︁
y|ζ( f (X; w))

)︁
,

where ζ(·) is the softmax function. In our setup we then have in the ELBO for ζ(x)j ≜
exp(xj)

∑i exp(xi)

the data fit term that

Eq(Z)qϕ(W) [log p(y|W , Z, X)]

=
N

∑
n=1

Eq(Z)qϕ(W)

[︂
y⊤n f (xn; w)− lse( f (xn; w))

]︂
=

N

∑
n=1

y⊤n E [ f (xn; w)]−E [lse( f (xn; w))] ,

where lse(·) is the logsumexp function. The first term’s expectation is analyt- lse(x) ≜
log ∑j exp(xj)ically tractable and can be computed as was discussed earlier in Section 3.1.4,

while the second expectation is intractable.

We follow Wu et al. (2019) who propose to use a Taylor approximation to
solve this intractability. For a general random variable a and a function g(·)
the second-order Taylor approximation to the expected value is given as

E [g(a)] ≈ g (E [a]) +
1
2 ∑

ij
cov(ai, aj)

∂2

∂ai∂aj
g
⃓⃓⃓
a=E[a]

.

The first and second order derivatives of lse(·) can be computed as

∂

∂ fi
lse( f ) = ζ( f )i

∂2

∂ fi∂ f j
lse( f ) = ζ( f )iδij − ζ( f )iζ( f )j,

where δij = 1 if and only if i = j.

Combining the two results, and ignoring the covariance terms, we get

E [lse( f )] ≈ lse (E [ f ]) +
1
2

C

∑
c=1

var [ fc]
(︂

ζ
(︁
E [ f ]

)︁
c − ζ

(︁
E [ f ])2

c

)︂
,

with f = f (xn; w). In this final expression the expectation and variance terms
can in turn be computed as in the regression case.

Finally, for the posterior predictive we can follow the same argument this Posterior predictive for
classificationtime approximating the softmax function instead of the logsumexp with a

Taylor approximation. However, we have observed that using samples in the
last step of computing the softmax is cheap enough after computing all earlier
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layers in the sampling-free approach. As it removes the need for yet another
approximation, we will therefore rely on samples in the prediction of the
classification experiments. The posterior predictive can then be approximated
efficiently for some test observation x∗ as

p(y∗|x∗,D) =
∫︂∫︂

p(y∗|x∗, W , Z)p(Z, W |D)dZ dW

≈
∫︂
Cat
(︁
y∗|ζ( f L

∗ )
)︁
N
(︂

f L
∗
⃓⃓
E
[︂

f L
∗

]︂
, var

[︂
f L
∗

]︂)︂
d f L
∗

≈ 1
S

S

∑
s=1
Cat
(︁
y∗|ζ( f L(s)

∗ )
)︁
,

where f L
∗ = f (x∗; w), and we approximate the final integral by taking S

samples f L(s)
∗ ∼ N

(︂
f L(s)
∗
⃓⃓
E
[︁

f L
∗
]︁

, var
[︁

f L
∗
]︁)︂

.

3.2 related work

3.2.1 Relation to CLT based Approaches

VBP is most closely related to two other state-of-the-art sampling-free ap-
proaches. These are Deterministic Variational Inference (DVI) (Wu et al.,
2019)8 and Probabilistic Backpropagation (PBP) (Hernández-Lobato and
Adams, 2015). PBP follows an assumed density filtering approach instead of
variational inference but relies as DVI does on a central limit theorem (CLT)
argument as a major part of the pipeline.

We will also use such a CLT argument in the following two chapters and discuss
the approach in greater detail there. However, to give an intuition as necessary
to evaluate the subsequent experiments, the general idea is the following. Based
on the observation that the pre-activations of each layer

f l
nj = w⊤l j hl

n =
nl

∑
i=1

wl
ijh

l
ni

are approximately normally distributed, we can perform a moment matching
approach to compute its mean and variance parameters from the earlier layers
similar to what we rely on for VBP. Given this normal approximation, the
mean and variance of the post-activation feature maps h = max(0, f ) are then
tractable for ReLU activations (Frey and Hinton, 1999),

EN ( f |µ,σ2) [max(0, f )] = µΦ
(︂µ

σ

)︂
+ σϕ

(︂µ

σ

)︂
,

var [max(0, f )] = (µ2 + σ2)Φ
(︂µ

σ

)︂
+ µσϕ

(︂µ

σ

)︂
−E [h]2 ,

and can then be propagated forward to the next layer. Φ(·) and ϕ(·) here refer
to the cdf and pdf of a standard normal distribution.

8 For simplicity we focus only on the homoscedastic, mean-field variation of DVI here.
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Due to our decomposition approach we do not rely on the CLT. If we as-
sume a similar moment matching for the pre-activations, we would get the
corresponding expectation and variances as

E [h] = E [z]E [ f ] = E [z] µ,

var [h] = E
[︁
z2]︁ var [ f ] + var [z]E [ f ]2

= E
[︁
z2]︁ σ2 + var [z] µ2 ≈ E [z] σ2,

where the value of E [z] = σ(Cµ) decides whether the mean and variance of
the pre-activation f are propagated or blocked. Comparing the two, we can see
that large |µ| values then give similar mean, variances to be propagated to the
next layer, while for smaller values the behaviour differs.

3.2.2 Other related work

Several approaches have been introduced in the recent decades for approxi-
mating the intractable posterior of BNNs. One line of research is model-based
Markov Chain Monte Carlo, represented by methods such as Hamiltonian
Monte Carlo (HMC) (Neal, 2010) and Stochastic Gradient Langevin Dynamics
(SGLD) (Welling and Teh, 2011). Chen et al. (2014) adapted HMC to stochastic
gradients by quantifying the entropy overhead stemming from the stochasticity
of mini-batch selection.

While being actively used for a broad spectrum of probabilistic models, the
successful application of variational inference to deep neural nets has only
occurred recently. The earliest study to infer a BNN with variational infer-
ence (Hinton and Camp, 1993) was applicable for only one hidden layer. This
limitation has been overcome by Graves (2011) approximating the intractable
expectations by numerical integration. Further scalability has been achieved
after stochastic gradient variational Bayes (SGVB) has been made applicable
to BNN inference using weight reparameterizations (Kingma and Welling,
2014; Rezende et al., 2014).

Dropout (Srivastava et al., 2016) has strong connections to the variational
inference of BNNs. Gal and Ghahramani (2016b) developed a theoretical
link between a dropout network and a deep Gaussian process (Damianou and
Lawrence, 2013) inferred by variational inference. Kingma et al. (2015) showed
that extending the Bayesian model selection interpretation of Gaussian Dropout
with a log-uniform prior on weights leads to a BNN inferred by SGVB. Our
proposed model can also be interpreted as an input-dependent dropout (Ba and
Frey, 2013; Lee et al., 2018b) applied to a linear net. Yet it differs from them
and the standard dropout. The masking variable always shuts down negative
activations, hence does not serve as a regularizer but instead implements the
ReLU nonlinearity.

A fundamental step in reducing ELBO gradient variance has been taken
by Kingma et al. (2015) with local reparameterization, which suggests taking
the Monte Carlo integrals by sampling the linear activations instead of the
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weights. Further variance reduction has been achieved by defining the variances
of the variational distribution factors as free parameters and the dropout rate
as a function of them (Molchanov et al., 2017). Theoretical treatments of the
same problem have also been recently studied (see e.g. Miller et al., 2017;
Roeder et al., 2017).

SGVB has been introduced initially for fully factorized variational distributions,
which limites the feasible posteriors that one can infer. Strategies for improving
the approximation quality of variational BNN inference include employment
of structured versions of dropout matrix normals (Louizos and Welling, 2016),
repetitive invertible transformations of latent variables, known as normalizing
flows, (Rezende and Mohamed, 2015) and their application to variational
dropout (Louizos and Welling, 2017). Wu et al. (2019) use the CLT argument
to move beyond mean-field variational inference and demonstrate how to adapt
it to learn layerwise covariance structures for the variational posteriors.

Lastly, there is active research on enriching variational inference using its
interpolative connection to expectation propagation (Hernández-Lobato and
Adams, 2015; Li and Turner, 2016; Li and Gal, 2017).

3.3 experiments

We evaluate the proposed model on a variety of regression and classification
data sets. Details on hyperparameters and architectures not provided in the
main text can be found in the appendix.9

3.3.1 Regression

For the regression experiments, we follow the experimental setup introduced
by Hernández-Lobato and Adams (2015) which consists of evaluating the
model performance on nine UCI benchmark data sets with a normal likelihood
N (y| f (X; w), β−11). We train a BNN with one hidden layer of 50 units for
each data set, except for the larger protein data set which uses 100 hidden
neurons. Each data set is twenty times randomly split into train and test data,
consisting of 90% and 10% of the data, respectively. We optimize the model
using the Adam optimizer (Kingma and Ba, 2015) with their proposed default
parameters and a learning rate of λ = 0.01.

We compare against the two sampling-free approaches introduced above, Prob-
abilistic Back-Propagation (PBP) (Hernández-Lobato and Adams, 2015) and
Deterministic Variational Inference (DVI) (Wu et al., 2019), as well as the
sampling-based Variational Dropout (VarOut) (Kingma et al., 2015) in the
formulation of Molchanov et al. (2017). The results for these baselines are cited
from the respective papers. We rely on our own implementation for VarOut,
replacing the improper log-uniform prior with a proper Gaussian prior to avoid
a possible improper posterior (Hron et al., 2017).

9 A reference implementation is provided at https://github.com/manuelhaussmann/vbp.

https://github.com/manuelhaussmann/vbp
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Table 3.1: Regression Results. Reported are the average test log-likelihood ± stan-
dard error over 20 random train/test splits. The best performing method is
marked bold. The N/d column gives the number of data points and the
input feature dimension for each data set.

data set N/d DVI PBP VarOut VBP

boston 506/13 −2.58±0.04 −2.57±0.09 −2.59±0.03 −2.59±0.03

concrete 1030/8 −3.23±0.01 −3.16±0.02 −3.18±0.02 −3.15±0.02

energy 768/8 −2.09±0.06 −2.04±0.02 −1.25±0.05 −1.11±0.07

kin8nm 8192/8 1.01±0.01 0.90±0.01 1.02±0.01 1.04±0.01

naval 11934/16 5.84±0.06 3.73±0.01 5.52±0.04 5.79±0.07

power 9568/4 −2.82±0.00 −2.84±0.01 −2.83±0.01 −2.85±0.01

protein 45730/9 −2.94±0.00 −2.97±0.00 −2.92±0.00 −2.92±0.00

wine 1599/11 −0.96±0.01 −0.97±0.01 −0.96±0.01 −0.96±0.01

yacht 308/6 −1.41±0.03 −1.63±0.02 −1.65±0.05 −1.54±0.06

To learn the observation precision β for our model and the VarOut baseline,
we follow a type-II Maximum Likelihood approach and after each training
epoch update it so that the ELBO is maximized, which reduces to choosing β

to maximize the data fit, i.e.

β∗ = arg max
β

Eq(θ) [log p(y|θ, x)] ,

which for p(yn|θ, xn) = N (yn| f (xn; θ), β−1) takes the form

1
β∗

=
1
N

N

∑
n=1

Eq(θ)

[︂(︁
yn − f (xn; θ)

)︁2
]︂

,

This expression is either evaluated via samples for VarOut or deterministically
for VBP as we have shown above. One could also introduce a hyperprior
over the prior weight precisions, and learn them via a type-II approach as
done in DVI (Wu et al., 2019). Instead we use a fixed normal prior p(w) =

N (w|0, α−11). We set α = 10 and use β = 1 as the initial observation
precision, observing quick convergence in general.

We summarize the average test log-likelihood together with the standard error
over twenty random splits in Table 3.1. VBP either outperforms the baselines
or performs competitively with them.

3.3.2 Classification

Our main classification experiment is an evaluation on four standard image
classification data sets of increasing complexity: MNIST (LeCun et al., 1998),
FashionMNIST (Xiao et al., 2017), CIFAR-10, and CIFAR-100 (Krizhevsky
and Hinton, 2009). The goal is to evaluate how the three variational inference
based approaches of either taking samples (VarOut), relying on CLT (DVI), or
the ReLU decomposition (VBP) compare as the depth of the BNN increases
from the small regression net.
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Table 3.2: Classification Results. Average classification error rate and test log-
likelihoods ± standard deviation over five runs

Average Error (in %) Average Test Log-Likelihood (in %)

VarOut DVI VBP VarOut DVI VBP

Mnist 1.12±0.05 0.97±0.06 0.85±0.06 −0.03±0.00 −0.03±0.00 −0.03±0.00

FashionMNIST 10.81±0.24 10.33±0.07 10.10±0.16 −0.30±0.00 −0.29±0.00 −0.28±0.00

Cifar-10 33.40±1.06 35.15±1.13 31.33±1.01 −0.95±0.03 −1.00±0.03 −0.90±0.03

Cifar-100 62.85±1.43 66.21±1.14 60.97±1.61 −2.44±0.06 −2.61±0.06 −2.37±0.08

The architecture we use is a LeNet5 sized net consisting of two convolutional
layers and two fully connected layers, with more filters/units per layer for the
two CIFAR data sets. As discussed in Section 3.1.6, VBP can handle max-
pooling layers, but they require careful tracking of indices between the data fit
and variance terms, which comes at some extra run time cost in present deep
learning libraries. As they are also intractable for DVI, we do not use pooling
in the architecture. Instead, we provide a reference implementation on how to
do this but stick in the experiments with strided convolutions following the
recent trend of “all-convolutional-nets” (Springenberg et al., 2015; Yu et al.,
2017; Redmon and Farhadi, 2018).

We compare VBP against VarOut and our implementation of DVI as Wu et al.
(2019) stick in their publication to the regression setup discussed above. To
improve its scalability and keep it comparable to VBP and VarOut, we use the
mean-field setup of DVI. In order to ensure maximal comparability between the
three methods all of them share the same normal prior p(w) = N (w|0, α−11)

(α = 100), initialization and other hyperparameters. They are optimized with
the Adam optimizer (Kingma and Ba, 2015) and a learning rate of λ = 0.001
over 100 epochs.

We summarize the results in Table 3.2 reporting the average predictive error in
per cent and the average test log-likelihood over five runs. We observe that DVI,
making efficient use of the CLT based moment-matching approach, improves
upon the sampling-based VarOut on the two easier data sets, while it struggles
on the two more complex CIFAR task. VBP can deal with the increasing width
from (Fashion)MNIST to CIFAR-{10,100} a lot better, improving upon both
VarOut and DVI on all four data sets. As the depth increases from the regression
to the classification experiment the performance difference that was small for
the shallow network becomes more and more pronounced.

3.3.3 Online Learning Comparison

As the final experiment, we follow the setup of Kandemir (2018), i.e. the
gradient-free method with closed-form updates. They argue that their focus on
closed-form updates instead of relying on gradients gives them an advantage in
an online learning setup that has the constraint of allowing only a single pass
over the data. They report results on MNIST and CIFAR-10, using a net with a
single hidden layer of 500 units for MNIST and a two hidden layer net with
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Table 3.3: Online Learning Results. Average test set accuracy (in %) ± standard
deviation over ten runs.

Mnist Cifar-10
V-ReLU-Net 92.8±0.2 47.1±0.2

VarOut 96.7±0.2 47.8±0.3

DVI 96.6±0.2 48.7±0.4

VBP 96.6±0.2 48.3±0.4

2048/1024 units for CIFAR-10. We run the three variational inference BNNs
in the same setup. While the closed-form updates of V-ReLU-Net (Kandemir,
2018) have the advantage of removing the need for gradients, the required
mean-field approximation over the layers substantially constrains it compared
to the more flexible VBP structure. We summarize the average test set accuracy
in per cent over ten runs in Table 3.3

3.4 conclusion

Our experiments demonstrate that the Identity-Heaviside decomposition and
the variance back-propagation we propose offer a powerful alternative to other
recent deterministic approaches of training deterministic BNNs.

Following the No-Free-Lunch theorem, our closed-form available ELBO comes
at the expense of several restrictions, such as a fully factorized approximate
posterior, sticking to ReLU activations, and inapplicability of Batch Normal-
ization (Ioffe and Szegedy, 2015). An immediate implication of this work
is to explore ways to relax the mean-field assumption and incorporate nor-
malizing flows without sacrificing from the closed-form solution. Because
Equations (3.6) and (3.7) extend easily to dependent variables after adding the
covariance of each variable pair as done by Wu et al., 2019, our formulation is
adaptable to structured variational inference schemes without major theoretical
obstacles. Further extensions that are directly applicable to our construction
are, as discussed, the inclusion of residual (He et al., 2016) and skip connec-
tions (Huang et al., 2017), which is an interesting direction for future work as
it will allow this approach to scale to deeper architectures.

3.5 further details

This final section of the chapter discusses the necessary adaption of VBP
to allow for max-pooling and more activation functions. We then discuss
the restriction we relied on throughout the chapter of computing only the
variance terms, while dropping any covariance structure on a layer’s post-
activations. The section finishes with some further experimental details to
ensure reproducibility.
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3.5.1 Max Pooling within VBP

The following proposition discusses how to incorporate max-pooling layers
within the model. It is an extension of Proposition 1 from the main text.

proposition 3. For a generative model including the generative process
excerpt as below

...
a ∼ p(a),

b ∼ p(b),

c|a, b = max(a, b),

d|c ∼ p(b|h(c)),
...

with some arbitrary function h(c), when mean-field variational Bayes is per-
formed with an approximate distribution Q = · · · q(a)q(b)q(c) · · · , the fol-
lowing identities hold

(i) E [c] = E [max(a, b)] = max(E [a] ,E [b]).

(ii) var [c] =

{︄
var [a] , if E [a] ≥ E [b]
var [b] , else

proof. We first rewrite the generative process as

...
a ∼ p(a),

b ∼ p(b),

z ∼ δa−b>0,

c|a, b, z = a z + b (1− z),

d|c ∼ p(b|h(c),
...

For a variational distribution Q = · · · q(a)q(b)q(z)q(c) · · · the optimal up-
date for z is then given as

q(z)← δE[a]−E[b]>0,

which we get from applying Proposition 1. Then

E [c] = E [max(a, b)]

= E [a]E [z] +E [b]E [1−E [z]]

= max(E [a] ,E [b]),

which satisfies (i).
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In order to get (ii), we decompose the variance term

var [c] = var [az] + var [b(1− z)]

= E [z] var [a] + (1−E [z])var [b] ,

using that z has zero variance. As z = 1 for E [a] > E [b], we get the desired
result for the variance.

This outcome can, in turn, be directly extended to max(·) functions with an
arbitrary number of inputs by using the following recursive identity

max(a1, . . . , an) = max(max(a1, . . . , an−1), an).

Consequently, we can plug a max-pooling layer into our framework. The data-
fit term in the ELBO will use (i) while the variance term, on the other hand,
will rely on (ii).

3.5.2 Extension to other Activation Functions

While we introduce and discuss the Identity-Heaviside decomposition in
the main text solely for the popular ReLU activation function, the approach
can be extended straightforwardly for other piecewise linear activation func-
tions.

One extension to ReLUs is to allow for a non-zero gradient not only for positive PReLU/Leaky ReLU
input but also if x < 0. Leaky ReLU (Maas et al., 2013) and Parametric ReLU
(PReLU) (He et al., 2015) have the following structure

g(x) ≜

{︄
x if x > 0

ax if x ≤ 0
,

where a is either fixed to a small value as in the Leaky ReLU or a learnable
parameter as in PReLU. Following the notation from the main text, with zl as
before for the l-th layer, we define

cl = a + (1− a) · zl .

This gives us the desired structure for the post-activation feature vector

hl = f l ◦ cl .

The mean and variance of cl
i remain tractable with

E
[︂
cl

i

]︂
= a + (1− a)E

[︂
zl

i

]︂
,

var
[︂
cl

i

]︂
= (1− a)2var

[︂
zl

i

]︂
.

The rest of the equations can be analogously updated and remain tractable.
Depending on whether a is supposed to be fixed or adapted, it can then be
updated via gradient descent just as the other parameters.
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In order to extend the approach to sigmoid activation functions, like tanh(·) orTanh Activation
σ(x) = 1/(1 + exp(−x)), one can similarly extend the approach by instead
of considering a two piece linear split (−∞, 0) and [0, ∞) splitting intothree
linear pieces (−∞,−ε), [−ε, ε), and [ε, ∞), for some chosen ε instead, by
extending the current z definition suitably.

Consider for example the hard hyperbolic tangent as an approximation to
tanh(·). It is defined as

H(x) ≜

⎧⎪⎪⎨⎪⎪⎩
1, if x > 1

−1, if x < −1

x, else
.

The post-activation of the l-th layer is then, dropping the layer reference from
the notation, given as

h = u− v + f (1− u)(1− v),

where we defined u = 1( f − 1) and v = 1(− f − 1). The Bernoulli approxi-
mation for the two can then be given in analogy to the one for z in the main
part of the chapter via

u| f ∼ Ber
(︁
u|σ(C( f − 1)

)︁
, v| f ∼ Ber

(︁
u|σ(−C( f + 1))

)︁
.

Following the derivations in the main text we have the expectation as

E [h] = E [u] +E [v] +E [ f ] (1−E [u])(1−E [v]),

where each term is directly tractable. The variance in turn is given as

var [h] = var [u + v + f (1− u)(1− v)]

= var [u] + var [v] + var [ f (1− u)(1− v)]

+ 2cov (u, f (1− u)(1− v)) + 2cov (v, f (1− u)(1− v)) .

Again, every term is tractable, however at an increased computational cost. We
have that the third variance term is given via

var [ f (1− u)(1− v)] = E
[︁
( f (1− u)(1− v))2]︁− (E [ f (1− u)(1− v)])2

= E
[︁

f 2]︁E [︁(1− u)2]︁E [︁(1− v)2]︁−E [ f ]2E [(1− u)]2E [(1− v)]2

= E
[︁

f 2]︁ (1−E [u])(1−E [v])−E [ f ]2 (1−E [u])2(1−E [v])2.

The two covariance terms can similarly be decomposed as

cov (u, f (1− u)(1− v)) = E [u f (1− u)(1− v)]−E [u]E [ f (1− u)(1− v)]

= E [u(1− u)]E [ f ]E [(1− v)]−E [u]E [ f ]E [(1− u)]E [(1− v)]

= −E [u]E [ f ] (1−E [u])(1−E [v]),

where we use that E [u(1− u)] = 0. The second covariance term is analo-
gously given as

cov (u, f (1− u)(1− v)) = −E [v]E [ f ] (1−E [v])(1−E [u]).

The variational posterior distributions for q(u) and q(v) are still analytically
tractable, which follows directly by a minor adaptation of Proposition 1.
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3.5.3 Covariance Terms

As we discussed in the main text when deriving the variance terms, we need to
restrict ourselves in practice to only computing and propagating the variance
of each layer’s pre/post activations, limiting us essentially to a diagonal covari-
ance matrix. This section gives the necessary derivations for a working with
complete covariance matrices instead.

Focusing solely on the l-th layer and dropping the l from the notation for
simplicity, we have that E [h] is independent of the restriction and can be
computed as before. For the covariance between hi, hj however, we have for
i ̸= j that it can be computed as

cov
(︁
hi, hj

)︁
= E

[︁
hihj

]︁
−E [hi]E

[︁
hj
]︁

= E
[︁
zi fizj f j

]︁
−E [zi fi]E

[︁
zj f j
]︁

= E [zi]E
[︁
zj
]︁
E
[︁

fi f j
]︁
−E [zi]E

[︁
zj
]︁
E [ fi]E

[︁
f j
]︁

= E [zi]E
[︁
zj
]︁

cov
(︁

fi, f j
)︁

,

where we used the variational approximation of independence between zi and
zj. The two expectations are trivially given, while the remaining covariance
term can be computed as follows. Using the slight notational overloading of
the new h variables to refer to the layer before and switching to a vectorial
formulation, we have

cov
(︁

fi, f j
)︁
= cov

(︂
w⊤i h, w⊤j h

)︂
= E

[︂
(w⊤i h)(w⊤j h)

]︂
−E

[︂
w⊤i h

]︂
E
[︂
w⊤j h

]︂
= E

[︂
w⊤i
]︂
E
[︂

hh⊤
]︂
E
[︁
wj
]︁
−E [wi]

⊤
E [h]E [h]⊤ E

[︁
wj
]︁

= E [wi]
⊤ cov (h, h)E

[︁
wj
]︁

,

where we used the variational approximation of independence between the
weights wi and wj. The variance for i = j can be computed as in the main text
in this vectorial form as

var [ fi] = E
[︂
(w⊤i h)(w⊤i h)

]︂
−E

[︂
w⊤i h

]︂
E
[︂
w⊤i h

]︂
= tr

(︂
E
[︂
wiw⊤i

]︂
E
[︂

hh⊤
]︂)︂
−E

[︂
w⊤i h

]︂
E
[︂
w⊤i h

]︂
= tr

(︂
E
[︂
wiw⊤i

]︂ (︂
E [h]E [h]⊤ + var [h]

)︂)︂
−E [wi]

⊤
E [h]E [wi]

⊤
E [h]

= tr
(︂(︂
E
[︂
wiw⊤i

]︂
−E [wi]E [wi]

⊤
)︂
E [h]E [h]⊤

+E
[︂
wiw⊤i

]︂
var [h]

)︂
= tr

(︂
var [wi]E [h]E [h]⊤ +E

[︂
wiw⊤i

]︂
var [h]

)︂
,

where we use the trick of first applying the trace operator tr(·) to a scalar and
then using the linearity of the expectation. Reverting this trace gives us the
result from the main discussion.
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Table 3.4: The Strided LeNet architecture. This table gives the architecture used in
the classification experiments of the main text. For Cifar-10/Cifar-100
the convolutional layers get instead 192 filters each and the number of
neurons in the penultimate fully connected layer is increased to 1000. The
activations between all layers are ReLUs.

Strided LeNet5
Convolution (5× 5) with 20 channels, stride 2
Convolution (5× 5) with 50 channels, stride 2

Linear with 500 neurons
Linear with nclass neurons

These derivations show that computing and propagating full covariance matri-
ces is tractable mathematically. They also demonstrate that while one could con-
sider switching from a pure mean-field factorization over the weights and still
keep tractable computations, e.g. by considering layerwise independence and
within a layer between different wi, wj, the computational cost both in terms
of memory and runtime make this an infeasible approach in practice.

3.5.4 Further Experimental Details

regression setup. For the regression experiments we follow the com-
mon experimental setup for the evaluation of BNN regression as introduced
by Hernández-Lobato and Adams (2015). The neural net consists of one hidden
layer of 50 for all data sets except for protein where it is doubled to 100
neurons. For each data set we use the Adam optimizer with a learning rate of
λ = 0.01, with varying batch sizes depending on the data set size to ensure
a roughly equal number of gradient steps. boston, energy and yacht get
a batch size of 16. concrete and wine use 32 instances per batch, power,
kin8nm, and naval use 64 and protein finally gets 256 instances.

classification setup. The convolutional neural architecture we use in
the convolutional classification experiments is a modified version of the classi-
cal LeNet5, without pooling layers but strided convolutions instead. The version
used with MNIST and FashionMNIST is summarized in Table 3.4.

For Cifar-10/100 we increase the width of the convolutional layers to 192
channels each and the linear one to 1000, following Gal and Ghahramani
(2016a). All hidden layers are followed by ReLU activations. As the optimizer
we use again Adam with the default hyperparameters and a learning rate of
λ = 0.001 for each data set.

online classification. We follow the architecture setup prescribed
by Kandemir (2018). That is, one hidden layer of 500 units for the MNIST
experiment and a two hidden layer network with 2048 units in the first and
1024 units in the second layer for the Cifar-10 experiment.
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initialization of the variational parameters. The initialization
scheme is shared between all architectures, experiments and the three BNN
variants: VBP, VarOut, and DVI. The variational means of the weights follow
the common initialization of He et al. (2015). The logarithms of their variances
are sampled from N (−9, 1e− 3).





4
D E E P AC T I V E L E A R N I NG W I T H A DA P T I V E
AC Q U I S I T I O N

Deep Learning offers great potential. However, it suffers also from great hunger
for data. Active Learning (Settles, 2012) tackles whether this can be optimized,
i.e. is every data point created equal or are different data points of varying
usefulness for the model to learn.

The choice of a proper acquisition function, i.e. how to select this “useful-
ness” is a model design choice similar to other selection choices, such as the
architecture, learning rate or other hyperparameters. One can summarize these
choices under the keyword of model selection. Model selection is treated as a
standard performance-boosting step in many machine learning applications.
Once all other properties of a learning problem are fixed, the model is selected
by grid search on a held-out validation set. However, this is inapplicable to
active learning and the choice of acquisition function. Within the standardized
workflow, the acquisition function is chosen among available heuristics a priori,
and its success is observed only after the labelling budget is already exhausted.
Picking a different acquisition function afterwards and starting again is not an
option, as the labels have already been acquired. More importantly, none of the
earlier studies reports a unique, consistently successful acquisition heuristic to
the extent to stand out as the unique best choice.

We present a method to break this vicious circle by defining the acquisition
function as a learning predictor and training it by reinforcement feedback
collected from each labelling round. As active learning is a scarce data regime,
we bootstrap from a well-known heuristic that filters the bulk of data points on
which all heuristics would agree, and learn a policy to warp the top portion
of this ranking in the most beneficial way for the character of a specific data
distribution. Our system consists of a Bayesian neural net, the predictor, a
bootstrap acquisition function, a probabilistic state definition, and another
Bayesian policy network that can effectively incorporate this input distribution.
We observe on three benchmark data sets that our method always manages to
either come up with a new superior acquisition function or to adapt itself to the
a priori unknown best performing heuristic for each specific data set.

4.1 background

In general, an active learning pipeline consists of three collaborating parts
which we will refer to in this chapter as, predictor, guide, and oracle.

This chapter is based on and extends Haußmann et al. (2019).

53
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Figure 4.1: Standard Active Learning pipeline. The standard active learning
pipeline is summarized as the interplay between three parts. An ora-
cle provides a set of labeled data for a predictor (here a BNN) to learn
on. It in turn provides predictive uncertainties to the guide, a usually
fixed, hard-coded acquisition function, which in turn communicates to
the oracle which points to label next, restarting the cycle.

The predictor is the model we are actually interested in. It is supposed to learn
as much as possible from the available data to later perform well in practice. It
learns from the given labelled data and then provides some performance score
to the second part, the guide. Given the model’s performance scores, the guide
decides which data points should be labelled next requesting the corresponding
target labels from an oracle. The oracle, usually a human expert, provides these
and the circle starts again with the model being optimized on the now larger
data set. This general setup is summarized in Figure 4.1.

Of these three, the oracle providing the labels, be it a human or another label
source, can essentially be assumed as given and is thus irrelevant from a
theoretical viewpoint. Of course, this is a simplification of the real world
situation where a human expert might perform with different efficiency whether
he/she needs to provide labels for a completely random order of data points, or
whether it might be more efficient to provide and thus to request information
on similar groups of data points. A guide, requesting labels, should take not
only criteria into account that are theoretically optimal for the predictor model,
but also incorporate such de facto relevant criteria. Throughout this chapter, we
will ignore such details and assume an oracle that patiently provides labels for
whatever data is requested with equal efficiency. Instead, we focus solely on the
predictor and the guide and their relation and interplay with each other.

Contrary to the tabula rasa ansatz of the present deep learning age, state of the
art in active learning has maintained hand-designed acquisition functions as the
guides to rank the unlabeled sample space. However, different studies observe
different acquisition functions to perform optimally for specific applications
after evaluating various choices (Settles, 2012). The critical fact is that active
learning is meant to address applications where data labelling is extremely
costly. It is usually not possible to know the ideal acquisition function for a given
application a priori. Once an acquisition function is chosen and active learning
has been performed based on it, the labelling budget is already exhausted,
leaving no possibility for another try with an alternative acquisition function.
This limitation can only be circumvented by adapting this function to data
during the active learning process, getting feedback from the previous labelling
rounds’ impact on the model fit. For real-world scenarios to which active
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learning is applicable, learning also the acquisition function is then not only an
option driven solely by practical concerns such as avoidance of handcrafting
effort, but also an absolute necessity.

The acquisition functions in active learning are surrogate models that map
a data point to a value that encodes the expected contribution of observing
its label to model fit. The active learning setup’s founding assumption is that
evaluating the acquisition score of a data point is substantially cheaper than
acquiring its ground-truth label. Hence, the acquisition functions are expected
to be both computationally cheap and maximally accurate in detecting the
sample space’s most information-rich regions. Information-theoretic heuristics
typically addresses these competing goals. Possibly the most frequently used
acquisition heuristic is Maximum Entropy Sampling, which assigns the highest
score to the data point for which the predictor reports the highest entropy
(i.e. uncertainty). This criterion builds on the assumption that the most valuable
data point is the one the model is maximally unfamiliar about. While being
maximally intuitive, this method remains agnostic to exploiting knowledge
from the current model fit about how much the new label can impact the
model uncertainty. Another closely related heuristic with comparable reception,
Bayesian Active Learning by Disagreement (BALD) (Houlsby et al., 2012),
benefits from this additional information by maximizing the mutual information
between the predictor output and the model parameters. A second major vein of
research, which we will not pursue further in this chapter, approaches the active
learning problem from a geometric instead of an uncertainty based perspective,
incorporating the arrangement of the data points relative to each other in some
feature space, for example via the selection of a core-set (Sener and Savarese,
2018).

None of the aforementioned heuristics has a theoretical superiority that is
sufficient to rule out all other options. Maxent strives only to access unexplored
data regions. BALD performs the same by also taking into account the ex-
pected effect of the newly explored label on the model parameters’ uncertainty.
While some studies argue in favour of BALD due to this additional informa-
tion (Srinivas et al., 2012), others prefer to avoid this noisy estimate drawn
from an under-trained model (Qiu et al., 2017).

In this chapter, we propose a data-driven method that alleviates the conse-
quences of the unsolved acquisition function selection problem. As prediction
uncertainty is an essential input to acquisition heuristics, we choose a deep
Bayesian Neural Net (BNN) as our base predictor. To acquire high-quality
estimates of prediction uncertainty with an acceptable computational cost, we
devise a deterministic approximation scheme that can both effectively train
a deep BNN and calculate its posterior predictive density following a chain
of closed-form operations. Next, we incorporate all the probabilistic informa-
tion provided by the BNN predictions into a novel state design, which brings
about another full-scale probability distribution. This distribution is then fed
into a second probabilistic policy network, which is trained by reinforcement
feedback collected from every labelling round to inform the system about its
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Figure 4.2: The proposed pipeline. We replace the fixed acquisition function with
a policy BNN that learns with a probabilistic state and reinforcement
feedback from the oracle how to optimally choose the next points (the
differences from the general setup in Figure 4.1 are marked in red). It is
thus able to adapt itself flexibly to the data set at hand.

current acquisition function’s success. This feedback fine-tunes the acquisition
function, bringing about improved performance in the subsequent labelling
rounds. Figure 4.2 summarizes the high-level workflow of our method.

In the experiments, we evaluate our method on three common benchmark
vision data sets from different domains and complexities: MNIST (LeCun et
al., 1998) for images of handwritten digits, FashionMNIST (Xiao et al., 2017)
for greyscale images of clothes, and CIFAR-10 (Krizhevsky and Hinton, 2009)
for coloured natural images. In our experiments, we observe that the policy
net is capable of inventing an acquisition function that outperforms all the
handcrafted alternatives if the data distribution permits it. In the other cases, the
policy net converges to the best-performing handcrafted choice, which varies
across data sets and is unknown prior to the active learning experiment.

4.2 the model

As discussed above, our method consists of two major components: a predictor
and a policy net guiding the predictor by learning a data set specific acquisition
function. As the predictor, described in Section 4.2.1 we use a BNN, whose
posterior predictive density we use to distil what we refer to as the system state.
The policy net, a second BNN, takes this state as input to decide which data
points to request labels for next. We describe this second part of the pipeline
in Section 4.2.2. Since we introduce a reinforcement learning-based method
for active learning, we refer to it as Reinforced Active Learning (RAL).

Throughout this chapter, we rely for illustrative purposes on a central limit theo-
rem based approach to marginalize the weights and improve both the predictive
uncertainty and reduce the computational noise. In general, any approach to
training a BNN, e.g. the Heavyside-Decomposition based VBP approach dis-
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cussed at length in the last chapter, or any other predictor model which provides
trustworthy enough predictive uncertainties could be used.

4.2.1 The Predictor: A Bayesian Neural Network

Let D = {(xn, yn)N
n=1} be a data set consisting of N tuples of feature vectors

xn ∈ Rm and labels yn ∈ {0, 1}C for a C dimensional binary output label.
Parameterizing an arbitrary neural network f (·) with parameters w following
some prior p(w), we assume the following probabilistic model

w ∼ p(w),

y|x, w ∼
C

∏
c
Ber
(︁
yc|Φ( fc(x; w)

)︁
,

where fc is the cth output channel of the net, Φ(u) =
∫︁ u
−∞N (x|0, 1)dx is the

normal cdf, and Ber(·|·) is a Bernoulli distribution. Note that even thoughout
the experiments we will only consider the multi-class case where ∑c yc = 1,
this formulation treats each class independently, i.e. assumes a multi-label setup.
This, as well as the switch to using the normal cdf instead of the more common
logistic sigmoid, is a technical necessity we will discuss further below.

The calculation of the posterior predictive for a test pair (x∗, y∗),

p(y∗|x∗,D) =
∫︂

p(y∗|x∗, w)p(w|D)dw

involves the calculation of the posterior distribution on the latent variables,
which can be accomplished by Bayes rule

p(w|D) = p(Y |X, w)p(w)∫︁
p(Y |X, w)p(w)dw

,

for X = {x1, . . . , xN} and Y = {y1, . . . , yN}.

As this is intractable in general, we require approximate inference techniques.
We aim for high-quality prediction uncertainties. A sampling-based approach
is not practical for vision-scale applications where neural nets with a large
parameter count are being used. Instead, we use variational inference. To
keep the calculations maximally tractable while benefiting from stochastic
w, we formulate a normal mean-field variational posterior (which could be
generalized):

qθ(w) = ∏
i
N (wi|µi, σ2

i ), (4.1)

where the tuple (µi, σ2
i ) represents the variational parameter set for weight wi

of the network f (·) and θ = {(µi, σ2
i )i}.

Variational inference approximates the true intractable posterior by optimiz-
ing θ to minimize the Kullback-Leibler (KL) divergence between qθ(w) and
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p(w|X, Y), which boils down to minimizing the negative evidence lower
bound (see e.g. the Background chapter for details)

Lclass(θ;D) = −
N

∑
n=1

Eqθ(w)

[︁
log p

(︁
yn| f (xn; w)

)︁]︁
+ KL

(︁
qθ(w) ∥ p(w)

)︁
.

In this formula, the first term on the right-hand side maximizes the data fit (i.e.
minimizes the reconstruction loss). The second term penalizes the posterior’s
divergence from the prior, inducing an Occam’s razor principle.

The modeler has control on the model families of both qθ(w) and p(w).
Hence, choosing the prior p(w) suitably to the normally distributed qθ(w)

assures an analytically tractable solution for the KL (· ∥ ·) term. We use
p(wi) = N (wi|0, α−1) with a fixed precision α. However, the data fit term
involves a nonlinear neural net, which introduces difficulties for keeping the
expectations tractable. A major issue is that we need to differentiate this term
with respect to the variational parameters θ, which appear in the density qθ(w)

with respect to which the expectation is taken. This problem is overcome by
the reparameterization trick (Kingma and Welling, 2014), which re-formulates
qθ(w) as a sampling step from a parameter-free distribution and a deterministic
variable transformation.

Lclass(θ;D) = −
N

∑
n=1

Ep(ε)
[︁
log p

(︁
yn| f (xn; w = µ + σε)

)︁]︁
+ KL

(︁
q(w) ∥ p(w)

)︁
,

where the parameters θ now appear only inside the expectation term. We could
take the gradient of the loss with respect to them and approximate integral
in the expectation by Monte Carlo sampling. Although this will provide an
unbiased estimator of the exact gradient, this estimator will have prohibitively
high variance due to distorting the global variables of a highly-parameterized
system. Our remedy is to postpone sampling one step further.

Let the pre- and post-activation map of jth neuron of layer l for data point n be
fnjl and hnjl , respectively. We then have

wijl ∼ N (wijl |µijl , σ2
ijl), fnjl =

Il−1

∑
i=1

wijlhnil−1, (4.2)

as a repeating operation at every layer transition within a BNN.1 As hnil−1 is the
sampling output of layer l− 1, it is a deterministic input to layer l. Consequently,
fnjl is a weighted linear sum of Il−1 independent normal random variables,
which is another normal random variable with

fnjl ∼ N
(︄

fnjl

⃓⃓⃓⃓
⃓ Il−1

∑
i=1

µijlhnil−1,
Il−1

∑
i=1

σ2
ijlh

2
nil−1

)︄
. (4.3)

1 The same line of reasoning directly applies to convolutional layers where the sum on fnjl is
performed in a sliding window fashion.
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We now take separate samples for local variables, further reducing the esti-
mator variance stemming from the Monte Carlo integration. This is known
as Variational Dropout (Kingma et al., 2015), as the process performed for
the expected log-likelihood term is equivalent to Gaussian dropout with rate
σ2

ijl/µ2
ijl for weight wijl .

4.2.1.1 Fast Dropout and the CLT Trick

Fast Dropout (Wang and Manning, 2013) has been introduced as a technique to
perform Gaussian dropout without taking samples. The method builds on the
observation that fnjl as given in (4.2) is essentially a random variable consisting
of a large sum of a provisionally large number of other random variables. This
is a direct call to the Central Limit Theorem (CLT) that transforms the eventual
distribution into a normal density, which one can trivially model by matching
the first two moments

p( fnjl) ≈ N ( fnjl |νnjl , λ2
njl),

where νnjl = E

[︄
Il−1

∑
i=1

wijlhnil−1

]︄
=

Il−1

∑
i=1
E
[︁
wijl
]︁
E [hnil−1] ,

and λ2
njl = var

[︄
Il−1

∑
i=1

wijlhnil−1

]︄

=
Il−1

∑
i=1

var [hnil−1]E
[︁
wijl
]︁2

+ var
[︁
wijl
]︁
E
[︁
h2

nil−1
]︁

.

Here, E
[︁
wijl
]︁
= µijl and var

[︁
wijl
]︁
= σ2

ijl , as determined in (4.1). We also
require the first two moments over of the hnil−1 = r( fnil−1), where r(x) =
max{0, x} is the ReLU activation function, for which it suffices to solve

E
[︁
hnjl−1

]︁
=
∫︂

r( fnjl−1)N ( fnjl−1|νnjl−1, λ2
njl−1)d fnjl−1,

E
[︂

h2
njl−1

]︂
=
∫︂

r( fnjl−1)
2N ( fnjl−1|νnjl−1, λ2

njl−1)d fnjl−1.

For our choice of activation function, these two are analytically tractable (Frey
and Hinton, 1999) and are given with Φ(·), and ϕ(·) referring to the standard
normal cdf and pdf as

E
[︁
hnjl−1

]︁
= νnjl−1Φ

(︃
νnjl−1

λnjl−1

)︃
+ λnjl−1ϕ

(︃
νnjl−1

λnjl−1

)︃
,

E
[︂

h2
njl−1

]︂
= (ν2

njl−1 + λ2
njl−1)Φ

(︃
νnjl−1

λnjl−1

)︃
+ νnjl−1λnjl−1ϕ

(︃
νnjl−1

λnjl−1

)︃
.

Note that fnjl−1 is either the linear activation of the input layer, a weighted sum
of normals, hence another normal, or a hidden layer, which will then similarly
follow CLT and therefore already be approximated as a normal. Hence, the
above pattern repeats throughout the entire network, allowing a tight closed-
form approximation of the analytical solution. We refer to this method as the
CLT trick throughout this chapter. This approach will also be an integral part of
our next chapter (Chapter 5), where we will discuss it in greater detail.
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4.2.1.2 Closed-Form Uncertainty Estimation with BNNs

Fast Dropout uses the aforementioned CLT trick only for implementing dropout.
Here we extend the same method to perform variational inference by minimiz-
ing a deterministic loss, i.e. avoiding Monte Carlo sampling altogether. The
state of the art in deep active learning relies on test-time dropout (Gal et al.,
2017), which is computationally expensive. Speeding up this process requires
parallel computing on the end-product, hence reflects additional costs on the
user of the model not addressable at the production time. A thus-far overlooked
aspect of the CLT trick is that it also allows closed-form calculation of the
posterior predictive density if we choose the multi-label probit classification
introduced above.

Once training is over, we get a factorized surrogate for our posterior. We can
get this surrogate to approximate the true posterior predictive and get for a new
observation x∗ that

p(y∗c |x∗,D) ≈
∫︂
Ber
(︁
y∗c |Φ( fc(x∗; w))

)︁
qθ(w)dw

≈
∫︂
Ber
(︁
y∗c |Φ( f ∗c )

)︁
N
(︂

f ∗c |gL
c (x∗), hL

c (x∗)
)︂

d f ∗c

= Ber

(︄
y∗c

⃓⃓⃓⃓
⃓Φ
(︄

gL
c (x∗)√︁

1 + hL
c (x∗)

)︄)︄
, (4.4)

where the functions gL
c (x∗) and hL

c (x∗) encode the cumulative map from the
input layer to the moments of the top-most layer after repetitive application of
the CLT trick across the layers. Once gL

c (x∗) and hL
c (x∗) are tightly approxi-

mated, one could also choose a categorical distribution as the likelihood and
approximate the last integral via MC sampling. With p(y∗c |x∗,D) being tightly
approximated by an analytical calculation of a known distributional form, its
high-order moments are readily available for downstream tasks, being active
learning in our case.

In summary, the CLT based approach with the given likelihood gives us a
sampling-free approximation to the posterior predictive we can use as a signal
for the second part of the pipeline, the guide.

4.2.2 The Guide: A Policy Net

As opposed to the standard active learning pipeline, our method should be
capable of adapting its acquisition scheme to the characteristics of individual
data distributions. Differently from earlier work on data-driven label acquisi-
tion, it should be able to perform the adaptation on the fly, i.e. while the active
learning labelling rounds take place. This adaptiveness is achieved within a
reinforcement learning framework, where a policy net is trained by rewards
observed from the environment. Below we provide the state, action, and reward
definitions necessary to specify the proposed framework. We denote the col-
lection of unlabeled points by Du and the labelled ones by Dl . The variables
Nu and Nl denote the number of data points in each respective set.
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state. In active learning, the label acquisition process, in general, takes State
place on the entire unlabeled sample set. However, a feasible reinforcement
learning setup necessitates a somewhat condensed state representation to learn
efficiently. To this end, we first rank the unlabeled sample set by an information-
theoretic heuristic, namely the maximum entropy criterion. As this heuristic
will assign similar scores to samples with similar features, consecutive samples
in the ranking inevitably have a high correlation and simply picking the top
M points for the guide to choose among would essentially reduce it to a more
complex maximum entropy heuristic, as there won’t be much to choose from. To
break the trend and enhance diversity, we, therefore, follow the ranking from the
top and pick up every Kth sample until we collect M samples {x1, . . . , xM}.
We adopt the related term from the Markov Chain Monte Carlo sampling
literature and refer to this process as thinning. Feeding these samples into our
predictor BNN gives with our approximation to the predictive posterior (4.4),
an estimate for each and distil the state of the unlabeled sample space in the
following distributional form:

S ∼
C

∏
c=1

M

∏
m=1
N
(︂

smc
⃓⃓
gL

c (xm), hL
c (xm)

)︂
,

where gL
c (·) and hL

c (·) are mean and variance of the activation the cth output
neuron. That is instead of a deterministic state for the guide to work with, the
state is given as a multivariate normal random variable.

action. At each labelling round, several data points are sampled from the Action
set {xi1 , ..., xiM} as represented by the state S according to the probabilities
assigned on them by the present policy.

reward. The straight-forward and optimal reward would be the perfor- Reward
mance of the updated predictor on a separate validation set. This, however,
clashes with the constraint imposed on us by the active learning scenario. The
motivating assumption is that labels are valuable and scarce, so it is not feasible
to construct a separate labelled validation set large enough to get a good guess
of the desired test set performance for the policy net to calculate rewards. In
our preliminary experiments, we have consistently observed that merging the
validation set with the existing training set and performing active learning on
the remaining sample set consistently provides a steeper learning curve than
keeping a validation set for reward calculation. Hence, we abandon this option
altogether. Instead, we propose a novel reward signal

R = Rimprov + Rdiv

consisting of two components which we discuss next.

The first component Rimprov assesses the improvement in the chosen point’s
data fit once it has been labelled. From a Bayesian perspective, a principled
measure of model this fit is the marginal likelihood. For a newly labelled pair
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(x, y), we define this reward as the improvement in the marginal likelihood
the predictor net assigns to the chosen point. This term is given as

Rimprov =
C

∏
c=1

∫︂
Ber
(︁
yc|Φ( fc(x; w))

)︁
qnew(w)dθ

−
C

∏
c=1

∫︂
Ber
(︁
yc|Φ( fc(x; w))

)︁
qold(w)dθ,

where qold(·), qnew(·) are our respective variational posteriors before and after
training with the new point, and each term can be computed as discussed before.
The second component, Rdiv encourages diversity across the selected labels
throughout the whole labelling round:

Rdiv =
#unique labels requested

#label requests in this episode
.

policy net. The policy net π(·) is a second BNN parameterized byPolicy net
ϕ ∼ p(ϕ). Compared to the predictor net, which takes deterministic data
points as input, the policy net takes the probabilistic state S, which follows a
CM-dimensional normal distribution. Our CLT based BNN approach allows
us to ensure that inputting such a stochastic input into our deterministic in-
ference scheme is straightforward by using the first two moments of the state
during the first moment-matching round. The output of the policy net, in turn,
parameterizes an M dimensional categorical distribution over possible actions.
To benefit fully from the BNN character of the policy and to marginalize over
the ϕ we again follow the approach we use for the classifier propagating the
moments and first compute M binary probabilities for taking action ãm at time
point t

p(ãt
m) =

∫︂
Ber
(︁
ãt

m|Φ(πm(St; ϕ))
)︁
q(ϕ)dϕ, (4.5)

and finally, normalize them for the categorical distribution Cat(·) such that the
action is chosen from

At ∼ Cat(at), where at
m = ãt

m

/︃
∑

j
ãt

j.

algorithm. As this chapter’s primary objective is to demonstrate the
applicability of the approach, we remain with a very standard, plain RL learn-
ing algorithm. In practical applications, one would rely on more advanced
approaches. Here, we adopt the episodic version of the standard REINFORCE
algorithm as proposed by Williams (1992) to train our policy net, with the
adaptation of using a moving average over all the past rewards as the baseline to
reduce the gradient noise. A labelling episode consists of choosing a sequence
of points to be labelled (with a discount factor of γ = 0.95) after which the
BNN is retrained, and the policy net takes one update step. We parameterize
the policy πϕ(·|St) itself by a neural network with parameters ϕ. Our method
iterates between labelling episodes, training the policy net π, and training the
BNN f until the labelling budget is exhausted. A pseudocode summary of the
proposed method is given in Algorithm 1.
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Algorithm 1: The RAL training procedure

Input: D = {Du,Dl}, labeling budget, state size M, policy πϕ, net fθ ,
episode length T

// Train an initial net
train fθ on Dl as described in Section 4.2.1
while budget available do

// The labeling episode
generate state distribution S0 from Du

for t ∈ 1, ..., T do
sample At via πϕ(St−1)

Dl ← Dl ∪ {data point selected via At}
Du ← Du\{data point selected via At}
generate state distribution St from Du

end
// Update the agent and net
train fθ on Dl
compute rewards Rdiv, Rimprov and returns Gt

update ϕ via gradient descent on
Gt∇ϕ

(︁
log πϕ(At|St) + KL (q(ϕ) ∥ p(ϕ))

)︁
end

4.3 experiments

As RAL is the first method to adapt its acquisition function while active learning
occurs, its natural reference model is the standard active learning setup with a
fixed acquisition heuristic. We choose the most established two information-
theoretic heuristics: Maximum Entropy Sampling (Maxent) and BALD. Gal
et al. (2017) already demonstrated that BNNs (in their case with fixed Bernoulli
dropout) provide an improved signal to acquisition functions that can be used
to improve upon using predictive uncertainty from deterministic nets. We will
use our own BNN formulation for both RAL, and these baseline acquisition
functions to give them access to the same closed-form predictive uncertainty
and, therefore, ensure maximal comparability between our model and the
baselines by having an identical architecture and training procedure for all
methods. For Maxent one selects the point to be labeled next as the one that
maximizes the predictive entropy,

arg max
(x,y)∈Du

H (p(y|x,Dl)) , where

H (p(y|x,Dl)) = −
C

∑
c=1

p(y = c|x,Dl) log p(y = c|x,Dl),

while BALD chooses the point that maximizes the expected reduction in pos-
terior entropy, which is equivalent to choosing the point that maximizes

arg max
(x,y)∈Du

H[p(y|x,Dl)]−Ep(w|Dl) [H[p(y|x, w)]] .
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We can compute maximum entropy as well as the first of the two BALD terms in
closed form, while we calculate the second term of BALD via a sampling-based
approach. We also include random sampling as a—on our kind of data rather
competitive—baseline and evaluate the acquisition functions on three data sets
to show the proposed method’s adaptability to the problem at hand.

4.3.1 Experimental Details

To evaluate the performance of the proposed pipeline2, we take as the predictor
a standard LeNet5 sized model (two convolutional layers of 20, 50 channels
and two linear layers of 500, 10 neurons respectively) and as the guide a policy
net consisting of two layers with 500 hidden neurons in each layer. We use
three different image classification data sets to simulate varying difficulty while
keeping the architectures and hyperparameters fixed. MNIST serves as a simple
data set containing greyscale digits. FashionMNIST remains greyscale but is
more difficult as it consists of ten classes of clothing objects, and CIFAR-10
finally is a very difficult data set given the small classifier depth that requires
the classification of coloured natural images.

The assumption of active learning that labels are scarce and expensive also
entails the problem that a large separate validation set to evaluate and finetune
hyperparameters is not feasible. In general, we followed the assumption that
an AL setting does not allow us to spend valuable labelled data for hyper-
parameter optimization so that they all remain fixed to the common defaults in
the literature. Relying on a separate validation data set that could be used for
hyper-parameter selection is sometimes done in the literature, but often relying
on specially selected hyper-parameters and a small training set is dwarfed by
the effect of reasonable defaults and adding the validation data to the training
data allowing the model to learn a lot more, compensating for suboptimal
hyperparameters by better parameters. Both neural nets are optimized via
Adam (Kingma and Ba, 2015) using the defaults suggested in that paper. The
BNN is trained for 30 epochs between labelling rounds, while the policy net
gets one update step after each episode. To simulate the need to avoid costly
retraining after each labelling episode, the predictor net is initialized to the
learned parameters from the last episode, with a linearly decreasing learning
rate after each episode. In each experiment, the state is constructed by ranking
the unlabeled data points according to their predictive entropy and then taking
every twentieth point until M = 50 points are reached. Since all three data
sets consider a 10 class classification problem, the result is a 500 dimensional
normal distribution as the input to the policy net. A labelling round consists of
labelling 5 points, and the procedure is repeated until 400 labelled points are
reached starting from an initial set of 50 random labelled points. While the set
of initial points differed between repetitions, all four approaches started with
the same random 50 points to avoid any influence due to that choice.

2 See https://github.com/manuelhaussmann/ral for a reference implementation.

https://github.com/manuelhaussmann/ral
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Table 4.1: Results. The table gives the average and the final error on the test set in
percent (± one standard deviation over five runs). Average Error gives
the average over the whole labeling process, while Final Error reports
the error after labeling 400 labeled points.

MNIST FashionMNIST CIFAR-10
Average Error

Random 19.01±1.55 28.70±0.61 74.02±0.56

Maxent 19.81±2.10 30.43±1.48 74.52±0.72

BALD 17.22±1.33 30.93±0.97 74.21±1.28

RAL 16.38±0.79 28.51±0.71 73.32±0.72

Final Error
Random 10.41±2.28 24.64±0.48 69.78±0.69

Maxent 8.61±1.25 25.72±1.28 69.80±0.32

BALD 6.91±0.23 26.85±0.49 69.69±1.69

RAL 6.81±0.99 23.69±0.73 68.96±1.03

4.3.2 Results

We summarize the results in Table 4.1 and show the development of the test
set in Figure 4.3. RAL can learn to adapt itself to the data set at hand, always
outperforming the baselines. On the simple MNIST using a random strategy
for labelling points is rather ineffective as a lot of points are quickly trivial for
the net. On FashionMNIST Maxent and BALD struggle a lot more, and on
CIFAR-10 the task is so complicated for the small net that essentially any point
can provide a good signal, with RAL only slightly outperforming the other
methods. Note the rather large standard deviations between the runs indicating
a strong dependence on the set of initial points and the stochasticity in the
gradient descent updates.

Although RAL uses a thinned Maxent ranking to generate its state, it can
improve upon that strategy in every case. An ablation study (see the end of this
chapter) showed that while the thinning process can improve the plain Maxent
in some settings if one were to use it as a fixed strategy, it is not sufficient to
explain the final performance difference between RAL and Maxent.

Finally, it should be remarked that our central goal in these experiments is to
evaluate the relative performance of RAL and the baselines and not the absolute
performance. For a real-world application, one would use deeper architectures
for the more complex data sets, incorporate pre-trained networks from similar
labelled data sets, and use data augmentation to use the small labelled dataset
maximally. Further benefits would come from using semi-supervised informa-
tion, for example by assigning pseudo-labels to data points that the classifier
assigns a high predictive certainty to (Wang et al., 2016). Such approaches
would significantly improve the classifier performance for all models, but since
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Figure 4.3: Image Classification Results. The development of the test set error
throughout the labeling process. The plots are (from top to bottom) over
MNIST, FashionMNIST, and CIFAR-10. In each the thick line is the
smoothed average over five individual runs. The shading visualizes one
standard deviation.
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they would blur the respective acquisition function’s contribution, we con-
sciously ignore them here. REINFORCE owes its success to the bulk filtering
step, which substantially facilitates the reinforcement learning problem by
filtering out a large portion of the search space. The simplified problem can
thus be improved within a small number of episodes. More interactions with
the environment would certainly bring further improvement at the expense
of increasing labelling cost. We are satisfied her weith presenting a proof-of-
concept for the idea that can improve on the feedback-free AL even within
limited interaction rounds. Further algorithmic improvements are worthwhile
investigating as future work, such as applying TRPO (Schulman et al., 2015)
or PPO (Schulman et al., 2017) in place of vanilla REINFORCE.

4.4 related work

The gold standard in active learning methods has long remained to rely on
hard-coded and hand-designed acquisition heuristics (see Settles (2012) for a
recent review). A first extension is not limiting oneself to one heuristic, but to
learn how to choose between multiple ones, for example by relying on a bandit
algorithm (Baram et al., 2004; Hsu and Lin, 2015; Chu and Lin, 2016) or a
Markov Decision Process (Ebert et al., 2012). However, this still suffers from
the problem of being limited to existing heuristics.

A further step to gain more flexibility is to formulate the problem as a meta-
learning task. The general idea (Fang et al., 2017; Konyushkova et al., 2017;
Pang et al., 2018) is to use a set of labelled data sets to learn a general acquisi-
tion function that can either be applied as-is to the target data set or finetuned
on a sufficiently similar set of labelled data. Our approach differs from those
attempts because we learn the acquisition function based solely on the target
data distribution while the data is labelled. If we take the scarcity of labels
serious, we can’t allow ourselves the luxury of a separate large validation set to
adapt a general heuristic. Such a validation set also could not outperform the
straight forward ablation study of allowing a simple hard-coded acquisition
function that does not need a separate data set to instead combine the validation
set with the labelled data to learn on. This is simply due to that as long as
little labelled data is available, the gain from being able to learn from extra
data tends to outweigh the benefit one would get by a complicated acquisi-
tion function, and as soon as data becomes more abundant, the effectiveness
of any active learning method reduces sharply. We, therefore, discard such
approaches from our comparative analysis. A similar related area is the field
of metareasoning (Callaway et al., 2018), where an agent has to learn how to
request based on a limited computational budget.

Alongside the sampling-based alternatives for BNN inference, which are al-
ready abundant and standardized (Blundell et al., 2015; Kingma et al., 2015;
Gal and Ghahramani, 2016b; Louizos et al., 2017; Molchanov et al., 2017),
deterministic inference techniques are also emerging. While direct adaptations
of expectation propagation are the earliest of such methods (Hernández-Lobato
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and Adams, 2015; Gast and Roth, 2018), they do not yet have a widespread
reception due to their relative instability in training. This problem arises from
the fact that expectation propagation does not provide any convergence guaran-
tees. Hence an update might either improve or deteriorate the model fit on even
the training data. Contrarily, variational inference maximizes a lower bound
on the log-marginal likelihood. Early studies exist on deterministic variational
inference of BNNs (Wu et al., 2019; Haußmann et al., 2020b). However, neither
quantifies the uncertainty quality by using the posterior predictive of their mod-
els for a downstream application. Earlier work that performs active learning
with BNNs does exist (Hernández-Lobato and Adams, 2015; Gal et al., 2017;
Depeweg et al., 2018). However, all of these studies use hard-coded acquisition
heuristics.

Our state construction method that forms a normal distribution from the poste-
rior predictive of data points shortlisted by a bootstrap acquisition criterion is
a novel idea for the active learning setting. It has strong links to model-based
reinforcement learning methods that propagate uncertainties through one-step
predictors along the time axis (Deisenroth and Rasmussen, 2011).

4.5 conclusion

We discussed in this chapter the introduction of a new reinforcement-based
method for labelling criterion learning. It can learn how to choose points par-
allel to the labelling process itself instead of requiring large already labelled
subsets to learn on in an off-line setting beforehand. We achieve this by formu-
lating the classification net, the policy net as well as the state probabilistically.
We demonstrate its ability to adapt to various qualitatively different data set
situations performing similar to or even outperforming handcrafted heuristics.
In future work, we plan to extend the policy net with a density estimator that
models the input data distribution to take the underlying geometry into account,
making it less dependent on the quality of the probabilities.

4.6 further details

We close this discussion on active learning with a series of ablations. The
first of these targets the question of the state generation. How much of the
model performance is due to the entropy-based preprocessing and thinning
we discussed? The second and third target the CLT approach itself. Yes, it is
theoretically pleasing, and the sample-free structure should give us cleaner
gradients and a better uncertainty signal, but does it? We first evaluate its
influence on the convergence speed and then the quality of the predictive
uncertainty with respect to the different acquisition functions.

Finally, we provide the remaining hyperparameters for the experiments that
were not discussed in the main part.
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Table 4.2: This table gives the corresponding results to Figure 4.4 giving the mean ±
one standard deviation averaged over five runs.

FashionMNIST Avg. Error Final Error
Random 28.70±0.61 24.64±0.48

Maxent 30.43±1.48 25.72±1.28

Maxent_thinned 29.81±1.59 24.53±1.58

RAL_nograd 28.57±0.54 24.75±0.67

Reinit RAL 28.90±0.10 24.12±0.99

RAL 28.51±0.71 23.69±0.73

4.6.1 Ablation Study on State Construction and the Guide

A question that arises from our results is whether the improvements are actually
due to the policy net adapting itself to the current data set or whether the credit
should go to the bootstrapping and thinning done in the state definition. To eval-
uate this, we run two different ablation experiments on FashionMNIST:

1. We consider applying the same thinning approach we use in the state
construction to the Maxent criterion training. Similar to our state deriva-
tion, we pick every twentieth point as ranked by Maxent until reaching
50 points and randomly pick five of those. One can see this as relaxing
the pure exploitation of Maxent by encouraging more exploration. We
refer to this variation as Maxent_thinned and show that it improves upon Maxent_thinned
Maxent. However, it still does not reach RAL performance.

2. To further explore the influence of the policy net, we consider three vari-
ations. (i) The original RAL model as proposed in the main discussion;
(ii) A variation we refer to as RAL_nograd, where we fix the policy at RAL_nograd
a random initialization, leaving it to essentially pick randomly among
the constructed state; (iii) Reinit RAL where we reinitialize it after every Reininit RAL
labelling episode, to explore how fast it converges and whether this helps
it to adapt to new datapoints without getting stuck in local minima. RAL
can always perform at least as good or better than this version, indicating
that it jumps over suboptimal local minima while fixing the gradients
returns the model’s performance to random sampling as expected.

We summarize theis ablation experiment visually in Figure 4.4. Table 4.2 gives
the corresponding average and final error.

4.6.2 Convergence and Classification Accuracy

To evaluate the performance and convergence speed of a dropout trained
BNN with our proposed CLT-based BNN, we compare the following vari-
ations:
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Figure 4.4: Ablation study. (a) gives the comparison of classical Maximum Entropy
vs the thinned version. (b) summarizes the ablation experiments on RAL.
The bold line in each gives the mean and the shaded area visualizes one
standard deviation over five runs.
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Figure 4.5: FashionMNIST Convergence Comparison. An ablation comparing the
performance of dropout based nets with our proposed model. The filled
areas give ± one standard deviation over five runs.

i) Drop-BNN-CE a deterministic network with binary dropout (p = 0.5)
between all hidden layers and a categorical cross-entropy loss;

ii) Drop-BNN-Prob which uses the same binary Probit likelihood as our
proposed model;

iii) CLT-BNN-Fix which is our proposed CLT based network, but with fixed
variance parameters, to mimic a Gaussian dropout with an equivalent
rate as the binary dropout used for i);

iv) CLT-BNN which is our proposed CLT based network with learnable
variance parameters, i.e. the one we use in the main experiments.

We evaluate them on our dataset of intermediate difficulty, FashionMNIST. The
results are the average over five runs of random initialization on a random subset
of 10000 data points (batch size 64), the latter being identical for each method
in a single run, to have both data as well as parameter variation. Prior precision
for the BNNs is balanced with the weight decay of the Dropout-BNNs.

We report the perforamce in Figure 4.5. While all four methods eventually
converge to the same performance, the two CLT-BNN variations converge a
lot faster, with our proposed CLT-BNN being the most efficient.

4.6.3 Quality of Uncertainty Estimation

To compare our proposed model propagating the variances in closed form,
instead of the sample-based dropout approach, we repeat the active learning
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Figure 4.6: FashionMNIST Uncertainty Comparison. An ablation comparing the
performance of dropout based nets with our proposed model. The filled
areas give ± one standard deviation over five runs.

experiment on FashionMNIST in the following variation. Drop-BNN gets 12
samples to estimate Maxent and BALD. To further show some variation, we
switch two of the primary hyperparameters. We increase the initial learning
rate to 10−3 and raise the batch-size to 64 to compare the method’s robustness
to such kind of changes. We report the results in Figure 4.6. RAL remains the
overall best-performing approach, while the difference in predictive accuracy
is most evident in the performance difference of Drop-BNN-Maxent and CLT-
BNN-Maxent, where the latter’s closed-form approach greatly improve upon a
sample-based dropout one.

4.7 further details on the experiments

classifier architecture. Throughout the experiments, the structure
we use for the BNN classifier closely follows the LeNet architecture described
in the Caffe library3, with strided convolutions replacing the two max-pooling
layers. See Table 4.3 for the details of the MNIST/FashionMNIST experiments
and Table 4.4 for the CIFAR-10 experiment (the latter gets a larger set of
weights and filters). Each layer, except for the last, is followed by a ReLU acti-
vation, propagating the moments as described in the main discussion. The prior
precision of their weights is assumed to be α = 10 for all experiments.

3 https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_
train_test.prototxt

https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_train_test.prototxt
https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_train_test.prototxt
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Table 4.3: Classifier architecture for MNIST/FashionMNIST

MNIST/FashionMNIST
(1, 28, 28) dim input

Convolution (5× 5) with 20 channels, stride=2
Convolution (5× 5) with 50 channels, stride=2

Linear Layer (800, 500)
Linear Layer (500, 10)

Table 4.4: Classifier architecture for CIFAR-10.

CIFAR-10
(3, 32, 32) dim input

Convolution (5× 5) with 192 channels, stride=2
Convolution (5× 5) with 192 channels, stride=2

Linear Layer (4800, 1000)
Linear Layer (1000, 10)

state construction. The state is constructed by first ranking the unla-
beled points by their predictive entropy with respect to the current variational
posterior and taking the penultimate moments (i. e.pre-Probit) of every twenti-
eth point until reaching 50 points. The state is then their concatenation, which
means it is a 500 dimensional multivariate normal distribution with diagonal
covariance structure.

policy net architecture. The policy net consists of a BNN with two
linear layers, with a ReLU activation between them following the derivations
in the main discussion. Its architecture is summarized in Table 4.5. The prior
precision on the weights is α = 100.

Table 4.5: Policy net architecture.

Policy Net
(500, 2) dim (mean, variance) input

Linear Layer (500, 256)
Linear Layer (256, 50)

returns and baselines. The returns are computed with a discount
factor of γ = 0.95 as Gi = ∑T−i

j=1 γjRi+j, and the policy gradient uses a
moving average baseline.

optimization. Both, the classifier BNN and the policy net, are optimized
using the Adam optimization algorithm introduced by Kingma and Ba (2015)
with their proposed hyperparameters, which are β1 = 0.9, β2 = 0.999, ε =
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10−8. The learning rate for the classifier starts as λcl = 10−4 and is linearly
reduced after each labeling episode. The policy net has a fixed learning rate of
λpol = 10−3 throughout an experiment.

training procedure. The training procedure is summarized in Algo-
rithm 1 above. A labeling round consists of labeling 5 new points, after which
the policy net gets one update step and the underlying classifier gets 30 epochs
(batchsize 10) worth of gradient descent steps.



5
BAY E S I A N E V I D E N T I A L D E E P L E A R N I NG W I T H
PAC - BAY E S R E G U L A R I Z AT I O N

As we have seen in the last chapters, the probabilistic weight structure of
BNNs allows them to express complex uncertainty structures. However, as
we have also seen, the exact inference of such a highly nonlinear system is
analytically intractable and extremely hard to approximate with high preci-
sion. As we have discussed, research on BNNs thus far focused primarily on
improving approximate inference techniques in precision and computational
cost (Hernández-Lobato and Adams, 2015; Kingma et al., 2015; Louizos and
Welling, 2017). All these prior attempts take the posterior inference of global
parameters as given and develop their approximation based on it.

A newly emerging alternative approach is direct predictive distribution mod-
elling. This approach proposes devising a highly expressive predictive distri-
bution with several free parameters. These parameters are then fit to the data
via maximum likelihood estimation. This way, observations are used to train
the end product of interest directly: the predictive distribution, bypassing the
need for the intractable posterior inference step. Some existing methods model
the predictive distribution via a stochastic process parameterized as a neural
net (Garnelo et al., 2018a). Others introduce local priors on the likelihood
activations, integrate them out and train the hyperparameters of the resultant
marginal (Malinin and Gales, 2018; Sensoy et al., 2018).

In this chapter, we first discuss how we directly target the posterior predic-
tive in a Bayesian Neural Network (BNN). We assume independent local
weight random variables controlling the BNN for each input/target pair of data
points, which share common hyperparameters. We marginalize these data-point
specific weights of our network and perform training via type-II maximum
likelihood/empirical Bayes on the prior hyperparameters. This analytically
intractable marginalization is approximated using the Central Limit Theorem
(CLT), which we already saw used in a variational inference interpretation in
the last chapters. Differently from earlier weight marginalization approaches
that assign global weight distributions on infinitely many neurons that recover
a Gaussian Process (Neal, 1995; Lee et al., 2018a; Garriga-Alonso et al., 2019),
our formulation maintains finitely many hidden units per layer and assigns
them individual weight distributions. Due to the weight marginalization per
data-point treatment, the BNN scales training linearly with the data set size.
Adopting empirical Bayes training on this simplified setup, our method avoids

This chapter builds on and extends Haußmann et al. (2020a). In that publication, Sebastian
Gerwinn contributed part of the PAC-Bayes discussion and the adaptation of the KL inversion.

75



76 bayesian evidential deep learning with pac-bayes regularization

the explicit approximation of a highly nonlinear and intractable weight posterior
yet can improve the quality of uncertainty estimations.

Given that training framework, we extend it by including the second approach,
i.e. the inclusion of a “local prior” that is to be optimized over. For that, we
combine it with a state of the art of that latter approach, Evidential Deep Learn-
ing (EDL) (Sensoy et al., 2018), due to its technical simplicity (e.g. it does not
require access to out of distribution data during training as for example the
otherwise related method of Malinin and Gales (2018) requires) and observed
effects on experimental data. EDL places a Dirichlet prior on the class assign-
ment probabilities of a classifier and parameterizes the Dirichlet strengths of
this prior with a neural net. While demonstrating substantial improvements in
out-of-distribution (OOD) detection and adversarial robustness, EDL is not
capable of decomposing epistemic and aleatoric uncertainties. We propose an
efficient and effective method that extends EDL to BNNs, equipping it with
more advanced uncertainty quantification and decomposition capabilities. The
advantages of such a BNN with data-point specific marginalization comes at the
expense of a major drawback. As the number of hyperparameters in a weight-
marginalized BNN grows proportionally to the number of synaptic connections
and hence maximizing the marginal likelihood with respect to such a large
number of hyperparameters is prone to overfitting (Bauer et al., 2016). Since the
weight variables are marginalized out and their hyperparameters of the weight
prior are set via optimization, the model can no longer incorporate regularizing
knowledge other than the parametric form of the prior distribution (e.g. normal
with mean and variance as free parameters). We address this drawback by
deriving a Probably Approximately Correct Bayes (PAC-Bayes) (McAllester,
1999, 2003) bound that contains the marginal likelihood as its empirical risk
term. Minimization of this PAC-Bayes bound automatically balances the fit to
the data and deviation from a prior regularizing hypothesis.

We refer to the model as Bayesian Evidential Deep Learning (BEDL) and eval-
uate it on various standard regression, classification, and out-of-distribution
detection benchmarks against state-of-the-art approximate posterior inference
based BNN training approaches. We observe that our method provides compet-
itive prediction accuracy and better uncertainty estimation scores than those
baselines.

To summarize the structure of this chapter. We first discuss in Section 5.1
how to adapt the CLT approach to optimizing the posterior predictive directly.
Section 5.2 then gives a background on the evidential deep learning setup by
Sensoy et al. (2018) and how to combine the two. We close the theoretical
discussion in Section 5.3 with a principled way to regularize the joint model
via a PAC-Bayes bound, evaluating it in Section 5.6. See the further details
section at the end of this chapter for some extended technical discussions that
would distract from the main storyline. Figure 5.1 gives a high-level conceptual
summary of the approach.



5.1 bayesian local neural networks 77

⇒

Dir(λ|α)

⇒ ⇒

+
√︃

KL
(︁
Dir(λ|α)||Dir(λ|1)

)︁
+log(B/δ)

N

Cat(y|λ)

µ, σ 2→

→→

µ, σ
2→

µ, σ2→

→

→

µ, σ2→

Figure 5.1: The proposed model for Bayesian Evidential Deep Learning. The
orange arrows on the Bayesian Neural Network indicate the progressive
flow of the moments during the weight integration phase. The output layer
of the BNN determines the Dirichlet strengths of the prior on the class
probability masses. We train this model using empirical Bayes/type-II
maximum likelihood supported by a complexity penalty term derived
from PAC-Bayesian principles.

5.1 bayesian local neural networks

Given a data set D = {(xn, yn)N
n=1} consisting of N pairs of input xn and tar-

get yn, parameterizing the likelihood by a BNN f (·; w) with random variables
w as the weights results in the generative model

w ∼ p(w),

yn|xn, w ∼ p(yn|xn, wn), ∀n
(5.1)

which we are familiar with by now from the earlier chapters. As usual, the like-
lihood p(yn|xn, w) depends on the target domain, for example for regression
one would have p(yn|xn, w) = N

(︁
yn| f (xn; w), β−1)︁, with precision β, and

some prior p(w).

As discussed in the last chapters, the canonical variational inference based
approach (Blundell et al., 2015; Kingma et al., 2015; Gal and Ghahramani,
2016a; Louizos and Welling, 2017) would now be to maximize the evidential
lower bound

log p(D) ≥ Eqθ(w) [log p(D|w)]−KL (qθ(w) ∥ p(w)) , (5.2)

with respect to the parameters controlling the variational approximation to the
posterior qθ(w). As discussed in the corresponding section of the background
chapter and as we have seen in the earlier BNN models, in a deep learning
setting, contrary to more classical models, we are usually not interested in the
posterior in itself, but only insofar as it is a necessary step on the path towards
the posterior predictive

p(y∗|D, x∗) =
∫︂

p(y∗|x∗, w)p(w|D)dw

≈
∫︂

p(y∗|x∗, w)qθ(w)dw,
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for some test point x∗. This raises the question of how one could directly tackle
the posterior predictive? This distribution is exactly the left-hand side of the
evidence lower bound on the training data, i.e. the marginal likelihood p(D)
also known as evidence.

A well-established approach is to use this quantity for model comparison
or selection. It suggests marginalizing out all latent variables, comparing
the marginal likelihoods of all possible hypotheses, and choosing the one
providing the highest response (Kass and Raftery, 1995). If we assume that
the prior is not parameter-free but depends on some hyperparameters, e.g. a
prior precision in the case of a normal prior, maximizing the evidence with
respect to these hyperparameters is common practice, instead of introducing
hyperpriors over these parameters and inferring posteriors over them (which
would also just postpone the question as to the choice of their parameters
controlling these hyperpriors). Referred to as type-II maximum likelihood or
empirical Bayes (Bishop, 2006; Efron, 2012), this technique is fundamental
for fitting non-parametric models such as Gaussian Processes (see e.g. Chapter
5 in Rasmussen and Williams, 2006).

We could then consider the following variation on the model above

w ∼ pθ(w),

yn|xn, w ∼ p(yn|xn, wn), ∀n.
(5.3)

Instead of a parameter-free prior p(w) we switch to a parametric prior pθ(w)

and learn its hyperparameters via a type-II maximum likelihood approach

arg max
θ

log pθ(D).

This idea avoids the variational posterior but poses three problems.

First, for a model such as a BNN, the true posterior will by highly multimodal,
a fact that we cannot reproduce by this approach, given the usually factorized
priors. We ignore this problem for now insofar as it shared with the common
mean-field variational posterior approach, which is also a very naive approx-
imation to the true posterior. In both cases, the approximation is primarily
motivated out of technical necessity to keep everything scalable.

The second problem is more profound as it is one where the suggested ap-
proach differs from the variational inference one. That is, the ELBO in (5.2)
decomposes into a data-fit term and a regularizing term using a fixed prior.
The proposition is regularized only through the fixed factorization and the
marginalization, loosing both the regularizing term of a fixed prior and its func-
tion to include real prior knowledge in the fixed parameters. We will discuss a
principled approach to tackle this problem in Section 5.3.

The third problem relates to this data fit term. Variational inference considers
the expected log-likelihood

Eqθ(w) [log p(D|w)] ,
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while the proposal can be understood as instead considering the logarithm of
the expected likelihood

log p(D) = logEpθ(w) [p(D|w)] ≥ Epθ(w) [log p(D|w)] ,

where the inequality holds via Jensen’s inequality. Assuming that both the prior
and the variational posterior are mean-field versions of the same distributions,
optimizing this lower bound would revert to optimizing the evidence lower
bound after dropping the Kullback-Leibler term. Focusing, however, on the
left-hand side, the is primarily due to the large data sets considered in a deep
learning setup. The expectation of the log-likelihood decomposes into

Eqθ(w) [log p(D|w)] = Eqθ(w)

[︄
N

∑
n=1

log p(yn|xn, w)

]︄

=
N

∑
n=1

Eqθ(w) [log p(yn|xn, w)]

≈ M
N

M

∑
m=1

Eqθ(w) [log p(ym|xm, w)] ,

allowing in the last step for a mini-batch approximation which will be necessary
for efficient training in practice. The log of the expectation however does not
allow for this decomposition

log p(D) = log
∫︂ N

∏
n=1

p(yn|xn, w)pθ(w)dw,

due to the shared weights. We therefore formulate the generative model as BLNN

wn ∼ pθ(wn), ∀n

yn|xn, w ∼ p(yn|xn, wn), ∀n,
(5.4)

that is, we have a local set of weights for each data pair, sharing a common set
of hyper-parameters θ. As this modification implies a collection of only local
latent variables, we refer to the resultant probabilistic model as a Bayesian
Local Neural Net (BLNN).

Introducing an independent wn for each pair (xn, yn) leads to a marginal
likelihood formulation corresponding to a sum of N independent marginal
likelihoods, giving the desired decomposition structure

log pθ(D) = log
∫︂ N

∏
n=1

p(yn|xn, wn)pθ(wn)dw1 · · ·dwN

=
N

∑
n=1

log
∫︂

p(yn|xn, wn)pθ(wn)dwn

=
N

∑
n=1

log pθ(yn|xn) ≈
N
M

M

∑
m=1

log pθ(ym|xm) (5.5)

for a mini batch of size M.
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The density function of the marginal likelihood of a training data point is
identical to the posterior predictive density for new test observation x∗. Hence,
an analytic approximation developed for training is directly applicable at test
time. The independence assumption across data points has various benefits.
Provided that the integrals in (5.5) are analytically tractable, the computational
complexity scales linearly with the training set size.

5.1.1 Analytic Marginalization of Local Weights with Moment Matching

Marginalizing out the local weights wn in each term in (5.5) is an intractable
problem due to the highly nonlinear neural net appearing in the likelihood
p(yn|xn, wn). However, we can follow the approach discussed in the last chap-
ter and marginalize the weights approximately by recursive moment match-
ing resorting to the Central Limit Theorem (CLT). This technique has pre-
viously been used in BNNs for other purposes, such as expectation propaga-
tion (Hernández-Lobato and Adams, 2015; Ghosh et al., 2016), fast dropout
(Wang and Manning, 2013), and variational inference (Haußmann et al., 2019;
Wu et al., 2019).

We employ the same technique for marginalizing out the weights of the BLNN.
For a single data point and the l-th hidden fully-connected layer1 consisting of K
units with an arbitrary activation function a(·), the post-activation layer output
is given as hl = a( f l), where f l = W lhl−1. The j-th pre-activation output
f l
j is a sum of K terms f l

j = ∑k wl
jkhl−1

k , which allows us to assume it to be
normally distributed via the CLT due to the independence of the individual wl

jk

and hl−1
k terms. The mean and the variance of this random variable are

E
[︂

f l
j

]︂
=

K

∑
k=1
E
[︂
wl

jk

]︂
E
[︂

hl−1
k

]︂
,

var
[︂

f l
j

]︂
=

K

∑
k=1
E
[︂
(wl

jk)
2
]︂

var
[︂

hl−1
k

]︂
+ var

[︂
wl

jk

]︂ (︁
E
[︂

hl−1
k

]︂ )︁2,

where we drop any potential covariance structure between the outputs of a
layer. Although computing and propagating full covariance matrices across the
layers would be mathematically feasible subject to further approximations, the
computational costs (both memory and runtime wise) quickly become too large
for such an approach to be tractable for anything but the tiniest networks.

The mean and the variance of the weights are readily available via the dis-
tributions pθ(wn), leaving only the first two moments of hl−1

k undetermined.
For common activations such as the ReLU, a(hl−1

k ) = max(0, hl−1
k ), which

we will rely on in this work, closed-form solutions to these moments are
tractable (Frey and Hinton, 1999) given the moments of the pre-activations of
the previous layer f l−1 (see Section 5.8.1 for details). This gives a recursive
scheme terminating at the input layer, since we have f 1

j = ∑k w1
hjxk. As xk is

1 Convolutional layers follow analogously.
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usually a constant, its first moment is itself and the second is zero. This gives
us that for the first layer pre-activations we have

E
[︂

f 1
j

]︂
=

K

∑
k=1
E[w1

jk]xk,

var
[︂

f 1
j

]︂
=

K

∑
k=1

var[wl
jk]x

2
k ,

completing the full recipe of how all weights of a BNN can be recursively
integrated out from bottom to top, subject to a tight approximation. Scenarios
with stochastic input x ∼ p(x) typically entail controllable assumptions on
p(x). The equations above remain intact after adding an expectation operator
around xk and x2

k , readily available for any explicitly defined p(x). Contrarily
to the case in GPs, stochastic inputs can so be trivially adapted into this frame-
work, greatly simplifying the math for uncertainty-sensitive setups, such as
PILCO (Deisenroth et al., 2015).

For a net with L layers, the outcome of recursive moment matching is a distri-
bution over the final latent hidden layer f L

n ∼ N ( f L
n |mn, s2

n), simplifying the
highly nonlinear integrals in (5.5) to

log pθ(yn|xn) =
∫︂

p(yn|xn, wn)p(wn)dwn

≈
∫︂

p(yn| f L
n )N ( f L

n |mn, s2
n)d f L

n

= N
(︂

yn|mn,
1
β
+ s2

n

)︂
,

where mn, s2
n are the mean and variance of f L

n , and β is the precision of the
normal regression likelihood.

extensions. Similar to our discussion on the VBP approach in Chapter 3,
adaptations of CLT-based recursive moment matching to many other activa-
tion types and skip connections are feasible without further approximations.
Max pooling can also be incorporated using approximations but have also
been shown to be replaceable altogether by strided convolutions without a
performance loss (Springenberg et al., 2015). Deeper networks tend to require
normalization procedures, which are not directly amenable to this moment
matching. However, one can also compute tractable moments for activation
functions such as the ELU (Clevert et al., 2016), which has not been done to
our knowledge. We show how to compute the required moments at the end of
this chapter.

5.2 bayesian evidential deep learning (bedl)

We will now introduce the concept of evidential deep learning (Sensoy et al.,
2018) and how to combine it with the marginal likelihood approach.
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5.2.1 Evidential Deep Learning

We can see classification with the cross-entropy loss in the standard deep
learning setup as performing maximum-likelihood learning with a categorical
likelihood parameterized by a neural net. Evidential Deep Learning (EDL)
(Sensoy et al., 2018) generalize this setup by instead parameterizing a prior to
this categorical likelihood by a neural net f (·; w) with deterministic weights
w, which we can see formally as

λn|xn ∼ p(λn|xn),

yn|λn ∼ p(yn|λn), ∀n.

This way, the model explicitly accounts for the distributional uncertainty
which may arise due to a mismatch between the train and test data distribu-
tions (Quionero-Candela et al., 2009). For classification, a natural choice for
the prior p(λn|w, xn) on the categorical likelihood is a Dirichlet distribution,
and the corresponding model becomes

λn|xn ∼ Dir
(︁
λn|αn(xn)

)︁
,

yn|λn ∼ Cat
(︁
yn|λn

)︁
, ∀n,

where Sensoy et al. (2018) use αn(xn) ≜ max(0, f (xn; w)) + 1 for some
arbitrary neural net architecture f (·; ·) to ensure that the positivity constraint
on the paramters of the Dirichlet distribution is fulfilled.2

To train an EDL model, Sensoy et al. (2018) use a one-hot encoding of the
target class and minimize the expected sum of squares between yn and λn

(known as the Brier score) with an additional regularizing Kullback-Leibler
(KL) divergence on the λn

LEDL =
N

∑
n=1

Ep(λn|xn)

[︁
||yn − λn||2

]︁
+ KL

(︁
Dir(λn|α̃n) ∥ Dir(λn|(1, . . . , 1))

)︁
,

with the modification of using α̃n = yn + (1− yn) ◦ αn. This removes the
regularization induced by the KL term from the α belonging to the true class
in the n-th instance.

This loss is, up to constant scaling factors, very similar to a variational infer-
ence approach maximizing the evidence lower bound. Assuming a normal
likelihood p(yn|λn) with precision β, a prior p(λn) = Dir

(︁
λn|(1, . . . , 1)

)︁
,

and a variational posterior q(λn) = Dir
(︁
λn|αn), we have the ELBO

LELBO(w) = −
N

∑
n=1

Eq(λn) [log p(yn|λn)] + KL (q(λn) ∥ p(λn))

2 We will instead rely on the transformation αn(xn) ≜ exp( f (xn; w)) throughout the experi-
ments to be closer to the usual interpretation of the neural net outputs being in the log-space
followed by a transformation in the probability simplex via the softmax function.
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λn
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xn

yn
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Figure 5.2: The generative model as (implicitly) by EDL and our proposed BEDL.

c
=

N

∑
n=1

β

2
Eq(λn)

[︁
||yn − λn||22

]︁
+ KL (q(λn) ∥ p(λn)) , (5.6)

where both the expectation as well as the KL terms are analytically tractable
for the chosen distributions. The weights of the net so far have been treated
as deterministic parameters. In the following subsections, we will discuss
how to adapt this setup to probabilistic weights by using the BLNN structure
introduced before.

5.2.2 Bayesian Evidential Deep Learning

We adapt this framework by assigning a local prior on the EDL weights pθ(wn),
where we in the experiments will assume the weights to be normal distributed
such that we have wn ∼ pθ(wn) = N

(︁
wn|µ, diag(σ2)

)︁
, i.e. θ = (µ, σ2).

The generative model is then

wn ∼ N
(︁
wn|µ, diag(σ2)

)︁
,

λn|wn, xn ∼ Dir
(︁
λn|αn(xn; wn)

)︁
,

yn|λn ∼ Cat(yn|λn), ∀n.

As a second modification, instead of a mean-square-error objective, we opti-
mize the marginal likelihood, which amounts to employing a BLNN as a prior
on the likelihood and marginalizing over all wn as well as λn. We name the
eventual model that combines BLNN with EDL Bayesian Evidential Deep
Learning (BEDL).

By virtue of the localized weights, the marginal likelihood of BEDL factorizes
across data points. This allows us to consider additive data point specific
marginal log-likelihoods, which is the central source of its scalability,

log pθ(y|X)

= log
∫︂

∏
n

p(yn|λn)p(λn|wn, xn)pθ(wn)dλ1 . . . dλN dw1 . . . dwN
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= ∑
n

log
∫︂

p(yn|λn)p(λn|wn, xn)pθ(wn)dλn dwn

≈∑
n

log pθ(yn|xn). (5.7)

The marginalization of λn on the last step can be performed analytically under
conjugacy or can be efficiently approximated by Taylor expansion or Monte
Carlo sampling, while one can employ the moment matching approach we
discussed to marginalize the weights wn.

For the C-class classification task with one-hot encoded categorically dis-
tributed targets yn ∈ {0, 1}C and Dirichlet distributed λn as in the model
above, this gives us for the n-th term in (5.7),

log
∫︂ (︃∫︂

p(yn|λn)p(λn|αn)dλn

)︃
N ( f L

n |mn, s2
n)d f L

n

= logEN ( f L
n |mn,s2

n)

[︄
C

∏
c=1

(︃
αnc

αn0

)︃ync
]︄

, (5.8)

where we use the parametrization αn = (αn1, ..., αnC) = exp( f L
n ), and αn0 =

∑c αnc. The main computational bottleneck consists of the marginalization of
the weights. Circumenting this by the analytical CLT-based moment matching
through the neural net layers, the final expectation is cheap enough to be
efficiently approximated by sampling.

uncertainty decomposition. Following Depeweg et al. (2018) one
can use the law of total variance to decompose the predictive variance of the
final marginal for a data pair (x, y) as follows

var [y|x] = varw
[︁
E [y|w, x]

]︁
+Ew

[︁
var [y|w, x]

]︁
.

Here the first term, varw [E [y|w, x]], focuses on the contribution to this pre-
dictive uncertainty by the variance over the network weights, i.e. the epistemic
uncertainty. In contrast, the second, Ew [var [y|w, x]], represents the remain-
ing variance in the likelihood for the average weights. After having marginal-
ized over λ, the mean and variance E [y|w, x], var [y|w, x], are analytically
tractable and are given as

E [yc|w, x] =
αc

α0
and var [yc|w, x] =

αc

α0

(︂
1− αc

α0

)︂
.

The EDL formulation allows for an analytic computation of the predictive
variance, however as it considers only deterministic weights, it gets for a set of
learned learned parameters ŵ the predictive variance

var [y|x] = var [y|ŵ, x] ,

i.e. only a measure of the aleatoric uncertainty, lacking the epistemic. Our ex-
tension allows for the decomposition of the predictive uncertainty maintaining
analytical tractability of the approximation to a great extent

var [y|x] = varw [E [y|w, x]] +Ew [var [y|w, x]]
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≈ var f L

[︂
E
[︂
y| f L, x

]︂]︂
+E f L

[︂
var

[︂
y| f L, x

]︂]︂
,

where the final variance and expectation can be efficiently approximated with
samples as discussed above.

5.3 a vacuous pac-bayes bound to regularize bedl

Training the objective in (5.7) is effective for fitting a predictor to the observed
data. It also naturally provides a learned loss attenuation mechanism. However,
as we already hinted at, it lacks a key advantage of the Bayesian modelling
paradigm. As the hyperparameters of the weight priors are employed for model
fitting, they no longer contribute to training as complexity penalizers. It is well-
known from the GP literature that marginal likelihood-based training is prone
to overfitting for models with a large number of hyperparameters (Bauer et al.,
2016). We address this shortcoming by complementing the marginal likelihood
objective of (5.7) with a penalty term derived from learning-theoretic first
principles. We tailor the eventual loss only for robust model training and keep
it maximally generic across learning setups. This comes at the expense of
arriving at a generalization bound that makes a theoretically trivial statement,
as it is too loose to give a good generalization guarantee, yet brings significant
improvements to training quality, as illustrated in our experiments.

PAC-Bayes bounds have been commonly used for likelihood-free and loss-
driven learning settings. A rare exception by Germain et al. (2016) proves the
theoretical equivalence of a particular sort of PAC-Bayes bound to variational
inference. Similarly to their approach, we keep the notion of a likelihood in our
risk definition, but differ in that we adapt our bound to the marginal likelihood.
Given a predictor h chosen from a hypothesis class H as a mapping from x True & Empirical risk
to y, we can define the true (R(h)) and the empirical (RD(h)) risks as the
expected negative marginal likelihood

R(h) = −Ex,y∼∆
[︁
p
(︁
y|h(x)

)︁]︁
,

and its observed counterpart,

RD(h) = −
1
N

N

∑
n=1

p
(︁
yn|h(xn)

)︁
,

for an observed data set D of size N which is in turn drawn from an arbitrary
and unknown data distribution ∆.

The risks R(h) and RD(h) are bounded below by−max p(y|h(x)) and above
by zero. Although this setting relaxes the common assumption that bounds
risk to the [0, 1] interval, it is still substantially simpler than the one suggested
by Germain et al. (2016), who define

R(h) = Ex,y∼∆ [log p(y|h(x))] ∈ (−∞,+∞).

This unboundedness brings severe technical complications, which are no longer
relevant to our approach.
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Translating Theorem 2.1 by Germain et al. (2009) to our notation gives us that
for any data distribution ∆, any set of classifiers H, any δ ∈ (0, 1], and any
convex function d(·, ·) we have the following PAC-Bayes bound

P

{︄
d
(︂
Eh∼Q [RD(h)] ,Eh∼Q [R(h)]

)︂
≤

KL (Q ∥ P) + log(B/δ)

N

}︄
≥ 1− δ,

(5.9)

with B = ED∼∆
[︁
Eh∼P

[︁
exp

(︁
Nd(RD(h), R(h))

)︁]︁]︁
. Q denotes a learnable

posterior distribution over the space of hypothesisH and P specifies a prior
distribution over the same space.

However, in its current form, this bound is neither tractable as a generalization
bound on the true risk, neither as a regularizing objective which we aim to
utilize for training. For that, we need to choose a suitable d(·, ·) and derive a
tractable approximation to B. P and Q are, in our case, already specified via
the generative model we created.

derivation of d( · , ·) . The PAC-Bayes framework necessitates a convex
and non-negative distance measure for risk evaluations. A common practice is
to rescale the risk into the unit interval, define the KL divergence between two
Bernoulli distributions as the distance measure, and upper bound its intractable
inverse (Germain et al., 2016) using Pinsker’s inequality (Tolstikhin and Seldin,
2013; Dziugaite and Roy, 2017). We follow an alternative path. As our risk is
bounded but not restricted to the unit interval, we choose our distance measure
as d(r, r′) = (r− r′)2 and avoid Pinsker’s inequality step.

Instead, we adapt the KL inversion trick (Seeger, 2002; Reeb et al., 2018) to
the Euclidean distance, by defining d−1(x, ε) ≜ max{x′ : (x− x′)2 = ε} =
x +
√

ε for some ε ≥ 0. Applying this function to both sides of the inequality
in (5.9) with Eh∼Q [RD(h)] as its first argument gives

d−1
(︂
Eh∼Q [RD(h)] , d

(︁
Eh∼Q [RD(h)] ,Eh∼Q [R(h)]

)︁)︂
≤ d−1

(︂
Eh∼Q [RD(h)] , 1

N

(︁
KL (Q ∥ P) + log(B/δ)

)︁)︂
,

since d(·, ·) and KL (Q ∥ P) are each non-negative, and due to δ ∈ (0, 1]
and exp(d(·, ·)) ≥ 0 we have that log( B

δ ) = − log δ + log B ≥ 0, i.e. the
non-negativity constraint on the second argument in d−1(·, ·) is fulfilled. It
then gives us for the left-hand side an upper bound on the true risk

Eh∼Q [RD(h)] +
√︃

d
(︂
Eh∼Q [RD(h)] ,Eh∼Q [R(h)]

)︂
≥ Eh∼Q [R(h)] .
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In combination with the application of d−1(·, ·) to the right-hand side, we can
upper bound the true risk as

P

{︄
∀Q Eh∼Q [R(h)] ≤ Eh∼Q [RD(h)]

+

√︃
KL(Q||P) + log(B/δ)

N

}︄
≥ 1− δ.

This outcome has a similar structure to what an application of Pinsker’s in-
equality would yield to a setup where the risk is restricted to the unit interval,
but without such a restriction. To arrive at a tractable bound, we have to further
approximate each of the two terms on the right-hand side of the bound.

For the first term, we have that Bound on the empirical
risk

Eh∼Q [RD(h)] ≜ −
1
N

N

∑
n=1

Eh∼Q
[︁
p
(︁
yn|h(xn)

)︁]︁
≤ − 1

N

N

∑
n=1

logEh∼Q
[︁
p
(︁
yn|h(xn)

)︁]︁
≈ − 1

N

N

∑
n=1

log p(yn|xn),

where the inequality uses that − log(u) > −u ∀u ∈ (0, ∞) and the final
approximation follows via the CLT based marginalization technique.

To get a tractable second term, we need to evaluate B further. For this, we
exploit the fact that for any p(·), and f (·), we have the direct relation

Ep(x) [ f (x)] ≤ max f (x),

which allows us to drop the expectations and get for our chosen d(·, ·)

B ≜ ED∼∆

[︂
Eh∼P

[︂
eN(RD(h)−R(h))2

]︂]︂
≤ max eN(RD(h)−R(h))2

.

For a multiclass classification task, the likelihood is bounded into the interval Bound on B for
classification[0, 1], and such the true and empirical risks are as well such that we have

max
(︁

RD(h)− R(h)
)︁2

= (0− 1)2 = 1,

which gives a final upper bound on B as

B ≤ exp(N) ⇒ log B ≤ N.

For a regression tasks with a normal homoscedastic likelihoodN (y|h(x), β−1) Bound on B for
regressionwe have similarly that the risks can be upper bounded by 0 and lower-bounded by

−N (y = µ|µ, β−1), that is by the density at the mode of a normal distribution
with a precision of β. Hence,

B ≤ exp
(︂

N
(︁
0−N (µ, β−1)

)︁2
)︂
⇒ log B ≤ N

β

2π
.
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Combining these results gives us the final objective used to train BEDL as

− 1
N

N

∑
n=1

log pθ(yn|xn) +

√︃
KL (Q ∥ P)− log δ

N
+

log max(B)
N

, (5.10)

which contains the marginal likelihood objective discussed above as its first
term and a regularizer in the second. This additional term resembles the KL
term in the EDL loss, but gives via the PAC-Bayes approach a theoretically-
grounded mechanism to incorporate regularization.

For a C-class classification we follow EDL, and use in the regularization termThe KL term for
classification P = Dir

(︁
λ|(1, . . . , 1)

)︁
, i.e. the assumption that each class is equally likely,

as the regularizing distribution. Given Q = Dir(λ|α), the Kullback-Leibler
divergence is analytically tractable and given as

KL (Dir(λ|α) ∥ Dir(λ|(1, . . . , 1))) =

log
(︃

Γ(∑c αc)

Γ(C)∏c Γ(αc)

)︃
+

C

∑
c=1

(αc − 1)
(︂

ψ(αc)− ψ
(︁
∑

c
αc
)︁)︂

,

with the digamma function ψ(x) ≜ d
da log Γ(x).

looseness of the bound. It should finally be noted that while we use the
PAC-Bayes theory to derive and motivate the final objective, it should no longer
be used in original PAC-Bayes motivation, that is to get some generalization
guarantees. The sequence of approximation steps we require result in a loose
bound that is trivially fulfilled. As such it no longer serves as a useful indicator
of the generalization performance. Rather its justification lies primarily in its
regularizing function.

5.3.1 Hyperprior

We close this section with a short discussion on one obvious direct objection
to the approach we discussed. The PAC-Bayes based model seems nice and
principled, but why would one not just make use of the hierarchical structure of
a Bayesian generative model and go one level higher? That is, introduce some
additional hyperpriors, reintroducing the missing regularizing component of
the marginal likelihood objective that way.

Such a hierarchical model would have the following structure

θ ∼ p(θ),

w|θ ∼∏
n

pθ(wn),

λ|w, X ∼∏
n

p(λn|wn, xn),

y|λ ∼∏
n

p(yn|λn), ∀n.
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The marginal likelihood to be optimized over is then given as

log p(y, θ|X) =

∑
n

log
∫︂

p(yn|λn)p(λn|wn, xn)p(wn|θ)dλn dwn + log p(θ).

In this objective the first term can be approximated and evaluated as before,
returning our by now familiar marginal-likelihood formulation. However, the
second term log p(θ) provides us with some hopefully regularizing structure.
The form of this hyperprior will vary depending on the problem at hand, but
consider for example our normally distributed weights, where we assume the
i-th weight of the BNN to follow

wi
n|θi ∼ N (wi

n|µi, σ2
i ), where θi = (µi, σ2

i ).

A choice for the prior p(θi) is then to assume

p(θi) = p(µi)p(σ2
i )

= N (µ|0, α−1
0 )InvGam(σ2|a0, b0).

The choice of the hyperparameters α0, a0, and b0 then control the strength
of the regularization. We explore this variant of the proposed model in the
regression experiments, but the results there show it to perform worse than the
PAC-Bayes based objective.

5.4 generalization to regression

The EDL formulation was introduced by Sensoy et al. (2018) only for the task
of classification, which we focused on in our discussion so far. However, we can
also extend the main motivation of the approach to the task of regression.

We place a normal likelihood over the targets, treating the λn as the mean
and keep a fixed precision β, as necessitated by our PAC-Bayes derivations.
Placing another normal distribution over the λn whose mean and variance are
determined by a BLNN gives us as the generative model

wn ∼ pθ(wn),

λn|wn, xn ∼ N
(︂

λn

⃓⃓⃓
f1(xn; wn), exp

(︁
f2(xn; wn)

)︁)︂
,

yn|λn ∼ N
(︂

yn|λn, β−1
)︂

, ∀n.

For the n-th sample in (5.7) after performing the moment matching until the
last layer we have the marginal for λn given as

p(λn) ≈
∫︂
N
(︁
λn| f L

n1, exp( f L
n2)
)︁
N ( f L

n |mn, s2
n)d f L

n ,

with f L
n = ( f L

n1, f L
n2), mn = (mn1, mn2), and s2

n = (s2
n1, s2

n2) (the moment
matching mean and variance). This integral can then be further approximated
with a final moment matching step.
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Dropping the indices n and L for notational simplicity, we get

Ep(λ) [λ] =
∫︂

λp(λ)dλ

≈
∫︂∫︂

λN (λ| f1, exp( f2))N ( f |m, s2)d f dλ

=
∫︂ (︃∫︂

λN (λ| f1, exp( f2))dλ

)︃
N ( f |m, s2)d f

=
∫︂

f1N ( f |m, s2)d f = m1.

For the variance term we rely on the law of total variance and have

varp(λ) [λ] = Ep( f )

[︂
varp(λ| f ) [λ]

]︂
+ varp( f )

[︂
Ep(λ| f ) [λ]

]︂
≈ Ep( f ) [exp( f2)] + varp( f ) [ f1]

=
∫︂

exp( f2)N ( f2|m2, σ2
2 )d f2 + s2

1

= exp(m2 + s2
2/2) + s2

1,

where the last integral is given as the expectation of a log-normal random
variable. Altogether we end up with the desired normal approximation

p(λn) ≈ N
(︂

λn
⃓⃓
mn1, s2

n1 + exp(mn2 + s2
n2/2)

)︂
.

This then allows us to compute the log marginal likelihood as

log p(yn|xn) ≈ log
∫︂
N (yn|λn, β−1)

·
(︃∫︂
N
(︁
λn| f L

n1, exp( f L
n2)
)︁
N ( f L

n |mn, s2
n)d f L

n

)︃
dλn

≈ log
∫︂
N (yn|λn, β−1)N

(︂
λn
⃓⃓
mn1, s2

n1 + exp(mn2 + s2
n2/2)

)︂
dλn

= logN
(︂

yn
⃓⃓
mn1, β−1 + s2

n1 + exp(mn2 + s2
n2/2)

)︂
,

where the last equality follows directly from standard results on normal distri-
butions.

Contrary to the classification case where the final step requires samples, we
stay completely sampling-free for regression. As discussed above, we bound
max B in (5.10) by exploiting that β is fixed prior to training and obtain
log max B

N ≤ β
2π as a bound, which, as for the classification case, gives only

a trivial performance guarantee (exceeding the maximum possible risk) but
provides a justified training scheme.

5.5 related work

clt-based moment matching of local weight realizations.
The objective for variational inference on BNNs (Kingma et al., 2015; Gal
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and Ghahramani, 2016b; Wu et al., 2019), optimizing a global variational pos-
terior q(w), consists of a computationally intractable Eq(w) [log p(y|x, w)]
that decomposes across data points. Fast dropout (Wang and Manning, 2013)
approximates these terms via local reparameterization with moment matching.
The same local reparameterization has been later combined with a KL term to
perform mean-field variational inference via Monte Carlo sampling (Kingma
et al., 2015) or moment matching (Wu et al., 2019). Our Bayesian local neural
network formulation is akin to an amortized variational inference approach
learning a single global set of posterior parameters ϕ for the variational pos-
terior approximation qϕ(w). We use the same trick to marginalize the local
weights, which keeps the machinery similar until the top-most step where the
log(·) andE [·] operations is swapped. This small change, however, has a large
impact on the quality of uncertainty estimations.

wide neural nets as gaussian processes. A Gaussian Process’s
equivalence to a weight-marginalized BNN with a single infinitely wide hid-
den layer has been discovered long ago (Neal, 1995) using the multivariate
version of CLT. This result has later been generalized to multiple dense lay-
ers (G. Matthews et al., 2018; Lee et al., 2018a), as well as to convolutional
layers (Garriga-Alonso et al., 2019). The asymptotic treatment of the neuron
count makes this approach exact at the expense of a lack of neuron-specific
parameterization. The eventual GP has few hyperparameters to train—however,
a prohibitively expensive covariance matrix to calculate. We employ the same
training method on a middle ground where the number of hyperparameters is
twice the number of parameters in a deterministic net of the same size. The
cross-covariances across data points are not explicitly modelled.

predictive density modelling. The recently introduced family of
models known as Neural Processes (Garnelo et al., 2018a,b) follow a GP
inspired approach of learning the predictive density using neural networks as
part of the mapping from input to output space, relying on the incorporation
of the input data as context points for the predictive distribution of a test point.
Earlier work on prior networks (Malinin and Gales, 2018) parameterizes a prior
to a classification-specific likelihood with deterministic neural nets, hence,
discards model uncertainty. Additionally, they require samples from another
domain to learn distributional awareness. BEDL reformulates prior networks
independently from the output structure, extends them to support also model
uncertainty, and introduces a principled scheme for their training.

5.6 experiments

We evaluate the proposed model and its PAC-Bayes-regularized version on a
diverse selection of regression and classification tasks. Additional information
on experimental details not discussed here is provided in the further details
section at the end of this chapter.3

3 We provide an implementation of the model under github.com/manuelhaussmann/bedl.

github.com/manuelhaussmann/bedl
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5.6.1 Regression

As in the case of VBP, we evaluate the performance on the regression task
on the standard experimental protocol introduced by Hernández-Lobato and
Adams (2015). The tasks consist of fitting a net with a single hidden layer with
50 units and ReLU nonlinearities4 to eight different UCI data sets of varying
difficulty and size.

We evaluate three versions of the proposed model.

i) BEDL refers to the basic model, that performs the CLT based marginal-BEDL
ization and optimizes the resulting marginal likelihood

max
ϕ

N

∑
n=1

log pϕ(yn|xn);

ii) BEDL-Hyper gives the baseline of encorporating a hyperprior-basedBEDL-Hyper
regularization

max
ϕ

N

∑
n=1

log pϕ(yn|xn) + log p(ϕ);

iii) BEDL-PAC finally represents the proposed model with the PAC-basedBEDL-PAC
objective

min
ϕ
− 1

N

N

∑
n=1

log pϕ(yn|xn) +

√︃
KL (Q ∥ P)− log δ + log max B

N
.

The hypothesis class in this case is over the regularization parameters
P ≜ p(λ) = ∏nN (λn|0, α−1), with a fixed prior precision α, while
Q is given as Q ≜ p(λ) = ∏n

∫︁
p(λn| fn)p( fn)d fn. This gives us an

analytically tractable KL divergence between two normal distributions.

All three variants are sampling-free in the regression case. We compare them
against two other sampling-free variants for training BNNs that are also CLT
based, representing the state-of-the-art in such approaches. Probabilistic Back-
Propagation (PBP) (Hernández-Lobato and Adams, 2015) and Deterministic
Variational Inference (DVI) (Wu et al., 2019) both utilize similar CLT-based
moment matching techniques, relying on them as part of an expectation prop-
agation and variational inference setup, respectively. For completeness, we
also compare against the two most popular sampling-based alternatives, Varia-
tional Dropout (VarOut) (Kingma et al., 2015; Molchanov et al., 2017) and
MC Dropout (Gal and Ghahramani, 2016b). We include for comparison the
results of fitting a sparse Gaussian Process to the same setup.

We summarize the results of 20 random train-test splits comprising 90% and
10% of the samples, respectively, in Table 5.1. Our three variants and Varia-
tional Dropout share the same train/test splits. For the other methods, we report

4 Except on the larger protein, for which we use 100 hidden units.
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Table 5.1: Regression. Average test log-likelihood ± standard error over 20 ran-
dom train/test splits. N/d give the number of data points in the complete
data set and the number of input feature. The sparse GP results are cited
from (Bui et al., 2016) and serve as a comparison. VarOut relies on our
own implementation. The best performing BNN in each case is marked in
bold.

boston concrete energy kin8nm naval power protein wine
N/d 506/13 1030/8 768/8 8192/8 11934/16 9568/4 45730/9 1599/11

Sparse GP −2.22±0.07 −2.85±0.02 −1.29±0.01 1.31±0.01 4.86±0.04 −2.66±0.01 −2.95±0.05 −0.67±0.01

MC Dropout −2.46±0.25 −3.04±0.09 −1.99±0.09 0.95±0.03 3.80±0.05 −2.89±0.01 −2.80±0.05 −0.93±0.06

VarOut −2.63±0.02 −3.15±0.02 −3.29±0.00 1.09±0.01 5.50±0.03 −2.82±0.01 −2.90±0.01 −0.88±0.02

PBP −2.57±0.09 −3.16±0.02 −2.04±0.02 0.90±0.01 3.73±0.01 −2.84±0.01 −2.97±0.00 −0.97±0.01

DVI −2.41±0.02 −3.06±0.01 −1.01±0.06 1.13±0.00 6.29±0.04 −2.80±0.00 −2.84±0.01 −0.90±0.01

BEDL −2.45±0.08 −3.09±0.06 −0.87±0.10 1.12±0.01 5.76±0.07 −2.80±0.01 −2.82±0.01 −0.93±0.01

BEDL-Hyper −2.57±0.04 −3.30±0.01 −2.59±0.02 0.44±0.00 3.69±0.00 −2.98±0.01 −3.00±0.00 −1.00±0.01

BEDL-PAC −2.43±0.06 −3.02±0.02 −0.73±0.04 1.15±0.01 5.60±0.11 −2.79±0.01 −2.77±0.01 −0.90±0.01

the average test log-likelihoods reported in the respective papers. The sparse
GP results are cited from Bui et al. (2016).

Our proposed BEDL-PAC improves upon the other approaches in the majority
of the datasets. In particular, it improves upon the plain BEDL in all data sets
except for one. On the other hand, the hyperprior-based approach struggles a
lot more, deteriorating the performance on all eight data sets. As expected, the
sparse GP with 50 inducing points, approximating a BNN with one infinitely
wide hidden layer (Neal, 1995), performs very competitively as well.

5.6.2 Classification and Out-of-Distribution Detection

One common proxy task to evaluate the predictive uncertainty quality of neural
nets is to evaluate their out-of-distribution (OOD) sample detection perfor-
mance. That is, a model trained on one distribution of data should correctly
assign a low likelihood to samples from a different domain instead of confi-
dently assigning it to one of the classes from the training distribution.

We evaluate classification and out-of-distribution sample detection perfor-
mance of BEDL-PAC on image classification with deep architectures, adhering
to the protocol used in prior work (Louizos and Welling, 2017; Sensoy et al.,
2018). To do that, we train LeNet-5 networks on the MNIST train split, evaluate
their classification accuracy on the MNIST test split as the in-distribution task,
and measure their uncertainty on the Fashion-MNIST5 data set as the out-of-
distribution task. We expect a perfect model to predict true classes with high
accuracy on the in-distribution data and always predict a uniform probability

5 Due to the license status of the not-MNIST data which was used in the cited prior work
conflicting with the affiliation of a collaborator on the original paper that this chapter is based
on, we had to change the setup in this respect, using instead Fashion-MNIST as the closest
substitute, keeping the rest of the experimental framework identical.
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Table 5.2: Classification and OOD Detection. Test error and the area under curve of
the empirical CDF (ECDF-AUC) of the predictive entropies on two pairs
of datasets. Smaller values are better for both metrics.

MNIST Fashion-MNIST CIFAR 1-5 CIFAR 6-10
(In distribution) (Out-of-distribution) (In distribution) (Out-of-distribution)

Test Error (%) ECDF-AUC Test Error (%) ECDF-AUC

MC Dropout 1.12 0.429 18.36 0.946
VarOut 1.47 1.381 33.94 0.673
DVI 0.72 1.318 23.32 1.251
EDL 1.08 0.132 20.34 0.451

BEDL 0.81 1.512 24.38 1.253
BEDL-PAC 0.66 0.055 20.02 0.083

mass on the out-of-distribution data. To get a scalar performance measure,
we use the following evaluation measure. The desired performance on out-
of-distribution data is equivalent to maximize the entropy over the prediction.
Computing the predictive entropy over all the test data and computing the area
under curve of the empirical CDF (ECDF-AUC) of this entropy then gives us
a scalar summary that is minimized if the predictive entropy is maximized for
each data point.

We perform the same experiment on CIFAR10 using the first five classes for
the in-distribution task and treating the rest as out-of-distribution. We use
P ≜ Dir

(︁
λ|(1, . . . , 1)

)︁
as the regularization prior on the class assignment

parameters, which has the uniform probability mass on its mean, encouraging
an OOD alarm in the absence of contrary evidence. In Table 5.2, we compare
BEDL-PAC against EDL (Sensoy et al., 2018), a state of the art approach
in neural net-based uncertainty quantification and also the non-Bayesian and
heuristically trained counterpart of BEDL-PAC. We consider EDL also as
a special case of Prior Networks (Malinin and Gales, 2018) that does not
need to rely on OOD data during training time, commensurate for our training
assumptions. We evaluate MC Dropout, VarOut, and DVI as baselines in
this setup. BEDL-PAC improves state of the art in all four cases except the
CIFAR10 in-distribution task, where it ranks second after the prediction time
weight sampling-based MC Dropout. Additionally, BEDL-PAC detects the
OOD samples with better ECDF-AUC scores than EDL.

5.6.3 Comparison to GP-based Variants

We evaluate the impact of local weight realization on prediction performance
by comparing BEDL-PAC to GPs with kernels derived from BNNs with global
weight realizations (Neal, 1995; Lee et al., 2018a; Garriga-Alonso et al., 2019)
on MNIST and CIFAR10 data sets. It is technically not possible to perform
this evaluation in a fully comparable setup, as these baselines assume infinitely
many neurons per layer and do not have weight-specific degrees of freedom.
Furthermore, Garriga-Alonso et al. (2019) perform neural architecture search
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Table 5.3: Comparison to GP Variants. Test error in % on two image classification
tasks. BEDL reaches a lower error rate than previously proposed neural
net-based GP constructions by two convolutional layers with 96 filters of
size 5× 5 and stride 2. BEDL converges in 50 epochs, amounting to circa
30 minutes of training time on a single GPU. The GP alternatives have been
reported to have significantly larger runtime and memory requirements.
The GP results are cited from Garriga-Alonso et al. (2019)

MNIST CIFAR10

NNGP 1.21 44.3
Convolutional GP 1.17 35.4
ConvNet GP 1.03 -
Residual CNN GP 0.96 -
ResNet GP 0.84 -

BEDL (Ours) 0.91 34.20
BEDL-PAC (Ours) 0.63 32.47

and Lee et al. (2018a) use only part of the CIFAR10 training set, reporting that
the rest does not fit into the memory of a powerful workstation. We nevertheless
view the performance scores reported in these papers as practical upper bounds
and provide a qualitative comparison. For the choice of neural net depth, we
take NNGP (Lee et al., 2018a) as a reference and devise a contrarily thin
two-layer convolutional BEDL-PAC network. The results and the architectural
details are summarized in Table 5.3. BEDL and BEDL-PAC can reach lower
error rates using significantly less computational resources.

5.6.4 Computational Cost

Table 5.4 summarizes the computational cost of the considered approaches. MC
Dropout and VarOut can quantify uncertainty only by taking samples across
weights, which increases the prediction cost linearly to the sample count. DVI
and BEDL-PAC perform the forward pass during both training and prediction
time via analytical moment matching at double and triple costs, respectively.
Both methods have sampling costs for intractable likelihoods.6 BEDL-PAC
may also have another additive per-data-point sampling cost for calculating in-
tractable functional mapping regularizers. Favourably, both of these overheads
are only additive to the forward pass cost, i.e. sampling time is independent of
the neural net depth. Hence they do not set a computational bottleneck. The
training and prediction cost of BEDL-PAC is three times that of EDL which
builds on deterministic nets. However, it provides substantial improvements in
both prediction accuracy and uncertainty quantification.

6 Even this sampling step could be avoided by a suitable Taylor approximation, see for example,
the corresponding discussion in the VBP chapter. As the added approximation error was more
detrimental to model performance than a cheap MC approach in preliminary experiments, we
stay with the latter for both.
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Table 5.4: Computational Cost. Per data point computational cost analysis in FLOPs.
F: Forward pass cost of a deterministic neural net. W: Number of weights
in the net. L: Analytical calculation cost for the exact or approximate
likelihood or the loss term. S: Number of samples taken for approximation.
R: The cost of the regularization term per unit (weight or data point).

Training per iteration Prediction

MC Dropout O
(︁
(F + L)S

)︁
O
(︁
(F + L)S

)︁
VarOut O

(︁
2(F + L)S + R(W/N)

)︁
O
(︁
2(F + L)S

)︁
DVI O

(︁
2F + SL + R(W/N)

)︁
O
(︁
2F + SL

)︁
EDL O

(︁
F + L

)︁
O
(︁

F + L
)︁

BEDL O
(︁
3F + SL

)︁
O
(︁
3F + SL

)︁
BEDL-PAC O

(︁
3F + S(L + R)

)︁
O
(︁
3F + SL

)︁
5.7 conclusion

In this chapter, we introduced a method for fitting BNNs via type-II maximum
likelihood and for performing Bayesian inference within the framework of
evidential deep learning. Employing empirical Bayesian methods for inference
and combining it with PAC-bounds for regularization, we achieve higher ac-
curacy and better predictive uncertainty estimates while maintaining scalable
inference. Exact inference in a fully Bayesian model such as a GP (c.f. Ta-
ble 5.1) or Hamiltonian Monte Carlo inference for BNNs (Bui et al., 2016)
are known to provide better error rates and test log-likelihood scores, yet their
computational demand does not scale well to large networks and data-sets.
On the other hand, our method shows strong indicators for improvement in
uncertainty quantification and predictive performance compared to other BNN
approximate inference schemes with reasonable computational requirements.
The BEDL-PAC framework benefits might be fruitful in setups such as model-
based deep reinforcement learning, active learning, and data synthesis, where
uncertainty quantification is a vital ingredient of the predictor.

5.8 further details

5.8.1 Extensions on the Proposed Model

This chapter’s main text discusses the fact that the CLT trick renders the
expectation and variance terms of a post-activation h analytically tractable,
without ever actually deriving these expressions. We pluck this hole in the
next subsection, where we demonstrate how to compute them. As was the
case for the VBP model (see Chapter 3 for the details), these derivations can
be extended for a broad class of ReLU variations. The same holds for the
discussion in that chapter of the adaptability to skip and residual connections.
Unfortunately, it also holds true for the downsides of problems concerning the
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inclusion of currently popular neural network building blocks such as pooling
and normalization layers.

Instead of rehashing that discussion a second time again, we will instead
derive another alleviation to the normalizing problem that was not applicable
to the VBP model. A family of activation functions, known as exponential
linear units (ELU) (Clevert et al., 2016) and scaled exponential linear unit
(SELU)(Klambauer et al., 2017) lessen the dependence on normalization layers.
Since they are no longer piecewise linear as the ReLU family, they cannot adapt
to the VBP formulation. However, as we will show below, they still share the
analytical tractability of the first two moments with the ReLU family leaving
them a viable option for a CLT-based model.

5.8.1.1 First two Moments of the ReLU Activation

The proposed model relies heavily on the analytical tractability of the ReLU
activation, which was already shown and used by Frey and Hinton (1999), but
will be rederived here for completeness as they will mirror the computations
required for the ELU activation in the next subsection.

Following the notation from our main discussion, we can describe the pre-
activation of the l-th layer for the n-th data point f l

n to be approximately
normally distributed, with a given mean µl

n, and variance (σ l
n)

2. Dropping
the layer and data point identification to lighten the notation, we can com-
pute the expectation and variance of the k-th dimension of the post-activation
hk = max(0, fk) as follows.

Using Φ(·) and ϕ(·) to refer to the cdf and pdf of the standard normal distri-
bution respectively, the mean can be derived as

E [h] = EN ( f |µ,σ2) [max(0, f )] =
∫︂ ∞

0

f
σ

ϕ

(︃
f − µ

σ

)︃
d f

=
∫︂ ∞

−µ/σ
(uσ + µ)ϕ(u)du substituting u =

f − µ

σ

= σ
∫︂ ∞

−µ/σ
uϕ(u)du + µ

∫︂ ∞

−µ/σ
ϕ(u)du

= σϕ
(︂µ

σ

)︂
+ µΦ

(︂µ

σ

)︂
,

using that Φ(x) = 1−Φ(−x) to evaluate the second integral. The variance
term can be derived analogously as

var [h] = E
[︁
max(0, f )2]︁− (E [h])2

=
∫︂ ∞

−µ/σ

(︁
µ2 + 2µσu + σ2u2)︁ ϕ(u)du− (E [h])2

= µ2Φ
(︂µ

σ

)︂
+ 2µσϕ

(︂µ

σ

)︂
+ σ2

∫︂ ∞

−µ/σ
u2ϕ(u)du⏞ ⏟⏟ ⏞

Φ( µ
σ )−

µ
σ ϕ( µ

σ )

− (E [h])2

= (µ2 + σ2)Φ
(︂µ

σ

)︂
+ µσϕ

(︂µ

σ

)︂
−
(︁
E [h]

)︁2.
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5.8.1.2 First two moments of the ELU Activation

The following derivations are an adaptation of the ReLU results to ELU to
provide us with an activation function that induces some normalization. We
are again interested in the first two moments for the ELU defined as

g(x) ≜

{︄
x, x > 0

α(exp(x)− 1) x < 0
.

SELU, as the name implies is a scaled version of this ELU activation with an
additional scaling factor λ as

g̃(x) ≜ λ

{︄
x, x > 0

α(exp(x)− 1) x < 0
.

While ELU treats the α as a free hyperparameter, SELU determines λ and α

numerically to try to ensure that the post-activation is normalized again. See
Klambauer et al. (2017) for the specific details. The following derivations treat
the general ELU case. The scaled version follows analogously.

Throughout the derivation, we will use the same notation as in the ReLU deriva-
tions, i.e. f to refer to an approximately normally distributed pre-activation
(with mean µ and variance σ2) and h = g( f ) as the corresponding post-
activation. We will again suppress the layer and data point indices and focus
on a single dimension.

Focusing on the expectation first, we have for the expectation of h, that

E [h] =
∫︂ 0

−∞
α(exp( f )− 1)N ( f |µ, σ2)d f +E [relu( f )] .

The first term can be split intorelu( f ) ≜ max(0, f )

α
∫︂ 0

−∞
exp( f )N ( f |µ, σ2)d f − α

∫︂ 0

−∞
N ( f |µ, σ2)d f .

We get for these two terms that the first is equal to

α
∫︂ 0

−∞
exp( f )N ( f |µ, σ2)d f = α exp(µ + σ2/2)Φ

(︃
−µ + σ2

σ

)︃
and the second gives

α
∫︂ 0

−∞
N ( f |µ, σ2)d f = αΦ

(︂
−µ

σ

)︂
= α

(︂
1−Φ

(︂µ

σ

)︂)︂
.

Combining all of this we end up with

E [h] = α

(︃
exp(µ + σ2/2)Φ

(︃
−µ + σ2

σ

)︃
−Φ

(︂
−µ

σ

)︂)︃
+E [relu( f )] .

For the variance we have the general form

var [h] = E
[︁
h2]︁−E [h]2
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in which only the first term, i.e. the second moment, is missing. It decomposes
again as in the case of the expectation into two terms

E
[︁
h2]︁ = ∫︂ 0

−∞
α2(exp( f )− 1)2N ( f |µ, σ2)d f +E

[︁
relu( f )2]︁ ,

of which the second is known from the ReLU derivations. The first term of
this equation finally expands into the following monstrosity

α2
∫︂ 0

−∞
(exp(2 f )− 2 exp( f ) + 1)N ( f |µ, σ2)d f

= α2
∫︂ − µ

σ

−∞

(︁
exp(2µ + 2σy)− 2 exp(µ + σy) + 1

)︁
ϕ(y)dy

= α2
(︃

exp(2µ + 2σ2)Φ
(︃
−µ + 2σ2

σ

)︃
−2 exp(µ + σ2/2)Φ

(︃
−µ + σ2

σ

)︃
+ Φ

(︂
−µ

σ

)︂)︃
.

These two moments can be directly used as replacements for the ReLU moments
in the proposed model for deeper networks.

5.8.1.3 Covariance Terms

Throughout this chapter and the preceding derivations, we have, similar to
the VBP discussions, completely dropped covariance terms of the pre/post-
activations. Instead, we only computed and propagated essentially a diagonal
covariance matrix. Part of the reasoning is shared with the arguments of the
discussion there (see Chapter 3.5.3 for details), i.e. a greatly increasing compu-
tational cost. However, a difference is that the computation is at least technically
doable in the case of the VBP model. This is no longer the case for the CLT-
based approach with ReLU activation, such that further approximations are
required. Wu et al. (2019) derived such an approximation in their proposed
method. However, the runtime cost of a forward pass of the final model in-
creased to about 300 sample-based forward passes, rendering it useless for
practically relevant architecture sizes. Additionally, they could show no perfor-
mance improvements over the diagonalized version.

5.8.2 Experimental Details

This section contains further details on the hyperparameters of the experiments
performed in the main discussion. See github.com/manuelhaussmann/
bedl for a PyTorch based implementation of the proposed model.

5.8.2.1 Regression

The neural net used consists of a single hidden layer of 50 units for all data sets
except protein, which gets 100. The results for all of the baselines except
for Variational Dropout (VarOut) are quoted from the results reported by the
respective papers which introduced them. The results on the sparse GP are

github.com/manuelhaussmann/bedl
github.com/manuelhaussmann/bedl
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reported via Bui et al. (2016). For VarOut, we rely on our own implementation,
as there are no official results. BEDL, BEDL-PAC, and VarOut all share the
same initialization scheme for the mean and variance parameters for each
weight following the initialization of Louizos and Welling (2017), i.e. He-
Normal for the means and N (−9, 0.001) for the log variances. VarOut gets
a normal prior with a precision of α = 1.0, and all three get an observation
precision of β = 100, to encourage them to learn as much of the predictive
uncertainty instead of relying on a fixed hyper-parameter. Note that we keep
these values fix and data set independent, different to many of the baselines
who set them to data set specific values given cross-validations on separate
validation subsets.

Each model is trained with the Adam optimizer (Kingma and Ba, 2015) with
default parameters for 100 epochs with a learning rate of 10−3, with varying
minibatch sizes depending on the data set size.

5.8.2.2 Classification and Out-of-distribution Detection

The network for this task follows the LeNet5 architecture with the following
modifications. Instead of max-pooling layers after the two convolutional layers,
the convolutional layers themselves use a larger stride to mimic the behaviour.
And for the more complex CIFAR-10 data set, the number of channels in the
two convolutional layers is increased from the default 20/50 to 192 each. The
number of hidden units for the fully connected layer is increased from 500 to
1000 for that data set following Gal and Ghahramani (2016a).

Since there are no OOD results on the BNN baselines we compare against, we
rely on our reimplementations of them, ensuring that they each share the same
initialization schemes as in the regression setup. For DVI, we implement the
diagonal version and use a sampling-based approximation on the intractable
softmax. Each model gets access to five samples whenever it needs to conduct
an MC sampling approximation. All models get trained via the Adam optimizer
with the default hyperparameters and a learning rate of 10−3. For EDL, we rely
on the public implementation the authors provide and use their hyperparameters
to learn the model.

5.8.2.3 GP variants comparison

The results for the baselines are taken from the respective original papers. The
nets for BEDL and BEDL-PAC consist of two convolutional layers with 96
filters of size 5× 5 and a stride of 5. They are trained until for 50 epochs using
Adam with default hyperparameters and a learning rate of 10−3.
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L E A R N I NG PA RT I A L LY K NOW N ST O C H A ST I C
DY NA M I C S W I T H E M P I R I CA L PAC - BAY E S

In many engineering applications, it is often easy to model dominant charac-
teristics of a dynamical environment by a system of differential equations with
a small set of state variables. In contrast, black-box machine learning methods
are often highly accurate but less interpretable. Pushing the model towards
high fidelity by capturing intricate properties of the environment, however,
often requires highly flexible, over-parameterized models. Fitting these models
to data can, in turn, result in over-fitting and hence low generalization ability
due to their high capacity.

Neural Stochastic Differential Equations are such a black-box method to model
a dynamical environment with neural nets assigned to their drift and diffusion
terms. The high expressive power of their nonlinearity comes at the expense
of instability in identifying the large set of free parameters.

This chapter combines the benefits of both types of models by hybrid modelling:
We set up the learning task as a non-linear system identification problem with
partially known system characteristics. In the following, we assume to have
access to a differential equation system that describes the dynamics of the
target environment with low fidelity, for example, by describing the vector
field on a reduced dimensionality, by ignoring detailed models of some system
components, or by avoiding certain dependencies for computational feasibility.
We incorporate the ODE system provided by the domain expert into a non-
linear system identification engine to cover a large scope of dynamical systems
resulting in a hybrid model, which we will refer to as a Bayesian Neural
Stochastic Differential Equation (BNSDE) model. We improve the predictive
accuracy of such BNSDEs in three steps:

i) accounting for epistemic uncertainty by assuming probabilistic weights,

ii) principled incorporation of partial knowledge on the state dynamics,

iii) training the resultant hybrid model by an objective derived from a PAC-
Bayesian generalization bound.

In our experiments, we observe that this recipe effectively translates partial
and noisy prior knowledge into an improved model fit.

This chapter is based on Haußmann et al. (2021). In that publication, Sebastian Gerwinn
contributed most of the PAC bound derivation for the proof of Theorem 1. Barbara Rakitsch
provided the computational cost analysis. The experimental code uses an implementation of the
Euler-Maruyama method by Andreas Look.
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To do this, we propose a new algorithm for stable and effective training of such
a hybrid BNSDE that combines the strengths of two statistical approaches,
which we already got to know in the last chapter: Bayesian model selec-
tion (Rasmussen and Williams, 2006), and Probably Approximately Correct
Bayesian (PAC-Bayesian) bounds (McAllester, 1999; Seeger, 2002). We im-
prove the theoretical links between these two approaches (Germain et al., 2016)
by demonstrating how they can co-operate during training. To this end, we
propose a novel training objective that suits SDE inference and derive a PAC-
Bayesian generalization bound. Further, we provide a proof that this bound is
upper bounded by the marginal likelihood of the BNSDE hyperparameters and
a complexity penalizer. Gradients of this upper bound are tied to the actual
PAC bound. Hence tightening the upper bound also tightens the PAC bound.
Consequently, optimizing this bound amounts to empirical Bayes stabilized
by a regularizer developed from first principles. We will refer to using this
objective for training as Empirical PAC-Bayes.

We demonstrate that our method can translate coarse descriptions of the true
underlying dynamics into a consistent forecasting accuracy increase. We first
show the necessity of each of the multiple steps that comprise our method
in an ablation study. Finally, we demonstrate in a real-world motion capture
modelling task that our method outperforms black-box system identification
approaches (Chen et al., 2018a; Hegde et al., 2019; Look and Kandemir, 2019)
and alternative hybridization schemes that incorporate second-order Newtonian
mechanics (Yildiz et al., 2019).

6.1 background

Our contribution combines approaches from stochastic differential equations,
PAC-Bayes, and empirical Bayes. Apart from stochastic differential equations
we have met them already before so we will keep the summary short and refer
the reader to the background chapter and Chapter 5 for further details.

6.1.1 Stochastic Differential Equations

Stochastic differential equations (SDEs) are an extension of ordinary differen-
tial equations (ODEs) that also include stochastic fluctuations in the dynamics
(Øksendal, 1992). If we let ht ∈ RP denote the P-dimensional state as some
time t, the dynamics can be written in the following form:

dht = f (ht, t)dt + G(ht, t)dWt. (6.1)

In this equation the drift term is specified by an arbitrary non-linear function
f (·, ·) : RP ×R+ → RP and and the diffusion dynamics are governed by the
matrix valued function G(·, ·) : RP ×R+ → RP×P. Finally, Wt denotes a
P-dimensional Wiener Process determining the stochastic fluctuations. The
solution to the SDE is a stochastic process ht. By setting the diffusion term
G(·, ·) to zero, the SDE reverts to an ODE.
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As analytical solutions of SDEs, i.e. descriptions of ht are not available except
for specific choices of f (·, ·) and G(·, ·), one has to resort to numerical approx-
imation methods. Analogous to the practice for ODEs, a common approach
is to use the Euler-Maruyama (EM) method (Särkkä and Solin, 2019), which
discretizes the SDE into K time steps t1, . . . , tK, resulting in the following
sample based approximation to the joint distribution:

htk+1 = htk + f (htk , tk)∆tk + G(htk , tk)∆Wk,

∆Wk ∼ N (0, ∆tk1P), ∆tk ≜ tk+1 − tk,
(6.2)

where 1P is a P dimensional identity matrix. Using this sampling scheme,
we obtain an approximation to the joint distribution p(ht1 , . . . htK) for the
given (fixed) drift and diffusion functions. In the following, we rely on this
approximation scheme.

6.1.2 PAC-Bayes Learning

Probably Approximately Correct (PAC) bounds quantify the generalization ca-
pabilities of a model from a training set to the true data distribution (McAllester,
1999, 2003). To this end, a risk R(h) ≜ Ex [l(x, h(x))] of a hypothesis h is
defined via a loss function l(x, h(x)) that measures the loss of the hypothesis
evaluated at a data point x.

Particularly, we build upon the PAC-Bayes formulation, in which the generaliza-
tion performance of a Bayesian posterior, i.e. a distribution Q over hypotheses,
is characterized by the following generic bound:

∀Q : Eh∼Q [R(h)] ≤ Eh∼Q [RD(h)] + C(P, Q, δ, N).

It bounds the desired true, but in practice, inaccessible, unknown expected risk
EQ [R(h)] by its empirical counterpart in which the risk is averaged across an
observed data set D, EQ [RD(h)] ≜ EQ

[︂
1
|D| ∑x∈D l

(︁
x, h(x)

)︁]︂
. The second

term in the bound is a complexity term C(P, Q, δ, N), depending on several
parameters. A distribution P over the hypothesis independent of the observed
data serves as a prior. Additionally, it depends on the number of observed data
points N and a confidence variable δ specifying the probability with which
the bound holds (McAllester, 1999; Maurer, 2004).

6.1.3 Empirical Bayes

Bayesian models define a prior distribution pϕ(θ) over parameters θ with
hyperparameter ϕ, which together with the likelihood p(D|θ) defines the
full model. The standard approach consists of learning a posterior over these
parameters p(θ|D) while keeping the hyperparameters ϕ fixed and marginal-
izing over θ in a second step to get the posterior predictive. An alternative
approach, which we already discussed and used at length in the last chapter,
known as empirical Bayes or type-II maximum likelihood (see e.g. Bishop,
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2006), directly marginalizes over the prior, and optimizes the resulting marginal
likelihood/prior predictive with respect to the hyperparameters ϕ, i.e.

arg max
ϕ

∫︂
p(D|θ)pϕ(θ)dθ.

6.2 the proposed method

This section describes how to combine these tools into a coherent method and
how to perform effective inference with it. We first construct a Bayesian neural
SDE and equip it with domain-specific prior knowledge. We then derive a
PAC-Bayesian objective to be fitted to data and conclude with results on the
proposed model’s convergence. Figure 6.1 summarizes the pipeline.

6.2.1 A Hybrid BNSDE

Application of deep learning to differential equation modelling paves the way to
high-capacity predictors for capturing complex dynamics (Chen et al., 2018a;
Rackauckas et al., 2020). Neural Stochastic Differential Equations (NSDEs)
(Look and Kandemir, 2019; Tzen and Raginsky, 2019) are SDEs as defined
in (6.1) where the drift function and potentially also the diffusion function
are modelled as neural nets. As an initial step towards effective training, weBayesian Neural SDE
introduce a prior distribution pϕ(θ), parameterized by ϕ on the weights θ of a
NSDE drift network, and arrive at

dht = fθ(ht, t)dt + G(ht, t)dWt, θ ∼ pϕ(θ), (6.3)

which we refer to as a Bayesian Neural Stochastic Differential Equation
(BSNDE) throughout the rest of the chapter. The epistemic uncertainty in-
troduced on the network weights allows the model to quantify the model
uncertainty, i.e. the knowledge of which synaptic map fits best to data, in addi-
tion to the aleatoric uncertainty that is modeled by the Wiener Process. For
technical reasons clarified below, we have to assume fθ(·, ·) and G(·, ·) to be
L-Lipschitz-continuous, and G(·, ·) not to have any learnable parameters. Two
minor constraints, which can also be dropped in practice if one is willing to rely
primarily on the empirical performance and neglect the theoretical guarantees
they provide.

In real-world applications, a coarse description of the environment dynamicsIncorporation of prior
knowledge is sometimes available as an incomplete set of differential equations. For

instance, the dynamics of a three-dimensional volume might be modeled as a
flow through a single point, such as the center of mass. Alternatively, a model
on a subset of the system components might be provided. Here, we assume
this prior knowledge to be available as an ODE

dht = rξ(ht, t)dt, (6.4)
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Σ

Measurements

dht = f (ht, t)dt + G(ht, t)dβt
Black Box SDE

dht = r(ht, t)dt
White Box ODE

dht =
(︁

f (ht, t) + γ ◦ r(ht, t)
)︁

dt + G(ht, t)dβt
Hybrid SDE

Research Question

Our Proposed Pipeline

Data Scientist Domain Expert

trained by

PAC Bound
Eht∼Q0→T
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p(yt|ht)

]︁
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(︁
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[︁
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Empirical Bayes

+ C
(︁
Q0→T, P0→T

)︁

Figure 6.1: Illustration of the research question we pose and our proposed so-
lution. Given some measurements, a data scientist can derive a flexible
neural network-based black-box approach, while a domain expert can
design a more principled but more rigid model based on prior knowledge.
The hybrid SDE combines these two approaches, and the PAC-Bayes
bound gives a principled approach to learning the parameters of the joint
model.
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where rξ(·, ·) : RP ×R+ → RP is an arbitrary non-linear function parameter-
ized by a fixed set of parameters ξ. We can incorporate these known dynamics
into the BNSDE by adding them to the drift as follows:

dht =
(︁

fθ

(︁
ht, t) + γ ◦ rξ(ht, t)

)︁
dt + G(ht, t)dWt, (6.5)

which can be viewed as a hybrid SDE with the free parameter vector γ ∈ [0, 1]P

governing the relative importance of prior knowledge on the learning problem
and ◦ referring to element-wise multiplication. Although we specified (6.4)
within the same dimensional state space as (6.5), γ allows us to provide only
partial information. When prior knowledge is available only for a subset of the
state space dimensions, the remaining dimensions d can be filled in by simply
setting γd = 0 as we will demonstrate in the experiments.

We define a prior stochastic process representing solely the prior knowledge of
the dynamics as

dht =
(︁
γ ◦ rξ(ht, t)

)︁
dt + G(ht, t)dWt. (6.6)

This prior SDE will be used as a reference distribution for complexity penaliza-
tion as part of the final PAC-Bayes training objective of our hybrid SDE. Note
that we have used the same diffusion term as in (6.5) for specifying the prior
SDE, which makes the complexity term within the PAC-formulation tractable,
as we will show later. Also, note that γ is a free parameter of the prior.

6.2.2 Learning via Empirical Bayes

Solving the SDE in (6.5) even for fixed parameters θ over a time interval [0, T] is
analytically intractable for basically all practically interesting use cases. While
our method is applicable to any discretization scheme, we demonstrate its use
with the straightforward EM for simplicity, which gives us a discrete-time
version of the hybrid BNSDE as

θ ∼ pϕ(θ),

h0 ∼ p(h0),

hk+1|hk, θ ∼ N
(︁
hk+1

⃓⃓
hk + d(hk, tk)∆tk, Σk

)︁
,

d(hk, tk) ≜ fθ(hk, tk) + γ ◦ rξ(hk, tk),

with Σk ≜ G(hk, tk)G(hk, tk)
⊤∆tk, and ∆tk ≜ tk+1 − tk. The distribution

p(h0) is an assumption on how the initial states are distributed.

Analogously to latent state space models, we assume that the observations of
the latent dynamics described in the three variations, the BNSDE (6.3), its
hybrid version (6.5), and the prior stochastic process (6.6) are linked via a
likelihood p(yk|hk). Specifically, we observe these dynamics as time series
Y = {y1, . . . , yK} consisting of K D-dimensional observations yk ∈ RD, col-
lected at potentially irregularly spaced time points t = {t1, . . . , tK}. Figure 6.2
gives the plate diagram corresponding to this generative model.
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Figure 6.2: Plate diagram of the BNSDE after applying the EM discretization.

Given an observed set of N such time series trajectories D = {Y1, . . . , YN},
the classical Bayesian approach (MacKay, 2003; Gelman et al., 2013) would
now require as a first step the inference of the posterior over both the global
variables θ as well as the local variables Hn = {hn

1 , ..., hn
K}, i.e. of the distri-

bution p(θ, H1, . . . , HN |D), and as a second step a marginalization over this
posterior to get the posterior predictive. As an analytical solution is intractable,
approximate solutions such as Markov Chain Monte Carlo (MCMC) methods
or Variational Inference (VI) are required. The application of either of these ap-
proaches to BNSDEs is impractical, however. The former due to computational
costs, the latter in terms of expressiveness since existing work makes strong
independence and structural assumptions on the approximate posterior.

We propose to apply model selection as an alternative path to BNSDE infer-
ence. Instead of performing the posterior inference on the latent variables, we
marginalize them out and learn those hyperparameters ϕ from data that provide
the highest log marginal likelihood (Rasmussen and Williams, 2006). That is
our BNSDE learns the optimal ϕ∗ via

arg max
ϕ

∫︂
p(D|H)p(H|θ)pϕ(θ)d(H, θ). (6.7)

An advantage of this construction is that the marginal likelihood has an identical
functional form to the predictive distribution, which is the quantity of interest
in a typical prediction task. Marginal likelihood learning has been applied
before in neural networks, for example, as an integral part of the proposed
approach discussed in the last chapter. Fitting the hyperparameters of an SDE
to data via marginal likelihood maximization can also be viewed as an instance
of the simulated likelihood method (Särkkä and Solin, 2019).

Marginalizing over θ in (6.7) is intractable for most practical use cases. How-
ever, it can be approximated by Monte Carlo integration without constructing
chains on the global parameters. Sampling directly from the prior, we get for a
single observation n and s = 1, . . . , S

θs ∼ pϕ(θ),

Hs ∼ p(H|θs), (6.8)

ϕ∗ ≜ arg max
ϕ

log
(︂ 1

S

S

∑
s=1

p(D|Hs)
)︂

.
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To maximize this objective, we require an efficient computation of gradients
with respect to the hyperparameter ϕ. Access to ϕ is only given via samples
from the distribution it is parameterizing. In our experiments, we assume this
distribution pϕ(θ) to be normal, allowing us to use the standard reparame-
terization. We separate the sampling process into a parameter-free source of
randomness and a parametric transformation, i.e. we have ε ∼ p(ε), θ = gϕ(ε),
for a suitable function gϕ(·). To further reduce the variance noise introduced
to the gradients due to this sampling step, we also use the local reparame-
terization trick (Kingma et al., 2015) in the drift, i.e. we sample the layer
outputs during the forward propagation instead of individual layer weights, as
discussed before.

The objective (6.8) is agnostic to the specific SDE employed. Therefore, we
refer to the discretized black-box SDE in (6.3) governing p(H|θ) and trained
with respect to ϕ via this objective as E-Bayes in the experiments. Analogously,E-Bayes
we refer to training a hybrid SDE, i.e. one that incorporates the prior knowledge
as in (6.5), with the same method as E-Bayes-Hybrid.E-Bayes-Hybrid

6.2.3 A Trainable PAC Bound

A major downside of the objective in (6.8), when applied to BNSDEs, is that
it optimizes a large set of hyperparameters, i.e. the means and variances of the
drift network weights, without a proper regularization aside from the implicit
regularization inherent in the chosen architecture and the marginalization
itself. While the hybrid approach already allows us to incorporate prior expert
knowledge, it remains only a guiding signal instead of an explicit model capacity
regularizer. Next, we address this problem by developing a training objective
derived from a PAC-Bayesian bound that combines the benefits from the results
we arrived at so far with a proper regularization scheme.

The proposed approach is still agnostic to the chosen discretization scheme. We
therefore refer, to remain general, for any time horizon T > 0 to all local latent
variables by h0→T. To distinguish the density given by the hybrid SDE in (6.5)
from the prior SDE in (6.6), we further refer to the two densities induced by
them respectively as phyb(h0→T|θ) and ppri(h0→T). This means that we have
define two distributions Q and P over the random variables (h0→T, θ). For the
former, we have the joint distribution of the hybrid process in (6.5)

Q0→T(h0→T, θ) ≜ phyb(h0→T|θ)pϕ(θ), (6.9)

while the latter stands for the joint distribution of the prior process in (6.6)

P0→T(h0→T, θ) ≜ ppri(h0→T)ppri(θ). (6.10)

Although the prior process is independent of the drift parameters θ, we specify
a fixed prior distribution ppri(θ) within the prior P, which we choose to be a
standard normal density within our experiments. To be compliant with the nota-
tional practice in the PAC Bayesian literature, we denote the prior distribution
as P and the posterior distribution that is fit to data as Q. In the PAC-Bayesian
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framework, P and Q do not have to be linked to each other via application of
the Bayes rule on an explicitly defined likelihood. Instead, they can be any pair
(P, Q) of data-independent and data-dependent distributions over the family
of hypothesis.

As both Q and P share the same diffusion term, the Kullback-Leibler (KL)
divergence between these processes can be calculated by extending the proof
of Archambeau et al. (2008). The following Lemma holds for any choice of
diffusion term G(·, ·). The proofs for the Lemma and the following Theorems
can be found at the end of this chapter in Section 6.6.

lemma 1. For the process distributions Q0→T and P0→T as defined above,
it holds that

KL (Q0→T ∥ P0→T) =

1
2

∫︂ T

0
EQ0→T

[︂
fθ(ht, t)⊤J−1

t fθ(ht, t)
]︂

dt + KL
(︁

pϕ(θ) ∥ ppri(θ)
)︁

,

for some T > 0, where Jt = G(ht, t)G(ht, t)⊤.

This Lemma provides one of the main ingredients for deriving a PAC-Bayesian
bound on the generalization performance of a learned distribution Q0→T.
To derive such a bound, we additionally specify the risk via a loss function
measuring the model mismatch. We assume the likelihood function p(yt|ht) to
be uniformly bounded everywhere. In our experiments, we ensure this condition
by choosing the likelihood to be a normal density with bounded variance, i.e.
bounded mass on the mode. We then define the true risk of a draw from Q0→T

on an i.i.d. sampled trajectory y = {y1, . . . , yK} at discrete and potentially
irregular time points t1, . . . , tK drawn from an unknown ground-truth stochastic
processG(t) as the expected model misfit on the sample. Specifically, we define
the risk of a specific hypothesisH ∈ H = (h0→T, θ) as follows:

R(H) ≜ EYk∼G(t)

[︄
1− 1

BK

K

∏
k=1

p(yk|hk)

]︄
, (6.11)

for time horizon T > 0, and BK defined as

BK ≜ max
yk ,hk

K

∏
k=1

p (yk|hk) ≤
(︃

max
yk ,hk

p
(︁
yk|hk

)︁)︃K

.

That is, we consider one minus the marginal likelihood of the data rescaled
to [0, 1], ensuring that a hypothesis giving a high marginal probability gives a
low overall risk. The rescaling to [0, 1] is due to technical requirements in the
derivation of the following theorem.

The corresponding empirical risk on a data set consisting of N trajectories,
D = {y1, . . . , yN}, is then analogously defined as

RD(H) ≜
1
N

N

∑
n=1

(︄
1− 1

BK

K

∏
kn=1

p(yn
k |hn

k )

)︄
. (6.12)
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Next, we develop a PAC-Bayesian generalization bound building on these risk
definitions. Furthermore, we upper bound it with a trainable objective.

theorem 1. The expected true risk is bounded above with probability
P ≥ 1− δ by:

EH∼Q0→T [R(H)]

≤ EH∼Q0→T [RD(H)] + Cδ(Q0→T, P0→T) (6.13)

≤ − 1
N

N

∑
n=1

log

(︄
1
S

S

∑
s=1

K

∏
k=1

p(yn
k |h

n,s
k )

)︄

+ Cδ/2(Q0→T, P0→T) +

√︃
log(2N/δ)

2S
+ K log B⏞ ⏟⏟ ⏞

≜C

(6.14)

≤ − 1
SN

N

∑
n=1

S

∑
s=1

K

∑
k=1

log
(︂

p(yn
k |h

n,s
k )
)︂
+ C (6.15)

where B ≜ maxyk ,hk p(yk|hk) is the uniform bound, S is the sample count
taken independently for each observed sequence, and the complexity functional
is given for some δ > 0 as

Cδ(H0→T, P0→T) =

√︄
KL (Q0→T ∥ P0→T) + log(4

√
N/δ)

2N

with KL (Q0→T ∥ P0→T) as in Lemma 1.

Theorem 1 can be used to learn a posterior distribution Q0→T from data by
adjusting ϕ (hidden in the notation). Additionally, we could also learn the
importance of the prior by fitting the γ parameter to data. While directly
learning γ by optimizing the PAC-bound violates the generalization guarantee,
we can define a collection of prior distributions P0→T for a set Γ of discretized
values of γ and employ the same union bound as Reeb et al. (2018). The
resulting PAC-bound differs by a constant accounting for the number of distinct
γ values within the collection. Therefore, we can use the same gradient based
optimization to learn γ and quantize the value to the closest point within Γ to
evaluate the PAC bound. However, throughout the experiments, we will always
rely on fixed choices for γ.

6.2.4 The Training Algorithm

The first term in (6.13) does not correspond to the empirical Bayes objective
as it averages over likelihoods, not log-likelihoods (Germain et al., 2016).
However, the first term in (6.14) provides a sampling-based approximation to
the empirical Bayes objective. By defining the risk in such a way and employing
the PAC-Bayesian framework, we obtain a regularized version of empirical
Bayes. Although placing the log(·) function into its summands loosens the
bound on the true risk, it improves numerical robustness and optimizing (6.15)
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still tightens the original PAC-Bayesian bound, i.e. (6.13), as shown in the
following corollary.

corollary 1. For Lipschitz-continuous risk and likelihood, a gradient
step that reduces (6.15) also tightens the PAC bound in (6.13).

Minimizing (6.15) hence closes the loop as the empirical Bayes objective Final Objective to be
optimizedderived in (6.8) reappears in (6.14) but is now combined in a principled way

with the regularizing Cδ. We can ignore the terms that do not depend on ϕ and
adopt the remaining expression bound as our final objective and learn ϕ∗ via

ϕ∗ ≜ arg max
ϕ

1
SN

N

∑
n=1

S

∑
s=1

K

∑
k=1

log
(︂

p(yn
k |h

n,s
k )
)︂

+

√︃(︂
KL (Q0→T ∥ P0→T) + log(4

√
N/δ)

)︂
/2N.

(6.16)

In this training procedure, we only optimize with respect to ϕ, which control
the drift term via parametrizing the distribution over the weights of the BNN
modelling it. To also learn the diffusion, one could represent G(·, ·) also by a
BNN. However, the corresponding training procedure would invalidate the PAC
statement. Nevertheless, one could learn the diffusion term on a held-out data
set and then incorporated as fixed to the bound (6.15). As Theorem 1 applies
to any diffusion term, we keep the genericness of its statement. However, in the
experiments, we stick to a constant diffusion term for practical reasons.

Although we require i.i.d. observations of time series in the theory, we can
in practice use mini-batches of trajectories provided that the batches are suf-
ficiently far apart so that they become essentially independent. The objec-
tive (6.14) differs from the one in (6.8) only by the complexity term. An algo-
rithmic description of the overall procedure is given in Algorithm 2.

Our sampling-based method naturally couples with the EM approximation
and inherits its convergence properties. With the following theorem, we show
strong convergence to the true solution with shrinking step size, which can be
shown by extending the plain EM proof (Kloeden and Platen, 2011).

theorem 2 (strong convergence). Let hθ
t be an Itô process as in (6.3)

with drift and diffusion parameters θ and ˜︁hθ
t its Euler-Maruyama approxima-

tion for some regular step size ∆t > 0.1 For some coefficient R > 0 and any
T > 0, the following inequality holds

E

[︄⃓⃓⃓
Eθ

[︂
hθ

T

]︂
− 1

S

S

∑
s=1

˜︁hθ(s)

T

⃓⃓⃓]︄
≤ R∆t1/2 as S→ ∞,

where {θ(s) ∼ pϕ(θ)|s = 1, . . . , S} are i.i.d. draws from a prior pϕ(θ).

1 Here we use the superscript θ notation to make the dependence on the parameters explicit.
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Algorithm 2: E-PAC-Bayes-Hybrid Loss

Input: set of N trajectories D, prior drift rξ(·, ·), time points t, drift
fθ(·, ·), diffusion G(·, ·), weight distribution pϕ(θ), number of
samples S, prior parameter γ

Output: training objective loss

// initialize marginal log-likelihood (mll) and kl
mll← 0
kl← 0
for n ∈ {1, . . . , N} do // for each trajectory

for s ∈ {1, . . . , S} do // and each sample
// sample initial state and weights
hn,s

0 ∼ p(h0)

θn,s ∼ pϕ(θ)

// for each of the K steps
for k ∈ {1, . . . , K} do

// get drift, prior, and diffusion output
f n,s
k ← fθn,s(hn,s

k−1, tk−1)

rn,s
k ← rξ(h

n,s
k−1, tk−1)

Gn,s
k ← G(hn,s

k−1, tk−1)

// sample stochasticity
∆tk ← tk − tk−1
Wn,s

k ∼ N (0, ∆tk1)

// update state
hn,s

k ← hn,s
k−1 + ( f n,s

k + γrn,s
k )∆tk + Gn,s

k Wn,s
k

// and update mll and kl
mll← mll + 1

SN log p(yn
k |h

n,s
k )

kl← kl + 1
2S f n,s

k
⊤(Gn,s

k Gn,s
k
⊤)−1 f n,s

k ∆tk

end
end

end
// add penalty for modified drift distribution

kl← kl + DKL

(︂
pϕ(θ)||ppri(θ)

)︂
// and assign final loss

loss← −mll +
√︂(︁

kl + log(4
√

N/δ)
)︁
/(2N)

// to be returned and optimized
return loss

6.3 related work

empirical bayes as pac-bayes learning. Germain et al. (2016) pro-
pose a learnable PAC-Bayesian bound that provides generalization guarantees
as a function of a marginal log-likelihood. Our method differs from this work
in two main lines. First, Germain et al. (2016) define risk as − log p(Y |H) ∈
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(−∞,+∞) and compensate for the unboundedness by either truncating the
support of the likelihood function or introducing assumptions on the data distri-
bution, such as it being sub-Gaussian or sub-Gamma. As defined in (6.11), our
risk is different in that it assumes uniform boundedness yet can be incorporated
into a PAC-Bayesian bound without further restrictions on the data. Second,
Germain et al. (2016)’s bound is an unparameterized rescaling of the marginal
log-likelihood. Hence, it is not linked to a capacity penalizer, which can be used
at training time for regularization. Applying this method to hybrid sequence
modelling boils down to performing plain empirical Bayes, i.e. what we refer
to as E-Bayes in our experiments.

differential gps. Hegde et al. (2019) model the dynamics of the ac-
tivation maps of a feed-forward learner by the predictive distribution of a
Gaussian Process. This method allocates the mean of a GP as the drift and its
covariance as the diffusion. It then infers the resulting model using variational
inference. While direct application of this method to time series modeling
is not straightforward, we represent it in our experiments by sticking to our
generic non-linear BNSDE design from (6.3), and infer it by maximizing the
ELBO

L(ϕ) = EH,θ
[︁

log p(Y |H)
]︁
− DKL

(︁
pϕ(θ)||p(θ)

)︁
,

applying the local reparameterization trick on θ. Although variational inference
can be seen from a PAC-perspective by choosing the log-likelihood as the
loss (Knoblauch et al., 2019), the ELBO does not account for the deviation
of variational posterior over latent dynamics from the prior latent dynamics.
We refer to this baseline in the experiments as D-BNN (VI). The approximate
posterior design here closely follows the PR-SSM approach (Doerr et al., 2018),
which represents state of the art in state-space modelling.

differential bnns with sgld. The learning algorithm of Look and
Kandemir (2019) shares our BNSDE modelling assumptions. However, it uses
Stochastic Gradient Langevin Dynamics (SGLD) (Welling and Teh, 2011) to
infer θ. The algorithm is equivalent to performing the MAP estimation of the
model parameters in (6.3) while distorting the gradient updates with decaying
normal noise that determines the learning rate.

black-box identification of dynamic systems. There are various
approaches to identify a dynamical system that differ in the model class used
for fitting the right-hand side of the differential equation and may also allow
for transitional noise (see e.g. Brunton et al., 2016; Durstewitz, 2017). These
approaches could be incorporated into ours, using their transition likelihood
and prior over parameters. In fact, our black-box neural SDE can be seen as
one instance of such a black-box identification of dynamical systems. As we
are mainly interested in incorporating prior knowledge into such black-box
models, we chose as a comparison one such competitor (Hegde et al., 2019),
which allows for the most flexible right-hand side with reported results on the
CMU Motion capture data set (Tab. 6.2).
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6.4 experiments

We evaluate the following four variants of our method that we discussed
throughout this chapter:

(i) E-Bayes. A simple baseline that optimizes the marginal likelihood via
empirical Bayes without the incorporation of prior knowledge, i.e. train-
ing the generative model in (6.8) with the dynamical system p(h0→T)

as given by (6.3). We interpret this variant as applying Germain et al.
(2016)’s approach to our BNSDE setup.

(ii) E-PAC-Bayes. An empirical PAC-Bayes approach on learning the BNDSE
model using the objective in (6.15) with an uninformative prior drift, i.e.
with the assumption that rξ(ht, t) = 0.

(iii) E-Bayes-Hybrid. This model uses the same training objective as the
baseline in (i), i.e. a direct optimization of the marginal likelihood,
however with the inclusion of prior knowledge in the drift term giving
the hybrid model as proposed in (6.5).

(iv) E-PAC-Bayes-Hybrid. This final version is the extension of (ii) to the
hybrid model (6.5) with the same loss as E-PAC-Bayes. It is the combi-
nation we propose to use in practice.

In summary, we extend the empirical Bayes objective in (6.8) by PAC-Bayes to
tune many hyperparameters without overfitting and incorporate prior domain
knowledge in a principled way. See the further details section at the end of this
chapter for more details on each of the experiments’ setup. 2

6.4.1 Lotka-Volterra

We demonstrate the benefits of incorporating prior knowledge although it is
a coarse approximation to the true system. We consider the Lotka-Volterra
system specified as:

dxt = (θ1xt − θ2xtyt)dt + 0.2 dβt,

dyt = (−θ3yt + θ4xtyt)dt + 0.3 dβt.

with θ = (2.0, 1.0, 4.0, 1.0). Assuming that the trajectory is observed on the
interval t = [0, 1] with a resolution of dt = 0.01, we compare the following
three methods: i) the black-box BNSDE without prior knowledge, ii) the white-
box SDE in (6.6) representing partial prior knowledge (parameters are sampled
from a normal distribution centered on the true values with a standard deviation
of 0.5), and finally iii) combining them in our proposed hybrid method. The
outcome is summarized in Figure 6.3. While the plain black-box model delivers
a poor fit to data, our hybrid BNSDE brings significant improvement from
relevant but inaccurate prior knowledge.

2 See https://github.com/manuelhaussmann/bnsde for a reference implementation.

https://github.com/manuelhaussmann/bnsde
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Figure 6.3: Lotka-Volterra visualization. Error bars indicate three standard devi-
ations over 10 trajectories starting from the true value at t = 1. The
predictions over 200 time steps (dt = 0.01) are for: i) a BNSDE trained
without prior knowledge, ii) an SDE with known prior parameters, iii) the
joint hybrid BNSDE. The dashed lines are the observed trajectories for
xt and yt.

6.4.2 Lorenz Attractor

The classical chaotic non-linear system known as the Lorenz Attractor has the
the following inherently unsolvable dynamics

dxt = ζ(yt − xt)dt + dWt,

dyt =
(︁
xt(κ − zt)− yt

)︁
dt + dWt,

dzt = (xtyt − ρzt)dt + dWt,

where ζ = 10, κ = 28, ρ = 2.67, and Wt is a random variable following a
Wiener process with unit diffusion. We generate 2000 observations from the
above dynamics initiating the system at x0, y0, z0 = (1, 1, 28), and use the first
half for training and the rest for testing. Figure 6.4 gives the data and visualizes
the behaviour of the Lorenz Attractor, demonstrating the qualitative difference
between the training and test data.

We split the training and the test data into 20 sequences of length 24, which
can be interpreted as i.i.d. samples of the system with different initial states.
Table 6.1 gives the 24-step ahead forecasting error in mean squared error
(MSE) on the test set for our variants. In each repetition, E-Bayes-Hybrid
and E-PAC-Bayes-Hybrid are provided prior knowledge of one of the three
differential equations after distorting the corresponding parameter by standard
normally distributed noise. The other equations are hidden by assigning the
corresponding dimensions of γ to zero. To set up the corresponding prior and
model, we used a constant diffusion with G = 1. Despite the imprecision of
the provided prior knowledge, the largest performance leap comes from the
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Figure 6.4: Visualization of the stochastic Lorenz attractor. Of the 2000 observa-
tions, the first 1000 constitute the training data (marked in blue), while the
second 1000 are the test observations (marked in red). Note the qualitative
difference of the two sets.
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Figure 6.5: Predicted trajectory for 200 time steps starting at T = 10 of the Lorenz
data set mapped to one dimension. The error bars indicate ±2 standard
deviations over 21 trajectories.

hybrid models. The complexity term on the PAC-Bayesian bound restricts the
model capacity for black-box system identification while it improves the hybrid
setup.

Figure 6.5 visualizes the predicted trajectories on the test sequence for prior
knowledge on dzt. Even with weak prior knowledge, the proposed model is
stable longer than the baseline as well as showing a proper increase in the
variance as the predicted trajectory increases, while the baseline diverges sooner
without a proper increase in uncertainty. See the further details section at the
end of this chapter for the corresponding plots of the other dimensions.
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Table 6.1: Ablation study on the Lorenz attractor to evaluate the contributions of the
prior knowledge on the predictive performance measured in mean squared
error (MSE) with standard error over fifty repetitions. The hybrid models
((iii), (iv)) consistently improve on the black box models ((i),(ii)). The last
row (v) shows the performance for the case the model has full access to
the true dynamics with noisy parameters in (6.4).

Prior Knowledge Model Test MSE

None (i) 29.20±0.19

(ii) 29.05±0.23

γ = [1, 0, 0], ζ ∼ N (10, 1)
(iii) 27.58±0.17

(iv) 27.42±0.16

γ = [0, 1, 0], κ ∼ N (28, 1)
(iii) 15.87±0.46

(iv) 15.06±0.35

γ = [0, 0, 1], ρ ∼ N (2.67, 1)
(iii) 27.82±0.26

(iv) 28.37±0.21

γ = [1, 1, 1], (v) 16.40±2.31
(ζ, κ, ρ)⊤ ∼ N

(︁
(10, 28, 2.67)⊤,13

)︁
6.4.3 CMU Walking Data Set.

We benchmark against state of the art on this motion capture data set following
the setup of Yildiz et al. (2019). We train an E-PAC-Bayes model on the
MOCAP-1 data set consisting of 43 motion capture sequences measured from
43 different subjects. The drift net of the learned BNSDE is then treated as weak
and broad prior knowledge of human walking dynamics. We use MOCAP-2
with 23 walking sequences from Subject 35 to represent a high-fidelity subject-
specific modelling task. As Yildiz et al. (2019) report in Table 2 of their paper,
the state of the art of subject-independent mocap dynamic modelling has twice
as high prediction error as subject-specific dynamics (MSE of 15.99 versus
8.09). Analogously to the Lorenz attractor experiment, we fixed the PAC-
variants’ prior diffusion term to be constant. See Table 6.2 for a summary of
the test MSEs and negative log-likelihoods our the four variant approaches on
this experiment. Our method delivers the best prediction accuracy and model
fit when all its components are active.

6.4.4 Computational Cost

We close our discussion of the experiments by present the runtimes of the
different variations in terms of floating-point operations (FLOPs) of the differ-
ent approaches in Table 6.3, assuming time series data of length T.3 D-BNN
samples the weights of the neural network directly leading to the runtime term
O(MTF). All other approaches do not sample the weights but the linear acti-

3 See the caption of that table for a definition of the parameters discussed in this section.
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Table 6.2: Benchmarking of our method on the CMU Motion Capture Data Set. Mean
Squared Error (MSE) and Negative Log-Likelihood (NLL) on 300 future
frames is averaged over ten repetitions (± standard deviation).

Method Test MSE Test NLL

DTSBN-S (Gan et al., 2015) 34.86±0.02 Not Applicable
npODE (Heinonen et al., 2018) 22.96 Not Applicable
Neural-ODE (Chen et al., 2018a) 22.49±0.88 Not Applicable
ODE2VAE (Yildiz et al., 2019) 10.06±1.40 Not Reported
ODE2VAE-KL (Yildiz et al., 2019) 8.09±1.95 Not Reported
D-BNN (SGLD) (Look and Kandemir, 2019) 13.89±2.56 747.92±58.49

D-BNN (VI) (Hegde et al., 2019) 9.05±2.05 452.47±102.59

(i) E-Bayes 8.68±1.56 433.76±77.78

(ii) E-PAC-Bayes 9.17±1.20 489.82±67.06

(iii) E-Bayes-Hybrid 9.25±1.99 462.82±99.61

(iv) E-PAC-Bayes-Hybrid 7.84±1.41 415.38±80.37

Table 6.3: Computational cost analysis in FLOPs for time series of length T. M:
Number of Monte Carlo Samples. W: Number of weights in the neural net.
F: Forward pass cost of a neural net. L: Cost for computing the likelihood
term. D: Number of dimensions of the targeted SDE. P: Cost of a prior
SDE integration.

Method Training per Iteration

D-BNN (SGLD) O(MTF + MTDL + W)

Variational Bayes O(2MTF + MTDL + W)

E-Bayes O(2MTF + MTDL)
E-PAC-Bayes O(2MTF + MTDL + W + TMD3)

E-Bayes-Hybrid O(2MTF + MTDL + MTP)
E-PAC-Bayes-Hybrid O(2MTF + MTDL + W + TMD3 + MTP)

vations of each data points leading to O(2MTF). When we apply empirical
Bayes, we do not use any regularization term on the weights, while all other
approaches contain a penalty term with costO(W).Using the PAC-framework,
we employ a second regularization term that leads to an additional runtime
cost of O(TMD3).However, the cubic cost in D is invoked by inverting the
diffusion matrix G(ht, t) and can be further reduced by choosing a simpler
form for G(ht, t) (e.g. diagonal as we do throughout the experiments). In case
that prior knowledge is available in ODE form, we need to compute the corre-
sponding drift term for each time point and each MC sample leading to the
term O(MTP).



6.5 conclusion 119

6.5 conclusion

We have shown that our method incorporates vague prior knowledge into a
flexible Bayesian black-box modelling approach for learning SDEs resulting
in a robust learning scheme guided by generalization performance via a PAC-
Bayesian bound. The method is easily adaptable to other solvers. For example,
the training loss derived in (6.8) can also be optimized using a closed-form
normal assumed density scheme applied over a stochastic Runge-Kutta variant
(Li et al., 2019). Independent from the sampling scheme and model used, our
tied gradient update procedure allows training on the loose, yet numerically
stable, bound while providing an improvement with respect to the generalization
guarantees on its tighter counterpart. Our stochastic approximation of the data
log-likelihood currently relies on samples obtained from the prior, yet could be
improved by incorporating a more sophisticated sampling scheme, for example
using particle filtering (Kantas et al., 2015). Finally, the bound in (6.15) has
the potential to be vacuous for certain drift nets, incorporating a Hoeffding
assumption (Alquier et al., 2016) could further tighten it.

broader impact

The proposed approach allows for a principled way of incorporating prior
knowledge into the learning stochastic differential equations, together with the
flexibility and strength of deep Bayesian neural nets. As such, it shares the
potential benefits and risks of both. The growing field of combining differential
equations with neural networks has great potential as it allows for a combination
of the often disjoint strands of mostly data-driven approaches (deep learning)
with mostly symbolic, i.e. model-driven, approaches (differential equations),
combining the best of both worlds by offering both the possibility of improved
predictive performance as well as greater interpretability. SDEs are agnostic
to the task at hand. So the proposed method inherits both their beneficial
potential as a powerful tool in many fields of science and their ethically doubtful
applications.

It also inherits from deep learning the downsides of potential susceptibility
to problems such as adversarial attacks and predictive overconfidence. There
is growing literature indicating that the Bayesian approach to neural nets we
use seem to be more robust against such problems than standard deterministic
nets. Still, most of that is ongoing research without final results. Note that we
are not aware of any work showing adversarial attacks in the neural network
+ differential equation literature, but this should, of course, not be read as a
proof of absence. Summarizing the broader impact in one sentence, our pro-
posed approach and other work in this direction have the potential to reinforce
the positive and negative influence differential equations are already having,
without offering guarantee only benefits. The ethical responsibility remains
with the scientist/engineer building on top of it.
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6.6 further details

This section concludes our exploration of BNSDE models with proofs of the
claims we made throughout this chapter and further details and results on the
three experiments discussed.

6.6.1 Continuous Time SDEs

Solving the SDE system in (6.1) for a time interval [0, T] and fixed θ requires
computing integrals of the form∫︂ T

0
dht =

∫︂ T

0
fθ(ht, t)dt +

∫︂ T

0
G(ht, t)dWt.

This operation is intractable for almost any practically relevant choice of fθ(·, ·)
and G(·, ·). The integral around the drift term fθ(·, ·) does not have an analyti-
cal solution, due both to potential nonlinearities of the drift and to the fact that
ht ∼ p(ht, t) is a stochastic random variable following an implicitly defined
distribution. Also, the diffusion term involves the Itô integral (Øksendal, 1992)
about Wt which multiplies the non-linear function G(·, ·).

For each of the SDEs in (6.5) and (6.6), we could alternatively to the Euler-
Maruyama integration scheme use the Fokker-Planck-Kolmogorov equation to
derive a partial differential equation (PDE) system

∂phyb(ht, t|θ)/∂t = −∇ ·
[︁(︁

fθ(ht, t) + γ ◦ rξ(ht, t)
)︁

phyb(ht, t|θ)
]︁

+∇ ·
(︁
1∇ · G(ht, t)phyb(ht, t|θ)

)︁
,

∂ppri(ht, t)/∂t = −∇ ·
[︁(︁

γ ◦ rξ(ht, t)
)︁

ppri(ht, t)
]︁

+∇ ·
(︁
1∇ · G(ht, t)ppri(ht, t)

)︁
,

where ∇· is the divergence operator and 1 = (1, . . . , 1)⊤. Theoretically,
these distributions can be obtained by solving the Fokker-Planck PDE. As this
requires solving a PDE that is not analytically tractable, we instead resort to
the discrete-time Euler-Maruyama integration.

6.6.2 Proofs

This section gives a more detailed derivation and proofs of the individual
results stated in the main text.

lemma 1. For the two process distributionsLemma 1 and Proof

P0→T(h0→T, θ) ≜ ppri(h0→T)ppri(θ),

Q0→T(h0→T, θ) ≜ phyb(h0→T|θ)ppri(θ),

as introduced in the main text the following property holds

KL (Q0→T ∥ P0→T) =
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1
2

∫︂ T

0
EQ0→T

[︂
fθ(ht, t)⊤J−1

t fθ(ht, t)
]︂

dt + KL
(︁

pϕ(θ) ∥ ppri(θ)
)︁

,

for some T > 0, where Jt = G(ht, t)G(ht, t)⊤ .

proof. Assume that the Euler-Maruyama discretization for the process
Q0→T on arbitrarily chosen K time points within the interval [0, T] has been
performed. Then we have that the KL divergence between Q and P up to the
discretization into K time points t0, . . . , tK is given as

KL (Q ∥ P) =∫︂∫︂
log

∏K−1
k=0 N

(︁
hk+1

⃓⃓
hk +

(︁
fθ(hk, tk) + γ ◦ rξ(hk, tk)

)︁
∆tk, Jk∆tk

)︁
∏K−1

k=0 N
(︁
hk+1|hk + γ ◦ rξ(hk, tk)∆tk, Jk∆tk

)︁
· �

��p(h0)pϕ(θ)

���p(h0)ppri(θ)
Q0→T dh dθ

=
K−1

∑
k=0

EQ0→T

[︄
log
N
(︁
hk+1

⃓⃓
hk +

(︁
fθ(hk, tk) + γ ◦ rξ(hk, tk)

)︁
∆tk, Jk∆tk

)︁
N
(︁
hk+1|hk + γ ◦ rξ(hk, tk)∆tk, Jk∆tk

)︁ ]︄
+ KL

(︁
pϕ(θ) ∥ ppri(θ)

)︁
,

where ∆tk ≜ tk+1− tk, and Jk ≜ G(hk, tk)G(hk, tk)
⊤. In each of the K terms

the expectation of the log ratio now reduces to the Kullback-Leibler divergence
between two multivariate normal distributions conditioned on the other hk,
which given the shared covariances and very similar means of the multivariate
two normal distributions reduces to

KL (Q ∥ P) =
K−1

∑
k=0

EQ0→T

[︃
1
2

fθt(hk, tk)
⊤ J−1

k fθt(hk, tk)∆tk

]︃
+ KL

(︁
pϕ(θ) ∥ ppri(θ)

)︁
.

With the limit of K → ∞ we then arrive at the desired property

KL (Q0→T ∥ P0→T) =

1
2

∫︂ T

0
EQ0→T

[︂
fθ(ht, t)⊤J−1

t fθ(ht, t)
]︂

dt + KL
(︁

pϕ(θ) ∥ ppri(θ)
)︁

,

which would have diverged instead if we had not assumed the shared covariance
terms.

theorem 1. Let p(yt|ht) be a uniformly bounded likelihood function Theorem 1
with density p(yt|ht) everywhere and Q0→T and P0→T be the joints stochastic
processes defined on the hypothesis class of the learning task, respectively.
Define the true risk of a draw from Q0→T on an i.i.d. sample Y = {y1, . . . , yK}
at discrete and potentially irregular time points t1, . . . , tK drawn from an
unknown ground-truth stochastic process G(t) as the expected model misfit
as on the sample as defined via the following risk over hypotheses H ∈ H =

(h0→T, θ), i.e. a set of variables,

R(H) ≜ EYk∼G(t)

[︄
1− 1

BK

K

∏
k=1

p(yk|hk)

]︄
,
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for time horizon T > 0 and the corresponding empirical risk on a data set
D = {Y1, . . . , YN} as

RD(H) ≜
1
N

N

∑
n=1

(︄
1− 1

BK

K

∏
kn=1

p(yn
k |hn

k )

)︄
,

where we defined

BK ≜ max
yk ,hk

K

∏
k=1

p (yk|hk) ≤
(︃

max
yk ,hk

p
(︁
yk|hk

)︁)︃K

.

Then the expected true risk is bounded above with probability P ≥ 1− δ for
some δ ∈ [0, 1]by the marginal negative log-likelihood of the predictor and a
complexity functional as

EH∼Q0→T [R(H)] ≤ EH∼Q0→T [RD(H)] + Cδ(Q0→T, P0→T) (6.17)

≤ − 1
N

N

∑
n=1

log

(︄
1
S

S

∑
s=1

K

∏
k=1

p(yn
k |h

n,s
k )

)︄
+ Cδ/2(Q0→T, P0→T)

+

√︃
log(2N/δ)

2S
+ K log B

≤ − 1
SN

N

∑
n=1

S

∑
s=1

K

∑
k=1

log
(︂

p(yn
k |h

s,n
k )
)︂
+ Cδ/2(Q0→T, P0→T)

+

√︃
log(2N/δ)

2S
+ K log B, (6.18)

where S is the sample count taken independently for each observed sequence,
and the complexity functional is given as

Cδ(Q0→T, P0→T) ≜

√︄
KL (Q0→T ∥ P0→T) + log(4

√
N/δ)

2N

with KL (Q0→T ∥ P0→T) as in Lemma 1.

proof. To be able to apply known PAC-Bayes bounds, we first define theProof of Theorem 1
hypothesis class H ∈ HK that contains the latent states hk, θ that explain the
observations yk. The data set D = {Yn

k }k,n was generated by an unknown
stochastic process G(t).

Note that we normalize the risks R(H) and RD(H) by the maximum of
the likelihood and thereby obtaining a possible range of these risk of [0, 1].
This bounding is achievable, as we model the term p(yk|hk), by a normal
distribution with a fixed variance, is upper bounded by its mode.

The rescaling to [0, 1] allows us to rely on the binary Kullback-Leibler diver-
gence,

kl (q ∥ p) ≜ q log
q
p
+ (1− q) log

1− q
1− p

,
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to measure the distance between the empirical and the true risk getting the
following bound due to Maurer (2004)

kl (EH [RD(H)] ∥ EH [R(H)]) ≤
KL (Q0→T ∥ P0→T) + log

(︂
2
√

N
δ

)︂
N

,

which wholds for N > 8, and δ ∈ (0, 1) with probability P ≥ 1− δ.

To optimally use it as a generalization bound, we require an inverse. In that case,
a numerical inverse is a suitable approach to ensure tightness. To get an analyt-
ically tractable bound, we instead follow common practice and use Pinsker’s
inequality (Tolstikhin and Seldin, 2013; Dziugaite and Roy, 2017),

|p− q| ≤
√︂

kl (q ∥ p) /2.

This allows us to compute the following tractable bound.

pac-bayes bound For any [0, 1]-valued loss function giving rise to empir- PAC-Bayes Bound
ical and true risk RD(H), R(H), for any distribution ∆, for any N > 8, for any
distribution P0→T on a hypothesis setHK, and for any δ ∈ (0, 1), the following
holds with probability at least 1− δ over the training set D ∼ ∆N:

∀Q0→T : EH∼Q0→T [R(H)] ≤ EH∼Q0→T [RD(H)]

+

⌜⃓⃓⎷KL (Q0→T ∥ P0→T) + log
(︂

2
√

N
δ

)︂
2N

Here, KL (Q0→T ∥ P0→T) acts as a complexity measure that measures how
much the posterior predictive governing the SDE Q0→T needed to be adapted to
the data when compared to an a priori chosen SDE that could alternatively have
generated data P0→T. In our situation, Q0→T is obtained by our approximation
scheme, resulting in a bounded likelihood of observations yk which factorizes
over different observations n. The P0→T can be arbitrarily chosen as long as
it does not depend on the observations. As mentioned in the main discussion,
we chose an SDE with the same diffusion term, which also factorizes over
observations. Using this setting, we can analytically compute the KL-distance
(as shown in Lemma 1).

On the right-hand side of the boundbound, we need to evaluateEH∼Q0→T [RD(H)]
which we can approximate as

EH∼Q0→T [RD(H)] =
1
N

N

∑
n=1

EH∼Q0→T

[︄
1− 1

BK

K

∏
k=1

p(yn
k |hn

k )

]︄

= 1− 1
N

N

∑
n=1

EH∼Q0→T

[︄
1

BK

K

∏
k=1

p(yn
k |hn

k )

]︄

≤ 1− 1
SN

N

∑
n=1

S

∑
s=1

[︄
1

BK

K

∏
k=1

p(yn
k |h

n,s
k )

]︄
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+

√︃
log(2N/δ)

2S
(via Hoeffding’s inequality)

=
1
N

N

∑
n=1

(︄
1− 1

S

S

∑
s=1

1
BK

K

∏
k=1

p(yn
k |h

n,s
k )

)︄

+

√︃
log(2N/δ)

2S

≤ − 1
N

N

∑
n=1

log

(︄
1
S

S

∑
s=1

K

∏
k=1

p(yn
k |h

n,s
k )

)︄

+ log BK +

√︃
log(2N/δ)

2S
(as − log z ≥ 1− z)

≤ − 1
SN

N

∑
n=1

S

∑
s=1

K

∑
k=1

[︁
log p(yn

k |h
n,s
k )
]︁

+ log BK +

√︃
log(2N/δ)

2S
(via Jensen’s inequality),

where we have used Hoeffding’s inequality for estimating the true expectation
over hypotheses with a K samples trace hn,s

k with k = 1, . . . , K, s = 1, . . . , S
for each observation n. As we approximate the integral for each time-series n
separately via sampling, we require Hoeffding to hold simultaneously for all n.
Using a union bound, we have to scale δ for each n by N. Splitting confidences
between the PAC-Bayes bound and the sampling based approximation results
an additional factor of 2. With δ/(2N), the corresponding inequality holds
with a probability of P > δ/2. Also using δ/2 in PAC-theorem, we obtain
that with P ≥ 1− δ we have for all Q0→T that

EH∼Q0→T [R(H)]

≤ EH∼Q0→T [RD(H)] +

⌜⃓⃓⎷KL (Q0→T ∥ P0→T) + log
(︂

2
√

N
δ/2

)︂
2N

≤ − 1
N

N

∑
n=1

log

(︄
1
S

S

∑
s=1

K

∏
k=1

p(yn
k |h

n,s
k )

)︄
+ log BK +

√︃
log(2N/δ)

2S

+

⌜⃓⃓⎷KL (Q0→T ∥ P0→T) + log
(︂

4
√

N
δ

)︂
2N

≤ − 1
SN

N

∑
n=1

S

∑
s=1

K

∑
k=1

log p(yn
k |h

n,s
k ) + log BK +

√︃
log(2N/δ)

2S

+

⌜⃓⃓⎷KL (Q0→T ∥ P0→T) + log
(︂

4
√

N
δ

)︂
2N

corollary 1. Given a L-Lipschitz continuous function setCorollary 1 {︂
f n
θ (x) : R→ [0, 1]

⃓⃓⃓
n = 1, · · · , N

}︂⋃︂{︂
gθ(x) : R→ [0,+∞]

}︂
,
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for the two losses:

l1(θ) = −
N

∑
n=1

f n
θ (x) + gθ(x) and l2(θ) = −

N

∑
n=1

log f n
θ (x) + gθ(x),

the sequential updates (with θ0 ≜ θ)

θ(n) ← θ(n−1) + αn∇
(︁

log f n
θ(n−1)(x)

)︁
, n = 1, . . . , N,

θ(N+1) ← θ(N) − αN+1∇gθ(N)(x),

where αn ∈ (0, f n
θ(n−1)(x)/L) ∀n and αN+1 ∈ (0, 1/L), satisfy both

l1(θ(N+1)) ≤ l1(θ) and l2(θ(N+1)) ≤ l2(θ).

proof. As we only consider updates in θ for constant x, we simplify the Proof of Corollary 1
notation for this proof to f n(θ) := f n

θ (x), g(θ) = gθ(x). I.e. we have as the
two loss terms

l1(θ) = −
N

∑
n=1

f n(θ) + g(θ) and l2(θ) = −
N

∑
n=1

log f n(θ) + g(θ).

In general we have with log f (θ) < f (θ) that l1(θ) < l2(θ). Similarly we
have

∇l2(θ) = −∑
n

1
f n(θ)⏞ ⏟⏟ ⏞
≥1

∇ f n(θ) +∇g(θ) ≤ −∑
n
∇ f n(θ) +∇g(θ) = ∇l1(θ).

Due to the sequential updates we can consider each term separately. For an
L-Lipschitz function f n(θ), we have that for arbitrary x, y

f (y) ≤ f (x) +∇ f (x)⊤(y− x) +
L
2
||y− x||22.

Choosing y = θ(n−1) and x = θ(n) = θ(n−1) + αn∇ log f n this gives
us

f (θ(n−1)) ≤ f (θ(n))− αn

f n(θ(n))
||∇ f n(θ(n))||22 +

Lα2
n

2 f n(θ(n))2
||∇ f n(θ(n))||22

= f n(θ(n))− αn

f n(θ(n))⏞ ⏟⏟ ⏞
≥0

(︃
1− Lαn

2 f n(θ(n))

)︃
⏞ ⏟⏟ ⏞

>0

||∇ f n(θ(n))||22

≤ f n(θ(n)),

and hence chaining the update steps gives the desired result.

That is, updating the terms in l2(θ) sequentially, one can ensure concurrent
optimization of l1(θ). Note that l1(θ) and l2(θ) are not necessarily dual ob-
jectives, hence may have different extrema. Nevertheless, a gradient step that
decreases one loss also decreases the other with potentially a different mag-
nitude. In practice, we observe this behaviour to also hold empirically for
joint gradient update steps with shared learning rates. Applying Lemma 2 to
Theorem 1, we establish a useful link between empirical Bayes and PAC-Bayes
learning.
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theorem 2 (strong convergence). Let hθ
t be an Itô process as inTheorem 2

(6.3) with drift parameters θ and its Euler-Maruyama approximation ˜︁hθ
t for

some regular step size ∆t > 0. For some coefficient R > 0 and any T > 0,
the following inequality holds as S→ ∞

E

[︄⃓⃓⃓
Eθ [hθ

T]−
1
S

S

∑
s=1

˜︁hθ(s)

T

⃓⃓⃓]︄
≤ R∆t1/2,

where {θ(s) ∼ pϕ(θ)|s = 1, . . . , S} are i.i.d. draws from a prior pϕ(θ).

proof. The Euler-Maruyama approximation converges strongly asProof of Theorem 2

E
[︂⃓⃓

hθ
T − ˜︁hθ

T
⃓⃓]︂
≤ R∆t1/2,

for a positive constant R and a suitably small step size ∆t as discussed for
example by Kloeden and Platen (2011). To simplify the mathematical notation
we follow their approach of comparing the absolute error of the end of the
trajectory throughout the proof. As our sampling scheme is unbiased it is a
consistent estimator and we have that asymptotically for S→ ∞

1
S

S

∑
s=1

˜︁hθ(s)
T = Eθ

[︂˜︁hθ
T

]︂
.

We then have for the marginal hT, h̃T that

E
[︂⃓⃓

hT − ˜︁hT
⃓⃓]︂

= E
[︂⃓⃓
Eθ

[︂
hθ

T

]︂
−Eθ

[︂˜︁hθ
T

]︂ ⃓⃓]︂
= E

[︂⃓⃓
Eθ

[︂
hθ

T − ˜︁hθ
T

]︂ ⃓⃓]︂
≤ E

[︂
Eθ

[︂⃓⃓
hθ

T − ˜︁hθ
T
⃓⃓]︂]︂

≤ Eθ

[︂
R∆t1/2

]︂
= R∆t1/2,

where the first inequality is due to Jensen and the second due to the strong
convergence result for a fixed set of parameters after switching the order of the
two expectation.

6.6.3 Further Details On The Experiments

Here we provide further details on the experimental setup we used in obtaining
our results reported in the main discussion. We observed our results to be
robust against most of the design choices.

lotka volterra. We took 105 Euler-Maruyama steps on the interval
[0, 10] with a time step size of 10−4, downsampling them by a factor of 100
giving us 1000 observations with a frequency of 0.01. We take the first 500
observations on the interval [0,5] to be the training data and the observations
in (5, 10] to be the test data. Each sequence is split into ten sequences of length
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50. Assuming the diffusion parameters to be known and fixed, both BNSDEs
(i.e. with and without prior knowledge) get a four-layer net as the drift function
with 50 neurons per layer and ReLU activation functions. The BNSDE with
prior knowledge as well as the raw SDE estimate each gets an initial sample of
θ̃ parameters as the prior information by sampling from a normal distribution
centered around the true parameters, i.e. θ̃ ∼ N (θ̃|θ, σ214). The models are
each trained for 50 epochs with the Adam optimizer (Kingma and Ba, 2015)
and a learning rate of 0.001. Since both the latent and observed spaces are only
two dimensional, we did not need an observation model in this experiment.
We directly linked the BNSDE to the likelihood.

lorenz attractor. We took 200.000 Euler-Maruyama steps ahead with
a time step size of 10−4 and downsampling by a factor 0.01, which gives a
sequence of 2000 observations with frequency 0.01. We split the first half of
this data set into 20 sequences of length 50 and use them for training, and the
second half to 10 sequences of length 100 and use for testing. For all model
variants, we used an Adam optimizer learning rate 0.001, minibatch size of
two, a drift net with two hidden layers of 100 neurons and softplus activation
function.We trained all models for 100 epochs and observed this training period
to be sufficient for convergence.

cmu motion capture. In this experiment, we tightly follow the design
choices reported by Yildiz et al. (2019) to maintain comparability. This setup
assumes the stochastic dynamics are determined in a six-dimensional latent
space. Yildiz et al. (2019) use an auto-encoder to map this latent space to
the 50-dimensional observation space back and forth. We adopt their exact
encoder-decoder architecture and incorporate it into our BNSDE, arriving at
the data generating process

θ f ∼ pϕ f (θ f ),

dht|θ f ∼ fθ f

(︁
bλ(ht), t

)︁
dt + G

(︁
bλ(ht), t

)︁
dβt,

zt|ht ∼ N (zt|aψ(ht), 0.5 · 10−61),

yt|zt ∼ N (yt|zt, 0.5 · 10−61), ∀t ∈ t.

Above, bλ(·, ·) is the encoder that takes the observations of the last three time
points as input, passes them through two dense layers with 30 neurons and soft-
plus activation function, and then linearly projects them to a six-dimensional
latent space, where the dynamics are modeled. The decoder aψ(ht) follows
the same chain of mapping operations in reverse order. The only difference is
that the decoder’s output layer emits only one observation point, as opposed to
the encoder admitting three points at once.

The drift function fθ f (·, ·) is governed by another separate Bayesian neural
net, again with one hidden layer of 30 neurons and softplus activation function
on the hidden layer. The diffusion function is fixed to be constant.

We train all models except SGLD with the Adam optimizer for 3000 epochs
on seven randomly chosen snippets at a time with a learning rate of 10−3. We
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use snippet length 30 for the first 1000 epochs, 50 until epoch 2500, and 100
afterwards. SGLD demonstrates significant training instability for this learning
rate, hence for it we drop its learning rate to the largest possible, stable value
10−5 and increase the epoch count to 5000.

6.6.4 Further Results on the Lorenz Attractor

As discussed above, the model is trained solely on the first 1000 observations
of a trajectory consisting of 2000 observations, leaving the second half for
the test evaluation. Figure 6.4 visualizes the qualitative difference between
the two. Note also the single loop the trajectory performs, which we will
see again in the 1d projections below. To visualize explore the qualitative
difference of our proposed model with weak prior knowledge compared to one
lacking this knowledge, we consider the situation where we have structural
prior knowledge only about the third SDE (i.e. the penultimate case in Table 1
with γ = [0, 0, 1].

To properly visualize it, we switch from the 3d plot to 1d plots, always showing
one of the three dimensions vs the time component. We always start at T = 10,
forecasting either 100 steps (as in the numerical evaluation), 200 or 1000 steps.
All the following figures show the mean trajectory averaged over 21 trajectories,
as well as an envelope of ± two standard deviations. Figure 6.6 visualizes
that the qualitative behaviour is similar without clear differences at that time
scale. Doubling the predicted time interval as shown in Figure 6.7 the baseline
starts to diverge from the true test sequence, while our proposed model still
tracks it closely, be it at an increased variance. Finally, predicting for 1000 time
steps (Figure 6.8) the Lorenz attractor’s chaotic behaviour becomes visible
as the mean in both setups no longer tracks the true trajectory. However, the
baseline keeps a rather small variance and a strong tendency in its predictions
that do not replicate the Lorenz attractor’s qualitative behaviour. While the
proposed model also shows an unreliable average, the large variance, which
nearly always includes the true trajectory, shows that the qualitative behaviour
is still replicated properly by individual trajectories of the model. See Figure 6.9
for seven individual trajectories of each of the two models. All trajectories of
E-PAC-Bayes-Hybrid show the qualitatively correct behaviour, including even
the characteristic loop.
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Figure 6.6: Predicting 100 time steps ahead. The hybrid model has prior knowledge of
dz. The bold lines give the mean over 21 trajectories the shading specifies
± two standard deviations.
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Figure 6.7: Predicting 200 time steps ahead. The hybrid model has prior knowledge of
dz. The bold lines give the mean over 21 trajectories the shading specifies
± two standard deviations.
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Figure 6.8: Predicting 1000 time steps ahead. The hybrid model has prior knowledge
of dz. The bold lines give the mean over 21 trajectories the shading
specifies ± two standard deviations.
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Figure 6.9: Predicting 1000 time steps ahead. The hybrid model has prior knowledge
of dz. The bold lines give the mean over 21 trajectories the shading spec-
ifies ± two standard deviations. Each line shows one sampled trajectory.



7
C O N C LU S I O N

As set out in the introduction, this thesis aimed to provide evidence for the
usefulness of Bayesian neural nets and to introduce new approaches for learning
such probabilistic models.

Training BNNs via variational inference already greatly improves their scalabil-
ity. However, common approaches still rely on samples of the weight parameters
during the training procedure leading to either noisy gradients when relying on
few samples or expensive ones if multiple forward passes through the layers
are combined to stabilize them. We introduced a new approach that relies on
the structure of piecewise linear activation functions to train them more stably
and demonstrated their usefulness empirically.

We also showed how to use central limited theorem based moment matching
approaches for active learning, introducing a new approach to learn the ac-
quisition function via a second Bayesian neural net in parallel to the main
learner, instead of having to rely on hard-coded approaches. Additionally, we
demonstrated how to adapt the concept of type-II Maximum Likelihood to the
learning of BNNs and how to modify PAC-Bayes generalization bounds as
regularizing objectives.

We used these approaches to adapt the usually deterministic methods for out-
of-distribution detection via evidential deep learning and the modeling of
stochastic dynamics via neural stochastic differential equation models to be
probabilistic via BNNs.

To summarize, we can say that Bayesian neural nets indeed have their legitimacy
and practical usefulness. However, looking ahead, we have to acknowledge
that this research direction still poses a lot of open question, and the field
is far from having converged. All of the BNNs we discussed relied either
on the simplifying assumption of mean-field normal posteriors or factorized
normal priors in the case of the empirical Bayes approach. While it is a huge
step ahead from being restricted to pure MCMC methods, it is also clear that
this is a restriction purely motivated by theoretical constraints and is a poor
approximation to the true desired posterior, which is highly multimodal. And
even these simplified mean-field approaches struggle to compete with the really
deep neural nets employed in computer vision and natural language processing
tasks.

And yet, this is not to be read as a discouraging summary. This thesis re-
lied on comparatively smallish nets throughout the experiments to allow for
proper evaluations and comparisons to the baselines. Also, it relied on the
pure approach of training fully probabilistic nets from scratch. Removing these

133
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restrictions in practical applications, there has been a lot of progress relying for
example on deterministic pretraining, or mixtures of deterministic and proba-
bilistic layers to improve the scalability, which tend to consistently show that
the extra cost of probabilistic layers is justified by improved calibration of the
predictive uncertainties etc. . Additionally, every recent conference offers new
ideas of how to improve the variational posterior, rely on ensembling strategies
to better explore the posterior landscape, or make use of flow-based approaches
for increased flexibility. While we are probably far from the global optimum
still, the field seems definitely not stuck in a local optimum and progresses
with strong gradients.

Instead of further torturing the metaphor, we thank the reader for having
accompanied us on the journey through this thesis and which him/her all the
best. May we always be able to say: “Servir la science, c’est notre joie!”1

1 Motto of Podcast Science (https://www.podcastscience.fm/).

https://www.podcastscience.fm/


8
A P P E N D I X

This chapter collects some notation and definitions of the different distributions
and inequalities used throughout the thesis.

relationship notation. In addition to the common equality and in-
equality relations, we use the following five relations in the equations through-
out this thesis, where lhs refers to the left-hand side of the equation and rhs to
the right-hand side.

≜ lhs is equal to rhs by definition
c
= lhs is equal to rhs up to an additive constant
∝ lhs is equal to rhs up to a multiplicative constant (i.e. proportional)
≈ lsh is approximately equal to rhs
← lhs gets assigned the value on the rhs

8.1 distributions

We rely on various distributions in this thesis, whose density and parametriza-
tion are summarized in this section.

normal/gaussian The normal distribution for x ∈ R is parametrized Normal/Gaussian
by a mean µ ∈ R, and either a variance σ2 ∈ R+, or a precision β = 1

σ2 . Its
density is given as

N (x|µ, σ2) ≜
1√

2πσ2
exp

(︃
− (x− µ)2

2σ2

)︃
=

√︃
β

2π
exp

(︃
−β

2
(x− µ)2

)︃
Its generalization to a d-dimensional x is given as

multivariate normal The multivarate normal distribution for x ∈ Rd Multivariate Normal
is parameterized by a mean vector µ ∈ Rd, and a covariance matrix Σ, which
is constrained to be symmetric positive definite. Its density is given via

N (x|µ, Σ) =
1

(2π)d/2
√︁
|Σ|

exp
(︃
−1

2
(x− µ)⊤Σ−1(x− µ)

)︃
where |Σ| refers to the determinant. The Kullback-Leibler divergence between
two multivarate normal distributions is given as

KL
(︁
N (µ, Σ) ∥ N (µ̃, Σ̃)

)︁
=

1
2

(︃
tr
(︂

Σ̃
−1

Σ
)︂
+ (µ̃− µ)⊤Σ̃

−1
(µ̃− µ)− d + log

|Σ̃|
|Σ|

)︃
,
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where tr(·) is the trace operator.

bernoulli The Bernoulli distribution for x ∈ {0, 1} is parameterized byBernoulli
p ∈ [0, 1] with a density

Ber(x|p) ≜ px(1− p)(1−x).

Its C class generalization is given as

categorical The Categorical distribution for x ∈ {0, 1}C, ∑c xc = 1 isCategorical
parameterized by p ∈ [0, 1]C such that ∑c pc = 1, with a density

Cat(x|p) ≜
C

∏
c=1

pxc
c ,

dirichlet The Dirichlet distribution for x ∈ [0, 1]C, ∑c xc = 1 is param-Dirichlet
eterized by α ∈ RC

+, with a density

Dir(x|α) ≜ Γ(α0)

∏c Γ(αc)
∏

c
xαc−1

c ,

where Γ(·) ≜
∫︁ ∞

0 ux−1 exp(−u)du.

8.2 functions

logistic sigmoid The logistic sigmoid σ(·) : R → [0, 1] is definedLogistic sigmoid
as

σ(a) ≜
exp(a)

1 + exp(a)
=

1
1 + exp(−a)

.

Its generalization to C dimensional input is given via the softmax.

softmax The softmax ζ(·) : RC → [0, 1]C is defined asSoftmax

ζ(a)c ≜
exp(ac)

∑C
c=1 exp(ac)

.

It has the property that ∑c ζ(a)c = 1, i.e. it maps to the probability sim-
plex.

normal cdf/pdf Throughout the thesis we refer to the standard normalNormal CDF/PDF
probability density function as

ϕ(x) ≜
1√
2π

exp
(︃
− x2

2

)︃
,

and the cumulative density function of the standard normal as

Φ(x) ≜
∫︂ x

−∞
ϕ(t)dt.



8.3 inequalities 137

8.3 inequalities

See Wasserman (2013) for proofs of the following two inequalities.

jensen’s inequality If f (·) is a convex function then Jensen’s inequality

E [ f (X)] ≥ f (E [X]).

If f (·) is concave then

E [ f (X)] ≤ f (E [X]).

hoeffding’s inequality Let X1, . . . , XN be independent random vari- Hoeffding’s Inequality
ables with E [Xn] = 0 and an ≤ Xn ≤ bn. Let ε > 0, then for any t > 0 the
following inequality holds

P

(︄
N

∑
n=1

Xn ≥ ε

)︄
≤ exp(−tε)

N

∏
n=1

exp
(︁
t2(bn − an)

2/8
)︁
.
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